Science.gov

Sample records for cycle primary energy

  1. African Primary Care Research: Quality improvement cycles

    PubMed Central

    Mash, Bob

    2014-01-01

    Abstract Improving the quality of clinical care and translating evidence into clinical practice is commonly a focus of primary care research. This article is part of a series on primary care research and outlines an approach to performing a quality improvement cycle as part of a research assignment at a Masters level. The article aims to help researchers design their quality improvement cycle and write their research project proposal. PMID:26245438

  2. Life cycle air emissions impacts and ownership costs of light-duty vehicles using natural gas as a primary energy source.

    PubMed

    Luk, Jason M; Saville, Bradley A; MacLean, Heather L

    2015-04-21

    This paper aims to comprehensively distinguish among the merits of different vehicles using a common primary energy source. In this study, we consider compressed natural gas (CNG) use directly in conventional vehicles (CV) and hybrid electric vehicles (HEV), and natural gas-derived electricity (NG-e) use in plug-in battery electric vehicles (BEV). This study evaluates the incremental life cycle air emissions (climate change and human health) impacts and life cycle ownership costs of non-plug-in (CV and HEV) and plug-in light-duty vehicles. Replacing a gasoline CV with a CNG CV, or a CNG CV with a CNG HEV, can provide life cycle air emissions impact benefits without increasing ownership costs; however, the NG-e BEV will likely increase costs (90% confidence interval: $1000 to $31 000 incremental cost per vehicle lifetime). Furthermore, eliminating HEV tailpipe emissions via plug-in vehicles has an insignificant incremental benefit, due to high uncertainties, with emissions cost benefits between -$1000 and $2000. Vehicle criteria air contaminants are a relatively minor contributor to life cycle air emissions impacts because of strict vehicle emissions standards. Therefore, policies should focus on adoption of plug-in vehicles in nonattainment regions, because CNG vehicles are likely more cost-effective at providing overall life cycle air emissions impact benefits. PMID:25825338

  3. Primary Cilia and the Cell Cycle

    PubMed Central

    Plotnikova, Olga V.; Pugacheva, Elena N.; Golemis, Erica A.

    2009-01-01

    Cilia are microtubule-based structures that protrude from the cell surface, and function as sensors for mechanical and chemical environmental cues that regulate cellular differentiation or division. In metazoans, ciliary signaling is important both during organismal development and in the homeostasis controls of adult tissues, with receptors for the Hedgehog, PDGF, Wnt, and other signaling cascades arrayed and active along the ciliary membrane. In normal cells, cilia are dynamically regulated during cell cycle progression: present in G0 and G1 cells, and usually in S/G2 cells, but almost invariably resorbed before mitotic entry, to re-appear post-cytokinesis. This periodic resorption and reassembly of cilia, specified by interaction with the intrinsic cell cycle machinery, influences the susceptibility of cells to the influence of extrinsic signals with cilia-associated receptors. Pathogenic conditions of mammals associated with loss of or defects in ciliary integrity include a number of developmental disorders, cystic syndromes in adults, and some cancers. With the continuing expansion of the list of human diseases associated with ciliary abnormalities, the identification of the cellular mechanisms regulating ciliary growth and disassembly has become a topic of intense research interest. Although these mechanisms are far from being understood, a number of recent studies have begun to identify key regulatory factors that may begin to offer insight into disease pathogenesis and treatment. In this chapter we will discuss the current state of knowledge regarding cell cycle control of ciliary dynamics, and provide general methods that can be applied to investigate cell cycle-dependent ciliary growth and disassembly. PMID:20362089

  4. Primary production cycle in an upwelling center

    NASA Astrophysics Data System (ADS)

    MacIsaac, J. J.; Dugdale, R. C.; Barber, R. T.; Blasco, D.; Packard, T. T.

    1985-05-01

    The cycle of nitrogen and carbon productivity of phytoplankton in an upwelling center at 15S on the coast of Peru was studied during the JOINT-II expedition of the Coastal Upwelling Ecosystems Analysis program. The productivity cycle was characterized by repeated stations at various locations in the upwelling plume, a time series of stations in mid plume, and stations located along drogue tracks. Four zones of physiological condition were distinguished along the axis of the upwelling plume. In Zone I phytoplankton upwelled with nutrient-rich water were initially 'shifted-down'; in Zone II they underwent light induced 'shift-up' to increased nutrient uptake, photosynthesis, and synthesis of macromolecules. In Zone III ambient nutrient concentrations were rapidly reduced, there was a rapid accumulation of phytoplankton biomass in the water column, and rate processes proceeded at maximal rates. In Zone IV ambient nutrient concentrations were significantly decreased, phytoplankton biomass remained high, and limitation of phytoplankton processes was beginning to be observed. Phytoplankton responded to the altered environment by undergoing 'shift-down' to lower rates of nutrient uptake, photosynthesis, and macromolecule synthesis. The time and space domain where this entire sequence occurs was relatively small; the cycle from initial upwelling to 'shift-down' was completed in 8 to 10 days within 30 to 60 km off the coast.

  5. Interfacing primary heat sources and cycles for thermochemical hydrogen production

    SciTech Connect

    Bowman, M.G.

    1980-01-01

    Advantages cited for hydrogen production from water by coupling thermochemical cycles with primary heat include the possibility of high efficiencies. These can be realized only if the cycle approximates the criteria required to match the characteristics of the heat source. Different types of cycles may be necessary for fission reactors, for fusion reactors or for solar furnaces. Very high temperature processes based on decomposition of gaseous H/sub 2/O or CO/sub 2/ appear impractical even for projected solar technology. Cycles based on CdO decomposition are potentially quite efficient and require isothermal heat at temperatures that may be available from solar furnaces of fusion reactors. Sulfuric acid and solid sulfate cycles are potentially useful at temperatures available from each heat source. Solid sulfate cycles offer advantages for isothermal heat sources. All cycles under development include concentration and drying steps. Novel methods for improving such operations would be beneficial.

  6. Day/Night Cycle: Mental Models of Primary School Children

    ERIC Educational Resources Information Center

    Chiras, Andreas

    2008-01-01

    The study investigated the mental models of primary school children related to the day/night cycle. Semi-structure interviews were conducted with 40 fourth-grade and 40 sixth-grade children. Qualitative and quantitative analysis of the data indicated that the majority of the children were classified as having geocentric models. The results also

  7. Energy Activities for the Primary Classroom. Revised.

    ERIC Educational Resources Information Center

    Tierney, Blue, Comp.

    An energy education program at the primary level should help students to understand the nature and importance of energy, consider different energy sources, learn about energy conservation, prepare for energy related careers, and become energy conscious in other career fields. The activities charts, readings, and experiments provided in this

  8. Energy Activities for the Primary Classroom. Revised.

    ERIC Educational Resources Information Center

    Tierney, Blue, Comp.

    An energy education program at the primary level should help students to understand the nature and importance of energy, consider different energy sources, learn about energy conservation, prepare for energy related careers, and become energy conscious in other career fields. The activities charts, readings, and experiments provided in this…

  9. Life-Cycle Evaluation of Domestic Energy Systems

    NASA Astrophysics Data System (ADS)

    Bando, Shigeru; Hihara, Eiji

    Among the growing number of environmental issues, the global warming due to the increasing emission of greenhouse gases, such as carbon dioxide CO2, is the most serious one. In order to reduce CO2 emissions in energy use, it is necessary to reduce primary energy consumption, and to replace energy sources with alternatives that emit less CO2.One option of such ideas is to replace fossil gas for water heating with electricity generated by nuclear power, hydraulic power, and other methods with low CO2 emission. It is also important to use energy efficiently and to reduce waste heat. Co-generation system is one of the applications to be able to use waste heat from a generator as much as possible. The CO2 heat pump water heaters, the polymer electrolyte fuel cells, and the micro gas turbines have high potential for domestic energy systems. In the present study, the life-cycle cost, the life-cycle consumption of primary energy and the life-cycle emission of CO2 of these domestic energy systems are compare. The result shows that the CO2 heat pump water heaters have an ability to reduce CO2 emission by 10%, and the co-generation systems also have another ability to reduce primary energy consumption by 20%.

  10. Life cycle optimization of building energy systems

    NASA Astrophysics Data System (ADS)

    Osman, Ayat; Norman, Bryan; Ries, Robert

    2008-02-01

    A life cycle optimization model intended to potentially reduce the environmental impacts of energy use in commercial buildings is presented. A combination of energy simulation, life cycle assessment, and operations research techniques are used to develop the model. In addition to conventional energy systems, such as the electric grid and a gas boiler, cogeneration systems which concurrently generate power and heat are investigated as an alternative source of energy. Cogeneration systems appeared to be an attractive alternative to conventional systems when considering life cycle environmental criteria. Internal combustion engine and microturbine (MT) cogeneration systems resulted in a reduction of up to 38% in global warming potential compared with conventional systems, while solid oxide fuel cell and MT cogeneration systems resulted in a reduction of up to 94% in tropospheric ozone precursor potential (TOPP). Results include a Pareto-optimal frontier between reducing costs and reducing the selected environmental indicators.

  11. A Modification of the Atmospheric Energy Cycle.

    NASA Astrophysics Data System (ADS)

    Hayashi, Yoshikazu

    1987-08-01

    A modification is made of the conventional energy cycle by combining the eddy flux convergence and the mean meridional circulation terms in the mean momentum and heat equations. The combined terms are interpreted as the effective flux convergences in the extratropics where the steady state mean circulation is regarded as essentially being induced by eddies. In the presence of mean heating, the modified energy cycle is simpler and less misleading than the transformed energy cycle based on the transformed Eulerian-mean equations.This modification suggests that the major energy source of tropospheric planetary waves can be traced to the thermal generation of mean potential energy and that the stratospheric planetary wave is maintained by the total (mean plus eddy) vertical flux of energy from the troposphere, The conventional energy cycle of observed tropospheric planetary waves is, however, not as complicated as that of theoretical planetary waves in the quasi-nonacceleration condition. This is due to the fact that the observed tropospheric eddy heat flux convergence is counterbalanced by the mean heating and does not induce a large mean circulation in the steady state.

  12. Biofield therapies: energy medicine and primary care.

    PubMed

    Rindfleisch, J Adam

    2010-03-01

    Energy medicine modalities, also known as biofield therapies, are perhaps the most mysterious and controversial complementary alternative medicine therapies. Although many of these approaches have existed for millennia, scientific investigation of these techniques is in its early stages; much remains to be learned about mechanisms of action and efficacy. These techniques are increasingly used in clinical and hospital settings and can be incorporated into an integrative primary care practice. This article describes several energy medicine and biofield therapies and outlines key elements they hold in common. Several specific approaches are described. Research findings related to the efficacy of energy medicine are summarized, and proposed mechanisms of action and safety issues are discussed. Guidelines are offered for primary care providers wishing to advise patients about energy medicine or to integrate it into their practices, and Internet and other resources for obtaining additional information are provided. PMID:20189005

  13. Perceptions of the Water Cycle among Primary School Children in Botswana.

    ERIC Educational Resources Information Center

    Taiwo, A. A.; Motswiri, M. J.; Masene, R.

    1999-01-01

    Describes qualitative and quantitative methods used to elucidate the nature of the perception of the water cycle held by Botswana primary-grade pupils in three different geographic areas. Concludes that the students' perception of the water cycle was positively influenced by schooling but negatively impacted upon, to some extent, by the untutored…

  14. Perceptions of the Water Cycle among Primary School Children in Botswana.

    ERIC Educational Resources Information Center

    Taiwo, A. A.; Motswiri, M. J.; Masene, R.

    1999-01-01

    Describes qualitative and quantitative methods used to elucidate the nature of the perception of the water cycle held by Botswana primary-grade pupils in three different geographic areas. Concludes that the students' perception of the water cycle was positively influenced by schooling but negatively impacted upon, to some extent, by the untutored

  15. Primary urban energy-management-planning methodology

    SciTech Connect

    Revis, Joseph; Meador, Toni

    1980-11-01

    Metropolitan Dade County, Florida, developed a pragmatic, transferable methodology to assist local governments in attempts to develop and implement energy management plans. A summary of that work is presented and suggestions are provided to guide the application and refinement of a Primary Urban Energy Management Planning Methodology. The methodology provides local governments with the systematic approach for dealing with short and intermediate-term urban energy management problems while at the same time laying the groundwork for the formulation of long-term energy management activities. The five tasks of the methodology summarized are: organizing for the PEP process; performing an energy use and supply inventory; formulating energy management goals and objectives; developing strategies to achieve the energy management objectives; and monitoring and evaluation. (MCW)

  16. Storing Renewable Energy in the Hydrogen Cycle.

    PubMed

    Züttel, Andreas; Callini, Elsa; Kato, Shunsuke; Atakli, Züleyha Özlem Kocabas

    2015-01-01

    An energy economy based on renewable energy requires massive energy storage, approx. half of the annual energy consumption. Therefore, the production of a synthetic energy carrier, e.g. hydrogen, is necessary. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines is a closed cycle. Electrolysis splits water into hydrogen and oxygen and represents a mature technology in the power range up to 100 kW. However, the major technological challenge is to build electrolyzers in the power range of several MW producing high purity hydrogen with a high efficiency. After the production of hydrogen, large scale and safe hydrogen storage is required. Hydrogen is stored either as a molecule or as an atom in the case of hydrides. The maximum volumetric hydrogen density of a molecular hydrogen storage is limited to the density of liquid hydrogen. In a complex hydride the hydrogen density is limited to 20 mass% and 150 kg/m(3) which corresponds to twice the density of liquid hydrogen. Current research focuses on the investigation of new storage materials based on combinations of complex hydrides with amides and the understanding of the hydrogen sorption mechanism in order to better control the reaction for the hydrogen storage applications. PMID:26842323

  17. A hydrostatic pressure-cycle energy harvester

    NASA Astrophysics Data System (ADS)

    Shafer, Michael W.; Hahn, Gregory; Morgan, Eric

    2015-04-01

    There have been a number of new applications for energy harvesting with the ever-decreasing power consumption of microelectronic devices. In this paper we explore a new area of marine animal energy harvesting for use in powering tags known as bio-loggers. These devices record data about the animal or its surroundings, but have always had limited deployment times due to battery depletion. Reduced solar irradiance below the water's surface provides the impetus to explore other energy harvesting concepts beyond solar power for use on marine animals. We review existing tag technologies in relation to this application, specifically relating to energy consumption. Additionally, we propose a new idea for energy harvesting, using hydrostatic pressure changes as a source for energy production. We present initial testing results of a bench-top model and show that the daily energy harvesting potential from this technology can meet or exceed that consumed by current marine bio-logging tags. The application of this concept in the arena of bio-logging technology could substantially increase bio-logger deployment lifetimes, allowing for longitudinal studies over the course of multiple breeding and/or migration cycles.

  18. Comparing primary energy attributed to renewable energy with primary energy equivalent to determine carbon abatement in a national context.

    PubMed

    Gallachóir, Brian P O; O'Leary, Fergal; Bazilian, Morgan; Howley, Martin; McKeogh, Eamon J

    2006-01-01

    The current conventional approach to determining the primary energy associated with non-combustible renewable energy (RE) sources such as wind energy and hydro power is to equate the electricity generated from these sources with the primary energy supply. This paper compares this with an approach that was formerly used by the IEA, in which the primary energy equivalent attributed to renewable energy was equated with the fossil fuel energy it displaces. Difficulties with implementing this approach in a meaningful way for international comparisons lead to most international organisations abandoning the primary energy equivalent methodology. It has recently re-emerged in prominence however, as efforts grow to develop baseline procedures for quantifying the greenhouse gas (GHG) emissions avoided by renewable energy within the context of the Kyoto Protocol credit trading mechanisms. This paper discusses the primary energy equivalent approach and in particular the distinctions between displacing fossil fuel energy in existing plant or in new plant. The approach is then extended provide insight into future primary energy displacement by renewable energy and to quantify the amount of CO2 emissions avoided by renewable energy. The usefulness of this approach in quantifying the benefits of renewable energy is also discussed in an energy policy context, with regard to increasing security of energy supply as well as reducing energy-related GHG (and other) emissions. The approach is applied in a national context and Ireland is case study country selected for this research. The choice of Ireland is interesting in two respects. The first relates to the high proportion of electricity only fossil fuel plants in Ireland resulting in a significant variation between primary energy and primary energy equivalent. The second concerns Ireland's poor performance to date in limiting GHG emissions in line with its Kyoto target and points to the need for techniques to quantify the potential contribution of renewable energy in achieving the target set. PMID:16702067

  19. Long-term shifts in life-cycle energy efficiency and carbon intensity.

    PubMed

    Yeh, Sonia; Mishra, Gouri Shankar; Morrison, Geoff; Teter, Jacob; Quiceno, Raul; Gillingham, Kenneth; Riera-Palou, Xavier

    2013-03-19

    The quantity of primary energy needed to support global human activity is in large part determined by how efficiently that energy is converted to a useful form. We estimate the system-level life-cycle energy efficiency (EF) and carbon intensity (CI) across primary resources for 2005-2100. Our results underscore that although technological improvements at each energy conversion process will improve technology efficiency and lead to important reductions in primary energy use, market mediated effects and structural shifts toward less efficient pathways and pathways with multiple stages of conversion will dampen these efficiency gains. System-level life-cycle efficiency may decrease as mitigation efforts intensify, since low-efficiency renewable systems with high output have much lower GHG emissions than some high-efficiency fossil fuel systems. Climate policies accelerate both improvements in EF and the adoption of renewable technologies, resulting in considerably lower primary energy demand and GHG emissions. Life-cycle EF and CI of useful energy provide a useful metric for understanding dynamics of implementing climate policies. The approaches developed here reiterate the necessity of a combination of policies that target efficiency and decarbonized energy technologies. We also examine life-cycle exergy efficiency (ExF) and find that nearly all of the qualitative results hold regardless of whether we use ExF or EF. PMID:23409918

  20. Cycle of waste heat energy transformation

    NASA Astrophysics Data System (ADS)

    Bormann, H.; Voneynatten, C.; Krause, R.; Rudolph, W.; Gneuss, G.; Groesche, F.

    1983-08-01

    Transformation of industrial waste heat with temperatures up to 300 C into mechanical or electrical energy using organic Rankine cycles technique is considered. Behavior of working fluid was studied and plant components were optimized. A pilot plant (generated power 30 kW) was installed under industrial operating conditions. The working fluid is a fluorochlorohydrocarbon; the expansion machine is a piston type steam engine. The results of the pilot plant were used for the planning and building of a prototype plant (120 kW) with an additional power heat coupling for preheating the boiler heat water. The waste heat source is a calciner process. The predicted results are obtained although full working load is not reached due to reduced available waste heat of the calciner process.

  1. Earth's changing energy and water cycles

    NASA Astrophysics Data System (ADS)

    Trenberth, K. E.; Fasullo, J. T.

    2008-12-01

    A new assessment of the flows of energy through the climate system and its changes over time will be presented. It features an imbalance at the top-of-atmosphere owing to an enhanced greenhouse effect that produces global warming. Most of the surplus energy trapped at TOA increases ocean heat content. Large upward surface thermal radiation is offset by back radiation from greenhouse gases and clouds in the atmosphere. At the surface, the net losses of energy are greatest through evaporation, followed by net radiation, while sensible heat losses are much smaller. The budget highlights the vital role of the hydrological cycle and its response as a consequence of climate change. Nonetheless, net changes in total surface evaporation are fairly modest and a much larger percentage change occurs in the water-holding capacity as atmospheric temperatures increase (7 percent per C). Consequences include increased water vapor in the atmosphere, which projects nonlinearly onto convective instability, and the intensification of severe precipitation - changes that are now observable. Moreover the disparity between modestly enhanced evaporation and increases in the heaviest rains implies a decreased frequency of precipitation. Combined with elevated surface temperatures, drought probability is therefore enhanced.

  2. Pre-Service Primary Teachers' Attitudes towards Energy Conservation

    ERIC Educational Resources Information Center

    Tekbiyik, Ahmet; Ipek, Cemalettin

    2008-01-01

    This study aims to examine the pre-service primary teachers' attitudes towards energy conservation. In order to reach this main aim following research questions are formulated: (1) What are the attitude levels of pre-service primary teachers in terms of energy conservation? (2) Do pre-service primary teachers' attitudes towards energy conservation…

  3. Combined cycle energy production: Overview of worldwide utilization and techniques

    NASA Astrophysics Data System (ADS)

    Roche, M.

    1982-06-01

    The worldwide distribution of combined cycle generators using simple recuperation, supercharged boilers, post combustion, and parallel combustion and complex cycles is summarized. Clean energy, fuel oil, coal, fluidized bed, and gasification based processes are discussed. With clean energy systems, up to 46% efficiency is achieved using a single recuperation - double evaporation cycle. Using gas turbine output to feed a higher power steam turbine is also economically attractive, but no one system is an obvious choice. Around 100 combined generators are now operating.

  4. Open cycle ocean thermal energy conversion system

    DOEpatents

    Wittig, J. Michael

    1980-01-01

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  5. EPO modulation of cell-cycle regulatory genes, and cell division, in primary bone marrow erythroblasts

    PubMed Central

    Fang, Jing; Menon, Madhu; Kapelle, William; Bogacheva, Olga; Bogachev, Oleg; Houde, Estelle; Browne, Sarah; Sathyanarayana, Pradeep

    2007-01-01

    Erythropoietin (EPO's) actions on erythroblasts are ascribed largely to survival effects. Certain studies, however, point to EPO-regulated proliferation. To investigate this problem in a primary system, KitposCD71high erythroblasts were prepared from murine bone marrow, and were first used in the array-based discovery of EPO-modulated cell-cycle regulators. Five cell-cycle progression factors were rapidly up-modulated: nuclear protein 1 (Nupr1), G1 to S phase transition 1 (Gspt1), early growth response 1 (Egr1), Ngfi-A binding protein 2 (Nab2), and cyclin D2. In contrast, inhibitory cyclin G2, p27/Cdkn1b, and B-cell leukemia/lymphoma 6 (Bcl6) were sharply down-modulated. For CYCLIN G2, ectopic expression also proved to selectively attenuate EPO-dependent UT7epo cell-cycle progression at S-phase. As analyzed in primary erythroblasts expressing minimal EPO receptor alleles, EPO repression of cyclin G2 and Bcl6, and induction of cyclin D2, were determined to depend on PY343 (and Stat5) signals. Furthermore, erythroblasts expressing a on PY-null EPOR-HM allele were abnormally distributed in G0/G1. During differentiation divisions, EPOR-HM Ter119pos erythroblasts conversely accumulated in S-phase and faltered in an apparent EPO-directed transition to G0/G1. EPO/EPOR signals therefore control the expression of select cell-cycle regulatory genes that are proposed to modulate stage-specific decisions for erythroblast cell-cycle progression. PMID:17548578

  6. Cell cycle and radiosensitivity of progeny of irradiated primary cultured human hepatocarcinoma cells

    PubMed Central

    Liu, Zhi-Zhong; Huang, Wen-Ying; Lin, Ju-Sheng; Li, Xiao-Sheng; Liang, Kuo-Huan; Huang, Jia-Long

    2005-01-01

    AIM: To evaluate the change of growth characteristics and radiosensitivity of irradiated primary cultured human hepatocarcinoma cells. METHODS: All tumor tissue samples were obtained from 39 hepatocarcinoma patients with a mean age of 49.6 years (range 22-76 years). We divided the samples into irradiated group and non-irradiated group and measured their plating efficiency (PE), population doubling time (PDT), radiosensitivity index SF2 and cell cycle. RESULTS: The PDT of primary culture of hepatocarcinoma cells was 91.06.6 h, PE was 12.01.4%, SF2 was 0.410.05%. The PDT of their irradiated progeny was 124.85.8 h, PE was 5.00.7%, SF2 was 0.650.09%. The primary cultured human hepatocarcinoma cells showed significant S reduction and G2 arrest in a dose-dependent manner. The progeny of irradiated primary cultured hepatocarcinoma cells grew more slowly and its radiosensitivity increased. CONCLUSION: The progeny of irradiated primary cultured human hepatocarcinoma cells grows more slowly and its radiosensitivity increases. PMID:16437612

  7. Metal-Free Oxidation of Primary Amines to Nitriles through Coupled Catalytic Cycles.

    PubMed

    Lambert, Kyle M; Bobbitt, James M; Eldirany, Sherif A; Kissane, Liam E; Sheridan, Rose K; Stempel, Zachary D; Sternberg, Francis H; Bailey, William F

    2016-04-01

    Synergism among several intertwined catalytic cycles allows for selective, room temperature oxidation of primary amines to the corresponding nitriles in 85-98 % isolated yield. This metal-free, scalable, operationally simple method employs a catalytic quantity of 4-acetamido-TEMPO (ACT; TEMPO=2,2,6,6-tetramethylpiperidine N-oxide) radical and the inexpensive, environmentally benign triple salt oxone as the terminal oxidant under mild conditions. Simple filtration of the reaction mixture through silica gel affords pure nitrile products. PMID:26868873

  8. Turbulent Mixing of Primary and Secondary Flow Streams in a Rocket-Based Combined Cycle Engine

    NASA Technical Reports Server (NTRS)

    Cramer, J. M.; Greene, M. U.; Pal, S.; Santoro, R. J.; Turner, Jim (Technical Monitor)

    2002-01-01

    This viewgraph presentation gives an overview of the turbulent mixing of primary and secondary flow streams in a rocket-based combined cycle (RBCC) engine. A significant RBCC ejector mode database has been generated, detailing single and twin thruster configurations and global and local measurements. On-going analysis and correlation efforts include Marshall Space Flight Center computational fluid dynamics modeling and turbulent shear layer analysis. Potential follow-on activities include detailed measurements of air flow static pressure and velocity profiles, investigations into other thruster spacing configurations, performing a fundamental shear layer mixing study, and demonstrating single-shot Raman measurements.

  9. Energy life-cycle assessment of soybean biodiesel revisited

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A life-cycle assessment (LCA) was conducted to quantify the energy flows associated with biodiesel production. A similar study conducted previously (Sheehan et al., Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus, Publication NREL/SR-580-24089, National Renewable Ener...

  10. GEWEX: The Global Energy and Water Cycle Experiment

    NASA Technical Reports Server (NTRS)

    Chahine, M.; Vane, D.

    1994-01-01

    GEWEX is one of the world's largest global change research programs. Its purpose is to observe and understand the hydrological cycle and energy fluxes in the atmosphere, at land surfaces and in the upper oceans.

  11. Life Prediction and Stress Evolvement for Low Cycle Fatigue in PWR Primary Pipe Material

    NASA Astrophysics Data System (ADS)

    Fei, Xue; Wei-wei, Yu; Zhao-xi, Wang; Wen-xin, Ti; Lei, Lin; Xin-ming, Men

    2010-05-01

    The low cycle fatigue (LCF) behavior of primary pipe material Z3CN20.09M cast stainless stell (CASS) was studied at room temperature (RT) and elevated temperature of 350 C by conducting total axial stain controlled tests in air with strain amplitude in the range 0.175% to 0.8%. Based on the test results, the cyclic stress response of material was analyzed, and a dynamic strain aging (DSA) phenomena was discovered at 350 C. Besides, the evaluation of elastic modulus during cyclic tests was studied, and the effect of elastic modulus on parameters of low cycle fatigue was investigated based on the Manson-Coffin model. It is shown that elastic modulus for Z3CN20.09M decreases constantly during the whole fatigue life, but fluctuates more frequently at elevated temperature. Both the static and dynamic elastic modulus result in a same life trend in low cycle fatigue, but the elastic modulus affects the precision of fatigue life prediction to some extent when the fatigue life exceeded 105.

  12. The seasonal cycle of terrestrial fluorescence and its relationship to global primary productivity (GPP)

    NASA Astrophysics Data System (ADS)

    Joiner, J.; Yoshida, Y.; Vasilkov, A. P.; Middleton, E.; Huemmrich, K. F.; Campbell, P. K.; Garrity, S. R.; Meyers, T. P.; Corp, L.; Gu, L.; Yoshida, Y.; Kuze, A.

    2012-12-01

    Global mapping of terrestrial vegetation fluorescence from space has recently been accomplished with the Japanese Greenhouse gases Observing SATellite (GOSAT) and other satellite sensors. These data can potentially provide global information related to the functional status of vegetation including gross primary productivity (GPP). In particular, the remotely-sensed signals may provide estimates of the length of the growing season that is potentially useful for global carbon cycle modeling. Here, we compare a satellite-derived additive signal, presumably due primarily to chlorophyll fluorescence, at 866 nm from the SCIAMACHY satellite instrument directly with a diverse set of tower-based estimates of GPP from the FluxNet and AmeriFlux networks. For some vegetation types, the SCIAMACHY signal when fluorescence is detectable at 866 nm, captures the seasonal cycle of photosynthesis. In contrast, GPP estimated with models that rely on satellite reflectance-based vegetation parameters overestimates the length of the growing season for some biomes. Satellite fluorescence measurements therefore show potential for improving model GPP estimates. Correlation between monthly-mean SCIAMACHY signal and tower GPP. Boxes show approximate averaging area of satellite data and for nearby towers are offset for clarity. Solid(dashed) outlines around boxes indicates that the primary vegetation type (IGBP) covers approximately 75-100%(50-75%) of the box; Symbols show dominant type for the box; +: Mixed Forest (MF); *: Croplands (CRO); x: Grasslands; diamond: Deciduous Broadleaf Forest (DBF)t; triangle: Evergreen Needleleaf Forest; square: savannas (including woody); circle: shrublands (open and closed). Summary of onset of photosynthetic activity for sites that are relatively homogeneous in terms of vegetation type within the satellite average area and where SCIAMACHY shows a distinct seasonal cycle.

  13. 78 FR 43870 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project; Preliminary Staff...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... of Availability Hydrogen Energy California's Integrated Gasification Combined Cycle Project... availability of the Hydrogen Energy California's Integrated Gasification Combined Cycle Project Preliminary... the Hydrogen Energy California's (HECA) Integrated Gasification Combined Cycle Project, which would...

  14. Energy cycling and hypothetical organisms in Europa's ocean.

    PubMed

    Schulze-Makuch, Dirk; Irwin, Louis N

    2002-01-01

    While Europa has emerged as a leading candidate for harboring extraterrestrial life, the apparent lack of a source of free energy for sustaining living systems has been argued. In this theoretical analysis, we have quantified the amount of energy that could in principle be obtained from chemical cycling, heat, osmotic gradients, kinetic motion, magnetic fields, and gravity in Europa's subsurface ocean. Using reasonable assumptions based on known organisms on Earth, our calculations suggest that chemical oxidation-reduction cycles in Europa's subsurface ocean could support life. Osmotic and thermal gradients, as well as the kinetic energy of convection currents, also represent plausible alternative sources of energy for living systems at Europa. Organisms thriving on these gradients could interact with each other to form the complex energy cycling necessary for establishing a stable ecosystem. PMID:12449859

  15. Structural Integrity of ESBWR Primary Containment for 60-Years of Thermal Duty Cycle Operations

    SciTech Connect

    James, R.J.; Rashid, Y.R.; Liu, A.S.; Gou, B.

    2006-07-01

    GE's latest evolution of the boiling water reactor, the ESBWR, has innovative passive design features that reduce the number and complexity of active systems, which in turn provide economic advantages while also increasing safety. To incorporate these passive cooling features, the Isolation Condenser Passive Cooling Containment System Pools (IC/PCCS) are integrated onto the top slab of the primary containment structure. The top slab spans the 36-meter diameter containment drywell with a central 10.5-meter diameter opening for the drywell head while supporting the water and equipment in these upper pools. The walls of the upper pools along with the refueling floor slab over the pools are designed as a deep beam girder as part of the structural system of the top slab. During normal operations, the Isolation Condenser (IC) pool will undergo duty cycles where the water gets rapidly heated to boiling for some period of time and then cools back down. This top slab structural system is subjected to the elevated temperatures that occur in the IC pools and to thermal cycling due to temperature changes in the pools and in the drywell portion of the containment during shutdowns. These cyclic thermal demands interact with a changing structural condition because of concrete cracking, creep, and property degradation at elevated temperatures. Thus, there is a potential for structural ratcheting of the slab that would be manifested by continually increasing deformations over time under the thermal cycling while supporting the pool loads. The long-term structural integrity of the top slab as a containment boundary must be verified for this duty cycle operation over the 60-year design life. (authors)

  16. The NASA Energy and Water cycle Study (NEWS)

    NASA Astrophysics Data System (ADS)

    Houser, P.; Entin, J.

    2008-05-01

    With their unprecedented new observation capacity combined with revolutions in modeling capability, satellite observations have great potential to make huge advances in water and energy cycle prediction. To realize this goal, we must develop a discipline of prediction and verification through the integration of water and energy cycle observations and models, and to verify model predictions against observed phenomena to ensure that research delivers reliable improvements in prediction skill. Accomplishing these goals will require, in part, an accurate accounting of the key reservoirs and fluxes associated with the global water and energy cycle, including their spatial and temporal variability, through integration of all necessary observations and research tools. To this end, NASA has established the NASA Energy and Water- Cycle Study (NEWS), whose long-term grand challenge is to document and enable improved, observationally-based, predictions of water and energy cycle consequences of Earth system variability and change. This presentation will feature an overview of the NEWS program, detail some of its central missions and projects, and lay out the plan for coordination with complementary international efforts. To address the NEWS challenge, there is an unambiguous requirement for climate quality, globally complete observations of the key water- and energy-cycle rates and storages. It is practical to expect satellite-based measurements to provide a substantial portion of the information, particularly in areas where on-site measurements are sparse or impractical. However, a key issue that remains is an assessment of the degree to which our satellite-based observational capabilities provide a balanced, consistent global water and energy cycle depiction. In this study, we assess the capability of a global data compilation, largely satellite based, to faithfully depict global, water and energy fluxes, and the extent to which their spatiotemporal variations are consistent to each other and to complementary water and energy storage variations. Global satellite based, in-situ, and modeled water and energy storages and fluxes are used to update and assess our ability to characterize the global water cycle and energy cycle mean state and variability.

  17. Cycling Transcriptional Networks Optimize Energy Utilization on a Genome Scale.

    PubMed

    Wang, Guang-Zhong; Hickey, Stephanie L; Shi, Lei; Huang, Hung-Chung; Nakashe, Prachi; Koike, Nobuya; Tu, Benjamin P; Takahashi, Joseph S; Konopka, Genevieve

    2015-12-01

    Genes expressing circadian RNA rhythms are enriched for metabolic pathways, but the adaptive significance of cyclic gene expression remains unclear. We estimated the genome-wide synthetic and degradative cost of transcription and translation in three organisms and found that the cost of cycling genes is strikingly higher compared to non-cycling genes. Cycling genes are expressed at high levels and constitute the most costly proteins to synthesize in the genome. We demonstrate that metabolic cycling is accelerated in yeast grown under higher nutrient flux and the number of cycling genes increases ?40%, which are achieved by increasing the amplitude and not the mean level of gene expression. These results suggest that rhythmic gene expression optimizes the metabolic cost of global gene expression and that highly expressed genes have been selected to be downregulated in a cyclic manner for energy conservation. PMID:26655902

  18. Family Life Cycle and Deforestation in Amazonia: Combining Remotely Sensed Information with Primary Data

    NASA Technical Reports Server (NTRS)

    Caldas, M.; Walker, R. T.; Shirota, R.; Perz, S.; Skole, D.

    2003-01-01

    This paper examines the relationships between the socio-demographic characteristics of small settlers in the Brazilian Amazon and the life cycle hypothesis in the process of deforestation. The analysis was conducted combining remote sensing and geographic data with primary data of 153 small settlers along the TransAmazon Highway. Regression analyses and spatial autocorrelation tests were conducted. The results from the empirical model indicate that socio-demographic characteristics of households as well as institutional and market factors, affect the land use decision. Although remotely sensed information is not very popular among Brazilian social scientists, these results confirm that they can be very useful for this kind of study. Furthermore, the research presented by this paper strongly indicates that family and socio-demographic data, as well as market data, may result in misspecification problems. The same applies to models that do not incorporate spatial analysis.

  19. Energy Demand in China (Carbon Cycle 2.0)

    ScienceCinema

    Price, Lynn

    2011-06-08

    Lynn Price, LBNL scientist, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  20. Energy Demand in China (Carbon Cycle 2.0)

    SciTech Connect

    Price, Lynn

    2010-02-02

    Lynn Price, LBNL scientist, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  1. Primary energy: Present status and future perspectives

    NASA Astrophysics Data System (ADS)

    Thielheim, K. O.

    A survey of the base-load energy sources available to humans is presented, starting from the point of view that all energy used is ultimately derived from nuclear processes within the sun. Specific note is made of European energy options, noting the large dependence on imported oil. Detailed exploration of available nuclear fuel resources is carried out, with attention given to fission, fusion, and breeder reactor plants and to the state-of-the-art and technology for each. The problems of nuclear waste disposal are discussed, and long term burial in salt domes is outlined as a satisfactory method of containing the materials for acceptable periods of time. The CO2-greenhouse effect hazards caused by increased usage of coal-derived fuels are considered and precautions to be taken on a global scale to ameliorate the warming effects are recommended. The limitations to hydropower are examined, as are those of tidal power. Solar cells are projected to be produced in GW quantities by the year 2000, while wind-derived electricity is predicted to provide a minimum of 5% of the world energy needs in the future.

  2. Intestinal parasitic infections and malnutrition amongst first-cycle primary schoolchildren in Adama, Ethiopia

    PubMed Central

    Reji, Pawlos; Belay, Getachew; Erko, Berhanu; Legesse, Mengistu

    2011-01-01

    Abstract Background A survey of intestinal parasitic infections and malnutrition in different regions or localities is a very important step in developing appropriate prevention and control strategies. Objectives The objective of this study was to investigate the magnitude of intestinal parasitic infections and malnutrition amongst first-cycle primary schoolchildren in Adama town, Ethiopia. Method A total of 358 children from four primary schools in Adama town were included for stool examination, weight for age, height for age, weight for height and socio-economic status of the family. Results The result of stool examinations showed that 127 (35.5%) of the study subjects were infected by one or more parasite. The most frequent parasites were Entamoeba histolytica/dispar (12.6%) and Hymenolopis nana (8.9%). The rate of intestinal parasitic infection was not significantly associated with sex, age or socio-economic factors and nutrition (P > 0.05). The overall prevalence of malnutrition was 21.2%. Those children whose families had a monthly income of less than 200 ETB (Ethiopian birr) were highly affected by malnutrition (P < 0.05), but family education was not identified as a factor for malnutrition amongst schoolchildren. Conclusion The prevalence of E. histolytica/dispar and H. nana could be of public health importance and calls for appropriate control strategies, and the high prevalence of malnutrition amongst children from poor families requires intervention.

  3. The Primary and Secondary Production of Germanium: A Life-Cycle Assessment of Different Process Alternatives

    NASA Astrophysics Data System (ADS)

    Robertz, Benedicte; Verhelle, Jensen; Schurmans, Maarten

    2015-02-01

    Germanium is a semiconducting metalloid element used in optical fibers, catalysis, infrared optics, solar cells, and light-emitting diodes. The need for Ge in these markets is considered to increase by a steady ~1% on a yearly basis. Its economic importance, coupled with the identified supply risks, has led to the classification of germanium as a critical raw material within Europe. Since the early 1950s, Umicore Electro-Optic Materials has supplied germanium-based materials solutions to its markets around the world. Umicore extracts germanium from a wide range of refining and recycling feeds. The main objectives of this study were to quantify the potential environmental impacts of the production of germanium from production scraps from the photovoltaic industry and to compare them with the potential impacts of the primary production of germanium from coal. The data related to the secondary production are Umicore-specific data. Environmental impact scores have been calculated for the impact categories recommended by the International reference life cycle data system. The comparison of the primary and secondary production highlights the benefit linked to the recycling of metals.

  4. Sharp knee phenomenon of primary cosmic ray energy spectrum

    NASA Astrophysics Data System (ADS)

    Ter-Antonyan, Samvel

    2014-06-01

    Primary energy spectral models are tested in the energy range of 1-200 PeV using standardized extensive air shower responses from BASJE-MAS, Tibet, GAMMA and KASCADE scintillation shower arrays. Results point toward the two-component origin of observed cosmic ray energy spectra in the knee region consisting of a pulsar component superimposed upon rigidity-dependent power law diffuse Galactic flux. The two-component energy spectral model accounts for both the sharp knee shower spectral phenomenon and observed irregularity of all-particle energy spectrum in the region of 50-100 PeV. Alternatively, tested multipopulation primary energy spectra predicted by nonlinear diffusive shock acceleration models describe observed shower spectra in the knee region provided that the cutoff magnetic rigidities of accelerating particles are 6±0.3 and 45±2 PV for the first two populations, respectively. Both tested spectral models confirm the predominant H-He primary nuclei origin of observed shower spectral knee. The parameters of tested energy spectra are evaluated using solutions of the inverse problem on the basis of the corresponding parameterizations of energy spectra for primary H, He, O-like and Fe-like nuclei, standardized shower size spectral responses in the 550-1085 g/cm2 atmospheric slant depth range and near vertical muon truncated size spectra detected by the GAMMA array.

  5. Determining the life cycle energy efficiency of six biofuel systems in China: a Data Envelopment Analysis.

    PubMed

    Ren, Jingzheng; Tan, Shiyu; Dong, Lichun; Mazzi, Anna; Scipioni, Antonio; Sovacool, Benjamin K

    2014-06-01

    This aim of this study was to use Data Envelopment Analysis (DEA) to assess the life cycle energy efficiency of six biofuels in China. DEA can differentiate efficient and non-efficient scenarios, and it can identify wasteful energy losses in biofuel production. More specifically, the study has examined the efficiency of six approaches for bioethanol production involving a sample of wheat, corn, cassava, and sweet potatoes as feedstocks and "old," "new," "wet," and "dry" processes. For each of these six bioethanol production pathways, the users can determine energy inputs such as the embodied energy for seed, machinery, fertilizer, diesel, chemicals and primary energy utilized for manufacturing, and outputs such as the energy content of the bioethanol and byproducts. The results indicate that DEA is a novel and feasible method for finding efficient bioethanol production scenarios and suggest that sweet potatoes may be the most energy-efficient form of ethanol production for China. PMID:24727398

  6. A Satellite View of Global Water and Energy Cycling

    NASA Astrophysics Data System (ADS)

    Houser, P. R.

    2012-12-01

    The global water cycle describes liquid, solid and vapor water dynamics as it moves through the atmosphere, oceans and land. Life exists because of water, and civilization depends on adapting to the constraints imposed by water availability. The carbon, water and energy cycles are strongly interdependent - energy is moved through evaporation and condensation, and photosynthesis is closely related to transpiration. There are significant knowledge gaps about water storage, fluxes and dynamics - we currently do not really know how much water is stored in snowpacks, groundwater or reservoirs. The view from space offers a vision for water science advancement. This vision includes observation, understanding, and prediction advancements that will improve water management and to inform water-related infrastructure that planning to provide for human needs and to protect the natural environment. The water cycle science challenge is to deploy a series of coordinated earth observation satellites, and to integrate in situ and space-borne observations to quantify the key water-cycle state variables and fluxes. The accompanying societal challenge is to integrate this information along with water cycle physics, and ecosystems and societal considerations as a basis for enlightened water resource management and to protect life and property from effects of water cycle extremes. Better regional to global scale water-cycle observations and predictions need to be readily available to reduce loss of life and property caused by water-related hazards. To this end, the NASA Energy and Water cycle Study (NEWS) has been documenting the satellite view of the water cycle with a goal of enabling improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. NEWS has fostered broad interdisciplinary collaborations to study experimental and operational satellite observations and has developed analysis tools for characterizing air/sea fluxes, ocean circulation, atmospheric states, radiative balances, land surface states, sub-surface hydrology, snow and ice. This presentation will feature an overview of recent progress towards this challenge, and lay out the plan for coordination with complementary international efforts.

  7. Life cycle optimization model for integrated cogeneration and energy systems applications in buildings

    NASA Astrophysics Data System (ADS)

    Osman, Ayat E.

    Energy use in commercial buildings constitutes a major proportion of the energy consumption and anthropogenic emissions in the USA. Cogeneration systems offer an opportunity to meet a building's electrical and thermal demands from a single energy source. To answer the question of what is the most beneficial and cost effective energy source(s) that can be used to meet the energy demands of the building, optimizations techniques have been implemented in some studies to find the optimum energy system based on reducing cost and maximizing revenues. Due to the significant environmental impacts that can result from meeting the energy demands in buildings, building design should incorporate environmental criteria in the decision making criteria. The objective of this research is to develop a framework and model to optimize a building's operation by integrating congregation systems and utility systems in order to meet the electrical, heating, and cooling demand by considering the potential life cycle environmental impact that might result from meeting those demands as well as the economical implications. Two LCA Optimization models have been developed within a framework that uses hourly building energy data, life cycle assessment (LCA), and mixed-integer linear programming (MILP). The objective functions that are used in the formulation of the problems include: (1) Minimizing life cycle primary energy consumption, (2) Minimizing global warming potential, (3) Minimizing tropospheric ozone precursor potential, (4) Minimizing acidification potential, (5) Minimizing NOx, SO 2 and CO2, and (6) Minimizing life cycle costs, considering a study period of ten years and the lifetime of equipment. The two LCA optimization models can be used for: (a) long term planning and operational analysis in buildings by analyzing the hourly energy use of a building during a day and (b) design and quick analysis of building operation based on periodic analysis of energy use of a building in a year. A Pareto-optimal frontier is also derived, which defines the minimum cost required to achieve any level of environmental emission or primary energy usage value or inversely the minimum environmental indicator and primary energy usage value that can be achieved and the cost required to achieve that value.

  8. Life cycle analysis of energy systems: Methods and experience

    SciTech Connect

    Morris, S.C.

    1992-08-01

    Fuel-cycle analysis if not the same as life-cycle analysis, although the focus on defining a comprehensive system for analysis leads toward the same path. This approach was the basis of the Brookhaven Reference Energy System. It provided a framework for summing total effects over an explicitly defined fuel cycle. This concept was computerized and coupled with an extensive data base in ESNS -- the Energy Systems Network Simulator. As an example, ESNS was the analytical basis for a comparison of health and environmental effects of several coal conversion technologies. With advances in computer systems and methods, however, ESNS has not been maintained at Brookhaven. The RES approach was one of the bases of the OECD COMPASS Project and the UNEP comparative assessment of environmental impacts of energy sources. An RES model alone has limitations in analyzing complex energy systems, e.g., it is difficult to handle feedback in the network. The most recent version of a series of optimization models is MARKAL, a dynamic linear programming model now used to assess strategies to reduce greenhouse gas emissions from the energy system. MARKAL creates an optimal set of reference energy systems over multiple time periods, automatically incorporating dynamic feedback and allowing fuel switching and end-use conservation to meet useful energy demands.

  9. Life cycle analysis of energy systems: Methods and experience

    SciTech Connect

    Morris, S.C.

    1992-01-01

    Fuel-cycle analysis if not the same as life-cycle analysis, although the focus on defining a comprehensive system for analysis leads toward the same path. This approach was the basis of the Brookhaven Reference Energy System. It provided a framework for summing total effects over an explicitly defined fuel cycle. This concept was computerized and coupled with an extensive data base in ESNS -- the Energy Systems Network Simulator. As an example, ESNS was the analytical basis for a comparison of health and environmental effects of several coal conversion technologies. With advances in computer systems and methods, however, ESNS has not been maintained at Brookhaven. The RES approach was one of the bases of the OECD COMPASS Project and the UNEP comparative assessment of environmental impacts of energy sources. An RES model alone has limitations in analyzing complex energy systems, e.g., it is difficult to handle feedback in the network. The most recent version of a series of optimization models is MARKAL, a dynamic linear programming model now used to assess strategies to reduce greenhouse gas emissions from the energy system. MARKAL creates an optimal set of reference energy systems over multiple time periods, automatically incorporating dynamic feedback and allowing fuel switching and end-use conservation to meet useful energy demands.

  10. Developing Primary School Children's Understanding of Energy Waste

    NASA Astrophysics Data System (ADS)

    Kruger, Colin; Summers, Mike

    2000-01-01

    This was an interview study of 34 primary school children's understanding of five aspects of energy waste, and the ways in which these conceptions develop following teaching. The aspects covered were: (i) saving energy by `using less'; (ii) saving energy by using `just enough'; (iii) energy waste through unintended transfers; (iv) energy waste in a household device; and (v) the meaning of the term `efficiency'. It was found that this group of primary school children had good prior awareness of some behaviours which save (or conserve) energy, but their reasons for thinking this were based largely on intuitive `everyday' ideas which involved human-centred notions of energy in the particular contexts presented or the movement of `heat' or `cold'. Notions of waste due to unintended outcomes were seen in only a few pupils initially but after teaching became far more prevalent. The study showed that basic ideas about energy waste which underpin energy conservation (using less energy) and the critically important scientific concept of efficiency were made accessible to an `average' group of primary school children. Moreover, this was done by ordinary practitioners who are not specialist teachers of science but who have had their subject and teaching knowledge enhanced by appropriate training.

  11. Life Cycle Energy and Environmental Assessment of Aluminum-Intensive Vehicle Design

    SciTech Connect

    Das, Sujit

    2014-01-01

    Advanced lightweight materials are increasingly being incorporated into new vehicle designs by automakers to enhance performance and assist in complying with increasing requirements of corporate average fuel economy standards. To assess the primary energy and carbon dioxide equivalent (CO2e) implications of vehicle designs utilizing these materials, this study examines the potential life cycle impacts of two lightweight material alternative vehicle designs, i.e., steel and aluminum of a typical passenger vehicle operated today in North America. LCA for three common alternative lightweight vehicle designs are evaluated: current production ( Baseline ), an advanced high strength steel and aluminum design ( LWSV ), and an aluminum-intensive design (AIV). This study focuses on body-in-white and closures since these are the largest automotive systems by weight accounting for approximately 40% of total curb weight of a typical passenger vehicle. Secondary mass savings resulting from body lightweighting are considered for the vehicles engine, driveline and suspension. A cradle-to-cradle life cycle assessment (LCA) was conducted for these three vehicle material alternatives. LCA methodology for this study included material production, mill semi-fabrication, vehicle use phase operation, and end-of-life recycling. This study followed international standards ISO 14040:2006 [1] and ISO 14044:2006 [2], consistent with the automotive LCA guidance document currently being developed [3]. Vehicle use phase mass reduction was found to account for over 90% of total vehicle life cycle energy and CO2e emissions. The AIV design achieved mass reduction of 25% (versus baseline) resulting in reductions in total life cycle primary energy consumption by 20% and CO2e emissions by 17%. Overall, the AIV design showed the best breakeven vehicle mileage from both primary energy consumption and climate change perspectives.

  12. Circulating ovarian autoantibodies and FSH and LH levels in adolescent girls with primary menstrual cycle disorders.

    PubMed

    Horejs, J; Novkov, D; Martnek, J

    1996-04-01

    Seventy three adolescent patients with primary menstrual disturbances were studied by immunofluorescent methods for prevalence of ovarian autoantibodies (O-Ab), the enzyme immunoassay (EIA) method for examination of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) hormonal levels was used. Clinically healthy girls (40) served as controls. Patients were divided into a group of 13 girls with primary amenorrhea (PA) and a group of 60 girls with oligo and/or secondary amenorrhea (OSA). In the PA group 38.5% positivity linked to ooplasm (OO), zona pellucida (ZP), and membrana granulosa cells (MG), as well as 46.2% to theca folliculi interna (TI) and 53.8% to lutein cells (LC), was detected. Statistically significant differences (p < .05) of LH levels between OO immunopositive and negative girls (19.0 and 9.4 mU/ml) were found, while FSH values were not different. In the OSA group a 16.7% positivity linked to OO, 23.3% to ZP and MG, 38.3% to TI, and 58.3% to LC were detected. Significant linkage between MG immunopositive and negative girls and FSH:LH ratio values were estimated. FSH values were significantly different (p < .05) for PA and OSA groups (23.7 and 6.7 IU/l) which corresponded particularly with higher findings of Ab in germ line-cells (OO-, ZP-, and MG-Ab). A striking correlation between evidence of O-Ab and menstrual cycle irregularities was found. It could support a possible coincidence of autoimmune mechanism in these dysfunctions. Localization of O-Ab-binding was verified at the electron microscopic level. PMID:8795781

  13. NASA's Earth Science Enterprise's Water and Energy Cycle Focus Area

    NASA Astrophysics Data System (ADS)

    Entin, J. K.

    2004-05-01

    Understanding the Water and Energy cycles is critical towards improving our understanding of climate change, as well as the consequences of climate change. In addition, using results from water and energy cycle research can help improve water resource management, agricultural efficiency, disaster management, and public health. To address this, NASA's Earth Science Enterprise (ESE) has an end-to-end Water and Energy Cycle Focus Area, which along with the ESE's other five focus areas will help NASA answer key Earth Science questions. In an effort to build upon the pre-existing discipline programs, which focus on precipitation, radiation sciences, and terrestrial hydrology, NASA has begun planning efforts to create an implementation plan for integrative research to improve our understanding of the water and energy cycles. The basics of this planning process and the core aspects of the implementation plan will be discussed. Roadmaps will also be used to show the future direction for the entire focus area. Included in the discussion, will be aspects of the end-to-end nature of the Focus Area that encompass current and potential actives to extend research results to operational agencies to enable improved performance of policy and management decision support systems.

  14. Carbon Cycle 2.0: Nitash Balsara: Energy Storage

    SciTech Connect

    Nitash Balsara

    2010-02-16

    Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

  15. Carbon Cycle 2.0: Nitash Balsara: Energy Storage

    ScienceCinema

    Nitash Balsara

    2010-09-01

    Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

  16. Quantifying subtropical North Pacific gyre mixed layer primary productivity from Seaglider observations of diel oxygen cycles

    NASA Astrophysics Data System (ADS)

    Nicholson, David P.; Wilson, Samuel T.; Doney, Scott C.; Karl, David M.

    2015-05-01

    Using autonomous underwater gliders, we quantified diurnal periodicity in dissolved oxygen, chlorophyll, and temperature in the subtropical North Pacific near the Hawaii Ocean Time-series (HOT) Station ALOHA during summer 2012. Oxygen optodes provided sufficient stability and precision to quantify diel cycles of average amplitude of 0.6 µmol kg-1. A theoretical diel curve was fit to daily observations to infer an average mixed layer gross primary productivity (GPP) of 1.8 mmol O2 m-3 d-1. Cumulative net community production (NCP) over 110 days was 500 mmol O2 m-2 for the mixed layer, which averaged 57 m in depth. Both GPP and NCP estimates indicated a significant period of below-average productivity at Station ALOHA in 2012, an observation confirmed by 14C productivity incubations and O2/Ar ratios. Given our success in an oligotrophic gyre where biological signals are small, our diel GPP approach holds promise for remote characterization of productivity across the spectrum of marine environments.

  17. Carbon dioxide release from ocean thermal energy conversion (OTEC) cycles

    SciTech Connect

    Green, H.J. ); Guenther, P.R. )

    1990-09-01

    This paper presents the results of recent measurements of CO{sub 2} release from an open-cycle ocean thermal energy conversion (OTEC) experiment. Based on these data, the rate of short-term CO{sub 2} release from future open-cycle OTEC plants is projected to be 15 to 25 times smaller than that from fossil-fueled electric power plants. OTEC system that incorporate subsurface mixed discharge are expected to result in no long-term release. OTEC plants can significantly reduce CO{sub 2} emissions when substituted for fossil-fueled power generation. 12 refs., 4 figs., 3 tabs.

  18. Low Cost Solar Energy Conversion (Carbon Cycle 2.0)

    ScienceCinema

    Ramesh, Ramamoorthy

    2011-06-08

    Ramamoorthy Ramesh from LBNL's Materials Science Division speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  19. Low Cost Solar Energy Conversion (Carbon Cycle 2.0)

    SciTech Connect

    Ramesh, Ramamoorthy

    2010-02-04

    Ramamoorthy Ramesh from LBNL's Materials Science Division speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  20. Carbon nanofiber polymer composites: evaluation of life cycle energy use.

    PubMed

    Khanna, Vikas; Bakshi, Bhavik R

    2009-03-15

    Holistic evaluation of emerging nanotechnologies using systems analysis is pivotal for guiding their safe and sustainable development. While toxicity studies of engineered nanomaterials are essential, understanding of the potential large scale impacts of nanotechnology is also critical for developing sustainable nanoproducts. This work evaluates the life cycle energetic impact associated with the production and use of carbon nanofiber (CNF) reinforced polymer nanocomposites (PNC). Specifically, both simple CNF and carbon nanofiber-glass fiber (CNF-GF) hybrid PNCs are evaluated and compared with steel for equal stiffness design. Life cycle inventory is developed based on published literature and best available engineering information. A cradle-to-gate comparison suggests that for equal stiffness design, CNF reinforced PNCs are 1.6-12 times more energy intensive than steel. It is anticipated that the product use phase may strongly influence whether any net savings in life cycle energy consumption can be realized. A case study involving the use of CNF and CNF-GF reinforced PNCs in the body panels of automobiles highlights that the use of PNCs with lower CNF loading ratios has the potential for net life cycle energy savings relative to steel owing to improved fuel economy benefits. Other factors such as cost, toxicity impact of CNF, and end-of-life issues specific to CNFs need to be considered to evaluate the final economic and environmental performance of CNF reinforced PNC materials. PMID:19368217

  1. Life-cycle energy and greenhouse gas emission benefits of lightweighting in automobiles: review and harmonization.

    PubMed

    Kim, Hyung Chul; Wallington, Timothy J

    2013-06-18

    Replacing conventional materials (steel and iron) with lighter alternatives (e.g., aluminum, magnesium, and composites) decreases energy consumption and greenhouse gas (GHG) emissions during vehicle use but may increase energy consumption and GHG emissions during vehicle production. There have been many life cycle assessment (LCA) studies on the benefits of vehicle lightweighting, but the wide variety of assumptions used makes it difficult to compare results from the studies. To clarify the benefits of vehicle lightweighting we have reviewed the available literature (43 studies). The GHG emissions and primary energy results from 33 studies that passed a screening process were harmonized using a common set of assumptions (lifetime distance traveled, fuel-mass coefficient, secondary weight reduction factor, fuel consumption allocation, recycling rate, and energy intensity of materials). After harmonization, all studies indicate that using aluminum, glass-fiber reinforced plastic, and high strength steel to replace conventional steel decreases the vehicle life cycle energy use and GHG emissions. Given the flexibility in options implied by the variety of materials available and consensus that these materials have substantial energy and emissions benefits, it seems likely that lightweighting will be used increasingly to improve fuel economy and reduce life cycle GHG emissions from vehicles. PMID:23668335

  2. EFFECT OF ARSENICALS ON THE EXPRESSION OF CELL CYCLE PROTEINS AND EARLY SIGNALING EVENTS IN PRIMARY HUMAN KERATINOCYTES.

    EPA Science Inventory

    Effect of Arsenicals on the Expression of Cell Cycle Proteins and Early Signaling Events in Primary Human Keratinocytes.

    Mudipalli, A, Owen R. D. and R. J. Preston, Environmental Carcinogenesis Division, USEPA, RTP, NC 27711.

    Environmental exposure to arsenic is a m...

  3. Battery energy storage systems life cycle costs case studies

    SciTech Connect

    Swaminathan, S.; Miller, N.F.; Sen, R.K.

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  4. High-energy solar particle events in cycle 24

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Mäkelä, P.; Yashiro, S.; Xie, H.; Akiyama, S.; Thakur, N.

    2015-09-01

    The Sun is already in the declining phase of cycle 24, but the paucity of high-energy solar energetic particle (SEP) events continues with only two ground level enhancement (GLE) events as of March 31, 2015. In an attempt to understand this, we considered all the large SEP events of cycle 24 that occurred until the end of 2014. We compared the properties of the associated CMEs with those in cycle 23. We found that the CME speeds in the sky plane were similar, but almost all those cycle-24 CMEs were halos. A significant fraction of (16%) of the frontside SEP events were associated with eruptive prominence events. CMEs associated with filament eruption events accelerate slowly and attain peak speeds beyond the typical GLE release heights. When we considered only western hemispheric events that had good connectivity to the CME nose, there were only 8 events that could be considered as GLE candidates. One turned out to be the first GLE event of cycle 24 (2012 May 17). In two events, the CMEs were very fast (>2000 km/s) but they were launched into a tenuous medium (high Alfven speed). In the remaining five events, the speeds were well below the typical GLE CME speed (∼2000 km/s). Furthermore, the CMEs attained their peak speeds beyond the typical heights where GLE particles are released. We conclude that several factors contribute to the low rate of high-energy SEP events in cycle 24: (i) reduced efficiency of shock acceleration (weak heliospheric magnetic field), (ii) poor latitudinal and longitudinal connectivity), and (iii) variation in local ambient conditions (e.g., high Alfven speed).

  5. Analysis and Simulation of a Blue Energy Cycle

    DOE PAGESBeta

    Sharma, Ms. Ketki; Kim, Yong-Ha; Yiacoumi, Sotira; Gabitto, Jorge; Bilheux, Hassina Z.; Santodonato, Louis J.; Mayes, Richard T.; Dai, Sheng; Tsouris, Costas

    2016-01-30

    The mixing process of fresh water and seawater releases a significant amount of energy and is a potential source of renewable energy. The so called ‘blue energy’ or salinity-gradient energy can be harvested by a device consisting of carbon electrodes immersed in an electrolyte solution, based on the principle of capacitive double layer expansion (CDLE). In this study, we have investigated the feasibility of energy production based on the CDLE principle. Experiments and computer simulations were used to study the process. Mesoporous carbon materials, synthesized at the Oak Ridge National Laboratory, were used as electrode materials in the experiments. Neutronmore » imaging of the blue energy cycle was conducted with cylindrical mesoporous carbon electrodes and 0.5 M lithium chloride as the electrolyte solution. For experiments conducted at 0.6 V and 0.9 V applied potential, a voltage increase of 0.061 V and 0.054 V was observed, respectively. From sequences of neutron images obtained for each step of the blue energy cycle, information on the direction and magnitude of lithium ion transport was obtained. A computer code was developed to simulate the process. Experimental data and computer simulations allowed us to predict energy production.« less

  6. Energy-based analysis of biochemical cycles using bond graphs

    PubMed Central

    Gawthrop, Peter J.; Crampin, Edmund J.

    2014-01-01

    Thermodynamic aspects of chemical reactions have a long history in the physical chemistry literature. In particular, biochemical cycles require a source of energy to function. However, although fundamental, the role of chemical potential and Gibb's free energy in the analysis of biochemical systems is often overlooked leading to models which are physically impossible. The bond graph approach was developed for modelling engineering systems, where energy generation, storage and transmission are fundamental. The method focuses on how power flows between components and how energy is stored, transmitted or dissipated within components. Based on the early ideas of network thermodynamics, we have applied this approach to biochemical systems to generate models which automatically obey the laws of thermodynamics. We illustrate the method with examples of biochemical cycles. We have found that thermodynamically compliant models of simple biochemical cycles can easily be developed using this approach. In particular, both stoichiometric information and simulation models can be developed directly from the bond graph. Furthermore, model reduction and approximation while retaining structural and thermodynamic properties is facilitated. Because the bond graph approach is also modular and scaleable, we believe that it provides a secure foundation for building thermodynamically compliant models of large biochemical networks. PMID:25383030

  7. Energy-based analysis of biochemical cycles using bond graphs.

    PubMed

    Gawthrop, Peter J; Crampin, Edmund J

    2014-11-01

    Thermodynamic aspects of chemical reactions have a long history in the physical chemistry literature. In particular, biochemical cycles require a source of energy to function. However, although fundamental, the role of chemical potential and Gibb's free energy in the analysis of biochemical systems is often overlooked leading to models which are physically impossible. The bond graph approach was developed for modelling engineering systems, where energy generation, storage and transmission are fundamental. The method focuses on how power flows between components and how energy is stored, transmitted or dissipated within components. Based on the early ideas of network thermodynamics, we have applied this approach to biochemical systems to generate models which automatically obey the laws of thermodynamics. We illustrate the method with examples of biochemical cycles. We have found that thermodynamically compliant models of simple biochemical cycles can easily be developed using this approach. In particular, both stoichiometric information and simulation models can be developed directly from the bond graph. Furthermore, model reduction and approximation while retaining structural and thermodynamic properties is facilitated. Because the bond graph approach is also modular and scaleable, we believe that it provides a secure foundation for building thermodynamically compliant models of large biochemical networks. PMID:25383030

  8. Energy expenditure, aerodynamics and medical problems in cycling. An update.

    PubMed

    Faria, I E

    1992-07-01

    The cyclist's ability to maintain an extremely high rate of energy expenditure for long durations at a high economy of effort is dependent upon such factors as the individual's anaerobic threshold, muscle fibre type, muscle myoglobin concentration, muscle capillary density and certain anthropometric dimensions. Although laboratory tests have had some success predicting cycling potential, their validity has yet to be established for trained cyclists. Even in analysing the forces producing propulsive torque, cycling effectiveness cannot be based solely on the orientation of applied forces. Innovations of shoe and pedal design continue to have a positive influence on the biomechanics of pedalling. Although muscle involvement during a complete pedal revolution may be similar, economical pedalling rate appears to differ significantly between the novice and racing cyclist. This difference emanates, perhaps, from long term adaptation. Air resistance is by far the greatest retarding force affecting cycling. The aerodynamics of the rider and the bicycle and its components are major contributors to cycling economy. Correct body posture and spacing between riders can significantly enhance speed and efficiency. Acute and chronic responses to cycling and training are complex. To protect the safety and health of the cyclist there must be close monitoring and cooperation between the cyclist, coach, exercise scientist and physician. PMID:1641542

  9. Isoprene emissions track the seasonal cycle of canopy temperature, not primary production: evidence from remote sensing

    NASA Astrophysics Data System (ADS)

    Foster, P. N.; Prentice, I. C.; Morfopoulos, C.; Siddall, M.; van Weele, M.

    2013-12-01

    Isoprene is important in atmospheric chemistry, but its seasonal emission pattern - especially in the tropics, where most isoprene is emitted - is incompletely understood. We set out to discover general, biome-independent relationships between large-scale isoprene emission and a series of potential predictor variables, including both observed and model-estimated variables related to gross primary production (GPP) and canopy temperature. To this end we used remotely sensed atmospheric concentrations of formaldehyde, an intermediate oxidation product of isoprene, as a proxy for isoprene emission in 22 regions selected to span high to low latitudes, to sample major biomes, and to minimize interference from pyrogenic sources of volatile organic compounds that could interfere with the isoprene signal. Formaldehyde concentrations showed the highest average seasonal correlations with remotely sensed (r = 0.85) and model-estimated (r = 0.80) canopy temperatures. Both variables predicted formaldehyde concentrations better than air temperature (r = 0.56) and a "reference" isoprene model that includes both temperature and GPP (r = 0.49), and far better than either remotely sensed green vegetation cover (r = 0.25) or model-estimated GPP (r = 0.14). GPP in tropical regions was anti-correlated with formaldehyde concentration (r = -0.30), which peaks during the dry season. We conjecture that the positive correlations of isoprene emission with primary production, and with air temperature, found in temperate forest regions arise simply because all three peak during the relatively short growing season. In most tropical regions, where the seasonal cycles of GPP and canopy temperature are very different, isoprene emission is revealed to depend on canopy temperature but not at all on GPP. The lack of a general correlation between GPP and formaldehyde concentration is consistent with experimental evidence that isoprene emission is decoupled from photosynthesis, and with the likely adaptive significance of isoprene emission in protecting leaves against heat damage and oxidative stress. In contrast, the high correlation between canopy temperature and formaldehyde concentration indicates the importance of including canopy temperature explicitly in large-scale models.

