Science.gov

Sample records for cycle regulatory proteins

  1. Cell cycle regulatory protein p27KIP1 is a substrate and interacts with the protein kinase CK2.

    PubMed

    Tapia, Julio C; Bolanos-Garcia, Victor M; Sayed, Muhammed; Allende, Catherine C; Allende, Jorge E

    2004-04-01

    The protein kinase CK2 is constituted by two catalytic (alpha and/or alpha') and two regulatory (beta) subunits. CK2 phosphorylates more than 300 proteins with important functions in the cell cycle. This study has looked at the relation between CK2 and p27(KIP1), which is a regulator of the cell cycle and a known inhibitor of cyclin-dependent kinases (Cdk). We demonstrated that in vitro recombinant Xenopus laevis CK2 can phosphorylate recombinant human p27(KIP1), but this phosphorylation occurs only in the presence of the regulatory beta subunit. The principal site of phosphorylation is serine-83. Analysis using pull down and surface plasmon resonance (SPR) techniques showed that p27(KIP1) interacts with the beta subunit through two domains present in the amino and carboxyl ends, while CD spectra showed that p27(KIP1) phosphorylation by CK2 affects its secondary structure. Altogether, these results suggest that p27(KIP1) phosphorylation by CK2 probably involves a docking event mediated by the CK2beta subunit. The phosphorylation of p27(KIP1) by CK2 may affect its biological activity. PMID:15034923

  2. Modulation of cell cycle regulatory protein expression and suppression of tumor growth by mimosine in nude mice.

    PubMed

    Chang, H C; Weng, C F; Yen, M H; Chuang, L Y; Hung, W C

    2000-10-01

    Our previous results demonstrated that the plant amino acid mimosine blocked cell cycle progression and suppressed proliferation of human lung cancer cells in vitro by multiple mechanisms. Inhibition of cyclin D1 expression or induction of cyclin-dependent kinase inhibitor p21WAF1 expression was found in mimosine-treated lung cancer cells. However, whether mimosine may modulate the expression of these cell cycle regulatory proteins and suppress tumor growth in vivo is unknown. In this study, we examined the anti-cancer effect of mimosine on human H226 lung cancer cells grown in nude mice. Our results demonstrated that mimosine inhibits cyclin D1 and induces p21WAF1 expression in vivo. Furthermore, results of TUNEL analysis indicated that mimosine may induce apoptosis to suppress tumor growth in nude mice. Collectively, these results suggest that mimosine exerts anti-cancer effect in vivo and might be useful in the therapy of lung cancer. PMID:10995875

  3. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 is Expressed inOsteoblasts and Regulated by PTH

    SciTech Connect

    Sharma, Sonali; Mahalingam, Chandrika D.; Das, Varsha; Levi, Edi; Rishi, Arun K.; Datta, Nabanita S.

    2013-07-12

    Highlights: •CARP-1 is identified for the first time in bone cells. •PTH downregulates CARP-1 expression in differentiated osteoblasts. •PTH displaces CARP-1 from nucleus to the cytoplasm in differentiated osteoblasts. •Downregulation of CARP-1 by PTH involves PKA, PKC and P-p38 MAPK pathways. -- Abstract: Bone mass is dependent on osteoblast proliferation, differentiation and life-span of osteoblasts. Parathyroid hormone (PTH) controls osteoblast cell cycle regulatory proteins and suppresses mature osteoblasts apoptosis. Intermittent administration of PTH increases bone mass but the mechanism of action are complex and incompletely understood. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 (aka CCAR1) is a novel transducer of signaling by diverse agents including cell growth and differentiation factors. To gain further insight into the molecular mechanism, we investigated involvement of CARP-1 in PTH signaling in osteoblasts. Immunostaining studies revealed presence of CARP-1 in osteoblasts and osteocytes, while a minimal to absent levels were noted in the chondrocytes of femora from 10 to 12-week old mice. Treatment of 7-day differentiated MC3T3-E1 clone-4 (MC-4) mouse osteoblastic cells and primary calvarial osteoblasts with PTH for 30 min to 5 h followed by Western blot analysis showed 2- to 3-fold down-regulation of CARP-1 protein expression in a dose- and time-dependent manner compared to the respective vehicle treated control cells. H-89, a Protein Kinase A (PKA) inhibitor, suppressed PTH action on CARP-1 protein expression indicating PKA-dependent mechanism. PMA, a Protein Kinase C (PKC) agonist, mimicked PTH action, and the PKC inhibitor, GF109203X, partially blocked PTH-dependent downregulation of CARP-1, implying involvement of PKC. U0126, a Mitogen-Activated Protein Kinase (MAPK) Kinase (MEK) inhibitor, failed to interfere with CARP-1 suppression by PTH. In contrast, SB203580, p38 inhibitor, attenuated PTH down-regulation of CARP-1

  4. Vorinostat modulates cell cycle regulatory proteins in glioma cells and human glioma slice cultures.

    PubMed

    Xu, Jihong; Sampath, Deepa; Lang, Frederick F; Prabhu, Sujit; Rao, Ganesh; Fuller, Gregory N; Liu, Yuanfang; Puduvalli, Vinay K

    2011-11-01

    Chromatin modification through histone deacetylase inhibition has shown evidence of activity against malignancies. The mechanism of action of such agents are pleiotropic and potentially tumor specific. In this study, we studied the mechanisms of vorinostat-induced cellular effects in gliomas. The effects of vorinostat on proliferation, induction of apoptosis and cell cycle effects were studied in vitro (D54, U87 and U373 glioma cell lines). To gain additional insights into its effects on human gliomas, vorinostat-induced changes were examined ex vivo using a novel organotypic human glioma slice model. Vorinostat treatment resulted in increased p21 levels in all glioma cells tested in a p53 independent manner. In addition, cyclin B1 levels were transcriptionally downregulated and resulted in reduced kinase activity of the cyclin B1/cdk1 complex causing a G2 arrest. These effects were associated with a dose- and time-dependent inhibition of cellular proliferation and anchorage-independent growth in association with hyperacetylation of core histones and induction of apoptosis. Of particular significance, we demonstrate histone hyperacetylation and increased p21 levels in freshly resected human glioma specimens maintained as organotypic slice cultures and exposed to vorinostat similar to cell lines suggesting that human glioma can be targeted by this agent. Our data suggest that the effects of vorinostat are associated with modulation of cell cycle related proteins and activation of a G2 checkpoint along with induction of apoptosis. These effects are mediated by both transcriptional and post-translational mechanisms which provide potential options that can be exploited to develop new therapeutic approaches against gliomas. PMID:21598070

  5. Vorinostat modulates cell cycle regulatory proteins in glioma cells and human glioma slice cultures

    PubMed Central

    Xu, Jihong; Sampath, Deepa; Lang, Frederick F.; Prabhu, Sujit; Rao, Ganesh; Fuller, Gregory N.; Liu, Yuanfang

    2013-01-01

    Chromatin modification through histone deacetylase inhibition has shown evidence of activity against malignancies. The mechanism of action of such agents are pleiotropic and potentially tumor specific. In this study, we studied the mechanisms of vorinostat-induced cellular effects in gliomas. The effects of vorinostat on proliferation, induction of apoptosis and cell cycle effects were studied in vitro (D54, U87 and U373 glioma cell lines). To gain additional insights into its effects on human gliomas, vorinostat-induced changes were examined ex vivo using a novel organotypic human glioma slice model. Vorinostat treatment resulted in increased p21 levels in all glioma cells tested in a p53 independent manner. In addition, cyclin B1 levels were transcriptionally downregulated and resulted in reduced kinase activity of the cyclin B1/cdkl complex causing a G2 arrest. These effects were associated with a dose- and time-dependent inhibition of cellular proliferation and anchorage-independent growth in association with hyperacetylation of core histones and induction of apoptosis. Of particular significance, we demonstrate histone hyperacetylation and increased p21 levels in freshly resected human glioma specimens maintained as organotypic slice cultures and exposed to vorinostat similar to cell lines suggesting that human glioma can be targeted by this agent. Our data suggest that the effects of vorinostat are associated with modulation of cell cycle related proteins and activation of a G2 checkpoint along with induction of apoptosis. These effects are mediated by both transcriptional and post-translational mechanisms which provide potential options that can be exploited to develop new therapeutic approaches against gliomas. PMID:21598070

  6. A Model of Yeast Cell-Cycle Regulation Based on a Standard Component Modeling Strategy for Protein Regulatory Networks

    PubMed Central

    Laomettachit, Teeraphan; Chen, Katherine C.; Baumann, William T.

    2016-01-01

    To understand the molecular mechanisms that regulate cell cycle progression in eukaryotes, a variety of mathematical modeling approaches have been employed, ranging from Boolean networks and differential equations to stochastic simulations. Each approach has its own characteristic strengths and weaknesses. In this paper, we propose a “standard component” modeling strategy that combines advantageous features of Boolean networks, differential equations and stochastic simulations in a framework that acknowledges the typical sorts of reactions found in protein regulatory networks. Applying this strategy to a comprehensive mechanism of the budding yeast cell cycle, we illustrate the potential value of standard component modeling. The deterministic version of our model reproduces the phenotypic properties of wild-type cells and of 125 mutant strains. The stochastic version of our model reproduces the cell-to-cell variability of wild-type cells and the partial viability of the CLB2-dbΔ clb5Δ mutant strain. Our simulations show that mathematical modeling with “standard components” can capture in quantitative detail many essential properties of cell cycle control in budding yeast. PMID:27187804

  7. A Model of Yeast Cell-Cycle Regulation Based on a Standard Component Modeling Strategy for Protein Regulatory Networks.

    PubMed

    Laomettachit, Teeraphan; Chen, Katherine C; Baumann, William T; Tyson, John J

    2016-01-01

    To understand the molecular mechanisms that regulate cell cycle progression in eukaryotes, a variety of mathematical modeling approaches have been employed, ranging from Boolean networks and differential equations to stochastic simulations. Each approach has its own characteristic strengths and weaknesses. In this paper, we propose a "standard component" modeling strategy that combines advantageous features of Boolean networks, differential equations and stochastic simulations in a framework that acknowledges the typical sorts of reactions found in protein regulatory networks. Applying this strategy to a comprehensive mechanism of the budding yeast cell cycle, we illustrate the potential value of standard component modeling. The deterministic version of our model reproduces the phenotypic properties of wild-type cells and of 125 mutant strains. The stochastic version of our model reproduces the cell-to-cell variability of wild-type cells and the partial viability of the CLB2-dbΔ clb5Δ mutant strain. Our simulations show that mathematical modeling with "standard components" can capture in quantitative detail many essential properties of cell cycle control in budding yeast. PMID:27187804

  8. The human papillomavirus type 58 E7 oncoprotein modulates cell cycle regulatory proteins and abrogates cell cycle checkpoints

    SciTech Connect

    Zhang Weifang; Li Jing; Kanginakudru, Sriramana; Zhao Weiming; Yu Xiuping; Chen, Jason J.

    2010-02-05

    HPV type 58 (HPV-58) is the third most common HPV type in cervical cancer from Eastern Asia, yet little is known about how it promotes carcinogenesis. In this study, we demonstrate that HPV-58 E7 significantly promoted the proliferation and extended the lifespan of primary human keratinocytes (PHKs). HPV-58 E7 abrogated the G1 and the postmitotic checkpoints, although less efficiently than HPV-16 E7. Consistent with these observations, HPV-58 E7 down-regulated the cellular tumor suppressor pRb to a lesser extent than HPV-16 E7. Similar to HPV-16 E7 expressing PHKs, Cdk2 remained active in HPV-58 E7 expressing PHKs despite the presence of elevated levels of p53 and p21. Interestingly, HPV-58 E7 down-regulated p130 more efficiently than HPV-16 E7. Our study demonstrates a correlation between the ability of down-regulating pRb/p130 and abrogating cell cycle checkpoints by HPV-58 E7, which also correlates with the biological risks of cervical cancer progression associated with HPV-58 infection.

  9. MicroRNA-31 functions as a tumor suppressor by regulating cell cycle and epithelial-mesenchymal transition regulatory proteins in liver cancer

    PubMed Central

    Bae, Hyun Jin; Eun, Jung Woo; Shen, Qingyu; Park, Se Jin; Shin, Woo Chan; Yang, Hee Doo; Park, Mijung; Park, Won Sang; Kang, Yong-Koo; Nam, Suk Woo

    2015-01-01

    MicroRNA-31 (miR-31) is among the most frequently altered microRNAs in human cancers and altered expression of miR-31 has been detected in a large variety of tumor types, but the functional role of miR-31 still hold both tumor suppressive and oncogenic roles in different tumor types. MiR-31 expression was down-regulated in a large cohort of hepatocellular carcinoma (HCC) patients, and low expression of miR-31 was significantly associated with poor prognosis of HCC patients. Ectopic expression of miR-31 mimics suppressed HCC cell growth by transcriptional deregulation of cell cycle proteins. Additional study evidenced miR-31 directly to suppress HDAC2 and CDK2 expression by inhibiting mRNA translation in HCC cells. We also found that ectopic expression of miR-31 mimics reduced metastatic potential of HCC cells by selectively regulating epithelial-mesenchymal transition (EMT) regulatory proteins such as N-cadherin, E-cadherin, vimentin and fibronectin. HCC tissues derived from chemical-induced rat liver cancer models validated that miR-31 expression is significantly down-regulated, and that those cell cycle- and EMT-regulatory proteins are deregulated in rat liver cancer. Overall, we suggest that miR-31 functions as a tumor suppressor by selectively regulating cell cycle and EMT regulatory proteins in human hepatocarcinogenesis providing a novel target for the molecular treatment of liver malignancies. PMID:25797269

  10. Identification and characterization of a cell cycle and apoptosis regulatory protein-1 as a novel mediator of apoptosis signaling by retinoid CD437.

    PubMed

    Rishi, Arun K; Zhang, Liyue; Boyanapalli, Madanamohan; Wali, Anil; Mohammad, Ramzi M; Yu, Yingjie; Fontana, Joseph A; Hatfield, James S; Dawson, Marcia I; Majumdar, Adhip P N; Reichert, Uwe

    2003-08-29

    CD437, a novel retinoid, causes cell cycle arrest and apoptosis in a number of cancer cells including human breast carcinoma (HBC) by utilizing an undefined retinoic acid receptor/retinoid X receptor-independent mechanism. To delineate mediators of CD437 signaling, we utilized a random antisense-dependent functional knockout genetic approach. We identified a cDNA that encodes approximately 130-kDa HBC cell perinuclear protein (termed CARP-1). Treatments with CD437 or chemotherapeutic agent adriamycin, as well as serum deprivation of HBC cells, stimulate CARP-1 expression. Reduced levels of CARP-1 result in inhibition of apoptosis by CD437 or adriamycin, whereas increased expression of CARP-1 causes elevated levels of cyclin-dependent kinase inhibitor p21WAF1/CIP1 and apoptosis. CARP-1 interacts with 14-3-3 protein as well as causes reduced expression of cell cycle regulatory genes including c-Myc and cyclin B1. Loss of c-Myc sensitizes cells to apoptosis by CARP-1, whereas expression of c-Myc or 14-3-3 inhibits CARP-1-dependent apoptosis. Thus, apoptosis induction by CARP-1 involves sequestration of 14-3-3 and CARP-1-mediated altered expression of multiple cell cycle regulatory genes. Identification of CARP-1 as a key mediator of signaling by CD437 or adriamycin allows for delineation of pathways that, in turn, may prove beneficial for design and targeting of novel antitumor agents. PMID:12816952

  11. Subversion of cell cycle regulatory mechanisms by HIV

    PubMed Central

    Rice, Andrew P.; Kimata, Jason T.

    2015-01-01

    To establish a productive infection, HIV-1 must counteract cellular innate immune mechanisms and redirect cellular process towards viral replication. Recent studies have discovered that HIV-1 and other primate immunodeficiency viruses subvert cell cycle regulatory mechanisms to achieve these ends. The viral Vpr and Vpx proteins target cell cycle controls to counter innate immunity. The cell cycle-related protein Cyclin L2 is also utilized to counter innate immunity. The viral Tat protein utilizes Cyclin T1 to activated proviral transcription, and regulation of Cyclin T1 levels in CD4+ T cells has important consequences for viral replication and latency. This review will summarize this emerging evidence that primate immunodeficiency viruses subvert cell cycle regulatory mechanisms to enhance replication. PMID:26067601

  12. Intracellular accumulation of cell cycle regulatory proteins and nucleolin re-localization are associated with pre-lethal ultrastructural lesions in circulating T lymphocytes: the HIV-induced cell cycle dysregulation revisited.

    PubMed

    Visalli, Giuseppa; Paiardini, Mirko; Chirico, Cristina; Cervasi, Barbara; Currò, Monica; Ferlazzo, Nadia; Bertuccio, Maria Paola; Favaloro, Angelo; Pellicanò, Giovanni; Sturniolo, Giuseppe; Spataro, Pasquale; Ientile, Riccardo; Picerno, Isa; Piedimonte, Giuseppe

    2010-06-01

    The HIV-induced demise of CD4-T cells is thought to be a result of the execution of genetically programmed cell death that occurs in lymphoid tissue, where many resident T cells are chronically hyperactivated. Since HIV-induced alterations of cell cycle control has been often indicated as prominent mechanism of immune hyper activation and cause of apoptotic death, the signal pathway involved in cell cycle dysregulation of T lymphocytes from HIV infected patients was extensively studied. Here, we also demonstrate that circulating T lymphocytes leave lymphoid tissues with diffused regressive lesions (vacuolization, blebbing, nuclear evanescence and organelle swelling). Equally diffused are biochemical anomalies that accompany the overall disarrangement of cell structure, particularly the fragmentation and diffusion into the cytoplasm of C23/nucleolin, the intracellular accumulation of short lived regulatory proteins and the decrease in expression of membrane proteins. All this is something more than a cell cycle-related remodelling of cell morphology and biochemical mechanisms, and rather recalls a necrotic/oncotic cell damage. Since these changes are associated with adaptive mechanisms to hypoxia, we give evidence for alteration of cell cycle control developing in conditions of scarce energy supply. PMID:20505329

  13. Induction of cell cycle changes and modulation of apoptogenic/anti-apoptotic and extracellular signaling regulatory protein expression by water extracts of I'm-Yunity™ (PSP)

    PubMed Central

    Hsieh, Tze-chen; Wu, Peili; Park, Spencer; Wu, Joseph M

    2006-01-01

    Background I'm-Yunity™ (PSP) is a mushroom extract derived from deep-layer cultivated mycelia of the patented Cov-1 strain of Coriolus versicolor (CV), which contains as its main bioactive ingredient a family of polysaccharo-peptide with heterogeneous charge properties and molecular sizes. I'm-Yunity™ (PSP) is used as a dietary supplement by cancer patients and by individuals diagnosed with various chronic diseases. Laboratory studies have shown that I'm-Yunity™ (PSP) enhances immune functions and also modulates cellular responses to external challenges. Recently, I'm-Yunity™ (PSP) was also reported to exert potent anti-tumorigenic effects, evident by suppression of cell proliferation and induction of apoptosis in malignant cells. We investigate the mechanisms by which I'm-Yunity™ (PSP) elicits these effects. Methods Human leukemia HL-60 and U-937 cells were incubated with increasing doses of aqueous extracts of I'm-Yunity™ (PSP). Control and treated cells were harvested at various times and analyzed for changes in: (1) cell proliferation and viability, (2) cell cycle phase transition, (3) induction of apoptosis, (4) expression of cell cycle, apoptogenic/anti-apoptotic, and extracellular regulatory proteins. Results Aqueous extracts of I'm-Yunity™ (PSP) inhibited cell proliferation and induced apoptosis in HL-60 and U-937 cells, accompanied by a cell type-dependent disruption of the G1/S and G2/M phases of cell cycle progression. A more pronounced growth suppression was observed in treated HL-60 cells, which was correlated with time- and dose-dependent down regulation of the retinoblastoma protein Rb, diminution in the expression of anti-apoptotic proteins bcl-2 and survivin, increase in apoptogenic proteins bax and cytochrome c, and cleavage of poly(ADP-ribose) polymerase (PARP) from its native 112-kDa form to the 89-kDa truncated product. Moreover, I'm-Yunity™ (PSP)-treated HL-60 cells also showed a substantial decrease in p65 and to a lesser

  14. HIV-1 Infection Dysregulates Cell Cycle Regulatory Protein p21 in CD4+ T Cells Through miR-20a and miR-106b Regulation.

    PubMed

    Guha, Debjani; Mancini, Allison; Sparks, Jessica; Ayyavoo, Velpandi

    2016-08-01

    Both CD4+ T lymphocytes and macrophages are the major targets of human immunodeficiency virus type 1 (HIV-1); however, they respond differently to HIV-1 infection. We hypothesized that HIV-1 infection alters gene expression in CD4+ T cells and monocyte-derived macrophages (MDMs) in a cell specific manner and microRNAs (miRNAs) in part play a role in cell-specific gene expression. Results indicate that 183 and 31 genes were differentially regulated in HIV-1 infected CD4+ T cells and MDMs, respectively, compared to their mock-infected counterparts. Among the differentially expressed genes, cell cycle regulatory gene, p21 (CDKN1A) was upregulated in virus infected CD4+ T cells both at the mRNA and protein level in CD4+ T cells, whereas no consistent change was observed in MDMs. Productively infected CD4+ T cells express higher amount of p21 compared to bystander cells. In determining the mechanism(s) of cell type specific regulation of p21, we found that the miRNAs miR-106b and miR-20a that target p21 were specifically downregulated in HIV-1 infected CD4+ T cells. Overexpression of these two miRNAs reduced p21 expression significantly in HIV-1 infected CD4+ T cells. These findings provide a potential mechanism, by which, HIV-1 could exploit host cellular machineries to regulate selective gene expression in target cells. J. Cell. Biochem. 117: 1902-1912, 2016. © 2016 Wiley Periodicals, Inc. PMID:26755399

  15. Emerging regulatory mechanisms in ubiquitin-dependent cell cycle control

    PubMed Central

    Mocciaro, Annamaria; Rape, Michael

    2012-01-01

    The covalent modification of proteins with ubiquitin is required for accurate cell division in all eukaryotes. Ubiquitylation depends on an enzymatic cascade, in which E3 enzymes recruit specific substrates for modification. Among ~600 human E3s, the SCF (Skp1–cullin1–F-box) and the APC/C (anaphase-promoting complex/cyclosome) are known for driving the degradation of cell cycle regulators to accomplish irreversible cell cycle transitions. The cell cycle machinery reciprocally regulates the SCF and APC/C through various mechanisms, including the modification of these E3s or the binding of specific inhibitors. Recent studies have provided new insight into the intricate relationship between ubiquitylation and the cell division apparatus as they revealed roles for atypical ubiquitin chains, new mechanisms of substrate and E3 regulation, as well as extensive crosstalk between ubiquitylation enzymes. Here, we review these emerging regulatory mechanisms of ubiquitin-dependent cell cycle control and discuss how their manipulation might provide therapeutic benefits in the future. PMID:22357967

  16. Regulatory cross-cutting topics for fuel cycle facilities.

    SciTech Connect

    Denman, Matthew R.; Brown, Jason; Goldmann, Andrew Scott; Louie, David

    2013-10-01

    This report overviews crosscutting regulatory topics for nuclear fuel cycle facilities for use in the Fuel Cycle Research&Development Nuclear Fuel Cycle Evaluation and Screening study. In particular, the regulatory infrastructure and analysis capability is assessed for the following topical areas:Fire Regulations (i.e., how applicable are current Nuclear Regulatory Commission (NRC) and/or International Atomic Energy Agency (IAEA) fire regulations to advance fuel cycle facilities)Consequence Assessment (i.e., how applicable are current radionuclide transportation tools to support risk-informed regulations and Level 2 and/or 3 PRA) While not addressed in detail, the following regulatory topic is also discussed:Integrated Security, Safeguard and Safety Requirement (i.e., how applicable are current Nuclear Regulatory Commission (NRC) regulations to future fuel cycle facilities which will likely be required to balance the sometimes conflicting Material Accountability, Security, and Safety requirements.)

  17. Host MicroRNA miR-197 Plays a Negative Regulatory Role in the Enterovirus 71 Infectious Cycle by Targeting the RAN Protein

    PubMed Central

    Tang, Wen-Fang; Huang, Ru-Ting; Chien, Kun-Yi; Huang, Jo-Yun; Lau, Kean-Seng; Jheng, Jia-Rong; Chiu, Cheng-Hsun; Wu, Tzong-Yuan; Chen, Chung-Yung

    2015-01-01

    ABSTRACT Enterovirus 71 (EV71), a member of Picornaviridae, is associated with severe central nervous system complications. In this study, we identified a cellular microRNA (miRNA), miR-197, whose expression was downregulated by viral infection in a time-dependent manner. In miR-197 mimic-transfected cells, EV71 replication was inhibited, whereas the internal ribosome entry site (IRES) activity was decreased in EV71 strains with or without predicted miR-197 target sites, indicating that miR-197 targets host proteins to modulate viral replication. We thus used a quantitative proteomics approach, aided by the TargetScan algorithm, to identify putative target genes of miR-197. Among them, RAN was selected and validated as a genuine target in a 3′ untranslated region (UTR) reporter assay. Reduced production of RAN by RNA interference markedly reduced the synthesis of EV71-encoded viral proteins and virus titers. Furthermore, reintroduction of nondegradable RAN into these knockdown cells rescued viral protein synthesis. miR-197 levels were modulated by EV71 to maintain RAN mRNA translatability at late times postinfection since we demonstrated that cap-independent translation exerted by its intrinsic IRES activity was occurring at times when translation attenuation was induced by EV71. EV71-induced downregulation of miR-197 expression increased the expression of RAN, which supported the nuclear transport of the essential viral proteins 3D/3CD and host protein hnRNP K for viral replication. Our data suggest that downregulation of cellular miRNAs may constitute a newly identified mechanism that sustains the expression of host proteins to facilitate viral replication. IMPORTANCE Enterovirus 71 (EV71) is a picornavirus with a positive-sense single-stranded RNA that globally inhibits the cellular translational system, mainly by cleaving cellular eukaryotic translation initiation factor 4G (eIF4G) and poly(A)-binding protein (PABP), which inhibits the association of the

  18. Inhibition of miR301 enhances Akt-mediated cell proliferation by accumulation of PTEN in nucleus and its effects on cell-cycle regulatory proteins

    PubMed Central

    Jain, Mayur V.; Shareef, Ahmad; Likus, Wirginia; Cieślar-Pobuda, Artur; Ghavami, Saeid; Łos, Marek J.

    2016-01-01

    Micro-RNAs (miRs) represent an innovative class of genes that act as regulators of gene expression. Recently, the aberrant expression of several miRs has been associated with different types of cancers. In this study, we show that miR301 inhibition influences PI3K-Akt pathway activity. Akt overexpression in MCF7 and MDAMB468 cells caused downregulation of miR301 expression. This effect was confirmed by co-transfection of miR301-modulators in the presence of Akt. Cells overexpressing miR301-inhibitor and Akt, exhibited increased migration and proliferation. Experimental results also confirmed PI3K, PTEN and FoxF2 as regulatory targets for miR301. Furthermore, Akt expression in conjunction with miR301-inhibitor increased nuclear accumulation of PTEN, thus preventing it from downregulating the PI3K-signalling. In summary, our data emphasize the importance of miR301 inhibition on PI3K-Akt pathway-mediated cellular functions. Hence, it opens new avenues for the development of new anti-cancer agents preferentially targeting PI3K-Akt pathway. PMID:26967567

  19. Complex regulatory pathways coordinate cell cycle progression and development in Caulobacter crescentus

    PubMed Central

    Brown, Pamela J.B.; Hardy, Gail G.; Trimble, Michael J.; Brun, Yves V.

