Science.gov

Sample records for cycle fatigue behaviour

  1. Elevation of Continuous Low-Cycle Fatigue Behaviour of High Temperature P122 Boiler Material

    SciTech Connect

    Pumwa, John; Soo Woo Nam

    2002-07-01

    The complex thermal-mechanical loading of power-generating plant components usually comprises of creep, high-cycle and low-cycle fatigue which are thermally induced by start-ups, load changes and shut-downs, producing in-stationary temperature gradients and hence creating strain as well as stress fields. In order to select the correct materials for these hostile environmental conditions, it is vitally important to understand the behaviour of mechanical properties of these materials. This paper reports the results of Low-cycle fatigue tests of P122 (HCM12A or 12Cr-1.8W-1.5Cu) high temperature boiler material, which is one of the latest developed materials for high temperature environments. The tests were conducted at temperatures ranging from 550 deg. C to 700 deg. C at 50 deg. C intervals with strain ranges of {+-}1.5 to {+-}3.0% at 0.5% intervals using a closed-loop hydraulic Instron material testing machine with a servo hydraulic controller. The results confirm that P122 is comparable to conventional high temperature steels. Moreover, the fracture mode assessments strongly revealed a ductile transgranular fracture mode. (authors)

  2. High cycle fatigue and fracture behaviour of a hot isostatically pressed nickel-based superalloy

    NASA Astrophysics Data System (ADS)

    Qiu, Chunlei; Wu, Xinhua

    2014-01-01

    Powder of a nickel-based superalloy, RR1000, has been hot isostatically pressed (HIPped) at a supersolvus temperature and post-HIP heat treated to produce different microstructures. Microstructures were investigated using a scanning electron microscope together with an energy dispersive X-ray spectrometer and a wave-length dispersive X-ray spectrometer. High cycle four-point bending fatigue and tension-tension fatigue tests have been performed on the fabricated samples. It was found that HIPped and aged samples showed the best four-point bending fatigue limit while HIPped and solution-treated and aged samples had the lowest fatigue limit. The four-point bending fatigue crack initiations all occurred from the sample surfaces either at the sites of inclusion clusters or by cleavage through large grains on the surfaces. The tension-tension fatigue crack initiation occurred mainly due to large hafnia inclusion clusters, with lower fatigue lives for samples where inclusions were closer to the surface. Crack initiation at the compact Al2O3 inclusion cluster led to a much higher fatigue life than found when cracks were initiated by large hafnia inclusion clusters. The tension-tension fatigue limits were shown to decrease with increased testing temperature (from room temperature to 700 °C).

  3. Low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Solomon, H. D. (Editor); Kaisand, L. R. (Editor); Halford, G. R. (Editor); Leis, B. N. (Editor)

    1988-01-01

    The papers contained in this volume focus on various aspects of low cycle fatigue, including cyclic deformation, crack propagation, high-temperature low cycle fatigue, microstructural defects, multiaxial and variable amplitude loading, and life prediction. Papers are presented on the low cycle fatigue of some aluminum alloys, prediction of crack growth under creep-fatigue loading conditions, high-temperature low cycle fatigue behavior and lifetime prediction of a nickel-base ODS alloy, and an integrated approach to creep-fatigue life prediction. Other topics discussed include thermal fatigue testing of coated monocrystalline superalloys, low cycle fatigue of Al-Mg-Si alloys, and the effect of superimposed stresses at high frequency on low cycle fatigue.

  4. Low cycle fatigue behaviour of a plasma-sprayed coating material

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V.

    1986-01-01

    Single crystal nickel-base superalloys employed in turbine blade applications are often used with a plasma spray coating for oxidation and hot corrosion resistance. These coatings may also affect fatigue life of the superalloy substrate. As part of a large program to understand the fatigue behavior of coated single crystals, fully reversed, total strain controlled fatigue tests were run on a free standing NiCoCrAlY coating alloy, PWA 276, at 0.1 Hz. Fatigue tests were conducted at 650 C, where the NiCoCrAlY alloy has modest ductility, and at 1050 C, where it is extremely ductile, showing tensile elongation in excess of 100 percent. At the lower test temperature, deformation induced disordering softened the NiCoCrAlY alloy, while at the higher test temperature cyclic hardening was observed which was linked to gradual coarsening of the two phase microstructure. Fatigue life of the NiCoCrAlY alloy was significantly longer at the higher temperature. Further, the life of the NiCoCrAlY alloy exceeds that of coated, /001/-oriented PWA 1480 single crystals at 1050 C but at 650 C the life of the coated crystal is greater than that of the NiCoCrAlY alloy on a total strain basis.

  5. Tensile, low cycle fatigue and fracture toughness behaviour of type 316L steel irradiated to 0.3 dpa

    NASA Astrophysics Data System (ADS)

    Josefsson, Bertil; Bergenlid, Ulf

    1994-09-01

    The effect of a low dose neutron irradiation on the tensile, low cycle fatigue and fracture toughness properties of type 316L steel plate and weld material was investigated. The specimens were irradiated at a temperature of about 35°C to a neutron fluence of approximately 2.5 × 10 20 n/cm 2 ( E > 1 MeV). The testing was performed at 75, 250 and 450°C. Irradiated tensile specimens showed a substantial radiation hardening combined with some reduction of elongations. There was no significant effect of the irradiation on the low cycle fatigue endurances. The fracture toughness of the TIG weld specimens was roughly half of that of the 316L plate and electron beam weld. Some reductions of toughness owing to the irradiation were observed.

  6. Low-cycle thermal fatigue

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1986-01-01

    A state-of-the-art review is presented of the field of thermal fatigue. Following a brief historical review, the concept is developed that thermal fatigue can be viewed as processes of unbalanced deformation and cracking. The unbalances refer to dissimilar mechanisms occurring in opposing halves of thermal fatigue loading and unloading cycles. Extensive data summaries are presented and results are interpreted in terms of the unbalanced processes involved. Both crack initiation and crack propagation results are summarized. Testing techniques are reviewed, and considerable discussion is given to a technique for thermal fatigue simulation, known as the bithermal fatigue test. Attention is given to the use of isothermal life prediction methods for the prediction of thermal fatigue lives. Shortcomings of isothermally-based life prediction methods are pointed out. Several examples of analyses and thermal fatigue life predictions of high technology structural components are presented. Finally, numerous dos and don'ts relative to design against thermal fatigue are presented.

  7. A comparative study on low cycle fatigue behaviour of nano and micro Al2O3 reinforced AA2014 particulate hybrid composites

    NASA Astrophysics Data System (ADS)

    Senthilkumar, R.; Arunkumar, N.; Manzoor Hussian, M.

    Aluminium based metal matrix composites have drawn more attraction due to their improved properties in structural applications for the past two decades. The fatigue behaviour of composite materials needs to be studied for their structural applications. In this work, powder metallurgy based aluminium (AA2014) alloy reinforced with micro and nano-sized alumina particles were fabricated and consolidated with the hot extrusion process. The evaluation of mechanical properties in the extruded composite was carried out. This composite was subjected to low cycle fatigue test with a constant strain rate. Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) images were used to evaluate the fatigue behaviour of aluminium-nano composite samples. Enhanced mechanical properties were exhibited by the nano alumina reinforced aluminium composites, when compared to the micron sized alumina reinforced composites. The failure cycle is observed to be higher for the nano alumina reinforced composites when compared with micron sized alumina composites due to a lower order of induced plastic strain.

  8. Low cycle fatigue of Eurofer 97

    NASA Astrophysics Data System (ADS)

    Marmy, Pierre; Kruml, Tomas

    2008-06-01

    We have investigated the low cycle fatigue and creep-fatigue properties of Eurofer 97 and observed the associated microstructural changes. The as received structure is composed of equiaxed subgrains and a few martensite laths with a high dislocation density. Fatigue tests have been carried out in air or in high vacuum, from room temperature to 550 °C, under total strain control. It has been found that the influence of the test temperature on the fatigue endurance is not significant. The softening behaviour as a function of the imposed strain amplitude and temperature has been analysed in detail. The softening rate is independent of the imposed strain but strongly enhanced at the highest test temperature. Creep-fatigue tests were run, imposing a 500 s dwell at the maximum tensile strain of the loading cycle, at a total strain range of 0.5%, 0.8% and 1.4%, and at 150, 300 and 550 °C. The influence of the hold time is important only at the highest test temperature, under low applied strains. It was found that at the beginning of life, at the highest temperature, the softening rate with hold times is much stronger as compared to the softening rate without hold times. The amount of stress relaxed during the dwell is independent of the applied strain, at the end of life. The effect of fatigue with and without hold times up to medium temperatures on the microstructure was to lower the dislocation density and to decompose the laths and large grains into a homogeneous structure of submicron grains. At the highest test temperature, an increase of the subgrain size and carbide coarsening were observed.

  9. Low cycle fatigue in turbines

    NASA Technical Reports Server (NTRS)

    Brun, M.

    1978-01-01

    Behavior of certain components at low-cycle fatigue is a parameter related to the conditions of use of turbines, to the technology of engine production and to the precision of its regulation. The laboratory takes this into account using data from sophisticated tests and rigorous analyses. The production plan includes careful examination of possible causes of premature rupture. This parameter has motivated the metallurgy industry to develop new materials and new technology.

  10. Effect of Forging Parameters on Low Cycle Fatigue Behaviour of Al/Basalt Short Fiber Metal Matrix Composites

    PubMed Central

    Karthigeyan, R.; Ranganath, G.

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface. PMID:24298207

  11. Effect of forging parameters on low cycle fatigue behaviour of Al/basalt short fiber metal matrix composites.

    PubMed

    Karthigeyan, R; Ranganath, G

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface. PMID:24298207

  12. Multiaxial fatigue low cycle fatigue testing

    NASA Technical Reports Server (NTRS)

    Zamrik, S. Y.

    1985-01-01

    Multiaxial testing methods are reviewed. Advantages and disadvantages of each type test is discussed. Significant multiaxial data available in the literature is analyzed. The yield theories are compared for multiaxial fatigue analysis.

  13. "Abnormal" illness behaviour in chronic fatigue syndrome and multiple sclerosis.

    PubMed Central

    Trigwell, P.; Hatcher, S.; Johnson, M.; Stanley, P.; House, A.

    1995-01-01

    OBJECTIVE--To investigate the presence of abnormal illness behaviour in patients with a diagnosis of chronic fatigue syndrome. DESIGN--A cross sectional descriptive study using the illness behaviour questionnaire to compare illness behaviour scores and illness behaviour profiles of patients with chronic fatigue syndrome and patients with multiple sclerosis. SETTING--A multidisciplinary fatigue clinic and a teaching hospital neurology outpatient clinic. SUBJECTS--98 patients satisfying the Oxford criteria for chronic fatigue syndrome and 78 patients with a diagnosis of multiple sclerosis. MAIN OUTCOME MEASURE--Responses to the 62 item illness behaviour questionnaire. RESULTS--90 (92%) patients in the chronic fatigue syndrome group and 70 (90%) in the multiple sclerosis group completed the illness behaviour questionnaire. Both groups had significantly high scores on the general hypochondriasis and disease conviction subscales and significantly low scores on the psychological versus somatic concern subscale, as measured in relation to normative data. There were, however, no significant differences in the subscale scores between the two groups and the two groups had identical illness behaviour profiles. CONCLUSION--Scores on the illness behaviour questionnaire cannot be taken as evidence that chronic fatigue syndrome is a variety of abnormal illness behaviour, because the same profile occurs in multiple sclerosis. Neither can they be taken as evidence that chronic fatigue and multiple sclerosis share an aetiology. More needs to be known about the origins of illness beliefs in chronic fatigue syndrome, especially as they are important in determining outcome. PMID:7613314

  14. Low-cycle fatigue testing methods

    NASA Technical Reports Server (NTRS)

    Lieurade, H. P.

    1978-01-01

    The good design of highly stressed mechanical components requires accurate knowledge of the service behavior of materials. The main methods for solving the problems of designers are: determination of the mechanical properties of the material after cyclic stabilization; plotting of resistance to plastic deformation curves; effect of temperature on the life on low cycle fatigue; and simulation of notched parts behavior.

  15. Influence of environment on the fatigue crack growth behaviour of 12% Cr steel.

    PubMed

    Schönbauer, Bernd M; Stanzl-Tschegg, Stefanie E

    2013-12-01

    In the present work, the influence of different environments on the fatigue crack growth behaviour of 12% Cr steam turbine blade steel is investigated. Fatigue crack growth rates (FCGRs) in the near threshold regime are measured with ultrasonic fatigue testing technique. Fatigue tests are performed in vacuum, air and different aqueous environments with defined chloride and oxygen content. Furthermore, the influence of different stress ratios is investigated. It is found that crack propagation is not necessarily enhanced with increasing corrosiveness. In the aqueous environments, the FCGRs below 10⁻⁸ m/cycle are lower than in air. The threshold stress intensity factor ranges are higher or equal. Observation of the fracture surfaces shows oxide formation and partly intergranular fracture for specimens tested in aqueous environments. Crack closure effects seem to be responsible for this unexpected behaviour. PMID:23490013

  16. Experimental and numerical evaluation of the fatigue behaviour in a welded joint

    NASA Astrophysics Data System (ADS)

    Almaguer, P.; Estrada, R.

    2014-07-01

    Welded joints are an important part in structures. For this reason, it is always necessary to know the behaviour of them under cyclic loads. In this paper a S - N curve of a butt welded joint of the AISI 1015 steel and Cuban manufacturing E6013 electrode is showed. Fatigue tests were made in an universal testing machine MTS810. The stress ratio used in the test was 0,1. Flaws in the fatigue specimens were characterized by means of optical and scanning electron microscopy. SolidWorks 2013 software was used to modeling the specimens geometry, while to simulate the fatigue behaviour Simulation was used. The joint fatigue limit is 178 MPa, and a cut point at 2 039 093 cycles. Some points of the simulations are inside of the 95% confidence band.

  17. High Cycle Thermal Fatigue in French PWR

    SciTech Connect

    Blondet, Eric; Faidy, Claude

    2002-07-01

    Different fatigue-related incidents which occurred in the world on the auxiliary lines of the reactor coolant system (SIS, RHR, CVC) have led EDF to search solutions in order to avoid or to limit consequences of thermodynamic phenomenal (Farley-Tihange, free convection loop and stratification, independent thermal cycling). Studies are performed on mock-up and compared with instrumentation on nuclear power stations. At the present time, studies allow EDF to carry out pipe modifications and to prepare specifications and recommendations for next generation of nuclear power plants. In 1998, a new phenomenal appeared on RHR system in Civaux. A crack was discovered in an area where hot and cold fluids (temperature difference of 140 deg. C) were mixed. Metallurgic studies concluded that this crack was caused by high cycle thermal fatigue. Since 1998, EDF is making an inventory of all mixing areas in French PWR on basis of criteria. For all identified areas, a method was developed to improve the first classifying and to keep back only potential damage pipes. Presently, studies are performing on the charging line nozzle connected to the reactor pressure vessel. In order to evaluate the load history, a mock-up has been developed and mechanical calculations are realised on this nozzle. The paper will make an overview of EDF conclusions on these different points: - dead legs and vortex in a no flow connected line; - stratification; - mixing tees with high {delta}T. (authors)

  18. Low cycle dwell time fatigue in Ti-6242

    SciTech Connect

    Kassner, M.E.; Faber, R.; Li, X.; Ge, Y.; Kosaka, Y.; Bristow, B.; Reichman, S.H.; Hall, J.A.

    1999-07-01

    Ambient temperature low cycle dwell time and conventional low cycle fatigue tests were performed on Ti-6Al-2Sn-4Zr-2Mo (Ti-6242). Specimens were solution annealed at various temperatures below the beta transus to control the volume fraction of primary alpha. The influence of the changes in primary alpha phase on low cycle dwell time fatigue life (DLCF) were determined and compared to the conventional low cycle fatigue (LCF) properties of the alloy. A dwell significantly decreased the number of cycles to failure. Increasing primary alpha associated with lower solution temperatures significantly increased susceptibility to low cycle dwell time fatigue although this effect, and DLCF in general, diminished with decreasing stress. It is believed that the susceptibility to dwell fatigue may be associated with ambient temperature, time-dependent, cyclic (creep) plasticity.

  19. A Very High-Cycle Fatigue Test and Fatigue Properties of TC17 Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Jiao, Shengbo; Gao, Chao; Cheng, Li; Li, Xiaowei; Feng, Yu

    2016-03-01

    The present work studied the very high-cycle fatigue (VHCF) test and fatigue properties of TC17 titanium alloy. The specimens for bending vibration were designed using the finite element method and the VHCF tests were conducted by using the ultrasonic fatigue testing system. The results indicated that there is no the fatigue limit for TC17 titanium alloy, and the S-N curve shows a continuously descending trend. The fatigue crack initiates at the specimen surface within the range of VHCF and the VHCF lives follow the log-normal distribution more closely.

  20. Modeling and experimental characterization on fatigue behaviour of 1-3 piezocomposites

    NASA Astrophysics Data System (ADS)

    Mohan, Y.; Jayendiran, R.; Arockiarajan, A.

    2015-04-01

    1-3 piezocomposites are very attractive materials in underwater and biomedical applications. These materials may be subjected to high electric field (2kV/mm) under continuous operation leading to deterioration in the output parameters such as remnant, saturation polarization and strain. Hence in this work, an experimental study is carried out to understand the fatigue behavior of 1-3 piezocomposites for various fiber volume fraction subjected to cyclic electric field (2kV/mm, 50Hz) up to 106 cycles. A uni-axial micro-mechanical model is developed to predict the fatigue behaviour of 1-3 piezocomposite. The novelty of this model is, the remnant polarization and strain are chosen as internal variables which is also dependent on the damage.The simulated results are compared with the experimental observations, it is observed that the proposed micro-mechanical model is able to predict the material degradation with increase in number of cycles of operation. A parametric study is also conducted for various fiber volume fraction of 1-3 piezocomposite as function of fatigue cycle it shows that the amplitude of dielectric hysteresis and butterfly loop decreases with increase in the number of cycles. The fatigue behavior has a substantial effect in the performance parameters such as coercive field, remnant polarization and the asymmetric strain behavior of 1-3 piezocomposite. This fatigue study explores the utilities of 1-3 piezocomposites in transducer applications by providing insight into the device design.

  1. Crack tip field and fatigue crack growth in general yielding and low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Minzhong, Z.; Liu, H. W.

    1984-01-01

    Fatigue life consists of crack nucleation and crack propagation periods. Fatigue crack nucleation period is shorter relative to the propagation period at higher stresses. Crack nucleation period of low cycle fatigue might even be shortened by material and fabrication defects and by environmental attack. In these cases, fatigue life is largely crack propagation period. The characteristic crack tip field was studied by the finite element method, and the crack tip field is related to the far field parameters: the deformation work density, and the product of applied stress and applied strain. The cyclic carck growth rates in specimens in general yielding as measured by Solomon are analyzed in terms of J-integral. A generalized crack behavior in terms of delta is developed. The relations between J and the far field parameters and the relation for the general cyclic crack growth behavior are used to analyze fatigue lives of specimens under general-yielding cyclic-load. Fatigue life is related to the applied stress and strain ranges, the deformation work density, crack nucleus size, fracture toughness, fatigue crack growth threshold, Young's modulus, and the cyclic yield stress and strain. The fatigue lives of two aluminum alloys correlate well with the deformation work density as depicted by the derived theory. The general relation is reduced to Coffin-Manson low cycle fatigue law in the high strain region.

  2. Low cycle fatigue behavior of aluminum/stainless steel composites

    NASA Technical Reports Server (NTRS)

    Bhagat, R. B.

    1983-01-01

    Composites consisting of an aluminum matrix reinforced with various volume fractions of stainless steel wire were fabricated by hot die pressing under various conditions of temperature, time, and pressure. The composites were tested in plane bending to complete fracture under cycle loading, and the results were analyzed on a computer to obtain a statistically valid mathematical relationship between the low-cycle fatigue life and the fiber volume fraction of the composite. The fractured surfaces of the composites were examined by scanning electron microscopy to identify the characteristic features of fatigue damage. Fatigue damage mechanisms are proposed and discussed.

  3. Fatigue crack growth and low cycle fatigue of two nickel base superalloys

    NASA Technical Reports Server (NTRS)

    Stoloff, N. S.; Duquette, D. J.; Choe, S. J.; Golwalkar, S.

    1983-01-01

    The fatigue crack growth and low cycle fatigue behavior of two P/M superalloys, Rene 95 and Astroloy, in the hot isostatically pressed (HIP) condition, was determined. Test variables included frequency, temperature, environment, and hold times at peak tensile loads (or strains). Crack initiation sites were identified in both alloys. Crack growth rates were shown to increase in argon with decreasing frequency or with the imposition of hold times. This behavior was attributed to the effect of oxygen in the argon. Auger analyses were performed on oxide films formed in argon. Low cycle fatigue lives also were degraded by tensile hold, contrary to previous reports in the literature. The role of environment in low cycle fatigue behavior is discussed.

  4. Low cycle dwell-time fatigue in Ti-6242

    SciTech Connect

    Kassner, M.E.; Kosaka, Y.; Hall, J.A.

    1999-09-01

    Ambient-temperature, low-cycle dwell-time and conventional low-cycle fatigue tests were performed on Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti-6242). Specimens were solution annealed at various temperatures below the beta transus to control the volume fraction of primary alpha phase and were subsequently shot-peened. The influence of the changes in primary alpha phase on the low-cycle dwell-time fatigue life (LCDF) were determined and compared to the conventional low-cycle fatigue (LCF) properties of the alloy. A 120-second dwell significantly decreased the number of cycles to failure, although the factor decrease of LCF from a dwell, in general, diminished with decreasing stress. The Increasing primary alpha phase associated with lower solution temperatures appears to increase susceptibility to low-cycle dwell-time fatigue. It also appears that the susceptibility to dwell fatigue may be associated with ambient-temperature, time-dependent, cyclic (creep) plasticity.

  5. On high-cycle fatigue of 316L stents.

    PubMed

    Barrera, Olga; Makradi, Ahmed; Abbadi, Mohammed; Azaouzi, Mohamed; Belouettar, Salim

    2014-01-01

    This paper deals with fatigue life prediction of 316L stainless steel cardiac stents. Stents are biomedical devices used to reopen narrowed vessels. Fatigue life is dominated by the cyclic loading due to the systolic and diastolic pressure and the design against premature mechanical failure is of extreme importance. Here, a life assessment approach based on the Dang Van high cycle fatigue criterion and on finite element analysis is applied to explore the fatigue reliability of 316L stents subjected to multiaxial fatigue loading. A finite element analysis of the stent vessel subjected to cyclic pressure is performed to carry out fluctuating stresses and strain at some critical elements of the stent where cracks or complete fracture may occur. The obtained results show that the loading path of the analysed stent subjected to a pulsatile load pressure is located in the safe region concerning infinite lifetime. PMID:22587434

  6. High Cycle Fatigue in the Transmission Electron Microscope.

    PubMed

    Bufford, Daniel C; Stauffer, Douglas; Mook, William M; Syed Asif, S A; Boyce, Brad L; Hattar, Khalid

    2016-08-10

    One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this study, the tension-tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were applied at frequencies from one to several hundred hertz, enabling accumulations of 10(6) cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ∼10(-12) m·cycle(-1). This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. These observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu. PMID:27351706

  7. The effects of out-of-phase biaxial-strain cycling on low-cycle fatigue.

    NASA Technical Reports Server (NTRS)

    Zamrik, S. Y.; Frishmuth, R. E.

    1973-01-01

    The effects of out-of-phase or nonsychronous straining on low-cycle fatigue was investigated. Biaxial strains were imposed on thin-walled tubular 7075-T6 aluminum specimens by tension-compression and torsion. Phase angles of 0, 30, 45, 60, and 90 deg were applied between two strains. It was found that out-of-phase cycling has an effect on the failure mode in the low-cycle-fatigue range. An analysis based on the maximum total strain in three-dimensional strain is proposed for treating 'out-of-phase' straining conditions in low-cycle fatigue.

  8. Evaluation of Giga-cycle Fatigue Properties of Austenitic Stainless Steels Using Ultrasonic Fatigue Test

    NASA Astrophysics Data System (ADS)

    Takahashi, Kyouhei; Ogawa, Takeshi

    Ultrasonic fatigue tests have been performed in austenitic stainless steel, SUS316NG, in order to investigate giga-cycle fatigue strength of pre-strained materials, i.e. 5, 10 and 20% tensile pre-strains and -20% compressive pre-strain. The pre-strains were applied before specimen machining. The austenitic stainless steels are known to exhibit remarkable self-heating during the fatigue experiment. Therefore, heat radiation method was established by setting fatigue specimens in a low temperature chamber at about -100°C. The self-heating was controlled by intermittent loading condition, which enabled us to maintain the test section of the specimens at about room temperature. The results revealed that the fatigue strength increased with increasing pre-strain levels. Fish-eye fracture was observed for -20% pre-strained specimen fractured at 4.11×107 cycles, while the other specimens exhibited ordinary fatigue fracture surface originated from stage I facet on the specimen surface. The increase in fatigue limit was predicted by Vickers hardness, HV, which depended on the size of indented region. The prediction was successful using HV values obtained by the size of the indented region similar to those of the stage I facets.

  9. Low Cycle Fatigue and Creep-Fatigue Behavior of Alloy 617 at High Temperature

    SciTech Connect

    Cabet, Celine; Carroll, Laura; Wright, Richard

    2013-10-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the Very High Temperature Nuclear Reactor (VHTR), expected to have an outlet temperature as high as 950 degrees C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanism/s and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 degrees C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens, although evidence of grain boundary cavitation was not observed. Despite the absence of grain boundary cavitation to accelerate crack propagation, the addition of a hold time at peak tensile strain was detrimental to cycle life. This suggests that creepfatigue interaction may occur by a different mechanism or that the environment may be partially responsible for accelerating failure.

  10. High cycle fatigue in the transmission electron microscope

    DOE PAGESBeta

    Bufford, Daniel C.; Stauffer, Douglas; Mook, William M.; Syed Asif, S. A.; Boyce, Brad L.; Hattar, Khalid

    2016-06-28

    One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this paper, the tension–tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were appliedmore » at frequencies from one to several hundred hertz, enabling accumulations of 106 cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ~10–12 m·cycle–1. This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. Finally, these observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu.« less

  11. The effect of low cycle fatigue cracks and loading history on high cycle fatigue threshold

    NASA Astrophysics Data System (ADS)

    Moshier, Monty Allen

    High cycle fatigue (HCF) has been of great concern of late in light of the many HCF gas turbine engine failures experienced by the U.S. Air Force. Due to the high frequency, failures occur rapidly when components sustain damage from other sources. Low cycle fatigue (LCF) can initiate cracks that produce such damage. This study investigates the HCF threshold of Ti-6A1-4V when naturally initiated small surface cracks (2a = 25 mum--600 mum) are present. Small surface cracks are initiated in notched specimens using two different LCF loading histories at room temperature and 10 Hz. Direct current potential difference (DCPD) is used to detect crack initiation. Surface crack measurements are made using a scanning electron microscope prior to HCF testing. Heat tinting prior to HCF testing is used to mark the crack front to allow for post fracture crack measurements. HCF thresholds at R = 0.1 and R = 0.5 are determined for each specimen using step loading at room temperature and 600 Hz. Additionally, the HCF threshold is measured at R = 0.1 for specimens with small cracks that have been stress relief annealed to eliminate residual stresses and load history. Long crack thresholds are determined using a similar step loading procedure at R = 0.1 and R = 0.5 for specimens which have been precracked using a range of Kmax. Long crack threshold measurements are also determined for specimens which have been precracked using a range of Kmax, but stress relief annealed prior to testing. Comparisons show that HCF threshold measurements, when naturally initiated small cracks are present, are dependent on the load histories that are used to initiate the cracks. Further comparisons show that the measured small crack thresholds follow similar trends for load history effects which occur in the long crack threshold data. Additionally, it is found that thresholds can be measured free of load history effects by using a stress relief annealing process after the precracking and prior to the

  12. Fatigue strength and evaluation of creep damage during fatigue cycling of Inconel Alloy 625

    SciTech Connect

    Purohit, A.; Thiele, U.; O'Donnell, J.E.

    1983-06-01

    Evaluation of high strain rate and corresponding low strain rate tests indicate no creep-fatigue interaction. For T greater than or equal to 900/sup 0/C, creep damage predominates during the cyclic straining. For tests in which creep damage is largely suppressed - for example in high-frequency reverse bend fatigue tests - the cycles to fatigue failure were found to increase directly with the degree of suppression of creep damage. However, a practical limit exists for suppression of creep damage at 1100/sup 0/C; at that temperature, even for the high frequency reverse bend tests (approx. 1000 rpm with ..sigma.. = 12.3% s/sup -1/), the creep damage predominated over the fatigue damage.

  13. A criterion for high-cycle fatigue life and fatigue limit prediction in biaxial loading conditions

    NASA Astrophysics Data System (ADS)

    Pejkowski, Łukasz; Skibicki, Dariusz

    2016-08-01

    This paper presents a criterion for high-cycle fatigue life and fatigue strength estimation under periodic proportional and non-proportional cyclic loading. The criterion is based on the mean and maximum values of the second invariant of the stress deviator. Important elements of the criterion are: function of the non-proportionality of fatigue loading and the materials parameter that expresses the materials sensitivity to non-proportional loading. The methods for the materials parameters determination uses three S-N curves: tension-compression, torsion, and any non-proportional loading proposed. The criterion has been verified using experimental data, and the results are included in the paper. These results should be considered as promising. The paper also includes a proposal for multiaxial fatigue models classification due to the approach for the non-proportionality of loading.

  14. Low- cycle fatigue behavior of polycrystalline nial at 1000 k

    NASA Astrophysics Data System (ADS)

    Lerch, B. A.; Noebe, R. D.

    1994-02-01

    The low-cycle fatigue behavior of polycrystalline NiAl was determined at 1000 K, a temperature above the monotonic brittle-to-ductile transition temperature (BDTT). Fully reversed, plastic strain-controlled fatigue tests were conducted on B2 intermetallic samples prepared by two fab-rication techniques: hot isostatic pressing (HIP) of prealloyed powders and extrusion of vacuum induction-melted [cast plus extruded (C+E)] castings. At 1000 K, in an air environment both the hot-isostatically pressed (“hipped”) and C + E samples cyclically softened throughout most of their fatigue lives, though the absolute change in stress was no greater than about 35 MPa. At this temperature, samples were insensitive to processing defects, which were a source of failure initiation in room-temperature tests. The processing method had a small effect on fatigue life; the lives of the hipped samples were about a factor of 3 shorter than the fatigue lives of the C+E NiAl. The C+E material also underwent dynamic grain growth during testing, while the hipped NiAl maintained a constant grain size. Stable fatigue-crack growth in both materials was intergranular in nature, while final fracture by tensile overload occurred by transgranular cleavage. However, at plastic strain ranges below 0.3 pct, the fatigue lives of the hipped NiAl were controlled by intergranular cavitation and creep processes such that the fatigue lives were shorter than anticipated. Finally, hipped samples tested in vacuum had a factor of 3 longer life than specimens tested in air. A comparison of NiAl to typical superalloys (which it may replace) showed that NiAl exhibited a superior fatigue life on a plastic strain basis but was inferior to most superalloys on a stress basis.

  15. PO2 Cycling Reduces Diaphragm Fatigue by Attenuating ROS Formation

    PubMed Central

    Zuo, Li; Diaz, Philip T.; Chien, Michael T.; Roberts, William J.; Kishek, Juliana; Best, Thomas M.; Wagner, Peter D.

    2014-01-01

    Prolonged muscle exposure to low PO2 conditions may cause oxidative stress resulting in severe muscular injuries. We hypothesize that PO2 cycling preconditioning, which involves brief cycles of diaphragmatic muscle exposure to a low oxygen level (40 Torr) followed by a high oxygen level (550 Torr), can reduce intracellular reactive oxygen species (ROS) as well as attenuate muscle fatigue in mouse diaphragm under low PO2. Accordingly, dihydrofluorescein (a fluorescent probe) was used to monitor muscular ROS production in real time with confocal microscopy during a lower PO2 condition. In the control group with no PO2 cycling, intracellular ROS formation did not appear during the first 15 min of the low PO2 period. However, after 20 min of low PO2, ROS levels increased significantly by ∼30% compared to baseline, and this increase continued until the end of the 30 min low PO2 condition. Conversely, muscles treated with PO2 cycling showed a complete absence of enhanced fluorescence emission throughout the entire low PO2 period. Furthermore, PO2 cycling-treated diaphragm exhibited increased fatigue resistance during prolonged low PO2 period compared to control. Thus, our data suggest that PO2 cycling mitigates diaphragm fatigue during prolonged low PO2. Although the exact mechanism for this protection remains to be elucidated, it is likely that through limiting excessive ROS levels, PO2 cycling initiates ROS-related antioxidant defenses. PMID:25299212

  16. Cyclic fatigue analysis of rocket thrust chambers. Volume 1: OFHC copper chamber low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A three-dimensional finite element elasto-plastic strain analysis was performed for the throat section of a regeneratively cooled rocket combustion chamber. The analysis employed the RETSCP finite element computer program. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the chamber operating cycle. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen combustion chamber which was fatigue tested to failure. The computed strain range at typical chamber operating conditions was used in conjunction with oxygen-free, high-conductivity (OHFC) copper isothermal fatigue test data to predict chamber low-cycle fatigue life.

  17. Epidemic cycles driven by host behaviour

    PubMed Central

    Althouse, Benjamin M.; Hébert-Dufresne, Laurent

    2014-01-01

    Host immunity and demographics (the recruitment of susceptibles via birthrate) have been demonstrated to be a key determinant of the periodicity of measles, pertussis and dengue epidemics. However, not all epidemic cycles are from pathogens inducing sterilizing immunity or are driven by demographics. Many sexually transmitted infections are driven by sexual behaviour. We present a mathematical model of disease transmission where individuals can disconnect and reconnect depending on the infectious status of their contacts. We fit the model to historic syphilis (Treponema pallidum) and gonorrhea (Neisseria gonorrhoeae) incidence in the USA and explore potential intervention strategies against syphilis. We find that cycles in syphilis incidence can be driven solely by changing sexual behaviour in structured populations. Our model also explains the lack of similar cycles in gonorrhea incidence even if the two infections share the same propagation pathways. Our model similarly illustrates how sudden epidemic outbreaks can occur on time scales smaller than the characteristic demographic time scale of the population and that weaker infections can lead to more violent outbreaks. Behaviour also appears to be critical for control strategies as we found a bigger sensitivity to behavioural interventions than antibiotic treatment. Thus, behavioural interventions may play a larger role than previously thought, especially in the face of antibiotic resistance and low intervention efficacies. PMID:25100316

  18. Epidemic cycles driven by host behaviour.

    PubMed

    Althouse, Benjamin M; Hébert-Dufresne, Laurent

    2014-10-01

    Host immunity and demographics (the recruitment of susceptibles via birthrate) have been demonstrated to be a key determinant of the periodicity of measles, pertussis and dengue epidemics. However, not all epidemic cycles are from pathogens inducing sterilizing immunity or are driven by demographics. Many sexually transmitted infections are driven by sexual behaviour. We present a mathematical model of disease transmission where individuals can disconnect and reconnect depending on the infectious status of their contacts. We fit the model to historic syphilis (Treponema pallidum) and gonorrhea (Neisseria gonorrhoeae) incidence in the USA and explore potential intervention strategies against syphilis. We find that cycles in syphilis incidence can be driven solely by changing sexual behaviour in structured populations. Our model also explains the lack of similar cycles in gonorrhea incidence even if the two infections share the same propagation pathways. Our model similarly illustrates how sudden epidemic outbreaks can occur on time scales smaller than the characteristic demographic time scale of the population and that weaker infections can lead to more violent outbreaks. Behaviour also appears to be critical for control strategies as we found a bigger sensitivity to behavioural interventions than antibiotic treatment. Thus, behavioural interventions may play a larger role than previously thought, especially in the face of antibiotic resistance and low intervention efficacies. PMID:25100316

  19. Thermal Cycling on Fatigue Failure of the Plutonium Vitrification Melter

    SciTech Connect

    Jordan, Jeffrey; Gorczyca, Jennifer

    2009-02-11

    One method for disposition of excess plutonium is vitrification into cylindrical wasteforms. Due to the hazards of working with plutonium, the vitrification process must be carried out remotely in a shielded environment. Thus, the equipment must be easily maintained. With their simple design, induction melters satisfy this criterion, making them ideal candidates for plutonium vitrification. However, due to repeated heating and cooling cycles and differences in coefficients of thermal expansion of contacting materials fatigue failure of the induction melter is of concern. Due to the cost of the melter, the number of cycles to failure is critical. This paper presents a method for determining the cycles to failure for an induction melter by using the results from thermal and structural analyses as input to a fatigue failure model.

  20. Fatigue in multiple sclerosis: association with disease-related, behavioural and psychosocial factors.

    PubMed

    Trojan, D A; Arnold, D; Collet, J-P; Shapiro, S; Bar-Or, A; Robinson, A; Le Cruguel, J-P; Ducruet, T; Narayanan, S; Arcelin, K; Wong, A N; Tartaglia, M C; Lapierre, Y; Caramanos, Z; Da Costa, D

    2007-09-01

    We determined biopsychosocial correlates of general, physical, and mental fatigue in MS patients, by evaluating the additional contribution of potentially modifiable factors after accounting for non-modifiable disease-related factors. Fifty-three ambulatory MS patients, along with 28 normal controls were recruited for a cross-sectional study. Subjects completed the Multidimensional Fatigue Inventory (MFI) and Fatigue Severity Scale. Potential correlates evaluated were: disease-related factors (disease duration and type, immunomodulating treatment, muscle strength, pain, forced vital capacity (FVC), respiratory muscle strength, body mass index, disability, fibromyalgia), behavioural factors (physical activity, sleep quality) and psychosocial factors (depression, stress, self-efficacy). Multivariate models were calculated for MFI General, Physical, and Mental Fatigue. Age-adjusted multivariate models with non-modifiable factors included the following predictors (P < or = 0.10) of 1) MFI General and Mental Fatigue: none; and 2) MFI Physical Fatigue: FVC and disability. The following potentially modifiable predictors (P < or = 0.10) made an additional contribution to the models 1) MFI General Fatigue: sleep quality, self-efficacy, pain; 2) MFI Physical Fatigue: self-efficacy, physical activity; and 3) MFI Mental Fatigue: stress, self-efficacy. Fatigue in MS is multidimensional. Correlates of general and physical fatigue are disease-related, behavioural and psychosocial factors. Correlates of mental fatigue are psychosocial factors. Potentially modifiable factors account for a considerable portion of fatigue. PMID:17468448

  1. Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850 C

    SciTech Connect

    Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A; ERDMAN III, DONALD L; Mo, Kun; Stubbins, James

    2013-01-01

    Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850 C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weaker regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property.

  2. High Cycle Fatigue (HCF) Science and Technology Program

    NASA Astrophysics Data System (ADS)

    Bartsch, Thomas M.

    2002-05-01

    This fifth annual report of the National Turbine Engine High Cycle Fatigue (HCF) Program is a brief review of work completed, work in progress, and technical accomplishments. This program is a coordinated effort with participation by the Air Force, the Navy, and NASA. The technical efforts are organized under seven action teams Materials Damage Tolerance Research, Forced Response Prediction, Component Analysis, Instrumentation, Passive Damping Technology, Component Surface Treatments, and Engine Demonstration and two Programs Test and Evaluation, and Transitions (ENSIP).

  3. Final report on low-cycle fatigue and creep-fatigue testing of salt-filled alloy 800 specimens

    SciTech Connect

    Kaae, J L

    1982-05-01

    Uniaxial low-cycle fatigue and creep-fatigue tests have been carried out on hollow alloy 800 specimens that were either filled with air or with a molten mixture of sodium nitrate, potassium nitrate and an oxidizer. Low-cycle fatigue tests were carried out at 1200/sup 0/F and 650/sup 0/F by cycling the strain continuously between equal mangitude of tensile and compressive values at a rate of 4 x 10/sup -3/sec/sup -1/ until failure. The creep-fatigue tests were carried out at 1200/sup 0/F. The loading cycle differed from that of low-cycle fatigue testing only in the imposition of a hold at the peak compressive strain in each cycle. Cracks always initiated on the inner surface of the hollow specimen, and therefore, corrosive effects on crack propagation and initiation were controlled by the environment within the specimen cavity. In common with tests carried out earlier on steam-filled alloy 800 specimens, at 1200/sup 0/F in the presence of molten salt the heat of alloy 800 with the lower carbon content had a higher fatigue strength than the heat with the higher carbon content even though different heats were used in the two testing programs. The fatigue strength of the two heats of material in the presence of molten salt at 650/sup 0/F were about the same. Tests with air-filled specimens indicated that the presence of the molten salt degraded the fatigue life at 1200/sup 0/F but did not affect the creep fatigue life, while the presence of steam enhanced both the fatigue life and the creep-fatigue life.

  4. High-Cycle Fatigue Behavior of a Nicalon(tm)/Si-N-C Composite

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Kalluri, Sreeramesh; Kantzos, Peter T.

    1999-01-01

    Elevated temperature, high-cycle fatigue behavior of a woven SiC/Si-N-C ceramic matrix composite system was investigated at 910 C. High frequency (100 Hz) fatigue tests were conducted in air on specimens machined from the composite system, A power-law type fatigue life relationship adequately characterized the high-cycle fatigue data generated in the study. Post failure fractographic and metallographic studies were performed to document the fatigue crack initiation regions and damage mechanisms in the composite system. Fatigue cracks initiated primarily from the corners of the specimens and propagated along the 90 degree fiber tows.

  5. Low cycle fatigue behavior of Zircaloy-2 at room temperature

    NASA Astrophysics Data System (ADS)

    Sudhakar Rao, G.; Chakravartty, J. K.; Nudurupati, Saibaba; Mahobia, G. S.; Chattopadhyay, Kausik; Santhi Srinivas, N. C.; Singh, Vakil

    2013-10-01

    Fuel cladding and pressure tubes of Zircaloy-2 in pressurized light and heavy water nuclear reactors experience plastic strain cycles due to power fluctuations in the reactor, such strain cycles cause low cycle fatigue (LCF) and could be life limiting factor for them. Factors like strain rate, strain amplitude and temperature are known to have marked influence on LCF behavior. The effect of strain rate from 10-2 to 10-4 s-1 on LCF behavior of Zircaloy-2 was studied, at different strain amplitudes between ±0.50% and ±1.25% at room temperature. Fatigue life was decreased with lowering of strain rate from 10-2 to 10-4 s-1 at all the strain amplitudes studied. While there was cyclic softening at lower strain amplitudes (Δεt/2 ⩽ ±0.60%) cyclic hardening was exhibited at higher strain amplitudes (Δεt/2 ⩾ ±1.00%) at all the strain rates. Further, there was secondary cyclic hardening during the later stage of cycling at all the strain amplitudes and the strain rates. Cyclic stress-strain hysteresis loops at the lowest strain rate of 10-4 s-1 were found to be heavily serrated, resulting from dynamic strain aging (DSA). There was significant effect of strain rate on dislocation substructure. The results are discussed in terms of high concentration of point defects generated during cyclic straining and their role in enhancing interaction between solutes and dislocations.

  6. Low cycle fatigue properties of reduced activation ferritic/martensitic steels after high-dose neutron irradiation

    NASA Astrophysics Data System (ADS)

    Gaganidze, E.; Petersen, C.; Aktaa, J.; Povstyanko, A.; Prokhorov, V.; Diegele, E.; Lässer, R.

    2011-08-01

    This paper focuses on the low cycle fatigue (LCF) behaviour of reduced activation ferritic/martensitic steels irradiated to a displacement damage dose of up to 70 dpa at 330-337 °C in the BOR 60 reactor within the ARBOR 2 irradiation programme. The influence of neutron irradiation on the fatigue behaviour was determined for the as-received EUROFER97, pre-irradiation heat-treated EUROFER97 HT and F82H-mod steels. Strain-controlled push-pull loading was performed using miniaturized cylindrical specimens at a constant temperature of 330 °C with total strain ranges between 0.8% and 1.1%. Comparison of the LCF behaviour of irradiated and reference unirradiated specimens was performed for both the adequate total and inelastic strains. Neutron irradiation-induced hardening may have various effects on the fatigue behaviour of the steels. The reduction of inelastic strain in the irradiated state compared with the reference unirradiated state at common total strain amplitudes may increase fatigue lifetime. The increase in the stress at the adequate inelastic strain, by contrast, may accelerate fatigue damage accumulation. Depending on which of the two effects mentioned dominates, neutron irradiation may either extend or reduce the fatigue lifetime compared with the reference unirradiated state. The results obtained for EUROFER97 and EUROFER97 HT confirm these considerations. Most of the irradiated specimens show fatigue lifetimes comparable to those of the reference unirradiated state at adequate inelastic strains. Some irradiated specimens, however, show lifetime reduction or increase in comparison with the reference state at adequate inelastic strains.

  7. Low Cycle Fatigue Behavior and Life Prediction of a Cast Cobalt-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Yang, Ho-Young; Kim, Jae-Hoon; Yoo, Keun-Bong

    Co-base superalloys have been applied in the stationary components of gas turbine owing to their excellent high temperature properties. Low cycle fatigue data on ECY-768 reported in a companion paper were used to evaluate fatigue life prediction models. In this study, low cycle fatigue tests are performed as the variables of total strain range and temperatures. The relations between plastic and total strain energy densities and number of cycles to failure are examined in order to predict the low cycle fatigue life of Cobalt-based super alloy at different temperatures. The fatigue lives is evaluated using predicted by Coffin-Manson method and strain energy methods is compared with the measured fatigue lives at different temperatures. The microstructure observing was performed for how affect able to low-cycle fatigue life by increasing the temperature.

  8. Describing the Flexural Behaviour of Cross-ply Laminates Under Cyclic Fatigue

    NASA Astrophysics Data System (ADS)

    El Mahi, Abderrahim; Bezazi, Abderrezak

    2009-02-01

    The objective of this work is to derive modelling of the fatigue behaviour of cross-ply laminates from the experimental results obtained in the case of three-point bending tests. Modelling the fatigue behaviour is based on the stiffness reduction of test specimens. Firstly, experimental results are described using interpolation functions. Then, the characteristic coefficients of these functions are studied as function of the laminate properties and loading conditions. This approach allows to predict the fatigue life of composite laminates while avoiding a large number of fatigue tests. Wöhler curves are used to compare the experimental and analytical results, and a good agreement is found between the results. Next, a simple approach is considered to define a damage parameter. It is based on the analogy between the mechanical behaviour and the fatigue damage evolution of composite laminates during fatigue tests. The developed models are applied to analyse the influence of constituents on the fatigue behaviour and damage development of composite materials under fatigue loading.

  9. Increase in Prefrontal Cortical Volume following Cognitive Behavioural Therapy in Patients with Chronic Fatigue Syndrome

    ERIC Educational Resources Information Center

    de Lange, Floris P.; Koers, Anda; Kalkman, Joke S.; Bleijenberg, Gijs; Hagoort, Peter; van der Meer, Jos W. M.; Toni, Ivan

    2008-01-01

    Chronic fatigue syndrome (CFS) is a disabling disorder, characterized by persistent or relapsing fatigue. Recent studies have detected a decrease in cortical grey matter volume in patients with CFS, but it is unclear whether this cerebral atrophy constitutes a cause or a consequence of the disease. Cognitive behavioural therapy (CBT) is an…

  10. Dental Implants Fatigue as a Possible Failure of Implantologic Treatment: The Importance of Randomness in Fatigue Behaviour

    PubMed Central

    Prados-Privado, María; Prados-Frutos, Juan Carlos; Manchón, Ángel; Rojo, Rosa; Felice, Pietro; Bea, José Antonio

    2015-01-01

    Objective. To show how random variables concern fatigue behaviour by a probabilistic finite element method. Methods. Uncertainties on material properties due to the existence of defects that cause material elastic constant are not the same in the whole dental implant the dimensions of the structural element and load history have a decisive influence on the fatigue process and therefore on the life of a dental implant. In order to measure these uncertainties, we used a method based on Markoff chains, Bogdanoff and Kozin cumulative damage model, and probabilistic finite elements method. Results. The results have been obtained by conventional and probabilistic methods. Mathematical models obtained the same result regarding fatigue life; however, the probabilistic model obtained a greater mean life but with more information because of the cumulative probability function. Conclusions. The present paper introduces an improved procedure to study fatigue behaviour in order to know statistics of the fatigue life (mean and variance) and its probability of failure (fatigue life versus probability of failure). PMID:26583137

  11. The modelling cycle for collective animal behaviour

    PubMed Central

    Sumpter, David J. T.; Mann, Richard P.; Perna, Andrea

    2012-01-01

    Collective animal behaviour is the study of how interactions between individuals produce group level patterns, and why these interactions have evolved. This study has proved itself uniquely interdisciplinary, involving physicists, mathematicians, engineers as well as biologists. Almost all experimental work in this area is related directly or indirectly to mathematical models, with regular movement back and forth between models, experimental data and statistical fitting. In this paper, we describe how the modelling cycle works in the study of collective animal behaviour. We classify studies as addressing questions at different levels or linking different levels, i.e. as local, local to global, global to local or global. We also describe three distinct approaches—theory-driven, data-driven and model selection—to these questions. We show, with reference to our own research on species across different taxa, how we move between these different levels of description and how these various approaches can be applied to link levels together. PMID:23173077

  12. Parameterized CAD techniques implementation for the fatigue behaviour optimization of a service chamber

    NASA Astrophysics Data System (ADS)

    Sánchez, H. T.; Estrems, M.; Franco, P.; Faura, F.

    2009-11-01

    In recent years, the market of heat exchangers is increasingly demanding new products in short cycle time, which means that both the design and manufacturing stages must be extremely reduced. The design stage can be reduced by means of CAD-based parametric design techniques. The methodology presented in this proceeding is based on the optimized control of geometric parameters of a service chamber of a heat exchanger by means of the Application Programming Interface (API) provided by the Solidworks CAD package. Using this implementation, a set of different design configurations of the service chamber made of stainless steel AISI 316 are studied by means of the FE method. As a result of this study, a set of knowledge rules based on the fatigue behaviour are constructed and integrated into the design optimization process.

  13. Effect of interstitial content on high-temperature fatigue crack propagation and low-cycle fatigue of Alloy 720

    SciTech Connect

    Bashir, S. ); Thomas, M.C. . Allison Gas Turbine Div.)

    1993-08-01

    Alloy 720 is a high-strength cast and wrought turbine disc alloy currently in use for temperatures up to about 650 C in Allison's T800, T406, GMA 2100, and GMA 3007 engines. In the original composition intended for use as turbine blades, large carbide and borides stringers formed and acted as preferred crack initiators. Stringering was attributed to relatively higher boron and carbon levels. These interstitial are known to affect creep and ductility of superalloys, but the effects on low-cycle fatigue and fatigue crack propagation have not been studied. Recent emphasis on the total life approach in the design of turbine discs necessitates better understanding of the interactive fatigue crack propagation and low-cycle fatigue behavior at high temperatures. The objective of this study was to improve the damage tolerance of Alloy 720 by systematically modifying boron and carbon levels in the master melt, without altering the low-cycle fatigue and strength characteristics of the original composition. Improvement in strain-controlled low-cycle fatigue life was achieved by fragmenting the continuous stringers via composition modification. The fatigue crack propagation rate was reduced by a concurrent reduction of both carbon and boron levels to optimally low levels at which the frequency of brittle second phases was minimal. The changes in composition have been incorporated for production disc forgings.

  14. Investigation of Thermal High Cycle and Low Cycle Fatigue Mechanisms of Thick Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1998-01-01

    Thick thermal barrier coating systems in a diesel engine experience severe thermal low cycle fatigue (LCF) and high cycle fatigue (HCF) during engine operation. In this paper, the mechanisms of fatigue crack initiation and propagation in a ZrO2-8wt% Y2O3 thermal barrier coating, under simulated engine thermal LCF and HCF conditions, are investigated using a high power CO2 laser. Experiments showed that the combined LCF-HCF tests induced more severe coating surface cracking, microspallation and accelerated crack growth, as compared to the pure LCF test. Lateral crack branching and the ceramic/bond coat interface delaminations were also facilitated by HCF thermal loads, even in the absence of severe interfacial oxidation. Fatigue damage at crack wake surfaces, due to such phenomena as asperity/debris contact induced cracking and splat pull-out bending during cycling, was observed especially for the combined LCF-HCF tests. It is found that the failure associated with LCF is closely related to coating sintering and creep at high temperatures, which induce tensile stresses in the coating after cooling. The failure associated with HCF process, however, is mainly associated with a surface wedging mechanism. The interaction between the LCF, HCF and ceramic coating creep, and the relative importance of LCF and HCF in crack propagation are also discussed based on the experimental evidence.

  15. Investigation of Thermal High Cycle and Low Cycle Fatigue Mechanisms of Thick Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1998-01-01

    Thick thermal barrier coating systems in a diesel engine experience severe thermal low cycle fatigue (LCF) and high cycle fatigue (HCF) during engine operation. In this paper, the mechanisms of fatigue crack initiation and propagation in a ZrO2-8wt.% Y2O3 thermal barrier coating, under simulated engine thermal LCF and HCF conditions, are investigated using a high power CO2 laser. Experiments showed that the combined LCF/HCF tests induced more severe coating surface cracking, microspallation and accelerated crack growth, as compared to the pure LCF test. Lateral crack branching and the ceramic/bond coat interface delaminations were also facilitated by HCF thermal loads, even in the absence of severe interfacial oxidation. Fatigue damages at crack wake surfaces, due to such phenomena as asperity/debris contact induced cracking and splat pull-out bending during cycling, were observed especially for the combined LCF/HCF tests. It is found that the failure associated with LCF is closely related to coating sintering and creep at high temperatures, which induce tensile stresses in the coating after cooling. The failure associated with HCF process, however, is mainly associated with a surface wedging mechanism. The interaction between the LCF, HCF and ceramic coating creep, and the relative importance of LCF and HCF in crack propagation are also discussed based on the experimental evidence.

  16. Cyclic fatigue analysis of rocket thrust chambers. Volume 2: Attitude control thruster high cycle fatigue

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A finite element stress analysis was performed for the film cooled throat section of an attitude control thruster. The anlaysis employed the RETSCP finite element computer program. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the thruster operating cycle. The configuration and operating conditions considered, correspond to a flightweight integrated thruster assembly which was thrust pulse tested. The computed strain range was used in conjuction with Haynes 188 Universal Slopes minimum life data to predict throat section fatigue life. The computed number of cycles to failure was greater than the number of pulses to which the thruster was experimentally subjected without failure.

  17. Effect of interstitial content on high- temperature fatigue crack propagation and low- cycle fatigue of alloy 720

    NASA Astrophysics Data System (ADS)

    Bashir, S.; Thomas, M. C.

    1993-08-01

    Alloy 720 is a high-strength cast and wrought turbine disc alloy currently in use for temperatures up to about 650 °C in Allison’s T800, T406, GMA 2100, and GMA 3007 engines. In the original composition in-tended for use as turbine blades, large carbide and boride stringers formed and acted as preferred crack initiators. Stringering was attributed to relatively higher boron and carbon levels. These interstitials are known to affect creep and ductility of superalloys, but the effects on low-cycle fatigue and fatigue crack propagation have not been studied. Recent emphasis on the total life approach in the design of turbine discs necessitates better understanding of the interactive fatigue crack propagation and low-cycle fatigue behavior at high temperatures. The objective of this study was to improve the damage tolerance of Alloy 720 by systematically modifying boron and carbon levels in the master melt, without altering the low-cy-cle fatigue and strength characteristics of the original composition. Improvement in strain-controlled low-cycle fatigue life was achieved by fragmenting the continuous stringers via composition modifica-tion. The fatigue crack propagation rate was reduced by a concurrent reduction of both carbon and bo-ron levels to optimally low levels at which the frequency of brittle second phases was minimal. The changes in composition have been incorporated for production disc forgings.

  18. Fatigue performance of laser additive manufactured Ti-6Al-4V in very high cycle fatigue (VHCF) regime up to 109 cycles

    NASA Astrophysics Data System (ADS)

    Wycisk, Eric; Siddique, Shafaqat; Herzog, Dirk; Walther, Frank; Emmelmann, Claus

    2015-12-01

    Additive manufacturing technologies are in the process of establishing themselves as an alternative production technology to conventional manufacturing such as casting or milling. Especially laser additive manufacturing (LAM) enables the production of metallic parts with mechanical properties comparable to conventionally manufactured components. Due to the high geometrical freedom in LAM the technology enables the production of ultra-light weight designs and therefore gains increasing importance in aircraft and space industry. The high quality standards of these industries demand predictability of material properties for static and dynamic load cases. However, fatigue properties especially in the very high cycle fatigue regime until 109 cycles have not been sufficiently determined yet. Therefore this paper presents an analysis of fatigue properties of laser additive manufactured Ti-6Al-4V under cyclic tension-tension until 107 cycles and tension-compression load until 109 cycles. For the analysis of laser additive manufactured titanium alloy Ti-6Al-4V Woehler fatigue tests under tension-tension and tension-compression were carried out in the high cycle and very high cycle fatigue regime. Specimens in stress-relieved as well as hot-isostatic-pressed conditions were analyzed regarding crack initiation site, mean stress sensitivity and overall fatigue performance. The determined fatigue properties show values in the range of conventionally manufactured Ti-6Al-4V with particularly good performance for hot-isostatic-pressed additive-manufactured material. For all conditions the results show no conventional fatigue limit but a constant increase in fatigue life with decreasing loads. No effects of test frequency on life span could be determined. However, independently of testing principle, a shift of crack initiation from surface to internal initiation could be observed with increasing cycles to failure.

  19. Fatigue behaviour of laser machined 2024 T3 aeronautic aluminium alloy

    NASA Astrophysics Data System (ADS)

    Carpio, F. J.; Araújo, D.; Pacheco, F. J.; Méndez, D.; García, A. J.; Villar, M. P.; García, R.; Jiménez, D.; Rubio, L.

    2003-03-01

    High power laser applications as welding, machining and marking are widely used in several industrial sectors to take advantage of their high processing velocity, clean processing conditions, and a high versatility. However, the heat affected zone (HAZ) is expected to change the mechanical behaviour of laser processed structural elements. For aeronautic applications, this feature is of first importance because those elements suffer cyclic stress under service conditions. Indeed, the most severe requirements for further industrial implantation are the fatigue specifications. In this communication, fatigue behaviour of laser machined 2024 aluminium alloy is studied to evaluate a possible certification of laser-based machining in the aeronautic industry. For this reason, 1.6 mm thick samples laser machined were carried out using a CO 2 laser. The experimental fatigue curves are shown to lie very close to aeronautic requirement despite theoretical fatigue behaviour of the material is significantly more resistant. This is attributed to surface roughness induced by a surface melting zone shown that diminish the fatigue resistance. Fatigue behaviour and surface roughness should be improved using higher power and/or high absorption wavelength as that of YAG laser ( λ=1.06 μm).

  20. High-cycle Fatigue Properties of Alloy718 Base Metal and Electron Beam Welded Joint

    NASA Astrophysics Data System (ADS)

    Ono, Yoshinori; Yuri, Tetsumi; Nagashima, Nobuo; Sumiyoshi, Hideshi; Ogata, Toshio; Nagao, Naoki

    High-cycle fatigue properties of Alloy 718 plate and its electron beam (EB) welded joint were investigated at 293 K and 77 K under uniaxial loading. At 293 K, the high-cycle fatigue strength of the EB welded joint with the post heat treatment exhibited somewhat lower values than that of the base metal. The fatigue strengths of both samples basically increased at 77 K. However, in longer life region, the EB welded joint fractured from a blow hole formed in the welded zone, resulting in almost the same fatigue strength at 107 cycles as that at 293 K.

  1. Time-dependent damage in predictions of fatigue behaviour of normal and healing ligaments

    NASA Astrophysics Data System (ADS)

    Thornton, Gail M.; Bailey, Soraya J.; Schwab, Timothy D.

    2015-08-01

    Ligaments are dense fibrous tissues that connect bones across a joint and are exposed daily to creep and fatigue loading. Ligaments are tensile load-bearing tissues; therefore, fatigue loading will have a component of time-dependent damage from the non-zero mean stress and cycle-dependent damage from the oscillating stress. If time-dependent damage is not sufficient to completely predict the fatigue response, then cycle-dependent damage could be an important contributor. Using data from normal ligaments (current study and Thornton et al., Clin. Biomech. 22:932-940, 2007a) and healing ligaments (Thornton and Bailey, J. Biomech. Eng. 135:091004-1-091004-6, 2013), creep data was used to predict the fatigue response considering time-dependent damage. Relationships between creep lifetime and test stress or initial strain were modelled using exponential or power-law regression. In order to predict fatigue lifetimes, constant rates of damage were assumed and time-varying stresses were introduced into the expressions for time-dependent damage from creep. Then, the predictions of fatigue lifetime were compared with curvefits to the fatigue data where exponential or power-law regressions were used to determine the relationship between fatigue lifetime and test stress or initial strain. The fatigue prediction based on time-dependent damage alone greatly overestimated fatigue lifetime suggesting that time-dependent damage alone cannot account for all of the damage accumulated during fatigue and that cycle-dependent damage has an important role. At lower stress and strain, time-dependent damage was a greater relative contributor for normal ligaments than healing ligaments; however, cycle-dependent damage was a greater relative contributor with incremental increases in stress or strain for normal ligaments than healing ligaments.

  2. Al-Li alloy AA2198's very high cycle fatigue crack initiation mechanism and its fatigue thermal effect

    NASA Astrophysics Data System (ADS)

    Xu, Luopeng; Cao, Xiaojian; Chen, Yu; Wang, Qingyuan

    2015-10-01

    AA2198 alloy is one of the third generation Al-Li alloys which have low density, high elastic modulus, high specific strength and specific stiffness. Compared With the previous two generation Al-Li alloys, the third generation alloys have much improved in alloys strength, corrosion resistance and weldable characteristic. For these advantages, the third generation Al-Li alloys are used as aircraft structures, such as C919 aviation airplane manufactured by China and Russia next generation aviation airplane--MS-21. As we know, the aircraft structures are usually subjected to more than 108 cycles fatigue life during 20-30 years of service, however, there is few reported paper about the third generation Al-Li alloys' very high cycle fatigue(VHCF) which is more than 108 cycles fatigue. The VHCF experiment of AA2198 have been carried out. The two different initiation mechanisms of fatigue fracture have been found in VHCF. The cracks can initiate from the interior of the testing material with lower stress amplitude and more than 108 cycles fatigue life, or from the surface or subsurface of material which is the dominant reason of fatigue failures. During the experiment, the infrared technology is used to monitor the VHCF thermal effect. With the increase of the stress, the temperature of sample is also rising up, increasing about 15 °C for every 10Mpa. The theoretical thermal analysis is also carried out.

  3. Conducting High Cycle Fatigue Strength Step Tests on Gamma TiAl

    NASA Technical Reports Server (NTRS)

    Lerch, Brad; Draper, Sue; Pereira, J. Mike

    2002-01-01

    High cycle fatigue strength testing of gamma TiAl by the step test method is investigated. A design of experiments was implemented to determine if the coaxing effect occurred during testing. Since coaxing was not observed, step testing was deemed a suitable method to define the fatigue strength at 106 cycles.

  4. High temperature, low-cycle fatigue of copper-base alloys for rocket nozzles. Part 2: Strainrange partitioning and low-cycle fatigue results at 538 deg C

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1976-01-01

    Low-cycle fatigue tests of 1/2 Hard AMZIRC Copper and NARloy Z were performed in argon at 538 C to determine partitioned strain range versus life relationships. Strain-controlled low-cycle fatigue tests of a Zr-Cr-Mg copper-base alloy were also performed. Strain ranges, lower than those employed in previous tests, were imposed in order to extend the fatigue life curve out to approximately 400,000 cycles. An experimental copper alloy and an experimental silver alloy were also studied. Tensile tests were performed in air at room temperature and in argon at 538 C. Strain-controlled low-cycle fatigue tests were performed at 538 C in argon to define the fatigue life over the regime from 300 to 3,000 cycles. For the silver alloy, three additional heat treatments were introduced, and a limited evaluation of the short-term tensile and low-cycle fatigue behavior at 538 C was performed.

  5. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, High-Cycle and Low-Cycle Mechanical Fatigue, Creep and Thermal Fatigue Effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    The development of methodology for a probabilistic material strength degradation is described. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing predictions of high-cycle mechanical fatigue and high temperature effects with experiments are presented. Results from this limited verification study strongly supported that material degradation can be represented by randomized multifactor interaction models.

  6. The application of probabilistic design theory to high temperature low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Wirsching, P. H.

    1981-01-01

    Metal fatigue under stress and thermal cycling is a principal mode of failure in gas turbine engine hot section components such as turbine blades and disks and combustor liners. Designing for fatigue is subject to considerable uncertainty, e.g., scatter in cycles to failure, available fatigue test data and operating environment data, uncertainties in the models used to predict stresses, etc. Methods of analyzing fatigue test data for probabilistic design purposes are summarized. The general strain life as well as homo- and hetero-scedastic models are considered. Modern probabilistic design theory is reviewed and examples are presented which illustrate application to reliability analysis of gas turbine engine components.

  7. Investigation of Thermal High Cycle and Low Cycle Fatigue Mechanisms of Thick Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    1998-01-01

    Ceramic thermal barrier coatings have attracted increased attention for diesel engine applications. The advantages of using the ceramic coatings include a potential increase in efficiency and power density and a decrease in maintenance cost. Zirconia-based ceramics are the most important coating materials for such applications because of their low thermal conductivity, relatively high thermal expansivity and excellent mechanical properties. However, durability of thick thermal barrier coatings (TBCS) under severe temperature cycling encountered in engine conditions, remains a major question. The thermal transients associated with the start/stop and no-load/full-load engine cycle, and with the in-cylinder combustion process, generate thermal low cycle fatigue (LCF) and thermal high cycle fatigue (HCF) in the coating system. Therefore, the failure mechanisms of thick TBCs are expected to be quite different from those of thin TBCs under these temperature transients. The coating failure is related not only to thermal expansion mismatch and oxidation of the bond coats and substrates, but also to the steep thermal stress gradients induced in the coating systems. Although it has been reported that stresses generated by thermal transients can initiate surface and interface cracks in a coating system, the mechanisms of the crack propagation and of coating failure under the complex LCF and HCF conditions are still not understood. In this paper, the thermal fatigue behavior of an yttria partially stabilized zirconia coating system under simulated LCF and HCF engine conditions is investigated. The effects of LCF and HCF on surface crack initiation and propagation are also discussed.

  8. On the Use of Equivalent Linearization for High-Cycle Fatigue Analysis of Geometrically Nonlinear Structures

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.

    2003-01-01

    The use of stress predictions from equivalent linearization analyses in the computation of high-cycle fatigue life is examined. Stresses so obtained differ in behavior from the fully nonlinear analysis in both spectral shape and amplitude. Consequently, fatigue life predictions made using this data will be affected. Comparisons of fatigue life predictions based upon the stress response obtained from equivalent linear and numerical simulation analyses are made to determine the range over which the equivalent linear analysis is applicable.

  9. High cycle fatigue of AA6082 and AA6063 aluminum extrusions

    NASA Astrophysics Data System (ADS)

    Nanninga, Nicholas E.

    The high cycle fatigue behavior of hollow extruded AA6082 and AA6063 aluminum extrusions has been studied. Hollow extruded aluminum profiles can be processed into intricate shapes, and may be suitable replacements for fatigue critical automotive applications requiring reduced weight. There are several features inherent in hollow aluminum extrusions, such as seam welds, charge welds, microstructural variations and die lines. The effects of such extrusion variables on high cycle fatigue properties were studied by taking specimens from an actual car bumper extrusion. It appears that extrusion die lines create large anisotropy differences in fatigue properties, while welds themselves have little effect on fatigue lives. Removal of die lines greatly increased fatigue properties of AA6082 specimens taken transverse to the extrusion direction. Without die lines, anisotropy in fatigue properties between AA6082 specimens taken longitudinal and transverse to the extrusion direction, was significantly reduced, and properties associated with the orientation of the microstructure appears to be isotropic. A fibrous microstructure for AA6082 specimens showed great improvements in fatigue behavior. The effects of elevated temperatures and exposure of specimens to NaCl solutions was also studied. Exposure to the salt solution greatly reduced the fatigue lives of specimens, while elevated temperatures showed more moderate reductions in fatigue lives.