  10. Isoprene emissions track the seasonal cycle of canopy temperature, not primary production: evidence from remote sensing

    NASA Astrophysics Data System (ADS)

    Foster, P. N.; Prentice, I. C.; Morfopoulos, C.; Siddall, M.; van Weele, M.

    2014-07-01

    Isoprene is important in atmospheric chemistry, but its seasonal emission pattern - especially in the tropics, where most isoprene is emitted - is incompletely understood. We set out to discover generalized relationships applicable across many biomes between large-scale isoprene emission and a series of potential predictor variables, including both observed and model-estimated variables related to gross primary production (GPP) and canopy temperature. We used remotely sensed atmospheric concentrations of formaldehyde, an intermediate oxidation product of isoprene, as a proxy for isoprene emission in 22 regions selected to span high to low latitudes, to sample major biomes, and to minimize interference from pyrogenic sources of volatile organic compounds that could interfere with the isoprene signal. Formaldehyde concentrations showed the highest average seasonal correlations with remotely sensed (r = 0.85) and model-estimated (r = 0.80) canopy temperatures. Both variables predicted formaldehyde concentrations better than air temperature (r= 0.56) and a "reference" isoprene model that combines GPP and an exponential function of temperature (r = 0.49), and far better than either remotely sensed green vegetation cover, fPAR (r = 0.25) or model-estimated GPP (r = 0.14). Gross primary production in tropical regions was anti-correlated with formaldehyde concentration (r = -0.30), which peaks during the dry season. Our results were most reliable in the tropics, where formaldehyde observational errors were the least. The tropics are of particular interest because they are the greatest source of isoprene emission as well as the region where previous modelling attempts have been least successful. We conjecture that positive correlations of isoprene emission with GPP and air temperature (as found in temperate forests) may arise simply because both covary with canopy temperature, peaking during the relatively short growing season. The lack of a general correlation between GPP and formaldehyde concentration in the seasonal cycle is consistent with experimental evidence that isoprene emission rates are largely decoupled from photosynthetic rates, and with the likely adaptive significance of isoprene emission in protecting leaves against heat damage and oxidative stress.

  11. Wood energy fuel cycle optimization in beech and spruce forests

    NASA Astrophysics Data System (ADS)

    Meyer, Nickolas K.; Mina, Marco

    2012-03-01

    A novel synergistic approach to reducing emissions from residential wood combustion (RWC) is presented. Wood energy fuel cycle optimization (FCO) aims to provide cleaner burning fuels through optimization of forestry and renewable energy management practices. In this work, beech and spruce forests of average and high quality were modelled and analysed to determine the volume of fuel wood and its associated bark fraction produced during typical forestry cycles. Two separate fuel wood bark production regimes were observed for beech trees, while only one production regime was observed for spruce. The single tree and stand models were combined with existing thinning parameters to replicate existing management practices. Utilizing estimates of initial seedling numbers and existing thinning patterns a dynamic model was formed that responded to changes in thinning practices. By varying the thinning parameters, this model enabled optimization of the forestry practices for the reduction of bark impurities in the fuel wood supply chain. Beech forestry cycles responded well to fuel cycle optimization with volume reductions of bark from fuel wood of between ˜10% and ˜20% for average and high quality forest stands. Spruce, on the other hand, was fairly insensitive to FCO with bark reductions of 0-5%. The responsiveness of beech to FCO further supports its status as the preferred RWC fuel in Switzerland. FCO could easily be extended beyond Switzerland and applied across continental Europe and North America.

  12. Zinc-oxygen primary cell yields high energy density

    NASA Technical Reports Server (NTRS)

    Graff, C. B.

    1968-01-01

    Zinc-oxygen primary cell yields high energy density for battery used as an auxiliary power source in space vehicle systems. Maximum reliability and minimum battery weight is achieved by using a stacking configuration of 23 series-connected modules with 6 parallel-connected cells per module.

  13. SQUID-SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle.

    PubMed

    Fischer, Woodward W; Fike, David A; Johnson, Jena E; Raub, Timothy D; Guan, Yunbin; Kirschvink, Joseph L; Eiler, John M

    2014-04-15

    Many aspects of Earth's early sulfur cycle, from the origin of mass-anomalous fractionations to the degree of biological participation, remain poorly understood--in part due to complications from postdepositional diagenetic and metamorphic processes. Using a combination of scanning high-resolution magnetic superconducting quantum interference device (SQUID) microscopy and secondary ion mass spectrometry (SIMS) of sulfur isotopes ((32)S, (33)S, and (34)S), we examined drill core samples from slope and basinal environments adjacent to a major Late Archean (?2.6-2.5 Ga) marine carbonate platform from South Africa. Coupled with petrography, these techniques can untangle the complex history of mineralization in samples containing diverse sulfur-bearing phases. We focused on pyrite nodules, precipitated in shallow sediments. These textures record systematic spatial differences in both mass-dependent and mass-anomalous sulfur-isotopic composition over length scales of even a few hundred microns. Petrography and magnetic imaging demonstrate that mass-anomalous fractionations were acquired before burial and compaction, but also show evidence of postdepositional alteration 500 million y after deposition. Using magnetic imaging to screen for primary phases, we observed large spatial gradients in ?(33)S (>4) in nodules, pointing to substantial environmental heterogeneity and dynamic mixing of sulfur pools on geologically rapid timescales. In other nodules, large systematic radial ?(34)S gradients (>20) were observed, from low values near their centers increasing to high values near their rims. These fractionations support hypotheses that microbial sulfate reduction was an important metabolism in organic-rich Archean environments--even in an Archean ocean basin dominated by iron chemistry. PMID:24706767

  14. SQUID–SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle

    PubMed Central

    Fischer, Woodward W.; Fike, David A.; Johnson, Jena E.; Raub, Timothy D.; Guan, Yunbin; Kirschvink, Joseph L.; Eiler, John M.

    2014-01-01

    Many aspects of Earth’s early sulfur cycle, from the origin of mass-anomalous fractionations to the degree of biological participation, remain poorly understood—in part due to complications from postdepositional diagenetic and metamorphic processes. Using a combination of scanning high-resolution magnetic superconducting quantum interference device (SQUID) microscopy and secondary ion mass spectrometry (SIMS) of sulfur isotopes (32S, 33S, and 34S), we examined drill core samples from slope and basinal environments adjacent to a major Late Archean (∼2.6–2.5 Ga) marine carbonate platform from South Africa. Coupled with petrography, these techniques can untangle the complex history of mineralization in samples containing diverse sulfur-bearing phases. We focused on pyrite nodules, precipitated in shallow sediments. These textures record systematic spatial differences in both mass-dependent and mass-anomalous sulfur-isotopic composition over length scales of even a few hundred microns. Petrography and magnetic imaging demonstrate that mass-anomalous fractionations were acquired before burial and compaction, but also show evidence of postdepositional alteration 500 million y after deposition. Using magnetic imaging to screen for primary phases, we observed large spatial gradients in Δ33S (>4‰) in nodules, pointing to substantial environmental heterogeneity and dynamic mixing of sulfur pools on geologically rapid timescales. In other nodules, large systematic radial δ34S gradients (>20‰) were observed, from low values near their centers increasing to high values near their rims. These fractionations support hypotheses that microbial sulfate reduction was an important metabolism in organic-rich Archean environments—even in an Archean ocean basin dominated by iron chemistry. PMID:24706767

  15. Life-cycle energy analyses of electric vehicle storage batteries

    NASA Astrophysics Data System (ADS)

    Sullivan, D.; Morse, T.; Patel, P.; Patel, S.; Bondar, J.; Taylor, L.

    1980-12-01

    Nickel-zinc, lead-acid, nickel-iron, zinc-chlorine, sodium-sulfur (glass electrolyte), sodium-sulfur (ceramic electrolyte), lithium-metal sulfide, and aluminum-air batteries were studied in order to evaluate the energy used to produce the raw materials and to manufacture the battery, the energy consumed by the battery during its operational life, and the energy that could be saved from the recycling of battery materials into new raw materials. The value of the life cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. Battery component materials, the energy requirements for battery production, and credits for recycling are described. The operational energy for an electric vehicle and the procedures used to determine it are discussed.

  16. Energy and wate cycles in the climate system

    SciTech Connect

    Raschke, E.; Jacob, D.

    1993-01-01

    This report is volume 5 in the NATO ASI Series 1: Global Environmental Change. It is specifically aimed at addressing research status and goals of GEWEX (Global Energy and Water Cycle Experiment) and represents presentations made to the NATO Advanced Study Institute at meetings held in Glucksburg, Germany, in September-October 1991. The volume is organized around 15 chapters presented by authors located primarily at western European research institutes and universities. Although this is not explicitly stated, the book is organized around three identifiable themes. Theme one comprises eight chapters and is generally concerned with the global scale. Theme two includes four chapters dealing with the role of oceans in the global energy and water cycle. The third theme, covering three chapters, treats the terrestrial environment. There are also two appendices, the first discussing databases for GEWEX and the second a summary of contributions to the conference made in poster sessions.

  17. A study of dynamic energy equations for Stirling cycle analysis

    NASA Technical Reports Server (NTRS)

    Larson, V. H.

    1983-01-01

    An analytical and computer study of the dynamic energy equations that describe the physical phenomena that occurs in a Stirling cycle engine. The basic problem is set up in terms of a set o hyperbolic partial differential equations. The characteristic lines are determined. The equations are then transformed to ordinary differential equations that are valid along characteristic lines. Computer programs to solve the differential equations and to plot pertinent factors are described.

  18. Energy recovery system using an organic rankine cycle

    DOEpatents

    Ernst, Timothy C

    2013-10-01

    A thermodynamic system for waste heat recovery, using an organic rankine cycle is provided which employs a single organic heat transferring fluid to recover heat energy from two waste heat streams having differing waste heat temperatures. Separate high and low temperature boilers provide high and low pressure vapor streams that are routed into an integrated turbine assembly having dual turbines mounted on a common shaft. Each turbine is appropriately sized for the pressure ratio of each stream.

  19. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    SciTech Connect

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various operating conditions as well as trade offs between efficiency and capital cost. Prametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling. Recommendations on the optimal working fluid for each configuration were made. A steady state model comparison was made with a Closed Brayton Cycle (CBC) power conversion system developed at Sandia National Laboratory (SNL). A preliminary model of the CBC was developed in HYSYS for comparison. Temperature and pressure ratio curves for the Capstone turbine and compressor developed at SNL were implemented into the HYSYS model. A comparison between the HYSYS model and SNL loop demonstrated power output predicted by HYSYS was much larger than that in the experiment. This was due to a lack of a model for the electrical alternator which was used to measure the power from the SNL loop. Further comparisons of the HYSYS model and the CBC data are recommended. Engineering analyses were performed for several configurations of the intermediate heat transport loop that transfers heat from the nuclear reactor to the hydrogen production plant. The analyses evaluated parallel and concentric piping arrangements and two different working fluids, including helium and a liquid salt. The thermal-hydraulic analyses determined the size and insulation requirements for the hot and cold leg pipes in the different configurations. Economic analyses were performed to estimate the cost of the va

  20. Energy spectra and composition of primary cosmic rays

    NASA Astrophysics Data System (ADS)

    Mueller, Dietrich; Swordy, Simon P.; Meyer, Peter; L'Heureux, Jacques; Grunsfeld, John M.

    1991-06-01

    New results are described on the energy spectra and relative abundances of primary cosmic ray nuclei from carbon to iron. The measurement was performed on the Spacelab-2 mission of the Space Shuttle Challenger in 1985, and extends to energies beyond 1 TeV per amu. The data indicate that the cosmic ray flux arriving near earth becomes enriched with heavier nuclei, most notably iron, as energy increases. Extrapolating to the source, with a simple leaky box model of galactic propagation with rigidity-dependent containment time, relative abundances of the elements are obtained that are quite similar to those reported at lower energy. In particular, the depletion of elements with high first ionization potential relative to the local galactic abundances, seems to persist in the cosmic ray source well up to TeV energies. A single power-law energy spectrum about E exp -2.1 provides a good description of the observed spectra of most elemental species.

  1. Primary cilia in energy balance signaling and metabolic disorder.

    PubMed

    Lee, Hankyu; Song, Jieun; Jung, Joo Hyun; Ko, Hyuk Wan

    2015-12-01

    Energy homeostasis in our body system is maintained by balancing the intake and expenditure of energy. Excessive accumulation of fat by disrupting the balance system causes overweight and obesity, which are increasingly becoming global health concerns. Understanding the pathogenesis of obesity focused on studying the genes related to familial types of obesity. Recently, a rare human genetic disorder, ciliopathy, links the role for genes regulating structure and function of a cellular organelle, the primary cilium, to metabolic disorder, obesity and type II diabetes. Primary cilia are microtubule based hair-like membranous structures, lacking motility and functions such as sensing the environmental cues, and transducing extracellular signals within the cells. Interestingly, the subclass of ciliopathies, such as Bardet-Biedle and Alström syndrome, manifest obesity and type II diabetes in human and mouse model systems. Moreover, studies on genetic mouse model system indicate that more ciliary genes affect energy homeostasis through multiple regulatory steps such as central and peripheral actions of leptin and insulin. In this review, we discuss the latest findings in primary cilia and metabolic disorders, and propose the possible interaction between primary cilia and the leptin and insulin signal pathways which might enhance our understanding of the unambiguous link of a cell's antenna to obesity and type II diabetes. [BMB Reports 2015; 48(12): 647-654]. PMID:26538252

  2. Primary cilia in energy balance signaling and metabolic disorder

    PubMed Central

    Lee, Hankyu; Song, Jieun; Jung, Joo Hyun; Ko, Hyuk Wan

    2015-01-01

    Energy homeostasis in our body system is maintained by balancing the intake and expenditure of energy. Excessive accumulation of fat by disrupting the balance system causes overweight and obesity, which are increasingly becoming global health concerns. Understanding the pathogenesis of obesity focused on studying the genes related to familial types of obesity. Recently, a rare human genetic disorder, ciliopathy, links the role for genes regulating structure and function of a cellular organelle, the primary cilium, to metabolic disorder, obesity and type II diabetes. Primary cilia are microtubule based hair-like membranous structures, lacking motility and functions such as sensing the environmental cues, and transducing extracellular signals within the cells. Interestingly, the subclass of ciliopathies, such as Bardet-Biedle and Alström syndrome, manifest obesity and type II diabetes in human and mouse model systems. Moreover, studies on genetic mouse model system indicate that more ciliary genes affect energy homeostasis through multiple regulatory steps such as central and peripheral actions of leptin and insulin. In this review, we discuss the latest findings in primary cilia and metabolic disorders, and propose the possible interaction between primary cilia and the leptin and insulin signal pathways which might enhance our understanding of the unambiguous link of a cell’s antenna to obesity and type II diabetes. [BMB Reports 2015; 48(12): 647-654] PMID:26538252

  3. ECUT energy data reference series: Otto cycle engines in transportation

    SciTech Connect

    Hane, G.J.; Johnson, D.R.

    1984-07-01

    Information that describes the use of the Otto cycle engines in transportation is summarized. The transportation modes discussed in this report include the following: automobiles, light trucks, heavy trucks, marine, recreational vehicles, motorcycles, buses, aircraft, and snowmobiles. These modes account for nearly 100% of the gasoline and LPG consumed in transportation engines. The information provided on each of these modes includes descriptions of the average energy conversion efficiency of the engine, the capital stock, the amount of energy used, and the activity level as measured in ton-miles. Estimates are provided for the years 1980 and 2000.

  4. Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of Greenhouse gas emissions of vehicle systems and fuels.

    PubMed

    Cai, Hao; Wang, Michael Q

    2014-10-21

    The climate impact assessment of vehicle/fuel systems may be incomplete without considering short-lived climate forcers of black carbon (BC) and primary organic carbon (POC). We quantified life-cycle BC and POC emissions of a large variety of vehicle/fuel systems with an expanded Greenhouse gases, Regulated Emissions, and Energy use in Transportation model developed at Argonne National Laboratory. Life-cycle BC and POC emissions have small impacts on life-cycle greenhouse gas (GHG) emissions of gasoline, diesel, and other fuel vehicles, but would add 34, 16, and 16 g CO2 equivalent (CO2e)/mile, or 125, 56, and 56 g CO2e/mile with the 100 or 20 year Global Warming Potentials of BC and POC emissions, respectively, for vehicles fueled with corn stover-, willow tree-, and Brazilian sugarcane-derived ethanol, mostly due to BC- and POC-intensive biomass-fired boilers in cellulosic and sugarcane ethanol plants for steam and electricity production, biomass open burning in sugarcane fields, and diesel-powered agricultural equipment for biomass feedstock production/harvest. As a result, life-cycle GHG emission reduction potentials of these ethanol types, though still significant, are reduced from those without considering BC and POC emissions. These findings, together with a newly expanded GREET version, help quantify the previously unknown impacts of BC and POC emissions on life-cycle GHG emissions of U.S. vehicle/fuel systems. PMID:25259852

  5. Energy life cycle cost analysis: Guidelines for public agencies

    SciTech Connect

    1995-03-01

    The State of Washington encourages energy-efficient building designs for public agencies. The Washington State Energy Office (WSEO) supports this goal by identifying advances in building technology and sharing this information with the design community and public administrators responsible for major construction projects. Many proven technologies can reduce operating costs-and save energy-to an extent that justifies some increases in construction costs. WSEO prepared these Energy Life Cycle Cost Analysis (ELCCA) guidelines for the individuals who are responsible for preparing ELCCA submittals for public buildings. Key terms and abbreviations are provided in Appendix A. Chapters 1 and 2 serve as an overview-providing background, defining energy life cycle cost analysis, explaining which agencies and projects are affected by the ELCCA requirements, and identifying changes to the guidelines that have been made since 1990. They explain {open_quotes}what needs to happen{close_quotes} and {open_quotes}why it needs to happen.{close_quotes} Chapters 3 to 7 provide the {open_quotes}how to,{close_quotes} the instructions and forms needed to prepare ELCCA submittals.

  6. Radiative energy receiver for high performance energy conversion cycles

    NASA Technical Reports Server (NTRS)

    Rault, D.; Hertzberg, A.

    1982-01-01

    An analysis of gas dynamic processes pertinent to the functioning of earth-based and space-based solar electric power plants is presented, with attention given to potassium vapor as the working fluid. A device is described which features focused photon absorption by a nontransparent flowing gas. The feed flow is effected around the outside walls of a cavity receiver to raise efficiencies by trapping reemitted energy. A theoretical study of the interaction of a photon flux with a coaxial particle flux was performed, with the receiver flow treated as a Graetz flow. The critical parameters were defined, including a figure of merit as the gas enthalpy increase to absorbable energy ratio. A small-scale laboratory model was tested in comparison with the theoretically obtained values. Less than 15% of the absorbed energy was lost through dissipation while an 80% conversion efficiency was attained.

  7. Solar power satellite life-cycle energy recovery consideration

    SciTech Connect

    Weingartner, S.; Blumenberg, J. |

    1994-12-31

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead on monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on earth (rectenna) requires about 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production installation and operation, is about two years.

  8. Accelerator-Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Heidet, Florent; Brown, Nicholas R.; Tahar, Malek Haj

    This article is a review of several accelerator-reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systems on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.

  9. Solar energy demand (SED) of commodity life cycles.

    PubMed

    Rugani, Benedetto; Huijbregts, Mark A J; Mutel, Christopher; Bastianoni, Simone; Hellweg, Stefanie

    2011-06-15

    The solar energy demand (SED) of the extraction of 232 atmospheric, biotic, fossil, land, metal, mineral, nuclear, and water resources was quantified and compared with other energy- and exergy-based indicators. SED represents the direct and indirect solar energy required by a product or service during its life cycle. SED scores were calculated for 3865 processes, as implemented in the Ecoinvent database, version 2.1. The results showed that nonrenewable resources, and in particular minerals, formed the dominant contribution to SED. This large share is due to the indirect solar energy required to produce these resource inputs. Compared with other energy- and exergy-based indicators, SED assigns higher impact factors to minerals and metals and smaller impact factors to fossil energetic resources, land use, and nuclear energy. The highest differences were observed for biobased and renewable energy generation processes, whose relative contribution of renewable resources such as water, biomass, and land occupation was much lower in SED than in energy- and exergy-based indicators. PMID:21545085

  10. Long-term global nuclear energy and fuel cycle strategies

    SciTech Connect

    Krakowski, R.A.

    1997-09-24

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E{sup 3} (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E{sup 3} model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E{sup 3} model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues.

  11. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 2: Advanced energy conversion systems. Part 1: Open-cycle gas turbines

    NASA Technical Reports Server (NTRS)

    Brown, D. H.; Corman, J. C.

    1976-01-01

    Ten energy conversion systems are defined and analyzed in terms of efficiency. These include: open-cycle gas turbine recuperative; open-cycle gas turbine; closed-cycle gas turbine; supercritical CO2 cycle; advanced steam cycle; liquid metal topping cycle; open-cycle MHD; closed-cycle inert gas MHD; closed-cycle liquid metal MHD; and fuel cells. Results are presented.

  12. Metabolic regulation and energy homeostasis through the primary cilium

    PubMed Central

    Oh, Edwin C.; Vasanth, Shivakumar; Katsanis, Nicholas

    2015-01-01

    Obesity and diabetes represent a significant healthcare concern. In contrast to genome-wide association studies that, some exceptions notwithstanding, have offered modest clues about pathomechanism, the dissection of rare disorders in which obesity represents a core feature have highlighted key molecules and structures critical to energy regulation. Here we focus on the primary cilium, an organelle whose roles in energy homeostasis have been underscored by the high incidence of obesity and type II diabetes in patients and mouse mutants with compromised ciliary function. We discuss recent evidence linking ciliary dysfunction to metabolic defects and we explore the contribution of neuronal and non-neuronal cilia to these phenotypes. PMID:25543293

  13. Primary defect production by high energy displacement cascades in molybdenum

    NASA Astrophysics Data System (ADS)

    Selby, Aaron P.; Xu, Donghua; Juslin, Niklas; Capps, Nathan A.; Wirth, Brian D.

    2013-06-01

    We report molecular dynamics simulations of primary damage in molybdenum produced by high energy displacement cascades on the femto- to pico-second and Angstrom to nanometer scales. Clustering directly occurred for both interstitials and vacancies in the 1-50 keV cascade energy range explored. Point defect survival efficiency and partitioning probabilities into different sized clusters were quantified. The results will provide an important reference for kinetic models to describe the microstructural evolution in Mo under ion or neutron irradiations over much longer time and length scales.

  14. High energy primary electron spectrum observed by the emulsion chamber

    NASA Technical Reports Server (NTRS)

    Nishimura, J.; Fujii, M.; Aizu, H.; Hiraiwa, N.; Taira, T.; Kobayashi, T.; Niu, K.; Koss, T. A.; Lord, J. J.; Golden, R. L.

    1978-01-01

    A detector of the emulsion chamber type is used to measure the energy spectrum of cosmic-ray electrons. Two large emulsion chambers, each having an area of 40 by 50 sq cm, are exposed for about 25.5 hr at an average pressure altitude of 3.9 mbar. About 500 high-energy cascades (no less than about 600 GeV) are detected by searching for dark spots on the X-ray films. A power-law energy dependence formula is derived for the spectrum of primary cosmic-ray electrons in the energy region over 100 GeV. The results are in good agreement with the transition curves obtained previously by theoretical and Monte Carlo calculations.

  15. Recovered Energy Generation Using an Organic Rankine Cycle System

    SciTech Connect

    Leslie, Neil; Sweetser, Richard; Zimron, Ohad; Stovall, Therese K

    2009-01-01

    This paper describes the results of a project demonstrating the technical and economic feasibility of capturing thermal energy from a 35,000 hp (27 MW) gas turbine driving a natural gas pipeline compressor with a Recovered Energy Generation (REG) system to produce 5.5 MW of electricity with no additional fuel and near-zero emissions. The REG is based on a modified Organic Rankine Cycle (ORC). Other major system elements include a waste-heat-to-oil heat exchanger with bypass, oil-to-pentane heat exchanger with preheater, recuperator, condenser, pentane turbine, generator and synchronizing breaker and all power and control systems required for the automatic operation of the REG. When operating at design heat input available from the gas turbine exhaust, the REG system consistently delivered 5.5 MW or more output to the grid at up to 15 percent heat conversion efficiency. The REG system improved the overall energy efficiency by 28%, from 32% simple cycle efficiency to 41% for the combined system. Significant lessons learned from this project are discussed as well as measured performance and economic considerations.

  16. The NASA Energy and Water Cycle Extreme (NEWSE) Integration Project

    NASA Technical Reports Server (NTRS)

    House, P. R.; Lapenta, W.; Schiffer, R.

    2008-01-01

    Skillful predictions of water and energy cycle extremes (flood and drought) are elusive. To better understand the mechanisms responsible for water and energy extremes, and to make decisive progress in predicting these extremes, the collaborative NASA Energy and Water cycle Extremes (NEWSE) Integration Project, is studying these extremes in the U.S. Southern Great Plains (SGP) during 2006-2007, including their relationships with continental and global scale processes, and assessment of their predictability on multiple space and time scales. It is our hypothesis that an integrative analysis of observed extremes which reflects the current understanding of the role of SST and soil moisture variability influences on atmospheric heating and forcing of planetary waves, incorporating recently available global and regional hydro- meteorological datasets (i.e., precipitation, water vapor, clouds, etc.) in conjunction with advances in data assimilation, can lead to new insights into the factors that lead to persistent drought and flooding. We will show initial results of this project, whose goals are to provide an improved definition, attribution and prediction on sub-seasonal to interannual time scales, improved understanding of the mechanisms of decadal drought and its predictability, including the impacts of SST variability and deep soil moisture variability, and improved monitoring/attributions, with transition to applications; a bridging of the gap between hydrological forecasts and stakeholders (utilization of probabilistic forecasts, education, forecast interpretation for different sectors, assessment of uncertainties for different sectors, etc.).

  17. The Urban Water Cycle and how it Modulates the Microclimate and the Energy Cycle

    NASA Astrophysics Data System (ADS)

    Bou-Zeid, E.; Wang, Z.; Ramamurthy, P.; Li, D.; Sun, T.; Smith, J. A.

    2012-12-01

    Urbanization is the land-use modification with the largest and most manifest impacts on hydrologic storage and fluxes. This perturbation of the water cycle also has considerable ramifications on the surface energy budget and the microclimatology in built terrain: reducing the potential for water storage and subsequent evaporation reduces the fraction of incoming radiative energy dissipated through surface evaporation, and consequently increases the sensible heating of the urban atmosphere and solid surfaces (buildings, roads, …). However, the complexity of the involved physical processes and their interactions have so far been oversimplified, leading to considerable biases in model output when compared to observations. Using novel sensing techniques that include wireless sensor networks, this study seeks to build a better understanding of the Urban Water Cycle. Our findings indicate that "impervious surfaces" in urban area are not really impervious and not always dry. The role of evaporation from gravel-covered roofs and from concrete, brick, stone and asphalt surfaces can be considerable, leading to lower sensible heating. In addition, the different thermal properties of the various urban materials lead to extreme spatial heterogeneity in surface conditions that is much higher than over natural terrain. Building on this understanding, an improved urban canopy model is developed that includes much better representation of surface heterogeneity and of hydrological and thermal storage and transport processes, including analytical solutions of the heat equation and numerical solutions of the Richards equation in the urban surface. The model development will be detailed and applications focusing on the role of evaporation in mitigating summer building cooling needs and urban heat island effects will be presented.

  18. Energy and materials flows in the production of primary aluminum

    SciTech Connect

    Shen, S.Y.

    1981-10-01

    The primary aluminum industry is one of the top five industrial energy users in the United States consuming about one quad annually. In 1980, for each ton of aluminum produced, an average smelting operation used about 157 million Btu of direct energy and another 70 million Btu were embodied in purchased materials. Producers employing the best practices used approximately 15% less energy per ton, or 132 million Btu of direct energy and 52 million Btu of embodied energy. These energy and materials flows are described in detail, using availability and input/output analyses and industry estimates. Energy consumption could be reduced further by developing (1) economical processes for using domestic nonbauxitic raw materials, a step that also would lessen the industry's present 94% dependence on foreign raw materials; (2) bulk alumina feeding equipment for handling more than one grade of alumina, thereby increasing the flexibility of smelting operations; (3) a reduction cell meter and temperature sensor for automatic control of alumina feeding and cell temperature; (4) a method for quickly and frequently measuring the NaF/AlF/sub 3/ ratio in a reduction cell for tighter control of electrolyte composition; and (5) a method for recovering waste heat.

  19. Primary production and humanosphere--is energy sufficient for sustainable humanosphere?

    PubMed

    Mizutani, H

    1995-12-01

    There is a growing concern about the sustainability of our humanosphere. Realizing that our consumption of natural resources is soon to exhaust available ones in this globe, we feel the need for more prudent ways to utilize them. In particular, the need would be greater in the ways for the use of the primary products as we are to continue to face the rapid increase in human population. On the contrary, however, we are rapidly losing the traditional customs of their many uses. For instance, rice straws were once a significant raw material for many manufactured products in Japan, while most of them are now simply burned in the paddy. Here I would like to review the current status of primary production on the Earth from the viewpoint of material cycling and to demonstrate that, unless we quickly turn around our ever-increasing demand for more material and more energy, the humanosphere would never enter a stable phase. At the year 2006 A.D., the energy demand of a possibly sustainable humanosphere surpasses the available energy through the global primary production. PMID:11541891

  20. Modeling fossil energy demands of primary nonferrous metal production: the case of copper.

    PubMed

    Swart, Pilar; Dewulf, Jo

    2013-12-17

    The methodologies for life cycle impact assessment (LCIA) of metal resources are rather diverse. Some LCIA methods are based on ore grade changes, but they typically do not consider the impact of changes in primary metal extraction technology. To characterize the impact of technology changes for copper, we modeled and analyzed energy demand, expressed in fossil energy equivalents (FEE) per kilogram of primary copper, taking into account the applied mining method and processing technology. The model was able to capture variations in reported energy demands of selected mining sites (FEE: 0.07 to 0.84 MJ-eq/kg ore) with deviations of 1 to 30%. Applying the model to a database containing global mine production data resulted in energy demand median values of around 50 MJ/kg Cu irrespective of the processing route, even though median values of ore demands varied between processing routes from ca. 35 (underground, conventional processing) to 200 kg ore/kg Cu (open pit, solvent-extraction, and electrowinning), as high specific ore demands are typically associated with less energy intensive extraction technologies and vice versa. Thus, only considering ore grade in LCIA methods without making any differentiation with regard to employed technology can produce misleading results. PMID:24266773

  1. Dosimetric impact evaluation of primary coolant chemistry of the internal tritium breeding cycle of a fusion reactor DEMO

    SciTech Connect

    Velarde, M.; Sedano, L. A.; Perlado, J. M.

    2008-07-15

    Tritium will be responsible for a large fraction of the environmental impact of the first generation of DT fusion reactors. Today, the efforts of conceptual development of the tritium cycle for DEMO are mainly centred in the so called Inner Breeding Tritium Cycle, conceived as guarantee of reactor fuel self-sufficiency. The EU Fusion Programme develops for the short term of fusion power technology two breeding blanket conceptual designs both helium cooled. One uses Li-ceramic material (HCPB, Helium-Cooled Pebble Bed) and the other a liquid metal eutectic alloy (Pb15.7Li) (HCLL, Helium-Cooled Lithium Lead). Both are Li-6 enriched materials. At a proper scale designs will be tested as Test Blanket Modules in ITER. The tritium cycles linked to both blanket concepts are similar, with some different characteristics. The tritium is recovered from the He purge gas in the case of HCPB, and directly from the breeding alloy through a carrier gas in HCLL. For a 3 GWth self-sufficient fusion reactor the tritium breeding need is few hundred grams of tritium per day. Safety and environmental impact are today the top priority design criteria. Dose impact limits should determine the key margins and parameters in its conception. Today, transfer from the cycle to the environment is conservatively assumed to be operating in a 1-enclosure scheme through the tritium plant power conversion system (intermediate heat exchangers and helium blowers). Tritium loss is caused by HT and T{sub 2} permeation and simultaneous primary coolant leakage through steam generators. Primary coolant chemistry appears to be the most natural way to control tritium permeation from the breeder into primary coolant and from primary coolant through SG by H{sub 2} tritium flux isotopic swamping or steel (EUROFER/INCOLOY) oxidation. A primary coolant chemistry optimization is proposed. Dynamic flow process diagrams of tritium fluxes are developed ad-hoc and coupled with tritiated effluents dose impact evaluations. Dose assessments are obtained from the use of appropriate numeric tools (NORMTRI). (authors)

  2. Energy spectra and composition of primary cosmic rays

    SciTech Connect

    Mueller, D.; Swordy, S.P.; Meyer, P.; L'heureux, J.; Grunsfeld, J.M. )

    1991-06-01

    New results are described on the energy spectra and relative abundances of primary cosmic ray nuclei from carbon to iron. The measurement was performed on the Spacelab-2 mission of the Space Shuttle Challenger in 1985, and extends to energies beyond 1 TeV per amu. The data indicate that the cosmic ray flux arriving near earth becomes enriched with heavier nuclei, most notably iron, as energy increases. Extrapolating to the source, with a simple leaky box model of galactic propagation with rigidity-dependent containment time, relative abundances of the elements are obtained that are quite similar to those reported at lower energy. In particular, the depletion of elements with high first ionization potential relative to the local galactic abundances, seems to persist in the cosmic ray source well up to TeV energies. A single power-law energy spectrum about E exp {minus}2.1 provides a good description of the observed spectra of most elemental species. 33 refs.

  3. Life Cycle Assessment Projection of Photovoltaic Cells: A Case Study on Energy Demand of Quantum Wire Based Photovoltaic Technology Research

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shilpi

    With increasing clean-energy demand, photovoltaic (PV) technologies have gained attention as potential long-term alternative to fossil fuel energy. However, PV research and manufacture still utilize fossil fuel-powered grid electricity. With continuous enhancement of solar conversion efficiency, it is imperative to assess whether overall life cycle efficiency is also being enhanced. Many new-material PV technologies are still in their research phase, and life cycle analyses of these technologies have not yet been performed. For best results, grid dependency must be minimized for PV research, and this can be accomplished by an analytical instrument called Life Cycle Assessment (LCA). LCA is the study of environmental impacts of a product throughout its life cycle. While there are some non-recoverable costs of research, energy is precious, and the PV research community should be aware of its energy consumption. LCA can help identify options for energy conservation through process optimization. A case study was conducted on the energy demand of a test-bed emerging PV technology using life cycle assessment methodology. The test-bed system chosen for this study was a new-material PV cell. The objective was to quantify the total energy demand for the research phase of the test-bed solar cell's life cycle. The objective was accomplished by collecting primary data on energy consumption for each process in the development of this solar cell. It was found that 937 kWh of energy was consumed for performing research on a single sample of the solar cell. For comparison, this energy consumption is 83% of Arkansas's average monthly residential electricity consumption. Life cycle inventory analysis showed that heating, ventilation, and air conditioning consumed the bulk of the energy of research. It is to be noted that the processes studied as part of the solar cell test-bed system are representative of a research process only. Life cycle thinking can identify energy hot-spots and help a new lab be set up in a more energy-efficient way. Proactive action based on the results can lead to higher energy return on investment, making emerging PV technologies truly energy-competitive.

  4. Primary side control of load voltage for transcutaneous energy transmission.

    PubMed

    Fu, Yang; Hu, Liang; Ruan, Xiaodong; Fu, Xin

    2016-03-01

    Transcutaneous energy transmission (TET) is considered as a good way to wirelessly power the implanted devices in human bodies. The load voltage provided from the TET to the implanted device should be kept stable to ensure the device working well, which however, is easily affected by the required power variation for different body movements and coil-couple malposition accompanying skin peristalsis. Commonly, the load voltage applied onto the device should be measured and feedback for power is regulated by implanting sensing and communication units into the body, which causes additional energy cost, increased size and weight of the implanted device. This paper takes the TET for artificial heart as an example to propose a novel primary side control method of the load voltage for TET, which does not require any additional implanted components. In the method, sensing coils are used to measure the malposition between the transmitter coil (TC) and receiver coil, and the magnitude of the TC current outside the human body. The measurement results are used to estimate the load voltage inside the body through calculation, whose value provide a base to develop a PI control system to regulate the input power of TET for the load voltage stability. The proposed method is experimentally validated on an actual TET for artificial heart by varying its load in a wide range under serious coil-couple malposition. With applying the primary side control, the variation of the load voltage is reduced to only 25 % of that without the control. PMID:26432434

  5. Water and Energy Cycle EOS House web portal (WECHO)

    NASA Astrophysics Data System (ADS)

    Li, Z.; Huang, Q.; Li, W.; Zhu, H.; Yang, C.; Houser, P.; Larko, M.

    2008-12-01

    Water is the origin of life, the vast amount of water related Earth observation is of great value to water community users. This paper reports our research and development in providing the Water and Energy Cycle EOS House web portal (WECHO), a web-based tool, for the community to access water resource archived in EOS ClearingHouse (ECHO). WECHO aims to provide users the capabilities to search, browse and visualize data through common browsers, such as Internet Explore and Firefox. WECHO supports users to 1) access all ECHO functionalities, including registering as a new user, querying metadata and ordering delivery of earth observing data, subscribing to updates of interested metadata items and specific events; 2) semantically search ECHO with water ontologies integrated; 3) interactively access Earth Information Exchange (EIE) with the support of Semantic Web for Earth and Environmental Terminology (SWEET) and NOESIS.

  6. An energy-balance model of glaciation cycles

    NASA Technical Reports Server (NTRS)

    Ghil, M.; Bhattacharya, K.

    1979-01-01

    A one dimensional energy balance model is presented which contains a time lagged albedo to account for the delayed dependence of continental ice sheets on temperature; it also includes a smoothing of temperature gradients in the tropics to account for the effect of the Hadley circulation on the strong flattening of meridional temperature profiles there. The model exhibits finite amplitude, sustained free oscillations; these oscillations are triggered by a change in the insulation parameter and occur in the absence of any external forcing. This model behavior strongly suggests the possibility of an almost-intransitive mechanism playing a role in glaciation cycles. This behavior also occurs on shorter time scales which might be relevant to the interannual variability of the atmosphere.

  7. Energy harvesting measurements from stall flutter limit cycle oscillations

    NASA Astrophysics Data System (ADS)

    Chen, Jasper; Dhanushkodi, Adit; Lee, Christopher L.

    2014-04-01

    Results from experiments using a two-degree-of-freedom airfoil system are presented. Air speeds of the airfoil are determined at which dynamic flutter can be initiated and where limit cycle oscillations (LCO) can be excited by initial (pitch or plunge) displacements. LCO's with large pitch angle displacements attributed to stall flutter behavior are measured. The LCO oscillations are converted into electric power by an electromagnetic-inductor device. The energy harvester consists of three magnets in which one magnet floats between two fixed magnets. The force-displacement relationship of the harvester is best described by a fifth-order polynomial. The integration of the harvester into the airfoil system introduces nonlinear stiffness into the vertical (plunge) direction. When the LCO has been initiated, displacement amplitudes and resulting power generation are measured.

  8. Gopher mounds decrease nutrient cycling rates and increase adjacent vegetation in volcanic primary succession.

    PubMed

    Yurkewycz, Raymond P; Bishop, John G; Crisafulli, Charles M; Harrison, John A; Gill, Richard A

    2014-12-01

    Fossorial mammals may affect nutrient dynamics and vegetation in recently initiated primary successional ecosystems differently than in more developed systems because of strong C and N limitation to primary productivity and microbial communities. We investigated northern pocket gopher (Thomomys talpoides) effects on soil nutrient dynamics, soil physical properties, and plant communities on surfaces created by Mount St. Helens' 1980 eruption. For comparison to later successional systems, we summarized published studies on gopher effects on soil C and N and plant communities. In 2010, 18 years after gopher colonization, we found that gophers were active in ~2.5% of the study area and formed ~328 mounds ha(-1). Mounds exhibited decreased species density compared to undisturbed areas, while plant abundance on mound margins increased 77%. Plant burial increased total soil carbon (TC) by 13% and nitrogen (TN) by 11%, compared to undisturbed soils. Mound crusts decreased water infiltration, likely explaining the lack of detectable increases in rates of NO3-N, NH4-N or PO4-P leaching out of the rooting zone or in CO2 flux rates. We concluded that plant burial and reduced infiltration on gopher mounds may accelerate soil carbon accumulation, facilitate vegetation development at mound edges through resource concentration and competitive release, and increase small-scale heterogeneity of soils and communities across substantial sections of the primary successional landscape. Our review indicated that increases in TC, TN and plant density at mound margins contrasted with later successional systems, likely due to differences in physical effects and microbial resources between primary successional and older systems. PMID:25260998

  9. Waste recycling primary source of energy in deep ocean

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-02-01

    In the dark reaches of the deep ocean, far from the photosynthesizing plants and plankton that fuel life in the surface waters, ecosystems survive on chemical energy. Decades of research on the life that clusters around deep-sea hydrothermal vents has hinted at the importance of light-free food webs, but a recent analysis by Middelburg suggests that another systemwaste recyclingcould be the dominant pillar of life on the abyssal plains. The realization was a result of the author's attempt to calculate the importance of chemoautotrophy to the carbon cycles of different ocean regions. levels increase rates of denitrification and methanogenesis, thus increasing gas production rates. The authors also found that methane bubbles surpass diffused nitrous oxide in terms of global warming potential, which they suggest could warrant a rethinking of the importance of streams and rivers to global warming. (Journal of Geophysical Research-Biogeosciences, doi:10.1029/2011JG001656, 2011)

  10. A biogeochemical model for phosphorus and nitrogen cycling in the Eastern Mediterranean Sea. Part 2. Response of nutrient cycles and primary production to anthropogenic forcing: 1950-2000

    NASA Astrophysics Data System (ADS)

    Powley, H. R.; Krom, M. D.; Emeis, K.-C.; Van Cappellen, P.

    2014-11-01

    Anthropogenic inputs of nutrient phosphorus (P) and nitrogen (N) to the Eastern Mediterranean Sea (EMS) increased significantly after 1950. Nonetheless, the EMS remained ultra-oligotrophic, with eutrophication only affecting a restricted number of nearshore areas. To better understand this apparent contradiction, we reconstructed the external inputs of reactive P and N to the EMS for the period 1950 to 2000. Although the inputs associated with atmospheric deposition and river discharge more than doubled, the inflow of surface water from the Western Mediterranean Sea (WMS) remained the dominant source of nutrient P and N to the EMS during the second half of the 20th century. The combined external input of reactive P rose by 24% from 1950 to 1985, followed by a slight decline. In contrast, the external reactive N input increased continuously from 1950 to 2000, with a 62% higher input in 2000 compared to 1950. When imposing the reconstructed inputs to the dynamic model of P and N cycling in the EMS developed in the companion paper, a maximum increase of primary production of only 16% is predicted. According to the model, integrated over the period 1950-2000, outflow of Levantine Intermediate Water (LIW) to the WMS exported the equivalent of about one third of the P supplied in excess of the 1950 input, while another one third was translocated to the Eastern Mediterranean Deep Water (EMDW). Together, both mechanisms efficiently counteracted enhanced P input to the EMS, by drawing nutrient P away from primary producers in the surface waters. Furthermore, between 1950 and 2000, inorganic and organic dissolved N:P ratios increased in all water masses. Thus, the EMS became even more P limited because of anthropogenic nutrient inputs. A model simulation incorporating the circulation changes accompanying the Eastern Mediterranean Transient (EMT) between 1987 and 2000 yielded a 4% increase of EMS primary productivity relative to the baseline scenario.

  11. Titan's Methane Cycle and the Surface Energy Budget

    NASA Astrophysics Data System (ADS)

    Lora, J. M.; Russell, J. L.; Lunine, J. I.

    2013-12-01

    The atmosphere of Titan holds and transports a large reservoir of methane. Previous general circulation models (GCMs) show a divergence of methane from the equatorial regions resulting from seasonal changes in the circulation of the atmosphere. However, previous GCMs used to study the methane cycle have employed simplified radiative transfer that does not accurately capture the distribution of surface insolation. Titan's seasonal convective clouds, which occur despite the atmosphere's huge thermal inertia, result from exchanges of heat and moisture with the surface; thus, the surface energy balance is important for the methane transport. The surface energy budget in equilibrium is a balance between net surface radiation and turbulent surface fluxes of latent and sensible energy. Our GCM simulations, including nongray radiation transfer that uses optical properties derived from Cassini/Huygens data, show that maximum surface insolation, and therefore destabilizing surface energy fluxes, oscillate seasonally between midlatitudes. The GCM produces rain at latitudes and seasons where clouds have been observed, and at the same time produces a buildup of polar surface liquids. Furthermore, we find no buildup of midlatitude surface methane, in contrast to previous work. The upwelling branch of the mean meridional circulation tracks with the maximum sensible heat flux from the surface, and when evaporation is significant at low latitudes, this translates into an abrupt transition of the upwelling across the equator during equinoxes. On the other hand, the latitudinal migration of precipitation is less abrupt than in the case where evaporation is negligible near the equator (in which case precipitation can also be more temporally sporadic). Additionally, the latitudinal extent of the upwelling branch of the mean meridional circulation and the asymmetry in the latitudinal distribution of surface liquids appear to be diagnostic of the amount of methane available to the atmosphere from the surface reservoir.

  12. Open cycle ocean thermal energy conversion system structure

    DOEpatents

    Wittig, J. Michael

    1980-01-01

    A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating support vessel.

  13. The NASA Energy and Water cycle Extreme (NEWSE) Integration Project

    NASA Astrophysics Data System (ADS)

    Houser, P. R.; Lapenta, W.; Schiffer, R.

    2008-05-01

    Skillful predictions of water and energy cycle extremes (flood and drought) are elusive. To better understand the mechanisms responsible for water and energy extremes, and to make decisive progress in predicting these extremes, the collaborative NASA Energy and Water cycle Extremes (NEWSE) Integration Project, is studying these extremes in the U.S. Southern Great Plains (SGP) during 2006-2007, including their relationships with continental and global scale processes, and assessment of their predictability on multiple space and time scales. It is our hypothesis that an integrative analysis of observed extremes which reflects the current understanding of the role of SST and soil moisture variability influences on atmospheric heating and forcing of planetary waves, incorporating recently available global and regional hydro- meteorological datasets (i.e., precipitation, water vapor, clouds, etc.) in conjunction with advances in data assimilation, can lead to new insights into the factors that lead to persistent drought and flooding. We will show initial results of this project, whose goals are toprovide an improved definition, attribution and prediction on sub-seasonal to interannual time scales, improved understanding of the mechanisms of decadal drought and its predictability, including the impacts of SST variability and deep soil moisture variability, and improved monitoring/attributions, with transition to applications; a bridging of the gap between hydrological forecasts and stakeholders (utilization of probabilistic forecasts, education, forecast interpretation for different sectors, assessment of uncertainties for different sectors, etc.). *The NEWSE Team is: Romanou, Anastasiam, Columbia U.; Brian Soden, U. Miami; William Lapenta, NASA- MSFC; Megan Larko, CREW; Bing Lin, NASA-LaRC; Christa Peters-Lidard, NASA-GSFC; Xiquan Dong, U. North Dakota; Debbie Belvedere, CREW; Mathew Sapiano, U. Maryland; Duane Waliser, NASA-JPL; Eni Njoku, NASA/JPL; Eric Fetzer, NASA-JPL; Eyal Amitai, NASA-GSFC; Xiaogang Gao, U. California, Irvine; George Huffman, NASA-GSFC & SSAI; Jared Entin, NASA; Joseph Santanello, NASA-GSFC; John Roads, UCSD; W. Timothy Liu, NASA-JPL; Lixin Lu, Colorado State U.; Zhengzhao Luo, Colorado State U.; Michael Bosilovich, NASA-GSFC; Michael Jasinski, NASA-GSFC; William Olson, NASA-GSFC & UMBC-GEST; Pete Robertson, NASA-MSFC; Phil Arkin, U. Maryland; Paul Houser, CREW & GMU; Ralph Ferraro, NOAA; Pete Robertson, NASA-MSFC; Robert Schiffer; UMBC-GEST; Sujay Kumar, NASA-GSFC; Joseph A. Santanello, NASA-GSFC; Tristan L'Ecuyer, Colorado State U.; Wei-Kuo Tao; NASA-GSFC; Xia Feng; George Mason U.

  14. Transporting carbon dioxide recovered from fossil-energy cycles

    SciTech Connect

    Doctor, R. D.; Molburg, J. C.; Brockmeier, J. F.

    2000-07-24

    Transportation of carbon dioxide (CO{sub 2}) for enhanced oil recovery is a mature technology, with operating experience dating from the mid-1980s. Because of this maturity, recent sequestration studies for the US Department of Energy's National Energy Technology Laboratory have been able to incorporate transportation into overall energy-cycle economics with reasonable certainty. For these studies, two different coal-fueled plants are considered; the first collects CO{sub 2} from a 456-MW integrated coal gasification combined-cycle plant, while the second employs a 353-MW pulverized-coal boiler plant retrofitted for flue-gas recycling (Doctor et al. 1999; MacDonald and Palkes 1999). The pulverized-coal plant fires a mixture of coal in a 33% O{sub 2} atmosphere, the bulk of the inert gas being made up to CO{sub 2} to the greatest extent practical. If one power plant with one pipe feeds one sequestration reservoir, projected costs for a 500-km delivery pipeline are problematic, because when supplying one reservoir both plant availability issues and useful pipeline life heavily influence capital recovery costs. The transportation system proposed here refines the sequestration scheme into a network of three distinctive pipelines: (1) 80-km collection pipelines for a 330-MW pulverized-coal power plant with 100% CO{sub 2} recovery; (2) a main CO{sub 2} transportation trunk of 320 km that aggregates the CO{sub 2} from four such plants; and (3) an 80-km distribution network. A 25-year life is assumed for the first two segments, but only half that for the distribution to the reservoir. Projected costs for a 500-km delivery pipeline, assuming an infrastructure, are $7.82/tonne ($17.22/10{sup 3} Nm{sub 3} CO{sub 2} or $0.49/10{sup 3} scf CO{sub 2}), a savings of nearly 60% with respect to base-case estimates with no infrastructure. These costs are consistent only with conditioned CO{sub 2} having low oxygen and sulfur content; they do not include CO{sub 2} recovery, drying, and compression.

  15. Toward Describing the Effects of Ozone Depletion on Marine Primary Productivity and Carbon Cycling

    NASA Technical Reports Server (NTRS)

    Cullen, John J.

    1995-01-01

    This project was aimed at improved predictions of the effects of UVB and ozone depletion on marine primary productivity and carbon flux. A principal objective was to incorporate a new analytical description of photosynthesis as a function of UV and photosynthetically available radiation (Cullen et. al., Science 258:646) into a general oceanographic model. We made significant progress: new insights into the kinetics of photoinhibition were used in the analysis of experiments on Antarctic phytoplankton to generate a general model of UV-induced photoinhibition under the influence of ozone depletion and vertical mixing. The way has been paved for general models on a global scale.

  16. Energy Efficient Architecture: A Learning Cycle Using Model Houses to Analyze Energy Flow.

    ERIC Educational Resources Information Center

    Gerber, Brian L.; Marek, Edmund A.

    1996-01-01

    Presents an investigation that engages students in constructing models of houses to examine the dynamics of energy flow patterns. Uses the learning cycle procedure that allows students to experience the processes of science and to use higher level thinking skills. (JRH)

  17. Primary structure and phylogeny of the Calvin cycle enzymes transketolase and fructosebisphosphate aldolase of Xanthobacter flavus.

    PubMed Central

    van den Bergh, E R; Baker, S C; Raggers, R J; Terpstra, P; Woudstra, E C; Dijkhuizen, L; Meijer, W G

    1996-01-01

    Xanthobacter flavus, a gram-negative facultatively autotrophic bacterium, employs the Calvin cycle for the fixation of carbon dioxide. Cells grown under autotrophic growth conditions possess an Fe(2+)-dependent fructosebisphosphate (FBP) aldolase (class II) in addition to a class I FBP aldolase. By nucleotide sequencing and heterologous expression in Escherichia coli, genes encoding transketolase (EC 2.2.1.1.; CbbT) and class II FBP aldolase (EC 4.1.2.13; CbbA) were identified. A partial open reading frame encoding a protein similar to pentose-5-phosphate 3-epimerase was identified downstream from cbbA. A phylogenetic tree of transketolase proteins displays a conventional branching order. However, the class II FBP aldolase protein from X. flavus is only distantly related to that of E. coli. The autotrophic FBP aldolase proteins from X. flavus, Alcaligenes eutrophus, and Rhodobacter sphaeroides form a tight cluster, with the proteins from gram-positive bacteria as the closest relatives. PMID:8550527

  18. Building aggressively duty-cycled platforms to achieve energy efficiency

    NASA Astrophysics Data System (ADS)

    Agarwal, Yuvraj

    Managing power consumption and improving energy efficiency is a key driver in the design of computing devices today. This is true for both battery-powered mobile devices as well as mains-powered desktop PCs and servers. In case of mobile devices, the focus of optimization is on energy efficiency to maximize battery lifetime. In case of mains-powered devices, we seek to optimize power consumption to reduce energy costs, thermal and environmental concerns. Traditionally, there are two main mechanisms to improve energy efficiency in systems: slowdown techniques that seek to reduce processor speed or radio power against the rate of work done, and shutdown techniques that seek to shut down specific components or subsystems -- such as processor, radio, memory -- to reduce power used by these components when not in use. The adverse effect of using these techniques is either reduced performance (e.g., increase in latency) and/or usability or loss of functionality. The thesis behind this dissertation is that improved energy efficiency can be achieved through system architectures that seek to design and exploit "collaboration" among heterogeneous but functionally similar subsystems. For instance, multiple radio interfaces with different power/performance characteristics can collaborate to provide an energy-efficient wireless communication subsystem. Furthermore, we show that in systems where such heterogeneity is not naturally present, we can introduce heterogeneous components to improve overall energy efficiency. We show that using collaboration, individual subsystems and even entire platforms can be shut down more aggressively to reduce energy consumption, while reducing adverse impacts on performance or usability. We have used collaboration to do energy efficient operation in several contexts. For battery powered mobile devices we show that wireless radios are the dominant power consumers, and then describe several techniques that use various heterogeneous radios present on these devices in a collaborative manner to improve their battery lifetime substantially, on average by two to three times and in some cases up to 8 times. First we present "Cell2Notify", a technique in which a lower power radio is used purely to wakeup a higher power radio. Next, we present "CoolSpots" and "SwitchR", systems that build a hierarchy of collaborative radios to choose the most appropriate radio interface, taking into account application characteristics as well as various energy and performance metrics. In the case of wall-powered desktop and laptop Personal Computers (PCs) we show that the dominant power consumers are the processors themselves. We then describe "Somniloquy", an architecture that augments a PC with a separate low power secondary processor that can perform some of the functions of the host PC on its behalf. We show that by using the primary processor (i.e. the PC) collaboratively with the secondary processor we can shut down PCs opportunistically, and as a result reduce the overall energy consumption by up to 80% in most cases.

  19. Energy life cycle assessment of rice straw bio-energy derived from potential gasification technologies.

    PubMed

    Shie, Je-Lueng; Chang, Ching-Yuan; Chen, Ci-Syuan; Shaw, Dai-Gee; Chen, Yi-Hung; Kuan, Wen-Hui; Ma, Hsiao-Kan

    2011-06-01

    To be a viable alternative, a biofuel should provide a net energy gain and be capable of being produced in large quantities without reducing food supplies. Amounts of agricultural waste are produced and require treatment, with rice straw contributing the greatest source of such potential bio-fuel in Taiwan. Through life-cycle accounting, several energy indicators and four potential gasification technologies (PGT) were evaluated. The input energy steps for the energy life cycle assessment (ELCA) include collection, generator, torrefaction, crushing, briquetting, transportation, energy production, condensation, air pollution control and distribution of biofuels to the point of end use. Every PGT has a positive energy benefit. The input of energy required for the transportation and pre-treatment are major steps in the ELCA. On-site briquetting of refused-derived fuel (RDF) provides an alternative means of reducing transportation energy requirements. Bio-energy sources, such as waste rice straw, provide an ideal material for the bio-fuel plant. PMID:21507625

  20. Large Scale Duty Cycle (LSDC) Project: Tractive Energy Analysis Methodology and Results from Long-Haul Truck Drive Cycle Evaluations

    SciTech Connect

    LaClair, Tim J

    2011-05-01

    This report addresses the approach that will be used in the Large Scale Duty Cycle (LSDC) project to evaluate the fuel savings potential of various truck efficiency technologies. The methods and equations used for performing the tractive energy evaluations are presented and the calculation approach is described. Several representative results for individual duty cycle segments are presented to demonstrate the approach and the significance of this analysis for the project. The report is divided into four sections, including an initial brief overview of the LSDC project and its current status. In the second section of the report, the concepts that form the basis of the analysis are presented through a discussion of basic principles pertaining to tractive energy and the role of tractive energy in relation to other losses on the vehicle. In the third section, the approach used for the analysis is formalized and the equations used in the analysis are presented. In the fourth section, results from the analysis for a set of individual duty cycle measurements are presented and different types of drive cycles are discussed relative to the fuel savings potential that specific technologies could bring if these drive cycles were representative of the use of a given vehicle or trucking application. Additionally, the calculation of vehicle mass from measured torque and speed data is presented and the accuracy of the approach is demonstrated.

  1. Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads

    SciTech Connect

    2013-07-01

    The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.

  2. Primary proximal tubule injury leads to epithelial cell cycle arrest, fibrosis, vascular rarefaction, and glomerulosclerosis

    PubMed Central

    Bonventre, Joseph V

    2014-01-01

    Tubular injury has a major etiological role in fibrosis. For many years, this relationship has been dominated by the perception that epithelial cells are transformed into myofibroblasts that proliferate and generate fibrotic matrixthe so-called epithelial-to-mesenchymal transition. Here we focus on mechanisms by which injury to the tubule results in fibrosis because of paracrine mechanisms. Specific injury to the proximal tubule results in inflammation, reversible injury, and adaptive repair if the insult is mild, self-limited in time, and occurs in a background of a normal kidney. Repeated injury, in contrast, leads to maladaptive repair with sustained tubule injury, chronic inflammation, proliferation of interstitial myofibroblasts, vascular rarefaction, interstitial fibrosis, and glomerular sclerosis. During the maladaptive repair process after the renal insult, many tubular cells become arrested in the G2/M phase of the cell cycle. This results in activation of the DNA repair response with the resultant synthesis and secretion of pro-fibrotic factors. Pharmacologic interventions that enhance the movement through G2/M or facilitate apoptosis of cells that otherwise would be blocked in G2/M may reduce the development of fibrosis after kidney injury and reduce the progression of chronic kidney disease. PMID:26310195

  3. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect

    Brent W. Dixon; Steven J. Piet

    2004-10-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository (63,000 MTiHM commercial, 7,000 MT non-commercial). There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected. The first step in understanding the need for different spent fuel management approaches is to understand the size of potential spent fuel inventories. A full range of potential futures for domestic commercial nuclear energy is considered. These energy futures are as follows: 1. Existing License Completion - Based on existing spent fuel inventories plus extrapolation of future plant-by-plant discharges until the end of each operating license, including known license extensions. 2. Extended License Completion - Based on existing spent fuel inventories plus a plant-by-plant extrapolation of future discharges assuming on all operating plants having one 20-year extension. 3. Continuing Level Energy Generation - Based on extension of the current ~100 GWe installed commercial base and average spent fuel discharge of 2100 MT/yr through the year 2100. 4. Continuing Market Share Generation Based on a 1.8% compounded growth of the electricity market through the year 2100, matched by growing nuclear capacity and associated spent fuel discharge. 5. Growing Market Share Generation - Extension of current nuclear capacity and associated spent fuel discharge through 2100 with 3.2% growth representing 1.5% market growth (all energy, not just electricity) and 1.7% share growth. Share growth results in tripling market share by 2100 from the current 8.4% to 25%, equivalent to continuing the average market growth of last 50 years for an additional 100 years. Five primary spent fuel management strategies are assessed against each of the energy futures to determine the number of geological repositories needed and how the first repository would be used. The geological repository site at Yucca Mountain, Nevada, has the physical potential to accommodate all the spent fuel that will be generated by the current fleet of domestic commercial nuclear reactors, even with license extensions. If new nuclear plants are built in the future as replacements or additions, the United States will need to adopt spent fuel treatment to extend the life of the repository. Should a significant number of new nuclear plants be built, advanced fuel recycling will be needed to fully manage the spent fuel within a single repository. The analysis also considers the timeframe for most efficient implementation of new spent fuel management strategies. The mix of unprocessed spent fuel and processed high level waste in Yucca Mountain varies with each future and strategy. Either recycling must start before there is too much unprocessed waste emplaced or unprocessed waste will have to be retrieved later with corresponding costs. For each case, the latest date to implement reprocessing without subsequent retrieval is determined.

  4. Targeting HGF/c-MET induces cell cycle arrest, DNA damage, and apoptosis for primary effusion lymphoma.

    PubMed

    Dai, Lu; Trillo-Tinoco, Jimena; Cao, Yueyu; Bonstaff, Karlie; Doyle, Lisa; Del Valle, Luis; Whitby, Denise; Parsons, Chris; Reiss, Krzysztof; Zabaleta, Jovanny; Qin, Zhiqiang

    2015-12-24

    Kaposi sarcoma-associated herpesvirus (KSHV) is a principal causative agent of primary effusion lymphoma (PEL) with a poor prognosis in immunocompromised patients. However, it still lacks effective treatment which urgently requires the identification of novel therapeutic targets for PEL. Here, we report that the hepatocyte growth factor (HGF)/c-MET pathway is highly activated by KSHV in vitro and in vivo. The selective c-MET inhibitor, PF-2341066, can induce PEL apoptosis through cell cycle arrest and DNA damage, and suppress tumor progression in a xenograft murine model. By using microarray analysis, we identify many novel genes that are potentially controlled by HGF/c-MET within PEL cells. One of the downstream candidates, ribonucleoside-diphosphate reductase subunit M2 (RRM2), also displays the promising therapeutic value for PEL treatment. Our findings provide the framework for development of HGF/c-MET-focused therapy and implementation of clinical trials for PEL patients. PMID:26531163

  5. Environmental Emissions from Energy Technology Systems: The Total Fuel Cycle

    SciTech Connect

    San Martin, Robert L.

    1989-01-01

    This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide.

  6. Environmental Emissions From Energy Technology Systems: The Total Fuel Cycle

    SciTech Connect

    San Martin, Robert L.

    1989-04-01

    This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide. (DJE 2005)

  7. Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle

    SciTech Connect

    Jehlik, Forrest; LaClair, Tim J

    2014-01-01

    Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes. Application of response surface modeling to the synthetic drive cycle is shown to predict energy consumption of the three EPA cycles within 2.6% of the actual measured values. Additionally, the response model may be used to predict energy consumption of any cycle within the speed/acceleration envelope of the synthetic cycle. This technique results in reducing test time, which additionally provides a model that may be used to expand the analysis and understanding of the vehicle under consideration.

  8. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Smith, B.; Wrlind, D.; Arneth, A.; Hickler, T.; Leadley, P.; Siltberg, J.; Zaehle, S.

    2014-04-01

    The LPJ-GUESS dynamic vegetation model uniquely combines an individual- and patch-based representation of vegetation dynamics with ecosystem biogeochemical cycling from regional to global scales. We present an updated version that includes plant and soil N dynamics, analysing the implications of accounting for C-N interactions on predictions and performance of the model. Stand structural dynamics and allometric scaling of tree growth suggested by global databases of forest stand structure and development were well reproduced by the model in comparison to an earlier multi-model study. Accounting for N cycle dynamics improved the goodness of fit for broadleaved forests. N limitation associated with low N-mineralisation rates reduces productivity of cold-climate and dry-climate ecosystems relative to mesic temperate and tropical ecosystems. In a model experiment emulating free-air CO2 enrichment (FACE) treatment for forests globally, N limitation associated with low N-mineralisation rates of colder soils reduces CO2 enhancement of net primary production (NPP) for boreal forests, while some temperate and tropical forests exhibit increased NPP enhancement. Under a business-as-usual future climate and emissions scenario, ecosystem C storage globally was projected to increase by ca. 10%; additional N requirements to match this increasing ecosystem C were within the high N supply limit estimated on stoichiometric grounds in an earlier study. Our results highlight the importance of accounting for C-N interactions in studies of global terrestrial N cycling, and as a basis for understanding mechanisms on local scales and in different regional contexts.

  9. Appraisal of the remineralizing potential of child formula dentifrices on primary teeth: An in vitro pH cycling model

    PubMed Central

    Kiranmayi, M.; Nirmala, S. V. S. G.; Nuvvula, Sivakumar

    2015-01-01

    Aim: To evaluate the remineralizing potential of child formula dentifrices on primary teeth using an in vitro 7 days pH cycling model. Materials and Methods: Twenty-one primary teeth were placed in demineralizing solution for 96 h to produce artificial carious lesions; then cut longitudinally into 100150 ?m thick sections and randomly assigned to three groups. Sections in Group A were treated with dentifrice containing 458 ppm monofluorophosphate (MFP) and sections in Group B with 500 ppm sodium fluoride (NaF). Group C sections were treated with a nonfluoridated dentifrice. Results: Group A (458 ppm MFP) and Group B (500 ppm NaF) showed significant decrease in lesion depth, whereas Group C (non F) showed a significant increase in depth (P ? 0.05, paired t-test). Conclusion: Though dentifrices containing 458 ppm MFP and 500 ppm NaF demonstrated remineralization of carious lesions, it was not complete. Therefore, it is also important to emphasize on other preventive methods in the prevention and/or reversal of carious lesions. PMID:25821382

  10. Comparison of energy-based indicators used in life cycle assessment tools for buildings

    EPA Science Inventory

    Traditionally, building rating systems focused on, among others, energy used during operational stage. Recently, there is a strong push by these rating systems to include the life cycle energy use of buildings, particularly using Life Cycle Assessment (LCA), by offering credits t...

  11. OZFLUX: Water, Energy, and Carbon Cycles in Australian Terrestrial Systems

    NASA Astrophysics Data System (ADS)

    Leuning, R.; Cleugh, H. A.; Finnigan, J. J.; Wang, Y.; Barrett, D. J.; Zegelin, S.