    2008-01-01

    Caulobacter crescentus has become the predominant bacterial model system to study the regulation of cell cycle progression. Stage specific processes such as chromosome replication and segregation, and cell division are coordinated with the development of four polar structures: the flagellum, pili, stalk, and holdfast. The production, activation, localization, and proteolysis of specific regulatory proteins at precise times during the cell cycle culminate in the ability of the cell to produce two physiologically distinct daughter cells. We examine the recent advances that have enhanced our understanding of the mechanisms of temporal and spatial regulation that occur during cell cycle progression. PMID:18929067

  20. Evidence That Phosphorylation of Iron Regulatory Protein 1 at Serine 138 Destabilizes the [4Fe-4S] Cluster in Cytosolic Aconitase by Enhancing 4Fe-3Fe Cycling*S⃞

    PubMed Central

    Deck, Kathryn M.; Vasanthakumar, Aparna; Anderson, Sheila A.; Goforth, Jeremy B.; Kennedy, M. Claire; Antholine, William E.; Eisenstein, Richard S.

    2009-01-01

    Iron-sulfur cluster-dependent interconversion of iron regulatory protein 1 (IRP1) between its RNA binding and cytosolic aconitase (c-acon) forms controls vertebrate iron homeostasis. Cluster removal from c-acon is thought to include oxidative demetallation as a required step, but little else is understood about the process of conversion to IRP1. In comparison with c-aconWT, Ser138 phosphomimetic mutants of c-acon contain an unstable [4Fe-4S] cluster and were used as tools to further define the pathway(s) of iron-sulfur cluster disassembly. Under anaerobic conditions cluster insertion into purified IRP1S138E and cluster loss on treatment with NO regulated aconitase and RNA binding activity over a similar range as observed for IRP1WT. However, activation of RNA binding of c-aconS138E was an order of magnitude more sensitive to NO than for c-aconWT. Consistent with this, an altered set point between RNA-binding and aconitase forms was observed for IRP1S138E when expressed in HEK cells. Active c-aconS138E could only accumulate under hypoxic conditions, suggesting enhanced cluster disassembly in normoxia. Cluster disassembly mechanisms were further probed by determining the impact of iron chelation on acon activity. Unexpectedly EDTA rapidly inhibited c-aconS138E activity without affecting c-aconWT. Additional chelator experiments suggested that cluster loss can be initiated in c-aconS138E through a spontaneous nonoxidative demetallation process. Taken together, our results support a model wherein Ser138 phosphorylation sensitizes IRP1/c-acon to decreased iron availability by allowing the [4Fe-4S]2+ cluster to cycle with [3Fe-4S]0 in the absence of cluster perturbants, indicating that regulation can be initiated merely by changes in iron availability. PMID:19269970

  1. Protein tyrosine nitration in the cell cycle

    SciTech Connect

    Jia, Min; Mateoiu, Claudia; Souchelnytskyi, Serhiy

    2011-09-23

    Highlights: {yields} Enrichment of 3-nitrotyrosine containing proteins from cells synchronized in different phases of the cell cycle. {yields} Identification of 76 tyrosine nitrated proteins that change expression during the cell cycle. {yields} Nineteen identified proteins were previously described as regulators of cell proliferation. -- Abstract: Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.

  2. [Regulatory proteins of vertebrate eye tissues].

    PubMed

    Krasnov, M S; Grigorian, E N; Iamskova, V P; Boguslavskiĭ, D V; Iamskov, I A

    2003-01-01

    In our work the new proteins likely belonged to the microenvironment of pigmented epithelium cells and retinal neurons in mammalian eye were studied. We attempted to understand the role of these proteins in the maintenance of normal morphological and functional state of these eye tissues. Earlier for the first time we identified the adhesion molecules with physico-chemical and biological properties much different from other known cell adhesion molecules of bovine eye. Probably, they represent one family of low molecular weigh, highly glicosylated proteins, that express biological activity in extremely low doses--10(-10) mg/ml. The homogeneity of studying proteins is confirmed by HPLC and SDS-electrophoresis in PAAG. It is shown also that these proteins are N-glycosylated, because they contain mannose and N-acetilglucosamine residues. They demonstrate as well a high calcium-binding activity, with Kd corresponded to 10(-4)-10(-6) mg/ml. For a study of the biological effect of these glycoproteins in extremely low doses, a new experimental model was proposed and developed. It was the cultivation in vitro of the posterior part of the eye obtained from the newt Pleurodeles waltl. In short-time culture system it was demonstrated that the studied glycoproteins could stabilize pigment epithelium cell differentiation and cellular interactions in the neural retina in vitro. In addition, glycoproteins, obtained from the pigmented epithelium of bovine eye could decrease the rate of bipolar cell apoptosis in the neural retina. Therefore, the novel adhesion glycoproteins, expressing their biological activity in extremely low doses, pretend to be the regulatory molecules with vivid gomeostatic effects necessary for the delicate adjustment of cell behavior action and function in sensory tissues. PMID:12881976

  3. Origins of the protein synthesis cycle

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1981-01-01

    Largely derived from experiments in molecular evolution, a theory of protein synthesis cycles has been constructed. The sequence begins with ordered thermal proteins resulting from the self-sequencing of mixed amino acids. Ordered thermal proteins then aggregate to cell-like structures. When they contained proteinoids sufficiently rich in lysine, the structures were able to synthesize offspring peptides. Since lysine-rich proteinoid (LRP) also catalyzes the polymerization of nucleoside triphosphate to polynucleotides, the same microspheres containing LRP could have synthesized both original cellular proteins and cellular nucleic acids. The LRP within protocells would have provided proximity advantageous for the origin and evolution of the genetic code.

  4. Acetylation of RNA Processing Proteins and Cell Cycle Proteins in Mitosis

    PubMed Central

    Chuang, Carol; Lin, Sue-Hwa; Huang, Feilei; Pan, Jing; Josic, Djuro; Yu-Lee, Li-yuan

    2010-01-01

    Mitosis is a highly regulated process in which errors can lead to genomic instability, a hallmark of cancer. During this phase of the cell cycle, transcription is silent and RNA translation is inhibited. Thus, mitosis is largely driven by posttranslational modification of proteins, including phosphorylation, methylation, ubiquitination and sumoylation. Here, we show that protein acetylation is prevalent during mitosis. To identify proteins that are acetylated, we synchronized HeLa cells in early prometaphase and immunoprecipitated lysine-acetylated proteins with anti-acetyl-lysine antibody. The immunoprecipitated proteins were identified by LC-ESI-MS/MS analysis. These include proteins involved in RNA translation, RNA processing, cell cycle regulation, transcription, chaperone function, DNA damage repair, metabolism, immune response and cell structure. Immunoprecipitation followed by Western blot analyses confirmed that two RNA processing proteins, eIF4G and RNA helicase A, and several cell cycle proteins, including APC1, anillin and NudC, were acetylated in mitosis. We further showed that acetylation of APC1 and NudC was enhanced by apicidin treatment, suggesting that their acetylation was regulated by histone deacetylase. Moreover, treating mitotic cells with apicidin or trichostatin A induced spindle abnormalities and cytokinesis failure. These studies suggest that protein acetylation/deacetylation is likely an important regulatory mechanism in mitosis. PMID:20812760

  5. Cell Cycle Regulatory Functions of the KSHV Oncoprotein LANA

    PubMed Central

    Wei, Fang; Gan, Jin; Wang, Chong; Zhu, Caixia; Cai, Qiliang

    2016-01-01

    Manipulation of cell cycle is a commonly employed strategy of viruses for achieving a favorable cellular environment during infection. Kaposi’s sarcoma-associated herpesvirus (KSHV), the primary etiological agent of several human malignancies including Kaposi’s sarcoma, and primary effusion lymphoma, encodes several oncoproteins that deregulate normal physiology of cell cycle machinery to persist with endothelial cells and B cells and subsequently establish a latent infection. During latency, only a small subset of viral proteins is expressed. Latency-associated nuclear antigen (LANA) is one of the latent antigens shown to be essential for transformation of endothelial cells in vitro. It has been well demonstrated that LANA is critical for the maintenance of latency, episome DNA replication, segregation and gene transcription. In this review, we summarize recent studies and address how LANA functions as an oncoprotein to steer host cell cycle-related events including proliferation and apoptosis by interacting with various cellular and viral factors, and highlight the potential therapeutic strategy of disrupting LANA-dependent signaling as targets in KSHV-associated cancers. PMID:27065950

  6. Energy-coupled outer membrane transport proteins and regulatory proteins.

    PubMed

    Braun, Volkmar; Endriss, Franziska

    2007-06-01

    FhuA and FecA are two examples of energy-coupled outer membrane import proteins of gram-negative bacteria. FhuA transports iron complexed by the siderophore ferrichrome and serves as a receptor for phages, a toxic bacterial peptide, and a toxic protein. FecA transports diferric dicitrate and regulates transcription of an operon encoding five ferric citrate (Fec) transport genes. Properties of FhuA mutants selected according to the FhuA crystal structure are described. FhuA mutants in the TonB box, the hatch, and the beta-barrel are rather robust. TonB box mutants in FhuA FecA, FepA, Cir, and BtuB are compared; some mutations are suppressed by mutations in TonB. Mutant studies have not revealed a ferrichrome diffusion pathway, and tolerance to mutations in the region linking the TonB box to the hatch does not disclose a mechanism for how energy transfer from the cytoplasmic membrane to FhuA changes the conformation of FhuA such that bound substrates are released, the pore is opened, and substrates enter the periplasm, or how surface loops change their conformation such that TonB-dependent phages bind irreversibly and release their DNA into the cells. The FhuA and FecA crystal structures do not disclose the mechanism of these proteins, but they provide important information for specific functional studies. FecA is also a regulatory protein that transduces a signal from the cell surface into the cytoplasm. The interacting subdomains of the proteins in the FecA --> FecR --> FecI --> RNA polymerase signal transduction pathway resulting in fecABCDE transcription have been determined. Energy-coupled transporters transport not only iron and vitamin B12, but also other substrates of very low abundance such as sugars across the outer membrane; transcription regulation of the transport genes may occur similarly to that of the Fec transport genes. PMID:17370038

  7. A Complex Regulatory Network Coordinating Cell Cycles During C. elegans Development Is Revealed by a Genome-Wide RNAi Screen

    PubMed Central

    Roy, Sarah H.; Tobin, David V.; Memar, Nadin; Beltz, Eleanor; Holmen, Jenna; Clayton, Joseph E.; Chiu, Daniel J.; Young, Laura D.; Green, Travis H.; Lubin, Isabella; Liu, Yuying; Conradt, Barbara; Saito, R. Mako

    2014-01-01

    The development and homeostasis of multicellular animals requires precise coordination of cell division and differentiation. We performed a genome-wide RNA interference screen in Caenorhabditis elegans to reveal the components of a regulatory network that promotes developmentally programmed cell-cycle quiescence. The 107 identified genes are predicted to constitute regulatory networks that are conserved among higher animals because almost half of the genes are represented by clear human orthologs. Using a series of mutant backgrounds to assess their genetic activities, the RNA interference clones displaying similar properties were clustered to establish potential regulatory relationships within the network. This approach uncovered four distinct genetic pathways controlling cell-cycle entry during intestinal organogenesis. The enhanced phenotypes observed for animals carrying compound mutations attest to the collaboration between distinct mechanisms to ensure strict developmental regulation of cell cycles. Moreover, we characterized ubc-25, a gene encoding an E2 ubiquitin-conjugating enzyme whose human ortholog, UBE2Q2, is deregulated in several cancers. Our genetic analyses suggested that ubc-25 acts in a linear pathway with cul-1/Cul1, in parallel to pathways employing cki-1/p27 and lin-35/pRb to promote cell-cycle quiescence. Further investigation of the potential regulatory mechanism demonstrated that ubc-25 activity negatively regulates CYE-1/cyclin E protein abundance in vivo. Together, our results show that the ubc-25-mediated pathway acts within a complex network that integrates the actions of multiple molecular mechanisms to control cell cycles during development. PMID:24584095

  8. Dynamic SPR monitoring of yeast nuclear protein binding to a cis-regulatory element

    SciTech Connect

    Mao, Grace; Brody, James P.

    2007-11-09

    Gene expression is controlled by protein complexes binding to short specific sequences of DNA, called cis-regulatory elements. Expression of most eukaryotic genes is controlled by dozens of these elements. Comprehensive identification and monitoring of these elements is a major goal of genomics. In pursuit of this goal, we are developing a surface plasmon resonance (SPR) based assay to identify and monitor cis-regulatory elements. To test whether we could reliably monitor protein binding to a regulatory element, we immobilized a 16 bp region of Saccharomyces cerevisiae chromosome 5 onto a gold surface. This 16 bp region of DNA is known to bind several proteins and thought to control expression of the gene RNR1, which varies through the cell cycle. We synchronized yeast cell cultures, and then sampled these cultures at a regular interval. These samples were processed to purify nuclear lysate, which was then exposed to the sensor. We found that nuclear protein binds this particular element of DNA at a significantly higher rate (as compared to unsynchronized cells) during G1 phase. Other time points show levels of DNA-nuclear protein binding similar to the unsynchronized control. We also measured the apparent association complex of the binding to be 0.014 s{sup -1}. We conclude that (1) SPR-based assays can monitor DNA-nuclear protein binding and that (2) for this particular cis-regulatory element, maximum DNA-nuclear protein binding occurs during G1 phase.

  9. Functional Classification of Immune Regulatory Proteins

    SciTech Connect

    Rubinstein, Rotem; Ramagopal, Udupi A.; Nathenson, Stanley G.; Almo, Steven C.; Fiser, Andras

    2013-05-01

    Members of the immunoglobulin superfamily (IgSF) control innate and adaptive immunity and are prime targets for the treatment of autoimmune diseases, infectious diseases, and malignancies. We describe a computational method, termed the Brotherhood algorithm, which utilizes intermediate sequence information to classify proteins into functionally related families. This approach identifies functional relationships within the IgSF and predicts additional receptor-ligand interactions. As a specific example, we examine the nectin/nectin-like family of cell adhesion and signaling proteins and propose receptor-ligand interactions within this family. We were guided by the Brotherhood approach and present the high-resolution structural characterization of a homophilic interaction involving the class-I MHC-restricted T-cell-associated molecule, which we now classify as a nectin-like family member. The Brotherhood algorithm is likely to have a significant impact on structural immunology by identifying those proteins and complexes for which structural characterization will be particularly informative.

  10. Regulation of Sp1 by cell cycle related proteins

    PubMed Central

    Tapias, Alicia; Ciudad, Carlos J.; Roninson, Igor B.; Noé, Véronique

    2009-01-01

    Sp1 transcription factor regulates the expression of multiple genes, including the Sp1 gene itself. We analyzed the ability of different cell cycle regulatory proteins to interact with Sp1 and to affect Sp1 promoter activity. Using an antibody array, we observed that CDK4, SKP2, Rad51, BRCA2 and p21 could interact with Sp1 and we confirmed these interactions by co-immunoprecipitation. CDK4, SKP2, Rad51, BRCA2 and p21 also activated the Sp1 promoter. Among the known Sp1-interacting proteins, E2F-DP1, Cyclin D1, Stat3 and Rb activated the Sp1 promoter, whereas p53 and NFκB inhibited it. The proteins that regulated Sp1 gene expression were shown by positive chromatin immunoprecipitation to be bound to the Sp1 promoter. Moreover, SKP2, BRCA2, p21, E2F-DP1, Stat3, Rb, p53 and NFκB had similar effects on an artificial promoter containing only Sp1 binding sites. Transient transfections of CDK4, Rad51, E2F-DP1, p21 and Stat3 increased mRNA expression from the endogenous Sp1 gene in HeLa cells whereas overexpression of NFκB, and p53 decreased Sp1 mRNA levels. p21 expression from a stably integrated inducible promoter in HT1080 cells activated Sp1 expression at the promoter and mRNA levels, but at the same time it decreased Sp1 protein levels due to the activation of Sp1 degradation. The observed multiple effects of cell cycle regulators on Sp1 suggest that Sp1 may be a key mediator of cell cycle associated changes in gene expression. PMID:18769160

  11. Comparison of ISO 9000 and recent software life cycle standards to nuclear regulatory review guidance

    SciTech Connect

    Preckshot, G.G.; Scott, J.A.

    1998-01-20

    Lawrence Livermore National Laboratory is assisting the Nuclear Regulatory Commission with the assessment of certain quality and software life cycle standards to determine whether additional guidance for the U.S. nuclear regulatory context should be derived from the standards. This report describes the nature of the standards and compares the guidance of the standards to that of the recently updated Standard Review Plan.

  12. Dynamic chromatin environment of key lytic cycle regulatory regions of the Epstein-Barr virus genome.

    PubMed

    Ramasubramanyan, Sharada; Osborn, Kay; Flower, Kirsty; Sinclair, Alison J

    2012-02-01

    The ability of Epstein-Barr virus (EBV) to establish latency allows it to evade the immune system and to persist for the lifetime of its host; one distinguishing characteristic is the lack of transcription of the majority of viral genes. Entry into the lytic cycle is coordinated by the viral transcription factor, Zta (BZLF1, ZEBRA, and EB1), and downstream effectors, while viral genome replication requires the concerted action of Zta and six other viral proteins at the origins of lytic replication. We explored the chromatin context at key EBV lytic cycle promoters (BZLF1, BRLF1, BMRF1, and BALF5) and the origins of lytic replication during latency and lytic replication. We show that a repressive heterochromatin-like environment (trimethylation of histone H3 at lysine 9 [H3K9me3] and lysine 27 [H3K27me3]), which blocks the interaction of some transcription factors with DNA, encompasses the key early lytic regulatory regions. Epigenetic silencing of the EBV genome is also imposed by DNA methylation during latency. The chromatin environment changes during the lytic cycle with activation of histones H3, H4, and H2AX occurring at both the origins of replication and at the key lytic regulatory elements. We propose that Zta is able to reverse the effects of latency-associated repressive chromatin at EBV early lytic promoters by interacting with Zta response elements within the H3K9me3-associated chromatin and demonstrate that these interactions occur in vivo. Since the interaction of Zta with DNA is not inhibited by DNA methylation, it is clear that Zta uses two routes to overcome epigenetic silencing of its genome. PMID:22090141

  13. CONSTRUCTION AND ANALYSIS OF IPBR/XYLS HYBRID REGULATORY PROTEINS

    EPA Science Inventory

    IpbR and XylS are related regulatory proteins (having 56% identity). IpbR responds to isopropylbenzene as well as to a variety of hydrophobic chemicals to activate expression of the isopropylbenzene catabolic pathway operon of pRE4 from ipbOP. XylS responds to substituted benzoic...

  14. Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors

    NASA Astrophysics Data System (ADS)

    Lloyd, David J.; St Jean, David J.; Kurzeja, Robert J. M.; Wahl, Robert C.; Michelsen, Klaus; Cupples, Rod; Chen, Michelle; Wu, John; Sivits, Glenn; Helmering, Joan; Komorowski, Renée; Ashton, Kate S.; Pennington, Lewis D.; Fotsch, Christopher; Vazir, Mukta; Chen, Kui; Chmait, Samer; Zhang, Jiandong; Liu, Longbin; Norman, Mark H.; Andrews, Kristin L.; Bartberger, Michael D.; van, Gwyneth; Galbreath, Elizabeth J.; Vonderfecht, Steven L.; Wang, Minghan; Jordan, Steven R.; Véniant, Murielle M.; Hale, Clarence

    2013-12-01

    Glucose homeostasis is a vital and complex process, and its disruption can cause hyperglycaemia and type II diabetes mellitus. Glucokinase (GK), a key enzyme that regulates glucose homeostasis, converts glucose to glucose-6-phosphate in pancreatic β-cells, liver hepatocytes, specific hypothalamic neurons, and gut enterocytes. In hepatocytes, GK regulates glucose uptake and glycogen synthesis, suppresses glucose production, and is subject to the endogenous inhibitor GK regulatory protein (GKRP). During fasting, GKRP binds, inactivates and sequesters GK in the nucleus, which removes GK from the gluconeogenic process and prevents a futile cycle of glucose phosphorylation. Compounds that directly hyperactivate GK (GK activators) lower blood glucose levels and are being evaluated clinically as potential therapeutics for the treatment of type II diabetes mellitus. However, initial reports indicate that an increased risk of hypoglycaemia is associated with some GK activators. To mitigate the risk of hypoglycaemia, we sought to increase GK activity by blocking GKRP. Here we describe the identification of two potent small-molecule GK-GKRP disruptors (AMG-1694 and AMG-3969) that normalized blood glucose levels in several rodent models of diabetes. These compounds potently reversed the inhibitory effect of GKRP on GK activity and promoted GK translocation both in vitro (isolated hepatocytes) and in vivo (liver). A co-crystal structure of full-length human GKRP in complex with AMG-1694 revealed a previously unknown binding pocket in GKRP distinct from that of the phosphofructose-binding site. Furthermore, with AMG-1694 and AMG-3969 (but not GK activators), blood glucose lowering was restricted to diabetic and not normoglycaemic animals. These findings exploit a new cellular mechanism for lowering blood glucose levels with reduced potential for hypoglycaemic risk in patients with type II diabetes mellitus.

  15. The unfolded protein response triggers site-specific regulatory ubiquitylation of 40S ribosomal proteins

    PubMed Central

    Rising, Lisa; Mak, Raymond; Webb, Kristofor; Kaiser, Stephen E.; Zuzow, Nathan; Riviere, Paul; Yang, Bing; Fenech, Emma; Tang, Xin; Lindsay, Scott A.; Christianson, John C.; Hampton, Randolph Y.; Wasserman, Steven A.; Bennett, Eric J.

    2015-01-01

    Summary Insults to endoplasmic reticulum (ER) homeostasis activate the unfolded protein response (UPR), which elevates protein folding and degradation capacity and attenuates protein synthesis. While a role for ubiquitin in regulating the degradation of misfolded ER-resident proteins is well described, ubiquitin-dependent regulation of translational reprogramming during the UPR remains uncharacterized. Using global quantitative ubiquitin proteomics, we identify evolutionarily conserved, site-specific regulatory ubiquitylation of 40S ribosomal proteins. We demonstrate that these events occur on assembled cytoplasmic ribosomes and are stimulated by both UPR activation and translation inhibition. We further show that ER stress-stimulated regulatory 40S ribosomal ubiquitylation occurs on a timescale similar to eIF2α phosphorylation, is dependent upon PERK signaling, and is required for optimal cell survival during chronic UPR activation. In total, these results reveal regulatory 40S ribosomal ubiquitylation as a previously uncharacterized and important facet of eukaryotic translational control. PMID:26051182

  16. Phosphorylation-Dependent Regulation of G-Protein Cycle during Nodule Formation in Soybean[OPEN

    PubMed Central

    2015-01-01

    Signaling pathways mediated by heterotrimeric G-protein complexes comprising Gα, Gβ, and Gγ subunits and their regulatory RGS (Regulator of G-protein Signaling) protein are conserved in all eukaryotes. We have shown that the specific Gβ and Gγ proteins of a soybean (Glycine max) heterotrimeric G-protein complex are involved in regulation of nodulation. We now demonstrate the role of Nod factor receptor 1 (NFR1)-mediated phosphorylation in regulation of the G-protein cycle during nodulation in soybean. We also show that during nodulation, the G-protein cycle is regulated by the activity of RGS proteins. Lower or higher expression of RGS proteins results in fewer or more nodules, respectively. NFR1 interacts with RGS proteins and phosphorylates them. Analysis of phosphorylated RGS protein identifies specific amino acids that, when phosphorylated, result in significantly higher GTPase accelerating activity. These data point to phosphorylation-based regulation of G-protein signaling during nodule development. We propose that active NFR1 receptors phosphorylate and activate RGS proteins, which help maintain the Gα proteins in their inactive, trimeric conformation, resulting in successful nodule development. Alternatively, RGS proteins might also have a direct role in regulating nodulation because overexpression of their phospho-mimic version leads to partial restoration of nodule formation in nod49 mutants. PMID:26498905

  17. Edge usage, motifs, and regulatory logic for cell cycling genetic networks

    NASA Astrophysics Data System (ADS)

    Zagorski, M.; Krzywicki, A.; Martin, O. C.

    2013-01-01

    The cell cycle is a tightly controlled process, yet it shows marked differences across species. Which of its structural features follow solely from the ability to control gene expression? We tackle this question in silico by examining the ensemble of all regulatory networks which satisfy the constraint of producing a given sequence of gene expressions. We focus on three cell cycle profiles coming from baker's yeast, fission yeast, and mammals. First, we show that the networks in each of the ensembles use just a few interactions that are repeatedly reused as building blocks. Second, we find an enrichment in network motifs that is similar in the two yeast cell cycle systems investigated. These motifs do not have autonomous functions, yet they reveal a regulatory logic for cell cycling based on a feed-forward cascade of activating interactions.

  18. A Dynamic Gene Regulatory Network Model That Recovers the Cyclic Behavior of Arabidopsis thaliana Cell Cycle.

    PubMed

    Ortiz-Gutiérrez, Elizabeth; García-Cruz, Karla; Azpeitia, Eugenio; Castillo, Aaron; Sánchez, María de la Paz; Álvarez-Buylla, Elena R

    2015-09-01

    Cell cycle control is fundamental in eukaryotic development. Several modeling efforts have been used to integrate the complex network of interacting molecular components involved in cell cycle dynamics. In this paper, we aimed at recovering the regulatory logic upstream of previously known components of cell cycle control, with the aim of understanding the mechanisms underlying the emergence of the cyclic behavior of such components. We focus on Arabidopsis thaliana, but given that many components of cell cycle regulation are conserved among eukaryotes, when experimental data for this system was not available, we considered experimental results from yeast and animal systems. We are proposing a Boolean gene regulatory network (GRN) that converges into only one robust limit cycle attractor that closely resembles the cyclic behavior of the key cell-cycle molecular components and other regulators considered here. We validate the model by comparing our in silico configurations with data from loss- and gain-of-function mutants, where the endocyclic behavior also was recovered. Additionally, we approximate a continuous model and recovered the temporal periodic expression profiles of the cell-cycle molecular components involved, thus suggesting that the single limit cycle attractor recovered with the Boolean model is not an artifact of its discrete and synchronous nature, but rather an emergent consequence of the inherent characteristics of the regulatory logic proposed here. This dynamical model, hence provides a novel theoretical framework to address cell cycle regulation in plants, and it can also be used to propose novel predictions regarding cell cycle regulation in other eukaryotes. PMID:26340681

  19. A Dynamic Gene Regulatory Network Model That Recovers the Cyclic Behavior of Arabidopsis thaliana Cell Cycle

    PubMed Central

    Ortiz-Gutiérrez, Elizabeth; García-Cruz, Karla; Azpeitia, Eugenio; Castillo, Aaron; Sánchez, María de la Paz; Álvarez-Buylla, Elena R.