  10. Fracture resistance of Zr-Nb alloys under low-cycle fatigue tests

    NASA Astrophysics Data System (ADS)

    Nikulin, S. A.; Rozhnov, A. B.; Gusev, A. Yu.; Nechaykina, T. A.; Rogachev, S. O.; Zadorozhnyy, M. Yu.

    2014-03-01

    Comparative low-cycle fatigue tests of small-scale specimens cut from the cladding tubes of E110, E125, E110opt zirconium alloys at temperatures of 25 and 350 °C using a dynamic mechanical analyzer have been carried out. It is shown that the limited cycles fatigue stress for all alloys is 50% less at temperature of 350 °C comparing to 25 °C. Besides it has been revealed that the limited cycles fatigue stress increases with increasing the strength of zirconium alloy.

  11. Influence of water cavitation peening with aeration on fatigue behaviour of SAE1045 steel

    NASA Astrophysics Data System (ADS)

    Han, B.; Ju, D. Y.; Jia, W. P.

    2007-10-01

    Water cavitation peening (WCP) with aeration is a recent potential method in the surface enhancement techniques. In this method, a ventilation nozzle is adopted to improve the process capability of WCP by increasing the impact pressure, which is induced by the bubble collapse on the surface of components in the similar way as conventional shot peening. In this paper, fatigue tests were conducted on the both-edge-notched flat tensile specimens to assess the influences of WCP on fatigue behaviour of SAE1045 steel. The notched specimens were treated by WCP, and the compressive residual stress distributions in the superficial layer were measured by X-ray diffraction method. The tension-tension ( R = Smin/ Smax = 0.1, f = 10 Hz) fatigue tests and the fracture surfaces observation by scan electron microscopy (SEM) were conducted. The experimental results show that WCP can improve the fatigue life by inducing the residual compressive stress in the superficial layer of mechanical components.

  12. Probabilistic material strength degradation model for Inconel 718 components subjected to high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    This report presents the results of both the fifth and sixth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA). The research included on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for five variables, namely, high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using an updated version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of high-cycle mechanical fatigue, creep and thermal fatigue was performed. Then using the current version of PROMISS, entitled PROMISS94, a second sensitivity study including the effect of low-cycle mechanical fatigue, as well as, the three previous effects was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of high-cycle mechanical

  13. Effective Fatigue Stress and Criterion for High-Cycle Multi-axial Fatigue

    NASA Astrophysics Data System (ADS)

    Cai, Xiaojing; Xu, Jinquan

    2015-01-01

    Multi-axial fatigue criterion corresponding to the limiting condition of complicated multi-axial stress state is very important in application. Stresses and deformations are usually elastic if cyclic loadings are near to the limiting condition. A definition of effective fatigue stress has been proposed. Adopting the effective fatigue stress, a multi-axial fatigue criterion has been proposed by considering the equivalence of multi-axial stresses to a uni-axial problem. To clarify the fatigue criterion for a uni-axial problem with arbitrary mean stress, a quantitative relationship between fatigue limit and mean stress has also been proposed and examined. To verify the multi-axial fatigue criterion, examinations have been carried out for the cases of pure shear, shear and axial, and two-axial fatigue by experimental results. It is found that the criterion agrees well with experimental results, even for the cases with various multi-axial mean stresses and phase differences. It is also found that the shear fatigue limit is not an independent material property in common metals.

  14. Topology optimization in damage governed low cycle fatigue

    NASA Astrophysics Data System (ADS)

    Desmorat, Boris; Desmorat, Rodrigue

    2008-05-01

    Topology optimization is applied here to discuss an optimization problem of fatigue resistance. Fatigue lifetime is maximized by optimizing the shape of a structure in cyclic plasticity combined with Lemaitre damage law. The topology optimization algorithm is detailed. A 3D numerical example is given. To cite this article: B. Desmorat, R. Desmorat, C. R. Mecanique 336 (2008).

  15. Limitations of Spectral Electromyogramic Analysis to Determine the Onset of Neuromuscular Fatigue Threshold during Incremental Ergometer Cycling

    PubMed Central

    Latasa, Iban; Cordova, Alfredo; Malanda, Armando; Navallas, Javier; Lavilla-Oiz, Ana; Rodriguez-Falces, Javier

    2016-01-01

    Recently, a new method has been proposed to detect the onset of neuromuscular fatigue during an incremental cycling test by assessing the changes in spectral electromyographic (sEMG) frequencies within individual exercise periods of the test. The method consists on determining the highest power output that can be sustained without a significant decrease in spectral frequencies. This study evaluated the validity of the new approach by assessing the changes in spectral indicators both throughout the whole test and within individual exercise periods of the test. Fourteen cyclists performed incremental cycle ergometer rides to exhaustion with bipolar surface EMG signals recorded from the vastus lateralis. The mean and median frequencies (Fmean and Fmedian, respectively) of the sEMG power spectrum were calculated. The main findings were: (1) Examination of spectral indicators within individual exercise periods of the test showed that neither Fmean nor Fmedian decreased significantly during the last (most fatiguing) exercise periods. (2) Examination of the whole incremental test showed that the behaviour of Fmean and Fmedian with increasing power output was highly inconsistent and varied greatly among subjects. (3) Over the whole incremental test, half of the participants exhibited a positive relation between spectral indicators and workload, whereas the other half demonstrated the opposite behavior. Collectively, these findings indicate that spectral sEMG indexes do not provide a reliable measure of the fatigue state of the muscle during an incremental cycling test. Moreover, it is concluded that it is not possible to determine the onset of neuromuscular fatigue during an incremental cycling test by examining spectral indicators within individual exercise periods of the test. Key points The behaviour of spectral EMG indicators during the incremental test exhibited a high heterogeneity among individuals, with approximately half of the participants showing a positive

  16. Real-time monitoring of acoustic linear and nonlinear behavior of titanium alloys during low-cycle fatigue and high-cycle fatigue

    NASA Astrophysics Data System (ADS)

    Frouin, Jerome; Sathish, Shamachary; Na, Jeong K.

    2000-05-01

    An in-situ technique to measure sound velocity, ultrasonic attenuation and acoustic nonlinear property has been developed for characterization and early detection of fatigue damage in aerospace materials. For this purpose we have developed a computer software and measurement technique including hardware for the automation of the measurement. New transducer holder and special grips are designed. The automation has allowed us to test the long-term stability of the electronics over a period of time and so proof of the linearity of the system. Real-time monitoring of the material nonlinearity has been performed on dog-bone specimens from zero fatigue all the way to the final fracture under low-cycle fatigue test condition (LCF) and high-cycle test condition (HCF). Real-time health monitoring of the material can greatly contribute to the understanding of material behavior under cyclic loading. Interpretation of the results show that correlation exist between the slope of the curve described by the material nonlinearity and the life of the component. This new methodology was developed with an objective to predict the initiation of fatigue microcracks, and to detect, in-situ fatigue crack initiation as well as to quantify early stages of fatigue damage.

  17. Sensitivity Variation on Low Cycle Fatigue Cracks Using Level 4/Method B Penetrant

    SciTech Connect

    FULWOOD,HARRY; MOORE,DAVID G.

    1999-09-02

    The Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) is currently conducting experiments with Level 4, Method B penetrant on low cycle fatigue specimens. The main focus of these experiments is to document the affect on penetrant brightness readings by varying inspection parameters. This paper discusses the results of changing drying temperature, drying time, and dwell time of both penetrant and emulsifier on low cycle fatigue specimens.

  18. Influence of dissolved hydrogen on the fatigue crack growth behaviour of AISI 4140 steel

    NASA Astrophysics Data System (ADS)

    Ramasagara Nagarajan, Varun

    Many metallic structural components come into contact with hydrogen during manufacturing processes or forming operations such as hot stamping of auto body frames and while in service. This interaction of metallic parts with hydrogen can occur due to various reasons such as water molecule dissociation during plating operations, interaction with atmospheric hydrogen due to the moisture present in air during stamping operations or due to prevailing conditions in service (e.g.: acidic or marine environments). Hydrogen, being much smaller in size compared to other metallic elements such as Iron in steels, can enter the material and become dissolved in the matrix. It can lodge itself in interstitials locations of the metal atoms, at vacancies or dislocations in the metallic matrix or at grain boundaries or inclusions (impurities) in the alloy. This dissolved hydrogen can affect the functional life of these structural components leading to catastrophic failures in mission critical applications resulting in loss of lives and structural component. Therefore, it is very important to understand the influence of the dissolved hydrogen on the failure of these structural materials due to cyclic loading (fatigue). For the next generation of hydrogen based fuel cell vehicles and energy systems, it is very crucial to develop structural materials for hydrogen storage and containment which are highly resistant to hydrogen embrittlement. These materials should also be able to provide good long term life in cyclic loading, without undergoing degradation, even when exposed to hydrogen rich environments for extended periods of time. The primary focus of this investigation was to examine the influence of dissolved hydrogen on the fatigue crack growth behaviour of a commercially available high strength medium carbon low alloy (AISI 4140) steel. The secondary objective was to examine the influence of microstructure on the fatigue crack growth behaviour of this material and to determine the

  19. Fatigue of Austempered Ductile Iron with Two Strength Grades in Very High Cycle Regime

    NASA Astrophysics Data System (ADS)

    Zhang, Jiwang; Li, Wei; Song, Qingpeng; Zhang, Ning; Lu, Liantao

    2016-03-01

    In this study, Austempered ductile irons (ADIs) with two different strength grades were produced and the fatigue properties were measured at 109 cycles. The results show that the S-N curves give a typical step-wise shape and there is no fatigue limit in the very high cycle fatigue regime. The two grades ADI have the similar fracture behaviors and fatigue failure can initiate from defects at specimen surface and subsurface zone. On the fracture surfaces of some specimens, the `granular-bright-facet' area with rich carbon distribution is observed in the vicinity of the defect. The microstructure affects the crack behaviors at the early propagation stage. The ADI with upper and lower bainite shows higher fatigue strength compared with the ADI with coarse upper bainite.

  20. Acoustic emission characteristics of copper alloys under low-cycle fatigue conditions

    NASA Technical Reports Server (NTRS)

    Krampfner, Y.; Kawamoto, A.; Ono, K.; Green, A.

    1975-01-01

    The acoustic emission (AE) characteristics of pure copper, zirconium-copper, and several copper alloys were determined to develop nondestructive evaluation schemes of thrust chambers through AE techniques. The AE counts rms voltages, frequency spectrum, and amplitude distribution analysis evaluated AE behavior under fatigue loading conditions. The results were interpreted with the evaluation of wave forms, crack propagation characteristics, as well as scanning electron fractographs of fatigue-tested samples. AE signals at the beginning of a fatigue test were produced by a sample of annealed alloys. A sample of zirconium-containing alloys annealed repeatedly after each fatigue loading cycle showed numerous surface cracks during the subsequent fatigue cycle, emitting strong-burst AE signals. Amplitude distribution analysis exhibits responses that are characteristic of certain types of AE signals.

  1. Ultrahigh vacuum, high temperature, low cycle fatigue of coated and uncoated Rene 80

    NASA Technical Reports Server (NTRS)

    Kortovich, C. S.

    1976-01-01

    A study was conducted on the ultrahigh vacuum strain controlled by low cycle fatigue behavior of uncoated and CODEP B-1 aluminide coated Rene' 80 nickel-base superalloy at 1000 C (1832 F) and 871 C (1600 F). The results indicated little effect of coating or temperature on the fatigue properties. There was, however, a significant effect on fatigue life when creep was introduced into the strain cycles. The effect of this creep component was analyzed in terms of the method of strainrange partitioning.

  2. Low-cycle fatigue analysis of a cooled copper combustion chamber

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A three-dimensional finite element elastoplastic strain analysis was performed for the throat section of regeneratively cooled rocket engine combustion chamber. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the engine operating cycle. The strain range was used in conjunction with OFHC copper isothermal fatigue test data to predict engine low-cycle fatigue life. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen chamber which was fatigue tested to failure at the NASA Lewis Research Center.

  3. Effect of microstructure on high-cycle fatigue properties of Alloy718 plates

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Yuri, T.; Nagashima, N.; Ogata, T.; Nagao, N.

    2015-12-01

    Effect of microstructure on high-cycle fatigue properties of Alloy718 were investigated at 77 K by using samples with three different microstructures; fine-grained (FG), coarse-grained (CG) and bimodal-grained (BG) ones. The BG sample consisted of FG and CG microstructural regions and grain sizes of those regions were close to those of the FG and the CG samples, respectively. High-cycle fatigue strength of the FG sample was higher than that of the CG sample. High-cycle fatigue strength of the BG sample was clearly lower than that of the FG sample and almost the same as that of the CG one. Flat area (facet) was found at fatigue crack initiation site in all specimens. Facet size was similar to the grain size and found to be almost same in the CG and the BG samples. Observations of the microstructure beneath the fatigue crack initiation site of the BG sample revealed that the facet corresponds to transgranular cracking in the course grain, meaning that fatigue crack initiated at the coarse grain in the BG sample. It is deduced that the high-cycle fatigue strength of Alloy 718 with the BG microstructure is strongly affected by that of the CG region in that material.

  4. Behaviour of the motoneurone pool in a fatiguing submaximal contraction

    PubMed Central

    McNeil, Chris J; Giesebrecht, Sabine; Gandevia, Simon C; Taylor, Janet L

    2011-01-01

    Abstract During fatigue caused by a sustained maximal voluntary contraction (MVC), motoneurones become markedly less responsive when tested during the silent period following transcranial magnetic stimulation (TMS). To determine whether this reduction depends on the repetitive activation of the motoneurones, responses to TMS (motor evoked potentials, MEPs) and to cervicomedullary stimulation (cervicomedullary motor evoked potentials, CMEPs) were tested during a sustained submaximal contraction at a constant level of electromyographic activity (EMG). In such a contraction, some motoneurones are repetitively activated whereas others are not active. On four visits, eight subjects performed a 10 min maintained-EMG elbow flexor contraction of 25% maximum. Test stimuli were delivered with and without conditioning by TMS given 100 ms prior. Test responses were MEPs or CMEPs (two visits each, small responses evoked by weak stimuli on one visit and large responses on the other). During the sustained contraction, unconditioned CMEPs decreased ∼20% whereas conditioned CMEPs decreased ∼75 and 30% with weak and strong stimuli, respectively. Conditioned MEPs were reduced to the same extent as CMEPs of the same size. The data reveal a novel decrease in motoneurone excitability during a submaximal contraction if EMG is maintained. Further, the much greater reduction of conditioned than unconditioned CMEPs shows the critical influence of voluntary drive on motoneurone responsiveness. Strong test stimuli attenuate the reduction of conditioned CMEPs which indicates that low-threshold motoneurones active in the contraction are most affected. The equivalent reduction of conditioned MEPs and CMEPs suggests that, similar to findings with a sustained MVC, impaired motoneurone responsiveness rather than intracortical inhibition is responsible for the fatigue-related impairment of the MEP during a sustained submaximal contraction. PMID:21606110

  5. Behaviour of the motoneurone pool in a fatiguing submaximal contraction.

    PubMed

    McNeil, Chris J; Giesebrecht, Sabine; Gandevia, Simon C; Taylor, Janet L

    2011-07-15

    During fatigue caused by a sustained maximal voluntary contraction (MVC), motoneurones become markedly less responsive when tested during the silent period following transcranial magnetic stimulation (TMS). To determine whether this reduction depends on the repetitive activation of the motoneurones, responses to TMS (motor evoked potentials, MEPs) and to cervicomedullary stimulation (cervicomedullary motor evoked potentials, CMEPs) were tested during a sustained submaximal contraction at a constant level of electromyographic activity (EMG). In such a contraction, some motoneurones are repetitively activated whereas others are not active. On four visits, eight subjects performed a 10 min maintained-EMG elbow flexor contraction of 25% maximum. Test stimuli were delivered with and without conditioning by TMS given 100 ms prior. Test responses were MEPs or CMEPs (two visits each, small responses evoked by weak stimuli on one visit and large responses on the other). During the sustained contraction, unconditioned CMEPs decreased ∼20% whereas conditioned CMEPs decreased ∼75 and 30% with weak and strong stimuli, respectively. Conditioned MEPs were reduced to the same extent as CMEPs of the same size. The data reveal a novel decrease in motoneurone excitability during a submaximal contraction if EMG is maintained. Further, the much greater reduction of conditioned than unconditioned CMEPs shows the critical influence of voluntary drive on motoneurone responsiveness. Strong test stimuli attenuate the reduction of conditioned CMEPs which indicates that low-threshold motoneurones active in the contraction are most affected. The equivalent reduction of conditioned MEPs and CMEPs suggests that, similar to findings with a sustained MVC, impaired motoneurone responsiveness rather than intracortical inhibition is responsible for the fatigue-related impairment of the MEP during a sustained submaximal contraction. PMID:21606110

  6. Behaviour of the bovine pericardium used in cardiac bioprostheses when subjected to a real fatigue assay.

    PubMed

    Carrera San Martin, A; García Paez, J M; Jorge-Herrero, E; Millán, I; Navidad, R; García Sestafe, J V; Candela, I; Castillo-Olivares, J L

    1993-01-01

    The behaviour of bovine pericardium was studied using a fatigue assay. Twenty-three samples were assayed, maintaining the preset initial stress and measuring the time it took for the onset of load loss due to permanent deformation. The results indicated a mathematical relationship defined by the expression: log y = 1.3 - 0.211 log t, where y is the fatigue stress (MPa) and t the duration of the assay. The correlation coefficient was 0.948 (P < 0.001). The safety coefficient of the material diminished significantly as the period of time during which it was subjected to fatigue increased. The theoretical durability of the tissue was much greater than the real durability of the prostheses, which is determined by unsolved problems such as calcification and those derived from suture-related cutting. PMID:8425027

  7. High-temperature low cycle fatigue behavior of a gray cast iron

    SciTech Connect

    Fan, K.L. He, G.Q.; She, M.; Liu, X.S.; Lu, Q.; Yang, Y.; Tian, D.D.; Shen, Y.

    2014-12-15

    The strain controlled low cycle fatigue properties of the studied gray cast iron for engine cylinder blocks were investigated. At the same total strain amplitude, the low cycle fatigue life of the studied material at 523 K was higher than that at 423 K. The fatigue behavior of the studied material was characterized as cyclic softening at any given total strain amplitude (0.12%–0.24%), which was attributed to fatigue crack initiation and propagation. Moreover, this material exhibited asymmetric hysteresis loops due to the presence of the graphite lamellas. Transmission electron microscopy analysis suggested that cyclic softening was also caused by the interactions of dislocations at 423 K, such as cell structure in ferrite, whereas cyclic softening was related to subgrain boundaries and dislocation climbing at 523 K. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain amplitudes. It showed that the higher the temperature, the rougher the crack face of the examined gray cast iron at the same total strain amplitude. Additionally, the microcracks were readily blunted during growth inside the pearlite matrix at 423 K, whereas the microcracks could easily pass through pearlite matrix along with deflection at 523 K. The results of fatigue experiments consistently showed that fatigue damage for the studied material at 423 K was lower than that at 523 K under any given total strain amplitude. - Highlights: • The low cycle fatigue behavior of the HT250 for engine cylinder blocks was investigated. • TEM investigations were conducted to explain the cyclic deformation response. • The low cycle fatigue cracks of HT250 GCI were studied by SEM. • The fatigue life of the examined material at 523 K is higher than that at 423 K.

  8. Low-Cycle Fatigue Behavior of Die-Cast Mg Alloys AZ91 and AM60

    NASA Astrophysics Data System (ADS)

    Rettberg, Luke H.; Jordon, J. Brian; Horstemeyer, Mark F.; Jones, J. Wayne

    2012-07-01

    The influence of microstructure and artificial aging response (T6) on the low-cycle fatigue behavior of super vacuum die-cast (SVDC) AZ91 and AM60 has been investigated. Fatigue lifetimes were determined from the total strain-controlled fatigue tests for strain amplitudes of 0.2 pct, 0.4 pct, 0.6 pct, 0.8 pct, and 1.0 pct under fully reversed loading at a frequency of 5 Hz. Cyclic stress-strain behavior was determined using an incremental step test (IST) and compared with the more traditional constant amplitude test. Two locations in a prototype casting were investigated to examine the role of microstructure and porosity on fatigue behavior. At all total strain amplitudes microstructure refinement had a negligible impact on fatigue life because of significant levels of porosity. AM60 showed an improvement in fatigue life at higher strain amplitudes when compared with AZ91 because of higher ductility. T6 heat treatment had no impact on fatigue life. Cyclic stress-strain behavior obtained via the incremental step test varied from constant amplitude test results due to load history effects. The constant amplitude test is believed to be the more accurate test method. In general, larger initiation pores led to shorter fatigue life. The fatigue life of AZ91 was more sensitive to initiation pore size and pore location than AM60 at the lowest tested strain amplitude of 0.2 pct. Fatigue crack paths did not favor any specific phase, interdentritic structure or eutectic structure. A multistage fatigue (MSF) model showed good correlation to the experimental strain-life results. The MSF model reinforced the dominant role of inclusion (pore) size on the scatter in fatigue life.

  9. Fatigue

    MedlinePlus

    ... sleep. Fatigue is a lack of energy and motivation. Drowsiness and apathy (a feeling of not caring ... fatigue symptoms, and your lifestyle, habits, and feelings. Tests that may be ordered include the following: Blood ...

  10. High Cycle Fatigue Properties Of Electron Beam Melted TI-6AL-4V Samples Without And With Integrated Defects ("Effects Of Defects")

    NASA Astrophysics Data System (ADS)

    Brandl, Erhard; Greitemeier, Daniel; Maier, Hans Jurgen; Syassen, Freerk

    2012-07-01

    The understanding of additive manufactured material properties is still at an early stage and mostly not profound. Nowadays, there is only little experience in predicting the effect of defects (e.g. porosity, unmelted spots, insufficient bonding between the layers) on the fatigue behaviour. In this paper, some of these questions are adressed. An electron beam melting process is used to manufacture Ti-6Al-4V high cycle fatigue samples without and with intentionally integrated defects inside of the samples. The samples were annealed or hot isostatically pressed. The defects were analysed by non- destructive methods before and by light/electron microscopy after the tests. In order to predict the high cycle fatigue properties, the crack propagation properties of the material (da/dN - ΔK curve) were tested and AFGROW simulation was used.

  11. Probabilistic Simulation for Combined Cycle Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multifactor interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  12. High-Cycle Fatigue Properties at Cryogenic Temperatures in INCONEL 718

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Yuri, T.; Sumiyoshi, H.; Takeuchi, E.; Matsuoka, S.; Ogata, T.

    2006-03-01

    High-cycle fatigue properties at 4 K, 20 K, 77 K and 293 K were investigated in forged-INCONEL 718 nickel-based superalloy with a mean gamma (γ) grain size of 25 μm. In the present material, plate-like delta phase precipitated at γ grain boundaries and niobium (Nb)-enriched MC type carbides precipitated coarsely throughout the specimens. The 0.2% proof stress and the tensile strength of this alloy increased with decreasing temperature, without decreasing elongation or reduction of area. High-cycle fatigue strengths also increased with decreasing temperature although the fatigue limit at each temperature didn't appear even around 107 cycles. Fatigue cracks initiated near the specimen surface and formed faceted structures around crack initiation sites. Fatigue cracks predominantly initiated from coarse Nb-enriched carbides and faceted structures mainly corresponded to these carbides. In lower stress amplitude tests, however, facets were formed through transgranular crack initiation and growth. These kinds of distinctive crack initiation behavior seem to lower the high-cycle fatigue strength below room temperature in the present material.

  13. High-Cycle Fatigue Properties at Cryogenic Temperatures in INCONEL 718

    SciTech Connect

    Ono, Y.; Yuri, T.; Sumiyoshi, H.; Takeuchi, E.; Ogata, T.; Matsuoka, S.

    2006-03-31

    High-cycle fatigue properties at 4 K, 20 K, 77 K and 293 K were investigated in forged-INCONEL 718 nickel-based superalloy with a mean gamma ({gamma}) grain size of 25 {mu}m. In the present material, plate-like delta phase precipitated at {gamma} grain boundaries and niobium (Nb)-enriched MC type carbides precipitated coarsely throughout the specimens. The 0.2% proof stress and the tensile strength of this alloy increased with decreasing temperature, without decreasing elongation or reduction of area. High-cycle fatigue strengths also increased with decreasing temperature although the fatigue limit at each temperature didn't appear even around 107 cycles. Fatigue cracks initiated near the specimen surface and formed faceted structures around crack initiation sites. Fatigue cracks predominantly initiated from coarse Nb-enriched carbides and faceted structures mainly corresponded to these carbides. In lower stress amplitude tests, however, facets were formed through transgranular crack initiation and growth. These kinds of distinctive crack initiation behavior seem to lower the high-cycle fatigue strength below room temperature in the present material.

  14. Bithermal Low-Cycle Fatigue Evaluation of Automotive Exhaust System Alloy SS409

    NASA Technical Reports Server (NTRS)

    Lu, Gui-Ying; Behling, Mike B.; Halford, Gary R.

    2000-01-01

    This investigation provides, for the first time, cyclic strainrange-controlled, thermomechanical fatigue results for the ferritic stainless steel alloy SS409. The alloy has seen extensive application for automotive exhaust system components. The data were generated to calibrate the Total Strain Version of the Strainrange Partitioning (TS-SRP) method for eventual application to the design and durability assessment of automotive exhaust systems. The thermomechanical cyclic lifetime and cyclic stress-strain constitutive behavior for alloy SS409 were measured using bithermal tests cycling between isothermal extremes of 400 and 800 C. Lives ranged up to 10,000 cycles to failure with hold-times of 0.33 to 2.0 minutes. The bithermal fatigue behavior is compared to isothermal, strain-controlled fatigue behavior at both 400 and 800 C. Thermomechanical cycling was found to have a profound detrimental influence on the fatigue failure resistance of SS409 compared to isothermal cycling. Supplementary bithermal cyclic stress-strain constitutive tests with hold-times ranging from 40 seconds up to 1.5 hours were conducted to calibrate the TS-SRP equation for extrapolation to longer lifetime predictions. Observed thermomechanical (bithermal) fatigue lives correlated well with lives calculated using the calibrated TS-SRP equations: 70% of the bithermal fatigue data fall within a factor of 1.2 of calculated life; 85% within a factor of 1.4; and 100% within a factor of 1.8.

  15. Low-cycle fatigue of thermal-barrier coatings at 982 deg C

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Liebert, C. H.; Nachtigall, A. J.

    1978-01-01

    The low-cycle fatigue lives of ZrO2-NiCrAlY and Al2O3-ZrO2-NiCrAlY thermal-barrier coatings in air at 982 C were determined from cyclic flexural tests of coated TAZ-8A strips. Strains were computed as a function of specimen displacements from a nonlinear, three-dimensional stress analysis program. Fatigue resistances of thermal-barrier coatings applied to the strips were compared with those of uncoated and NiCrAlY-coated strips. The results indicate that ZrO2 is about four times greater in fatigue life than TAZ-8A at 982 C, that ZrO2 would probably retain that fatigue strength up to 1316 C, and that adding an outer coat of Al2O3 to ZrO2 is neither beneficial nor detrimental to fatigue resistance.

  16. Low-Cycle Fatigue Properties of P92 Ferritic-Martensitic Steel at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Hu, ZhengFei; Schmauder, Siegfried; Mlikota, Marijo; Fan, KangLe

    2016-04-01

    The low-cycle fatigue behavior of P92 ferritic-martensitic steel and the corresponding microstructure evolution at 873 K has been extensively studied. The test results of fatigue lifetime are consistent with the Coffin-Manson relationship over a range of controlled total strain amplitudes from 0.15 to 0.6%. The influence of strain amplitude on the fatigue crack initiation and growth has been observed using optical microscopy and scanning electron microscopy. The formation mechanism of secondary cracks is established according to the observation of fracture after fatigue process and there is an intrinsic relationship between striation spacing, current crack length, and strain amplitude. Transmission electron microscopy has been employed to investigate the microstructure evolution after fatigue process. It indicates the interaction between carbides and dislocations together with the formation of cell structure inhibits the cyclic softening. The low-angle sub-boundary elimination in the martensite is mainly caused by the cyclic stress.

  17. Influence of Asymmetrical Waveform on Low-Cycle Fatigue Life of Micro Solder Joint

    NASA Astrophysics Data System (ADS)

    Kanda, Yoshihiko; Kariya, Yoshiharu

    2010-02-01

    The effects of waveform symmetry on the low-cycle fatigue life of the Sn-3.0Ag-0.5Cu alloy have been investigated, using micro solder joint specimens with approximately the same volume of solder as is used in actual products. Focusing on crack initiation life, fatigue tests on Sn-Ag-Cu micro solder joints using asymmetrical triangular waveforms revealed no significant reduction in fatigue life. A slight reduction in fatigue life at low strain ranges caused by an increase in the fatigue ductility exponent, which is the result of a weakening microstructure due to loads applied at high temperature for long testing time, was observed. This was due to the fact that grain boundary damage, which has been reported in large-size specimens subjected to asymmetrical triangular waveforms, does not occur in Sn-Ag-Cu micro size solder joints with only a small number of crystal grain boundaries.

  18. Gigacycle fatigue behaviour of austenitic stainless steels used for mercury target vessels

    NASA Astrophysics Data System (ADS)

    Naoe, Takashi; Xiong, Zhihong; Futakawa, Masatoshi

    2016-01-01

    A mercury enclosure vessel for the pulsed spallation neutron source manufactured from a type 316L austenitic stainless steel, a so-called target vessel, suffers the cyclic loading caused by the proton beam induced pressure waves. A design criteria of the JSNS target vessel which is defined based on the irradiation damage is 2500 h at 1 MW with a repetition rate of 25 Hz, that is, the target vessel suffers approximately 109 cyclic loading while in operation. Furthermore, strain rate of the beam window of the target vessel reaches 50 s-1 at the maximum, which is much higher than that of the conventional fatigue. Gigacycle fatigue strength up to 109 cycles for solution annealed 316L (SA) and cold-worked 316L (CW) were investigated through the ultrasonic fatigue tests. Fatigue tests were performed under room temperature and 250 °C which is the maximum temperature evaluated at the beam window in order to investigate the effect of temperature on fatigue strength of SA and CW 316L. The results showed that the fatigue strength at 250 °C is clearly reduced in comparison with room temperature, regardless of cold work level. In addition, residual strength and microhardness of the fatigue tested specimen were measured to investigate the change in mechanical properties by cyclic loading. Cyclic hardening was observed in both the SA and CW 316L, and cyclic softening was observed in the initial stage of cyclic loading in CW 316L. Furthermore, abrupt temperature rising just before fatigue failure was observed regardless of testing conditions.

  19. Low-cycle fatigue/high-cycle fatigue (LCF/HCF) interaction studies using a 10- to 40-kHz HCF loading device

    NASA Astrophysics Data System (ADS)

    Matikas, Theodore E.

    1999-02-01

    To simulate the testing conditions experienced by aircraft engine turbine blades, a new experimental facility was developed capable of providing interactive low cycle fatigue (LCF)/high cycle fatigue (HCF) loading. The new facility is based on a HCF cell that can operate in the 10-40 kHz frequency range. This HCF testing cell can also be interfaced to a servo-hydraulic load frame, which provides a second fatigue cycle. Sample geometry is critical for the HCF cell to produce the desired applied load on the specimen. The objective of this research is to develop analytical modeling necessary for the design of test coupons to be used in the new HCF testing cell operating at ultrasonic frequencies, and also to demonstrate the capabilities of the new device by performing LCF/HCF interaction studies in Ti-6Al-4V. The results of these studies clearly showed the effect of the HCF component of the load in spite the fact that the HCF component was only 15-19 percent of the overall load. It was also found that the HCF component of the load was the major cause of observed damage with the LCF component having much less effect. Eliminating the HCF component completely resulted in increasing the fatigue life at least an order of magnitude.

  20. Tensile and fatigue behaviour of self-piercing rivets of CFRP to aluminium for automotive application

    NASA Astrophysics Data System (ADS)

    Kang, J.; Rao, H.; Zhang, R.; Avery, K.; Su, X.

    2016-07-01

    In this study, the tensile and fatigue behaviour of self-piercing rivets (SPRs) in carbon fibre reinforced plastic (CFRP) to aluminium 6111 T82 alloys were evaluated. An average maximum lap-shear tensile load capacity of 3858 N was achieved, which is comparable to metal-to-metal SPR lap-shear joints. The CFRP-Al SPRs failed in lap-shear tension due to pull-out of the rivet head from the CFRP upper sheet. The CFRP-Al SPR lap- shear specimens exhibited superior fatigue life compared to previously studied aluminium-to- aluminium SPR lap-shear joints. The SPR lap-shear joints under fatigue loads failed predominantly due to kinked crack growth along the width of the bottom aluminium sheet. The fatigue cracks initiated in the plastically deformed region of the aluminium sheet close to the rivet shank in the rivet-sheet interlock region. Scatter in fatigue life and failure modes was observed in SPR lap-shear specimens tested close to maximum tensile load.

  1. Fatigue behaviour of Nitinol peripheral stents: the role of plaque shape studied with computational structural analyses.

    PubMed

    Dordoni, Elena; Meoli, Alessio; Wu, Wei; Dubini, Gabriele; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2014-07-01

    Fatigue resistance of Nitinol stents implanted into femoro-popliteal arteries is a critical issue for the particular biomechanical environment of this district. Hip and knee joint movements due to the cyclic daily activity expose the superficial femoral artery (SFA), and therefore the implanted stents, to quite large and cyclic deformations influencing stent fatigue resistance. Objective of this work is to provide a tool based on finite element analysis able to evaluate the biomechanical effect of SFA on stent fatigue resistance. Computer simulations of the treatment of stenotic vessel by angioplasty and stenting and of the subsequent in vivo loading conditions (axial compression and bending) were carried out. Three different stenotic vessel models were defined, by keeping a constant stenosis rate and changing the plaque sharpness and number of stenoses. The fatigue behaviour was analysed comparing the amplitude and mean value distribution of the first principal strain in the whole stent for the different simulated conditions. Results showed that the maximum mean strain is similar in all the models, while the alternating strain is related to both plaque shape and loading conditions. In conclusion, this study confirms the requisite of replicating in vivo loading conditions. It also reveals the importance of taking into account the thickness variation of the vessel in the stenotic zone in the assessment of the stent fatigue resistance. PMID:24721457

  2. Low-cycle fatigue resistance of AD1 aluminum and AMg5 aluminum alloy

    SciTech Connect

    Kholodilo, A.A.; Balyuk, L.M.; Modestova, R.V.

    1985-02-01

    This paper reports on investigations carried out by the Severodonetsk branch of the Ukranian Scientific-Research Institute of Chemical Engineering into the low-cycle fatigue resistance of aluminum AD1 and AMg/sup 5/ aluminum alloy. The cylindrical specimens were tested in an UME-1oTM machine with recording of the cyclic deformation diagram. It is concluded that the Landger equation can be used to construct the calculation curves of low-cycle fatigue of the aluminum alloys; the quality of the welded joints plays the controlling role in the resistance of the vessels and plant to low-cycle fracture.

  3. Low-cycle fatigue of a VZh175 high-temperature alloy under elastoplastic deformation conditions

    NASA Astrophysics Data System (ADS)

    Belyaev, M. S.; Terent'ev, V. F.; Bakradze, M. M.; Gorbovets, M. A.; Gol'dberg, M. A.

    2015-04-01

    The low-cycle fatigue of a VZh175 nickel superalloy is studied under conditions of complete deformation per loading cycle at an initial cycle asymmetry R = 0, a deformation amplitude ɛa = 0.4-0.6%, and a temperature of 20 and 650°C. The specific features of cyclic hardening/softening of the alloy under these conditions are detected. The mechanisms of fatigue crack nucleation and growth are analyzed as functions of the deformation amplitude and the test temperature.

  4. Accommodating and cracking mechanisms in low-cycle fatigue

    NASA Technical Reports Server (NTRS)

    Pineau, A.

    1978-01-01

    The three main stages of fatigue life (accommodation, crack initiation and crack growth) are briefly reviewed. The cyclic behavior of annealed or predeformed face-centered cubic metals is described. Moreover, two types of alloys (Al-4-Cu and WASPALOY) are examined regarding the influence of the interactions between the precipitates and the dislocations on the cyclic behavior. Data on the percent of life to crack initiation (for a microcrack smaller than about 100 microns) are also given. Finally, experimental and theoretical results on crack growth rates in lowcycle fatigue are described.

  5. Tensile and low-cycle fatigue measurements on cross-rolled tungsten

    SciTech Connect

    Schmunk, R.E.; Korth, G.E.

    1981-08-01

    Low-cycle fatigue and tensile tests were performed on specimens fabricated from 14-mm (0.55-in.) cross-rolled tungsten plate which was prepared by a powder metallurgy process. Tests included measurements on both as-received and recrystallized specimens. Data have been obtained at 1088 K (1500/sup 0/F) in vacuum, and at room temperature. Low-cycle fatigue data at both 1088 K and room temperature are in fair agreement with predictions based on the universal slopes equation for the as-received material condition. In contrast, fatigue data for recrystallized specimens at 1088 K fall considerably below prediction, except in the high cycles-to-fail (10/sup 5/ cycles) regime. Details of the test procedure as well as modification of the specimen configuration which was required for room temperature testing are reported.

  6. Very high cycle fatigue behavior of SAE52100 bearing steel by ultrasonic nanocrystalline surface modification.

    PubMed

    Cho, In Shik; He, Yinsheng; Li, Kejian; Oh, Joo Yeon; Shin, Keesam; Lee, Chang Soon; Park, In Gyu

    2014-11-01

    In this paper, the SAE52100 bearing steel contained large quantities of cementite dispersed in ferrite matrix was subjected to the ultrasonic nanocrystalline surface modification (UNSM) treatment that aims for the extension of fatigue life. The microstructure and fatigue life of the untreated and treated specimens were studied by using electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM), and a developed ultra-high cycle fatigue test (UFT). After UNSM treatment, the coarse ferrite grains (- 10 μm) were refined to nanosize (- 200 nm), therefore, nanostructured surface layers were fabricated. Meanwhile, in the deformed layer, the number density and area fraction of cementite were increased up to - 400% and - 550%, respectively, which increased with the decrease in depth from the topmost treated surface. The improvement of hardness (from 200 Hv to 280 Hv) and high cycles fatigue strength by - 10% were considered the contribution of the developed nanostructure in the UNSM treated specimen. PMID:25958512

  7. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    DOE PAGESBeta

    Wang, Hong; Lee, Sung Min; Wang, James L.; Lin, Hua-Tay

    2014-12-19

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10^8 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and themore » fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications such as piezoelectric fuel injectors in heavy-duty diesel engines.« less

  8. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    SciTech Connect

    Wang, Hong; Lee, Sung Min; Wang, James L.; Lin, Hua-Tay

    2014-12-19

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10^8 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications such as piezoelectric fuel injectors in heavy-duty diesel engines.

  9. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    SciTech Connect

    Wang, Hong Lee, Sung-Min; Wang, James L.; Lin, Hua-Tay

    2014-12-21

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10{sup 8} cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.

  10. High-cycle fatigue characterization of titanium 5Al-2.5Sn alloy

    NASA Technical Reports Server (NTRS)

    Mahfuz, H.; Xin, Yu T.; Jeelani, S.

    1993-01-01

    High-cycle fatigue behavior of titanium 5Al 2.5Sn alloy at room temperature has been studied. S-N curve characterization is performed at different stress ratios ranging from 0 to 0.9 on a subsized fatigue specimen. Both two-stress and three-stress level tests are conducted at different stress ratios to study the cumulative fatigue damage. Life prediction techniques of linear damage rule, double linear damage rule and damage curve approaches are applied, and results are compared with the experimental data. The agreement between prediction and experiment is found to be excellent.

  11. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime

    SciTech Connect

    Zhang, Jianfeng; Xuan, Fu-Zhen

    2014-05-28

    The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A “mountain shape” correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The “mountain shape” correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.

  12. On massive carbide precipitation during high temperature low cycle fatigue in alloy 800H

    NASA Technical Reports Server (NTRS)

    Sankararao, K. Bhanu; Schuster, H.; Halford, G. R.

    1994-01-01

    The effect of strain rate on massive precipitation and the mechanism for the occurrence of massive precipitation of M23C6 in alloy 800H is investigated during elevated temperature low cycle fatigue testing. It was observed that large M23C6 platelets were in the vicinity of grain and incoherent twin boundaries. The strain controlled fatigue testing at higher strain rates that promoted cyclic hardening enabled massive precipitation to occur more easily.

  13. The influence of hold times on LCF and FCG behavior in a P/M Ni-base superalloy. [Low Cycle Fatigue/Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    Choe, S. J.; Golwalker, S. V.; Duquette, D. J.; Stoloff, N. S.

    1984-01-01

    The relative importance of creep and environmental interactions in high temperature fatigue behavior has been investigated for as-HIP Rene 95. Strain-controlled low cycle fatigue and load-controlled fatigue crack growth tests were performed at elevated temperatures in argon, followed by fractographic analyses of the fracture surfaces by scanning electron microscopy. Fatigue lives were drastically reduced and crack growth rates increased one hundred fold as a result of superposition of hold times on continuous cycling. A change in fracture mode with hold time also was noted. Chromium oxide was detected on the fracture surface by Auger electron spectroscopy. The drastic changes in fatigue resistance due to hold times were attributed primarily to environmental interactions with fatigue processes.

  14. Observation of fatigue in sandstone samples exposed to repeated freeze-thaw cycles

    NASA Astrophysics Data System (ADS)

    Hailiang, Jia; Wei, Xiang; Krautblatter, Michael

    2014-05-01

    The effect of rock fatigue is one of the key elements in the analysis and evaluation of rockfall preparation. We performed a series of laboratory freezing-thawing cycles experiments on an array of identical sandstone samples (cylinder samples with diameter of 5cm and length of 10cm). During each cycle we measured surface deformations and effective porosity for three samples, and after each thawing phase we removed two samples for destructive testing (uniaxial compressive and tensile strength). Our results indicate that: (1) frost action causes primarily reversible strain in samples with maximum magnitudes of ~1*10-4, we suggest low-cycle fatigue causes minor plastic deformation (2) with the increase of cycles, we observed a marked increase of effective porosity and a sharp decrease of uniaxial tensile strength. The decrease in uniaxial compressive strength was not as significant as that of the tensile strength in response to this frost action; (3) Curves describing effective porosity increases demonstrate a rapid increase during the first 3 - 4 freeze-thaw cycles, followed by a more linear increase, with steps in the porosity profile indicating discrete cycles with increased fatigue damage. Here we show how 17 freeze-thaw cycles cause progressive fatigue in sandstone samples and how this affects effective porosity and uniaxial compressive strength.

  15. The influence of hydrogen on the fatigue behaviour of base and gas tungsten arc welded Eurofer

    NASA Astrophysics Data System (ADS)

    Maday, Marie-Françoise; Pilloni, Luciano

    2007-08-01

    Room temperature hydrogen embrittlement susceptibility of Eurofer base-metal and gas-tungsten-arc-welded joint has been investigated by fully-reversed load-control low cycle fatigue. The tests were run on specimens subjected to electrochemical charging before and during cyclic stressing. Compared to the uncharged condition, increasing amounts of hydrogen in base-steel caused fatigue life reduction by promoting premature cracking of either grain boundaries or cleavage planes. Examination of fracture morphologies indicated that the underlying embrittlement mechanisms likely correlated with plastic flow alteration and interatomic bond decohesion, both induced by hydrogen. Specimen-to-specimen response variability by test replication was accounted for in terms of Eurofer material heterogeneity, based on relevant experimental indexes. This interpretation was consistent with the well known sensitivity to microstructure of hydrogen embrittlement processes, and explained the large scatter of fatigue lives and failure modes subsequently observed in equivalently charged Eurofer weld samples.

  16. A New Multiaxial High-Cycle Fatigue Criterion Based on the Critical Plane for Ductile and Brittle Materials

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Shang, De-Guang; Wang, Xiao-Wei

    2015-02-01

    An improved high-cycle multiaxial fatigue criterion based on the critical plane was proposed in this paper. The critical plane was defined as the plane of maximum shear stress (MSS) in the proposed multiaxial fatigue criterion, which is different from the traditional critical plane based on the MSS amplitude. The proposed criterion was extended as a fatigue life prediction model that can be applicable for ductile and brittle materials. The fatigue life prediction model based on the proposed high-cycle multiaxial fatigue criterion was validated with experimental results obtained from the test of 7075-T651 aluminum alloy and some references.

  17. Analysis of fatigue crack propagation behaviour in SiC particulate Al2O3 whisker reinforced hybrid MMC

    NASA Astrophysics Data System (ADS)

    Iqbal, AKM Asif; Arai, Yoshio

    2016-02-01

    The fatigue crack propagation behaviour of a cast hybrid metal matrix composite (MMC) was investigated and compared with the crack propagation behaviour of MMC with Al2O3 and Al alloy in this article. Three dimensional (3D) surface analysis is carried out to analyze the crack propagation mechanism. All three materials clearly show near threshold and stable crack growth regions, but the rapid crack growth region is not clearly understood. The crack propagation resistance is found higher in hybrid MMC than that of MMC with Al2O3 whisker and the Al alloy in the low ΔK region. The crack propagation in the hybrid MMC in the near-threshold region is directed by the debonding of reinforcement-matrix followed by void nucleation in the Al alloy matrix. Besides, the crack propagation in the stable- or midcrack-growth region is controlled by the debonding of particle-matrix and whisker-matrix interface caused by the cycle-by-cycle crack growth along the interface. The transgranular fracture of the reinforcement and void formation are also observed. Due to presence of large volume of inclusions and the microstructural inhomogeneity, the area of striation formation is reduced in the hybrid MMC, caused the unstable fracture.

  18. A UK survey of driving behaviour, fatigue, risk taking and road traffic accidents

    PubMed Central

    Smith, Andrew P

    2016-01-01

    Objective The aim of the present research was to examine associations between poor driving behaviour (DB), driving when fatigued (DF), risk taking (RT) and road traffic accidents (RTAs). Design The study involved a cross-sectional online survey of clients of an insurance company. The survey measured DB (speeding, distraction, lapses of attention and aggression), RT and frequency of driving when fatigued (DF, driving late at night, prolonged driving, driving after a demanding working day and driving with a cold). Demographic, lifestyle, job characteristics and psychosocial factors were also measured and used as covariates. Setting Cardiff, UK. Sample 3000 clients of an insurance company agreed to participate in the study, and 2856 completed the survey (68% woman, 32% man; mean age: 34 years, range 18–74 years). Main outcome measures The outcomes were RTAs (requiring medical attention; not requiring medical attention), where the person was the driver. Results Factor analyses showed that DB, RT and fatigue loaded on independent factors. Logistic regressions showed that poor DB, frequently DF and taking risks predicted medical and non-medical RTAs. These effects were additive and those who reported poor DB, driving when fatigue and taking risks were twice as likely to have an RTA. These effects remained significant when demographic, lifestyle, medical, driving, work and psychosocial factors were covaried. Conclusions Poor DB, DF and RT predict RTAs. There are now short measuring instruments that can assess these, and driver education programmes must increase awareness of these risk factors. PMID:27540100

  19. Low Cycle and Ratchetting Fatigue Behavior of High UTS/YS Ratio Reinforcing Steel Bars

    NASA Astrophysics Data System (ADS)

    Bar, H. N.; Sivaprasad, S.; Narasaiah, N.; Paul, Surajit K.; Sen, B. N.; Chandra, Sanjay

    2013-06-01

    Cyclic deformation behavior of high UTS/YS rebars has been studied employing both symmetric strain-controlled and asymmetric stress-controlled cycles in an attempt to understand the influence of UTS/YS ratio on fatigue life. While strain-controlled cyclic deformation did not exhibit a pronounced influence of UTS/YS ratio, a substantial life enhancement is noted for the asymmetric stress-controlled cycle. Reasons for life enhancement were found to be due to the ratchetting strain development and the associated hardening behavior. An equivalent stress-based model has been used to predict both the symmetric and asymmetric fatigue lives of rebars.

  20. An Investigation of High-Cycle Fatigue Models for Metallic Structures Exhibiting Snap-Through Response

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.; Sweitzer, Karl A.

    2007-01-01

    A study is undertaken to develop a methodology for determining the suitability of various high-cycle fatigue models for metallic structures subjected to combined thermal-acoustic loadings. Two features of this problem differentiate it from the fatigue of structures subject to acoustic loading alone. Potentially large mean stresses associated with the thermally pre- and post-buckled states require models capable of handling those conditions. Snap-through motion between multiple post-buckled equilibrium positions introduces very high alternating stress. The thermal-acoustic time history response of a clamped aluminum beam structure with geometric and material nonlinearities is determined via numerical simulation. A cumulative damage model is employed using a rainflow cycle counting scheme and fatigue estimates are made for 2024-T3 aluminum using various non-zero mean fatigue models, including Walker, Morrow, Morrow with true fracture strength, and MMPDS. A baseline zero-mean model is additionally considered. It is shown that for this material, the Walker model produces the most conservative fatigue estimates when the stress response has a tensile mean introduced by geometric nonlinearity, but remains in the linear elastic range. However, when the loading level is sufficiently high to produce plasticity, the response becomes more fully reversed and the baseline, Morrow, and Morrow with true fracture strength models produce the most conservative fatigue estimates.

  1. Microstructural Influences on Very-High-Cycle Fatigue-Crack Initiation in Ti-6246

    NASA Astrophysics Data System (ADS)

    Szczepanski, C. J.; Jha, S. K.; Larsen, J. M.; Jones, J. W.

    2008-12-01

    The fatigue behavior of an alpha + beta titanium alloy, Ti-6Al-2Sn-4Zr-6Mo, has been characterized in the very-high-cycle fatigue (VHCF) regime using ultrasonic-fatigue (20 kHz) techniques. Stress levels ( σ max) of 40 to 60 pct of the yield strength of this alloy have been examined. Fatigue lifetimes in the range of 106 to 109 cycles are observed, and fatigue cracks initiate from both surface and subsurface sites. This study examines the mechanisms of fatigue-crack formation by quantifying critical microstructural features observed in the fatigue-crack initiation region. The fracture surface near the fatigue-crack-initiation site was crystallographic in nature. Facets, which result from the fracture of primary alpha ( α p ) grains, are associated with the crack-initiation process. The α p grains that form facets are typically larger in size than average. The spatial distribution of α p grains relative to each other observed near the initiation site did not correlate with fatigue life. Furthermore, the spatial distribution of α p grains did not provide a suitable means for discerning crack-initiation sites from randomly selected nominal areas. Stereofractography measurements have shown that the facets observed at or near the initiation sites are oriented for high shear stress; i.e., they are oriented close to 45 deg with respect to the loading axis. Furthermore, a large majority of the grains and laths near the site of crack initiation are preferentially oriented for either basal or prism slip, suggesting that regions where α p grains and α laths have similar crystallographic orientations favor crack initiation. Microtextured regions with favorable and similar orientations of α p grains and the lath α are believed to promote cyclic-strain accumulation by basal and prism slip. Orientation imaging microscopy (OIM) indicates that these facets form on the basal plane of α p grains. The absence of a significant role of spatial clustering of α p grains

  2. Ratcheting Assessment of GFRP Composites in Low-Cycle Fatigue Domain

    NASA Astrophysics Data System (ADS)

    Ahmadzadeh, G. R.; Varvani-Farahani, A.

    2014-06-01

    The present study intends to examine ratcheting response of Glass Fiber Reinforced Polymer (GFRP) composites over fatigue cycles by means of parametric variables. Stages of ratcheting deformation were related to stress cycles, lifespan, mechanical properties and cyclic stress levels by means of linear and non-linear functions. The coefficients B and C in the proposed ratcheting formulation calibrated ratcheting equation by means of material properties over ratcheting stages. Coefficients A and C calibrated the stages I and II of ratcheting strain curve over stress cycles. The ratcheting curve over initial and final stages was affected as composite modulus of elasticity ( E c ) increased. An increase in E c -dependent coefficients A and B increased the magnitude of ratcheting strains over stress cycles. Ratcheting data for continuous and short fiber GFRP composites with various volume fractions were employed to evaluate the proposed ratcheting formulation. Interaction of ratcheting and fatigue phenomena was further assumed when the proposed parametric ratcheting equation was coupled with a fatigue damage model developed earlier by present authors. Overall damage is achieved from accumulation of ratcheting and fatigue over stress cycles.

  3. Fatigue and Creep Crack Propagation behaviour of Alloy 617 in the Annealed and Aged Conditions

    SciTech Connect

    Julian K. Benz; Richard N. Wright

    2013-10-01

    The crack propagation behaviour of Alloy 617 was studied under various conditions. Elevated temperature fatigue and creep-fatigue crack growth experiments were conducted at 650 and 800 degrees C under constant stress intensity (triangle K) conditions and triangular or trapezoidal waveforms at various frequencies on as-received, aged, and carburized material. Environmental conditions included both laboratory air and characteristic VHTR impure helium. As-received Alloy 617 displayed an increase in the crack growth rate (da/dN) as the frequency was decreased in air which indicated a time-dependent contribution component in fatigue crack propagation. Material aged at 650°C did not display any influence on the fatigue crack growth rates nor the increasing trend of crack growth rate with decreasing frequency even though significant microstructural evolution, including y’ (Ni3Al) after short times, occurred during aging. In contrast, carburized Alloy 617 showed an increase in crack growth rates at all frequencies tested compared to the material in the standard annealed condition. Crack growth studies under quasi-constant K (i.e. creep) conditions were also completed at 650 degrees C and a stress intensity of K = 40 MPa9 (square root)m. The results indicate that crack growth is primarily intergranular and increased creep crack growth rates exist in the impure helium environment when compared to the results in laboratory air. Furthermore, the propagation rates (da/dt) continually increased for the duration of the creep crack growth either due to material aging or evolution of a crack tip creep zone. Finally, fatigue crack propagation tests at 800 degrees C on annealed Alloy 617 indicated that crack propagation rates were higher in air than impure helium at the largest frequencies and lowest stress intensities. The rates in helium, however, eventually surpass the rates in air as the frequency is reduced and the stress intensity is decreased which was not observed at 650

  4. Effects of temperature and hold times on low cycle fatigue of Astroloy

    NASA Technical Reports Server (NTRS)

    Choe, S. J.; Stoloff, N. S.; Duquette, D. J.

    1986-01-01

    Low cycle fatigue (LCF) and creep-fatigue-environment interactions of HIP Astroloy were studied at 650 C and 725 C. The results showed that the model proposed by Kaisand and Mowbray (1979) was successful in predicting the magnitude and trend of the fatigue crack growth rate from LCF data. Raising the temperature from 650 C to 725 C did not change the fracture mode, while employing tensile hold caused a change in fracture mode and was more damaging than raising the temperature by 75 C. All samples displayed multiple fracture origins, which is initiated transgranularly in continuous cycling tests and intergranularly in hold time tests. An examination of the secondary crack showed no apparent creep damage. Oxidation in high purity argon appeared to be the major factor in LCF life degradation due to hold time.

  5. Probabilistic high cycle fatigue failure analysis with application to liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Sutharshana, S.; Newlin, L.; Ebbeler, D.; Moore, N.; O'Hara, K.

    1990-01-01

    A probabilistic high cycle fatigue (HCF) failure analysis of a welded duct in a rocket engine of the Space Shuttle main engine class is described. A state-of-the-art HCF failure prediction method was used in a Monte Carlo simulation to generate a distribution of failure lives. A stochastic stress/life model is used for material characterization, and a composite stress history is generated for accurately deriving the stress cycles for the fatigue-damage calculations. The HCF failure model expresses fatigue life as a function of stochastic parameters including environment, loads, material properties, geometry, and model specification errors. A series of HCF failure life analyses were performed to study the impact of a fixed parameter and to assess the importance of each stochastic input parameter through marginal analyses.

  6. Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.

    2010-01-01

    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.

  7. The influence of cycle time on shoulder fatigue responses for a fixed total overhead workload.

    PubMed

    Dickerson, Clark R; Meszaros, Kimberly A; Cudlip, Alan C; Chopp-Hurley, Jaclyn N; Langenderfer, Joseph E

    2015-08-20

    The relationship between overhead work and musculoskeletal health depends on multiple task and individual factors. Knowledge gaps persist, despite examination of many of these factors individually and in combination. This investigation targeted task variation, as parameterized by cycle time within a fixed overall workload. Participants performed an intermittent overhead pressing task with four different cycle time conditions while overall workload and duty cycle was held constant. Several manifestations of fatigue were monitored during task performance. Endurance time was influenced by cycle time with shorter cycle times having endurance times up to 25% higher than longer cycle times. Surface electromyography (sEMG) results were mixed, with two muscles demonstrating amplitude increases (middle deltoid and upper trapezius) that varied with cycle time. sEMG frequency was not influenced by cycle time for any muscle monitored, despite decreases for several cycle times. Trends existed for the influence of cycle time on time-varying reported discomfort (p=0.056) and static strength (p=0.055); large effect sizes were present (ηp(2)=0.31 and 0.27, respectively). The equivocal association of fatigue indicators and cycle time is analogous to the influence of other factors implicated in overhead work musculoskeletal risk, and probabilistic modeling offers a compelling avenue for integration of the known variation in the many factors that combine to inform this risk. PMID:26117074

  8. Muscle Fatigue Increases Metabolic Costs of Ergometer Cycling without Changing VO2 Slow Component

    PubMed Central

    Ratkevicius, Aivaras; Stasiulis, Arvydas; Dubininkaite, Loreta; Skurvydas, Albertas

    2006-01-01

    The aim of the present study was to investigate effects of muscle fatigue on oxygen costs of ergometer cycling and slow component of pulmonary oxygen uptake (VO2) kinetics. Seven young men performed 100 drop jumps (drop height of 40 cm) with 20 s of rest after each jump. After the subsequent hour of rest, they cycled at 70, 105, 140 and 175 W, which corresponded to 29.6 ± 5.4, 39.4 ± 7.0, 50.8 ± 8.4 and 65.8 ± 11.8 % of VO2peak, respectively, for 6 min at each intensity with 4-min intervals of rest in between the exercise bouts. The VO2 response to cycling after the exercise (fatigue condition) was compared to ergometer cycling without prior exercise (control condition). From 3rd to 6th min of cycling at 105, 140 and 175 W, VO2 was higher (p < 0.05-0.01) when cycling in the fatigue compared to the control condition. Slow component of VO2 kinetics was observed when cycling at 175 W in the control condition (0.17 ± 0.09, l·min-1, mean ± SD), but tended to decrease in the fatigue condition (0.13 ± 0.15 l·min-1). In summary, results of the study are in agreement with the hypothesis that muscle fatigue increases oxygen costs of cycling exercise, but does not affect significantly the slow component of pulmonary oxygen uptake (VO2) kinetics. Key Points Repetitive fatiguing exercise induce an increase in metabolic costs of ergometer cycling exercise. It is argued that muscle pain, muscle temperature, elevated pulmonary ventilation and heart rate, shift towards from carbohydrate to fat metabolism are of minor importance in this phenomenon. Increased recruitment of type II fibres and impaired force transmission between muscle fibres due to damage of structural proteins appear to play the major role in reducing efficiency of ergometer cycling. PMID:24353462

  9. Use of strainrange partitioning to predict high temperature low-cycle fatigue life. [of metallic materials

    NASA Technical Reports Server (NTRS)

    Hirschberg, M. H.; Halford, G. R.

    1976-01-01

    The fundamental concepts of the strainrange partitioning approach to high temperature, low low-cycle fatigue are reviewed. Procedures are presented by which the partitioned strainrange versus life relationships for any material can be generated. Laboratory tests are suggested for further verifying the ability of the method of strainrange partitioning to predict life.

  10. High-cycle fatigue behavior of Ti-5Al-2.5Sn ELI alloy forging at low temperatures

    SciTech Connect

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Demura, Masahiko; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-27

    High-cycle fatigue properties of Ti-5Al-2.5Sn Extra Low Interstitial (ELI) alloy forging were investigated at low temperatures. The high-cycle fatigue strength at low temperatures of this alloy was relatively low compared with that at ambient temperature. The crystallographic orientation of a facet formed at a fatigue crack initiation site was determined by electron backscatter diffraction (EBSD) method in scanning electron microscope (SEM) to understand the fatigue crack initiation mechanism and discuss on the low fatigue strength at low temperature. Furthermore, in terms of the practical use of this alloy, the effect of the stress ratio (or mean stress) on the high-cycle fatigue properties was evaluated using the modified Goodman diagram.

  11. High-cycle fatigue behavior of Ti-5Al-2.5Sn ELI alloy forging at low temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Demura, Masahiko; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-01

    High-cycle fatigue properties of Ti-5Al-2.5Sn Extra Low Interstitial (ELI) alloy forging were investigated at low temperatures. The high-cycle fatigue strength at low temperatures of this alloy was relatively low compared with that at ambient temperature. The crystallographic orientation of a facet formed at a fatigue crack initiation site was determined by electron backscatter diffraction (EBSD) method in scanning electron microscope (SEM) to understand the fatigue crack initiation mechanism and discuss on the low fatigue strength at low temperature. Furthermore, in terms of the practical use of this alloy, the effect of the stress ratio (or mean stress) on the high-cycle fatigue properties was evaluated using the modified Goodman diagram.

  12. Ratcheting fatigue behaviour of Al-7075 T6 alloy: Influence of stress parameters

    NASA Astrophysics Data System (ADS)

    Amarnath, Lala; Bhattacharjee, Antara; Dutta, K.

    2016-02-01

    The use of aluminium and aluminium based alloys are increasing rapidly on account of its high formability, good thermal and electrical conductivity, high strength and lightness. Aluminium alloys are extensively used in aerospace, automobile, marine and space research industries and are also put into structural applications where chances of fatigue damage cannot be ruled out. In the current work, it is intended to study the ratcheting fatigue behavior of 7075-T6 aluminium alloy at room temperature. This Al alloy is potentially used in aviation, marine and automotive components as well as in bicycle parts, rock mounting equipment and parts of ammunition where there is every chance of failure of the parts due to deformation caused by ratcheting. Ratcheting is the process of accruement of plastic stain produced when a component is subjected to asymmetric cyclic loading under the influence of low cycle fatigue. To accomplish the requirements of the projected research, stress-controlled cyclic loading experiments were done using a ±250 kN servo-hydraulic universal testing machine (Instron: 8800R). The effect of stress parameters such as mean stress and stress amplitude were investigated on the ratcheting behavior of the selected aluminium alloy. It was observed that, ratcheting strain increased with increase in the value of stress amplitude at any constant mean stress while a saturation in strain accumulation attained in the investigated material after around 10-20 cycles, under all test conditions. The analyses of hysteresis loop generated during cyclic loading indicate that the material exhibits cyclic hardening in the initial fifty cycles which gets softened in further loading up to about 70-80 cycles and finally attains a steady state. The increase in the ratcheting strain value with stress parameters happens owing to increased deformation domain during cycling. The cyclic hardening accompanied by softening is correlated with characteristic precipitation features of

  13. High cycle fatigue behavior of implant Ti-6Al-4V in air and simulated body fluid.

    PubMed

    Liu, Yong-jie; Cui, Shi-ming; He, Chao; Li, Jiu-kai; Wang, Qing-yuan

    2014-01-01

    Ti-6Al-4V implants that function as artificial joints are usually subjected to long-term cyclic loading. To study long-term fatigue behaviors of implant Ti-6Al-4V in vitro and in vivo conditions exceeding 107 cycles, constant stress amplitude fatigue experiments were carried out at ultrasonic frequency (20 kHz) with two different surface conditions (ground and polished) in ambient air and in a simulated body fluid. The initiation mechanisms of fatigue cracks were investigated with scanning electron microscopy. Improvement of fatigue strength is pronounced for polished specimens below 106 cycles in ambient air since fatigue cracks are initiated from surfaces of specimens. While the cycles exceed 106, surface conditions have no effect on fatigue behaviors because the defects located within the specimens become favorable sites for crack initiation. The endurance limit at 108 cycles of polished Ti-6Al-4V specimens decreases by 7% if it is cycled in simulated body fluid instead of ambient air. Fracture surfaces show that fatigue failure is initiated from surfaces in simulated body fluid. Surface improvement has a beneficial effect on fatigue behaviors of Ti-6Al-4V at high stress amplitudes. The fatigue properties of Ti-6Al-4V deteriorate and the mean endurance limits decrease significantly in simulated body fluid. PMID:24211906

  14. The circadian cycle: daily rhythms from behaviour to genes

    PubMed Central

    Merrow, Martha; Spoelstra, Kamiel; Roenneberg, Till

    2005-01-01

    The daily recurrence of activity and rest are so common as to seem trivial. However, they reflect a ubiquitous temporal programme called the circadian clock. In the absence of either anatomical clock structures or clock genes, the timing of sleep and wakefulness is disrupted. The complex nature of circadian behaviour is evident in the fact that phasing of the cycle during the day varies widely for individuals, resulting in extremes colloquially called 'larks' and 'owls'. These behavioural oscillations are mirrored in the levels of physiology and gene expression. Deciphering the underlying mechanisms will provide important insights into how the circadian clock affects health and disease. PMID:16222241

  15. Fatigue

    MedlinePlus

    ... chemotherapy and radiation Recovering from major surgery Anxiety, stress, or depression Staying up too late Drinking too much alcohol or too many caffeinated drinks Pregnancy One disorder that causes extreme fatigue is chronic ...

  16. Cyclic deformation fatigue behaviour of Ti6Al4V thermochemically nitrided for articular prostheses.

    PubMed

    Gil, F J; Manero, J M; Rodriguez, D; Planell, J A

    2003-01-01

    Titanium and its alloys have many attractive properties including high specific strength, low density, and excellent corrosion resistance. Titanium and the Ti6Al4V alloy have long been recognized as materials with high biocompatibility. These properties have led to the use of these materials in biomedical applications. Despite these advantages, the lack of good wear resistance makes the use of titanium and Ti6Al4V difficult in some biomedical applications, for example, articulating components of prostheses. To overcome this limitation, nitriding has been investigated as a surface-hardening method for titanium. Although nitriding greatly improves the wear resistance, this method reduces the fatigue strength. Low cycle fatigue performance in air of nitrided Ti6Al4V at different deformation amplitudes has been studied. Results show a reduction of low cycle fatigue life of up to 10% compared to the non-treated material. Studies suggest it is not related to the titanium nitride surface layer, but to microstructural changes caused by the high temperature treatment. (Journal of Applied Biomaterial & Biomechanics 2003; 1: 43-7). PMID:20803471

  17. High and low-cycle fatigue behavior of prestressed concrete in offshore structures

    SciTech Connect

    Gerwick, B.C.; Venuti, W.J.

    1980-03-01

    Although concrete does suffer progressive loss of strength with increasing number of cycles, a comparison of the Woehler curves with the probable distribution of compressive stresses during a service life in an environment such as the North Sea shows extremely low cumulative usage at the high-cycle end of the spectrum. However, significant damage can occur at the low-cycle, high-amplitude end. Repeated excursions of submerged concrete into the crack opening range leads to pumping of water in and out of the crack and hydraulic wedging, leading to splitting of the concrete. Cracking subcects the reinforcing and prestressing steel to cyclic tension. Loss of bond ensues and may lead to eventual fatigue failure. Adequate endurance can be ensured by prestressing, so as to avoid a large number of cycles extending into the crack opening range, and by the provision of adequate percentages of steel across the section plus transverse and confining steel. For the typical concrete sea structure, high-cycle, low-amplitude, cumulative fatigue is not a significant problem. However low-cycle, high-amplitude fatigue requires consideration.