    2001-12-01

    The paper introduces the OZFLUX network which is being established to study several Australian ecosystems, discusses the analysis of eddy covariance data from tower-based flux stations, and then examines use of the flux data and a SVAT model within an atmospheric transport model to estimate regional fluxes. Lack of energy closure by eddy covariance measurements is commonly observed for Euroflux and Ameriflux installations. Reasons for the underestimates of H+ ? E may result from the way water vapor concentrations are determined using closed-path infrared gas analyzers. A comparison of open- and closed-path analyzers show that energy closure to better than 95% can be achieved with both systems when water vapor concentrations are expressed as mixing ratios in dry air, along with careful choice of the coordinate framework and the averaging periods used to calculate fluxes. Water, energy and carbon dioxide fluxes for two ecosystems are compared: 1) a 40 m tall, cool temperate Eucalyptus forest in SE Australia, and 2) a seasonally dry, tropical savanna woodland with sparsely arrayed, 10 m tall, Eucalyptus trees growing in a C4 grassland, in northern Queensland. Peak carbon dioxide uptake by the tall forest in the southern winter (T < 5\\deg C) is -10 ? mol~ m-2 s-1 compared to -2 ? mol~ m-2 s-1 for the savannah (T > 20 \\deg C), while evapotranspiration fluxes are similar (200~ W m-2). The differences arise because grasses in the savannah are dormant at this time. Seasonal carbon uptake is greatest in the summer for the temperate forest, and during the summer rainfall period from November to March for the savannah when grasses are actively growing. Fluxes measured at the two sites were used to test and parameterize the CSIRO Biosphere Model (CBM), which forms the lower boundary of a large-scale atmospheric transport model (DARLAM). We discuss the estimation of key parameters for CBM using ecological data on net primary production, and explain how, using a multiple-constraint approach, we may use DARLAM to estimate net fluxes at regional and continental scales. This involves constraining model predictions of fluxes and 4-D concentration fields, with measurements of fluxes, atmospheric carbon dioxide concentrations from a sparse network of towers, and surface radiances measured remotely.

  12. Evaluation of high-energy lithium thionyl chloride primary cells

    NASA Astrophysics Data System (ADS)

    Frank, H. A.

    1980-02-01

    An advanced commercial primary lithium cell (LiSoCl2) was evaluated in order to establish baseline data for improved lithium batteries for aerospace applications. The cell tested had nominal capacity of 6 Ah. Maximum energy density at low rates (less than C/30, where C is the cell capacity in amp-hrs and 30 corresponds to a 30 hr discharge time) was found to be near 300 Wh/kg. An equation which predicts the operating voltage of these cells as a function of current and state of charge is presented. Heat generation rates of these cells were determined as a function of current in a calorimeter. It was found that heat rates could be theoretically predicted with some degree of accuracy at currents less than 1 amp or the C/6 rate. No explosions were observed in the cells during the condition of overdischarge or reversal nor during high rate discharge. It was found, however, that the cells can vent when overdischarge currents are greater than C/30 and when discharge rates are greater than 1.5C.

  13. Evaluation of high-energy lithium thionyl chloride primary cells

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1980-01-01

    An advanced commercial primary lithium cell (LiSoCl2) was evaluated in order to establish baseline data for improved lithium batteries for aerospace applications. The cell tested had nominal capacity of 6 Ah. Maximum energy density at low rates (less than C/30, where C is the cell capacity in amp-hrs and 30 corresponds to a 30 hr discharge time) was found to be near 300 Wh/kg. An equation which predicts the operating voltage of these cells as a function of current and state of charge is presented. Heat generation rates of these cells were determined as a function of current in a calorimeter. It was found that heat rates could be theoretically predicted with some degree of accuracy at currents less than 1 amp or the C/6 rate. No explosions were observed in the cells during the condition of overdischarge or reversal nor during high rate discharge. It was found, however, that the cells can vent when overdischarge currents are greater than C/30 and when discharge rates are greater than 1.5C.

  14. The role of organic ligands in iron cycling and primary productivity in the Antarctic Peninsula: A modeling study

    NASA Astrophysics Data System (ADS)

    Jiang, Mingshun; Barbeau, Katherine A.; Selph, Karen E.; Measures, Christopher I.; Buck, Kristen N.; Azam, Farooq; Greg Mitchell, B.; Zhou, Meng

    2013-06-01

    Iron (Fe) is the limiting nutrient for primary productivity in the Southern Ocean, with much of the dissolved iron (dFe) bound to organic ligands or colloids. A Fe model for the Southern Ocean (SOFe) is developed to understand the role of bacteria and organic ligands in controlling Fe cycling and productivity. The model resolves the classical food web and microbial loop, including three types of nutrients (N, Si, Fe) and two types of Fe ligands. Simulations of the zero-dimensional (0-D) model are calibrated with detailed results of shipboard grow-out incubation experiments conducted with Antarctic Peninsula phytoplankton communities during winter 2006 to provide the best estimate of key biological parameters. Then a one-dimensional (1-D) model is developed by coupling the biological model with the Regional Oceanic Modeling System (ROMS) for a site on the Antarctic Peninsula shelf, and the model parameters are further calibrated with data collected from two surveys (summer 2004 and winter 2006) in the area. The results of the numerical simulations agree reasonably well with observations. An analysis of the 1-D model results suggests that bacteria and organic ligands may play an important role in Fe cycling, which can be categorized into a relatively fast mode within the euphotic zone dominated by photo-reactions (summer d Fe residence time about 600 days) and complexation and a slow mode below with most of the dFe biologically complexed (summer dFe residence time >10 years). The dFe removal from the euphotic zone is dominated by colloidal formation and further aggregations with additional contribution from biological uptake, and an increase of organic ligands would reduce Fe export. The decrease of Fe removal rate over depth is due to the continuous dissolution and remineralization of particulate Fe. A number of sensitivity experiments are carried out for both 0-D and 1-D models to understand the importance of photo-reactive processes in primary productivity, bacterial activity, Fe speciation, and dFe residence time within the euphotic zone. The bio-availability of ligand-bound Fe (FeL) is critical to modeled high primary productivity, which is consistent with both shipboard measurements and field observations. In addition, model productivity is sensitive to photoreaction rates if FeL is not directly available for phytoplankton uptake.

  15. Ultra high energy events in ECHOS series and primary energy spectrum

    NASA Technical Reports Server (NTRS)

    Capdevielle, J. N.; Iwai, J.; Ogata, T.

    1985-01-01

    The compilation of ultra high energy jets suggests at present the existence of a bump in primary energy spectrum (with the standard concept of high energy collisions). The pseudo-rapidity distribution exhibits some typical anomalies, more than the (P sub t) behavior, which are (may be) the fingerprints of quark gluon plasma transition. The next results of Emulsion Chamber on Supersonic (ECHOS) will be in both cases determinant to confirm those tendancies, as well as an important effort of the cosmic ray community to develop in that sense a flying emulsion chamber experiment.

  16. Ultra high energy events in ECHOS series and primary energy spectrum

    NASA Astrophysics Data System (ADS)

    Capdevielle, J. N.; Iwai, J.; Ogata, T.

    1985-08-01

    The compilation of ultra high energy jets suggests at present the existence of a bump in primary energy spectrum (with the standard concept of high energy collisions). The pseudo-rapidity distribution exhibits some typical anomalies, more than the (Pt) behavior, which are (may be) the fingerprints of quark gluon plasma transition. The next results of Emulsion Chamber on Supersonic (ECHOS) will be in both cases determinant to confirm those tendancies, as well as an important effort of the cosmic ray community to develop in that sense a flying emulsion chamber experiment.

  17. A fuel cycle assessment guide for utility and state energy planners

    SciTech Connect

    Not Available

    1994-07-01

    This guide, one in a series of documents designed to help assess fuel cycles, is a framework for setting parameters, collecting data, and analyzing fuel cycles for supply-side and demand-side management. It provides an automated tool for entering comparative fuel cycle data that are meaningful to state and utility integrated resource planning, collaborative, and regional energy planning activities. It outlines an extensive range of energy technology characteristics and environmental, social, and economic considerations within each stage of a fuel cycle. The guide permits users to focus on specific stages or effects that are relevant to the technology being evaluated and that meet the user`s planning requirements.

  18. Global vs local energy dissipation: The energy cycle of the turbulent von Krmn flow

    NASA Astrophysics Data System (ADS)

    Kuzzay, Denis; Faranda, Davide; Dubrulle, Brengre

    2015-07-01

    In this paper, we investigate the relations between global and local energy transfers in a turbulent von Krmn flow. The goal is to understand how and where energy is dissipated in such a flow and to reconstruct the energy cycle in an experimental device where local as well as global quantities can be measured. In order to do so, we use particle image velocimetry (PIV) measurements and we model the Reynolds stress tensor to take subgrid scales into account. This procedure involves a free parameter that is calibrated using angular momentum balance. We then estimate the local and global mean injected and dissipated powers for several types of impellers, for various Reynolds numbers, and for various flow topologies. These PIV estimates are then compared with direct injected power estimates provided by torque measurements at the impellers. The agreement between PIV estimates and direct measurements depends on the flow topology. In symmetric situations, we are able to capture up to 90% of the actual global energy dissipation rate. However, our results become increasingly inaccurate as the shear layer responsible for most of the dissipation approaches one of the impellers and cannot be resolved by our PIV setup. Finally, we show that a very good agreement between PIV estimates and direct measurements is obtained using a new method based on the work of Duchon and Robert ["Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations," Nonlinearity 13, 249-225 (2000)] which generalizes the Krmn-Howarth equation to nonisotropic, nonhomogeneous flows. This method provides parameter-free estimates of the energy dissipation rate as long as the smallest resolved scale lies in the inertial range. These results are used to evidence a well-defined stationary energy cycle within the flow in which most of the energy is injected at the top and bottom impellers and dissipated within the shear layer. The influence of the mean flow geometry and the Reynolds number on this energy cycle is studied for a wide range of parameters.

  19. Phytoplankton versus macrophyte contribution to primary production and biogeochemical cycles of a coastal mesotidal system. A modelling approach

    NASA Astrophysics Data System (ADS)

    Plus, M.; Auby, I.; Maurer, D.; Trut, G.; Del Amo, Y.; Dumas, F.; Thouvenin, B.

    2015-11-01

    This study presents an assessment of the contributions of various primary producers to the global annual production and N/P cycles of a coastal system, namely the Arcachon Bay, by means of a numerical model. This 3D model fully couples hydrodynamic with ecological processes and simulates nitrogen, silicon and phosphorus cycles as well as phytoplankton, macroalgae and seagrasses. Total annual production rates for the different components were calculated for different years (2005, 2007 and 2009) during a time period of drastic reduction in seagrass beds since 2005. The total demand of nitrogen and phosphorus was also calculated and discussed with regards to the riverine inputs. Moreover, this study presents the first estimation of particulate organic carbon export to the adjacent open ocean. The calculated annual net production for the Arcachon Bay (except microphytobenthos, not included in the model) ranges between 22,850 and 35,300 tons of carbon. The main producers are seagrasses in all the years considered with a contribution ranging from 56% to 81% of global production. According to our model, the -30% reduction in seagrass bed surface between 2005 and 2007, led to an approximate 55% reduction in seagrass production, while during the same period of time, macroalgae and phytoplankton enhanced their productions by about +83% and +46% respectively. Nonetheless, the phytoplankton production remains about eightfold higher than the macroalgae production. Our results also highlight the importance of remineralisation inside the Bay, since riverine inputs only fulfill at maximum 73% nitrogen and 13% phosphorus demands during the years 2005, 2007 and 2009. Calculated advection allowed a rough estimate of the organic matter export: about 10% of the total production in the bay was exported, originating mainly from the seagrass compartment, since most of the labile organic matter was remineralised inside the bay.

  20. A general ecosystem model for applications to primary productivity and carbon cycle studies in the global oceans

    NASA Astrophysics Data System (ADS)

    Kantha, Lakshmi H.

    We have developed a general 1-D multi-component ecosystem model that incorporates a skillful upper ocean mixed layer model based on second moment closure of turbulence. The model is intended for eventual incorporation into coupled 3-D physical-biogeochemical ocean models with potential applications to modeling and studying primary productivity and carbon cycling in the global oceans as well as to promote the use of chlorophyll concentrations, in concert with satellite-sensed ocean color, as a diagnostic tool to delineate circulation features in numerical circulation models. The model is nitrogen-based and the design is deliberately general enough and modular to enable many of the existing ecosystem model formulations to be simulated and hence model-to-model comparisons rendered feasible. In its more general form (GEM10), the model solves for nitrate, ammonium, dissolved nitrogen, bacteria and two size categories of phytoplankton, zooplankton and detritus, in addition to solving for dissolved inorganic carbon and total alkalinity to enable estimation of the carbon dioxide flux at the air-sea interface. Dissolved oxygen is another prognostic variable enabling air-sea exchange of oxygen to be calculated. For potential applications to HNLC regions where productivity is constrained by the availability of a trace constituent such as iron, the model carries the trace constituent as an additional prognostic variable. Here we present 1-D model simulations for the Black Sea, Station PAPA and the BATS site. The Black Sea simulations assimilate seasonal monthly SST, SSS and surface chlorophyll, and the seasonal modulations compare favorably with earlier work. Station PAPA simulations for 1975-1977 with GEM5 assimilating observed SST and a plausible seasonal modulation of surface chlorophyll concentration also compare favorably with earlier work and with the limited observations on nitrate and pCO 2 available. Finally, GEM5 simulations at BATS for 1985-1997 are consistent with the available time series. The simulations suggest that while it is generally desirable to employ a comprehensive ecosystem model with a large number of components when accurate depiction of the entire ecosystem is desirable, as is the prevailing practice, a simpler formulation such as GEM5 (N 2PZD model) combined with assimilation of remotely sensed SST and chlorophyll concentrations may suffice for incorporation into 3-D prediction models of primary productivity, upper ocean optical clarity and carbon cycling.

  1. Level of energy intake affects the estrous cycle in Sundevall's jird (Meriones crassus).

    PubMed

    Khokhlova, I S; Kam, M; Gonen, S; Degen, A A

    2000-01-01

    Effects of energy intake on the estrous cycle of the desert gerbillid, Sundevall's jird (Meriones crassus; 80 g; n=22) were studied. Females were offered either maintenance or below maintenance levels of millet seeds and ad lib. Atriplex halimus leaves and stems; drinking water was not available. Vaginal smears were used to determine sexual stage. We hypothesized that the estrous cycle ceases at low levels of energy intake and commences when sufficient energy is available. Females lost body mass linearly with a decrease in metabolizable energy intake. Estrous cycle averaged 4.46 d at maintenance energy intake but increased to an average of 7.81 d at 70% of maintenance energy intake. A cessation of the cycle occurred at an energy intake below 70% of maintenance requirements, which resulted in a body mass loss of more than 1% per day. More variability in the length of the different stages of the cycle was found with lower levels of energy intake. When offered ad lib. millet seeds and A. halimus (n=14), recovery to the normal cycle was attained within 10 d by 43% of the females and within 16 d by the rest of the females. Recovery time was longest in females that previously had the lowest energy intake. We concluded that the estrous cycle of M. crassus is sensitive to energy intake. With restricted energy intake, the estrous cycle and reproductive activities cease but can be restored with provision of adequate energy. This strategy ensures that reproduction occurs when conditions of food availability and body condition of the females are favorable. PMID:10893164

  2. The influence of light on nitrogen cycling and the primary nitrite maximum in a seasonally stratified sea

    NASA Astrophysics Data System (ADS)

    Mackey, Katherine R. M.; Bristow, Laura; Parks, David R.; Altabet, Mark A.; Post, Anton F.; Paytan, Adina

    2011-12-01

    In the seasonally stratified Gulf of Aqaba Red Sea, both NO2- release by phytoplankton and NH4+ oxidation by nitrifying microbes contributed to the formation of a primary nitrite maximum (PNM) over different seasons and depths in the water column. In the winter and during the days immediately following spring stratification, NO2- formation was strongly correlated ( R2 = 0.99) with decreasing irradiance and chlorophyll, suggesting that incomplete NO3- reduction by light limited phytoplankton was a major source of NO2-. However, as stratification progressed, NO2- continued to be generated below the euphotic depth by microbial NH4+ oxidation, likely due to differential photoinhibition of NH4+ and NO2- oxidizing populations. Natural abundance stable nitrogen isotope analyses revealed a decoupling of the ? 15N and ? 18O in the combined NO3- and NO2- pool, suggesting that assimilation and nitrification were co-occurring in surface waters. As stratification progressed, the ? 15N of particulate N below the euphotic depth increased from -5 to up to +20. N uptake rates were also influenced by light; based on 15N tracer experiments, assimilation of NO3-, NO2-, and urea was more rapid in the light (434 24, 94 17, and 1194 48 nmol N L -1 day -1 respectively) than in the dark (58 14, 29 14, and 476 31 nmol N L -1 day -1 respectively). Dark NH4+ assimilation was 314 31 nmol N L -1 day -1, while light NH4+ assimilation was much faster, resulting in complete consumption of the 15N spike in less than 7 h from spike addition. The overall rate of coupled urea mineralization and NH4+ oxidation (14.1 7.6 nmol N L -1 day -1) was similar to that of NH4+ oxidation alone (16.4 8.1 nmol N L -1 day -1), suggesting that mineralization of labile dissolved organic N compounds like urea was not a rate limiting step for nitrification. Our results suggest that assimilation and nitrification compete for NH4+ and that N transformation rates throughout the water column are influenced by light over diel and seasonal cycles, allowing phytoplankton and nitrifying microbes to contribute jointly to PNM formation. We identify important factors that influence the N cycle throughout the year, including light intensity, substrate availability, and microbial community structure. These processes could be relevant to other regions worldwide where seasonal variability in mixing depth and stratification influence the contributions of phytoplankton and non-photosynthetic microbes to the N cycle.

  3. Prospects for Nuclear Electric Propulsion Using Closed-Cycle Magnetohydrodynamic Energy Conversion

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Bitteker, L. J.; Jones, J. E.

    2001-01-01

    Nuclear electric propulsion (NEP) has long been recognized as a major enabling technology for scientific and human exploration of the solar system, and it may conceivably form the basis of a cost-effective space transportation system suitable for space commerce. The chief technical obstacles to realizing this vision are the development of efficient, high-power (megawatt-class) electric thrusters and the development of low specific mass (less than 1 kg/kWe) power plants. Furthermore, comprehensive system analyses of multimegawatt class NEP systems are needed in order to critically assess mission capability and cost attributes. This Technical Publication addresses some of these concerns through a systematic examination of multimegawatt space power installations in which a gas-cooled nuclear reactor is used to drive a magnetohydrodynamic (MHD) generator in a closed-loop Brayton cycle. The primary motivation for considering MHD energy conversion is the ability to transfer energy out of a gas that is simply too hot for contact with any solid material. This has several intrinsic advantages including the ability to achieve high thermal efficiency and power density and the ability to reject heat at elevated temperatures. These attributes lead to a reduction in system specific mass below that obtainable with turbine-based systems, which have definite solid temperature limits for reliable operation. Here, the results of a thermodynamic cycle analysis are placed in context with a preliminary system analysis in order to converge on a design space that optimizes performance while remaining clearly within established bounds of engineering feasibility. MHD technology issues are discussed including the conceptual design of a nonequilibrium disk generator and opportunities for exploiting neutron-induced ionization mechanisms as a means of increasing electrical conductivity and enhancing performance and reliability. The results are then used to make a cursory examination of piloted Mars missions during the 2018 opportunity.

  4. Life cycle cost-based risk model for energy performance contracting retrofits

    NASA Astrophysics Data System (ADS)

    Berghorn, George H.

    Buildings account for 41% of the primary energy consumption in the United States, nearly half of which is accounted for by commercial buildings. Among the greatest energy users are those in the municipalities, universities, schools, and hospitals (MUSH) market. Correctional facilities are in the upper half of all commercial building types for energy intensity. Public agencies have experienced reduced capital budgets to fund retrofits; this has led to the increased use of energy performance contracts (EPC), which are implemented by energy services companies (ESCOs). These companies guarantee a minimum amount of energy savings resulting from the retrofit activities, which in essence transfers performance risk from the owner to the contractor. Building retrofits in the MUSH market, especially correctional facilities, are well-suited to EPC, yet despite this potential and their high energy intensities, efficiency improvements lag behind that of other public building types. Complexities in project execution, lack of support for data requests and sub-metering, and conflicting project objectives have been cited as reasons for this lag effect. As a result, project-level risks must be understood in order to support wider adoption of retrofits in the public market, in particular the correctional facility sub-market. The goal of this research is to understand risks related to the execution of energy efficiency retrofits delivered via EPC in the MUSH market. To achieve this goal, in-depth analysis and improved understanding was sought with regard to ESCO risks that are unique to EPC in this market. The proposed work contributes to this understanding by developing a life cycle cost-based risk model to improve project decision making with regard to risk control and reduction. The specific objectives of the research are: (1) to perform an exploratory analysis of the EPC retrofit process and identify key areas of performance risk requiring in-depth analysis; (2) to construct a framework describing the sources of and mitigation strategies employed for assessing key risks in EPC retrofits; (3) to develop a strategy for analyzing and evaluating risks for EPC retrofits focused on managing expected costs throughout the project life cycle, and use data collected through this strategy to develop and parameterize a risk model; and (4) to demonstrate the applicability of the proposed life cost-based risk model through a pilot application to a case study site. Five major contributions to the body of knowledge resulting from the research include: (1) a consensus-based assessment of ESCO risk management; (2) characterization of EPC retrofit risks borne by ESCOs; (3) an empirical evaluation of scenario failure mode and effects analysis and its application to this domain; (4) development and pilot application of a life cycle cost-based risk model; and (5) future expansion of the research approach to other domains. The researcher envisions that full implementation of the research will further encourage the growth of the energy services industry, and support focused retrofits in complex building types that typically can benefit the most from such work. Ultimately, this will reduce the energy consumption of public sector buildings to levels that are more fitting with the global principles of sustainability and responsible management of constrained resources.

  5. University of Minnesota aquifer thermal energy storage (ATES) project report on the second long-term cycle

    SciTech Connect

    Hoyer, M.C.; Hallgren, J.P.; Lauer, J.L.; Walton, M.; Eisenreich, S.J.; Howe, J.T.; Splettstoesser, J.F. )

    1991-12-01

    The technical feasibility of high-temperature (>100{degrees}C (>212{degrees}F)) aquifer thermal energy storage (ATES) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota's St. Paul field test facility (FTF). This report describes the second long-term cycle (LT2), which was conducted from October 1986 through April 1987. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are reported. Approximately 61% of the 9.21 GWh of energy added to the 9.38 {times} 10{sup 4} m{sup 3} of ground water stored during LT2 was recovered. Temperatures of the water stored and recovered averaged 118{degrees}C (244{degrees}F) and 85{degrees}C (185{degrees}F), respectively. Results agreed with previous cycles conducted at the FTF. System operation during LT2 was nearly as planned. Operational experience from previous cycles at the FTF was extremely helpful. Ion-exchange softening of the heated and stored aquifer water prevented scaling in the system heat exchangers and the storage well, and changed the major-ion chemistry of the stored water. Sodium bicarbonate replaced magnesium and calcium bicarbonate as primary ions in the softened water. Water recovered form storage was approximately at equilibrium with respect to dissolved ions. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water. Sodium was significantly lower in water recovered than in water stored.

  6. University of Minnesota aquifer thermal energy storage (ATES) project report on the second long-term cycle

    SciTech Connect

    Hoyer, M.C.; Hallgren, J.P.; Lauer, J.L.; Walton, M.; Eisenreich, S.J.; Howe, J.T.; Splettstoesser, J.F.

    1991-12-01

    The technical feasibility of high-temperature [>100{degrees}C (>212{degrees}F)] aquifer thermal energy storage (ATES) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota`s St. Paul field test facility (FTF). This report describes the second long-term cycle (LT2), which was conducted from October 1986 through April 1987. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are reported. Approximately 61% of the 9.21 GWh of energy added to the 9.38 {times} 10{sup 4} m{sup 3} of ground water stored during LT2 was recovered. Temperatures of the water stored and recovered averaged 118{degrees}C (244{degrees}F) and 85{degrees}C (185{degrees}F), respectively. Results agreed with previous cycles conducted at the FTF. System operation during LT2 was nearly as planned. Operational experience from previous cycles at the FTF was extremely helpful. Ion-exchange softening of the heated and stored aquifer water prevented scaling in the system heat exchangers and the storage well, and changed the major-ion chemistry of the stored water. Sodium bicarbonate replaced magnesium and calcium bicarbonate as primary ions in the softened water. Water recovered form storage was approximately at equilibrium with respect to dissolved ions. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water. Sodium was significantly lower in water recovered than in water stored.

  7. Energy Approach-Based Simulation of Structural Materials High-Cycle Fatigue

    NASA Astrophysics Data System (ADS)

    Balayev, A. F.; Korolev, A. V.; Kochetkov, A. V.; Sklyarova, A. I.; Zakharov, O. V.

    2016-02-01

    The paper describes the mechanism of micro-cracks development in solid structural materials based on the theory of brittle fracture. A probability function of material cracks energy distribution is obtained using a probabilistic approach. The paper states energy conditions for cracks growth at material high-cycle loading. A formula allowing to calculate the amount of energy absorbed during the cracks growth is given. The paper proposes a high- cycle fatigue evaluation criterion allowing to determine the maximum permissible number of solid body loading cycles, at which micro-cracks start growing rapidly up to destruction.

  8. Charge composition and energy spectral of cosmic ray primary particles for energies higher than 1 TeV

    NASA Technical Reports Server (NTRS)

    Vernov, S. N.; Ivanenko, I. P.; Grigorov, N. L.; Basina, Y. V.; Vakulov, P. V.; Vasilyev, Y. Y.; Golinskaya, R. M.; Grigoryeva, L. B.; Zhuravlev, D. A.; Zatsepin, V. I.

    1985-01-01

    Onboard the Cosmos-I543 satellite an experiment was performed to investigate the charge composition and primary cosmic ray energy spectrum for energies higher than I TeV. Preliminary experimental data are reported.

  9. High-energy multiple muons and heavy primary cosmic-rays

    NASA Technical Reports Server (NTRS)

    Mizutani, K.; Sato, T.; Takahashi, T.; Higashi, S.

    1985-01-01

    Three-dimensional simulations were carried out on high-energy multiple muons. On the lateral spread, the comparison with the deep underground observations indicates that the primary cosmic rays include heavy nuclei of high content. A method to determine the average mass number of primary particles in the energy around 10 to the 15th power eV is suggested.

  10. NASA Contributions to Improve Understanding of Extreme Events in the Global Energy and Water Cycle

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.

    2008-01-01

    The U.S. Climate Change Science Program (CCSP) has established the water cycle goals of the Nation's climate change program. Accomplishing these goals will require, in part, an accurate accounting of the key reservoirs and fluxes associated with the global water and energy cycle, including their spatial and temporal variability. through integration of all necessary observations and research tools, To this end, in conjunction with NASA's Earth science research strategy, the overarching long-term NASA Energy and Water Cycle Study (NEWS) grand challenge can he summarized as documenting and enabling improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. This challenge requires documenting and predicting trends in the rate of the Earth's water and energy cycling that corresponds to climate change and changes in the frequency and intensity of naturally occurring related meteorological and hydrologic events, which may vary as climate may vary in the future. The cycling of water and energy has obvious and significant implications for the health and prosperity of our society. The importance of documenting and predicting water and energy cycle variations and extremes is necessary to accomplish this benefit to society.

  11. Generation of available potential energy and the energy cycle during the global weather experiment

    NASA Technical Reports Server (NTRS)

    Salstein, D. A.; Rosen, R. D.

    1986-01-01

    Two major themes were pursued during this research period. The first of these involved examining the impacts of satellite-based data and the forecast model used by the Goddard Laboratory for Atmospheres (GLA) on general circulation statistics. For the other major topic, the diabatic heating fields produced by GLA were examined for one month during the FGGE First Special Observing Period. As part of that effort, the three-dimensional distribution of the four component heating fields were studied, namely those due to shortwave radiation, Q sub SW, longwave radiation, Q sub LW, sensible heating, Q sub S, and latent heating, Q sub L. These components were calculated as part of the GLA analysis/forecast system and archived every quarter day; from these archives cross products with temperature were computed to enable the direct calculation of certain terms of the large-scale atmospheric energy cycle, namely those involving the generation of available potential energy (APE). The decision to archive the diabatic heating components separately has enabled researchers to study the role of the various processes that drive the energy cycle of the atmosphere.

  12. High-frequency thermal-electrical cycles for pyroelectric energy conversion

    SciTech Connect

    Bhatia, Bikram; Damodaran, Anoop R.; Cho, Hanna; Martin, Lane W.; King, William P.

    2014-11-21

    We report thermal to electrical energy conversion from a 150 nm thick BaTiO{sub 3} film using pyroelectric cycles at 1 kHz. A microfabricated platform enables temperature and electric field control with temporal resolution near 1 μs. The rapid electric field changes as high as 11 × 10{sup 5 }kV/cm-s, and temperature change rates as high as 6 × 10{sup 5 }K/s allow exploration of pyroelectric cycles in a previously unexplored operating regime. We investigated the effect of phase difference between electric field and temperature cycles, and electric field and temperature change rates on the electrical energy generated from thermal-electrical cycles based on the pyroelectric Ericsson cycle. Complete thermodynamic cycles are possible up to the highest cycle rates tested here, and the energy density varies significantly with phase shifts between temperature and electric field waveforms. This work could facilitate the design and operation of pyroelectric cycles at high cycle rates, and aid in the design of new pyroelectric systems.

  13. Life-cycle energy analyses of electric vehicle storage batteries. Final report

    SciTech Connect

    Sullivan, D; Morse, T; Patel, P; Patel, S; Bondar, J; Taylor, L

    1980-12-01

    The results of several life-cycle energy analyses of prospective electric vehicle batteries are presented. The batteries analyzed were: Nickel-zinc; Lead-acid; Nickel-iron; Zinc-chlorine; Sodium-sulfur (glass electrolyte); Sodium-sulfur (ceramic electrolyte); Lithium-metal sulfide; and Aluminum-air. A life-cycle energy analysis consists of evaluating the energy use of all phases of the battery's life, including the energy to build it, operate it, and any credits that may result from recycling of the materials in it. The analysis is based on the determination of three major energy components in the battery life cycle: Investment energy, i.e., The energy used to produce raw materials and to manufacture the battery; operational energy i.e., The energy consumed by the battery during its operational life. In the case of an electric vehicle battery, this energy is the energy required (as delivered to the vehicle's charging circuit) to power the vehicle for 100,000 miles; and recycling credit, i.e., The energy that could be saved from the recycling of battery materials into new raw materials. The value of the life-cycle analysis approach is that it includes the various penalties and credits associated with battery production and recycling, which enables a more accurate determination of the system's ability to reduce the consumption of scarce fuels. The analysis of the life-cycle energy requirements consists of identifying the materials from which each battery is made, evaluating the energy needed to produce these materials, evaluating the operational energy requirements, and evaluating the amount of materials that could be recycled and the energy that would be saved through recycling. Detailed descriptions of battery component materials, the energy requirements for battery production, and credits for recycling, and the operational energy for an electric vehicle, and the procedures used to determine it are discussed.

  14. Spontaneous Detachment of Colloids from Primary Energy Minima by Brownian Diffusion.

    PubMed

    Wang, Zhan; Jin, Yan; Shen, Chongyang; Li, Tiantian; Huang, Yuanfang; Li, Baoguo

    2016-01-01

    The Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy profile has been frequently used to interpret the mechanisms controlling colloid attachment/detachment and aggregation/disaggregation behavior. This study highlighted a type of energy profile that is characterized by a shallow primary energy well (i.e., comparable to the average kinetic energy of a colloid) at a small separation distance and a monotonic decrease of interaction energy with separation distance beyond the primary energy well. This energy profile is present due to variations of height, curvature, and density of discrete physical heterogeneities on collector surfaces. The energy profile indicates that colloids can be spontaneously detached from the shallow primary energy well by Brownian diffusion. The spontaneous detachment from primary minima was unambiguously confirmed by conducting laboratory column transport experiments involving flow interruptions for two model colloids (polystyrene latex microspheres) and engineered nanoparticles (fullerene C60 aggregates). Whereas the spontaneous detachment has been frequently attributed to attachment in secondary minima in the literature, our study indicates that the detached colloids could be initially attached at primary minima. Our study further suggests that the spontaneous disaggregation from primary minima is more significant than spontaneous detachment because the primary minimum depth between colloid themselves is lower than that between a colloid and a collector surface. PMID:26784446

  15. Spontaneous Detachment of Colloids from Primary Energy Minima by Brownian Diffusion

    PubMed Central

    Wang, Zhan; Jin, Yan; Shen, Chongyang; Li, Tiantian; Huang, Yuanfang; Li, Baoguo

    2016-01-01

    The Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy profile has been frequently used to interpret the mechanisms controlling colloid attachment/detachment and aggregation/disaggregation behavior. This study highlighted a type of energy profile that is characterized by a shallow primary energy well (i.e., comparable to the average kinetic energy of a colloid) at a small separation distance and a monotonic decrease of interaction energy with separation distance beyond the primary energy well. This energy profile is present due to variations of height, curvature, and density of discrete physical heterogeneities on collector surfaces. The energy profile indicates that colloids can be spontaneously detached from the shallow primary energy well by Brownian diffusion. The spontaneous detachment from primary minima was unambiguously confirmed by conducting laboratory column transport experiments involving flow interruptions for two model colloids (polystyrene latex microspheres) and engineered nanoparticles (fullerene C60 aggregates). Whereas the spontaneous detachment has been frequently attributed to attachment in secondary minima in the literature, our study indicates that the detached colloids could be initially attached at primary minima. Our study further suggests that the spontaneous disaggregation from primary minima is more significant than spontaneous detachment because the primary minimum depth between colloid themselves is lower than that between a colloid and a collector surface. PMID:26784446

  16. Different Sun-Earth energy coupling between different solar cycles

    NASA Astrophysics Data System (ADS)

    Yamauchi, Masatoshi

    2015-04-01

    Geoeffect of the extremely low solar (sunspot) activity starting from the last solar minimum is one of major space science issues. This study compared responses of global geomagnetic indices Dst, Kp, and AL to the same solar wind conditions (density, velocity, magnetic field and their products) between the recent decade (2005-2014) and each of the previous four decades (1965-1974, 1975-1984, 1985-1994, 1995-2004) using the NASA OMNI hourly values up to August 2014. It is found that geomagnetic activity for a given solar wind condition, namely the Sun-Earth coupling efficiency, during the last 10 years (from after the declining phase of cycle #23 to the maximum of cycle #24) is quantitatively lower than those during the previous four decades (each decade approximately corresponds to cycles #20--23, respectively). The low Sun-Earth coupling efficiency became obvious from around 2006 and continued until now with a sharp peak at 2009. The speciality after 2006 is more obvious in Dst than in AL. Acknowledgement: Dst, Kp, AL, and sunspot numbers (RI) are official IAGA and IAA endorsed indices that are provided by World Data Center for Geomagnetism, Kyoto University, Japan (Dst and AL), GFZ, Adolf-Schmidt-Observatory Niemegk, Germany (Kp), and the Royal Observatory of Belgium, Brussels (RI). Including these indices, all data in hourly values are obtained from NASA-GSFC/SPDF through OMNIWeb (http://omniweb.gsfc.nasa.gov/ow.html).

  17. Development and use of the GREET model to estimate fuel-cycle energy use and emissions of various transportation technologies and fuels

    SciTech Connect

    Wang, M.Q.

    1996-03-01

    This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel- cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, sulfur oxides, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydrogen, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

  18. ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION

    SciTech Connect

    Gorensek, M.; Edwards, T.

    2009-06-11

    A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

  19. Life-Cycle Cost Analysis Highlights Hydrogen's Potential for Electrical Energy Storage (Fact Sheet)

    SciTech Connect

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in analyzing life-cycle costs for hydrogen storage in comparison with other energy storage technologies. Work was performed by the Hydrogen Technologies and Systems Center.

  20. Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP)

    NASA Technical Reports Server (NTRS)

    Vane, Deborah

    1993-01-01

    A discussion of the objectives of the Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP) is presented in vugraph form. The objectives of GEWEX are as follows: determine the hydrological cycle by global measurements; model the global hydrological cycle; improve observations and data assimilation; and predict response to environmental change. The objectives of GCIP are as follows: determine the time/space variability of the hydrological cycle over a continental-scale region; develop macro-scale hydrologic models that are coupled to atmospheric models; develop information retrieval schemes; and support regional climate change impact assessment.

  1. The tropical water and energy cycles in a cumulus ensemble model. Part 1: Equilibrium climate

    NASA Technical Reports Server (NTRS)

    Sui, C. H.; Lau, K. M.; Tao, W. K.; Simpson, J.

    1994-01-01

    A cumulus ensemble model is used to study the tropical water and energy cycles and their role in the climate system. The model includes cloud dynamics, radiative processes, and microphysics that incorporate all important production and conversion processes among water vapor and five species of hydrometeors. Radiative transfer in clouds is parameterized based on cloud contents and size distributions of each bulk hydrometeor. Several model integrations have been carried out under a variety of imposed boundary and large-scale conditions. In Part 1 of this paper, the primary focus is on the water and heat budgets of the control experiment, which is designed to simulate the convective - radiative equilibrium response of the model to an imposed vertical velocity and a fixed sea surface temperature at 28 C. The simulated atmosphere is conditionally unstable below the freezing level and close to neutral above the freezing level. The equilibrium water budget shows that the total moisture source, M(sub s), which is contributed by surface evaporation (0.24 M(sub s)) and the large-scale advection (0.76 M(sub s)), all converts to mean surface precipitation bar-P(sub s). Most of M(sub s) is transported verticaly in convective regions where much of the condensate is generated and falls to surface (0.68 bar-P(sub s)). The remaining condensate detrains at a rate of 0.48 bar-P(sub s) and constitutes 65% of the source for stratiform clouds above the melting level. The upper-level stratiform cloud dissipates into clear environment at a rate of 0.14 bar-P(sub s), which is a significant moisture source comparable to the detrained water vapor (0.15 bar-P(sub s)) to the upper troposphere from convective clouds. In the lower troposphere, stratiform clouds evaporate at a rate of 0.41 bar-P(sub s), which is a more dominant moisture source than surface evaporation (0.22 bar-P(sub s)). The precipitation falling to the surface in the stratiform region is about 0.32 bar-P(sub s). The associated latent heating in the water cycle is the dominant source in the heat budget that generates a net upward motion in convective regions, upper stratiform regions (above the freezing level), and a downward motion in the lower stratiform regions. The budgets reveal a cycle of water and energy resulted from radiation-dynamic-convection interactions that maintain equilibrium of the atmosphere.

  2. Generation of available potential energy and the energy cycle during the global weather experiment

    NASA Technical Reports Server (NTRS)

    Salstein, D. A.; Rosen, R. D.

    1985-01-01

    Two parallel sets of analyses, which in one case included and in the other omitted data observed by satellite based and other FGGE special observing systems are examined. The results of our previous work is extended in two separate, but not unrelated, ways. First, from these two parallel analyses, which are labeled FGGE (full FGGE system) and NOSAT (satellite omitted), it was discovered that the two sets of fields were quite close over much of the globe. Locally the influence of satellite based systems led to some differences, particularly over the Southern Hemisphere Oceans. The diabatic heating fields generated by the GLA FGGE analysis was also examined. From these fields, one can ascertain the role of total diabatic heating and of the various diabatic heating components in the atmospheric energy cycle, in particular in the generation of available potential energy.

  3. Life-cycle energy and environmental analysis of bioethanol production from cassava in Thailand.

    PubMed

    Papong, Seksan; Malakul, Pomthong

    2010-01-01

    In this study, the life-cycle energy and environmental assessment was conducted for bioethanol production from cassava in Thailand. The scope covered all stages in the life cycle of bioethanol production including cultivating, chip processing, transportation and bioethanol conversion. The input-output data were collected at plantation sites and ethanol plants which included materials usage, energy consumption, and all emissions. From the energy analysis, the results show that cassava-based bioethanol has a negative net energy value with an energy ratio was less than 1, indicating a net energy loss. For the environmental performance, the results show that throughout the life cycle of bioethanol, the conversion stage contributes most to the environmental impacts which is due to the use of coal for power and steam production in the bioethanol plants. It is suggested that a partial substitution of coal with biogas produced from existing wastewater treatment could lead to a significant reduction in the environmental impact. PMID:19766487

  4. Investigation of primary nucleation phenomena of acetylsalicylic acid crystals induced by ultrasonic irradiationultrasonic energy needed to activate primary nucleation

    NASA Astrophysics Data System (ADS)

    Miyasaka, Etsuko; Ebihara, Satomi; Hirasawa, Izumi

    2006-09-01

    The purpose of our study is to clarify ultrasonic primary nucleation phenomena for controlling final product size by adjusting the number of primary nuclei. In our previous study, the effect of ultrasonic irradiation on the number of nuclei was investigated under the same supersaturated condition, as a result two novel phenomena were observed. First, there is a region where ultrasonic irradiation inhibits primary nucleation. Second, a specific amount of energy is needed to activate primary nucleation. From this result, it was expected that the ultrasonic energy needed to activate primary nucleation has a certain relationship to the energy necessary to form a stable nucleus. Therefore, we investigated the following: whether ultrasonic irradiation inhibits and activates primary nucleation at various degrees of supersaturation, whether final crystal size relates to the number of nuclei, and whether the ultrasonic energy needed to activate primary nucleation relates to the energy necessary to form a stable nucleus. First, we found that ultrasonic irradiation inhibits and activates primary nucleation at various supersaturated degrees. Second, we found that final crystal size increases or decreases depending on the number of nuclei. Therefore, it was indicated that ultrasonic energy could yield the desired crystal size by inducing suitable nucleation. Third, we found that the ultrasonic energy needed to activate primary nucleation decreases with a decrease in the energy necessary to form a stable nucleus. From this, we can propose criteria for determining the effect of ultrasonic irradiation on primary nucleation by showing diagrams correlating ? Gcrit with Ecrit.

  5. Carcinogens induce loss of the primary cilium in human renal proximal tubular epithelial cells independently of effects on the cell cycle

    PubMed Central

    Radford, Robert; Slattery, Craig; Jennings, Paul; Blacque, Oliver; Pfaller, Walter; Gmuender, Hans; Van Delft, Joost; Ryan, Michael P.

    2012-01-01

    The primary cilium is an immotile sensory and signaling organelle found on the majority of mammalian cell types. Of the multitude of roles that the primary cilium performs, perhaps some of the most important include maintenance of differentiation, quiescence, and cellular polarity. Given that the progression of cancer requires disruption of all of these processes, we have investigated the effects of several carcinogens on the primary cilium of the RPTEC/TERT1 human proximal tubular epithelial cell line. Using both scanning electron microscopy and immunofluorescent labeling of the ciliary markers acetylated tubulin and Arl13b, we confirmed that RPTEC/TERT1 cells express primary cilium upon reaching confluence. Treatment with the carcinogens ochratoxin A (OTA) and potassium bromate (KBrO3) caused a significant reduction in the number of ciliated cells, while exposure to nifedipine, a noncarcinogenic renal toxin, had no effect on primary cilium expression. Flow cytometric analysis of the effects of all three compounds on the cell cycle revealed that only KBrO3 resulted in an increase in the proportion of cells entering the cell cycle. Microarray analysis revealed dysregulation of multiple pathways affecting ciliogenesis and ciliary maintenance following OTA and KBrO3 exposure, which were unaffected by nifedipine exposure. The primary cilium represents a unique physical checkpoint with relevance to carcinogenesis. We have shown that the renal carcinogens OTA and KBrO3 cause significant deciliation in a model of the proximal tubule. With KBrO3, this was followed by reentry into the cell cycle; however, deciliation was not found to be associated with reentry into the cell cycle following OTA exposure. Transcriptomic analysis identified dysregulation of Wnt signaling and ciliary trafficking in response to OTA and KBrO3 exposure. PMID:22262483

  6. GEWEX - The Global Energy and Water Cycle Experiment

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.

    1992-01-01

    GEWEX, which is part of the World Climate Research Program, has as its goal an order-of-magnitude improvement in the ability to model global precipitation and evaporation and furnish an accurate assessment of the sensitivity of atmospheric radiation and clouds. Attention will also be given to the response of the hydrological cycle and water resources to climate change. GEWEX employs a single program to coordinate all aspects of climatology from model development to the deployment and operation of observational systems. GEWEX will operate over the next two decades.

  7. Prognostic Utility of Cell Cycle Progression Score in Men With Prostate Cancer After Primary External Beam Radiation Therapy

    SciTech Connect

    Freedland, Stephen J.; Gerber, Leah; Reid, Julia; Welbourn, William; Tikishvili, Eliso; Park, Jimmy; Younus, Adib; Gutin, Alexander; Sangale, Zaina; Lanchbury, Jerry S.; Salama, Joseph K.; Stone, Steven

    2013-08-01

    Purpose: To evaluate the prognostic utility of the cell cycle progression (CCP) score, a RNA signature based on the average expression level of 31 CCP genes, for predicting biochemical recurrence (BCR) in men with prostate cancer treated with external beam radiation therapy (EBRT) as their primary curative therapy. Methods and Materials: The CCP score was derived retrospectively from diagnostic biopsy specimens of men diagnosed with prostate cancer from 1991 to 2006 (n=141). All patients were treated with definitive EBRT; approximately half of the cohort was African American. Outcome was time from EBRT to BCR using the Phoenix definition. Median follow-up for patients without BCR was 4.8 years. Association with outcome was evaluated by Cox proportional hazards survival analysis and likelihood ratio tests. Results: Of 141 patients, 19 (13%) had BCR. The median CCP score for patient samples was 0.12. In univariable analysis, CCP score significantly predicted BCR (P=.0017). The hazard ratio for BCR was 2.55 for 1-unit increase in CCP score (equivalent to a doubling of gene expression). In a multivariable analysis that included Gleason score, prostate-specific antigen, percent positive cores, and androgen deprivation therapy, the hazard ratio for CCP changed only marginally and remained significant (P=.034), indicating that CCP provides prognostic information that is not provided by standard clinical parameters. With 10-year censoring, the CCP score was associated with prostate cancer-specific mortality (P=.013). There was no evidence for interaction between CCP and any clinical variable, including ethnicity. Conclusions: Among men treated with EBRT, the CCP score significantly predicted outcome and provided greater prognostic information than was available with clinical parameters. If validated in a larger cohort, CCP score could identify high-risk men undergoing EBRT who may need more aggressive therapy.

  8. Red waters of Myrionecta rubra are biogeochemical hotspots for the Columbia River estuary with impacts on primary/secondary productions and nutrient cycles

    SciTech Connect

    Herfort, Lydie; Peterson, Tawnya D.; Prahl, Fredrick G.; McCue, Lee Ann; Needoba, Joe A.; Crump, Byron C.; Roegner, G. Curtis; Campbell, Victoria; Zuber, Peter A.

    2012-02-29

    The localized impact of blooms of the mixotrophic ciliate Myrionecta rubra in the Columbia River estuary during 2007-2010 was evaluated with biogeochemical, light microscopy, physiological and molecular data. M. rubra affected surrounding estuarine nutrient cycles, as indicated by high and low concentrations of organic nutrients and inorganic nitrogen, respectively, associated with red waters. M. rubra blooms also altered the energy transfer pattern in patches of the estuarine water that contain the ciliate by creating areas characterized by high primary production and elevated levels of fresh autochthonous particulate organic matter, therefore shifting the trophic status in emergent red water areas of the estuary from net heterotrophy towards autotrophy. The pelagic estuarine bacterial community structure was unaffected by M. rubra abundance, but red waters of the ciliate do offer a possible link between autotrophic and heterotrophic processes since they were associated with elevated dissolved organic matter and enhanced microbial secondary production. Taken together these findings suggest that M. rubra red waters are biogeochemical hotspots of the Columbia River estuary.

  9. Energy life-cycle analysis modeling and decision support tool

    SciTech Connect

    Hoza, M.; White, M.E.

    1993-06-01

    As one of DOE`s five multi-program national laboratories, Pacific Northwest Laboratory (PNL) develops and deploys technology for national missions in energy and the environment. The Energy Information Systems Group, within the Laboratory`s Computer Sciences Department, focuses on the development of the computational and data communications infrastructure and automated tools for the Transmission and Distribution energy sector and for advanced process engineering applications. The energy industry is being forced to operate in new ways and under new constraints. It is in a reactive mode, reacting to policies and politics, and to economics and environmental pressures. The transmission and distribution sectors are being forced to find new ways to maximize the use of their existing infrastructure, increase energy efficiency, and minimize environmental impacts, while continuing to meet the demands of an ever increasing population. The creation of a sustainable energy future will be a challenge for both the soft and hard sciences. It will require that we as creators of our future be bold in the way we think about our energy future and aggressive in its development. The development of tools to help bring about a sustainable future will not be simple either. The development of ELCAM, for example, represents a stretch for the computational sciences as well as for each of the domain sciences such as economics, which will have to be team members.

  10. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect

    Dixon, B.W.; Piet, S.J.

    2004-10-03

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected.

  11. Developing Primary School Children's Understanding of Energy Waste.

    ERIC Educational Resources Information Center

    Kruger, Colin; Summers, Mike

    2000-01-01

    Studies 34 elementary school children's understanding of five aspects of energy waste and the ways in which these conceptions develop following teaching. Concludes that the children had good prior awareness of some behaviors that save energy, but their reasons for thinking this were based largely on everyday intuitive ideas that involved

  12. Thermodynamics of greenhouse systems for the northern latitudes: analysis, evaluation and prospects for primary energy saving.

    PubMed

    Bronchart, Filip; De Paepe, Michel; Dewulf, Jo; Schrevens, Eddie; Demeyer, Peter

    2013-04-15

    In Flanders and the Netherlands greenhouse production systems produce economically important quantities of vegetables, fruit and ornamentals. Indoor environmental control has resulted in high primary energy use. Until now, the research on saving primary energy in greenhouse systems has been mainly based on analysis of energy balances. However, according to the thermodynamic theory, an analysis based on the concept of exergy (free energy) and energy can result in new insights and primary energy savings. Therefore in this paper, we analyse the exergy and energy of various processes, inputs and outputs of a general greenhouse system. Also a total system analysis is then performed by linking the exergy analysis with a dynamic greenhouse climate growth simulation model. The exergy analysis indicates that some processes ("Sources") lie at the origin of several other processes, both destroying the exergy of primary energy inputs. The exergy destruction of these Sources is caused primarily by heat and vapour loss. Their impact can be compensated by exergy input from heating, solar radiation, or both. If the exergy destruction of these Sources is reduced, the necessary compensation can also be reduced. This can be accomplished through insulating the greenhouse and making the building more airtight. Other necessary Sources, namely transpiration and loss of CO2, have a low exergy destruction compared to the other Sources. They are therefore the best candidate for "pump" technologies ("vapour heat pump" and "CO2 pump") designed to have a low primary energy use. The combination of these proposed technologies results in an exergy efficient greenhouse with the highest primary energy savings. It can be concluded that exergy analyses add additional information compared to only energy analyses and it supports the development of primary energy efficient greenhouse systems. PMID:23474336

  13. Sustainable Energy Solutions Task 3.0:Life-Cycle Database for Wind Energy Systems

    SciTech Connect

    Janet M Twomey, PhD

    2010-04-30

    EXECUTIVE SUMMARY The benefits of wind energy had previously been captured in the literature at an overview level with relatively low transparency or ability to understand the basis for that information. This has limited improvement and decision-making to larger questions such as wind versus other electrical sources (such as coal-fired plants). This research project has established a substantially different approach which is to add modular, high granularity life cycle inventory (lci) information that can be used by a wide range of decision-makers, seeking environmental improvement. Results from this project have expanded the understanding and evaluation of the underlying factors that can improve both manufacturing processes and specifically wind generators. The use of life cycle inventory techniques has provided a uniform framework to understand and compare the full range of environmental improvement in manufacturing, hence the concept of green manufacturing. In this project, the focus is on 1. the manufacturing steps that transform materials and chemicals into functioning products 2. the supply chain and end-of-life influences of materials and chemicals used in industry Results have been applied to wind generators, but also impact the larger U.S. product manufacturing base. For chemicals and materials, this project has provided a standard format for each lci that contains an overview and description, a process flow diagram, detailed mass balances, detailed energy of unit processes, and an executive summary. This is suitable for integration into other life cycle databases (such as that at NREL), so that broad use can be achieved. The use of representative processes allows unrestricted use of project results. With the framework refined in this project, information gathering was initiated for chemicals and materials in wind generation. Since manufacturing is one of the most significant parts of the environmental domain for wind generation improvement, this project research has developed a fundamental approach. The emphasis was place on individual unit processes as an organizing framework to understand the life cycle of manufactured products. The rearrangement of unit processes provides an efficient and versatile means of understanding improved manufactured products such as wind generators. The taxonomy and structure of unit process lci were developed in this project. A series of ten unit process lci were developed to sample the major segments of the manufacturing unit process taxonomy. Technical and economic effectiveness has been a focus of the project research in Task three. The use of repeatable modules for the organization of information on environmental improvement has a long term impact. The information developed can be used and reused in a variety of manufacturing plants and for a range of wind generator sizes and designs. Such a modular approach will lower the cost of life cycle analysis, that is often asked questions of carbon footprint, environmental impact, and sustainability. The use of a website for dissemination, linked to NREL, adds to the economic benefit as more users have access to the lci information. Benefit to the public has been achieved by a well-attended WSU conference, as well as presentations for the Kansas Wind Energy Commission. Attendees represented public interests, land owners, wind farm developers, those interested in green jobs, and industry. Another benefit to the public is the start of information flow from manufacturers that can inform individuals about products.

  14. The U.S. Department of Energy`s integrated gasification combined cycle research, development and demonstration program

    SciTech Connect

    Brdar, R.D.; Cicero, D.C.

    1996-07-01

    Historically, coal has played a major role as a fuel source for power generation both domestically and abroad. Despite increasingly stringent environmental constraints and affordable natural gas, coal will remain one of the primary fuels for producing electricity. This is due to its abundance throughout the world, low price, ease of transport an export, decreasing capital cost for coal-based systems, and the need to maintain fuel diversity. Recognizing the role coal will continue to play, the US Department of Energy (DOE) is working in partnership with industry to develop ways to use this abundant fuel resource in a manner that is more economical, more efficient and environmentally superior to conventional means to burn coal. The most promising of these technologies is integrated gasification combined cycle (IGCC) systems. Although IGCC systems offer many advantages, there are still several hurdles that must be overcome before the technology achieves widespread commercial acceptance. The major hurdles to commercialization include reducing capital and operating costs, reducing technical risk, demonstrating environmental and technical performance at commercial scale, and demonstrating system reliability and operability. Overcoming these hurdles, as well as continued progress in improving system efficiency, are the goals of the DOE IGCC research, development and demonstrate (RD and D) program. This paper provides an overview of this integrated RD and D program and describes fundamental areas of technology development, key research projects and their related demonstration scale activities.

  15. Primary Composition and Energy Spectrum Measurement near 1015 eV with the DICE Detector

    NASA Astrophysics Data System (ADS)

    Kieda, D.; Boothby, K.; Larsen, C. G.; Swordy, S.; Knapp, J.; Chantall, M.; Green, K. D.

    1998-12-01

    We present the results of a primary composition and primary energy spectrum measurement around 1015 eV made with the DICE-CASA-MIA experiment. We present new data on the muon and electron densities associated with the previously measured Cerenkov light images. An interpretation of the shower parameters and the dept of shower maximum in therms of a primary composition model will be presented.

  16. Life cycle inventory energy consumption and emissions for biodiesel versus petroleum diesel fueled construction vehicles.

    PubMed

    Pang, Shih-Hao; Frey, H Christopher; Rasdorf, William J

    2009-08-15

    Substitution of soy-based biodiesel fuels for petroleum diesel will alter life cycle emissions for construction vehicles. A life cycle inventory was used to estimate fuel cycle energy consumption and emissions of selected pollutants and greenhouse gases. Real-world measurements using a portable emission measurement system (PEMS) were made forfive backhoes, four front-end loaders, and six motor graders on both fuels from which fuel consumption and tailpipe emission factors of CO, HC, NO(x), and PM were estimated. Life cycle fossil energy reductions are estimated it 9% for B20 and 42% for B100 versus petroleum diesel based on the current national energy mix. Fuel cycle emissions will contribute a larger share of total life cycle emissions as new engines enter the in-use fleet. The average differences in life cycle emissions for B20 versus diesel are: 3.5% higher for NO(x); 11.8% lower for PM, 1.6% higher for HC, and 4.1% lower for CO. Local urban tailpipe emissions are estimated to be 24% lower for HC, 20% lower for CO, 17% lower for PM, and 0.9% lower for NO(x). Thus, there are environmental trade-offs such as for rural vs urban areas. The key sources of uncertainty in the B20 LCI are vehicle emission factors. PMID:19746743

  17. A Feasibility Study of CO2-Based Rankine Cycle Powered by Solar Energy

    NASA Astrophysics Data System (ADS)

    Zhang, Xin-Rong; Yamaguchi, Hiroshi; Fujima, Katsumi; Enomoto, Masatoshi; Sawada, Noboru

    An experiment study was carried out in order to investigate feasibility of CO2-based Rankine cycle powered by solar energy. The proposed cycle is to achieve a cogeneration of heat and power, which consists of evacuated solar tube collectors, power generating turbine, heat recovery system, and feed pump. The Rankine cycle of the system utilizes solar collectors to convert CO2 into high-temperature supercritical state, used to drive a turbine and produce electrical power. The cycle also recovers thermal energy, which can be used for absorption refrigerator, air conditioning, hot water supply so on for a building. A set of experimental set-up was constructed to investigate the performance of the CO2-based Rankine cycle. The results show the cycle can achieve production of heat and power with reasonable thermodynamics efficiency and has a great potential of the application of the CO2-based Rankine cycle powered by solar energy. In addition, some research interests related to the present study will also be discussed in this paper.

  18. Kinetic energy budgets during the life cycle of intense convective activity

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Scoggins, J. R.

    1978-01-01

    Synoptic-scale data at three- and six-hour intervals are employed to study the relationship between changing kinetic energy variables and the life cycles of two severe squall lines. The kinetic energy budgets indicate a high degree of kinetic energy generation, especially pronounced near the jet-stream level. Energy losses in the storm environment are due to the transfer of kinetic energy from grid to subgrid scales of motion; large-scale upward vertical motion carries aloft the kinetic energy generated by storm activity at lower levels. In general, the time of maximum storm intensity is also the time of maximum energy conversion and transport.

  19. Primary and secondary nuclei in high-energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Ormes, J. F.

    1973-01-01

    Charge and particle trajectory measurements during a balloon-borne experiment observing the composition of cosmic rays, are interpreted by plotting differential intensities of various nuclei of both primary and secondary origin above 3 GeV/nucleon. The large spectral difference between carbon plus oxygen and iron is confirmed in the difference between their secondary products. This large difference cannot be explained as being solely due to propagation effects and it is concluded that preferential acceleration of heavy nuclei due to a source effect is present.

  20. Comparative analysis of protein primary sequences with graph energy

    NASA Astrophysics Data System (ADS)

    Wu, Haiyan; Zhang, Yusen; Chen, Wei; Mu, Zengchao

    2015-11-01

    We propose in this paper, the graph energy and Laplacian energy of 20 amino acids based on the codons coding the amino acids and apply them to put forward a novel 2-D graphical representation of proteins. The novel graphical representation has no circuit or degeneracy, uniquely represents proteins and allows one to easily and quickly visually observe and inspect similarity/dissimilarity between them. It also leads to two novel protein descriptors, the graph energy of a protein sequence, and the increment of graph energy between two protein sequences. We develop similarities/dissimilarities model and successfully analyze the similarities/dissimilarities of ND5, 36 PDs, 24 TFs and 27 AFPs with good results consistent with ClustalW even better ones.

  1. Life-cycle assessments: Linking energy, economics, and the environment. Paper No. 571

    SciTech Connect

    Shankle, S.A.

    1994-08-01

    The Pacific Northwest Laboratory has been involved in a number of life-cycle assessment (LCA) projects that assess the complete lifetime energy, economic, and environmental impacts of alternative technology options. Life-cycle assessments offer one-stop shopping answers to the total energy and environmental implications of alternative technologies, as well as providing employment and income consequences. In one recently completed study, the lifetime impacts of scenarios involving the production and use of biomass ethanol transportation fuels were assessed. In an ongoing study, the lifetime impacts of electric-powered vehicles versus conventional fuels are being assessed. In a proposed study, the impacts of recycled office paper versus office paper from virgin sources would be assessed. A LCA proceeds by developing mass and energy inventories during all phases of the life-cycle. Special attention is given to energy consumption and environmental releases. Economics are incorporated by evaluating the macroeconomic impacts of the alternative policies, such as employment, wages, and output. Economics can also be incorporated by attempting to place values on the damages imposed by the environmental releases associated with alternative scenarios. This paper discusses life-cycle assessment techniques and their application to building energy issues. Life-cycle assessments show great promise for analysis of buildings energy policy questions.

  2. 75 FR 17397 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project, Kern County, CA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... Hydrogen Energy California's Integrated Gasification Combined Cycle Project, Kern County, CA--Notice of... by Hydrogen Energy California LLC (HECA). DOE selected this project for an award of financial... produce synthesis gas (syngas), which would then be processed and purified to produce a hydrogen-rich...

  3. Energy and nutrient cycling in pig production systems

    NASA Astrophysics Data System (ADS)

    Lammers, Peter J.

    United States pig production is centered in Iowa and is a major influence on the economic and ecological condition of that community. A pig production system includes buildings, equipment, production of feed ingredients, feed processing, and nutrient management. Although feed is the largest single input into a pig production system, nearly 30% of the non-solar energy use of a conventional--mechanically ventilated buildings with liquid manure handling--pig production system is associated with constructing and operating the pig facility. Using bedded hoop barns for gestating sows and grow-finish pigs reduces construction resource use and construction costs of pig production systems. The hoop based systems also requires approximately 40% less non-solar energy to operate as the conventional system although hoop barn-based systems may require more feed. The total non-solar energy input associated with one 136 kg pig produced in a conventional farrow-to-finish system in Iowa and fed a typical corn-soybean meal diet that includes synthetic lysine and exogenous phytase is 967.9 MJ. Consuming the non-solar energy results in emissions of 79.8 kg CO2 equivalents. Alternatively producing the same pig in a system using bedded hoop barns for gestating sows and grow-finish pigs requires 939.8 MJ/pig and results in emission of 70.2 kg CO2 equivalents, a reduction of 3 and 12% respectively. Hoop barn-based swine production systems can be managed to use similar or less resources than conventional confinement systems. As we strive to optimally allocate non-solar energy reserves and limited resources, support for examining and improving alternative systems is warranted.

  4. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 1: Bottoming cycles and materials of construction

    NASA Technical Reports Server (NTRS)

    Shah, R. P.; Solomon, H. D.

    1976-01-01

    Energy conversion subsystems and components were evaluated in terms of advanced energy conversion systems. Results of the bottoming cycles and materials of construction studies are presented and discussed.

  5. Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment

    SciTech Connect

    Giugliano, Michele; Cernuschi, Stefano; Grosso, Mario; Rigamonti, Lucia

    2011-09-15

    This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the assessment of the environmental performance of any integrated waste management scheme address the importance of properly defining, beyond the design value assumed for the separate collection as a whole, also the yields of each material recovered; particular significance is finally related to the amount of residues deriving from material recovery activities, resulting on average in the order of 20% of the collected materials.

  6. Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment.

    PubMed

    Giugliano, Michele; Cernuschi, Stefano; Grosso, Mario; Rigamonti, Lucia

    2011-01-01

    This paper reports the environmental results, integrated with those arising from mass and energy balances, of a research project on the comparative analysis of strategies for material and energy recovery from waste, funded by the Italian Ministry of Education, University and Research. The project, involving the cooperation of five University research groups, was devoted to the optimisation of material and energy recovery activities within integrated municipal solid waste (MSW) management systems. Four scenarios of separate collection (overall value of 35%, 50% without the collection of food waste, 50% including the collection of food waste, 65%) were defined for the implementation of energetic, environmental and economic balances. Two sizes of integrated MSW management system (IWMS) were considered: a metropolitan area, with a gross MSW production of 750,000 t/year and an average province, with a gross MSW production of 150,000 t/year. The environmental analysis was conducted using Life Cycle Assessment methodology (LCA), for both material and energy recovery activities. In order to avoid allocation we have used the technique of the expansion of the system boundaries. This means taking into consideration the impact on the environment related to the waste management activities in comparison with the avoided impacts related to the saving of raw materials and primary energy. Under the hypotheses of the study, both for the large and for the small IWMS, the energetic and environmental benefits are higher than the energetic and environmental impacts for all the scenarios analysed in terms of all the indicators considered: the scenario with 50% separate collection in a drop-off scheme excluding food waste shows the most promising perspectives, mainly arising from the highest collection (and recycling) of all the packaging materials, which is the activity giving the biggest energetic and environmental benefits. Main conclusions of the study in the general field of the assessment of the environmental performance of any integrated waste management scheme address the importance of properly defining, beyond the design value assumed for the separate collection as a whole, also the yields of each material recovered; particular significance is finally related to the amount of residues deriving from material recovery activities, resulting on average in the order of 20% of the collected materials. PMID:21482096

  7. Electron showers of high primary energy in lead.

    NASA Technical Reports Server (NTRS)

    Mueller, D.

    1972-01-01

    The development of electron cascade showers in a lead-scintillator sandwich of 8 plastic scintillators in about 20 radiation lengths of lead has been investigated. This detector, which was used for cosmic-ray studies, has been calibrated with electrons with energies from 2 to 15 GeV at SLAC. Measured shower profiles are presented, and expressions are given which allow an extrapolation of the measured data up to energies around 1000 GeV. The results are compared with analytical shower theories and Monte Carlo calculations.

  8. Biologically enhanced energy and carbon cycling on Titan?

    PubMed

    Schulze-Makuch, Dirk; Grinspoon, David H

    2005-08-01

    With the Cassini-Huygens Mission in orbit around Saturn, the large moon Titan, with its reducing atmosphere, rich organic chemistry, and heterogeneous surface, moves into the astrobiological spotlight. Environmental conditions on Titan and Earth were similar in many respects 4 billion years ago, the approximate time when life originated on Earth. Life may have originated on Titan during its warmer early history and then developed adaptation strategies to cope with the increasingly cold conditions. If organisms originated and persisted, metabolic strategies could exist that would provide sufficient energy for life to persist, even today. Metabolic reactions might include the catalytic hydrogenation of photochemically produced acetylene, or involve the recombination of radicals created in the atmosphere by ultraviolet radiation. Metabolic activity may even contribute to the apparent youth, smoothness, and high activity of Titan's surface via biothermal energy. PMID:16078872

  9. Life cycle assessment of biofuels: energy and greenhouse gas balances.

    PubMed

    Gnansounou, E; Dauriat, A; Villegas, J; Panichelli, L

    2009-11-01

    The promotion of biofuels as energy for transportation in the industrialized countries is mainly driven by the perspective of oil depletion, the concerns about energy security and global warming. However due to sustainability constraints, biofuels will replace only 10 to 15% of fossil liquid fuels in the transport sector. Several governments have defined a minimum target of GHG emissions reduction for those biofuels that will be eligible to public incentives, for example a 35% emissions reduction in case of biofuels in Members States of the European Union. This article points out the significant biases in estimating GHG balances of biofuels stemming from modelling choices about system definition and boundaries, functional unit, reference systems and allocation methods. The extent to which these choices influence the results is investigated. After performing a comparison and constructive criticism of various modelling choices, the LCA of wheat-to-bioethanol is used as an illustrative case where bioethanol is blended with gasoline at various percentages (E5, E10 and E85). The performance of these substitution options is evaluated as well. The results show a large difference in the reduction of the GHG emissions with a high sensitivity to the following factors: the method used to allocate the impacts between the co-products, the type of reference systems, the choice of the functional unit and the type of blend. The authors come out with some recommendations for basing the estimation of energy and GHG balances of biofuels on principles such as transparency, consistency and accuracy. PMID:19553106

  10. Energy Storage: Breakthrough in Battery Technologies (Carbon Cycle 2.0)

    SciTech Connect

    Balsara, Nitash

    2010-02-04

    Nitash Balsara speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  11. Energy Storage: Breakthrough in Battery Technologies (Carbon Cycle 2.0)

    ScienceCinema

    Balsara, Nitash

    2011-06-03

    Nitash Balsara speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  12. Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic

    NASA Astrophysics Data System (ADS)

    Sebald, Gael; Pruvost, Sebastien; Guyomar, Daniel

    2008-02-01

    This work deals with energy harvesting from temperature variations. It is shown here that direct pyroelectric energy harvesting (connecting an adapted resistance, for example) is not effective, whereas Ericsson-based cycles give energy 100 times higher. The principle and experimental validation of the Ericsson cycle are shown with the example of 0.90Pb(Mg1/3Nb2/3)O3-0.10PbTiO3 ceramic. Harvested energy reached 186 mJ cm-3 for 50 C temperature variation and electric field cycle of 3.5 kV mm-1. A correlation between the electrocaloric effect and pyroelectric energy harvesting is then shown. Harvested electric energy with Ericsson cycles can be simply expressed as electrocaloric heat multiplied by Carnot efficiency. Several examples are then given from materials with the highest known electrocaloric effect. This leads to energies of hundreds of mJ cm-3 for a limited 10 C temperature variation. Compared to Carnot's efficiency, this is much higher than the best thermoelectric materials based on the Seebeck effect.