    2015-01-01

    Cell cycle control is fundamental in eukaryotic development. Several modeling efforts have been used to integrate the complex network of interacting molecular components involved in cell cycle dynamics. In this paper, we aimed at recovering the regulatory logic upstream of previously known components of cell cycle control, with the aim of understanding the mechanisms underlying the emergence of the cyclic behavior of such components. We focus on Arabidopsis thaliana, but given that many components of cell cycle regulation are conserved among eukaryotes, when experimental data for this system was not available, we considered experimental results from yeast and animal systems. We are proposing a Boolean gene regulatory network (GRN) that converges into only one robust limit cycle attractor that closely resembles the cyclic behavior of the key cell-cycle molecular components and other regulators considered here. We validate the model by comparing our in silico configurations with data from loss- and gain-of-function mutants, where the endocyclic behavior also was recovered. Additionally, we approximate a continuous model and recovered the temporal periodic expression profiles of the cell-cycle molecular components involved, thus suggesting that the single limit cycle attractor recovered with the Boolean model is not an artifact of its discrete and synchronous nature, but rather an emergent consequence of the inherent characteristics of the regulatory logic proposed here. This dynamical model, hence provides a novel theoretical framework to address cell cycle regulation in plants, and it can also be used to propose novel predictions regarding cell cycle regulation in other eukaryotes. PMID:26340681

  20. Redox control of iron regulatory protein 2 stability.

    PubMed

    Hausmann, Anja; Lee, Julie; Pantopoulos, Kostas

    2011-02-18

    Iron regulatory protein 2 (IRP2) is a critical switch for cellular and systemic iron homeostasis. In iron-deficient or hypoxic cells, IRP2 binds to mRNAs containing iron responsive elements (IREs) and regulates their expression. Iron promotes proteasomal degradation of IRP2 via the F-box protein FBXL5. Here, we explored the effects of oxygen and cellular redox status on IRP2 stability. We show that iron-dependent decay of tetracycline-inducible IRP2 proceeds efficiently under mild hypoxic conditions (3% oxygen) but is compromised in severe hypoxia (0.1% oxygen). A treatment of cells with exogenous H(2)O(2) protects IRP2 against iron and increases its IRE-binding activity. IRP2 is also stabilized during menadione-induced oxidative stress. These data demonstrate that the degradation of IRP2 in iron-replete cells is not only oxygen-dependent but also sensitive to redox perturbations. PMID:21281640

  1. Glucocorticoid receptor-mediated cell cycle arrest is achieved through distinct cell-specific transcriptional regulatory mechanisms.

    PubMed Central

    Rogatsky, I; Trowbridge, J M; Garabedian, M J

    1997-01-01

    Glucocorticoids inhibit proliferation of many cell types, but the events leading from the activated glucocorticoid receptor (GR) to growth arrest are not understood. Ectopic expression and activation of GR in human osteosarcoma cell lines U2OS and SAOS2, which lack endogenous receptors, result in a G1 cell cycle arrest. GR activation in U2OS cells represses expression of the cyclin-dependent kinases (CDKs) CDK4 and CDK6 as well as their regulatory partner, cyclin D3, leading to hypophosphorylation of the retinoblastoma protein (Rb). We also demonstrate a ligand-dependent reduction in the expression of E2F-1 and c-Myc, transcription factors involved in the G1-to-S-phase transition. Mitogen-activated protein kinase, CDK2, cyclin E, and the CDK inhibitors (CDIs) p27 and p21 are unaffected by receptor activation in U2OS cells. The receptor's N-terminal transcriptional activation domain is not required for growth arrest in U2OS cells. In Rb-deficient SAOS2 cells, however, the expression of p27 and p21 is induced upon receptor activation. Remarkably, in SAOS2 cells that express a GR deletion derivative lacking the N-terminal transcriptional activation domain, induction of CDI expression is abolished and the cells fail to undergo ligand-dependent cell cycle arrest. Similarly, murine S49 lymphoma cells, which, like SAOS2 cells, lack Rb, require the N-terminal activation domain for growth arrest and induce CDI expression upon GR activation. These cell-type-specific differences in receptor domains and cellular targets linking GR activation to cell cycle machinery suggest two distinct regulatory mechanisms of GR-mediated cell cycle arrest: one involving transcriptional repression of G1 cyclins and CDKs and the other involving enhanced transcription of CDIs by the activated receptor. PMID:9154817

  2. The Global Regulatory Architecture of Transcription during the Caulobacter Cell Cycle

    PubMed Central

    Zhou, Bo; Schrader, Jared M.; Kalogeraki, Virginia S.; Abeliuk, Eduardo; Dinh, Cong B.; Pham, James Q.; Cui, Zhongying Z.; Dill, David L.; McAdams, Harley H.; Shapiro, Lucy

    2015-01-01

    Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5′ RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle. PMID:25569173

  3. Core cell cycle regulatory genes in rice and their expression profiles across the growth zone of the leaf.

    PubMed

    Pettkó-Szandtner, A; Cserháti, M; Barrôco, R M; Hariharan, S; Dudits, D; Beemster, G T S

    2015-11-01

    Rice (Oryza sativa L.) as a model and crop plant with a sequenced genome offers an outstanding experimental system for discovering and functionally analyzing the major cell cycle control elements in a cereal species. In this study, we identified the core cell cycle genes in the rice genome through a hidden Markov model search and multiple alignments supported with the use of short protein sequence probes. In total we present 55 rice putative cell cycle genes with locus identity, chromosomal location, approximate chromosome position and EST accession number. These cell cycle genes include nine cyclin dependent-kinase (CDK) genes, 27 cyclin genes, one CKS gene, two RBR genes, nine E2F/DP/DEL genes, six KRP genes, and one WEE gene. We also provide characteristic protein sequence signatures encoded by CDK and cyclin gene variants. Promoter analysis by the FootPrinter program discovered several motifs in the regulatory region of the core cell cycle genes. As a first step towards functional characterization we performed transcript analysis by RT-PCR to determine gene specific variation in transcript levels along the rice leaves. The meristematic zone of the leaves where cells are actively dividing was identified based on kinematic analysis and flow cytometry. As expected, expression of the majority of cell cycle genes was exclusively associated with the meristematic region. However genes such as different D-type cyclins, DEL1, KRP1/3, and RBR2 were also expressed in leaf segments representing the transition zone in which cells start differentiation. PMID:26459328

  4. Regulatory Elements of the Staphylococcus aureus Protein A (Spa) Promoter†

    PubMed Central

    Gao, Jinxin; Stewart, George C.

    2004-01-01

    Staphylococcal protein A (Spa) is an important virulence factor of Staphylococcus aureus. Transcription of the spa determinant occurs during the exponential growth phase and is repressed when the cells enter the postexponential growth phase. Regulation of spa expression has been found to be complicated, with regulation involving multiple factors, including Agr, SarA, SarS, SarT, Rot, and MgrA. Our understanding of how these factors work on the spa promoter to regulate spa expression is incomplete. To identify regulatory sites within the spa promoter, analysis of deletion derivatives of the promoter in host strains deficient in one or more of the regulatory factors was undertaken, and several critical features of spa regulation were revealed. The transcriptional start sites of spa were determined by primer extension. The spa promoter sequences were subcloned in front of a promoterless chloramphenicol acetyltransferase reporter gene. Various lengths of spa truncations with the same 3′ end were constructed, and the resultant plasmids were transduced into strains with different regulatory genetic backgrounds. Our results identified upstream promoter sequences necessary for Agr system regulation of spa expression. The cis elements for SarS activity, an activator of spa expression, and for SarA activity, a repressor of spa expression, were identified. The well-characterized SarA consensus sequence on the spa promoter was found to be insufficient for SarA repression of the spa promoter. Full repression required the presence of a second consensus site adjacent to the SarS binding site. Sequences directly upstream of the core promoter sequence were found to stimulate transcription. PMID:15175287

  5. Cleavage of Signal Regulatory Protein α (SIRPα) Enhances Inflammatory Signaling.

    PubMed

    Londino, James D; Gulick, Dexter; Isenberg, Jeffrey S; Mallampalli, Rama K

    2015-12-25

    Signal regulatory protein α (SIRPα) is a membrane glycoprotein immunoreceptor abundant in cells of monocyte lineage. SIRPα ligation by a broadly expressed transmembrane protein, CD47, results in phosphorylation of the cytoplasmic immunoreceptor tyrosine-based inhibitory motifs, resulting in the inhibition of NF-κB signaling in macrophages. Here we observed that proteolysis of SIRPα during inflammation is regulated by a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), resulting in the generation of a membrane-associated cleavage fragment in both THP-1 monocytes and human lung epithelia. We mapped a charge-dependent putative cleavage site near the membrane-proximal domain necessary for ADAM10-mediated cleavage. In addition, a secondary proteolytic cleavage within the membrane-associated SIRPα fragment by γ-secretase was identified. Ectopic expression of a SIRPα mutant plasmid encoding a proteolytically resistant form in HeLa cells inhibited activation of the NF-κB pathway and suppressed STAT1 phosphorylation in response to TNFα to a greater extent than expression of wild-type SIRPα. Conversely, overexpression of plasmids encoding the proteolytically cleaved SIRPα fragments in cells resulted in enhanced STAT-1 and NF-κB pathway activation. Thus, the data suggest that combinatorial actions of ADAM10 and γ-secretase on SIRPα cleavage promote inflammatory signaling. PMID:26534964

  6. Laboratory tests for disorders of complement and complement regulatory proteins.

    PubMed

    Shih, Angela R; Murali, Mandakolathur R

    2015-12-01

    The complement pathway is a cascade of proteases that is involved in immune surveillance and innate immunity, as well as adaptive immunity. Dysfunction of the complement cascade may be mediated by aberrations in the pathways of activation, complement regulatory proteins, or complement deficiencies, and has been linked to a number of hematologic disorders, including paroxysmal noctural hemoglobinuria (PNH), hereditary angioedema (HAE), and atypical hemolytic-uremic syndrome (aHUS). Here, current laboratory tests for disorders of the complement pathway are reviewed, and their utility and limitations in hematologic disorders and systemic diseases are discussed. Current therapeutic advances targeting the complement pathway in treatment of complement-mediated hematologic disorders are also reviewed. PMID:26437749

  7. Regulatory protein BBD18 of the lyme disease spirochete: essential role during tick acquisition?

    PubMed

    Hayes, Beth M; Dulebohn, Daniel P; Sarkar, Amit; Tilly, Kit; Bestor, Aaron; Ambroggio, Xavier; Rosa, Patricia A

    2014-01-01

    The Lyme disease spirochete Borrelia burgdorferi senses and responds to environmental cues as it transits between the tick vector and vertebrate host. Failure to properly adapt can block transmission of the spirochete and persistence in either vector or host. We previously identified BBD18, a novel plasmid-encoded protein of B. burgdorferi, as a putative repressor of the host-essential factor OspC. In this study, we investigate the in vivo role of BBD18 as a regulatory protein, using an experimental mouse-tick model system that closely resembles the natural infectious cycle of B. burgdorferi. We show that spirochetes that have been engineered to constitutively produce BBD18 can colonize and persist in ticks but do not infect mice when introduced by either tick bite or needle inoculation. Conversely, spirochetes lacking BBD18 can persistently infect mice but are not acquired by feeding ticks. Through site-directed mutagenesis, we have demonstrated that abrogation of spirochete infection in mice by overexpression of BBD18 occurs only with bbd18 alleles that can suppress OspC synthesis. Finally, we demonstrate that BBD18-mediated regulation does not utilize a previously described ospC operator sequence required by B. burgdorferi for persistence in immunocompetent mice. These data lead us to conclude that BBD18 does not represent the putative repressor utilized by B. burgdorferi for the specific downregulation of OspC in the mammalian host. Rather, we suggest that BBD18 exhibits features more consistent with those of a global regulatory protein whose critical role occurs during spirochete acquisition by feeding ticks. IMPORTANCE Lyme disease, caused by Borrelia burgdorferi, is the most common arthropod-borne disease in North America. B. burgdorferi is transmitted to humans and other vertebrate hosts by ticks as they take a blood meal. Transmission between vectors and hosts requires the bacterium to sense changes in the environment and adapt. However, the mechanisms

  8. Tumor-suppressor Genes, Cell Cycle Regulatory Checkpoints, and the Skin

    PubMed Central

    Velez, Ana Maria Abreu; Howard, Michael S.

    2015-01-01

    The cell cycle (or cell-division cycle) is a series of events that take place in a cell, leading to its division and duplication. Cell division requires cell cycle checkpoints (CPs) that are used by the cell to both monitor and regulate the progress of the cell cycle. Tumor-suppressor genes (TSGs) or antioncogenes are genes that protect the cell from a single event or multiple events leading to cancer. When these genes mutate, the cell can progress to a cancerous state. We aimed to perform a narrative review, based on evaluation of the manuscripts published in MEDLINE-indexed journals using the Medical Subject Headings (MeSH) terms “tumor suppressor's genes,” “skin,” and “cell cycle regulatory checkpoints.” We aimed to review the current concepts regarding TSGs, CPs, and their association with selected cutaneous diseases. It is important to take into account that in some cell cycle disorders, multiple genetic abnormalities may occur simultaneously. These abnormalities may include intrachromosomal insertions, unbalanced division products, recombinations, reciprocal deletions, and/or duplication of the inserted segments or genes; thus, these presentations usually involve several genes. Due to their complexity, these disorders require specialized expertise for proper diagnosis, counseling, personal and family support, and genetic studies. Alterations in the TSGs or CP regulators may occur in many benign skin proliferative disorders, neoplastic processes, and genodermatoses. PMID:26110128

  9. Possible regulatory function of the Saccharomyces cerevisiae Ty1 retrotransposon core protein.

    PubMed

    Roth, J F; Kingsman, S M; Kingsman, A J; Martin-Rendon, E

    2000-07-01

    The yeast Ty1 retrotransposon encodes proteins and RNA that assemble into virus-like particles (VLPs) as part of the life cycle of the retro-element. The Tya protein, which is equivalent to the retroviral Gag, is the major structural component of these particles. In this work, we demonstrate that Tya proteins fulfil other functions apart from their structural role. We show that Tya interacts in vitro with the Ty1 RNA domain required for RNA packaging, suggesting that this RNA-protein interaction may direct the packaging process. Furthermore, the overexpression of both Tya proteins, i.e. p1, the primary translation product, and p2, the mature form, increases endogenous Ty1 RNA levels in trans without increasing translation significantly. These observations suggest that Tya may exert a regulatory function during transposition. Interestingly, however, only p2, the mature form of Tya, trans-activates transposition of a marked genomic Ty element. This confirms that processing is required for transposition. PMID:10870103

  10. [The intracellular localization of the regulatory proteins of the densovirus of German cockroach, Blattella germanica].

    PubMed

    Martynova, E U; Kapelinskaia, T V; Schal, C; Mukha, D V

    2014-01-01

    The intracellular localization of the regulatory proteins encoded by the genome of the densovirus of German cockroach was analyzed using western-blotting of nuclear and cytoplasmic extracts of the densovirus-infected passaging cells tissue culture BGE-2. Two of the three regulatory proteins, NS1 and NS3, were shown to possess mainly nuclear localization, while NS2 protein was distributed between the nucleus and cytoplasm. Data obtained provide new information necessary for prediction of the functions of densovirus regulatory proteins. Intracellular localization of NS3 protein was described for the densoviruses for the first time. PMID:25850305

  11. Protein Kinase C Signaling Mediates a Program of Cell Cycle Withdrawal in the Intestinal Epithelium

    PubMed Central

    Frey, Mark R.; Clark, Jennifer A.; Leontieva, Olga; Uronis, Joshua M.; Black, Adrian R.; Black, Jennifer D.

    2000-01-01

    Members of the protein kinase C (PKC) family of signal transduction molecules have been widely implicated in regulation of cell growth and differentiation, although the underlying molecular mechanisms involved remain poorly defined. Using combined in vitro and in vivo intestinal epithelial model systems, we demonstrate that PKC signaling can trigger a coordinated program of molecular events leading to cell cycle withdrawal into G0. PKC activation in the IEC-18 intestinal crypt cell line resulted in rapid downregulation of D-type cyclins and differential induction of p21waf1/cip1 and p27kip1, thus targeting all of the major G1/S cyclin-dependent kinase complexes. These events were associated with coordinated alterations in expression and phosphorylation of the pocket proteins p107, pRb, and p130 that drive cells to exit the cell cycle into G0 as indicated by concomitant downregulation of the DNA licensing factor cdc6. Manipulation of PKC isozyme levels in IEC-18 cells demonstrated that PKCα alone can trigger hallmark events of cell cycle withdrawal in intestinal epithelial cells. Notably, analysis of the developmental control of cell cycle regulatory molecules along the crypt–villus axis revealed that PKCα activation is appropriately positioned within intestinal crypts to trigger this program of cell cycle exit–specific events in situ. Together, these data point to PKCα as a key regulator of cell cycle withdrawal in the intestinal epithelium. PMID:11076962

  12. Steroidogenic Acute Regulatory Protein Overexpression Correlates with Protein Kinase A Activation in Adrenocortical Adenoma.

    PubMed

    Zhou, Weiwei; Wu, Luming; Xie, Jing; Su, Tingwei; Jiang, Lei; Jiang, Yiran; Cao, Yanan; Liu, Jianmin; Ning, Guang; Wang, Weiqing

    2016-01-01

    The association of pathological features of cortisol-producing adrenocortical adenomas (ACAs) with somatic driver mutations and their molecular classification remain unclear. In this study, we explored the association between steroidogenic acute regulatory protein (StAR) expression and the driver mutations activating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling to identify the pathological markers of ACAs. Immunohistochemical staining for StAR and mutations in the protein kinase cAMP-activated catalytic subunit alpha (PRKACA), protein kinase cAMP-dependent type I regulatory subunit alpha (PRKAR1A) and guanine nucleotide binding protein, alpha stimulating (GNAS) genes were examined in 97 ACAs. The association of StAR expression with the clinical and mutational features of the ACAs was analyzed. ACAs with mutations in PRKACA, GNAS, and PRKAR1A showed strong immunopositive staining for StAR. The concordance between high StAR expression and mutations activating cAMP/PKA signaling in the ACAs was 99.0%. ACAs with high expression of StAR had significantly smaller tumor volume (P < 0.001) and higher urinary cortisol per tumor volume (P = 0.032) than those with low expression of StAR. Our findings suggest that immunohistochemical staining for StAR is a reliable pathological approach for the diagnosis and classification of ACAs with cAMP/PKA signaling-activating mutations. PMID:27606678

  13. Developmental regulation of expression of the regulatory subunit of the cAMP-dependent protein kinase of Blastocladiella emersonii.

    PubMed

    Marques, M do V; Juliani, M H; Maia, J C; Gomes, S L

    1989-01-01

    A monospecific polyclonal antiserum to the regulatory subunit (R) of the cAMP-dependent protein kinase of Blastocladiella emersonii has been developed by immunization with purified regulatory subunit. In Western blots, the antiserum displays high affinity and specificity for the intact R monomer of Mr = 58,000, as well as for its proteolytic products of Mr = 43,000 and Mr = 36,000, even though the antiserum has been raised against the Mr = 43,000 fragment. Western blots of cell extracts prepared at different times during the life cycle of the fungus indicate that the increase in cAMP-binding activity occurring during sporulation, as well as its decrease during germination, are associated with the accumulation of the regulatory subunit during sporulation and its disappearance during germination, respectively. Pulse labeling with [35S]methionine and immunoprecipitation indicate that the accumulation of R is due to its increased synthesis during sporulation. Two-dimensional gel electrophoresis of affinity purified cell extracts obtained after [35S]methionine pulse labeling during sporulation confirms de novo synthesis of R during this stage and furthermore shows that the protein is rapidly phosphorylated after its synthesis. In vitro translation studies using RNA isolated from different stages of the life cycle followed by immunoprecipitation have shown that the time course of expression of the mRNA coding for the regulatory subunit parallels the rate of its synthesis in vivo. PMID:2912735

  14. Id2 specifically alters regulation of the cell cycle by tumor suppressor proteins.

    PubMed Central

    Lasorella, A; Iavarone, A; Israel, M A

    1996-01-01

    Cells which are highly proliferative typically lack expression of differentiated, lineage-specific characteristics. Id2, a member of the helix-loop-helix (HLH) protein family known to inhibit cell differentiation, binds to the retinoblastoma protein (pRb) and abolishes its growth-suppressing activity. We found that Id2 but not Id1 or Id3 was able to bind in vitro not only pRb but also the related proteins p107 and p130. Also, an association between Id2 and p107 or p130 was observed in vivo in transiently transfected Saos-2 cells. In agreement with these results, expression of Id1 or Id3 did not affect the block of cell cycle progression mediated by pRb. Conversely, expression of Id2 specifically reversed the cell cycle arrest induced by each of the three members of the pRb family. Furthermore, the growth-suppressive activities of cyclin-dependent kinase inhibitors p16 and p21 were efficiently antagonized by high levels of Id2 but not by Id1 Id3. Consistent with the role of p16 as a selective inhibitor of pRb and pRb-related protein kinase activity, p16-imposed cell cycle arrest was completely abolished by Id2. Only a partial reversal of p21-induced growth suppression was observed, which correlated with the presence of a functional pRb. We also documented decreased levels of cyclin D1 protein and mRNA and the loss of cyclin D1-cdk4 complexes in cells constitutively expressing Id2. These data provide evidence for important Id2-mediated alterations in cell cycle components normally involved in the regulatory events of cell cycle progression, and they highlight a specific role for Id2 as an antagonist of multiple tumor suppressor proteins. PMID:8649364

  15. Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity

    PubMed Central

    2012-01-01

    In our study we aimed to identify rapidly reacting gravity-responsive mechanisms in mammalian cells in order to understand if and how altered gravity is translated into a cellular response. In a combination of experiments using "functional weightlessness" provided by 2D-clinostats and real microgravity provided by several parabolic flight campaigns and compared to in-flight-1g-controls, we identified rapid gravity-responsive reactions inside the cell cycle regulatory machinery of human T lymphocytes. In response to 2D clinorotation, we detected an enhanced expression of p21 Waf1/Cip1 protein within minutes, less cdc25C protein expression and enhanced Ser147-phosphorylation of cyclinB1 after CD3/CD28 stimulation. Additionally, during 2D clinorotation, Tyr-15-phosphorylation occurred later and was shorter than in the 1 g controls. In CD3/CD28-stimulated primary human T cells, mRNA expression of the cell cycle arrest protein p21 increased 4.1-fold after 20s real microgravity in primary CD4+ T cells and 2.9-fold in Jurkat T cells, compared to 1 g in-flight controls after CD3/CD28 stimulation. The histone acetyltransferase (HAT) inhibitor curcumin was able to abrogate microgravity-induced p21 mRNA expression, whereas expression was enhanced by a histone deacetylase (HDAC) inhibitor. Therefore, we suppose that cell cycle progression in human T lymphocytes requires Earth gravity and that the disturbed expression of cell cycle regulatory proteins could contribute to the breakdown of the human immune system in space. PMID:22273506

  16. The Evolution of the Secreted Regulatory Protein Progranulin.

    PubMed

    Palfree, Roger G E; Bennett, Hugh P J; Bateman, Andrew

    2015-01-01

    Progranulin is a secreted growth factor that is active in tumorigenesis, wound repair, and inflammation. Haploinsufficiency of the human progranulin gene, GRN, causes frontotemporal dementia. Progranulins are composed of chains of cysteine-rich granulin modules. Modules may be released from progranulin by proteolysis as 6kDa granulin polypeptides. Both intact progranulin and some of the granulin polypeptides are biologically active. The granulin module occurs in certain plant proteases and progranulins are present in early diverging metazoan clades such as the sponges, indicating their ancient evolutionary origin. There is only one Grn gene in mammalian genomes. More gene-rich Grn families occur in teleost fish with between 3 and 6 members per species including short-form Grns that have no tetrapod counterparts. Our goals are to elucidate progranulin and granulin module evolution by investigating (i): the origins of metazoan progranulins (ii): the evolutionary relationships between the single Grn of tetrapods and the multiple Grn genes of fish (iii): the evolution of granulin module architectures of vertebrate progranulins (iv): the conservation of mammalian granulin polypeptide sequences and how the conserved granulin amino acid sequences map to the known three dimensional structures of granulin modules. We report that progranulin-like proteins are present in unicellular eukaryotes that are closely related to metazoa suggesting that progranulin is among the earliest extracellular regulatory proteins still employed by multicellular animals. From the genomes of the elephant shark and coelacanth we identified contemporary representatives of a precursor for short-from Grn genes of ray-finned fish that is lost in tetrapods. In vertebrate Grns pathways of exon duplication resulted in a conserved module architecture at the amino-terminus that is frequently accompanied by an unusual pattern of tandem nearly identical module repeats near the carboxyl-terminus. Polypeptide

  17. The Evolution of the Secreted Regulatory Protein Progranulin

    PubMed Central

    Palfree, Roger G. E.; Bennett, Hugh P. J.; Bateman, Andrew

    2015-01-01

    Progranulin is a secreted growth factor that is active in tumorigenesis, wound repair, and inflammation. Haploinsufficiency of the human progranulin gene, GRN, causes frontotemporal dementia. Progranulins are composed of chains of cysteine-rich granulin modules. Modules may be released from progranulin by proteolysis as 6kDa granulin polypeptides. Both intact progranulin and some of the granulin polypeptides are biologically active. The granulin module occurs in certain plant proteases and progranulins are present in early diverging metazoan clades such as the sponges, indicating their ancient evolutionary origin. There is only one Grn gene in mammalian genomes. More gene-rich Grn families occur in teleost fish with between 3 and 6 members per species including short-form Grns that have no tetrapod counterparts. Our goals are to elucidate progranulin and granulin module evolution by investigating (i): the origins of metazoan progranulins (ii): the evolutionary relationships between the single Grn of tetrapods and the multiple Grn genes of fish (iii): the evolution of granulin module architectures of vertebrate progranulins (iv): the conservation of mammalian granulin polypeptide sequences and how the conserved granulin amino acid sequences map to the known three dimensional structures of granulin modules. We report that progranulin-like proteins are present in unicellular eukaryotes that are closely related to metazoa suggesting that progranulin is among the earliest extracellular regulatory proteins still employed by multicellular animals. From the genomes of the elephant shark and coelacanth we identified contemporary representatives of a precursor for short-from Grn genes of ray-finned fish that is lost in tetrapods. In vertebrate Grns pathways of exon duplication resulted in a conserved module architecture at the amino-terminus that is frequently accompanied by an unusual pattern of tandem nearly identical module repeats near the carboxyl-terminus. Polypeptide

  18. Regulatory effects of matrix protein variations on influenza virus growth.

    PubMed

    Yasuda, J; Toyoda, T; Nakayama, M; Ishihama, A

    1993-01-01

    Influenza virus A/WSN/33 forms large plaques (> 3 mm diameter) on MDCK cells whereas A/Aichi/2/68 forms only small plaques (< 1 mm diameter). Fast growing reassortants (AWM), isolated by mixed infection of MDCK cells with these two virus strains in the presence of anti-WSN antibodies, all carried the M gene from WSN. On MDCK cells, these reassortants produced progeny viruses as rapidly as did WSN, and the virus yield was as high as Aichi. The fast-growing reassortants overcame the growth inhibitory effect of lignins. Pulse-labeling experiments at various times after virus infection showed that the reassortant AWM started to synthesize viral proteins earlier than Aichi. Taken together, we conclude that upon infecting MDCK cells, the reassortant viruses advance rapidly into the growth cycle, thereby leading to an elevated level of progeny viruses in the early period of infection. Possible mechanisms of the M gene involvement in the determination of virus growth rate are discussed, in connection with multiple functions of the M proteins. PMID:8257290

  19. Fasting-Induced Protein Phosphatase 1 Regulatory Subunit Contributes to Postprandial Blood Glucose Homeostasis via Regulation of Hepatic Glycogenesis

    PubMed Central

    Luo, Xiaolin; Zhang, Yongxian; Ruan, Xiangbo; Jiang, Xiaomeng; Zhu, Lu; Wang, Xiao; Ding, Qiurong; Liu, Weizhong; Pan, Yi; Wang, Zhenzhen; Chen, Yan

    2011-01-01

    OBJECTIVE Most animals experience fasting–feeding cycles throughout their lives. It is well known that the liver plays a central role in regulating glycogen metabolism. However, how hepatic glycogenesis is coordinated with the fasting–feeding cycle to control postprandial glucose homeostasis remains largely unknown. This study determines the molecular mechanism underlying the coupling of hepatic glycogenesis with the fasting–feeding cycle. RESEARCH DESIGN AND METHODS Through a series of molecular, cellular, and animal studies, we investigated how PPP1R3G, a glycogen-targeting regulatory subunit of protein phosphatase 1 (PP1), is implicated in regulating hepatic glycogenesis and glucose homeostasis in a manner tightly orchestrated with the fasting–feeding cycle. RESULTS PPP1R3G in the liver is upregulated during fasting and downregulated after feeding. PPP1R3G associates with glycogen pellet, interacts with the catalytic subunit of PP1, and regulates glycogen synthase (GS) activity. Fasting glucose level is reduced when PPP1R3G is overexpressed in the liver. Hepatic knockdown of PPP1R3G reduces postprandial elevation of GS activity, decreases postprandial accumulation of liver glycogen, and decelerates postprandial clearance of blood glucose. Other glycogen-targeting regulatory subunits of PP1, such as PPP1R3B, PPP1R3C, and PPP1R3D, are downregulated by fasting and increased by feeding in the liver. CONCLUSIONS We propose that the opposite expression pattern of PPP1R3G versus other PP1 regulatory subunits comprise an intricate regulatory machinery to control hepatic glycogenesis during the fasting–feeding cycle. Because of its unique expression pattern, PPP1R3G plays a major role to control postprandial glucose homeostasis during the fasting–feeding transition via its regulation on liver glycogenesis. PMID:21471512

  20. Modular architecture of protein structures and allosteric communications: potential implications for signaling proteins and regulatory linkages

    PubMed Central

    del Sol, Antonio; Araúzo-Bravo, Marcos J; Amoros, Dolors; Nussinov, Ruth

    2007-01-01

    Background Allosteric communications are vital for cellular signaling. Here we explore a relationship between protein architectural organization and shortcuts in signaling pathways. Results We show that protein domains consist of modules interconnected by residues that mediate signaling through the shortest pathways. These mediating residues tend to be located at the inter-modular boundaries, which are more rigid and display a larger number of long-range interactions than intra-modular regions. The inter-modular boundaries contain most of the residues centrally conserved in the protein fold, which may be crucial for information transfer between amino acids. Our approach to modular decomposition relies on a representation of protein structures as residue-interacting networks, and removal of the most central residue contacts, which are assumed to be crucial for allosteric communications. The modular decomposition of 100 multi-domain protein structures indicates that modules constitute the building blocks of domains. The analysis of 13 allosteric proteins revealed that modules characterize experimentally identified functional regions. Based on the study of an additional functionally annotated dataset of 115 proteins, we propose that high-modularity modules include functional sites and are the basic functional units. We provide examples (the Gαs subunit and P450 cytochromes) to illustrate that the modular architecture of active sites is linked to their functional specialization. Conclusion Our method decomposes protein structures into modules, allowing the study of signal transmission between functional sites. A modular configuration might be advantageous: it allows signaling proteins to expand their regulatory linkages and may elicit a broader range of control mechanisms either via modular combinations or through modulation of inter-modular linkages. PMID:17531094

  1. Crystal structure of rat GTP cyclohydrolase I feedback regulatory protein, GFRP.

    PubMed

    Bader, G; Schiffmann, S; Herrmann, A; Fischer, M; Gütlich, M; Auerbach, G; Ploom, T; Bacher, A; Huber, R; Lemm, T

    2001-10-01

    Tetrahydrobiopterin, the cofactor required for hydroxylation of aromatic amino acids regulates its own synthesis in mammals through feedback inhibition of GTP cyclohydrolase I. This mechanism is mediated by a regulatory subunit called GTP cyclohydrolase I feedback regulatory protein (GFRP). The 2.6 A resolution crystal structure of rat GFRP shows that the protein forms a pentamer. This indicates a model for the interaction of mammalian GTP cyclohydrolase I with its regulator, GFRP. Kinetic investigations of human GTP cyclohydrolase I in complex with rat and human GFRP showed similar regulatory effects of both GFRP proteins. PMID:11580249

  2. Role of basic leucine zipper proteins in transcriptional regulation of the steroidogenic acute regulatory protein gene

    PubMed Central

    Manna, Pulak R.; Dyson, Matthew T.; Stocco, Douglas M.