  18. Low-cycle fatigue behavior of polycrystalline NiAl at 1000 K

    SciTech Connect

    Lerch, B.A.; Noebe, R.D. )

    1994-02-01

    The low-cycle fatigue behavior of polycrystalline NiAl was determined at 1000 K, a temperature above the monotonic brittle-to-ductile transition temperature (BDTT). Fully reversed, plastic strain-controlled fatigue tests were conducted on B2 intermetallic samples prepared by two fabrication techniques: hot isostatic pressing (HIP) of prealloyed powders and extrusion of vacuum induction-melted [cast plus extruded (C + E)] castings. At 1,000 K, in an air environment both the hot-isostatically pressed ( hipped') and C + E samples cyclically softened throughout most of their fatigue lives, though the absolute change in stress was no greater than about 35 MPa. At this temperature, samples were insensitive to processing defects, which were a source of failure initiation in room-temperature tests. The processing method had a small effect on fatigue life; the lives of the hipped samples were about a factor of 3 shorter than the fatigue lives of the C + E NiAl. The C + E material also underwent dynamic grain growth during testing, while the hipped NiAl maintained a constant grain size. Stable fatigue-crack growth in both materials was intergranular in nature, while final fracture by tensile overload occurred by transgranular cleavage. However, at plastic strain ranges below 0.3 pct, the fatigue lives of the hipped NiAl were controlled by intergranular cavitation and creep processes such that the fatigue lives were shorter than anticipated. Finally, hipped samples tested in vacuum had a factor of 3 longer life than specimens tested in air.

  19. Fretting fatigue behaviour of Ni-free high-nitrogen stainless steel in a simulated body fluid

    NASA Astrophysics Data System (ADS)

    Maruyama, Norio; Hiromoto, Sachiko; Akiyama, Eiji; Nakamura, Morihiko

    2013-04-01

    Fretting fatigue behaviour of Ni-free high-nitrogen steel (HNS) with a yield strength of about 800 MPa, which was prepared by nitrogen gas pressurized electroslag remelting, was studied in air and in phosphate-buffered saline (PBS(-)). For comparison, fretting fatigue behaviour of cold-rolled SUS316L steel (SUS316L(CR)) with similar yield strength was examined. The plain fatigue limit of HNS was slightly lower than that of SUS316L(CR) although the former had a higher tensile strength than the latter. The fretting fatigue limit of HNS was higher than that of SUS316L(CR) both in air and in PBS(-). A decrease in fatigue limit of HNS by fretting was significantly smaller than that of SUS316L(CR) in both environments, indicating that HNS has better fretting fatigue resistance than SUS316L(CR). The decrease in fatigue limit by fretting is discussed taking into account the effect of friction stress due to fretting and the additional influences of wear, tribocorrosion and plastic deformation in the fretted area.

  20. Low cycle fatigue of FeAl(42 at. % Al) at room temperature

    SciTech Connect

    Hanes, D.B.; Gibala, R.

    1997-12-31

    The monotonic mechanical behavior in tension and compression of FeAl has been well documented. However, very little work has been done on the cyclic deformation behavior of this material. In this work, the behavior of FeAl (42 at. % Al) under low cycle fatigue was studied, including the effects of test environments and surface coatings. It was found that the fatigue life of this alloy is limited by environmental embrittlement. This embrittlement process can be equally well prevented by deformation in an oxygen environment or by coating the alloy with a protective film. The type of film applied appears to have little effect. Similar results were seen in monotonic testing.

  1. Low-cycle impact fatigue of SiC{sub W}/7475Al composite

    SciTech Connect

    Yang, P.; Liu, Y.; Xu, F.

    1998-10-01

    Important uses in the future for metal-matrix composites are in aerospace, weaponry, and high-speed power plants in which the inertial force produced by great acceleration is a load of high strain rate. Therefore close attention is given to the mechanical behavior of a composite at high strain rates. This paper reports a study of the behavior and mechanisms of a SiC{sub w}/7475 composite in low-cycle impact fatigue (LCIF). The LCIF and impact tension tests were conducted by using the push-pull impact fatigue apparatus developed by the authors, in which the loading assembly was actually a combination of a Hopkinson`s pressure bar and an extension bar. In the apparatus the trapezoidal stress wave loads were produced. The strain rates in specimens may reach 400 s{sup {minus}1}. The results show that for a SiC{sub w}/7475 composite, the strain-rate effects on yield stress, ductility, cyclic hardening and softening, {Delta}{epsilon}{sub e}/2 {minus} N{sub f} relation, and transition life were slight. In low-cycle impact fatigue the cracks often initiated within or near the SiC particles, which mingled in the composite. The SiC{sub w}/7475 composite was found to be less ductile than its alloy matrix; in low-cycle fatigue brittleness appears. Therefore great attention must be given to the behavior of the composite when it is used as a structural material.

  2. Analysis of methods for determining high cycle fatigue strength of a material with investigation of titanium-aluminum-vanadium gigacycle fatigue behavior

    NASA Astrophysics Data System (ADS)

    Pollak, Randall D.

    Today, aerospace engineers still grapple with the qualitative and quantitative understanding of fatigue behavior in the design and testing of turbine-driven jet engines. The Department of Defense has taken a very active role in addressing this problem with the formation of the National High Cycle Fatigue Science & Technology Program in 1994. The primary goal of this program is to further the understanding of high cycle fatigue (HCF) behavior and develop methods in order to mitigate the negative impact of HCF on aerospace operations. This research supports this program by addressing the fatigue strength testing guidance currently provided by the DoD to engine manufacturers, with the primary goal to investigate current methods and recommend a test strategy to characterize the fatigue strength of a material at a specified number of cycles, such as the 109 design goal specified by MIL-HDBK-1783B, or range of cycles. The research utilized the benefits of numerical simulation to initially investigate the staircase method for use in fatigue strength testing. The staircase method is a commonly used fatigue strength test, but its ability to characterize fatigue strength variability is extremely suspect. A modified staircase approach was developed and shown to significantly reduce bias and scatter in estimates for fatigue strength variance. Experimental validation of this proposed test strategy was accomplished using a dual-phase Ti-6Al-4V alloy. The HCF behavior of a second material with a very different microstructure (beta annealed Ti-6Al-4V) was also investigated. The random fatigue limit (RFL) model, a recently developed analysis tool, was investigated to characterize stress-life behavior but found to have difficulty representing fatigue life curves with sharp transitions. Two alternative models (bilinear and hyperbolic) were developed based on maximum likelihood methods to better characterize the Ti-6Al-4V fatigue life behavior. These models provided a good fit to the

  3. Effects of Hydrogen Gas Environment on Fatigue Strength at 107 cycles in Plain Specimen of Type 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kawamoto, Kyohei; Ochi, Kazuhiko; Oda, Yasuji; Noguchi, Hiroshi

    In order to clarify the hydrogen effect on the fatigue strength at 107 cycles in a plain specimen of type 316L austenitic stainless steel, rotating bending fatigue tests in laboratory air and plane bending fatigue tests in 1.0 MPa dry hydrogen gas and in air at 313 K were carried out. The main results obtained are as follows. The observed fatigue behavior showed that the fatigue strength at 107 cycles in both environments is determined by the non-propagation of a fatigue crack of the order of the grain size. Also, the strength at 107 cycles in hydrogen gas is slightly higher than that in air. In the region of high-cycle fatigue, the fatigue life in hydrogen gas is longer than that in air, which is mainly caused by the longer crack initiation life in hydrogen gas. The crack propagation life in hydrogen gas is shorter than that in air but has only a small ratio to the fatigue life in this region.

  4. Influence of creep damage on the low cycle thermal-mechanical fatigue behavior of two tantalum base alloys

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.; Doble, G. S.

    1972-01-01

    Low cycle fatigue tests have been performed on the tantalum base alloys T-111 and ASTAR 811C with synchronized, independently programmed temperature and strain cycling. The thermal-mechanical cycles applied fell into three basic categories: these were isothermal cycling, in-phase thermal cycling, and out-of-phase thermal cycling. In-phase cycling was defined as tensile deformation associated with high temperature and compressive deformation with low temperature, while out-of-phase thermal cycling was defined as the reverse case. The in-phase thermal cycling had a pronounced detrimental influence on the fatigue life of both alloys, with the life reduction being greater in the solid solution strengthened T-111 alloy than in the carbide strengthened ASTAR 811C alloy. The out-of-phase tests also showed pronounced effects on the fatigue life of both alloys, although not as dramatic.

  5. Energy Approach-Based Simulation of Structural Materials High-Cycle Fatigue

    NASA Astrophysics Data System (ADS)

    Balayev, A. F.; Korolev, A. V.; Kochetkov, A. V.; Sklyarova, A. I.; Zakharov, O. V.

    2016-02-01

    The paper describes the mechanism of micro-cracks development in solid structural materials based on the theory of brittle fracture. A probability function of material cracks energy distribution is obtained using a probabilistic approach. The paper states energy conditions for cracks growth at material high-cycle loading. A formula allowing to calculate the amount of energy absorbed during the cracks growth is given. The paper proposes a high- cycle fatigue evaluation criterion allowing to determine the maximum permissible number of solid body loading cycles, at which micro-cracks start growing rapidly up to destruction.

  6. Influence of subsolvus thermomechanical processing on the low-cycle fatigue properties of haynes 230 alloy

    NASA Astrophysics Data System (ADS)

    Vecchio, Kenneth S.; Fitzpatrick, Michael D.; Klarstrom, Dwaine

    1995-03-01

    Strain-controlled low-cycle fatigue tests have been conducted in air at elevated temperature to determine the influence of subsolvus thermomechanical processing on the low-cycle fatigue (LCF) behavior of HAYNES 230 alloy. A series of tests at various strain ranges was conducted on material experimentally processed at 1121 °C, which is below the M23C6 carbide solvus temperature, and on material fully solution annealed at 1232 °C. A comparative strain-life analysis was performed on the LCF results, and the cyclic hardening/softening characteristics were examined. At 760 °C and 871 °C, the fatigue life of the experimental 230/1121 material was improved relative to the standard 230/1232 material up to a factor of 3. The fatigue life advantage of the experimental material was related primarily to a lower plastic (inelastic) strain amplitude response for a given imposed total strain range. It appears the increase in monotonic flow stress exhibited by the finer grain size experimental material has been translated into an increase in cyclic flow stress at the 760 °C and 871 °C test temperatures. Both materials exhibited entirely transgranular fatigue crack initiation and propagation modes at these temperatures. The LCF performance of the experimental material in tests performed at 982 °C was improved relative to the standard material up to a factor as high as 2. The life advantage of the 230/1121 material occurred despite having a larger plastic strain amplitude than the standard 230/1232 material for a given total strain range. Though not fully understood at present, it is suspected that this behavior is related to the deleterious influence of grain boundaries in the fatigue crack initiations of the standard processed material relative to the experimental material, and ultimately to differences in carbide morphology as a result of thermomechanical processing.

  7. Low cycle fatigue behavior of polycrystalline NiAl at 300 and 1000 K

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Noebe, Ronald D.

    1993-01-01

    The low cycle fatigue behavior of polycrystalline NiAl was determined at 300 and 1000 K - temperatures below and above the brittle- to-ductile transition temperature (BDTT). Fully reversed, plastic strain-controlled fatigue tests were conducted on two differently fabricated alloy samples: hot isostatically pressed (HIP'ed) prealloyed powder and hot extruded castings. HIP'ed powder (HP) samples were tested only at 1000 K, whereas the more ductile cast-and-extruded (C+E) NiAl samples were tested at both 1000 and 300 K. Plastic strain ranges of 0.06 to 0.2 percent were used. The C+E NiAl cyclically hardened until fracture, reaching stress levels approximately 60 percent greater than the ultimate tensile strength of the alloy. Compared on a strain basis, NiAl had a much longer fatigue life than other B2 ordered compounds in which fracture initiated at processing-related defects. These defects controlled fatigue life at 300 K, with fracture occurring rapidly once a critical stress level was reached. At 1000 K, above the BDTT, both the C+E and HP samples cyclically softened during most of the fatigue tests in air and were insensitive to processing defects. The processing method did not have a major effect on fatigue life; the lives of the HP samples were about a factor of three shorter than the C+E NiAl, but this was attributed to the lower stress response of the C+E material. The C+E NiAl underwent dynamic grain growth, whereas the HP material maintained a constant grain size during testing. In both materials, fatigue life was controlled by intergranular cavitation and creep processes, which led to fatigue crack growth that was primarily intergranular in nature. Final fracture by overload was transgranular in nature. Also, HP samples tested in vacuum had a life three times longer than their counterparts tested in air and, in contrast to those tested in air, hardened continuously over half of the sample life, thereby indicating an environmentally assisted fatigue damage

  8. A New High-Speed, High-Cycle, Gear-Tooth Bending Fatigue Test Capability

    NASA Technical Reports Server (NTRS)

    Stringer, David B.; Dykas, Brian D.; LaBerge, Kelsen E.; Zakrajsek, Andrew J.; Handschuh, Robert F.

    2011-01-01

    A new high-speed test capability for determining the high cycle bending-fatigue characteristics of gear teeth has been developed. Experiments were performed in the test facility using a standard spur gear test specimens designed for use in NASA Glenn s drive system test facilities. These tests varied in load condition and cycle-rate. The cycle-rate varied from 50 to 1000 Hz. The loads varied from high-stress, low-cycle loads to near infinite life conditions. Over 100 tests were conducted using AISI 9310 steel spur gear specimen. These results were then compared to previous data in the literature for correlation. Additionally, a cycle-rate sensitivity analysis was conducted by grouping the results according to cycle-rate and comparing the data sets. Methods used to study and verify load-path and facility dynamics are also discussed.

  9. Effects of High Mean Stress on High-cycle Fatigue Behavior of PWA 1480

    NASA Technical Reports Server (NTRS)

    Majumdar, S.; Antolovich, S. D.; Milligan, W. W.

    1985-01-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the space shuttle main engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. The present paper describes the results obtained in an ongoing program at the Argonne National Laboratory, sponsored by NASA Lewis, to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material. Straight-gauge high-cycle fatigue specimens, 0.2 inch in diameter and with the specimen axis in the 001 direction, were supplied by NASA Lewis. The nominal room temperature yield and ultimate strength of the material were 146 and 154 ksi, respectively. Each specimen was polished with 1-micron diamond paste prior to testing. However, the surface of each specimen contained many pores, some of which were as large as 50 micron. In the initial tests, specimens were subjected to axial-strain-controlled cycles. However, very little cyclic plasticity was observed.

  10. Prediction of low-cycle fatigue-life by acoustic emission—2: 7075-T6 aluminum alloy

    SciTech Connect

    Baram, J.; Rosen, M.

    1981-01-01

    Low-cycle fatigue tests were conducted by tension-compression until rupture, on a 2024-T3 aluminum alloy sheet. Initial crack sizes and orientations in the fatigue specimens were found to be randomly distributed. Acoustic emission was continuously monitored during the tests. Every few hundred cycles, the acoustic signal having the highest peak-amplitude, was recorded as an extremal event for the elapsed period. This high peak-amplitude is related to a fast crack propagation rate through a phenomenological relationship. The extremal peakamplitudes are shown by an ordered statistics treatment, to be extremally distributed. The statistical treatment enables the prediction of the number of cycles left until failure. Predictions performed a-posteriori based on results gained early in each fatigue test are in good agreement with actual fatigue lives. The amplitude distribution analysis of the acoustic signals emitted during cyclic stress appears to be a promising nondestructive method of predicting fatigue life.

  11. Understanding Low-cycle Fatigue Life Improvement Mechanisms in a Pre-twinned Magnesium Alloy

    SciTech Connect

    Wu, Wei; An, Ke

    2015-10-03

    The mechanisms of fatigue life improvement by pre-twinning process in a commercial rolled magnesium (Mg) alloy have been investigated using real-time in situ neutron diffraction under a continuous-loading condition. It is found that by introducing the excess twinned grains through pre-compression along the rolling direction the fatigue life was enhanced approximately 50%, mainly resulting from the prolonged detwinning process and inhibited dislocation slip during reverse tension. Moreover, after pre-twinning process, the removal of the rapid strain hardening during reverse tension leads to a compressive mean stress value and more symmetric shape of stress-strain hysteresis loop. The pre-twinning has significant impacts on the twinning-detwinning characteristics and deformation modes during cyclic loading and greatly facilitates the twinning-detwinning activities in plastic deformation. The cyclic straining leads to the increase of contribution of tensile twinning deformation in overall plastic deformation in both the as-received and pre-deformed sample. The mechanisms of load partitioning in different groups of grains are closely related to the deformation modes in each deformation stage, while the fatigue cycling has little influence on the load sharing. The pre-twinning process provides an easy and cost-effective route to improve the low-cycle fatigue life through manufacturing and processing, which would advance the wide application of light-weight wrought Mg alloys as structural materials.

  12. Understanding Low-cycle Fatigue Life Improvement Mechanisms in a Pre-twinned Magnesium Alloy

    DOE PAGESBeta

    Wu, Wei; An, Ke

    2015-10-03

    The mechanisms of fatigue life improvement by pre-twinning process in a commercial rolled magnesium (Mg) alloy have been investigated using real-time in situ neutron diffraction under a continuous-loading condition. It is found that by introducing the excess twinned grains through pre-compression along the rolling direction the fatigue life was enhanced approximately 50%, mainly resulting from the prolonged detwinning process and inhibited dislocation slip during reverse tension. Moreover, after pre-twinning process, the removal of the rapid strain hardening during reverse tension leads to a compressive mean stress value and more symmetric shape of stress-strain hysteresis loop. The pre-twinning has significant impactsmore » on the twinning-detwinning characteristics and deformation modes during cyclic loading and greatly facilitates the twinning-detwinning activities in plastic deformation. The cyclic straining leads to the increase of contribution of tensile twinning deformation in overall plastic deformation in both the as-received and pre-deformed sample. The mechanisms of load partitioning in different groups of grains are closely related to the deformation modes in each deformation stage, while the fatigue cycling has little influence on the load sharing. The pre-twinning process provides an easy and cost-effective route to improve the low-cycle fatigue life through manufacturing and processing, which would advance the wide application of light-weight wrought Mg alloys as structural materials.« less

  13. Integrating water flow, locomotor performance and respiration of Chinese sturgeon during multiple fatigue-recovery cycles.

    PubMed

    Cai, Lu; Chen, Lei; Johnson, David; Gao, Yong; Mandal, Prashant; Fang, Min; Tu, Zhiying; Huang, Yingping

    2014-01-01

    The objective of this study is to provide information on metabolic changes occurring in Chinese sturgeon (an ecologically important endangered fish) subjected to repeated cycles of fatigue and recovery and the effect on swimming capability. Fatigue-recovery cycles likely occur when fish are moving through the fishways of large dams and the results of this investigation are important for fishway design and conservation of wild Chinese sturgeon populations. A series of four stepped velocity tests were carried out successively in a Steffensen-type swimming respirometer and the effects of repeated fatigue-recovery on swimming capability and metabolism were measured. Significant results include: (1) critical swimming speed decreased from 4.34 bl/s to 2.98 bl/s; (2) active oxygen consumption (i.e. the difference between total oxygen consumption and routine oxygen consumption) decreased from 1175 mgO2/kg to 341 mgO2/kg and was the primary reason for the decrease in Ucrit; (3) excess post-exercise oxygen consumption decreased from 36 mgO2/kg to 22 mgO2/kg; (4) with repeated step tests, white muscle (anaerobic metabolism) began contributing to propulsion at lower swimming speeds. Therefore, Chinese sturgeon conserve energy by swimming efficiently and have high fatigue recovery capability. These results contribute to our understanding of the physiology of the Chinese sturgeon and support the conservation efforts of wild populations of this important species. PMID:24714585

  14. Fatigue Response of a PZT Multilayer Actuator under High-Field Electric Cycling with Mechanical Preload

    SciTech Connect

    Wang, Hong; Wereszczak, Andrew A; Lin, Hua-Tay

    2009-01-01

    An electric fatigue test system has been developed for piezoelectric actuator with a mechanical loading capability. Fatigue responses of a lead zirconate titanate (PZT) multilayer actuator (MLA) with a plate-through electrode configuration have been studied under an electric field (1.7 times that of a coercive field of PZT material) and a concurrent mechanical preload (30.0 MPa). A total of 1.0x10^9 cycles were carried out. Variations in charge density and mechanical strain under a high electric field and constant mechanical loads were observed during the fatigue test. The dc and the first harmonic (at 10 Hz) dielectric and piezoelectric coefficients were subsequently characterized by using FFT (Fast Fourier Transformation). It has been observed that both the dielectric and the piezoelectric coefficients underwent a monotonic decrease prior to 2.86x10^8 cycles under the relevant preload, and then fluctuated to a certain extent. Both the dielectric loss tangent and the piezoelectric loss tangent also exhibited the fluctuations after a certain amount of drop but at different levels relative to the pre-fatigue. And finally, the results were discussed with respect to domain wall mobility, microcracking, and other pre-existing anomalies.

  15. The Rehbinder effect in iron during giga-cycle fatigue loading

    NASA Astrophysics Data System (ADS)

    Bannikov, M. V.; Naimark, O. B.

    2015-10-01

    The influence of the adsorptive strength reduction effect (the Rehbinder effect) on the fatigue life of pure iron under the giga-cycle loading regime was investigated. Specimens were loaded by an ultrasonic testing machine with a frequency of 20 kHz in air and in contact with eutectic alloy of gallium with tin and indium. A significant (by several orders of magnitude) worsening of the life-time of iron in contact with a molten metal as compared with tests in air was established. The liquid metal penetrates into the material to a depth of 200 μm to the center of a fatigue crack. The mechanism of the fatigue crack initiation in the giga-cycle regime of loading in contact with a surfactant is differing: the crack is formed on the surface of the specimen rather than within it as is the case for air. Based on the electron and optical microscopy data for the fracture surface, it can be concluded that exactly the change in the crack initiation mechanism reduces the fatigue life of iron in contact with a liquid metal because the initiated crack propagates regardless of the surfactant.

  16. Surface-finish effects on the high-cycle fatigue of Alloy 718

    SciTech Connect

    Korth, G.E.

    1981-06-01

    Alloy 718 us a precipitation-hardening nickel-base superalloy that is being specified for various components for liquid-meal fast breeder reactors (LMFBRs). This alloy maintains high strength at elevated temperatures making it a desirable structural material. But the property that justifies most LMFBR applications is the alloy's resistance to thermal striping damage due to its high fatigue endurance strength. Thermal striping is a high-cycle fatigue phenomenon caused by thermal stresses from the fluctuating mixing action of sodium streams of differing temperatures impinging on the metal surfaces. Most of the design data is generated from laboratory fatigue specimens with carefully controlled surface finishes prepared with a low-stress grind and buffed to a surface finish 8--12 in. Since Alloy 718 has been shown to be quite notch sensitive under cyclic loading, the detrimental effect on the high-cycle fatigue properties caused by shop surface finishes of actual components has been questioned. This report examines some of the surface finishes that could be produced in a commercial shop on an actual component.

  17. The Rehbinder effect in iron during giga-cycle fatigue loading

    SciTech Connect

    Bannikov, M. V. Naimark, O. B.

    2015-10-27

    The influence of the adsorptive strength reduction effect (the Rehbinder effect) on the fatigue life of pure iron under the giga-cycle loading regime was investigated. Specimens were loaded by an ultrasonic testing machine with a frequency of 20 kHz in air and in contact with eutectic alloy of gallium with tin and indium. A significant (by several orders of magnitude) worsening of the life-time of iron in contact with a molten metal as compared with tests in air was established. The liquid metal penetrates into the material to a depth of 200 μm to the center of a fatigue crack. The mechanism of the fatigue crack initiation in the giga-cycle regime of loading in contact with a surfactant is differing: the crack is formed on the surface of the specimen rather than within it as is the case for air. Based on the electron and optical microscopy data for the fracture surface, it can be concluded that exactly the change in the crack initiation mechanism reduces the fatigue life of iron in contact with a liquid metal because the initiated crack propagates regardless of the surfactant.

  18. Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.

    2007-01-01

    An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semilogarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.

  19. Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.

    2007-01-01

    An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semi-logarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.

  20. Fatigue

    MedlinePlus

    ... Fatigue can be a symptom of anemia, particularly iron-deficiency anemia . Your body needs iron to make hemoglobin, the substance in red blood ... tissues and to your baby. Your need for iron increases during pregnancy because of the needs of ...

  1. The Effect of Drive Signal Limiting on High Cycle Fatigue Life Analysis

    NASA Technical Reports Server (NTRS)

    Kihm, Frederic; Rizzi, Stephen A.

    2014-01-01

    It is common practice to assume a Gaussian distribution of both the input acceleration and the response when modeling random vibration tests. In the laboratory, however, shaker controllers often limit the drive signal to prevent high amplitude peaks. The high amplitudes may either be truncated at a given level (socalled brick wall limiting or abrupt clipping), or compressed (soft limiting), resulting in drive signals which are no longer Gaussian. The paper first introduces several methods for limiting a drive signal, including brick wall limiting and compression. The limited signal is then passed through a linear time-invariant system representing a device under test. High cycle fatigue life predictions are subsequently made using spectral fatigue and rainflow cycle counting schemes. The life predictions are compared with those obtained from unclipped input signals. Some guidelines are provided to help the test engineer decide how clipping should be applied under different test scenarios.

  2. MECHANICAL STRAIN AND PIEZOELECTRIC PROPERTIES OF PZT STACKS RELATED TO SEMI-BIPOLAR ELECTRIC CYCLING FATIGUE

    SciTech Connect

    Wang, Hong; Lin, Hua-Tay; Wereszczak, Andrew A; Cooper, Thomas A

    2009-01-01

    PZT stacks that had an inter-digital internal electrode configuration and consisted of a specific number of multilayer actuators were tested to more than 108 cycles by using a 100-Hz semi-bipolar sine wave with a field range of +4.5/-0.9 kV/mm and a 20-MPa mechanical preload. Significant reductions in mechanical strain and piezoelectric coefficients were observed during the fatigue cycling, depending on the measuring condition. Extensive surface discharges and arcs were also observed. These surface events as well as related dielectric breakdown resulted in the erosion of external electrode and outcrop of internal electrode, and that partially accounts for the reduction observed above. The data obtained in this study demonstrated the feasibility of using a semi-bipolar mode to drive a PZT stack with a designed mechanical preload applied and illustrated the potential fatigue of stack~{!/~}s performance during its service.

  3. Thermal High- and Low-Cycle Fatigue Behavior of Thick Thermal Barrier Coating Systems

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.

    1998-01-01

    Ceramic thermal barrier coatings have received increasing attention for advanced gas turbine and diesel engine applications because of their ability to provide thermal insulation to engine components. However, the durability of these coatings under the severe thermal cycling conditions encountered in a diesel engine (ref. 1) still remains a major issue. In this research at the NASA Lewis Research Center, a high-power laser was used to investigate the thermal fatigue behavior of a yttria-stabilized zirconia coating system under simulated diesel engine conditions. The mechanisms of fatigue crack initiation and propagation, and of coating failure under complex thermal low-cycle fatigue (LCF, representing stop/start cycles) and thermal high-cycle fatigue (HCF, representing operation at 1300 rpm) are described. Continuous wave and pulse laser modes were used to simulate pure LCF and combined LCF/HCF, respectively (ref. 2). The LCF mechanism was found to be closely related to the coating sintering and creep at high temperatures. These creep strains in the ceramic coating led to a tensile stress state during cooling, thus providing the major driving force for crack growth under LCF conditions. The combined LCF/HCF tests induced more severe coating surface cracking, microspallation, and accelerated crack growth than did the pure LCF test. HCF thermal loads also facilitated lateral crack branching and ceramic/bond coat interface delaminations. HCF is associated with the cyclic stresses originating from the high-frequency temperature fluctuation at the ceramic coating surface. The HCF thermal loads act on the crack by a wedging mechanism (ref. 1), resulting in continuous crack growth at temperature. The HCF stress intensity factor amplitude increases with the interaction depth and temperature swing, and decreases with the crack depth. HCF damage also increases with the thermal expansion coefficient and the Young's modulus of the ceramic coating (refs. 1 and 3).

  4. Cyclic fatigue behaviour of fibre reinforced rubber-toughened nylon composite materials

    NASA Astrophysics Data System (ADS)

    Pinot, L.; Gomina, M.; Jernot, J.-P.; Moreau, R.; Nakache, E.

    2005-03-01

    The effects of the amount of rubber, the concentration of fibres and the state of the fibre/matrix interface upon the mechanical behaviour of glass fibre/rubber-toughened nylon ternary blends are checked. First, monotonic tensile tests were carried out on different intermediate materials and then on the ternary blends to derive the stress-strain curves and document the damage mechanisms. Cyclic fatigue tests were implemented on tensile specimens and the results were analysed in terms of the reduction of the Young's modulus, the increase of the hysteresis energy rate in the stress-strain diagram and the temperature rise. These findings were correlated to fractographic observations to assess the role of the different constituents.

  5. Influence of subsolvus thermomechanical processing on the low-cycle fatigue properties of HAYNES 230 alloy

    SciTech Connect

    Vecchio, K.S.; Fitzpatrick, M.D.; Klarstrom, D.

    1995-03-01

    Strain-controlled low-cycle fatigue tests have been conducted in air at elevated temperature to determine the influence of subsolvus thermomechanial processing on the low-cycle fatigue (LCF) behavior of HAYNES 230 alloy. A series of tests at various strain ranges was conducted on material experimentally processed at 1,121 C, which is below the M{sub 23}C{sub 6} carbide solvus temperature, and on material fully solution annealed at 1,232 C. A comparative strain-life analyses was performed on the LCF results, and the cyclic hardening/softening characteristics were examined. At 760 C and 871 C, the fatigue life of the experimental 230/1121 material was improved relative to the standard 230/1232 material up to a factor of 3. The fatigue life advantage of the experimental material was related primarily to a lower plastic (inelastic) strain amplitude response for a given imposed total strain range. It appears the increase in monotonic flow stress exhibited by the finer grain size experimental material has been translated into an increase in cyclic flow stress at the 760 C and 871 C test temperature. Both materials exhibited entirely transgranular fatigue crack initiation and propagation modes at these temperature. The LCF performance of the experimental material in tests performed at 982 C was improved relative to the standard material up to a factor as high as 2. The life advantage of the 230/1121 material occurred despite having a larger plastic strain amplitude than the sandbar 230/1232 material for a given total strain range.

  6. Effect of environment on low-cycle fatigue of a nickel-titanium instrument.

    PubMed

    Cheung, Gary S P; Shen, Ya; Darvell, Brian W

    2007-12-01

    This study examined the low-cycle fatigue (LCF) behavior of a nickel-titanium (NiTi) engine-file under various environmental conditions. One brand of NiTi instrument was subjected to rotational-bending fatigue in air, deionized water, sodium hypochlorite, or silicone oil. The curvature of each instrument, diameter of the fracture cross-section, and the number of rotations to failure were determined. The strain-life relationship in the LCF region was examined by using one-way analysis of variance, and the number of crack origins with chi2, for differences between groups. The results showed a linear relationship, on logarithmic scales, between the LCF life and the surface strain amplitude; regression line slopes were significantly different between noncorrosive (air, silicone oil) and corrosive (water, hypochlorite) environments (P < .05), as well as number of crack origins (P < .05). Hypochlorite was more detrimental to fatigue life than water. In conclusion, environmental conditions significantly affect the LCF behavior of NiTi rotary instruments. Fatigue testing of NiTi engine-files should be in a service-like environment. PMID:18037053

  7. The effect of a carbohydrate mouth-rinse on neuromuscular fatigue following cycling exercise.

    PubMed

    Jeffers, Robert; Shave, Robert; Ross, Emma; Stevenson, Emma J; Goodall, Stuart

    2015-06-01

    Carbohydrate (CHO) mouth-rinsing, rather than ingestion, is known to improve performance of high-intensity (>75% maximal oxygen uptake) short-duration (≤1 h) cycling exercise. Mechanisms responsible for this improvement, however, are unclear. The present study aimed to investigate the effect of a CHO mouth-rinse on cycling time-trial (TT) performance and mechanisms of fatigue. On 2 separate occasions, 9 male cyclists (mean ± SD; maximal oxygen uptake, 61 ± 5 mL·kg(-1)·min(-1)) completed 45 min at 70% maximum power output (preload) followed by a 15-min TT. At 7.5-min intervals during the preload and TT, participants were given either a tasteless 6.4% maltodextrin mouth-rinse (CHO) or water (placebo (PLA)) in a double-blind, counterbalanced fashion. Isometric knee-extension force and electromyographic responses to percutaneous electrical stimulation and transcranial magnetic stimulation were measured before, after the preload, and after the TT. There were greater decreases in maximal voluntary contraction after the TT in PLA (20% ± 10%) compared with the CHO (12% ± 8%; P = 0.019). Voluntary activation was reduced following exercise in both trials, but did not differ between conditions (PLA -10% ± 8% vs. CHO -5% ± 4%; P = 0.150). The attenuation in the manifestation of global fatigue did not translate into a TT improvement (248 ± 23 vs. 248 ± 39 W for CHO and PLA, respectively). Furthermore, no differences in heart rate or ratings of perceived exertion were found between the 2 conditions. These data suggest that CHO mouth-rinsing attenuates neuromuscular fatigue following endurance cycling. Although these changes did not translate into a performance improvement, further investigation is required into the role of CHO mouth-rinse in alleviating neuromuscular fatigue. PMID:25923580

  8. A Comparative Evaluation of the Effect of Low Cycle Fatigue and Creep-Fatigue Interaction on Surface Morphology and Tensile Properties of 316L(N) Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mariappan, K.; Shankar, Vani; Sandhya, R.; Bhaduri, A. K.; Laha, Kinkar

    2016-04-01

    In the present work, the deformation and damage evolution in 316L(N) stainless steel during low cycle fatigue (LCF) and creep-fatigue interaction (CFI) loadings have been compared by evaluating the residual tensile properties. Towards this, LCF and CFI experiments were carried out at constant strain amplitude of ±0.6 pct, strain rate of 3 × 10-3 s-1 and temperature of 873 K (600 °C). During CFI tests, 30 minutes hold period was introduced at peak tensile strain. Experiments were interrupted up to various levels of fatigue life viz. 5, 10, 30, 50, and 60 pct of the total fatigue life ( N f) under both LCF and CFI conditions. The specimens subjected to interrupted fatigue loadings were subsequently monotonically strained at the same strain rate and temperature up to fracture. Optical and scanning electron microscopy and profilometry were conducted on the untested and tested samples to elucidate the damage evolution during the fatigue cycling under both LCF and CFI conditions. The yield strength (YS) increased sharply with the progress of fatigue damage and attained saturation within 10 pct of N f under LCF condition. On the contrary, under CFI loading condition, the YS continuously increased up to 50 pct of N f, with a sharp increase of YS up to 5 pct of N f followed by a more gradual increase up to 50 pct of N f. The difference in the evolution of remnant tensile properties was correlated with the synergistic effects of the underlying deformation and damage processes such as cyclic hardening/softening, oxidation, and creep. The evolution of tensile properties with prior fatigue damage has been correlated with the change in surface roughness and other surface features estimated by surface replica technique and fractography.

  9. Magnetoreception in birds: II. Behavioural experiments concerning the cryptochrome cycle.

    PubMed

    Wiltschko, Roswitha; Gehring, Dennis; Denzau, Susanne; Nießner, Christine; Wiltschko, Wolfgang

    2014-12-01

    Behavioural tests of the magnetic compass of birds and corresponding immunohistological studies on the activation of retinal cryptochrome 1a, the putative receptor molecule, showed oriented behaviour and activated Cry1a under 373 nm UV, 424 nm blue, 502 nm turquoise and 565 nm green light, although the last wavelength does not allow the first step of photoreduction of cryptochrome to the semiquinone form. The tested birds had been kept under 'white' light before, hence we suggested that there was a supply of semiquinone present at the beginning of the exposure to green light that could be further reduced and then re-oxidized. To test the hypothesis in behavioural experiments, we tested robins, Erithacus rubecula, under various wavelengths (1) after 1 h pre-exposure to total darkness and (2) after 1 h pre-exposure to the same light as used in the test. The birds were oriented under blue and turquoise light, where the full cryptochrome cycle can run, but not under green light. This finding is in agreement with the hypothesis. Orientation under green light appears to be a transient phenomenon until the supply of semiquinone is depleted. PMID:25472973

  10. Dwell Notch Low Cycle Fatigue Behavior of a Powder Metallurgy Nickel Disk Alloy

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Gabb, T. P.; Yamada, Y.; Ghosn, L. J.; Jayaraman, N.

    2012-01-01

    A study was conducted to determine the processes which govern dwell notch low cycle fatigue (NLCF) behavior of a powder metallurgy (P/M) ME3 disk superalloy. The emphasis was placed on the environmentally driven mechanisms which may embrittle the highly stressed notch surface regions and reduce NLCF life. In conjunction with the environmentally driven notch surface degradation processes, the visco-plastic driven mechanisms which can significantly change the notch root stresses were also considered. Dwell notch low cycle fatigue testing was performed in air and vacuum on a ME3 P/M disk alloy specimens heat treated using either a fast or a slow cooling rate from the solutioning treatment. It was shown that dwells at the minimum stress typically produced a greater life debit than the dwells applied at the maximum stress, especially for the slow cooled heat treatment. Two different environmentally driven failure mechanisms were identified as the root cause of early crack initiation in the min dwell tests. Both of these failure mechanisms produced mostly a transgranular crack initiation failure mode and yet still resulted in low NLCF fatigue lives. The lack of stress relaxation during the min dwell tests produced higher notch root stresses which caused early crack initiation and premature failure when combined with the environmentally driven surface degradation mechanisms. The importance of environmental degradation mechanisms was further highlighted by vacuum dwell NLCF tests which resulted in considerably longer NLCF lives, especially for the min dwell tests.

  11. Microstructure and Low-Cycle Fatigue of a Friction-Stir-Welded 6061 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Feng, A. H.; Chen, D. L.; Ma, Z. Y.

    2010-10-01

    Strain-controlled low-cycle fatigue (LCF) tests and microstructural evaluation were performed on a friction-stir-welded 6061Al-T651 alloy with varying welding parameters. Friction stir welding (FSW) resulted in fine recrystallized grains with uniformly distributed dispersoids and dissolution of primary strengthening precipitates β″ in the nugget zone (NZ). Two low-hardness zones (LHZs) appeared in the heat-affected zone (HAZ) adjacent to the border between the thermomechanically-affected zone (TMAZ) and HAZ, with the width decreasing with increasing welding speed. No obvious effect of the rotational rate on the LHZs was observed. Cyclic hardening of the friction-stir-welded joints was appreciably stronger than that of base metal (BM), and it also exhibited a two-stage character where cyclic hardening of the friction-stir-welded 6061Al-T651 alloy at higher strain amplitudes was initially stronger followed by an almost linear increase of cyclic stress amplitudes on the semilog scale. Fatigue life, cyclic yield strength, cyclic strain hardening exponent, and cyclic strength coefficient all increased with increasing welding speed, but were nearly independent of the rotational rate. Most friction-stir-welded joints failed along the LHZs and exhibited a shear fracture mode. Fatigue crack initiation was observed to occur from the specimen surface, and crack propagation was mainly characterized by the characteristic fatigue striations. Some distinctive tiremark patterns arising from the interaction between the hard dispersoids/inclusions and the relatively soft matrix in the LHZ under cyclic loading were observed to be present in-between the fatigue striations.

  12. Probabilistic low cycle fatigue failure analysis with application to liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Newlin, L.; Sutharshana, S.; Ebbeler, D.; Moore, N.; Fox, E.

    1990-01-01

    A probabilistic Low Cycle Fatigue (LCF) failure analysis of a candidate turbine disk for use in a turbopump of a rocket engine of the Space Shuttle Main Engine class is described. A state-of-the-art LCF failure prediction method was used in a Monte Carlo simulation to generate a distribution of failure lives. A stochastic Stress/Life (S/N) model was used for materials characterization. The LCF failure model expresses fatigue life as a function of stochastic parameters including environmental parameters, loads, material properties, structural parameters, and model specification errors. The rationale for the particular characterization of each stochastic input parameter is described. The results and interpretation of the failure analysis are given.

  13. Influence of High Cycle Thermal Loads on Thermal Fatigue Behavior of Thick Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1997-01-01

    Thick thermal barrier coating systems in a diesel engine experience severe thermal Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF) during engine operation. In the present study, the mechanisms of fatigue crack initiation and propagation, as well as of coating failure, under thermal loads which simulate engine conditions, are investigated using a high power CO2 laser. In general, surface vertical cracks initiate early and grow continuously under LCF and HCF cyclic stresses. It is found that in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures, which induce tensile stresses in the coating after cooling. Experiments show that the HCF cycles are very damaging to the coating systems. The combined LCF and HCF tests produced more severe coating surface cracking, microspallation and accelerated crack growth, as compared to the pure LCF test. It is suggested that the HCF component cannot only accelerate the surface crack initiation, but also interact with the LCF by contributing to the crack growth at high temperatures. The increased LCF stress intensity at the crack tip due to the HCF component enhances the subsequent LCF crack growth. Conversely, since a faster HCF crack growth rate will be expected with lower effective compressive stresses in the coating, the LCF cycles also facilitate the HCF crack growth at high temperatures by stress relaxation process. A surface wedging model has been proposed to account for the HCF crack growth in the coating system. This mechanism predicts that HCF damage effect increases with increasing temperature swing, the thermal expansion coefficient and the elastic modulus of the ceramic coating, as well as the HCF interacting depth. A good agreement has been found between the analysis and experimental evidence.

  14. Very high-cycle fatigue failure in micron-scale polycrystalline silicon films: Effects of environment and surface oxide thickness

    NASA Astrophysics Data System (ADS)

    Alsem, D. H.; Timmerman, R.; Boyce, B. L.; Stach, E. A.; De Hosson, J. Th. M.; Ritchie, R. O.

    2007-01-01

    Fatigue failure in micron-scale polycrystalline silicon structural films, a phenomenon that is not observed in bulk silicon, can severely impact the durability and reliability of microelectromechanical system devices. Despite several studies on the very high-cycle fatigue behavior of these films (up to 1012cycles), there is still an on-going debate on the precise mechanisms involved. We show here that for devices fabricated in the multiuser microelectromechanical system process (MUMPs) foundry and Sandia Ultra-planar, Multi-level MEMS Technology (SUMMiT V™) process and tested under equi-tension/compression loading at ˜40kHz in different environments, stress-lifetime data exhibit similar trends in fatigue behavior in ambient room air, shorter lifetimes in higher relative humidity environments, and no fatigue failure at all in high vacuum. The transmission electron microscopy of the surface oxides in the test samples shows a four- to sixfold thickening of the surface oxide at stress concentrations after fatigue failure, but no thickening after overload fracture in air or after fatigue cycling in vacuo. We find that such oxide thickening and premature fatigue failure (in air) occur in devices with initial oxide thicknesses of ˜4nm (SUMMiT V™) as well as in devices with much thicker initial oxides ˜20nm (MUMPs). Such results are interpreted and explained by a reaction-layer fatigue mechanism. Specifically, moisture-assisted subcritical cracking within a cyclic stress-assisted thickened oxide layer occurs until the crack reaches a critical size to cause catastrophic failure of the entire device. The entirety of the evidence presented here strongly indicates that the reaction-layer fatigue mechanism is the governing mechanism for fatigue failure in micron-scale polycrystalline silicon thin films.

  15. A transient plasticity study and low cycle fatigue analysis of the Space Station Freedom photovoltaic solar array blanket

    NASA Technical Reports Server (NTRS)

    Armand, Sasan C.; Liao, Mei-Hwa; Morris, Ronald W.

    1990-01-01

    The Space Station Freedom photovoltaic solar array blanket assembly is comprised of several layers of materials having dissimilar elastic, thermal, and mechanical properties. The operating temperature of the solar array, which ranges from -75 to +60 C, along with the material incompatibility of the blanket assembly components combine to cause an elastic-plastic stress in the weld points of the assembly. The weld points are secondary structures in nature, merely serving as electrical junctions for gathering the current. The thermal mechanical loading of the blanket assembly operating in low earth orbit continually changes throughout each 90 min orbit, which raises the possibility of fatigue induced failure. A series of structural analyses were performed in an attempt to predict the fatigue life of the solar cell in the Space Station Freedom photovoltaic array blanket. A nonlinear elastic-plastic MSC/NASTRAN analysis followed by a fatigue calculation indicated a fatigue life of 92,000 to 160,000 cycles for the solar cell weld tabs. Additional analyses predict a permanent buckling phenomenon in the copper interconnect after the first loading cycle. This should reduce or eliminate the pulling of the copper interconnect on the joint where it is welded to the silicon solar cell. It is concluded that the actual fatigue life of the solar array blanket assembly should be significantly higher than the calculated 92,000 cycles, and thus the program requirement of 87,500 cycles (orbits) will be met. Another important conclusion that can be drawn from the overall analysis is that, the strain results obtained from the MSC/NASTRAN nonlinear module are accurate to use for low-cycle fatigue analysis, since both thermal cycle testing of solar cells and analysis have shown higher fatigue life than the minimum program requirement of 87,500 cycles.

  16. The role of high cycle fatigue (HCF) onset in Francis runner reliability

    NASA Astrophysics Data System (ADS)

    Gagnon, M.; Tahan, S. A.; Bocher, P.; Thibault, D.

    2012-11-01

    High Cycle Fatigue (HCF) plays an important role in Francis runner reliability. This paper presents a model in which reliability is defined as the probability of not exceeding a threshold above which HCF contributes to crack propagation. In the context of combined Low Cycle Fatigue (LCF) and HCF loading, the Kitagawa diagram is used as the limit state threshold for reliability. The reliability problem is solved using First-Order Reliability Methods (FORM). A study case is proposed using in situ measured strains and operational data. All the parameters of the reliability problem are based either on observed data or on typical design specifications. From the results obtained, we observed that the uncertainty around the defect size and the HCF stress range play an important role in reliability. At the same time, we observed that expected values for the LCF stress range and the number of LCF cycles have a significant influence on life assessment, but the uncertainty around these values could be neglected in the reliability assessment.

  17. Fatigue responses of PZT stacks under semi-bipolar electric cycling with mechanical preload

    SciTech Connect

    Wang, Hong; Cooper, Thomas A; Lin, Hua-Tay; Wereszczak, Andrew A

    2010-01-01

    PZT stacks that had an inter-digital internal electrode configuration were tested to more than 10^8 cycles. A 100-Hz semi-bipolar sine wave with a field range of +4.5/-0.9 kV/mm was used in cycling with a concurrently-applied 20 MPa preload. Significant reductions in piezoelectric and dielectric responses were observed during the cycling depending on the measuring condition. Extensive surface discharges were also observed. These surface events resulted in the erosion of external electrode and the outcrop of internal electrode. Sections prepared by sequential polishing technique revealed a variety of damage mechanisms including delaminations, pores, and etch grooves. The scale of damage was correlated to the degree of fatigue-induced reduction in piezoelectric and dielectric responses. The results from this study demonstrate the feasibility of using a semi-bipolar mode to drive a PZT stack under a mechanical preload and illustrate the potential fatigue and damages of the stack in service.

  18. High temperature, low cycle fatigue of copper-base alloys in argon. Part 3: Zirconium-copper; thermal-mechanical strain cycling, hold-time and notch fatigue results

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1973-01-01

    The low-cycle fatigue characteristics of smooth bar and notched bar specimens (hourglass shape) of zirconium-copper, 1/2 Hard, material (R-2 Series) were evaluated at room temperature in axial strain control. Over the fatigue life range from about 300 to 3000 cycles the ratio of fatigue life for smooth bar to fatigue life for notched bar remained constant at a value of about 6.0. Some additional hold-time data for the R-2 alloy tested in argon at 538 C are reported. An analysis of the relaxation data obtained in these hold-time tests is also reported and it is shown that these data yield a fairly consistent correlation in terms of instantaneous stress rate divided by instantaneous stress. Two thermal-mechanical strain cycling tests were also performed using a cyclic frequency of 4.5 cycles per hour and a temperature cycling interval from 260 to 538 C. The fatigue life values in these tests were noticeably lower than that observed in isothermal tests at 538 C.

  19. On bilinearity of Manson-Coffin low-cycle-fatigue relationship

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, V. M.

    1992-01-01

    Some alloy systems, such as aluminum-lithium alloys and dual-phase steels, have been found to show a bilinear Manson-Coffin low-cycle-fatigue relationship. This paper shows that such bilinear behavior is related to the cyclic stress-strain curve. A bilinear cyclic stress-strain curve is a likely indication of a bilinear Manson-Coffin relationship. It is shown that materials other than aluminum-lithium alloys and dual-phase steels also may exhibit bilinear Manson-Coffin behavior. Implications for design are discussed.

  20. Simulation of Delamination Under High Cycle Fatigue in Composite Materials Using Cohesive Models

    NASA Technical Reports Server (NTRS)

    Camanho, Pedro P.; Turon, Albert; Costa, Josep; Davila, Carlos G.

    2006-01-01

    A new thermodynamically consistent damage model is proposed for the simulation of high-cycle fatigue crack growth. The basis for the formulation is an interfacial degradation law that links Fracture Mechanics and Damage Mechanics to relate the evolution of the damage variable, d, with the crack growth rate da/dN. The damage state is a function of the loading conditions (R and (Delta)G) as well as the experimentally-determined crack growth rates for the material. The formulation ensures that the experimental results can be reproduced by the analysis without the need of additional adjustment parameters.

  1. Environmental degradation of 316 stainless steel in high temperature low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Manson, S. Stanford; Halford, Gary R.

    1987-01-01

    Procedures based on modification of the conventional Strainrange Partitioning method are proposed to characterize the time-dependent degradation of engineering alloys in high-temperature, low-cycle fatigue. Creep-fatigue experiments were conducted in air using different waveforms of loading on 316 stainless steel at 816 C (1500 F) to determine the effect of exposure time on cyclic life. Reductions in the partitioned cyclic lives were observed with an increase in the time of exposure (or with the corresponding decrease in the steady-state creep rate) for all the waveforms involving creep strain. Excellent correlations of the experimental data were obtained by modifying the Conventional Strainrange Partitioning life relationships involving creep strain using a power-law term of either: (1) time of exposure, or (2) steady-state creep rate of the creep-fatigue test. Environmental degradation due to oxidation, material degradation due to the precipitation of carbides along the grain boundaries and detrimental deformation modes associated with the prolonged periods of creep were observed to be the main mechanisms responsible for life reductions at long exposure times.

  2. The Effect of Boron on the Low Cycle Fatigue Behavior of Disk Alloy KM4

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy; Gayda, John; Sweeney, Joseph

    2000-01-01

    The durability of powder metallurgy nickel base superalloys employed as compressor and turbine disks is often limited by low cycle fatigue (LCF) crack initiation and crack growth from highly stressed surface locations (corners, holes, etc.). Crack growth induced by dwells at high stresses during aerospace engine operation can be particularly severe. Supersolvus solution heat treatments can be used to produce coarse grain sizes approaching ASTM 6 for improved resistance to dwell fatigue crack growth. However, the coarse grain sizes reduce yield strength, which can lower LCF initiation life. These high temperature heat treatments also can encourage pores to form. In the advanced General Electric disk superalloy KM4, such pores can initiate fatigue cracks that limit LCF initiation life. Hot isostatic pressing (HIP) during the supersolvus solution heat treatment has been shown to improve LCF initiation life in KM4, as the HIP pressure minimizes formation of the pores. Reduction of boron levels in KM4 has also been shown to increase LCF initiation life after a conventional supersolvus heat treatment, again possibly due to effects on the formation tendencies of these pores. However, the effects of reduced boron levels on microstructure, pore characteristics, and LCF failure modes in KM4 still need to be fully quantified. The objective of this study was to determine the effect of boron level on the microstructure, porosity, LCF behavior, and failure modes of supersolvus heat treated KM4.

  3. A New Ductility Exhaustion Model for High Temperature Low Cycle Fatigue Life Prediction of Turbine Disk Alloys

    NASA Astrophysics Data System (ADS)

    Zhu, Shun-Peng; Huang, Hong-Zhong; Li, Haiqing; Sun, Rui; Zuo, Ming J.

    2011-06-01

    Based on ductility exhaustion theory and the generalized energy-based damage parameter, a new viscosity-based life prediction model is introduced to account for the mean strain/stress effects in the low cycle fatigue regime. The loading waveform parameters and cyclic hardening effects are also incorporated within this model. It is assumed that damage accrues by means of viscous flow and ductility consumption is only related to plastic strain and creep strain under high temperature low cycle fatigue conditions. In the developed model, dynamic viscosity is used to describe the flow behavior. This model provides a better prediction of Superalloy GH4133's fatigue behavior when compared to Goswami's ductility model and the generalized damage parameter. Under non-zero mean strain conditions, moreover, the proposed model provides more accurate predictions of Superalloy GH4133's fatigue behavior than that with zero mean strains.

  4. Quadriceps and Respiratory Muscle Fatigue Following High-Intensity Cycling in COPD Patients

    PubMed Central

    Bachasson, Damien; Wuyam, Bernard; Pepin, Jean-Louis; Tamisier, Renaud; Levy, Patrick; Verges, Samuel

    2013-01-01

    Exercise intolerance in COPD seems to combine abnormal ventilatory mechanics, impaired O2 transport and skeletal muscle dysfunction. However their relatie contribution and their influence on symptoms reported by patients remain to be clarified. In order to clarify the complex interaction between ventilatory and neuromuscular exercise limiting factors and symptoms, we evaluated respiratory muscles and quadriceps contractile fatigue, dynamic hyperinflation and symptoms induced by exhaustive high-intensity cycling in COPD patients. Fifteen gold II-III COPD patients (age = 67±6 yr; BMI = 26.6±4.2 kg.m-2) performed constant-load cycling test at 80% of their peak workload until exhaustion (9.3±2.4 min). Before exercise and at exhaustion, potentiated twitch quadriceps strength (Qtw), transdiaphragmatic (Pdi,tw) and gastric (Pga,tw) pressures were evoked by femoral nerve, cervical and thoracic magnetic stimulation, respectively. Changes in operational lung volumes during exercise were assessed via repetitive inspiratory capacity (IC) measurements. Dyspnoea and leg discomfort were measured on visual analog scale. At exhaustion, Qtw (-33±15%, >15% reduction observed in all patients but two) and Pdi,tw (-20±15%, >15% reduction in 6 patients) were significantly reduced (P<0.05) but not Pga,tw (-6±10%, >15% reduction in 3 patients). Percentage reduction in Qtw correlated with the percentage reduction in Pdi,tw (r=0.66; P<0.05). Percentage reductions in Pdi,tw and Pga,tw negatively correlated with the reduction in IC at exhaustion (r=-0.56 and r=-0.62, respectively; P<0.05). Neither dyspnea nor leg discomfort correlated with the amount of muscle fatigue. In conclusion, high-intensity exercise induces quadriceps, diaphragm and less frequently abdominal contractile fatigue in this group of COPD patients. In addition, the rise in end-expiratory lung volume and diaphragm flattening associated with dynamic hyperinflation in COPD might limit the development of abdominal and

  5. Quadriceps and respiratory muscle fatigue following high-intensity cycling in COPD patients.

    PubMed

    Bachasson, Damien; Wuyam, Bernard; Pepin, Jean-Louis; Tamisier, Renaud; Levy, Patrick; Verges, Samuel

    2013-01-01

    Exercise intolerance in COPD seems to combine abnormal ventilatory mechanics, impaired O2 transport and skeletal muscle dysfunction. However their relative contribution and their influence on symptoms reported by patients remain to be clarified. In order to clarify the complex interaction between ventilatory and neuromuscular exercise limiting factors and symptoms, we evaluated respiratory muscles and quadriceps contractile fatigue, dynamic hyperinflation and symptoms induced by exhaustive high-intensity cycling in COPD patients. Fifteen gold II-III COPD patients (age = 67 ± 6 yr; BMI = 26.6 ± 4.2 kg.m(-2)) performed constant-load cycling test at 80% of their peak workload until exhaustion (9.3 ± 2.4 min). Before exercise and at exhaustion, potentiated twitch quadriceps strength (Q(tw)), transdiaphragmatic (P(di,tw)) and gastric (P(ga,tw)) pressures were evoked by femoral nerve, cervical and thoracic magnetic stimulation, respectively. Changes in operational lung volumes during exercise were assessed via repetitive inspiratory capacity (IC) measurements. Dyspnoea and leg discomfort were measured on visual analog scale. At exhaustion, Q(tw) (-33 ± 15%, >15% reduction observed in all patients but two) and Pdi,tw (-20 ± 15%, >15% reduction in 6 patients) were significantly reduced (P<0.05) but not Pga,tw (-6 ± 10%, >15% reduction in 3 patients). Percentage reduction in Q(tw) correlated with the percentage reduction in P(di,tw) (r = 0.66; P<0.05). Percentage reductions in P(di,tw) and P(ga,tw) negatively correlated with the reduction in IC at exhaustion (r = -0.56 and r = -0.62, respectively; P<0.05). Neither dyspnea nor leg discomfort correlated with the amount of muscle fatigue. In conclusion, high-intensity exercise induces quadriceps, diaphragm and less frequently abdominal contractile fatigue in this group of COPD patients. In addition, the rise in end-expiratory lung volume and diaphragm flattening associated with dynamic hyperinflation in COPD might limit

  6. Stress-relaxation and fatigue behaviour of synthetic brow-suspension materials.

    PubMed

    Kwon, Kyung-Ah; Shipley, Rebecca J; Edirisinghe, Mohan; Rayment, Andrew W; Best, Serena M; Cameron, Ruth E; Salam, Tahrina; Rose, Geoffrey E; Ezra, Daniel G

    2015-02-01

    Ptosis describes a low position of the upper eyelid. When this condition is due to poor function of the levator palpebrae superioris muscle, responsible for raising the lid, "brow-suspension" ptosis correction is usually performed, which involves internally attaching the malpositioned eyelid to the forehead musculature using brow-suspension materials. In service, such materials are exposed to both rapid tensile loading and unloading sequences during blinking, and a more sustained tensile strain during extended periods of closure. In this study, various mechanical tests were conducted to characterise and compare some of commonly-used synthetic brow-suspension materials (Prolene(®), Supramid Extra(®) II, Silicone rods (Visitec(®) Seiff frontalis suspension set) and Mersilene(®) mesh) for their time-dependent response. At a given constant tensile strain or load, all of the brow-suspension materials exhibited stress-relaxation or creep, with Prolene(®) having a statistically different relaxation or creep ratio as compared with those of others. Uniaxial tensile cyclic tests through preconditioning and fatigue tests demonstrated drastically different time-dependent response amongst the various materials. Although the tests generated hysteresis force-strain loops for all materials, the mechanical properties such as the number of cycles required to reach the steady-state, the reduction in the peak force, and the cyclic energy dissipation varied considerably. To reach the steady-state, Prolene(®) and the silicone rod required the greatest and the least number of cycles, respectively. Furthermore, the fatigue tests at physiologically relevant conditions (15% strain controlled at 6.5 Hz) demonstrated that the reduction in the peak force during 100,000 cycles ranged from 15% to 58%, with Prolene(®) and the silicone rod exhibiting the greatest and the least value, respectively. Many factors need to be considered to select the most suitable brow-suspension material for

  7. Can the Lamberts and Lambert Submaximal Cycle Test Indicate Fatigue and Recovery in Trained Cyclists?

    PubMed

    Hammes, Daniel; Skorski, Sabrina; Schwindling, Sascha; Ferrauti, Alexander; Pfeiffer, Mark; Kellmann, Michael; Meyer, Tim

    2016-04-01

    The Lamberts and Lambert Submaximal Cycle Test (LSCT) is a novel test designed to monitor performance and fatigue/recovery in cyclists. Studies have shown the ability to predict performance; however, there is a lack of studies concerning monitoring of fatigue/recovery. In this study, 23 trained male cyclists (age 29 ± 8 y, VO2max 59.4 ± 7.4 mL · min-1 · kg-1) completed a training camp. The LSCT was conducted on days 1, 8, and 11. After day 1, an intensive 6-day training period was performed. Between days 8 and 11, a recovery period was realized. The LSCT consists of 3 stages with fixed heart rates of 6 min at 60% and 80% and 3 min at 90% of maximum heart rate. During the stages, power output and rating of perceived exertion (RPE) were determined. Heart-rate recovery was measured after stage 3. Power output almost certainly (standardized mean difference: 1.0) and RPE very likely (1.7) increased from day 1 to day 8 at stage 2. Power output likely (0.4) and RPE almost certainly (2.6) increased at stage 3. From day 8 to day 11, power output possibly (-0.4) and RPE likely (-1.5) decreased at stage 2 and possibly (-0.1) and almost certainly (-1.9) at stage 3. Heart-rate recovery was likely (0.7) accelerated from day 1 to day 8. Changes from day 8 to day 11 were unclear (-0.1). The LSCT can be used for monitoring fatigue and recovery, since parameters were responsive to a fatiguing training and a following recovery period. However, consideration of multiple LSCT variables is required to interpret the results correctly. PMID:26263163

  8. Influence of HVOF sprayed WC/Co coatings on the high-cycle fatigue strength of mild steel

    SciTech Connect

    Steffens, H.D.; Wilden, J.; Nassenstein, K.; Moebus, S.

    1995-12-31

    HVOF thermally sprayed WC/Co coatings are applied onto components which are exposed to wear caused by abrasion, erosion, fretting and sliding. Beside wear attacks and static stresses in lots of cases alternating mechanical stresses caused by dynamic loads occur additionally. Therefore, the fatigue resistance of WC/Co 88/12 and WC/Co 83/17 coated specimens was investigated by high-cycle fatigue tests (HCF). The results of the fatigue tests were documented in statistically ascertained Woehler-diagrams (S-N-curves). Furthermore, the mechanisms of failure are discussed.

  9. On massive carbide precipitation during high temperature low cycle fatigue in alloy 800H

    SciTech Connect

    Bhanu Sankara Rao, K.; Halford, G.R. . Lewis Research Center); Schuster, H. . Inst. for Reactor Materials)

    1994-08-15

    Alloys engineered for high-temperature application are frequently put into use in a thermodynamically unstable condition. Subsequent exposure to service temperatures may promote many thermally-assisted reactions such as formation, coarsening, and/or coalescence of precipitates. Superposition of cyclic straining may accelerate the kinetics of these reactions but also may cause reaction products having specific features not observed under simple thermal exposure. The influence of cyclic strain-induced microstructural changes on the fatigue behavior has to be considered in terms of their effects on both cyclic strength and life. The occurrence of massive (cellular) precipitation of M[sub 23]C[sub 6] on grain boundaries during elevated temperature low cycle fatigue testing has been reported in Type 304 stainless steel, Type 316 stainless steel, and Inconel 617 superalloy, and its presence has already been linked with reduction in high temperature ductility, an important engineering property on which low cycle fatigue (LCF) life depends to a large extent. Massive precipitation may render the austenitic engineering alloys susceptible to corrosion, which would have important bearing on the performance of these alloys in the oxidizing environments. Furthermore, the long term stability of massive M[sub 23]C[sub 6] particles is particularly important since the transformation of such a large structure into a brittle intermetallic phase (such as sigma) could produce a detrimental effect on the mechanical properties. The conditions and the mechanisms responsible for the occurrence of massive precipitation during LCF have not yet been established. This investigation is specifically aimed at understanding the influence of strain rate on massive precipitation and the mechanism responsible for the occurrence of massive M[sub 23]C[sub 6] precipitation in Alloy 800H during elevated temperature LCF testing.

  10. A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime

    NASA Astrophysics Data System (ADS)

    Sun, Chengqi; Liu, Xiaolong; Hong, Youshi

    2015-06-01

    In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in a VHCF regime, a fatigue crack originated from the interior of specimen with a fish-eye pattern, which contained a fine granular area (FGA) centered by an inclusion as the crack origin. Then, a two-parameter model is proposed to predict the fatigue life of high-strength steels with fish-eye mode failure in a VHCF regime, which takes into account the inclusion size and the FGA size. The model was verified by the data of present experiments and those in the literature. Furthermore, an analytic formula was obtained for estimating the equivalent crack growth rate within the FGA. The results also indicated that the stress intensity factor range at the front of the FGA varies within a small range, which is irrespective of stress amplitude and fatigue life.

  11. Protocol for a randomised controlled trial for Reducing Arthritis Fatigue by clinical Teams (RAFT) using cognitive–behavioural approaches

    PubMed Central

    Hewlett, S; Ambler, N; Almeida, C; Blair, P S; Choy, E; Dures, E; Hammond, A; Hollingworth, W; Kirwan, J; Plummer, Z; Rooke, C; Thorn, J; Tomkinson, K; Pollock, J

    2015-01-01

    Introduction Rheumatoid arthritis (RA) fatigue is distressing, leading to unmanageable physical and cognitive exhaustion impacting on health, leisure and work. Group cognitive–behavioural (CB) therapy delivered by a clinical psychologist demonstrated large improvements in fatigue impact. However, few rheumatology teams include a clinical psychologist, therefore, this study aims to examine whether conventional rheumatology teams can reproduce similar results, potentially widening intervention availability. Methods and analysis This is a multicentre, randomised, controlled trial of a group CB intervention for RA fatigue self-management, delivered by local rheumatology clinical teams. 7 centres will each recruit 4 consecutive cohorts of 10–16 patients with RA (fatigue severity ≥6/10). After consenting, patients will have baseline assessments, then usual care (fatigue self-management booklet, discussed for 5–6 min), then be randomised into control (no action) or intervention arms. The intervention, Reducing Arthritis Fatigue by clinical Teams (RAFT) will be cofacilitated by two local rheumatology clinicians (eg, nurse/occupational therapist), who will have had brief training in CB approaches, a RAFT manual and materials, and delivered an observed practice course. Groups of 5–8 patients will attend 6×2 h sessions (weeks 1–6) and a 1 hr consolidation session (week 14) addressing different self-management topics and behaviours. The primary outcome is fatigue impact (26 weeks); secondary outcomes are fatigue severity, coping and multidimensional impact, quality of life, clinical and mood status (to week 104). Statistical and health economic analyses will follow a predetermined plan to establish whether the intervention is clinically and cost-effective. Effects of teaching CB skills to clinicians will be evaluated qualitatively. Ethics and dissemination Approval was given by an NHS Research Ethics Committee, and participants will provide written

  12. High Cycle Fatigue Crack Initiation Study of Case Blade Alloy Rene 125

    NASA Technical Reports Server (NTRS)

    Kantzos, P.; Gayda, J.; Miner, R. V.; Telesman, J.; Dickerson, P.

    2000-01-01

    This study was conducted in order to investigate and document the high cycle fatigue crack initiation characteristics of blade alloy Rene 125 as cast by three commercially available processes. This alloy is typically used in turbine blade applications. It is currently being considered as a candidate alloy for high T3 compressor airfoil applications. This effort is part of NASA's Advanced Subsonic Technology (AST) program which aims to develop improved capabilities for the next generation subsonic gas turbine engine for commercial carriers. Wrought alloys, which are customarily used for airfoils in the compressor, cannot meet the property goals at the higher compressor exit temperatures that would be required for advanced ultra-high bypass engines. As a result cast alloys are currently being considered for such applications. Traditional blade materials such as Rene 125 have the high temperature capabilities required for such applications. However, the implementation of cast alloys in compressor airfoil applications where airfoils are typically much thinner does raise some issues of concern such as thin wall castability, casting cleaningness, and susceptibility to high-cycle fatigue (HCF) loading.