  13. 18 CFR 2.400 - Statement of interpretation of waste concerning natural gas as the primary energy source for...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... interpretation of waste concerning natural gas as the primary energy source for qualifying small power production... concerning natural gas as the primary energy source for qualifying small power production facilities. For purposes of deciding whether natural gas may be considered as waste as the primary energy source...

  14. 18 CFR 2.400 - Statement of interpretation of waste concerning natural gas as the primary energy source for...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... interpretation of waste concerning natural gas as the primary energy source for qualifying small power production... concerning natural gas as the primary energy source for qualifying small power production facilities. For purposes of deciding whether natural gas may be considered as waste as the primary energy source...

  15. 18 CFR 2.400 - Statement of interpretation of waste concerning natural gas as the primary energy source for...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... interpretation of waste concerning natural gas as the primary energy source for qualifying small power production... concerning natural gas as the primary energy source for qualifying small power production facilities. For purposes of deciding whether natural gas may be considered as waste as the primary energy source...

  16. 18 CFR 2.400 - Statement of interpretation of waste concerning natural gas as the primary energy source for...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... interpretation of waste concerning natural gas as the primary energy source for qualifying small power production... concerning natural gas as the primary energy source for qualifying small power production facilities. For purposes of deciding whether natural gas may be considered as waste as the primary energy source...

  17. 18 CFR 2.400 - Statement of interpretation of waste concerning natural gas as the primary energy source for...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... interpretation of waste concerning natural gas as the primary energy source for qualifying small power production... concerning natural gas as the primary energy source for qualifying small power production facilities. For purposes of deciding whether natural gas may be considered as waste as the primary energy source...

  18. Climate sensitivity with a seasonal cycle energy balance model

    NASA Technical Reports Server (NTRS)

    Suarez, M. J.

    1984-01-01

    The sensitivity of climate which may have a local maximum as the ice cap passes through a midlatitude region where the atmosphere's transport efficiency varies strongly with latitude is examined. This behavior, found in a two level primitive equations climate model forced with annual mean insolation, was reproduced in an energy balance model (EBM) by making the diffusion coefficient a function of latitude. The two level seasonally varying EBM was applied and the global mean surface temperature vs. solar constant for this model are shown and two regions of enhanced sensitivity appear. The snowcover distributions around the year for three cases are shown.

  19. Converting chemical energy into electricity through a functionally cooperating device with diving-surfacing cycles.

    PubMed

    Song, Mengmeng; Cheng, Mengjiao; Ju, Guannan; Zhang, Yajun; Shi, Feng

    2014-11-01

    A smart device that can dive or surface in aqueous medium has been developed by combining a pH-responsive surface with acid-responsive magnesium. The diving-surfacing cycles can be used to convert chemical energy into electricity. During the diving-surfacing motion, the smart device cuts magnetic flux lines and produces a current, demonstrating that motional energy can be realized by consuming chemical energy of magnesium, thus producing electricity. PMID:25146589

  20. Promoting Knowledge Creation Discourse in an Asian Primary Five Classroom: Results from an Inquiry into Life Cycles

    ERIC Educational Resources Information Center

    van Aalst, Jan; Truong, Mya Sioux

    2011-01-01

    The phrase "knowledge creation" refers to the practices by which a community advances its collective knowledge. Experience with a model of knowledge creation could help students to learn about the nature of science. This research examined how much progress a teacher and 16 Primary Five (Grade 4) students in the International Baccalaureate Primary

  1. Fast-cycling superconducting synchrotrons and possible path to the future of US experimental high-energy particle physics

    SciTech Connect

    Piekarz, Henryk; /Fermilab

    2008-02-01

    The authors outline primary physics motivation, present proposed new arrangement for Fermilab accelerator complex, and then discuss possible long-range application of fast-cycling superconducting synchrotrons at Fermilab.

  2. Energy dependent pitch angle distributions of auroral primary electrons

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1988-01-01

    Double-layer/parallel-electric field accelerations and the subsequent electron-beam plasma interactions involving Cerenkov and anomalous cyclotron resonances are considered. It is found that these phenomena yield pitch angle distributions as noted from rocket and satellite studies. Although the electron acceleration by weak parallel electric fields forming a runaway electron tail is limited to a critical parallel energy determined by the anomalous cyclotron resonance, such a limitation does not occur with acceleration by a localized parallel electric field such as that in a double layer.

  3. Noncatalytic dissociation of MgO by laser pulses towards sustainable energy cycle

    NASA Astrophysics Data System (ADS)

    Yabe, T.; Mohamed, M. S.; Uchida, S.; Baasandash, C.; Sato, Y.; Tsuji, M.; Mori, Y.

    2007-06-01

    We succeeded in dissociating MgO using laser pulses without a reducing agent. The energy efficiency from laser to magnesium reaction energy exceeded 42.5%. Although 1kW CO2 cw laser and Nd-YAG pulse laser are used in this experiment, the laser can be pumped by natural resources such as solar light or wind power. Thus natural resources are stored in the form of magnesium, which can be used through the reaction with water whenever we need the energy, and thus a renewable energy system will be established. This paper reports the preliminary experiments of MgO reduction toward a sustainable energy cycle.

  4. Noncatalytic dissociation of MgO by laser pulses towards sustainable energy cycle

    SciTech Connect

    Yabe, T.; Mohamed, M. S.; Uchida, S.; Baasandash, C.; Sato, Y.; Tsuji, M.; Mori, Y.

    2007-06-15

    We succeeded in dissociating MgO using laser pulses without a reducing agent. The energy efficiency from laser to magnesium reaction energy exceeded 42.5%. Although 1 kW CO{sub 2} cw laser and Nd-YAG pulse laser are used in this experiment, the laser can be pumped by natural resources such as solar light or wind power. Thus natural resources are stored in the form of magnesium, which can be used through the reaction with water whenever we need the energy, and thus a renewable energy system will be established. This paper reports the preliminary experiments of MgO reduction toward a sustainable energy cycle.

  5. Optimal cycling time trial position models: aerodynamics versus power output and metabolic energy.

    PubMed

    Fintelman, D M; Sterling, M; Hemida, H; Li, F-X

    2014-06-01

    The aerodynamic drag of a cyclist in time trial (TT) position is strongly influenced by the torso angle. While decreasing the torso angle reduces the drag, it limits the physiological functioning of the cyclist. Therefore the aims of this study were to predict the optimal TT cycling position as function of the cycling speed and to determine at which speed the aerodynamic power losses start to dominate. Two models were developed to determine the optimal torso angle: a 'Metabolic Energy Model' and a 'Power Output Model'. The Metabolic Energy Model minimised the required cycling energy expenditure, while the Power Output Model maximised the cyclists׳ power output. The input parameters were experimentally collected from 19 TT cyclists at different torso angle positions (0-24°). The results showed that for both models, the optimal torso angle depends strongly on the cycling speed, with decreasing torso angles at increasing speeds. The aerodynamic losses outweigh the power losses at cycling speeds above 46km/h. However, a fully horizontal torso is not optimal. For speeds below 30km/h, it is beneficial to ride in a more upright TT position. The two model outputs were not completely similar, due to the different model approaches. The Metabolic Energy Model could be applied for endurance events, while the Power Output Model is more suitable in sprinting or in variable conditions (wind, undulating course, etc.). It is suggested that despite some limitations, the models give valuable information about improving the cycling performance by optimising the TT cycling position. PMID:24726654

  6. Thermal energy storage for an integrated coal gasification combined-cycle power plant

    SciTech Connect

    Drost, M.K.; Antoniak, Z.I.; Brown, D.R.

    1990-03-01

    This study investigates the use of molten nitrate salt thermal energy storage in an integrated gasification combined-cycle power plant allowing the facility to economically provide peak- and intermediate-load electric power. The results of the study show that an integrated gasification combined-cycle power plant with thermal energy storage can reduce the cost of coal-fired peak- or intermediate-load electric power by between 5% and 20% depending on the plants operating schedule. The use of direct-contact salt heating can further improve the economic attractiveness of the concept. 11 refs., 1 fig., 4 tabs.

  7. Thermal energy storage for an integrated coal gasification combined-cycle power plant

    SciTech Connect

    Drost, K.; Antoniak, Z.; Brown, D.; Somasundaram, S.

    1991-10-01

    This study investigates the use of molten nitrate salt thermal energy storage in an integrated gasification combined-cycle power plant allowing the facility to economically provide peak- and intermediate-load electric power. The results of the study show that an integrated gasification combined-cycle power plant with thermal energy storage can reduce the cost of coal-fired peak- or intermediate-load electric power by between 5% and 20% depending on the plants operating schedule. The use of direct-contact salt heating can further improve the economic attractiveness of the concept. 12 refs., 1 fig., 5 tabs.

  8. Investigating the usefulness of satellite-derived fluorescence data in inferring gross primary productivity within the carbon cycle data assimilation system

    NASA Astrophysics Data System (ADS)

    Koffi, E. N.; Rayner, P. J.; Norton, A. J.; Frankenberg, C.; Scholze, M.

    2015-07-01

    Simulations of carbon fluxes with terrestrial biosphere models still exhibit significant uncertainties, in part due to the uncertainty in model parameter values. With the advent of satellite measurements of solar induced chlorophyll fluorescence (SIF), there exists a novel pathway for constraining simulated carbon fluxes and parameter values. We investigate the utility of SIF in constraining gross primary productivity (GPP). As a first test we assess whether SIF simulations are sensitive to important parameters in a biosphere model. SIF measurements at the wavelength of 755 nm are simulated by the Carbon-Cycle Data Assimilation System (CCDAS) which has been augmented by the fluorescence component of the Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE) model. Idealized sensitivity tests of the SCOPE model stand-alone indicate strong sensitivity of GPP to the carboxylation capacity (Vcmax) and of SIF to the chlorophyll AB content (Cab) and incoming short wave radiation. Low sensitivity is found for SIF to Vcmax, however the relationship is subtle, with increased sensitivity under high radiation conditions and lower Vcmax ranges. CCDAS simulates well the patterns of satellite-measured SIF suggesting the combined model is capable of ingesting the data. CCDAS supports the idealized sensitivity tests of SCOPE, with SIF exhibiting sensitivity to Cab and incoming radiation, both of which are treated as perfectly known in previous CCDAS versions. These results demonstrate the need for careful consideration of Cab and incoming radiation when interpreting SIF and the limitations of utilizing SIF to constrain Vcmax in the present set-up in the CCDAS system.

  9. Life-cycle energy efficiency and environmental impacts of bioethanol production from sweet potato.

    PubMed

    Wang, Mingxin; Shi, Yu; Xia, Xunfeng; Li, Dinglong; Chen, Qun

    2013-04-01

    Life-cycle assessment (LCA) was used to evaluate the energy efficiency and environmental impacts of sweet potato-based bioethanol production. The scope covered all stages in the life cycle of bioethanol production, including the cultivation and treatment, transport, as well as bioethanol conversion of sweet potato. Results show that the net energy ratio of sweet potato-based bioethanol is 1.48 and the net energy gain is 6.55 MJ/L. Eutrophication is identified as the most significant environmental impact category, followed by acidification, global warming, human toxicity, and photochemical oxidation. Sensitivity analysis reveals that steam consumption during bioethanol conversion exerts the most effect on the results, followed by sweet potato yields and fertilizers input. It is suggested that substituting coal with cleaner energy for steam generation in bioethanol conversion stage and promotion of better management practices in sweet potato cultivation stage could lead to a significant improvement of energy and environmental performance. PMID:23434804

  10. From Cycling Between Coupled Reactions to the Cross-Bridge Cycle: Mechanical Power Output as an Integral Part of Energy Metabolism

    PubMed Central

    Diederichs, Frank

    2012-01-01

    ATP delivery and its usage are achieved by cycling of respective intermediates through interconnected coupled reactions. At steady state, cycling between coupled reactions always occurs at zero resistance of the whole cycle without dissipation of free energy. The cross-bridge cycle can also be described by a system of coupled reactions: one energising reaction, which energises myosin heads by coupled ATP splitting, and one de-energising reaction, which transduces free energy from myosin heads to coupled actin movement. The whole cycle of myosin heads via cross-bridge formation and dissociation proceeds at zero resistance. Dissipation of free energy from coupled reactions occurs whenever the input potential overcomes the counteracting output potential. In addition, dissipation is produced by uncoupling. This is brought about by a load dependent shortening of the cross-bridge stroke to zero, which allows isometric force generation without mechanical power output. The occurrence of maximal efficiency is caused by uncoupling. Under coupled conditions, Hills equation (velocity as a function of load) is fulfilled. In addition, force and shortening velocity both depend on [Ca2+]. Muscular fatigue is triggered when ATP consumption overcomes ATP delivery. As a result, the substrate of the cycle, [MgATP2?], is reduced. This leads to a switch off of cycling and ATP consumption, so that a recovery of [ATP] is possible. In this way a potentially harmful, persistent low energy state of the cell can be avoided. PMID:24957757

  11. Cycle Evaluations of Reversible Chemical Reactions for Solar Thermochemical Energy Storage in Support of Concentrating Solar Power Generation Systems

    SciTech Connect

    Krishnan, Shankar; Palo, Daniel R.; Wegeng, Robert S.

    2010-07-25

    The production and storage of thermochemical energy is a possible route to increase capacity factors and reduce the Levelized Cost of Electricity from concentrated solar power generation systems. In this paper, we present the results of cycle evaluations for various thermochemical cycles, including a well-documented ammonia closed-cycle along with open- and closed-cycle versions of hydrocarbon chemical reactions. Among the available reversible hydrocarbon chemical reactions, catalytic reforming-methanation cycles are considered; specifically, various methane-steam reforming cycles are compared to the ammonia cycle. In some cases, the production of an intermediate chemical, methanol, is also included with some benefit being realized. The best case, based on overall power generation efficiency and overall plant capacity factor, was found to be an open cycle including methane-steam reforming, using concentrated solar energy to increase the chemical energy content of the reacting stream, followed by combustion to generate heat for the heat engine.

  12. An Experimental Project on Energy Education for Rural Women, Primary School Children and Teachers Report.

    ERIC Educational Resources Information Center

    Pathak, Yogini; Mankodi, Hina

    One of the University of Baroda's (India) Rural/Tribal Block Placement Program's major aims during the year 1988-89 was to develop energy consciousness in women, primary school children and teachers. An experimental project was designed for a rural Indian village. The objectives were to obtain information on rural energy resources; assess the role…

  13. An Experimental Project on Energy Education for Rural Women, Primary School Children and Teachers Report.

    ERIC Educational Resources Information Center

    Pathak, Yogini; Mankodi, Hina

    One of the University of Baroda's (India) Rural/Tribal Block Placement Program's major aims during the year 1988-89 was to develop energy consciousness in women, primary school children and teachers. An experimental project was designed for a rural Indian village. The objectives were to obtain information on rural energy resources; assess the role

  14. Energy evaluation of steam-water cycle operation with mathematical modelling application

    NASA Astrophysics Data System (ADS)

    Rusinowski, Henryk; Szapajko, Grzegorz

    2011-12-01

    In recent years, we can observe the development of the thermal diagnosis and operating control systems based on measuring techniques and mathematical modelling of processes improvement. Evaluation of the actual operating state is insufficient to make an optimal operating decisions. Thus, information about the influence of the operating parameters' deviations from the reference state on indicators describing energy consumption of the process (for example specific heat consumption or specific energy consumption) is also necessary. The paper presents methods for generation the information about the influence of the steam-water cycle operating parameters on specific heat consumption in a turbine's cycle. A mathematical model of steam-water cycle for a CHP (Cogeneration - also Combined Heat and Power) unit is being worked out. Methods for calculation of operating deviations with the application of correction curves and a mathematical model are described. Exemplary calculation results are presented.

  15. Effects of 13 T Static Magnetic Fields (SMF) in the Cell Cycle Distribution and Cell Viability in Immortalized Hamster Cells and Human Primary Fibroblasts Cells

    NASA Astrophysics Data System (ADS)

    Zhao, Guoping; Chen, Shaopeng; Zhao, Ye; Zhu, Lingyan; Huang, Pei; Bao, Lingzhi; Wang, Jun; Wang, Lei; Wu, Lijun; Wu, Yuejin; Xu, An

    2010-02-01

    Magnetic resonance image (MRI) systems with a much higher magnetic flux density were developed and applied for potential use in medical diagnostic. Recently, much attention has been paid to the biological effects of static, strong magnetic fields (SMF). With the 13 T SMF facility in the Institute of Plasma Physics, Chinese Academy of Sciences, the present study focused on the cellular effects of the SMF with 13 T on the cell viability and the cell cycle distribution in immortalized hamster cells, such as human-hamster hybrid (AL) cells, Chinese hamster ovary (CHO) cells, DNA double-strand break repair deficient mutant (XRS-5) cells, and human primary skin fibroblasts (AG1522) cells. It was found that the exposure of 13 T SMF had less effect on the colony formation in either nonsynchronized or synchronized AL cells. Moreover, as compared to non-exposed groups, there were slight differences in the cell cycle distribution no matter in either synchronized or nonsynchronized immortalized hamster cells after exposure to 13 T SMF. However, it should be noted that the percentage of exposed AG1522 cells at G0/G1 phase was decreased by 10% as compared to the controls. Our data indicated that although 13 T SMF had minimal effects in immortalized hamster cells, the cell cycle distribution was slightly modified by SMF in human primary fibroblasts.

  16. Life cycle assessment of an intensive sewage treatment plant in Barcelona (Spain) with focus on energy aspects.

    PubMed

    Bravo, L; Ferrer, I

    2011-01-01

    Life Cycle Assessment was used to evaluate environmental impacts associated to a full-scale wastewater treatment plant (WWTP) in Barcelona Metropolitan Area, with a treatment capacity of 2 million population equivalent, focussing on energy aspects and resources consumption. The wastewater line includes conventional pre-treatment, primary settler, activated sludge with nitrogen removal, and tertiary treatment; and the sludge line consists of thickening, anaerobic digestion, cogeneration, dewatering and thermal drying. Real site data were preferably included in the inventory. Environmental impacts of the resulting impact categories were determined by the CLM 2 baseline method. According to the results, the combustion of natural gas in the cogeneration engine is responsible for the main impact on Climate Change and Depletion of Abiotic Resources, while the combustion of biogas in the cogeneration unit accounts for a minor part. The results suggest that the environmental performance of the WWTP would be enhanced by increasing biogas production through improved anaerobic digestion of sewage sludge. PMID:22097019

  17. Performance of primary repair on colon injuries sustained from low-versus high-energy projectiles.

    PubMed

    Lazovic, Ranko; Radojevic, Nemanja; Curovic, Ivana

    2016-04-01

    Among various reasons, colon injuries may be caused by low- or high-energy firearm bullets, with the latter producing a temporary cavitation phenomenon. The available treatment options include primary repair and two-stage management, but recent studies have shown that primary repair can be widely used with a high success rate. This paper investigates the differences in performance of primary repair on these two types of colon injuries. Two groups of patients who sustained colon injuries due to single gunshot wounds, were retrospectively categorized based on the type of bullet. Primary colon repair was performed in all patients selected based on the inclusion and exclusion criteria (Stone and Fabian's criteria). An almost absolute homogeneity was attained among the groups in terms of age, latent time before surgery, and four trauma indexes. Only one patient from the low-energy firearm projectile group (4%) developed a postsurgical complication versus nine patients (25.8%) from the high-energy group, showing statistically significant difference (p = 0.03). These nine patients experienced the following postsurgical complications: pneumonia, abscess, fistula, suture leakage, and one multiorgan failure with sepsis. Previous studies concluded that one-stage primary repair is the best treatment option for colon injuries. However, terminal ballistics testing determined the projectile's path through the body and revealed that low-energy projectiles caused considerably lesser damage than their high-energy counterparts. Primary colon repair must be performed definitely for low-energy short firearm injuries but very carefully for high-energy injuries. Given these findings, we suggest that the treatment option should be determined based not only on the bullet type alone but also on other clinical findings. PMID:26874437

  18. The energy cycle and structural evolution of cyclones over southeastern South America in three case studies

    NASA Astrophysics Data System (ADS)

    Dias Pinto, JoO. Rafael; Da Rocha, Rosmeri PorfRio

    2011-07-01

    In this paper, the Lorenz energy cycle over a limited area was applied for three cyclones with different origins and evolutions, where each of them was formed in an important cyclogenetic region near southeastern South America. The synoptic conditions and energetics were analyzed during each system's life cycle and showed important relationships between their energy cycle and the evolution of their vertical structure. In the case of the weak baroclinic cyclone which formed on Brazil's south-southeastern coast, the analysis showed that it originated through a midlevel cutoff low with contribution from barotropic instability. Its evolution would indicate potential transition to a hybrid system if the convective activity were stronger. The system that occurred in the La Plata River mouth had features of an oceanic bomb-type cyclogenesis and showed an important contribution from the available potential energy generation term through the latent heat release by the convection. Meanwhile, the system of the southern Argentina coast presented a classical baroclinic development of extratropical cyclogenesis in the energy cycle, from the wave amplification up to the final occlusion of the associated frontal system. These analyses revealed that the development of some cyclones that occur in eastern South America can present different mechanisms that are not related to the classical extratropical cyclogenesis.

  19. Life cycle greenhouse gas and energy assessment of winegrape production in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: This study applies life cycle assessment (LCA) to assess greenhouse gas (GHG) emissions, energy use, and direct water use in winegrape production across common vineyard management scenarios in two representative growing regions of California, USA (Napa and Lodi). California hosts 90 percent...

  20. Body Parts, the Water Cycle, Plants, and Dolphins: Adventures in Primary-Grade Whole-Class Composing

    ERIC Educational Resources Information Center

    Bolden, Benjamin

    2009-01-01

    This article describes the author's personal experiences leading primary grades in whole-class composing. Together they created songs inspired by topics the students were exploring in their homeroom classes. The author systematically describes the songwriting process they employed, identifying specific challenges encountered along the way. The…

  1. Body Parts, the Water Cycle, Plants, and Dolphins: Adventures in Primary-Grade Whole-Class Composing

    ERIC Educational Resources Information Center

    Bolden, Benjamin

    2009-01-01

    This article describes the author's personal experiences leading primary grades in whole-class composing. Together they created songs inspired by topics the students were exploring in their homeroom classes. The author systematically describes the songwriting process they employed, identifying specific challenges encountered along the way. The

  2. Energy release properties of amorphous boron and boron-based propellant primary combustion products

    NASA Astrophysics Data System (ADS)

    Liang, Daolun; Liu, Jianzhong; Xiao, Jinwu; Xi, Jianfei; Wang, Yang; Zhang, Yanwei; Zhou, Junhu

    2015-07-01

    The microstructure of amorphous boron and the primary combustion products of boron-based fuel-rich propellant (hereafter referred to as primary combustion products) was analyzed by scanning electron microscope. Composition analysis of the primary combustion products was carried out by X-ray diffraction and X-ray photoelectron spectroscopy. The energy release properties of amorphous boron and the primary combustion products were comparatively studied by laser ignition experimental system and thermogravimetry-differential scanning calorimetry. The primary combustion products contain B, C, Mg, Al, B4C, B13C2, BN, B2O3, NH4Cl, H2O, and so on. The energy release properties of primary combustion products are different from amorphous boron, significantly. The full-time spectral intensity of primary combustion products at a wavelength of 580 nm is ~2% lower than that of amorphous boron. The maximum spectral intensity of the former at full wave is ~5% higher than that of the latter. The ignition delay time of primary combustion products is ~150 ms shorter than that of amorphous boron, and the self-sustaining combustion time of the former is ~200 ms longer than that of the latter. The thermal oxidation process of amorphous boron involves water evaporation (weight loss) and boron oxidation (weight gain). The thermal oxidation process of primary combustion products involves two additional steps: NH4Cl decomposition (weight loss) and carbon oxidation (weight loss). CL-20 shows better combustion-supporting effect than KClO4 in both the laser ignition experiments and the thermal oxidation experiments.

  3. Life-cycle energy and CO2 analysis of stormwater treatment devices.

    PubMed

    Andrew, R M; Vesely, E-T

    2008-01-01

    Environmental impacts associated with the construction, maintenance, and disposal of low-impact stormwater management devices are one aspect that should be considered during decision-making and life-cycle assessment (LCA) is a suitable method for quantifying such impacts. This paper reports a pilot study that employs LCA to compare life-cycle energy requirements and CO2 emissions of two stormwater devices in New Zealand. The two devices are a raingarden servicing an urban feeder road, and a sand filter that could have been installed in its stead. With an assumed life-time of 50 years, the life-cycle energy requirements of the built raingarden were almost 20% less than for the sand filter, while the CO2 emissions were 30% less. Our analysis shows that given the difference between the infiltration rates used in the raingarden design (0.3 m/day) and measured during monitoring (3 m/day) there was potential to make significantly greater life-time savings using a smaller design for the raingarden that would have also met the treatment efficiency expectations. The analysis highlights the significant contribution of transportation-of both materials and staff-and ongoing maintenance to a treatment device's life-cycle energy and CO2 profiles. PMID:18824795

  4. Life-cycle energy demand and global warming potential of computational logic.

    PubMed

    Boyd, Sarah B; Horvath, Arpad; Dornfeld, David

    2009-10-01

    Computational logic, in the form of semiconductor chips of the complementary metal oxide semiconductor (CMOS) transistor structure, is used in personal computers, wireless devices, IT network infrastructure, and nearly all modem electronics. This study provides a life-cycle energy analysis for CMOS chips over 7 technology generations with the purpose of comparing energy demand and global warming potential (GWP) impacts of the life-cycle stages, examining trends in these impacts over time and evaluating their sensitivity to data uncertainty and changes in production metrics such as yield. A hybrid life-cycle assessment (LCA) model is used. While life-cycle energy and GWP of emissions have increased on the basis of a wafer or die, these impacts have been reducing per unit of computational power. Sensitivity analysis of the model shows that impacts have the highest relative sensitivity to wafer yield, line yield, and die size and largest absolute sensitivity to the use-phase power demand of the chip. PMID:19848138

  5. Functional unit, technological dynamics, and scaling properties for the life cycle energy of residences.

    PubMed

    Frijia, Stephane; Guhathakurta, Subhrajit; Williams, Eric

    2012-02-01

    Prior LCA studies take the operational phase to include all energy use within a residence, implying a functional unit of all household activities, but then exclude related supply chains such as production of food, appliances, and household chemicals. We argue that bounding the functional unit to provision of a climate controlled space better focuses the LCA on the building, rather than activities that occur within a building. The second issue explored in this article is how technological change in the operational phase affects life cycle energy. Heating and cooling equipment is replaced at least several times over the lifetime of a residence; improved efficiency of newer equipment affects life cycle energy use. The third objective is to construct parametric models to describe LCA results for a family of related products. We explore these three issues through a case study of energy use of residences: one-story and two-story detached homes, 1,500-3,500 square feet in area, located in Phoenix, Arizona, built in 2002 and retired in 2051. With a restricted functional unit and accounting for technological progress, approximately 30% of a building's life cycle energy can be attributed to materials and construction, compared to 0.4-11% in previous studies. PMID:22192002

  6. New fire diurnal cycle characterizations to improve fire radiative energy assessments made from MODIS observations

    NASA Astrophysics Data System (ADS)

    Andela, N.; Kaiser, J. W.; van der Werf, G. R.; Wooster, M. J.

    2015-08-01

    Accurate near real time fire emissions estimates are required for air quality forecasts. To date, most approaches are based on satellite-derived estimates of fire radiative power (FRP), which can be converted to fire radiative energy (FRE) which is directly related to fire emissions. Uncertainties in these FRE estimates are often substantial. This is for a large part because the most often used low-Earth orbit satellite-based instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) have a relatively poor sampling of the usually pronounced fire diurnal cycle. In this paper we explore the spatial variation of this fire diurnal cycle and its drivers using data from the geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI). In addition, we sampled data from the SEVIRI instrument at MODIS detection opportunities to develop two approaches to estimate hourly FRE based on MODIS active fire detections. The first approach ignored the fire diurnal cycle, assuming persistent fire activity between two MODIS observations, while the second approach combined knowledge on the climatology of the fire diurnal cycle with active fire detections to estimate hourly FRE. The full SEVIRI time series, providing full coverage of the fire diurnal cycle, were used to evaluate the results. Our study period comprised of 3 years (2010-2012), and we focused on Africa and the Mediterranean basin to avoid the use of potentially lower quality SEVIRI data obtained at very far off-nadir view angles. We found that the fire diurnal cycle varies substantially over the study region, and depends on both fuel and weather conditions. For example, more "intense" fires characterized by a fire diurnal cycle with high peak fire activity, long duration over the day, and with nighttime fire activity are most common in areas of large fire size (i.e., large burned area per fire event). These areas are most prevalent in relatively arid regions. Ignoring the fire diurnal cycle generally resulted in an overestimation of FRE, while including information on the climatology of the fire diurnal cycle improved FRE estimates. The approach based on knowledge of the climatology of the fire diurnal cycle also improved distribution of FRE over the day, although only when aggregating model results to coarser spatial and/or temporal scale good correlation was found with the full SEVIRI hourly reference data set. We recommend the use of regionally varying fire diurnal cycle information within the Global Fire Assimilation System (GFAS) used in the Copernicus Atmosphere Monitoring Services, which will improve FRE estimates and may allow for further reconciliation of biomass burning emission estimates from different inventories.

  7. Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions

    SciTech Connect

    C. Saricks; D. Santini; M. Wang

    1999-02-08

    We estimated the effects on per-vehicle-mile fuel-cycle petroleum use, greenhouse gas (GHG) emissions, and energy use of using ethanol blended with gasoline in a mid-size passenger car, compared with the effects of using gasoline in the same car. Our analysis includes petroleum use, energy use, and emissions associated with chemicals manufacturing, farming of corn and biomass, ethanol production, and ethanol combustion for ethanol; and petroleum use, energy use, and emissions associated with petroleum recovery, petroleum refining, and gasoline combustion for gasoline. For corn-based ethanol, the key factors in determining energy and emissions impacts include energy and chemical usage intensity of corn farming, energy intensity of the ethanol plant, and the method used to estimate energy and emissions credits for co-products of corn ethanol. The key factors in determining the impacts of cellulosic ethanol are energy and chemical usage intensity of biomass farming, ethanol yield per dry ton of biomass, and electricity credits in cellulosic ethanol plants. The results of our fuel-cycle analysis for fuel ethanol are listed below. Note that, in the first half of this summary, the reductions cited are per-vehicle-mile traveled using the specified ethanol/gasoline blend instead of conventional (not reformulated) gasoline. The second half of the summary presents estimated changes per gallon of ethanol used in ethanol blends. GHG emissions are global warming potential (GWP)-weighted, carbon dioxide (CO2)-equivalent emissions of CO2, methane (CH4), and nitrous oxide (N2O).

  8. Chlorine as a primary radical: evaluation of methods to understand its role in initiation of oxidative cycles

    NASA Astrophysics Data System (ADS)

    Young, C. J.; Washenfelder, R. A.; Edwards, P. M.; Parrish, D. D.; Gilman, J. B.; Kuster, W. C.; Mielke, L. H.; Osthoff, H. D.; Tsai, C.; Pikelnaya, O.; Stutz, J.; Veres, P. R.; Roberts, J. M.; Griffith, S.; Dusanter, S.; Stevens, P. S.; Flynn, J.; Grossberg, N.; Lefer, B.; Holloway, J. S.; Peischl, J.; Ryerson, T. B.; Atlas, E. L.; Blake, D. R.; Brown, S. S.

    2014-04-01

    The role of chlorine atoms (Cl) in atmospheric oxidation has been traditionally thought to be limited to the marine boundary layer, where they are produced through heterogeneous reactions involving sea salt. However, recent observation of photolytic Cl precursors (ClNO2 and Cl2) formed from anthropogenic pollution has expanded the potential importance of Cl to include coastal and continental urban areas. Measurements of ClNO2 in Los Angeles during CalNex (California Nexus - Research at the Nexus of Air Quality and Climate Change) showed it to be an important primary (first generation) radical source. Evolution of ratios of volatile organic compounds (VOCs) has been proposed as a method to quantify Cl oxidation, but we find no evidence from this approach for a significant role of Cl oxidation in Los Angeles. We use a box model with the Master Chemical Mechanism (MCM v3.2) chemistry scheme, constrained by observations in Los Angeles, to examine the Cl sensitivity of commonly used VOC ratios as a function of NOx and secondary radical production. Model results indicate VOC tracer ratios could not detect the influence of Cl unless the ratio of [OH] to [Cl] was less than 200 for at least a day. However, the model results also show that secondary (second generation) OH production resulting from Cl oxidation of VOCs is strongly influenced by NOx, and that this effect obscures the importance of Cl as a primary oxidant. Calculated concentrations of Cl showed a maximum in mid-morning due to a photolytic source from ClNO2 and loss primarily to reactions with VOCs. The [OH] to [Cl] ratio was below 200 for approximately 3 h in the morning, but Cl oxidation was not evident from the measured ratios of VOCs. Instead, model simulations show that secondary OH production causes VOC ratio evolution to follow that expected for OH oxidation, despite the significant input of primary Cl from ClNO2 photolysis in the morning. Even though OH is by far the dominant oxidant in Los Angeles, Cl atoms do play an important role in photochemistry there, constituting 9% of the primary radical source. Furthermore, Cl-VOC reactivity differs from that of OH, being more than an order of magnitude larger and dominated by VOCs, such as alkanes, that are less reactive toward OH. Primary Cl is also slightly more effective as a radical source than primary OH due to its greater propensity to initiate radical propagation chains via VOC reactions relative to chain termination via reaction with nitrogen oxides.

  9. Energy analysis of the coal fuel cycle in an Appalachian coal county

    SciTech Connect

    Watson, A.P.

    1984-03-01

    Preliminary results from an energy analysis of the coal fuel cycle in an Appalachian coal county have provided a systematic assessment of hidden energy subsidies in extraction, transport, processing, and combustion. Current results indicate that the system operates at an annual energy deficit of approximately 350 x 10/sup 10/ kcal. A major loss is depletion of the coal resource base by use of inefficient mining techniques. Although of smaller magnitude, reductions in work force and community productivity from occupational accidents, disease, and road maintenance requirements for transport also appear to be significant. Further assessment is needed to verify assumptions and characterize additional data bases. 39 references.

  10. Evaluation of the effective energy of primary and transmmitted workload weighted X-ray spectra

    NASA Astrophysics Data System (ADS)

    Santos, J. C.; Costa, P. R.

    2014-02-01

    Current methods for X-ray shielding evaluation for imaging facilities do not take into account the effective energy of the radiation impinging on primary barrier. In addition, the X-ray beam attenuation through the patient is not considered in radiation shielding. The proposed models do not deal with the hardening of the spectra between the primary and transmitted beams. Therefore, the present work proposes the evaluation of X-ray spectra transmitted by an adult patient (anthropomorphic phantom) and a shielding barrier weighted by typical workload distributions. A set of primary spectra produced by a voltage range from 60 to 140 kV was measured with a CdTe spectrometer system. A second set of X-ray spectra transmitted through a 15 mm thickness barite mortar plate was also measured employing the same beam quality and voltage range. The air-kerma was simultaneously measured using an ionization chamber. The primary and transmitted experimental X-ray spectra were weighted by a typical chest examination workload distribution. The resulting weighted spectra represent the superposition of the radiation beams typically used in chest examinations. The effective energy of primary weighted spectra was estimated in 42.4 keV and the effective energy of the corresponding transmitted spectra was estimated in 64.7 keV.

  11. Computation techniques and computer programs to analyze Stirling cycle engines using characteristic dynamic energy equations

    NASA Technical Reports Server (NTRS)

    Larson, V. H.

    1982-01-01

    The basic equations that are used to describe the physical phenomena in a Stirling cycle engine are the general energy equations and equations for the conservation of mass and conversion of momentum. These equations, together with the equation of state, an analytical expression for the gas velocity, and an equation for mesh temperature are used in this computer study of Stirling cycle characteristics. The partial differential equations describing the physical phenomena that occurs in a Stirling cycle engine are of the hyperbolic type. The hyperbolic equations have real characteristic lines. By utilizing appropriate points along these curved lines the partial differential equations can be reduced to ordinary differential equations. These equations are solved numerically using a fourth-fifth order Runge-Kutta integration technique.

  12. Correlation of high energy muons with primary composition in extensive air shower

    NASA Technical Reports Server (NTRS)

    Chou, C.; Higashi, S.; Hiraoka, N.; Ozaki, S.; Sato, T.; Suwada, T.; Takahasi, T.; Umeda, H.

    1985-01-01

    An experimental investigation of high energy muons above 200 GeV in extensive air showers has been made for studying high energy interaction and primary composition of cosmic rays of energies in the range 10 to the 14th power approx. 10 to the 15th power eV. The muon energies are estimated from the burst sizes initiated by the muons in the rock, which are measured by four layers of proportional counters, each of area 5 x 2.6 sq m, placed at 30 m.w.e. deep, Funasaka tunnel vertically below the air shower array. These results are compared with Monte Carlo simulations based on the scaling model and the fireball model for two primary compositions, all proton and mixed.

  13. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Smith, B.; Wrlind, D.; Arneth, A.; Hickler, T.; Leadley, P.; Siltberg, J.; Zaehle, S.

    2013-11-01

    The LPJ-GUESS dynamic vegetation model uniquely combines an individual- and patch-based representation of vegetation dynamics with ecosystem biogeochemical cycling from regional to global scales. We present an updated version that includes plant and soil N dynamics, analysing the implications of accounting for C-N interactions on predictions and performance of the model. Stand structural dynamics and allometric scaling of tree growth suggested by global databases of forest stand structure and development were well-reproduced by the model in comparison to an earlier multi-model study. Accounting for N cycle dynamics improved the goodness-of-fit for broadleaved forests. N limitation associated with low N mineralisation rates reduces productivity of cold-climate and dry-climate ecosystems relative to mesic temperate and tropical ecosystems. In a model experiment emulating free-air CO2 enrichment (FACE) treatment for forests globally, N-limitation associated with low N mineralisation rates of colder soils reduces CO2-enhancement of NPP for boreal forests, while some temperate and tropical forests exhibit increased NPP enhancement. Under a business-as-usual future climate and emissions scenario, ecosystem C storage globally was projected to increase by c. 10%; additional N requirements to match this increasing ecosystem C were within the high N supply limit estimated on stoichiometric grounds in an earlier study. Our results highlight the importance of accounting for C-N interactions not only in studies of global terrestrial C cycling, but to understand underlying mechanisms on local scales and in different regional contexts.

  14. A retrospective on early cryogenic primary rocket subsystem designs as integrated into rocket-based combined-cycle (RBCC) engines

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.; Schnurstein, Robert E.

    1993-01-01

    A study (Escher and Flornes, 1966) of aerospace propulsion systems for a fully reusable earth-to-orbit space transport application that was performed in 1965-67 is reviewed. The present review provides a detailed, subject-focused technical retrospective on a key subsystem element of the rocket-based combined-cycle (RBCC) class of aerospace propulsion systems. The RBCC concept is considered to be a leading candidate propulsion approach for either SSTO or two-stage-to-orbit space transportaion applications.

  15. A retrospective on early cryogenic primary rocket subsystem designs as integrated into rocket-based combined-cycle (RBCC) engines

    NASA Astrophysics Data System (ADS)

    Escher, William J. D.; Schnurstein, Robert E.

    1993-06-01

    A study (Escher and Flornes, 1966) of aerospace propulsion systems for a fully reusable earth-to-orbit space transport application that was performed in 1965-67 is reviewed. The present review provides a detailed, subject-focused technical retrospective on a key subsystem element of the rocket-based combined-cycle (RBCC) class of aerospace propulsion systems. The RBCC concept is considered to be a leading candidate propulsion approach for either SSTO or two-stage-to-orbit space transportaion applications.

  16. Note on the detection of high energy primary cosmic gamma rays by air shower observation

    NASA Technical Reports Server (NTRS)

    Kasahara, K.; Torii, S.; Yuda, T.

    1985-01-01

    A mountain altitude experiment is planned at Mt. Norikura in Japan to search for point sources of astrophysical high-energy gamma rays in the 10 to the 15th power eV range. The advantages of mountain level observation of IR showers is stressed, especially in the case of high-energy gamma primaries from Cygnus X3 and other similar point sources.

  17. ENVIRONMENTAL CONSIDERATIONS OF SELECTED ENERGY CONSERVING MANUFACTURING PROCESS OPTIONS: VOLUME XIV. PRIMARY COPPER INDUSTRY REPORT

    EPA Science Inventory

    This study assesses the likelihood of new process technology and new practices being introduced by energy intensive industries and explores the environmental impacts of such changes. Volume 14 deals with the primary copper industry and examines six alternatives: (1) Outokumpu fla...

  18. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 1: technical report

    SciTech Connect

    Cuenca, R.; Formento, J.; Gaines, L.; Marr, B.; Santini, D.; Wang, M.; Adelman, S.; Kline, D.; Mark, J.; Ohi, J.; Rau, N.; Freeman, S.; Humphreys, K.; Placet, M.

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume I contains the major results, a discussion of the conceptual framework of the study, and summaries of the vehicle, utility, fuel production, and manufacturing analyses. It also contains summaries of comments provided by external peer reviewers and brief responses to these comments.

  19. ENERGY SPECTRA OF PRIMARY AND SECONDARY COSMIC-RAY NUCLEI MEASURED WITH TRACER

    SciTech Connect

    Obermeier, A.; Ave, M.; Boyle, P.; Hoeppner, Ch.; Mueller, D.; Hoerandel, J.

    2011-11-20

    The Transition Radiation Array for Cosmic Energetic Radiation (TRACER) cosmic-ray detector, first flown on long-duration balloon (LDB) in 2003 for observations of the major primary cosmic-ray nuclei from oxygen (Z = 8) to iron (Z = 26), has been upgraded to also measure the energies of the lighter nuclei, including the secondary species boron (Z = 5). The instrument was used in another LDB flight in 2006. The properties and performance of the modified detector system are described, and the analysis of the data from the 2006 flight is discussed. The energy spectra of the primary nuclei carbon (Z = 6), oxygen, and iron over the range from 1 GeV amu{sup -1} to 2 TeV amu{sup -1} are reported. The data for oxygen and iron are found to be in good agreement with the results of the previous TRACER flight. The measurement of the energy spectrum of boron also extends into the TeV amu{sup -1} region. The relative abundances of the primary nuclei, such as carbon, oxygen, and iron, above {approx}10 GeV amu{sup -1} are independent of energy, while the boron abundance, i.e., the B/C abundance ratio, decreases with energy as expected. However, there is an indication that the previously reported E {sup -0.6} dependence of the B/C ratio does not continue to the highest energies.

  20. Thermochemical cycles for energy storage: Thermal decomposition of ZnCO sub 4 systems

    SciTech Connect

    Wentworth, W.E. )

    1992-04-01

    The overall objective of our research has been to develop thermochemical cycles that can be used for energy storage. A specific cycle involving ammonium hydrogen sulfate (NH{sub 4}HSO{sub 4}) has been proposed. Each reaction in the proposed cycle has been examined experimentally. Emphasis has been placed on the basic chemistry of these reactions. In the concluding phase of this research, reported herein, we have shown that when NH{sub 4}HSO{sub 4} is mixed with ZnO and decomposed, the resulting products can be released stepwise (H{sub 2}A{sub (g)} at {approximately}163{degrees}C, NH{sub 3(g)} at 365--418{degrees}C, and a mixture of SO{sub 2(g)} and SO{sub 3(g)} at {approximately}900{degrees}C) and separated by controlling the reaction temperature. Side reactions do not appear to be significant and the respective yields are high as would be required for the successful use of this energy storage reaction in the proposed cycle. Thermodynamic, kinetic, and other reaction parameters have been measured for the various steps of the reaction. Finally we have completed a detailed investigation of one particular reaction: the thermal decomposition of zinc sulfate (ZnSO{sub 4}). We have demonstrated that this reaction can be accelerated and the temperature required reduced by the addition of excess ZnO, V{sub 2}A{sub 5} and possibly other metal oxides.

  1. Life cycle comparison of waste-to-energy alternatives for municipal waste treatment in Chilean Patagonia.

    PubMed

    Bezama, Alberto; Douglas, Carla; Mndez, Jacqueline; Szarka, Nra; Muoz, Edmundo; Navia, Rodrigo; Schock, Steffen; Konrad, Odorico; Ulloa, Claudia

    2013-10-01

    The energy system in the Region of Aysn, Chile, is characterized by a strong dependence on fossil fuels, which account for up to 51% of the installed capacity. Although the implementation of waste-to-energy concepts in municipal waste management systems could support the establishment of a more fossil-independent energy system for the region, previous studies have concluded that energy recovery systems are not suitable from an economic perspective in Chile. Therefore, this work intends to evaluate these technical options from an environmental perspective, using life cycle assessment as a tool for a comparative analysis, considering Coyhaique city as a case study. Three technical alternatives were evaluated: (i) landfill gas recovery and flaring without energy recovery; (ii) landfill gas recovery and energy use; and (iii) the implementation of an anaerobic digestion system for the organic waste fraction coupled with energy recovery from the biogas produced. Mass and energy balances of the three analyzed alternatives have been modeled. The comparative LCA considered global warming potential, abiotic depletion and ozone layer depletion as impact categories, as well as required raw energy and produced energy as comparative regional-specific indicators. According to the results, the use of the recovered landfill gas as an energy source can be identified as the most environmentally appropriate solution for Coyhaique, especially when taking into consideration the global impact categories. PMID:23988463

  2. Life cycle assessment of two emerging sewage sludge-to-energy systems: evaluating energy and greenhouse gas emissions implications.

    PubMed

    Cao, Yucheng; Pawłowski, Artur

    2013-01-01

    A "cradle-to-grave" life cycle assessment was conducted to examine the energy and greenhouse gas (GHG) emission footprints of two emerging sludge-to-energy systems. One system employs a combination of anaerobic digestion (AD) and fast pyrolysis for bioenergy conversion, while the other excludes AD. Each system was divided into five process phases: plant construction, sludge pretreatment, sludge-to-bioenergy conversion, bioenergy utilizations and biochar management. Both systems achieved energy and GHG emission benefits, and the AD-involving system performed better than the AD-excluding system (5.30 vs. 0.63 GJ/t sludge in net energy gain and 0.63 vs. 0.47 t CO(2)eq/t sludge in emission credit for base case). Detailed contribution and sensitivity analyses were conducted to identify how and to what degree the different life-cycle phases are responsible for the energy and emission impacts. The energy and emission performances were significantly affected by variations in bioenergy production, energy requirement for sludge drying and end use of bioenergy. PMID:23131626

  3. Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids.

    SciTech Connect

    Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.; Energy Systems

    2008-01-01

    Using the 'total energy cycle' methodology, we compare U.S. near term (to {approx}2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO{sub x}), fine particulate (PM2.5) and sulfur oxides (SO{sub x}) values are presented. We also isolate the PHEV emissions contribution from varying kWh storage capability of battery packs in HEVs and PHEVs from {approx}16 to 64 km of charge depleting distance. Sensitivity analysis is conducted with respect to the effect of replacing the battery once during the vehicle's life. The paper includes one appendix that examines several recent studies of interactions of PHEVs with patterns of electric generation and one that provides definitions, acronyms, and fuel consumption estimation steps.

  4. A low cost, high energy density and long cycle life potassium-sulfur battery for grid-scale energy storage

    SciTech Connect

    Lu, Xiaochuan; Bowden, Mark E.; Sprenkle, Vincent L.; Liu, Jun

    2015-08-15

    Alkali metal-sulfur batteries are attractive for energy storage applications because of their high energy density. Among the batteries, lithium-sulfur batteries typically use liquid in the battery electrolyte, which causes problems in both performance and safety. Sodium-sulfur batteries can use a solid electrolyte such as beta alumina but this requires a high operating temperature. Here we report a novel potassium-sulfur battery with K+-conducting beta-alumina as the electrolyte. Our studies indicate that liquid potassium exhibits much better wettability on the surface of beta-alumina compared to liquid sodium at lower temperatures. Based on this observation, we develop a potassium-sulfur battery that can operate at as low as 150°C with excellent performance. In particular, the battery shows excellent cycle life with negligible capacity fade in 1000 cycles because of the dense ceramic membrane. This study demonstrates a new battery with a high energy density, long cycle life, low cost and high safety, which is ideal for grid-scale energy storage.

  5. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers

    SciTech Connect

    Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers,Steve; McMahon, James

    2004-01-20

    In 2001, the U.S. Department of Energy (DOE) initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is the economic impacts on consumers of possible revisions to energy-efficiency standards. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. DOE's preferred approach involves comparing the total life-cycle cost (LCC) of owning and operating a more efficient appliance with the LCC for a baseline design. This study describes the method used to conduct the LCC analysis and presents the estimated change in LCC associated with more energy-efficient equipment. The results indicate that efficiency improvement relative to the baseline design can reduce the LCC in each of the product classes considered.

  6. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    NASA Technical Reports Server (NTRS)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  7. Energy and life-cycle cost analysis of a six-story office building

    NASA Astrophysics Data System (ADS)

    Turiel, I.

    1981-10-01

    An energy analysis computer program, DOE-2, was used to compute annual energy use for a typical office building as originally designed and with several energy conserving design modifications. The largest energy use reductions were obtained with the incorporation of daylighting techniques, the use of double pane windows, night temperature setback, and the reduction of artificial lighting levels. A life-cycle cost model was developed to assess the cost-effectiveness of the design modifications discussed. The model incorporates such features as inclusion of taxes, depreciation, and financing of conservation investments. The energy conserving strategies are ranked according to economic criteria such as net present benefit, discounted payback period, and benefit to cost ratio.

  8. Water loss control using pressure management: life-cycle energy and air emission effects.

    PubMed

    Stokes, Jennifer R; Horvath, Arpad; Sturm, Reinhard

    2013-10-01

    Pressure management is one cost-effective and efficient strategy for controlling water distribution losses. This paper evaluates the life-cycle energy use and emissions for pressure management zones in Philadelphia, Pennsylvania, and Halifax, Nova Scotia. It compares water savings using fixed-outlet and flow-modulated pressure control to performance without pressure control, considering the embedded electricity and chemical consumption in the lost water, manufacture of pipe and fittings to repair breaks caused by excess pressure, and pressure management. The resulting energy and emissions savings are significant. The Philadelphia and Halifax utilities both avoid approximately 130 million liters in water losses annually using flow-modulated pressure management. The conserved energy was 780 GJ and 1900 GJ while avoided greenhouse gas emissions were 50 Mg and 170 Mg a year by Philadelphia and Halifax, respectively. The life-cycle financial and environmental performance of pressure management systems compares favorably to the traditional demand management strategy of installing low-flow toilets. The energy savings may also translate to cost-effective greenhouse gas emission reductions depending on the energy mix used, an important advantage in areas where water and energy are constrained and/or expensive and greenhouse gas emissions are regulated as in California, for example. PMID:23869434

  9. Life cycle water use of energy production and its environmental impacts in China.

    PubMed

    Zhang, Chao; Anadon, Laura Diaz

    2013-12-17

    The energy sector is a major user of fresh water resources in China. We investigate the life cycle water withdrawals, consumptive water use, and wastewater discharge of China's energy sectors and their water-consumption-related environmental impacts, using a mixed-unit multiregional input-output (MRIO) model and life cycle impact assessment method (LCIA) based on the Eco-indicator 99 framework. Energy production is responsible for 61.4 billion m(3) water withdrawals, 10.8 billion m(3) water consumption, and 5.0 billion m(3) wastewater discharges in China, which are equivalent to 12.3%, 4.1% and 8.3% of the national totals, respectively. The most important feature of the energy-water nexus in China is the significantly uneven spatial distribution of consumptive water use and its corresponding environmental impacts caused by the geological discrepancy among fossil fuel resources, fresh water resources, and energy demand. More than half of energy-related water withdrawals occur in the east and south coastal regions. However, the arid north and northwest regions have much larger water consumption than the water abundant south region, and bear almost all environmental damages caused by consumptive water use. PMID:24125477

  10. Evaluation of catalyst for closed cycle operation of high energy pulsed CO2 lasers

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Miller, I. M.; Wood, G.; Schryer, D. R.; Hess, R. V.; Upchurch, B. T.

    1983-01-01

    Several catalyst materials have been tested for efficiency of converting CO and O2 to CO2 for use in a high energy CO2 laser. The composition of the gas mixtures was monitored by mass spectrometry and gas chromatography. A copper/copper oxide catalyst and a platinum/tin oxide catalyst were used for closed cycle operation of a CO2 laser (0.7 joules/pulse), operating at 10 pulses/sec.

  11. Energy use and emissions from marine vessels: a total fuel life cycle approach.

    PubMed

    Winebrake, James J; Corbett, James J; Meyer, Patrick E

    2007-01-01

    Regional and global air pollution from marine transportation is a growing concern. In discerning the sources of such pollution, researchers have become interested in tracking where along the total fuel life cycle these emissions occur. In addition, new efforts to introduce alternative fuels in marine vessels have raised questions about the energy use and environmental impacts of such fuels. To address these issues, this paper presents the Total Energy and Emissions Analysis for Marine Systems (TEAMS) model. TEAMS can be used to analyze total fuel life cycle emissions and energy use from marine vessels. TEAMS captures "well-to-hull" emissions, that is, emissions along the entire fuel pathway, including extraction, processing, distribution, and use in vessels. TEAMS conducts analyses for six fuel pathways: (1) petroleum to residual oil, (2) petroleum to conventional diesel, (3) petroleum to low-sulfur diesel, (4) natural gas to compressed natural gas, (5) natural gas to Fischer-Tropsch diesel, and (6) soybeans to biodiesel. TEAMS calculates total fuel-cycle emissions of three greenhouse gases (carbon dioxide, nitrous oxide, and methane) and five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter with aerodynamic diameters of 10 microm or less, and sulfur oxides). TEAMS also calculates total energy consumption, fossil fuel consumption, and petroleum consumption associated with each of its six fuel cycles. TEAMS can be used to study emissions from a variety of user-defined vessels. This paper presents TEAMS and provides example modeling results for three case studies using alternative fuels: a passenger ferry, a tanker vessel, and a container ship. PMID:17269235

  12. Parking infrastructure: energy, emissions, and automobile life-cycle environmental accounting

    NASA Astrophysics Data System (ADS)

    Chester, Mikhail; Horvath, Arpad; Madanat, Samer

    2010-07-01

    The US parking infrastructure is vast and little is known about its scale and environmental impacts. The few parking space inventories that exist are typically regionalized and no known environmental assessment has been performed to determine the energy and emissions from providing this infrastructure. A better understanding of the scale of US parking is necessary to properly value the total costs of automobile travel. Energy and emissions from constructing and maintaining the parking infrastructure should be considered when assessing the total human health and environmental impacts of vehicle travel. We develop five parking space inventory scenarios and from these estimate the range of infrastructure provided in the US to be between 105 million and 2 billion spaces. Using these estimates, a life-cycle environmental inventory is performed to capture the energy consumption and emissions of greenhouse gases, CO, SO2, NOX, VOC (volatile organic compounds), and PM10 (PM: particulate matter) from raw material extraction, transport, asphalt and concrete production, and placement (including direct, indirect, and supply chain processes) of space construction and maintenance. The environmental assessment is then evaluated within the life-cycle performance of sedans, SUVs (sports utility vehicles), and pickups. Depending on the scenario and vehicle type, the inclusion of parking within the overall life-cycle inventory increases energy consumption from 3.1 to 4.8 MJ by 0.1-0.3 MJ and greenhouse gas emissions from 230 to 380 g CO2e by 6-23 g CO2e per passenger kilometer traveled. Life-cycle automobile SO2 and PM10 emissions show some of the largest increases, by as much as 24% and 89% from the baseline inventory. The environmental consequences of providing the parking spaces are discussed as well as the uncertainty in allocating paved area between parking and roadways.

  13. Intercomparison of the seasonal cycle in 200 hPa kinetic energy in AMIP GCM simulations

    SciTech Connect

    Boyle, J.S.

    1996-10-01

    The 200 hPa kinetic energy is represented by means of the spherical harmonic components for the Atmospheric Model Intercomparison Project (AMIP) simulations, the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis and the European Centre for Medium Range Weather Forecast Reanalysis (ERA). The data used are the monthly mean wind fields from 1979 to 1988. The kinetic energy is decomposed into the divergent (DKE) and rotational (RKE) components and emphasis is placed on examining the former. The two reanalysis data sets show reasonable agreement that is best for the rotational kinetic energy. The largest difference in the divergent kinetic energy occurs during the northern summer. As might be expected, the two analyses are closet in regions where there are sufficient observations such that the effect of the model used in the assimilation cycle are minimized. The observed RKE show only a slight seasonal cycle with a maximum occuring during the northern winter. The DKE, on the other hand, has a very pronounced seasonal cycle with maxima at the solsticial seasons and minima during the equinoctial seasons. The model results show a very large spread in the magnitudes of the RKE and DKE although the models all evince a seasonal variation in phase with that observed. The median values of the seasonal cycle of RKE and DKE for the models are usually superior to those of any individual model. Results are also presented for simulation following the AMIP protocol but using updated versions of the original AMIP entries. In most cases these new integrations show better agreement with the observations.

  14. Oxidative stress, apoptosis, and cell cycle arrest are induced in primary fetal alveolar type II epithelial cells exposed to fine particulate matter from cooking oil fumes.

    PubMed

    Liu, Ying; Chen, Yan-Yan; Cao, Ji-Yu; Tao, Fang-Biao; Zhu, Xiao-Xia; Yao, Ci-Jiang; Chen, Dao-Jun; Che, Zhen; Zhao, Qi-Hong; Wen, Long-Ping

    2015-07-01

    Epidemiological studies demonstrate a linkage between morbidity and mortality and particulate matter (PM), particularly fine particulate matter (PM2.5) that can readily penetrate into the lungs and are therefore more likely to increase the incidence of respiratory and cardiovascular diseases. The present study investigated the compositions of cooking oil fume (COF)-derived PM2.5, which is the major source of indoor pollution in China. Furthermore, oxidative stress, cytotoxicity, apoptosis, and cell cycle arrest induced by COF-derived PM2.5 in primary fetal alveolar type II epithelial cells (AEC II cells) were also detected. N-acetyl-L-cysteine (NAC), a radical scavenger, was used to identify the role of oxidative stress in the abovementioned processes. Our results suggested that compositions of COF-derived PM2.5 are obviously different to PM2.5 derived from other sources, and COF-derived PM2.5 led to cell death, oxidative stress, apoptosis, and G0/G1 cell arrest in primary fetal AEC II cells. Furthermore, the results also showed that COF-derived PM2.5 induced apoptosis through the endoplasmic reticulum (ER) stress pathway, which is indicated by the increased expression of ER stress-related apoptotic markers, namely GRP78 and caspase-12. Besides, the induction of oxidative stress, cytotoxicity, apoptosis, and cell cycle arrest was reversed by pretreatment with NAC. These findings strongly suggested that COF-derived PM2.5-induced toxicity in primary fetal AEC II cells is mediated by increased oxidative stress, accompanied by ER stress which results in apoptosis. PMID:25634364

  15. Studies of low-energy Galactic cosmic-ray composition at 22 AU. I - Secondary/primary ratios

    NASA Technical Reports Server (NTRS)

    Ferrando, P.; Lal, N.; Mcdonald, F. B.; Webber, W. R.

    1991-01-01

    Data from the High Energy Telescope of the CRS experiment on Voyager 2 have been used to measure the intensity, spectra, and elemental abundances of Galactic cosmic rays from Be to Ni at about 100 MeV/n. The charge resolution of this telescope varies from sigma = 0.034 for oxygen to sigma = 0.11 for iron. The solar modulation deceleration parameter Phi relevant for these data is estimated to be around 300 MV (Phi = 150 MeV/n for particles with A/Z = 2), an unprecedently low level for such measurements. This low modulation parameter is a result of the measurements being made in the outer heliosphere at a heliocentric distance of 22 AU, and centered on the solar minimum period of cycle 21. The results on secondary/primary ratios are used to test the Leaky-Box model of cosmic ray propagation, using the most recent cross sections data in hydrogen and helium, and taking into account the effects of the ionized fraction of the interstellar medium. It is found that all the secondary/primary ratios up to P/S are completely consistent with an exponential pathlength distribution (PLD). This PLD shape also accounts for the Sc-V/Fe ratio.

  16. Ideal energy harvesting cycle using a phase transformation in ferroelectric crystals

    NASA Astrophysics Data System (ADS)

    Dong, Wen D.; Gallagher, John A.; Lynch, Christopher S.

    2014-12-01

    A near ideal mechanical-to-electrical energy harvesting cycle that takes advantage of a stress driven ferroelectric-ferroelectric phase transformation was demonstrated in ≤ft[ 011 \\right] oriented Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT). The cycle involves loading and unloading the material between two compressive stress loads under open-circuit conditions. The compressive stress loads exceed the coercive stresses required to drive the forward and reverse phase transformation; however, open-circuit conditions result in the surface charge on the electrodes producing an electric field that hinders the phase transformation. The crystal is then discharged through a shunt resistor at constant stress. The phase transformation takes place during the discharge and results in a charge output that is significantly greater than that of a linear piezoelectric material. An output electrical energy density of 6.22 kJ m-3 per cycle was demonstrated for a stress loading interval from -14 to -25 MPa and the peak efficiency was measured to be 36% for a stress loading interval of -16.5 to -22.5 MPa. Although electrical output increases with the stress loading interval, charge leakage at high electric fields occurred for large stress intervals. This placed a limit on the maximum energy density achievable.

  17. Comprehensive Analysis of Coronal Mass Ejection Mass and Energy Properties Over a Full Solar Cycle

    NASA Astrophysics Data System (ADS)

    Vourlidas, A.; Howard, R. A.; Esfandiari, E.; Patsourakos, S.; Yashiro, S.; Michalek, G.

    2010-10-01

    The LASCO coronagraphs, in continuous operation since 1995, have observed the evolution of the solar corona and coronal mass ejections (CMEs) over a full solar cycle with high-quality images and regular cadence. This is the first time that such a data set becomes available and constitutes a unique resource for the study of CMEs. In this paper, we present a comprehensive investigation of the solar cycle dependence on the CME mass and energy over a full solar cycle (1996-2009) including the first in-depth discussion of the mass and energy analysis methods and their associated errors. Our analysis provides several results worthy of further studies. It demonstrates the possible existence of two event classes: "normal" CMEs reaching constant mass for >10 R sun and "pseudo"-CMEs which disappear in the C3 field of view. It shows that the mass and energy properties of CME reach constant levels and therefore should be measured only above ~10 R sun. The mass density (g/R 2 sun) of CMEs varies relatively little (< order of magnitude) suggesting that the majority of the mass originates from a small range in coronal heights. We find a sudden reduction in the CME mass in mid-2003 which may be related to a change in the electron content of the large-scale corona and we uncover the presence of a 6 month periodicity in the ejected mass from 2003 onward.

  18. Life-cycle energy savings potential from aluminum-intensive vehicles

    SciTech Connect

    Stodolsky, F.; Vyas, A.; Cuenca, R.; Gaines, L.

    1995-07-01

    The life-cycle energy and fuel-use impacts of US-produced aluminum-intensive passenger cars and passenger trucks are assessed. The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that stimulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use of aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminum-intensive vehicles. The petroleum energy saved from improved fuel efficiency offsets the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower. Many of the results are not necessarily applicable to vehicles built outside of the United States, but others could be used with caution.

  19. The Path to Sustainable Nuclear Energy. Basic and Applied Research Opportunities for Advanced Fuel Cycles

    SciTech Connect

    Finck, P.; Edelstein, N.; Allen, T.; Burns, C.; Chadwick, M.; Corradini, M.; Dixon, D.; Goff, M.; Laidler, J.; McCarthy, K.; Moyer, B.; Nash, K.; Navrotsky, A.; Oblozinsky, P.; Pasamehmetoglu, K.; Peterson, P.; Sackett, J.; Sickafus, K. E.; Tulenko, J.; Weber, W.; Morss, L.; Henry, G.

    2005-09-01

    The objective of this report is to identify new basic science that will be the foundation for advances in nuclear fuel-cycle technology in the near term, and for changing the nature of fuel cycles and of the nuclear energy industry in the long term. The goals are to enhance the development of nuclear energy, to maximize energy production in nuclear reactor parks, and to minimize radioactive wastes, other environmental impacts, and proliferation risks. The limitations of the once-through fuel cycle can be overcome by adopting a closed fuel cycle, in which the irradiated fuel is reprocessed and its components are separated into streams that are recycled into a reactor or disposed of in appropriate waste forms. The recycled fuel is irradiated in a reactor, where certain constituents are partially transmuted into heavier isotopes via neutron capture or into lighter isotopes via fission. Fast reactors are required to complete the transmutation of long-lived isotopes. Closed fuel cycles are encompassed by the Department of Energy?s Advanced Fuel Cycle Initiative (AFCI), to which basic scientific research can contribute. Two nuclear reactor system architectures can meet the AFCI objectives: a ?single-tier? system or a ?dual-tier? system. Both begin with light water reactors and incorporate fast reactors. The ?dual-tier? systems transmute some plutonium and neptunium in light water reactors and all remaining transuranic elements (TRUs) in a closed-cycle fast reactor. Basic science initiatives are needed in two broad areas: ? Near-term impacts that can enhance the development of either ?single-tier? or ?dual-tier? AFCI systems, primarily within the next 20 years, through basic research. Examples: Dissolution of spent fuel, separations of elements for TRU recycling and transmutation Design, synthesis, and testing of inert matrix nuclear fuels and non-oxide fuels Invention and development of accurate on-line monitoring systems for chemical and nuclear species in the nuclear fuel cycle Development of advanced tools for designing reactors with reduced margins and lower costs ? Long-term nuclear reactor development requires basic science breakthroughs: Understanding of materials behavior under extreme environmental conditions Creation of new, efficient, environmentally benign chemical separations methods Modeling and simulation to improve nuclear reaction cross-section data, design new materials and separation system, and propagate uncertainties within the fuel cycle Improvement of proliferation resistance by strengthening safeguards technologies and decreasing the attractiveness of nuclear materials A series of translational tools is proposed to advance the AFCI objectives and to bring the basic science concepts and processes promptly into the technological sphere. These tools have the potential to revolutionize the approach to nuclear engineering R&D by replacing lengthy experimental campaigns with a rigorous approach based on modeling, key fundamental experiments, and advanced simulations.