    2016-01-01

    The regulation of steroidogenic acute regulatory protein (StAR) gene transcription by cAMP-dependent mechanisms occurs in the absence of a consensus cAMP response element (CRE, TGACGTGA). This regulation is coordinated by multiple transcription factors that bind to sequence-specific elements located approximately 150 bp upstream of the transcription start site. Among the proteins that bind within this region, the basic leucine zipper (bZIP) family of transcription factors, i.e. CRE binding protein (CREB)/CRE modulator (CREM)/activating transcription factor (ATF), activator protein 1 (AP-1; Fos/Jun), and CCAAT enhancer binding protein β (C/EBPβ), interact with an overlapping region (−81/−72 bp) in the StAR promoter, mediate stimulus-transcription coupling of cAMP signaling and play integral roles in regulating StAR gene expression. These bZIP proteins are structurally similar and bind to DNA sequences as dimers; however, they exhibit discrete transcriptional activities, interact with several transcription factors and other properties that contribute in their regulatory functions. The 5′-flanking −81/−72 bp region of the StAR gene appears to function as a key element within a complex cAMP response unit by binding to different bZIP members, and the StAR promoter displays variable states of cAMP responsivity contingent upon the occupancy of these cis-elements with these transcription factors. The expression and activities of CREB/CREM/ATF, Fos/Jun and C/EBPβ have been demonstrated to be mediated by a plethora of extracellular signals, and the phosphorylation of these proteins at several Ser and Thr residues allows recruitment of the transcriptional coactivator CREB binding protein (CBP) or its functional homolog p300 to the StAR promoter. This review will focus on the current level of understanding of the roles of selective bZIP family proteins within the complex series of processes involved in regulating StAR gene transcription. PMID:19150388

  3. Protein PSMD8 may mediate microgravity-induced cell cycle arrest

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Sun, Yeqing; Xu, Dan; Wu, Di; Chen, Xiaoning

    Microgravity environment of space can induce a serial of changes in cells, such as morphology alterations, cytoskeleton disorder and cell cycle disturbance. Our previous study of simulated-microgravity on zebrafish (Danio rerio) embryos demonstrated 26s proteasome non-ATPase regulatory subunit 8 (PSMD8) might be a microgravity sensitive gene. However, functional study on PSMD8 is very limited and it has not been cloned in zebrafish till now. In this study, we tried to clone PSMD8 gene in zebrafish, quantify its protein expression level in zebrafish embryos after simulated microgravity and identify its possible function in cell cycle regulation. A rotary cell culture system (RCCS) designed by national aeronautics and apace administration (NASA) of America was used to simulate microgravity. The full-length of psmd8 gene in zebrafish was cloned. Preliminary analysis on its sequence and phylogenetic tree construction were carried out subsequently. Quantitative analysis by western blot showed that PSMD8 protein expression levels were significantly increased 1.18 and 1.22 times after 24-48hpf and 24-72hpf simulated microgravity, respectively. Moreover, a significant delay on zebrafish embryo development was found in simulated-microgravity exposed group. Inhibition of PSMD8 protein in zebrafish embryonic cell lines ZF4 could block cell cycle in G1 phase, which indicated that PSMD8 may play a role in cell cycle regulation. Interestingly, simulated-microgravity could also block ZF4 cell in G1 phase. Whether it is PSMD8 mediated cell cycle regulation result in the zebrafish embryo development delay after simulated microgravity exposure still needs further study. Key Words: PSMD8; Simulated-microgravity; Cell cycle; ZF4 cell line

  4. Topological control of the Caulobacter cell cycle circuitry by a polarized single-domain PAS protein

    PubMed Central

    Sanselicio, Stefano; Bergé, Matthieu; Théraulaz, Laurence; Radhakrishnan, Sunish Kumar; Viollier, Patrick H.

    2015-01-01

    Despite the myriad of different sensory domains encoded in bacteria, only a few types are known to control the cell cycle. Here we use a forward genetic screen for Caulobacter crescentus motility mutants to identify a conserved single-domain PAS (Per-Arnt-Sim) protein (MopJ) with pleiotropic regulatory functions. MopJ promotes re-accumulation of the master cell cycle regulator CtrA after its proteolytic destruction is triggered by the DivJ kinase at the G1-S transition. MopJ and CtrA syntheses are coordinately induced in S-phase, followed by the sequestration of MopJ to cell poles in Caulobacter. Polarization requires Caulobacter DivJ and the PopZ polar organizer. MopJ interacts with DivJ and influences the localization and activity of downstream cell cycle effectors. Because MopJ abundance is upregulated in stationary phase and by the alarmone (p)ppGpp, conserved systemic signals acting on the cell cycle and growth phase control are genetically integrated through this conserved single PAS-domain protein. PMID:25952018

  5. Type One Protein Phosphatase 1 and Its Regulatory Protein Inhibitor 2 Negatively Regulate ABA Signaling

    PubMed Central

    Zhao, Yang; Xie, Shaojun; Batelli, Giorgia; Wang, Bangshing; Duan, Cheng-Guo; Wang, Xingang; Xing, Lu; Lei, Mingguang; Yan, Jun; Zhu, Xiaohong; Zhu, Jian-Kang

    2016-01-01

    The phytohormone abscisic acid (ABA) regulates plant growth, development and responses to biotic and abiotic stresses. The core ABA signaling pathway consists of three major components: ABA receptor (PYR1/PYLs), type 2C Protein Phosphatase (PP2C) and SNF1-related protein kinase 2 (SnRK2). Nevertheless, the complexity of ABA signaling remains to be explored. To uncover new components of ABA signal transduction pathways, we performed a yeast two-hybrid screen for SnRK2-interacting proteins. We found that Type One Protein Phosphatase 1 (TOPP1) and its regulatory protein, At Inhibitor-2 (AtI-2), physically interact with SnRK2s and also with PYLs. TOPP1 inhibited the kinase activity of SnRK2.6, and this inhibition could be enhanced by AtI-2. Transactivation assays showed that TOPP1 and AtI-2 negatively regulated the SnRK2.2/3/6-mediated activation of the ABA responsive reporter gene RD29B, supporting a negative role of TOPP1 and AtI-2 in ABA signaling. Consistent with these findings, topp1 and ati-2 mutant plants displayed hypersensitivities to ABA and salt treatments, and transcriptome analysis of TOPP1 and AtI-2 knockout plants revealed an increased expression of multiple ABA-responsive genes in the mutants. Taken together, our results uncover TOPP1 and AtI-2 as negative regulators of ABA signaling. PMID:26943172

  6. Bovine viral diarrhea virus structural protein E2 as a complement regulatory protein.

    PubMed

    Ostachuk, Agustín

    2016-07-01

    Bovine viral diarrhea virus (BVDV) is a member of the genus Pestivirus, family Flaviviridae, and is one of the most widely distributed viruses in cattle worldwide. Approximately 60 % of cattle in endemic areas without control measures are infected with BVDV during their lifetime. This wide prevalence of BVDV in cattle populations results in significant economic losses. BVDV is capable of establishing persistent infections in its host due to its ability to infect fetuses, causing immune tolerance. However, this cannot explain how the virus evades the innate immune system. The objective of the present work was to test the potential activity of E2 as a complement regulatory protein. E2 glycoprotein, produced both in soluble and transmembrane forms in stable CHO-K1 cell lines, was able to reduce complement-mediated cell lysis up to 40 % and complement-mediated DNA fragmentation by 50 %, in comparison with cell lines not expressing the glycoprotein. This work provides the first evidence of E2 as a complement regulatory protein and, thus, the finding of a mechanism of immune evasion by BVDV. Furthermore, it is postulated that E2 acts as a self-associated molecular pattern (SAMP), enabling the virus to avoid being targeted by the immune system and to be recognized as self. PMID:27038454

  7. A role for homologous recombination proteins in cell cycle regulation

    PubMed Central

    Kostyrko, Kaja; Bosshard, Sandra; Urban, Zuzanna; Mermod, Nicolas

    2015-01-01

    Eukaryotic cells respond to DNA breaks, especially double-stranded breaks (DSBs), by activating the DNA damage response (DDR), which encompasses DNA repair and cell cycle checkpoint signaling. The DNA damage signal is transmitted to the checkpoint machinery by a network of specialized DNA damage-recognizing and signal-transducing molecules. However, recent evidence suggests that DNA repair proteins themselves may also directly contribute to the checkpoint control. Here, we investigated the role of homologous recombination (HR) proteins in normal cell cycle regulation in the absence of exogenous DNA damage. For this purpose, we used Chinese Hamster Ovary (CHO) cells expressing the Fluorescent ubiquitination-based cell cycle indicators (Fucci). Systematic siRNA-mediated knockdown of HR genes in these cells demonstrated that the lack of several of these factors alters cell cycle distribution, albeit differentially. The knock-down of MDC1, Rad51 and Brca1 caused the cells to arrest in the G2 phase, suggesting that they may be required for the G2/M transition. In contrast, inhibition of the other HR factors, including several Rad51 paralogs and Rad50, led to the arrest in the G1/G0 phase. Moreover, reduced expression of Rad51B, Rad51C, CtIP and Rad50 induced entry into a quiescent G0-like phase. In conclusion, the lack of many HR factors may lead to cell cycle checkpoint activation, even in the absence of exogenous DNA damage, indicating that these proteins may play an essential role both in DNA repair and checkpoint signaling. PMID:26125600

  8. The Protein Phosphatase 2A regulatory subunit Twins stabilizes Plk4 to induce centriole amplification

    PubMed Central

    Brownlee, Christopher W.; Klebba, Joey E.; Buster, Daniel W.

    2011-01-01

    Centriole duplication is a tightly regulated process that must occur only once per cell cycle; otherwise, supernumerary centrioles can induce aneuploidy and tumorigenesis. Plk4 (Polo-like kinase 4) activity initiates centriole duplication and is regulated by ubiquitin-mediated proteolysis. Throughout interphase, Plk4 autophosphorylation triggers its degradation, thus preventing centriole amplification. However, Plk4 activity is required during mitosis for proper centriole duplication, but the mechanism stabilizing mitotic Plk4 is unknown. In this paper, we show that PP2A (Protein Phosphatase 2ATwins) counteracts Plk4 autophosphorylation, thus stabilizing Plk4 and promoting centriole duplication. Like Plk4, the protein level of PP2A’s regulatory subunit, Twins (Tws), peaks during mitosis and is required for centriole duplication. However, untimely Tws expression stabilizes Plk4 inappropriately, inducing centriole amplification. Paradoxically, expression of tumor-promoting simian virus 40 small tumor antigen (ST), a reported PP2A inhibitor, promotes centrosome amplification by an unknown mechanism. We demonstrate that ST actually mimics Tws function in stabilizing Plk4 and inducing centriole amplification. PMID:21987638

  9. Analysis of Protein Phosphatase-1 and Aurora Protein Kinase Suppressors Reveals New Aspects of Regulatory Protein Function in Saccharomyces cerevisiae

    PubMed Central

    Ghosh, Anuprita; Cannon, John F.

    2013-01-01

    Protein phosphatase-1 (PP1) controls many processes in eukaryotic cells. Modulation of mitosis by reversing phosphorylation of proteins phosphorylated by aurora protein kinase is a critical function for PP1. Overexpression of the sole PP1, Glc7, in budding yeast, Saccharomyces cerevisiae, is lethal. This work shows that lethality requires the function of Glc7 regulatory proteins Sds22, Reg2, and phosphorylated Glc8. This finding shows that Glc7 overexpression induced cell death requires a specific subset of the many Glc7-interacting proteins and therefore is likely caused by promiscuous dephosphorylation of a variety of substrates. Additionally, suppression can occur by reducing Glc7 protein levels by high-copy Fpr3 without use of its proline isomerase domain. This divulges a novel function of Fpr3. Most suppressors of GLC7 overexpression also suppress aurora protein kinase, ipl1, temperature-sensitive mutations. However, high-copy mutant SDS22 genes show reciprocal suppression of GLC7 overexpression induced cell death or ipl1 temperature sensitivity. Sds22 binds to many proteins besides Glc7. The N-terminal 25 residues of Sds22 are sufficient to bind, directly or indirectly, to seven proteins studied here including the spindle assembly checkpoint protein, Bub3. These data demonstrate that Sds22 organizes several proteins in addition to Glc7 to perform functions that counteract Ipl1 activity or lead to hyper Glc7 induced cell death. These data also emphasize that Sds22 targets Glc7 to nuclear locations distinct from Ipl1 substrates. PMID:23894419

  10. The role of ion-regulatory membrane proteins of excitation-contraction coupling and relaxation in inherited muscle diseases.

    PubMed

    Froemming, G R; Ohlendieck, K

    2001-01-01

    The excitation-contraction-relaxation cycle of skeletal muscle fibres depends on the finely tuned interplay between the voltage-sensing dihydropyridine receptor, the junctional ryanodine receptor Ca2+-release channel and the sarcoplasmic reticulum Ca2+-ATPase. Inherited diseases of excitation-contraction coupling and muscle relaxation such as malignant hyperthermia, central core disease, hypokalemic periodic paralysis or Brody disease are caused by mutations in these Ca2+-regulatory elements. Over twenty different mutations in the Ca2+-release channel are associated with susceptibility to the pharmacogenetic disorder malignant hyperthermia. Other mutations in the ryanodine receptor trigger central core disease. Primary abnormalities in the alpha-1 subunit of the dihydropyridine receptor underlie the molecular pathogenesis of both hypokalemic periodic paralysis and certain forms of malignant hyperthermia. Some cases of the muscle relaxation disorder named Brody disease were demonstrated to be based on primary abnormalities in the Ca2+-ATPase. Since a variety of other sarcoplasmic reticulum proteins modulate the activity of the voltage sensor, Ca2+-release channel and ion-binding proteins, mutations in these Ca2+-regulatory muscle components might be the underlying cause for novel, not yet fully characterized, genetic muscle disorders. The cell biological analysis of knock-out mice has been helpful in evaluating the biomedical consequences of defects in ion-regulatory muscle proteins. PMID:11145921

  11. A regulatory analysis on emergency preparedness for fuel cycle and other radioactive material licensees: Final report

    SciTech Connect

    McGuire, S.A.

    1988-01-01

    The question this Regulatory Analysis sought to answer is: should the NRC impose additional emergency preparedness requirements on certain fuel cycle and other radioactive material licensees for dealing with accidents that might have offsite releases of radioactive material. To answer the question, we analyzed potential accidents for 15 types of fuel cycle and other radioactive material licensees. An appropriate plan would: (1) identify accidents for which protective actions should be taken by people offsite; (2) list the licensee's responsibilities for each type of accident, including notification of local authorities (fire and police generally); and (3) give sample messages for local authorities including protective action recommendations. This approach more closely follows the approach used for research reactors than for power reactors. The low potential offsite doses (acute fatalities and injuries not possible except possibly for UF/sub 6/ releases), the small areas where actions would be warranted, the small number of people involved, and the fact that the local police and fire departments would be doing essentially the same things they normally do, are all factors that tend to make a simple plan adequate. This report discusses the potentially hazardous accidents, and the likely effects of these accidents in terms of personnel danger.

  12. Viral and host proteins involved in picornavirus life cycle.

    PubMed

    Lin, Jing-Yi; Chen, Tzu-Chun; Weng, Kuo-Feng; Chang, Shih-Cheng; Chen, Li-Lien; Shih, Shin-Ru

    2009-01-01

    Picornaviruses cause several diseases, not only in humans but also in various animal hosts. For instance, human enteroviruses can cause hand-foot-and-mouth disease, herpangina, myocarditis, acute flaccid paralysis, acute hemorrhagic conjunctivitis, severe neurological complications, including brainstem encephalitis, meningitis and poliomyelitis, and even death. The interaction between the virus and the host is important for viral replication, virulence and pathogenicity. This article reviews studies of the functions of viral and host factors that are involved in the life cycle of picornavirus. The interactions of viral capsid proteins with host cell receptors is discussed first, and the mechanisms by which the viral and host cell factors are involved in viral replication, viral translation and the switch from translation to RNA replication are then addressed. Understanding how cellular proteins interact with viral RNA or viral proteins, as well as the roles of each in viral infection, will provide insights for the design of novel antiviral agents based on these interactions. PMID:19925687

  13. Strategic Cell-Cycle Regulatory Features That Provide Mammalian Cells with Tunable G1 Length and Reversible G1 Arrest

    PubMed Central

    Pfeuty, Benjamin

    2012-01-01

    Transitions between consecutive phases of the eukaryotic cell cycle are driven by the catalytic activity of selected sets of cyclin-dependent kinases (Cdks). Yet, their occurrence and precise timing is tightly scheduled by a variety of means including Cdk association with inhibitory/adaptor proteins (CKIs). Here we focus on the regulation of G1-phase duration by the end of which cells of multicelled organisms must decide whether to enter S phase or halt, and eventually then, differentiate, senesce or die to obey the homeostatic rules of their host. In mammalian cells, entry in and progression through G1 phase involve sequential phosphorylation and inactivation of the retinoblastoma Rb proteins, first, by cyclin D-Cdk4,6 with the help of CKIs of the Cip/Kip family and, next, by the cyclin E-Cdk2 complexes that are negatively regulated by Cip/Kip proteins. Using a dynamical modeling approach, we show that the very way how the Rb and Cip/Kip regulatory modules interact differentially with cyclin D-Cdk4,6 and cyclin E-Cdk2 provides to mammalian cells a powerful means to achieve an exquisitely-sensitive control of G1-phase duration and fully reversible G1 arrests. Consistently, corruption of either one of these two modules precludes G1 phase elongation and is able to convert G1 arrests from reversible to irreversible. This study unveils fundamental design principles of mammalian G1-phase regulation that are likely to confer to mammalian cells the ability to faithfully control the occurrence and timing of their division process in various conditions. PMID:22558136

  14. Regulation of Airway Inflammation by G-protein Regulatory Motif Peptides of AGS3 protein

    PubMed Central

    Choi, IL-Whan; Ahn, Do Whan; Choi, Jang-Kyu; Cha, Hee-Jae; Ock, Mee Sun; You, EunAe; Rhee, SangMyung; Kim, Kwang Chul; Choi, Yung Hyun; Song, Kyoung Seob

    2016-01-01

    Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and lung infections have critical consequences on mortality and morbidity in humans. The aims of the present study were to examine the mechanisms by which CXCL12 affects MUC1 transcription and airway inflammation, which depend on activator of G-protein signaling (AGS) 3 and to identify specific molecules that suppress CXCL12-induced airway inflammation by acting on G-protein-coupled receptors. Herein, AGS3 suppresses CXCL12-mediated upregulation of MUC1 and TNFα by regulating Gαi. We found that the G-protein regulatory (GPR) motif peptide in AGS3 binds to Gαi and downregulates MUC1 expression; in contrast, this motif upregulates TNFα expression. Mutated GPR Q34A peptide increased the expression of MUC1 and TGFβ but decreased the expression of TNFα and IL-6. Moreover, CXCR4-induced dendritic extensions in 2D and 3D matrix cultures were inhibited by the GPR Q34A peptide compared with a wild-type GPR peptide. The GPR Q34A peptide also inhibited CXCL12-induced morphological changes and inflammatory cell infiltration in the mouse lung, and production of inflammatory cytokines in bronchoalveolar lavage (BAL) fluid and the lungs. Our data indicate that the GPR motif of AGS3 is critical for regulating MUC1/Muc1 expression and cytokine production in the inflammatory microenvironment. PMID:27270970

  15. Role of Protein Phosphorylation in the Regulation of Cell Cycle and DNA-Related Processes in Bacteria

    PubMed Central

    Garcia-Garcia, Transito; Poncet, Sandrine; Derouiche, Abderahmane; Shi, Lei; Mijakovic, Ivan; Noirot-Gros, Marie-Françoise

    2016-01-01

    In all living organisms, the phosphorylation of proteins modulates various aspects of their functionalities. In eukaryotes, protein phosphorylation plays a key role in cell signaling, gene expression, and differentiation. Protein phosphorylation is also involved in the global control of DNA replication during the cell cycle, as well as in the mechanisms that cope with stress-induced replication blocks. Similar to eukaryotes, bacteria use Hanks-type kinases and phosphatases for signal transduction, and protein phosphorylation is involved in numerous cellular processes. However, it remains unclear whether protein phosphorylation in bacteria can also regulate the activity of proteins involved in DNA-mediated processes such as DNA replication or repair. Accumulating evidence supported by functional and biochemical studies suggests that phospho-regulatory mechanisms also take place during the bacterial cell cycle. Recent phosphoproteomics and interactomics studies identified numerous phosphoproteins involved in various aspect of DNA metabolism strongly supporting the existence of such level of regulation in bacteria. Similar to eukaryotes, bacterial scaffolding-like proteins emerged as platforms for kinase activation and signaling. This review reports the current knowledge on the phosphorylation of proteins involved in the maintenance of genome integrity and the regulation of cell cycle in bacteria that reveals surprising similarities to eukaryotes. PMID:26909079

  16. Relationships between cell cycle regulator gene copy numbers and protein expression levels in Schizosaccharomyces pombe.

    PubMed

    Chino, Ayako; Makanae, Koji; Moriya, Hisao

    2013-01-01

    We previously determined the copy number limits of overexpression for cell division cycle (cdc) regulatory genes in the fission yeast Schizosaccharomyces pombe using the "genetic tug-of-war" (gTOW) method. In this study, we measured the levels of tandem affinity purification (TAP)-tagged target proteins when their copy numbers are increased in gTOW. Twenty analyzed genes showed roughly linear correlations between increased protein levels and gene copy numbers, which suggested a general lack of compensation for gene dosage in S. pombe. Cdc16 and Sid2 protein levels but not their mRNA levels were much lower than that expected by their copy numbers, which suggested the existence of a post-transcriptional down regulation of these genes. The cyclin Cig1 protein level and its mRNA level were much higher than that expected by its copy numbers, which suggested a positive feedback mechanism for its expression. A higher Cdc10 protein level and its mRNA level, probably due to cloning its gene into a plasmid, indicated that Cdc10 regulation was more robust than that previously predicted. PMID:24019917

  17. Polymorphisms in cell cycle regulatory genes, urinary arsenic profile and urothelial carcinoma

    SciTech Connect

    Chung, C.-J.; Huang, C.-J.; Pu, Y.-S.; Su, C.-T.; Huang, Y.-K.; Chen, Y.-T.; Hsueh, Y.-M.

    2008-10-15

    Introduction: Polymorphisms in p53, p21 and CCND1 could regulate the progression of the cell cycle and might increase the susceptibility to inorganic arsenic-related cancer risk. The goal of our study was to evaluate the roles of cell cycle regulatory gene polymorphisms in the carcinogenesis of arsenic-related urothelial carcinoma (UC). Methods: A hospital-based case-controlled study was conducted to explore the relationships among the urinary arsenic profile, 8-hydroxydeoxyguanosine (8-OHdG) levels, p53 codon 72, p21 codon 31 and CCND1 G870A polymorphisms and UC risk. The urinary arsenic profile was determined using high-performance liquid chromatography (HPLC) and hydride generator-atomic absorption spectrometry (HG-AAS). 8-OHdG levels were measured by high-sensitivity enzyme-linked immunosorbent assay (ELISA) kits. Genotyping was conducted using polymerase chain reaction-restriction fragment length polymerase (PCR-RFLP). Results: Subjects carrying the p21 Arg/Arg genotype had an increased UC risk (age and gender adjusted OR = 1.53; 95% CI, 1.02-2.29). However, there was no association of p53 or CCND1 polymorphisms with UC risk. Significant effects were observed in terms of a combination of the three gene polymorphisms and a cumulative exposure of cigarette smoking, along with the urinary arsenic profile on the UC risk. The higher total arsenic concentration, monomethylarsonic acid percentage (MMA%) and lower dimethylarsinic acid percentage (DMA%), possessed greater gene variant numbers, had a higher UC risk and revealed significant dose-response relationships. However, effects of urinary 8-OHdG levels combined with three gene polymorphisms did not seem to be important for UC risk. Conclusions: The results showed that the variant genotype of p21 might be a predictor of inorganic arsenic-related UC risk.

  18. Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression.