  13. Low cycle fatigue and strengthening mechanism of cold extruded large diameter internal thread of Q460 steel

    NASA Astrophysics Data System (ADS)

    Miao, Hong; Mei, Qing; Yuan, Jingyun; Zheng, Zaixiang; Jin, Yifu; Zuo, Dunwen

    2016-04-01

    large diameter internal thread of high-strength steel(LDITHSS) manufactured by traditional methods always has the problems of low accuracy and short life. Compared with traditional methods, the cold extrusion process is an effective means to realize higher accuracy and longer life. The low-cycle fatigue properties of LDITHSS are obtained by experiments, and the initiation and propagation of fatigue cracks are observed by scanning electron microscope(SEM). Based on the mechanical properties, surface microstructure and residual stress, the strengthening mechanism of cold extruded large diameter internal thread(LDIT) is discussed. The results show that new grains or sub-grains can be formed on the surface of LDIT due to grain segmentation and grain refinement during cold extrusion. The fibrous structures appear as elongated and streamlined along the normal direction of the tooth surface which leads to residual compressive stress on the extruded surface. The maximum tension stress of LDIT after cold extrusion is found to be 192.55 kN. Under low stress cycling, the yield stress on thread increases, the propagation rate of crack reduces, the fatigue life is thus improved significantly with decreasing surface grain diameter and the average fatigue life increases to 45.539×103 cycle when the maximum applied load decreases to 120 kN. The low cycle fatigue and strengthening mechanism of cold extruded LDIT revealed by this research has significant importance to promote application of internal thread by cold extrusion processing.

  14. Low cycle fatigue and strengthening mechanism of cold extruded large diameter internal thread of Q460 steel

    NASA Astrophysics Data System (ADS)

    Miao, Hong; Mei, Qing; Yuan, Jingyun; Zheng, Zaixiang; Jin, Yifu; Zuo, Dunwen

    2016-05-01

    large diameter internal thread of high-strength steel(LDITHSS) manufactured by traditional methods always has the problems of low accuracy and short life. Compared with traditional methods, the cold extrusion process is an effective means to realize higher accuracy and longer life. The low-cycle fatigue properties of LDITHSS are obtained by experiments, and the initiation and propagation of fatigue cracks are observed by scanning electron microscope(SEM). Based on the mechanical properties, surface microstructure and residual stress, the strengthening mechanism of cold extruded large diameter internal thread(LDIT) is discussed. The results show that new grains or sub-grains can be formed on the surface of LDIT due to grain segmentation and grain refinement during cold extrusion. The fibrous structures appear as elongated and streamlined along the normal direction of the tooth surface which leads to residual compressive stress on the extruded surface. The maximum tension stress of LDIT after cold extrusion is found to be 192.55 kN. Under low stress cycling, the yield stress on thread increases, the propagation rate of crack reduces, the fatigue life is thus improved significantly with decreasing surface grain diameter and the average fatigue life increases to 45.539×103 cycle when the maximum applied load decreases to 120 kN. The low cycle fatigue and strengthening mechanism of cold extruded LDIT revealed by this research has significant importance to promote application of internal thread by cold extrusion processing.

  15. Fatigue and failure responses of lead zirconate titanate multilayer actuator under unipolar high-field electric cycling

    SciTech Connect

    Zeng, Fan W; Wang, Hong; Lin, Hua-Tay

    2013-01-01

    Lead zirconate titanate (PZT) multilayer actuators with an interdigital electrode design were studied under high electric fields (3 and 6 kV/mm) in a unipolar cycling mode. A 100 Hz sine wave was used in cycling. Five specimens tested under 6 kV/mm failed from 3.8 10^5 to 7 10^5 cycles, whereas three other specimens tested under 3 kV/mm were found to be still functional after 10^8 cycles. Variations in piezoelectric and dielectric responses of the tested specimens were observed during the fatigue test, depending on the measuring and cycling conditions. Selected fatigued and damaged actuators were characterized using an impedance analyzer or small signal measurement. A scanning acoustic microscope also was employed as a nondestructive tool to detect the presence of defects. Failed plates were subsequently sectioned, and the extensive cracks and porous regions were observed to be across the PZT layers. The results from this study have demonstrated that the high-field cycling can accelerate the fatigue of PZT stacks as long as the partial discharge is controlled. The small signal measurement can also be integrated into the large signal measurement to characterize the fatigue response of PZT stacks in a more comprehensive basis. The former can further serve as an experimental method to monitor the behavior of PZT stacks.

  16. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.

    2001-01-01

    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high-cycle

  17. Effects of processing and microstructure on the fatigue behaviour of the nickel-base superalloy Rene95

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Gayda, J.

    1984-01-01

    Forms of the nickel-base superalloy Rene95 produced by three processing methods were evaluated in tensile, low cycle fatigue and fatigue crack propagation tests at 540 and 650 C. Two powder-metallurgy (PM) forms, hot-isostatically-pressed and extruded-and-forged, and a conventionally cast-and-wrought form were all given the same heat treatment. The extruded-and-forged form showed superior fatigue life in low strain range tests though the two PM forms exhibited nearly identical mechanical behavior in all other respects. Further, this life difference could not be explained by significant differences in the types, sizes or shapes of the defects initiating failure. The cast-and-wrought Rene95, however, had lower strength, ductility and fatigue life, but higher fatigue crack propagation resistance because of a larger grain size. It did not exhibit the environmentally-assisted intergranular mode of propagation which occurs in PM Rene95 and other fine-grained superalloys at these test temperatures and frequencies.

  18. Effects of Laser Peening Treatment on High Cycle Fatigue and Crack Propagation Behaviors in Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Masaki, Kiyotaka; Ochi, Yasuo; Matsumura, Takashi; Ikarashi, Takaaki; Sano, Yuji

    Laser peening without protective coating (LPwC) treatment is one of surface enhancement techniques using an impact wave of high pressure plasma induced by laser pulse irradiation. High compressive residual stress was induced by the LPwC treatment on the surface of low-carbon type austenitic stainless steel SUS316L. The affected depth reached about 1mm from the surface. High cycle fatigue tests with four-points rotating bending loading were carried out to confirm the effects of the LPwC treatment on fatigue strength and surface fatigue crack propagation behaviors. The fatigue strength was remarkably improved by the LPwC treatment over the whole regime of fatigue life up to 108 cycles. Specimens with a pre-crack from a small artificial hole due to fatigue loading were used for the quantitative study on the effect of the LPwC treatment. The fracture mechanics investigation on the pre-cracked specimens showed that the LPwC treatment restrained the further propagation of the pre-crack if the stress intensity factor range ΔK on the crack tip was less than 7.6 MPa√m. Surface cracks preferentially propagated into the depth direction as predicted through ΔK analysis on the crack by taking account of the compressive residual stresses due to the LPwC treatment.

  19. Neuromuscular function and fatigue resistance of the plantar flexors following short-term cycling endurance training

    PubMed Central

    Behrens, Martin; Weippert, Matthias; Wassermann, Franziska; Bader, Rainer; Bruhn, Sven; Mau-Moeller, Anett

    2015-01-01

    Previously published studies on the effect of short-term endurance training on neuromuscular function of the plantar flexors have shown that the H-reflex elicited at rest and during weak voluntary contractions was increased following the training regime. However, these studies did not test H-reflex modulation during isometric maximum voluntary contraction (iMVC) and did not incorporate a control group in their study design to compare the results of the endurance training group to individuals without the endurance training stimulus. Therefore, this randomized controlled study was directed to investigate the neuromuscular function of the plantar flexors at rest and during iMVC before and after 8 weeks of cycling endurance training. Twenty-two young adults were randomly assigned to an intervention group and a control group. During neuromuscular testing, rate of torque development, isometric maximum voluntary torque and muscle activation were measured. Triceps surae muscle activation and tibialis anterior muscle co-activation were assessed by normalized root mean square of the EMG signal during the initial phase of contraction (0–100, 100–200 ms) and iMVC of the plantar flexors. Furthermore, evoked spinal reflex responses of the soleus muscle (H-reflex evoked at rest and during iMVC, V-wave), peak twitch torques induced by electrical stimulation of the posterior tibial nerve at rest and fatigue resistance were evaluated. The results indicate that cycling endurance training did not lead to a significant change in any variable of interest. Data of the present study conflict with the outcome of previously published studies that have found an increase in H-reflex excitability after endurance training. However, these studies had not included a control group in their study design as was the case here. It is concluded that short-term cycling endurance training does not necessarily enhance H-reflex responses and fatigue resistance. PMID:26029114

  20. Low cycle thermal fatigue testing of beryllium grades for ITER plasma facing components

    SciTech Connect

    Watson, R.D.; Youchison, D.L.; Dombrowski, D.E.; Guiniatouline, R.N.; Kupriynov, I.B.

    1996-02-01

    A novel technique has been used to test the relative low cycle thermal fatigue resistance of different grades of US and Russian beryllium, which is proposed as plasma facing armor for fusion reactor first wall, limiter, and divertor components. The 30 kW electron beam test system at Sandia National Laboratories was used to sweep the beam spot along one direction at 1 Hz. This produces a localized temperature ``spike`` of 750{degree}C for each pass of the beam. Large thermal stresses in excess of the yield strength are generated due to very high spot heat flux, 250 MW/m{sup 2}. Cyclic plastic strains on the order of 0.6% produced visible cracking on the heated surface in less than 3000 cycles. An in-vacuo fiber optic borescope was used to visually inspect the beryllium surfaces for crack initiation. Grades of US beryllium tested included: S-65C, S- 65H, S-200F, S-200F-H, SR-200, I-400, extruded high purity, HIP`d spherical powder, porous beryllium (94% and 98% dense), Be/30% BeO, Be/60% BeO, and TiBe{sub 12}. Russian grades included: TGP-56, TShGT, DShG-200, and TShG-56. Both the number of cycles to crack initiation, and the depth of crack propagation, were measured. The most fatigue resistant grades were S-65C, DShG-200, TShGT, and TShG-56. Rolled sheet Be (SR-200) showed excellent crack propagation resistance in the plane of rolling, despite early formation of delamination cracks. Only one sample showed no evidence of surface melting, Extruded (T). Metallographic and chemical analyses are provided. Good agreement was found between the measured depth of cracks and a 2-D elastic-plastic finite element stress analysis.

  1. High cycle fatigue behavior of Incoloy 800H in a simulated high-temperature gas-cooled reactor helium environment

    SciTech Connect

    Soo, P.; Sabatini, R.L.; Epel, L.G.; Hare, J.R. Sr.

    1980-01-01

    The current study was an attempt to evaluate the high cycle fatigue strength of Incoloy 800H in a High-Temperature Gas-Cooled Reactor helium environment containing significant quantities of moisture. As-heat-treated and thermally-aged materials were tested to determine the effects of long term corrosion in the helium test gas. Results from in-helium tests were compared to those from a standard air environment. It was found that the mechanisms of fatigue failure were very complex and involved recovery/recrystallization of the surface ground layer on the specimens, sensitization, hardness changes, oxide scale integrity, and oxidation at the tips of propagation cracks. For certain situations a corrosion-fatigue process seems to be controlling. However, for the helium environment studied, there was usually no aging or test condition for which air gave a higher fatigue strength.

  2. Effects of Hot Rolling on Low-Cycle Fatigue Properties of Zn-22 wt.% Al Alloy at Room Temperature

    NASA Astrophysics Data System (ADS)

    Dong, X. H.; Cao, Q. D.; Ma, S. J.; Han, S. H.; Tang, W.; Zhang, X. P.

    2016-06-01

    The effects of the reduction ratio (RR) on the low-cycle fatigue (LCF) properties of the Zn-22 wt.% Al (Zn-22Al) alloy were investigated. Various grain sizes from 0.68 to 1.13 μm were obtained by controlled RRs. Tensile and LCF tests were carried out at room temperature. Superplasticity and cyclic softening were observed. Strength and ductility of the rolled Zn-22Al alloy increased with the RR, owing to the decrease in its grain size. The RR did not affect the cyclic softening behavior of the alloy. The fatigue life of the alloy decreased with increasing strain amplitude, while the fatigue life first decreased and then increased with increasing RR. The longest fatigue life was observed for the alloy rolled at a RR of 60%. A bilinear Coffin-Manson relationship was observed to hold true for this alloy.

  3. High temperature low-cycle fatigue mechanisms in single crystals of nickel-based superalloy Mar-M 200

    NASA Technical Reports Server (NTRS)

    Milligan, W. W.; Jayaraman, N.

    1984-01-01

    Twenty three high temperature low-cycle fatigue tests were conducted on single crystals of the nickel-based superalloy Mar-M 200. Tests were conducted at 760 and 870 C. SEM fractography and transmission electron microscopy were used to determine mechanisms responsible for the observed orientation dependent fatigue behavior. It has been concluded that the plastic characteristics of the alloy lead to orientation-dependent strain hardening and fatigue lives at 760 C. At 870 C, the elastic characteristics of the alloy dominated the behavior, even though the plastic strain ranges were about the same as they were at 760 C. This led to orientation-dependent fatigue lives, but the trends were not the same as they were at 760 C.

  4. The fatigue behaviour of orthotropic laminates under tension-compression loading

    NASA Technical Reports Server (NTRS)

    Rotem, A.

    1991-01-01

    The fatigue behavior of orthotropic laminates (0, +/-45, 0 deg)2s and (90, +/-45, 90 deg)2s, has been evaluated under alternating tension-compression loading. Even though the first laminate is much stronger than the second, both started to fail by delamination. Visual damage started to show only at the very end of the fatigue life but measurement of the stiffness showed that degradation starts at about 80 percent of the fatigue life. The first laminate failed in compression after delamination between the 0 and the 45 deg laminae, while the second failed in tension after delamination between the +45 and -45 deg laminae. It is shown that the interlaminar fatigue strength of both laminate structures can be correlated to the applied fatigue load.

  5. Very-High-Cycle-Fatigue of in-service air-engine blades, compressor and turbine

    NASA Astrophysics Data System (ADS)

    Shanyavskiy, A. A.

    2014-01-01

    In-service Very-High-Cycle-Fatigue (VHCF) regime of compressor vane and turbine rotor blades of the Al-based alloy VD-17 and superalloy GS6K, respectively, was considered. Surface crack origination occurred at the lifetime more than 1500 hours for vanes and after 550 hours for turbine blades. Performed fractographic investigations have shown that subsurface crack origination in vanes took place inspite of corrosion pittings on the blade surface. This material behavior reflected lifetime limit that was reached by the criterion VHCF. In superalloy GS6K subsurface fatigue cracking took place with the appearance of flat facet. This phenomenon was discussed and compared with specimens cracking of the same superalloy but prepared by the powder technology. In turbine blades VHCF regime appeared because of resonance of blades under the influenced gas stream. Both cases of compressor-vanes and turbine blades in-service cracking were discussed with crack growth period and stress equivalent estimations. Recommendations to continue aircrafts airworthiness were made for in-service blades.

  6. Problems of the high-cycle fatigue of the materials intended for the parts of modern gas-turbine engines and power plants

    NASA Astrophysics Data System (ADS)

    Petukhov, A. N.

    2010-10-01

    The problems related to the determination of the life of the structural materials applied for important parts in gas-turbine engines and power plants from the results of high-cycle fatigue tests are discussed. Methods for increasing the reliability of the high-cycle fatigue characteristics and the factors affecting the operational reliability are considered.

  7. High-Cycle Fatigue Resistance of Si-Mo Ductile Cast Iron as Affected by Temperature and Strain Rate

    NASA Astrophysics Data System (ADS)

    Matteis, Paolo; Scavino, Giorgio; Castello, Alessandro; Firrao, Donato

    2015-09-01

    Silicon-molybdenum ductile cast irons are used to fabricate exhaust manifolds of internal combustion engines of large series cars, where the maximum pointwise temperature at full engine load may be higher than 973 K (700 °C). In this application, high-temperature oxidation and thermo-mechanical fatigue (the latter being caused by the engine start and stop and by the variation of its power output) have been the subject of several studies and are well known, whereas little attention has been devoted to the high-cycle fatigue, arising from the engine vibration. Therefore, the mechanical behavior of Si-Mo cast iron is studied here by means of stress-life fatigue tests up to 10 million cycles, at temperatures gradually increasing up to 973 K (700 °C). The mechanical characterization is completed by tensile and compressive tests and ensuing fractographic examinations; the mechanical test results are correlated with the cast iron microstructure and heat treatment.

  8. Low cycle fatigue of MAR-M 200 single crystals at 760 and 870 deg C

    NASA Technical Reports Server (NTRS)

    Milligan, W. W.; Jayaraman, N.; Bill, R. C.

    1984-01-01

    Fully reversed low cycle fatigue tests were conducted on single crystals of the nickel-base superalloys Mar-M 200 at 760 C and 870 C. At 760 C, planar slip (octahedral) lead to orientation-dependent strain hardening and cyclic lives. Multiple slip crystals strain hardened the most, resulting in relatively high stress ranges and low lives. Single slip crystals strain hardened the least, resulting in relatively low stress ranges and higher lives. A preferential crack initiation site which was related to slip plane geometry was observed in single slip orientated crystals. At 870 C, the trends were quite different, and the slip character was much more homogeneous. As the tensile axis orientation deviated from 001 , the stress ranges increased and the cyclic lives decreased. Two possible mechanisms were proposed to explain the behavior: one is based on Takeuchi and Kuramoto's cube cross-slip model, and the other is based on orientation-dependent creep rates.

  9. Effect of temperature, microstructure, and stress state on the low cycle fatigue behavior of Waspaloy

    NASA Technical Reports Server (NTRS)

    Stahl, D. R.; Antolovich, S. D.; Mirdamadi, M.; Zamrik, S. Y.

    1988-01-01

    Specimens of Waspaloy of two different microstructures were tested in uniaxial and torsional low-cycle fatigue at 24 and 649 C. For all specimens, deformation and failure mechanisms are found to be independent of stress state at 24 C; in both microstructures, failure is associated with the formation of shear cracks. At 649 C, deformation and failure mechanisms for the fine-grain large gamma-prime specimens are independent of stress state, and the mechanisms are similar to those observed at 24 C. For the coarse-grain small gamma-prime specimens, however, failure occurs on principal planes in torsion and on shear plane in uniaxial tension. The results are interpreted in terms of deformation mode and microstructural instability.

  10. Mean stress effects on high-cycle fatigue of Alloy 718

    SciTech Connect

    Korth, G E

    1980-07-01

    This report covers an investigation of the effects of tensile mean stress on the high-cycle fatigue properties of Alloy 718. Three test temperatures (24, 427, and 649{degree}C) were employed, and there were tests in both strain and load control. Results were compared with three different models: linear Modified-Goodman, Peterson cubic, and stress-strain parameter. The linear Modified-Goodman model gave good correlation with actual test data for low and moderate mean stress values, but the stress-strain parameter showed excellent correlation over the entire range of possible mean stresses and therefore is recommended for predicting mean stress effects of Alloy 718. 13 refs., 12 figs.

  11. Temperature and Strain-Rate Effects on Low-Cycle Fatigue Behavior of Alloy 800H

    NASA Technical Reports Server (NTRS)

    Rao, K. Bhanu Sankara; Schiffers, H.; Schuster, H.; Halford, G. R.

    1996-01-01

    The effects of strain rate (4 x 10(exp -6) to 4 x 10(exp -3)/s) and temperature on the Low-Cycle Fatigue (LCF) behavior of alloy 800H have been evaluated in the range 750 C to 950 C. Total axial strain controlled LCF tests were conducted in air at a strain amplitude of +/- 0.30 pct. LCF life decreased with decreasing strain rate and increasing temperature. The cyclic stress response behavior showed a marked variation with temperature and strain rate. The time- and temperature- dependent processes which influence the cyclic stress response and life have been identified and their relative importance assessed. Dynamic strain aging, time-dependent deformation, precipitation of parallel platelets of M(23)C6 on grain boundaries and incoherent ledges of twins, and oxidation were found to operate depending on the test conditions. The largest effect on life was shown by oxidation processes.

  12. Effect of adjusting pulse durations of functional electrical stimulation cycling on energy expenditure and fatigue after spinal cord injury.

    PubMed

    Gorgey, Ashraf S; Poarch, Hunter J; Dolbow, David D; Castillo, Teodoro; Gater, David R

    2014-01-01

    The purpose of the current study was to determine the effects of three different pulse durations (200, 350, and 500 microseconds [P200, P350, and P500, respectively]) on oxygen uptake (VO2), cycling performance, and energy expenditure (EE) percentage of fatigue of the knee extensor muscle group immediately and 48 to 72 h after cycling in persons with spinal cord injury (SCI). A convenience sample of 10 individuals with motor complete SCI participated in a repeated-measures design using a functional electrical stimulation (FES) cycle ergometer over a 3 wk period. There was no difference among the three FES protocols on relative VO2 or cycling EE. Delta EE between exercise and rest was 42% greater in both P500 and P350 compared with P200 (p = 0.07), whereas recovery VO2 was 23% greater in P350 compared with P200 (p = 0.03). There was no difference in the outcomes of the three pulse durations on muscle fatigue. Knee extensor torque significantly decreased immediately after (p < 0.001) and 48 to 72 h after (p < 0.001) FES leg cycling. Lengthening pulse duration did not affect submaximal or relative VO2 or EE, total EE, and time to fatigue. Greater recovery VO2 and delta EE were noted in P350 and P500 compared with P200. An acute bout of FES leg cycling resulted in torque reduction that did not fully recover 48 to 72 h after cycling. PMID:25803753

  13. Review and Prospects for Current Studies on Very High Cycle Fatigue of Metallic Materials for Machine Structural Use

    NASA Astrophysics Data System (ADS)

    Sakai, Tatsuo

    In recent years, mechanical structures such as railway wheels, rails, offshore structures, bridges, engine components, load bearing parts of automobiles, etc. have to endure for a long term up to 108-1010 loading cycles in order to save resources and to reduce the cost together with the environmental load to the globe. Thus, the fatigue behavior of structural materials in the very high cycle regime of 108-1010 cycles has become an important subject of the research. In this paper, a review of the current studies in this area performed by many researchers is described in order to provide a certain milestone in the history of the research on fatigue behavior of the metallic materials in the very high cycle regime.

  14. Application of fracture mechanics and half-cycle theory to the prediction of fatigue life of aerospace structural components

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1989-01-01

    The service life of aircraft structural components undergoing random stress cycling was analyzed by the application of fracture mechanics. The initial crack sizes at the critical stress points for the fatigue crack growth analysis were established through proof load tests. The fatigue crack growth rates for random stress cycles were calculated using the half-cycle method. A new equation was developed for calculating the number of remaining flights for the structural components. The number of remaining flights predicted by the new equation is much lower than that predicted by the conventional equation. This report describes the application of fracture mechanics and the half-cycle method to calculate the number of remaining flights for aircraft structural components.

  15. LOW CYCLE FATIGUE OF COMPOSITE MATERIALS IN ARMY STRUCTURAL APPLICATIONS: A REVIEW OF LITERATURE AND RECOMMENDATIONS FOR RESEARCH

    EPA Science Inventory

    Low cycle fatigue (LCF) of laminate composite structures used in Army applications is assessed to identify the key physical phenomena occurring during LCF processes and to determine their main characteristics. Special attention is given to the LCF conditions inherent in Army stru...

  16. Microstructural Features Controlling the Variability in Low-Cycle Fatigue Properties of Alloy Inconel 718DA at Intermediate Temperature

    NASA Astrophysics Data System (ADS)

    Texier, Damien; Gómez, Ana Casanova; Pierret, Stéphane; Franchet, Jean-Michel; Pollock, Tresa M.; Villechaise, Patrick; Cormier, Jonathan

    2016-03-01

    The low-cycle fatigue behavior of two direct-aged versions of the nickel-based superalloy Inconel 718 (IN718DA) was examined in the low-strain amplitude regime at intermediate temperature. High variability in fatigue life was observed, and abnormally short lifetimes were systematically observed to be due to crack initiation at (sub)-surface non-metallic inclusions. However, crack initiation within (sub)-surface non-metallic inclusions did not necessarily lead to short fatigue life. The macro- to micro-mechanical mechanisms of deformation and damage have been examined by means of detailed microstructural characterization, tensile and fatigue mechanical tests, and in situ tensile testing. The initial stages of crack micro-propagation from cracked non-metallic particles into the surrounding metallic matrix occupies a large fraction of the fatigue life and requires extensive local plastic straining in the matrix adjacent to the cracked inclusions. Differences in microstructure that influence local plastic straining, i.e., the δ-phase content and the grain size, coupled with the presence of non-metallic inclusions at the high end of the size distribution contribute strongly to the fatigue life variability.

  17. Effects of Stretch Shortening Cycle Exercise Fatigue on Stress Fracture Injury Risk during Landing

    ERIC Educational Resources Information Center

    James, C. Roger; Dufek, Janet S.; Bates, Barry T.

    2006-01-01

    The purpose of this study was to examine changes in landing performance during fatigue that could result in increased stress fracture injury risk. Five participants performed nonfatigued and fatigued drop landings (0.60 m), while ground reaction force (GRF), electromyographic (EMG) activity, and kinematics were recorded. Fatigue was defined as a…

  18. Improving the High-Cycle Fatigue Lives of Fe-30Mn-0.9C Twinning-Induced Plasticity Steel Through Pre-straining

    NASA Astrophysics Data System (ADS)

    Wang, B.; Zhang, Z. J.; Shao, C. W.; Duan, Q. Q.; Pang, J. C.; Yang, H. J.; Li, X. W.; Zhang, Zhe-Feng

    2015-08-01

    The tensile properties, high-cycle fatigue properties, and microstructure evolutions during fatigue process of as-received and pre-strained Fe-30Mn-0.9C twinning-induced plasticity (TWIP) steel were investigated. It is found that the fatigue lives of the TWIP steel can be effectively improved through pre-straining, since the deformation twins induced by pre-straining could effectively lead to the improved yield strength and the homogenized deformation. This study may provide possible ways for improving the high-cycle fatigue properties of TWIP steels.

  19. Influence of Secondary Cyclic Hardening on the Low Cycle Fatigue Behavior of Nitrogen Alloyed 316LN Stainless Steel

    NASA Astrophysics Data System (ADS)

    Prasad Reddy, G. V.; Sandhya, R.; Mathew, M. D.; Sankaran, S.

    2013-12-01

    In this article, the occurrence of secondary cyclic hardening (SCH) and its effect on high-temperature cyclic deformation and fatigue life of 316LN Stainless steel are presented. SCH is found to result from planar slip mode of deformation and enhance the degree of hardening over and above that resulted from dynamic strain aging. The occurrence of SCH is strongly governed by the applied strain amplitude, test temperature, and the nitrogen content in the 316LN SS. Under certain test conditions, SCH is noticed to decrease the low cycle fatigue life with the increasing nitrogen content.

  20. Notch effects on high-cycle fatigue properties of Ti 6Al 4V ELI alloy at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Yuri, T.; Ono, Y.; Ogata, T.

    2006-01-01

    Notch effects on the high-cycle fatigue properties of the forged Ti-6Al-4V ELI alloy at cryogenic temperatures were investigated. Also, the high-cycle fatigue data were compared with the rolled Ti-5Al-2.5Sn ELI alloy. The one million cycles fatigue strength (FS) of the smooth specimen for the forged Ti-6Al-4V ELI alloy increased with a decrease of test temperature. However, the FS of each notched specimen at 4 K were lower than those at 77 K. On the other hand, the FS of the smooth and the notched specimens for the forged Ti-6Al-4V ELI alloy at 4 K were lower than those for the rolled Ti-5Al-2.5Sn ELI alloy. This is considered to be the early initiation of the fatigue crack in the forged Ti-6Al-4V ELI alloy compares with the forged Ti-5Al-2.5Sn ELI.

  1. Influence of temperature, environment, and thermal aging on the continuous cycle fatigue behavior of Hastelloy X and Inconel 617

    SciTech Connect

    Strizak, J.P.; Brinkman, C.R.; Booker, M.K.; Rittenhouse, P.L.

    1982-04-01

    Results are presented for strain-controlled fatigue and tensile tests for two nickel-base, solution-hardened reference structural alloys for use in several High-Temperature Gas-Cooled Reactor (HTGR) concepts. These alloys, Hastelloy X and Inconel 617, were tested from room temperature to 871/sup 0/C in air and impure helium. Materials were tested in both the solution-annealed and the preaged conditios, in which aging consisted of isothermal exposure at one of several temperatures for periods of up to 20,000 h. Comparisons are given between the strain-controlled fatigue lives of these and several other commonly used alloys, all tested at 538/sup 0/C. An analysis is also presented of the continuous cycle fatigue data obtained from room temperature to 427/sup 0/C for Hastelloy G, Hastelloy X, Hastelloy C-276, and Hastelloy C-4, an effort undertaken in support of ASME code development.

  2. Dynamic strain aging behavior of modified 9Cr-1Mo and reduced activation ferritic martensitic steels under low cycle fatigue

    NASA Astrophysics Data System (ADS)

    Mariappan, K.; Shankar, Vani; Sandhya, R.; Prasad Reddy, G. V.; Mathew, M. D.

    2013-04-01

    Influence of temperature and strain rate on low cycle fatigue (LCF) behavior of modified 9Cr-1Mo ferritic martensitic steel and 1.4W-0.06Ta reduced activation ferritic martensitic (RAFM) steel in normalized and tempered conditions was studied. Total strain controlled LCF tests between 300 and 873 K on modified 9Cr-1Mo steel and RAFM steel and at various strain rates on modified 9Cr-1Mo steel were performed at total strain amplitude of ±0.6%. Both the steels showed continuous cyclic softening at all temperatures. Whereas manifestations of dynamic strain aging (DSA) were observed in both the steels which decreased fatigue life at intermediate temperatures, at higher temperatures, oxidation played a crucial role in decreasing fatigue life.

  3. The role of microstructural variability on the very high cycle fatigue lifetime variability of the alpha + beta titanium alloy, Ti-6246

    NASA Astrophysics Data System (ADS)

    Szczepanski, Christopher J.

    2008-12-01

    The fatigue behavior of structural components in the regime of very high cycle fatigue (VHCF) (106-109 cycles) has been attracting increased commercial interest as components are increasingly being called upon to perform in this regime of lifetimes. In VHCF, the applied stresses relative to the yield stress are very low. Therefore, it is presumed that a substantial portion of fatigue lifetime is consumed by the fatigue crack initiation process, and that cyclic plasticity only accumulates in microstructural neighborhoods that are susceptible to fatigue damage accumulation. Thus, microstructural heterogeneity is believed to significantly effect the fatigue lifetime variability. The very high cycle fatigue behavior of Ti-6246 has been investigated using ultrasonic fatigue techniques, and lifetimes ranging from 10 6-109 cycles have been observed. Fatigue cracks initiate by facet formation within alphap grains. It has been found that the facets form in grains that are slightly larger than average and that the facets appear to form by a process of slip since the facet plane normals are oriented approximately 35-55° with respect to the tensile axis. Three characteristic fatigue crack initiation sites have been identified. These initiation sites, ranked in order of increasing fatigue resistance are: surface, subsurface with isolated facets, and subsurface with contiguous transgranular faceting. The texture of the material in these initiation regions is favorable for basal and prism slip. This texture is derived from the prior beta texture, and a mechanism of fatigue crack initiation resulting from strain incompatibility has been proposed. Fatigue crack growth experiments have been completed to measure the influence of local texture on the ease of fatigue crack initiation and the resulting fatigue crack growth rates. These experiments have found that the controlling microstructural dimension is on the order of 20-25 mum. The texture appears to affect initiation of fatigue

  4. Low Cycle Fatigue Behavior of 316LN Stainless Steel Alloyed with Varying Nitrogen Content. Part II: Fatigue Life and Fracture Behavior

    NASA Astrophysics Data System (ADS)

    Prasad Reddy, G. V.; Sandhya, R.; Sankaran, S.; Mathew, M. D.

    2014-10-01

    Influence of nitrogen content on low cycle fatigue life and fracture behavior of 316LN stainless steel (SS) alloyed with 0.07 to 0.22 wt pct nitrogen is presented in this paper over a range of total strain amplitudes ( ±0.25 to 1.0 pct) in the temperature range from 773 K to 873 K (500 °C to 600 °C). The combined effect of nitrogen and strain amplitude on fatigue life is observed to be complex i.e., fatigue life either decreases/increases with increase in nitrogen content or saturates/peaks at 0.14 wt pct N depending on strain amplitude and temperature. Coffin-Manson plots (CMPs) revealed both single-slope and dual-slope strain-life curves depending on the test temperature and nitrogen content. 316LN SS containing 0.07 and 0.22 wt pct N showed nearly single-slope CMP at all test temperatures, while 316LN SS with 0.11 and 0.14 wt pct N exhibited marked dual-slope behavior at 773 K (500 °C) that changes to single-slope behavior at 873 K (600 °C). The changes in slope of CMP are found to be in good correlation with deformation substructural changes.

  5. Influence of preliminary tension on the low-cycle fatigue of 40Kh13 steel in gaseous hydrogen

    SciTech Connect

    Romaniv, A.N.

    1985-05-01

    Information is lacking on the influence of hydrogen entering from an electrolyte or an external gaseous medium on the low-cycle fatigue of steels after preliminary tension. Since preliminary plastic deformation by tension increases the elastic limit and hardness of the steel while reducing its toughness, this must be reflected in the processes of crack origin and propagation in low-cycle loading in hydrogen. The purpose of this work was to study the influence of the degree of preliminary tension on the low-cycle failure resistance of 40Kh13 martensitic class steel in an atmosphere of gaseous hydrogen.

  6. Fatigue behaviour of friction stir processed AZ91 magnesium alloy produced by high pressure die casting

    SciTech Connect

    Cavaliere, P. . E-mail: pasquale.cavaliere@unile.it; De Marco, P.P.

    2007-03-15

    The room temperature fatigue properties of AZ91 magnesium alloy produced by high pressure die casting (HPDC) as cast, heat treated, friction stir processed (FSP) and FSP and heat treated were studied. The fatigue properties of the material were evaluated for the HPDC magnesium alloy in the as-received state and after a solution treatment at 415 deg. C for 2 h and an ageing treatment at 220 deg. C for 4 h. The heat treatment resulted in a significant increase in the fatigue properties of the HPDC material, while no significance influence of heat treatment was recorded in the FSP condition. The morphology of fracture surfaces was examined by employing a field emission gun scanning electron microscope (FEGSEM)

  7. Strain-Controlled Low-Cycle Fatigue Behavior of Friction Stir-Welded AZ31 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Yang, J.; Ni, D. R.; Wang, D.; Xiao, B. L.; Ma, Z. Y.

    2014-04-01

    Strain-controlled low-cycle fatigue (LCF) behavior of friction stir-welded (FSW) AZ31 joints, produced at rotation rates of 800 and 3500 rpm, was studied. The joints exhibited symmetric hysteresis loops, whereas asymmetric loops were observed for the parent material (PM). The fatigue resistance of the FSW joints was slightly improved as the rotation rate increased, and both the FSW joints possessed a fatigue life similar to that of the PM at the low strain amplitude of 0.1 pct. The obtained fatigue data for the PM and FSW joints can be well described using the Coffin-Manson and Basquin's relationships. For the FSW joints, during LCF deformation, the twinning originated from the nugget zone (NZ)/thermomechanically affected zone (TMAZ) boundary and then propagated to the NZ interior. This was attributed to different textures in these regions: the center of the NZ exhibited a hard orientation, whereas a soft orientation was observed in the region around the NZ/TMAZ boundary. The fatigue cracks initiated at the bottom of the joints and propagated along the NZ/TMAZ boundary or the NZ adjacent to the NZ/TMAZ boundary.

  8. The Effect of Ballistic Impacts on the High Cycle Fatigue Properties of Ti-48Al-2Nb-2Cr (at.%)

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Lerch, B. A.; Pereira, J. M.; Nathal, M. V.; Austin, C. M.; Erdman, O.

    2000-01-01

    The ability of gamma - TiAl to withstand potential foreign and/or domestic object damage is a technical risk to the implementation of gamma - TiAl in low pressure turbine (LPT) blade applications. The overall purpose of the present study was to determine the influence of ballistic impact damage on the high cycle fatigue strength of gamma - TiAl simulated LPT blades. Impact and specimen variables included ballistic impact energy, projectile hardness, impact temperature, impact location, and leading edge thickness. The level of damage induced by the ballistic impacting was studied and quantified on both the impact (front) and backside of the specimens. Multiple linear regression was used to model the cracking and fatigue response as a function of the impact variables. Of the impact variables studied, impact energy had the largest influence on the response of gamma - TiAl to ballistic impacting. Backside crack length was the best predictor of remnant fatigue strength for low energy impacts (<0.74J) whereas Hertzian crack length (impact side damage) was the best predictor for higher energy impacts. The impacted gamma - TiAl samples displayed a classical mean stress dependence on the fatigue strength. For the fatigue design stresses of a 6th stage LPT blade in a GE90 engine, a Ti-48Al-2Nb-2Cr LPT blade would survive an impact of normal service conditions.

  9. Reproducibility and Repeatability of Tensile and Low-Cycle Fatigue Properties in Propulsion Grade Hydrogen

    NASA Technical Reports Server (NTRS)

    Vesely, E. J.; Bhat, B. N.; McPherson, W. B.; Grethlein, C. E.; Jones, Clyde S. (Technical Monitor)

    2002-01-01

    Hydrogen has the potential of increased use in the future as an environmentally friendly fuel. It has, however, shown a tendency to embrittle some materials. To be used in a safe manner and to exploit its full potential, it will be necessary to develop a database of material properties in hydrogen environment. The tests needed to produce this data are costly to perform (tensile test cost 25 times more and low cycle fatigue test are 55 times as expensive). Moreover, there is presently a lack of universal test methods to ensure standardized data within the hydrogen community. Each of the industries that work with hydrogen (aerospace, petroleum, fuel cells, etc.) performs tests by their own laboratory-developed methods, thus rendering cross- comparisons of material property data highly questionable. It is extremely important that data generated in a hydrogen environment be done to a standard that reduces variance to a minimum and allows direct comparison of test results from different laboratories. Doing so will assure that all data generated can be used to further our understanding of the hydrogen effects and to make sure components/products designed for hydrogen are the safest and most reliable possible. This paper reviews the results of two 'round-robin' programs conducted by NASA-MSFC. These two programs examined the reproducibility and repeatability of tensile and low-cycle fatigue test results in high-pressure hydrogen environments. The studies indicated that even with the tightest controls available from current commercial standards, the reproducibility (between different laboratories) and repeatability (within a laboratory) results of the tensile tests exhibited five times the variance as in standard ambient air tests. The variance with the LCF tests were on the same order as with air tests, but that was due to the large variation present in the last Interlaboratory air program. The paper concludes with a recommendation for a program that would allow the

  10. Fatigue Behaviour of Magnesium to Steel Dissimilar Friction Stir Lap Joints

    SciTech Connect

    Jana, Saumyadeep; Hovanski, Yuri

    2012-02-01

    A short study has been conducted to assess the performance of friction stir welded Mg/steel joints under dynamic loads. The major mode of failure was found to be top Mg sheet fracture. Crack initiation is noted to have taken place at the Mg/steel interface. The fatigue life of the joints is found to be significantly different than the fatigue data of the Mg alloy obtained from the literature. The reasons behind such a difference have been examined in this work.

  11. Influence of Prior Fatigue Cycling on Creep Behavior of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Vijayanand, V. D.; Parameswaran, P.; Shankar, Vani; Sandhya, R.; Laha, K.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2014-06-01

    Creep tests were carried out at 823 K (550 °C) and 210 MPa on Reduced Activation Ferritic-Martensitic (RAFM) steel which was subjected to different extents of prior fatigue exposure at 823 K at a strain amplitude of ±0.6 pct to assess the effect of prior fatigue exposure on creep behavior. Extensive cyclic softening that characterized the fatigue damage was found to be immensely deleterious for creep strength of the tempered martensitic steel. Creep rupture life was reduced to 60 pct of that of the virgin steel when the steel was exposed to as low as 1 pct of fatigue life. However, creep life saturated after fatigue exposure of 40 pct. Increase in minimum creep rate and decrease in creep rupture ductility with a saturating trend were observed with prior fatigue exposures. To substantiate these findings, detailed transmission electron microscopy studies were carried out on the steel. With fatigue exposures, extensive recovery of martensitic-lath structure was distinctly observed which supported the cyclic softening behavior that was introduced due to prior fatigue. Consequently, prior fatigue exposures were considered responsible for decrease in creep ductility and associated reduction in the creep rupture strength.

  12. Effect of Processing Route on Strain Controlled Low Cycle Fatigue Behavior of Polycrystalline NiAl

    NASA Technical Reports Server (NTRS)

    Rao, K. Bhanu Sankara; Lerch, B. A.; Noebe, R. D.

    1995-01-01

    The present investigation examines the effects of manufacturing process on the total axial strain controlled low cycle fatigue behavior of polycrystalline NiAl at 1000 K, a temperature above the monotonic Brittle-to-Ductile Transition Temperature (BDTT). The nickel aluminide samples were produced by three different processing routes: hot isostatic pressing of pre- alloyed powders, extrusion of prealloyed powders, and extrusion of vacuum induction melted ingots. The LCF behavior of the cast plus extruded material was also determined at room temperature (below the BD77) for comparison to the high temperature data. The cyclic stress response, cyclic stress-strain behavior, and strain-life relationships were influenced by the alloy preparation technique and the testing temperature. Detailed characterization of the LCF tested samples was conducted by optical and electron microscopy to determine the variations in fracture and deformation modes and to determine any microstructural changes that occurred during LCF testing. The dependence of LCF properties on processing route was rationalized on the basis of starting microstructure, brittle-to-ductile transition temperature, deformation induced changes in the basic microstructure, deformation substructure, and synergistic interaction between the damage modes.

  13. Accelerated multiscale space-time finite element simulation and application to high cycle fatigue life prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Wen, Lihua; Naboulsi, Sam; Eason, Thomas; Vasudevan, Vijay K.; Qian, Dong

    2016-05-01

    A multiscale space-time finite element method based on time-discontinuous Galerkin and enrichment approach is presented in this work with a focus on improving the computational efficiencies for high cycle fatigue simulations. While the robustness of the TDG-based space-time method has been extensively demonstrated, a critical barrier for the extensive application is the large computational cost due to the additional temporal dimension and enrichment that are introduced. The present implementation focuses on two aspects: firstly, a preconditioned iterative solver is developed along with techniques for optimizing the matrix storage and operations. Secondly, parallel algorithms based on multi-core graphics processing unit are established to accelerate the progressive damage model implementation. It is shown that the computing time and memory from the accelerated space-time implementation scale with the number of degree of freedom N through {˜ }{O}(N^{1.6}) and {˜ }{O}(N) , respectively. Finally, we demonstrate the accelerated space-time FEM simulation through benchmark problems.

  14. Accelerated multiscale space-time finite element simulation and application to high cycle fatigue life prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Wen, Lihua; Naboulsi, Sam; Eason, Thomas; Vasudevan, Vijay K.; Qian, Dong

    2016-08-01

    A multiscale space-time finite element method based on time-discontinuous Galerkin and enrichment approach is presented in this work with a focus on improving the computational efficiencies for high cycle fatigue simulations. While the robustness of the TDG-based space-time method has been extensively demonstrated, a critical barrier for the extensive application is the large computational cost due to the additional temporal dimension and enrichment that are introduced. The present implementation focuses on two aspects: firstly, a preconditioned iterative solver is developed along with techniques for optimizing the matrix storage and operations. Secondly, parallel algorithms based on multi-core graphics processing unit are established to accelerate the progressive damage model implementation. It is shown that the computing time and memory from the accelerated space-time implementation scale with the number of degree of freedom N through ˜ O(N^{1.6}) and ˜ O(N), respectively. Finally, we demonstrate the accelerated space-time FEM simulation through benchmark problems.

  15. Low cycle fatigue behavior of a ferritic reactor pressure vessel steel

    NASA Astrophysics Data System (ADS)

    Sarkar, Apu; Kumawat, Bhupendra K.; Chakravartty, J. K.

    2015-07-01

    The cyclic stress-strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain-stress relationships and the strain-life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis.

  16. Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise.

    PubMed

    Ražanskas, Petras; Verikas, Antanas; Olsson, Charlotte; Viberg, Per-Arne

    2015-01-01

    This article presents a study of the relationship between electromyographic (EMG) signals from vastus lateralis, rectus femoris, biceps femoris and semitendinosus muscles, collected during fatiguing cycling exercises, and other physiological measurements, such as blood lactate concentration and oxygen consumption. In contrast to the usual practice of picking one particular characteristic of the signal, e.g., the median or mean frequency, multiple variables were used to obtain a thorough characterization of EMG signals in the spectral domain. Based on these variables, linear and non-linear (random forest) models were built to predict blood lactate concentration and oxygen consumption. The results showed that mean and median frequencies are sub-optimal choices for predicting these physiological quantities in dynamic exercises, as they did not exhibit significant changes over the course of our protocol and only weakly correlated with blood lactate concentration or oxygen uptake. Instead, the root mean square of the original signal and backward difference, as well as parameters describing the tails of the EMG power distribution were the most important variables for these models. Coefficients of determination ranging from R(2) = 0:77 to R(2) = 0:98 (for blood lactate) and from R(2) = 0:81 to R(2) = 0:97 (for oxygen uptake) were obtained when using random forest regressors. PMID:26295396

  17. Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise

    PubMed Central

    Ražanskas, Petras; Verikas, Antanas; Olsson, Charlotte; Viberg, Per-Arne

    2015-01-01

    This article presents a study of the relationship between electromyographic (EMG) signals from vastus lateralis, rectus femoris, biceps femoris and semitendinosus muscles, collected during fatiguing cycling exercises, and other physiological measurements, such as blood lactate concentration and oxygen consumption. In contrast to the usual practice of picking one particular characteristic of the signal, e.g., the median or mean frequency, multiple variables were used to obtain a thorough characterization of EMG signals in the spectral domain. Based on these variables, linear and non-linear (random forest) models were built to predict blood lactate concentration and oxygen consumption. The results showed that mean and median frequencies are sub-optimal choices for predicting these physiological quantities in dynamic exercises, as they did not exhibit significant changes over the course of our protocol and only weakly correlated with blood lactate concentration or oxygen uptake. Instead, the root mean square of the original signal and backward difference, as well as parameters describing the tails of the EMG power distribution were the most important variables for these models. Coefficients of determination ranging from R2=0.77 to R2=0.98 (for blood lactate) and from R2=0.81 to R2=0.97 (for oxygen uptake) were obtained when using random forest regressors. PMID:26295396

  18. The J-2X Fuel Turbopump - Turbine Nozzle Low Cycle Fatigue Acceptance Rationale

    NASA Technical Reports Server (NTRS)

    Hawkins, Lakiesha V.; Duke, Gregory C.; Newman, Wesley R.; Reynolds, David C.

    2011-01-01

    The J-2X Fuel Turbopump (FTP) turbine, which drives the pump that feeds hydrogen to the J-2X engine for main combustion, is based on the J-2S design developed in the early 1970 s. Updated materials and manufacturing processes have been incorporated to meet current requirements. This paper addresses an analytical concern that the J-2X Fuel Turbine Nozzle Low Cycle Fatigue (LCF) analysis did not meet safety factor requirements per program structural assessment criteria. High strains in the nozzle airfoil during engine transients were predicted to be caused by thermally induced stresses between the vane hub, vane shroud, and airfoil. The heritage J-2 nozzle was of a similar design and experienced cracks in the same area where analysis predicted cracks in the J-2X design. Redesign options that did not significantly impact the overall turbine configuration were unsuccessful. An approach using component tests and displacement controlled fracture mechanics analysis to evaluate LCF crack initiation and growth rate was developed. The results of this testing and analysis were used to define the level of inspection on development engine test units. The programmatic impact of developing crack initiation/growth rate/arrest data was significant for the J-2X program. Final Design Certification Review acceptance logic will ultimately be developed utilizing this test and analytical data.

  19. The effect of Zr on the low-cycle fatigue behavior of NiAl at 1000 K

    SciTech Connect

    Lerch, B.A.; Noebe, R.D.; Rao, K.B.S.

    1998-04-01

    The effect of a 0.1 at.% alloying addition of Zr on the low-cycle fatigue behavior of polycrystalline NiAl was determined at 1,000 K and compared to that of binary NiAl. Samples of binary NiAl and the Zr-doped alloy were processed by either HIP consolidation or extrusion of prealloyed intermetallic powders. The cyclic stress response, cyclic stress-strain behavior, and strain-life relationships were all significantly influenced by the microalloying addition of Zr, regardless of the processing technique. A detailed examination of the post-tested low-cycle fatigue (LCF) samples was conducted by optical and electron microscopy to determine variations in fracture and deformation modes and to characterize any microstructural changes that occurred during LCF testing. Differences in LCF behavior due to the Zr addition are attributed to the strong effect that Zr has on modifying the deformation behavior of the intermetallic.

  20. The effect of Zr on the low-cycle fatigue behavior of NiAl at 1000 K

    NASA Astrophysics Data System (ADS)

    Lerch, B. A.; Noebe, R. D.; Rao, K. B. S.

    1998-04-01

    The effect of a 0.1 at. % alloying addition of Zr on the low-cycle fatigue behavior of polycrystalline NiAl was determined at 1000 K and compared to that of binary NiAl. Samples of binary NiAl and the Zr-doped alloy were processed by either HIP consolidation or extrusion of prealloyed intermetallic powders. The cyclic stress response, cyclic stress-strain behavior, and strain-life relationships were all significantly influenced by the microalloying addition of Zr, regardless of the processing technique. A detailed examination of the post-tested low-cycle fatigue (LCF) samples was conducted by optical and electron microscopy to determine variations in fracture and deformation modes and to characterize any microstructural changes that occurred during LCF testing. Differences in LCF behavior due to the Zr addition are attributed to the strong effect that Zr has on modifying the deformation behavior of the intermetallic.

  1. Fatigue of insect cuticle.

    PubMed

    Dirks, Jan-Henning; Parle, Eoin; Taylor, David

    2013-05-15

    Many parts of the insect exoskeleton experience repeated cyclic loading. Although the cuticle of insects and other arthropods is the second most common natural composite material in the world, so far nothing is known about its fatigue properties, despite the fact that fatigue undoubtedly limits the durability of body parts in vivo. For the first time, we here present experimental fatigue data of insect cuticle. Using force-controlled cyclic loading, we determined the number of cycles to failure for hind legs (tibiae) and hind wings of the locust Schistocerca gregaria, as a function of the applied cyclic stress. Our results show that, although both are made from cuticle, these two body parts behave very differently. Wing samples showed a large fatigue range, failing after 100,000 cycles when we applied 46% of the stress needed for instantaneous failure [the ultimate tensile strength (UTS)]. Legs, in contrast, were able to sustain a stress of 76% of the UTS for the same number of cycles to failure. This can be explained by the difference in the composition and structure of the material, two factors that, amongst others, also affect the well-known behaviour of engineering composites. Final failure of the tibiae occurred via one of two different failure modes--propagation in tension or buckling in compression--indicating that the tibia is 'optimized' by evolution to resist both failure modes equally. These results are further discussed in relation to the evolution and normal use of these two body parts. PMID:23393276

  2. Ultrasonic evaluation of the effects of compressive residual stresses on aircraft engine turbine blades subjected to high cycle fatigue

    NASA Astrophysics Data System (ADS)

    Bray, Don E.; Suh, Ui; Hough, C. L. ``Mickey''

    2002-05-01

    Experiments conducted on titanium (Ti-64) turbine blades with the LCR ultrasonic wave at 20 MHz showed significant differences in untreated blades and blades treated to increase the subsurface compressive residual stress. Group 1 showed significant differences in the treated and untreated areas, the top and bottom of the blades, high cycle fatigue and cracked and uncracked conditions. Group 2 blades showed significant difference between untreated and treated travel-times at probes located at the blade leading edge.

  3. Moon cycles and violent behaviours: myth or fact?

    PubMed

    Núñez, S; Pérez Méndez, L; Aguirre-Jaime, A

    2002-06-01

    We formulated the hypothesis that lunar phases, identified by the fraction of the illuminated visible surface of the moon, have a relationship with the frequency of victims of aggression seen in an emergency department. If such a relationship exists, an increase in the frequency of incidents with the phases of full moon or new moon would be expected. In order to test this hypothesis, the daily frequency of victims of violent behaviour seen in the emergency department was used to create a temporal series of data. This was then correlated with a temporal series of lunar luminosity data from the same time period. Crossed correlations in the delay range -7 to +7 days showed coefficient values ranging between -0.102 and +0.034, demonstrating weak correlations without statistical significance. Despite the attractiveness of the popular belief that the moon influences human behaviour, the analysis of our data does not support an association between lunar phases and frequency of violent behaviour. That is, we cannot predict the frequency of cases from a knowledge of lunar luminosity, at least in the period over which our study was performed. PMID:12131634

  4. A Computational Approach for the Prediction of Fatigue Behaviour in Peripheral Stents: Application to a Clinical Case.

    PubMed

    Petrini, Lorenza; Trotta, Antonia; Dordoni, Elena; Migliavacca, Francesco; Dubini, Gabriele; Lawford, Patricia V; Gosai, Jivendra N; Ryan, Desmond M; Testi, Debora; Pennati, Giancarlo

    2016-02-01

    Nickel-Titanium (NiTi) peripheral stents are commonly used for the treatment of diseased femoropopliteal arteries (FPA). However, cyclic deformations of the vessel, induced by limb movements affect device performance and fatigue failure may occur. Stent strut fracture has been described in the literature, and is implicated as a potential causative factor in vessel re-occlusion. In this paper, a numerical approach is proposed to predict the fatigue behaviour of peripheral NiTi stents within patient-specific arterial geometries, as additional information to aid clinician intervention planning. The procedure needs some patient-specific vessel features derived from routine clinical images but, when this information is not available, reference data from the literature may be used, obviously increasing the uncertainties of the results. In addition, specific stent material data are required and can be obtained from experimental tests. Several 3D finite element models resembling stented vessel segments are built and used for fatigue analyses. For each model, axial cyclic boundary conditions are obtained from a patient-specific lumped parameter model representing the entire artery as a series of suitable springs. This allows the simplification of stiffness changes along the vessel due to plaque and stent that affect local axial deformations. Imposed local cyclic bending values depend on the stent location along the FPA. The procedure is exemplified by its application to an actual clinical case that showed two strut fractures at 18 months follow-up. Interestingly, despite the lack of some of patient-specific information and the use of data from the literature to inform the model, the numerical approach was able to interpret the in vivo fractures. PMID:26433586

  5. Strain-cycling fatigue behavior of ten structural metals tested in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K)

    NASA Technical Reports Server (NTRS)

    Nachtigall, A. J.

    1974-01-01

    Strain-cycling fatigue behavior of 10 different structural alloys and metals was investigated in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K). At high cyclic lives, fatigue resistance increased with decreasing temperature for all the materials investigated. At low cyclic lives, fatigue resistance generally decreased with decreasing temperature for the materials investigated. Only for Inconel 718 did fatigue resistance increase with decreasing temperature over the entire life range investigated. Comparison of the experimental fatigue behavior with that predicted by the Manson method of universal slopes showed that the fatigue behavior of these materials can be predicted for cryogenic temperatures by using material tensile properties obtained at those same temperatures.

  6. Application of fracture mechanics and half-cycle method to the prediction of fatigue life of B-52 aircraft pylon components

    NASA Technical Reports Server (NTRS)

    Ko, W. L.; Carter, A. L.; Totton, W. W.; Ficke, J. M.

    1989-01-01

    Stress intensity levels at various parts of the NASA B-52 carrier aircraft pylon were examined for the case when the pylon store was the space shuttle solid rocket booster drop test vehicle. Eight critical stress points were selected for the pylon fatigue analysis. Using fracture mechanics and the half-cycle theory (directly or indirectly) for the calculations of fatigue-crack growth ,the remaining fatigue life (number of flights left) was estimated for each critical part. It was found that the two rear hooks had relatively short fatigue life and that the front hook had the shortest fatigue life of all the parts analyzed. The rest of the pylon parts were found to be noncritical because of their extremely long fatigue life associated with the low operational stress levels.

  7. Low-Cycle Fatigue Behavior of 95.8Sn-3.5Ag-0.7Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Li, G. Y.; Shi, X. Q.

    2013-01-01

    Low-cycle fatigue (LCF) behavior of 95.8Sn-3.5Ag-0.7Cu solder joints was investigated over a range of test temperatures (25°C, 75°C, and 125°C), frequencies (0.001 Hz, 0.01 Hz, and 0.1 Hz), and strain ranges (0.78%, 1.6%, and 3.1%). Effects of temperature and frequency on the LCF life were studied. Results show that the LCF lifetime decreases with an increase in test temperature or a decrease of test frequency, which is attributed to the longer exposure time to creep and the stress relaxation mechanism during fatigue testing. A modified Coffin-Manson model considering effects of temperature and frequency on the LCF life is proposed. The fatigue exponent and ductility coefficient were found to be influenced by both the temperature and frequency. By fitting the experimental data, the mathematical relations between the fatigue exponent and temperature, and ductility coefficient and temperature, were analyzed. Scanning electron microscopy (SEM) of the cross-sections and fracture surfaces of failed specimens at different temperature and frequency was applied to verify the failure mechanisms.

  8. On the nature and crystallographic orientation of subsurface cracks in high cycle fatigue of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Gilbert, Jeremy L.; Piehler, Henry R.

    1993-03-01

    Subsurface fatigue damage, in the form of cracking of the α phase, was observed in Ti-6A1-4V during high cycle fatigue of total hip prostheses tested in a simulated physiological test geometry and environment. The subsurface cracking was found only in the region of highest fatigue stresses and was present in a zone between 50 and 700 μm beneath the surface. The density of these cracks appeared to depend on the fabrication process used to form the part, where the direction of forging deformation strongly influenced the texture and grain morphology of the near-α bimodal microstructure. A novel scanning electron microscopy (SEM) technique, using selected area channeling patterns (SACPs) and electron channeling contrast imaging (ECCI), is described and was used to determine the crystallographic orientation of the fracture plane in the a phase. The texture resulting from the forming operation appeared to be such that the basal pole of the hcp lattice became oriented in the direction of flow. Also, the deformation substructure (in the form of dislocation subcells) influenced the formation of the subsurface cracks. Observations based on four independent fractured grains, using the channeling analysis techniques, indicated that the fracture plane for these subsurface fatigue cracks is the pyramidal plane of the hcp lattice.

  9. Strain Ratio Effects on Low-Cycle Fatigue Behavior of Gravity Cast Al-Si-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Fan, K. L.; Liu, X. S.; He, G. Q.; Cheng, H.; Lv, S. Q.

    2015-10-01

    The strain-controlled low-cycle fatigue properties of gravity cast Al-Si-Cu alloys for engine cylinder heads were investigated. At strain ratios of R ɛ = -2, 0, and 0.1, the cyclic stress amplitude progressively increased from initiation to the 450th cycle, and then proceeded into a steady stage until failure. At a strain ratio of R ɛ = -∞, the material exhibited a continuous cyclic hardening. The hysteresis loops in this alloy for the 2nd and half-life cycle were tension/compression asymmetry, which also corresponded well to the evolution of peak/valley stress. Transmission electron microscopy analysis suggested that cyclic hardening was caused by the dislocations multiplication/tangles at strain ratios of R ɛ = -∞ and 0. Besides, the presence of dislocation cross slip contributed to cyclic stabilization observed at later stage of deformation at a strain ratio of R ɛ = 0. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain ratios. It showed that the fatigue cracks initiated basically at the internal defects in the samples. Meanwhile, at strain ratios of R = -∞ and 0, the fracture surface was rough with a large number of small unequiaxed dimples and some tear ridges. Moreover, the localized pores offered a preferential crack path in the samples, where they were surrounded by silicon particles. At a strain ratio of R ɛ = -∞, the fatigue cracks preferentially initiated at pores rather than α-Fe phases. At a strain ratio of R ɛ = 0, where fatigue crack initiation was observed at the interface between plate-like branch of α-Fe phase and aluminum matrix.

  10. A Cycling Movement Based System for Real-Time Muscle Fatigue and Cardiac Stress Monitoring and Analysis

    PubMed Central

    Chen, Szi-Wen; Liaw, Jiunn-Woei; Chang, Ya-Ju; Chan, Hsiao-Lung; Chiu, Li-Yu

    2015-01-01

    In this study, we defined a new parameter, referred to as the cardiac stress index (CSI), using a nonlinear detrended fluctuation analysis (DFA) of heart rate (HR). Our study aimed to incorporate the CSI into a cycling based fatigue monitoring system developed in our previous work so the muscle fatigue and cardiac stress can be both continuously and quantitatively assessed for subjects undergoing the cycling exercise. By collecting electrocardiogram (ECG) signals, the DFA scaling exponent α was evaluated on the RR time series extracted from a windowed ECG segment. We then obtained the running estimate of α by shifting a one-minute window by a step of 20 seconds so the CSI, defined as the percentage of all the less-than-one α values, can be synchronously updated every 20 seconds. Since the rating of perceived exertion (RPE) scale is considered as a convenient index which is commonly used to monitor subjective perceived exercise intensity, we then related the Borg RPE scale value to the CSI in order to investigate and quantitatively characterize the relationship between exercise-induced fatigue and cardiac stress. Twenty-two young healthy participants were recruited in our study. Each participant was asked to maintain a fixed pedaling speed at a constant load during the cycling exercise. Experimental results showed that a decrease in DFA scaling exponent α or an increase in CSI was observed during the exercise. In addition, the Borg RPE scale and CSI were positively correlated, suggesting that the factors due to cardiac stress might also contribute to fatigue state during physical exercise. Since the CSI can effectively quantify the cardiac stress status during physical exercise, our system may be used in sports medicine, or used by cardiologists who carried out stress tests for monitoring heart condition in patients with heart diseases. PMID:26115515

  11. Effect of aerobic exercise training and cognitive behavioural therapy on reduction of chronic fatigue in patients with facioscapulohumeral dystrophy: protocol of the FACTS-2-FSHD trial

    PubMed Central

    2010-01-01

    Background In facioscapulohumeral dystrophy (FSHD) muscle function is impaired and declines over time. Currently there is no effective treatment available to slow down this decline. We have previously reported that loss of muscle strength contributes to chronic fatigue through a decreased level of physical activity, while fatigue and physical inactivity both determine loss of societal participation. To decrease chronic fatigue, two distinctly different therapeutic approaches can be proposed: aerobic exercise training (AET) to improve physical capacity and cognitive behavioural therapy (CBT) to stimulate an active life-style yet avoiding excessive physical strain. The primary aim of the FACTS-2-FSHD (acronym for Fitness And Cognitive behavioural TherapieS/for Fatigue and ACTivitieS in FSHD) trial is to study the effect of AET and CBT on the reduction of chronic fatigue as assessed with the Checklist Individual Strength subscale fatigue (CIS-fatigue) in patients with FSHD. Additionally, possible working mechanisms and the effects on various secondary outcome measures at all levels of the International Classification of Functioning, Disability and Health (ICF) are evaluated. Methods/Design A multi-centre, assessor-blinded, randomized controlled trial is conducted. A sample of 75 FSHD patients with severe chronic fatigue (CIS-fatigue ≥ 35) will be recruited and randomized to one of three groups: (1) AET + usual care, (2) CBT + usual care or (3) usual care alone, which consists of no therapy at all or occasional (conventional) physical therapy. After an intervention period of 16 weeks and a follow-up of 3 months, the third (control) group will as yet be randomized to either AET or CBT (approximately 7 months after inclusion). Outcomes will be assessed at baseline, immediately post intervention and at 3 and 6 months follow up. Discussion The FACTS-2-FSHD study is the first theory-based randomized clinical trial which evaluates the effect and the maintenance of effects

  12. The effect of HVOF sprayed coatings on the elevated temperature high cycle fatigue behavior of a martensitic stainless steel

    SciTech Connect

    Tipton, A.A.

    1995-12-31

    This study reports the influence of three High Velocity Oxy-Fuel (HVOF) applied coatings on the high cycle fatigue resistance of a martensitic stainless steel substrate at room and elevated temperatures. It was found that chromium carbide and tungsten carbide coated specimens exhibited significantly lower fatigue capability compared to the substrate material at elevated temperatures while IN625 coated specimens exhibited a small beneficial effect. An attempt is made to explain the observed behavior in terms of elastic modulus mismatch, thermal expansion mismatch, residual stress and coating/substrate properties. It is concluded that coated metallic components must be analyzed as composite structures and that data generated for design properties must be performed on specimens which represent the geometry and characteristics of intended component.

  13. In situ neutron diffraction study of the low cycle fatigue of the α-γ duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Jenčuš, Peter; Polák, Jaroslav; Lukáš, Petr; Muránsky, Ondrej

    2006-11-01

    In duplex stainless steels, significant thermal stresses are generated during the cooling from the homogenization temperature due to different thermal expansion coefficients of the austenitic and ferritic phases. The results of the in situ neutron diffraction examination of the evolution of the internal stresses during the low cycle fatigue in the SAF 2507 duplex stainless steel are reported. Stress response of both constituent components resulting from the load sharing between austenitic and ferritic grains was measured. It was found that the initial thermal residual stresses were relaxed rapidly at the beginning of the cyclic loading. Whereas initial hardening was identified in both phases, the subsequent fatigue softening was fully attributed to the austenitic phase.

  14. Simulation of Delamination Propagation in Composites Under High-Cycle Fatigue by Means of Cohesive-Zone Models

    NASA Technical Reports Server (NTRS)

    Turon, Albert; Costa, Josep; Camanho, Pedro P.; Davila, Carlos G.

    2006-01-01

    A damage model for the simulation of delamination propagation under high-cycle fatigue loading is proposed. The basis for the formulation is a cohesive law that links fracture and damage mechanics to establish the evolution of the damage variable in terms of the crack growth rate dA/dN. The damage state is obtained as a function of the loading conditions as well as the experimentally-determined coefficients of the Paris Law crack propagation rates for the material. It is shown that by using the constitutive fatigue damage model in a structural analysis, experimental results can be reproduced without the need of additional model-specific curve-fitting parameters.

  15. Twinning Behaviors During Thermomechanical Fatigue Cycling of a Nickel-Base Single-Crystal TMS-82 Superalloy

    NASA Astrophysics Data System (ADS)

    Lv, X. Z.; Zhang, J. X.; Harada, H.

    2014-03-01

    This paper provides further insight into the formation of deformation twins at different stages during the whole thermomechanical fatigue cycling in a nickel-base single-crystal TMS-82 superalloy. In general, it is found that twinning behaviors can always be associated with the applied stress orientation. The preferred twinning direction at the primary stage is <001>-compression since the tangled dislocations which appear after the first plastic deformation provide an opportunity for twinning nucleation in compression. At the intermediate stage, the applied stress required for formation of twins in tension is much larger than that in compression; hence, twinning behaviors show distinct tension/compression asymmetry. A thick twin plate and a great many dislocations can be found after fatigue failure, and one can rationalize the reason for this twinning being associated with the TMF procedure. Twins at the tip of the crack in tension occur owing to the existence of compressive strain field.

  16. Behaviour of leatherback sea turtles, Dermochelys coriacea, during the migratory cycle

    PubMed Central

    James, Michael C; Myers, Ransom A; Ottensmeyer, C. Andrea

    2005-01-01

    Leatherback sea turtles, Dermochelys coriacea, undertake broad oceanic movements. While satellite telemetry has been used to investigate the post-nesting behaviour of female turtles tagged on tropical nesting beaches, long-term behavioural patterns of turtles of different sexes and sizes have not been described. Here we investigate behaviour for 25 subadult and adult male and female turtles satellite-tagged in temperate waters off Nova Scotia, Canada. Although sex and reproductive condition contributed to variation in migratory patterns, the migratory cycle of all turtles included movement between temperate and tropical waters. Marked changes in rates of travel, and diving and surfacing behaviour, accompanied southward movement away from northern foraging areas. As turtles approached higher latitudes the following spring and summer, they assumed behaviours consistent with regular foraging activity and eventually settled in coastal areas off Canada and the northeastern USA. Behavioural patterns corresponding to various phases of the migratory cycle were consistent across multiple animals and were repeated within individuals that completed return movements to northern waters. We consider the potential biological significance of these patterns, including how turtle behaviour relates to predator avoidance, thermoregulation and prey distribution. PMID:16048769

  17. Effect of sodium environment on the low cycle fatigue properties of modified 9Cr-1Mo ferritic martensitic steel

    NASA Astrophysics Data System (ADS)

    Kannan, R.; Sandhya, R.; Ganesan, V.; Valsan, M.; Bhanu Sankara Rao, K.