  20. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    NASA Astrophysics Data System (ADS)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2004-02-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a ``partial energy conversion'' system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  1. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  2. Life cycle assessment of energy from waste via anaerobic digestion: a UK case study.

    PubMed

    Evangelisti, Sara; Lettieri, Paola; Borello, Domenico; Clift, Roland

    2014-01-01

    Particularly in the UK, there is potential for use of large-scale anaerobic digestion (AD) plants to treat food waste, possibly along with other organic wastes, to produce biogas. This paper presents the results of a life cycle assessment to compare the environmental impacts of AD with energy and organic fertiliser production against two alternative approaches: incineration with energy production by CHP and landfill with electricity production. In particular the paper investigates the dependency of the results on some specific assumptions and key process parameters. The input Life Cycle Inventory data are specific to the Greater London area, UK. Anaerobic digestion emerges as the best treatment option in terms of total CO2 and total SO2 saved, when energy and organic fertiliser substitute non-renewable electricity, heat and inorganic fertiliser. For photochemical ozone and nutrient enrichment potentials, AD is the second option while incineration is shown to be the most environmentally friendly solution. The robustness of the model is investigated with a sensitivity analysis. The most critical assumption concerns the quantity and quality of the energy substituted by the biogas production. Two key issues affect the development and deployment of future anaerobic digestion plants: maximising the electricity produced by the CHP unit fuelled by biogas and to defining the future energy scenario in which the plant will be embedded. PMID:24112851

  3. MgO Deoxidization by Focused Laser Pulse for a New Energy Cycle

    NASA Astrophysics Data System (ADS)

    Yabe, Takashi; Ikuta, Kazunari; Baasandash, Choijil; Katano, Ryoichi; Uchida, Shigeaki; Tsuji, Minoru; Mori, Yuichi; Maehara, Jun; Mahmoud, Mohamed Salah; Toya, Tomohiro

    2006-05-01

    In order to resolve the environmental problem, we proposed a new energy cycle that uses the reaction of magnesium with water. In order to realize the sustainable society, we need to deoxidize MgO to obtain Mg again. Such deoxidization will be achieved with a high-power laser. Actually the preliminary experiments implie that 70% of pure magnesium among ablated materials can be separated. Candidates for such lasers will be solar-energy-pumped laser or diode-pumped solid-state laser powered by wind power generator. Thus Mg acts as a reservoir of energy for such unsteady energy sources like solar and wind power. This paper reports the preliminary experiments toward this goal by using Nd-YAG laser.

  4. Analyzing the Life Cycle Energy Savings of DOE Supported Buildings Technologies

    SciTech Connect

    Cort, Katherine A.; Hostick, Donna J.; Dirks, James A.; Elliott, Douglas B.

    2009-08-31

    This report examines the factors that would potentially help determine an appropriate analytical timeframe for measuring the U.S. Department of Energy's Building Technology (BT) benefits and presents a summary-level analysis of the life cycle savings for BT’s Commercial Buildings Integration (CBI) R&D program. The energy savings for three hypothetical building designs are projected over a 100-year period using Building Energy Analysis and Modeling System (BEAMS) to illustrate the resulting energy and carbon savings associated with the hypothetical aging buildings. The report identifies the tasks required to develop a long-term analytical and modeling framework, and discusses the potential analytical gains and losses by extending an analysis into the “long-term.”

  5. Technology for Bayton-cycle powerplants using solar and nuclear energy

    NASA Technical Reports Server (NTRS)

    English, R. E.

    1986-01-01

    Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation.

  6. Comparative life-cycle energy payback analysis of multi-junction a-SiGe and nanocrystalline/a-Si modules

    SciTech Connect

    Fthenakis, V.; Kim, H.

    2010-07-15

    Despite the publicity of nanotechnologies in high tech industries including the photovoltaic sector, their life-cycle energy use and related environmental impacts are understood only to a limited degree as their production is mostly immature. We investigated the life-cycle energy implications of amorphous silicon (a-Si) PV designs using a nanocrystalline silicon (nc-Si) bottom layer in the context of a comparative, prospective life-cycle analysis framework. Three R and D options using nc-Si bottom layer were evaluated and compared to the current triple-junction a-Si design, i.e., a-Si/a-SiGe/a-SiGe. The life-cycle energy demand to deposit nc-Si was estimated from parametric analyses of film thickness, deposition rate, precursor gas usage, and power for generating gas plasma. We found that extended deposition time and increased gas usages associated to the relatively high thickness of nc-Si lead to a larger primary energy demand for the nc-Si bottom layer designs, than the current triple-junction a-Si. Assuming an 8% conversion efficiency, the energy payback time of those R and D designs will be 0.7-0.9 years, close to that of currently commercial triple-junction a-Si design, 0.8 years. Future scenario analyses show that if nc-Si film is deposited at a higher rate (i.e., 2-3 nm/s), and at the same time the conversion efficiency reaches 10%, the energy-payback time could drop by 30%.

  7. The muon content of EAS as a function of primary energy

    NASA Technical Reports Server (NTRS)

    Blake, P. R.; Nash, W. F.; Saich, M. S.; Sephton, A. J.

    1985-01-01

    The muon content of extensive air showers (EAS) was measured over the wide primary energy range 10 to the 16th power to 10 to the 20th power eV. It is reported that the relative muon content of EAS decreases smoothly over the energy range 10 to the 17th power to 10 to the 19th power eV and concluded that the primary cosmic ray flux has a constant mass composition over this range. It is also reported that an apparent significant change in the power index occurs below 10 to the 17th power eV rho sub c (250 m) sup 0.78. Such a change indicates a significant change in primary mass composition in this range. The earlier conclusions concerning EAS of energy 10 to the 17th power eV are confirmed. Analysis of data in the 10 to the 16th power - 10 to the 17th power eV range revealed a previously overlooked selection bias in the data set. The full analysis of the complete data set in the energy range 10 to the 16th power - 10 to the 17th power ev with the selection bias eliminated is presented.

  8. Energy conservation in the primary aluminum and chlor-alkali industries

    SciTech Connect

    Not Available

    1980-10-01

    The primary aluminum and chlor-alkali industries together use nearly 13% of the electrical energy consumed by US industry. As part of its mission to promote energy conservation in basic US industries, the DOE surveys the present technological status of the major electrochemical industries and evaluates promising technological innovations that may lead to reduced energy requirements. This study provides technical and economic analyses in support of a government program of research and development in advanced electrolytic technology. This program is intended to supplement the development efforts directed toward energy savings by private industry. Sections II and III of this report cover aluminum and chlorine production processes only, since these two industries represent over 90% of the electrical energy requirements of all electrolytic industries in the United States. Section IV examines barriers to accelerated research and development by the electrolytic industries, and makes suggestions for government actions to overcome these barriers.

  9. Distinct bacterial-production-DOC-primary-production relationships and implications for biogenic C cycling in the South China Sea shelf

    NASA Astrophysics Data System (ADS)

    Lai, C.-C.; Fu, Y.-W.; Liu, H.-B.; Kuo, H.-Y.; Wang, K.-W.; Lin, C.-H.; Tai, J.-H.; Wong, G. T. F.; Lee, K.-Y.; Chen, T.-Y.; Yamamoto, Y.; Chow, M.-F.; Kobayashi, Y.; Ko, C.-Y.; Shiah, F.-K.

    2014-01-01

    Based on two summer spatio-temporal data sets obtained from the northern South China Sea shelf and basin, this study reveals contrasting relationships among bacterial production (BP), dissolved organic (DOC) and primary production (PP) in the transition zone from the neritic to the oceanic regions. Inside the mid-shelf (bottom depth <100 m), where inorganic nutrient supplies from river discharge and internal waves were potentially abundant, BP, DOC and PP were positively intercorrelated, whereas these three measurements became uncorrelated in the oligotrophic outer shelf and slope. We suggest that the availability of limiting minerals could affect the couplings/decouplings between the source (i.e. phytoplankton) and sink (i.e. bacteria) of organic carbon, and thus DOC dynamics. DOC turnover times were homogeneously low (37-60 days) inside the mid-shelf area and then increased significantly to values >100 days in the outer shelf, indicating that riverine (Pearl River) DOC might be more labile. The actual mechanism for this is unknown, but might relate to higher inorganic nutrient supply from river/terrestrial sources. The positive correlation of the BP / PP ratios vs. phosphate (and nitrate) concentrations in the inner shelf implies that if anthropogenic mineral loading keeps increasing in the foreseeable future, the near-shore zone may become more heterotrophic, rendering the system a stronger source of CO2.

  10. A Cumulative Energy Demand indicator (CED), life cycle based, for industrial waste management decision making

    SciTech Connect

    Puig, Rita; Fullana-i-Palmer, Pere; Bala, Alba

    2013-12-15

    Highlights: We developed a methodology useful to environmentally compare industrial waste management options. The methodology uses a Net Energy Demand indicator which is life cycle based. The method was simplified to be widely used, thus avoiding cost driven decisions. This methodology is useful for governments to promote the best environmental options. This methodology can be widely used by other countries or regions around the world. - Abstract: Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport.

  11. Energy analyses and greenhouse gas emissions assessment for saffron production cycle.

    PubMed

    Bakhtiari, Amir Abbas; Hematian, Amir; Sharifi, Azin

    2015-10-01

    Population growth and world climate changes are putting high pressure on agri-food production systems. Exacerbating use of energy sources and expanding the environmental damaging symptoms are the results of these difficult situations. This study was conducted to determine the energy balance for saffron production cycle and investigate the corresponding greenhouse gas (GHG) emissions in Iran. Saffron (Crocus sativus L.) is one of the main spice that historically cultivated in Iran. Data were obtained from 127 randomly selected saffron growers using a face to face questionnaire technique. The results revealed that in 5 years of saffron production cycle, the overall input and output energy use were to be 163,912.09 and 184,868.28 MJ ha(-1), respectively. The highest-level of energy consumption belongs to seeds (23.7 %) followed by chemical fertilizers (23.4 %). Energy use efficiency, specific energy, net energy, and energy productivity of saffron production were 1.1, 13.4 MJ kg(-1), 20,956.2 MJ ha(-1), and 0.1 kg MJ(-1), respectively. The result shows that the cultivation of saffron emits 2325.5 kg CO2?eq.?ha(-1) greenhouse gas, in which around 46.5 % belonged to electricity followed by chemical fertilizers. In addition the Cobb-Douglas production function was applied into EViews 7 software to define the functional relationship. The results of econometric model estimation showed that the impact of human labor, electricity, and water for irrigation on stigma, human labor, electricity, and seed on corm and also human labor and farmyard manure (FYM) on flower and leaf yield were found to be statistically significant. Sensitivity analysis results of the energy inputs demonstrated that the marginal physical productivity (MPP) worth of electricity energy was the highest for saffron stigma and corm, although saffron flower and leaf had more sensitivity on chemicals energy inputs. Moreover, MPP values of renewable and indirect energies were higher than non-renewable and direct energies, respectively. PMID:26070740

  12. Thermal energy storage for low grade heat in the organic Rankine cycle

    NASA Astrophysics Data System (ADS)

    Soda, Michael John

    Limits of efficiencies cause immense amounts of thermal energy in the form of waste heat to be vented to the atmosphere. Up to 60% of unrecovered waste heat is classified as low or ultra-low quality, making recovery difficult or inefficient. The organic Rankine cycle can be used to generate mechanical power and electricity from these low temperatures where other thermal cycles are impractical. A variety of organic working fluids are available to optimize the ORC for any target temperature range. San Diego State University has one such experimental ORC using R245fa, and has been experimenting with multiple expanders. One limitation of recovering waste heat is the sporadic or cyclical nature common to its production. This inconsistency makes sizing heat recovery ORC systems difficult for a variety of reasons including off-design-point efficiency loss, increased attrition from varying loads, unreliable outputs, and overall system costs. Thermal energy storage systems can address all of these issues by smoothing the thermal input to a constant and reliable level and providing back-up capacity for times when the thermal input is deactivated. Multiple types of thermal energy storage have been explored including sensible, latent, and thermochemical. Latent heat storage involves storing thermal energy in the reversible phase change of a phase change material, or PCM, and can have several advantages over other modalities including energy storage density, cost, simplicity, reliability, relatively constant temperature output, and temperature customizability. The largest obstacles to using latent heat storage include heat transfer rates, thermal cycling stability, and potentially corrosive PCMs. Targeting 86°C, the operating temperature of SDSU's experimental ORC, multiple potential materials were explored and tested as potential PCMs including Magnesium Chloride Hexahydrate (MgCl2˙6H2O), Magnesium Nitrate Hexahydrate (Mg(NO3)2˙6H 2O), montan wax, and carnauba wax. The addition of graphite to augment heat transfer rates was also tested. Melting and solidification temperatures largely matched predictions. The magnesium salts were found to be less stable under thermal cycling than the waxes. Graphite was only soluble in the waxes. Mixtures of magnesium salts and waxes yielded a layered composite with the less dense waxes creating a sealing layer over the salt layer that significantly increased the stability of the magnesium salts. Research into optimum heat exchangers and storage vessels for these applications indicates that horizontally oriented aluminum pipes with vertically oriented aluminum fins would be the best method of storing and retrieving energy. Fin spacing can be predicted by an equation based on target temperatures and PCM characteristics.

  13. Factors influencing the life cycle burdens of the recovery of energy from residual municipal waste.

    PubMed

    Burnley, Stephen; Coleman, Terry; Peirce, Adam

    2015-05-01

    A life cycle assessment was carried out to assess a selection of the factors influencing the environmental impacts and benefits of incinerating the fraction of municipal waste remaining after source-separation for reuse, recycling, composting or anaerobic digestion. The factors investigated were the extent of any metal and aggregate recovery from the bottom ash, the thermal efficiency of the process, and the conventional fuel for electricity generation displaced by the power generated. The results demonstrate that incineration has significant advantages over landfill with lower impacts from climate change, resource depletion, acidification, eutrophication human toxicity and aquatic ecotoxicity. To maximise the benefits of energy recovery, metals, particularly aluminium, should be reclaimed from the residual bottom ash and the energy recovery stage of the process should be as efficient as possible. The overall environmental benefits/burdens of energy from waste also strongly depend on the source of the power displaced by the energy from waste, with coal giving the greatest benefits and combined cycle turbines fuelled by natural gas the lowest of those considered. Regardless of the conventional power displaced incineration presents a lower environmental burden than landfill. PMID:25758908

  14. Life-cycle-assessment of fuel-cells-based landfill-gas energy conversion technologies

    NASA Astrophysics Data System (ADS)

    Lunghi, P.; Bove, R.; Desideri, U.

    Landfill-gas (LFG) is produced as result of the biological reaction of municipal solid waste (MSW). This gas contains about 50% of methane, therefore it cannot be released into the atmosphere as it is because of its greenhouse effect consequences. The high percentage of methane encouraged researchers to find solutions to recover the related energy content for electric energy production. The most common technologies used at the present time are internal combustion reciprocating engines and gas turbines. High conversion efficiency guaranteed by fuel cells (FCs) enable to enhance the energy recovery process and to reduce emissions to air, such as NO x and CO. In any case, in order to investigate the environmental advantages associated with the electric energy generation using fuel cells, it is imperative to consider the whole "life cycle" of the system, "from cradle-to-grave". In fact, fuel cells are considered to be zero-emission devices, but, for example, emissions associated with their manufacture or for hydrogen production must be considered in order to evaluate all impacts on the environment. In the present work a molten carbonate fuel cell (MCFC) system for LFG recovery is considered and a life cycle assessment (LCA) is conducted for an evaluation of environmental consequences and to provide a guide for further environmental impact reduction.

  15. Towards Robust Energy Systems Modeling: Examinging Uncertainty in Fossil Fuel-Based Life Cycle Assessment Approaches

    NASA Astrophysics Data System (ADS)

    Venkatesh, Aranya

    Increasing concerns about the environmental impacts of fossil fuels used in the U.S. transportation and electricity sectors have spurred interest in alternate energy sources, such as natural gas and biofuels. Life cycle assessment (LCA) methods can be used to estimate the environmental impacts of incumbent energy sources and potential impact reductions achievable through the use of alternate energy sources. Some recent U.S. climate policies have used the results of LCAs to encourage the use of low carbon fuels to meet future energy demands in the U.S. However, the LCA methods used to estimate potential reductions in environmental impact have some drawbacks. First, the LCAs are predominantly based on deterministic approaches that do not account for any uncertainty inherent in life cycle data and methods. Such methods overstate the accuracy of the point estimate results, which could in turn lead to incorrect and (consequent) expensive decision-making. Second, system boundaries considered by most LCA studies tend to be limited (considered a manifestation of uncertainty in LCA). Although LCAs can estimate the benefits of transitioning to energy systems of lower environmental impact, they may not be able to characterize real world systems perfectly. Improved modeling of energy systems mechanisms can provide more accurate representations of reality and define more likely limits on potential environmental impact reductions. This dissertation quantitatively and qualitatively examines the limitations in LCA studies outlined previously. The first three research chapters address the uncertainty in life cycle greenhouse gas (GHG) emissions associated with petroleum-based fuels, natural gas and coal consumed in the U.S. The uncertainty in life cycle GHG emissions from fossil fuels was found to range between 13 and 18% of their respective mean values. For instance, the 90% confidence interval of the life cycle GHG emissions of average natural gas consumed in the U.S was found to range between -8 to 9% (17%) of the mean value of 66 g CO2e/MJ. Results indicate that uncertainty affects the conclusions of comparative life cycle assessments, especially when differences in average environmental impacts between two competing fuels/products are small. In the final two research chapters of this thesis, system boundary limitations in LCA are addressed. Simplified economic dispatch models for are developed to examine changes in regional power plant dispatch that occur when coal power plants are retired and when natural gas prices drop. These models better reflect reality by estimating the order in which existing power plants are dispatched to meet electricity demand based on short-run marginal costs. Results indicate that the reduction in air emissions are lower than suggested by LCA studies, since they generally do not include the complexity of regional electricity grids, predominantly driven by comparative fuel prices. For instance, comparison, this study estimates 7-15% reductions in emissions with low natural gas prices. Although this is a significant reduction in itself, it is still lower than the benefits reported in traditional life cycle comparisons of coal and natural gas-based power (close to 50%), mainly due to the effects of plant dispatch.

  16. Forest productivity under elevated CO? and O?: positive feedbacks to soil N cycling sustain decade-long net primary productivity enhancement by CO?.

    PubMed

    Zak, Donald R; Pregitzer, Kurt S; Kubiske, Mark E; Burton, Andrew J

    2011-12-01

    The accumulation of anthropogenic CO? in the Earth's atmosphere, and hence the rate of climate warming, is sensitive to stimulation of plant growth by higher concentrations of atmospheric CO?. Here, we synthesise data from a field experiment in which three developing northern forest communities have been exposed to factorial combinations of elevated CO? and O?. Enhanced net primary productivity (NPP) (c. 26% increase) under elevated CO? was sustained by greater root exploration of soil for growth-limiting N, as well as more rapid rates of litter decomposition and microbial N release during decay. Despite initial declines in forest productivity under elevated O?, compensatory growth of O? -tolerant individuals resulted in equivalent NPP under ambient and elevated O?. After a decade, NPP has remained enhanced under elevated CO? and has recovered under elevated O? by mechanisms that remain un-calibrated or not considered in coupled climate-biogeochemical models simulating interactions between the global C cycle and climate warming. PMID:21981597

  17. Life-cycle implications of using crop residues for various energy demands in China.

    PubMed

    Lu, Wei; Zhang, Tianzhu

    2010-05-15

    Crop residues are a critical component of the sustainable energy and natural resource strategy within a country. In this study, we use hybrid life-cycle environmental and economic analyses to evaluate and compare the atmospheric chemical, climatic, ecological, and economic issues associated with a set of energy conversion technologies that use crop residues for various energy demands in China. Our analysis combines conventional process-based life cycle assessment with economic input-output life cycle assessment. The results show that the return of crop residues to the fields, silo/amination and anaerobic digestion (household scale) offer the greatest ecological benefits, with net greenhouse gas reduction costs of US$3.1/tC, US$11.5/tC, and US$14.9/tC, respectively. However, if a positive net income for market-oriented operations is the overriding criterion for technology selection, the cofiring of crop residues with coal and crop residue gasification for power generation offer greater economic scope and technical feasibility, with net incomes of US$4.4/Mg and US$4.9/Mg, respectively. We identify that poor economies of scale and the absence of key technologies mean that enterprises that use pure combustion for power generation (US$212/tC), gasification for heat generation (US$366/tC) and large-scale anaerobic digestion for power generation (US$169/tC) or heat generation (US$206/tC) are all prone to operational deficits. In the near term, the Chinese government should also be cautious about any large-scale investment in bioethanol derived from crop residues because, with a carbon price of as high as US$748/tC, bioethanol is the most expensive of all energy conversion technologies in China. PMID:20426437

  18. Comparison of life-cycle energy and emissions footprints of passenger transportation in metropolitan regions

    NASA Astrophysics Data System (ADS)

    Chester, Mikhail V.; Horvath, Arpad; Madanat, Samer

    2010-03-01

    A comparative life-cycle energy and emissions (greenhouse gas, CO, NO X, SO 2, PM 10, and VOCs) inventory is created for three U.S. metropolitan regions (San Francisco, Chicago, and New York City). The inventory captures both vehicle operation (direct fuel or electricity consumption) and non-operation components (e.g., vehicle manufacturing, roadway maintenance, infrastructure operation, and material production among others). While urban transportation inventories have been continually improved, little information exists identifying the particular characteristics of metropolitan passenger transportation and why one region may differ from the next. Using travel surveys and recently developed transportation life-cycle inventories, metropolitan inventories are constructed and compared. Automobiles dominate total regional performance accounting for 86-96% of energy consumption and emissions. Comparing system-wide averages, New York City shows the lowest end-use energy and greenhouse gas footprint compared to San Francisco and Chicago and is influenced by the larger share of transit ridership. While automobile fuel combustion is a large component of emissions, diesel rail, electric rail, and ferry service can also have strong contributions. Additionally, the inclusion of life-cycle processes necessary for any transportation mode results in significant increases (as large as 20 times that of vehicle operation) for the region. In particular, emissions of CO 2 from cement production used in concrete throughout infrastructure, SO 2 from electricity generation in non-operational components (vehicle manufacturing, electricity for infrastructure materials, and fuel refining), PM 10 in fugitive dust releases in roadway construction, and VOCs from asphalt result in significant additional inventory. Private and public transportation are disaggregated as well as off-peak and peak travel times. Furthermore, emissions are joined with healthcare and greenhouse gas monetized externalities to evaluate the societal costs of passenger transportation in each region. Results are validated against existing studies. The dominating contribution of automobile end-use energy consumption and emissions is discussed and strategies for improving regional performance given private travel's disproportionate share are identified.

  19. Life-cycle costs for the Department of Energy Waste Management Programmatic Environmental Impact Statement

    SciTech Connect

    Sherick, M.J.; Shropshire, D.E.; Hsu, K.M.

    1996-09-01

    The US Department of Energy (DOE) Office of Environmental Management has produced a Programmatic Environmental Impact Statement (PEIS) in order to assess the potential consequences resulting from a cross section of possible waste management strategies for the DOE complex. The PEIS has been prepared in compliance with the NEPA and includes evaluations of a variety of alternatives. The analysis performed for the PEIS included the development of life-cycle cost estimates for the different waste management alternatives being considered. These cost estimates were used in the PEIS to support the identification and evaluation of economic impacts. Information developed during the preparation of the life-cycle cost estimates was also used to support risk and socioeconomic analyses performed for each of the alternatives. This technical report provides an overview of the methodology used to develop the life-cycle cost estimates for the PEIS alternatives. The methodology that was applied made use of the Waste Management Facility Cost Information Reports, which provided a consistent approach and estimating basis for the PEIS cost evaluations. By maintaining consistency throughout the cost analyses, life-cycle costs of the various alternatives can be compared and evaluated on a relative basis. This technical report also includes the life-cycle cost estimate results for each of the PEIS alternatives evaluated. Summary graphs showing the results for each waste type are provided and tables showing different breakdowns of the cost estimates are provided. Appendix E contains PEIS cost information that was developed using an approach different than the standard methodology described in this report. Specifically, costs for high-level waste are found in this section, as well as supplemental costs for additional low-level waste and hazardous waste alternatives.

  20. US nonrenewable conventional primary energy resources as of year-end 1982

    SciTech Connect

    Not Available

    1983-11-07

    Estimates are made of the remaining amounts of US nonrenewable conventional primary energy resources as of the end of 1982. Tables present the holdings in the area of natural gas, crude oil, coal, and uranium. Attention is also given to those potentially additional supplies of natural gas and natural gas liquids and additional crude oil. A final table projects the life expectancy of US fossil fuels at various demand rates. 7 tables.

  1. Students' Energy Concepts at the Transition Between Primary and Secondary School

    NASA Astrophysics Data System (ADS)

    Opitz, Sebastian T.; Harms, Ute; Neumann, Knut; Kowalzik, Kristin; Frank, Arne

    2015-10-01

    Energy is considered both a core idea and a crosscutting concept in science education. A thorough understanding of the energy concept is thought to help students learn about other (related) concepts within and across science subjects, thereby fostering scientific literacy. This study investigates students' progression in understanding the energy concept in biological contexts at the transition from primary to lower secondary school by employing a quantitative, cross-sectional study in grades 3-6 ( N = 540) using complex multiple-choice items. Based on a model developed in a previous study, energy concepts were assessed along four aspects of energy: (1) forms and sources of energy, (2) transfer and transformation, (3) degradation and dissipation, and (4) energy conservation. Two parallel test forms (A and B) indicated energy concept scores to increase significantly by a factor of 2.3 (A)/1.7 (B) from grade 3 to grade 6. Students were observed to progress in their understanding of all four aspects of the concept and scored highest on items for energy forms. The lowest scores and the smallest gain across grades were found for energy conservation. Based on our results, we argue that despite numerous learning opportunities, students lack a more integrated understanding of energy at this stage, underlining the requirement of a more explicit approach to teaching energy to young learners. Likewise, more interdisciplinary links for energy learning between relevant contexts in each science discipline may enable older students to more efficiently use energy as a tool and crosscutting concept with which to analyze complex content.

  2. A Life-Cycle Assessment of Biofuels: Tracing Energy and Carbon through a Fuel-Production System

    ERIC Educational Resources Information Center

    Krauskopf, Sara

    2010-01-01

    A life-cycle assessment (LCA) is a tool used by engineers to make measurements of net energy, greenhouse gas production, water consumption, and other items of concern. This article describes an activity designed to walk students through the qualitative part of an LCA. It asks them to consider the life-cycle costs of ethanol production, in terms of…

  3. A Life-Cycle Assessment of Biofuels: Tracing Energy and Carbon through a Fuel-Production System

    ERIC Educational Resources Information Center

    Krauskopf, Sara

    2010-01-01

    A life-cycle assessment (LCA) is a tool used by engineers to make measurements of net energy, greenhouse gas production, water consumption, and other items of concern. This article describes an activity designed to walk students through the qualitative part of an LCA. It asks them to consider the life-cycle costs of ethanol production, in terms of

  4. Deep Horizons - Implications of the deep carbon cycle for life, energy, and the environment (Invited)

    NASA Astrophysics Data System (ADS)

    Sherwood Lollar, B.; Ballentine, C. J.; Shock, E.

    2010-12-01

    B. Sherwood Lollar1, C.J. Ballentine2, E. Shock3 1Dept. of Geology, University of Toronto, Toronto, Ontario, Canada M5S 3B1 email bslollar@chem.utoronto.ca 2School of Earth, Atmospheric & Environ. Sci., Univ. of Manchester, UK M13 9PL 3School of Earth & Space Exploration, Arizona State Univ., Tempe, AZ 85287-1404 While well-developed models exist regarding surface biogeochemical carbon cycles on short-, medium- and long-term scales over geologic time, major unknowns persist concerning the deep carbon cycle, including the pathways and flux of carbon exchange between the surface and deep interior of the planet; the nature of microbial life in the Earth's deep subsurface; and the implications of the deep carbon cycle for energy resources and the environment. Major research questions include: What is the distribution, form and abundance of carbon in the deep crust and mantle? What is the nature of deep carbon flux and the timescale and mechanisms of recycling? Do the lower crust and mantle contribute biologically available carbon to the shallow subsurface and surface? To what extent does the deep carbon cycle support microbial ecosystems in the deep marine and/or deep terrestrial biosphere? What is the volume and depth of the Earth's habitable zone and what are the implications of this for the search for life on other planets and moons? What is the role of the deep carbon cycle in sustaining abiotic organic synthesis and what potential contribution might such chemical organic synthesis have made to the origin of life and the sustainability of deep microbial ecosystems? How does our understanding of the deep carbon cycle impact on emerging global issues such as climate change, energy and carbon sequestration? While fundamental to our understanding of the origin and evolution of life and the planet - these questions are also relevant to the major practical challenges facing science and society as we struggle with the implications of still increasing fossil fuel dependence, and with the challenges and consequences of exploration and extraction of deeper hydrocarbon reserves. Management of remaining hydrocarbon resources, possibilities for subsurface carbon storage, the search for cleaner fuels, and solutions to rising levels of atmospheric carbon dioxide all urgently require a better understanding of deep carbon.

  5. Major Solar Eruptions and High-Energy Particle Events During Solar Cycle 24

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat; Xie, Hong; Akiyama, Sachiko; Makela, Pertti A.; Yashiro, Seiji

    2014-01-01

    We report on a study of all major solar eruptions that occurred on the frontside of the Sun during the rise to peak phase of cycle 24 (first 62 months) in order to understand the key factors affecting the occurrence of large solar energetic particle events (SEPs) and ground level enhancement (GLE) events. The eruptions involve major flares with soft X-ray peak flux greater than or equal to 5.0 x10(exp-5) Wm(exp-2) (i.e., flare size greater than or equal to M5.0) and accompanying coronal mass ejections (CMEs). The selection criterion was based on the fact that the only front-side GLE in cycle 24 (GLE 71) had a flare size of M5.1. Only approximately 37% of the major eruptions from the western hemisphere resulted in large SEP events. Almost the same number of large SEP events was produced in weaker eruptions (flare size less than M5.0), suggesting that the soft X-ray flare is not a good indicator of SEP or GLE events. On the other hand, the CME speed is a good indicator of SEP and GLE events because it is consistently high supporting the shock acceleration mechanism. We found the CME speed, magnetic connectivity to Earth (in longitude and latitude), and ambient conditions as the main factors that contribute to the lack of high-energy particle events during cycle 24. Several eruptions poorly connected to Earth (eastern-hemisphere or behind-the-west-limb events) resulted in very large SEP events detected by the Solar Terrestrial Relations Observatory (STEREO) spacecraft. Some very fast CMEs, likely to have accelerated particles to GeV energies, did not result in a GLE event because of poor latitudinal connectivity. The stringent latitudinal requirement suggests that the highest-energy particles are likely accelerated in the nose part of shocks, while the lower energy particles are accelerated at all parts. There were also well-connected fast CMEs, which did not seem to have accelerated high-energy particles due to possible unfavorable ambient conditions (high Alfven speed, overall reduction in acceleration efficiency in cycle 24).

  6. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    NASA Astrophysics Data System (ADS)

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications.

  7. Rankine cycle condenser pressure control using an energy conversion device bypass valve

    DOEpatents

    Ernst, Timothy C; Nelson, Christopher R; Zigan, James A

    2014-04-01

    The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.

  8. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat.

    PubMed

    Kazak, Lawrence; Chouchani, Edward T; Jedrychowski, Mark P; Erickson, Brian K; Shinoda, Kosaku; Cohen, Paul; Vetrivelan, Ramalingam; Lu, Gina Z; Laznik-Bogoslavski, Dina; Hasenfuss, Sebastian C; Kajimura, Shingo; Gygi, Steve P; Spiegelman, Bruce M

    2015-10-22

    Thermogenic brown and beige adipose tissues dissipate chemical energy as heat, and their thermogenic activities can combat obesity and diabetes. Herein the functional adaptations to cold of brown and beige adipose depots are examined using quantitative mitochondrial proteomics. We identify arginine/creatine metabolism as a beige adipose signature and demonstrate that creatine enhances respirationin beige-fat mitochondria when ADP is limiting. In murine beige fat, cold exposure stimulates mitochondrial creatine kinase activity and induces coordinated expression of genes associated with creatine metabolism. Pharmacological reduction of creatine levels decreases whole-body energy expenditure after administration of a ?3-agonist and reduces beige and brown adipose metabolic rate. Genes of creatinemetabolism are compensatorily induced when UCP1-dependent thermogenesis is ablated, and creatine reduction in Ucp1-deficient mice reduces core body temperature. These findings link a futile cycle of creatine metabolism to adipose tissue energy expenditure and thermal homeostasis. PAPERCLIP. PMID:26496606

  9. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    SciTech Connect

    Humphreys, K.K.; Brown, D.R.

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications. 26 refs., 3 figs., 25 tabs.

  10. Photon and helium energy spectra above 1 TeV for primary cosmic rays

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Huggett, R. W.; Hunter, S. D.; Iwai, J.; Jones, W. V.

    1983-01-01

    Energy spectra of protons and helium nuclei in primary cosmic rays were measured above 1 TeV in a series of balloon flights carrying emulsion chambers. Differential spectra may be represented by power laws of indices -2.81 + or - 0.13 and -2.83 + or - 0.20 for protons and He, respectively. No index change was observed for either species over the energy ranges 5-500 TeV for protons and 2-50 TeV/nucleon for He. Intensities were consistent with extrapolations of previously published data below 1 TeV/nucleon.

  11. Exergy Analysis of Energy Consumption for Primary Return Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Xiao-xia, Xia; Zhi-qi, Wang; Shun-sheng, Xu

    The energy consumption of primary return air conditioning system was researched by the method of exergy analysis. Combined with actual example, the exergy loss of equipments and the exergy efficiency of system were calculated both in summer and in winter. The results show that the exergy efficiency is very low in two conditions. The exergy loss focuses on air-conditioned room.The exergy loss of reheater has obvious difference between summer and winner. Based on this, the improvement measure was proposed,which can provide guide for the energy conservation of equipments and system.

  12. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 3: appendix E to technical report, comprehensive EVTECA results tables

    SciTech Connect

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume III presents the results of the total energy cycle model runs, which are summarized in Volume I.

  13. The primary cosmic ray mass composition at energies above 10(14) eV

    NASA Technical Reports Server (NTRS)

    Gawin, J.; Wdowczyk, J.; Kempa, J.

    1985-01-01

    It is shown in this paper that the experimental data on extensive air showers at the energy interval 10 to the 15th power - 10 to the 17th power eV seems to be described best if it is assumed that the Galactic cosmic rays are described by some sort of a two component picture. The first component is of a mixed composition similar to that at lower energies and the second is dominated by protons. Overall spectrum starts to be enriched in protons at energies about 10 to the 15th power eV bu the effective mass of the primaries remains constant up to energies around 10 to the 16th power eV. That results from the fact that composition gradually changes from multi-component to mixture of protons and heavies. That picture receives also some sort of support from recent observations of relatively high number of nergetic protons in JACEE and Concorde experiments.

  14. The primary cosmic ray mass composition at energies above 10(14) eV

    NASA Astrophysics Data System (ADS)

    Gawin, J.; Wdowczyk, J.; Kempa, J.

    1985-08-01

    It is shown in this paper that the experimental data on extensive air showers at the energy interval 10 to the 15th power - 10 to the 17th power eV seems to be described best if it is assumed that the Galactic cosmic rays are described by some sort of a two component picture. The first component is of a mixed composition similar to that at lower energies and the second is dominated by protons. Overall spectrum starts to be enriched in protons at energies about 10 to the 15th power eV bu the effective mass of the primaries remains constant up to energies around 10 to the 16th power eV. That results from the fact that composition gradually changes from multi-component to mixture of protons and heavies. That picture receives also some sort of support from recent observations of relatively high number of nergetic protons in JACEE and Concorde experiments.

  15. Energy Landscape Reveals That the Budding Yeast Cell Cycle Is a Robust and Adaptive Multi-stage Process

    PubMed Central

    Lv, Cheng; Li, Xiaoguang; Li, Fangting; Li, Tiejun

    2015-01-01

    Quantitatively understanding the robustness, adaptivity and efficiency of cell cycle dynamics under the influence of noise is a fundamental but difficult question to answer for most eukaryotic organisms. Using a simplified budding yeast cell cycle model perturbed by intrinsic noise, we systematically explore these issues from an energy landscape point of view by constructing an energy landscape for the considered system based on large deviation theory. Analysis shows that the cell cycle trajectory is sharply confined by the ambient energy barrier, and the landscape along this trajectory exhibits a generally flat shape. We explain the evolution of the system on this flat path by incorporating its non-gradient nature. Furthermore, we illustrate how this global landscape changes in response to external signals, observing a nice transformation of the landscapes as the excitable system approaches a limit cycle system when nutrients are sufficient, as well as the formation of additional energy wells when the DNA replication checkpoint is activated. By taking into account the finite volume effect, we find additional pits along the flat cycle path in the landscape associated with the checkpoint mechanism of the cell cycle. The difference between the landscapes induced by intrinsic and extrinsic noise is also discussed. In our opinion, this meticulous structure of the energy landscape for our simplified model is of general interest to other cell cycle dynamics, and the proposed methods can be applied to study similar biological systems. PMID:25794282

  16. Energy landscape reveals that the budding yeast cell cycle is a robust and adaptive multi-stage process.

    PubMed

    Lv, Cheng; Li, Xiaoguang; Li, Fangting; Li, Tiejun

    2015-03-01

    Quantitatively understanding the robustness, adaptivity and efficiency of cell cycle dynamics under the influence of noise is a fundamental but difficult question to answer for most eukaryotic organisms. Using a simplified budding yeast cell cycle model perturbed by intrinsic noise, we systematically explore these issues from an energy landscape point of view by constructing an energy landscape for the considered system based on large deviation theory. Analysis shows that the cell cycle trajectory is sharply confined by the ambient energy barrier, and the landscape along this trajectory exhibits a generally flat shape. We explain the evolution of the system on this flat path by incorporating its non-gradient nature. Furthermore, we illustrate how this global landscape changes in response to external signals, observing a nice transformation of the landscapes as the excitable system approaches a limit cycle system when nutrients are sufficient, as well as the formation of additional energy wells when the DNA replication checkpoint is activated. By taking into account the finite volume effect, we find additional pits along the flat cycle path in the landscape associated with the checkpoint mechanism of the cell cycle. The difference between the landscapes induced by intrinsic and extrinsic noise is also discussed. In our opinion, this meticulous structure of the energy landscape for our simplified model is of general interest to other cell cycle dynamics, and the proposed methods can be applied to study similar biological systems. PMID:25794282

  17. Energy-Efficient Algorithm for Multicasting in Duty-Cycled Sensor Networks.

    PubMed

    Chen, Quan; Cheng, Siyao; Gao, Hong; Li, Jianzhong; Cai, Zhipeng

    2015-01-01

    Multicasting is a fundamental network service for one-to-many communications in wireless sensor networks. However, when the sensor nodes work in an asynchronous duty-cycled way, the sender may need to transmit the same message several times to one group of its neighboring nodes, which complicates the minimum energy multicasting problem. Thus, in this paper, we study the problem of minimum energy multicasting with adjusted power (the MEMAP problem) in the duty-cycled sensor networks, and we prove it to be NP-hard. To solve such a problem, the concept of an auxiliary graph is proposed to integrate the scheduling problem of the transmitting power and transmitting time slot and the constructing problem of the minimum multicast tree in MEMAP, and a greedy algorithm is proposed to construct such a graph. Based on the proposed auxiliary graph, an approximate scheduling and constructing algorithm with an approximation ratio of 4 l n K is proposed, where K is the number of destination nodes. Finally, the theoretical analysis and experimental results verify the efficiency of the proposed algorithm in terms of the energy cost and transmission redundancy. PMID:26690446

  18. Energy-Efficient Algorithm for Multicasting in Duty-Cycled Sensor Networks

    PubMed Central

    Chen, Quan; Cheng, Siyao; Gao, Hong; Li, Jianzhong; Cai, Zhipeng

    2015-01-01

    Multicasting is a fundamental network service for one-to-many communications in wireless sensor networks. However, when the sensor nodes work in an asynchronous duty-cycled way, the sender may need to transmit the same message several times to one group of its neighboring nodes, which complicates the minimum energy multicasting problem. Thus, in this paper, we study the problem of minimum energy multicasting with adjusted power (the MEMAP problem) in the duty-cycled sensor networks, and we prove it to be NP-hard. To solve such a problem, the concept of an auxiliary graph is proposed to integrate the scheduling problem of the transmitting power and transmitting time slot and the constructing problem of the minimum multicast tree in MEMAP, and a greedy algorithm is proposed to construct such a graph. Based on the proposed auxiliary graph, an approximate scheduling and constructing algorithm with an approximation ratio of 4lnK is proposed, where K is the number of destination nodes. Finally, the theoretical analysis and experimental results verify the efficiency of the proposed algorithm in terms of the energy cost and transmission redundancy. PMID:26690446

  19. Experimental Performance Analysis of Supercritical CO2 Thermodynamic Cycle Powered by Solar Energy

    NASA Astrophysics Data System (ADS)

    Zhang, X. R.; Yamaguchi, H.; Fujima, K.; Enomoto, M.; Sawada, N.

    2006-05-01

    The interests in using carbon dioxide as working fluid increase since the Montreal and Kyoto Protocols were made. In this paper, a complete effort was made to study the performance of CO2 Rankine cycle powered by solar energy experimentally. The system utilizes evacuated solar collectors to convert CO2 into high-temperature supercritical state, used to produce electrical energy and thermal energy, which could be used for air conditioning and hot water supply and so on. The system performances were tested not only in summer, but also in winter; not only in sunny day, but also in cloudy day. The interest of the paper is the solar collector efficiency, because the absorbed heat quantity in the collector can be utilized for power generation and heat supply and other useful outputs. The results show that annually-averaged solar collector efficiency was measured at about 60.4%. The study shows the potential of the application of the solar powered CO2 cycle as a distributed power/heat generation system.

  20. Establishment and analysis of High-Resolution Assimilation Dataset of water-energy cycle over China

    NASA Astrophysics Data System (ADS)

    Wen, Xiaohang; Liao, Xiaohan; Dong, Wenjie; Yuan, Wenping

    2015-04-01

    For better prediction and understanding of water-energy exchange process and land-atmospheric interaction, the in-situ observed meteorological data which were acquired from China Meteorological Administration (CMA) were assimilated in the Weather Research and Forecasting (WRF) model and the monthly Green Vegetation Coverage (GVF) data, which was calculated by the Normalized Difference Vegetation Index (NDVI) of Earth Observing System Moderate-Resolution Imaging Spectroradiometer (EOS-MODIS), Digital Elevation Model (DEM) data of the Shuttle Radar Topography Mission (SRTM) system were also integrated in the WRF model over China. Further, the High-Resolution Assimilation Dataset of water-energy cycle over China (HRADC) was produced by WRF model. This dataset include 25 km horizontal resolution near surface meteorological data such as air temperature, humidity, ground temperature, and pressure at 19 levels, soil temperature and soil moisture at 4 levels, green vegetation coverage, latent heat flux, sensible heat flux, and ground heat flux for 3 hours. In this study, we 1) briefly introduce the cycling 3D-Var assimilation method; 2) Compare results of meteorological elements such as 2 m temperature, precipitation and ground temperature generated by the HRADC with the gridded observation data from CMA, and Global Land Data Assimilation System (GLDAS) output data from National Aeronautics and Space Administration (NASA). It is found that the results of 2 m temperature were improved compared with the control simulation and has effectively reproduced the observed patterns, and the simulated results of ground temperature, 0-10 cm soil temperature and specific humidity were as much closer to GLDAS outputs. Root mean square errors are reduced in assimilation run than control run, and the assimilation run of ground temperature, 0-10 cm soil temperature, radiation and surface fluxes were agreed well with the GLDAS outputs over China. The HRADC could be used in further research on the long period climatic effects and characteristics of water-energy cycle over China.

  1. Global Change Research Related in the Earth's Energy and Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    Berry, Linda R.

    2002-01-01

    The mission of the Global Change Research Related to the Earth's Energy and Hydrologic Cycle is to enhance the scientific knowledge and educational benefits obtained from NASA's Earth Science Enterprise and the U.S. Global Change Research Program, University of Alabama in Huntsville (UAH). This paper presents the final technical report on this collaborative effort. Various appendices include: A) Staff Travel Activities years one through three; B) Publications and Presentations years one through three; C) Education Activities; D) Students year one through three; E) Seminars year one through three; and F) Center for Applied Optics Projects.

  2. Statistical Characterization of Medium-Duty Electric Vehicle Drive Cycles; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Prohaska, R.; Duran, A.; Ragatz, A.; Kelly, K.

    2015-05-03

    With funding from the U.S. Department of Energy’s Vehicle Technologies Office, the National Renewable Energy Laboratory (NREL) conducts real-world performance evaluations of advanced medium- and heavy-duty fleet vehicles. Evaluation results can help vehicle manufacturers fine-tune their designs and assist fleet managers in selecting fuel-efficient, low-emission vehicles that meet their economic and operational goals. In 2011, NREL launched a large-scale performance evaluation of medium-duty electric vehicles. With support from vehicle manufacturers Smith and Navistar, NREL research focused on characterizing vehicle operation and drive cycles for electric delivery vehicles operating in commercial service across the nation.

  3. The seasonal CO2 cycle on Mars - An application of an energy balance climate model

    NASA Technical Reports Server (NTRS)

    James, P. B.; North, G. R.

    1982-01-01

    Energy balance climate models of the Budyko-Sellers variety are applied to the carbon-dioxide cycle on Mars. Recent data available from the Viking mission, in particular the seasonal pressure variations measured by Viking landers, are used to constrain the models. No set of parameters was found for which a one-dimensional model parameterized in terms of ground temperature gave an adequate fit to the observed pressure variations. A modified, two-dimensional model including the effects of dust storms and the polar hood reasonably reproduces the pressure curve, however. The implications of these results for Martian climate changes are discussed.

  4. Energy harvesting based on piezoelectric Ericsson cycles in a piezoceramic material

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Ducharne, B.; Guyomar, D.; Sebald, G.

    2013-09-01

    The possibility of recycling ambient energies with electric generators instead of using batteries with limited life spans has stimulated important research efforts over the past years. The integration of such generators into mainly autonomous low-power systems, for various industrial or domestic applications is envisioned. In particular, the present work deals with energy harvesting from mechanical vibrations. It is shown here that direct piezoelectric energy harvesting (short circuiting on an adapted resistance, for example) leads to relatively weak energy levels that are insufficient for an industrial development. By coupling an electric field and mechanical excitation on Ericsson-based cycles, the amplitude of the harvested energy can be highly increased, and can reach a maximum close to 100 times its initial value. To obtain such a gain, one needs to employ high electrical field levels (high amplitude, high frequency), which induce a non-linearity through the piezoceramic. A special dynamic hysteresis model has been developed to correctly take into account the material properties, and to provide a real estimation of the harvested energy. A large number of theoretical predictions and experimental results have been compared and are discussed herein, in order to validate the proposed solution.

  5. Life cycle assessment of thermal waste-to-energy technologies: review and recommendations.

    PubMed

    Astrup, Thomas Fruergaard; Tonini, Davide; Turconi, Roberto; Boldrin, Alessio

    2015-03-01

    Life cycle assessment (LCA) has been used extensively within the recent decade to evaluate the environmental performance of thermal Waste-to-Energy (WtE) technologies: incineration, co-combustion, pyrolysis and gasification. A critical review was carried out involving 250 individual case-studies published in 136 peer-reviewed journal articles within 1995 and 2013. The studies were evaluated with respect to critical aspects such as: (i) goal and scope definitions (e.g. functional units, system boundaries, temporal and geographic scopes), (ii) detailed technology parameters (e.g. related to waste composition, technology, gas cleaning, energy recovery, residue management, and inventory data), and (iii) modeling principles (e.g. energy/mass calculation principles, energy substitution, inclusion of capital goods and uncertainty evaluation). Very few of the published studies provided full and transparent descriptions of all these aspects, in many cases preventing an evaluation of the validity of results, and limiting applicability of data and results in other contexts. The review clearly suggests that the quality of LCA studies of WtE technologies and systems including energy recovery can be significantly improved. Based on the review, a detailed overview of assumptions and modeling choices in existing literature is provided in conjunction with practical recommendations for state-of-the-art LCA of Waste-to-Energy. PMID:25052337

  6. Vacuum thermal cycle life testing of high temperature thermal energy storage

    NASA Astrophysics Data System (ADS)

    Ponnappan, Rengasamy; Beam, Jerry E.

    1991-01-01

    An experimental program to investigate the corrosion compatibility of the high temperature thermal energy storage (TES) salts with Inconel-617 container was initiated at the Thermal Laboratory of the Wright Research and Development Center (WRDC) in 1985. Three fluoride eutectic mixtures: LiF-MgF2-KF, LiF-MgF2-NaF, and LiF-MgF2 having melting points in the neighborhood of 1000 K and heats of fusion above 750 kJ/kg were chosen. High purity analytical grade component salts were processed in oxygen and moisture-free inert atmosphere, and melted in situ in the Inconel-617 containers. The containers were sealed by electron beam-welding of the end caps thereby evacuating the void volume. The TES capsules thus formed were placed in a tubular vacuum furnace for continuous thermal cycle life testing by cycling them 100 K from the eutectic temperature every 2 hours. The capsules have successfully undergone 40,000 hours and 10,000 cycles of testing as of April 1990 and continuing on the test. This is believed to be the longest record available on the TES corrosion compatibility data. The present results clearly indicate that careful processing and proper welding are key factors in obtaining a longlife TES salt-containment system.

  7. Revisiting the BaO2/BaO redox cycle for solar thermochemical energy storage.

    PubMed

    Carrillo, A J; Sastre, D; Serrano, D P; Pizarro, P; Coronado, J M

    2016-03-01

    The barium peroxide-based redox cycle was proposed in the late 1970s as a thermochemical energy storage system. Since then, very little attention has been paid to such redox couples. In this paper, we have revisited the use of reduction-oxidation reactions of the BaO2/BaO system for thermochemical heat storage at high temperatures. Using thermogravimetric analysis, reduction and oxidation reactions were studied in order to find the main limitations associated with each process. Furthermore, the system was evaluated through several charge-discharge stages in order to analyse its possible degradation after repeated cycling. Through differential scanning calorimetry the heat stored and released were also determined. Oxidation reaction, which was found to be slower than reduction, was studied in more detail using isothermal tests. It was observed that the rate-controlling step of BaO oxidation follows zero-order kinetics, although at high temperatures a deviation from Arrhenius behaviour was observed probably due to hindrances to anionic oxygen diffusion caused by the formation of an external layer of BaO2. This redox couple was able to withstand several redox cycles without deactivation, showing reaction conversions close to 100% provided that impurities are previously eliminated through thermal pre-treatment, demonstrating the feasibility of this system for solar thermochemical heat storage. PMID:26922970

  8. Development of silver-zinc cells of improved cycle life and energy density

    NASA Astrophysics Data System (ADS)

    Serenyi, Roberto; James, Stanley D.

    1994-03-01

    Substantial increases in the cost effectiveness and range of naval underwater vehicles are possible by virtue of advances made, in this program, to silver-zinc, vehicle propulsion batteries. To improve battery cycle life and energy density, electropermeable membranes (EPM's) were used as additives and/or as coatings for the negative electrodes and as coatings for conventional separator materials. Also, bismuth oxide was tested as an additive to the negative electrodes and P2291-40/20, a radiation-grafted polyethylene film, as a separator used in conjunction with silver-treated cellophane. EPM's used as negative electrode additives and also as coatings for Celgard 2500 microporous polypropylene greatly improved cells. Cells with EPM's used as coatings for the negative electrodes failed rapidly because of an error in formulation. Cells with 10 percent bismuth oxide in the negative electrodes exhibited substantially lower capacity than the standard cells and were removed from the test. Cells with radiation-grafted polyethylene separators provided fewer cycles than the standard cells, with 5 percent higher capacity and 6 percent lower utilization of active materials by cycle 60. However, the slightly better capacity of these cells, realized due to the additional space available for active materials, does not compensate for their generally unimpressive performance.

  9. Annual cycle of the global-mean energy budget in a mechanistic middle atmosphere GCM

    NASA Astrophysics Data System (ADS)

    Becker, Erich; Knoepfel, Rahel

    2014-05-01

    A new mechanistic climate model from the surface to the lower thermosphere is presented. The model is based on a standard spectral dynamical core and includes an idealized radiation scheme with continuous computation of energy fluxes. The surface energy budget is fully taken into account by means of a slap ocean with prescribed lateral oceanic heat-flux convergence. The moisture budget is based on a new transport scheme and simple parameterizations of condensation and convection. Subgrid-scale parameterizations include gravity waves and turbulent diffusion. Each parameterized process is formulated in an energy conserving fashion such that the resulting numerical error of the net radiation at the top of the atmosphere (RTOA) is about 0.2 W/m/m. The model shows a pronounced annual cycle of the RTOA of several W/m/m, with the minimum occurring in late NH winter. On a seasonal timescale this variation is synchronous with an equally strong imbalance at the surface. The annual cycle of the RTOA results from the hemispheric differences in the distribution of land and ocean surfaces, which are characterized by different heat capacities and albedos. While the absorbed solar radiation (ASR) is dominated by a semi-annual component associated with maximum absorption at the surface during the equinoxes, the global-mean surface temperature is governed by an annual component with a minimum during late NH winter. The reason is a smaller surface heat capacity in the NH, giving rise to global-mean cooling particularly during early NH winter. The annual cycle in the surface temperature then implies a corresponding behavior in the outgoing long-wave radiation (OLR), which gives the main contribution to the annual component of the RTOA. These mechanistic model results are supported by existing observational analyses. Analysing the global-mean energy budget as a function of height, the residual circulation is found to account for a downward dynamical energy flux from the stratosphere into the troposphere of about 1 W/m/m, which is consistently balanced in the model by a net upward radiation flux between about 300 and 10 hPa. The implications of this study are that 1) an imbalance in the RTOA may contain significant contributions from natural oceanic variability and 2) the dynamical energy flux from the middle into the lower atmosphere requires to include a realistic stratosphere in climate models.

  10. Pyroelectric waste heat energy harvesting using relaxor ferroelectric 8/65/35 PLZT and the Olsen cycle

    NASA Astrophysics Data System (ADS)

    Lee, Felix Y.; Goljahi, Sam; McKinley, Ian M.; Lynch, Christopher S.; Pilon, Laurent

    2012-02-01

    Waste heat can be directly converted into electrical energy by performing the Olsen cycle on pyroelectric materials. The Olsen cycle consists of two isothermal and two isoelectric field processes in the electric displacement versus electric field diagram. This paper reports on the electrical energy generated by lanthanum-doped lead zirconate titanate (8/65/35 PLZT) subjected to the Olsen cycle. The material was alternately dipped into a cold and a hot silicone oil bath under specified electric fields. A maximum energy density of 888 J l-1/cycle was obtained with a 290 m thick 8/65/35 PLZT sample for temperatures between 25 and 160?C and electric fields cycled between 0.2 and 7.5 MV m-1. To the best of our knowledge, this is the largest pyroelectric energy density experimentally measured with multiple cycles. It corresponded to a power density of 15.8 W l-1. The electrical breakdown strength and therefore the energy and power densities of the material increased as the sample thickness was reduced from 720 to 290 m. Furthermore, a physical model for estimating the energy harvested by ferroelectric relaxors was further validated against experimental data for a wide range of electric fields and temperatures.

  11. Global Change Research Related to the Earth's Energy and Hydrologic Cycle

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Institute for Global Change Research and Education (IGCRE) is a joint initiative of the Universities Space Research Association (USRA) and the University of Alabama in Huntsville (UAH) for coordinating and facilitating research and education relevant to global environmental change. Created in 1992 with primary support from the National Aeronautics and Space Administration (NASA), IGCRE fosters participation by university, private sector and government scientists who seek to develop long-term collaborative research in global change science, focusing on the role of water and energy in the Earth's atmosphere and physical climate system. IGCRE is also chartered to address educational needs of Earth system and global change science, including the preparation of future scientists and training of primary and secondary education teachers.

  12. The Role of Energy Dispersion in the Genesis and Life Cycle of African Easterly Waves

    NASA Astrophysics Data System (ADS)

    Diaz, Michael

    This dissertation uses energy dispersion and wave packet concepts to provide a better conceptual model of the genesis and life cycle of African Easterly Waves and to better understand the instability of the African Easterly Jet (AEJ). The existence of an upstream (eastward) group velocity for AEWs is shown based on single-point lag regressions using gridded reanalysis data from 1990 to 2010. The eastward energy dispersion is consistent with the direction of ageostrophic geopotential flux vectors. A local eddy kinetic energy (EKE) budget reveals that, early in the life cycle of AEWs, growth rate due to geopotential flux convergence exceeds baroclinic and barotropic growth rates. Later in the life cycle, EKE decay due to geopotential flux divergence cancels or exceeds baroclinic and barotropic growth. A potential vorticity (PV) budget is used to diagnose tendencies related to group propagation. Although both upstream and downstream group speeds are possible because of the reversal in the mean meridional PV gradient, upstream propagation associated with the positive poleward PV gradient dominates wave packet evolution. Analogous to the concept of downstream development of midlatitude baroclinic waves, new AEWs develop preferentially upstream of the older ones, thus providing a mechanism for seeding new waves. The usefulness of upstream development as a genesis mechanism for AEWs is demonstrated by performing a case study of the AEW which ultimately produced hurricane Alberto (2000). The case study uses the ERA-interim reanalysis combined with surface observations and TRMM data. Using a local EKE budget, we attribute its genesis to energy dispersion from a preceding AEW. After genesis, baroclinic and barotropic conversion dominated the energetics of this AEW. Some strengths and weaknesses of upstream development as a paradigm for AEW genesis are discussed with respect to other potential mechanisms. The stability of the AEJ is examined applying the concept of absolute and convective instability. Using idealized numerical simulations, it is found that the AEJ can support absolute instabilities in the form of AEWs. The existence of absolute instability is verified using a local energetics budget, which demonstrates the presence of both upstream and downstream energy fluxes, allowing unstable wave packets to spread both upstream and downstream of their initial point of excitation. In contrast with normal mode instability theory, which emphasizes wave growth through energy extraction from the basic state, the life cycle of the simulated AEWs is strongly governed by energy fluxes. Convergent fluxes at the beginning of the AEW storm track generate new AEWs whereas divergent fluxes at the end of the storm track lead to their decay. It is argued that, even with small normal mode growth rates, AEWs can still develop through instability alone, without needing a precursor disturbance, because upstream energy fluxes allow energy to be recycled between successive AEWs.

  13. A kinetic analysis of the primary charge separation in bacterial photosynthesis. Energy gaps and static heterogeneity

    NASA Astrophysics Data System (ADS)

    Bixon, M.; Jortner, Joshua; Michel-Beyerle, M. E.

    1995-08-01

    We consider the energetics, the mechanism and the implications of static heterogeneity for the primary electron transfer (ET) from the electronically excited singlet state of the bacteriochlorophyll dimer ( 1O ?) in the bacterial photosynthetic reaction center (RC) and some of its mutants. The energetics of the primary ET was inferred from an analysis of the experimental free energy relation (at T = 300 K) between the short-time decay rates of 1P ? and the oxidation potentials of the dimer (P) for a series of single site "good" mutants, for which geometrical changes are minimized and perturbations of the prosthetic groups of the accessory bacteriochlorophyll (B) and of the bacteriopheophytin (H) by the mutants are minor. This analysis resulted in the reasonable value of ?1 = 800 250 cm -1 for the (mutant invariant) medium reorganization energy and ?G10(N) = -480 180 cm -1 for the energy gap for the native (N) RC. The low value of ?G10(N) implies that the dominant room temperature ET mechanism for the native RC involves sequential ET. Next, we have explored the effects of heterogeneity on the primary ET by model calculations for the parallel sequential-superexchange mechanism, which is subjected to Gaussian energy distributions of the energies of the P +B -H and P +BH - ion pair states (with a width parameter of ? = 400 cm -1). The modelling of the heterogeneous kinetics by varying the (mean) energy gap ?G1 between P +B -H and 1P ? was performed to elucidate the temporal decay of 1P ? and the ET quantum yield in "good" mutants, to explore the gross feature of primary ET in a triple hydrogen bonded mutant and to characterize some of the temperature dependence of the primary ET. The most pronounced manifestations of heterogeneity within the native RC and its single site mutants ( ?G1 = -900 to 300 cm -1) are the nonexponential temporal decay probabilities for 1P ?, which exhibit long-time tails, with heterogeneity effects being marked (in the classical limit) when ?( ?G1 + ?1) > ?1kBT. When ?G1 ? ? (i.e., ?G1 ? 1000 cm -1), the relaxation rate of 1P ? is slow, being dominated by the dimer internal conversion rate, with the effects of heterogeneity being less marked, as is the case for the triple hydrogen bond mutant. Regarding mechanistic issues, our kinetic modelling implies that at room temperature, primary ET in the native RC and its single site mutants is dominated by the sequential route and only the triple mutant exhibits a marked contribution of the superexchange route. At low temperature ( T = 20 K), ET in the native RC is still dominated by the sequential route (with a small (i.e., 10%) superexchange contribution being manifested in its long-time decay), for single site mutants there is an interplay between sequential and superexchange routes, while superexchange dominates ET in the triple mutant. The heterogeneous parallel sequential-superexchange mechanism is of intrinsic significance to insure the stability of primary photosynthetic ET for different native and mutagenetically modified RCs over a broad temperature domain.

  14. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael

    2012-06-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawai’i and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the predicted economies of scale as technology and efficiency improvements are realized and larger more economical plants deployed. Utilizing global high resolution OTEC resource assessment from the Ocean Thermal Extractable Energy Visualization (OTEEV) project (an independent DOE project), Global Energy Supply Curves were generated for Grid Connected and Energy Carrier OTEC plants deployed in 2045 when the predicted technology and efficiencies improvements are fully realized. The Global Energy Supply Curves present the LCOE versus capacity in ascending order with the richest, lowest cost resource locations being harvested first. These curves demonstrate the vast ocean thermal resource and potential OTEC capacity that can be harvested with little change in LCOE.

  15. Measurements of high energy photons in Z-pinch experiments on primary test stand.

    PubMed

    Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-08-01

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 10(10) cm(-2) (20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region. PMID:26329192

  16. Measurements of high energy photons in Z-pinch experiments on primary test stand

    NASA Astrophysics Data System (ADS)

    Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-08-01

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 1010 cm-2 (20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.

  17. Land-Energy Nexus: Life Cycle Land Use of Natural Gas-Fired Electricity

    NASA Astrophysics Data System (ADS)

    Heath, G.; Jordaan, S.; Macknick, J.; Mohammadi, E.; Ben-Horin, D.; Urrea, V.

    2014-12-01

    Comparisons of the land required for different types of energy are challenging due to the fact that upstream land use of fossil fuel technologies is not well characterized. This research focuses on improving estimates of the life cycle land use of natural gas-fired electricity through the novel combination of inventories of the location of natural gas-related infrastructure, satellite imagery analysis and gas production data. Land area per unit generation is calculated as the sum of natural gas life cycle stages divided by the throughput of natural gas, combined with the land use of the power plant divided by the generation of the power plant. Five natural gas life cycle stages are evaluated for their area: production, gathering, processing, transmission and disposal. The power plant stage is characterized by a thermal efficiency ηth, which converts MegaJoules (MJ) to kilowatt hours (kWh). We focus on seven counties in the Barnett shale region in Texas that represent over 90% of total Barnett Shale gas production. In addition to assessing the gathering and transmission pipeline network, approximately 500 sites are evaluated from the five life cycle stages plus power plants. For instance, assuming a 50 foot right-of-way for transmission pipelines, this part of the Barnett pipeline network occupies nearly 26,000 acres. Site, road and water components to total area are categorized. Methods are developed to scale up sampled results for each component type to the full population of sites within the Barnett. Uncertainty and variability are charaterized. Well-level production data are examined by integrating commercial datasets with advanced methods for quantifying estimated ultimate recovery (EUR) for wells, then summed to estimate natural gas produced in an entire play. Wells that are spatially coincident are merged using ArcGIS. All other sites are normalized by an estimate of gas throughput. Prior land use estimates are used to validate the satellite imagery analysis. Results of this research will provide a step towards better quantifying the land footprint of energy production activities and a methodologically consistent baseline from which more robust comparisons with alternative energy choices can be made.

  18. Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles

    SciTech Connect

    Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

    1998-12-31

    This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

  19. Systems analysis techniques for annual cycle thermal energy storage solar systems

    SciTech Connect

    Baylin, F.; Sillman, S.

    1980-07-01

    Community-scale annual cycle thermal energy storage (ACTES) solar systems are promising options for building heat and cooling. A variety of approaches are feasible in modeling ACTES solar systems. The key parameter in such efforts, average collector efficiency, is first examined, followed by several approaches for simple and effective modeling. Methods are also examined for modeling building loads for structures based on both conventional and passive architectural designs. Two simulation models for sizing solar heating systems with annual storage are presented next. Validation is presented by comparison with the results of a study of seasonal storage systems based on SOLANSIM, an hour-by-hour simulation. These models are presently being used to examine the economic trade-off between collector field area and storage capacity. Finally, programs in the US Department of Energy directed toward developing either other system components such as improved tanks and solar ponds or design tools for ACTES solar systems are examined.

  20. The effects of Red Bull energy drink compared with caffeine on cycling time-trial performance.

    PubMed

    Quinlivan, Alannah; Irwin, Christopher; Grant, Gary D; Anoopkumar-Dukie, Sheilandra; Skinner, Tina; Leveritt, Michael; Desbrow, Ben

    2015-10-01

    This study investigated the ergogenic effects of a commercial energy drink (Red Bull) or an equivalent dose of anhydrous caffeine in comparison with a noncaffeinated control beverage on cycling performance. Eleven trained male cyclists (31.7 ± 5.9 y 82.3 ± 6.1 kg, VO2max = 60.3 ± 7.8 mL · kg-1 · min-1) participated in a double-blind, placebo-controlled, crossover-design study involving 3 experimental conditions. Participants were randomly administered Red Bull (9.4 mL/kg body mass [BM] containing 3 mg/kg BM caffeine), anhydrous caffeine (3 mg/kg BM given in capsule form), or a placebo 90 min before commencing a time trial equivalent to 1 h cycling at 75% peak power output. Carbohydrate and fluid volumes were matched across all trials. Performance improved by 109 ± 153 s (2.8%, P = .039) after Red Bull compared with placebo and by 120 ± 172 s (3.1%, P = .043) after caffeine compared with placebo. No significant difference (P > .05) in performance time was detected between Red Bull and caffeine treatments. There was no significant difference (P > .05) in mean heart rate or rating of perceived exertion among the 3 treatments. This study demonstrated that a moderate dose of caffeine consumed as either Red Bull or in anhydrous form enhanced cycling time-trial performance. The ergogenic benefits of Red Bull energy drink are therefore most likely due to the effects of caffeine, with the other ingredients not likely to offer additional benefit. PMID:25710190

  1. Estimating the neutrally buoyant energy density of a Rankine-cycle/fuel-cell underwater propulsion system

    NASA Astrophysics Data System (ADS)

    Waters, Daniel F.; Cadou, Christopher P.