    PubMed

    Erlejman, Alejandra G; Lagadari, Mariana; Toneatto, Judith; Piwien-Pilipuk, Graciela; Galigniana, Mario D

    2014-02-01

    The term molecular chaperone was first used to describe the ability of nucleoplasmin to prevent the aggregation of histones with DNA during the assembly of nucleosomes. Subsequently, the name was extended to proteins that mediate the post-translational assembly of oligomeric complexes protecting them from denaturation and/or aggregation. Hsp90 is a 90-kDa molecular chaperone that represents the major soluble protein of the cell. In contrast to most conventional chaperones, Hsp90 functions as a refined sensor of protein function and its principal role in the cell is to facilitate biological activity to properly folded client proteins that already have a preserved tertiary structure. Consequently, Hsp90 is related to basic cell functions such as cytoplasmic transport of soluble proteins, translocation of client proteins to organelles, and regulation of the biological activity of key signaling factors such as protein kinases, ubiquitin ligases, steroid receptors, cell cycle regulators, and transcription factors. A growing amount of evidence links the protective action of this molecular chaperone to mechanisms related to posttranslational modifications of soluble nuclear factors as well as histones. In this article, we discuss some aspects of the regulatory action of Hsp90 on transcriptional regulation and how this effect could have impacted genetic assimilation mechanism in some organisms. PMID:24389346

  19. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    NASA Astrophysics Data System (ADS)

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  20. Regulatory Crosstalk by Protein Kinases on CFTR Trafficking and Activity

    PubMed Central

    Farinha, Carlos M.; Swiatecka-Urban, Agnieszka; Brautigan, David L.; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e., channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease. PMID:26835446

  1. Poriferan survivin exhibits a conserved regulatory role in the interconnected pathways of cell cycle and apoptosis.

    PubMed

    Luthringer, B; Isbert, S; Müller, W E G; Zilberberg, C; Thakur, N L; Wörheide, G; Stauber, R H; Kelve, M; Wiens, M

    2011-02-01

    Survivin orchestrates intracellular pathways during cell division and apoptosis. Its central function as mitotic regulator and inhibitor of cell death has major implications for tumor cell proliferation. Analyses in early-branching Metazoa so far propose an exclusive role of survivin as a chromosomal passenger protein, whereas only later during evolution a complementary antiapoptotic function might have arisen, concurrent with increased organismal complexity. To lift the veil on the ancestral function(s) of this key regulator, a survivin-like protein (SURVL) of one of the earliest-branching metazoan taxa was identified and functionally characterized. SURVL of the sponge Suberites domuncula shares considerable similarities with its metazoan homologs, ranging from conserved exon/intron structure to presence of protein-interaction domains. Whereas sponge tissue shows a low steady-state level, SURVL expression was significantly upregulated in rapidly proliferating primmorph cells. In addition, challenge of tissue and primmorphs with heavy metal or lipopeptide stimulated SURVL expression, concurrent with the expression of a newly discovered caspase. Complementary functional analyses in transfected HEK-293 cells revealed that heterologous expression of a SURVL-EFGP fusion not only promotes proliferation but also enhances resistance to cadmium-induced cell death. Taken together, these results suggest both a deep evolutionary conserved dual role of survivin and an equally conserved central position in the interconnected pathways of cell cycle and apoptosis. PMID:20651742

  2. Poriferan survivin exhibits a conserved regulatory role in the interconnected pathways of cell cycle and apoptosis

    PubMed Central

    Luthringer, B; Isbert, S; Müller, W E G; Zilberberg, C; Thakur, N L; Wörheide, G; Stauber, R H; Kelve, M; Wiens, M

    2011-01-01

    Survivin orchestrates intracellular pathways during cell division and apoptosis. Its central function as mitotic regulator and inhibitor of cell death has major implications for tumor cell proliferation. Analyses in early-branching Metazoa so far propose an exclusive role of survivin as a chromosomal passenger protein, whereas only later during evolution a complementary antiapoptotic function might have arisen, concurrent with increased organismal complexity. To lift the veil on the ancestral function(s) of this key regulator, a survivin-like protein (SURVL) of one of the earliest-branching metazoan taxa was identified and functionally characterized. SURVL of the sponge Suberites domuncula shares considerable similarities with its metazoan homologs, ranging from conserved exon/intron structure to presence of protein-interaction domains. Whereas sponge tissue shows a low steady-state level, SURVL expression was significantly upregulated in rapidly proliferating primmorph cells. In addition, challenge of tissue and primmorphs with heavy metal or lipopeptide stimulated SURVL expression, concurrent with the expression of a newly discovered caspase. Complementary functional analyses in transfected HEK-293 cells revealed that heterologous expression of a SURVL–EFGP fusion not only promotes proliferation but also enhances resistance to cadmium-induced cell death. Taken together, these results suggest both a deep evolutionary conserved dual role of survivin and an equally conserved central position in the interconnected pathways of cell cycle and apoptosis. PMID:20651742

  3. Septin-Dependent Assembly of a Cell Cycle-Regulatory Module in Saccharomyces cerevisiae

    PubMed Central

    Longtine, Mark S.; Theesfeld, Chandra L.; McMillan, John N.; Weaver, Elizabeth; Pringle, John R.; Lew, Daniel J.

    2000-01-01

    Saccharomyces cerevisiae septin mutants have pleiotropic defects, which include the formation of abnormally elongated buds. This bud morphology results at least in part from a cell cycle delay imposed by the Cdc28p-inhibitory kinase Swe1p. Mutations in three other genes (GIN4, encoding a kinase related to the Schizosaccharomyces pombe mitotic inducer Nim1p; CLA4, encoding a p21-activated kinase; and NAP1, encoding a Clb2p-interacting protein) also produce perturbations of septin organization associated with an Swe1p-dependent cell cycle delay. The effects of gin4, cla4, and nap1 mutations are additive, indicating that these proteins promote normal septin organization through pathways that are at least partially independent. In contrast, mutations affecting the other two Nim1p-related kinases in S. cerevisiae, Hsl1p and Kcc4p, produce no detectable effect on septin organization. However, deletion of HSL1, but not of KCC4, did produce a cell cycle delay under some conditions; this delay appears to reflect a direct role of Hsl1p in the regulation of Swe1p. As shown previously, Swe1p plays a central role in the morphogenesis checkpoint that delays the cell cycle in response to defects in bud formation. Swe1p is localized to the nucleus and to the daughter side of the mother bud neck prior to its degradation in G2/M phase. Both the neck localization of Swe1p and its degradation require Hsl1p and its binding partner Hsl7p, both of which colocalize with Swe1p at the daughter side of the neck. This localization is lost in mutants with perturbed septin organization, suggesting that the release of Hsl1p and Hsl7p from the neck may reduce their ability to inactivate Swe1p and thus contribute to the G2 delay observed in such mutants. In contrast, treatments that perturb actin organization have little effect on Hsl1p and Hsl7p localization, suggesting that such treatments must stabilize Swe1p by another mechanism. The apparent dependence of Swe1p degradation on localization of

  4. Cell cycle regulation by the NEK family of protein kinases.

    PubMed

    Fry, Andrew M; O'Regan, Laura; Sabir, Sarah R; Bayliss, Richard

    2012-10-01

    Genetic screens for cell division cycle mutants in the filamentous fungus Aspergillus nidulans led to the discovery of never-in-mitosis A (NIMA), a serine/threonine kinase that is required for mitotic entry. Since that discovery, NIMA-related kinases, or NEKs, have been identified in most eukaryotes, including humans where eleven genetically distinct proteins named NEK1 to NEK11 are expressed. Although there is no evidence that human NEKs are essential for mitotic entry, it is clear that several NEK family members have important roles in cell cycle control. In particular, NEK2, NEK6, NEK7 and NEK9 contribute to the establishment of the microtubule-based mitotic spindle, whereas NEK1, NEK10 and NEK11 have been implicated in the DNA damage response. Roles for NEKs in other aspects of mitotic progression, such as chromatin condensation, nuclear envelope breakdown, spindle assembly checkpoint signalling and cytokinesis have also been proposed. Interestingly, NEK1 and NEK8 also function within cilia, the microtubule-based structures that are nucleated from basal bodies. This has led to the current hypothesis that NEKs have evolved to coordinate microtubule-dependent processes in both dividing and non-dividing cells. Here, we review the functions of the human NEKs, with particular emphasis on those family members that are involved in cell cycle control, and consider their potential as therapeutic targets in cancer. PMID:23132929

  5. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins Involved in a Posttranscriptional Iron Regulatory Mechanism

    PubMed Central

    Figueroa-Angulo, Elisa E.; Calla-Choque, Jaeson S.; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-01-01

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis. PMID:26703754

  6. Reconciling the regulatory role of Munc18 proteins in SNARE-complex assembly

    PubMed Central

    Rehman, Asma; Archbold, Julia K.; Hu, Shu-Hong; Norwood, Suzanne J.; Collins, Brett M.; Martin, Jennifer L.

    2014-01-01

    Membrane fusion is essential for human health, playing a vital role in processes as diverse as neurotransmission and blood glucose control. Two protein families are key: (1) the Sec1p/Munc18 (SM) and (2) the soluble N-ethylmaleimide-sensitive attachment protein receptor (SNARE) proteins. Whilst the essential nature of these proteins is irrefutable, their exact regulatory roles in membrane fusion remain controversial. In particular, whether SM proteins promote and/or inhibit the SNARE-complex formation required for membrane fusion is not resolved. Crystal structures of SM proteins alone and in complex with their cognate SNARE proteins have provided some insight, however, these structures lack the transmembrane spanning regions of the SNARE proteins and may not accurately reflect the native state. Here, we review the literature surrounding the regulatory role of mammalian Munc18 SM proteins required for exocytosis in eukaryotes. Our analysis suggests that the conflicting roles reported for these SM proteins may reflect differences in experimental design. SNARE proteins appear to require C-terminal immobilization or anchoring, for example through a transmembrane domain, to form a functional fusion complex in the presence of Munc18 proteins. PMID:25485130

  7. Role of the retinoblastoma protein in cell cycle arrest mediated by a novel cell surface proliferation inhibitor

    NASA Technical Reports Server (NTRS)

    Enebo, D. J.; Fattaey, H. K.; Moos, P. J.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A novel cell regulatory sialoglycopeptide (CeReS-18), purified from the cell surface of bovine cerebral cortex cells has been shown to be a potent and reversible inhibitor of proliferation of a wide array of fibroblasts as well as epithelial-like cells and nontransformed and transformed cells. To investigate the possible mechanisms by which CeReS-18 exerts its inhibitory action, the effect of the inhibitor on the posttranslational regulation of the retinoblastoma susceptibility gene product (RB), a tumor suppressor gene, has been examined. It is shown that CeReS-18 mediated cell cycle arrest of both human diploid fibroblasts (HSBP) and mouse fibroblasts (Swiss 3T3) results in the maintenance of the RB protein in the hypophosphorylated state, consistent with a late G1 arrest site. Although their normal nontransformed counterparts are sensitive to cell cycle arrest mediated by CeReS-18, cell lines lacking a functional RB protein, through either genetic mutation or DNA tumor virus oncoprotein interaction, are less sensitive. The refractory nature of these cells is shown to be independent of specific surface receptors for the inhibitor, and another tumor suppressor gene (p53) does not appear to be involved in the CeReS-18 inhibition of cell proliferation. The requirement for a functional RB protein product, in order for CeReS-18 to mediate cell cycle arrest, is discussed in light of regulatory events associated with density-dependent growth inhibition.

  8. Herpes simplex virus glycoprotein C: molecular mimicry of complement regulatory proteins by a viral protein.

    PubMed

    Huemer, H P; Wang, Y; Garred, P; Koistinen, V; Oppermann, S

    1993-08-01

    Herpes simplex virus (HSV) encodes a protein, glycoprotein C (gC), which binds to the third complement component, the central mediator of complement activation. In this study the structural and functional relationships of gC from HSV type 1 (HSV-1) and known human complement regulatory proteins factor H, properdin, factor B, complement receptor 1 (CR1) and 2 (CR2) were investigated. The interaction of gC with C3b was studied using purified complement components, synthetic peptides, antisera against different C3 fragments and anti-C3 monoclonal antibodies (mAb) with known inhibitory effects on C3-ligand interactions. All the mAb that inhibited gC/C3b interactions, in a differential manner, also prevented binding of C3 fragments to factors H, B, CR1 or CR2. No blocking was observed with synthetic peptides representing different C3 regions or with factor B and C3d, whereas C3b, C3c and factor H were inhibitory, as well as purified gC. There was no binding of gC to cobra venom factor (CVF), a C3c-like fragment derived from cobra gland. Purified gC bound to iC3, iC3b and C3c, but failed to bind to C3d. Glycoprotein C bound only weakly to iC3 derived from bovine and porcine plasma, thus indicating a preference of the viral protein for the appropriate host. Binding of gC was also observed to proteolytic C3 fragments, especially to the beta-chain, thus suggesting the importance of the C3 region as a binding site. Purified gC from HSV-1, but not HSV-2, inhibited the binding of factor H and properdin but not of CR1 to C3b. The binding of iC3b to CR2, a molecule involved in B-cell activation and binding of the Epstein-Barr virus, was also inhibited by the HSV-1 protein. As factor H and properdin, the binding of which was inhibited by gC, are important regulators of the alternative complement pathway, these data further support a role of gC in the evasion of HSV from a major first-line host defence mechanism, i.e. the complement system. In addition, the inhibition of the C3/CR

  9. The regulatory PII protein controls arginine biosynthesis in Arabidopsis.

    PubMed

    Ferrario-Méry, Sylvie; Besin, Evelyne; Pichon, Olivier; Meyer, Christian; Hodges, Michael

    2006-04-01

    In higher plants, PII is a nuclear-encoded plastid protein which is homologous to bacterial PII signalling proteins known to be involved in the regulation of nitrogen metabolism. A reduced ornithine, citrulline and arginine accumulation was observed in two Arabidopsis PII knock-out mutants in response to NH4+ resupply after N starvation. This difference could be explained by the regulation of a key enzyme of the arginine biosynthesis pathway, N-acetyl glutamate kinase (NAGK) by PII. In vitro assays using purified recombinant proteins showed the catalytic activation of Arabidopsis NAGK by PII giving the first evidence of a physiological role of the PII protein in higher plants. Using Arabidopsis transcriptome microarray (CATMA) and RT-PCR analyses, it was found that none of the genes involved in the arginine biosynthetic or catabolic pathways were differentially expressed in a PII knock-out mutant background. In conclusion, the observed changes in metabolite levels can be explained by the reduced activation of NAGK by PII. PMID:16545809

  10. The Arabidopsis pyruvate,orthophosphate dikinase regulatory proteins encode a novel, unprecedented Ser/Thr protein kinase primary structure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyruvate,orthophosphate dikinase (PPDK) is a ubiquitous, low abundance metabolic enzyme of undetermined function in C3 plants. Its activity in C3 chloroplasts is light-regulated via reversible phosphorylation of an active-site Thr residue by the PPDK regulatory protein (RP), a most unusual, bifuncti...

  11. Recovery from cycling exercise: effects of carbohydrate and protein beverages.

    PubMed

    Goh, Qingnian; Boop, Christopher A; Luden, Nicholas D; Smith, Alexia G; Womack, Christopher J; Saunders, Michael J

    2012-07-01

    The effects of different carbohydrate-protein (CHO + Pro) beverages were compared during recovery from cycling exercise. Twelve male cyclists (VO(2peak): 65 ± 7 mL/kg/min) completed ~1 h of high-intensity intervals (EX1). Immediately and 120 min following EX1, subjects consumed one of three calorically-similar beverages (285-300 kcal) in a cross-over design: carbohydrate-only (CHO; 75 g per beverage), high-carbohydrate/low-protein (HCLP; 45 g CHO, 25 g Pro, 0.5 g fat), or low-carbohydrate/high-protein (LCHP; 8 g CHO, 55 g Pro, 4 g fat). After 4 h of recovery, subjects performed subsequent exercise (EX2; 20 min at 70% VO(2peak) + 20 km time-trial). Beverages were also consumed following EX2. Blood glucose levels (30 min after beverage ingestion) differed across all treatments (CHO > HCLP > LCHP; p < 0.05), and serum insulin was higher following CHO and HCLP ingestion versus LCHP. Peak quadriceps force, serum creatine kinase, muscle soreness, and fatigue/energy ratings measured pre- and post-exercise were not different between treatments. EX2 performance was not significantly different between CHO (48.5 ± 1.5 min), HCLP (48.8 ± 2.1 min) and LCHP (50.3 ± 2.7 min). Beverages containing similar caloric content but different proportions of carbohydrate/protein provided similar effects on muscle recovery and subsequent exercise performance in well-trained cyclists. PMID:22852050

  12. Molecular genetic analysis of Rts1p, a B' regulatory subunit of Saccharomyces cerevisiae protein phosphatase 2A.

    PubMed

    Shu, Y; Yang, H; Hallberg, E; Hallberg, R

    1997-06-01

    The Saccharomyces cerevisiae gene RTS1 encodes a protein homologous to a variable B-type regulatory subunit of the mammalian heterotrimeric serine/threonine protein phosphatase 2A (PP2A). We present evidence showing that Rts1p assembles into similar heterotrimeric complexes in yeast. Strains in which RTS1 has been disrupted are temperature sensitive (ts) for growth, are hypersensitive to ethanol, are unable to grow with glycerol as their only carbon source, and accumulate at nonpermissive temperatures predominantly as large-budded cells with a 2N DNA content and a nondivided nucleus. This cell cycle arrest can be overcome and partial suppression of the ts phenotype of rts1-null cells occurs if the gene CLB2, encoding a Cdc28 kinase-associated B-type cyclin, is expressed on a high-copy-number plasmid. However, CLB2 overexpression has no suppressive effects on other aspects of the rts1-null phenotype. Expression of truncated forms of Rts1p can also partially suppress the ts phenotype and can fully suppress the inability of cells to grow on glycerol and the hypersensitivity of cells to ethanol. By contrast, the truncated forms do not suppress the accumulation of large-budded cells at high temperatures. Coexpression of truncated Rts1p and high levels of Clb2p fully suppresses the ts phenotype, indicating that the inhibition of growth of rts1-null cells at high temperatures is due to both stress-related and cell cycle-related defects. Genetic analyses show that the role played by Rts1p in PP2A regulation is distinctly different from that played by the other known variable B regulatory subunit, Cdc55p, a protein recently implicated in checkpoint control regulation. PMID:9154823

  13. Regulatory roles of Oct proteins in the mammary gland.

    PubMed

    Qian, Xi; Zhao, Feng-Qi

    2016-06-01

    The expression of Oct-1 and -2 and their binding to the octamer motif in the mammary gland are developmentally and hormonally regulated, consistent with the expression of milk proteins. Both of these transcription factors constitutively bind to the proximal promoter of the milk protein gene β-casein and might be involved in the inhibition or activation of promoter activity via interactions with other transcription factors or cofactors at different developmental stages. In particular, the lactogenic hormone prolactin and glucocorticoids induce Oct-1 and Oct-2 binding and interaction with both the signal transducer and activator of transcription 5 (STAT5) and the glucocorticoid receptor on the β-casein promoter to activate β-casein expression. In addition, increasing evidence has shown the involvement of another Oct factor, Oct-3/4, in mammary tumorigenesis, making Oct-3/4 an emerging prognostic marker of breast cancer and a molecular target for the gene-directed therapeutic intervention, prevention and treatment of breast cancer. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin. PMID:27044595

  14. Plant Kinesin-Like Calmodulin Binding Protein Employs Its Regulatory Domain for Dimerization

    PubMed Central

    Vinogradova, Maia V.; Malanina, Galina G.; Waitzman, Joshua S.; Rice, Sarah E.; Fletterick, Robert J.

    2013-01-01

    Kinesin-like calmodulin binding protein (KCBP), a Kinesin-14 family motor protein, is involved in the structural organization of microtubules during mitosis and trichome morphogenesis in plants. The molecular mechanism of microtubule bundling by KCBP remains unknown. KCBP binding to microtubules is regulated by Ca2+-binding proteins that recognize its C-terminal regulatory domain. In this work, we have discovered a new function of the regulatory domain. We present a crystal structure of an Arabidopsis KCBP fragment showing that the C-terminal regulatory domain forms a dimerization interface for KCBP. This dimerization site is distinct from the dimerization interface within the N-terminal domain. Side chains of hydrophobic residues of the calmodulin binding helix of the regulatory domain form the C-terminal dimerization interface. Biochemical experiments show that another segment of the regulatory domain located beyond the dimerization interface, its negatively charged coil, is unexpectedly and absolutely required to stabilize the dimers. The strong microtubule bundling properties of KCBP are unaffected by deletion of the C-terminal regulatory domain. The slow minus-end directed motility of KCBP is also unchanged in vitro. Although the C-terminal domain is not essential for microtubule bundling, we suggest that KCBP may use its two independent dimerization interfaces to support different types of bundled microtubule structures in cells. Two distinct dimerization sites may provide a mechanism for microtubule rearrangement in response to Ca2+ signaling since Ca2+- binding proteins can disengage KCBP dimers dependent on its C-terminal dimerization interface. PMID:23805258

  15. Plant Kinesin-Like Calmodulin Binding Protein Employs Its Regulatory Domain for Dimerization.

    PubMed

    Vinogradova, Maia V; Malanina, Galina G; Waitzman, Joshua S; Rice, Sarah E; Fletterick, Robert J

    2013-01-01

    Kinesin-like calmodulin binding protein (KCBP), a Kinesin-14 family motor protein, is involved in the structural organization of microtubules during mitosis and trichome morphogenesis in plants. The molecular mechanism of microtubule bundling by KCBP remains unknown. KCBP binding to microtubules is regulated by Ca(2+)-binding proteins that recognize its C-terminal regulatory domain. In this work, we have discovered a new function of the regulatory domain. We present a crystal structure of an Arabidopsis KCBP fragment showing that the C-terminal regulatory domain forms a dimerization interface for KCBP. This dimerization site is distinct from the dimerization interface within the N-terminal domain. Side chains of hydrophobic residues of the calmodulin binding helix of the regulatory domain form the C-terminal dimerization interface. Biochemical experiments show that another segment of the regulatory domain located beyond the dimerization interface, its negatively charged coil, is unexpectedly and absolutely required to stabilize the dimers. The strong microtubule bundling properties of KCBP are unaffected by deletion of the C-terminal regulatory domain. The slow minus-end directed motility of KCBP is also unchanged in vitro. Although the C-terminal domain is not essential for microtubule bundling, we suggest that KCBP may use its two independent dimerization interfaces to support different types of bundled microtubule structures in cells. Two distinct dimerization sites may provide a mechanism for microtubule rearrangement in response to Ca(2+) signaling since Ca(2+)- binding proteins can disengage KCBP dimers dependent on its C-terminal dimerization interface. PMID:23805258

  16. The impact of RGS and other G-protein regulatory proteins on Gαi-mediated signaling in immunity.

    PubMed

    Kehrl, John H

    2016-08-15

    Leukocyte chemoattractant receptors are members of the G-protein coupled receptor (GPCR) family. Signaling downstream of these receptors directs the localization, positioning and homeostatic trafficking of leukocytes; as well as their recruitment to, and their retention at, inflammatory sites. Ligand induced changes in the molecular conformation of chemoattractant receptors results in the engagement of heterotrimeric G-proteins, which promotes α subunits to undergo GTP/GDP exchange. This results in the functional release of βγ subunits from the heterotrimers, thereby activating downstream effector molecules, which initiate leukocyte polarization, gradient sensing, and directional migration. Pertussis toxin ADP ribosylates Gαi subunits and prevents chemoattractant receptors from triggering Gαi nucleotide exchange. The use of pertussis toxin revealed the essential importance of Gαi subunit nucleotide exchange for chemoattractant receptor signaling. More recent studies have identified a range of regulatory mechanisms that target these receptors and their associated heterotrimeric G-proteins, thereby helping to control the magnitude, kinetics, and duration of signaling. A failure in these regulatory pathways can lead to impaired receptor signaling and immunopathology. The analysis of mice with targeted deletions of Gαi isoforms as well as some of these G-protein regulatory proteins is providing insights into their roles in chemoattractant receptor signaling. PMID:27071343

  17. Uncovering Viral Protein-Protein Interactions and their Role in Arenavirus Life Cycle

    PubMed Central

    Loureiro, Maria Eugenia; D’Antuono, Alejandra; Levingston Macleod, Jesica M.; López, Nora

    2012-01-01

    The Arenaviridae family includes widely distributed pathogens that cause severe hemorrhagic fever in humans. Replication and packaging of their single-stranded RNA genome involve RNA recognition by viral proteins and a number of key protein-protein interactions. Viral RNA synthesis is directed by the virus-encoded RNA dependent-RNA polymerase (L protein) and requires viral RNA encapsidation by the Nucleoprotein. In addition to the role that the interaction between L and the Nucleoprotein may have in the replication process, polymerase activity appears to be modulated by the association between L and the small multifunctional Z protein. Z is also a structural component of the virions that plays an essential role in viral morphogenesis. Indeed, interaction of the Z protein with the Nucleoprotein is critical for genome packaging. Furthermore, current evidence suggests that binding between Z and the viral envelope glycoprotein complex is required for virion infectivity, and that Z homo-oligomerization is an essential step for particle assembly and budding. Efforts to understand the molecular basis of arenavirus life cycle have revealed important details on these viral protein-protein interactions that will be reviewed in this article. PMID:23170177

  18. Uncovering viral protein-protein interactions and their role in arenavirus life cycle.

    PubMed

    Loureiro, Maria Eugenia; D'Antuono, Alejandra; Levingston Macleod, Jesica M; López, Nora

    2012-09-01

    The Arenaviridae family includes widely distributed pathogens that cause severe hemorrhagic fever in humans. Replication and packaging of their single-stranded RNA genome involve RNA recognition by viral proteins and a number of key protein-protein interactions. Viral RNA synthesis is directed by the virus-encoded RNA dependent-RNA polymerase (L protein) and requires viral RNA encapsidation by the Nucleoprotein. In addition to the role that the interaction between L and the Nucleoprotein may have in the replication process, polymerase activity appears to be modulated by the association between L and the small multifunctional Z protein. Z is also a structural component of the virions that plays an essential role in viral morphogenesis. Indeed, interaction of the Z protein with the Nucleoprotein is critical for genome packaging. Furthermore, current evidence suggests that binding between Z and the viral envelope glycoprotein complex is required for virion infectivity, and that Z homo-oligomerization is an essential step for particle assembly and budding. Efforts to understand the molecular basis of arenavirus life cycle have revealed important details on these viral protein-protein interactions that will be reviewed in this article. PMID:23170177

  19. A novel method to identify nucleic acid binding sites in proteins by scanning mutagenesis: application to iron regulatory protein.