    2009-02-01

    Modified 9Cr-1Mo ferritic steel is the material of current interest for the steam generator components of liquid metal cooled fast breeder reactors (LMFBRs). The steam generator has been designed to operate for 30-40 years. It is important to accurately determine the life of the components in the actual environment in order to consider the extension of life beyond the design life. With this objective in view, a programme has been initiated at our laboratory to evaluate the effects of flowing sodium on the LCF behaviour of modified 9Cr-1Mo steel. LCF tests conducted in flowing sodium environment at 823 K and 873 K exhibited cyclic softening behaviour both in air and sodium environments. The fatigue lives are significantly improved in sodium environment when compared to the data obtained in air environment under identical testing conditions. The lack of oxidation in sodium environment is considered to be responsible for the delayed crack initiation and consequent increase in fatigue life. Comparison of experimental lifetimes with RCC-MR design code predictions indicated that the design curve based on air tests is too conservative.

  18. Evaluation of the Effect of Surface Finish on High-Cycle Fatigue of SLM-IN718

    NASA Technical Reports Server (NTRS)

    Lambert, D. M.

    2016-01-01

    The surface finish of parts produced by additive manufacturing processes is much rougher than the surface finish generated by machining processes, and a rougher surface can reduce the fatigue strength of a part. This paper discusses an effort to quantify that reduction of strength in high-cycle fatigue for selective laser melt (SLM) coupons. A high-cycle fatigue (HCF) knockdown factor was estimated for Inconel 718, manufactured with the SLM process. This factor is the percentage reduction from the maximum stress in fatigue for low-stress ground (LSG) specimens to the maximum stress of those left with the original surface condition at the same fatigue life. Specimens were provided by a number of vendors, free to use their "best practice"; only one heat treat condition was considered; and several test temperatures were characterized, including room temperature, 800F, 1000F, and 1200F. The 1000F data had a large variance, and was omitted from consideration in this document. A first method used linear approximations extracted from the graphs, and only where data was available for both. A recommended knockdown factor of the as-built surface condition (average roughness of approximately 245 micro-inches/inch) versus low-stress ground condition (roughness no more than 4 micro-inches/inch) was established at approximately 1/3 or 33%. This is to say that for the as-built surface condition, a maximum stress of 2/3 of the stress for LSG can be expected to produce a similar life in the as-built surface condition. In this first evaluation, the knockdown factor did not appear to be a function of temperature. A second approach, the "KP method", incorporated the surface finish measure into a new parameter termed the pseudo-stress intensity factor, Kp, which was formulated to be similar to the fracture mechanics stress intensity factor. Using Kp, the variance seemed to be reduced across all sources, and knockdown factors were estimated using Kp over the range where data occurred. A

  19. The low cycle fatigue behavior of a plasma-sprayed coating material

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V., Jr.

    1986-01-01

    Single crystal nickel-base superalloys employed in turbine blade applications are often used with a plasma spray coating for oxidation and hot corrosion resistance. These coatings may also affect fatigue life of the superalloy substrate. As part of a large program to understand the fatigue behavior of coated single crystals, fully reversed, total strain controlled fatigue tests were run on a free standing NiCoCrAlY coating alloy, PWA 276, at 0.1 Hz. Fatigue tests were conducted at 650 C, where the NiCoCrAlY alloy has modest ductility, and at 1050 C, where it is extremely ductile, showing tensile elongation in excess of 100 percent. At the lower test temperature, deformation induced disordering softened the NiCoCrAlY alloy, while at the higher test temperature cyclic hardening was observed which was linked to gradual coarsening of the two phase microstructure. Fatigue life of the NiCoCrAlY alloy was significantly longer at the higher temperature. Further, the life of the NiCoCrAlY alloy exceeds that of coated, /001/-oriented PWA 1480 single crystals at 1050 C, but at 650 C the life of the coated crystal is greater than that of the NiCoCrAlY alloy on a total strain basis.

  20. Cycle time influences the development of muscle fatigue at low to moderate levels of intermittent muscle contraction.

    PubMed

    Rashedi, Ehsan; Nussbaum, Maury A

    2016-06-01

    Localized muscle fatigue (LMF) during a repetitive task can be influenced by several aspects such as the level and duration of exertions. Among these aspects, though, the influence of cycle time remains unclear. Here, the effect of cycle time on LMF and performance was examined for a simple biomechanical system during repetitive static efforts. Participants performed 1-h trials of intermittent isometric index finger abduction with a duty cycle of 50% in all combinations of two cycle times (30 and 60s) and two exertion levels (15% and 25% of maximum voluntary capacity). Measures of discomfort, performance (force fluctuations), and muscle capacity (voluntary strength and low-frequency twitch responses) were obtained, all of which demonstrated a beneficial effect of the 30s cycle time. Specifically, the shorter cycle time led to lower rates of increase in perceived discomfort, lower rates of increase in force fluctuations, lower rates of decrease in voluntary capacity, and smaller changes in twitch responses. These benefits, reflecting less LMF development in the shorter cycle time, were quite consistent between genders and the two levels of effort. Results of this study can be used to modify current models predicting work-rest allowance and/or LMF, helping to enhance performance and reduce the risk of adverse musculoskeletal outcomes. PMID:26995711

  1. Low-cycle fatigue behavior of oxygen-free high-conductivity copper at 300/sup 0/C in high vacuum

    SciTech Connect

    Liu, K.C.; Loring, C.M. Jr.

    1983-01-01

    In-vacuum fatigue tests were performed on commercially-pure OFHC copper and 35% Au-65% Cu brazing filler metal at 300/sup 0/C. Excessive recrystallization due to exposure in the 1025/sup 0/C brazing temperature cycle was detrimental to the fatigue life of the base metal; cold work was beneficial to the fatigue resistance. Triple-point cracking and grain boundary sliding were the prevailing modes of fatigue failure observed in the full-size specimens. However, a mixed morphology of ductile and cleavage-like fracture was observed on the fracture surface of the subsize specimen in which the grain structure appeared to have undergone a change because of the presence of surface cold work. The braze has superior fatigue resistance, but to exploit the maximum strength, the brazed joint must be devoid of defects such as cavities and cracks.

  2. Stretch shortening cycle fatigue: interactions among joint stiffness, reflex, and muscle mechanical performance in the drop jump [corrected].

    PubMed

    Horita, T; Komi, P V; Nicol, C; Kyröläinen, H

    1996-01-01

    The purpose of the present study was to investigate the effect of strenuous stretch-shortening cycle exercise on the relationship between reflex and stiffness regulation during the drop jump. Ten healthy male subjects performed submaximal stretch-shortening cycle exercise on a special sledge apparatus. Exhaustion occurred on average within 3 min. A drop jump test from a 50-cm height was performed immediately before and after the sledge exercise, as well as 2 h, 2 days and 4 days later. The fatigue exercise showed relatively high blood lactate concentrations 12.5 (SD 2.6) mmol.l-1 and a 2-day delayed increase of serum cretaine kinase concentration. In drop jumps, the short latency M1 component of the vastus lateralis muscle electromyogram (EMG) response showed a continuous decline throughout the entire follow-up period after fatigue (NS), whereas the medium latency EMG component increased 2 days after the postfatigue sessions (P < 0.05). Immediately after the fatigue exercise a positive correlation (P < 0.05) was found between the changes in the short latency EMG response and in the amount of knee joint stiffness during the early postlanding phase of the drop jump. This suggests that the M1 response was closely related to the stiffness changes during the initial braking phase of the drop jump. Increase of creatine kinase concentration on the 2nd day correlated negatively with the changes in the drop jump performance (P < 0.05). Since the short latency EMG component has almost recovered on the 2nd day, impairment of the mechanical function of the muscle might have taken place. In conclusion, exhausting stretch-shortening cycle exercise induced local muscle impairment, which resulted in modulation of the reflex and stiffness interaction in the drop jump as well as compensation by central motor command. PMID:8803498

  3. Fatigue failure kinetics and structural changes in lead-free interconnects due to mechanical and thermal cycling

    NASA Astrophysics Data System (ADS)

    Fiedler, Brent Alan

    Environmental and human health concerns drove European parliament to mandate the Reduction of Hazardous Substances (RoHS) for electronics. This was enacted in July 2006 and has practically eliminated lead in solder interconnects. There is concern in the electronics packaging community because modern lead-free solder is rich in tin. Presently, near-eutectic tin-silver-copper solders are favored by industry. These solders are stiffer than the lead-tin near-eutectic alloys, have a higher melting temperature, fewer slip systems, and form intermetallic compounds (IMC) with Cu, Ni and Ag, each of which tend to have a negative effect on lifetime. In order to design more reliable interconnects, the experimental observation of cracking mechanisms is necessary for the correct application of existing theories. The goal of this research is to observe the failure modes resulting from mode II strain and to determine the damage mechanisms which describe fatigue failures in 95.5 Sn- 4.0 Ag - 0.5 Cu wt% (SAC405) lead-free solder interconnects. In this work the initiation sites and crack paths were characterized for SAC405 ball-grid array (BGA) interconnects with electroless-nickel immersion-gold (ENIG) pad-finish. The interconnects were arranged in a perimeter array and tested in fully assembled packages. Evaluation methods included monotonic and displacement controlled mechanical shear fatigue tests, and temperature cycling. The specimens were characterized using metallogaphy, including optical and electron microscopy as well as energy dispersive spectroscopy (EDS) and precise real-time electrical resistance structural health monitoring (SHM). In mechanical shear fatigue tests, strain was applied by the substrates, simulating dissimilar coefficients of thermal expansion (CTE) between the board and chip-carrier. This type of strain caused cracks to initiate in the soft Sn-rich solder and grow near the interface between the solder and intermetallic compounds (IMC). The growth near

  4. (abstract) A Brief, Selective Review of Thermal Cycling Fatigue in Eutectic Tin-Lead Solder

    NASA Technical Reports Server (NTRS)

    Winslow, J. W.; Silveira, C. de

    1993-01-01

    This paper reviews selected parts of the current literature relevant to thermo-mechanical fatigue mechanisms in eutectic tin-lead solder, and suggests a general outline to account for some observed failures. The field is found to be complex. One recent experimental study finds some failure modes to be sensitive to joint geometry. Attempts to extrapolate from test environments to service environments have had only limited success. Much work remains to be done before fatigue failures in this material can be considered as under practical control.

  5. Bond and low cycle fatigue behavior of thermoset composite reinforcing for the concrete industry

    SciTech Connect

    Barnes, B.

    1990-09-21

    This thesis encompasses two separate research projects. The first project, described in Chapter 2 was a project investigating the fatigue behavior of thermoset Fiber Composite (FC) sandwich wall ties. The second research project detailed in this thesis was a project studying the bond and tensile properties of FC rod and FC fibers.

  6. Cognitive-behaviour therapy for chronic fatigue syndrome: comparison of outcomes within and outside the confines of a randomised controlled trial.

    PubMed

    Quarmby, Louise; Rimes, Katharine A; Deale, Alicia; Wessely, Simon; Chalder, Trudie

    2007-06-01

    Outcomes for cognitive-behaviour therapy (CBT) in randomised controlled trials (RCTs) have rarely been compared to those in routine clinical practice. Taking the case of CBT for chronic fatigue syndrome (CFS), we evaluated the results of a successful RCT against those of the same treatment given in the same setting as part of routine practice. Fatigue and social adjustment scores were compared for patients who received CBT for CFS as part of a RCT (N=30) and patients who received CBT as part of everyday clinical practice (N=384). The results in the RCT were superior to those in routine clinical practice. Between pre-treatment and 6-month follow-up, the RCT showed a larger reduction in fatigue and greater improvement in social adjustment than those in routine treatment. The changes in fatigue scores were similar for both groups during treatment but were greater in the RCT between post-treatment and follow-up. Potential reasons for the superior results of the RCT include patient selection, therapist factors and the use of a manualised treatment protocol. Practitioners need to pay particular attention to relapse prevention and ensuring adequate follow-up in addition to encouraging patients to continue with cognitive-behavioural strategies once treatment has ended. PMID:17074300

  7. Evaluation of the Effect of Surface Finish on High-Cycle Fatigue for SLM-IN718

    NASA Technical Reports Server (NTRS)

    Lambert, Dennis M.

    2016-01-01

    A high-cycle fatigue (HCF) knockdown factor was estimated for Inconel 718, manufactured with the selective laser melt (SLM) process. This factor is the reduction at a common fatigue life from the maximum stress in fatigue for low-stress ground (LSG) specimens to the maximum stress of those left with the original surface condition. Various vendors provided specimens. To reduce the number of degrees-of-freedom, only one heat treat condition was evaluated. Testing temperatures included room temperature, 800F, 1000F, and 1200F. The two surface conditions were compared at constant lives, where data was available. The recommended knockdown factor of the as-built surface condition (average roughness of approximately 245 micro-inches/inch) versus low-stress ground condition (roughness <= 4 micro-inches/inch) is approximately 1/3 or 33%. This is to say that for the as-built surface condition, a maximum stress of 2/3 of the stress for LSG can be expected to produce the same life in the as built surface condition. As an alternative method, the surface finish was incorporated into a new parameter with the maximum stress. The new parameter was formulated to be similar to the fracture mechanics stress intensity factor, and it was named the pseudo stress intensity factor, Kp. Using Kp, the variance seemed acceptable across all sources, and the knockdown factor was estimated over the range of data identified by Kp where data occurred. A plot of the results suggests that the knockdown factor is a function of temperature, and that for low lives the knockdown is greater than the knockdown observed above about one million cycles, where it stabilizes. One data point at room temperature was clearly different, and the sparsity of data in the higher life region reduces the value of these results. The method does appear to provide useful results, and further characterization of the method is suggested.

  8. Thermal-Fatigue Crack-Growth Characteristics and Mechanical Strain Cycling Behavior of A-286 Discaloy, and 16-25-6 Austenitic Steels

    NASA Technical Reports Server (NTRS)

    Smith, Robert W.; Smith, Gordon T.

    1960-01-01

    Thermal-fatigue crack-growth characteristics of notched- and unnotched-disk specimens of A-286, Discaloy, hot-cold worked 16-25-6, and overaged 16-25-6 were experimentally studied. Separately controlled variables were total strain range (0.0043 to 0.0079 in./in.), maximum cycle temperature (1300 and 1100 F), and hold time at maximum temperature (O and 5 min). A limited number of mechanical, push-pull, constant-strain cycle tests at room temperature were made using notched and un-notched bars of the same materials. In these tests the number of cycles to failure as well as the variation of load change with accumulated cycles was measured, and the effects of mean stress were observed. Constant-strain-range mechanical-fatigue tests at room temperature revealed notched-bar fatigue life to be strongly influenced by mean stress. For a specific strain range, the longest fatigue life was always found to be associated with the least-tensile (or most compressive) mean stress. By defining thermal-fatigue life as the number of cycles required to produce a crack area of 6000 square mils, the relative thermal-fatigue resistances of the test materials were established. Notched-disk specimens of A-286 and Discaloy steels exhibited longer fatigue lives than either hot-cold worked or overaged 16-25-6. On the other hand, unnotched-disk specimens of Discaloy and hot-cold worked 16-25-6 had longer lives than A-286 and overaged 16-25-6. Separation of the crack-growth data into microstage and macrostage periods revealed that the macrostage period accounted for the greatest part of the difference among materials when tested in the notched configuration, while the microstage was largely responsible for the differences encountered in unnotched disks.

  9. Influences of the manufacturing process chain design on the near surface condition and the resulting fatigue behaviour of quenched and tempered SAE 4140

    NASA Astrophysics Data System (ADS)

    Klein, M.; Eifler, D.

    2010-07-01

    To analyse interactions between single steps of process chains, variations in material properties, especially the microstructure and the resulting mechanical properties, specimens with tension screw geometry were manufactured with five process chains. The different process chains as well as their parameters influence the near surface condition and consequently the fatigue behaviour in a characteristic manner. The cyclic deformation behaviour of these specimens can be benchmarked equivalently with conventional strain measurements as well as with high-precision temperature and electrical resistance measurements. The development of temperature-values provides substantial information on cyclic load dependent changes in the microstructure.

  10. A study of the nycthemeral cycle of behavioural temperature regulation in man.

    PubMed Central

    Cabanac, M; Hildebrandt, G; Massonnet, B; Strempel, H

    1976-01-01

    1. Four human subjects were rendered hyperthermic and hypothermic by immersion in warm and cool water, at 02.00, 08.00, 14.00 and 20.00 hr. Bath and oesophageal temperatures and pulse rate were recorded. Temperature preference was determined by operant behaviour and vote. The core temperature set-point for behavioural thermoregulation was estimated from the behavioural results. 2. The results are in accord with those of previous studies of the nyethemeral cycling of autonomic responsiveness to heat and cold with a heating up phase before noon and a cooling down phase during the early night. 3. Subjective sensations and behavioural responses were also found to follow a nycthemeral cycle with a minimum before noon and a maximum at 20.00 hr. 4. The core temperature set point was 0-7 degrees C higher after noon than before noon with a small phase advance from resting core temperature. This result suggests that the nycthemeral cyclic change in body temperature is due to a nycthemeral cyclic change in the set-point near to which body temperature is kept by both autonomic and behavioural thermoregulatory responses. PMID:985881

  11. Influence of the female sexual cycle on BALB/c mouse calling behaviour during mating

    NASA Astrophysics Data System (ADS)

    Barthelemy, Mathieu; Gourbal, Benjamin E. F.; Gabrion, Claude; Petit, Gilles

    Real-time recording technology was used in this study to analyse calling activity during heterosexual encounters in BALB/c mice. The spectrographic analyses revealed distinct types of calls that could be linked to a precise pre-ejaculatory behavioural sequence. In addition, the oestrous cycle of the female was observed to influence the vocalization emission pattern. The recording technology used in this study provides numerous improvements in the characterization description of mice calling behaviour during mating and is expected to be useful in studies of vocal communication in many rodent species.

  12. High temperature, low-cycle fatigue of copper-base alloys in argon. Part 2: Zirconium-copper at 482, 538 and 593 C

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1973-01-01

    Zirconium-copper (1/2 hard) was tested in argon over the temperature range from 482 to 593 C in an evaluation of short-term tensile and low-cycle fatigue behavior. The effect of strain rate on the tensile properties was evaluated at 538 C and in general it was found that the yield and ultimate strengths increased as the strain rate was increased from 0.0004 to 0.01/sec. Ductility was essentially insensitive to strain rate in the case of the zirconium-copper alloy. Strain-rate and hold-time effects on the low cycle fatigue behavior of zirconium-copper were evaluated in argon at 538 C. These effects were as expected in that decreased fatigue life was noted as the strain rate decreased and when hold times were introduced into the tension portion of the strain-cycle. Hold times in compression were much less detrimental than hold times in tension.

  13. Modelling of electrolyte degradation and cycling behaviour in a lithium-air battery

    NASA Astrophysics Data System (ADS)

    Sahapatsombut, Ukrit; Cheng, Hua; Scott, Keith

    2013-12-01

    To understand the deterioration of cycle performance and energy efficiency related with non-aqueous rechargeable Li-air batteries, a micro-macro homogeneous model has been developed to include the practical feature of Li2CO3 formation which occurs by electrolyte degradation during battery cycling. The discharge products can limit the cyclability and passivate the porous-cathode surface. A modelling study of cycling behaviour and cell performance for Li-air batteries in a non-aqueous electrolyte is presented which includes the influence of electrolyte solution degradation. The cycle performance deterioration measured in term of retention of discharge capacity on cycling was predicted from the developed model which includes the effect of irreversible Li2CO3 discharge product. A good agreement between this cell cycling simulation and porous-electrode experiment data is obtained, thus creating a more reliable model for a rechargeable Li-air battery in non-aqueous electrolyte. The cell cycling simulation and porous-electrode experiment indicate that there has been gradual decrease for retention of discharge capacity in a number of battery cycles due to the effect of irreversible formation of the Li2CO3 discharge product. The termination of the cell discharge is not from the pore blockage by the repeated depositing of discharge products as there are some available pores at the end of each discharge cycle.

  14. Dynamic speckle interferometry of high-cycle material fatigue: Theory and some experiments

    NASA Astrophysics Data System (ADS)

    Vladimirov, A. P.

    2016-06-01

    The objective of this paper was theoretical analysis of speckle dynamics in the image plane of a thin transparent object. It was suggested that speckle dynamics develops in simultaneous periodic motion of the sample, micro- and macro-variations of its refraction index and its translational motion. The results of the theory were contrasted with the data obtained in the fatigue tests with transparent object.

  15. Assessment of Low Cycle Fatigue Behavior of Powder Metallurgy Alloy U720

    NASA Technical Reports Server (NTRS)

    Gabb, Tomothy P.; Bonacuse, Peter J.; Ghosn, Louis J.; Sweeney, Joseph W.; Chatterjee, Amit; Green, Kenneth A.

    2000-01-01

    The fatigue lives of modem powder metallurgy disk alloys are influenced by variabilities in alloy microstructure and mechanical properties. These properties can vary as functions of variables the different steps of materials/component processing: powder atomization, consolidation, extrusion, forging, heat treating, and machining. It is important to understand the relationship between the statistical variations in life and these variables, as well as the change in life distribution due to changes in fatigue loading conditions. The objective of this study was to investigate these relationships in a nickel-base disk superalloy, U720, produced using powder metallurgy processing. Multiple strain-controlled fatigue tests were performed at 538 C (1000 F) at limited sets of test conditions. Analyses were performed to: (1) assess variations of microstructure, mechanical properties, and LCF failure initiation sites as functions of disk processing and loading conditions; and (2) compare mean and minimum fatigue life predictions using different approaches for modeling the data from assorted test conditions. Significant variations in life were observed as functions of the disk processing variables evaluated. However, the lives of all specimens could still be combined and modeled together. The failure initiation sites for tests performed at a strain ratio R(sub epsilon) = epsilon(sub min)/epsilon(sub max) of 0 were different from those in tests at a strain ratio of -1. An approach could still be applied to account for the differences in mean and maximum stresses and strains. This allowed the data in tests of various conditions to be combined for more robust statistical estimates of mean and minimum lives.

  16. Influence of microstructure on high-cycle fatigue of Ti-6Al-4V: Bimodal vs. lamellar structures

    NASA Astrophysics Data System (ADS)

    Nalla, R. K.; Ritchie, R. O.; Boyce, B. L.; Campbell, J. P.; Peters, J. O.

    2002-03-01

    The high-cycle fatigue (HCF) of titanium alloy turbine engine components remains a principal cause of failures in military aircraft engines. A recent initiative sponsored by the United States Air Force has focused on the major drivers for such failures in Ti-6Al-4V, a commonly used turbine blade alloy, specifically for fan and compressor blades. However, as most of this research has been directed toward a single processing/heat-treated condition, the bimodal (solution-treated and overaged (STOA)) microstructure, there have been few studies to examine the role of microstructure. Accordingly, the present work examines how the overall resistance to high-cycle fatigue in Ti-6Al-4V compares between the bimodal microstructure and a coarser lamellar ( β-annealed) microstructure. Several aspects of the HCF problem are examined. These include the question of fatigue thresholds for through-thickness large and short cracks; microstructurally small, semi-elliptical surface cracks; and cracks subjected to pure tensile (mode I) and mixed-mode (mode I+II) loading over a range of load ratios (ratio of minimum to maximum load) from 0.1 to 0.98, together with the role of prior damage due to sub-ballistic impacts (foreign-object damage (FOD)). Although differences are not large, it appears that the coarse lamellar microstructure has improved smooth-bar stress-life (S-N) properties in the HCF regime and superior resistance to fatigue-crack propagation (in pure mode I loading) in the presence of cracks that are large compared to the scale of the microstructure; however, this increased resistance to crack growth compared to the bimodal structure is eliminated at extremely high load ratios. Similarly, under mixed-mode loading, the lamellar microstructure is generally superior. In contrast, in the presence of microstructurally small cracks, there is little difference in the HCF properties of the two microstructures. Similarly, resistance to HCF failure following FOD is comparable in the

  17. High cycles fatigue damage of CFRP plates clamped by bolts for axial coupling joint with off-set angle during rotation

    NASA Astrophysics Data System (ADS)

    Ooka, Kazuaki; Okubo, Kazuya; Fujii, Toru; Umeda, Shinichi; Fujii, Masayuki; Sugiyama, Tetsuya

    2014-03-01

    This study discussed the change of residual fracture torque and the fatigue damage process of thin CFRP plates clamped by bolts for axial coupling joint, in which flexible deformation was allowed in the direction of off-set angle by the deflection of the CFRP plates while effective stiffness was obtained in rotational direction. Mechanically laminated 4 layers of the CFRP plates were repeatedly deflected during the rotation of axial coupling, when two axes were jointed with 3 degree of off-set angle, in which number of revolution was 1,800 rpm (30Hz of loading frequency). At first, the fracture morphology of specimen and the residual fracture torque was investigated after 1.0×107 cycles of repeated revolutions. The reduction ratio of spring constant was also determined by simple bending test after the fatigue. The residual fracture torque of the joint was determined on the rotational test machine after 1.0×107 cycles of fatigue. After rotations of cyclic fatigue, fiber breaking and wear of matrix were observed around the fixed parts compressed by washers for setting bolts. The reduction of spring constant of the CFRP plates was caused by the initiation of cyclic fatigue damages around the fixed parts, when the axial coupling joint was rotated with off-set angle. It was found that residual fracture torque of the joint was related with the specific fatigue damage of the CFRP observed in this study.

  18. Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Figert, J.; Beek, J.; Ventura, J.; Martinez, J.; Samonski, F.

    2011-01-01

    This presentation describes results obtained from a research project conducted at the NASA Johnson Space Center (JSC) that was jointly supported by the FAA Technical Center and JSC. The JSC effort was part of a multi-task FAA program involving several U.S. laboratories and initiated for the purpose of developing enhanced analysis tools to assess damage tolerance of rotorcraft and aircraft propeller systems. The research results to be covered in this presentation include a new understanding of the behavior of fatigue crack growth in the threshold region. This behavior is important for structural life analysis of aircraft propeller systems and certain rotorcraft structural components (e.g., the mast). These components are often designed to not allow fatigue crack propagation to exceed an experimentally determined fatigue crack growth threshold value. During the FAA review meetings for the program, disagreements occurred between the researchers regarding the observed fanning (spread between the da/dN curves of constant R) in the threshold region at low stress ratios, R. Some participants believed that the fanning was a result of the ASTM load shedding test method for threshold testing, and thus did not represent the true characteristics of the material. If the fanning portion of the threshold value is deleted or not included in a life analysis, a significant penalty in the calculated life and design of the component would occur. The crack growth threshold behavior was previously studied and reported by several research investigators in the time period: 1970-1980. Those investigators used electron microscopes to view the crack morphology of the fatigue fracture surfaces. Their results showed that just before reaching threshold, the crack morphology often changed from a striated to a faceted or cleavage-like morphology. This change was reported to have been caused by particular dislocation properties of the material. Based on the results of these early investigations, a

  19. Mobile phone use while cycling: incidence and effects on behaviour and safety.

    PubMed

    de Waard, Dick; Schepers, Paul; Ormel, Wieke; Brookhuis, Karel

    2010-01-01

    The effects of mobile phone use on cycling behaviour were studied. In study 1, the prevalence of mobile phone use while cycling was assessed. In Groningen 2.2% of cyclists were observed talking on their phone and 0.6% were text messaging or entering a phone number. In study 2, accident-involved cyclists responded to a questionnaire. Only 0.5% stated that they were using their phone at the time of the accident. In study 3, participants used a phone while cycling. The content of the conversation was manipulated and participants also had to enter a text message. Data were compared with just cycling and cycling while listening to music. Telephoning coincided with reduced speed, reduced peripheral vision performance and increased risk and mental effort ratings. Text messaging had the largest negative impact on cycling performance. Higher mental workload and lower speed may account for the relatively low number of people calling involved in accidents. STATEMENT OF RELEVANCE: Although perhaps mainly restricted to flat countries with a large proportion of cyclists, mobile phone use while cycling has increased and may be a threat to traffic safety, similar to phone use while driving a car. In this study, the extent of the problem was assessed by observing the proportion of cyclists using mobile phones, sending questionnaires to accident-involved cyclists and an experimental study was conducted on the effects of mobile phone use while cycling. PMID:20069479

  20. Effect of Al-Si Pack Cementation Diffusion Coating on High-Temperature Low-Cycle Fatigue Behavior of Inconel 713LC

    NASA Astrophysics Data System (ADS)

    Mansuri, Mohammadreza; Hadavi, Seyed Mohammad Mehdi; Zare, Esmail

    2016-01-01

    In this research, an Al-Si protective coating was applied on the surface of an IN713LC specimen using pack cementation method. Surface-treated and untreated specimens were exposed to low-cycle fatigue by tension-tension loading under total strain control at 1173 K (900 °C) in air. Based on the obtained results, the hardening/softening, cyclic stress-strain, and fatigue life curves were plotted and analyzed. The results showed that both the single-stage and two-stage coatings improved the fatigue life of the substrate. However, owing to more silicon content of single-stage coating compared to that of two-stage coating, the effect of single-stage coating was superior. The stress response of the treated material was lower compared with the untreated one. Observations of the specimen section and fracture surface examinations were used to analyze fatigue behavior of both coated and uncoated materials.

  1. Evaluation of the Effect of Dynamic Sodium on the Low Cycle Fatigue Properties of 316L(N) Stainless Steel Base and Weld Joints

    NASA Astrophysics Data System (ADS)

    Ganesan, V.; Kannan, R.; Mariappan, K.; Sukumaran, G.; Sandhya, R.; Rao, K. Bhanu Sankara

    2012-06-01

    Low cycle fatigue (LCF) tests on 316L(N) austenitic stainless steel base and weld joints were at 823 K and 873 K at a constant strain rate of 3 × 10 -3 s -1 with strain ranges varying from {±}0.4% to {±}1.0% in a servo-hydraulic fatigue test system under flowing sodium environment. The cyclic stress response exhibited a similar trend as that in air comprising of an initial rapid hardening, followed by a slight softening stage before saturation. The fatigue lives are significantly improved in sodium environment when compared to identical testing conditions in air environment. The lack of oxidation in sodium environment is attributed to the delayed crack initiation, reduced crack propagation rate and consequent increase in fatigue life. Comparison of the data evaluated in sodium with RCC-MR design code, derived on the basis of data obtained from air shows that the design based on air tests is conservative.

  2. Investigation of thermal fatigue in fiber composite materials. [(thermal cycling tests)

    NASA Technical Reports Server (NTRS)

    Fahmy, A. A.; Cunningham, T. G.

    1976-01-01

    Graphite-epoxy laminates were thermally cycled to determine the effects of thermal cycles on tensile properties and thermal expansion coefficients of the laminates. Three 12-ply laminate configurations were subjected to up to 5,000 thermal cycles. The cumulative effect of the thermal cycles was determined by destructive inspection (electron micrographs and tensile tests) of samples after progressively larger numbers of cycles. After thermal cycling, the materials' tensile strengths, moduli, and thermal expansion coefficients were significantly lower than for the materials as fabricated. Most of the degradation of properties occurred after only a few cycles. The property degradation was attributed primarily to the progressive development of matrix cracks whose locations depended upon the layup orientation of the laminate.

  3. Fracture morphologies of carbon-black-loaded SBR (styrene-butadiene rubber) subjected to low-cycle, high-stress fatigue. [Styrene-butadiene rubber

    SciTech Connect

    Goldberg, A.; Lesuer, D.R.; Patt, J.

    1988-02-01

    Experimental results, together with an analytical model, related to the loss in tensile strength of styrene-butadiene rubber (SBR) loaded with carbon black (CB) that had been subjected to low-cycle, high-stress fatigue tests were presented in a prior paper. The drop in tensile strength relative to that of a virgin sample was considered to be a measure of damage induced during the fatigue test. The present paper is a continuation of this study dealing with the morphological interpretations of the fractured surfaces, whereby the cyclic-tearing behavior, resulting in the damage, is related to the test and material parameters. It was found that failure is almost always initiated in the bulk of a sample at a material flaw. The size and definition of a flaw increase with an increase in carbon-black loading. Initiation flaw sites are enveloped by fan-shaped or penny-shaped regions which develop during cycling. The size and morphology of a fatigue-tear region appears to be independent of the fatigue load or the extent of the damage (strength loss). By contrast, either an increase in cycling load or an increase in damage at constant load increases the definition of the fatigue-region morphology for all formulations of carbon-black. On the finest scale, the morphology can be described in terms of tearing of individual groups of rubber strands, collapsing to form a cell-like structure. 18 refs., 13 figs.

  4. The effectiveness of aerobic training, cognitive behavioural therapy, and energy conservation management in treating MS-related fatigue: the design of the TREFAMS-ACE programme

    PubMed Central

    2013-01-01

    Background TREFAMS is an acronym for TReating FAtigue in Multiple Sclerosis, while ACE refers to the rehabilitation treatment methods under study, that is, Aerobic training, Cognitive behavioural therapy, and Energy conservation management. The TREFAMS-ACE research programme consists of four studies and has two main objectives: (1) to assess the effectiveness of three different rehabilitation treatment strategies in reducing fatigue and improving societal participation in patients with MS; and (2) to study the neurobiological mechanisms of action that underlie treatment effects and MS-related fatigue in general. Methods/Design Ambulatory patients (n = 270) suffering from MS-related fatigue will be recruited to three single-blinded randomised clinical trials (RCTs). In each RCT, 90 patients will be randomly allocated to the trial-specific intervention or to a low-intensity intervention that is the same for all RCTs. This low-intensity intervention consists of three individual consultations with a specialised MS-nurse. The trial-specific interventions are Aerobic Training, Cognitive Behavioural Therapy, and Energy Conservation Management. These interventions consist of 12 individual therapist-supervised sessions with additional intervention-specific home exercises. The therapy period lasts 16 weeks. All RCTs have the same design and the same primary outcome measures: fatigue - measured with the Checklist Individual Strength, and participation - measured with the Impact on Participation and Autonomy questionnaire. Outcomes will be assessed 1 week prior to, and at 0, 8, 16, 26 and 52 weeks after randomisation. The assessors will be blinded to allocation. Pro- and anti-inflammatory cytokines in serum, salivary cortisol, physical fitness, physical activity, coping, self-efficacy, illness cognitions and other determinants will be longitudinally measured in order to study the neurobiological mechanisms of action. Discussion The TREFAMS-ACE programme is unique in its aim to

  5. High duty cycle to low duty cycle: echolocation behaviour of the hipposiderid bat Coelops frithii.

    PubMed

    Ho, Ying-Yi; Fang, Yin-Ping; Chou, Cheng-Han; Cheng, Hsi-Chi; Chang, Hsueh-Wen

    2013-01-01

    Laryngeally echolocating bats avoid self-deafening (forward masking) by separating pulse and echo either in time using low duty cycle (LDC) echolocation, or in frequency using high duty cycle (HDC) echolocation. HDC echolocators are specialized to detect fluttering targets in cluttered environments. HDC echolocation is found only in the families Rhinolophidae and Hipposideridae in the Old World and in the New World mormoopid, Pteronotus parnellii. Here we report that the hipposiderid Coelops frithii, ostensibly an HDC bat, consistently uses an LDC echolocation strategy whether roosting, flying, or approaching a fluttering target rotating at 50 to 80 Hz. We recorded the echolocation calls of free-flying C. frithii in the field in various situations, including presenting bats with a mechanical fluttering target. The echolocation calls of C. frithii consisted of an initial narrowband component (0.5±0.3 ms, 90.6±2.0 kHz) followed immediately by a frequency modulated (FM) sweep (194 to 113 kHz). This species emitted echolocation calls at duty cycles averaging 7.7±2.8% (n = 87 sequences). Coelops frithii approached fluttering targets more frequently than did LDC bats (C.frithii, approach frequency  = 40.4%, n = 80; Myotis spp., approach frequency  = 0%, n = 13), and at the same frequency as sympatrically feeding HDC species (Hipposideros armiger, approach rate  = 53.3%, n = 15; Rhinolophus monoceros, approach rate  = 56.7%, n = 97). We propose that the LDC echolocation strategy used by C. frithii is derived from HDC ancestors, that this species adjusts the harmonic contents of its echolocation calls, and that it may use both the narrowband component and the FM sweep of echolocations calls to detect fluttering targets. PMID:23717396

  6. Microstructure-sensitive weighted probability approach for modeling surface to bulk transition of high cycle fatigue failures dominated by primary inclusions

    NASA Astrophysics Data System (ADS)

    Salajegheh, Nima

    The mechanical alloying and casting processes used to make polycrystalline metallic materials often introduce undesirable non-metallic inclusions and pores. These are often the dominant sites of fatigue failure origination at the low stress amplitudes that correspond to the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regimes, in which the number of cycles to crack initiation is more than 106. HCF and VHCF experiments on some advanced metallic alloys, such as powder metallurgy Ni-base superalloys, titanium alloys, and high-strength steels have shown that the critical inclusions and pores can appear on the surface as well as in the bulk of the specimen. Fatigue lives have been much higher for specimens that fail from a bulk site. The relative number of bulk initiations increases as the stress amplitude decreases such that just below the traditional HCF limit, fatigue life data appears to be evenly scattered between two datasets corresponding to surface and bulk initiations. This is often referred to as surface to bulk transition in the VHCF regime. Below this transition stress, the likelihood of surface versus bulk initiation significantly impacts the low failure probability estimate of fatigue life. Under these circumstances, a large number of very costly experiments need to be conducted to obtain a statistically representative distribution of fatigue life and to predict the surface versus bulk initiation probability. In this thesis, we pursue a simulation-based approach whereby microstructure-sensitive finite element simulations are performed within a statistical construct to examine the VHCF life variability and assess the surface initiation probability. The methodology introduced in this thesis lends itself as a cost-effective platform for development of microstructure-property relations to support design of new or modified alloys, or to more efficiently predict the properties of existing alloys.

  7. Bithermal low-cycle fatigue behavior of a NiCoCrAlY-coated single crystal superalloy

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V.; Halford, G. R.

    1987-01-01

    Specimens of a single crystal superalloy, PWA 1480, both bare and coated with a NiCoCrAlY alloy, PWA 276, were tested in low-cycle fatigue at 650 and 1050 C, and in bithermal thermomechanical fatigue tests. In the two bithermal test types, tensile strain was imposed at one of the two temperatures and reversed in compression at the other. In the high-strain regime, lives for both bithermal test types approached that for the 650 C isothermal test on an inelastic strain basis, all being controlled by the low ductility of the superalloy at 650 C. In the low-strain regime, coating cracking reduced life in the 650 C isothermal test. The bithermal test imposing tension at 650 C, termed out-of-phase, also produced rapid surface cracking, but in both coated and bare specimens. Increased crack growth rates also occurred for the out-of-phase test. Increased lives in vacuum suggested that there is a large environmental contribution to damage in the out-of-phase test due to the 1050 C exposure followed by tensile straining at the low temperature.

  8. Bithermal Low-Cycle Fatigue Behavior of a NiCoCrAlY-Coated Single Crystal Superalloy

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V.; Halford, G. R.

    1987-01-01

    Specimens of a single crystal superalloy, PWA 1480, both bare and coated with a NiCoCrAlY alloy, PWA 276, were tested in low-cycle fatigue at 650 and 1050 C, and in bithermal thermomechanical fatigue tests. In the two bithermal test types, tensile strain was imposed at one of the two temperatures and reversed in compression at the other. In the high-strain regime, lives for both bithermal test types approached that for the 650 C isothermal test on an inelastic strain basis, all being controlled by the low ductility of the superalloy at 650 C. In the low-strain regime, coating cracking reduced life in the 650 C isothermal test. The bithermal test imposing tension at 650 C, termed out-of-phase, also produced rapid surface cracking, but in both coated and bare specimens. Increased crack growth rates also occurred for the out-of-phase test. Increased lives in vacuum suggested that there is a large environmental contribution to damage in the out-of-phase test due to the 1050 C exposure followed by tensile straining at the low temperature.

  9. Estimation of high temperature low cycle fatigue on the basis of inelastic strain and strainrate

    NASA Technical Reports Server (NTRS)

    Berkovits, A.

    1986-01-01

    Fatigue life at elevated temperature can be predicted by introducing parametric values obtained from monotonic constitutive behavior into the Universal-Slopes Equation. For directionally solidified MAR-M200+HF at 975 C, these parameters are the maximum stress achievable under entirely plastic (time-independent) and purely creep (time-dependent) conditions and the corresponding inelastic strains, as well as the elastic modulus. For materials which exhibit plasticity/creep interaction, two more pairs of monotonic parameters must be evaluated for fatigue life prediction. This life-prediction method based on the Universal-Slopes Equation, resulted from a constitutive model characterizing monotonic and cyclic data as inelastic strainrate as a function of inelastic strain. Characterizing monotonic data is this way, permitted distinction between different material responses such as strain-hardening, strain-softening, and dynamic recovery effects. Understanding and defining the region of influence of each of these effects facilitated formulation of the constitutive model in relation to the mechanical and microstructural processes occurring in the material under cyclic loading.

  10. Plastic Behavior of a Nickel-Based Alloy under Monotonic-Tension and Low-Cycle-Fatigue Loading

    SciTech Connect

    Huang, E-Wen; Barabash, Rozaliya; Wang, Yandong; Clausen, Bjorn; Li, Li; Liaw, Peter K; Ice, Gene E; Yang, Dr Ren; Choo, Hahn; Pike, Lee M; Klarstrom, Dwaine L

    2008-01-01

    The plasticity behavior of the annealed HASTELLOY C-22HSTM alloy, a face-centered cubic (FCC), nickel-based superalloy, was examined by the in-situ neutron-diffraction experiments at room temperature. Monotonic-tension and low-cycle-fatigue experiments were conducted to observe the plastic behavior of the alloy. The tension straining and cyclic-loading deformation were studied as a function of the stress. The plastic behaviors during the deformation are discussed in the light of the relationship between the stress and dislocation-density evolutions. The calculated dislocation-density evolutions within the alloys reflect the strain hardening and cyclic hardening/softening. Experimental lattice strains are compared to verify the hardening mechanism at the selected stress levels for tension and cyclic loadings. Combining with the calculations of the dislocation densities, the neutron-diffraction experiments give an evidence of the strain and cyclic hardening of the alloy.

  11. Mechanisms of deformation and fracture in high temperature low cycle fatigue of Rene 80 and IN 100

    NASA Technical Reports Server (NTRS)

    Romanoski, G. R., Jr.

    1982-01-01

    Specimens tested for the AGARD strain range partitioning program were investigated. Rene 80 and IN 100 were tested in air and in vacuum; at 871 C, 925 C, and 1000 C; and in the coated and uncoated condition. The specimens exhibited a multiplicity of high-temperature low-cycle fatigue damage. Observations of the various forms of damage were consistent with material and testing conditions and were generally in agreement with previous studies. In every case observations support a contention that failure occurs at a particular combination of crack length and maximum stress. A failure criterion which is applicable in the regime of testing studied is presented. The predictive capabilities of this criterion are straight forward.

  12. High-temperature, low-cycle fatigue of advanced copper-base alloys for rocket nozzles. Part 1: Narloy Z

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1974-01-01

    Short-term tensile and low-cycle fatigue data are reported for Narloy Z, a centrifugally cast, copper-base alloy. Tensile tests were performed at room temperature in air and in argon at 482, 538 and 593 C using an axial strain rate of .002/sec to the -1 power. In addition tensile tests were performed at 538 C in an evaluation of tensile properties at strain rates of .004 and .01/sec to the -1 power. Ultimate and yield strength values of about 315 and 200 MN/sq m respectively were recorded at room temperature and these decreased to about 120 and 105 respectively as the temperature was increased to 593 C. Reduction in area values were recorded in the range from 40 to 50% with some indication of a minimum ductility point at 538 C.

  13. Effects of geometry and materials on low cycle fatigue life of turbine blades in LOX/hydrogen rocket engines

    NASA Technical Reports Server (NTRS)

    Ryan, R. M.; Gross, L. A.

    1986-01-01

    This paper presents the results of an advanced turbine blade test program aimed at improving turbine blade low cycle fatigue (LCF) life. A total of 21 blades were tested in a blade thermal tester. The blades were made of MAR-M-246(Hf)DS and PWA-1480SC in six different geometries. The test results show that the PWA-1480SC material improved life by a factor of 1.7 to 3.0 over the current MAR-M-246(Hf)DS. The geometry changes yielded life improvements as high as 20 times the baseline blade made of PWA-1480SC and 34 times the baseline MAR-M-246DS blade.

  14. Current activities in standardization of high-temperature, low-cycle-fatigue testing techniques in the United States

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Ellis, J. Rodney; Swindeman, Robert W.

    1990-01-01

    The American Society for Testing and Materials (ASTM) standard E606-80 is the most often used recommended testing practice for low-cycle-fatigue (LCF) testing in the United States. The standard was first adopted in 1977 for LCF testing at room temperature and was modified in 1980 to include high-temperature testing practices. Current activity within ASTM is aimed at extending the E606-80 recommended practices to LCF under thermomechanical conditions, LCF in high-pressure hydrogen, and LCF in metal-matrix composite materials. Interlaboratory testing programs conducted to generate a technical base for modifying E606-80 for the aforementioned LCF test types are discussed.

  15. Isothermal fatigue behaviour of a (90 deg)8 SiC/Ti-15-3 composite at 426 C

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.

    1992-01-01

    The transverse fatigue behavior of a unidirectional SiC/Ti-15-3 composite is characterized at 426 C. The fatigue behavior of this composite along the (0 deg)8 fiber direction and that of unreinforced Ti-15-3 alloy is compared. It is found that the (90 deg)8 composite fatigue life is much shorter than that of the (0 deg)8 composite. The (90 deg)8 fatigue life is much lower than that of the unreinforced Ti-15-3 alloy. Results from 1D model and fractographic evidence for the (90 deg)8 fatigue behavior indicate that the short life of the composite in this orientation is caused by weak fiber-matrix bond strength.

  16. Effect of Solder-Joint Geometry on the Low-Cycle Fatigue Behavior of Sn-xAg-0.7Cu

    NASA Astrophysics Data System (ADS)

    Lee, Hwa-Teng; Huang, Kuo-Chen

    2016-07-01

    Low-cycle fatigue tests of Sn-Ag-Cu (SAC) Pb-free solder joints under fixed displacement were performed to evaluate the influence of Ag content (0-3 wt.%) and solder-joint geometry (barrel and hourglass types) on solder-joint fatigue behavior and reliability. The solder joints were composed of fine particles of Ag3Sn and Cu6Sn5, which aggregated as an eutectic constituent at grain boundaries of the primary β-Sn phase and formed a dense network structure. A decrease in the Ag content resulted in coarsening of the β-Sn and eutectic phases, which, in turn, decreased the strength of the joint and caused earlier failure. Solder joints in the hourglass form exhibited better fatigue performance with longer life than barrel-type joints. The sharp contact angle formed between the solder and the Cu substrate by the barrel-type joints concentrated stress, which compromised fatigue reliability. The addition of Ag to the solder, however, enhanced fatigue performance because of strengthening caused by Ag3Sn formation. The cracks of the barrel-type SAC solder joints originated mostly at the contact corner and propagated along the interfacial layer between the interfacial intermetallic compound (IMC) and solder matrix. Hourglass-type solder joints, however, demonstrated both crack initiation and propagation in the solder matrix (solder mode). The addition of 1.5-2.0 wt.% Ag to SAC solder appears to enhance the fatigue performance of solder joints while maintaining sufficient strength.

  17. High-Temperature, Low-Cycle Fatigue of Copper-Base Alloys for Rocket Nozzles. Part 1: Data Summary for Materials Tested in Prior Programs

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1975-01-01

    A more detailed analysis of the results obtained in 188 previously reported low-cycle fatigue tests of various candidate materials for regeneratively-cooled, reusable rocket nozzle liners was reported. Plots of load range versus cycles were reported for each test along with a stress-strain hysteresis loop near half-life. In addition, a summary table was provided to compare N5 (cycles to a five percent load range drop) and Nf (cycles to complete specimen separation) values for each test.

  18. Microstructure Evolution Associated with a Superior Low-Cycle Fatigue Resistance of the Fe-30Mn-4Si-2Al Alloy

    NASA Astrophysics Data System (ADS)

    Nikulin, Ilya; Sawaguchi, Takahiro; Ogawa, Kazuyuki; Tsuzaki, Kaneaki

    2015-11-01

    The microstructure evolution responsible for the superior low-cycle fatigue (LCF) resistance ( N f > 8000 cycles at a total strain range of 2 pct) was studied in the Fe-30Mn-4Si-2Al alloy susceptible to strain-induced martensitic transformation. To investigate the microstructure effect on the LCF behaviors of the alloy, a series of interrupted fatigue tests at total strain range of 2 pct were carried out. A characteristic softening stage followed by the secondary hardening was observed during cyclic loading of the studied alloy. This softening is associated with the strain localization caused by persistent Lüders bands formation and the transformation of Lüders bands into strain-induced ɛ-martensite is found to have a key role in the delayed fatigue fracture of the alloy being studied. Therefore, the continuous transformation process involving Lüders bands and ɛ-martensite formation associated with intermediate stacking fault energy (SFE) ( γ SF of 14 mJ/m2) is necessary to prevent the rearrangement of dislocations into walls/channels and substructures inherent to high-SFE ( γ SF higher 20 mJ/m2) alloys capable to accelerated fatigue damage. However, sluggish martensite transformation kinetics is necessary to delay the formation of the ɛ-martensite associated with the development and propagation of fatigue crack in alloys with very low SFE.

  19. Effects of test sample shape and surface production method on the fatigue behaviour of PMMA bone cement.

    PubMed

    Sheafi, E M; Tanner, K E

    2014-01-01

    There is no consensus over the optimal criterion to define the fatigue life of bone cement in vitro. Fatigue testing samples have been made into various shapes using different surface preparation techniques with little attention being paid to the importance of these variations on the fatigue results. The present study focuses on the effect of test sample shape and surface production method on the fatigue results. The samples were manufactured with two cross sectional shapes: rectangular according to ISO 527 and circular according to ASTM F2118. Each shape was produced using two methods: direct moulding of the cement dough and machining from oversized rods. Testing was performed using two different bone cements: SmartSet GHV and DePuy CMW1. At least 10 samples of each category were tested, under fully reversed tension-compression fatigue stress at ±20MPa, to allow for Weibull analysis to compare results. The growth of fatigue cracks was observed by means of the changes in the absorbed energy and apparent modulus. It was found that fatigue crack growth can be altered by the sample shape and production method; however it is also dependent on the chemical composition of the cement. The results revealed that moulded samples, particularly those based on the ASTM F2118 standard, can lead to up to 5.5 times greater fatigue lives compared to the machined samples of the same cement. It is thus essential, when comparing the fatigue results of bone cement, to consider the effect of production method along with the shape of the test sample. PMID:24070780

  20. Morphology and behaviour of dinoflagellate chromosomes during the cell cycle and mitosis.

    PubMed

    Bhaud, Y; Guillebault, D; Lennon, J; Defacque, H; Soyer-Gobillard, M O; Moreau, H

    2000-04-01

    The morphology and behaviour of the chromosomes of dinoflagellates during the cell cycle appear to be unique among eukaryotes. We used synchronized and aphidicolin-blocked cultures of the dinoflagellate Crypthecodinium cohnii to describe the successive morphological changes that chromosomes undergo during the cell cycle. The chromosomes in early G(1) phase appeared to be loosely condensed with numerous structures protruding toward the nucleoplasm. They condensed in late G(1), before unwinding in S phase. The chromosomes in cells in G(2) phase were tightly condensed and had a double number of arches, as visualised by electron microscopy. During prophase, chromosomes elongated and split longitudinally, into characteristic V or Y shapes. We also used confocal microscopy to show a metaphase-like alignment of the chromosomes, which has never been described in dinoflagellates. The metaphase-like nucleus appeared flattened and enlarged, and continued to do so into anaphase. Chromosome segregation occurred via binding to the nuclear envelope surrounding the cytoplasmic channels and microtubule bundles. Our findings are summarized in a model of chromosome behaviour during the cell cycle. PMID:10704374

  1. Analysis of electric and thermal behaviour of lithium-ion cells in realistic driving cycles

    NASA Astrophysics Data System (ADS)

    Tourani, Abbas; White, Peter; Ivey, Paul

    2014-12-01

    A substantial part of electric vehicles (EVs) powertrain is the battery cell. The cells are usually connected in series, and failure of a single cell can deactivate an entire module in the battery pack. Hence, understanding the cell behaviour helps to predict and improve the battery performance and leads to design a cost effective thermal management system for the battery pack. A first principle thermo electrochemical model is applied to study the cell behaviour. The model is in good agreement with the experimental results and can predict the heat generation and the temperature distribution across the cell for different operating conditions. The operating temperature effect on the cell performance is studied and the operating temperature for the best performance is verified. In addition, EV cells are examined in a realistic driving cycle from the Artemis class. The study findings lead to the proposal of some crucial recommendation to design cost effective thermal management systems for the battery pack.

  2. Arm-cycling sprints induce neuromuscular fatigue of the elbow flexors and alter corticospinal excitability of the biceps brachii.

    PubMed

    Pearcey, Gregory E P; Bradbury-Squires, David J; Monks, Michael; Philpott, Devin; Power, Kevin E; Button, Duane C

    2016-02-01

    We examined the effects of arm-cycling sprints on maximal voluntary elbow flexion and corticospinal excitability of the biceps brachii. Recreationally trained athletes performed ten 10-s arm-cycling sprints interspersed with 150 s of rest in 2 separate experiments. In experiment A (n = 12), maximal voluntary contraction (MVC) force of the elbow flexors was measured at pre-sprint 1, post-sprint 5, and post-sprint 10. Participants received electrical motor point stimulation during and following the elbow flexor MVCs to estimate voluntary activation (VA). In experiment B (n = 7 participants from experiment A), supraspinal and spinal excitability of the biceps brachii were measured via transcranial magnetic and transmastoid electrical stimulation that produced motor evoked potentials (MEPs) and cervicomedullary motor evoked potentials (CMEPs), respectively, during a 5% isometric MVC at pre-sprint 1, post-sprint 1, post-sprint 5, and post-sprint 10. In experiment A, mean power output, MVC force, potentiated twitch force, and VA decreased 13.1% (p < 0.001), 8.7% (p = 0.036), 27.6% (p = 0.003), and 5.6% (p = 0.037), respectively, from pre-sprint 1 to post-sprint 10. In experiment B, (i) MEPs decreased 42.1% (p = 0.002) from pre-sprint 1 to post-sprint 5 and increased 40.1% (p = 0.038) from post-sprint 5 to post-sprint 10 and (ii) CMEPs increased 28.5% (p = 0.045) from post-sprint 1 to post-sprint 10. Overall, arm-cycling sprints caused neuromuscular fatigue of the elbow flexors, which corresponded with decreased supraspinal and increased spinal excitability of the biceps brachii. The different post-sprint effects on supraspinal and spinal excitability may illustrate an inhibitory effect on supraspinal drive that reduces motor output and, therefore, decreases arm-cycling sprint performance. PMID:26799694

  3. Experimental study of cyclic creep and high-cycle fatigue of welded joints of St3 steel by the DIC technique

    SciTech Connect

    Kibitkin, Vladimir V. Solodushkin, Andrey I. Pleshanov, Vasily S.

    2015-10-27

    In the paper the mechanisms of plastic deformation and fracture of welded joints of steel St3 were investigated at high-cycle fatigue and cyclic creep by the digital image correlation (DIC) technique. The evolution of strain rate is studied for the following regions: base metal, HAZ, and fusion zone. This strain rate evolution can be considered as a mechanical response of material. Three stages of deformation evolution are shown: deformation hardening (I), fatigue crack initiation (II), and the last stage is related to main crack (III). Two criteria are offered to evaluate the current mechanical state of welded joints.

  4. Experimental study of cyclic creep and high-cycle fatigue of welded joints of St3 steel by the DIC technique

    NASA Astrophysics Data System (ADS)

    Kibitkin, Vladimir V.; Solodushkin, Andrey I.; Pleshanov, Vasily S.

    2015-10-01

    In the paper the mechanisms of plastic deformation and fracture of welded joints of steel St3 were investigated at high-cycle fatigue and cyclic creep by the digital image correlation (DIC) technique. The evolution of strain rate is studied for the following regions: base metal, HAZ, and fusion zone. This strain rate evolution can be considered as a mechanical response of material. Three stages of deformation evolution are shown: deformation hardening (I), fatigue crack initiation (II), and the last stage is related to main crack (III). Two criteria are offered to evaluate the current mechanical state of welded joints.

  5. Use of ultrasonic back-reflection intensity for predicting the onset of crack growth due to low-cycle fatigue in stainless steel under block loading.

    PubMed

    Islam, Md Nurul; Arai, Yoshio; Araki, Wakako

    2015-02-01

    The present study proposes the use of ultrasonic back-reflected waves for evaluating low cycle fatigue crack growth from persistent slip bands (PSBs) of stainless steel under block loading. Fatigue under high-low block loading changes the back-reflected intensity of the ultrasonic wave that emanates from the surface. Measuring the change in ultrasonic intensity can predict the start of crack growth with reasonable accuracy. The present study also proposes a modified constant cumulative plastic strain method and a PSB damage evolution model to predict the onset of crack growth under block loads. PMID:25287974

  6. Etude de la resistance en fatigue des materiaux bitumineux

    NASA Astrophysics Data System (ADS)

    Touhara, Radouen

    The goal of this research program is to evaluate and characterize the fatigue behaviour of two GB20 hot mix asphalt made with two different bitumen. One of them is made in laboratory with a straight-run PG58-28 bitumen, while the second mix was made in an asphalt plant with a PG64-28 bitumen. Two characterization tests, in homogeneous conditions, done in traction/compression on cylindrical specimens are used in this study. First, a complex modulus test performed in the linear viscoelasticity (LVE) domain is used to characterize the mixes and second, a fatigue test is done to evaluate the mixes performances. The fatigue tests were done in strain controlled at different amplitude. All fatigue tests were performed at 10Hz, but at different temperatures (10, 20 and 30°C) in order to evaluate the effect of the temperature on the fatigue behaviour of those mixes. In this document, the results are presented, and the analysis of the results as a function of the grade of bitumen, the tests’ temperature and the dispersion of the results is performed. Also, the DGCB method is applied to the fatigue results to calculate the rate of damage per cycle followed by a study of the different failure criteria (Nf) to predict the fatigue life of asphalt mixes. Keywords: bituminous materials, fatigue, complex modulus, Damage.

  7. A comparison of the effects of fatigue on subjective and objective assessment of situation awareness in cycling.

    PubMed

    Knez, Wade L; Ham, Daniel J

    2006-01-01

    Maximal effort on a 30 km Time Trial (TT30) was examined to assess whether it would elicit changes in objective and subjective tests of the participants' perception of the environment and their ability to anticipate future occurrences (situation awareness; SA) and to determine the effect of post-exercise recovery on SA. Nine experienced (5.22 ± 2.77 years) road cyclists had their objective and subjective levels of SA assessed prior to and at the completion of two TT30. The participants' results were compared to measurements of maximal oxygen uptake (VO2max), peak power output (PPO), age and years of competitive cycle racing experience. Fatigue resulting from maximal effort on a TT30 produced significant changes in both the objective and subjective test of SA. Effect sizes of 0.93 and 0.99 indicated that the first and second TT30 were likely or almost certain to have a beneficial effect on the objective assessment of SA. However, the effect sizes of 0.97 and 0.95 relating to the subjective assessment of cognitive performance on the first and second TT30 showed that it was very likely the participants' had an increased difficulty in maintaining SA. A recovery period of up to three minutes post TT30 had no effect on SA. Changes in SA had no relationship with measurements of VO2max, peak power output (PPO), age and years of competitive cycle racing experience. The findings suggest that within a laboratory environment, participants consistently underestimate their ability to make accurate assessments of their cycling environment compared to objective measures of their SA. Key PointsExhaustive exercise from a TT30 produces significant changes in both subjective and objective SA.This study indicates that fatigued participants underestimate their ability to maintain SA.A time period of three minutes is not enough to observe a recovery effect on subjective or objective SA.Both the objective and subjective tests proved to be reliable assessments of SA. PMID:24198685

  8. Low-cycle fatigue of Type 347 stainless steel and Hastelloy alloy X in hydrogen gas and in air at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Jaske, C. E.; Rice, R. C.; Buchheit, R. D.; Roach, D. B.; Porfilio, T. L.

    1976-01-01

    An investigation was conducted to assess the low-cycle fatigue resistance of two alloys, Type 347 stainless steel and Hastelloy Alloy X, that were under consideration for use in nuclear-powered rocket vehicles. Constant-amplitude, strain-controlled fatigue tests were conducted under compressive strain cycling at a constant strain rate of 0.001/sec and at total axial strain ranges of 1.5, 3.0, and 5.0 %, in both laboratory-air and low-pressure hydrogen-gas environments at temperatures from 538 to 871 C. Specimens were obtained from three heats of Type 347 stainless steel bar and two heats of Hastelloy Alloy X. The tensile properties of each heat were determined at 21, 538, 649, and 760 C. The continuous cycling fatigue resistance was determined for each heat at temperatures of 538, 760, and 871 C. The Type 347 stainless steel exhibited equal or superior fatigue resistance to the Hastelloy Alloy X at all conditions of this study.

  9. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 2: Structural fatigue, thermal cycling, creep, and residual strength

    NASA Technical Reports Server (NTRS)

    Blichfeldt, B.; Mccarty, J. E.

    1972-01-01

    Specimens representative of metal aircraft structural components reinforced with boron filamentary composites were manufactured and tested under cyclic loading, cyclic temperature, or continuously applied loading to evaluate some of the factors that affect structural integrity under cyclic conditions. Bonded, stepped joints were used throughout to provide composite-to-metal transition regions at load introduction points. Honeycomb panels with titanium or aluminum faces reinforced with unidirectional boron composite were fatigue tested at constant amplitude under completely reversed loading. Results indicated that the matrix material was the most fatigue-sensitive part of the design, with debonding initiating in the stepped joints. However, comparisons with equal weight all-metal specimens show a 10 to 50 times improved fatigue life. Fatigue crack propagation and residual strength were studied for several different stiffened panel concepts, and were found to vary considerably depending on the configuration. Composite-reinforced metal specimens were also subjected to creep and thermal cycling tests. Thermal cycling of stepped joint tensile specimens resulted in a ten percent decrease in residual strength after 4000 cycles.

  10. Cavitation Fatigue. Embolism and Refilling Cycles Can Weaken the Cavitation Resistance of Xylem1

    PubMed Central

    Hacke, Uwe G.; Stiller, Volker; Sperry, John S.; Pittermann, Jarmila; McCulloh, Katherine A.

    2001-01-01

    Although cavitation and refilling cycles could be common in plants, it is unknown whether these cycles weaken the cavitation resistance of xylem. Stem or petiole segments were tested for cavitation resistance before and after a controlled cavitation-refilling cycle. Cavitation was induced by centrifugation, air drying of shoots, or soil drought. Except for droughted plants, material was not significantly water stressed prior to collection. Cavitation resistance was determined from “vulnerability curves” showing the percentage loss of conductivity versus xylem pressure. Two responses were observed. “Resilient” xylem (Acer negundo and Alnus incana stems) showed no change in cavitation resistance after a cavitation-refilling cycle. In contrast, “weakened” xylem (Populus angustifolia, P. tremuloides, Helianthus annuus stems, and Aesculus hippocastanum petioles) showed considerable reduction in cavitation resistance. Weakening was observed whether cavitation was induced by centrifugation, air dehydration, or soil drought. Observations from H. annuus showed that weakening was proportional to the embolism induced by stress. Air injection experiments indicated that the weakened response was a result of an increase in the leakiness of the vascular system to air seeding. The increased air permeability in weakened xylem could result from rupture or loosening of the cellulosic mesh of interconduit pit membranes during the water stress and cavitation treatment. PMID:11161035

  11. The Effect of a Non-Gaussian Random Loading on High-Cycle Fatigue of a Thermally Post-Buckled Structure

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Behnke, marlana N.; Przekop, Adam

    2010-01-01

    High-cycle fatigue of an elastic-plastic beam structure under the combined action of thermal and high-intensity non-Gaussian acoustic loadings is considered. Such loadings can be highly damaging when snap-through motion occurs between thermally post-buckled equilibria. The simulated non-Gaussian loadings investigated have a range of skewness and kurtosis typical of turbulent boundary layer pressure fluctuations in the vicinity of forward facing steps. Further, the duration and steadiness of high excursion peaks is comparable to that found in such turbulent boundary layer data. Response and fatigue life estimates are found to be insensitive to the loading distribution, with the minor exception of cases involving plastic deformation. In contrast, the fatigue life estimate was found to be highly affected by a different type of non-Gaussian loading having bursts of high excursion peaks.

  12. Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Zanganehgheshlaghi, Mohannad

    2014-01-01

    The research results described in this paper presents a new understanding of the behavior of fatigue crack growth in the threshold region. It is believed by some crack growth experts that the ASTM load shedding test method does not produce true or valid threshold properties. The concern involves the observed fanning of threshold region da/dN data plots for some materials in which the low R-ratio data fans out or away from the high R-ratio data. This data fanning or elevation of threshold values is obviously caused by an increase in crack closure in the low R-ratio tested specimens. This increase in crack closure is assumed by some investigators to be caused by a plastic wake on the crack surfaces that was created during the load shedding test phase. This study shows that the increase in crack closure is the result of an extensive occurrence of crack bifurcation behavior in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the particular fanning behavior in aluminum alloys is a function of intrinsic dislocation property of the materials and that the fanned data represents valid material properties. However, for corrosion sensitive steel alloys used in this study the fanning was caused by a build-up of iron oxide at the crack tip from fretting corrosion.

  13. A study on the role of grain boundary engineering in promoting high-cycle fatigue resistance and improving reliability in nickel base superalloys for propulsion systems

    NASA Astrophysics Data System (ADS)

    Gao, Yong

    High-cycle fatigue, involving the premature initiation and/or rapid propagation of small cracks to failure due to high-frequency (vibratory) loading, remains the principal cause of failures in military gas-turbine propulsion systems. The objective of this study is to examine whether the resistance to high-cycle fatigue failures can be enhanced by grain-boundary engineering, i.e., through the modification of the spatial distribution and topology of the grain boundaries in the microstructure. While grain boundary engineering has been used to obtain significant improvements in intergranular corrosion and cracking, creep and cavitation behavior, toughness and plasticity, cold-work embrittlement, and weldability, only very limited, but positive, results exist for fatigue. Accordingly, using a commercial polycrystalline nickel base gamma/gamma' superalloy, ME3, as a typical engine disk material, sequential thermomechanical processing, involving alternate cycles of strain and annealing, is used to (i) modify the proportion of special grain boundaries, and (ii) interrupt the connectivity of the random boundaries in the grain boundary network. The processed microstructures are then subjected to fracture-mechanics based high cycle fatigue testing to evaluate how the crack initiation and small- and large-crack growth properties are affected and to examine how the altered grain boundary population and connectivity can influence growth rates and overall lifetimes. The effect of such grain-boundary engineering on the fatigue-crack-propagation behavior of large (˜8 to 20 mm), through-thickness cracks at 25, 700, and 800°C was examined. Although there was little influence of an increased special boundary fraction at ambient temperatures, the resistance to near-threshold crack growth was definitively improved at elevated temperatures, with fatigue threshold-stress intensities some 10 to 20% higher than at 25°C, concomitant with a lower proportion (˜20%) of intergranular

  14. Scavengers on the Move: Behavioural Changes in Foraging Search Patterns during the Annual Cycle

    PubMed Central

    López-López, Pascual; Benavent-Corai, José; García-Ripollés, Clara; Urios, Vicente

    2013-01-01

    Background Optimal foraging theory predicts that animals will tend to maximize foraging success by optimizing search strategies. However, how organisms detect sparsely distributed food resources remains an open question. When targets are sparse and unpredictably distributed, a Lévy strategy should maximize foraging success. By contrast, when resources are abundant and regularly distributed, simple Brownian random movement should be sufficient. Although very different groups of organisms exhibit Lévy motion, the shift from a Lévy to a Brownian search strategy has been suggested to depend on internal and external factors such as sex, prey density, or environmental context. However, animal response at the individual level has received little attention. Methodology/Principal Findings We used GPS satellite-telemetry data of Egyptian vultures Neophron percnopterus to examine movement patterns at the individual level during consecutive years, with particular interest in the variations in foraging search patterns during the different periods of the annual cycle (i.e. breeding vs. non-breeding). Our results show that vultures followed a Brownian search strategy in their wintering sojourn in Africa, whereas they exhibited a more complex foraging search pattern at breeding grounds in Europe, including Lévy motion. Interestingly, our results showed that individuals shifted between search strategies within the same period of the annual cycle in successive years. Conclusions/Significance Results could be primarily explained by the different environmental conditions in which foraging activities occur. However, the high degree of behavioural flexibility exhibited during the breeding period in contrast to the non-breeding period is challenging, suggesting that not only environmental conditions explain individuals' behaviour but also individuals' cognitive abilities (e.g., memory effects) could play an important role. Our results support the growing awareness about the role of

  15. Effects of conventional machining on the high cycle fatigue strength and crack initiation sites of the gamma titanium aluminide alloy Ti-47Al-2Nb-2Cr (at%) at 23 and 760 C

    SciTech Connect

    Jones, P.E.; Eylon, D.