    2014-02-01

    A unique requirement of underwater vehicles' power/energy systems is that they remain neutrally buoyant over the course of a mission. Previous work published in the Journal of Power Sources reported gross as opposed to neutrally-buoyant energy densities of an integrated solid oxide fuel cell/Rankine-cycle based power system based on the exothermic reaction of aluminum with seawater. This paper corrects this shortcoming by presenting a model for estimating system mass and using it to update the key findings of the original paper in the context of the neutral buoyancy requirement. It also presents an expanded sensitivity analysis to illustrate the influence of various design and modeling assumptions. While energy density is very sensitive to turbine efficiency (sensitivity coefficient in excess of 0.60), it is relatively insensitive to all other major design parameters (sensitivity coefficients < 0.15) like compressor efficiency, inlet water temperature, scaling methodology, etc. The neutral buoyancy requirement introduces a significant (15%) energy density penalty but overall the system still appears to offer factors of five to eight improvements in energy density (i.e., vehicle range/endurance) over present battery-based technologies.

  2. Consequences of the cultivation of energy crops for the global nitrogen cycle.

    PubMed

    Bouwman, A F; Van Grinsven, J J M; Eickhout, B

    2010-01-01

    In this paper, we assess the global consequences of implementing first- and second-generation bioenergy in the coming five decades, focusing on the nitrogen cycle. We use a climate mitigation scenario from the Organization for Economic Cooperation and Development's (OECD) Environmental Outlook, in which a carbon tax is introduced to stimulate production of biofuels from energy crops. In this scenario, the area of energy crops will increase from 8 Mha in the year 2000 to 270 Mha (14% of total cropland) and producing 5.6 Pg dry matter per year (12% of energy use) in 2050. This production requires an additional annual 19 Tg of N fertilizer in 2050 (15% of total), and this causes a global emission of 0.7 Tg of N2O-N (8% of agricultural emissions), 0.2 Tg NO-N (6%), and 2.2 Tg of NH3-N (5%). In addition, we project that 2.6 Tg of NO3(-)-N will leach from fields under energy crops. The emissions of N2O may be an important term in the greenhouse gas balance of biofuels produced from energy crops. PMID:20349833

  3. An RF energy harvesting power management circuit for appropriate duty-cycled operation

    NASA Astrophysics Data System (ADS)

    Shirane, Atsushi; Ito, Hiroyuki; Ishihara, Noboru; Masu, Kazuya

    2015-04-01

    In this study, we present an RF energy harvesting power management unit (PMU) for battery-less wireless sensor devices (WSDs). The proposed PMU realizes a duty-cycled operation that is divided into the energy charging time and discharging time. The proposed PMU detects two types of timing, thus, the appropriate timing for the activation can be recognized. The activation of WSDs at the proper timing leads to energy efficient operation and stable wireless communication. The proposed PMU includes a hysteresis comparator (H-CMP) and an RF signal detector (RF-SD) to detect the timings. The proposed RF-SD can operate without the degradation of charge efficiency by reusing the RF energy harvester (RF-EH) and H-CMP. The PMU fabricated in a 180 nm Si CMOS demonstrated the charge operation using the RF signal at 915 MHz and the two types of timing detection with less than 124 nW in the charge phase. Furthermore, in the active phase, the PMU generates a 0.5 V regulated power supply from the charged energy.

  4. Determination of optimal pacing strategy in track cycling with an energy flow model.

    PubMed

    de Koning, J J; Bobbert, M F; Foster, C

    1999-10-01

    The purpose of this study was to investigate the effect of pacing strategies on performance times in the 1000 m time trial event and the 4000 m pursuit event in track cycling. For this purpose, we simulated these events with a model based on the flow of energy in cycling. Different strategies in distributing the available anaerobic energy were evaluated and we compared model predictions of split times and final times with values achieved by cyclists during championships. The best result at the 1000 m time trial was obtained when the cyclist had the highest anaerobic peak power output and used an 'all-out' strategy. The fastest time on the 4000 m pursuit was achieved with an 'all-out' start at a high level of initial power output, followed by a constant anaerobic power output after 12 seconds, resulting in an evenly paced race. The results show that even small variations in pacing strategy may have substantial effects on performance. There seems to be an opportunity to gain a competitive advantage when individual athletes experiment with small variations in pacing strategy to find the precise individual strategy that works best under specific conditions. PMID:10668763

  5. Thermodynamic framework for identifying free energy inventories of enzyme catalytic cycles.

    PubMed

    Fried, Stephen D; Boxer, Steven G

    2013-07-23

    Pauling's suggestion that enzymes are complementary in structure to the activated complexes of the reactions they catalyze has provided the conceptual basis to explain how enzymes obtain their fantastic catalytic prowess, and has served as a guiding principle in drug design for over 50 y. However, this model by itself fails to predict the magnitude of enzymes' rate accelerations. We construct a thermodynamic framework that begins with the classic concept of differential binding but invokes additional terms that are needed to account for subtle effects in the catalytic cycle's proton inventory. Although the model presented can be applied generally, this analysis focuses on ketosteroid isomerase (KSI) as an example, where recent experiments along with a large body of kinetic and thermodynamic data have provided strong support for the noncanonical thermodynamic contribution described. The resulting analysis precisely predicts the free energy barrier of KSI's reaction as determined from transition-state theory using only empirical thermodynamic data. This agreement is suggestive that a complete free energy inventory of the KSI catalytic cycle has been identified. PMID:23840058

  6. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-10-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  7. Fan cycling strategies and heat pipe heat exchangers provide energy efficient dehumidification

    SciTech Connect

    Shirey, D.B. III

    1995-03-01

    This article describes two methods to reduce energy consumption and peak demand in buildings that require humidity control that were demonstrated at the Salvador Dali Museum in St. Petersburg, Florida. The first method centered on alternative indoor fan cycling strategies and the second method involved the use of heat pipe heat exchangers. Both approaches increased the dehumidification performance of the existing air-conditioning systems and provided substantial savings. Simple, low cost alternative fan cycling strategies were used. When possible, auto fan control replaced constant fan operation to avoid excess fan energy consumption, ventilation load and compressor operation. The alternative fan control strategies reduced indoor humidity fluctuations in all zones, and significantly reduced overall humidity levels in the museum lobby and storage area. An HPHX was installed within one of the two gallery RTUs to improve the unit`s dehumidification performance. The passive HPHX significantly reduced electric reheat and compressor operation while maintaining the precise temperature and humidity requirements within the gallery. The second gallery RTU now operates primarily as a back-up unit to the heat pipe-assisted air-conditioning unit.

  8. LES of large wind farm during a diurnal cycle: Analysis of Energy and Scalar flux budgets

    NASA Astrophysics Data System (ADS)

    Sharma, V.; Calaf, M.; Parlange, M. B.

    2014-12-01

    With an expanding role of wind energy in satisfying energy demands around the world, wind farms are covering increasingly larger surfaces to the point where interaction between wind farms and the atmospheric boundary layer (ABL) might have significant implications. Furthermore, many wind farm sites lie over existing farmland for which water is a precious resource. In this context, a relevant question yet to be fully understood, is whether large wind farms alter near surface temperatures and evaporation rates and if so, by how much. In the present study, Large Eddy Simulation (LES) of a geostrophic wind driven ABL with two active scalars, temperature and specific humidity, in the presence of Coriolis forces with an embedded wind farm are performed. Multiple 'synthetic' diurnal cycles are simulated by imposing a time-varying surface temperature and specific humidity. Wind turbines are modeled using the "actuator disk" approach along with the flexibility to reorient according to varying flow directions. LES is performed using the "pseudo-spectral" approach implying that an infinitely large wind farm is simulated. Comparison of simulations with and without wind farms show clear differences in vertical profiles of horizontal velocity magnitude and direction, turbulent kinetic energy and scalar fluxes. To better understand these differences, a detailed analysis of the constituent terms of budget equations of mean and turbulent kinetic energy and sensible and latent heat fluxes has been performed for different stratification regimes as the ABL evolves during the diurnal cycle. The analyses help explain the effect of wind farms on the characteristics of the low-level jet, depth of the stable boundary layer, formation and growth of the convective boundary layer (CBL) and scalar fluxes at the surface.

  9. Thermal energy storage for integrated gasification combined-cycle power plants

    SciTech Connect

    Drost, M.K.; Antoniak, Z.I.; Brown, D.R.; Somasundaram, S.

    1990-07-01

    There are increasingly strong indications that the United States will face widespread electrical power generating capacity constraints in the 1990s; most regions of the country could experience capacity shortages by the year 2000. The demand for new generating capacity occurs at a time when there is increasing emphasis on environmental concerns. The integrated gasification combined-cycle (IGCC) power plant is an example of an advanced coal-fired technology that will soon be commercially available. The IGCC concept has proved to be efficient and cost-effective while meeting all current environmental regulations on emissions; however, the operating characteristics of the IGCC system have limited it to base load applications. The integration of thermal energy storage (TES) into an IGCC plant would allow it to meet cyclic loads while avoiding undesirable operating characteristics such as poor turn-down capability, impaired part-load performance, and long startup times. In an IGCC plant with TES, a continuously operated gasifier supplies medium-Btu fuel gas to a continuously operated gas turbine. The thermal energy from the fuel gas coolers and the gas turbine exhaust is stored as sensible heat in molten nitrate salt; heat is extracted during peak demand periods to produce electric power in a Rankine steam power cycle. The study documented in this report was conducted by Pacific Northwest Laboratory (PNL) and consists of a review of the technical and economic feasibility of using TES in an IGCC power plant to produce intermediate and peak load power. The study was done for the US Department of Energy's (DOE) Office of Energy Storage and Distribution. 11 refs., 5 figs., 18 tabs.

  10. Effects of acute sprint interval cycling and energy replacement on postprandial lipemia.

    PubMed

    Freese, Eric C; Levine, Ari S; Chapman, Donald P; Hausman, Dorothy B; Cureton, Kirk J

    2011-12-01

    High postprandial blood triglyceride (TG) levels increase cardiovascular disease risk. Exercise interventions may be effective in reducing postprandial blood TG. The purpose of this study was to determine the effects of sprint interval cycling (SIC), with and without replacement of the energy deficit, on postprandial lipemia. In a repeated-measures crossover design, six men and six women participated in three trials, each taking place over 2 days. On the evening of the first day of each trial, the participants either did SIC without replacing the energy deficit (Ex-Def), did SIC and replaced the energy deficit (Ex-Bal), or did not exercise (control). SIC was performed on a cycle ergometer and involved four 30-s all-out sprints with 4-min active recovery. In the morning of day 2, responses to a high-fat meal were measured. Venous blood samples were collected in the fasted state and at 0, 30, 60, 120, and 180 min postprandial. There was a trend toward a reduction with treatment in fasting TG (P = 0.068), but no significant treatment effect for fasting insulin, glucose, nonesterified fatty acids, or betahydroxybutryrate (P > 0.05). The postprandial area under the curve (mmol·l(-1)·3 h(-1)) TG response was significantly lower in Ex-Def (21%, P = 0.006) and Ex-Bal (10%, P = 0.044) than in control, and significantly lower in Ex-Def (12%, P = 0.032) than in Ex-Bal. There was no treatment effect (P > 0.05) observed for area under the curve responses of insulin, glucose, nonesterified fatty acids, or betahydroxybutryrate. SIC reduces postprandial lipemia, but the energy deficit alone does not fully explain the decrease observed. PMID:21852403

  11. Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys

    NASA Astrophysics Data System (ADS)

    Béland, Laurent Karim; Lu, Chenyang; Osetskiy, Yuri N.; Samolyuk, German D.; Caro, Alfredo; Wang, Lumin; Stoller, Roger E.

    2016-02-01

    Alloying of Ni with Fe or Co has been shown to reduce primary damage production under ion irradiation. Similar results have been obtained from classical molecular dynamics simulations of 1, 10, 20, and 40 keV collision cascades in Ni, NiFe, and NiCo. In all cases, a mix of imperfect stacking fault tetrahedra, faulted loops with a 1/3⟨111⟩ Burgers vector, and glissile interstitial loops with a 1/2⟨110⟩ Burgers vector were formed, along with small sessile point defect complexes and clusters. Primary damage reduction occurs by three mechanisms. First, Ni-Co, Ni-Fe, Co-Co, and Fe-Fe short-distance repulsive interactions are stiffer than Ni-Ni interactions, which lead to a decrease in damage formation during the transition from the supersonic ballistic regime to the sonic regime. This largely controls final defect production. Second, alloying decreases thermal conductivity, leading to a longer thermal spike lifetime. The associated annealing reduces final damage production. These two mechanisms are especially important at cascades energies less than 40 keV. Third, at the higher energies, the production of large defect clusters by subcascades is inhibited in the alloys. A number of challenges and limitations pertaining to predictive atomistic modeling of alloys under high-energy particle irradiation are discussed.

  12. Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys

    DOE PAGESBeta

    Béland, Laurent Karim; Lu, Chenyang; Osetskiy, Yuri N.; Samolyuk, German D.; Caro, Alfredo; Wang, Lumin; Stoller, Roger E.

    2016-02-25

    Alloying of Ni with Fe or Co reduces primary damage production under ion irradiation. Similar results have been obtained from classical molecular dynamics simulations of 1, 10, 20, and 40 keV collision cascades in Ni, NiFe, and NiCo. In all cases, a mix of imperfect stacking fault tetrahedra, faulted loops with a 1/3 {111} Burgers vector, and glissile interstitial loops with a 1/2 {110} Burgers vector were formed, along with small sessile point defect complexes and clusters. Primary damage reduction occurs by three mechanisms. First, Ni-Co, Ni-Fe, Co-Co, and Fe-Fe short-distance repulsive interactions are stiffer than Ni-Ni interactions, which leadmore » to a decrease in damage formation during the transition from the supersonic ballistic regime to the sonic regime. This largely controls final defect production. Second, alloying decreases thermal conductivity, leading to a longer thermal spike lifetime. The associated annealing reduces final damage production. These two mechanisms are especially important at cascades energies less than 40 keV. Third, at the higher energies, the production of large defect clusters by subcascades is inhibited in the alloys. A number of challenges and limitations pertaining to predictive atomistic modeling of alloys under high-energy particle irradiation are discussed.« less

  13. Operating Conditions of a Three-stage Combined Power Cycle using Cold Energy for Maximizing Exergetic Efficiency

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takahiko; Akisawa, Atsushi; Kashiwagi, Takao

    Waste heat utilization is a fundamental approach to end-use energy savings. Medium or low temperature waste heat is not usable unless its temperature level matches the demand. From this standpoint, power generation from medium or low temperature waste heat is beneficial because it improves the availability of the energy by converting waste heat into electricity or mechanical work. Conventional waste heat driven power generation cycles, such as the Kalina cycle, attain relatively low thermal efficiencies because of the low exergy in medium or low temperature heat. This paper proposes a three-stage combined power cycle using cold energy for power generation from medium temperature (?200C)waste heat. The system consists of an ammonia-water Rankine cycle, an ethane-propane Rankine cycle and a liquefied natural gas direct expansion cycle. A cycle simulation of the system is executed, and the operating conditions where the exergetic efficiency is maximized are presented in this article. It is found that the exergetic efficiency reaches 31% under these operating conditions.

  14. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types

    NASA Astrophysics Data System (ADS)

    Wang, Michael; Wu, May; Huo, Hong

    2007-04-01

    Since the United States began a programme to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant typescategorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantlyfrom a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path.

  15. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types.

    SciTech Connect

    Wang, M.; Wu, M.; Huo, H.; Energy Systems

    2007-04-01

    Since the United States began a program to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant types--categorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantly--from a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path.

  16. Development of an Organic Rankine Cycle system for exhaust energy recovery in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Cipollone, Roberto; Bianchi, Giuseppe; Gualtieri, Angelo; Di Battista, Davide; Mauriello, Marco; Fatigati, Fabio

    2015-11-01

    Road transportation is currently one of the most influencing sectors for global energy consumptions and CO2 emissions. Nevertheless, more than one third of the fuel energy supplied to internal combustion engines is still rejected to the environment as thermal waste at the exhaust. Therefore, a greater fuel economy might be achieved recovering the energy from exhaust gases and converting it into useful power on board. In the current research activity, an ORC-based energy recovery system was developed and coupled with a diesel engine. The innovative feature of the recovery power unit relies upon the usage of sliding vane rotary machines as pump and expander. After a preliminary exhaust gas mapping, which allowed to assess the magnitude of the thermal power to be recovered, a thermodynamic analysis was carried out to design the ORC system and the sliding vane machines using R236fa as working fluid. An experimental campaign was eventually performed at different operating regimes according to the ESC procedure and investigated the recovery potential of the power unit at design and off-design conditions. Mechanical power recovered ranged from 0.7 kW up to 1.9 kW, with an overall cycle efficiency from 3.8% up to 4.8% respectively. These results candidate sliding vane machines as efficient and reliable devices for waste heat recovery applications.

  17. Identifying energy and carbon footprint optimization potentials of a sludge treatment line with Life Cycle Assessment.

    PubMed

    Remy, C; Lesjean, B; Waschnewski, J

    2013-01-01

    This study exemplifies the use of Life Cycle Assessment (LCA) as a tool to quantify the environmental impacts of processes for wastewater treatment. In a case study, the sludge treatment line of a large wastewater treatment plant (WWTP) is analysed in terms of cumulative energy demand and the emission of greenhouse gases (carbon footprint). Sludge treatment consists of anaerobic digestion, dewatering, drying, and disposal of stabilized sludge in mono- or co-incineration in power plants or cement kilns. All relevant forms of energy demand (electricity, heat, chemicals, fossil fuels, transport) and greenhouse gas emissions (fossil CO(2), CH(4), N(2)O) are accounted in the assessment, including the treatment of return liquor from dewatering in the WWTP. Results show that the existing process is positive in energy balance (-162 MJ/PE(COD) * a) and carbon footprint (-11.6 kg CO(2)-eq/PE(COD) * a) by supplying secondary products such as electricity from biogas production or mono-incineration and substituting fossil fuels in co-incineration. However, disposal routes for stabilized sludge differ considerably in their energy and greenhouse gas profiles. In total, LCA proves to be a suitable tool to support future investment decisions with information of environmental relevance on the impact of wastewater treatment, but also urban water systems in general. PMID:23128622

  18. Life cycle assessment of innovative technology for energy production from automotive shredder residue.

    PubMed

    Rinaldi, Caterina; Masoni, Paolo; Salvati, Fabio; Tolve, Pietro

    2015-07-01

    Automotive Shredder Residue (ASR) is a problematic waste material remaining after shredding and recovery processes of end-of-life vehicles (ELVs). Its heterogeneous grain size and composition make difficult its recovery or disposal. Although ASR accounts for approximately 20% to 25% of the weight of an ELV, the European Union (EU)'s ELV Directive (2000/53/EC) requires that by 2015 a minimum 95% of the weight of an ELV must be reused or recovered, including a 10% weight energy recovery. The quantity of ASR is relevant: Approximately 2.4 million tons are generated in the EU each year and most of it is sent to landfills. This article describes a life cycle model of the "TEKNE-Fluff" process designed to make beneficial use of ASR that is based on the results of an experimental pilot plant for pyro-gasification, combustion, cogeneration, and emissions treatment of ASR. The goal of the research was the application of life cycle assessment (LCA) methodology to identify the environmental hot spots of the "TEKNE system" and use scenario analysis to check solutions to improve its environmental profile, supporting the design and industrialization process. The LCA was conducted based on data modeled from the experimental campaign. Moreover, different scenarios on shares of electricity and thermal energy produced by the cogeneration system and alternative treatment processes for the waste produced by the technology were compared. Despite the limitation of the research (results based on scaling up experimental data by modeling), impact assessment results are promising and sufficiently robust, as shown by Monte Carlo analysis. The TEKNE technology may become an interesting solution for the problem of ASR management: Besides representing an alternative to landfill disposal, the energy produced could avoid significant impacts on fossil resources depletion (a plant of 40,000 tons/y capacity could produce ∼ 147,000 GJ/yr, covering the annual need of ∼ 13,500 households). PMID:25930669

  19. Effects Of Urbanization On Interconnected Water Cycle, Microclimate And Energy Usage In Semi-Arid Regions

    NASA Astrophysics Data System (ADS)

    Jeyachandran, I.; Burian, S. J.; Pardyjak, E.

    2008-12-01

    Landscape changes induced by urbanization have been found to influence urban water cycle components including evapotranspiration (ET), runoff and water use. For instance, residential areas in semi-arid regions with vegetation subjected to lawn watering have higher ET rates when compared to the other areas in an urban environment. This increase associated with lawn irrigation can contribute to water scarcity problems. Conversely, development of more built surfaces with reduced vegetation leads to increased temperatures and Urban Heat Islands. This increase in temperature, can lead to an increase in energy usage. In order, to quantify the relationship of interconnected landscape, water cycle, microclimate and energy usage there is a need for a modeling system to represent landscape and surface characteristics specific to location and time. A methodology capable of modeling the interconnected urban scenario via a three-step process is presented in this paper. To account for the variability of urban form, the roughness length variation should be represented. An approach to estimate roughness length from Synthetic Aperture Radar (SAR) data has been introduced and the results are included in this paper. The effect of varying urban form and lawn irrigation practices on latent and sensible heat fluxes is represented and modeled by the Urban Heat Flux Model introduced in this paper. The Urban Heat Flux (UHFL) model has the capability to model the sensible and latent heat fluxes spatially and temporally by being able to represent varying conditions of roughness length, surface resistance and lawn irrigation patterns (soil moisture). The UHFL model has an advantage over the existing models by being driven by easily acquirable meteorological data and remote sensing data (which are available for all regions). The overall modeling framework consists of three sub-models: UHFL, the urban climate model (to simulate urban microclimate) and the energy and water usage simulation modules. The modeling system works by interconnecting the outputs of the sub-models thereby inter-connecting landscape, water use, urban microclimate and energy usage. The proposed modeling system has an advantage being spatially explicit through integration into a geographic information system and being driven by easily available remote sensing data and meteorological data. The model has been applied to study the effects of different development styles on the interconnected factors of landscape, water use, urban microclimate and energy usage in a residential neighborhood in the Salt Lake City metropolitan region. Two specific model runs were executed with normal residential lawns and xeriscape yards. The xeriscape style was found to reduce the latent heat fluxes and increase the air temperature and corresponding energy usage when compared to the normal residential lawns. Hence, the outdoor water usage in semi arid regions exerts an influence on the microclimate and energy usage which needs to be studied in further depth. The modeling system presented in this paper brings forth the use of remote sensing to model and predict the effects of urbanization on water cycle components, urban microclimate and energy usage.

  20. A Finite Element Model Of Self-Resonating Bimorph Microcantilever For Fast Temperature Cycling In A Pyroelectric Energy Harvester

    SciTech Connect

    Mostafa, Salwa; Lavrik, Nickolay V; Bannuru, Thirumalesh; Rajic, Slobodan; Islam, Syed K; Datskos, Panos G; Hunter, Scott Robert

    2011-01-01

    A self resonating bimorph cantilever structure for fast temperature cycling in a pyroelectric energy harvester has been modeled using a finite element method. The effect of constituting material properties and system parameters on the frequency and magnitude of temperature cycling and the efficiency of energy recycling using the proposed structure has been investigated. Results show that thermal contact conductance and heat source temperature play a key role in dominating the cycling frequency and efficiency of energy recycling. An optimal solution for the most efficient energy scavenging process has been sought by studying the performance trend with different variable parameters such as thermal contact conductance, heat source temperature, device aspect ratio and constituent materials of varying thermal conductivity and expansion coefficients.

  1. Importance of light scattering properties of cloud particles on calculating the earth energy cycle

    NASA Astrophysics Data System (ADS)

    Letu, H.; Nakajima, T. Y.; Nagao, T. M.; Ishimoto, H.

    2013-12-01

    The Earth is an open system, and the energy cycle of the Earth is not always a certain amount. In other words, the energy cycle in the nature is imbalance. A better understanding of the earth energy cycle is very important to study global climate change. the IPCC-AR4 reported that the cloud in the atmosphere are still characterized by large uncertainties in the estimation of their effects on energy sysle of the Earth's atmosphere. There are two types of cloud in the atmosphere, which are Cirrus and warm water cloud. In order to strongly reflect visible wavelength from sun light, thick water cloud has the effect of cooling the earth surface. When Cirrus is compared to water cloud, temperature is almost lower. Thus, there is a feature that Cirrus is easy to absorb long-wave radiation than warm water cloud. However, in order to quantitatively evaluate the reflection and absorption characteristics of cloud on remote senssing application and energy cycle of the imbalance of nature, it is necessary to obtain the scattering properties of cloud particles. Since the shapes of the water cloud particle are close to spherical, scattering properties of the particles can be calculated accurately by the Mie theory. However, Cirrus particles have a complex shape, including hexagonal, plate, and other non- spherical shapes. Different from warm water cloud partical, it is required to use several different light scattering methods when calculating the light scattering properties of the non-spherical Cirrus cloud particals. Ishimoto et al. [2010, 2012] and Masuda et al. [2012] developed the Finite-Difference Time Domain method (FDTD) and Improved Geometrical-Optics Method (IGOM) for the solution of light scattering by non-spherical particles. Nakajima et al [1997,2009] developed the LIght Scattering solver for Arbitral Shape particle (Lisas)-Geometrical-Optics Method (GOM) and Surface Integral Equations Method of Mller-type (SIEMM) to calculate the light scattering properties for hexagonal ice crystals. Lisas/GOM and IGOM methods are efficient for calculating the single scattering properties of the ice crystal when size parameter is large enough, while exact solution such as FDTD and Lisas/SIEMM methods are efficient for calculating the light scattering properties of the non-spherical partical when size parameter is small. However, to develop the compact light scattering database for satellite remote sensing application, it is important to optimize the scattering database based on the specification of the satellite sensor. Letu et al. (2012) optimized the ice crystal scattering database for Cirrus cloud remote sensing of the GCOM-C/SGLI satellite mission of JAXA, Japan and radiative transfer calculation in earth atmospheric system. Based on the above optimization results, we developed the ice crystal scattering database for GCOM-C/SGLI satellite mission with hexagonal, plate and aggregate shapes determined by in-situ observation for radiative transfer calculation and satellite remote sensing retrieval. Futuermore, radiance flux, alculated by RSTAR radiative transfer code with scattering database of the water cloud and the Cirrus particle is compared both at the earth surface and at the top of atmosphere. Furthermore, calculation uncertainty caused by different cloud particle scattering database was discussed.

  2. The sustainable water-energy nexus: Life-cycle impacts and feasibility of regional energy and water supply scenarios

    NASA Astrophysics Data System (ADS)

    Dale, Alexander T.

    Water and energy are critical, interdependent, and regional resources, and effective planning and policies around which sources to use requires combining information on environmental impacts, cost, and availability. Questions around shifting energy and water sources towards more renewable options, as well as the potential role of natural gas from shale formations are under intense discussion. Decisions on these issues will be made in the shadow of climate change, which will both impact and be impacted by energy and water supplies. This work developed a model for calculating the life-cycle environmental impacts of regional energy and water supply scenarios (REWSS). The model was used to discuss future energy pathways in Pennsylvania, future electricity impacts in Brazil, and future water pathways in Arizona. To examine energy in Pennsylvania, this work also developed the first process-based life-cycle assessment (LCA) of shale gas, focusing on greenhouse gas (GHG) emissions, energy consumption, and water consumption. This LCA confirmed results that shale gas is similar to conventional gas in GHG emissions, though potentially has a lower net energy due to a wide range of production rates for wells. Brazil's electricity-related impacts will rise as development continues. GHG emissions are shown to double by 2020 due to expanded natural gas (NG) and coal usage, with a rise of 390% by 2040 posssible with tropical hydropower reservoirs. While uncertainty around reservoir impacts is large, Brazil's low GHG emissions intensity and future carbon emissions targets are threatened by likely electricity scenarios. Pennsylvania's energy-related impacts are likely to hinge on whether NG is used as a replacement for coal, allowing GHG emissions to drop and then plateau at 93% of 2010 values; or as a transition fuel to expanded renewable energy sources, showing a steady decrease to 86% in 2035. Increased use of biofuels will dominate land occupation and may dominate water consumption impacts, depending on irrigation -- water consumption for energy rises from 7% to 18% under the base case. Arizona is further from major shale basins, but aims to reduce unsustainable groundwater usage. Desalination by itself will increase annual impacts by at least 2% in all impact categories by 2035, and prioritizing renewable energy sources along with desalination was found to lower GHGs by 1% from BAU, but increase 2035 impacts in all other categories by at least 10% from new construction or operation. In both PA and AZ, changes in impacts and shifting sources have interconnected tradeoffs, making the water-enegy nexus a key part of managing environmental problems such as climate change. Future energy and water supplies are also likely to show higher interdependencies, which may or may not improve regional sustainability. This work offers a way to combine four important sets of information to enable the generation of answers to key regional planning questions around these two key resources.

  3. Investigation of design space for freeze-drying: use of modeling for primary drying segment of a freeze-drying cycle.

    PubMed

    Koganti, Venkat Rao; Shalaev, Evgenyi Y; Berry, Mark R; Osterberg, Thomas; Youssef, Maickel; Hiebert, David N; Kanka, Frank A; Nolan, Martin; Barrett, Rosemary; Scalzo, Gioval; Fitzpatrick, Gillian; Fitzgibbon, Niall; Luthra, Sumit; Zhang, Liling

    2011-09-01

    In this work, we explore the idea of using mathematical models to build design space for the primary drying portion of freeze-drying process. We start by defining design space for freeze-drying, followed by defining critical quality attributes and critical process parameters. Then using mathematical model, we build an insilico design space. Input parameters to the model (heat transfer coefficient and mass transfer resistance) were obtained from separate experimental runs. Two lyophilization runs are conducted to verify the model predictions. This confirmation of the model predictions with experimental results added to the confidence in the insilico design space. This simple step-by-step approach allowed us to minimize the number of experimental runs (preliminary runs to calculate heat transfer coefficient and mass transfer resistance plus two additional experimental runs to verify model predictions) required to define the design space. The established design space can then be used to understand the influence of critical process parameters on the critical quality attributes for all future cycles. PMID:21710335

  4. Calibration of a biome-biogeochemical cycles model for modeling the net primary production of teak forests through inverse modeling of remotely sensed data

    NASA Astrophysics Data System (ADS)

    Imvitthaya, Chomchid; Honda, Kiyoshi; Lertlum, Surat; Tangtham, Nipon

    2011-01-01

    In this paper, we present the results of a net primary production (NPP) modeling of teak (Tectona grandis Lin F.), an important species in tropical deciduous forests. The biome-biogeochemical cycles or Biome-BGC model was calibrated to estimate net NPP through the inverse modeling approach. A genetic algorithm (GA) was linked with Biome-BGC to determine the optimal ecophysiological model parameters. The Biome-BGC was calibrated by adjusting the ecophysiological model parameters to fit the simulated LAI to the satellite LAI (SPOT-Vegetation), and the best fitness confirmed the high accuracy of generated ecophysioligical parameter from GA. The modeled NPP, using optimized parameters from GA as input data, was evaluated using daily NPP derived by the MODIS satellite and the annual field data in northern Thailand. The results showed that NPP obtained using the optimized ecophysiological parameters were more accurate than those obtained using default literature parameterization. This improvement occurred mainly because the model's optimized parameters reduced the bias by reducing systematic underestimation in the model. These Biome-BGC results can be effectively applied in teak forests in tropical areas. The study proposes a more effective method of using GA to determine ecophysiological parameters at the site level and represents a first step toward the analysis of the carbon budget of teak plantations at the regional scale.

  5. Hypocretin/Orexin neuropeptides: participation in the control of sleep-wakefulness cycle and energy homeostasis.

    PubMed

    Nuñez, A; Rodrigo-Angulo, M L; Andrés, I De; Garzón, M

    2009-03-01

    Hypocretins or orexins (Hcrt/Orx) are hypothalamic neuropeptides that are synthesized by neurons located mainly in the perifornical area of the posterolateral hypothalamus. These hypothalamic neurons are the origin of an extensive and divergent projection system innervating numerous structures of the central nervous system. In recent years it has become clear that these neuropeptides are involved in the regulation of many organic functions, such as feeding, thermoregulation and neuroendocrine and cardiovascular control, as well as in the control of the sleep-wakefulness cycle. In this respect, Hcrt/Orx activate two subtypes of G protein-coupled receptors (Hcrt/Orx1R and Hcrt/Orx2R) that show a partly segregated and prominent distribution in neural structures involved in sleep-wakefulness regulation. Wakefulness-enhancing and/or sleep-suppressing actions of Hcrt/Orx have been reported in specific areas of the brainstem. Moreover, presently there are animal models of human narcolepsy consisting in modifications of Hcrt/Orx receptors or absence of these peptides. This strongly suggests that narcolepsy is the direct consequence of a hypofunction of the Hcrt/Orx system, which is most likely due to Hcrt/Orx neurons degeneration.The main focus of this review is to update and illustrate the available data on the actions of Hcrt/Orx neuropeptides with special interest in their participation in the control of the sleep-wakefulness cycle and the regulation of energy homeostasis. Current pharmacological treatment of narcolepsy is also discussed. PMID:19721817

  6. Synchronous timing of multi-energy fast beam extraction during a single AGS cycle

    SciTech Connect

    Gabusi, J.; Naase, S.

    1985-01-01

    Synchronous triggering of fast beams is required because the field of Kicker Magnets must rise within the open space between one beam bunch and the next. Within the Brookhaven AGS, Fast Extracted Beam (FEB) triggering combines nominal timing, based on beam energy with bunch-to-bunch synchronization, based on the accelerating rf waveform. During beam acceleration, a single bunch is extracted at 22 GeV/c and within the same AGS cycle, the remaining eleven bunches are extracted at 28.4 GeV/c. When the single bunch is extracted, a ''hole'', which is left in the remaining circulating beam, can appear in random locations within the second extraction during successive AGS cycles. To overcome this problem, a synchronous rf/12 counting scheme and logic circuitry are used to keep track of the bunch positions relative to each other, and to place the ''hole'' in any desired location within the second extraction. The rf/12 signal is used also to synchronize experimenters triggers.

  7. Shifting primary energy source and NOx emission location with plug-in hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Karman, Deniz

    2011-06-01

    Plug-in hybrid vehicles (PHEVs) present an interesting technological opportunity for using non-fossil primary energy in light duty passenger vehicles, with the associated potential for reducing air pollutant and greenhouse gas emissions, to the extent that the electric power grid is fed by non-fossil sources. This perspective, accompanying the article by Thompson et al (2011) in this issue, will touch on two other studies that are directly related: the Argonne study (Elgowainy et al 2010) and a PhD thesis from Utrecht (van Vliet 2010). Thompson et al (2011) have examined air quality effects in a case where the grid is predominantly fossil fed. They estimate a reduction of 7.42 tons/day of NOx from motor vehicles as a result of substituting electric VMTs for 20% of the light duty gasoline vehicle miles traveled. To estimate the impact of this reduction on air quality they also consider the increases in NOx emissions due to the increased load on electricity generating units. The NOx emission increases are estimated as 4.0, 5.5 and 6.3 tons for the Convenience, Battery and Night charging scenarios respectively. The net reductions are thus in the 1.1-3.4 tons/day range. The air quality modelling results presented show that the air quality impact from a ground-level ozone perspective is favorable overall, and while the effect is stronger in some localities, the difference between the three scenarios is small. This is quite significant and suggests that localization of the NOx emissions to point sources has a more pronounced effect than the absolute reductions achieved. Furthermore it demonstrates that localization of NOx emissions to electricity generating units by using PHEVs in vehicle traffic has beneficial effects for air quality not only by minimizing direct human exposure to motor vehicle emissions, but also due to reduced exposure to secondary pollutants (i.e. ozone). In an electric power grid with a smaller share of fossil fired generating units, the beneficial effects would be more pronounced. In such a case, it would also be possible to realize reductions in greenhouse gas emissions. The significance of the electric power generation mix for plug-in hybrid vehicles and battery electric vehicles is a key aspect of Argonne National Laboratories' well-to-wheel study which focuses on petroleum use and greenhouse gas emissions (Elgowainy et al 2010). The study evaluates possible reductions in petroleum use and GHG emissions in the electric power systems in four major regions of the United States as well as the US average generation mix, using Argonne's GREET life-cycle analysis model. Two PHEV designs are investigated through a Powertrain System Analysis Toolkit (PSAT) model: the power-split configuration (e.g. the current Toyota Prius model with Hymotion conversion), and a future series configuration where the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle. Since the petroleum share is small in the electricity generation mix for most regions in the United States, it is possible to achieve significant reductions in petroleum use by PHEVs. However, GHG reduction is another story. In one of the cases in the study, PHEVs in the charge depleting mode and recharging from a mix with a large share of coal generation (e.g., Illinois marginal mix) produce GHG emissions comparable to those of baseline gasoline internal combustion engine vehicles (with a range from -15% to +10%) but significantly higher than those of gasoline hybrid electric vehicles (with a range from +20% to +60%). In what is called the unconstrained charging scenario where investments in new generation capacity with high efficiency and low carbon intensity are envisaged, it becomes possible to achieve significant reductions in both petroleum use and GHG emissions. In a PhD dissertation at Utrecht University, van Vliet (2010) presents a comprehensive analysis of alternatives to gasoline and diesel by looking at various fuel and vehicle technologies. Three chapters are of particular interest from the perspective of PHEVs: (2) Techno-economic comparison of series hybrid, fuel cell and regular cars; (3) Energy use, cost and CO2 emissions of electric cars; and (4) Combining hybrid cars and synthetic fuels with electricity generation and carbon capture and storage. The study is noteworthy not only for the technical analyses and quantitative cost comparisons, but also for addressing questions relating to the transition from the current state of affairs to future 'optimal' scenarios. Multiple transportation fuel technologies/options (9 different fuels produced with 23 different technologies), vehicle technologies (36 types of cars, buses, trucks, and vans), and electric power generation technologies are considered under nine policy based scenarios. It is not possible to do justice to the thoroughness of the thesis within the context of this brief perspective, but one quote from the thesis may be appropriate: 'Across scenarios, time periods and reduction targets, our least-cost optimal configurations show a preference for biofuels and hybrid cars over electric or fuel cell cars. In addition to having lower costs, this allows for an easier transition as less infrastructure change is required to support hybrid cars than to facilitate large scale use of electric or hydrogen fuel cell cars.' Without forgetting that the analysis is specific to its setting in the Netherlands, it is nevertheless a challenging starting point for similar analyses elsewhere. The accompanying article to this perspective and the studies mentioned above point to the interest in, and the challenges associated with PHEV technology, its adoption and implementation over a realistic time frame, in different geographic regions. Elgowainy et al (2010) estimate the penetration of PHEV technology as 10% share of PHEVs in the 2020 US vehicle population. In one of van Vliet's (2010) scenarios (Forced Electric Car) a target of 90% share in 2050 for electric/fuel cell cars in the Netherlands is used. It is not possible to scrutinize here whether these are realistic estimates/scenarios, but it is clear that we can expect a significantly expanded role for electricity as an energy carrier in transportation. PHEVs are likely to play an important role in this transition. References Elgowainy A, Han J, Poch L, Wang M, Vyas A, Mahalik M and Rousseau A 2010 Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles ANL/ESD/10-1 (Argonne, IL: Energy Systems Division, Argonne National Laboratory) (available at: http://greet.es.anl.gov/publication-xkdaqgyk) Thompson T M, King C W, Allen D T and Webber M E 2011 Air quality impacts of plug-in hybrid electric vehicles in Texas: evaluating three battery charging scenarios Environ. Res. Lett. 6 024004 van Vliet O P R 2010 Feasibility of alternatives to driving on diesel and petrol PhD Thesis Utrecht University, The Netherlands (available at: http://igitur-archive.library.uu.nl/dissertations/2010-0819-200206/UUindex.html)

  8. Energy storage in the primary step of the photocycle of bacteriorhodopsin.

    PubMed Central

    Birge, R R; Cooper, T M

    1983-01-01

    A pulsed-dye laser low temperature photocalorimeter is used to study the enthalpy differences between light-adapted bacteriorhodopsin (bR568) and its primary photoproduct (K) at 77 K. A key feature of our experimental method is the use of the laser-induced photostationary state as an internal reference. Analyses of the forward (bR leads to K), reverse (K leads to bR), and mixed (bR in equilibrium K) photoreactions were carried out to measure delta H12 = EK - EbR. All three experiments yielded identical values of delta H12 within experimental error (delta Have12 = 15.8 +/- 2.5 kcal mol-1). Accordingly, the primary event in the photocycle of light-adapted bacteriorhodopsin stores approximately 30% of the absorbed photon energy at the 568-nm absorption maximum. We observe that the quantum yields phi f1(bR leads to K) and phi r2(K leads to bR) add up to unity within experimental error: phi f1 + phi r2 = 1.02 +/- 0.19 for phi f1 in the range 0.28-0.33. A theoretical analysis of energy storage in K suggests that at least one-half of the enthalpy difference between K and bR is associated with charge separation accompanying chromophore isomerization. PMID:6838982

  9. Energy spectra of primary knock-on atoms under neutron irradiation

    NASA Astrophysics Data System (ADS)

    Gilbert, M. R.; Marian, J.; Sublet, J.-Ch.

    2015-12-01

    Materials subjected to neutron irradiation will suffer from a build-up of damage caused by the displacement cascades initiated by nuclear reactions. Previously, the main "measure" of this damage accumulation has been through the displacements per atom (dpa) index, which has known limitations. This paper describes a rigorous methodology to calculate the primary atomic recoil events (often called the primary knock-on atoms or PKAs) that lead to cascade damage events as a function of energy and recoiling species. A new processing code SPECTRA-PKA combines a neutron irradiation spectrum with nuclear recoil data obtained from the latest nuclear data libraries to produce PKA spectra for any material composition. Via examples of fusion relevant materials, it is shown that these PKA spectra can be complex, involving many different recoiling species, potentially differing in both proton and neutron number from the original target nuclei, including high energy recoils of light emitted particles such as α-particles and protons. The variations in PKA spectra as a function of time, neutron field, and material are explored. The application of PKA spectra to the quantification of radiation damage is exemplified using two approaches: the binary collision approximation and stochastic cluster dynamics, and the results from these different models are discussed and compared.

  10. Thermodynamic analysis of a Rankine cycle powered vapor compression ice maker using solar energy.

    PubMed

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m(-2) and 7.61 kg m(-2) day(-1) at the generation temperature of 140 C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker. PMID:25202735

  11. Thermal analysis in a solar pumped laser for Mg energy cycle

    NASA Astrophysics Data System (ADS)

    Bagheri, Behgol; Uchidat, Shgeaki

    2012-10-01

    Thermal analysis of a high-power cw solar-pumped laser under development as a magnesium energy cycle driver has been conducted experimentally and analytically. The laser system is equipped with a Fresnel lens and a cone-shaped secondary mirror chamber (SMC). The SMC realizes a hybrid-pumping scheme combining axial- and side-pumping configurations to enhance solar light absorption to a rod-shaped laser medium. A non-uniform temperature profile was obtained during experiments due to combination of volumetric heating and surface cooling, which leads to a nonuniform variation of index of refraction in the laser medium. The thermal lensing and thermal stress-induced birefringence are analyzed.

  12. Life Cycle Assessment of a Wastewater Treatment Plant Focused on Material and Energy Flows

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Guang; Meng, Xiang-Yu; Liu, Xiao-Meng; Liu, Xian-Wei; Zheng, Zhi-Xia; Xu, De-Qian; Sheng, Guo-Ping; Yu, Han-Qing

    2010-10-01

    Life cycle assessment (LCA) was applied to analyze a food-processing wastewater treatment plant and investigate the economic and environmental effects of the plant. With the long-term operational data of this plant, an inventory of relative inputs, e.g., flow rate, chemical oxygen demand (COD), and suspended solids, etc., and outputs of the plant, e.g., effluent COD and suspended solids, methane production, etc., was compiled. The potential environmental effects associated with those inputs and outputs were evaluated, and the results of the inventory analysis and impact assessment phases of the plant were interpreted. One feature of this study was the assessment of the treatment plant based on both energy and material flows. Another feature was the establishment of an assessment model with an integration of plant operating parameters, system recognition and grey relation. The analytical results are helpful for the design and operation of wastewater treatment plants.

  13. Accumulation of energy reserves in algae: From cell cycles to biotechnological applications.

    PubMed

    Vitova, Milada; Bisova, Katerina; Kawano, Shigeyuki; Zachleder, Vilem

    2015-11-01

    Starch and lipids are key components of algal cells and responsible for buffering variable supplies of energy and carbon that are vital for cell growth and reproduction, particularly DNA replication, nuclear and cellular division. The basic characteristics of energy reserves, their ultrastructure and localization inside the cell, regulation of their synthesis in relation to cell cycle phases, and their control by external factors, including light intensity, temperature, and carbon dioxide are described. Over the last two decades, research in this field has been boosted by possible biotechnological applications of algae for the production of biofuels from energy conserving compounds (bioethanol from starch and biodiesel from lipids). Recent findings on mechanisms that lead to an accumulation of exceptionally high levels of starch and lipids in algae will be summarized in this review. Macroelement (N, S, P) limitation, or depletion in mineral medium, as the most widely used approaches for enhancing both starch and lipid accumulation, are reviewed in detail. Potential biotechnological strategies for the economically viable overproduction of lipid and starch, such as a two-step procedure exploiting the effects of nutrient limitation and depletion, as well as the means and rationale for selecting appropriate strains, are discussed. PMID:25986035

  14. Energy and greenhouse gas profiles of polyhydroxybutyrates derived from corn grain: a life cycle perspective.

    PubMed

    Kim, Seungdo; Dale, Bruce E

    2008-10-15

    Polyhydroxybutyrates (PHB) are well-known biopolymers derived from sugars orvegetable oils. Cradle-to-gate environmental performance of PHB derived from corn grain is evaluated through life cycle assessment (LCA), particularly nonrenewable energy consumption and greenhouse gas emissions. Site-specific process information on the corn wet milling and PHB fermentation and recovery processes was obtained from Telles. Most of energy used in the corn wet milling and PHB fermentation and recovery processes is generated in a cogeneration power plant in which corn stover, assumed to be representative of a variety of biomass sources that could be used, is burned to generate electricity and steam. County level agricultural information is used in estimating the environmental burdens associated with both corn grain and corn stover production. Results show that PHB derived from corn grain offers environmental advantages over petroleum-derived polymers in terms of nonrenewable energy consumption and greenhouse gas emissions. Furthermore, PHB provides greenhouse gas credits, and thus PHB use reduces greenhouse gas emissions compared to petroleum-derived polymers. Corn cultivation is one of the environmentally sensitive areas in the PHB production system. More sustainable practices in corn cultivation (e.g., using no-tillage and winter cover crops) could reduce the environmental impacts of PHB by up to 72%. PMID:18983094

  15. Dynamic hybrid life cycle assessment of energy and carbon of multicrystalline silicon photovoltaic systems.

    PubMed

    Zhai, Pei; Williams, Eric D

    2010-10-15

    This paper advances the life cycle assessment (LCA) of photovoltaic systems by expanding the boundary of the included processes using hybrid LCA and accounting for the technology-driven dynamics of embodied energy and carbon emissions. Hybrid LCA is an extended method that combines bottom-up process-sum and top-down economic input-output (EIO) methods. In 2007, the embodied energy was 4354 MJ/m(2) and the energy payback time (EPBT) was 2.2 years for a multicrystalline silicon PV system under 1700 kWh/m(2)/yr of solar radiation. These results are higher than those of process-sum LCA by approximately 60%, indicating that processes excluded in process-sum LCA, such as transportation, are significant. Even though PV is a low-carbon technology, the difference between hybrid and process-sum results for 10% penetration of PV in the U.S. electrical grid is 0.13% of total current grid emissions. Extending LCA from the process-sum to hybrid analysis makes a significant difference. Dynamics are characterized through a retrospective analysis and future outlook for PV manufacturing from 2001 to 2011. During this decade, the embodied carbon fell substantially, from 60 g CO(2)/kWh in 2001 to 21 g/kWh in 2011, indicating that technological progress is realizing reductions in embodied environmental impacts as well as lower module price. PMID:20860380

  16. Life Cycle Assessment of Thermal Energy Storage: Two-Tank Indirect and Thermocline

    SciTech Connect

    Heath, G.; Turchi, C.; Burkhardt, J.; Kutscher, C.; Decker, T.

    2009-07-01

    In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

  17. Energy-efficient low duty cycle MAC protocol for wireless body area networks.

    PubMed

    Marinkovi?, Stevan Jovica; Popovici, Emanuel Mihai; Spagnol, Christian; Faul, Stephen; Marnane, William Peter

    2009-11-01

    This paper presents an energy-efficient medium access control protocol suitable for communication in a wireless body area network for remote monitoring of physiological signals such as EEG and ECG. The protocol takes advantage of the static nature of the body area network to implement the effective time-division multiple access (TDMA) strategy with very little amount of overhead and almost no idle listening (by static, we refer to the fixed topology of the network investigated). The main goal is to develop energy-efficient and reliable communication protocol to support streaming of large amount of data. TDMA synchronization problems are discussed and solutions are presented. Equations for duty cycle calculation are also derived for power consumption and battery life predictions. The power consumption model was also validated through measurements. Our results show that the protocol is energy efficient for streaming communication as well as sending short bursts of data, and thus can be used for different types of physiological signals with different sample rates. The protocol is implemented on the analog devices ADF7020 RF transceivers. PMID:19846380

  18. Technology for Brayton-cycle space powerplants using solar and nuclear energy

    SciTech Connect

    English, R.E.

    1986-02-01

    Brayton-cycle gas turbines have the potential to use either solar heat or nuclear reactors to generate from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power-generating system. Their development for solar-energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power-generating system has already demonstrated overall efficiency of 0.29 and operated for 38,000 hr. Tests of improved components show that, if installed in the power-generating system, these components would raise that efficiency to 0.32; this efficiency is twice that so far demonstrated by any alternate concept, a characteristic especially important for solar power systems. Because of this high efficiency, solar-heat Brayton-cycle power generators offer the potential to increase power per unit of solar-collector area to levels exceeding four times that from photovoltaic powerplants based on present technology for silicon solar cells. For the heat source, paraboloidal mirrors have been assembled from sectors here on Earth. One mirror, 1.5-m diameter, had a standard error for its surface of only 1 arc-min and a specific mass of only 1.3 kg/m 2. A heavier mirror (nearly 5 kg/m{sup 2}), assembled from 12 sectors, had a standard surface error of 3 arc-min but was 6 m in diameter. Either of these mirrors is sufficiently accurate for use with the Brayton cycle, but the techniques for actually assembling large mirrors in space must yet be worked out. For use during the shadow period of a low Earth orbit (LEO), heat could be stored in LiF, a salt that melts at 1121 K (1558{degrees}F) and whose latent heat of fusion exceeds 1 MJ/kg. Because of the prior experience with its fabrication and of its tolerance of the thermal cycling in LEO, Nb-1Zr was selected to contain the LiF.

  19. Life-cycle thinking and the LEED rating system: global perspective on building energy use and environmental impacts.

    PubMed

    Al-Ghamdi, Sami G; Bilec, Melissa M

    2015-04-01

    This research investigates the relationship between energy use, geographic location, life cycle environmental impacts, and Leadership in Energy and Environmental Design (LEED). The researchers studied worldwide variations in building energy use and associated life cycle impacts in relation to the LEED rating systems. A Building Information Modeling (BIM) of a reference 43,000 ft(2) office building was developed and situated in 400 locations worldwide while making relevant changes to the energy model to meet reference codes, such as ASHRAE 90.1. Then life cycle environmental and human health impacts from the buildings' energy consumption were calculated. The results revealed considerable variations between sites in the U.S. and international locations (ranging from 394 ton CO2 equiv to 911 ton CO2 equiv, respectively). The variations indicate that location specific results, when paired with life cycle assessment, can be an effective means to achieve a better understanding of possible adverse environmental impacts as a result of building energy consumption in the context of green building rating systems. Looking at these factors in combination and using a systems approach may allow rating systems like LEED to continue to drive market transformation toward sustainable development, while taking into consideration both energy sources and building efficiency. PMID:25706229

  20. Estimation of vertical sea level muon energy spectra from the latest primary cosmic ray elemental spectra

    NASA Astrophysics Data System (ADS)

    Mitra, M.; Molla, N. H.; Bhattacharyya, D. P.

    The directly measured elemental spectra of primary cosmic rays obtained from Webber et al., Seo et al., Menn et al., Ryan et al. and experiments like JACEE, CRN, SOKOL, RICH on P, He, CNO, Ne-S and Fe have been considered to estimate the vertical sea level muon energy spectra. The primary elemental energy spectra of P, He, CNO, Ne-S and Fe available from the different experimental data duly fitted by power law are given by Np(E)dE = 1.2216E-2.68 dE [cm2 .s.sr.GeV/n]-1 NHe(E)dE = 0.0424E-2.59 dE [cm2 .s.sr.GeV/n]-1 NCNO(E)dE = 0.0026E-2.57 dE[cm2 .s.sr.GeV/n]-1 NNe-S(E)dE = 0.00066E-2.57 dE [cm2 .s.sr.GeV/n]-1 NF e(E)dE = 0.0056E-2.55 dE [cm2 .s.sr.GeV/n]-1 Using the conventional superposition model the all nucleon primary cosmic ray spectrum has been derived which is of the form N(E)dE = 1.42E-2.66 dE [cm2 .s.sr.GeV/n]-1 We have considered all these spectra separately as parents of the secondary mesons and finallty the sea level muon fluxes at 00 from each species have been derived. To evaluate the meson spectra which are the initial air shower interaction products initiated by the primary nucleon air collisions, the hadronic energy moments have been calculated from the CERN LEBCEHS data for pp collisions and FNAL data for ?p collisions. Pion production by secondary pions have been taken into account and the final total muon spectrum has been derived from pp rightarrow? x, pp ? K x, ?p ? ? x channels. The Z-factors have been corrected for p-air collisions. We have adopted the constant values of ?p-air and ??-air crosssections which are 273 mb and 213 mb, respectively. The adopted inelastic cross-sections for pp and ?p interactions are 35 mb and 22 mb, respectively. The Q-G plasma correction of Z-factors have also been incorporated in the final form. The solution to the standard differential equation for mesons is considered for muon flux estimation from Ngenerations of the parent mesons. By this formulation vertical muon spectra from each element along with the total primary nucleon spectrum have been derived. We wanted to observe the different shape of the muon spectra evaluated from different elemental spectra and to make a comparative study of that. In this energy range (102 - 104 ) GeV we have observed that the majority of the total muon flux is coming from the proton spectra. The contribution from the other elemental spectra to the total muon flux is not at all comparable with that of proton spectra.

  1. Rescaling of metal oxide nanocrystals for energy storage having high capacitance and energy density with robust cycle life

    PubMed Central

    Jeong, Hyung Mo; Choi, Kyung Min; Cheng, Tao; Lee, Dong Ki; Zhou, Renjia; Ock, Il Woo; Milliron, Delia J.; Goddard, William A.; Kang, Jeung Ku

    2015-01-01

    Nanocrystals are promising structures, but they are too large for achieving maximum energy storage performance. We show that rescaling 3-nm particles through lithiation followed by delithiation leads to high-performance energy storage by realizing high capacitance close to the theoretical capacitance available via ion-to-atom redox reactions. Reactive force-field (ReaxFF) molecular dynamics simulations support the conclusion that Li atoms react with nickel oxide nanocrystals (NiO-n) to form lithiated core–shell structures (Ni:Li2O), whereas subsequent delithiation causes Ni:Li2O to form atomic clusters of NiO-a. This is consistent with in situ X-ray photoelectron and optical spectroscopy results showing that Ni2+ of the nanocrystal changes during lithiation–delithiation through Ni0 and back to Ni2+. These processes are also demonstrated to provide a generic route to rescale another metal oxide. Furthermore, assembling NiO-a into the positive electrode of an asymmetric device enables extraction of full capacitance for a counter negative electrode, giving high energy density in addition to robust capacitance retention over 100,000 cycles. PMID:26080421

  2. Rescaling of metal oxide nanocrystals for energy storage having high capacitance and energy density with robust cycle life.

    PubMed

    Jeong, Hyung Mo; Choi, Kyung Min; Cheng, Tao; Lee, Dong Ki; Zhou, Renjia; Ock, Il Woo; Milliron, Delia J; Goddard, William A; Kang, Jeung Ku

    2015-06-30

    Nanocrystals are promising structures, but they are too large for achieving maximum energy storage performance. We show that rescaling 3-nm particles through lithiation followed by delithiation leads to high-performance energy storage by realizing high capacitance close to the theoretical capacitance available via ion-to-atom redox reactions. Reactive force-field (ReaxFF) molecular dynamics simulations support the conclusion that Li atoms react with nickel oxide nanocrystals (NiO-n) to form lithiated core-shell structures (Ni:Li2O), whereas subsequent delithiation causes Ni:Li2O to form atomic clusters of NiO-a. This is consistent with in situ X-ray photoelectron and optical spectroscopy results showing that Ni(2+) of the nanocrystal changes during lithiation-delithiation through Ni(0) and back to Ni(2+). These processes are also demonstrated to provide a generic route to rescale another metal oxide. Furthermore, assembling NiO-a into the positive electrode of an asymmetric device enables extraction of full capacitance for a counter negative electrode, giving high energy density in addition to robust capacitance retention over 100,000 cycles. PMID:26080421

  3. Life Cycle Analysis on Fossil Energy Ratio of Algal Biodiesel: Effects of Nitrogen Deficiency and Oil Extraction Technology

    PubMed Central

    Jian, Hou; Jing, Yang; Peidong, Zhang

    2015-01-01

    Life cycle assessment (LCA) has been widely used to analyze various pathways of biofuel preparation from “cradle to grave.” Effects of nitrogen supply for algae cultivation and technology of algal oil extraction on life cycle fossil energy ratio of biodiesel are assessed in this study. Life cycle fossil energy ratio of Chlorella vulgaris based biodiesel is improved by growing algae under nitrogen-limited conditions, while the life cycle fossil energy ratio of biodiesel production from Phaeodactylum tricornutum grown with nitrogen deprivation decreases. Compared to extraction of oil from dried algae, extraction of lipid from wet algae with subcritical cosolvents achieves a 43.83% improvement in fossil energy ratio of algal biodiesel when oilcake drying is not considered. The outcome for sensitivity analysis indicates that the algal oil conversion rate and energy content of algae are found to have the greatest effects on the LCA results of algal biodiesel production, followed by utilization ratio of algal residue, energy demand for algae drying, capacity of water mixing, and productivity of algae. PMID:26000338

  4. Wild Skylarks Seasonally Modulate Energy Budgets but Maintain Energetically Costly Inflammatory Immune Responses throughout the Annual Cycle

    PubMed Central

    Hegemann, Arne; Matson, Kevin D.; Versteegh, Maaike A.; Tieleman, B. Irene

    2012-01-01

    A central hypothesis of ecological immunology is that immune defences are traded off against competing physiological and behavioural processes. During energetically demanding periods, birds are predicted to switch from expensive inflammatory responses to less costly immune responses. Acute phase responses (APRs) are a particularly costly form of immune defence, and, hence, seasonal modulations in APRs are expected. Yet, hypotheses about APR modulation remain untested in free-living organisms throughout a complete annual cycle. We studied seasonal modulations in the APRs and in the energy budgets of skylarks Alauda arvensis, a partial migrant bird from temperate zones that experiences substantial ecological changes during its annual cycle. We characterized throughout the annual cycle changes in their energy budgets by measuring basal metabolic rate (BMR) and body mass. We quantified APRs by measuring the effects of a lipopolysaccharide injection on metabolic rate, body mass, body temperature, and concentrations of glucose and ketone. Body mass and BMR were lowest during breeding, highest during winter and intermediate during spring migration, moult and autumn migration. Despite this variation in energy budgets, the magnitude of the APR, as measured by all variables, was similar in all annual cycle stages. Thus, while we find evidence that some annual cycle stages are relatively more energetically constrained, we find no support for the hypothesis that during these annual cycle stages birds compromise an immune defence that is itself energetically costly. We suggest that the ability to mount an APR may be so essential to survival in every annual cycle stage that skylarks do not trade off this costly form of defence with other annual cycle demands. PMID:22570706

  5. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies.

    PubMed

    Mills, N; Pearce, P; Farrow, J; Thorpe, R B; Kirkby, N F

    2014-01-01

    The UK Water Industry currently generates approximately 800GWh pa of electrical energy from sewage sludge. Traditionally energy recovery from sewage sludge features Anaerobic Digestion (AD) with biogas utilisation in combined heat and power (CHP) systems. However, the industry is evolving and a number of developments that extract more energy from sludge are either being implemented or are nearing full scale demonstration. This study compared five technology configurations: 1 - conventional AD with CHP, 2 - Thermal Hydrolysis Process (THP) AD with CHP, 3 - THP AD with bio-methane grid injection, 4 - THP AD with CHP followed by drying of digested sludge for solid fuel production, 5 - THP AD followed by drying, pyrolysis of the digested sludge and use of the both the biogas and the pyrolysis gas in a CHP. The economic and environmental Life Cycle Assessment (LCA) found that both the post AD drying options performed well but the option used to create a solid fuel to displace coal (configuration 4) was the most sustainable solution economically and environmentally, closely followed by the pyrolysis configuration (5). Application of THP improves the financial and environmental performance compared with conventional AD. Producing bio-methane for grid injection (configuration 3) is attractive financially but has the worst environmental impact of all the scenarios, suggesting that the current UK financial incentive policy for bio-methane is not driving best environmental practice. It is clear that new and improving processes and technologies are enabling significant opportunities for further energy recovery from sludge; LCA provides tools for determining the best overall options for particular situations and allows innovation resources and investment to be focused accordingly. PMID:24060290

  6. Dual energy micro-CT imaging of radiation-induced vascular changes in primary mouse sarcomas

    PubMed Central

    Moding, Everett J.; Clark, Darin P.; Qi, Yi; Li, Yifan; Ma, Yan; Ghaghada, Ketan; Johnson, G. Allan; Kirsch, David G.; Badea, Cristian T.

    2013-01-01

    Purpose To evaluate the effects of radiation therapy on primary tumor vasculature using dual energy (DE) micro-computed tomography (micro-CT). Methods and Materials The Cre-loxP system was used to generate primary sarcomas with mutant Kras and p53. Unirradiated tumors were compared to tumors irradiated with 20 Gy. A long-circulating PEGylated liposomal-iodinated contrast agent was administered one day after treatment, and mice were imaged immediately after injection (day 1) and three days later (day 4) using DE micro-CT. CT-derived tumor sizes were used to assess tumor growth. After DE decomposition, iodine maps were used to assess tumor fractional blood volume (FBV) at day 1 and tumor vascular permeability at day 4. For comparison, tumor vascularity and vascular permeability were also evaluated histologically using CD31 immunofluorescence and fluorescently-labeled dextrans. Results Radiation treatment significantly decreased tumor growth (P<0.05). There was a positive correlation between CT-measurement of tumor FBV and extravasated iodine with microvascular density (MVD) (R2=0.53) and dextran accumulation (R2=0.63), respectively. Despite no change in MVD measured by histology, tumor FBV significantly increased after irradiation as measured by DE micro-CT (0.070 vs. 0.091, P<0.05). Both dextran and liposomal-iodine accumulation in tumors increased significantly after irradiation with dextran fractional area increasing 4.2-fold and liposomal-iodine concentration increasing 3.0-fold. Conclusions DE micro-CT is an effective tool for non-invasive assessment of vascular changes in primary tumors. Tumor blood volume and vascular permeability increased after a single therapeutic dose of radiation treatment. PMID:23122984

  7. The effect of average cycling current on total energy of lithium-ion batteries for electric vehicles

    NASA Astrophysics Data System (ADS)

    Barai, Anup; Uddin, Kotub; Widanalage, W. D.; McGordon, Andrew; Jennings, Paul

    2016-01-01

    Predicting the remaining range of a battery reliably, accurately and simply is imperative for effective power management of electrified vehicles and reducing driver anxiety resulting from perceived low driving range. Techniques for predicting the remaining range of an electric vehicle exist; in the best cases they are scaled by factors that account for expected energy losses due to driving style, environmental conditions and the use of on-board energy consuming devices such as air-conditioning. In this work, experimental results that establish the dependence of remaining electrical energy on the vehicle battery immediate cycling history are presented. A method to estimate the remaining energy given short-term cycling history is presented. This method differs from the traditional state of charge methods typically used in battery management systems by considering energy throughput more directly.

  8. Fuel-cycle energy and emissions impacts of tripled fuel-economy vehicles

    SciTech Connect

    Mintz, M. M.; Vyas, A. D.; Wang, M. Q.

    1997-12-18

    This paper presents estimates of the fill fuel-cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low-sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. Results were obtained for three scenarios: a Reference Scenario without PNGVs, a High Market Share Scenario in which PNGVs account for 60% of new light-duty vehicle sales by 2030, and a Low Market Share Scenario in which PNGVs account for half as many sales by 2030. Under the higher of these two, the fuel-efficiency gain by 3X vehicles translated directly into a nearly 50% reduction in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide (NO{sub x}), carbon monoxide (CO), volatile organic compounds (VOCs), sulfur oxide, (SO{sub x}), and particulate matter smaller than 10 microns (PM{sub 10}) for most of the engine-fuel combinations examined. The key exceptions were diesel- and ethanol-fueled vehicles for which PM{sub 10} emissions increased.

  9. Biomass pyrolysis for biochar or energy applications? A life cycle assessment.

    PubMed

    Peters, Jens F; Iribarren, Diego; Dufour, Javier

    2015-04-21

    The application of biochar as a soil amendment is a potential strategy for carbon sequestration. In this paper, a slow pyrolysis system for generating heat and biochar from lignocellulosic energy crops is simulated and its life-cycle performance compared with that of direct biomass combustion. The use of the char as biochar is also contrasted with alternative use options: cofiring in coal power plants, use as charcoal, and use as a fuel for heat generation. Additionally, the influence on the results of the long-term stability of the biochar in the soil, as well as of biochar effects on biomass yield, is evaluated. Negative greenhouse gas emissions are obtained for the biochar system, indicating a significant carbon abatement potential. However, this is achieved at the expense of lower energy efficiency and higher impacts in the other assessed categories when compared to direct biomass combustion. When comparing the different use options of the pyrolysis char, the most favorable result is obtained for char cofiring substituting fossil coal, even assuming high long-term stability of the char. Nevertheless, a high sensitivity to biomass yield increase is found for biochar systems. In this sense, biochar application to low-quality soils where high yield increases are expected would show a more favorable performance in terms of global warming. PMID:25830564

  10. Annual-cycle thermal energy storage for a community solar system: details of a sensitivity analysis

    SciTech Connect

    Baylin, F.; Monte, R.; Sillman, S.