    PubMed Central

    Neupert, B; Menotti, E; Kühn, L C

    1995-01-01

    We describe a new procedure to identify RNA or DNA binding sites in proteins, based on a combination of UV cross-linking and single-hit chemical peptide cleavage. Site-directed mutagenesis is used to create a series of mutants with single Asn-Gly sequences in the protein to be analysed. Recombinant mutant proteins are incubated with their radiolabelled target sequence and UV irradiated. Covalently linked RNA- or DNA-protein complexes are digested with hydroxylamine and labelled peptides identified by SDS-PAGE and autoradiography. The analysis requires only small amounts of protein and is achieved within a relatively short time. Using this method we mapped the site at which human iron regulatory protein (IRP) is UV cross-linked to iron responsive element RNA to amino acid residues 116-151. Images PMID:7544459

  20. Inhibition of GDP/GTP exchange on G alpha subunits by proteins containing G-protein regulatory motifs.

    PubMed

    Natochin, M; Gasimov, K G; Artemyev, N O

    2001-05-01

    A novel Galpha binding consensus sequence, termed G-protein regulatory (GPR) or GoLoco motif, has been identified in a growing number of proteins, which are thought to modulate G-protein signaling. Alternative roles of GPR proteins as nucleotide exchange factors or as GDP dissociation inhibitors for Galpha have been proposed. We investigated the modulation of the GDP/GTP exchange of Gialpha(1), Goalpha, and Gsalpha by three proteins containing GPR motifs (GPR proteins), LGN-585-642, Pcp2, and RapIGAPII-23-131, to elucidate the mechanisms of GPR protein function. The GPR proteins displayed similar patterns of interaction with Gialpha(1) with the following order of affinities: Gialpha(1)GDP > Gialpha(1)GDPAlF(4)(-) > or = Gialpha(1)GTPgammaS. No detectable binding of the GPR proteins to Gsalpha was observed. LGN-585-642, Pcp2, and RapIGAPII-23-131 inhibited the rates of spontaneous GTPgammaS binding and blocked GDP release from Gialpha(1) and Goalpha. The inhibitory effects of the GPR proteins on Gialpha(1) were significantly more potent, indicating that Gi might be a preferred target for these modulators. Our results suggest that GPR proteins are potent GDP dissociation inhibitors for Gialpha-like Galpha subunits in vitro, and in this capacity they may inhibit GPCR/Gi protein signaling in vivo. PMID:11318657

  1. Boosting heterologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences.

    PubMed

    De Jaeger, Geert; Scheffer, Stanley; Jacobs, Anni; Zambre, Mukund; Zobell, Oliver; Goossens, Alain; Depicker, Ann; Angenon, Geert

    2002-12-01

    Over the past decade, several high value proteins have been produced in different transgenic plant tissues such as leaves, tubers, and seeds. Despite recent advances, many heterologous proteins accumulate to low concentrations, and the optimization of expression cassettes to make in planta production and purification economically feasible remains critical. Here, the regulatory sequences of the seed storage protein gene arcelin 5-I (arc5-I) of common bean (Phaseolus vulgaris) were evaluated for producing heterologous proteins in dicotyledonous seeds. The murine single chain variable fragment (scFv) G4 (ref. 4) was chosen as model protein because of the current industrial interest in producing antibodies and derived fragments in crops. In transgenic Arabidopsis thaliana seed stocks, the scFv under control of the 35S promoter of the cauliflower mosaic virus (CaMV) accumulated to approximately 1% of total soluble protein (TSP). However, a set of seed storage promoter constructs boosted the scFv accumulation to exceptionally high concentrations, reaching no less than 36.5% of TSP in homozygous seeds. Even at these high concentrations, the scFv proteins had antigen-binding activity and affinity similar to those produced in Escherichia coli. The feasibility of heterologous protein production under control of arc5-I regulatory sequences was also demonstrated in Phaseolus acutifolius, a promising crop for large scale production. PMID:12415287

  2. Surveying the lipogenesis landscape in Yarrowia lipolytica through understanding the function of a Mga2p regulatory protein mutant.

    PubMed

    Liu, Leqian; Markham, Kelly; Blazeck, John; Zhou, Nijia; Leon, Dacia; Otoupal, Peter; Alper, Hal S

    2015-09-01

    Lipogenic organisms represent great starting points for metabolic engineering of oleochemical production. While previous engineering efforts were able to significantly improve lipid production in Yarrowia lipolytica, the lipogenesis landscape, especially with respect to regulatory elements, has not been fully explored. Through a comparative genomics and transcriptomics approach, we identified and validated a mutant mga2 protein that serves as a regulator of desaturase gene expression and potent lipogenesis factor. The resulting strain is enriched in unsaturated fatty acids. Comparing the underlying mechanism of this mutant to other previously engineered strains suggests that creating an imbalance between glycolysis and the TCA cycle can serve as a driving force for lipogenesis when combined with fatty acid catabolism overexpressions. Further comparative transcriptomics analysis revealed both distinct and convergent rewiring associated with these different genotypes. Finally, by combining metabolic engineering targets, it is possible to further engineer a strain containing the mutant mga2 gene to a lipid production titer of 25g/L. PMID:26219673

  3. Timing of flagellar gene expression in the Caulobacter cell cycle is determined by a transcriptional cascade of positive regulatory genes.

    PubMed Central

    Ohta, N; Chen, L S; Mullin, D A; Newton, A

    1991-01-01

    The Caulobacter crescentus flagellar (fla) genes are organized in a regulatory hierarchy in which genes at each level are required for expression of those at the next lower level. To determine the role of this hierarchy in the timing of fla gene expression, we have examined the organization and cell cycle regulation of genes located in the hook gene cluster. As shown here, this cluster is organized into four multicistronic transcription units flaN, flbG, flaO, and flbF that contain fla genes plus a fifth transcription unit II.1 of unknown function. Transcription unit II.1 is regulated independently of the fla gene hierarchy, and it is expressed with a unique pattern of periodicity very late in the cell cycle. The flaN, flbG, and flaO operons are all transcribed periodically, and flaO, which is near the top of the hierarchy and required in trans for the activation of flaN and flbG operons, is expressed earlier in the cell cycle than the other two transcription units. We have shown that delaying flaO transcription by fusing it to the II.1 promoter also delayed the subsequent expression of the flbG operon and the 27- and 25-kDa flagellin genes that are at the bottom of the regulatory hierarchy. Thus, the sequence and timing of fla gene expression in the cell cycle are determined in large measure by the positions of these genes in the regulatory hierarchy. These results also suggest that periodic transcription is a general feature of fla gene expression in C. crescentus. Images PMID:1847367

  4. Computational Simulation of the Activation Cycle of Gα Subunit in the G Protein Cycle Using an Elastic Network Model

    PubMed Central

    Kim, Min Hyeok; Kim, Young Jin; Kim, Hee Ryung; Jeon, Tae-Joon; Choi, Jae Boong; Chung, Ka Young; Kim, Moon Ki

    2016-01-01

    Agonist-activated G protein-coupled receptors (GPCRs) interact with GDP-bound G protein heterotrimers (Gαβγ) promoting GDP/GTP exchange, which results in dissociation of Gα from the receptor and Gβγ. The GTPase activity of Gα hydrolyzes GTP to GDP, and the GDP-bound Gα interacts with Gβγ, forming a GDP-bound G protein heterotrimer. The G protein cycle is allosterically modulated by conformational changes of the Gα subunit. Although biochemical and biophysical methods have elucidated the structure and dynamics of Gα, the precise conformational mechanisms underlying the G protein cycle are not fully understood yet. Simulation methods could help to provide additional details to gain further insight into G protein signal transduction mechanisms. In this study, using the available X-ray crystal structures of Gα, we simulated the entire G protein cycle and described not only the steric features of the Gα structure, but also conformational changes at each step. Each reference structure in the G protein cycle was modeled as an elastic network model and subjected to normal mode analysis. Our simulation data suggests that activated receptors trigger conformational changes of the Gα subunit that are thermodynamically favorable for opening of the nucleotide-binding pocket and GDP release. Furthermore, the effects of GTP binding and hydrolysis on mobility changes of the C and N termini and switch regions are elucidated. In summary, our simulation results enabled us to provide detailed descriptions of the structural and dynamic features of the G protein cycle. PMID:27483005

  5. Interaction between Major Nitrogen Regulatory Protein NIT2 and Pathway-Specific Regulatory Factor NIT4 Is Required for Their Synergistic Activation of Gene Expression in Neurospora crassa

    PubMed Central

    Feng, Bo; Marzluf, George A.

    1998-01-01

    In Neurospora crassa, the major nitrogen regulatory protein, NIT2, a member of the GATA family of transcription factors, controls positively the expression of numerous genes which specify nitrogen catabolic enzymes. Expression of the highly regulated structural gene nit-3, which encodes nitrate reductase, is dependent upon a synergistic interaction of NIT2 with a pathway-specific control protein, NIT4, a member of the GAL4 family of fungal regulatory factors. The NIT2 and NIT4 proteins both bind at specific recognition elements in the nit-3 promoter, but, in addition, we show that a direct protein-protein interaction between NIT2 and NIT4 is essential for optimal expression of the nit-3 structural gene. Neurospora possesses at least five different GATA factors which control different areas of cellular function, but which have a similar DNA binding specificity. Significantly, only NIT2, of the several Neurospora GATA factors examined, interacts with NIT4. We propose that protein-protein interactions of the individual GATA factors with additional pathway-specific regulatory factors determine each of their specific regulatory functions. PMID:9632783

  6. Governing effect of regulatory proteins for Cl(-)/HCO3(-) exchanger 2 activity.

    PubMed

    Jeong, Yon Soo; Hong, Jeong Hee

    2016-05-01

    Anion exchanger 2 (AE2) has a critical role in epithelial cells and is involved in the ionic homeostasis such as Cl(-) uptake and HCO3(-) secretion. However, little is known about the regulatory mechanism of AE2. The main goal of the present study was to investigate potential regulators, such as spinophilin (SPL), inositol-1,4,5-trisphosphate [IP3] receptors binding protein released with IP3 (IRBIT), STE20/SPS1-related proline/alanine-rich kinase (SPAK) kinase, and carbonic anhydrase XII (CA XII). We found that SPL binds to AE2 and markedly increased the Cl(-)/HCO3(-) exchange activity of AE2. Especially SPL 1-480 domain is required for enhancing AE2 activity. For other regulatory components that affect the fidelity of fluid and HCO3(-) secretion, IRBIT and SPAK had no effect on the activity of AE2 and no protein-protein interaction with AE2. It has been proposed that CA activity is closely associated with AE activity. In this study, we provide evidence that the basolateral membrane-associated CA isoform CA XII significantly increased the activity of AE2 and co-localized with AE2 to the plasma membrane. Collectively, SPL and CA XII enhanced the Cl(-)/HCO3(-) exchange activity of AE2. The modulating action of these regulatory proteins could serve as potential therapeutic targets for secretory diseases mediated by AE2. PMID:26716707

  7. Binding of regulatory subunits of cyclic AMP-dependent protein kinase to cyclic CMP agarose.

    PubMed

    Hammerschmidt, Andreas; Chatterji, Bijon; Zeiser, Johannes; Schröder, Anke; Genieser, Hans-Gottfried; Pich, Andreas; Kaever, Volkhard; Schwede, Frank; Wolter, Sabine; Seifert, Roland

    2012-01-01

    The bacterial adenylyl cyclase toxins CyaA from Bordetella pertussis and edema factor from Bacillus anthracis as well as soluble guanylyl cyclase α(1)β(1) synthesize the cyclic pyrimidine nucleotide cCMP. These data raise the question to which effector proteins cCMP binds. Recently, we reported that cCMP activates the regulatory subunits RIα and RIIα of cAMP-dependent protein kinase. In this study, we used two cCMP agarose matrices as novel tools in combination with immunoblotting and mass spectrometry to identify cCMP-binding proteins. In agreement with our functional data, RIα and RIIα were identified as cCMP-binding proteins. These data corroborate the notion that cAMP-dependent protein kinase may serve as a cCMP target. PMID:22808067

  8. Structural studies of bacterial transcriptional regulatory proteins by multidimensional heteronuclear NMR

    SciTech Connect

    Volkman, B.F.

    1995-02-01

    Nuclear magnetic resonance spectroscopy was used to elucidate detailed structural information for peptide and protein molecules. A small peptide was designed and synthesized, and its three-dimensional structure was calculated using distance information derived from two-dimensional NMR measurements. The peptide was used to induce antibodies in mice, and the cross-reactivity of the antibodies with a related protein was analyzed with enzyme-linked immunosorbent assays. Two proteins which are involved in regulation of transcription in bacteria were also studied. The ferric uptake regulation (Fur) protein is a metal-dependent repressor which controls iron uptake in bacteria. Two- and three-dimensional NMR techniques, coupled with uniform and selective isotope labeling allowed the nearly complete assignment of the resonances of the metal-binding domain of the Fur protein. NTRC is a transcriptional enhancer binding protein whose N-terminal domain is a {open_quote}receiver domain{close_quote} in the family of {open_quote}two-component{close_quote} regulatory systems. Phosphorylation of the N-terminal domain of NTRC activates the initiation of transcription of aeries encoding proteins involved in nitrogen regulation. Three- and four-dimensional NMR spectroscopy methods have been used to complete the resonance assignments and determine the solution structure of the N-terminal receiver domain of the NTRC protein. Comparison of the solution structure of the NTRC receiver domain with the crystal structures of the homologous protein CheY reveals a very similar fold, with the only significant difference being the position of helix 4 relative to the rest of the protein. The determination of the structure of the NTRC receiver domain is the first step toward understanding a mechanism of signal transduction which is common to many bacterial regulatory systems.

  9. Overexpression of KH-type splicing regulatory protein regulates proliferation, migration, and implantation ability of osteosarcoma

    PubMed Central

    Pruksakorn, Dumnoensun; Teeyakasem, Pimpisa; Klangjorhor, Jeerawan; Chaiyawat, Parunya; Settakorn, Jongkolnee; Diskul-Na-Ayudthaya, Penchatr; Chokchaichamnankit, Daranee; Pothacharoen, Peraphan; Srisomsap, Chantragan

    2016-01-01

    Osteosarcoma is a common malignant bone tumor in children and adolescents. The current 5-year survival rate is ~60% and that seems to be reaching a plateau. In order to improve treatment outcomes of osteosarcoma, a better understanding of tumorigenesis and underlying molecular mechanisms is required for searching out possible new treatment targets. This study aimed to identify the potential proteins involving the pathogenesis of osteosarcoma using a proteomics approach. Proteins extracted from primary cell culture of osteosarcoma (n=7) and osteoblasts of cancellous bone (n=7) were studied. Using 2-DE based proteomics and LC-MS/MS analysis, we successfully determined seven differentially expressed protein spots. Four upregulated proteins and three downregulated proteins were observed in this study in which KH-type splicing regulatory protein (KSRP) was selected for further exploration. KSRP was significantly upregulated in osteosarcoma cells compared to osteoblasts using western blot assay. In addition, immunohistochemistry demonstrated that KSRP was also highly expressed in osteosarcoma tissue of independent cases from the experimental group. More importantly, KSRP silencing of osteosarcoma cell lines significantly decreased cell proliferation, migration ability, as well as implantation and growth ability in chick chorioallantoic membrane assay. Taken together, these findings demonstrate, that KSRP plays important roles in regulatory controls of osteosarcoma pathogenesis and serves as a potentially therapeutic target of osteosarcoma. PMID:27573585

  10. Overexpression of KH-type splicing regulatory protein regulates proliferation, migration, and implantation ability of osteosarcoma.

    PubMed

    Pruksakorn, Dumnoensun; Teeyakasem, Pimpisa; Klangjorhor, Jeerawan; Chaiyawat, Parunya; Settakorn, Jongkolnee; Diskul-Na-Ayudthaya, Penchatr; Chokchaichamnankit, Daranee; Pothacharoen, Peraphan; Srisomsap, Chantragan

    2016-09-01

    Osteosarcoma is a common malignant bone tumor in children and adolescents. The current 5-year survival rate is ~60% and that seems to be reaching a plateau. In order to improve treatment outcomes of osteosarcoma, a better understanding of tumorigenesis and underlying molecular mechanisms is required for searching out possible new treatment targets. This study aimed to identify the potential proteins involving the pathogenesis of osteosarcoma using a proteomics approach. Proteins extracted from primary cell culture of osteosarcoma (n=7) and osteoblasts of cancellous bone (n=7) were studied. Using 2-DE based proteomics and LC-MS/MS analysis, we successfully determined seven differentially expressed protein spots. Four upregulated proteins and three downregulated proteins were observed in this study in which KH-type splicing regulatory protein (KSRP) was selected for further exploration. KSRP was significantly upregulated in osteosarcoma cells compared to osteoblasts using western blot assay. In addition, immunohistochemistry demonstrated that KSRP was also highly expressed in osteosarcoma tissue of independent cases from the experimental group. More importantly, KSRP silencing of osteosarcoma cell lines significantly decreased cell proliferation, migration ability, as well as implantation and growth ability in chick chorioallantoic membrane assay. Taken together, these findings demonstrate, that KSRP plays important roles in regulatory controls of osteosarcoma pathogenesis and serves as a potentially therapeutic target of osteosarcoma. PMID:27573585

  11. Proteomic Shifts in Embryonic Stem Cells with Gene Dose Modifications Suggest the Presence of Balancer Proteins in Protein Regulatory Networks

    PubMed Central

    Mao, Lei; Zabel, Claus; Herrmann, Marion; Nolden, Tobias; Mertes, Florian; Magnol, Laetitia; Chabert, Caroline; Hartl, Daniela; Herault, Yann; Delabar, Jean Maurice; Manke, Thomas; Himmelbauer, Heinz; Klose, Joachim

    2007-01-01

    Large numbers of protein expression changes are usually observed in mouse models for neurodegenerative diseases, even when only a single gene was mutated in each case. To study the effect of gene dose alterations on the cellular proteome, we carried out a proteomic investigation on murine embryonic stem cells that either overexpressed individual genes or displayed aneuploidy over a genomic region encompassing 14 genes. The number of variant proteins detected per cell line ranged between 70 and 110, and did not correlate with the number of modified genes. In cell lines with single gene mutations, up and down-regulated proteins were always in balance in comparison to parental cell lines regarding number as well as concentration of differentially expressed proteins. In contrast, dose alteration of 14 genes resulted in an unequal number of up and down-regulated proteins, though the balance was kept at the level of protein concentration. We propose that the observed protein changes might partially be explained by a proteomic network response. Hence, we hypothesize the existence of a class of “balancer” proteins within the proteomic network, defined as proteins that buffer or cushion a system, and thus oppose multiple system disturbances. Through database queries and resilience analysis of the protein interaction network, we found that potential balancer proteins are of high cellular abundance, possess a low number of direct interaction partners, and show great allelic variation. Moreover, balancer proteins contribute more heavily to the network entropy, and thus are of high importance in terms of system resilience. We propose that the “elasticity” of the proteomic regulatory network mediated by balancer proteins may compensate for changes that occur under diseased conditions. PMID:18043732

  12. [The effect of extremely low doses of the novel regulatory plant proteins ].

    PubMed

    Krasnov, M S; Margasiuk, D V; Iamskov, I A; Iamskova, V P

    2003-01-01

    Searching and study on regulatory proteins, which can keep under control the scope of important processes as like as cell adhesion, proliferation, differentiation and morphogenesis, is an actual aim of the current biochemistry. Recently we have identified S-100 proteins in plants of following species: plantain (Plantago major L.), aloe (Aloe arborescens L.), and bilberry (Vaccinum myrtillus L.). Extraction and purification of S-100 proteins gotten from these plants were performed by the method we developed earlier for adhesion proteins of animal tissues. Homogeneity of the studied plant proteins was evaluated and confirmed by HPLC and SDS-electrophoresis in PAAG. Both, plant and animal proteins have appeared to be biologically active at extremely low doses. The tests were performed by adhesiometrical method in short-term tissue culture of mouse's liver in vitro. As a result it was established that the plant proteins insert a membranotropic effect being added in extremely low doses, corresponding to 10(-10)-10(-13) mg/ml. Keeping in mind that the plantain is well known remedy for wound protection and healing, in several experiments we studied the biological effect of plant S-100 proteins on animal cells. It was found that S-100 proteins obtained from plantain influences proliferation of human fibroblasts in vitro. It was found that after the treatment with this protein in low doses the cell growth rate increases essentially. PMID:12881977

  13. Neurons Lacking Iron Regulatory Protein-2 Are Highly Resistant to the Toxicity of Hemoglobin

    PubMed Central

    Regan, Raymond F.; Chen, Mai; Li, Zhi; Zhang, Xuefeng; Benvenisti-Zarom, Luna; Chen-Roetling, Jing

    2008-01-01

    The effect of iron regulatory protein-2 (IRP2) on ferritin expression and neuronal vulnerability to hemoglobin was assessed in primary cortical cell cultures prepared from wild-type and IRP2 knockout mice. Baseline levels of H and L-ferritin subunits were significantly increased in IRP2 knockout neurons and astrocytes. Hemoglobin was toxic to wild-type neurons in mixed neuron-astrocyte cultures, with an LC50 near 3 µM for a 24 hour exposure. Neuronal death was reduced by 85–95% in knockout cultures, and also in cultures containing knockout neurons plated on wild-type astrocytes. Protein carbonylation, reactive oxygen species formation, and heme oxygenase-1 expression after hemoglobin treatment were also attenuated by IRP2 gene deletion. These results suggest that IRP2 binding activity increases the vulnerability of neurons to hemoglobin, possibly by reducing ferritin expression. Therapeutic strategies that target this regulatory mechanism may be beneficial after hemorrhagic CNS injuries. PMID:18571425

  14. Collapsin Response Mediator Protein-2 (Crmp2) Regulates Trafficking by Linking Endocytic Regulatory Proteins to Dynein Motors*

    PubMed Central

    Rahajeng, Juliati; Giridharan, Sai S. P.; Naslavsky, Naava; Caplan, Steve

    2010-01-01

    Endocytosis is a conserved cellular process in which nutrients, lipids, and receptors are internalized and transported to early endosomes, where they are sorted and either channeled to degradative pathways or recycled to the plasma membrane. MICAL-L1 and EHD1 are important regulatory proteins that control key endocytic transport steps. However, the precise mechanisms by which they mediate transport, and particularly the mode by which they connect to motor proteins, have remained enigmatic. Here we have identified the collapsin response mediator protein-2 (Crmp2) as an interaction partner of MICAL-L1 in non-neuronal cells. Crmp2 interacts with tubulin dimers and kinesin and negatively regulates dynein-based transport in neuronal cells, but its expression and function in non-neuronal cells have remained poorly characterized. Upon Crmp2 depletion, we observed dramatic relocalization of internalized transferrin (Tf) from peripheral vesicles to the endocytic recycling compartment (ERC), similar to the effect of depleting either MICAL-L1 or EHD1. Moreover, Tf relocalization to the ERC could be inhibited by interfering with microtubule polymerization, consistent with a role for uncoupled motor protein-based transport upon depletion of Crmp2, MICAL-L1, or EHD1. Finally, transfection of dynamitin, a component of the dynactin complex whose overexpression inhibits dynein activity, prevented the relocalization of internalized Tf to the ERC upon depletion of Crmp2, MICAL-L1, or EHD1. These data provide the first trafficking regulatory role for Crmp2 in non-neuronal cells and support a model in which Crmp2 is an important endocytic regulatory protein that links MICAL-L1·EHD1-based vesicular transport to dynein motors. PMID:20801876

  15. Temperature inducible β-sheet structure in the transactivation domains of retroviral regulatory proteins of the Rev family

    NASA Astrophysics Data System (ADS)

    Thumb, Werner; Graf, Christine; Parslow, Tristram; Schneider, Rainer; Auer, Manfred

    1999-11-01

    The interaction of the human immunodeficiency virus type 1 (HIV-1) regulatory protein Rev with cellular cofactors is crucial for the viral life cycle. The HIV-1 Rev transactivation domain is functionally interchangeable with analog regions of Rev proteins of other retroviruses suggesting common folding patterns. In order to obtain experimental evidence for similar structural features mediating protein-protein contacts we investigated activation domain peptides from HIV-1, HIV-2, VISNA virus, feline immunodeficiency virus (FIV) and equine infectious anemia virus (EIAV) by CD spectroscopy, secondary structure prediction and sequence analysis. Although different in polarity and hydrophobicity, all peptides showed a similar behavior with respect to solution conformation, concentration dependence and variations in ionic strength and pH. Temperature studies revealed an unusual induction of β-structure with rising temperatures in all activation domain peptides. The high stability of β-structure in this region was demonstrated in three different peptides of the activation domain of HIV-1 Rev in solutions containing 40% hexafluoropropanol, a reagent usually known to induce α-helix into amino acid sequences. Sequence alignments revealed similarities between the polar effector domains from FIV and EIAV and the leucine rich (hydrophobic) effector domains found in HIV-1, HIV-2 and VISNA. Studies on activation domain peptides of two dominant negative HIV-1 Rev mutants, M10 and M32, pointed towards different reasons for the biological behavior. Whereas the peptide containing the M10 mutation (L 78E 79→D 78L 79) showed wild-type structure, the M32 mutant peptide (L 78L 81L 83→A 78A 81A 83) revealed a different protein fold to be the reason for the disturbed binding to cellular cofactors. From our data, we conclude, that the activation domain of Rev proteins from different viral origins adopt a similar fold and that a β-structural element is involved in binding to a

  16. Regulatory Protein-Protein Interactions in Primary Metabolism: The Case of the Cysteine Synthase Complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sulfur is an essential nutrient for plant growth and development. In plant sulfur assimilation, cysteine biosynthesis plays a central role in fixing inorganic sulfur from the environment into the metabolic precursor for cellular thiol-containing compounds. A key regulatory feature of this process ...

  17. The cAMP-binding proteins of Leishmania are not the regulatory subunits of cAMP-dependent protein kinase.

    PubMed

    Banerjee, C; Sarkar, D

    2001-09-01

    The most commonly used method to determine the cAMP binding activity in cytosolic extracts of promastigotes of Leishmania spp. underestimated by approximately 11.5-fold the total amount of [(3)H]cAMP bound, when compared with results obtained by the modified Millipore filter technique. Three cAMP-binding proteins (BPI, BPII and BPIII) were partially purified and characterized. The native molecular masses of BPI, BPII and BPIII were estimated to be 105, 155 and 145 kDa, respectively. The binding of [(3)H]cAMP to these proteins was affected to different extents by several cAMP analogues. Antibodies directed against the types I and II regulatory subunits of PKA did not cross-react with the leishmanial extract. Photoaffinity labeling of the cytosolic extracts with 8-N(3)-[(32)P]cAMP specifically labeled a band of M(r) 116000 and a band of M(r) 80000 partially saturable by cAMP. From these results, it is concluded that the leishmanial cAMP-binding proteins appear to belong to a different class distinct from the regulatory subunits of cAMP-dependent protein kinases. PMID:11544092

  18. Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques.

    PubMed

    Dhore, C R; Cleutjens, J P; Lutgens, E; Cleutjens, K B; Geusens, P P; Kitslaar, P J; Tordoir, J H; Spronk, H M; Vermeer, C; Daemen, M J

    2001-12-01

    In the present study, we examined the expression of regulators of bone formation and osteoclastogenesis in human atherosclerosis because accumulating evidence suggests that atherosclerotic calcification shares features with bone calcification. The most striking finding of this study was the constitutive immunoreactivity of matrix Gla protein, osteocalcin, and bone sialoprotein in nondiseased aortas and the absence of bone morphogenetic protein (BMP)-2, BMP-4, osteopontin, and osteonectin in nondiseased aortas and early atherosclerotic lesions. When atherosclerotic plaques demonstrated calcification or bone formation, BMP-2, BMP-4, osteopontin, and osteonectin were upregulated. Interestingly, this upregulation was associated with a sustained immunoreactivity of matrix Gla protein, osteocalcin, and bone sialoprotein. The 2 modulators of osteoclastogenesis (osteoprotegerin [OPG] and its ligand, OPGL) were present in the nondiseased vessel wall and in early atherosclerotic lesions. In advanced calcified lesions, OPG was present in bone structures, whereas OPGL was only present in the extracellular matrix surrounding calcium deposits. The observed expression patterns suggest a tight regulation of the expression of bone matrix regulatory proteins during human atherogenesis. The expression pattern of both OPG and OPGL during atherogenesis might suggest a regulatory role of these proteins not only in osteoclastogenesis but also in atherosclerotic calcification. PMID:11742876

  19. The Emerging Role of Protein Phosphorylation as a Critical Regulatory Mechanism Controlling Cellulose Biosynthesis

    PubMed Central

    Jones, Danielle M.; Murray, Christian M.; Ketelaar, KassaDee J.; Thomas, Joseph J.; Villalobos, Jose A.; Wallace, Ian S.