    1999-07-01

    Effects of a deformed surface layer, created by conventional machining, on the high cycle fatigue strength (10e6 cycles) and fatigue initiation sites of Ti-48Al-2Nb-2Cr (at%) were examined above and below the ductile-to-brittle transition temperature. All samples were tested to failure under the same step loading profile. Comparisons were made between samples having the same load history. At room temperature, fatigue strength and initiation sites were equivalent for turned and electropolished surface conditions. At the anticipated service temperature, 760 C, the work hardened layer created by turning quickly recrystallized. This fine recrystallized surface enhanced the fatigue crack initiation resistance of turned specimens when compared to coarse grained electropolished samples which did not recrystallize during the test. The severe surface deformation resulting from conventional machining did not impair the high cycle fatigue behavior of this intermetallic alloy under the conditions evaluated.

  16. Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Forman, R. G.; Zanganeh, M.

    2014-01-01

    This paper describes the results of a research program conducted to improve the understanding of fatigue crack growth rate behavior in the threshold growth rate region and to answer a question on the validity of threshold region test data. The validity question relates to the view held by some experimentalists that using the ASTM load shedding test method does not produce valid threshold test results and material properties. The question involves the fanning behavior observed in threshold region of da/dN plots for some materials in which the low R-ratio data fans out from the high R-ratio data. This fanning behavior or elevation of threshold values in the low R-ratio tests is generally assumed to be caused by an increase in crack closure in the low R-ratio tests. Also, the increase in crack closure is assumed by some experimentalists to result from using the ASTM load shedding test procedure. The belief is that this procedure induces load history effects which cause remote closure from plasticity and/or roughness changes in the surface morphology. However, experimental studies performed by the authors have shown that the increase in crack closure is a result of extensive crack tip bifurcations that can occur in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the fanning behavior which occurs in aluminum alloys is a function of intrinsic dislocation property of the alloy, and therefore, the fanned data does represent the true threshold properties of the material. However, for the corrosion sensitive steel alloys tested in laboratory air, the occurrence of fanning results from fretting corrosion at the crack tips, and these results should not be considered to be representative of valid threshold properties because the fanning is

  17. Structure-phase states evolution in Al-Si alloy under electron-beam treatment and high-cycle fatigue

    SciTech Connect

    Konovalov, Sergey Alsaraeva, Krestina Gromov, Victor Semina, Olga; Ivanov, Yurii

    2015-10-27

    By methods of scanning and transmission electron diffraction microscopy the analysis of structure-phase states and defect substructure of silumin subjected to high-intensity electron beam irradiation in various regimes and subsequent fatigue loading up to failure was carried out. It is revealed that the sources of fatigue microcracks are silicon plates of micron and submicron size are not soluble in electron beam processing. The possible reasons of the silumin fatigue life increase under electron-beam treatment are discussed.

  18. Investigation of Cyclic Deformation and Fatigue of Polycrystalline Cu under Pure Compression Cyclic Loading Conditions

    NASA Astrophysics Data System (ADS)

    Hsu, Tzu-Yin Jean

    It is commonly accepted that fatigue crack is initiated under tensile fatigue stresses. However, practical examples demonstrate that cracks may also initiate under pure compressive fluctuating loads such as the failures observed in aircraft landing gear frames. However, the mechanism of such failures is rarely investigated. Furthermore, knowledge on cyclic deformation response under pure compressive fatigue condition is also very limited or non-existent. Our recent work already verified that fatigue cracks may nucleate from stress concentration sites under pure compression fatigue, but whether or not a form of stress concentration is always needed to initiate a crack under pure compression fatigue remains uncertain. In this study, compression fatigue tests under different peak stresses were carried out on smooth bars of fully annealed OFHC Copper. The purpose of these tests is to investigate not only the cyclic deformation response but also the possibility of crack nucleation without the stress concentrator. Results showed that overall the cyclic stress-strain response and microstructural evolution of OFHC Copper under pure compression fatigue exhibits rather dissimilar behaviour compared to those under symmetrical fatigue. The specimens hardened rapidly within 10 cycles under pure compression fatigue unlike the gradual cyclic hardening behaviour in symmetrical fatigue with the same peak stress amplitude. Compressive cyclic creep behaviour was also observed under the same testing conditions. Moreover, unlike conventional tension-compression fatigue, only moderate slip activity was detectable on the surface instead of typical PSB features detected from TEM observations. The surface observations has revealed that surface slip bands did not increase in number nor did they become more pronounced in height with increasing number of cycles. In addition, surface roughening by grain boundary extrusion was detected to become more severe as the cycling progressed. Therefore

  19. Daily Social Enjoyment Interrupts the Cycle of Same-day and Next-day Fatigue in Women with Fibromyalgia

    PubMed Central

    Yeung, Ellen W.; Davis, Mary C.; Aiken, Leona S.; Tennen, Howard A.

    2014-01-01

    Background Fatigue is a debilitating symptom of fibromyalgia (FM) that has limited treatment options. Some evidence, however, has linked positive social engagement with reduced within-day fatigue. Purpose This study elaborated longitudinal within-day and across-day relations between FM fatigue and social enjoyment. Methods 176 women with FM completed 21-day automated diaries assessing morning and end-of-day fatigue, and both afternoon social enjoyment and stress within two social domains: non-spousal and spousal. Results In the non-spousal domain, analysis supported a mediational path from lower morning fatigue to higher afternoon social enjoyment, which predicted lower end-of-day fatigue, and subsequently, lower next-morning fatigue. Enjoyment exerted a greater impact on within-day fatigue than did stress. Patterns in the spousal domain were similar, but the mediated path was nonsignificant. Conclusions Positive social engagement offers relief from FM fatigue that carries over across days and may provide an additional target to enhance the effectiveness of current interventions. PMID:25380634

  20. High temperature, low-cycle fatigue of copper-base alloys in argon. Part 1: Preliminary results for 12 alloys at 1000 F (538 C)

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1973-01-01

    Short-term tensile evaluations at room temperature and 538 C and low-cycle fatigue evaluations at 538 C are presented for the following materials: Zirconium copper-annealed, Zirconium copper-1/4 hard, Zirconium copper-1/2 hard, Tellurium copper-1/2 hard, Chromium copper-SA and aged, OFHC copper-hard, OFHC copper-1/4 hard, OFHC copper-annealed, Silver-as drawn, Zr-Cr-Mg copper-SA, CW and aged, Electroformed copper-30-35 ksi, and Co-Be-Zr- copper-SA, aged. A total of 50 tensile tests and 76 low-cycle fatigue tests were performed using a strain rate of 0.2 percent per second.

  1. Studying the role of vision in cycling: critique on restricting research to fixation behaviour.

    PubMed

    Schepers, J P; Den Brinker, B P L M; De Waard, D; Twisk, D A M; Schwab, A L; Smeets, J B J

    2013-10-01

    In a recent study published in Accident Analysis & Prevention, Vansteenkiste et al. (2013)--as one of the first in this field--investigated the visual control of bicycle steering. They undertook the interesting task of testing cyclists' eye fixation behaviour against Donges' two-level model of steering, i.e. the guidance level to anticipate alternations in the course of the road and the stabilization level for lane keeping. Although the laboratory experiment itself is well conducted, we believe that its results cannot be used to test the two-level model of steering as developed for driving. The test track was only 15m long, was completely straight and was known in advance. Accordingly, it did not provide adequate conditions for testing the guidance level. Furthermore, as the experimental lanes were much narrower than real-world cycling lanes, the stabilization level differed considerably from that in the real world. The study by Vansteenkiste et al. (2013) may provide valuable insight into the role of vision in 'precision steering', but, as we discuss in the paper, more elaborate research paradigms are needed to achieve more comprehensive knowledge of the role of vision in real-world cycling and cycling safety. PMID:23911618

  2. The Effects of Exercise Education Intervention on the Exercise Behaviour, Depression, and Fatigue Status of Chronic Kidney Disease Patients

    ERIC Educational Resources Information Center

    Kao, Yu-Hsiu; Huang, Yi-Ching; Chen, Pei-Ying; Wang, Kuo-Ming

    2012-01-01

    Purpose: The purpose of this paper is to investigate the effects of an exercise education intervention on exercise behavior, depression and fatigue status of chronic kidney disease (CKD) patients. Design/methodology/approach: This was a pilot study using an exercise education program as an intervention for CKD patients. The authors used the…

  3. Management of chronic (post-viral) fatigue syndrome.

    PubMed Central

    Wessely, S; David, A; Butler, S; Chalder, T

    1989-01-01

    Simple rehabilitative strategies are proposed to help patients with the chronic fatigue syndrome. A model is outlined of an acute illness giving way to a chronic fatigue state in which symptoms are perpetuated by a cycle of inactivity, deterioration in exercise tolerance and further symptoms. This is compounded by the depressive illness that is often part of the syndrome. The result is a self-perpetuating cycle of exercise avoidance. Effective treatment depends upon an understanding of the interaction between physical and psychological factors. Cognitive behavioural therapy is suggested. Cognitive therapy helps the patient understand how genuine symptoms arise from the frequent combination of physical inactivity and depression, rather than continuing infection, while a behavioural approach enables the treatment of avoidance behaviour and a gradual return to normal physical activity. PMID:2553945

  4. Diving behaviour, dive cycles and aerobic dive limit in the platypus Ornithorhynchus anatinus.

    PubMed

    Bethge, Philip; Munks, Sarah; Otley, Helen; Nicol, Stewart

    2003-12-01

    We investigated the diving behaviour, the time allocation of the dive cycle and the behavioural aerobic dive limit (ADL) of platypuses (Ornithorhynchus anatinus) living at a sub-alpine Tasmanian lake. Individual platypuses were equipped with combined data logger-transmitter packages measuring dive depth. Mean dive duration was 31.3 s with 72% of all dives lasting between 18 and 40 s. Mean surface duration was 10.1 s. Mean dive depth was 1.28 m with a maximum of 8.77 m. Platypuses performed up to 1600 dives per foraging trip with a mean of 75 dives per hour. ADL was estimated by consideration of post-dive surface intervals vs. dive durations. Only 15% of all dives were found to exceed the estimated ADL of 40 s, indicating mainly aerobic diving in the species. Foraging platypuses followed a model of optimised recovery time, the optimal breathing theory. Total bottom duration or total foraging duration per day is proposed as a useful indicator of foraging efficiency and hence habitat quality in the species. PMID:14667845

  5. Effects of foreign object damage from small hard particles on the high-cycle fatigue life of titanium-(6)aluminum-(4)vanadium

    NASA Astrophysics Data System (ADS)

    Hamrick, Joseph L., II

    Thin rectangular samples of Ti-6Al-4V were damaged by four methods to represent foreign object damage found in turbine engine blades: (1) impact with 2 mm. and 5 mm diameter glass spheres at 305 m/s, (2) impact with 2 mm and 4 mm diameter steel spheres at 305 m/s, (3) quasi-static displacement controlled indentation using steel chisels with 1 mm, 2 nun and 5 mm diameter tips and (4) shearing notches with a 2 mm. diameter chisel point under a quasi-static loading condition. Finite element analysis was used to study the relationship between the stress state created by the plastic damage and the fatigue strength. A new method of quantifying the amount of plastic damage from multiple methods was developed. The fatigue strength required for crack initiation at 10E7 cycles was found to be a function of the total depth from the edge of the undeformed specimen up to the end of the plastically deformed zone. For damage depths less than 1750 mum, the reduction in fatigue strength is proportional to the depth of total damage. For depths > 1750 mum, there appears to be a threshold value of fatigue strength.

  6. Development of India-specific RAFM steel through optimization of tungsten and tantalum contents for better combination of impact, tensile, low cycle fatigue and creep properties

    NASA Astrophysics Data System (ADS)

    Laha, K.; Saroja, S.; Moitra, A.; Sandhya, R.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2013-08-01

    Effects of tungsten and tantalum contents on impact, tensile, low cycle fatigue and creep properties of Reduced Activation Ferritic-Martensitic (RAFM) steel were studied to develop India-specific RAFM steel. Four heats of the steel have been melted with tungsten and tantalum contents in the ranges 1-2 wt.% and 0.06-0.14 wt.% respectively. Increase in tungsten content increased the ductile-to-brittle transition temperature (DBTT), low cycle fatigue and creep strength of the steel, whereas the tensile strength was not changed significantly. Increase in tantalum content increased the DBTT and low cycle fatigue strength of the steel whereas the tensile and creep strength decreased. Detailed TEM investigations revealed enhanced microstructural stability of the steel against creep exposure on tungsten addition. The RAFM steel having 1.4 wt.% tungsten with 0.06 wt.% tantalum was found to possess optimum combination of impact, tensile, low cycle fatigue and creep properties and is considered for Indian-specific RAFM steel. Low temperature impact energy of the RAFM steel is quite sensitive to the contents of tungsten and tantalum. The DBTT increased with both the tungsten and tantalum contents. Tungsten and tantalum contents in the investigated ranges had no appreciable effect on the tensile properties of the RAFM steel. Low cycle fatigue life of the RAFM steel increased with the increase in tungsten and tantalum contents. The softening rate with cyclic exposure was lowest for tungsten content of 1.4 wt.%, further increase in tungsten led to an increase in softening rate. Creep deformation and rupture strength of the RAFM steel were found to be quite sensitive to the tungsten and tantalum contents. Creep strength of the steel increased with increase in tungsten content and decreased with increase in tantalum content. Based on the study, the chemical composition of India-specific RAFM steel has been established as 9Cr-1.4W-0.06Ta-V, having optimum combination of strength and

  7. Fatigue crack propagation behaviour of unidirectionally solidified gamma/gamma-prime-delta eutectic alloys. [Ni-Nb-Al alloys

    NASA Technical Reports Server (NTRS)

    Bretz, P. E.; Hertzberg, R. W.

    1979-01-01

    Fatigue crack propagation studies were carried out on unidirectionally solidified gamma/gamma-prime-delta (Ni-Nb-Al) alloys over an aluminum content range of 1.5-2.5% by weight. The variation of Al content of as-grown alloys did not significantly affect the crack growth behavior of these eutectic composites. The results indicate that the addition of Al to the eutectic dramatically improved the FCP behavior. The gamma/gamma-prime-delta alloy exhibited crack growth rates for a given stress intensity range that are an order of magnitude lower than those for the gamma-delta alloy. It is suggested that this difference in FCP behavior can be explained on the basis of stacking fault energy considerations. Extensive delaminations at the crack tip were also revealed, which contributed to the superior fatigue response. Delamination was predominantly intergranular in nature.

  8. Influence of duty cycle on the time course of muscle fatigue and the onset of neuromuscular compensation during exhaustive dynamic isolated limb exercise

    PubMed Central

    Sundberg, Christopher W.

    2015-01-01

    We investigated the influence of altered muscle duty cycle on the performance decrements and neuromuscular responses occurring during constant-load, fatiguing bouts of knee extension exercise. We experimentally altered the durations of the muscularly inactive portion of the limb movement cycle and hypothesized that greater relative durations of inactivity within the same movement task would 1) reduce the rates and extent of muscle performance loss and 2) increase the forces necessary to trigger muscle fatigue. In each condition (duty cycle = 0.6 and 0.3), male subjects [age = 25.9 ± 2.0 yr (SE); mass = 85.4 ± 2.6 kg], completed 9–11 exhaustive bouts of two-legged knee extension exercise, at force outputs that elicited failure between 4 and 290 s. The novel duty cycle manipulation produced two primary results; first, we observed twofold differences in both the extent of muscle performance lost (DC0.6 = 761 ± 35 N vs. DC0.3 = 366 ± 49 N) and the time course of performance loss. For example, exhaustive trials at the midpoint of these force ranges differed in duration by more than 30 s (t0.6 = 36 ± 2.6 vs. t0.3 = 67 ± 4.3 s). Second, both the minimum forces necessary to exceed the peak aerobic capacity and initiate a reliance on anaerobic metabolism, and the forces necessary to elicit compensatory increases in electromyogram activity were 300% greater in the lower vs. higher duty cycle condition. These results indicate that the fatigue-induced compensatory behavior to recruit additional motor units is triggered by a reliance on anaerobic metabolism for ATP resynthesis and is independent of the absolute level or fraction of the maximum force produced by the muscle. PMID:25876654

  9. Damage development during low cycle fatigue of carbon-black loaded SBR. [Styrene butadiene rubber containing 0, 15, 25, and 35 wt % carbon black

    SciTech Connect

    Lesuer, D.; Goldberg, A.; Hiromoto, D.; Patt, J.

    1984-06-18

    Fatigue of elastomers is a subject that has received considerable study over the years. This paper explores the problem of damage accumulation in a series of styrene butadiene rubber (SBR) based compounds containing 0, 15, 25, and 35 wt % carbon-black under conditions in which a limited number of higher stress cycles have been applied to the material (referred to here as low cycle fatigue). Damage development in elastomers can take many forms. Generally speaking, one can classify the degradation as mechanical or chemical in origin. The most obvious form of mechanical damage is flaw or cut growth, while typical examples of chemical damage include chain scission or thermal oxidation. The fatigue crack growth relationship given in Equation 1 obviously only applies to flaw growth. However, it does an excellent job of following the data and exhibits the threshold behavior observed in both SBR and SBR-35 at room temperature. At higher temperatures, the damaged material shows an increasing deviation from threshold behavior. The obvious implication is that some thermally activated damage mechanism is degrading the material. In previous work, carbon-black loaded SBR subjected to a high temperature, high stress environment was shown to undergo a thermal-mechanical oxidation process. Certainly, this process is a candidate for a damage mechanism in these studies. 6 references, 14 figures, 1 table.

  10. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Structural and creep-fatigue evaluation

    DOE PAGESBeta

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; Ho, Clifford; Dutta, Pradip

    2016-06-06

    A supercritical carbon dioxide (sCO2) Brayton cycle is an emerging high energy-density cycle undergoing extensive research due to the appealing thermo-physical properties of sCO2 and single phase operation. Development of a solar receiver capable of delivering sCO2 at 20 MPa and 700 °C is required for implementation of the high efficiency (~50%) solar powered sCO2 Brayton cycle. In this work, extensive candidate materials are review along with tube size optimization using the ASME Boiler and Pressure Vessel Code. Moreover, temperature and pressure distribution obtained from the thermal-fluid modeling (presented in a complementary publication) are used to evaluate the thermal andmore » mechanical stresses along with detailed creep-fatigue analysis of the tubes. For resulting body stresses were used to approximate the lifetime performance of the receiver tubes. A cyclic loading analysis is performed by coupling the Strain-Life approach and the Larson-Miller creep model. The structural integrity of the receiver was examined and it was found that the stresses can be withstood by specific tubes, determined by a parametric geometric analysis. The creep-fatigue analysis display the damage accumulation due to cycling and the permanent deformation on the tubes showed that the tubes can operate for the full lifetime of the receiver.« less

  11. Damage-based life prediction model for uniaxial low-cycle stress fatigue of super-elastic NiTi shape memory alloy microtubes

    NASA Astrophysics Data System (ADS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-08-01

    Based on the experimental observations for the uniaxial low-cycle stress fatigue failure of super-elastic NiTi shape memory alloy microtubes (Song et al 2015 Smart Mater. Struct. 24 075004) and a new definition of damage variable corresponding to the variation of accumulated dissipation energy, a phenomenological damage model is proposed to describe the damage evolution of the NiTi microtubes during cyclic loading. Then, with a failure criterion of Dc = 1, the fatigue lives of the NiTi microtubes are predicted by the damage-based model, the predicted lives are in good agreement with the experimental ones, and all of the points are located within an error band of 1.5 times.

  12. Modeling the low-cycle fatigue behavior of visco-hyperelastic elastomeric materials using a new network alteration theory: Application to styrene-butadiene rubber

    NASA Astrophysics Data System (ADS)

    Ayoub, G.; Zaïri, F.; Naït-Abdelaziz, M.; Gloaguen, J. M.

    2011-02-01

    Although several theories were more or less recently proposed to describe the Mullins effect, i.e. the stress-softening after the first load, the nonlinear equilibrium and non-equilibrium material response as well as the continuous stress-softening during fatigue loading need to be included in the analysis to propose a reliable design of rubber structures. This contribution presents for the first time a network alteration theory, based on physical interpretations of the stress-softening phenomenon, to capture the time-dependent mechanical response of elastomeric materials under fatigue loading, and this until failure. A successful physically based visco-hyperelastic model is revisited by introducing an evolution law for the physical material parameters affected by the network alteration. The general form of the model can be basically represented by two parallel networks: a nonlinear equilibrium response and a time-dependent deviation from equilibrium, in which the network parameters become functions of the damage rate (defined as the ratio of the applied cycle over the applied cycle to failure). The mechanical behavior of styrene-butadiene rubber was experimentally investigated, and the main features of the constitutive response under fatigue loading are highlighted. The experimental results demonstrate that the evolution of the normalized maximum stress only depends on the damage rate endured by the material during the fatigue loading history. The average chain length and the average chain density are then taken as functions of the damage rate in the proposed network alteration theory. The new model is found to adequately capture the important features of the observed stress-strain curves under loading-unloading for a large spectrum of strain and damage levels. The model capabilities to predict variable amplitude tests are critically discussed by comparisons with experiments.

  13. The cyclic deformation and fatigue behaviour of the low carbon steel SAE 1045 in the temperature regime of dynamic strain aging

    SciTech Connect

    Weisse, M.; Wamukwamba, C.K.; Christ, H.J.; Mughrabi, H. . Inst. fuer Werkstoffwissenschaften)

    1993-07-01

    The cyclic deformation behaviour of normalized SAE 1045 steel (german steel grade Ck 45) had been investigated over a range of temperatures between 20 and 375C. Special attention has been paid to the effects of dynamic strain aging, which are most pronounced around 300C. Different types of deformation tests (tension tests, incremental step tests, and constant amplitude cyclic deformation tests under stress control with a stress amplitude of 400 MPa as well as under plastic strain control with a plastic strain amplitude of 0.5%) were carried out to observe the influence of temperature on the macroscopic mechanical behaviour. These tests were followed by TEM studies on microstructural features. In the temperature range of maximum dynamic strain aging, the material was found to show maximum strength in unidirectional as well as in cyclic deformation tests. While the fatigue life is maximum at the temperature of maximum dynamic strain aging in stress-controlled tests, it is minimum in plastic strain controlled tests. At the temperature of maximum dynamic strain aging around 300C, the dislocations are arranged in dense dislocation tangles and parallel dislocation walls, whereas at room and at higher temperatures (375C) mainly dislocation cell structures are observed.

  14. Family-focused cognitive behaviour therapy versus psycho-education for adolescents with chronic fatigue syndrome: long-term follow-up of an RCT.

    PubMed

    Lloyd, Samantha; Chalder, Trudie; Rimes, Katharine A

    2012-11-01

    The aim of this study was to investigate the long term efficacy of family-focused cognitive behaviour therapy (CBT) compared with psycho-education in improving school attendance and other secondary outcomes in adolescents with chronic fatigue syndrome (CFS). A 24 month follow-up of a randomised controlled trial was carried out. Participants received either 13 one-hour sessions of family-focused CBT or four one-hour sessions of psycho-education. Forty-four participants took part in the follow-up study. The proportion of participants reporting at least 70% school attendance (the primary outcome) at 24 months was 90% in CBT group and 84% in psycho-education group; the difference between the groups was not statistically significant (OR = 1.29, p = 0.80). The proportion of adolescents who had recovered in the family-focused CBT group was 79% compared with 64% in the psycho-education, according to a definition including fatigue and school attendance. This difference was not statistically significant (Fisher's exact test, p = 0.34). Family-focused CBT was associated with significantly better emotional and behavioural adjustment at 24 month follow-up compared to psycho-education, as reported by both adolescents (F = 6.49, p = 0.02) and parents (F = 4.52, P = 0.04). Impairment significantly decreased in both groups between six and 24 month follow-ups, with no significant group difference in improvement over this period. Gains previously observed for other secondary outcomes at six month follow-up were maintained at 24 month follow-up with no further significant improvement or group differences in improvement. In conclusion, gains achieved by adolescents with CFS who had undertaken family-focused CBT and psycho-education generally continued or were maintained at two-year follow-up. The exception was that family-focused CBT was associated with maintained improvements in emotional and behavioural difficulties whereas psycho-education was associated with

  15. On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550?C

    SciTech Connect

    Ritchie, IAltenberger, RKNalla, YSano LWagner, RO

    2012-04-01

    The effect of surface treatment on the stress/life fatigue behavior of a titanium Ti-6Al-4V turbine fan blade alloy is investigated in the regime of 102 to 106 cycles to failure under fully reversed stress-controlled isothermal push-pull loading between 25? and 550?C at a frequency of 5 Hz. Specifically, the fatigue behavior was examined in specimens in the deep-rolled and laser-shock peened surface conditions, and compared to results on samples in the untreated (machined and stress annealed) condition. Although the fatigue resistance of the Ti-6Al-4V alloy declined with increasing test temperature regardless of surface condition, deep-rolling and laser-shock peening surface treatments were found to extend the fatigue lives by factors of more than 30 and 5-10, respectively, in the high-cycle and low-cycle fatigue regimes at temperatures as high as 550?C. At these temperatures, compressive residual stresses are essentially relaxed; however, it is the presence of near-surface work hardened layers, with a nanocystalline structure in the case of deep-rolling and dense dislocation tangles in the case of laser-shock peening, which remain fairly stable even after cycling at 450?-550?C, that provide the basis for the beneficial role of mechanical surface treatments on the fatigue strength of Ti-6Al-4V at elevated temperatures.

  16. Movement-Related Cortical Potential Amplitude Reduction after Cycling Exercise Relates to the Extent of Neuromuscular Fatigue.

    PubMed

    Spring, Jérôme Nicolas; Place, Nicolas; Borrani, Fabio; Kayser, Bengt; Barral, Jérôme

    2016-01-01

    Exercise-induced fatigue affects the motor control and the ability to generate a given force or power. Surface electroencephalography allows researchers to investigate movement-related cortical potentials (MRCP), which reflect preparatory brain activity 1.5 s before movement onset. Although the MRCP amplitude appears to increase after repetitive single-joint contractions, the effects of large-muscle group dynamic exercise on such pre-motor potential remain to be described. Sixteen volunteers exercised 30 min at 60% of the maximal aerobic power on a cycle ergometer, followed by a 10-km all-out time trial. Before and after each of these tasks, knee extensor neuromuscular function was investigated using maximal voluntary contractions (MVC) combined with electrical stimulations of the femoral nerve. MRCP was recorded during 60 knee extensions after each neuromuscular sequence. The exercise resulted in a significant decrease in the knee extensor MVC force after the 30-min exercise (-10 ± 8%) and the time trial (-21 ± 9%). The voluntary activation level (VAL; -6 ± 8 and -12 ± 10%), peak twitch (Pt; -21 ± 16 and -32 ± 17%), and paired stimuli (P100 Hz; -7 ± 11 and -12 ± 13%) were also significantly reduced after the 30-min exercise and the time trial. The first exercise was followed by a decrease in the MRCP, mainly above the mean activity measured at electrodes FC1-FC2, whereas the reduction observed after the time trial was related to the FC1-FC2 and C2 electrodes. After both exercises, the reduction in the late MRCP component above FC1-FC2 was significantly correlated with the reduction in P100 Hz (r = 0.61), and the reduction in the same component above C2 was significantly correlated with the reduction in VAL (r = 0.64). In conclusion, large-muscle group exercise induced a reduction in pre-motor potential, which was related to muscle alterations and resulted in the inability to produce a maximal voluntary contraction. PMID:27313522

  17. Movement-Related Cortical Potential Amplitude Reduction after Cycling Exercise Relates to the Extent of Neuromuscular Fatigue

    PubMed Central

    Spring, Jérôme Nicolas; Place, Nicolas; Borrani, Fabio; Kayser, Bengt; Barral, Jérôme

    2016-01-01

    Exercise-induced fatigue affects the motor control and the ability to generate a given force or power. Surface electroencephalography allows researchers to investigate movement-related cortical potentials (MRCP), which reflect preparatory brain activity 1.5 s before movement onset. Although the MRCP amplitude appears to increase after repetitive single-joint contractions, the effects of large-muscle group dynamic exercise on such pre-motor potential remain to be described. Sixteen volunteers exercised 30 min at 60% of the maximal aerobic power on a cycle ergometer, followed by a 10-km all-out time trial. Before and after each of these tasks, knee extensor neuromuscular function was investigated using maximal voluntary contractions (MVC) combined with electrical stimulations of the femoral nerve. MRCP was recorded during 60 knee extensions after each neuromuscular sequence. The exercise resulted in a significant decrease in the knee extensor MVC force after the 30-min exercise (−10 ± 8%) and the time trial (−21 ± 9%). The voluntary activation level (VAL; −6 ± 8 and −12 ± 10%), peak twitch (Pt; −21 ± 16 and −32 ± 17%), and paired stimuli (P100 Hz; −7 ± 11 and −12 ± 13%) were also significantly reduced after the 30-min exercise and the time trial. The first exercise was followed by a decrease in the MRCP, mainly above the mean activity measured at electrodes FC1-FC2, whereas the reduction observed after the time trial was related to the FC1-FC2 and C2 electrodes. After both exercises, the reduction in the late MRCP component above FC1-FC2 was significantly correlated with the reduction in P100 Hz (r = 0.61), and the reduction in the same component above C2 was significantly correlated with the reduction in VAL (r = 0.64). In conclusion, large-muscle group exercise induced a reduction in pre-motor potential, which was related to muscle alterations and resulted in the inability to produce a maximal voluntary contraction. PMID:27313522

  18. Investigation of Cyclic Deformation and Fatigue of Polycrystalline Cu under Pure Compression Cyclic Loading Conditions

    NASA Astrophysics Data System (ADS)

    Hsu, Tzu-Yin Jean

    It is commonly accepted that fatigue crack is initiated under tensile fatigue stresses. However, practical examples demonstrate that cracks may initiate under pure compressive fluctuating loads, e.g. the failures observed in aircraft landing gear frames. As the mechanism of such failures is rarely investigated, there is very limited or non-existent knowledge pool on cyclic deformation response under pure compressive fatigue condition. Our recent work verified that fatigue cracks may nucleate from stress concentration sites under pure compression fatigue, but whether or not a form of stress concentration is always needed to initiate a crack remains uncertain. In this study, compression fatigue tests under different peak stresses were carried out on smooth bars of fully annealed OFHC Copper. The purpose of these tests is to investigate not only the cyclic deformation response but also the possibility of crack nucleation without the stress concentrator. Results showed that overall the cyclic stress-strain response and microstructural evolution of OFHC Copper under pure compression fatigue exhibits rather dissimilar behaviour compared to those under symmetrical fatigue. The specimens hardened rapidly within 10 cycles under pure compression fatigue unlike the gradual cyclic hardening behaviour in symmetrical fatigue with the same peak stress amplitude. Compressive cyclic creep behaviour was also observed. Moreover, TEM observation showed that only moderate slip activity was detectable on the surface instead of typical PSB features. The surface observations revealed that surface slip bands did not increase in number nor height as cycling progressed. In addition, surface roughening by grain boundary extrusion was detected to become more severe with further cycling. Therefore, the plastic strain accommodated within the samples was not mainly related to dislocation activities. Instead, the mechanism of cyclic creep response for pure compression fatigue was correlated and

  19. An analysis of the deformation approach to calculation of the life of hydrogen impregnated 1Kh16N4B steel in low-cycle fatigue

    SciTech Connect

    Litvin, V.V.; Anan'evskii, V.A.; Mints, A.I.

    1986-01-01

    This paper presents the results of experimental investigations and an analysis of the applicability of the deformation approach for calculation of the life of 1Kh16N4B steel in low-cycle fatigue. Hydrogen impregnation was done with use of cathodic polarization in a special cell with a polarization current density of 35 mA/cm/sup 2/ for 60 min. The test results are presented, and it can be seen that the influence of hydrogen absorption significantly changes the life of 1Kh16N4B steel, but the Coffin-Kavomoto criterion does not give satisfactory results.

  20. The effect of microstructure, temperature, and hold-time on low-cycle fatigue of As HIP P/M Rene 95

    NASA Technical Reports Server (NTRS)

    Bashir, S.; Antolovich, S. D.

    1984-01-01

    The effects of microstructure, temperature, plastic strain range, and hold time on the low-cycle fatigue (LCF) life were studied for Rene 95, an important Ni base superalloy used in jet engine disks. It was shown that the life could be varied by approximately an order of magnitude at elevated temperatures by simple heat treatments. The life was largest for the microstructure that promoted the most homogeneous deformation mode. The results are explained using the concept of a synergistic interaction between the deformation mode and boundary oxidation.

  1. Low cycle fatigue life of two nickel-base casting alloys in a hydrogen environment. [for high-pressure oxidizer turbopump turbine nozzles

    NASA Technical Reports Server (NTRS)

    Cooper, R. A.

    1976-01-01

    Samples of two nickel-base casting alloys, Mar-M-246 (a Martin Company alloy) and 713LC (a low-carbon modification of the alloy 713C developed by International Nickel Company) were tested as candidate materials for the high-pressure fuel and high-pressure oxidizer turbopump turbine nozzles. The samples were subjected to tensile tests and to low cycle fatigue tests in high-pressure hydrogen to study the influence of the hydrogen environment. The Mar-M-246 material was found to have a three times higher cyclic life in hydrogen than the 713LC alloy, and was selected as the nozzle material.

  2. Effect of inclusion size on the high cycle fatigue strength and failure mode of a high V alloyed powder metallurgy tool steel

    NASA Astrophysics Data System (ADS)

    Yao, Jun; Qu, Xuan-hui; He, Xin-bo; Zhang, Lin

    2012-07-01

    The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was shown that brittle inclusions with large sizes above 30 μm prompted the occurrence of subsurface crack initiation and the reduction in fatigue strength. The fracture toughness and the stress amplitude both exerted a significant influence on the fish-eye size. A larger fish-eye area would form in the sample with a higher fracture toughness subjected to a lower stress amplitude. The stress intensity factor of the inclusion was found to lie above a typical value of the threshold stress intensity factor of 4 MPa·m1/2. The fracture toughness of the sample with a hardness above HRC 56 could be estimated by the mean value of the stress intensity factor of the fish-eye. According to fractographic evaluation, the critical inclusion size can be calculated by linear fracture mechanics.

  3. Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy Rene N4. II - Low cycle fatigue behavior

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Gayda, J.; Miner, R. V.

    1986-01-01

    The low cycle fatigue (LCF) properties of a single-crystal nickel-base superalloy Rene N4, have been examined at 760 and 980 C in air. Specimens having crystallographic orientations near the 001, 011, -111, 023, -236, and -145 lines were tested in fully reversed, total-strain-controlled LCF tests at a frequency of 0.1 Hz. At 760 C, this alloy exhibited orientation dependent tension-compression anisotropies of yielding which continued to failure. Also at 760 C, orientations exhibiting predominately single slip exhibited serrated yielding for many cycles. At 980 C, orientation dependencies of yielding behavior were smaller. In spite of the tension-compression anisotropies, cyclic stress range-strain range behavior was not strongly orientation dependent for either test temperature. Fatigue life on a total strain range basis was highly orientation dependent at 760 and 980 C and was related chiefly to elastic modulus, low modulus orientations having longer lives. Stage I crack growth on 111 planes was dominant at 760 C, while Stage II crack growth occurred at 980 C. Crack initiation generally occurred at near-surface micropores, but occasionally at oxidation spikes in the 980 C tests.

  4. High-temperature low-cycle-fatigue and crack-growth behaviors of three superalloys: HASTELLOY X, HAYNES 230, and HAYNES 188

    NASA Astrophysics Data System (ADS)

    Lu, Yulin

    Low cycle fatigue (LCF) and fatigue crack growth (FCG) experiments on three superalloys HASTELLOY X, HAYNES 230, and HAYNES 188 have been conducted at temperatures from 649 to 982°C. Hold times were imposed at the maximum strain or load to investigate the hold-time effect. In general, the fatigue life decreased as the temperature or hold time increased. However, for the HAYNES 230 alloy at total strain ranges higher than 1.0% and without a hold time, the LCF life was longer at 927°C than at 816°C. This "abnormal" behavior was found to result from the smaller plastic strain amplitude at half-life at 927°C than that at 816°C. An increase in the temperature and/or the introduction of a hold time decreased the hardening rate and increased the softening rate for all the three alloys. The introduction of a hold time and/or the increase of the test temperature progressively changed the fracture mode from the transgranular to mixed trans/inter-granular, then to intergranular feature. Within the two phases of the fatigue process, crack initiation was more severely influenced by the change of the hold time and/or temperature. The FCG data of HASTELLOY X and HAYNES 230 alloys were analyzed with an emphasis on hold-time and temperature effects. The crack grew faster at a higher temperature and a longer hold time. Fracture-mechanics parameters, C*, Ct, and (Ct)avg, were applied to correlate the crack-growth rates. The fatigue-cracking path was mainly transgranular at 816 and 927°C. The cracking path became dominantly intergranular if the hold time increased to 2 min, indicating that the time-dependent damage mechanisms were in control. The Ct and (Ct)avg parameters were capable of consolidating time dependent crack growth rate from different temperatures and alloys. The tests were conducted in air. Therefore, the fracture surfaces were frequently covered with a dark layer of oxides, making fracture feature difficult to identify under scanning-electron-microscopy. To

  5. Thermal Cycling Fatigue in DIPs Mounted with Eutectic Tin-Lead Solder Joints in Stub and Gullwing Geometries

    NASA Technical Reports Server (NTRS)

    Winslow, J. W.; Silveira, C. de

    1993-01-01

    It has long been known that solder joints under mechanical stress are subject to failure. In early electronic systems, such failures were avoided primarily by avoiding the use of solder as a mechanical structural component. The rule was first to make sound wire connections that did not depend mechanically on solder, and only then to solder them. Careful design and miniaturization in modern electronic systems limits the mechanical stresses exerted on solder joints to values less than their yield points, and these joints have become integral parts of the mechanical structures. Unfortunately, while these joints are strong enough when new, they have proven vulnerable to fatigue failures as they age. Details of the fatigue process are poorly understood, making predictions of expected lifetimes difficult.

  6. A randomised trial of adaptive pacing therapy, cognitive behaviour therapy, graded exercise, and specialist medical care for chronic fatigue syndrome (PACE): statistical analysis plan

    PubMed Central

    2013-01-01

    Background The publication of protocols by medical journals is increasingly becoming an accepted means for promoting good quality research and maximising transparency. Recently, Finfer and Bellomo have suggested the publication of statistical analysis plans (SAPs).The aim of this paper is to make public and to report in detail the planned analyses that were approved by the Trial Steering Committee in May 2010 for the principal papers of the PACE (Pacing, graded Activity, and Cognitive behaviour therapy: a randomised Evaluation) trial, a treatment trial for chronic fatigue syndrome. It illustrates planned analyses of a complex intervention trial that allows for the impact of clustering by care providers, where multiple care-providers are present for each patient in some but not all arms of the trial. Results The trial design, objectives and data collection are reported. Considerations relating to blinding, samples, adherence to the protocol, stratification, centre and other clustering effects, missing data, multiplicity and compliance are described. Descriptive, interim and final analyses of the primary and secondary outcomes are then outlined. Conclusions This SAP maximises transparency, providing a record of all planned analyses, and it may be a resource for those who are developing SAPs, acting as an illustrative example for teaching and methodological research. It is not the sum of the statistical analysis sections of the principal papers, being completed well before individual papers were drafted. Trial registration ISRCTN54285094 assigned 22 May 2003; First participant was randomised on 18 March 2005. PMID:24225069

  7. Alternative Computational Approaches for Probalistic Fatigue Analysis

    NASA Technical Reports Server (NTRS)

    Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Moore, N. R.; Grigoriu, M.

    1995-01-01

    The feasibility is discussed for alternative methods of direct Monte Carlo simulation for failure probability computations. First and second order reliability methods are used for fatigue crack growth and low cycle fatigue structural failure modes to illustrate typical problems.

  8. The analysis of fatigue crack growth mechanism and oxidation and fatigue life at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1988-01-01

    Two quantitative models based on experimentally observed fatigue damage processes have been made: (1) a model of low cycle fatigue life based on fatigue crack growth under general-yielding cyclic loading; and (2) a model of accelerated fatigue crack growth at elevated temperatures based on grain boundary oxidation. These two quantitative models agree very well with the experimental observations.

  9. Bithermal fatigue: A simplified alternative to thermomechanical fatigue

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.

    1988-01-01

    A bithermal fatigue test technique was proposed as a simplified alternative to the thermomechanical fatigue test. Both the thermomechanical cycle and the bithermal technique can be used to study nonisothermal fatigue behavior. The difference between the two cycles is that in a conventional thermomechanical fatigue cycle the temperature is continuously varied concurrently with the applied mechanical strains, but in the bithermal fatigue cycle the specimen is held at zero load during the temperature excursions and all the loads are applied at the two extreme temperatures of the cycle. Experimentally, the bithermal fatigue test technique offers advantages such as ease in synchronizing the temperature and mechanical strain waveforms, in minimizing temperature gradients in the specimen gauge length, and in reducing and interpreting thermal fatigue such as the influence of alternate high and low temperatures on the cyclic stress-strain response characteristics, the effects of thermal state, and the possibility of introducing high- and low-temperature deformation mechanisms within the same cycle. The bithermal technique was used to study nonisothermal fatigue behavior of alloys such as single-crystal PWA 1480, single-crystal Rene N4, cast B1900+Hf, and wrought Haynes 188.

  10. Fatigue and thermal fatigue of Pb-Sn solder joints

    SciTech Connect

    Frear, D.; Grivas, D.; McCormack, M.; Tribula, D.; Morris, J.W. Jr.

    1987-01-01

    This paper presents a fundamental investigation of the fatigue and thermal fatigue characteristics, with an emphasis on the microstructural development during fatigue, of Sn-Pb solder joints. Fatigue tests were performed in simple shear on both 60Sn-40Pb and 5Sn-95Pb solder joints. Isothermal fatigue tests show increasing fatigue life of 60Sn-40Pb solder joints with decreasing strain and temperature. In contrast, such behavior was not observed in the isothermal fatigue of 5Sn-95Pb solder joints. Thermal fatigue results on 60Sn-40Pb solder cycled between -55/sup 0/C and 125/sup 0/C show that a coarsened region develops in the center of the joint. Both Pb-rich and Sn-rich phases coarsen, and cracks form within these coarsened regions. The failure mode 60Sn-40Pb solder joints in thermal and isothermal fatigue is similar: cracks form intergranularly through the Sn-rich phase or along Sn/Pb interphase boundaries. Extensive cracking is found throughout the 5Sn-95Pb joint for both thermal and isothermal fatigue. In thermal fatigue the 5Sn-95Pb solder joints failed after fewer cycles than 60Sn-40Pb.

  11. Low-cycle Fatigue and Dynamic Fracture in Gold Thin Films on SiN Supported Membranes

    NASA Technical Reports Server (NTRS)

    Hays, C. C.; Newell, J. M.; MacNeal, P. D.; Ruiz, R. P.; Holmes, W. A.; Yun, M.; Mulder, J. L.; Koch, T. C.; Bock, J. J.; Lange, A. E.

    2005-01-01

    This slide presentation focuses on the dynamic mechanical response and fatigue behavior in sub-micron thick Au-films deposited onto amorphous Si(sub X)N(sub y) substrates, with spider-web geometry, that were subjected to forced vibration (3-axis random vibration with 2 kHz roll-off frequency). The work is to advance cyrogenic detectors that can operate at 100mK, that is required to create cryogenic detectors that are to search for present day signatures of the big bang.

  12. Nitinol Fatigue Life for Variable Strain Amplitude Fatigue

    NASA Astrophysics Data System (ADS)

    Lin, Z.; Pike, K.; Schlun, M.; Zipse, A.; Draper, J.

    2012-12-01

    Nitinol fatigue testing results are presented for variable strain amplitude cycling. The results indicate that cycles smaller than the constant amplitude fatigue limit may contribute to significant fatigue damage when they occur in a repeating sequence of large and small amplitude cycles. The testing utilized two specimen types: stent-like diamond specimens and Z-shaped wire specimens. The diamond specimens were made from nitinol tubing with stent-like manufacturing processes and the Z-shaped wire specimens were made from heat set nitinol wire. The study explored the hypothesis that duty cycling can have an effect on nitinol fatigue life. Stent-like structures were subjected to different in vivo loadings in order to create more complex strain amplitudes. The main focus in this study was to determine whether a combination of small and large amplitudes causes additional damage that alters the fatigue life of a component.

  13. Effects of a high mean stress on the high cycle fatigue life of PWA 1480 and correlation of data by linear elastic fracture mechanics

    NASA Technical Reports Server (NTRS)

    Majumdar, S.; Kwasny, R.

    1985-01-01

    High-cycle fatigue tests using 5-mm-diameter smooth specimens were performed on the single crystal alloy PWA 1480 (001 axis) at 70F (room temperature) in air and at 100F (538C) in vacuum (10 to the -6 power torr). Tests were conducted at zero mean stress as well as at high tensile mean stress. The results indicate that, although a tensile mean stress, in general, reduces life, the reduction in fatigue strength, for a given mean stress at a life of one million cycles, is much less than what is predicted by the usual linear Goodman plot. Further, the material appears to be significantly more resistant to mean stress effects at 1000F than at 70F. Metallographic examinations of failed specimens indicate that failures in all cases are initiated from micropores of sizes of the order of 30 to 40 microns. Since the macroscopic stress-strain response in all cases was observed to be linear elastic, linear elastic fracture mechanics (LEFM) analyses were carried out to determine the crack growth curves of the material assuming that crack initiation from a micropore (a sub o = 40 microns) occurs very early in life. The results indicate that the calculated crack growth rates at an R (defined as the ratio between minimum stress to maximum stress) value of zero are approximately the same at 70F as at 1000F. However, the calculated crack growth rates at other R ratios, both positive and negative, tend to be higher at 70F than at 1000F. Calculated threshold effects at large R values tend to be independent of temperature in the temperature regime studied. They are relatively constant with increasing R ratio up to a value of about 0.6, beyond which the calculated threshold stress intensity factor range decreases rapidly with increasing R ratios.

  14. Changes in urinary amino acids excretion in relationship with muscle activity markers over a professional cycling stage race: in search of fatigue markers.

    PubMed

    Corsetti, Roberto; Barassi, Alessandra; Perego, Silvia; Sansoni, Veronica; Rossi, Alessandra; Damele, Clara Anna Linda; Melzi D'Eril, Gianlodovico; Banfi, Giuseppe; Lombardi, Giovanni

    2016-01-01

    The aim of this study was to identify the relationship between metabolic effort, muscular damage/activity indices, and urinary amino acids profile over the course of a strenuous prolonged endurance activity, as a cycling stage race is, in order to identify possible fatigue markers. Nine professional cyclists belonging to a single team, competing in the Giro d'Italia cycling stage race, were anthropometrically characterized and sampled for blood and urine the day before the race started, and on days 12 and 23 of the race. Diet was kept the same over the race, and power output and energy expenditure were recorded. Sera were assayed for muscle markers (lactate dehydrogenase, aspartate aminotransferase, and creatine kinase activities, and blood urea nitrogen), and creatinine, all corrected for plasma volume changes. Urines were profiled for amino acid concentrations, normalized on creatinine excretion. Renal function, in terms of glomerular filtration rate, was monitored by MDRD equation corrected on body surface area. Creatine kinase activity and blood urea were increased during the race as did serum creatinine while kidney function remained stable. Among the amino acids, taurine, glycine, cysteine, leucine, carnosine, 1-methyl histidine, and 3-methyl histidine showed a net decreased, while homocysteine was increased. Taurine and the dipeptide carnosine (β-alanyl-L-histidine) were significantly correlated with the muscle activity markers and the indices of effort. In conclusion, the metabolic profile is modified strikingly due to the effort. Urinary taurine and carnosine seem useful tools to evaluate the muscle damage and possibly the fatigue status on a long-term basis. PMID:26306846

  15. Fatigue and fracture in materials used for micro-scale biomedical components.

    PubMed

    Wiersma, Susanne; Dolan, Finbar; Taylor, David

    2006-01-01

    Some biomedical components involve the use of materials in microscopic quantities, i.e. in section sizes which are of the same order of magnitude as microstructural features in the material, such as grains. The mechanical behaviour of the material may be different when used in these quantities, compared to its behaviour in macroscopic amounts. An example of a microscopic component is the cardiovascular stent. To ensure the integrity of the stent during deployment and subsequent use, the designer must be able to simulate possible failure modes, i.e. monotonic fracture and fatigue, and the effect of stress concentrations. We carried out tests on specimens of 316L stainless steel, with and without stress concentrations. We found a significant size effect, in which the behaviour of these microscopic specimens was different from that of larger, macroscopic specimens. Microscopic specimens had lower tensile strengths and higher ductility. Under cyclic loading, the material's behaviour at large numbers of cycles was independent of specimen size, but the microscopic specimens were inferior at smaller numbers of cycles to failure. Fatigue limits for the notched specimens could be predicted using an existing theory (the Theory of Critical Distances) but parameter values were different at the macro- and micro-scale. Thus, data from conventional, macroscopic specimens cannot be used to predict the behaviour of this material when used for microscopic components. Mechanical working and annealing strongly affected the tensile strength and ductility, but had no significant effect on fatigue behaviour. PMID:16477122

  16. Temperature dependence of liquid metal embrittlement susceptibility of a modified 9Cr-1Mo steel under low cycle fatigue in lead-bismuth eutectic at 160-450 °C

    NASA Astrophysics Data System (ADS)

    Gong, Xing; Marmy, Pierre; Qin, Ling; Verlinden, Bert; Wevers, Martine; Seefeldt, Marc

    2016-01-01

    Low cycle fatigue properties of a 9Cr-1Mo ferritic-martensitic steel (T91) have been tested in a low oxygen concentration (LOC) lead-bismuth eutectic (LBE) environment and in vacuum at 160-450 °C. The results show a clear fatigue endurance "trough" in LOC LBE, while no such a strong temperature dependence of the fatigue endurance is observed when the steel is tested in vacuum. The fractographic observations by means of scanning electron microscopy (SEM) show that ductile microdimples are prevalent on the fracture surfaces of the specimens tested in vacuum, whereas the fracture surfaces produced in LOC LBE at all the temperatures are characterized by quasi-cleavage. Interestingly, using electron backscatter diffraction (EBSD), martensitic laths close to the fatigue crack walls or to the fracture surfaces of the specimens tested in vacuum are found to have transformed into very fine equiaxed subgrains. Nevertheless, such microstructural modifications do not happen to the specimens tested in LOC LBE at 160-450 °C. These interesting microstructural distinctions indicate that liquid metal embrittlement (LME) is able to occur throughout the fatigue crack propagation phase in the full range of the temperatures investigated, i.e. LME is not very sensitive to temperature during the fatigue crack propagation.

  17. Behavioural adaptations of argulid parasites (Crustacea: Branchiura) to major challenges in their life cycle.

    PubMed

    Mikheev, V N; Pasternak, A F; Valtonen, E T

    2015-01-01

    Fish lice (Argulus spp.) are obligate ectoparasites, which contrary to most aquatic parasites, retain the ability to swim freely throughout the whole of their life. In fish farms, they can quickly increase in numbers and without effective control cause argulosis, which results in the reduced growth and survival of their fish hosts. The morphology of Argulus spp, including their sensory organs, is suitable for both parasitism and free-swimming. By spending a considerable amount of time away from their host, these parasites risk being excessively dispersed, which could endanger mating success. Here we present a review of recent studies on the behaviour of Argulus spp, especially the aggregative behaviour that mitigates the dilution of the parasite population. Aggregation of parasites, which is especially important during the period of reproduction, occurs on different scales and involves both the aggregation of the host and the aggregation of the parasites on the host. The main behavioural adaptations of Argulus spp, including searches for hosts and mates, host manipulation and host choice, are all focused on the fish. As these ectoparasites repeatedly change hosts and inflict skin damage, they can act as vectors for fish pathogens. The development of environmentally friendly measures for the control and prevention of argulosis needs to take into account the behaviour of the parasites. PMID:26205259

  18. Probabilistic Fatigue Damage Program (FATIG)

    NASA Technical Reports Server (NTRS)

    Michalopoulos, Constantine

    2012-01-01

    FATIG computes fatigue damage/fatigue life using the stress rms (root mean square) value, the total number of cycles, and S-N curve parameters. The damage is computed by the following methods: (a) traditional method using Miner s rule with stress cycles determined from a Rayleigh distribution up to 3*sigma; and (b) classical fatigue damage formula involving the Gamma function, which is derived from the integral version of Miner's rule. The integration is carried out over all stress amplitudes. This software solves the problem of probabilistic fatigue damage using the integral form of the Palmgren-Miner rule. The software computes fatigue life using an approach involving all stress amplitudes, up to N*sigma, as specified by the user. It can be used in the design of structural components subjected to random dynamic loading, or by any stress analyst with minimal training for fatigue life estimates of structural components.

  19. A microstructural study of creep and thermal fatigue deformation in 60Sn-40Pb solder joints

    SciTech Connect

    Tribula, D.

    1990-06-02

    Thermal fatigue failures of solder joints in electronic devices often arise from cyclic shear strains imposed by the mismatched thermal expansion coefficients of the materials that bind the joint as temperature changes are encountered. Increased solder joint reliability demands a fundamental understanding of the metallurigical mechanisms that control the fatigue to design accurate accelerated probative tests and new, more fatigue resistant solder alloys. The high temperatures and slow strain rates that pertain to thermal fatigue imply that creep is an important deformation mode in the thermal fatigue cycle. In this work, the creep behaviour of a solder joint is studied to determine the solder's microstructural response to this type of deformation and to relate this to the more complex problem of thermal fatigue. It is shown that creep failures arise from the inherent inhomogeneity and instability of the solder microstructure and suggest that small compositional changes of the binary near-eutectic Pn-Sn alloy may defeat the observed failure mechanisms. This work presents creep and thermal fatigue data for several near-eutectic Pb-Sn solder compositions and concludes that a 58Sn-40Pb-2In and a 58Sn-40Pb-2Cd alloy show significantly enhanced fatigue resistance over that of the simple binary material. 80 refs., 33 figs., 1 tab.

  20. High temperature low cycle fatigue mechanisms for nickel base and a copper base alloy. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Shih, C. I.

    1982-01-01

    Damage mechanisms were studied in Rene' 95 and NARloy Z, using optical, scanning and transmission in microscopy. In necklace Rene' 95, crack initiation was mainly associated with cracking of surface MC carbides, except for hold time tests at higher strain ranges where initiation was associated more with a grain boundary mechanism. A mixed mode of propagation with a faceted fracture morphology was typical for all cycle characters. The dependence of life on maximum tensile stress can be demonstrated by the data falling onto three lines corresponding to the three tensile hold times, in the life against maximum tensile stress plot. In NARloy Z, crack initiation was always at the grain boundaries. The mode of crack propagation depended on the cycle character. The life decreased with decreasing strain rate and with tensile holds. In terms of damage mode, different life prediction laws may be applicable to different cycle characters.

  1. A critical assessment of the mechanistic aspects in Haynes 188 during low-cycle fatigue in the range 25 C to 1000 C

    SciTech Connect

    Rao, K.B.S.; Allen, G.P.; Ellis, J.R.; Castelli, M.G.

    1997-02-01

    A cobalt-nickel-chromium-tungsten alloy, Haynes 188, is currently used in many military and commercial aircraft turbine engines for combustor liners and for the liquid oxygen posts in the main injector of the space shuttle main engines. The low-cycle fatigue (LCF) behavior of Haynes 188 has been investigated over a range of temperatures between 25 C and 1,000 C employing a triangular waveform and a constant strain amplitude of {+-}0.4 pct. Correlations between macroscopic cyclic deformation and fatigue life with the various microstructural phenomena were enabled through scanning electron microscopy (SEM) and transmission electron microscopy (TEM), detailing the crack initiation and propagation modes, deformation substructure, and carbide precipitation. Cyclic stress response varied as a complex function of temperature. Dynamic strain aging (DSA) was found to occur over a wide temperature range between 300 C and 750 C. In the DSA domain, the alloy exhibited marked cyclic hardening with a pronounced maximum at 650 C. Toward the end of the DSA domain, dislocation pinning by M{sub 23}C{sub 6} precipitates occurred predominantly. The deformation behavior below and above the DSA domain has also ben investigated in detail. The temperature dependence of LCF life showed a maximum at {approx}300 C. The drastic reduction in life between 300 C and 850 C has been ascribed primarily to the deleterious effects of DSA on crack initiation and propagation, while the lower life at temperatures less than 200 C has been attributed to the combined influence of low ductility and larger cyclic response stress.

  2. Application of cyclic J-integral to low cycle fatigue crack growth of Japanese carbon steel pipe

    SciTech Connect

    Miura, N.; Fujioka, T.; Kashima, K.

    1997-04-01

    Piping for LWR power plants is required to satisfy the LBB concept for postulated (not actual) defects. With this in mind, research has so far been conducted on the fatigue crack growth under cyclic loading, and on the ductile crack growth under excessive loading. It is important, however, for the evaluation of the piping structural integrity under seismic loading condition, to understand the fracture behavior under dynamic and cyclic loading conditions, that accompanies large-scale yielding. CRIEPI together with Hitachi have started a collaborative research program on dynamic and/or cyclic fracture of Japanese carbon steel (STS410) pipes in 1991. Fundamental tensile property tests were conducted to examine the effect of strain rate on tensile properties. Cracked pipe fracture tests under some loading conditions were also performed to investigate the effect of dynamic and/or cyclic loading on fracture behavior. Based on the analytical considerations for the above tests, the method to evaluate the failure life for a cracked pipe under cyclic loading was developed and verified. Cyclic J-integral was introduced to predict cyclic crack growth up to failure. This report presents the results of tensile property tests, cracked pipe fracture tests, and failure life analysis. The proposed method was applied to the cracked pipe fracture tests. The effect of dynamic and/or cyclic loading on pipe fracture was also investigated.

  3. Microstructural effects on the room and elevated temperature low cycle fatigue behavior of Waspaloy. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Lerch, B. A.

    1982-01-01

    Longitudinal specimens of Waspaloy containing either coarse grains with small gamma or fine grains with large gamma were tested in air at a frequency of 0.33 Hz or 0.50 Hz. The coarse grained structures exhibited planar slip on (III) planes and precipitate shearing at all temperatures. Cracks initiated by a Stage 1 mechanism and propagated by a striation forming mechanism. At 700 C and 800 C, cleavage and intergranular cracking were observed. Testing at 500 C, 700 C, and 800 C caused precipitation of grain boundary carbides. At 700 C, carbides precipitated on slip bands. The fine grained structures exhibited planar slip on (111) planes. Dislocations looped the large gamma precipitates. This structure led to stress saturation and propagation was observed. Increasing temperatures resulted in increased specimen oxidation for both heat treatments. Slip band and grain boundary oxidation were observed. At 800 C, oxidized grain boundaries were cracked by intersecting slip bands which resulted in intergranular failure. The fine specimens had crack initiation later in the fatigue life, but with more rapid propagation crack propagation.

  4. Creep-fatigue interaction and related structure property correlations of EUROFER97 steel at 550 °C by decoupling creep and fatigue load

    NASA Astrophysics Data System (ADS)

    Vorpahl, C.; Möslang, A.; Rieth, M.

    2011-10-01

    Mechanical tests have been performed at 550 °C under vacuum on the ferritic-martensitic steel EUROFER97. These experiments included fatigue tests, creep tests and combined creep-fatigue tests. The latter showed significant cyclic softening in the fatigue stage and a remarkable break-down of creep strength in the creep stage. The cyclic softening behaviour was almost identical for all tests and therefore insensitive to the different strain amplitudes. SEM of the specimen's fracture surfaces and free surfaces revealed that networks of coagulated surface cracks formed during creep-fatigue were not failure relevant. TEM imaging displayed a drastic drop in dislocation density, and a considerable formation of precipitates and subgrain-structures in all tests. Pure fatigue led to the strongest reduction of dislocation density, whereas creep-fatigue induced the most pronounced formation of precipitates. Obviously, the internal softening due to prior cycling led to accelerated creep. Hence, a modified damage model for creep-fatigue load cases was proposed.

  5. Thermal shock cycling effect on the compressive behaviour of human teeth.

    PubMed

    Papanicolaou, G C; Kouveliotis, G; Nikolopoulou, F; Papaefthymiou, K P; Bairami, V; Portan, D V

    2015-02-26

    All ceramic veneers are a common choice that both dentists and patients make for anterior restorations. In the framework of the present study the residual compressive behavior of the above mentioned complex structures after being thermally shock cycled was investigated. An exponential decrease in both compressive stiffness and strength with the thermal shock cycle number was observed. Experimental findings were in good agreement with predicted values. Photomicrographs obtained revealed a different failure mechanism for the pristine and cycled teeth, which is indicative of the susceptible nature of restored teeth to thermal shock. A two-dimensional finite element model designed gave a better insight upon the stress fields in response of thermal or mechanical loadings developed in the oral cavity. PMID:25597812

  6. How surface damage removal affects fatigue life

    NASA Technical Reports Server (NTRS)

    Jeelani, S.; Scott, M. A.

    1988-01-01

    The effect of the removal of work hardened surface layers from specimens of 2024-T4 aluminum alloy and AISI-4130 steel on their fatigue lives has been investigated. Specimens were fatigued at selected stress levels for a given number of cycles, and the surface layer was removed followed by subsequent fatigue cycling. Results confirm that when a material is subjected to fatigue loading, damage accumulates in the surface layers in the form of work hardening. Removal of the surface layer brings the specimen back to its pre-fatigued condition.

  7. Effects of stimuli emanating from the nest on the reproductive cycle in the ring dove. I: pre-laying behaviour.

    PubMed

    White, S J

    1975-11-01

    The course of several behavioural patterns could be influenced by controlling the state of the nest available to a pair of ring doves (Streptopelia risoria). These patterns were: wing-flipping, handling of nesting material, nest bowl occupancy, and nervous activities. In groups having to build nests, the onset of wing-flipping by the female occurred at a predictable time before egg-laying. It is argued that during nest-building a female influences the male to carry material to her by sitting in the nest bowl and wing-flipping. In pairs provided with a completed nest, the course of the pre-laying cycle was changed and the 'typical' sex roles did not emerge. The relationships between the male and female are discussed. PMID:1106261

  8. Effect of ITER components manufacturing cycle on the irradiation behaviour of 316L(N)-IG steel

    NASA Astrophysics Data System (ADS)

    Rodchenkov, B. S.; Prokhorov, V. I.; Makarov, O. Yu; Shamardin, V. K.; Kalinin, G. M.; Strebkov, Yu. S.; Golosov, O. A.

    2000-12-01

    The main options for the manufacturing of high heat flux (HHF) components is hot isostatic pressing (HIP) using either solid pieces or powder. There was no database on the radiation behaviour of these materials, and in particular stainless steel (SS) 316L(N)-IG with ITER components manufacturing thermal cycle. Irradiation of wrought steel, powder-HIP, solid-HIP and HIPed joints has been performed within the framework of an ITER task. Specimens cut from 316L(N)-IG plate, HIP products, and solid-HIP joints were irradiated in the SM-3 reactor in Dimitrovgrad up to 4 and 10 dpa at 175°C and 265°C. The paper describes the results of post-irradiation tensile and fracture toughness tests.

  9. Fatigue of fiberglass beam substructures

    SciTech Connect

    Mandell, J.F.; Combs, D.W.; Samborsky, D.D.

    1995-09-01

    Composite material beams representative of wind turbine blade substructure have been designed, fabricated, and tested under constant amplitude flexural fatigue loading. Beam stiffness, strength, and fatigue life are predicted based on detailed finite element analysis and the materials fatigue database developed using standard test coupons and special high frequency minicoupons.Beam results are in good agreement with predictions when premature adhesive and delamination failures are avoided in the load transfer areas. The results show that fiberglass substructures can be designed and fabricated to withstand maximum strain levels on the order of 8,000 microstrain for about 10{sup 6} cycles with proper structural detail design and the use of fatigue resistant laminate constructions. The study also demonstrates that the materials fatigue database and accurate analysis can be used to predict the fatigue life of composite substructures typical of blades.

  10. Fracture mechanics and corrosion fatigue.

    NASA Technical Reports Server (NTRS)

    Mcevily, A. J.; Wei, R. P.

    1972-01-01

    Review of the current state-of-the-art in fracture mechanics, particularly in relation to the study of problems in environment-enhanced fatigue crack growth. The usefulness of this approach in developing understanding of the mechanisms for environmental embrittlement and its engineering utility are discussed. After a brief review of the evolution of the fracture mechanics approach and the study of environmental effects on the fatigue behavior of materials, a study is made of the response of materials to fatigue and corrosion fatigue, the modeling of the mechanisms of the fatigue process is considered, and the application of knowledge of fatigue crack growth to the prediction of the high cycle life of unnotched specimens is illustrated.

  11. The effect of porosity and gamma-gamma' eutectic content on the low cycle fatigue behavior of hydrogen-charged PWA-1480

    NASA Technical Reports Server (NTRS)

    Gayda, John; Dreshfield, Robert L.; Gabb, Timothy P.

    1991-01-01

    Single crystal superalloys such as PWA 1480 are considered for turbopump blades in the main engines of the space shuttle. As fatigue resistance in a hydrogen environment is a key issue in this application, a study of the effect of porosity and gamma-gamma' eutectic content on the fatigue life of a hydrogen-charged PWA 1480 was performed. Porosity and eutectic were linked to fatigue initiation, and therefore reduction of either of both may be one means to improve fatigue life of PWA 1480 when hydrogen is present.

  12. Solder fatigue reduction in point focus photovoltaic concentrator modules

    SciTech Connect

    Hund, T.D.; Burchett, S.N.

    1991-01-01

    Solder fatigue tests have been conducted on point focus photovoltaic concentration cell assemblies to identify a baseline fatigue life and to quantify the fatigue life improvements that result using a copper-molybdenum-copper low-expansion insert between the solar cell and copper heat spreader. Solder microstructural changes and fatigue crack growth were identified using cross sections and ultrasonic scans of the fatigue solder joints. The Coffin-Manson and Total Strain fatigue models for low-cycle fatigue were evaluated for use in fatigue life predictions. Since both of these models require strain calculations, two strain calculation methods were compared: hand-calculated shear strain and a finite element method shear strain. At present, the available theoretical models for low-cycle solder fatigue are limited in their ability to predict failure; consequently, extensive thermal cycling is continuing to define the fatigue life for point focus photovoltaic cell assemblies. 9 refs., 9 figs., 2 tabs.