    1980-07-01

    This report presents results and conclusions of a simulation and sensitivity analysis of community-sized, annual-cycle thermal-energy-storage (ACTES) solar energy systems. The analysis which is based on an hourly simulation is used to (1) size systems in 10 locations, (2) identify critical design parameters, and (3) provide a basic conceptual approach for future studies and designs. This research is a forerunner to an economic analysis of this particular system (based on large constructed tanks) and a general analysis of the value of ACTES technologies for solar applications. A total of 440 systems were sized for 10 locations in the United States. Three different building types and four different community sizes were modeled. All designs used each of two collector types at each of two different tilt angles. Two linear relationships were derived which simplify system sizing. The average ambient temperature is used to determine average yearly collector efficiency. This parameter combined with estimates of space/DHW loads, storage/distribution losses, and total yearly insolation per square meter allows estimation of collector area. Storage size can be estimated from the winter net load which is based on space and DHW loads, storage and distribution losses, and collector solar heat gain for the winter months.

  11. Thermodynamic framework for identifying free energy inventories of enzyme catalytic cycles

    PubMed Central

    Fried, Stephen D.; Boxer, Steven G.

    2013-01-01

    Pauling’s suggestion that enzymes are complementary in structure to the activated complexes of the reactions they catalyze has provided the conceptual basis to explain how enzymes obtain their fantastic catalytic prowess, and has served as a guiding principle in drug design for over 50 y. However, this model by itself fails to predict the magnitude of enzymes’ rate accelerations. We construct a thermodynamic framework that begins with the classic concept of differential binding but invokes additional terms that are needed to account for subtle effects in the catalytic cycle’s proton inventory. Although the model presented can be applied generally, this analysis focuses on ketosteroid isomerase (KSI) as an example, where recent experiments along with a large body of kinetic and thermodynamic data have provided strong support for the noncanonical thermodynamic contribution described. The resulting analysis precisely predicts the free energy barrier of KSI’s reaction as determined from transition-state theory using only empirical thermodynamic data. This agreement is suggestive that a complete free energy inventory of the KSI catalytic cycle has been identified. PMID:23840058

  12. Life cycle assessment of the environmental emissions of waste-to-energy facilities

    SciTech Connect

    Besnainou, J.; Landfield, A.

    1997-12-01

    Over the past ten years, environmental issues have become an increasing priority for both government and industry alike. In the U.S. as well as in Europe, the emphasis has gradually shifted from a site specific focus to a product specific focus. For this reason, tools are needed to scientifically assess the overall environmental performance of products and/or industrial systems. Life Cycle Assessment (LCA) belongs to that category of tools, and is used to perform this study. In numerous industrial countries, LCA is now recognized, and is rapidly becoming the tool of preference, to successfully provide quantitative and scientific analyses of the environmental impacts of industrial systems. By providing an unbiased analysis of entire systems, LCA has shown that the reality behind widely held beliefs regarding {open_quotes}green{close_quotes} issues, such as reusable vs. one way products, and {open_quotes}natural{close_quotes} vs. synthetic products, were far more complex than expected, and sometimes not as {open_quotes}green{close_quotes} as assumed. This paper describes the modeling and assumptions of an LCA, commissioned by the Integrated Waste Services Association (IWSA), that summarizes the environmental emissions of waste-to-energy facilities, and compares them to the environmental emissions generated by major combustible energy sources of the northeast part of the United States (NE). The geographical boundary for this study is, therefore, the NE US.

  13. A Practical Approach to a Closed Nuclear Fuel Cycle and Sustained Nuclear Energy - 12383

    SciTech Connect

    Collins, Emory D.; Del Cul, Guillermo D.; Spencer, Barry B.; Williams, Kent A.

    2012-07-01

    Recent systems analysis studies at Oak Ridge National Laboratory (ORNL) have shown that sufficient information is available from previous research and development (R and D), industrial experience, and current studies to make rational decisions on a practical approach to a closed nuclear fuel cycle in the United States. These studies show that a near-term decision is needed to recycle used nuclear fuel (UNF) in the United States, to encourage public recognition that a practical solution to disposal of nuclear energy wastes, primarily UNF, is achievable, and to ensure a focus on essential near-term actions and future R and D. Recognition of the importance of time factors is essential, including the multi-decade time period required to implement industrial-scale fuel recycle at the capacity needed, and the effects of radioactive decay on proliferation resistance, recycling complexity, radioactive emissions, and high-level-waste storage, disposal form development, and eventual emplacement in a geologic repository. Analysis of time factors led to identification of the benefits of processing older fuel and an 'optimum decay storage time'. Further benefits of focused R and D can ensure more complete recycling of UNF components and minimize wastes requiring disposal. Analysis of recycling costs and nonproliferation requirements, which are often cited as reasons for delaying a decision to recycle, shows that (1) the differences in costs of nuclear energy with open or closed fuel cycles are insignificant and (2) nonproliferation requirements can be met by a combination of 'safeguards-by-design' co-location of back-end fuel cycle facilities, and applied engineered safeguards and monitoring. The study shows why different methods of separating and recycling used fuel components do not have a significant effect on nonproliferation requirements and can be selected on other bases, such as process efficiency, maturity, and cost-effectiveness. Finally, the study concludes that continued storage of UNF without a decision to recycle is not a solution to the problem of nuclear waste disposal, but can be a deterrent to public confidence in nuclear energy. In summary, our studies have shown, in contrast to findings of the more prominent studies, that today we do have sufficient knowledge to make informed choices for the values and essential methods of UNF recycling, based on previous research, industrial experience, and current analyses. We have shown the significant importance of time factors, including the benefits of an optimum decay storage time on deploying effective nonproliferation safeguards, enabling reduced recycling complexity and environmental emissions, and optimizing waste management and disposal. Together with the multi-decade time required to implement industrial-scale UNF recycle at the capacity needed to match generation rate, our conclusion is that a near-term decision to recycle as many UNF components as possible is vitally needed. Further indecision and procrastination can lead to a loss of public confidence and favorable perception of nuclear energy. With no near-term decision, the path forward for UNF disposal will remain uncertain, with many diverse technologies being considered and no possible focus on a practical solution to the problem. However, a near-term decision to recycle UNF fuel and to take advantage of processing UNF and surface storing HLW, together with development and incorporation of more-complete recycling of UNF components, can provide the focus needed for a practical solution to the problem of nuclear waste disposal. (authors)

  14. Emulsion experiment for study on energy spectra of protons and nuclei of primary cosmic radiation in the energy range greater than 10 TeV per particle

    NASA Astrophysics Data System (ADS)

    Varkovitskaya, A. Ya.; Zamchalova, E. A.; Zatsepin, V. I.; Sazhina, G. P.; Sokolskaya, N. V.

    Development of the emulsion chamber method to study the energy spectrum of protons and nuclei of primary cosmic radiation is described; the results obtained in long-term exposure of emulsion chambers in the stratospere are presented.

  15. SECO sub 2 (stored energy in CO sub 2 ); Retrofit CO sub 2 bottoming cycles with off-peak energy storage for existing combustion turbines

    SciTech Connect

    Andrepont, J.S. ); Kooy, R.J. ); Combs, R.T. )

    1988-01-01

    The SECO{sub 2} Power energy storage system is analyzed as a retrofit bottoming cycle for existing Virginia Power combustion turbines (CT's). The closed-loop SECO{sub 2} power system produces on-peak energy using a CO{sub 2} Rankine cycle which rejects heat to {minus} 70{degrees}F stored CO{sub 2} triple point solid; off-peak energy later regenerates the solid. Inherent advantages of the system are shown to be compact storage, minimal environmental impact, and dry-cooled capability, all of which contribute to flexibility in siting and rapid licensing/construction schedules.

  16. CO2 Emission Reduction and Primary Energy Conservation Effects of Cogeneration System in Commercial and Residential Sectors Considering Long-Term Power Generation Mix in Japan

    NASA Astrophysics Data System (ADS)

    Komiyama, Ryoichi; Yamaji, Kenji; Fujii, Yasumasa

    This paper proposes a comprehensive model to examine future CO2 emission reduction and primary energy conservation through the installation of a cogeneration system (CGS) in commercial and residential sectors of Japan considering its long-term power generation mix. With the development of a CGS model and a long-term generation mix model on cost minimizing basis, Japans prospective power generation structure is figured out and the potential of CO2 emission reduction and primary energy conservation by a CGS is evaluated. With considerable uncertainty remaining concerning various assumptions made for the model analysis, following results are identified. (1) In all fuel price scenarios in power plants, the installation of CGS in commercial and residential sectors accomplishes the reduction of primary energy consumption. (2) In a standard fuel price scenario, the installation of CGS in commercial and residential sectors achieves the reduction of CO2 emission. In a low fuel price scenario which is the case current fuel prices continue for the future, however, CO2 reduction effect becomes decreasing compared to the standard fuel price scenario because of the dominant generation share of a LNG fired plant and a LNG combined cycle in future generation mix and these less carbon intensive plants replaced by CGS. In the case where nuclear power plant becomes competitive and increases its share in future generation mix, CO2 emission from energy system conversely increases by installing CGS in comparison with before installing, because electric power generation of CGS gradually replaces a nuclear power plant. These results suggest that the CO2 reduction potential by CGS introduction is cautiously evaluated taking into consideration the future power plant construction program in Japan.

  17. Transitions in the surface energy balance during the life cycle of a monsoon season

    NASA Astrophysics Data System (ADS)

    Krishnamurti, T. N.; Biswas, Mrinal K.

    2006-04-01

    In this observational/diagnostic study, we illustrate the time history of some important parameters of the surface energy balance during the life cycle of a single monsoon season. This chronology of the surface energy balance portrays the differential equilibrium state from the preonset phase to the withdrawal phase. This includes an analysis of the time history of base variables such as soil moisture, ground temperature, cloud cover, precipitation and humidity. This is followed by an analysis of the components of the surface energy balance where we note subtle changes in the overall balances as we proceed from one epoch of the monsoon to the next. Of interest here is the transition sequence: preonset, onset, break, revival, break, revival and withdrawal during the year 2001. Computations are all illustrated for a box over central India where the coastal effects were small, data coverage was not sparse and where the semi-arid land mass changes drastically to a lush green area. This region exhibited large changes in the components of surface energy balance. The principal results pertain to what balances the difference among the incoming short wave radiation (at the earths surface) and the long wave radiation exhibited by the ground. That difference is balanced by a dominant sensible heat flux and the reflected short wave radiation in the preonset stage. A sudden change in the Bowen ratio going from>1 to <1 is noted soon after the onset of monsoon. Thereafter the latent heat flux from the land surface takes an important role and the sensible heat flux acquires a diminishing role. We also examine the subtle changes that occur in the components of surface energy balance between the break and the active phases. The break phases are seen to be quite different from the preonset phases. This study is aimed to illustrate the major importance of moisture and clouds in the radiative transfer computations that are central to the surface energy balance during each epoch. These sensitivities (of moisture and clouds) have major consequences for weather and climate forecasts

  18. Effect of adjusting pulse durations of functional electrical stimulation cycling on energy expenditure and fatigue after spinal cord injury.

    PubMed

    Gorgey, Ashraf S; Poarch, Hunter J; Dolbow, David D; Castillo, Teodoro; Gater, David R

    2014-01-01

    The purpose of the current study was to determine the effects of three different pulse durations (200, 350, and 500 microseconds [P200, P350, and P500, respectively]) on oxygen uptake (VO2), cycling performance, and energy expenditure (EE) percentage of fatigue of the knee extensor muscle group immediately and 48 to 72 h after cycling in persons with spinal cord injury (SCI). A convenience sample of 10 individuals with motor complete SCI participated in a repeated-measures design using a functional electrical stimulation (FES) cycle ergometer over a 3 wk period. There was no difference among the three FES protocols on relative VO2 or cycling EE. Delta EE between exercise and rest was 42% greater in both P500 and P350 compared with P200 (p = 0.07), whereas recovery VO2 was 23% greater in P350 compared with P200 (p = 0.03). There was no difference in the outcomes of the three pulse durations on muscle fatigue. Knee extensor torque significantly decreased immediately after (p < 0.001) and 48 to 72 h after (p < 0.001) FES leg cycling. Lengthening pulse duration did not affect submaximal or relative VO2 or EE, total EE, and time to fatigue. Greater recovery VO2 and delta EE were noted in P350 and P500 compared with P200. An acute bout of FES leg cycling resulted in torque reduction that did not fully recover 48 to 72 h after cycling. PMID:25803753

  19. Geopressure geothermal energy conversion: the supercritical propane cycle for power generation

    SciTech Connect

    Goldsberry, F.L.; Bebout, D.G.; Bachman, A.L.

    1981-01-01

    The development of the geopressure geothermal unconventional gas resource has been the object of a drilling and reservoir testing program. One aspect of the assessment has been to look at the geothermal component of the energy base as a source of power generation. The basic production unit for the resource has been estimated to be a well capable of producing fluid at a rate of 15,000 to 40,000 BPD at temperatures of 240 to 360/sup 0/F (.0276 to .0736 M/sup 3//sec at 338 to 455/sup 0/K). The spacing of these wells will be approximately 2 to 4 km for effective reservoir drainage. This limits the generation capacity, per well from 700 to 3000 kW per site. It is assumed that interconnecting pipelines to carry brine from each well to a central location and then return it to salt water disposal wells will be impractical. Single well power plants with electrical gathering systems are considered to be the probable mode of development. The thermodynamic envelope within which the plant must operate is defined by the linear cooling curve of the brine and the ambient air temperature. The low resource temperature calls for a Rankine cycle. A supercritical propane cycle was selected. The only component of the thermal power system subject to uncertainty is the brine/propane heater. At the present time a scale/corrosion pilot plant is being operated on a number of geopressure test wells to determine inexpensive scale and corrosion inhibitors that may be used to reduce fouling of the exchanger tubes.

  20. FEASIBILITY OF HYDROGEN PRODUCTION USING LASER INERTIAL FUSION AS THE PRIMARY ENERGY SOURCE

    SciTech Connect

    Gorensek, M

    2006-11-03

    The High Average Power Laser (HAPL) program is developing technology for Laser IFE with the goal of producing electricity from the heat generated by the implosion of deuterium-tritium (DT) targets. Alternatively, the Laser IFE device could be coupled to a hydrogen generation system where the heat would be used as input to a water-splitting process to produce hydrogen and oxygen. The production of hydrogen in addition to electricity would allow fusion energy plants to address a much wider segment of energy needs, including transportation. Water-splitting processes involving direct and hybrid thermochemical cycles and high temperature electrolysis are currently being developed as means to produce hydrogen from high temperature nuclear fission reactors and solar central receivers. This paper explores the feasibility of this concept for integration with a Laser IFE plant, and it looks at potential modifications to make this approach more attractive. Of particular interest are: (1) the determination of the advantages of Laser IFE hydrogen production compared to other hydrogen production concepts, and (2) whether a facility of the size of FTF would be suitable for hydrogen production.

  1. Energy Spectra, Composition, and Other Properties of Ground-Level Events During Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Mewaldt, R. A.; Looper, M. D.; Cohen, C. M. S.; Haggerty, D. K.; Labrador, A. W.; Leske, R. A.; Mason, G. M.; Mazur, J. E.; von Rosenvinge, T. T.

    2012-10-01

    We report spacecraft measurements of the energy spectra of solar protons and other solar energetic particle properties during the 16 Ground Level Events (GLEs) of Solar Cycle 23. The measurements were made by eight instruments on the ACE, GOES, SAMPEX, and STEREO spacecraft and extend from 0.1 to 500-700 MeV. All of the proton spectra exhibit spectral breaks at energies ranging from 2 to 46 MeV and all are well fit by a double power-law shape. A comparison of GLE events with a larger sample of other solar energetic particle (SEP) events shows that the typical spectral indices are harder in GLE events, with a mean slope of -3.18 at >40 MeV/nuc. In the energy range 45 to 80 MeV/nucleon about 50 % of GLE events have properties in common with impulsive 3He-rich SEP events, including enrichments in Ne/O, Fe/O, 22Ne/20Ne, and elevated mean charge states of Fe. These 3He-rich events contribute to the seed population accelerated by CME-driven shocks. An analysis is presented of whether highly-ionized Fe ions observed in five events could be due to electron stripping during shock acceleration in the low corona. Making use of stripping calculations by others and a coronal density model, we can account for events with mean Fe charge states of < Q Fe>?+20 if the acceleration starts at 1.24-1.6 solar radii, consistent with recent comparisons of CME trajectories and type-II radio bursts. In addition, we suggest that gradual stripping of remnant ions from earlier large SEP events may also contribute a highly-ionized suprathermal seed population. We also discuss how observed SEP spectral slopes relate to the energetics of particle acceleration in GLE and other large SEP events.

  2. Energy Spectra, Composition, and Other Properties of Ground-Level Events During Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; COhen, C. M. S.; Labrador, A. W.; Leske, R. A.; Looper, M. D.; Haggerty, D. K.; Mason, G. M.; Mazur, J. E.; vonRosenvinge, T. T.

    2012-01-01

    We report spacecraft measurements of the energy spectra of solar protons and other solar energetic particle properties during the 16 Ground Level Events (GLEs) of Solar Cycle 23. The measurements were made by eight instruments on the ACE, GOES, SAMPBX, and STEREO spacecraft and extend from approximately 0.1 to approximately 500-700 MeV. All of the proton spectra exhibit spectral breaks at energies ranging from approximately 2 to approximately 46 MeV and all are well fit by a double power-law shape. A comparison of GLE events with a larger sample of other solar energetic particle (SEP) events shows that the typical spectral indices are harder in GLE events, with a mean slope of -3.18 at greater than 40 MeV/nuc. In the energy range 45 to 80 MeV/nucleon about approximately 50% of GLE events have properties in common with impulsive He-3-rich SEP events, including enrichments in Ne/O, Fe/O, Ne-22/Ne-20, and elevated mean charge states of Fe. These He-3 rich events contribute to the seed population accelerated by CME-driven shocks. An analysis is presented of whether highly-ionized Fe ions observed in five events could be due to electron stripping during shock acceleration in the low corona. Making use of stripping calculations by others and a coronal density model, we can account for events with mean Fe charge states of (Q(sub Fe) is approximately equal to +20 if the acceleration starts at approximately 1.24-1.6 solar radii, consistent with recent comparisons of CME trajectories and type-II radio bursts. In addition, we suggest that gradual stripping of remnant ions from earlier large SEP events may also contribute a highly-ionized suprathermal seed population. We also discuss how observed SEP spectral slopes relate to the energetics of particle acceleration in GLE and other large SEP events.

  3. LIFE CYCLE DESIGN OF AMORPHOUS SILICON PHOTOVOLTAIC MODULES

    EPA Science Inventory

    The life cycle design framework was applied to photovoltaic module design. The primary objective of this project was to develop and evaluate design metrics for assessing and guiding the Improvement of PV product systems. Two metrics were used to assess life cycle energy perform...

  4. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 4: peer review comments on technical report

    SciTech Connect

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume IV includes copies of all the external peer review comments on the report distributed for review in July 1997.

  5. Total energy cycle assessment of electric and conventional vehicles: an energy and environmental analysis. Volume 2: appendices A-D to technical report

    SciTech Connect

    1998-01-01

    This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline- powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume II contains additional details on the vehicle, utility, and materials analyses and discusses several details of the methodology.

  6. Bioenergy co-products derived from microalgae biomass via thermochemical conversion--life cycle energy balances and CO2 emissions.

    PubMed

    Khoo, H H; Koh, C Y; Shaik, M S; Sharratt, P N

    2013-09-01

    An investigation of the potential to efficiently convert lipid-depleted residual microalgae biomass using thermochemical (gasification at 850 C, pyrolysis at 550 C, and torrefaction at 300 C) processes to produce bioenergy derivatives was made. Energy indicators are established to account for the amount of energy inputs that have to be supplied to the system in order to gain 1 MJ of bio-energy output. The paper seeks to address the difference between net energy input-output balances based on a life cycle approach, from "cradle-to-bioenergy co-products", vs. thermochemical processes alone. The experimental results showed the lowest results of Net Energy Balances (NEB) to be 0.57 MJ/MJ bio-oil via pyrolysis, and highest, 6.48 MJ/MJ for gas derived via torrefaction. With the complete life cycle process chain factored in, the energy balances of NEBLCA increased to 1.67 MJ/MJ (bio-oil) and 7.01 MJ/MJ (gas). Energy efficiencies and the life cycle CO2 emissions were also calculated. PMID:23810951

  7. An Overview of the NASA Energy and Water cycle Study (NEWS) and the North American Water Program (NAWP)

    NASA Astrophysics Data System (ADS)

    Houser, P. R.

    2014-12-01

    NEWS: 10 years ago, NASA established the NASA Energy and Water-cycle Study (NEWS), whose long-term grand challenge is to document and enable improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. The NEWS program builds upon existing NASA-supported basic research in atmospheric physics and dynamics, radiation, climate modeling, and terrestrial hydrology. While these NASA programs fund research activities that address individual aspects of the global energy and water cycles, they are not specifically designed to generate a coordinated result. NEWS developed the first coordinated attempt to describe the complete global energy and water cycle using existing and forthcoming satellite and ground based observations, and laying the foundation for essential NEWS developments in model representations of atmospheric energy and water exchange processes. This comprehensive energy and water data analysis program exploited crucial datasets, some requiring complete re-processing, and new satellite measurements. NAWP: Dramatically changing climates has had an indelible impact on North America's water crisis. To decisively address these challenges, we recommend that NAWP coalesce an interdisciplinary, international and interagency effort to make significant contributions to continental- to decision-scale hydroclimate science and solutions. By entraining, integrating and coordinating the vast array of interdisciplinary observational and prediction resources available, NAWP will significantly advance skill in predicting, assessing and managing variability and changes in North American water resources. We adopt three challenges to organize NAWP efforts. The first deals with developing a scientific basis and tools for mitigating and adapting to changes in the water supply-demand balance. The second challenge is benchmarking; to use incomplete and uncertain observations to assess water storage and quality dynamics, and to characterize the information content of water cycle predictions in a way that allows for model improvement. The final challenge is to establish clear pathways to inform water managers, practitioners and decision makers about newly developed tools, observations and research results.

  8. Algal photosynthesis as the primary driver for a sustainable development in energy, feed, and food production.

    PubMed

    Anemaet, Ida G; Bekker, Martijn; Hellingwerf, Klaas J

    2010-11-01

    High oil prices and global warming that accompany the use of fossil fuels are an incentive to find alternative forms of energy supply. Photosynthetic biofuel production represents one of these since for this, one uses renewable resources. Sunlight is used for the conversion of water and CO? into biomass. Two strategies are used in parallel: plant-based production via sugar fermentation into ethanol and biodiesel production through transesterification. Both, however, exacerbate other problems, including regional nutrient balancing and the world's food supply, and suffer from the modest efficiency of photosynthesis. Maximizing the efficiency of natural and engineered photosynthesis is therefore of utmost importance. Algal photosynthesis is the system of choice for this particularly for energy applications. Complete conversion of CO? into biomass is not necessary for this. Innovative methods of synthetic biology allow one to combine photosynthetic and fermentative metabolism via the so-called Photanol approach to form biofuel directly from Calvin cycle intermediates through use of the naturally transformable cyanobacterium Synechocystis sp. PCC 6803. Beyond providing transport energy and chemical feedstocks, photosynthesis will continue to be used for food and feed applications. Also for this application, arguments of efficiency will become more and more important as the size of the world population continues to increase. Photosynthetic cells can be used for food applications in various innovative forms, e.g., as a substitute for the fish proteins in the diet supplied to carnivorous fish or perhaps--after acid hydrolysis--as a complex, animal-free serum for growth of mammalian cells in vitro. PMID:20640935

  9. Algal Photosynthesis as the Primary Driver for a Sustainable Development in Energy, Feed, and Food Production

    PubMed Central

    Anemaet, Ida G.; Bekker, Martijn

    2010-01-01

    High oil prices and global warming that accompany the use of fossil fuels are an incentive to find alternative forms of energy supply. Photosynthetic biofuel production represents one of these since for this, one uses renewable resources. Sunlight is used for the conversion of water and CO2 into biomass. Two strategies are used in parallel: plant-based production via sugar fermentation into ethanol and biodiesel production through transesterification. Both, however, exacerbate other problems, including regional nutrient balancing and the world's food supply, and suffer from the modest efficiency of photosynthesis. Maximizing the efficiency of natural and engineered photosynthesis is therefore of utmost importance. Algal photosynthesis is the system of choice for this particularly for energy applications. Complete conversion of CO2 into biomass is not necessary for this. Innovative methods of synthetic biology allow one to combine photosynthetic and fermentative metabolism via the so-called Photanol approach to form biofuel directly from Calvin cycle intermediates through use of the naturally transformable cyanobacterium Synechocystis sp. PCC 6803. Beyond providing transport energy and chemical feedstocks, photosynthesis will continue to be used for food and feed applications. Also for this application, arguments of efficiency will become more and more important as the size of the world population continues to increase. Photosynthetic cells can be used for food applications in various innovative forms, e.g., as a substitute for the fish proteins in the diet supplied to carnivorous fish or perhaps—after acid hydrolysis—as a complex, animal-free serum for growth of mammalian cells in vitro. PMID:20640935

  10. Modeling energy flow and nutrient cycling in natural semiarid grassland ecosystems with the aid of thematic mapper data

    NASA Technical Reports Server (NTRS)

    Lewis, James K.

    1987-01-01

    Energy flow and nutrient cycling were modeled as affected by herbivory on selected intensive sites along gradients of precipitation and soils, validating the model output by monitoring selected parameters with data derived from the Thematic Mapper (TM). Herbivore production was modeled along the gradient of soils and herbivory, and validated with data derived from TM in a spatial data base.

  11. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage.

    PubMed

    Pasta, Mauro; Wessells, Colin D; Huggins, Robert A; Cui, Yi

    2012-01-01

    New types of energy storage are needed in conjunction with the deployment of solar, wind and other volatile renewable energy sources and their integration with the electric grid. No existing energy storage technology can economically provide the power, cycle life and energy efficiency needed to respond to the costly short-term transients that arise from renewables and other aspects of grid operation. Here we demonstrate a new type of safe, fast, inexpensive, long-life aqueous electrolyte battery, which relies on the insertion of potassium ions into a copper hexacyanoferrate cathode and a novel activated carbon/polypyrrole hybrid anode. The cathode reacts rapidly with very little hysteresis. The hybrid anode uses an electrochemically active additive to tune its potential. This high-rate, high-efficiency cell has a 95% round-trip energy efficiency when cycled at a 5C rate, and a 79% energy efficiency at 50C. It also has zero-capacity loss after 1,000 deep-discharge cycles. PMID:23093186

  12. Improving the actinides recycling in closed fuel cycles, a major step towards nuclear energy sustainability

    SciTech Connect

    Poinssot, C.; Grandjean, S.; Masson, M.; Bouillis, B.; Warin, D.

    2013-07-01

    Increasing the sustainability of nuclear energy is a longstanding road that requires a stepwise approach to successively tackle the following 3 objectives. First of all, optimize the consumption of natural resource to preserve them for future generations and hence guarantee the energetic independence of the countries (no uranium ore is needed anymore). The current twice-through cycle of Pu implemented by France, UK, Japan and soon China is a first step in this direction and already allows the development and optimization of the relevant industrial processes. It also allows a major improvement regarding the conditioning of the ultimate waste in a durable and robust nuclear glass. Secondly, the recycling of americium could be an interesting option for the future with the deployment of FR fleet to save the repository resource and optimize its use by allowing a denser disposal. It would limit the burden towards the future generations and the need for additional repositories before several centuries. Thirdly, the recycling of the whole minor actinides inventory could be an interesting option for the far-future for strongly decreasing the waste long-term toxicity, down to a few centuries. It would bring the waste issue back within the human history, which should promote its acceptance by the social opinion.

  13. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    PubMed Central

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m−2 and 7.61 kg m−2 day−1 at the generation temperature of 140°C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker. PMID:25202735

  14. Evidence for Solar Cycle Influence on the Infrared Energy Budget and Radiative Cooling of the Thermosphere

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Martin-Torres, F. Javier; Marshall, B. Thomas; Thompson, R. Earl; Williams, Joshua; Turpin, TImothy; Kratz, D. P.; Russell, James M.; Woods, Tom; Gordley, Larry L.

    2007-01-01

    We present direct observational evidence for solar cycle influence on the infrared energy budget and radiative cooling of the thermosphere. By analyzing nearly five years of data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, we show that the annual mean infrared power radiated by the nitric oxide (NO) molecule at 5.3 m has decreased by a factor of 2.9. This decrease is correlated (r = 0.96) with the decrease in the annual mean F10.7 solar index. Despite the sharp decrease in radiated power (which is equivalent to a decrease in the vertical integrated radiative cooling rate), the variability of the power as given in the standard deviation of the annual means remains approximately constant. A simple relationship is shown to exist between the infrared power radiated by NO and the F10.7 index, thus providing a fundamental relationship between solar activity and the thermospheric cooling rate for use in thermospheric models. The change in NO radiated power is also consistent with changes in absorbed ultraviolet radiation over the same time period.

  15. Associations between the Global Energy Cycle and Regional Rainfall in South Africa and Southwest Australia.

    NASA Astrophysics Data System (ADS)

    Tennant, Warren J.; Reason, Chris J. C.

    2005-08-01

    Large-scale atmospheric processes in the Southern Hemisphere are examined on both seasonal and daily time scales in order to seek associations between these and regional rainfall variability in the summer rainfall areas of South Africa and the winter rainfall regions of South Africa and Western Australia. The basis of the analysis is atmospheric energetics of the vertical mean and shear flow. Self-organizing maps (SOMs) are then used to find archetypical states of the daily flow and to assess how the frequency characteristics of these states change between wet and dry years.The results show clear associations between the frequency of circulation archetypes on a hemispheric scale and regional rainfall for both summer and winter rainfall areas. Substantial changes in archetype frequencies between wet and dry years are found with as much as a doubling or halving of the number of days in which certain archetypes occur within a season. The physical reasons for observed teleconnections are shown by way of the atmospheric energy cycle, providing a deeper understanding of climate variability that may benefit extended-range prediction.

  16. Gas desorption from seawater in open-cycle ocean thermal energy conversion barometric upcomers

    SciTech Connect

    Ghiaasiaan, S.M.; Wassel, A.T. ); Pesaran, A.A. )

    1990-08-01

    Gas desorption from warm and cold seawater under open-cycle ocean thermal energy conversion (OC-OTEC) conditions is addressed in this paper. The desorption process of dissolved O{sub 2}, N{sub 2}, and CO{sub 2} in the barometric upcomers of an OTEC plant is simulated mathematically. The model considers the growth of bubbles originating in the ocean and bubbles formed in the upcomers. Bubble growth is induced by gas mass transfer and water evaporation at the bubble-liquid interface, as well as by the decreasing hydrostatic pressure. Heterogeneous nucleation at pipe wall crevices and on suspended particles in the water stream is also modeled. Bubble coalescence due to turbulent shear and differential buoyancy is simulated. The results generated show the deaeration efficiency as a function of flow and geometric parameters. The calculations show that gas desorption in the barometric upcomers can be appreciable. Such desorption is enhanced by increasing the concentration of the incoming and/or the heterogeneously formed bubbles. Results of existing experiments are discussed and predictions are shown for the selected test conditions.

  17. Analysis of a Helium Brayton Power Cycle for a Direct-Drive Inertial Fusion Energy Power Reactor

    NASA Astrophysics Data System (ADS)

    Wagner, Scott; Gentile, Charles; Parsells, Robert; Priniski, Craig

    2008-11-01

    Presented is a thermodynamic model analysis and optimization of a helium Brayton power cycle for direct-drive inertial fusion energy (IFE) reactor. Preliminary reactor design goals include production of 2GW of thermal power and an estimated 700MW of electricity using a tertiary indirect helium Brayton cycle. A thermodynamic analysis of the proposed helium Brayton cycle is performed using baseline technology specifications and generalized thermodynamic assumptions. Analytic equations are developed using first and second law analysis. The model constraints are the turbine inlet temperature and pressure set by the reactor temperature of 700^oC and current turbine specifications of 7MPa, respectively. Optimization of this model is then performed using iterative numerical programming for key variables. Previous analysis shows a 51% cycle efficiency using current technology; best estimates of near-term technology increase the cycle efficiency to 64%. Results will be presented. R. Schleicher, A. R. Raffray, C. P. Wong, ``An Assessment of the Brayton Cycle for High Performance Power Plant,'' Fusion Technology, 39 (2), 823-827, March 2001.

  18. Interactive Video Game Cycling Leads to Higher Energy Expenditure and Is More Enjoyable than Conventional Exercise in Adults

    PubMed Central

    Monedero, Javier; Lyons, Elizabeth J.; O’Gorman, Donal J.

    2015-01-01

    Background Despite the widely accepted health benefits of regular physical activity, only a small percentage of the population meets the current recommendations. The reasons include a wide use of technology and a lack of enjoyment while exercising. The purpose of this study was to compare the physiological, perceptual and enjoyment responses between a single bout of (I) conventional cycling and (II) interactive cycling video game at a matched workload. Methods A cross-sectional study in 34 healthy participants was performed. Initially, participants completed an incremental maximal cycling test to measure peak oxygen uptake and to determine ventilatory threshold. In random order, participants carried out a 30 min interactive cycling trial and a 30 min conventional cycling trial at 55% of peak power output. During the trials, oxygen uptake and energy expenditure were measured by open-circuit spirometry and heart rate was measured by radiotelemetry. RPE and enjoyment were measured every 10 minutes with Borg scale and a modified PACES scale. Results Interactive cycling resulted in a significantly greater %V̇O2Reserve (68.2% ± 9.2% vs 64.7% ± 8.1%), rate of energy expenditure (505.8±75.2 vs 487.4±81.2 j·kg-1·min-1), and enjoyment (63.4% ± 17 vs 42% ± 13.6), P<0.05. Participants were working at a higher intensity in relation to the individual’s ventilatory threshold during the interactive cycling video game trial (M = 11.86, SE = 3.08) than during the Conventional cycling trial (M = 7.55, SE = 3.16, t(33) = -2.69, P<0.05, r = .42). No significant differences were found for heart rate reserve (72.5 ± 10.4 vs 71.4±10.1%) and RPE (13.1 ± 1.8 vs 13.2 ± 1.7). Conclusion Interactive cycling games can be a valid alternative to conventional exercise as they result in a higher exercise intensity than conventional cycling and a distraction from aversive cognitive and physiological states at and above the ventilatory threshold. PMID:25738290

  19. A Sustainable Nuclear Fuel Cycle Based on Laser Inertial Fusion Energy

    SciTech Connect

    Moses, E; Diaz de la Rubia, T; Storm, E; Latkowski, J; Farmer, J; Abbott, R; Kramer, K; Peterson, P; Shaw, H; Lehman II, R

    2009-05-22

    The National Ignition Facility (NIF), a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, will soon be completed at the Lawrence Livermore National Laboratory. Experiments designed to accomplish the NIF's goal will commence in 2010, using laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 35 MJ are expected soon thereafter. They propose that a laser system capable of generating fusion yields of 35 to 75 MJ at 10 to 15 Hz (i.e., {approx} 350- to 1000-MW fusion and {approx} 1.3 to 3.6 x 10{sup 20} n/s), coupled to a compact subdritical fission blanket, could be used to generate several GW of thermal power (GWth) while avoiding carbon dioxide emissions, mitigating nuclear proliferation concerns and minimizing the concerns associated with nuclear safety and long-term nuclear waste disposition. this Laser Inertial Fusion Energy (LIFE) based system is a logical extension of the NIF laser and the yields expec ted from the early ignition experiments on NIF. The LIFE concept is a once-through,s elf-contained closed fuel cycle and would have the following characteristics: (1) eliminate the need for spent fuel chemical separation facilities; (4) maintain the fission blanket subcritical at all times (k{sub eff} < 0.90); and (5) minimize future requirements for deep underground geological waste repositories and minimize actinide content in the end-of-life nuclear waste below the Department of Energy's (DOE's) attractiveness Level E (the lowest). Options to burn natural or depleted U, Th, U/Th mixtures, Spent Nuclear Fuel (SNF) without chemical separations of weapons-attractive actinide streams, and excess weapons Pu or highly enriched U (HEU) are possible and under consideration. Because the fission blanket is always subcritical and decay heat removal is possible via passive mechanisms, the technology is inherently safe. Many technical challenges must be met, but a LIFE solution could provide a sustainable path for worldwide growth of nuclear powr for electricity production and hydrogen generation.

  20. Combined heat and power systems for commercial buildings: investigating cost, emissions, and primary energy reduction based on system components

    NASA Astrophysics Data System (ADS)

    Smith, Amanda D.

    Combined heat and power (CHP) systems produce electricity and useful heat from fuel. When power is produced near a building which consumes power, transmission losses are averted, and heat which is a byproduct of power production may be useful to the building. That thermal energy can be used for hot water or space heating, among other applications. This dissertation focuses on CHP systems using natural gas, a common fuel, and systems serving commercial buildings in the United States. First, the necessary price difference between purchased electricity and purchased fuel is analyzed in terms of the efficiencies of system components by comparing CHP with a conventional separate heat and power (SHP) configuration, where power is purchased from the electrical grid and heat is provided by a gas boiler. Similarly, the relationship between CDE due to electricity purchases and due to fuel purchases is analyzed as well as the relationship between primary energy conversion factors for electricity and fuel. The primary energy conversion factor indicates the quantity of source energy necessary to produce the energy purchased at the site. Next, greenhouse gas emissions are investigated for a variety of commercial buildings using CHP or SHP. The relationship between the magnitude of the reduction in emissions and the parameters of the CHP system is explored. The cost savings and reduction in primary energy consumption are evaluated for the same buildings. Finally, a CHP system is analyzed with the addition of a thermal energy storage (TES) component, which can store excess thermal energy and deliver it later if necessary. The potential for CHP with TES to reduce cost, emissions, and primary energy consumption is investigated for a variety of buildings. A case study is developed for one building for which TES does provide additional benefits over a CHP system alone, and the requirements for a water tank TES device are examined.

  1. Energy distribution in white organic light-emitting diodes with three primary color emitting layers

    NASA Astrophysics Data System (ADS)

    Meng, LingChuan; Lou, ZhiDong; Yang, ShengYi; Deng, ZhaoRu

    2011-01-01

    Two types of organic light-emitting diodes with structures of ITO/ N, N'-bis(1-naphthyl)- N, N'-diphenyl,1,1'-biphenyl-4,4'-diamine (NPB)/tris(8-hydroquinolinato)aluminum(Alq3)/2,9-dimethyl-4,7-diphenyl-l,10-phenanthroline(BCP)/Alq3:4-dicyanome-thylene-2-(tert-butyl)-6-methyl-4H-pyran(DCJTB)/Alq3/Al and ITO/NPB/BCP/Alq3/Alq3:DCJTB/Alq3/Al were studied. NPB was chosen as a hole-transporting/blue-emitting layer. Alq3 adjacent to BCP acted as a green emitting layer while that adjacent to the Al cathode acted as an electron-transporting layer. Alq3 doped with 2 wt.% DCJTB was used as a red emitting layer. The operating principles of the devices were explained by the mechanism of Frster energy transfer and the hole and exciton blocking effect of BCP. It was found that the spectral characteristics of the devices strongly depended on the relative location between the green emitting Alq3 layer and the BCP layer, as well as their thickness. Pure white emission with the CIE coordinates of (0.33, 0.33) was achieved by mixing the three primary colors in the device with the structure of ITO/NPB(30 nm)/ BCP(6 nm)/Alq3(30 nm)/Alq3:DCJTB(30 nm)/Alq3(30 nm)/Al. The BCP layer played an important role in distributing the exciton energy among the three emitting layers to achieve a balanced white light. The white emission of this device was largely insensitive to the driving voltage (15-27 V) with the insertion of the green emitting Alq3 layer.

  2. A new control method depending on primary phase angle of transcutaneous energy transmission system for artificial heart.

    PubMed

    Miura, H; Saito, I; Sato, F; Shiraishi, Y; Yambe, T; Matsuki, H

    2013-01-01

    A new control method for stabilizing output voltage of the transcutaneous energy transmission system for artificial heart is proposed. This method is primary side, is outside of the body, which is not depending on a signal transmission system from the implanted device. The impedance observed from primary side changes from inductive to capacitive and the output voltage decreases drastically when the output current is large and the coupling factor is higher than that of the optimal condition. In this case, the driving frequency should be changed to higher so that the phase angle of the primary impedance is zero degree. The preliminary examination showed that this control method can enhance the output voltage limit to twice and the feasibility of the primary side control. PMID:24111037

  3. Revised Energy Spectra for Primary Elements, H - Si, above 50 GeV from the ATIC-2 Science Flight

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunashingha, R. M.; Guzik, T. G.; Isbert, J.; Kim, K. C.; Kouznetsov, E. N.; Panasyuk, M. I.; Panov, A. D.; Schmidt, W. K. H.; Seo, E. S.; Sokolskaya, N. V.; Watts, J. W.; Wu, J.; Zatsepin, V. I.

    2007-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) long duration balloon experiment had a successful science flight accumulating 18 days of data (12/02 - 1/03) during a single circumnavigation in Antarctica. ATIC measures the energy spectra of elements from H to Fe in primary cosmic rays using a fully active Bismuth Germanate calorimeter preceded by a carbon target, with embedded scintillator hodoscopes, and a silicon matrix charge detector at the top. Preliminary results from ATIC have been reported in previous conferences. The revised results reported here are derived from a new analysis of the data with improved charge resolution, lower background and revised energy calibration. The raw energy deposit spectra are de-convolved into primary energy spectra and extrapolated to the top of the atmosphere. We compare these revised results to previous data and comment upon the astrophysical interpretation of the results.

  4. Composition of primary cosmic rays at energies 10(15) to approximately 10(16) eV

    NASA Technical Reports Server (NTRS)

    Amenomori, M.; Konishi, E.; Hotta, N.; Mizutani, K.; Kasahara, K.; Kobayashi, T.; Mikumo, E.; Sato, K.; Yuda, T.; Mito, I.

    1985-01-01

    The sigma epsilon gamma spectrum in 1 approx. 5 x 1000 TV observed at Mt. Fuji suggests that the flux of primary protons 10 to the 15 approx 10th eV is lower by a factor of 2 approx. 3 than a simple extrapolation from lower energies; the integral proton spectrum tends to be steeper than around to the power V and the spectral index tends to be steeper than Epsilon to the -17th power around 10 to the 14th power eV and the spectral index becomes approx. 2.0 around 10 to the 15th power eV. If the total flux of primary particles has no steepening up to approx 10 to the 15th power eV, than the fraction of primary protons to the total flux should be approx 20% in contrast to approx 45% at lower energies.

  5. Energy cycle associated with inter-member variability in a large ensemble of simulations with the Canadian RCM (CRCM5)

    NASA Astrophysics Data System (ADS)

    Nikima, Oumarou; Laprise, Ren

    2016-01-01

    In an ensemble of Regional Climate Model (RCM) simulations where different members are initialised at different times but driven by identical lateral boundary conditions, the individual members provide different, but equally acceptable, weather sequences. In others words, RCM simulations exhibit the phenomenon of Internal Variability (or inter-member variabilityIV), defined as the spread between members in an ensemble of simulations. Our recent studies reveal that RCM's IV is associated with energy conversions similar to those taking place in weather systems. By analogy with the classical work on global energetics of weather systems, a formulation of an energy cycle for IV has been developed that is applicable over limited-area domains. Prognostic equations for ensemble-mean kinetic energy and available enthalpy are decomposed into contributions due to ensemble-mean variables and those due to deviations from the ensemble mean (IV). Together these equations constitute an energy cycle for IV in ensemble simulations of an RCM. A 50-member ensemble of 1-year simulations that differ only in their initial conditions was performed with the fifth-generation Canadian RCM (CRCM5) over an eastern North America domain. The various energy reservoirs of IV and exchange terms between reservoirs were evaluated; the results show a remarkably close parallel between the energy conversions associated with IV in ensemble simulations of RCM and the energy conversions taking place in weather systems in the real atmosphere.

  6. New fire diurnal cycle characterizations to improve fire radiative energy assessments made from low-Earth orbit satellites sampling

    NASA Astrophysics Data System (ADS)

    Andela, N.; Kaiser, J. W.; van der Werf, G. R.; Wooster, M. J.

    2015-03-01

    Accurate near real time fire emissions estimates are required for air quality forecasts. To date, most approaches are based on satellite-derived estimates of fire radiative power (FRP), which can be converted to fire radiative energy (FRE) which is directly related to fire emissions. Uncertainties in these FRE estimations are often substantial. This is for a large part because the most often used low-Earth orbit satellite-based instruments like the MODerate-resolution Imaging Spectroradiometer (MODIS) have a relatively poor sampling of the usually pronounced fire diurnal cycle. In this paper we explore the spatial variation of this fire diurnal cycle and its drivers. Specifically, we assess how representing the fire diurnal cycle affects FRP and FRE estimations when using data collected at MODIS overpasses. Using data assimilation we explored three different methods to estimate hourly FRE, based on an incremental sophistication of parameterizing the fire diurnal cycle. We sampled data from the geostationary Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) at MODIS detection opportunities to drive the three approaches. The full SEVIRI time-series, providing full coverage of the diurnal cycle, were used to evaluate the results. Our study period comprised three years (2010-2012), and we focussed on Africa and the Mediterranean basin to avoid the use of potentially lower quality SEVIRI data obtained at very far off-nadir view angles. We found that the fire diurnal cycle varies substantially over the study region, and depends on both fuel and weather conditions. For example, more "intense" fires characterized by a fire diurnal cycle with high peak fire activity, long duration over the day, and with nighttime fire activity are most common in areas of large fire size (i.e., large burned area per fire event). These areas are most prevalent in relatively arid regions. Ignoring the fire diurnal cycle as done currently in some approaches caused structural errors, while generally overestimating FRE. Including information on the climatology of the fire diurnal cycle provided the most promising avenue to improve FRE estimations. This approach also improved the performance on relatively high spatiotemporal resolutions, although only when aggregating model results to coarser spatial and/or temporal scale good correlation was found with the full SEVIRI hourly reference dataset. In general model performance was best in areas of frequent fire and low errors of omission. We recommend the use of regionally varying fire diurnal cycle information within the Global Fire Assimilation System (GFAS) used in the Copernicus Atmosphere Monitoring Services, which will improve FRE estimates and may allow for further reconciliation of biomass burning emission estimates from different inventories.

  7. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion.

    PubMed Central

    Niyogi, K K; Grossman, A R; Björkman, O

    1998-01-01

    A conserved regulatory mechanism protects plants against the potentially damaging effects of excessive light. Nearly all photosynthetic eukaryotes are able to dissipate excess absorbed light energy in a process that involves xanthophyll pigments. To dissect the role of xanthophylls in photoprotective energy dissipation in vivo, we isolated Arabidopsis xanthophyll cycle mutants by screening for altered nonphotochemical quenching of chlorophyll fluorescence. The npq1 mutants are unable to convert violaxanthin to zeaxanthin in excessive light, whereas the npq2 mutants accumulate zeaxanthin constitutively. The npq2 mutants are new alleles of aba1, the zeaxanthin epoxidase gene. The high levels of zeaxanthin in npq2 affected the kinetics of induction and relaxation but not the extent of nonphotochemical quenching. Genetic mapping, DNA sequencing, and complementation of npq1 demonstrated that this mutation affects the structural gene encoding violaxanthin deepoxidase. The npq1 mutant exhibited greatly reduced nonphotochemical quenching, demonstrating that violaxanthin deepoxidation is required for the bulk of rapidly reversible nonphotochemical quenching in Arabidopsis. Altered regulation of photosynthetic energy conversion in npq1 was associated with increased sensitivity to photoinhibition. These results, in conjunction with the analysis of npq mutants of Chlamydomonas, suggest that the role of the xanthophyll cycle in nonphotochemical quenching has been conserved, although different photosynthetic eukaryotes rely on the xanthophyll cycle to different extents for the dissipation of excess absorbed light energy. PMID:9668132

  8. Life-cycle fossil energy consumption and greenhouse gas emissions of bioderived chemicals and their conventional counterparts.

    PubMed

    Adom, Felix; Dunn, Jennifer B; Han, Jeongwoo; Sather, Norm

    2014-12-16

    Biomass-derived chemical products may offer reduced environmental impacts compared to their fossil-derived counterparts and could improve profit margins at biorefineries when coproduced with higher-volume, lower-profit margin biofuels. It is important to assess on a life-cycle basis the energy and environmental impacts of these bioproducts as compared to conventional, fossil-derived products. We undertook a life-cycle analysis of eight bioproducts produced from either algal-derived glycerol or corn stover-derived sugars. Selected on the basis of technology readiness and market potential, the bioproducts are propylene glycol, 1,3-propanediol, 3-hydroxypropionic acid, acrylic acid, polyethylene, succinic acid, isobutanol, and 1,4-butanediol. We developed process simulations to obtain energy and material flows in the production of each bioproduct and examined sensitivity of these flows to process design assumptions. Conversion process data for fossil-derived products were based on the literature. Conversion process data were combined with upstream parameters in the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model to generate life-cycle greenhouse gas (GHG) emissions and fossil energy consumption (FEC) for each bioproduct and its corresponding petroleum-derived product. The bioproducts uniformly offer GHG emissions reductions compared to their fossil counterparts ranging from 39 to 86% on a cradle-to-grave basis. Similarly, FEC was lower for bioproducts than for conventional products. PMID:25380298

  9. High-Energy-Density, Low-Temperature Li/CFx Primary Cells

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay; Bugga, Ratnakumar; Smart, Marshall; Prakash, G.; Yazami, Rachid

    2007-01-01

    High-energy-density primary (nonrechargeable) electrochemical cells capable of relatively high discharge currents at temperatures as low as -40 C have been developed through modification of the chemistry of commercial Li/CFx cells and batteries. The commercial Li/CFx units are not suitable for high-current and low-temperature applications because they are current limited and their maximum discharge rates decrease with decreasing temperature. The term "Li/CFx" refers to an anode made of lithium and a cathode made of a fluorinated carbonaceous material (typically graphite). In commercial cells, x typically ranges from 1.05 to 1.1. This cell composition makes it possible to attain specific energies up to 800 Wh/kg, but in order to prevent cell polarization and the consequent large loss of cell capacity, it is typically necessary to keep discharge currents below C/50 (where C is numerically equal to the current that, flowing during a charge or discharge time of one hour, would integrate to the nominal charge or discharge capacity of a cell). This limitation has been attributed to the low electronic conductivity of CFx for x approx. 1. To some extent, the limitation might be overcome by making cathodes thinner, and some battery manufacturers have obtained promising results using thin cathode structures in spiral configurations. The present approach includes not only making cathodes relatively thin [.2 mils (.0.051 mm)] but also using sub-fluorinated CFx cathode materials (x < 1) in conjunction with electrolytes formulated for use at low temperatures. The reason for choosing sub-fluorinated CFx cathode materials is that their electronic conductivities are high, relative to those for which x > 1. It was known from recent prior research that cells containing sub-fluorinated CFx cathodes (x between 0.33 and 0.66) are capable of retaining substantial portions of their nominal low-current specific energies when discharged at rates as high as 5C at room temperature. However, until experimental cells were fabricated following the present approach and tested, it was not known whether or to what extent low-temperature performance would be improved.

  10. High-cycle-life, high-energy-density nickel-zinc batteries

    NASA Astrophysics Data System (ADS)

    Wagner, O. C.

    1982-02-01

    The ERADCOM nickel-zinc program, resulted in the development of 5 ampere-hour nickel-zinc cells that maintained 79% to 86% of initial capacity after 650 cycles on the C/3 80% DOD cycling regime. One cell is still delivering 70% of initial capacity after 880 cycles. This achievement is primarily due to the employment of an interrupted current (IC) charging mode on every cycle, the optimum frequency being 5 to 8 Hertz at a rest-to-pulse-ratio of 3/1, with charge control being by means of a GRL pressure switch attached to each cell at a cutoff pressure of 8 psig, and venting means at 10 psig. Design and performance characteristics of the battery are reported.

  11. Green cheese: partial life cycle assessment of greenhouse gas emissions and energy intensity of integrated dairy production and bioenergy systems.

    PubMed

    Aguirre-Villegas, H A; Passos-Fonseca, T H; Reinemann, D J; Armentano, L E; Wattiaux, M A; Cabrera, V E; Norman, J M; Larson, R

    2015-03-01

    The objective of this study was to evaluate the effect of integrating dairy and bioenergy systems on land use, net energy intensity (NEI), and greenhouse gas (GHG) emissions. A reference dairy farm system representative of Wisconsin was compared with a system that produces dairy and bioenergy products. This integrated system investigates the effects at the farm level when the cow diet and manure management practices are varied. The diets evaluated were supplemented with varying amounts of dry distillers grains with solubles and soybean meal and were balanced with different types of forages. The manure-management scenarios included manure land application, which is the most common manure disposal method in Wisconsin, and manure anaerobic digestion (AD) to produce biogas. A partial life cycle assessment from cradle to farm gate was conducted, where the system boundaries were expanded to include the production of biofuels in the analysis and the environmental burdens between milk and bioenergy products were partitioned by system expansion. Milk was considered the primary product and the functional unit, with ethanol, biodiesel, and biogas considered co-products. The production of the co-products was scaled according to milk production to meet the dietary requirements of each selected dairy ration. Results indicated that land use was 1.6 m2, NEI was 3.86 MJ, and GHG emissions were 1.02 kg of CO2-equivalents per kilogram of fat- and protein-corrected milk (FPCM) for the reference system. Within the integrated dairy and bioenergy system, diet scenarios that maximize dry distillers grains with solubles and implement AD had the largest reduction of GHG emissions and NEI, but the greatest increase in land use compared with the reference system. Average land use ranged from 1.68 to 2.01 m2/kg of FPCM; NEI ranged from -5.62 to -0.73 MJ/kg of FPCM; and GHG emissions ranged from 0.63 to 0.77 kg of CO2-equivalents/kg of FPCM. The AD contributed 65% of the NEI and 77% of the GHG emission reductions. PMID:25597974

  12. Life cycle energy and greenhouse gas emissions for an ethanol production process based on blue-green algae.

    PubMed

    Luo, Dexin; Hu, Zushou; Choi, Dong Gu; Thomas, Valerie M; Realff, Matthew J; Chance, Ronald R

    2010-11-15

    Ethanol can be produced via an intracellular photosynthetic process in cyanobacteria (blue-green algae), excreted through the cell walls, collected from closed photobioreactors as a dilute ethanol-in-water solution, and purified to fuel grade ethanol. This sequence forms the basis for a biofuel production process that is currently being examined for its commercial potential. In this paper, we calculate the life cycle energy and greenhouse gas emissions for three different system scenarios for this proposed ethanol production process, using process simulations and thermodynamic calculations. The energy required for ethanol separation increases rapidly for low initial concentrations of ethanol, and, unlike other biofuel systems, there is little waste biomass available to provide process heat and electricity to offset those energy requirements. The ethanol purification process is a major consumer of energy and a significant contributor to the carbon footprint. With a lead scenario based on a natural-gas-fueled combined heat and power system to provide process electricity and extra heat and conservative assumptions around the ethanol separation process, the net life cycle energy consumption, excluding photosynthesis, ranges from 0.55 MJ/MJ(EtOH) down to 0.20 MJ/ MJ(EtOH), and the net life cycle greenhouse gas emissions range from 29.8 g CO?e/MJ(EtOH) down to 12.3 g CO?e/MJ(EtOH) for initial ethanol concentrations from 0.5 wt % to 5 wt %. In comparison to gasoline, these predicted values represent 67% and 87% reductions in the carbon footprint for this ethanol fuel on a energy equivalent basis. Energy consumption and greenhouse gas emissions can be further reduced via employment of higher efficiency heat exchangers in ethanol purification and/ or with use of solar thermal for some of the process heat. PMID:20968295

  13. Cytochrome c oxidase: Intermediates of the catalytic cycle and their energy-coupled interconversion.

    PubMed

    Konstantinov, Alexander A

    2012-03-01

    Several issues relevant to the current studies of cytochrome c oxidase catalytic mechanism are discussed. The following points are raised. (1) The terminology currently used to describe the catalytic cycle of cytochrome oxidase is outdated and rather confusing. Presumably, it would be revised so as to share nomenclature of the intermediates with other oxygen-reactive heme enzymes like P450 or peroxidases. (2) A "catalytic cycle" of cytochrome oxidase involving complete reduction of the enzyme by 4 electrons followed by oxidation by O(2) is a chimera composed artificially from two partial reactions, reductive and oxidative phases, that never operate together as a true multi-turnover catalytic cycle. The 4e(-) reduction-oxidation cycle would not serve a paradigm for oxygen reduction mechanism and protonmotive function of cytochrome oxidase. (3) The foremost role of the K-proton channel in the catalytic cycle may consist in securing faultless delivery of protons for heterolytic O-O bond cleavage in the oxygen-reducing site, minimizing the danger of homolytic scission reaction route. (4) Protonmotive mechanism of cytochrome oxidase may vary notably for the different single-electron steps in the catalytic cycle. PMID:21889506

  14. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 5: Combined gas-steam turbine cycles. [energy conversion efficiency in electric power plants

    NASA Technical Reports Server (NTRS)

    Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.

    1976-01-01

    The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.

  15. Life-Cycle Assessment of Energy Use and Greenhouse Gas Emissions of Soybean-Derived Biodiesel and Renewable Fuels

    SciTech Connect

    Huo, H.; Wang, M.; Bloyd, C.; Putsche, V.

    2009-01-01

    In this study, we used Argonne National Laboratory's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model to assess the life-cycle energy and greenhouse gas (GHG) emission impacts of four soybean-derived fuels: biodiesel fuel produced via transesterification, two renewable diesel fuels (I and II) produced from different hydrogenation processes, and renewable gasoline produced from catalytic cracking. Five approaches were employed to allocate the coproducts: a displacement approach; two allocation approaches, one based on the energy value and the other based on the market value; and two hybrid approaches that integrated the displacement and allocation methods. The relative rankings of soybean-based fuels in terms of energy and environmental impacts were different under the different approaches, and the reasons were analyzed. Results from the five allocation approaches showed that although the production and combustion of soybean-based fuels might increase total energy use, they could have significant benefits in reducing fossil energy use (>52%), petroleum use (>88%), and GHG emissions (>57%) relative to petroleum fuels. This study emphasized the importance of the methods used to deal with coproduct issues and provided a comprehensive solution for conducting a life-cycle assessment of fuel pathways with multiple coproducts.

  16. Life-cycle assessment of energy use and greenhouse gas emissions of soybean-derived biodiesel and renewable fuels.

    PubMed

    Huo, Hong; Wang, Michael; Bloyd, Cary; Putsche, Vicky

    2009-02-01

    In this study, we used Argonne National Laboratory's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model to assess the life-cycle energy and greenhouse gas (GHG) emission impacts of four soybean-derived fuels: biodiesel fuel produced via transesterification, two renewable diesel fuels (I and II) produced from different hydrogenation processes, and renewable gasoline produced from catalytic cracking. Five approaches were employed to allocate the coproducts: a displacement approach; two allocation approaches, one based on the energy value and the other based on the market value; and two hybrid approaches that integrated the displacement and allocation methods. The relative rankings of soybean-based fuels in terms of energy and environmental impacts were different under the different approaches, and the reasons were analyzed. Results from the five allocation approaches showed that although the production and combustion of soybean-based fuels might increase total energy use, they could have significant benefits in reducing fossil energy use (>52%), petroleum use (>88%), and GHG emissions (>57%) relative to petroleum fuels. This study emphasized the importance of the methods used to deal with coproduct issues and provided a comprehensive solution for conducting a life-cycle assessment of fuel pathways with multiple coproducts. PMID:19245012

  17. The University of Minnesota aquifer thermal energy storage (ATES) field test facility -- system description, aquifer characterization, and results of short-term test cycles

    SciTech Connect

    Walton, M.; Hoyer, M.C.; Eisenreich, S.J.; Holm, N.L.; Holm, T.R.; Kanivetsky, R.; Jirsa, M.A.; Lee, H.C.; Lauer, J.L.; Miller, R.T.; Norton, J.L.; Runke, H. )

    1991-06-01

    Phase 1 of the Aquifer Thermal Energy Storage (ATES) Project at the University of Minnesota was to test the feasibility, and model, the ATES concept at temperatures above 100{degrees}C using a confined aquifer for the storage and recovery of hot water. Phase 1 included design, construction, and operation of a 5-MW thermal input/output field test facility (FTF) for four short-term ATES cycles (8 days each of heat injection, storage, and heat recover). Phase 1 was conducted from May 1980 to December 1983. This report describes the FTF, the Franconia-Ironton-Galesville (FIG) aquifer used for the test, and the four short-term ATES cycles. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are all included. The FTF consists of monitoring wells and the source and storage well doublet completed in the FIG aquifer with heat exchangers and a fixed-bed precipitator between the wells of the doublet. The FIG aquifer is highly layered and a really anisotropic. The upper Franconia and Ironton-Galesville parts of the aquifer, those parts screened, have hydraulic conductivities of {approximately}0.6 and {approximately}1.0 m/d, respectively. Primary ions in the ambient ground water are calcium and magnesium bicarbonate. Ambient temperature FIG ground water is saturated with respect to calcium/magnesium bicarbonate. Heating the ground water caused most of the dissolved calcium to precipitate out as calcium carbonate in the heat exchanger and precipitator. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water, suggesting dissolution of some constituents of the aquifer during the cycles. Further work on the ground water chemistry is required to understand water-rock interactions.

  18. Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn

    SciTech Connect

    Wang, Michael; Saricks, Christoper; Wu, May

    1997-12-19

    This study addresses two issues: (1) data and information essential to an informed choice about the corn-to-ethanol cycle are in need of updating, thanks to scientific and technological advances in both corn farming and ethanol production; and (2) generalized national estimates of energy intensities and greenhouse gas (GHG) production are of less relevance than estimates based specifically on activities and practices in the principal domestic corn production and milling region -- the upper Midwest.

  19. Homology-mediated end-capping as a primary step of sister chromatid fusion in the breakage-fusion-bridge cycles.

    PubMed

    Marotta, Michael; Chen, Xiongfong; Watanabe, Takaaki; Faber, Pieter W; Diede, Scott J; Tapscott, Stephen; Tubbs, Raymond; Kondratova, Anna; Stephens, Robert; Tanaka, Hisashi

    2013-11-01

    Breakage-fusion-bridge (BFB) cycle is a series of chromosome breaks and duplications that could lead to the increased copy number of a genomic segment (gene amplification). A critical step of BFB cycles leading to gene amplification is a palindromic fusion of sister chromatids following the rupture of a dicentric chromosome during mitosis. It is currently unknown how sister chromatid fusion is produced from a mitotic break. To delineate the process, we took an integrated genomic, cytogenetic and molecular approach for the recurrent MCL1 amplicon at chromosome 1 in human tumor cells. A newly developed next-generation sequencing-based approach identified a cluster of palindromic fusions within the amplicon at ?50-kb intervals, indicating a series of breaks and fusions by BFB cycles. The physical location of the amplicon (at the end of a broken chromosome) further indicated BFB cycles as underlying processes. Three palindromic fusions were mediated by the homologies between two nearby inverted Alu repeats, whereas the other two fusions exhibited microhomology-mediated events. Such breakpoint sequences indicate that homology-mediated fold-back capping of broken ends followed by DNA replication is an underlying mechanism of sister chromatid fusion. Our results elucidate nucleotide-level events during BFB cycles and end processing for naturally occurring mitotic breaks. PMID:23975201

  20. Homology-mediated end-capping as a primary step of sister chromatid fusion in the breakage-fusion-bridge cycles

    PubMed Central

    Marotta, Michael; Chen, Xiongfong; Watanabe, Takaaki; Faber, Pieter W.; Diede, Scott J.; Tapscott, Stephen; Tubbs, Raymond; Kondratova, Anna; Stephens, Robert; Tanaka, Hisashi

    2013-01-01

    Breakage-fusion-bridge (BFB) cycle is a series of chromosome breaks and duplications that could lead to the increased copy number of a genomic segment (gene amplification). A critical step of BFB cycles leading to gene amplification is a palindromic fusion of sister chromatids following the rupture of a dicentric chromosome during mitosis. It is currently unknown how sister chromatid fusion is produced from a mitotic break. To delineate the process, we took an integrated genomic, cytogenetic and molecular approach for the recurrent MCL1 amplicon at chromosome 1 in human tumor cells. A newly developed next-generation sequencing-based approach identified a cluster of palindromic fusions within the amplicon at ?50-kb intervals, indicating a series of breaks and fusions by BFB cycles. The physical location of the amplicon (at the end of a broken chromosome) further indicated BFB cycles as underlying processes. Three palindromic fusions were mediated by the homologies between two nearby inverted Alu repeats, whereas the other two fusions exhibited microhomology-mediated events. Such breakpoint sequences indicate that homology-mediated fold-back capping of broken ends followed by DNA replication is an underlying mechanism of sister chromatid fusion. Our results elucidate nucleotide-level events during BFB cycles and end processing for naturally occurring mitotic breaks. PMID:23975201

  1. PSTAR: Primary and secondary terms analysis and renormalization: A unified approach to building energy simulations and short-term monitoring

    SciTech Connect

    Subbarao, K.

    1988-09-01

    This report presents a unified method of hourly simulation of a building and analysis of performance data. The method is called Primary and Secondary Terms Analysis and Renormalization (PSTAR). In the PSTAR method, renormalized parameters are introduced for the primary terms such that the renormalized energy balance equation is best satisfied in the least squares sense, hence, the name PSTAR. PSTAR allows extraction of building characteristics from short-term tests on a small number of data channels. These can be used for long-term performance prediction (''ratings''), diagnostics, and control of heating, ventilating, and air conditioning systems (HVAC), comparison of design versus actual performance, etc. By combining realistic building models, simple test procedures, and analysis involving linear equations, PSTAR provides a powerful tool for analyzing building energy as well as testing and monitoring. It forms the basis for the Short-Term Energy Monitoring (STEM) project at SERI.

  2. Results of the Collaborative Energy and Water Cycle Information Services (CEWIS) Workshop on Heterogeneous Dataset Analysis Preparation

    NASA Astrophysics Data System (ADS)

    Kempler, S. J.; Teng, W. L.; Acker, J. G.; Belvedere, D. R.; Liu, Z.; Leptoukh, G. G.

    2010-12-01

    In support of the NASA Energy and Water Cycle Study (NEWS), the Collaborative Energy and Water Cycle Information Services (CEWIS), sponsored by NEWS Program Manager Jared Entin, was initiated to develop an evolving set of community-based data and information services that would facilitate users to locate, access, and bring together multiple distributed heterogeneous energy and water cycle datasets. The CEWIS workshop was the initial step of the process, starting with identifying and scoping the issues, as defined by the community. Thus, the purpose of the workshop was to: - Determine the data preparations, challenges, and roadblocks encountered by NEWS PI Teams to perform heterogeneous multi-data science/validation - Receive feedback regarding potential solutions to roadblocks that are in the way of bringing distributed heterogeneous datasets together By understanding the issues of multi-dataset Earth science research, the scope, feasibility, and roadmap for resolving expressed issues can be mapped out. This presentation reports on the findings of the workshop, which include: - Participant responses to survey questions pertaining interoperability of heterogeneous datasets. - Participant presentations that provide real multi-dataset research preparation experiences. - Participants developed multi-dataset preparation scenarios - Discussion at the end of the meeting providing insights on where to go from here. It is hoped that this presentation will encourage further discussions and collaborations on behalf of promising information technologies that would facilitate the preparation of heterogeneous datasets for science and applications research.