    2016-01-01

    Plant cell walls are extracellular matrices that surround plant cells and critically influence basic cellular processes, such as cell division and expansion. Cellulose is a major constituent of plant cell walls, and this paracrystalline polysaccharide is synthesized at the plasma membrane by a large protein complex known as the cellulose synthase complex (CSC). Recent efforts have identified numerous protein components of the CSC, but relatively little is known about regulation of cellulose biosynthesis. Numerous phosphoproteomic surveys have identified phosphorylation events in CSC associated proteins, suggesting that protein phosphorylation may represent an important regulatory control of CSC activity. In this review, we discuss the composition and dynamics of the CSC in vivo, the catalog of CSC phosphorylation sites that have been identified, the function of experimentally examined phosphorylation events, and potential kinases responsible for these phosphorylation events. Additionally, we discuss future directions in cellulose synthase kinase identification and functional analyses of CSC phosphorylation sites. PMID:27252710

  20. The Emerging Role of Protein Phosphorylation as a Critical Regulatory Mechanism Controlling Cellulose Biosynthesis.

    PubMed

    Jones, Danielle M; Murray, Christian M; Ketelaar, KassaDee J; Thomas, Joseph J; Villalobos, Jose A; Wallace, Ian S

    2016-01-01

    Plant cell walls are extracellular matrices that surround plant cells and critically influence basic cellular processes, such as cell division and expansion. Cellulose is a major constituent of plant cell walls, and this paracrystalline polysaccharide is synthesized at the plasma membrane by a large protein complex known as the cellulose synthase complex (CSC). Recent efforts have identified numerous protein components of the CSC, but relatively little is known about regulation of cellulose biosynthesis. Numerous phosphoproteomic surveys have identified phosphorylation events in CSC associated proteins, suggesting that protein phosphorylation may represent an important regulatory control of CSC activity. In this review, we discuss the composition and dynamics of the CSC in vivo, the catalog of CSC phosphorylation sites that have been identified, the function of experimentally examined phosphorylation events, and potential kinases responsible for these phosphorylation events. Additionally, we discuss future directions in cellulose synthase kinase identification and functional analyses of CSC phosphorylation sites. PMID:27252710

  1. SNARE and regulatory proteins induce local membrane protrusions to prime docked vesicles for fast calcium-triggered fusion

    PubMed Central

    Bharat, Tanmay A M; Malsam, Jörg; Hagen, Wim J H; Scheutzow, Andrea; Söllner, Thomas H; Briggs, John A G

    2014-01-01

    Synaptic vesicles fuse with the plasma membrane in response to Ca2+ influx, thereby releasing neurotransmitters into the synaptic cleft. The protein machinery that mediates this process, consisting of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and regulatory proteins, is well known, but the mechanisms by which these proteins prime synaptic membranes for fusion are debated. In this study, we applied large-scale, automated cryo-electron tomography to image an in vitro system that reconstitutes synaptic fusion. Our findings suggest that upon docking and priming of vesicles for fast Ca2+-triggered fusion, SNARE proteins act in concert with regulatory proteins to induce a local protrusion in the plasma membrane, directed towards the primed vesicle. The SNAREs and regulatory proteins thereby stabilize the membrane in a high-energy state from which the activation energy for fusion is profoundly reduced, allowing synchronous and instantaneous fusion upon release of the complexin clamp. PMID:24493260

  2. Cell cycle progression is an essential regulatory component of phospholipid metabolism and membrane homeostasis.

    PubMed

    Sanchez-Alvarez, Miguel; Zhang, Qifeng; Finger, Fabian; Wakelam, Michael J O; Bakal, Chris

    2015-09-01

    We show that phospholipid anabolism does not occur uniformly during the metazoan cell cycle. Transition to S-phase is required for optimal mobilization of lipid precursors, synthesis of specific phospholipid species and endoplasmic reticulum (ER) homeostasis. Average changes observed in whole-cell phospholipid composition, and total ER lipid content, upon stimulation of cell growth can be explained by the cell cycle distribution of the population. TORC1 promotes phospholipid anabolism by slowing S/G2 progression. The cell cycle stage-specific nature of lipid biogenesis is dependent on p53. We propose that coupling lipid metabolism to cell cycle progression is a means by which cells have evolved to coordinate proliferation with cell and organelle growth. PMID:26333836

  3. A meeting of two chronobiological systems: circadian proteins Period1 and BMAL1 modulate the human hair cycle clock.

    PubMed

    Al-Nuaimi, Yusur; Hardman, Jonathan A; Bíró, Tamás; Haslam, Iain S; Philpott, Michael P; Tóth, Balázs I; Farjo, Nilofer; Farjo, Bessam; Baier, Gerold; Watson, Rachel E B; Grimaldi, Benedetto; Kloepper, Jennifer E; Paus, Ralf

    2014-03-01

    The hair follicle (HF) is a continuously remodeled mini organ that cycles between growth (anagen), regression (catagen), and relative quiescence (telogen). As the anagen-to-catagen transformation of microdissected human scalp HFs can be observed in organ culture, it permits the study of the unknown controls of autonomous, rhythmic tissue remodeling of the HF, which intersects developmental, chronobiological, and growth-regulatory mechanisms. The hypothesis that the peripheral clock system is involved in hair cycle control, i.e., the anagen-to-catagen transformation, was tested. Here we show that in the absence of central clock influences, isolated, organ-cultured human HFs show circadian changes in the gene and protein expression of core clock genes (CLOCK, BMAL1, and Period1) and clock-controlled genes (c-Myc, NR1D1, and CDKN1A), with Period1 expression being hair cycle dependent. Knockdown of either BMAL1 or Period1 in human anagen HFs significantly prolonged anagen. This provides evidence that peripheral core clock genes modulate human HF cycling and are an integral component of the human hair cycle clock. Specifically, our study identifies BMAL1 and Period1 as potential therapeutic targets for modulating human hair growth. PMID:24005054

  4. RNA regulatory networks diversified through curvature of the PUF protein scaffold

    SciTech Connect

    Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.; Nevil, Markus; Campbell, Zachary T.; Tanaka Hall, Traci M.; Wickens, Marvin

    2015-09-14

    Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extended interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks.

  5. RNA regulatory networks diversified through curvature of the PUF protein scaffold

    DOE PAGESBeta

    Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.; Nevil, Markus; Campbell, Zachary T.; Tanaka Hall, Traci M.; Wickens, Marvin

    2015-09-14

    Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extendedmore » interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks.« less

  6. RNA regulatory networks diversified through curvature of the PUF protein scaffold.

    PubMed

    Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P; Nevil, Markus; Campbell, Zachary T; Tanaka Hall, Traci M; Wickens, Marvin

    2015-01-01

    Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p-RNA complexes reveal that the protein scaffold presents an exceptionally flat and extended interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks. PMID:26364903

  7. RNA regulatory networks diversified through curvature of the PUF protein scaffold

    PubMed Central

    Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.; Nevil, Markus; Campbell, Zachary T.; Tanaka Hall, Traci M.; Wickens, Marvin

    2015-01-01

    Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extended interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks. PMID:26364903

  8. Oncogenic potential of histone-variant H2A.Z.1 and its regulatory role in cell cycle and epithelial-mesenchymal transition in liver cancer

    PubMed Central

    Eun, Jung Woo; Shen, Qingyu; Kim, Hyung Seok; Shin, Woo Chan; Ahn, Young Min; Park, Won Sang; Lee, Jung Young; Nam, Suk Woo

    2016-01-01

    H2A.Z is a highly conserved H2A variant, and two distinct H2A.Z isoforms, H2A.Z.1 and H2A.Z.2, have been identified as products of two non-allelic genes, H2AFZ and H2AFV. H2A.Z has been reported to be overexpressed in breast, prostate and bladder cancers, but most studies did not clearly distinguish between isoforms. One recent study reported a unique role for the H2A.Z isoform H2A.Z.2 as a driver of malignant melanoma. Here we first report that H2A.Z.1 plays a pivotal role in the liver tumorigenesis by selectively regulating key molecules in cell cycle and epithelial-mesenchymal transition (EMT). H2AFZ expression was significantly overexpressed in a large cohort of hepatocellular carcinoma (HCC) patients, and high expression of H2AFZ was significantly associated with their poor prognosis. H2A.Z.1 overexpression was demonstrated in a subset of human HCC and cell lines. H2A.Z.1 knockdown suppressed HCC cell growth by transcriptional deregulation of cell cycle proteins and caused apoptotic cell death of HCC cells. We also observed that H2A.Z.1 knockdown reduced the metastatic potential of HCC cells by selectively modulating epithelial-mesenchymal transition regulatory proteins such as E-cadherin and fibronectin. In addition, H2A.Z.1 knockdown reduced the in vivo tumor growth rate in a mouse xenograft model. In conclusion, our findings suggest the oncogenic potential of H2A.Z.1 in liver tumorigenesis and that it plays established role in accelerating cell cycle transition and EMT during hepatocarcinogenesis. This makes H2A.Z.1 a promising target in liver cancer therapy. PMID:26863632

  9. Platelet cytosolic 44-kDa protein is a substrate of cholera toxin-induced ADP-ribosylation and is not recognized by antisera against the. alpha. subunit of the stimulatory guanine nucleotide-binding regulatory protein

    SciTech Connect

    Molina Y Vedia, L.M.; Reep, B.R.; Lapetina, E.G. )

    1988-08-01

    ADP-ribosylation induced by cholera toxin and pertussis toxin was studied in particulate and cytosolic fractions of human platelets. Platelets were disrupted by a cycle of freezing and thawing in the presence of a hyposmotic buffer containing protease inhibitors. In both fractions, the A subunit of cholera toxin ADP-ribosylates two proteins with molecular masses of 42 and 44 kDa, whereas pertussis toxin ADP-ribosylates a 41-kDa polypeptide. Two antisera against the {alpha} subunit of the stimulatory guanine nucleotide-binding regulatory protein recognize only the 42-kDa polypeptide. Cholera toxin-induced ADP-ribosylation of the 42- and 44-kDa proteins is reduced by pretreatment of platelets with iloprost, a prostacyclin analog. The 44-kDa protein, which is substrate of cholera toxin, could be extracted completely from the membrane and recovered in the cytosolic fraction when the cells were disrupted by Dounce homogenization and the pellet was extensively washed. A 44-kDa protein can also be labeled with 8-azidoguanosine 5{prime}-({alpha}-{sup 32}P)triphosphate in the cytosol and membranes. These finding indicate that cholera and pertussis toxins produced covalent modifications of proteins present in particulate and cytosolic platelet fractions. Moreover, the 44-kDa protein might be an {alpha} subunit of a guanine nucleotide-binding regulatory protein that is not recognized by available antisera.

  10. Diethylnitrosamine (DEN) induces irreversible hepatocellular carcinogenesis through overexpression of G1/S-phase regulatory proteins in rat.

    PubMed

    Park, Dae-Hun; Shin, Jae Wook; Park, Seung-Kee; Seo, Jae-Nam; Li, Lan; Jang, Ja-June; Lee, Min-Jae

    2009-12-15

    Hepatocellular carcinoma (HCC) is the fifth most frequent cause of cancer deaths in males and was the third most frequent cause of cancer deaths in 2007 throughout the world. The incidence rate is 2-3 times higher in developing countries than in developed countries. Animal models have enabled study of the mechanism of HCC and the development of possible strategies for treatment. Diethylnitrosamine (DEN) is a representative chemical carcinogen with the potential to cause tumors in various organs, including the liver, skin, gastrointestinal tract, and respiratory system. Specifically in HCC, DEN is a complete carcinogen. Many lines of evidence have demonstrated a relationship between carcinogenesis and cell cycle regulation. In this study we found that cell cycle regulatory proteins were critically involved in cancer initiation and promotion by DEN. Cyclin D1, cyclin E, cdk4, and p21(CIP1/WAF1) are factors whose expression levels may be useful as criteria for the classification of hepatic disease. In particular, cdk4 had a pivotal role in the transition to the neoplastic stage. In conclusion, we suggest that changes in the level of cdk4 may be useful as a biomarker for detection of HCC. PMID:19822196

  11. Overexpression of Cell Cycle Proteins of Peripheral Lymphocytes in Patients with Alzheimer's Disease

    PubMed Central

    Kim, Hyeran; Kwon, Young-Ah; Ahn, Inn Sook; Kim, Sangha; Kim, Seonwoo; Jo, Sangmee Ahn

    2016-01-01

    Objective Biological markers for Alzheimer's disease (AD) will help clinicians make objective diagnoses early during the course of dementia. Previous studies have suggested that cell cycle dysregulation begins earlier than the onset of clinical manifestations in AD. Methods We examined the lymphocyte expression of cell cycle proteins in AD patients, dementia controls (DC), and normal controls (NC). One-hundred seventeen subjects (36 AD, 31 DC, and 50 NC) were recruited. The cell cycle proteins CDK2, CDK4, CDK6, cyclin B, and cyclin D were measured in peripheral lymphocytes. Cell cycle protein expression in the three groups was compared after adjusting for age and sex. Results The levels of cell cycle proteins CDK2, CDK4, CDK6, cyclin B, and cyclin D were significantly higher in AD patients than in the NC subjects. The DC group manifested intermediate levels of cell cycle proteins compared with the AD patients and the NC subjects. The present study indicates that cell cycle proteins are upregulated in the peripheral lymphocytes of AD patients. Conclusion Cell cycle dysregulation in peripheral lymphocytes may present a promising starting point for identifying peripheral biomarkers of AD. PMID:26766955

  12. Bacterial Iron–Sulfur Regulatory Proteins As Biological Sensor-Switches

    PubMed Central

    Crack, Jason C.; Green, Jeffrey; Hutchings, Matthew I.; Thomson, Andrew J.

    2012-01-01

    Abstract Significance: In recent years, bacterial iron–sulfur cluster proteins that function as regulators of gene transcription have emerged as a major new group. In all cases, the cluster acts as a sensor of the environment and enables the organism to adapt to the prevailing conditions. This can range from mounting a response to oxidative or nitrosative stress to switching between anaerobic and aerobic respiratory pathways. The sensitivity of these ancient cofactors to small molecule reactive oxygen and nitrogen species, in particular, makes them ideally suited to function as sensors. Recent Advances: An important challenge is to obtain mechanistic and structural information about how these regulators function and, in particular, how the chemistry occurring at the cluster drives the subsequent regulatory response. For several regulators, including FNR, SoxR, NsrR, IscR, and Wbl proteins, major advances in understanding have been gained recently and these are reviewed here. Critical Issues: A common theme emerging from these studies is that the sensitivity and specificity of the cluster of each regulatory protein must be exquisitely controlled by the protein environment of the cluster. Future Directions: A major future challenge is to determine, for a range of regulators, the key factors for achieving control of sensitivity/specificity. Such information will lead, eventually, to a system understanding of stress response, which often involves more than one regulator. Antioxid. Redox Signal. 17, 1215–1231. PMID:22239203

  13. Cytoplasmic dynein and its regulatory proteins in Golgi pathology in nervous system disorders

    PubMed Central

    Jaarsma, Dick; Hoogenraad, Casper C.

    2015-01-01

    The Golgi apparatus is a dynamic organelle involved in processing and sorting of lipids and proteins. In neurons, the Golgi apparatus is important for the development of axons and dendrites and maintenance of their highly complex polarized morphology. The motor protein complex cytoplasmic dynein has an important role in Golgi apparatus positioning and function. Together, with dynactin and other regulatory factors it drives microtubule minus-end directed motility of Golgi membranes. Inhibition of dynein results in fragmentation and dispersion of the Golgi ribbon in the neuronal cell body, resembling the Golgi abnormalities observed in some neurodegenerative disorders, in particular motor neuron diseases. Mutations in dynein and its regulatory factors, including the dynactin subunit p150Glued, BICD2 and Lis-1, are associated with several human nervous system disorders, including cortical malformation and motor neuropathy. Here we review the role of dynein and its regulatory factors in Golgi function and positioning, and the potential role of dynein malfunction in causing Golgi apparatus abnormalities in nervous system disorders. PMID:26578860

  14. Mys protein regulates protein kinase A activity by interacting with regulatory type Ialpha subunit during vertebrate development.

    PubMed

    Kotani, Tomoya; Iemura, Shun-ichiro; Natsume, Tohru; Kawakami, Koichi; Yamashita, Masakane

    2010-02-12

    During embryonic development, protein kinase A (PKA) plays a key role in cell fate specification by antagonizing the Hedgehog (Hh) signaling pathway. However, the mechanism by which PKA activity is regulated remains unknown. Here we show that the Misty somites (Mys) protein regulates the level of PKA activity during embryonic development in zebrafish. We isolate PKA regulatory type Ialpha subunit (Prkar1a) as a protein interacting with Mys by pulldown assay in HEK293 cells followed by mass spectrometry analysis. We show an interaction between endogenous Mys and Prkar1a in the zebrafish embryo. Mys binds to Prkar1a in its C terminus region, termed PRB domain, and activates PKA in vitro. Conversely, knockdown of Mys in zebrafish embryos results in reduction in PKA activity. We also show that knockdown of Mys induces ectopic activation of Hh target genes in the eyes, neural tube, and somites downstream of Smoothened, a protein essential for transduction of Hh signaling activity. The altered patterning of gene expression is rescued by activation of PKA. Together, our results reveal a molecular mechanism of regulation of PKA activity that is dependent on a protein-protein interaction and demonstrate that PKA activity regulated by Mys is indispensable for negative regulation of the Hh signaling pathway in Hh-responsive cells. PMID:20018846

  15. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    SciTech Connect

    Ding, Li; Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang; Tong, Dewen

    2014-03-07

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.

  16. Structure of the Na,K-ATPase regulatory protein FXYD1 in micelles†

    PubMed Central

    Teriete, Peter; Franzin, Carla M.; Choi, Jungyuen; Marassi, Francesca M.

    2008-01-01

    FXYD1 is a major regulatory subunit of the Na,K-ATPase, and the principal substrate of hormone-regulated phosphorylation by c-AMP dependent protein kinases A and C in heart and skeletal muscle sarcolemma. It is a member of an evolutionarily conserved family of membrane proteins that regulate the function of the enzyme complex in a tissue-specific and physiological-state-specific manner. Here we present the three-dimensional structure of FXYD1 determined in micelles by NMR spectroscopy. Structure determination was made possible by measuring residual dipolar couplings in weakly oriented micelle samples of the protein. This allowed us to obtain the relative orientations of the helical segments of the protein, and also provided information about the protein dynamics. The structural analysis was further facilitated by the inclusion of distance restraints, obtained from paramagnetic spin label relaxation enhancements, and by refinement with a micelle depth restraint, derived from paramagnetic Mn line broadening effects. The structure of FXYD1 provides the foundation for understanding its intra-membrane association with the Na,K-ATPase α subunit, and suggests a mechanism whereby the phosphorylation of conserved Ser residues, by protein kinases A and C, could induce a conformational change in the cytoplasmic domain of the protein, to modulate its interaction with the α subunit. PMID:17511473

  17. Differential recruitment of co-regulatory proteins to the human estrogen receptor 1 in response to xenoestrogens.

    PubMed

    Smith, L Cody; Clark, Jessica C; Bisesi, Joseph H; Ferguson, P Lee; Sabo-Attwood, Tara

    2016-09-01

    The diverse biological effects of xenoestrogens may be explained by their ability to differentially recruit co-regulatory proteins to the estrogen receptor (ER). We employed high-throughput receptor affinity binding and co-regulatory protein recruitment screening assays based on fluorescence polarization and time resolved florescence resonance energy transfer (TR-FRET), respectively, to assess xenoestrogen-specific binding and co-regulatory protein recruitment to the ER. Then we used a functional proteomic assay based on co-immunoprecipitation of ER-bound proteins to isolate and identify intact co-regulatory proteins recruited to a ligand-activated ER. Through these approaches, we revealed differential binding affinity of bisphenol-A (BPA) and genistein (GEN) to the human ERα (ESR1) and ligand-dependent recruitment of SRC-1 and SRC-3 peptides. Recruitment profiles were variable for each ligand and in some cases were distinct compared to 17β-estradiol (E2). For example, E2 and GEN recruited both SRC-1 and -3 peptides whereas BPA recruited only SRC-1 peptides. Results of the functional proteomic assay showed differential recruitment between ligands where E2 recruited the greatest number of proteins followed by BPA then GEN. A number of proteins share previously identified relationships with ESR1 as determined by STRING analysis. Although there was limited overlap in proteins identified between treatments, all ligands recruited proteins involved in cell growth as determined by subnetwork enrichment analysis (p<0.05). A comparative, in silico analysis revealed that fewer interactions exist between zebrafish (Danio rerio) esr1 and zebrafish orthologs of proteins identified in our functional proteomic analysis. Taken together these results identify recruitment of known and previously unknown co-regulatory proteins to ESR1 and highlight new methods to assay recruitment of low abundant and intact, endogenous co-regulatory proteins to ESR1 or other nuclear receptors, in

  18. Photoaffinity labeling of regulatory subunits of protein kinase A in cardiac cell fractions of rats

    NASA Technical Reports Server (NTRS)

    Mednieks, M. I.; Popova, I.; Grindeland, R. E.

    1992-01-01

    Photoaffinity labeling in heart tissue of rats flown on Cosmos 2044 was used to measure the regulatory (R) subunits of adenosine monophosphate-dependent protein kinase. A significant decrease of RII subunits in the particulate cell fraction extract (S2; P less than 0.05 in all cases) was observed when extracts of tissue samples from vivarium controls were compared with those from flight animals. Photoaffinity labeling of the soluble fraction (S1) was observed to be unaffected by spaceflight or any of the simulation conditions. Proteins of the S2 fraction constitute a minor (less than 10 percent) component of the total, whereas the S1 fraction contained most of the cell proteins. Changes in a relatively minor aspect of adenosine monophosphate-mediated reactions are considered to be representative of a metabolic effect.

  19. Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA

    SciTech Connect

    Walden, William E.; Selezneva, Anna I.; Dupuy, Jérôme; Volbeda, Anne; Fontecilla-Camps, Juan C.; Theil, Elizabeth C.; Volz1, Karl

    2011-07-27

    Iron regulatory protein 1 (IRP1) binds iron-responsive elements (IREs) in messenger RNAs (mRNAs), to repress translation or degradation, or binds an iron-sulfur cluster, to become a cytosolic aconitase enzyme. The 2.8 angstrom resolution crystal structure of the IRP1:ferritin H IRE complex shows an open protein conformation compared with that of cytosolic aconitase. The extended, L-shaped IRP1 molecule embraces the IRE stem-loop through interactions at two sites separated by {approx}30 angstroms, each involving about a dozen protein:RNA bonds. Extensive conformational changes related to binding the IRE or an iron-sulfur cluster explain the alternate functions of IRP1 as an mRNA regulator or enzyme.

  20. Exceptionally high heterologous protein levels in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences.

    PubMed

    De Jaeger, Geert; Angenon, Geert; Depicker, Ann

    2003-01-01

    Seeds are concentrated sources of protein and thus may be ideal 'bioreactors' for the production of heterologous proteins. For this application, strong seed-specific expression signals are required. A set of expression cassettes were designed using 5' and 3' regulatory sequences of the seed storage protein gene arcelin 5-I (arc5-I) from Phaseolus vulgaris, and evaluated for the production of heterologous proteins in dicotyledonous plant species. A murine single-chain variable fragment (scFv) was chosen as model protein because of the current industrial interest to produce antibodies and derived fragments in crops. Because the highest scFv accumulation in seed had previously been achieved in the endoplasmic reticulum (ER), the scFv-encoding sequence was provided with signal sequences for accumulation in the ER. Transgenic Arabidopsis seed stocks, expressing the scFv under control of the 35S promoter, contained scFv accumulation levels in the range of 1% of total soluble protein (TSP). However, the seed storage promoter constructs boosted the scFv to exceptionally high levels. Maximum scFv levels were obtained in homozygous seed stocks, being 12.5% of TSP under control of the arc5-I regulatory sequences and even up to 36.5% of TSP upon replacing the arc5-I promoter by the beta-phaseolin promoter of Phaseolus vulgaris. Even at such very high levels, the scFv proteins retain their full antigen-binding activity. Moreover, the presence of very high scFv levels has only minory effects on seed germination and no effect on seed production. These results demonstrate that the expression levels of arcelin 5-I and beta-phaseolin seed storage protein genes can be transferred to heterologous proteins, giving exceptionally high levels of heterologous proteins, which can be of great value for the molecular farming industry by raising production yield and lowering bio-mass production and purification costs. Finally, the feasibility of heterologous protein production using the

  1. Rat beta 1-adrenergic receptor regulatory region containing consensus AP-2 elements recognizes novel transactivator proteins.

    PubMed

    Kirigiti, P; Yang, Y F; Li, X; Li, B; Midson, C N; Machida, C A

    2000-03-01

    beta 1-Adrenergic receptors (beta1-ARs) serve as important regulators of central nervous system (CNS)-mediated behavior and several neural functions, including mood, memory, neuroendocrine control, and stimulation of autonomic function. Using beta 1-AR-luciferase reporter recombinants, we have previously determined that important beta 1-AR genetic elements controlling expression within the C6 glioma cell line are contained within the region -396 to -299, relative to the translational start site. By conducting progressive internal deletions of the rat beta 1-AR 5' flanking region and with the use of beta 1-AR-luciferase recombinants, we have verified that this region contains the primary beta 1-AR promoter and/or major regulatory elements. To begin the identification of protein factors involved in beta 1-AR transcriptional activity conferred by this beta 1-AR region and flanking sequences, we conducted electrophoretic mobility shift assays using defined beta 1-AR DNA subregion probes. One probe (GS-1), encompassing the region -396 to -367, was found to produce two major and two minor mobility shift complexes when bound to nuclear extracts from the beta 1-AR expresser C6 cell line. UV-crosslinking of DNA-protein complexes, coupled with DNase I digestion, indicated that this beta 1-AR region interacts with one major protein of approximately 117 kDa molecular weight and additional minor proteins. GS-1 DNA-protein complexes were observed using beta 1-AR expresser tissues in the CNS, including cortex, hippocampus, and olfactory bulb. No DNA-protein complexes were observed when using nuclear extracts from beta 1-AR nonexpresser tissues; in some cases, using L6 cells, previously characterized to express little or no beta1-ARs, a reduction in intensities of the DNA-protein complexes was observed. Competition experiments indicate that nuclear protein binds to one of two subregions within the GS-1 sequence that contain AP-2-like consensus elements. Recombinant AP-2 protein

  2. Differential dissolved protein expression throughout the life cycle of Giardia lamblia.

    PubMed

    Lingdan, Li; Pengtao, Gong; Wenchao, Li; Jianhua, Li; Ju, Yang; Chengwu, Liu; He, Li; Guocai, Zhang; Wenzhi, Ren; Yujiang, Chen; Xichen, Zhang

    2012-12-01

    Giardia lamblia (G. lamblia) has a simple life cycle that alternates between a cyst and a trophozoite, and this parasite is an important human and animal pathogen. To increase our understanding of the molecular basis of the G. lamblia encystment, we have analyzed the soluble proteins expressed by trophozoites and cysts extracted from feces by quantitative proteomic analysis. A total of 63 proteins were identified by isobaric tags for relative and absolute quantitation (iTRAQ) labeling, and were categorized as cytoskeletal proteins, a cell-cycle-specific kinase, metabolic enzymes and stress resistance proteins. Importantly, we demonstrated that the expression of seven proteins differed significantly between trophozoites and cysts. In cysts, the expression of three proteins (one variable surface protein (VSP), ornithine carbamoyltransferase (OTC), β-tubulin) increased, whereas the expression of four proteins (14-3-3 protein, α-tubulin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), protein disulfide isomerase 2 (PDI-2)) decreased significantly when compared with the levels of these proteins in trophozoites. The mRNA expression patterns of four of these proteins (OTC, α-tubulin, GAPDH, VSP) were similar to the expression levels of the proteins. These seven proteins appear to play an important role in the completion of the life cycle of G. lamblia. PMID:23058231

  3. Protein phosphatase 2A regulatory subunits perform distinct functional roles in the maize pathogen Fusarium verticillioides.