  13. Studies of Microtexture and Its Effect on Tensile and High-Cycle Fatigue Properties of Laser-Powder-Deposited INCONEL 718

    NASA Astrophysics Data System (ADS)

    Qi, Huan; Azer, Magdi; Deal, Andrew

    2012-11-01

    The current work studies the microstructure, texture, and mechanical properties of INCONEL 718 alloy (IN718) produced by laser direct metal deposition. The grain microstructure exhibits an alternative distribution of banded fine and coarse grain zones as a result of the rastering scanning pattern. The effects of the anisotropic crystallographic texture on the tensile and high-cycle fatigue (HCF) properties at room temperature are investigated. Tensile test results showed that the tensile strength of laser-deposited IN718 after direct aging or solution heat treatment is equivalent to the minimum-forged IN718 properties. The transverse direction (relative to the laser scanning direction) produces >10 pct stiffer modulus of elasticity but 3 to 6 pct less tensile strength compared to the longitudinal direction due to the preferential alignment of grains having <111> and <100> directions parallel to the tensile loading direction. Laser-deposited IN718 with good metallurgical integrity showed equivalent HCF properties compared to the direct-aged wrought IN718, which can be attributed to the banded grain size variation and cyclic change of inclining grain orientations resulted from alternating rastering deposition path.

  14. Resonant-like behaviour during edge-localised mode cycles in the Joint European Torus

    SciTech Connect

    Webster, A. J.; Morris, J.; Todd, T. N.; Coad, P.; Brezinsek, S.; Likonen, J.; Rubel, M.; Collaboration: JET-EFDA Contributors

    2015-08-15

    A unique sequence of 120 almost identical plasmas in the Joint European Torus (JET) recently provided two orders of magnitude more statistically equivalent data than ever previously available. The purpose was to study movement of eroded plasma-facing material from JET's new Beryllium wall, but it has allowed the statistical detection of otherwise unobservable phenomenon. This includes a sequence of resonant-like waiting times between edge-localised plasma instabilities (ELMs), instabilities that must be mitigated or avoided in large magnetically confined plasmas such as those planned for ITER. Here, we investigate the cause of this phenomenon, using the unprecedented quantity of data to produce a detailed picture of the plasma's behaviour. After combining the data, oscillations are clearly observable in the plasma's vertical position, in edge losses of ions, and in Beryllium II (527 nm) light emissions. The oscillations are unexpected, are not obvious in data from a single pulse alone, and are all clearly correlated with each other. They are likely to be caused by a small vertical oscillation that the plasma control system is not reacting to prevent, but a more complex explanation is possible. The clearly observable but unexpected link between small changes in the plasma's position and changes to edge-plasma transport and stability suggest that these characteristics cannot always be studied in isolation. It also suggests new opportunities for ELM mitigation and control that may exist.

  15. Resonant-like behaviour during edge-localised mode cycles in the Joint European Torus

    NASA Astrophysics Data System (ADS)

    Webster, A. J.; Morris, J.; Todd, T. N.; Brezinsek, S.; Coad, P.; Likonen, J.; Rubel, M.

    2015-08-01

    A unique sequence of 120 almost identical plasmas in the Joint European Torus (JET) recently provided two orders of magnitude more statistically equivalent data than ever previously available. The purpose was to study movement of eroded plasma-facing material from JET's new Beryllium wall, but it has allowed the statistical detection of otherwise unobservable phenomenon. This includes a sequence of resonant-like waiting times between edge-localised plasma instabilities (ELMs), instabilities that must be mitigated or avoided in large magnetically confined plasmas such as those planned for ITER. Here, we investigate the cause of this phenomenon, using the unprecedented quantity of data to produce a detailed picture of the plasma's behaviour. After combining the data, oscillations are clearly observable in the plasma's vertical position, in edge losses of ions, and in Beryllium II (527 nm) light emissions. The oscillations are unexpected, are not obvious in data from a single pulse alone, and are all clearly correlated with each other. They are likely to be caused by a small vertical oscillation that the plasma control system is not reacting to prevent, but a more complex explanation is possible. The clearly observable but unexpected link between small changes in the plasma's position and changes to edge-plasma transport and stability suggest that these characteristics cannot always be studied in isolation. It also suggests new opportunities for ELM mitigation and control that may exist.

  16. Probabilistic Fatigue: Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2002-01-01

    Fatigue is a primary consideration in the design of aerospace structures for long term durability and reliability. There are several types of fatigue that must be considered in the design. These include low cycle, high cycle, combined for different cyclic loading conditions - for example, mechanical, thermal, erosion, etc. The traditional approach to evaluate fatigue has been to conduct many tests in the various service-environment conditions that the component will be subjected to in a specific design. This approach is reasonable and robust for that specific design. However, it is time consuming, costly and needs to be repeated for designs in different operating conditions in general. Recent research has demonstrated that fatigue of structural components/structures can be evaluated by computational simulation based on a novel paradigm. Main features in this novel paradigm are progressive telescoping scale mechanics, progressive scale substructuring and progressive structural fracture, encompassed with probabilistic simulation. These generic features of this approach are to probabilistically telescope scale local material point damage all the way up to the structural component and to probabilistically scale decompose structural loads and boundary conditions all the way down to material point. Additional features include a multifactor interaction model that probabilistically describes material properties evolution, any changes due to various cyclic load and other mutually interacting effects. The objective of the proposed paper is to describe this novel paradigm of computational simulation and present typical fatigue results for structural components. Additionally, advantages, versatility and inclusiveness of computational simulation versus testing are discussed. Guidelines for complementing simulated results with strategic testing are outlined. Typical results are shown for computational simulation of fatigue in metallic composite structures to demonstrate the

  17. Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr

    NASA Astrophysics Data System (ADS)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2015-07-01

    High-temperature tensile and low-cycle fatigue tests were performed to assess the influence of micro-additions of Ti, V, and Zr on the improvement of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in the as-cast condition. Addition of transition metals led to modification of microstructure where in addition to conventional phases present in the Al-7Si-1Cu-0.5Mg base, new thermally stable micro-sized Zr-Ti-V-rich phases Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr, and Al5.1Si35.4Ti1.6Zr5.7Fe were formed. The tensile tests showed that with increasing test temperature from 298 K to 673 K (25 °C to 400 °C), the yield stress and tensile strength of the present studied alloy decreased from 161 to 84 MPa and from 261 to 102 MPa, respectively. Also, the studied alloy exhibited 18, 12, and 5 pct higher tensile strength than the alloy A356, 354 and existing Al-Si-Cu-Mg alloy modified with additions of Zr, Ti, and Ni, respectively. The fatigue life of the studied alloy was substantially longer than those of the reference alloys A356 and the same Al-7Si-1Cu-0.5Mg base with minor additions of V, Zr, and Ti in the T6 condition. Fractographic analysis after tensile tests revealed that at the lower temperature up to 473 K (200 °C), the cleavage-type brittle fracture for the precipitates and ductile fracture for the matrix were dominant while at higher temperature fully ductile-type fracture with debonding and pull-out of cracked particles was identified. It is believed that the intermetallic precipitates containing Zr, Ti, and V improve the alloy performance at increased temperatures.

  18. High Speed Research Program Sonic Fatigue

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A. (Technical Monitor); Beier, Theodor H.; Heaton, Paul

    2005-01-01

    The objective of this sonic fatigue summary is to provide major findings and technical results of studies, initiated in 1994, to assess sonic fatigue behavior of structure that is being considered for the High Speed Civil Transport (HSCT). High Speed Research (HSR) program objectives in the area of sonic fatigue were to predict inlet, exhaust and boundary layer acoustic loads; measure high cycle fatigue data for materials developed during the HSR program; develop advanced sonic fatigue calculation methods to reduce required conservatism in airframe designs; develop damping techniques for sonic fatigue reduction where weight effective; develop wing and fuselage sonic fatigue design requirements; and perform sonic fatigue analyses on HSCT structural concepts to provide guidance to design teams. All goals were partially achieved, but none were completed due to the premature conclusion of the HSR program. A summary of major program findings and recommendations for continued effort are included in the report.

  19. Fatigue, Creep-Fatigue, and Thermomechanical Fatigue Life Testing of Alloys

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Lerch, Bradley A.; McGaw, Michael A.

    2000-01-01

    The fatigue crack initiation resistance of an alloy is determined by conducting a series of tests over a range of values of stress amplitude or strain range. The observed number of cycles to failure is plotted against the stress amplitude or strain range to obtain a fatigue curve. The fatigue properties quoted for an alloy are typically the constants used in the equation(s) that describe the fatigue curve. Fatigue lives of interest may be as low as 10(exp 2) or higher than 10(exp 9) cycles. Because of the enormous scatter associated with fatigue, dozens of tests may be needed to confidently establish a fatigue curve, and the cost may run into several thousands of dollars. To further establish the effects on fatigue life of the test temperature, environment, alloy condition, mean stress effects, creep-fatigue effects, thermomechanical cycling, etc. requires an extraordinarily large and usually very costly test matrix. The total effort required to establish the fatigue resistance of an alloy should not be taken lightly. Fatigue crack initiation tests are conducted on relatively small and presumed to be initially crack-free, samples of an alloy that are intended to be representative of the alloy's metallurgical and physical condition. Generally, samples are smooth and have uniformly polished surfaces within the test section. Some may have intentionally machined notches of well-controlled geometry, but the surface at the root of the notch is usually not polished. The purpose of polishing is to attain a reproducible surface finish. This is to eliminate surface finish as an uncontrolled variable. Representative test specimen geometries will be discussed later. Test specimens are cyclically loaded until macroscopically observable cracks initiate and eventually grow to failure. Normally, the fatigue failure life of a specimen is defined as the number of cycles to separation of the specimen into two pieces. Alternative definitions are becoming more common, particularly for

  20. Effects of two neuromuscular fatigue protocols on landing performance.

    PubMed

    James, C Roger; Scheuermann, Barry W; Smith, Michael P

    2010-08-01

    The purpose of the study was to investigate the effects of two fatigue protocols on landing performance. A repeated measures design was used to examine the effects of fatigue and fatigue protocol on neuromuscular and biomechanical performance variables. Ten volunteers performed non-fatigued and fatigued landings on two days using different fatigue protocols. Repeated maximum isometric squats were used to induce fatigue on day one. Sub-maximum cycling was used to induce fatigue on day two. Isometric squat maximum voluntary contraction (MVC) was measured before and after fatigued landings on each day. During the landings, ground reaction force (GRF), knee kinematics, and electromyographic (EMG) data were recorded. Isometric MVC, GRF peaks, loading rates, impulse, knee flexion at contact, range of motion, max angular velocity, and EMG root mean square (RMS) values were compared pre- and post-fatiguing exercise and between fatigue protocols using repeated ANOVA. Fatigue decreased MVC strength (p0.05), GRF second peak, and initial impulse (p0.01), but increased quadriceps medium latency stretch reflex EMG activity (p0.012). Knee flexion at contact was 5.2 degrees greater (p0.05) during fatigued landings following the squat exercise compared to cycling. Several variables exhibited non-significant but large effect sizes when comparing the effects of fatigue and fatigue protocol. In conclusion, fatigue alters landing performance and different fatigue protocols result in different performance changes. PMID:20006522

  1. Prehistory effects on the VHCF behaviour of engineering metallic materials with different strengthening mechanisms

    NASA Astrophysics Data System (ADS)

    Zimmermann, M.; Stöcker, C.; Müller-Bollenhagen, C.; Christ, H.-J.

    2010-07-01

    Engineering materials often undergo a plastic deformation during manufacturing, hence the effect of a predeformation on the subsequent fatigue behaviour has to be considered. The effect of a prestrain on the microstructure is strongly influenced by the strengthening mechanism. Different mechanisms are relevant in the materials applied in this study: a solid-solution hardened and a precipitation-hardened nickel-base alloy and a martensite-forming metastable austenitic steel. Prehistory effects become very important, when fatigue failure at very high number of cycles (N > 107) is considered, since damage mechanisms occur different to those observed in the range of conventional fatigue limit. With the global strain amplitude being well below the static elastic limit, only inhomogeneously distributed local plastic deformation takes place in the very high cycle fatigue (VHCF) region. The dislocation motion during cyclic loading thus depends on the effective flow stress, which is defined by the global cyclic stress-strain relation and the local stress distribution as a consequence of the interaction between dislocations and precipitates, grain boundaries, martensite phases and micro-notches. As a consequence, no significant prehistory effect was observed for the VHCF behaviour of the solid-solution hardening alloy, while the precipitation-hardening alloy shows a perceptible prehistory dependence. In the case of the austenitic steel, strain-hardening and the volume fraction of the deformation-induced martensite dominate the fatigue behaviour.

  2. A crystal plasticity-based study of the relationship between microstructure and ultra-high-cycle fatigue life in nickel titanium alloys

    DOE PAGESBeta

    Moore, John A.; Frankel, Dana; Prasannavenkatesan, Rajesh; Domel, August G.; Olson, Gregory B.; Liu, Wing Kam

    2016-06-06

    Nickel Titanium (NiTi) alloys are often used in biomedical devices where failure due to mechanical fatigue is common. For other alloy systems, computational models have proven an effective means of determining the relationship between microstructural features and fatigue life. This work will extend the subset of those models which were based on crystal plasticity to examine the relationship between microstructure and fatigue life in NiTi alloys. It will explore the interaction between a spherical inclusion and the material’s free surface along with several NiTi microstructures reconstructed from 3D imaging. This work will determine the distance at which the free surfacemore » interacts with an inclusion and the effect of applied strain of surface-inclusion interaction. The effects of inclusion-inclusion interaction, matrix voiding, and matrix strengthening are explored and ranked with regards to their influence on fatigue life.« less

  3. Thermal fatigue of beryllium

    SciTech Connect

    Deksnis, E.; Ciric, D.; Falter, H.

    1995-09-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m{sup 2} to 5 MW/m{sup 2} and under pulsed heat fluxes (10-20 MW/m{sup 2}) for which the time averaged heat flux is 5 MW/m{sup 2}. These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures {le} 600{degrees}C produced no visible fatigue cracks. In the second series of tests, with T{sub max} {le} 750{degrees}C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with {Phi} = 25 MW/m{sup 2} and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed.

  4. The effect of pre-stress cycles on fatigue crack growth - An analysis of crack growth mechanism. [in Al alloy plates

    NASA Technical Reports Server (NTRS)

    Kang, T. S.; Liu, H. W.

    1974-01-01

    Cyclic prestress increases subsequent fatigue crack growth rate in 2024-T351 aluminum alloy. This increase in growth rate, caused by the prestress, and the increased rate, caused by temper embrittlement as observed by Ritchie and Knott (1973), cannot be explained by the crack tip blunting model alone. Each fatigue crack increment consists of two components, a brittle and a ductile component. They are controlled by the ductility of the material and its cyclic yield strength, respectively.

  5. Failure Mechanisms During Isothermal Fatigue of SiC/Ti-24Al-11Nb Composites

    NASA Technical Reports Server (NTRS)

    Brindley, P. K.; Bartolotta, P. A.

    1995-01-01

    Failure mechanisms during isothermal fatigue of unidirectional SiC/Ti-24Al-11Nb (at.%) composites have been determined by microstructural analysis of samples from tests interrupted prior to the end of life and from tests conducted to failure. Specimens from three regions of life were examined based on the maximum strain from a fatigue life diagram: Region 1 (high strain), Region 2 (mid-strain) and Region 3 (low strain). Crack lengths were also measured from interrupted samples and compared based on temperature (23-815 C), region of life and numbers of cycles. Region 1 was controlled by fiber-dominated failure. A transition zone was observed between Regions 1 and 2 due to competition between failure mechanisms. Failure in Region 2 was generally described as surface-initiated cracking with varying amounts of fiber bridging. However, the specific descriptions of crack propagation through the fibers and matrix varied with strain and temperature over this broad region. Region 3 exhibited endurance behaviour at 23 C with no cracking after lO(exp 6) cycles. However at 425 C, surface-initiated cracking was observed after 10(exp 6) cycles with fractured fibers in the crack wake. If endurance behaviour exists for conditions of isothermal fatigue in air at temperatures of greater than or equal to 425 C, it may only be found at very low strains and at greater than 10(exp 6) cycles.

  6. FATIGUE OF DENTAL CERAMICS

    PubMed Central

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-01-01

    Objectives Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. Data/sources The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Conclusions Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically-assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Clinical significance Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. PMID:24135295

  7. High strain rate and quasi-static tensile behaviour of Ti-6Al-4V after cyclic damage

    NASA Astrophysics Data System (ADS)

    Galán López, J.; Verleysen, P.; Degrieck, J.

    2012-08-01

    It is common that energy absorbing structural elements are subjected to a number of loading cycles before a crash event. Several studies have shown that previous fatigue can significantly influence the tensile properties of some materials, and hence the behaviour of structural elements made of them. However, when the capacity of absorbing energy of engineering materials is determined, fresh material without any fatigue damage is most often used. This study investigates the effect of fatigue damage on the dynamic tensile properties of Ti-6Al-4V in thin-sheet form. Results are completed with tests at quasi-static strain rates and observations of the fracture surfaces, and compared with results obtained from other alloys and steel grades. The experiments show that the dynamic properties of Ti-6Al-4V are not affected by a number of fatigue loading cycles high enough to significantly reduce the energy absorbing capabilities of EDM machined samples.

  8. Probabilistic Fatigue And Flaw-Propagation Analysis

    NASA Technical Reports Server (NTRS)

    Moore, Nicholas; Newlin, Laura; Ebbeler, Donald; Sutharshana, Sravan; Creager, Matthew

    1995-01-01

    Probabilistic Failure Assessment for Fatigue and Flaw Propagation (PFAFAT II) package of software utilizing probabilistic failure-assessment (PFA) methodology to model flaw-propagation and low-cycle-fatigue modes of failure of structural components. Comprises one program for performing probabilistic crack-growth analysis and two programs for performing probabilistic low-cycle-fatigue analysis. These programs perform probabilistic fatigue and crack-propagation analysis by means of Monte Carlo simulation. PFAFAT II is extension of, rather than replacement for, PFAFAT software (NPO-18965). Written in FORTRAN 77.

  9. Predictions Of Fatigue Damage From Strain Histories

    NASA Technical Reports Server (NTRS)

    Sire, Robert A.; Besuner, Philip M.; Toomey, Tim

    1989-01-01

    Semiempirical mathematical model of fatigue damage in stressed objects uses experimental histories of strains in those objects to predict fatigue lives. Accounts for initiation and propagation of fatigue cracks on cycle-by-cycle basis. Measured strain history first digitized, then converted to history of turning-point strains for purposes of analysis. Data between turning points not used. When model calibrated against proper test data for each type of object characterized, its predictions of fatigue lives superior to statistical models as one based on root-mean-square strain.

  10. Multiscale Fatigue Life Prediction for Composite Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Arnold, Steven M.

    2012-01-01

    Fatigue life prediction capabilities have been incorporated into the HyperSizer Composite Analysis and Structural Sizing Software. The fatigue damage model is introduced at the fiber/matrix constituent scale through HyperSizer s coupling with NASA s MAC/GMC micromechanics software. This enables prediction of the micro scale damage progression throughout stiffened and sandwich panels as a function of cycles leading ultimately to simulated panel failure. The fatigue model implementation uses a cycle jumping technique such that, rather than applying a specified number of additional cycles, a specified local damage increment is specified and the number of additional cycles to reach this damage increment is calculated. In this way, the effect of stress redistribution due to damage-induced stiffness change is captured, but the fatigue simulations remain computationally efficient. The model is compared to experimental fatigue life data for two composite facesheet/foam core sandwich panels, demonstrating very good agreement.

  11. Cumulative creep fatigue damage in 316 stainless steel

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1989-01-01

    The cumulative creep-fatigue damage behavior of 316 stainless steel at 1500 F was experimentally established for the two-level loading cases of fatigue followed by fatigue, creep fatigue followed by fatigue, and fatigue followed by creep fatigue. The two-level loadings were conducted such that the lower life (high strain) cycling was applied first for a controlled number of cycles and the higher life (low strain) cycling was conducted as the second level to failure. The target life levels in this study were 100 cycles to failure for both the fatigue and creep-fatigue lowlife loading, 5000 cycles to failure for the higher life fatigue loading and 10,000 cycles to failure for the higher life creep-fatigue loading. The failed specimens are being examined both fractographically and metallographically to ascertain the nature of the damaging mechanisms that produced failure. Models of creep-fatigue damage accumulation are being evaluated and knowledge of the various damaging mechanisms is necessary to ensure that predictive capability is instilled in the final failure model.

  12. [Chronic fatigue syndrome].

    PubMed

    Henningsen, P; Martin, A

    2013-01-01

    Enduring and disabling fatigue that cannot be explained by a known disease is the main characteristic of chronic fatigue syndrome. Several definitions do exist, and classification approaches vary regarding supplementary symptoms, time course, and by implicit concepts of aetiology. CFS can be considered as a functional somatic syndrome, e. g. supported by the high rates of comorbid bodily complaints and syndromes that lack clear medical explanation. Accordingly the diagnostic process should not be limited to the thorough physical examination, but also address additional somatic complaints, psychosocial factors (specifically subjective illness beliefs), and impairments. Recently German medical and psychological societies provided treatment guidelines for functional somatic syndromes. Cognitive behavioural therapy and graded activity are evidence based treatment methods for CFS. PMID:23250694

  13. Variation in numbers and behaviour of waders during the tidal cycle: implications for the use of estuarine sediment flats

    NASA Astrophysics Data System (ADS)

    Granadeiro, José P.; Dias, Maria P.; Martins, Ricardo C.; Palmeirim, Jorge M.

    2006-05-01

    Estuarine sediment flats are essential feeding areas for waders, but their exploitation is constrained by the movements of tides. In this cyclic environment the exposure period of sediment flats decreases several fold from upper to lower flats, and the moving tidal waterline briefly creates particular conditions for waders and their prey. This study attempts to determine how the exposure period and the movement of the tide line influence the use of space and food resources by waders across the sediment flats. Wader counts and observations of feeding behaviour were carried out in all phases of the tidal cycle, in plots forming a transect from upper to lower flats, thus representing a gradient of exposure periods. Pecking, prey intake, and success rates varied little along the gradient. Some species actively followed the tide line while foraging, whereas others are evenly spread over the exposed flats. Black-tailed Godwit, Dunlin and Avocet were 'tide followers', whereas Grey Plover, Redshank and Bar-tailed Godwit were 'non-followers'. Densities of 'followers' near the tide line were up to five times higher than elsewhere. Species differed markedly in the way they used space on the flats, but in general the rate of biomass acquisition (in grams of ash-free dry weight per time exposed) was much higher in lower flats. However, this preference was insufficient to counter the much longer exposure of the upper flats, so the total amount of biomass consumed on the latter was greater. Therefore, it was in these upper flats that waders fulfilled most of their energetic needs. Consequently, upper flats are of particular importance for the conservation of wader assemblages, but because they are usually closer to shore they tend to suffer the highest pressure from disturbance and land reclamation.

  14. Understanding the nano- and macromechanical behaviour, the failure and fatigue mechanisms of advanced and natural polymer fibres by Raman/IR microspectrometry

    NASA Astrophysics Data System (ADS)

    Colomban, Philippe

    2013-03-01

    The coupled mechanical and Raman/infrared (IR) analysis of the (nano)structure and texture of synthetic and natural polymer fibres (polyamides (PA66), polyethylene terephthalate (PET), polypropylene (PP), poly(paraphenylene benzobisoxazole) (PBO), keratin/hair, Bombyx mori, Gonometa rufobrunea/postica Antheraea/Tussah silkworms and Nephila Madagascarensis spider silks) is applied so as to differentiate between crystalline and amorphous macromolecules. Bonding is very similar in the two cases but a broader distribution of conformations is observed for the amorphous macromolecules. These conclusions are then used to discuss the modifications induced by the application of a tensile or compressive stress, including the effects of fatigue. Detailed attention is paid to water and the inter-chain coupling for which the importance of hydrogen bonding is reconsidered. The significant role of the ‘amorphous’ bonds/domains in the process of fracture/fatigue is shown. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2012, 30 October-2 November 2012, Ha Long, Vietnam.

  15. Chronic Fatigue Syndrome

    MedlinePlus

    Chronic fatigue syndrome (CFS) is a disorder that causes extreme fatigue. This fatigue is not the kind of tired feeling that ... activities. The main symptom of CFS is severe fatigue that lasts for 6 months or more. You ...

  16. In vitro fatigue of human tendons.

    PubMed

    Schechtman, H; Bader, D L

    1997-08-01

    The purpose of this study was to determine the fatigue behaviour of human tendons in vitro. The testing was accomplished with the use of specially designed grips and the local measurement of tendon cross-sectional area. Ninety specimens prepared from Extensor digitorum longus (EDL) tendons of the foot were subjected to a cyclic square tension-tension stress waveform at physiological frequencies. The maximum tensile stress was normalised to values corresponding to prescribed levels between 10% and 90% of the calculated ultimate tensile strength (UTS) of 100 MPa. The minimum stress was set at 1% of the UTS. A replication of 10 specimens per stress level allowed the use of statistical models for the distribution of fatigue life. Results followed a linear model, of form S = 101.3 - 14.8 log(N), relating the normalised stress to the median number of cycles to failure, therefore suggesting the absence of an endurance limit. The Weibull distribution was found to describe adequately the probability of failure at each stress level. A model which takes into account in vivo healing was proposed. This model was able to explain the presence of intact tendons throughout the lifetime of an individual. PMID:9239568

  17. Torsional fatigue of aramid fibers

    SciTech Connect

    Kawabata, S.; Sera, M.

    1993-12-31

    An experimental investigation on the shear fatigue process of aramid fibers is presented. Repeated cycles of the torsional deformation are applied on the aramid single fiber and the reduction of the shear modulus of the fiber with an increasing number of the cycles is observed for different strain amplitudes. It has been found that the reduction process of the shear modulus with an increasing number of the repeated cycles depends on the strain amplitude and the effect of the number of cycles is equivalent to that of the strain amplitude on the modulus reduction and they may be superposed like the time-temperature equivalence superposition observed in the viscoelasticity of amorphous polymeric solids. From this relation, the life prediction for the long term use of aramid fibers becomes possible by using this superimposed relation. A simple rate process theory is applied to interpret this fatigue process and to derive the equation for predicting the life cycle number of the loading.

  18. Microstructural aspects of fatigue in Ni-base superalloys.

    PubMed

    Antolovich, Stephen D

    2015-03-28

    Nickel-base superalloys are primarily used as components in jet engines and land-based turbines. While compositionally complex, they are microstructurally simple, consisting of small (50-1000 nm diameter), ordered, coherent Ni(3)(Al,Ti)-type L1(2) or Ni(3)Nb-type DO(22) precipitates (called γ(') and γ(''), respectively) embedded in an FCC substitutional solid solution consisting primarily of Ni and other elements which confer desired properties depending upon the application. The grain size may vary from as small as 2 μm for powder metallurgy alloys used in discs to single crystals the actual size of the component for turbine blades. The fatigue behaviour depends upon the microstructure, deformation mode, environment and cycle time. In many cases, it can be controlled or modified through small changes in composition which may dramatically change the mechanism of damage accumulation and the fatigue life. In this paper, the fundamental microstructural, compositional, environmental and deformation mode factors which affect fatigue behaviour are critically reviewed. Connections are made across a range of studies to provide more insight. Modern approaches are pointed out in which the wealth of available microstructural, deformation and damage information is used for computerized life prediction. The paper ends with a discussion of the very important and highly practical subject of thermo-mechanical fatigue (TMF). It is shown that physics-based modelling leads to significantly improved life prediction. Suggestions are made for moving forward on the critical subject of TMF life prediction in notched components. PMID:25713453

  19. Recent advances in the modelling of crack growth under fatigue loading conditions

    NASA Technical Reports Server (NTRS)

    Dekoning, A. U.; Tenhoeve, H. J.; Henriksen, T. K.

    1994-01-01

    Fatigue crack growth associated with cyclic (secondary) plastic flow near a crack front is modelled using an incremental formulation. A new description of threshold behaviour under small load cycles is included. Quasi-static crack extension under high load excursions is described using an incremental formulation of the R-(crack growth resistance)- curve concept. The integration of the equations is discussed. For constant amplitude load cycles the results will be compared with existing crack growth laws. It will be shown that the model also properly describes interaction effects of fatigue crack growth and quasi-static crack extension. To evaluate the more general applicability the model is included in the NASGRO computer code for damage tolerance analysis. For this purpose the NASGRO program was provided with the CORPUS and the STRIP-YIELD models for computation of the crack opening load levels. The implementation is discussed and recent results of the verification are presented.

  20. Managing fatigue: It really is about sleep.

    PubMed

    Darwent, David; Dawson, Drew; Paterson, Jessica L; Roach, Gregory D; Ferguson, Sally A

    2015-09-01

    Biomathematical models of fatigue can assist organisations to estimate the fatigue consequences of a roster before operations commence. These estimates do not account for the diversity of sleep behaviours exhibited by employees. The purpose of this study was to develop sleep transfer functions describing the likely distributions of sleep around fatigue level estimates produced by a commercial biomathematical model of fatigue. Participants included 347 (18 females, 329 males) train drivers working commercial railway operations in Australia. They provided detailed information about their sleep behaviours using sleep diaries and wrist activity monitors. On average, drivers slept for 7.7 (±1.7)h in the 24h before work and 15.1 (±2.5)h in the 48h before work. The amount of sleep obtained by drivers before shifts differed only marginally across morning, afternoon and night shifts. Shifts were also classified into one of seven ranked categories using estimated fatigue level scores. Higher fatigue score categories were associated with significant reductions in the amount of sleep obtained before shifts, but there was substantial within-category variation. The study findings demonstrate that biomathematical models of fatigue have utility for designing round-the-clock rosters that provide sufficient sleep opportunities for the average employee. Robust variability in the amount of sleep obtained by drivers indicate that models are relatively poor tools for ensuring that all employees obtain sufficient sleep. These findings demonstrate the importance of developing approaches for managing the sleep behaviour of individual employees. PMID:26026969

  1. Theorising and testing environmental pathways to behaviour change: natural experimental study of the perception and use of new infrastructure to promote walking and cycling in local communities

    PubMed Central

    Panter, Jenna; Ogilvie, David

    2015-01-01

    Objective Some studies have assessed the effectiveness of environmental interventions to promote physical activity, but few have examined how such interventions work. We investigated the environmental mechanisms linking an infrastructural intervention with behaviour change. Design Natural experimental study. Setting Three UK municipalities (Southampton, Cardiff and Kenilworth). Participants Adults living within 5 km of new walking and cycling infrastructure. Intervention Construction or improvement of walking and cycling routes. Exposure to the intervention was defined in terms of residential proximity. Outcome measures Questionnaires at baseline and 2-year follow-up assessed perceptions of the supportiveness of the environment, use of the new infrastructure, and walking and cycling behaviours. Analysis proceeded via factor analysis of perceptions of the physical environment (step 1) and regression analysis to identify plausible pathways involving physical and social environmental mediators and refine the intervention theory (step 2) to a final path analysis to test the model (step 3). Results Participants who lived near and used the new routes reported improvements in their perceptions of provision and safety. However, path analysis (step 3, n=967) showed that the effects of the intervention on changes in time spent walking and cycling were largely (90%) explained by a simple causal pathway involving use of the new routes, and other pathways involving changes in environmental cognitions explained only a small proportion of the effect. Conclusions Physical improvement of the environment itself was the key to the effectiveness of the intervention, and seeking to change people's perceptions may be of limited value. Studies of how interventions lead to population behaviour change should complement those concerned with estimating their effects in supporting valid causal inference. PMID:26338837

  2. High-temperature low-cycle fatigue and tensile properties of Hastelloy X and alloy 617 in air and HTGR-helium

    SciTech Connect

    Strizak, J.P.; Brinkman, C.R.; Rittenhouse, P.L.

    1981-01-01

    Results of strain controlled fatigue and tensile tests are presented for two nickel base solution hardened alloys which are reference structural alloys for use in several high temperature gas cooled reactor concepts. These alloys, Hastelloy X Inconel 617, were tested at temperatures ranging from room temperature to 871/sup 0/C in air and impure helium. Materials were tested in the solution annealed as well as in the pre-aged condition where aging consisted of isothermal exposure at one of several temperatures for periods of up to 20,000 h. Comparisons are also given between the strain controlled fatigue lives of these alloys and several other commonly used alloys all tested at 538/sup 0/C.

  3. Creep-fatigue of low cobalt superalloys

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1982-01-01

    Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.

  4. Interconnect fatigue design for terrestrial photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-01-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  5. Interconnect fatigue design for terrestrial photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-03-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  6. Mechanical behaviour of cp-magnesium with duplex hydroxyapatite and PEO coatings.

    PubMed

    Gao, Yonghao; Yerokhin, Aleksey; Matthews, Allan

    2015-04-01

    Hydroxyapatite-magnesia coatings were formed on cp-magnesium by plasma electrolytic oxidation (PEO) followed by cathodic electrodeposition (CED). The static tensile and cyclic fatigue performance of the coated samples were investigated. The cracking behaviour of the coatings during the tensile tests was studied by fracture analysis. The effects of the surface treatment on the fatigue performance of the magnesium substrate were addressed. Tensile strength of cp-Mg was not significantly affected, whereas the fatigue performance was improved by the PEO+CED coatings in the low-cycle region, possibly due to compressive residual stress induced to the metal substrate by the surface treatment. However, reduced fatigue strength was observed in the high-cycle region, which might be attributed to the defects at the coating/substrate interface produced during the surface modification. The in vitro corrosion reduced the fatigue strength in both the low- and high-cycle regions. Finally, the applicability of surface engineered magnesium for biomedical applications was demonstrated from the mechanical standpoint. PMID:25686939

  7. Fatigue and post-fatigue performance of Fabry-Perot FOS installed on CFRP-strengthened RC-beams

    NASA Astrophysics Data System (ADS)

    Gheorghiu, Catalin; Labossiere, Pierre; Proulx, Jean

    2004-07-01

    There is a growing need for built-in monitoring systems for civil engineering infrastructures, due to problems such as increasing traffic loads and rising costs of maintenance and repair. Fibre optic sensors (FOS), capable of reading various parameters are promising candidates for life-long health monitoring of these structures. However, since FOS have only been introduced recently into the field of structural monitoring, their acceptance and widespread implementation will be conditioned by their durability under severe climatic and loading conditions. This paper reports on the performance of strain extrinsic FOS attached to carbon fibre reinforced polymer (CFRP) plates used to strengthen concrete structures. The specimens tested in this project are reinforced concrete (RC) beams with an additional external CFRP reinforcement. The FOS-instrumented beams were first subjected to fatigue loading for various numbers of cycles and load amplitudes. Then, they were tested monotonically to failure under four-point-bending. The test results provide an insight on the fatigue and post-fatigue behaviour of FOS used for monitoring reinforced concrete structures.

  8. Fatigue-damage evolution and damage-induced reduction of critical current of a Nb3Al superconducting composite

    NASA Astrophysics Data System (ADS)

    Ochiai, S.; Sekino, F.; Sawada, T.; Ohno, H.; Hojo, M.; Tanaka, M.; Okuda, H.; Koganeya, M.; Hayashi, K.; Yamada, Y.; Ayai, N.; Watanabe, K.

    2003-09-01

    We have studied the fatigue-damage mechanism of a Nb3Al superconducting composite at room temperature, and the influences of the fatigue damages introduced at room temperature on the critical current at 4.2 K and the residual strength at room temperature. The main (largest) fatigue crack arose first in the clad copper and then extended into the inner core with an increasing number of stress cycles. The cracking of the Nb3Al filaments in the core region occurred at a late stage (around 60-90% of the fatigue life). Once the fracture of the core occurred, it extended very quickly, resulting in a quick reduction in critical current and the residual strength with increasing stress cycles. Such a behaviour was accounted for by the crack growth calculated from the S-N curves (the relation of the maximum stress to the number of stress cycles at failure) combined with the Paris law. The size and distribution of the subcracks along the specimen length, and therefore the reduction in critical current of the region apart from the main crack, were dependent on the maximum stress level. The large subcracks causing fracture of the Nb3Al filaments were formed when the maximum stress was around 300-460 MPa, resulting in large reduction in critical current, but not when the maximum stress was outside such a stress range.

  9. Fatigue Behavior of Inconel 718 TIG Welds

    NASA Astrophysics Data System (ADS)

    Alexopoulos, Nikolaos D.; Argyriou, Nikolaos; Stergiou, Vasillis; Kourkoulis, Stavros K.

    2014-08-01

    Mechanical behavior of reference and TIG-welded Inconel 718 specimens was examined in the present work. Tensile, constant amplitude fatigue, and fracture toughness tests were performed in ambient temperature for both, reference and welded specimens. Microstructure revealed the presence of coarse and fine-grained heat-affected zones. It has been shown that without any post-weld heat treatment, welded specimens maintained their tensile strength properties while their ductility decreased by more than 40%. It was found that the welded specimens had lower fatigue life and this decrease was a function of the applied fatigue maximum stress. A 30% fatigue life decrease was noticed in the high cycle fatigue regime for the welded specimens while this decrease exceeded 50% in the low cycle fatigue regime. Cyclic stress-strain curves showed that Inconel 718 experiences a short period of hardening followed by softening for all fatigue lives. Cyclic fatigue response of welded specimens' exhibited cyclically stable behavior. Finally, a marginal decrease was noticed in the Mode I fracture toughness of the welded specimens.

  10. Walking, Cycling and Driving to Work in the English and Welsh 2011 Census: Trends, Socio-Economic Patterning and Relevance to Travel Behaviour in General

    PubMed Central

    Goodman, Anna

    2013-01-01

    Objectives Increasing walking and cycling, and reducing motorised transport, are health and environmental priorities. This paper examines levels and trends in the use of different commute modes in England and Wales, both overall and with respect to small-area deprivation. It also investigates whether commute modal share can serve as a proxy for travel behaviour more generally. Methods 23.7 million adult commuters reported their usual main mode of travelling to work in the 2011 census in England and Wales; similar data were available for 1971–2001. Indices of Multiple Deprivation were used to characterise socio-economic patterning. The National Travel Survey (2002–2010) was used to examine correlations between commute modal share and modal share of total travel time. These correlations were calculated across 150 non-overlapping populations defined by region, year band and income. Results Among commuters in 2011, 67.1% used private motorised transport as their usual main commute mode (−1.8 percentage-point change since 2001); 17.8% used public transport (+1.8% change); 10.9% walked (−0.1% change); and 3.1% cycled (+0.1% change). Walking and, to a marginal extent, cycling were more common among those from deprived areas, but these gradients had flattened over the previous decade to the point of having essentially disappeared for cycling. In the National Travel Survey, commute modal share and total modal share were reasonably highly correlated for private motorised transport (r = 0.94), public transport (r = 0.96), walking (r = 0.88 excluding London) and cycling (r = 0.77). Conclusions England and Wales remain car-dependent, but the trends are slightly more encouraging. Unlike many health behaviours, it is more common for socio-economically disadvantaged groups to commute using physically active modes. This association is, however, weakening and may soon reverse for cycling. At a population level, commute modal share provides a reasonable proxy

  11. Fatigue Properties of Cast Magnesium Wheels

    NASA Astrophysics Data System (ADS)

    Li, Zhenming; Luo, Alan A.; Wang, Qigui; Peng, Liming; Zhang, Peng

    2016-05-01

    This paper investigates the fatigue properties and deformation behavior of a newly developed Mg-2.96Nd-0.21Zn-0.39Zr magnesium alloy wheel in both as-cast and T6 conditions. Compared with the as-cast alloy, the T6-treated alloy shows a significant increase in fatigue strength and cyclic stress amplitude. This is believed to be attributed to the change of defect type from porosity to oxides and the increased matrix strength in the T6 (peak-aged) condition. For the as-cast alloy wheel, fatigue failure mainly originated from the cast defects including porosity, oxide film, and inclusion at or near the sample surface. In the T6-treated alloy, however, oxides and inclusions or slip bands initiate the fatigue cracks. Solution treatment appears to reduce or eliminate the shrinkage porosity because of grain growth and dissolution of as-cast eutectic phases in the grain boundaries. The cyclic stress amplitude of the as-cast alloy increases with increasing the number of cycles, while the T6-treated alloy shows cyclic softening after the stress reaches a maximum value. The Coffin-Manson law and Basquin equation can be used to evaluate the life of low cycle fatigue. The developed long crack model and multi-scale fatigue (MSF) models can be used to predict high-cycle fatigue life of the Mg-2.96Nd-0.21Zn-0.39Zr alloys with or without casting defects.

  12. Fatigue Properties of Cast Magnesium Wheels

    NASA Astrophysics Data System (ADS)

    Li, Zhenming; Luo, Alan A.; Wang, Qigui; Peng, Liming; Zhang, Peng

    2016-08-01

    This paper investigates the fatigue properties and deformation behavior of a newly developed Mg-2.96Nd-0.21Zn-0.39Zr magnesium alloy wheel in both as-cast and T6 conditions. Compared with the as-cast alloy, the T6-treated alloy shows a significant increase in fatigue strength and cyclic stress amplitude. This is believed to be attributed to the change of defect type from porosity to oxides and the increased matrix strength in the T6 (peak-aged) condition. For the as-cast alloy wheel, fatigue failure mainly originated from the cast defects including porosity, oxide film, and inclusion at or near the sample surface. In the T6-treated alloy, however, oxides and inclusions or slip bands initiate the fatigue cracks. Solution treatment appears to reduce or eliminate the shrinkage porosity because of grain growth and dissolution of as-cast eutectic phases in the grain boundaries. The cyclic stress amplitude of the as-cast alloy increases with increasing the number of cycles, while the T6-treated alloy shows cyclic softening after the stress reaches a maximum value. The Coffin-Manson law and Basquin equation can be used to evaluate the life of low cycle fatigue. The developed long crack model and multi-scale fatigue (MSF) models can be used to predict high-cycle fatigue life of the Mg-2.96Nd-0.21Zn-0.39Zr alloys with or without casting defects.

  13. Corrosion fatigue of high strength fastener materials in seawater

    NASA Astrophysics Data System (ADS)

    Tipton, D. G.

    1983-12-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  14. Corrosion fatigue of high strength fastener materials in seawater

    NASA Technical Reports Server (NTRS)

    Tipton, D. G.

    1983-01-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  15. Assessment of fatigue life of remanufactured impeller based on FEA

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Cao, Huajun; Liu, Hailong; Zhang, Yubo

    2016-07-01

    Predicting the fatigue life of remanufactured centrifugal compressor impellers is a critical problem. In this paper, the S-N curve data were obtained by combining experimentation and theory deduction. The load spectrum was compiled by the rain-flow counting method based on the comprehensive consideration of the centrifugal force, residual stress, and aerodynamic loads in the repair region. A fatigue life simulation model was built, and fatigue life was analyzed based on the fatigue cumulative damage rule. Although incapable of providing a high-precision prediction, the simulation results were useful for the analysis of fatigue life impact factors and fatigue fracture areas. Results showed that the load amplitude greatly affected fatigue life, the impeller was protected from running at over-speed, and the predicted fatigue life was satisfied within the next service cycle safely at the rated speed.

  16. Principles of fatigue in residency education: a qualitative study

    PubMed Central

    Taylor, Taryn S.; Watling, Christopher J.; Teunissen, Pim W.; Dornan, Tim; Lingard, Lorelei

    2016-01-01

    Background: Proposals to implement fatigue-management strategies in residency education assume that medicine shares the view of other risk-adverse industries that fatigue is hazardous. This view is an essential underpinning of fatigue-management strategies that other industries have embedded as part of their workplace occupational health and safety programs. We sought to explore how residents understand fatigue in the context of their training environment. Methods: We interviewed 21 residents in 7 surgical and nonsurgical programs at Western University in 2014. All participants met the inclusion criteria of routinely working 24-hour call shifts while enrolled in their training program. Data collection and analysis occurred iteratively in keeping with constructivist grounded theory methodology and informed theoretical sampling to sufficiency. Results: Four predominant principles of fatigue captured how the social learning environment shaped residents' perceptions of fatigue. These included the conceptualization of fatigue as (a) inescapable and therefore accepted, (b) manageable through experience, (c) necessary for future practice and (d) surmountable when required. Interpretation: This study elaborates our understanding of how principles of fatigue are constructed and reinforced by the training environment. Whereas fatigue is seen as a collective hazard in other industries, our data showed that, in residency training, fatigue may be seen as a personal challenge. Consequently, fatigue-management strategies that conceptualize fatigue as an occupational threat may have a limited impact on resident behaviour and patient safety. PMID:27398364

  17. Chronic fatigue syndrome

    PubMed Central

    2008-01-01

    Introduction Chronic fatigue syndrome (CFS) affects between 0.006% and 3% of the population depending on the criteria of definition used, with women being at higher risk than men. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical question: What are the effects of treatments for chronic fatigue syndrome? We searched: Medline, Embase, The Cochrane Library, and other important databases up to September 2007 (BMJ Clinical evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 45 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: antidepressants, cognitive behavioural therapy (CBT), corticosteroids, dietary supplements, evening primrose oil, galantamine, graded exercise therapy, homeopathy, immunotherapy, intramuscular magnesium, oral nicotinamide adenine dinucleotide, and prolonged rest. PMID:19445810

  18. Chronic fatigue syndrome

    PubMed Central

    2011-01-01

    Introduction Chronic fatigue syndrome (CFS) affects between 0.006% and 3% of the population depending on the criteria of definition used, with women being at higher risk than men. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical question: What are the effects of treatments for chronic fatigue syndrome? We searched: Medline, Embase, The Cochrane Library, and other important databases up to March 2010 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 46 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: antidepressants, cognitive behavioural therapy (CBT), corticosteroids, dietary supplements, evening primrose oil, galantamine, graded exercise therapy, homeopathy, immunotherapy, intramuscular magnesium, oral nicotinamide adenine dinucleotide, and prolonged rest. PMID:21615974

  19. Creep-fatigue analysis by Strainrange Partitioning

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.; Hirschbere, M. H.

    1973-01-01

    Strainrange Partitioning provides unifying framework for characterizing high-temperature, low-cycle, creep-fatigue properties of metals and alloys. Method offers distinct advantage to designers of immediately providing reliable upper and lower bounds on cyclic life for any type of inelastic strain cycle that may be encountered in service.

  20. Predictors and Trajectories of Morning Fatigue Are Distinct from Evening Fatigue

    PubMed Central

    Wright, Fay; Melkus, Gail D’Eramo; Hammer, Marilyn; Schmidt, Brian L.; Knobf, M. Tish; Paul, Steven M.; Cartwright, Frances; Mastick, Judy; Cooper, Bruce A.; Chen, Lee-May; Melisko, Michelle; Levine, Jon D.; Kober, Kord; Aouizerat, Bradley E.; Miaskowski, Christine

    2015-01-01

    Context Fatigue is the most common symptom in oncology patients during chemotherapy (CTX). Little is known about the predictors of interindividual variability in initial levels and trajectories of morning fatigue severity in these patients. Objectives An evaluation was done to determine which demographic, clinical, and symptom characteristics were associated with initial levels as well as the trajectories of morning fatigue and to compare findings with our companion paper on evening fatigue. Methods A sample of outpatients with breast, gastrointestinal, gynecological, and lung cancer (N=586) completed demographic and symptom questionnaires a total of six times over two cycles of CTX. Fatigue severity was evaluated using the Lee Fatigue Scale. Hierarchical linear modeling (HLM) was used to answer the study objectives. Results A large amount of interindividual variability was found in the morning fatigue trajectories. A piecewise model fit the data best. Patients with higher body mass index (BMI), who did not exercise regularly, with a lower functional status, and who had higher levels of state anxiety, sleep disturbance and depressive symptoms, reported higher levels of morning fatigue at enrollment. Variations in the trajectories of morning fatigue were predicted by the patients’ ethnicity and younger age. Conclusion The modifiable risk factors that were associated with only morning fatigue were BMI, exercise, and state anxiety. Modifiable risk factors that were associated with both morning and evening fatigue included functional status, depressive symptoms, and sleep disturbance. Using this information, clinicians can identify patients at higher risk for more severe morning fatigue and evening fatigue, provide individualized patient education, and tailor interventions to address the modifiable risk factors. PMID:25828559

  1. Crack modelling: A novel technique for the prediction of fatigue failure in the presence of stress concentrations

    NASA Astrophysics Data System (ADS)

    Taylor, D.

    1997-07-01

    Finite element (FE) analysis and other computational methods have developed rapidly in recent years, allowing accurate predictions of elastic stresses in components of complex geometry. However, the prediction of fatigue failure in these components is still a non-trivial problem; one reason for this is the difficulty of assessing stress concentrations and regions of high stress-gradient. This paper describes a new technique, called "crack modelling", which addresses the problem through a modification of linear-elastic fracture mechanics (LEFM). LEFM is designed to deal with cracks in nominally elastic stress fields, using elastic analysis to derive a characteristic stress intensity, K or, for cyclic loading, a range Δ K. This methodology is modified in two ways. Firstly it is shown that LEFM can be extended to predict the fatigue behaviour of bodies containing notches of standard geometry, instead of cracks. Secondly, FE analysis is used in conjunction with a modelling exercise in order to extend the method to include bodies of arbitrary shape subjected to any set of loads. The method was first tested using standard notch geometries (blunt and sharp notches in beams), where accurate predictions of fatigue limit could be achieved. It was then applied to an industrial problem, giving a prediction of high-cycle fatigue behaviour for an automotive crankshaft. The method requires only simple mechanical-property data (the material fatigue limit and stress-intensity threshold) and uses only linear-elastic FE modelling. It allows fracture mechanics theory to be used without the need to specifically model the presence of a crack and uses far-field elastic stresses to infer behaviour in the region of a stress concentration.

  2. The importance of the derivative in sex-hormone cycles: a reason why behavioural measures in sex-hormone studies are so mercurial.

    PubMed

    McNamara, Adam; Moakes, Kaylee; Aston, Philip; Gavin, Christine; Sterr, Annette

    2014-01-01

    To study the dynamic changes in cognition across the human menstrual cycle, twenty, healthy, naturally-cycling women undertook a lateralized spatial figural comparison task on twelve occasions at approximately 3-4 day intervals. Each session was conducted in laboratory conditions with response times, accuracy rates, eye movements, salivary estrogen and progesterone concentrations and Profile of Mood states questionnaire data collected on each occasion. The first two sessions of twelve for the response variables were discarded to avoid early effects of learning thereby providing 10 sessions spread across each participant's complete menstrual cycle. Salivary progesterone data for each participant was utilized to normalize each participant's data to a standard 28 day cycle. Data was analysed categorically by comparing peak progesterone (luteal phase) to low progesterone (follicular phase) to emulate two-session repeated measures typical studies. Neither a significant difference in reaction times or accuracy rates was found. Moreover no significant effect of lateral presentation was observed upon reaction times or accuracy rates although inter and intra individual variance was sizeable. We demonstrate that hormone concentrations alone cannot be used to predict the response times or accuracy rates. In contrast, we constructed a standard linear model using salivary estrogen, salivary progesterone and their respective derivative values and found these inputs to be very accurate for predicting variance observed in the reaction times for all stimuli and accuracy rates for right visual field stimuli but not left visual field stimuli. The identification of sex-hormone derivatives as predictors of cognitive behaviours is of importance. The finding suggests that there is a fundamental difference between the up-surge and decline of hormonal concentrations where previous studies typically assume all points near the peak of a hormonal surge are the same. How contradictory findings

  3. The Importance of the Derivative in Sex-Hormone Cycles: A Reason Why Behavioural Measures in Sex-Hormone Studies Are So Mercurial

    PubMed Central

    McNamara, Adam; Moakes, Kaylee; Aston, Philip; Gavin, Christine; Sterr, Annette

    2014-01-01

    To study the dynamic changes in cognition across the human menstrual cycle, twenty, healthy, naturally-cycling women undertook a lateralized spatial figural comparison task on twelve occasions at approximately 3–4 day intervals. Each session was conducted in laboratory conditions with response times, accuracy rates, eye movements, salivary estrogen and progesterone concentrations and Profile of Mood states questionnaire data collected on each occasion. The first two sessions of twelve for the response variables were discarded to avoid early effects of learning thereby providing 10 sessions spread across each participant's complete menstrual cycle. Salivary progesterone data for each participant was utilized to normalize each participant's data to a standard 28 day cycle. Data was analysed categorically by comparing peak progesterone (luteal phase) to low progesterone (follicular phase) to emulate two-session repeated measures typical studies. Neither a significant difference in reaction times or accuracy rates was found. Moreover no significant effect of lateral presentation was observed upon reaction times or accuracy rates although inter and intra individual variance was sizeable. We demonstrate that hormone concentrations alone cannot be used to predict the response times or accuracy rates. In contrast, we constructed a standard linear model using salivary estrogen, salivary progesterone and their respective derivative values and found these inputs to be very accurate for predicting variance observed in the reaction times for all stimuli and accuracy rates for right visual field stimuli but not left visual field stimuli. The identification of sex-hormone derivatives as predictors of cognitive behaviours is of importance. The finding suggests that there is a fundamental difference between the up-surge and decline of hormonal concentrations where previous studies typically assume all points near the peak of a hormonal surge are the same. How contradictory

  4. Nonlinear acoustic measurements ahead of a notch during fatigue

    NASA Astrophysics Data System (ADS)

    Martin, R. W.; Mooers, R. D.; Hutson, A. L.; Sathish, S.; Blodgett, M. P.

    2013-01-01

    This paper presents measurements of relative nonlinear acoustic parameter (βrel), ahead of a notch in Al 7075-T651 dog bone samples, subjected to fatigue. It is compared with crack growth measurements on the same samples. Measurements performed on two samples subjected to identical fatigue conditions that failed at vastly different number of fatigue cycles are described. The βrel measurement for both samples as a function of fatigue cycles was fit a Boltzmann curve. The role of changing βrel ahead of a notch is explored as a possible approach for remain life evaluation.

  5. Long-Term Fatigue and Its Probability of Failure Applied to Dental Implants

    PubMed Central

    Prados-Frutos, Juan Carlos; Gehrke, Sérgio Alexandre; Calvo Guirado, José Luis; Bea, José Antonio

    2016-01-01

    It is well known that dental implants have a high success rate but even so, there are a lot of factors that can cause dental implants failure. Fatigue is very sensitive to many variables involved in this phenomenon. This paper takes a close look at fatigue analysis and explains a new method to study fatigue from a probabilistic point of view, based on a cumulative damage model and probabilistic finite elements, with the goal of obtaining the expected life and the probability of failure. Two different dental implants were analysed. The model simulated a load of 178 N applied with an angle of 0°, 15°, and 20° and a force of 489 N with the same angles. Von Mises stress distribution was evaluated and once the methodology proposed here was used, the statistic of the fatigue life and the probability cumulative function were obtained. This function allows us to relate each cycle life with its probability of failure. Cylindrical implant has a worst behaviour under the same loading force compared to the conical implant analysed here. Methodology employed in the present study provides very accuracy results because all possible uncertainties have been taken in mind from the beginning. PMID:27517052

  6. High temperature fatigue behavior of Haynes 188

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Saltsman, James F.; Kalluri, Sreeramesh

    1988-01-01

    The high temperature, creep-fatigue behavior of Haynes 188 was investigated as an element in a broader thermomechanical fatigue life prediction model development program at the NASA-Lewis. The models are still in the development stage, but the data that were generated possess intrinsic value on their own. Results generated to date is reported. Data were generated to characterize isothermal low cycle fatigue resistance at temperatures of 316, 704, and 927 C with cyclic failure lives ranging from 10 to more than 20,000. These results follow trends that would be predicted from a knowledge of tensile properties, i.e., as the tensile ductility varies with temperature, so varies the cyclic inelastic straining capacity. Likewise, as the tensile strength decreases, so does the high cyclic fatigue resistance. A few two-minute hold-time cycles at peak compressive strain were included in tests at 760 C. These results were obtained in support of a redesign effort for the Orbital Maneuverable System engine. No detrimental effects on cyclic life were noted despite the added exposure time for creep and oxidation. Finally, a series of simulated thermal fatigue tests, referred to as bithermal fatigue tests, were conducted using 316 C as the minimum and 760 C as the maximum temperature. Only out-of-phase bithermal tests were conducted to date. These test results are intended for use as input to a more general thermomechanical fatigue life prediction model based on the concepts of the total strain version of Strainrange Partitioning.

  7. Fatigue of concrete beams and slabs

    NASA Astrophysics Data System (ADS)

    Roesler, Jeffrey Raphael

    Traditionally, simply supported concrete beam (SSB) fatigue results have been used to characterize the fatigue resistance of fully supported concrete slabs (FSS). SSB concrete fatigue tests have been assumed to be equivalent to the fatigue resistance of concrete slabs in the field. The effect specimen size, boundary conditions, and loading configurations have on the fatigue of concrete beams and slabs have not been considered in the design of concrete pavements against fatigue. A laboratory study was undertaken to determine if the fatigue behavior of FSS and SSB were similar. A fully supported beam (FSB) was also tested under repeated loading, since it represented an intermediate specimen size and testing configuration between SSB and FSS. The best way to present fatigue results for all specimens was a stress ratio (S) to number of cycles to failure (N) curve (S-N curve). SSB fatigue behavior was similar to results obtained from the literature. FSB had similar fatigue behavior to SSB. The fatigue curve derived from repeated loading of FSS was 30 percent higher than the SSB fatigue curve. This suggested for a given number of cycles to failure, FSS could take a 30 percent higher bending stress as compared to SSB and FSB. The concrete modulus of rupture from a FSS test configuration was 30 percent greater than the concrete modulus of rupture from a SSB test setup. If the concrete modulus of rupture from a FSS test configuration was used in the slab's stress ratio, the slab's fatigue curve was the same as the SSB and FSB. This meant concrete behaved the same under fatigue loading, irrespective of specimen size and test configuration, as long as the correct concrete modulus of rupture was used in the stress ratio. Strain gages, attached to all specimens tested, indicated cracking in concrete occurred in a narrow band. Regions of high plastic strain were found in the plane of cracking, while adjacent areas experienced decreases in strain levels with cracking. Strain

  8. High-temperature fatigue in metals

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1982-01-01

    The presentation focuses primarily on the progress we at NASA Lewis Research Center have made. The understanding of the phenomenological processes of high temperature fatigue of metals for the purpose of calculating lives of turbine engine hot section components is discussed. Improved understanding resulted in the development of accurate and physically correct life prediction methods such as Strain-Range Partitioning for calculating creep fatigue interactions and the Double Linear Damage Rule for predicting potentially severe interactions between high and low cycle fatigue. Examples of other life prediction methods are also discussed.

  9. Predicting Fatigue Lives Under Complex Loading Conditions

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.; Nelson, R. S.; Janitor, L. A.

    1995-01-01

    Cyclic Damage Accumulation (CDA) computer program performs high-temperature, low-cycle-fatigue life prediction for materials analysis. Designed to account for effects on creep-fatigue life of complex loadings involving such factors as thermomechanical fatigue, hold periods, wave-shapes, mean stresses, multiaxiality, cumulative damage, coatings, and environmental attack. Several features practical for application to actual component analysis using modern finite-element or boundary-element methods. Although developed for use in predicting crack-initiation lifetimes of gas-turbine-engine materials, also applied to other materials as well. Written in FORTRAN 77.

  10. Effect Of Solidification Speed On Fatigue Properties

    NASA Technical Reports Server (NTRS)

    Mccay, M. H.; Schmidt, D. D.; Hamilton, W. D.; Alter, W. S.; Parr, R. A.

    1989-01-01

    Fast solidification increases fatigue life, but failure distribution becomes less predictable. Report describes effects of rate of solidification on nickel-based super-alloy MAR-M246(Hf) used in turbine blades. Based on experiments in which specimens directionally solidified at 5 cm/h and 30 cm/h, then tested for high cycle fatigue. Specimens also inspected by energy-dispersive x-ray (EDX) analysis and optical and electron microscopy.

  11. Corrosion fatigue behavior and life prediction method under changing temperature condition

    SciTech Connect

    Kanasaki, Hiroshi; Hirano, Akihiko; Iida, Kunihiro; Asada, Yasuhide

    1997-12-01

    Axially strain controlled low cycle fatigue tests of a carbon steel in oxygenated high temperature water were carried out under changing temperature conditions. Two patterns of triangular wave were selected for temperature cycling. One was in-phase pattern synchronizing with strain cycling and the other was an out-of-phase pattern in which temperature was changed in anti-phase to the strain cycling. The fatigue life under changing temperature condition was in the range of the fatigue life under various constant temperature within the range of the changing temperature. The fatigue life of in-phase pattern was equivalent to that of out-of-phase pattern. The corrosion fatigue life prediction method was proposed for changing temperature condition, and was based on the assumption that the fatigue damage increased in linear proportion to increment of strain during cycling. The fatigue life predicted by this method was in good agreement with the test results.

  12. Rheological signatures in limit cycle behaviour of dilute, active, polar liquid crystalline polymers in steady shear

    PubMed Central

    Forest, M. Gregory; Phuworawong, Panon; Wang, Qi; Zhou, Ruhai

    2014-01-01

    We consider the dilute regime of active suspensions of liquid crystalline polymers (LCPs), addressing issues motivated by our kinetic model and simulations in Forest et al. (Forest et al. 2013 Soft Matter 9, 5207–5222 (doi:10.1039/c3sm27736d)). In particular, we report unsteady two-dimensional heterogeneous flow-orientation attractors for pusher nanorod swimmers at dilute concentrations where passive LCP equilibria are isotropic. These numerical limit cycles are analogous to longwave (homogeneous) tumbling and kayaking limit cycles and two-dimensional heterogeneous unsteady attractors of passive LCPs in weak imposed shear, yet these states arise exclusively at semi-dilute concentrations where stable equilibria are nematic. The results in Forest et al. mentioned above compel two studies in the dilute regime that complement recent work of Saintillan & Shelley (Saintillan & Shelley 2013 C. R. Physique 14, 497–517 (doi:10.1016/j.crhy.2013.04.001)): linearized stability analysis of the isotropic state for nanorod pushers and pullers; and an analytical–numerical study of weakly and strongly sheared active polar nanorod suspensions to capture how particle-scale activation affects shear rheology. We find that weakly sheared dilute puller versus pusher suspensions exhibit steady versus unsteady responses, shear thickening versus thinning and positive versus negative first normal stress differences. These results further establish how sheared dilute nanorod pusher suspensions exhibit many of the characteristic features of sheared semi-dilute passive nanorod suspensions. PMID:25332387

  13. Rheological signatures in limit cycle behaviour of dilute, active, polar liquid crystalline polymers in steady shear.

    PubMed

    Forest, M Gregory; Phuworawong, Panon; Wang, Qi; Zhou, Ruhai

    2014-11-28

    We consider the dilute regime of active suspensions of liquid crystalline polymers (LCPs), addressing issues motivated by our kinetic model and simulations in Forest et al. (Forest et al. 2013 Soft Matter 9, 5207-5222 (doi:10.1039/c3sm27736d)). In particular, we report unsteady two-dimensional heterogeneous flow-orientation attractors for pusher nanorod swimmers at dilute concentrations where passive LCP equilibria are isotropic. These numerical limit cycles are analogous to longwave (homogeneous) tumbling and kayaking limit cycles and two-dimensional heterogeneous unsteady attractors of passive LCPs in weak imposed shear, yet these states arise exclusively at semi-dilute concentrations where stable equilibria are nematic. The results in Forest et al. mentioned above compel two studies in the dilute regime that complement recent work of Saintillan & Shelley (Saintillan & Shelley 2013 C. R. Physique 14, 497-517 (doi:10.1016/j.crhy.2013.04.001)): linearized stability analysis of the isotropic state for nanorod pushers and pullers; and an analytical-numerical study of weakly and strongly sheared active polar nanorod suspensions to capture how particle-scale activation affects shear rheology. We find that weakly sheared dilute puller versus pusher suspensions exhibit steady versus unsteady responses, shear thickening versus thinning and positive versus negative first normal stress differences. These results further establish how sheared dilute nanorod pusher suspensions exhibit many of the characteristic features of sheared semi-dilute passive nanorod suspensions. PMID:25332387

  14. Interconnect fatigue design for terrestrial photovoltaic modules

    SciTech Connect

    Mon, G. R.; Moore, D. M.; Ross, Jr., R. G.

    1982-03-01

    Fatigue of solar cell electrical interconnects due to thermal cycling has historically been a major failure mechanism in photovoltaic arrays; the results of a comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data gathered in this study indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable: (1) the prediction of cumulative interconnect failures during the design life of an array field; and (2) the unambiguous - i.e., quantitative - interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field. This procedure yields not only the minimum break-even cost of delivered energy, but also the required degree of interconnect redundancy and an estimate of array power degradation during the design life of the array field. The usefulness of the design algorithms is demonstrated with realistic examples of design optimization, prediction, and service qualification testing.

  15. Daily and annual cycles in thermoregulatory behaviour and cardio-respiratory physiology of black and white tegu lizards.

    PubMed

    Sanders, Colin E; Tattersall, Glenn J; Reichert, Michelle; Andrade, Denis V; Abe, Augusto S; Milsom, William K

    2015-12-01

    This study was designed to determine the manner in which metabolism is suppressed during dormancy in black and white tegu lizards (Tupinambis merianae). To this end, heart rate (fH), respiration rate (fR), and deep body temperature (Tb) were continuously monitored in outdoor enclosures by radio-telemetry for nine months. There was a continuous decline in nighttime breathing and heart rate, at constant Tb, throughout the late summer and fall suggestive of an active metabolic suppression that developed progressively at night preceding the entrance into dormancy. During the day, however, the tegus still emerged to bask. In May, when the tegus made a behavioural commitment to dormancy, Tb (day and night) fell to match burrow temperature, accompanied by a further reduction in fH and fR. Tegus, under the conditions of this study, did arouse periodically during dormancy. There was a complex interplay between changes in fH and Tb associated with the direct effects of temperature and the indirect effects of thermoregulation, activity, and changes in metabolism. This interplay gave rise to a daily hysteresis in the fH/Tb relationship reflective of the physiological changes associated with warming and cooling as preferred Tb alternated between daytime and nighttime levels. The shape of the hysteresis curve varied with season along with changes in metabolic state and daytime and nighttime body temperature preferences. PMID:26266400

  16. The Growth of Naturally-Generated Small Fatigue Cracks in a Nickel-Base Single-Crystal Superalloy

    NASA Astrophysics Data System (ADS)

    Yandt, Scott A.

    An experimental and analytical study on the formation and growth small fatigue cracks embedded in a notch in single-crystal superalloy has been investigated. The experimental program consisted of 12 constant amplitude fatigue tests performed on single-edge notch (SEN) fatigue specimens oriented with the loading axis along [010] and with a notch factor of 2.7. The fatigue tests concentrated on one temperature (650°C) and loading condition with the secondary crystallographic orientation---the notch orientation---being the primary variable. Two secondary crystallographic orientations were considered in the present study, [101] and [100]. In the analytical study, the distribution of stresses and strains in the notch region and the stress-intensity factors and the elastic-plastic J-integral for Mode-I semi-elliptical surface cracks embedded at the notch root were investigated using the finite element method (FEM). The anisotropic material properties were shown to have a significant effect on both the stress and strain distribution in the notch region and the crack-tip parameters. The results of the experimental study have shown that fatigue cracks formation occurs via expansion of elliptical subsurface interdendritic pores located at high stress regions in the notch. Once the subsurface crack intersected the notch surface, subsequent crack growth occurred as semi-elliptical surface cracks. The secondary crystallographic orientation had a marked effect on crack-initiation life (the number of cycles to form a crack with a surface length of 760 mum) but no effect on small crack propagation behaviour. Crack initiation life predictions were made using a holistic lifing approach that considers the size, distribution and local stresses acting at the subsurface pores and utilizes the small fatigue crack growth data obtained from the experimental study. The predictions were found to agree reasonably well with the experimental test results and to account for the crack initiation

  17. Functionally distinct tendon fascicles exhibit different creep and stress relaxation behaviour

    PubMed Central

    Legerlotz, Kirsten; Demirci, Taylan; Klemt, Christian; Riley, Graham P; Screen, Hazel RC

    2014-01-01

    Most overuse tendinopathies are thought to be associated with repeated microstrain below the failure threshold, analogous to the fatigue failure that affects materials placed under repetitive loading. Investigating the progression of fatigue damage within tendons is therefore of critical importance. There are obvious challenges associated with the sourcing of human tendon samples for in vitro analysis so animal models are regularly adopted. However, data indicates that fatigue life varies significantly between tendons of different species and with different stresses in life. Positional tendons such as rat tail tendon or the bovine digital extensor are commonly applied in in vitro studies of tendon overuse, but there is no evidence to suggest their behaviour is indicative of the types of human tendon particularly prone to overuse injuries. In this study, the fatigue response of the largely positional digital extensor and the more energy storing deep digital flexor tendon of the bovine hoof were compared to the semitendinosus tendon of the human hamstring. Fascicles from each tendon type were subjected to either stress or strain controlled fatigue loading (cyclic creep or cyclic stress relaxation respectively). Gross fascicle mechanics were monitored after cyclic stress relaxation and the mean number of cycles to failure investigated with creep loading. Bovine extensor fascicles demonstrated the poorest fatigue response, while the energy storing human semitendinosus was the most fatigue resistant. Despite the superior fatigue response of the energy storing tendons, confocal imaging suggested a similar degree of damage in all three tendon types; it appears the more energy storing tendons are better able to withstand damage without detriment to mechanics. PMID:24285289

  18. Exploring the Behaviour of Emerging Contaminants in the Water Cycle using the Capabilities of High Resolution Mass Spectrometry.