  3. Solar Energy Investigation Activities for Primary Pupils: Experience Sharing from a Teacher of a Solar Energy School in Hong Kong

    ERIC Educational Resources Information Center

    Cho, Kit Fan

    2005-01-01

    CCC Kei Wai Primary School (Ma Wan) is a 30-classroom 7-story primary school located at Ma Wan Island. The campus was completed in 2003. There are three arrays of photovoltaic modules installed on the roof with an expected annual yield of 5600 kWh a.c. electricity. This system is supported by a research project called "Building Integrated

  4. Solar Energy Investigation Activities for Primary Pupils: Experience Sharing from a Teacher of a Solar Energy School in Hong Kong

    ERIC Educational Resources Information Center

    Cho, Kit Fan

    2005-01-01

    CCC Kei Wai Primary School (Ma Wan) is a 30-classroom 7-story primary school located at Ma Wan Island. The campus was completed in 2003. There are three arrays of photovoltaic modules installed on the roof with an expected annual yield of 5600 kWh a.c. electricity. This system is supported by a research project called "Building Integrated…

  5. Simulations of Water and Energy Cycles over the Congo and Upper Blue Nile basins by IPCC GCMs

    NASA Astrophysics Data System (ADS)

    Eltahir, E. A.; Siam, M.

    2012-12-01

    The simulations of the hydrological cycle in general circulation models (GCMs) are characterized by a significant degree of uncertainty. This uncertainty is reflected in the wide range of IPCC (Intergovernmental Panel on Climate Change) GCMs predictions of future changes in the hydrological cycle, particularly over major African basins. Here, we explore the relations between the surface radiation and hydrological cycle within 17 of the IPCC GCMs over the Congo and Upper Blue Nile (UBN) basins. Most GCMs overestimate the hydrological cycle over the basins compared to observations. This overestimation is associated with excess net surface radiation, attributed to an overestimation of downward shortwave radiation and an underestimation of upward longwave radiation at the surface compared to observations. In order to verify if the overestimation of the net radiation is a systematic problem in these models for other regions, the net surface radiation over the Sahara Desert is also investigated. Although the Sahara Desert has a different climatic conditions compared to the studied basins, but the persistent overestimation of the net surface radiation for all models over this region suggests that models tend to overestimate the net surface radiation at least over the majority of the African continent. Our results also show that the increase in horizontal resolution of GCMs results in a better simulations of the hydrological cycle. In addition, the absence of the radiation effects of mineral aerosols, biomass burning and low negative cloud feedback for most of the models can be responsible of the overestimation of both the energy and hydrological cycles over the studied regions.

  6. Dynamic responses and mitigation of limit cycle oscillations in Van der Pol-Duffing oscillator with nonlinear energy sink

    NASA Astrophysics Data System (ADS)

    Domany, E.; Gendelman, O. V.

    2013-10-01

    The paper considers dynamics of Van der Pol-Duffing (VdPD) oscillator with attached nonlinear energy sink. Due to a cubic nonlinearity of the VdPD oscillator, a frequency of oscillations near the unstable origin strongly differs from the frequency of limit cycle oscillations (LCO). The paper demonstrates that, despite the strong nonlinearity of the model system, one can efficiently describe the dynamics with a combination of averaging and multiple scales methods. Global structure of possible response regimes is revealed. It is also demonstrated that the nonlinear energy sink can efficiently control and mitigate the undesired LCOs in this system.

  7. Nutrient cycling.

    PubMed

    Bormann, F H; Likens, G E

    1967-01-27

    The small-watershed approach to problems of nutrient cycling has these advantages. (i) The small watershed is a natural unit of suitable size for intensive study of nutrient cycling at the ecosystem level. (ii) It provides a means of reducing to a minimum, or virtually eliminating, the effect of the difficult-to-measure variables of geologic input and nutrient losses in deep seepage. Control of these variables makes possible accurate measurement of nutrient input and output (erosion) and therefore establishes the relationship of the smaller ecosystem to the larger biospheric cycles. (iii) The small-watershed approach provides a method whereby such important parameters as nutrient release from minerals (weathering) and annual nutrient budgets may be calculated. (iv) It provides a means of studying the interrelationships between the biota and the hydrologic cycle, various nutrient cycles, and energy flow in a single system. (v) Finally, with the small-watershed system we can test the effect of various land-management practices or environmental pollutants on nutrient cycling in natural systems. PMID:17737551

  8. Formulating Energy Policies Related to Fossil Fuel Use: Critical Uncertainties in the Global Carbon Cycle

    DOE R&D Accomplishments Database

    Post, W. M.; Dale, V. H.; DeAngelis, D. L.; Mann, L. K.; Mulholland, P. J.; O`Neill, R. V.; Peng, T. -H.; Farrell, M. P.

    1990-02-01

    The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs.

  9. Formulating energy policies related to fossil fuel use: Critical uncertainties in the global carbon cycle

    SciTech Connect

    Post, W.M.; Dale, V.H.; DeAngelis, D.L.; Mann, L.K.; Mulholland, P.J.; O'Neill, R.V.; Peng, T.-H.; Farrell, M.P.

    1990-01-01

    The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs. 87 refs.

  10. Energy efficiency and environmental performance of bioethanol production from sweet sorghum stem based on life cycle analysis.

    PubMed

    Wang, Mingxin; Chen, Yahui; Xia, Xunfeng; Li, Jun; Liu, Jianguo

    2014-07-01

    Life cycle analysis method was used to evaluate the energy efficiency and environmental performance of bioethanol production from sweet sorghum stem in China. The scope covers three units, including plant cultivation, feedstock transport, and bioethanol conversion. Results show that the net energy ratio was 1.56 and the net energy gain was 8.37 MJ/L. Human toxicity was identified as the most significant negative environmental impact, followed by eutrophication and acidification. Steam generation in the bioethanol conversion unit contributed 82.28% and 48.26% to total human toxicity and acidification potential, respectively. Fertilizers loss from farmland represented 67.23% of total eutrophication potential. The results were significantly affected by the inventory allocation methods, vinasse reusing approaches, and feedstock yields. Reusing vinasse as fuel for steam generation and better cultivation practice to control fertilizer loss could significantly contribute to enhance the energy efficiency and environmental performance of bioethanol production from sweet sorghum stem. PMID:24787319

  11. Life cycle assessment of energy self-sufficiency systems based on agricultural residues for organic arable farms.

    PubMed

    Kimming, M; Sundberg, C; Nordberg, A; Baky, A; Bernesson, S; Norén, O; Hansson, P-A

    2011-01-01

    The agricultural industry today consumes large amounts of fossil fuels. This study used consequential life cycle assessment (LCA) to analyse two potential energy self-sufficient systems for organic arable farms, based on agricultural residues. The analysis focused on energy balance, resource use and greenhouse gas (GHG) emissions. A scenario based on straw was found to require straw harvest from 25% of the farm area; 45% of the total energy produced from the straw was required for energy carrier production and GHG emissions were reduced by 9% compared with a fossil fuel-based reference scenario. In a scenario based on anaerobic digestion of ley, the corresponding figures were 13%, 24% and 35%. The final result was sensitive to assumptions regarding, e.g., soil carbon content and handling of by-products. PMID:20970998

  12. Thermal-economic analysis of organic Rankine combined cycle cogeneration. ITT Energy management report TR-82-3

    SciTech Connect

    Porter, R.W.

    1982-12-01

    This study presents an evaluation of Organic Rankine Cycles (ORC) as combined with topping cycles incorporating gas turbines or diesel engines, and with subsequent waste heat utilization. The potential benefit of the proposed organic-Rankine-combined-cycle cogeneration of useful heat and electricity is more flexibility in meeting demands for the two products, by varying the mode of operation of the system. A thermal-economic analysis is developed and illustrated with cost and performance data for commercially available equipment, and with general economic parameters reflecting current regulations and market conditions. The performance of the ORC and of the entire combined cycle is described. Equations are presented for evaluating the various thermodynamic and economic parameters, and the resultant cash flows. Criteria are developed in order to assess whether or not the addition of an ORC to a cogeneration system without ORC is viable based on rate of return on incremental investment. Examples are given to illustrate how the method may be applied, namely to serve proposed commercial energy facilities for the North Loop Project and for Illinois Center, in Chicago. While results indicate that the proposed system is potentially viable, it is not viable under conditions prevailing in Chicago for the selected case studies.

  13. Nuclear energy in Europe: uranium flow modeling and fuel cycle scenario trade-offs from a sustainability perspective.

    PubMed

    Tendall, Danielle M; Binder, Claudia R

    2011-03-15

    The European nuclear fuel cycle (covering the EU-27, Switzerland and Ukraine) was modeled using material flow analysis (MFA).The analysis was based on publicly available data from nuclear energy agencies and industries, national trade offices, and nongovernmental organizations. Military uranium was not considered due to lack of accessible data. Nuclear fuel cycle scenarios varying spent fuel reprocessing, depleted uranium re-enrichment, enrichment assays, and use of fast neutron reactors, were established. They were then assessed according to environmental, economic and social criteria such as resource depletion, waste production, chemical and radiation emissions, costs, and proliferation risks. The most preferable scenario in the short term is a combination of reduced tails assay and enrichment grade, allowing a 17.9% reduction of uranium demand without significantly increasing environmental, economic, or social risks. In the long term, fast reactors could theoretically achieve a 99.4% decrease in uranium demand and nuclear waste production. However, this involves important costs and proliferation risks. Increasing material efficiency is not systematically correlated with the reduction of other risks. This suggests that an overall optimization of the nuclear fuel cycle is difficult to obtain. Therefore, criteria must be weighted according to stakeholder interests in order to determine the most sustainable solution. This paper models the flows of uranium and associated materials in Europe, and provides a decision support tool for identifying the trade-offs of the alternative nuclear fuel cycles considered. PMID:21275398

  14. Pour un contenu linguistique en oral au 2e cycle du primaire (Toward a Linguistic Oral Content in the Second Cycle of Primary School). Serie: Le Francais a l'ecole primaire. Recherches et essais, numero 11.

    ERIC Educational Resources Information Center

    Ostiguy, Luc; Gagne, Gilles

    It is proposed that linguistic oral content, or metalinguistics, be included in the curriculum of primary school francophone children. This content is not included in the functionally oriented official curriculum. The linguistic content proposed consists of a number of formal variants corresponding to non-formal stylistic markers and respecting

  15. Life Cycle Comparison of Waste-to-Energy to Sanitary Landfill

    EPA Science Inventory

    Life cycle assessment (LCA) can be used to evaluate the environmental footprint of products, processes, and services. An LCA allows decision makers to compare products and processes through systematic evaluation of supply chains. Also known as a “cradle-to-grave” approach, LCA ev...

  16. Life Cycle Comparison of Waste-to-Energy to Sanitary Landfill

    EPA Science Inventory

    Life cycle assessment (LCA) can be used to evaluate the environmental footprint of products, processes, and services. An LCA allows decision makers to compare products and processes through systematic evaluation of supply chains. Also known as a cradle-to-grave approach, LCA ev...

  17. Cycling performance of the iron-chromium redox energy storage system

    NASA Technical Reports Server (NTRS)

    Gahn, R. F.; Hagedorn, N. H.; Johnson, J. A.

    1985-01-01

    Extended charge-discharge cycling of this electrochemical storage system at 65 C was performed on 14.5 sq cm single cells and a four cell, 867 sq cm bipolar stack. Both the anolyte and catholyte reactant fluids contained 1 molar concentrations of iron and chromium chlorides in hydrochloric acid and were separated by a low-selectivity, cation-exchange membrane. The effect of cycling on the chromium electrode and the cation-exchange membrane was determined. Bismuth and bismuth-lead catalyzed chromium electrodes and a radiation-grafted polyethylene membrane were evaluated by cycling between 5 and 85 percent state-of-charge at 80 mA/sq cm and by periodic charge-discharge polarization measurements to 140 mA/sq cm. Gradual performance losses were observed during cycling but were recoverable by completely discharging the system. Good scale-up to the 867 sq cm stack was achieved. The only difference appeared to be an unexplained resistive-type loss which resulted in a 75 percent W-hr efficiency (at 80 mA/sq cm versus 81 percent for the 14.5 sq cm cell). A new rebalance cell was developed to maintain reactant ionic balance. The cell successfully reduced ferric ions in the iron reactant stream to ferrous ions while chloride ions were oxidized to chlorine gas.

  18. Cycling Performance of the Iron-Chromium Redox Energy Storage System

    NASA Technical Reports Server (NTRS)

    Gahn, R. F.; Hagedorn, N. H.; Johnson, J. A.

    1985-01-01

    Extended charge-discharge cycling of this electrochemical storage system at 65 C was performed on 14.5 sq cm single cells and a four cell, 867 sq cm bipolar stack. Both the anolyte and catholyte reactant fluids contained 1 molar concentrations of iron and chromium chlorides in hydrochloric acid and were separated by a low-selectivity, cation-exchange membrane. The effect of cycling on the chromium electrode and the cation-exchange membrane was determined. Bismuth and bismuth-lead catalyzed chromium electrodes and a radiation-grafted polyethylene membrane were evaluated by cycling between 5 and 85 percent state-of-charge at 80 mA/sq cm and by periodic charge-discharge polarization measurements to 140 mA/sq cm. Gradual performance losses were observed during cycling but were recoverable by completely discharging the system. Good scale-up to the 867 sq cm stack was achieved. The only difference appeared to be an unexplained resistive-type loss which resulted in a 75 percent W-hr efficiency (at 80 mA/sq cm versus 81 percent for the 14.5 sq cm cell). A new rebalance cell was developed to maintain reactant ionic balance. The cell successfully reduced ferric ions in the iron reactant stream to ferrous ions while chloride ions were oxidized to chlorine gas.

  19. Research in Support of the Use of Rankine Cycle Energy Conversion Systems for Space Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Lahey, Richard T., Jr.; Dhir, Vijay

    2004-01-01

    This is the report of a Scientific Working Group (SWG) formed by NASA to determine the feasibility of using a liquid metal cooled nuclear reactor and Rankine energy conversion cycle for dual purpose power and propulsion in space. This is a high level technical report which is intended for use by NASA management in program planning. The SWG was composed of a team of specialists in nuclear energy and multiphase flow and heat transfer technology from academia, national laboratories, NASA and industry. The SWG has identified the key technology issues that need to be addressed and have recommended an integrated short term (approx. 2 years) and a long term (approx. 10 year) research and development (R&D) program to qualify a Rankine cycle power plant for use in space. This research is ultimately intended to give NASA and its contractors the ability to reliably predict both steady and transient multiphase flow and heat transfer phenomena at reduced gravity, so they can analyze and optimize designs and scale-up experimental data on Rankine cycle components and systems. In addition, some of these results should also be useful for the analysis and design of various multiphase life support and thermal management systems being considered by NASA.

  20. Method applied to the background analysis of energy data to be considered for the European Reference Life Cycle Database (ELCD).

    PubMed

    Fazio, Simone; Garran, Daniel; Mathieux, Fabrice; De la Ra, Cristina; Recchioni, Marco; Lechn, Yolanda

    2015-01-01

    Under the framework of the European Platform on Life Cycle Assessment, the European Reference Life-Cycle Database (ELCD - developed by the Joint Research Centre of the European Commission), provides core Life Cycle Inventory (LCI) data from front-running EU-level business associations and other sources. The ELCD contains energy-related data on power and fuels. This study describes the methods to be used for the quality analysis of energy data for European markets (available in third-party LC databases and from authoritative sources) that are, or could be, used in the context of the ELCD. The methodology was developed and tested on the energy datasets most relevant for the EU context, derived from GaBi (the reference database used to derive datasets for the ELCD), Ecoinvent, E3 and Gemis. The criteria for the database selection were based on the availability of EU-related data, the inclusion of comprehensive datasets on energy products and services, and the general approval of the LCA community. The proposed approach was based on the quality indicators developed within the International Reference Life Cycle Data System (ILCD) Handbook, further refined to facilitate their use in the analysis of energy systems. The overall Data Quality Rating (DQR) of the energy datasets can be calculated by summing up the quality rating (ranging from 1 to 5, where 1 represents very good, and 5 very poor quality) of each of the quality criteria indicators, divided by the total number of indicators considered. The quality of each dataset can be estimated for each indicator, and then compared with the different databases/sources. The results can be used to highlight the weaknesses of each dataset and can be used to guide further improvements to enhance the data quality with regard to the established criteria. This paper describes the application of the methodology to two exemplary datasets, in order to show the potential of the methodological approach. The analysis helps LCA practitioners to evaluate the usefulness of the ELCD datasets for their purposes, and dataset developers and reviewers to derive information that will help improve the overall DQR of databases. PMID:25897408

  1. Life cycle energy use and greenhouse gas emission analysis for a water resource recovery facility in India.

    PubMed

    Miller-Robbie, Leslie; Ramaswami, Anu; Kumar, Prasanna

    2013-07-01

    This paper quantifies life cycle energy use and greenhouse gas (GHG) emissions associated with water resource recovery facilities (WRRFs) in India versus water quality improvements achieved from infrastructure investments. A first such analysis is conducted using operating data for a WRRF, which employs upflow anaerobic sludge blanket (UASB) reactors and oxidation. On-site operations energy use, process GHG emissions, and embodied energy in infrastructure were quantified. The analysis showed energy use and GHG emissions of 0.2 watt-hours (Wh) and 0.3 gram carbon dioxide (CO2) equivalents per liter (gCO2e/L) wastewater treated, and 1.3 Wh and 2.1 gCO2e/gBOD removed, achieving 81% biochemical oxygen demand (BOD) and 999% fecal coliform removal annually. Process emissions of WRRFs contributed 44% of life cycle GHG emissions, similar in magnitude to those from electricity (46%), whereas infrastructure contributed 10%. Average WRRF-associated GHG emissions (0.9gCO2e/L) were lower than those expected if untreated wastewater was released to the river. Investments made by WRRFs in developing world cities improve water quality and may mitigate overall GHG emissions. PMID:23944144

  2. Lithium Sulfur Primary Battery with Super High Energy Density: Based on the Cauliflower-like Structured C/S Cathode

    NASA Astrophysics Data System (ADS)

    Ma, Yiwen; Zhang, Hongzhang; Wu, Baoshan; Wang, Meiri; Li, Xianfeng; Zhang, Huamin

    2015-10-01

    The lithium-sulfur primary batteries, as seldom reported in the previous literatures, were developed in this work. In order to maximize its practical energy density, a novel cauliflower-like hierarchical porous C/S cathode was designed, for facilitating the lithium-ions transport and sulfur accommodation. This kind of cathode could release about 1300 mAh g-1 (S) capacity at sulfur loading of 6 ~ 14 mg cm-2, and showed excellent shelf stability during a month test at room temperature. As a result, the assembled Li-S soft package battery achieved an energy density of 504 Wh kg-1 (654 Wh L-1), which was the highest value ever reported to the best of our knowledge. This work might arouse the interests on developing primary Li-S batteries, with great potential for practical application.

  3. Lithium Sulfur Primary Battery with Super High Energy Density: Based on the Cauliflower-like Structured C/S Cathode

    PubMed Central

    Ma, Yiwen; Zhang, Hongzhang; Wu, Baoshan; Wang, Meiri; Li, Xianfeng; Zhang, Huamin

    2015-01-01

    The lithium-sulfur primary batteries, as seldom reported in the previous literatures, were developed in this work. In order to maximize its practical energy density, a novel cauliflower-like hierarchical porous C/S cathode was designed, for facilitating the lithium-ions transport and sulfur accommodation. This kind of cathode could release about 1300 mAh g−1 (S) capacity at sulfur loading of 6 ~ 14 mg cm−2, and showed excellent shelf stability during a month test at room temperature. As a result, the assembled Li-S soft package battery achieved an energy density of 504 Wh kg−1 (654 Wh L−1), which was the highest value ever reported to the best of our knowledge. This work might arouse the interests on developing primary Li-S batteries, with great potential for practical application. PMID:26456914

  4. miR-221/222 compensates for Skp2-mediated p27 degradation and is a primary target of cell cycle regulation by prostacyclin and cAMP.

    PubMed

    Castagnino, Paola; Kothapalli, Devashish; Hawthorne, Elizabeth A; Liu, Shu-Lin; Xu, Tina; Rao, Shilpa; Yung, Yuval; Assoian, Richard K

    2013-01-01

    p27(kip1) (p27) is a cdk-inhibitory protein with an important role in the proliferation of many cell types. SCF(Skp2) is the best studied regulator of p27 levels, but Skp2-mediated p27 degradation is not essential in vivo or in vitro. The molecular pathway that compensates for loss of Skp2-mediated p27 degradation has remained elusive. Here, we combine vascular injury in the mouse with genome-wide profiling to search for regulators of p27 during cell cycling in vivo. This approach, confirmed by RT-qPCR and mechanistic analysis in primary cells, identified miR-221/222 as a compensatory regulator of p27. The expression of miR221/222 is sensitive to proteasome inhibition with MG132 suggesting a link between p27 regulation by miRs and the proteasome. We then examined the roles of miR-221/222 and Skp2 in cell cycle inhibition by prostacyclin (PGI(2)), a potent cell cycle inhibitor acting through p27. PGI(2) inhibited both Skp2 and miR221/222 expression, but epistasis, ectopic expression, and time course experiments showed that miR-221/222, rather than Skp2, was the primary target of PGI(2). PGI(2) activates Gs to increase cAMP, and increasing intracellular cAMP phenocopies the effect of PGI(2) on p27, miR-221/222, and mitogenesis. We conclude that miR-221/222 compensates for loss of Skp2-mediated p27 degradation during cell cycling, contributes to proteasome-dependent G1 phase regulation of p27, and accounts for the anti-mitogenic effect of cAMP during growth inhibition. PMID:23409140

  5. Charge composition of high energy heavy primary cosmic ray nuclei. Ph.D. Thesis - Catholic Univ. of Am.

    NASA Technical Reports Server (NTRS)

    Price, R. D.

    1974-01-01

    A detailed study of the charge composition of primary cosmic radiation for about 5000 charged nuclei from neon to iron with energies greater than 1.16 GeV/nucleon is presented. Values are obtained after corrections were made for detector dependences, atmospheric attenuation, and solar modulation. New values of 38.5, 32.4, 23.7, and 16.8 g/sq cm for the attenuation mean free paths in air for the same charge groups are presented.

  6. Thermochemical cycles

    NASA Technical Reports Server (NTRS)

    Funk, J. E.; Soliman, M. A.; Carty, R. H.; Conger, W. L.; Cox, K. E.; Lawson, D.

    1975-01-01

    The thermochemical production of hydrogen is described along with the HYDRGN computer program which attempts to rate the various thermochemical cycles. Specific thermochemical cycles discussed include: iron sulfur cycle; iron chloride cycle; and hybrid sulfuric acid cycle.

  7. University of Minnesota Aquifer Thermal Energy Storage (ATES) project report on the first long-term cycle

    SciTech Connect

    Walton, M.

    1991-10-01

    The technical feasibility of high-temperature (>100{degrees}C) aquifer thermal energy storage (IOTAS) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota`s St. Paul field test facility (FTF). This report describes the additions to the FTF for the long-term cycles and the details of the first long-term cycle (LT1) that was conducted from November 1984 through May 1985. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic aspects of LT1 are reported. The permits for long-term cycles required the addition of a monitoring well 30.5 m from the storage well for monitoring near the edge of the thermally affected area and allowed the addition of a cation-exchange water softener to enable continuous operation during the injection phase. Approximately 62% of the 9.47 GWh of energy added to the 9.21 {times} 10{sup 4} m{sup 3} of ground water stored in the aquifer LT1 was recovered. Ion-exchange water softening of the heated and stored ground water prevented scaling in the system heat exchangers and the storage well and changed the major-ion chemistry of the stored water. Temperatures at the storage horizons in site monitoring wells reached as high as 108{degrees}C during the injection phase of LT1. Following heat recovery, temperatures were <30{degrees}C at the same locations. Less permeable horizons underwent slow temperature changes. No thermal or chemical effects were observed at the remote monitoring site. 25 refs.

  8. University of Minnesota Aquifer Thermal Energy Storage (ATES) project report on the first long-term cycle

    SciTech Connect

    Walton, M. )

    1991-10-01

    The technical feasibility of high-temperature (>100{degrees}C) aquifer thermal energy storage (IOTAS) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota's St. Paul field test facility (FTF). This report describes the additions to the FTF for the long-term cycles and the details of the first long-term cycle (LT1) that was conducted from November 1984 through May 1985. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic aspects of LT1 are reported. The permits for long-term cycles required the addition of a monitoring well 30.5 m from the storage well for monitoring near the edge of the thermally affected area and allowed the addition of a cation-exchange water softener to enable continuous operation during the injection phase. Approximately 62% of the 9.47 GWh of energy added to the 9.21 {times} 10{sup 4} m{sup 3} of ground water stored in the aquifer LT1 was recovered. Ion-exchange water softening of the heated and stored ground water prevented scaling in the system heat exchangers and the storage well and changed the major-ion chemistry of the stored water. Temperatures at the storage horizons in site monitoring wells reached as high as 108{degrees}C during the injection phase of LT1. Following heat recovery, temperatures were <30{degrees}C at the same locations. Less permeable horizons underwent slow temperature changes. No thermal or chemical effects were observed at the remote monitoring site. 25 refs.

  9. University of Minnesota Aquifer Thermal Energy Storage (ATES) project report on the first long-term cycle

    NASA Astrophysics Data System (ADS)

    Walton, M.

    1991-10-01

    The technical feasibility of high-temperature (greater than 100 C) aquifer thermal energy storage (IOTAS) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota's St. Paul field test facility (FTF). This report describes the additions to the FTF for the long-term cycles and the details of the first long-term cycle (LT1) that was conducted from November 1984 through May 1985. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic aspects of LT1 are reported. The permits for long-term cycles required the addition of a monitoring well 30.5 m from the storage well for monitoring near the edge of the thermally affected area and allowed the addition of a cation-exchange water softener to enable continuous operation during the injection phase. Approximately 62 percent of the 9.47 GWh of energy added to the 9.21 x 10(exp 4) cu m of ground water stored in the aquifer LT1 was recovered. Ion-exchange water softening of the heated and stored ground water prevented scaling in the system heat exchangers and the storage well and changed the major-ion chemistry of the stored water. Temperatures at the storage horizons in site monitoring wells reached as high as 108 C during the injection phase of LT1. Following heat recovery, temperatures were less than 30 C at the same locations. Less permeable horizons underwent slow temperature changes. No thermal or chemical effects were observed at the remote monitoring site.

  10. Expression of key oestrogen-regulated genes differs substantially across the menstrual cycle in oestrogen receptor-positive primary breast cancer.

    PubMed

    Haynes, Ben P; Viale, Giuseppe; Galimberti, Viviana; Rotmensz, Nicole; Gibelli, Bianca; A'Hern, Roger; Smith, Ian E; Dowsett, Mitch

    2013-02-01

    Plasma estradiol (E2) and progesterone vary markedly through the menstrual cycle. Data on whether these differences in hormone levels affect gene expression in oestrogen receptor-positive (ER+) tumours are inconsistent. We wished to determine whether there are substantial changes in the expression of oestrogen-regulated genes (ERGs) in ER+ breast cancer through the menstrual cycle. One hundred and seventy five paraffin-embedded ER+ breast carcinomas from premenopausal patients were analysed. Timing of the ovarian cycle was confirmed using serum progesterone levels. Patients were ascribed to one of three pre-defined menstrual cycle windows: 1 (days 27-35 + 1-6), 2 (days 7-16) and 3 (days 17-26). The RNA expression of ESR1, four ERGs (PGR, GREB1, TFF1 and PDZK1), and three proliferation genes (MKI67, TOP2A and CDC20) were compared between the windows. Gene expression of the four ERGs was 53-129 % higher in window 2 than window 1 (p = 0.0013, 0.0006, 0.022 and 0.066 for PGR, GREB1, TFF1 and PDZK1, respectively) and lower (9-41 %) in window 3 compared to window 2 (p = 0.079, 0.31, 0.031 and 0.065 for PGR, GREB1, TFF1 and PDZK1, respectively). Their average expression (AvERG) was 64 % higher in window 2 than window 1 (p < 0.0001) and 21 % lower in window 3 than window 2 (p = 0.0043). There were no significant differences between the windows for ESR1 and proliferation genes. In agreement with the gene expression data, progesterone receptor protein levels measured by immunohistochemistry (IHC) were 164 and 227 % higher in windows 2 and 3, respectively, compared to window 1 (30.7 and 37.9 % cells positive vs. 11.6 %; p = 0.0003 and 0.0004, respectively), while no difference in ER IHC score was observed. In conclusion, we observed significant differences in the expression of ERGs in ER+ breast tumours across the menstrual cycle. This variability may affect the interpretation of gene expression profiles incorporating ERGs and may be exploitable as an endogenous test of endocrine responsiveness. PMID:23378065

  11. Dissociative ionization of H2+ : Few-cycle effect in the joint electron-ion energy spectrum

    NASA Astrophysics Data System (ADS)

    Mosert, V.; Bauer, D.

    2015-10-01

    Joint electron-ion energy spectra for the dissociative ionization of a model H2+ in few-cycle, infrared laser pulses are calculated via the numerical ab initio solution of the time-dependent Schrdinger equation. A strong, pulse-dependent modulation of the ionization probability for certain values of the protons' kinetic energy (but almost independent of the electron's energy) is observed. With the help of models with frozen ions, this feature, which mistakenly might be attributed to vibrational excitations, is traced back to the transient population of electronically excited states, followed by ionization. This assertion is further corroborated employing a two-level model incorporating strong-field ionization from the excited state.

  12. Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle

    PubMed Central

    She, Pengxiang; Reid, Tanya M.; Bronson, Sarah K.; Vary, Thomas C.; Hajnal, Andras; Lynch, Christopher J; Hutson, Susan M.

    2009-01-01

    Summary Leucine is recognized as a nutrient signal, however the long-term in vivo consequences of leucine signaling and the role of branched chain amino acid (BCAA) metabolism in this signaling remains unclear. To investigate these questions, the BCATm gene encoding the enzyme catalyzing the first step in peripheral BCAA metabolism was disrupted. BCATm?/? mice exhibited elevated plasma BCAAs, decreased adiposity and body weight, despite eating more food, along with increased energy expenditure, remarkable improvements in glucose and insulin tolerance, and protection from diet induced obesity. The increased energy expenditure did not seem to be due to altered locomotor activity, uncoupling proteins, sympathetic activity, and thyroid hormones but was strongly associated with food consumption and an active futile cycle of increased protein degradation and synthesis. These observations suggest that either elevated BCAAs and/or loss of BCAA catabolism in peripheral tissues play an important role in regulating insulin sensitivity and energy expenditure. PMID:17767905

  13. Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California

    SciTech Connect

    Not Available

    1980-10-01

    The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

  14. Ethylene Regulates Energy-Dependent Non-Photochemical Quenching in Arabidopsis through Repression of the Xanthophyll Cycle

    PubMed Central

    Chen, Zhong; Gallie, Daniel R.

    2015-01-01

    Energy-dependent (qE) non-photochemical quenching (NPQ) thermally dissipates excess absorbed light energy as a protective mechanism to prevent the over reduction of photosystem II and the generation of reactive oxygen species (ROS). The xanthophyll cycle, induced when the level of absorbed light energy exceeds the capacity of photochemistry, contributes to qE. In this work, we show that ethylene regulates the xanthophyll cycle in Arabidopsis. Analysis of eto1-1, exhibiting increased ethylene production, and ctr1-3, exhibiting constitutive ethylene response, revealed defects in NPQ resulting from impaired de-epoxidation of violaxanthin by violaxanthin de-epoxidase (VDE) encoded by NPQ1. Elevated ethylene signaling reduced the level of active VDE through decreased NPQ1 promoter activity and impaired VDE activation resulting from a lower transthylakoid membrane pH gradient. Increasing the concentration of CO2 partially corrected the ethylene-mediated defects in NPQ and photosynthesis, indicating that changes in ethylene signaling affect stromal CO2 solubility. Increasing VDE expression in eto1-1 and ctr1-3 restored light-activated de-epoxidation and qE, reduced superoxide production and reduced photoinhibition. Restoring VDE activity significantly reversed the small growth phenotype of eto1-1 and ctr1-3 without altering ethylene production or ethylene responses. Our results demonstrate that ethylene increases ROS production and photosensitivity in response to high light and the associated reduced plant stature is partially reversed by increasing VDE activity. PMID:26630486

  15. Students' Energy Concepts at the Transition between Primary and Secondary School

    ERIC Educational Resources Information Center

    Opitz, Sebastian T.; Harms, Ute; Neumann, Knut; Kowalzik, Kristin; Frank, Arne

    2015-01-01

    Energy is considered both a core idea and a crosscutting concept in science education. A thorough understanding of the energy concept is thought to help students learn about other (related) concepts within and across science subjects, thereby fostering scientific literacy. This study investigates students' progression in understanding the energy

  16. Microstructure-sensitive weighted probability approach for modeling surface to bulk transition of high cycle fatigue failures dominated by primary inclusions

    NASA Astrophysics Data System (ADS)

    Salajegheh, Nima

    The mechanical alloying and casting processes used to make polycrystalline metallic materials often introduce undesirable non-metallic inclusions and pores. These are often the dominant sites of fatigue failure origination at the low stress amplitudes that correspond to the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regimes, in which the number of cycles to crack initiation is more than 106. HCF and VHCF experiments on some advanced metallic alloys, such as powder metallurgy Ni-base superalloys, titanium alloys, and high-strength steels have shown that the critical inclusions and pores can appear on the surface as well as in the bulk of the specimen. Fatigue lives have been much higher for specimens that fail from a bulk site. The relative number of bulk initiations increases as the stress amplitude decreases such that just below the traditional HCF limit, fatigue life data appears to be evenly scattered between two datasets corresponding to surface and bulk initiations. This is often referred to as surface to bulk transition in the VHCF regime. Below this transition stress, the likelihood of surface versus bulk initiation significantly impacts the low failure probability estimate of fatigue life. Under these circumstances, a large number of very costly experiments need to be conducted to obtain a statistically representative distribution of fatigue life and to predict the surface versus bulk initiation probability. In this thesis, we pursue a simulation-based approach whereby microstructure-sensitive finite element simulations are performed within a statistical construct to examine the VHCF life variability and assess the surface initiation probability. The methodology introduced in this thesis lends itself as a cost-effective platform for development of microstructure-property relations to support design of new or modified alloys, or to more efficiently predict the properties of existing alloys.

  17. Specification and implementation of IFC based performance metrics to support building life cycle assessment of hybrid energy systems

    SciTech Connect

    Morrissey, Elmer; O'Donnell, James; Keane, Marcus; Bazjanac, Vladimir

    2004-03-29

    Minimizing building life cycle energy consumption is becoming of paramount importance. Performance metrics tracking offers a clear and concise manner of relating design intent in a quantitative form. A methodology is discussed for storage and utilization of these performance metrics through an Industry Foundation Classes (IFC) instantiated Building Information Model (BIM). The paper focuses on storage of three sets of performance data from three distinct sources. An example of a performance metrics programming hierarchy is displayed for a heat pump and a solar array. Utilizing the sets of performance data, two discrete performance effectiveness ratios may be computed, thus offering an accurate method of quantitatively assessing building performance.

  18. Life Cycle Assessment of the Energy Independence and Security Act of 2007: Ethanol - Global Warming Potential and Environmental Emissions

    SciTech Connect

    Heath, G. A.; Hsu, D. D.; Inman, D.; Aden, A.; Mann, M. K.

    2009-07-01

    The objective of this study is to use life cycle assessment (LCA) to evaluate the global warming potential (GWP), water use, and net energy value (NEV) associated with the EISA-mandated 16 bgy cellulosic biofuels target, which is assumed in this study to be met by cellulosic-based ethanol, and the EISA-mandated 15 bgy conventional corn ethanol target. Specifically, this study compares, on a per-kilometer-driven basis, the GWP, water use, and NEV for the year 2022 for several biomass feedstocks.

  19. Energy analysis of conventional and source-separation systems for urban wastewater management using Life Cycle Assessment.

    PubMed

    Remy, C; Jekel, M

    2012-01-01

    This study investigates the cumulative energy demand (CED) of different systems for the management of urban wastewater, following the methodology of Life Cycle Assessment. In a hypothetical case study for an urban area (5,000 inhabitants), all relevant processes for wastewater collection and treatment and the construction of infrastructure are described in a substance flow model. The conventional system requires 1,250 MJ/(pe*a), with the operation contributing 45%, the infrastructure 7%, and the system expansion (production of mineral fertilizer and electricity) 48% to the total CED. The separation systems have a CED of 930-1,182 MJ/(pe*a) depending on their configuration. Results of the impact assessment show that recovering energy from the organic matter of toilet wastewater and household biowaste in a digestion process can decrease the cumulative energy demand by 13-26%. Energetic benefits of mineral fertilizer substitution are relatively small compared to the energy recovered from organic matter. Decisive parameters for the energy analysis are the amount of biowaste which is co-digested with toilet wastewater and the energy demand of the vacuum plant. PMID:22173404

  20. Review of Life-Cycle Approaches Coupled with Data Envelopment Analysis: Launching the CFP + DEA Method for Energy Policy Making

    PubMed Central

    Vázquez-Rowe, Ian

    2015-01-01

    Life-cycle (LC) approaches play a significant role in energy policy making to determine the environmental impacts associated with the choice of energy source. Data envelopment analysis (DEA) can be combined with LC approaches to provide quantitative benchmarks that orientate the performance of energy systems towards environmental sustainability, with different implications depending on the selected LC + DEA method. The present paper examines currently available LC + DEA methods and develops a novel method combining carbon footprinting (CFP) and DEA. Thus, the CFP + DEA method is proposed, a five-step structure including data collection for multiple homogenous entities, calculation of target operating points, evaluation of current and target carbon footprints, and result interpretation. As the current context for energy policy implies an anthropocentric perspective with focus on the global warming impact of energy systems, the CFP + DEA method is foreseen to be the most consistent LC + DEA approach to provide benchmarks for energy policy making. The fact that this method relies on the definition of operating points with optimised resource intensity helps to moderate the concerns about the omission of other environmental impacts. Moreover, the CFP + DEA method benefits from CFP specifications in terms of flexibility, understanding, and reporting. PMID:25654136

  1. Biofuels via Fast Pyrolysis of Perennial Grasses: A Life Cycle Evaluation of Energy Consumption and Greenhouse Gas Emissions.

    PubMed

    Zaimes, George G; Soratana, Kullapa; Harden, Cheyenne L; Landis, Amy E; Khanna, Vikas

    2015-08-18

    A well-to-wheel (WTW) life cycle assessment (LCA) model is developed to evaluate the environmental profile of producing liquid transportation fuels via fast pyrolysis of perennial grasses: switchgrass and miscanthus. The framework established in this study consists of (1) an agricultural model used to determine biomass growth rates, agrochemical application rates, and other key parameters in the production of miscanthus and switchgrass biofeedstock; (2) an ASPEN model utilized to simulate thermochemical conversion via fast pyrolysis and catalytic upgrading of bio-oil to renewable transportation fuel. Monte Carlo analysis is performed to determine statistical bounds for key sustainability and performance measures including life cycle greenhouse gas (GHG) emissions and Energy Return on Investment (EROI). The results of this work reveal that the EROI and GHG emissions (gCO2e/MJ-fuel) for fast pyrolysis derived fuels range from 1.52 to 2.56 and 22.5 to 61.0 respectively, over the host of scenarios evaluated. Further analysis reveals that the energetic performance and GHG reduction potential of fast pyrolysis-derived fuels are highly sensitive to the choice of coproduct scenario and LCA allocation scheme, and in select cases can change the life cycle carbon balance from meeting to exceeding the renewable fuel standard emissions reduction threshold for cellulosic biofuels. PMID:26196154

  2. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment.

    PubMed

    Wu, May; Wu, Ye; Wang, Michael

    2006-01-01

    We conducted a mobility chains, or well-to-wheels (WTW), analysis to assess the energy and emission benefits of cellulosic biomass for the U.S. transportation sector in the years 2015-2030. We estimated the life-cycle energy consumption and emissions associated with biofuel production and use in light-duty vehicle (LDV) technologies by using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. Analysis of biofuel production was based on ASPEN Plus model simulation of an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity. Our study revealed that cellulosic biofuels as E85 (mixture of 85% ethanol and 15% gasoline by volume), FTD, and DME offer substantial savings in petroleum (66-93%) and fossil energy (65-88%) consumption on a per-mile basis. Decreased fossil fuel use translates to 82-87% reductions in greenhouse gas emissions across all unblended cellulosic biofuels. In urban areas, our study shows net reductions for almost all criteria pollutants, with the exception of carbon monoxide (unchanged), for each of the biofuel production option examined. Conventional and hybrid electric vehicles, when fueled with E85, could reduce total sulfur oxide (SO(x)) emissions to 39-43% of those generated by vehicles fueled with gasoline. By using bio-FTD and bio-DME in place of diesel, SO(x) emissions are reduced to 46-58% of those generated by diesel-fueled vehicles. Six different fuel production options were compared. This study strongly suggests that integrated heat and power co-generation by means of gas turbine combined cycle is a crucial factor in the energy savings and emission reductions. PMID:16889378

  3. Power Plant Cycling Costs

    SciTech Connect

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  4. The Oxygen Cycle.

    ERIC Educational Resources Information Center

    Swant, Gary D.

    Produced for primary grades, this booklet provides study of the oxygen-carbon dioxide cycle in nature. Line drawings, a minimum amount of narrative, and a glossary of terms make up its content. The booklet is designed to be used as reading material, a coloring book, or for dramatic arts with students acting out parts of the cycle. This work was…

  5. Sensitivity of YAC to measure the light-component spectrum of primary cosmic rays at the ‘knee’ energies

    NASA Astrophysics Data System (ADS)

    Zhai, L. M.; Huang, J.; Chen, D.; Shibata, M.; Katayose, Y.; Zhang, Ying; Liu, J. S.; Chen, Xu; Hu, X. B.; Lin, Y. H.

    2015-04-01

    A new air-shower core-detector array (YAC: Yangbajing air-shower Core-detector array) has been developed to measure the primary cosmic-ray composition at the ‘knee’ energies in Tibet, China, focusing mainly on the light components. The prototype experiment (YAC-I) consisting of 16 detectors has been constructed and operated at Yangbajing (4300 m a.s.l.) in Tibet since May 2009. YAC-I is installed in the Tibet-III AS array and operates together. In this paper, we performed a Monte Carlo simulation to check the sensitivity of the YAC-I+Tibet-III array to the cosmic-ray light component of cosmic rays around the knee energies, taking account of the observation conditions of the actual YAC-I+Tibet-III array. The selection of light component from others was made by use of an artificial neural network. The simulation shows that the light-component spectrum estimated by our methods can well reproduce the input ones within 10% error, and there will be about 30% systematic errors mostly induced by the primary and interaction models used. It is found that the full-scale YAC and the Tibet-III array is powerful to study the cosmic-ray composition, in particular, to obtain the energy spectra of protons and helium nuclei around the knee energies.

  6. NV Energy Solar Integration Study: Cycling and Movements of Conventional Generators for Balancing Services

    SciTech Connect

    Diao, Ruisheng; Lu, Shuai; Etingov, Pavel V.; Ma, Jian; Makarov, Yuri V.; Guo, Xinxin

    2011-07-01

    With an increasing penetration level of solar power in the southern Nevada system, the impact of solar on system operations needs to be carefully studied from various perspectives. Qualitatively, it is expected that the balancing requirements to compensate for solar power variability will be larger in magnitude; meanwhile, generators providing load following and regulation services will be moved up or down more frequently. One of the most important tasks is to quantitatively evaluate the cycling and movements of conventional generators with solar power at different penetration levels. This study is focused on developing effective methodologies for this goal and providing a basis for evaluating the wear and tear of the conventional generators

  7. Assessment of the efficiency of hydrogen cycles on the basis of off-peak electric energy produced at a nuclear power station

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Bairamov, A. N.; Shatskova, O. V.

    2009-11-01

    The main factors influencing the efficiency of using off-peak electric energy to run hydrogen cycles at a nuclear power station are considered. Indicators characterizing the efficiency of using a hydrogen cycle at a nuclear power station during its operation with superheating live steam in a steam-hydrogen mode are presented. A comparison between the steam-turbine hydrogen cycle and a pumped-storage hydraulic power station in the efficiency of generating peak electric energy (power) and capital investments is given.

  8. On the mass composition of primary cosmic rays in the energy region 1015-1016 eV

    NASA Astrophysics Data System (ADS)

    Novoseltsev, Y. F.; Novoseltseva, R. V.; Vereshkov, G. M.

    2012-10-01

    A method to determine the primary cosmic ray mass composition is presented. Data processing is based on the theoretical model representing the integral muon multiplicity spectrum as the superposition of the spectra corresponding to different kinds of primary nuclei. The method consists of two stages. In the first stage, the permissible intervals of primary nuclei fractions fi are determined on the basis of the EAS spectrum versus the total number of muons (Eμ ⩾ 235 GeV). In the second stage, the permissible intervals of fi are narrowed by the fitting procedure. We use the experimental data on high multiplicity muon events (nμ ⩾ 114) collected at the Baksan underground scintillation telescope. Within the framework of three components (protons, helium and heavy nuclei), the mass composition in the region 1015-1016 eV has been defined: fp = 0.235 ± 0.02, fHe = 0.290 ± 0.02, fH = 0.475 ± 0.03. The average logarithmic mass is lnA ≃ 1.93 and it is in good agreement with results before the knee energy obtained by JACEE, RUNJOB, ATIC. At energies above the knee (1015-1016 eV) our analysis supports KASCADE results and contradicts to CASA-BLANCA and DICE data.

  9. Nonlinear M-shaped broadband piezoelectric energy harvester for very low base accelerations: primary and secondary resonances

    NASA Astrophysics Data System (ADS)

    Leadenham, S.; Erturk, A.

    2015-05-01

    It has been well demonstrated over the past few years that vibration energy harvesters with intentionally designed nonlinear stiffness components can be used for frequency bandwidth enhancement under harmonic excitation for sufficiently high vibration amplitudes. In order to overcome the need for high excitation intensities that are required to exploit nonlinear dynamic phenomena, we have developed an M-shaped piezoelectric energy harvester configuration that can exhibit a nonlinear frequency response under very low vibration levels. This configuration is made from a continuous bent spring steel with piezoelectric laminates and a proof mass but no magnetic components. Careful design of this nonlinear architecture that minimizes piezoelectric softening further enables the possibility of achieving the jump phenomenon in hardening at few milli-g base acceleration levels. In the present work, such a design is explored for both primary and secondary resonance excitations at different vibration levels and load resistance values. Following the primary resonance excitation case that offers a 660% increase in the half-power bandwidth as compared to the linear system at a root-mean-square excitation level as low as 0.04g, secondary resonance behavior is investigated with a focus on 1:2 and 1:3 superharmonic resonance neighborhoods. A multi-term harmonic balance formulation is employed for a computationally effective yet high-fidelity analysis of this high-quality-factor system with quadratic and cubic nonlinearities. In addition to primary resonance and secondary (superharmonic) resonance cases, multi-harmonic excitation is modeled and experimentally validated.

  10. Size-resolved global emission inventory of primary particulate matter from energy-related combustion sources

    NASA Astrophysics Data System (ADS)

    Winijkul, E.; Yan, F.; Lu, Z.; Streets, D. G.; Bond, T. C.; Zhao, Y.

    2015-04-01

    Current emission inventories provide information about the mass emissions of different chemical species from different emitting sources without information concerning the size distribution of primary particulate matter (PM). The size distribution information, however, is an important input into chemical transport models that determine the fate of PM and its impacts on climate and public health. At present, models usually make rather rudimentary assumptions about the size distribution of primary PM emissions in their model inputs. In this study, we develop a global and regional, size-resolved, mass emission inventory of primary PM emissions from source-specific combustion components of the residential, industrial, power, and transportation sectors for the year 2010. Uncertainties in the emission profiles are also provided. The global size-resolved PM emissions show a distribution with a single peak and the majority of the mass of particles in size ranges smaller than 1 ?m. The PM size distributions for different sectors and world regions vary considerably, due to the different combustion characteristics. Typically, the sizes of particles decrease in the order: power sector > industrial sector > residential sector > transportation sector. Three emission scenarios are applied to the baseline distributions to study the likely changes in size distribution of emissions as clean technologies are implemented.

  11. Energy transfer in the primary stages of the photosynthetic process investigated by picosecond time resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Pellegrino, F.

    The fate of the absorbed light energy in the primary stages of the photosynthetic process was studied. In particular, the energy transfer in the accessory pigment complex consisting of carotenoids, Chl. a and Chl. b in higher green plants and phycobiliproteins in blue-green algae were investigated. These accessory pigments are responsible for the highly efficient transfer of the excitation energy to the photochemically active reaction center traps. The risetime, decay time, fluorescence depolarization, temperature and intensity dependence of the fluoresence emission from higher green plant and algal photosystems were directly measured. Excitation was provided by single picosecond laser pulses, as well as a train of pulses at 530 nm, within an intensity range of 10 to the 12th power to 10 to the 16th power photons/sq cm per pulse.

  12. Numerical studies on the Impact of the Last Glacial Cycle on recent borehole temperature profiles: implications for terrestrial energy balance

    NASA Astrophysics Data System (ADS)

    Beltrami, H.; Matharoo, G. S.; Tarasov, L.; Rath, V.; Smerdon, J. E.

    2014-09-01

    Reconstructions of past climatic changes from borehole temperature profiles are important independent estimates of temperature histories over the last millennium. There remain, however, multiple uncertainties in the interpretation of these data as climatic indicators and as estimates of the changes in the heat content of the continental subsurface due to long-term climatic change. One of these uncertainties is associated with the often ignored impact of the last glacial cycle (LGC) on the subsurface energy content, and on the estimate of the background quasi steady-state signal associated with the diffusion of accretionary energy from the Earth's interior. Here, we provide the first estimate of the impact of the development of the Laurentide ice sheet on the estimates of energy and temperature reconstructions from measurements of terrestrial borehole temperatures in North America. We use basal temperature values from the data-calibrated Memorial University of Newfoundland glacial systems model (MUN-GSM) to quantify the extent of the perturbation to estimated steady-state temperature profiles, and to derive spatial maps of the expected impacts on measured profiles over North America. Furthermore, we present quantitative estimates of the potential effects of temperature changes during the last glacial cycle on the borehole reconstructions over the last millennium for North America. The range of these possible impacts is estimated using synthetic basal temperatures for a period covering 120 ka to the present day that include the basal temperature history uncertainties from an ensemble of results from the calibrated numerical model. For all the locations, we find that within the depth ranges that are typical for available boreholes (?600 m), the induced perturbations to the steady-state temperature profile are on the order of 10 mW m-2, decreasing with greater depths. Results indicate that site-specific heat content estimates over North America can differ by as much as 50%, if the energy contribution of the last glacial cycle in those areas of North America that experienced glaciation is not taken into account when estimating recent subsurface energy changes from borehole temperature data.

  13. Uncertainty propagation in life cycle assessment of biodiesel versus diesel: global warming and non-renewable energy.

    PubMed

    Hong, Jinglan

    2012-06-01

    Uncertainty information is essential for the proper use of life cycle assessment and environmental assessments in decision making. To investigate the uncertainties of biodiesel and determine the level of confidence in the assertion that biodiesel is more environmentally friendly than diesel, an explicit analytical approach based on the Taylor series expansion for lognormal distribution was applied in the present study. A biodiesel case study demonstrates the probability that biodiesel has a lower global warming and non-renewable energy score than diesel, that is 92.3% and 93.1%, respectively. The results indicate the level of confidence in the assertion that biodiesel is more environmentally friendly than diesel based on the global warming and non-renewable energy scores. PMID:22178489

  14. Physics-based modelling of the life cycle of energy in the solar system

    NASA Astrophysics Data System (ADS)

    Lapenta, G.

    2012-02-01

    Energy in the solar system is constantly being converted from one form to another. Often these processes take the form of dramatic events such as solar eruptions or geomagnetic storms with important societal impacts. Understanding energy conversion and magnetic storms is one of the grand challenges facing science and poses a great cultural and scientific puzzle. We plan to use a new modelling approach based on combining state of the art supercomputers with state of the art numerical methods that allow us to capture the key aspect in energy conversion: the interplay of small and large scales. At the core of energy conversion is the ability of macroscopic systems to store and process vast amounts of energy while at the same time requiring microscopic processes at the moment the energy is released. To describe and predict how energy can be stored for long periods and why it is then suddenly released, a complete description down to the level of tracking the trajectory of single particles is needed.

  15. Thermal and environmental characteristics of the primary equipment of the 480-MW Razdan-5 power-generating plant operating as a combined-cycle plant

    NASA Astrophysics Data System (ADS)

    Sargsyan, K. B.; Eritsyan, S. Kh.; Petrosyan, G. S.; Avtandilyan, A. V.; Gevorkyan, A. R.; Klub, M. V.

    2015-01-01

    Results of thermal tests of 480-MW power-generating Unit 5 of Razdan Thermal Power Plant (hereinafter, Razdan-5 power unit) are presented. The tests were carried out by LvivORGRES after an integration trial of the power unit. The aim of the tests was thermal characterization of the steam boiler and the steam turbine when the power unit operates as a combined-cycle plant. The economic efficiency of the boiler and the turbine and the environmental characteristics of the power unit are determined and the calculated and the actual values are compared. The specific heat gross and net rates required for the power unit to generate the electric power are established.

  16. Life cycle assessment of urban waste management: Energy performances and environmental impacts. The case of Rome, Italy

    SciTech Connect

    Cherubini, Francesco Bargigli, Silvia; Ulgiati, Sergio

    2008-12-15

    Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airborne emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.

  17. Application of hybrid life cycle approaches to emerging energy technologies--the case of wind power in the UK.

    PubMed

    Wiedmann, Thomas O; Suh, Sangwon; Feng, Kuishuang; Lenzen, Manfred; Acquaye, Adolf; Scott, Kate; Barrett, John R

    2011-07-01

    Future energy technologies will be key for a successful reduction of man-made greenhouse gas emissions. With demand for electricity projected to increase significantly in the future, climate policy goals of limiting the effects of global atmospheric warming can only be achieved if power generation processes are profoundly decarbonized. Energy models, however, have ignored the fact that upstream emissions are associated with any energy technology. In this work we explore methodological options for hybrid life cycle assessment (hybrid LCA) to account for the indirect greenhouse gas (GHG) emissions of energy technologies using wind power generation in the UK as a case study. We develop and compare two different approaches using a multiregion input-output modeling framework - Input-Output-based Hybrid LCA and Integrated Hybrid LCA. The latter utilizes the full-sized Ecoinvent process database. We discuss significance and reliability of the results and suggest ways to improve the accuracy of the calculations. The comparison of hybrid LCA methodologies provides valuable insight into the availability and robustness of approaches for informing energy and environmental policy. PMID:21649442

  18. A life cycle assessment of environmental performances of two combustion- and gasification-based waste-to-energy technologies.

    PubMed

    Arena, Umberto; Ardolino, Filomena; Di Gregorio, Fabrizio

    2015-07-01

    An attributional life cycle analysis (LCA) was developed to compare the environmental performances of two waste-to-energy (WtE) units, which utilize the predominant technologies among those available for combustion and gasification processes: a moving grate combustor and a vertical shaft gasifier coupled with direct melting. The two units were assumed to be fed with the same unsorted residual municipal waste, having a composition estimated as a European average. Data from several plants in operation were processed by means of mass and energy balances, and on the basis of the flows and stocks of materials and elements inside and throughout the two units, as provided by a specific substance flow analysis. The potential life cycle environmental impacts related to the operations of the two WtE units were estimated by means of the Impact 2002+ methodology. They indicate that both the technologies have sustainable environmental performances, but those of the moving grate combustion unit are better for most of the selected impact categories. The analysis of the contributions from all the stages of each specific technology suggests where improvements in technological solutions and management criteria should be focused to obtain further and remarkable environmental improvements. PMID:25899036

  19. Comparison of life cycle carbon dioxide emissions and embodied energy in four renewable electricity generation technologies in New Zealand.

    PubMed

    Rule, Bridget M; Worth, Zeb J; Boyle, Carol A

    2009-08-15

    In order to make the best choice between renewable energy technologies, it is important to be able to compare these technologies on the basis of their sustainability, which may include a variety of social, environmental, and economic indicators. This study examined the comparative sustainability of four renewable electricity technologies in terms of their life cycle CO2 emissions and embodied energy, from construction to decommissioning and including maintenance (periodic component replacement plus machinery use), using life cycle analysis. The models developed were based on case studies of power plants in New Zealand, comprising geothermal, large-scale hydroelectric, tidal (a proposed scheme), and wind-farm electricity generation. The comparative results showed that tidal power generation was associated with 1.8 g of CO2/kWh, wind with 3.0 g of CO2/kWh, hydroelectric with 4.6 g of CO2/kWh, and geothermal with 5.6 g of CO2/kWh (not including fugitive emissions), and that tidal power generation was associated with 42.3 kJ/kWh, wind with 70.2 kJ/kWh, hydroelectric with 55.0 kJ/kWh, and geothermal with 94.6 kJ/kWh. Other environmental indicators, as well as social and economic indicators, should be applied to gain a complete picture of the technologies studied. PMID:19746744

  20. Energy harvesting from self-sustained aeroelastic limit cycle oscillations of rectangular wings

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Ega, Evan

    2014-09-01

    Three different aspect-ratio rectangular wings are designed and experimentally tested to produce self-sustained aeroelastic oscillations for energy harvesting via implementing a piezoelectric generator. Sensitivity measurements are conducted first to determine the critical conditions producing such oscillations with a dominant frequency of 1 Hz. Furthermore, the energy harvesting performance is maximized as the piezoelectric generator is implemented in parallel with oncoming flow streamline. Approximately 55 mW electricity is produced from a wing with a surface area of 0.025 m2. Unlike conventional wind turbine technology, the present work opens up another possible way to harvest energy via nonlinear aeroelastic oscillations.

  1. University of Minnesota aquifer thermal energy storage (ATES) project report on the third long-term cycle

    SciTech Connect

    Hoyer, M.C.; Hallgren, J.P.; Uebel, M.H.; Delin, G.N.; Eisenreich, S.J.; Sterling, R.L.

    1994-12-01

    The University of Minnesota aquifer thermal energy storage (ATES) system has been operated as a field test facility (FTF) since 1982. The objectives were to design, construct, and operate the facility to study the feasibility of high-temperature ATES in a confined aquifer. Four short-term and two long-term cycles were previously conducted, which provided a greatly increased understanding of the efficiency and geochemical effects of high-temperature aquifer thermal energy storage. The third long-term cycle (LT3) was conducted to operate the ATES system in conjunction with a real heating load and to further study the geochemical impact that heated water storage had on the aquifer. For LT3, the source and storage wells were modified so that only the most permeable portion, the Ironton-Galesville part, of the Franconia-Ironton-Galesville aquifer was used for storage. This was expected to improve storage efficiency by reducing the surface area of the heated volume and simplify analysis of water chemistry results by reducing the number of aquifer-related variables which need to be considered. During LT3, a total volume of 63.2 {times} 10{sup 3} m {sup 3} of water was injected at a rate of 54.95 m{sup 3}/hr into the storage well at a mean temperature of 104.7{degrees}C. Tie-in to the reheat system of the nearby Animal Sciences Veterinary Medicine (ASVM) building was completed after injection was completed. Approximately 66 percent (4.13 GWh) of the energy added to the aquifer was recovered. Approximately 15 percent (0.64 GWh) of the usable (10 building. Operations during heat recovery with the ASVM building`s reheat system were trouble-free. Integration into more of the ASVM (or other) building`s mechanical systems would have resulted in significantly increasing the proportion of energy used during heat recovery.

  2. Students' Energy Concepts at the Transition between Primary and Secondary School

    ERIC Educational Resources Information Center

    Opitz, Sebastian T.; Harms, Ute; Neumann, Knut; Kowalzik, Kristin; Frank, Arne

    2015-01-01

    Energy is considered both a core idea and a crosscutting concept in science education. A thorough understanding of the energy concept is thought to help students learn about other (related) concepts within and across science subjects, thereby fostering scientific literacy. This study investigates students' progression in understanding the energy…

  3. Solar Thermochemical Energy Storage Through Carbonation Cycles of SrCO3/SrO Supported on SrZrO3.

    PubMed

    Rhodes, Nathan R; Barde, Amey; Randhir, Kelvin; Li, Like; Hahn, David W; Mei, Renwei; Klausner, James F; AuYeung, Nick

    2015-11-01

    Solar thermochemical energy storage has enormous potential for enabling cost-effective concentrated solar power (CSP). A thermochemical storage system based on a SrO/SrCO3 carbonation cycle offers the ability to store and release high temperature (≈1200 °C) heat. The energy density of SrCO3/SrO systems supported by zirconia-based sintering inhibitors was investigated for 15 cycles of exothermic carbonation at 1150 °C followed by decomposition at 1235 °C. A sample with 40 wt % of SrO supported by yttria-stabilized zirconia (YSZ) shows good energy storage stability at 1450 MJ m(-3) over fifteen cycles at the same cycling temperatures. After further testing over 45 cycles, a decrease in energy storage capacity to 1260 MJ m(-3) is observed during the final cycle. The decrease is due to slowing carbonation kinetics, and the original value of energy density may be obtained by lengthening the carbonation steps. PMID:26435332

  4. High energy neutrinos from primary cosmic rays accelerated in the cores of active galaxies

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Done, C.; Salamon, M. H.; Sommers, P.

    1991-01-01

    The spectra and high-energy neutrino fluxes are calculated from photomeson production in active galactic nuclei (AGN) such as quasars and Seyfert galaxies using recent UV and X-ray observations to define the photon fields and an accretion-disk shock-acceleration model for producing ultrahigh-energy cosmic rays in the AGN. Collectively AGN should produce the dominant isotropic neutrino background between 10 exp 4 and 10 exp 10 GeV. Measurement of this background could be critical in determining the energy-generation mechanism, evolution, and distribution of AGN. High-energy background spectra and spectra from bright AGN such as NGC4151 and 3C273 are predicted which should be observable with present detectors. High energy AGN nus should produce a sphere of stellar disruption around their cores which could explain their observed broad-line emission regions.

  5. Solar powered absorption cycle heat pump using phase change materials for energy storage

    NASA Technical Reports Server (NTRS)

    Middleton, R. L.

    1972-01-01

    Solar powered heating and cooling system with possible application to residential homes is described. Operating principles of system are defined and illustration of typical energy storage and exchange system is provided.

  6. HOW THE LEED VENTILATION CREDIT IMPACTS ENERGY CONSUMPTION OF GSHP SYSTEMS A CASE STUDY FOR PRIMARY SCHOOLS

    SciTech Connect

    Liu, Xiaobing

    2011-01-01

    This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OA ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.

  7. Altered energy status of primary cerebellar granule neuronal cultures from rats exposed to lead in the pre- and neonatal period.

    PubMed

    Baranowska-Bosiacka, I; Gutowska, I; Marchetti, C; Rutkowska, M; Marchlewicz, M; Kolasa, A; Prokopowicz, A; Wiernicki, I; Piotrowska, K; Baśkiewicz, M; Safranow, K; Wiszniewska, B; Chlubek, D

    2011-02-01

    This paper examines the effect of pre- and neonatal exposure of rats to lead (0.1% lead acetate in drinking water, resulting in rat offspring whole blood lead concentration (Pb-B) 4μg/dL) on the energy status of neuronal mitochondria by measuring changes in ATP, ADP, AMP, adenosine, TAN concentration, adenylate energy charge value (AEC) and mitochondrial membrane potential in primary cerebellar granule neurons (CGC) in dissociated cultures. Fluorescence studies were performed to imaging and evaluate mitochondria mass, mitochondrial membrane potential, intracellular and mitochondrial reactive oxygen species (ROS) production. The Na(+)/K(+) ATPase activity in intact CGC was measured spectrophotometrically. Our data shows that pre- and neonatal exposure of rats to Pb, even below the threshold of whole blood Pb value considered safe for people, affects the energy status of cultured primary cerebellar granule neurons through a decrease in ATP and TAN concentrations and AEC value, inhibition of Na(+)/K(+) ATPase, and increase in intracellular and mitochondrial ROS concentration. These observations suggest that even these low levels of Pb are likely to induce important alterations in neuronal function that could play a role in neurodegeneration. PMID:21108985

  8. Relative response of alanine dosemeters for high-energy electrons determined using a Fricke primary standard

    NASA Astrophysics Data System (ADS)

    Vrs, Sndor; Anton, Mathias; Boillat, Bndicte

    2012-03-01

    A significant proportion of cancer patients is treated using MeV electron radiation. One of the measurement methods which is likely to furnish reliable dose values also under non-reference conditions is the dosimetry using alanine and read-out via electron spin resonance (ESR). The system has already proven to be suitable for QA purposes for modern radiotherapy involving megavoltage x-rays. In order to render the secondary standard measurement system of the Physikalisch-Technische Bundesanstalt based on alanine/ESR useable for dosimetry in radiotherapy, the dose-to-water (DW) response of the dosemeter needs to be known for relevant radiation qualities. For MeV electrons, the DW response was determined using the Fricke primary standard of the Swiss Federal Office of Metrology. Since there were no citable detailed publications on the Swiss primary standard available, this measurement system is described in some detail. The experimental results for the DW response are compared to results of Monte Carlo simulations which model in detail the beams furnished by the electron accelerator as well as the geometry of the detectors. The agreement between experiment and simulation is very good, as well as the agreement with results published by the National Research Council of Canada which are based on a different primary standard. No significant dependence of the DW response was found in the range between 6 and 20?MeV. It is therefore suggested to use a unique correction factor kE for alanine for all MeV qualities of kE = 1.012 0.010.

  9. Patterns in coupled water and energy cycle: Modeling, synthesis with observations, and assessing the subsurface-landsurface interactions

    NASA Astrophysics Data System (ADS)

    Rahman, A.; Kollet, S. J.; Sulis, M.

    2013-12-01

    In the terrestrial hydrological cycle, the atmosphere and the free groundwater table act as the upper and lower boundary condition, respectively, in the non-linear two-way exchange of mass and energy across the land surface. Identifying and quantifying the interactions among various atmospheric-subsurface-landsurface processes is complicated due to the diverse spatiotemporal scales associated with these processes. In this study, the coupled subsurface-landsurface model ParFlow.CLM was applied over a ~28,000 km2 model domain encompassing the Rur catchment, Germany, to simulate the fluxes of the coupled water and energy cycle. The model was forced by hourly atmospheric data from the COSMO-DE model (numerical weather prediction system of the German Weather Service) over one year. Following a spinup period, the model results were synthesized with observed river discharge, soil moisture, groundwater table depth, temperature, and landsurface energy flux data at different sites in the Rur catchment. It was shown that the model is able to reproduce reasonably the dynamics and also absolute values in observed fluxes and state variables without calibration. The spatiotemporal patterns in simulated water and energy fluxes as well as the interactions were studied using statistical, geostatistical and wavelet transform methods. While spatial patterns in the mass and energy fluxes can be predicted from atmospheric forcing a