    PubMed

    Hollender, Juliane; Bourgin, Marc; Fenner, Kathrin B; Longrée, Philipp; Mcardell, Christa S; Moschet, Christoph; Ruff, Matthias; Schymanski, Emma L; Singer, Heinz P

    2014-11-01

    To characterize a broad range of organic contaminants and their transformation products (TPs) as well as their loads, input pathways and fate in the water cycle, the Department of Environmental Chemistry (Uchem) at Eawag applies and develops high-performance liquid chromatography (LC) methods combined with high-resolution tandem mass spectrometry (HRMS/MS). In this article, the background and state-of-the-art of LC-HRMS/MS for detection of i) known targets, ii) suspected compounds like TPs, and iii) unknown emerging compounds are introduced briefly. Examples for each approach are taken from recent research projects conducted within the department. These include the detection of trace organic contaminants and their TPs in wastewater, pesticides and their TPs in surface water, identification of new TPs in laboratory degradation studies and ozonation experiments and finally the screening for unknown compounds in the catchment of the river Rhine. PMID:26508487

  19. Adaptations to isolated shoulder fatigue during simulated repetitive work. Part I: Fatigue.

    PubMed

    Tse, Calvin T F; McDonald, Alison C; Keir, Peter J

    2016-08-01

    Upper extremity muscle fatigue is challenging to identify during industrial tasks and places changing demands on the shoulder complex that are not fully understood. The purpose of this investigation was to examine adaptation strategies in response to isolated anterior deltoid muscle fatigue while performing simulated repetitive work. Participants completed two blocks of simulated repetitive work separated by an anterior deltoid fatigue protocol; the first block had 20 work cycles and the post-fatigue block had 60 cycles. Each work cycle was 60s in duration and included 4 tasks: handle pull, cap rotation, drill press and handle push. Surface EMG of 14 muscles and upper body kinematics were recorded. Immediately following fatigue, glenohumeral flexion strength was reduced, rating of perceived exertion scores increased and signs of muscle fatigue (increased EMG amplitude, decreased EMG frequency) were present in anterior and posterior deltoids, latissimus dorsi and serratus anterior. Along with other kinematic and muscle activity changes, scapular reorientation occurred in all of the simulated tasks and generally served to increase the width of the subacromial space. These findings suggest that immediately following fatigue people adapt by repositioning joints to maintain task performance and may also prioritize maintaining subacromial space width. PMID:26208429

  20. Ice stream behaviour in the western sector of the North Sea during the end of the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Roberts, David; Evans, David; Clark, Chris; Bateman, Mark; Livingstone, Stephen; Medialdea, Alicia; Cofaigh, Colm O.; Grimoldi, Elena; Callard, Louise; Dove, Dayton; Stewart, Heather; Davies, Bethan; Chiverell, Richard

    2016-04-01

    During the last glacial cycle the East coast of the UK was overrun by the British-Irish Ice Sheet (BIIS) flowing eastwards and southwards. In recent years it has become evident that several ice streams including the Tweed, Tyne, and Stainmore Gap ice streams, as well as the late stage North Sea Lobe (NSL), all played a role in shaping the glacial landscape during this period, but understanding the flow phasing of these ice streams during advance and collapse has proved challenging. Here we present new data from the seafloor collected during recent work undertaken by the Britice Chrono and Glanam project teams during cruise JC123 in the North Sea. Sub-bottom seafloor data together with new swath data clearly show that the final phases of the collapse of the NSL were controlled by ice sourced from the Firth of Forth ice stream which deglaciated in a NNW trajectory. Other ice streams being fed from the west (e.g. Stainmore, Tyne, Tweed) were not influential in final phase ice retreat from the southern North Sea. The Forth ice imprint is characterised by several grounding zone/till wedges marking dynamic, oscillatory retreat of the ice as it retreated along an offshore corridor between North Yorkshire and Northumberland. Repeated packages of tills, ice marginal and glaciomarine sediments, which drape glacially scoured bedrock terrain and drumlins along this corridor, point to marine inundation accompanying ice retreat. New TCN ages suggest decoupling of the Tyne Gap ice stream and NSL between 17.8 and 16.5 ka and this coincides with rapid, regional collapse of the NSL between 17.2 and 16.0 ka along the Yorkshire and Durham coasts (new OSL ages; Britice Chrono). Hence, both the central and northern sectors of the BIIS were being strongly influenced by marine margin instability during the latter phases of the last glacial cycle.

  1. Recurrent 3-day cycles of water deprivation for over a month depress mating behaviour but not semen characteristics of adult rams.

    PubMed

    Khnissi, S; Lassoued, N; Rekik, M; Ben Salem, H

    2016-02-01

    This study aimed to investigate the effect of water deprivation (WD) on reproductive traits of rams. Ten mature rams were used and allocated to two groups balanced for body weight. Control (C) rams had free access to drinking water, while water-restricted rams (WD) were deprived from water for 3 consecutive days and early on the morning of day 4, they had ad libitum access to water for 24 h, similar to C animals. The experiment lasted 32 days, that is eight 4-day cycles of water deprivation and subsequent watering. Feed and water intake were significantly affected by water deprivation; in comparison with C rams, WD rams reduced their feed intake by 18%. During the watering day of the deprivation cycle, WD rams consumed more water than C rams on the same day (11.8 (SD = 3.37) and 8.4 (SD = 1.92) l respectively; p < 0.05). Glucose, total protein and creatinine were increased as a result of water deprivation. However, testosterone levels were lowered as a result of water deprivation and average values were 10.9 and 6.2 (SEM 1.23) ng/ml for C and WD rams respectively (p < 0.05). Semen traits were less affected by treatment; WD rams consistently had superior sperm concentrations than C animals; and statistical significances were reached in cycles 5 and 8 of water deprivation. Several mating behaviour traits were modified as a result of water deprivation. When compared to controls, WD rams had a more prolonged time to first mount attempt (p < 0.001), their frequency of mount attempts decreased [6.8 vs. 5.2 (SEM 0.1); p < 0.001] and their flehmen reaction intensity was negatively affected (p < 0.05). Water deprivation may have practical implications reducing the libido and therefore the serving capacity of rams under field conditions. PMID:25916259

  2. Fatigue performance and cyclic softening of F82H, a ferritic martensic steel

    SciTech Connect

    Stubbins, J.F.; Gelles, D.S.

    1996-04-01

    The room temperature fatigue performance of F82H has been examined. The fatigue life was determined in a series of strain-controlled tests where the stress level was monitored as a function of the number of accrued cycles. Fatigue lives in the range of 10{sup 3} to 10{sup 6} cycles to failure were examined. The fatigue performance was found to be controlled primarily by the elastic strain range over most of the range of fatigue lives examined. Only at low fatigue lives did the plastic strain range contribute to the response. However, when the significant plastic strain did contribute, the material showed a tendency to cyclically soften. That is the load carrying capability of the material degrades with accumulated fatigue cycles. The overall fatigue performance of the F82H alloy was found to be similiar to other advanced martensitic steels, but lower than more common low alloy steels which possess lower yield strengths.

  3. Parameters influencing the fatigue life of a Cu-Al-Be single-crystal shape memory alloy under repeated bending

    NASA Astrophysics Data System (ADS)

    Siredey-Schwaller, N.; Eberhardt, A.; Bastie, P.

    2009-02-01

    One of the principal limitations in the use of shape memory alloys is certainly fatigue behaviour. Initially, the mechanical behaviour of polycrystals evolves during cycling and then rupture occurs after a relatively small number of cycles, in particular for deformation higher than a few per cent. If one replaces the polycrystal by a single crystal, one notices an important increase in the fatigue lifespan, mainly for high deformation (Siredey et al 2005 Mater. Sci. Eng. A 396 296-301). The aim of this study is to analyse the role of three parameters influencing the lifespan in mechanical fatigue. The first one relates to the atmosphere in which the test is carried out. No notable influence was found. However, for samples having spent 44 000 h in air, one notes a lifespan reduction for those tested in the presence of air, whereas it is normal for those tested under argon. In the second part, the effect of the surface state will be discussed. As already presented in Siredey et al (2005 Mater. Sci. Eng. A 396 296-301), surface roughness influences lifespan, especially for low imposed strain. However, for higher strain this effect is much less important. On the surface, striations due to martensitic transformations appear during cycling. However, the damage inside these striations seems not to be correlated to rupture. The third parameter relates to crystalline quality of the single crystal. It was studied with a hard x-ray diffractometer using a transposition at high energy of the Guinier-Tennevin method. Crystalline quality is found to play a crucial role in the lifespan in fatigue. The presence of sub-grains disoriented by about 1° and mosaicity can reduce the lifespan by a factor up to 10.

  4. Influence of localized plasticity on oxidation behaviour of austenitic stainless steels under primary water reactor

    NASA Astrophysics Data System (ADS)

    Cissé, Sarata; Laffont, Lydia; Lafont, Marie-Christine; Tanguy, Benoit; Andrieu, Eric

    2013-02-01

    The sensitivity of precipitation-strengthened A286 austenitic stainless steel to stress corrosion cracking was studied by means of slow-strain-rate tests. First, alloy cold working by low cycle fatigue (LCF) was investigated. Fatigue tests under plastic strain control were performed at different strain levels (Δɛp/2 = 0.2%, 0.5%, 0.8% and 2%) to establish correlations between stress softening and the deformation microstructure resulting from the LCF tests. Deformed microstructures were identified through TEM investigations. The interaction between oxidation and localized deformation bands was also studied and it resulted that localized deformation bands are not preferential oxide growth channels. The pre-cycling of the alloy did not modify its oxidation behaviour. However, intergranular oxidation in the subsurface under the oxide layer formed after exposure to PWR primary water was shown.

  5. Ratcheting induced cyclic softening behaviour of 42CrMo4 steel

    NASA Astrophysics Data System (ADS)

    Kreethi, R.; Mondal, A. K.; Dutta, K.

    2015-02-01

    Ratcheting is an important field of fatigue deformation which happens under stress controlled cyclic loading of materials. The aim of this investigation is to study the uniaxial ratcheting behavior of 42CrMo4 steel in annealed condition, under various applied stresses. In view of this, stress controlled fatigue tests were carried out at room temperature up to 200 cycles using a servo-hydraulic universal testing machine. The results indicate that accumulation of ratcheting strain increases monotonically with increasing maximum applied stress however; the rate of strain accumulation attains a saturation plateau after few cycles. The investigated steel shows cyclic softening behaviour under the applied stress conditions. The nature of strain accumulation and cyclic softening has been discussed in terms of dislocation distribution and plastic damage incurred in the material.

  6. Effect of multiple strain-anneal cycles on the 1000 C creep behaviour of gamma/gamma prime-alpha

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Buzek, B. C.; Wirth, G.

    1986-01-01

    Various multiple strain-anneal cycles (1000 C) were imposed on specimens of the directionally solidified eutectic (DSE) alloy gamma/gamma prime-alpha to identify thermomechanical processing methods (TMP) which would improve the creep behavior. Specimens of the Ni-32.3Mo-6.3Al wt pct alloy were grown with a modified Bridgeman technique. Some of the cylindrical specimens were alternately heat-treated at 900 C, then strained, or heat-treated only, while other specimens were annealed at 900 C after swaging and then worked at ambient temperature. The specimens were all examined microstructurally using transmission electron microscopy, some before and after being exposed to constant-load compression tests at 1000 C. The creep strain increased for all TMP specimens for strain rates of at least 2 millionths per sec. Strain rates of about 2 ten millionths per sec were only improved with strain annealing with 13 percent work at ambient temperature. A slight improvement, compared to as-grown materials, was observed in the 1000 C creep behavior of materials annealed at 900 C. Strain-annealing was found to introduce three-dimensional dislocation networks into the gamma-prime matrix.

  7. Fatigue monitoring desktop guide

    SciTech Connect

    Woods, K.; Thomas, K.

    2012-07-01

    The development of a program for managing material aging (MMG) in the nuclear industry requires a new and different perspective. The classical method for MMG is cycle counting, which has been shown to have limited success. The classical method has been successful in satisfying the ductile condition per the America Society of Mechanical Engineers' (ASME) design criteria. However, the defined material failure mechanism has transformed from through-wall cracking and leakage (ASME) to crack initiation (NUREG-6909). This transformation is based on current industry experience with material degradation early in plant life and can be attributed to fabrication issues and environment concerns where cycle counting has been unsuccessful. This new perspective provides a different approach to cycle counting that incorporates all of the information about the material conditions. This approach goes beyond the consideration of a static analysis and includes a dynamic assessment of component health, which is required for operating plants. This health definition should consider fabrication, inspections, transient conditions and industry operating experience. In addition, this collection of information can be transparent to a broader audience that may not have a full understanding of the system design or the potential causes of early material degradation. This paper will present the key points that are needed for a successful fatigue monitoring desktop guide. (authors)

  8. Fatigue behavior and recommended design rules for an automotive composite

    SciTech Connect

    Corum, J.M.; Battiste, R.L.; Ruggles, M.B.

    1998-11-01

    Fatigue curves (stress vs cycles to failure) were generated under a variety of conditions (temperatures, fluid environments, mean stresses, block loadings) for a candidate automotive structural composite. The results were used to (1) develop observations regarding basic fatigue behavioral characteristics and (2) establish fatigue design rules. The composite was a structural reaction injection-molded polyurethane reinforced with continuous strand, swirl-mat E-glass fibers. Tensile fatigue tests on specimens from a single plaque at {minus}40 F, room temperature, and 250 F provided the basic behavioral characteristics. It was found that when stress was normalized by the at-temperature ultimate tensile strength, the fatigue curves at the three temperatures collapsed into a single master curve. An assessment of the individual stress-strain loops throughout each test showed a progressive loss in stiffness and an increase in permanent strain, both of which are indicative of increasing damage. Fatigue tests on specimens from several plaques were used to develop a design fatigue curve, which was established by using a reduction factor of 20 on average cycles to failure. This factor assures that the stiffness loss during the design life is no greater than 10 percent. Fatigue reduction factors were established to account for various fluids. Reversed stress fatigue tests allowed a mean stress rule to be validated, and block loading tests were used to demonstrate the adequacy of Miner`s rule for cumulative fatigue damage.

  9. Analysis of fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1972-01-01

    The correlation between fatigue crack propagation and stress intensity factor is analyzed. When determining fatigue crack propagation rate, a crack increment, delta a, and its corresponding increment in load cycles, delta N, are measured. Fatigue crack propagation must be caused by a shear and/or a normal separation mode. Both of these two processes are discrete if one looks at the atomic level. If the average deformation and fracture properties over the crack increments, delta a, can be considered as homogeneous, if the characteristic discrete lengths of sigma a, if the plastic zone size is small, and if a plate is thick enough to insure a plane strain case, da/dN is proportional to delta K squared. Any deviation of empirical data from this relation must be caused by the fact that one or more of these conditions are not satisfied. The effects of plate thickness and material inhomogeneity are discussed in detail. A shear separation mode of fatigue crack propagation is described and is used to illustrate the effects of material inhomogeneity.

  10. Statistical optimisation techniques in fatigue signal editing problem

    NASA Astrophysics Data System (ADS)

    Nopiah, Z. M.; Osman, M. H.; Baharin, N.; Abdullah, S.

    2015-02-01

    Success in fatigue signal editing is determined by the level of length reduction without compromising statistical constraints. A great reduction rate can be achieved by removing small amplitude cycles from the recorded signal. The long recorded signal sometimes renders the cycle-to-cycle editing process daunting. This has encouraged researchers to focus on the segment-based approach. This paper discusses joint application of the Running Damage Extraction (RDE) technique and single constrained Genetic Algorithm (GA) in fatigue signal editing optimisation.. In the first section, the RDE technique is used to restructure and summarise the fatigue strain. This technique combines the overlapping window and fatigue strain-life models. It is designed to identify and isolate the fatigue events that exist in the variable amplitude strain data into different segments whereby the retention of statistical parameters and the vibration energy are considered. In the second section, the fatigue data editing problem is formulated as a constrained single optimisation problem that can be solved using GA method. The GA produces the shortest edited fatigue signal by selecting appropriate segments from a pool of labelling segments. Challenges arise due to constraints on the segment selection by deviation level over three signal properties, namely cumulative fatigue damage, root mean square and kurtosis values. Experimental results over several case studies show that the idea of solving fatigue signal editing within a framework of optimisation is effective and automatic, and that the GA is robust for constrained segment selection.

  11. Statistical optimisation techniques in fatigue signal editing problem

    SciTech Connect

    Nopiah, Z. M.; Osman, M. H.; Baharin, N.; Abdullah, S.

    2015-02-03

    Success in fatigue signal editing is determined by the level of length reduction without compromising statistical constraints. A great reduction rate can be achieved by removing small amplitude cycles from the recorded signal. The long recorded signal sometimes renders the cycle-to-cycle editing process daunting. This has encouraged researchers to focus on the segment-based approach. This paper discusses joint application of the Running Damage Extraction (RDE) technique and single constrained Genetic Algorithm (GA) in fatigue signal editing optimisation.. In the first section, the RDE technique is used to restructure and summarise the fatigue strain. This technique combines the overlapping window and fatigue strain-life models. It is designed to identify and isolate the fatigue events that exist in the variable amplitude strain data into different segments whereby the retention of statistical parameters and the vibration energy are considered. In the second section, the fatigue data editing problem is formulated as a constrained single optimisation problem that can be solved using GA method. The GA produces the shortest edited fatigue signal by selecting appropriate segments from a pool of labelling segments. Challenges arise due to constraints on the segment selection by deviation level over three signal properties, namely cumulative fatigue damage, root mean square and kurtosis values. Experimental results over several case studies show that the idea of solving fatigue signal editing within a framework of optimisation is effective and automatic, and that the GA is robust for constrained segment selection.

  12. Influence of loading frequency on transient current behavior of Fe-26Cr-1Mo during low cycle corrosion fatigue in 1M H[sub 2]SO[sub 4] and 0. 6M NaCl solutions

    SciTech Connect

    Wang, J.Q.; Li, J.; Wang, F.; Zhu, Z.Y.; Ke, W. . Corrosion Science Lab.); Wang, Z.G.; Zang, Q.S. . State Key Lab. for Fatigue and Fracture of Materials)

    1993-12-01

    To understand the corrosion fatigue (CF) mechanism, in recent years many studies have been done on the transient current behavior of cyclic straining electrode for mild steel although there have been some studies on the transient current evolution under cyclic deformation, detailed information concerning the effect of loading frequency in corrosive solutions with different passivation characteristics is lacking. Crack initiation mechanisms are generally analyzed from the effect of surface dissolution, which is related to competition between the kinetics of depassivation by film rupture and repassivation by refilming of new metal surface. Two important factors should affect this surface reaction process: (1) surface dissolution behavior of metals which is dependent on the strain rate in the case of Fe-26Cr-1Mo stainless steel and gives a distribution of passive film damage; (2) repassivation kinetics, which are determined by the refilming ability of the corrosive medium. In the condition of CF, frequency is therefore an important factor which simultaneously determines both the material plastic deformation rate and the new surface repassivation time. On the other hand, the surface refilming process will be controlled by the characteristics of the selective medium. The main purpose of this paper is to study the effect of loading frequency on the transient current behavior for Fe-26Cr-1Mo stainless steel under a low cycle CF condition, and to compare the difference of current response in 1M H[sub 2]SO[sub 4] solution.

  13. Fatigue and Mechanical Damage Propagation in Automotive PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Banan, Roshanak

    Polymer electrolyte membrane (PEM) fuel cells are generally exposed to high magnitude road-induced vibrations and impact loads, frequent humidity-temperature loading cycles, and freeze/thaw stresses when employed in automotive applications. The resultant mechanical stresses can play a significant role in the evolution of mechanical defects in the membrane electrode assembly (MEA). The focus of this research is to investigate fatigue challenges due to humidity-temperature (hygrothermal) cycles and vibrations and their effects on damage evolution in PEM fuel cells. To achieve this goal, this thesis is divided into three parts that provide insight into damage propagation in the MEA under i) hygrothermal cycles, ii) external applied vibrations, and iii) a combination of both to simulate realistic automotive conditions. A finite element damage model based on cohesive zone theory was developed to simulate the propagation of micro-scale defects (cracks and delaminations) in the MEA under fuel cell operating conditions. It was found that the micro-defects can propagate to critical states under start-up and shut-down cycles, prior to reaching the desired lifespan of the fuel cell. The simultaneous presence of hygrothermal cycles and vibrations severely intensified damage propagation and resulted in considerably large defects within 75% of the fuel cell life expectancy. However, the order of generated damage was found to be larger under hygrothermal cycles than vibrations. Under hygrothermal cycles, membrane crack propagation was more severe compared to delamination propagation. Conversely, the degrading influence of vibrations was more significant on delaminations. The presence of an anode/cathode channel offset under the combined loadings lead to a 2.5-fold increase in the delamination length compared to the aligned-channel case. The developed model can be used to investigate the damage behaviour of current materials employed in fuel cells as well as to evaluate the

  14. Fatigue life prediction under service load considering strengthening effect of loads below fatigue limit

    NASA Astrophysics Data System (ADS)

    Zhao, Lihui; Zheng, Songlin; Feng, Jinzhi

    2014-11-01

    Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to a heavy structure. Because these methods are established on the basis that load cycles would only cause fatigue damage, ignore the strengthening effect of loads. Based on Palmgren-Miner Rule (PMR), this paper introduces a new method for fatigue life prediction under service loadings by taking into account the strengthening effect of loads below the fatigue limit. In this method, the service loadings are classified into three categories: damaging load, strengthening load and none-effect load, and the process for fatigue life prediction is divided into two stages: stage I and stage II, according to the best strengthening number of cycles. During stage I, fatigue damage is calculated considering both the strengthening and damaging effect of load cycles. While during stage II, only the damaging effect is considered. To validate this method, fatigue lives of automobile half shaft and torsion beam rear axle are calculated based on the new method and traditional methods, such as PMR and Modified Miner Rule (MMR), and fatigue tests of the two components are conducted under service loading histories. The tests results show that the percentage errors of the predicted life with the new method to mean life of tests for the two components are -3.78% and -1.76% separately, much lesser than that with PMR and MMR. By considering the strengthening effect of loads below the fatigue limit, the new method can significantly improve the accuracy for fatigue life prediction. Thus lightweight design can be fully realized in the design stage.

  15. Fatigue life prediction under service load considering strengthening effect of loads below fatigue limit

    NASA Astrophysics Data System (ADS)

    Zhao, Lihui; Zheng, Songlin; Feng, Jinzhi

    2014-09-01

    Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to a heavy structure. Because these methods are established on the basis that load cycles would only cause fatigue damage, ignore the strengthening effect of loads. Based on Palmgren-Miner Rule (PMR), this paper introduces a new method for fatigue life prediction under service loadings by taking into account the strengthening effect of loads below the fatigue limit. In this method, the service loadings are classified into three categories: damaging load, strengthening load and none-effect load, and the process for fatigue life prediction is divided into two stages: stage I and stage II, according to the best strengthening number of cycles. During stage I, fatigue damage is calculated considering both the strengthening and damaging effect of load cycles. While during stage II, only the damaging effect is considered. To validate this method, fatigue lives of automobile half shaft and torsion beam rear axle are calculated based on the new method and traditional methods, such as PMR and Modified Miner Rule (MMR), and fatigue tests of the two components are conducted under service loading histories. The tests results show that the percentage errors of the predicted life with the new method to mean life of tests for the two components are -3.78% and -1.76% separately, much lesser than that with PMR and MMR. By considering the strengthening effect of loads below the fatigue limit, the new method can significantly improve the accuracy for fatigue life prediction. Thus lightweight design can be fully realized in the design stage.

  16. Fatigue and creep-fatigue deformation of several nickel-base superalloys at 650 C

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Gayda, J.; Maier, R. D.

    1982-01-01

    Transmission electron microscopy has been used to study the bulk deformation characteristics of seven nickel-base superalloys tested in fatigue and creep-fatigue at 650 C. The alloys were Waspalloy, HIP Astroloy, H plus F Astroloy, H plus F Rene 95, IN 100, MERL 76, and NASA IIB-7. The amount of bulk deformation observed in all the alloys was low. In tests with inelastic strain amplitudes less than about 0.003, only some grains exhibited yielding and the majority of those had the 110 line near the tensile axis. Deformation occurred on octahedral systems for all of the alloys except MERL 76 which also showed abundant primary cube slip. Creep-fatigue cycling occasionally produced extended faults between partial dislocations, but otherwise deformation was much the same as for fatigue cycling.

  17. Fatigue of die cast zinc alloys

    SciTech Connect

    Schrems, K.K.; Dogan, O.N.; Goodwin, F.E.

    2006-04-01

    The rotating bending fatigue limit of die cast zinc alloy 2, alloy 3, alloy 5, AcuZinc 5, and ZA-8 were determined as a part of an on-going program by ILZRO into the mechanical properties of die cast zinc. The stress-life (S-N) curves of alloys 3, 5, AcuZinc 5, and ZA-8 were determined previously. This presentation reports the results of the S-N curve for Alloy 2 and the calculated fatigue limits for all five alloys. During the previous stress-life testing, the samples were stopped at 10 million cycles and the fatigue limit for alloy 3, alloy 5, and AcuZinc 5 appeared to be higher and the fatigue limit for ZA-8 appeared to be lower than the values reported in the literature. This was further investigated in alloy 5 and ZA-8 by testing continuous cast bulk alloy 5 and ZA-8.

  18. Caffeine, maximal power output and fatigue.

    PubMed Central

    Williams, J H; Signorile, J F; Barnes, W S; Henrich, T W

    1988-01-01

    The purpose of this investigation was to determine the effects of caffeine ingestion on maximal power output and fatigue during short term, high intensity exercise. Nine adult males performed 15 s maximal exercise bouts 60 min after ingestion of caffeine (7 mg.kg-1) or placebo. Exercise bouts were carried out on a modified cycle ergometer which allowed power output to be computed for each one-half pedal stroke via microcomputer. Peak power output under caffeine conditions was not significantly different from that obtained following placebo ingestion. Similarly, time to peak power, total work, power fatigue index and power fatigue rate did not differ significantly between caffeine and placebo conditions. These results suggest that caffeine ingestion does not increase one's maximal ability to generate power. Further, caffeine does not alter the rate or magnitude of fatigue during high intensity, dynamic exercise. PMID:3228680

  19. Visual simulation of fatigue crack growth

    SciTech Connect

    Wang, S.; Margolin, H.; Lin, F.B.

    1998-07-01

    An attempt has been made to visually simulate fatigue crack propagation from a precrack. An integrated program was developed for this purpose. The crack-tip shape was determined at four load positions in the first load cycle. The final shape was a blunt front with an ear profile at the precrack tip. A more general model, schematically illustrating the mechanism of fatigue crack growth and striation formation in a ductile material, was proposed based on this simulation. According to the present model, fatigue crack growth is an intermittent process; cyclic plastic shear strain is the driving force applied to both state 1 and 2 crack growth. No fracture mode transition occurs between the two stages in the present study. The crack growth direction alternates, moving up and down successively, producing fatigue striations. A brief examination has been made of the crack growth path in a ductile two-phase material.

  20. [Prolonged or chronic fatigue of unknown origin].

    PubMed

    Favrat, Bernard; Guessous, Idris; Gonthier, Ariane; Cornuz, Jacques

    2015-04-22

    Although prolonged or chronic fatigue is a very common complaint in primary care medicine, a biomedical obvious cause is often not found. In such a case, for women between 18 and 50 years with a ferritin level of less than 50 µg/l in the absence of anaemia, an iron supplementation may be associated with an improvement in fatigue. Appropriate treatment is also important for depression, anxiety or insomnia. In other cases, the approach is essentially non-pharmacological in the form of lifestyle advice, empathy and cognitive behavioural therapy as well as progressive and adapted physical exercises. PMID:26072601

  1. Mental fatigue impairs soccer-specific decision-making skill.

    PubMed

    Smith, Mitchell R; Zeuwts, Linus; Lenoir, Matthieu; Hens, Nathalie; De Jong, Laura M S; Coutts, Aaron J

    2016-07-01

    This study aimed to investigate the impact of mental fatigue on soccer-specific decision-making. Twelve well-trained male soccer players performed a soccer-specific decision-making task on two occasions, separated by at least 72 h. The decision-making task was preceded in a randomised order by 30 min of the Stroop task (mental fatigue) or 30 min of reading from magazines (control). Subjective ratings of mental fatigue were measured before and after treatment, and mental effort (referring to treatment) and motivation (referring to the decision-making task) were measured after treatment. Performance on the soccer-specific decision-making task was assessed using response accuracy and time. Visual search behaviour was also assessed throughout the decision-making task. Subjective ratings of mental fatigue and effort were almost certainly higher following the Stroop task compared to the magazines. Motivation for the upcoming decision-making task was possibly higher following the Stroop task. Decision-making accuracy was very likely lower and response time likely higher in the mental fatigue condition. Mental fatigue had unclear effects on most visual search behaviour variables. The results suggest that mental fatigue impairs accuracy and speed of soccer-specific decision-making. These impairments are not likely related to changes in visual search behaviour. PMID:26949830

  2. [Fatigue in neuromuscular disease].

    PubMed

    Van Engelen, B G M; Kalkman, J S; Schillings, M L; Van Der Werf, S P; Bleijenberg, G; Zwarts, M J

    2004-07-01

    Chronic fatigue is a symptom of diseases such as cancer, multiple sclerosis, Parkinson's and cerebrovascular disease. Fatigue can also be present in people with no demonstrable somatic disease. If certain criteria are met, chronic-fatigue syndrome may be diagnosed in these cases. Fatigue is a multi-dimensional concept with physiological and psychological dimensions. The 'Short Fatigue Questionnaire' consisting of 4 questions is a tool to measure fatigue with a high degree of reliability and validity. Within the group of neuromuscular disorders, fatigue has been reported by patients with post-polio syndrome, myasthenia gravis, and Guillain-Barré syndrome. The percentage of neuromuscular patients suffering from severe fatigue (64%) is comparable with that of patients with multiple sclerosis, a disease in which fatigue is an acknowledged symptom. Now that reliable psychological and clinical neurophysiological techniques are available, a multidisciplinary approach to fatigue in patients with well-defined neuromuscular disorders may contribute towards the elucidation of the pathophysiological mechanisms of chronic fatigue, with the ultimate goal being to develop methods of treatment for fatigue in neuromuscular patients. PMID:15283024

  3. Fatigue of composites

    NASA Technical Reports Server (NTRS)

    Salkind, M. J.

    1972-01-01

    The failure mechanisms in the fatigue of composite materials are analyzed in terms of the requirements for designing fatigue-critical composite structures. Fiber reinforced polymers, fiber reinforced metals, fatigue of composite structures, and composite design considerations are discussed. It is concluded that composite materials offer the engineer the opportunity for tailoring stiffness in different directions for designing dynamic components.

  4. Consolidation of fatigue and fatigue-crack-propagation data for design use

    NASA Technical Reports Server (NTRS)

    Rice, R. C.; Davies, K. B.; Jaske, C. E.; Feddersen, C. E.

    1975-01-01

    Analytical methods developed for consolidation of fatigue and fatigue-crack-propagation data for use in design of metallic aerospace structural components are evaluated. A comprehensive file of data on 2024 and 7075 aluminums, Ti-6Al-4V alloy, and 300M steel was established by obtaining information from both published literature and reports furnished by aerospace companies. Analyses are restricted to information obtained from constant-amplitude load or strain cycling of specimens in air at room temperature. Both fatigue and fatigue-crack-propagation data are analyzed on a statistical basis using a least-squares regression approach. For fatigue, an equivalent strain parameter is used to account for mean stress or stress ratio effects and is treated as the independent variable; cyclic fatigue life is considered to be the dependent variable. An effective stress-intensity factor is used to account for the effect of load ratio on fatigue-crack-propagation and treated as the independent variable. In this latter case, crack-growth rate is considered to be the dependent variable. A two term power function is used to relate equivalent strain to fatigue life, and an arc-hyperbolic-tangent function is used to relate effective stress intensity to crack-growth rate.

  5. The Burning of Surface and Deep Peat during Boreal Forest and Peatland Fires: Implications for Fire Behaviour and Global Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Turetsky, M. R.

    2015-12-01

    Fire is increasingly appreciated as a threat to peatlands and their carbon stocks. The global peatland carbon pool exceeds that of global vegetation and is similar to the current atmospheric carbon pool. Under pristine conditions, most of the peat carbon stock is protected from burning, and resistance to fire has increased peat carbon storage in high latitude regions over long time scales. This, in part, is due to the high porosity and storage coefficient of surface peat, which minimizes water table variability and maintains wet conditions even during drought. However, higher levels of disturbance associated with warming and increasing human activities are triggering state changes and the loss of resiliency in some peatland systems. This presentation will summarize information on burn area and severity in peatlands under undisturbed scenarios of hydrologic self-regulation, and will assess the consequences of warming and drying on peatland vegetation and wildfire behaviour. Our goal is to predict where and when peatlands will become more vulnerable to deep smouldering, given the importance of deep peat layers to global carbon cycling, permafrost stability, and a variety of other ecosystem services in northern regions. Results from two major wildfire seasons (2004 in Alaska and 2014 in the Northwest Territories) show that biomass burning in peatlands releases similar amounts of carbon to the atmosphere as patterns of burning in upland forests, but that peatlands are less vulnerable to severe burning that tends to occur in boreal forests during late season fire activity.

  6. Probabilistic fatigue methodology and wind turbine reliability

    SciTech Connect

    Lange, C.H.

    1996-05-01

    Wind turbines subjected to highly irregular loadings due to wind, gravity, and gyroscopic effects are especially vulnerable to fatigue damage. The objective of this study is to develop and illustrate methods for the probabilistic analysis and design of fatigue-sensitive wind turbine components. A computer program (CYCLES) that estimates fatigue reliability of structural and mechanical components has been developed. A FORM/SORM analysis is used to compute failure probabilities and importance factors of the random variables. The limit state equation includes uncertainty in environmental loading, gross structural response, and local fatigue properties. Several techniques are shown to better study fatigue loads data. Common one-parameter models, such as the Rayleigh and exponential models are shown to produce dramatically different estimates of load distributions and fatigue damage. Improved fits may be achieved with the two-parameter Weibull model. High b values require better modeling of relatively large stress ranges; this is effectively done by matching at least two moments (Weibull) and better by matching still higher moments. For this purpose, a new, four-moment {open_quotes}generalized Weibull{close_quotes} model is introduced. Load and resistance factor design (LRFD) methodology for design against fatigue is proposed and demonstrated using data from two horizontal-axis wind turbines. To estimate fatigue damage, wind turbine blade loads have been represented by their first three statistical moments across a range of wind conditions. Based on the moments {mu}{sub 1}{hor_ellipsis}{mu}{sub 3}, new {open_quotes}quadratic Weibull{close_quotes} load distribution models are introduced. The fatigue reliability is found to be notably affected by the choice of load distribution model.

  7. Shear/compressive fatigue of insulation systems at low temperatures

    NASA Astrophysics Data System (ADS)

    Reed, R. P.; Fabian, P. E.; Bauer-McDaniel, T. S.

    Fatigue tests under combined compression and shear loading were conducted at 76 K on four types of insulation system fabricated by vacuum-pressure impregnation and pre-impregnation. Fixtures developed for static tests with loading angles of 15 °, 45 °, 75 °, 84 ° and 90 ° were used to apply cyclic loads. Fatigue tests were conducted for each material over a fatigue-life range from 1 to 10 6 cycles. The constructed fatigue S-N curves were approximately linear for all materials; data variability was remarkably low.

  8. Cognitive and Physical Fatigue Tasks Enhance Pain, Cognitive Fatigue and Physical Fatigue in People with Fibromyalgia

    PubMed Central

    Dailey, Dana L; Keffala, Valerie J; Sluka, Kathleen A

    2014-01-01

    Objective Fibromyalgia is a condition characterized by chronic widespread muscle pain and fatigue. The primary objective of this study was to determine if pain, perceived cognitive fatigue, and perceived physical fatigue were enhanced in participants with fibromyalgia compared to healthy controls during a cognitive fatigue task, a physical fatigue task and a dual fatigue task. Methods Twenty four people with fibromyalgia and 33 healthy controls completed pain, fatigue and function measures. A cognitive fatigue task (Controlled Oral Word Association Test) and physical fatigue task (Valpar peg test) were done individually and combined for a dual fatigue task. Resting pain, perceived cognitive fatigue and perceived physical fatigue were assessed during each task using visual analogue scales. Function was assessed with shoulder range of motion and grip. Results People with fibromyalgia had significantly higher increases in pain, cognitive fatigue and physical fatigue when compared to healthy controls after completion of a cognitive fatigue task, a physical fatigue task, or a dual fatigue task (p<0.01). People with fibromyalgia performed equivalently on measures of physical performance and cognitive performance on the physical and cognitive fatigue tasks, respectively. Conclusions These data show that people with fibromyalgia show larger increases in pain, perceived cognitive fatigue and perceived physical fatigue to both cognitive and physical fatigue tasks compared to healthy controls. The increases in pain and fatigue during cognitive and physical fatigue tasks could influence subject participation in daily activities and rehabilitation. PMID:25074583

  9. The Effects of Hot Corrosion Pits on the Fatigue Resistance of a Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Hazel, Brian; Mourer, David P.

    2009-01-01

    The effects of hot corrosion pits on low cycle fatigue life and failure modes of the disk superalloy ME3 were investigated. Low cycle fatigue specimens were subjected to hot corrosion exposures producing pits, then tested at low and high temperatures. Fatigue lives and failure initiation points were compared to those of specimens without corrosion pits. Several tests were interrupted to estimate the fraction of fatigue life that fatigue cracks initiated at pits. Corrosion pits significantly reduced fatigue life by 60 to 98 percent. Fatigue cracks initiated at a very small fraction of life for high temperature tests, but initiated at higher fractions in tests at low temperature. Critical pit sizes required to promote fatigue cracking were estimated, based on measurements of pits initiating cracks on fracture surfaces.

  10. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Van Herpen, Alain; Zhang, Weihong

    2016-03-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well.

  11. Influence of fretting on flexural fatigue of 304 stainless steel and mild steel

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Rohn, D. A.

    1978-01-01

    Fretting fatigue experiments conducted on 304 stainless steel using a flexural fatigue test arrangement with bolted on fretting pads demonstrated that fatigue life is reduced by at least a factor of 10 in the 265 to 334 MPa (38,500 - to 48,500 psi) nominal flexural fatigue stress range. In addition, experiments in which the fretting pads were removed after selected numbers of cycles, followed by continued flexural fatigue without fretting show that continued fretting beyond 50,000 cycles does not significantly further reduce fatigue life of 304 stainless steel at 317 MPa (46,000 psi). Microscopic examination of the fretted contact areas revealed fracture initiation sites as well as numerous cracks that did not propagate to failure. Flexural fretting fatigue experiments performed on mild steel showed an insensitivity of fatigue life to the incidence of fretting under flexural stress conditions of from 162 to 217 MPa (23,500 to 31,500 psi).

  12. German experiences in local fatigue monitoring

    SciTech Connect

    Abib, E.; Bergholz, S.; Rudolph, J.

    2012-07-01

    are the various manual control options and also different operating modes. It is clear that showing the covering of real loads by design loads, requires a relatively complex and well-qualified detection process. The difficulty of this task is increased due to the lack of data or incomplete information and the exclusive reliance on existing operation plant data. The strategy of employing local fatigue monitoring is a straightforward solution enabling the direct measurement of loads on the fatigue-sensitive zones. Nowadays a direct derivation of the complete stress tensor at the fatigue-relevant locations is enabled thanks to the recorded local loads and combination with finite element (FE) analyses. So, additionally to the recorded temperature curves, a representation of the time evolution of the six stress components for each monitored component is possible. This allows the application of the simplified elasto-plastic fatigue check according to design codes. The fatigue level can be realistically analyzed with a suitable cycle-counting method. Furthermore, the knowledge of the time evolution of the stresses and strains enables to take into account an environmental factor to include the corrosive fluid influence in the calculations. Without local recording, it is impossible to calculate realistic fatigue usage. AREVA offers the AREVA fatigue concept (AFC) and the new fatigue monitoring system integrated (FAMOSi), necessary tools to monitor local fatigue and to provide realistic assessment. (authors)

  13. Fatigue handbook: Offshore steel structures

    SciTech Connect

    Almarnaess, A.

    1985-01-01

    The contents of this book are: Overview of Offshore Steel Structures; Loads on Ocean Structures; Fracture Mechanics As a Tool in Fatigue Analysis; Basic Fatigue Properties of Welded Joints; Significance of Defects; Improving the Fatigue Strength of Welded Joints; Effects of Marine Environment and Cathodic Protection on Fatigue of Structural Steels Fatigue of Tubular Joints; Unstable Fracture; Fatigue Life Calculations; and Fatigue in Building Codes Background and Applications.

  14. Fatigue characterization of high pressure die-cast magnesium AM60B alloy using experimental and computational investigations

    NASA Astrophysics Data System (ADS)

    Lu, You

    The object of the current dissertation is to foster fundamental advances in microstructure-fatigue characteristics of a high pressure die cast magnesium AM60B alloy. First, high cycle fatigue staircase experiments were conducted on specimens extracted from automobile instrument panels. The resulting fracture surfaces were then examined with scanning electron microscopic imaging to elucidate the fatigue crack initiation sites and propagation paths at different stages of the fatigue life. Due to the fact that the qualification of the crack initiation and propagation mechanisms through experiment alone is difficult, complementary micromechanical finite element simulations were conducted. Particularly, the effects of different applied loading conditions and the porosity morphology (e.g. pore shape, pore size, pore spacing, proximity to the free surface) on the maximum plastic shear strain range, as a driving force for crack initiation, were analyzed. Moreover, at the microstructually small crack (MSC) propagation stage, the shielding effects of beta-phase Mg17Al12 particles were systematically studied. Based on the distribution of the maximum principal stress within the particles and the maximum hydrostatic stress along the particle/matrix interfaces, the relative influence of the pre-damaged (fractured or debonded) particles and various particle cluster morphologies were carefully investigated. In the finite element simulations, the constitutive behaviours of AM60B alloy and the alpha-matrix were simulated by the advanced kinematic hardening law tuned with experimentally determined material parameters under cyclic loading.

  15. Mental fatigue induced by prolonged self-regulation does not exacerbate central fatigue during subsequent whole-body endurance exercise.

    PubMed

    Pageaux, Benjamin; Marcora, Samuele M; Rozand, Vianney; Lepers, Romuald

    2015-01-01

    It has been shown that the mental fatigue induced by prolonged self-regulation increases perception of effort and reduces performance during subsequent endurance exercise. However, the physiological mechanisms underlying these negative effects of mental fatigue are unclear. The primary aim of this study was to test the hypothesis that mental fatigue exacerbates central fatigue induced by whole-body endurance exercise. Twelve subjects performed 30 min of either an incongruent Stroop task to induce a condition of mental fatigue or a congruent Stroop task (control condition) in a random and counterbalanced order. Both cognitive tasks (CTs) were followed by a whole-body endurance task (ET) consisting of 6 min of cycling exercise at 80% of peak power output measured during a preliminary incremental test. Neuromuscular function of the knee extensors was assessed before and after CT, and after ET. Rating of perceived exertion (RPE) was measured during ET. Both CTs did not induce any decrease in maximal voluntary contraction (MVC) torque (p = 0.194). During ET, mentally fatigued subjects reported higher RPE (mental fatigue 13.9 ± 3.0, control 13.3 ± 3.2, p = 0.044). ET induced a similar decrease in MVC torque (mental fatigue -17 ± 15%, control -15 ± 11%, p = 0.001), maximal voluntary activation level (mental fatigue -6 ± 9%, control -6 ± 7%, p = 0.013) and resting twitch (mental fatigue -30 ± 14%, control -32 ± 10%, p < 0.001) in both conditions. These findings reject our hypothesis and confirm previous findings that mental fatigue does not reduce the capacity of the central nervous system to recruit the working muscles. The negative effect of mental fatigue on perception of effort does not reflect a greater development of either central or peripheral fatigue. Consequently, mentally fatigued subjects are still able to perform maximal exercise, but they are experiencing an altered performance during submaximal exercise due to higher-than-normal perception of effort

  16. High temperature fatigue behavior of tungsten copper composites

    NASA Technical Reports Server (NTRS)

    Verrilli, M. J.; Kim, Y.-S.; Gabb, T. P.

    1990-01-01

    The present study investigates the high-temperature fatigue behavior of a 9-v/o tungsten fiber-reinforced copper matrix composite. Load-controlled isothermal fatigue at 260 and 560 C and thermomechanical fatigue (TMF) experiments, both in-phase and out-of-phase between 260 and 560 C, were performed. The stress-strain response under all conditions displayed considerable inelasticity. Strain ratchetting was observed during all the fatigue experiments. For the isothermal fatigue and in-phase TMF tests, the ratchetting was always in a tensile direction, continuing until failure. The ratchetting during the out-of-phase TMF test shifted from a tensile to a compressive direction. For all cases, the fatigue lives were found to be controlled by the damage of the copper matrix. On a stress basis, TMF loading substantially reduced lives relative to isothermal cycling.

  17. Bending Fatigue of Carburized Steel at Very Long Lives

    NASA Astrophysics Data System (ADS)

    Nelson, D. V.; Long, Z.

    2016-01-01

    The bending fatigue behavior of two carburized steels is investigated for lives between approximately 105 and 108 cycles. Cracks are observed to start at sub-surface inclusions and develop features on fracture surfaces resembling "fish eyes" in appearance. This type of sub-surface cracking tends to govern fatigue strength at long lives. Previous studies of "fish eye" fatigue in carburized steel have been relatively few and have mainly considered failures originating at depths beneath a carburized case, where compressive residual stresses are minimal and hardness values approach those in the core. This study provides fatigue data for cracks originating within cases at various depths where compressive residual stresses are substantial and hardness is much higher than in the core. Fatigue strength is predicted by a simple model, accounting for the influence of residual stresses and hardness values at the different depths at which cracks started. Predictions of fatigue strength are compared with data generated in this study.

  18. Dynamic response and acoustic fatigue of stiffened composite structure

    NASA Technical Reports Server (NTRS)

    Soovere, J.

    1984-01-01

    The results of acoustic fatigue and dynamic response tests performed on L-1011 graphite-epoxy (GrE) aileron and panel components are reported. The aileron featured glass microballoons between the GrE skins. Tests yielded random fatigue data from double and single cantilever coupons and modal data from impedance hammer and loudspeaker impulses. Numerical and sample test data were obtained on combined acoustic and shear loads, acoustic and thermal loads, random fatigue and damping of the integrally stiffened and secondary bonded panels. The fatigue data indicate a fatigue life beyond 10 million cycles. The acoustic data suggested that noise transmission could be enhanced in the integrally stiffened panels, which were more acoustic-fatigue resistant than were the secondary bonded panels.

  19. Adaptations to isolated shoulder fatigue during simulated repetitive work. Part II: Recovery.

    PubMed

    McDonald, Alison C; Tse, Calvin T F; Keir, Peter J

    2016-08-01

    The shoulder allows kinematic and muscular changes to facilitate continued task performance during prolonged repetitive work. The purpose of this work was to examine changes during simulated repetitive work in response to a fatigue protocol. Participants performed 20 one-minute work cycles comprised of 4 shoulder centric tasks, a fatigue protocol, followed by 60 additional cycles. The fatigue protocol targeted the anterior deltoid and cycled between static and dynamic actions. EMG was collected from 14 upper extremity and back muscles and three-dimensional motion was captured during each work cycle. Participants completed post-fatigue work despite EMG manifestations of muscle fatigue, reduced flexion strength (by 28%), and increased perceived exertion (∼3 times). Throughout the post-fatigue work cycles, participants maintained performance via kinematic and muscular adaptations, such as reduced glenohumeral flexion and scapular rotation which were task specific and varied throughout the hour of simulated work. By the end of 60 post-fatigue work cycles, signs of fatigue persisted in the anterior deltoid and developed in the middle deltoid, yet perceived exertion and strength returned to pre-fatigue levels. Recovery from fatigue elicits changes in muscle activity and movement patterns that may not be perceived by the worker which has important implications for injury risk. PMID:26076931

  20. Fatigue Crack Growth Threshold Testing of Metallic Rotorcraft Materials

    NASA Technical Reports Server (NTRS)

    Newman, John A.; James, Mark A.; Johnson, William M.; Le, Dy D.

    2008-01-01

    Results are presented for a program to determine the near-threshold fatigue crack growth behavior appropriate for metallic rotorcraft alloys. Four alloys, all commonly used in the manufacture of rotorcraft, were selected for study: Aluminum alloy 7050, 4340 steel, AZ91E Magnesium, and Titanium alloy Ti-6Al-4V (beta-STOA). The Federal Aviation Administration (FAA) sponsored this research to advance efforts to incorporate damage tolerance design and analysis as requirements for rotorcraft certification. Rotorcraft components are subjected to high cycle fatigue and are typically subjected to higher stresses and more stress cycles per flight hour than fixed-wing aircraft components. Fatigue lives of rotorcraft components are generally spent initiating small fatigue cracks that propagate slowly under near-threshold cracktip loading conditions. For these components, the fatigue life is very sensitive to the near-threshold characteristics of the material.

  1. Predicting fatigue life of metal bellows

    NASA Technical Reports Server (NTRS)

    Daniels, C. M.

    1968-01-01

    Classical method of presenting fatigue data in plots of alternating stress vs number of deflection cycles is applied to bellows formed of various metals, including corrosion-resistant steel, nickel alloys, and aluminum alloys. The expected life of a new bellows design can then be determined before fabrication and testing.

  2. Quantifying the Thermal Fatigue of CPV Modules

    SciTech Connect

    Bosco, N.; Kurtz, S.

    2011-02-01

    A method is presented to quantify thermal fatigue in the CPV die-attach from meteorological data. A comparative; study between cities demonstrates a significant difference in the accumulated damage. These differences are most; sensitive to the number of larger (ΔT) thermal cycles experienced for a location. High frequency data (<1/min) may; be required to most accurately employ this method.

  3. Fatigue crack growth in lithium hydride

    SciTech Connect

    Healy, T.E.

    1993-09-01

    Subcritical fatigue crack growth, from cyclic tensile loading, was demonstrated in warm pressed Polycrystalline lithium hydride. Experiments were performed with cyclic tension-tension crack opening (mode I) loads applied to a pre-cracked compact type specimen in an argon environment at a temperature of 21C (70F). The fatigue crack growth was found to occur between 7.56 {times} 10{sup {minus}ll} M/cycle (2.98 {times} l0{sup {minus}9} in/cycle) and 2.35 {times} l0{sup {minus}8} m/cycle (9.24{times}10{sup {minus}7} in/cycle) for a range of stress intensity factors between 1.04 MPa{center_dot}{radical}m (0.95 ksi{center_dot}{radical}in) and 1.49 MPa{center_dot}{radical}m (1.36 ksi{center_dot}{radical}in). The rate of fatigue crack growth from cyclic tensile loading was found to be in excess of crack growth from sustained loading at an equivalent stress intensity factor. Furthermore, a fatigue threshold was not evident from the acquired data.

  4. Double Linear Damage Rule for Fatigue Analysis

    NASA Technical Reports Server (NTRS)

    Halford, G.; Manson, S.

    1985-01-01

    Double Linear Damage Rule (DLDR) method for use by structural designers to determine fatigue-crack-initiation life when structure subjected to unsteady, variable-amplitude cyclic loadings. Method calculates in advance of service how many loading cycles imposed on structural component before macroscopic crack initiates. Approach eventually used in design of high performance systems and incorporated into design handbooks and codes.

  5. A model for the formation of fatigue striations and its relationship with small fatigue crack growth in an aluminum alloy

    SciTech Connect

    Shyam, Amit; Lara-Curzio, Edgar

    2010-01-01

    The fatigue crack growth process involves damage accumulation and crack extension. The two sub-processes that lead to fatigue crack extension were quantified separately in a recent model for small fatigue crack growth applicable to engineering alloys. Here, we report the results of an experimental investigation to assess the assumptions of that model. The fatigue striation formation in an aluminum alloy is modeled and it is verified that the number of cycles required for striation formation is related to the cyclic crack tip opening displacement and that the striation spacing is related to the monotonic crack tip displacement. It is demonstrated that extensive cyclic crack tip plasticity in the aluminum alloy causes a reduction in the magnitude of the slope of the fatigue crack propagation curves. The implications of these results on the fatigue crack propagation lifetime calculations are identified.

  6. Fatigue and fracture behavior of U-6 wt. pct. Nb

    SciTech Connect

    Strum, M.J.; Freeman, D.C.; Elmer, J.W.

    1993-05-21

    The fatigue and fracture properties of U6Nb were measured to provide the materials property data needed for structural designs in material processed by solution quenching and aging 200 C/2h. Limited testing was also performed on as-quenched U6Nb. The authors have extended the database on fatigue properties in U6Nb to include both crack initiation data and crack propagation data. The static load carrying capabilities have been characterized through fracture toughness and tensile property measurements. Using a rotating beam fatigue machine, a fatigue strength of 248 MPa was measured at 10{sup 8} cycles for smooth bars at zero mean load. As is typical of nonferrous alloys, U6Nb does not exhibit a fatigue endurance limit. Reductions in fatigue strength for notched bars and for mean loads of 276 MPa and 483 MPa (70 ksi) were also determined. The predominant sites for fatigue crack initiation were identified as niobium carbide and uranium oxide inclusion clusters and the distribution of these inclusions are presented. Fatigue crack propagation rates were measured in the near-threshold regime using compact tension specimens. The fatigue threshold for crack growth rates below 10{sup {minus}7} mm/cycle were measured at both R = 0.1, for which a fatigue threshold of 3.2 MPa{radical}m was measured, and for constant Kmax cycles with Kmax values of 14.6 MPa{radical}m and 30.5 MPa{radical}m, for which the fatigue threshold was reduced to 0.9 MPa{radical} and 0.6 MPa{radical}m, respectively.

  7. Peak Biomechanical Variables During Bilateral Drop Landings: Comparisons Between Sex (Female/Male) and Fatigue (Pre-Fatigue/Post-Fatigue)

    PubMed Central

    Hagins, Marshall; Sheikhzadeh, Ali; Nordin, Margareta; Rose, Donald

    2009-01-01

    Background Although anterior cruciate ligament (ACL) sprains usually occur during the initial phase of the landing cycle (less than 40° knee flexion), the literature has focused on peak values of knee angles, vertical ground reaction force (VGRF), and muscle activity even though it is unclear what occurs during the initial phase of landing. Objectives The objectives of this study were to determine the effects of sex (male and female) and fatigue (prefatigue/post-fatigue) on knee flexion angles at the occurrence of peak values of biomechanical variables [knee valgus angle, VGRF, and normalized electromyographic amplitude (NEMG) of the quadriceps and hamstring muscles] during a bilateral drop landing task. Methods Knee valgus angle, VGRF, and NEMG of the quadricep and hamstring muscles were collected during bilateral drop landings for twenty-nine recreational athletes before and after a fatigue protocol. Results Peak values of knee valgus, VGRF, and NEMG of medial and lateral hamstring muscles occurred during the late phase of the landing cycle (>40° of knee flexion). Females in the post-fatigue condition exhibited peak VGRF at significantly less knee flexion than in the pre-fatigue condition. Males in the post-fatigue condition exhibited peak lateral hamstring muscles NEMG at significantly higher knee flexion than in the pre-fatigue condition. Discussion and Conclusion Peak values of biomechanical variables that have been previously linked to ACL injury did not occur during the initial phase of landing when ACL injuries occur. No biomechanical variables peaked during the initial phase of landing; therefore, peak values may not be an optimal indicator of the biomechanical factors leading to ACL injury during landing tasks. PMID:21509113

  8. Investigation of fatigue strength of multilayer advanced fiber composites

    NASA Technical Reports Server (NTRS)

    Thornton, H. R.; Kozik, T. J.

    1974-01-01

    The analytical characterization of a multilayer fiber composite plate (without hole) was accomplished for both static and dynamic loading conditions using the finite difference technique. Thornel 300/5208 composites with and without holes were subjected to static and tensile fatigue testing. Five (5) fiber orientations were submitted to test. Tensile fatigue testing also included three (3) loading conditions and two (2) frequencies. The low-cycle test specimens demonstrated a shorter tensile fatigue life than the high-cycle test specimens. Failure surfaces demonstrated effect of testing conditions. Secondary failure mechanisms, such as: delamination, fiber breakage, and edge fiber delamination were present. Longitudinal delamination between plies also occurred in these specimens.

  9. Fatigue life estimates for helicopter loading spectra

    NASA Technical Reports Server (NTRS)

    Khosrovaneh, A. K.; Dowling, N. E.; Berens, A. P.; Gallagher, J. P.

    1990-01-01

    Helicopter loading histories applied to notch metal samples are used as examples, and their fatigue lives are calculated by using a simplified version of the local strain approach. This simplified method has the advantage that it requires knowing the loading history in only the reduced form of ranges and means and number of cycles from the rain-flow cycle counting method. The calculated lives compare favorably with test data.

  10. Fatigue life estimates for helicopter loading spectra

    NASA Technical Reports Server (NTRS)

    Khosrovaneh, A. K.; Dowling, N. E.; Berens, A. P.; Gallagher, J. P.

    1989-01-01

    Helicopter loading histories applied to notch metal samples are used as examples, and their fatigue lives are calculated by using a simplified version of the local strain approach. This simplified method has the advantage that it requires knowing the loading history in only the reduced form of ranges and means and number of cycles from the rain-flow cycle counting method. The calculated lives compare favorably with test data.

  11. J-integral values for cracks in conventional fatigue specimens

    SciTech Connect

    O`Donnell, T.P.; O`Donnell, W.J.

    1996-12-01

    Comprehensive S-N fatigue data has been developed worldwide using conventional low-cycle fatigue tests. Such tests use smooth unnotched specimens subjected to controlled axial deflection or strain ranges. The tests must be run in the plastic regime in order to achieve the required cycles-to-failure. Recent developments have highlighted the need to understand and interpret the significance of the resulting strain range vs. cycles to failure data in terms of crack initiation and propagation. Since conventional fatigue tests are conducted in the plastic regime, linear elastic fracture mechanics cannot be used to accurately quantify crack growth in such tests. Elastic-plastic J-integral theory, however, has been shown to provide excellent correlations of crack growth in the elastic, elastic-plastic and grossly-plastic regimes for a wide range of geometric and loading conditions. The authors are applying this theory to the low-cycle fatigue specimen crack behavior. As cracks progress in conventional fatigue specimens, bending becomes significant. Since fatigue testing machines are quite stiff relative to the small fatigue specimens, the ends of the specimen are constrained to remain parallel, and this reduces bending in the cracked cross-section. Three-dimensional finite element elastic-plastic analyses are required to include these constraints in the J-integral solutions.

  12. Subrupture Tendon Fatigue Damage

    PubMed Central

    Laudier, Damien M.; Shine, Jean H.; Basta-Pljakic, Jelena; Jepsen, Karl J.; Schaffler, Mitchell B.; Flatow, Evan L.

    2016-01-01

    The mechanical and microstructural bases of tendon fatigue, by which damage accumulates and contributes to degradation, are poorly understood. To investigate the tendon fatigue process, rat flexor digitorum longus tendons were cyclically loaded (1–16 N) until reaching one of three levels of fatigue damage, defined as peak clamp-to-clamp strain magnitudes representing key intervals in the fatigue life: i) Low (6.0%–7.0%); ii) Moderate (8.5%–9.5%); and iii) High (11.0%–12.0%). Stiffness, hysteresis, and clamp-to-clamp strain were assessed diagnostically (by cyclic loading at 1–8 N) before and after fatigue loading and following an unloaded recovery period to identify mechanical parameters as measures of damage. Results showed that tendon clamp-to-clamp strain increased from pre- to post-fatigue loading significantly and progressively with the fatigue damage level (p≤0.010). In contrast, changes in both stiffness and hysteresis were significant only at the High fatigue level (p≤0.043). Correlative microstructural analyses showed that Low level of fatigue was characterized by isolated, transverse patterns of kinked fiber deformations. At higher fatigue levels, tendons exhibited fiber dissociation and localized ruptures of the fibers. Histomorphometric analysis showed that damage area fraction increased significantly with fatigue level (p≤0.048). The current findings characterized the sequential, microstructural events that underlie the tendon fatigue process and indicate that tendon deformation can be used to accurately assess the progression of damage accumulation in tendons. PMID:18683881

  13. Modeling Thermal Fatigue in CPV Cell Assemblies: Preprint

    SciTech Connect

    Bosco, N.; Silverman, T. J.; Kurtz, S.

    2011-07-01

    A finite element model has been created to quantify the thermal fatigue damage of the CPV die attach. Simulations are used to compare to results of empirical thermal fatigue equations originally developed for accelerated chamber cycling. While the empirical equations show promise when extrapolated to the lower temperature cycles characteristic of weather-induced temperature changes in the CPV die attach, it is demonstrated that their damage does not accumulate linearly: the damage a particular cycle contributes depends on the preceding cycles. Simulations of modeled CPV cell temperature histories provided for direct comparison of the FEM and empirical methods, and for calculation of equivalent times provided by standard accelerated test sequences.

  14. Compassion fatigue in nurses.

    PubMed

    Yoder, Elizabeth A

    2010-11-01

    Compassion fatigue, trigger situations, and coping strategies were investigated in hospital and home care nurses. The Professional Quality of Life Scale measured compassion fatigue, compassion satisfaction, and burnout. Narrative questions elicited trigger situations and coping strategies. Compassion fatigue scores were significantly different between nurses who worked 8- or 12-hour shifts. Fifteen percent of the participants had scores indicating risk of the compassion fatigue. There were significant differences in compassion satisfaction, depending on the unit worked and time as a nurse. The most common category of trigger situations was caring for the patient. Work-related and personal coping strategies were identified. PMID:21035028

  15. Thermal fatigue of composites: Ultrasonic and SEM evaluations

    SciTech Connect

    Forsyth, D.S.; Kasap, S.O. . Dept. of Electrical Engineering); Wacker, I.; Yannacopoulos, S. . Dept. of Mechanical Engineering)

    1994-01-01

    Results are presented on the evaluation of thermal fatigue in three fiber reinforced polymer composites, using ultrasonic techniques and scanning electron microscopy. The composites examined were (a) continuous carbon fibers in a vinylester matrix (b) continuous aramid fibers in a vinylester matrix and (c) randomly oriented aramid fibers in a polyphenylene matrix. Specimens of these composites were subjected to thermal fatigue by thermal cycling from [minus]25 C to 75 C. Changes in ultrasonic attenuation and velocity were monitored during thermal cycling, and scanning electron microscopy was used to qualitatively evaluate any damage. It was observed that ultrasonic attenuation is sensitive to thermal fatigue, increasing with increasing number of thermal cycles. SEM evaluations showed that the primary damage due to thermal fatigue is due to fiber-matrix debonding.

  16. Fatigue damage mechanisms in boron-aluminium composite laminates

    NASA Technical Reports Server (NTRS)

    Dvorak, G. J.; Johnson, W. S.

    1980-01-01

    The relationship between fatigue and shakedown in metal matrix composites is investigated theoretically and experimentally for unidirectional and laminated 6061 Al-B materials. It is shown that no fatigue damage takes place if the applied stress range is such that the material remains elastic, or shakes down, i.e., resumes elastic cyclic straining after a small number of plastic strain cycles. Fatigue damage occurs only in specimens subjected to stress ranges which cause sustained cyclic plastic straining in the aluminum matrix. If the applied stress range is smaller than that required for fatigue failure, after about 10 to the 6th cycles a saturation damage state is reached which remains essentially unchanged with increasing number of cycles.

  17. Elevated Temperature Fatigue Endurance of Three Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Verrilli, Michael J.

    2007-01-01

    High-cycle fatigue endurance of three candidate materials for the acoustic liners of the Enabling Propulsion Materials Nozzle Program was investigated. The ceramic matrix composite materials investigated were N720/AS (Nextel 720, 3M Corporation), Sylramic S200 (Dow Corning), and UT 22. High-cycle fatigue tests were conducted in air at 910 C on as-machined specimens and on specimens subjected to tensile cyclic load excursions every 160 hr followed by thermal exposure at 910 C in a furnace up to total exposure times of 2066 and 4000 hr. All the fatigue tests were conducted in air at 100 Hz with a servohydraulic test machine. In the as-machined condition, among the three materials investigated only the Sylramic S200 exhibited a deterministic type of high-cycle fatigue behavior. Both the N720/AS and UT-22 exhibited significant scatter in the experimentally observed high-cycle fatigue lives. Among the thermally exposed specimens, N720/AS and Sylramic S200 materials exhibited a reduction in the high-cycle fatigue lives, particularly at the exposure time of 4000 hr.

  18. Bulk silicon is susceptible to fatigue

    NASA Astrophysics Data System (ADS)

    Bhowmick, Sanjit; Meléndez-Martínez, Juan José; Lawn, Brian R.

    2007-11-01

    It has long been held that bulk silicon is immune from fatigue. We present contrary evidence demonstrating severe fatigue in macroscale cracks produced in cyclic loading of single-crystal silicon with a sphere indenter. The key ingredient is a component of shear stress acting on the cracks during contraction and expansion of the contact circle. This gives rise to frictional sliding at the crack walls, dislodging and ejecting slabs of material and debris onto the silicon surface. The damage expands with continued cycling, leading to progressive degradation of the surface. The results have implications concerning the function of silicon-based devices.

  19. Failure and fatigue mechanisms in composite materials

    NASA Technical Reports Server (NTRS)

    Rosen, B. W.; Kulkarni, S. V.; Mclaughlin, P. V., Jr.

    1975-01-01

    A phenomenological description of microfailure under monotonic and cyclic loading is presented, emphasizing the significance of material inhomogeneity for the analysis. Failure in unnotched unidirectional laminates is reviewed for the cases of tension, compression, shear, transverse normal, and combined loads. The failure of notched composite laminates is then studied, with particular attention paid to the effect of material heterogeneity on load concentration factors in circular holes in such laminates, and a 'materials engineering' shear-lay type model is presented. The fatigue of notched composites is discussed with the application of 'mechanistic wearout' model for determining crack propagation as a function of the number of fatigue cycles.-

  20. Creep-fatigue interaction of titanium alloy Ti-6Al-2Cb-1Ta-0.8Mo at room temperature

    NASA Technical Reports Server (NTRS)

    Chu, H. P.; Mcdonald, B. A.; Arora, O. P.

    1985-01-01

    The present investigation is concerned with the mutual influence of creep and fatigue in the case of Ti-6211, which represents a new weldable, stress-corrosion resistant alloy. Attention is given to the effect of creep on fatigue, the effect of fatigue on creep, and microstructural studies. It is found that prior creep in the amounts investigated, from 0.2 percent to 2.7 percent, is beneficial to low-cycle fatigue life. Hold time at peak strain is found to be beneficial to low-cycle fatigue life. Hold time at constant stress has no effect on low-cycle fatigue when specimens are cycled only once between hold times; but increasing fatigue loading for 50 or more cycles between hold times can prolong the fatigue life. There is an acceleration of creep by cyclic loading when comparison of cyclic and static creep is based on mean stress.