    PubMed

    Shin, Joon-Hee; Kim, Jung-Eun; Malapi-Wight, Martha; Choi, Yoon-E; Shaw, Brian D; Shim, Won-Bo

    2013-06-01

    Fusarium verticillioides is a pathogen of maize causing ear rot and stalk rot. The fungus also produces fumonisins, a group of mycotoxins linked to disorders in animals and humans. A cluster of genes, designated FUM genes, plays a key role in the synthesis of fumonisins. However, our understanding of the regulatory mechanism of fumonisin biosynthesis is still incomplete. We have demonstrated previously that Cpp1, a protein phosphatase type 2A (PP2A) catalytic subunit, negatively regulates fumonisin production and is involved in cell shape maintenance. In general, three PP2A subunits, structural A, regulatory B and catalytic C, make up a heterotrimer complex to perform regulatory functions. Significantly, we identified two PP2A regulatory subunits in the F. verticillioides genome, Ppr1 and Ppr2, which are homologous to Saccharomyces cerevisiae Cdc55 and Rts1, respectively. In this study, we hypothesized that Ppr1 and Ppr2 are involved in the regulation of fumonisin biosynthesis and/or cell development in F. verticillioides, and generated a series of mutants to determine the functional role of Ppr1 and Ppr2. The PPR1 deletion strain (Δppr1) resulted in drastic growth defects, but increased microconidia production. The PPR2 deletion mutant strain (Δppr2) showed elevated fumonisin production, similar to the Δcpp1 strain. Germinating Δppr1 conidia formed abnormally swollen cells with a central septation site, whereas Δppr2 showed early hyphal branching during conidia germination. A kernel rot assay showed that the mutants were slow to colonize kernels, but this is probably a result of growth defects rather than a virulence defect. Results from this study suggest that two PP2A regulatory subunits in F. verticillioides carry out distinct roles in the regulation of fumonisin biosynthesis and fungal development. PMID:23452277

  4. Chronic Low Level Complement Activation within the Eye Is Controlled by Intraocular Complement Regulatory Proteins

    PubMed Central

    Sohn, Jeong-Hyeon; Kaplan, Henry J.; Suk, Hye-Jung; Bora, Puran S.; Bora, Nalini S.

    2007-01-01

    Purpose To explore the role of the complement system and complement regulatory proteins in an immune-privileged organ, the eye. Methods Eyes of normal Lewis rats were analyzed for the expression of complement regulatory proteins, membrane cofactor protein (MCP), decay-acceleration factor (DAF), membrane inhibitor of reactive lysis (MIRL, CD59), and cell surface regulator of complement (Crry), using immunohistochemistry, Western blot analysis, and reverse transcription–polymerase chain reaction (RT-PCR). Zymosan, a known activator of the alternative pathway of complement system was injected into the anterior chamber of the eye of Lewis rats. Animals were also injected intracamerally with 5 μl (25 μg) of neutralizing monoclonal antibody (mAb) against rat Crry (5I2) or CD59 (6D1) in an attempt to develop antibody induced anterior uveitis; control animals received 5 μl of sterile phosphate-buffered saline (PBS), OX-18 (25 μg), G-16-510E3 (25 μg), or MOPC-21 (25 μg). The role of complement system in antibody-induced uveitis was explored by intraperitoneal injection of 35 U cobra venom factor (CVF), 24 hours before antibody injection. Immunohistochemical staining and sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) with Western blot analysis were used to detect the presence of membrane attack complex (MAC) and C3 activation products, respectively, in normal and antibody-injected rat eyes. Results Complement activation product MAC was present in the normal rat eye, and intraocular injection of zymosan induced severe anterior uveitis. The complement regulatory proteins, MCP, DAF, CD59, and Crry, were identified in the normal rat eye. Soluble forms of Crry and CD59 were also detected in normal rat aqueous humor. Severe anterior uveitis developed in Lewis rats injected with a neutralizing mAb against Crry, with increased formation of C3 split products. Systemic complement depletion by CVF prevented the induction of anterior uveitis by anti

  5. The archaeal feast/famine regulatory protein: Potential roles of its assembly forms for regulating transcription

    PubMed Central

    Koike, Hideaki; Ishijima, Sanae A.; Clowney, Lester; Suzuki, Masashi

    2004-01-01

    The classification feast/famine regulatory proteins (FFRPs) encompasses archaeal DNA-binding proteins with Escherichia coli transcription factors, the leucine-responsive regulatory protein and the asparagine synthase C gene product. In this paper, we describe two forms of the archaeal FFRP FL11 (pot0434017), both assembled from dimers. When crystallized, a helical cylinder is formed with six dimers per turn. In contrast, in solution, disks are formed, most likely consisting of four dimers each; an observation by cryoelectron microscopy. Whereas each dimer binds a 13-bp sequence, different forms will discriminate between promoters, based on the numbers of repeating 13-bp sequences, and types of linkers inserted between them, which are either of 7-8 or ≈18 bp. The amino acid sequences of these FFRPs are designed to form the same type of 3D structures, and the transition between their assembly forms is regulated by interaction with small molecules. These considerations lead us to propose a possible mechanism for regulating a number of genes by varying assembly forms and by combining different FFRPs into these assemblies, responding to environmental changes. PMID:14976242

  6. Cytosolic Na+ Controls an Epithelial Na+ Channel Via the Go Guanine Nucleotide-Binding Regulatory Protein

    NASA Astrophysics Data System (ADS)

    Komwatana, P.; Dinudom, A.; Young, J. A.; Cook, D. I.

    1996-07-01

    In tight Na+-absorbing epithelial cells, the rate of Na+ entry through amiloride-sensitive apical membrane Na+ channels is matched to basolateral Na+ extrusion so that cell Na+ concentration and volume remain steady. Control of this process by regulation of apical Na+ channels has been attributed to changes in cytosolic Ca2+ concentration or pH, secondary to changes in cytosolic Na+ concentration, although cytosolic Cl- seems also to be involved. Using mouse mandibular gland duct cells, we now demonstrate that increasing cytosolic Na+ concentration inhibits apical Na+ channels independent of changes in cytosolic Ca2+, pH, or Cl-, and the effect is blocked by GDP-β -S, pertussis toxin, and antibodies against the α -subunits of guanine nucleotide-binding regulatory proteins (Go). In contrast, the inhibitory effect of cytosolic anions is blocked by antibodies to inhibitory guanine nucleotide-binding regulatory proteins (Gi1/Gi2. It thus appears that apical Na+ channels are regulated by Go and Gi proteins, the activities of which are controlled, respectively, by cytosolic Na+ and Cl-.

  7. Cotyledon nuclear proteins bind to DNA fragments harboring regulatory elements of phytohemagglutinin genes.

    PubMed Central

    Riggs, C D; Voelker, T A; Chrispeels, M J

    1989-01-01

    The effects of deleting DNA sequences upstream from the phytohemagglutinin-L gene of Phaseolus vulgaris have been examined with respect to the level of gene product produced in the seeds of transgenic tobacco. Our studies indicate that several upstream regions quantitatively modulate expression. Between -1000 and -675, a negative regulatory element reduces expression approximately threefold relative to shorter deletion mutants that do not contain this region. Positive regulatory elements lie between -550 and -125 and, compared with constructs containing only 125 base pairs of upstream sequences (-125), the presence of these two regions can be correlated with a 25-fold and a 200-fold enhancement of phytohemagglutinin-L levels. These experiments were complemented by gel retardation assays, which demonstrated that two of the three regions bind cotyledon nuclear proteins from mid-mature seeds. One of the binding sites maps near a DNA sequence that is highly homologous to protein binding domains located upstream from the soybean seed lectin and Kunitz trypsin inhibitor genes. Competition experiments demonstrated that the upstream regions of a bean beta-phaseolin gene, the soybean seed lectin gene, and an oligonucleotide from the upstream region of the trypsin inhibitor gene can compete differentially for factor binding. We suggest that these legume genes may be regulated in part by evolutionarily conserved protein/DNA interactions. PMID:2535513

  8. The archaeal feast/famine regulatory protein: Potential roles of its assembly forms for regulating transcription

    NASA Astrophysics Data System (ADS)

    Koike, Hideaki; Ishijima, Sanae A.; Clowney, Lester; Suzuki, Masashi

    2004-03-01

    The classification feast/famine regulatory proteins (FFRPs) encompasses archaeal DNA-binding proteins with Escherichia coli transcription factors, the leucine-responsive regulatory protein and the asparagine synthase C gene product. In this paper, we describe two forms of the archaeal FFRP FL11 (pot0434017), both assembled from dimers. When crystallized, a helical cylinder is formed with six dimers per turn. In contrast, in solution, disks are formed, most likely consisting of four dimers each; an observation by cryoelectron microscopy. Whereas each dimer binds a 13-bp sequence, different forms will discriminate between promoters, based on the numbers of repeating 13-bp sequences, and types of linkers inserted between them, which are either of 7-8 or 18 bp. The amino acid sequences of these FFRPs are designed to form the same type of 3D structures, and the transition between their assembly forms is regulated by interaction with small molecules. These considerations lead us to propose a possible mechanism for regulating a number of genes by varying assembly forms and by combining different FFRPs into these assemblies, responding to environmental changes.

  9. [The Regulatory Proteins of β-Adrenergic Receptor and Their Functions].

    PubMed

    Tian, Ai-ju; Li, Zi-jian

    2015-04-01

    Vascular diseases has become a top killer of human health, and cardiovascular receptors are pivotal in the occurrence, development, prevention and treatment of cardiovascular diseases. As for the important member of G protein-coupled receptor, β-adrenergic receptor is undoubtedly a most important target of cardiovascular drugs. Being the hot spot in the cardiovascular research and application, β- adrenergic receptor blocker has been considered as the greatest breakthrough for the prevention and cure of cardiovascular disease after digitalis. The 2012 Nobel Prize in chemistry was awarded again to the researchers on β-adrenergic receptors. Extensive researchs show that β-adrenergic receptors are precisely regulated by different regulatory proteins in cells in the transduction of different physiological and pathological signaling pathways. Based on these findings, function-selective ligands recently arise in the receptor research and will be the new chance of drug discovery. In this article we reviewed the related signal pathways and functions of β-adrenergic receptor regulatory proteins. PMID:26201103

  10. Identification of Proteins Whose Synthesis Is Modulated During the Cell Cycle of Saccharomyces cerevisiae

    PubMed Central

    Lörincz, Attila T.; Miller, Mark J.; Xuong, Nguyen-Huu; Geiduschek, E. Peter

    1982-01-01

    We examined the synthesis and turnover of individual proteins in the Saccharomyces cerevisiae cell cycle. Proteins were pulse-labeled with radioactive isotope (35S or 14C) in cells at discrete cycle stages and then resolved on two-dimensional gels and analyzed by a semiautomatic procedure for quantitating gel electropherogram-autoradiographs. The cells were obtained by one of three methods: (i) isolation of synchronous subpopulations of growing cells by zonal centrifugation; (ii) fractionation of pulse-labeled steady-state cultures according to cell age; and (iii) synchronization of cells with the mating pheromone, α-factor. In confirmation of previous studies, we found that the histones H4, H2A, and H2B were synthesized almost exclusively in the late G1 and early S phases. In addition, we identified eight proteins whose rates of synthesis were modulated in the cell cycle, and nine proteins (of which five, which may well be related, were unstable, with half-lives of 10 to 15 min) that might be regulated in the cell cycle by periodic synthesis, modification, or degradation. Based on the time of maximal labeling in the cell cycle and on experiments with α-factor and hydroxyurea, we assigned the cell cycle proteins to two classes: proteins in class I were labeled principally in early G1 phase and at a late stage of the cycle, whereas those in class II were primarily synthesized at times ranging from late G1 to mid S phase. At least one major control point for the cell cycle proteins occurred between “start” and early S phase. A set of stress-responsive proteins was also identified and analyzed. The rates of synthesis of these proteins were affected by certain perturbations that resulted during selection of synchronous cell populations and by heat shock. Images PMID:14582195

  11. Regulatory-auxiliary subunits of CLC chloride channel-transport proteins.

    PubMed

    Barrallo-Gimeno, Alejandro; Gradogna, Antonella; Zanardi, Ilaria; Pusch, Michael; Estévez, Raúl

    2015-09-15

    The CLC family of chloride channels and transporters is composed by nine members, but only three of them, ClC-Ka/b, ClC-7 and ClC-2, have been found so far associated with auxiliary subunits. These CLC regulatory subunits are small proteins that present few common characteristics among them, both structurally and functionally, and their effects on the corresponding CLC protein are different. Barttin, a protein with two transmembrane domains, is essential for the membrane localization of ClC-K proteins and their activity in the kidney and inner ear. Ostm1 is a protein with a single transmembrane domain and a highly glycosylated N-terminus. Unlike the other two CLC auxiliary subunits, Ostm1 shows a reciprocal relationship with ClC-7 for their stability. The subcellular localization of Ostm1 depends on ClC-7 and not the other way around. ClC-2 is active on its own, but GlialCAM, a transmembrane cell adhesion molecule with two extracellular immunoglobulin (Ig)-like domains, regulates its subcellular localization and activity in glial cells. The common theme for these three proteins is their requirement for a proper homeostasis, since their malfunction leads to distinct diseases. We will review here their properties and their role in normal chloride physiology and the pathological consequences of their improper function. PMID:25762128

  12. Co-evolution of Bacterial Ribosomal Protein S15 with Diverse mRNA Regulatory Structures

    PubMed Central

    Slinger, Betty L.; Newman, Hunter; Lee, Younghan; Pei, Shermin; Meyer, Michelle M.

    2015-01-01

    RNA-protein interactions are critical in many biological processes, yet how such interactions affect the evolution of both partners is still unknown. RNA and protein structures are impacted very differently by mechanisms of genomic change. While most protein families are identifiable at the nucleotide level across large phylogenetic distances, RNA families display far less nucleotide similarity and are often only shared by closely related bacterial species. Ribosomal protein S15 has two RNA binding functions. First, it is a ribosomal protein responsible for organizing the rRNA during ribosome assembly. Second, in many bacterial species S15 also interacts with a structured portion of its own transcript to negatively regulate gene expression. While the first interaction is conserved in most bacteria, the second is not. Four distinct mRNA structures interact with S15 to enable regulation, each of which appears to be independently derived in different groups of bacteria. With the goal of understanding how protein-binding specificity may influence the evolution of such RNA regulatory structures, we examine whether examples of these mRNA structures are able to interact with, and regulate in response to, S15 homologs from organisms containing distinct mRNA structures. We find that despite their shared RNA binding function in the rRNA, S15 homologs have distinct RNA recognition profiles. We present a model to explain the specificity patterns observed, and support this model by with further mutagenesis. After analyzing the patterns of conservation for the S15 protein coding sequences, we also identified amino acid changes that alter the binding specificity of an S15 homolog. In this work we demonstrate that homologous RNA-binding proteins have different specificity profiles, and minor changes to amino acid sequences, or to RNA structural motifs, can have large impacts on RNA-protein recognition. PMID:26675164

  13. Myristoylated. cap alpha. subunits of guanine nucleotide-binding regulatory proteins

    SciTech Connect

    Buss, J.E.; Mumby, S.M.; Casey, P.J.; Gilman, A.G.; Sefton, B.M.

    1987-11-01

    Antisera directed against specific subunits of guanine nucleotide-binding regulatory proteins (G proteins) were used to immunoprecipitate these polypeptides from metabolically labeled cells. This technique detects, in extracts of a human astrocytoma cell line, the ..cap alpha.. subunits of G/sub s/ (stimulatory) (..cap alpha../sub 45/ and ..cap alpha../sub 52/), a 41-kDa subunit of G/sub i/ (inhibitory) (..cap alpha../sub 41/), a 40-kDa protein (..cap alpha../sub 40/), and the 36-kDa ..beta.. subunit. No protein that comigrated with the ..cap alpha.. subunit of G/sup 0/ (unknown function) (..cap alpha../sub 39/) was detected. In cells grown in the presence of (/sup 3/H)myristic acid, ..cap alpha../sub 41/ and ..cap alpha../sub 40/ contained /sup 3/H label, while the ..beta.. subunit did not. Chemical analysis of lipids attached covalently to purified ..cap alpha../sub 41/ and ..cap alpha../sub 39/ from bovine brain also revealed myristic acid. Similar analysis of brain G protein ..beta.. and ..gamma.. subunits and of G/sub t/ (Transducin) subunits (..cap alpha.., ..beta.., and ..gamma..) failed to reveal fatty acids. The fatty acid associated with ..cap alpha../sub 41/ , ..cap alpha../sub 40/, and ..cap alpha../sub 39/ was stable to treatment with base, suggesting that the lipid is linked to the polypeptide via an amide bond. These GTP binding proteins are thus identified as members of a select group of proteins that contains myristic acid covalently attached to the peptide backbone. Myristate may play an important role in stabilizing interactions of G proteins with phospholipid or with membrane-bound proteins.

  14. Expanding the nitrogen regulatory protein superfamily: Homology detection at below random sequence identity.

    PubMed

    Kinch, Lisa N; Grishin, Nick V

    2002-07-01

    Nitrogen regulatory (PII) proteins are signal transduction molecules involved in controlling nitrogen metabolism in prokaryots. PII proteins integrate the signals of intracellular nitrogen and carbon status into the control of enzymes involved in nitrogen assimilation. Using elaborate sequence similarity detection schemes, we show that five clusters of orthologs (COGs) and several small divergent protein groups belong to the PII superfamily and predict their structure to be a (betaalphabeta)(2) ferredoxin-like fold. Proteins from the newly emerged PII superfamily are present in all major phylogenetic lineages. The PII homologs are quite diverse, with below random (as low as 1%) pairwise sequence identities between some members of distant groups. Despite this sequence diversity, evidence suggests that the different subfamilies retain the PII trimeric structure important for ligand-binding site formation and maintain a conservation of conservations at residue positions important for PII function. Because most of the orthologous groups within the PII superfamily are composed entirely of hypothetical proteins, our remote homology-based structure prediction provides the only information about them. Analogous to structural genomics efforts, such prediction gives clues to the biological roles of these proteins and allows us to hypothesize about locations of functional sites on model structures or rationalize about available experimental information. For instance, conserved residues in one of the families map in close proximity to each other on PII structure, allowing for a possible metal-binding site in the proteins coded by the locus known to affect sensitivity to divalent metal ions. Presented analysis pushes the limits of sequence similarity searches and exemplifies one of the extreme cases of reliable sequence-based structure prediction. In conjunction with structural genomics efforts to shed light on protein function, our strategies make it possible to detect

  15. Co-evolution of Bacterial Ribosomal Protein S15 with Diverse mRNA Regulatory Structures.

    PubMed

    Slinger, Betty L; Newman, Hunter; Lee, Younghan; Pei, Shermin; Meyer, Michelle M

    2015-12-01

    RNA-protein interactions are critical in many biological processes, yet how such interactions affect the evolution of both partners is still unknown. RNA and protein structures are impacted very differently by mechanisms of genomic change. While most protein families are identifiable at the nucleotide level across large phylogenetic distances, RNA families display far less nucleotide similarity and are often only shared by closely related bacterial species. Ribosomal protein S15 has two RNA binding functions. First, it is a ribosomal protein responsible for organizing the rRNA during ribosome assembly. Second, in many bacterial species S15 also interacts with a structured portion of its own transcript to negatively regulate gene expression. While the first interaction is conserved in most bacteria, the second is not. Four distinct mRNA structures interact with S15 to enable regulation, each of which appears to be independently derived in different groups of bacteria. With the goal of understanding how protein-binding specificity may influence the evolution of such RNA regulatory structures, we examine whether examples of these mRNA structures are able to interact with, and regulate in response to, S15 homologs from organisms containing distinct mRNA structures. We find that despite their shared RNA binding function in the rRNA, S15 homologs have distinct RNA recognition profiles. We present a model to explain the specificity patterns observed, and support this model by with further mutagenesis. After analyzing the patterns of conservation for the S15 protein coding sequences, we also identified amino acid changes that alter the binding specificity of an S15 homolog. In this work we demonstrate that homologous RNA-binding proteins have different specificity profiles, and minor changes to amino acid sequences, or to RNA structural motifs, can have large impacts on RNA-protein recognition. PMID:26675164

  16. A sweet cycle for Arabidopsis G-proteins: Recent discoveries and controversies in plant G-protein signal transduction.

    PubMed

    Johnston, Christopher A; Willard, Melinda D; Kimple, Adam J; Siderovski, David P; Willard, Francis S

    2008-12-01

    Heterotrimeric G-proteins are a class of signal transduction proteins highly conserved throughout evolution that serve as dynamic molecular switches regulating the intracellular communication initiated by extracellular signals including sensory information. This property is achieved by a guanine nucleotide cycle wherein the inactive, signaling-incompetent Galpha subunit is normally bound to GDP; activation to signaling-competent Galpha occurs through the exchange of GDP for GTP (typically catalyzed via seven-transmembrane domain G-protein coupled receptors [GPCRs]), which dissociates the Gbetagamma dimer from Galpha-GTP and initiates signal transduction. The hydrolysis of GTP, greatly accelerated by "Regulator of G-protein Signaling" (RGS) proteins, returns Galpha to its inactive GDP-bound form and terminates signaling. Through extensive characterization of mammalian Galpha isoforms, the rate-limiting step in this cycle is currently considered to be the GDP/GTP exchange rate, which can be orders of magnitude slower than the GTP hydrolysis rate. However, we have recently demonstrated that, in Arabidopsis, the guanine nucleotide cycle appears to be limited by the rate of GTP hydrolysis rather than nucleotide exchange. This finding has important implications for the mechanism of sugar sensing in Arabidopsis. We also discuss these data on Arabidopsis G-protein nucleotide cycling in relation to recent reports of putative plant GPCRs and heterotrimeric G-protein effectors in Arabidopsis. PMID:19513240

  17. The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover.

    PubMed

    Rachwał, Kamila; Boguszewska, Aleksandra; Kopcińska, Joanna; Karaś, Magdalena; Tchórzewski, Marek; Janczarek, Monika

    2016-01-01

    Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Here, we show that a mutation in rosR resulted in considerable changes in R. leguminosarum bv. trifolii protein profiles. Extracellular, membrane, and periplasmic protein profiles of R. leguminosarum bv. trifolii wild type and the rosR mutant were examined, and proteins with substantially different abundances between these strains were identified. Compared with the wild type, extracellular fraction of the rosR mutant contained greater amounts of several proteins, including Ca(2+)-binding cadherin-like proteins, a RTX-like protein, autoaggregation protein RapA1, and flagellins FlaA and FlaB. In contrast, several proteins involved in the uptake of various substrates were less abundant in the mutant strain (DppA, BraC, and SfuA). In addition, differences were observed in membrane proteins of the mutant and wild-type strains, which mainly concerned various transport system components. Using atomic force microscopy (AFM) imaging, we characterized the topography and surface properties of the rosR mutant and wild-type cells. We found that the mutation in rosR gene also affected surface properties of R. leguminosarum bv. trifolii. The mutant cells were significantly more hydrophobic than the wild-type cells, and their outer membrane was three times more permeable to the hydrophobic dye N-phenyl-1-naphthylamine. The mutation of rosR also caused defects in bacterial symbiotic interaction with clover plants. Compared with

  18. The Regulatory Protein RosR Affects Rhizobium leguminosarum bv. trifolii Protein Profiles, Cell Surface Properties, and Symbiosis with Clover

    PubMed Central

    Rachwał, Kamila; Boguszewska, Aleksandra; Kopcińska, Joanna; Karaś, Magdalena; Tchórzewski, Marek; Janczarek, Monika

    2016-01-01

    Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Here, we show that a mutation in rosR resulted in considerable changes in R. leguminosarum bv. trifolii protein profiles. Extracellular, membrane, and periplasmic protein profiles of R. leguminosarum bv. trifolii wild type and the rosR mutant were examined, and proteins with substantially different abundances between these strains were identified. Compared with the wild type, extracellular fraction of the rosR mutant contained greater amounts of several proteins, including Ca2+-binding cadherin-like proteins, a RTX-like protein, autoaggregation protein RapA1, and flagellins FlaA and FlaB. In contrast, several proteins involved in the uptake of various substrates were less abundant in the mutant strain (DppA, BraC, and SfuA). In addition, differences were observed in membrane proteins of the mutant and wild-type strains, which mainly concerned various transport system components. Using atomic force microscopy (AFM) imaging, we characterized the topography and surface properties of the rosR mutant and wild-type cells. We found that the mutation in rosR gene also affected surface properties of R. leguminosarum bv. trifolii. The mutant cells were significantly more hydrophobic than the wild-type cells, and their outer membrane was three times more permeable to the hydrophobic dye N-phenyl-1-naphthylamine. The mutation of rosR also caused defects in bacterial symbiotic interaction with clover plants. Compared with

  19. ClpB N-terminal domain plays a regulatory role in protein disaggregation

    PubMed Central

    Rosenzweig, Rina; Farber, Patrick; Velyvis, Algirdas; Rennella, Enrico; Latham, Michael P.; Kay, Lewis E.

    2015-01-01

    ClpB/Hsp100 is an ATP-dependent disaggregase that solubilizes and reactivates protein aggregates in cooperation with the DnaK/Hsp70 chaperone system. The ClpB–substrate interaction is mediated by conserved tyrosine residues located in flexible loops in nucleotide-binding domain-1 that extend into the ClpB central pore. In addition to the tyrosines, the ClpB N-terminal domain (NTD) was suggested to provide a second substrate-binding site; however, the manner in which the NTD recognizes and binds substrate proteins has remained elusive. Herein, we present an NMR spectroscopy study to structurally characterize the NTD–substrate interaction. We show that the NTD includes a substrate-binding groove that specifically recognizes exposed hydrophobic stretches in unfolded or aggregated client proteins. Using an optimized segmental labeling technique in combination with methyl-transverse relaxation optimized spectroscopy (TROSY) NMR, the interaction of client proteins with both the NTD and the pore-loop tyrosines in the 580-kDa ClpB hexamer has been characterized. Unlike contacts with the tyrosines, the NTD–substrate interaction is independent of the ClpB nucleotide state and protein conformational changes that result from ATP hydrolysis. The NTD interaction destabilizes client proteins, priming them for subsequent unfolding and translocation. Mutations in the NTD substrate-binding groove are shown to have a dramatic effect on protein translocation through the ClpB central pore, suggesting that, before their interaction with substrates, the NTDs block the translocation channel. Together, our findings provide both a detailed characterization of the NTD–substrate complex and insight into the functional regulatory role of the ClpB NTD in protein disaggregation. PMID:26621746

  20. Guanine nucleotide-binding regulatory proteins in retinal pigment epithelial cells

    SciTech Connect

    Jiang, Meisheng; Tran, V.T.; Fong, H.K.W. ); Pandey, S. )

    1991-05-01

    The expression of GTP-binding regulatory proteins (G proteins) in retinal pigment epithelial (RPE) cells was analyzed by RNA blot hybridization and cDNA amplification. Both adult and fetal human RPE cells contain mRNA for multiple G protein {alpha} subunits (G{alpha}) including G{sub s}{alpha}, G{sub i-1}{alpha}, G{sub i-2}{alpha}, G{sub i-3}{alpha}, and G{sub z}{alpha} (or G{sub x}{alpha}), where G{sub s} and G{sub i} are proteins that stimulate or inhibit adenylyl cyclase, respectively, and G{sub z} is a protein that may mediate pertussis toxin-insensitive events. Other G{alpha}-related mRNA transcripts were detected in fetal RPE cells by low-stringency hybridization to G{sub i-2}{alpha} and G{sub s}{alpha} protein-coding cDNA probes. The diversity of G proteins in RPE cells was further studied by cDNA amplification with reverse transcriptase and the polymerase chain reaction. This approach revealed that, besides the above mentioned members of the G{alpha} gene family, at least two other G{alpha} subunits are expressed in RPE cells. Human retinal cDNA clones that encode one of the additional G{alpha} subunits were isolated and characterized. The results indicate that this G{alpha} subunit belongs to a separate subfamily of G proteins that may be insensitive to inhibition by pertussis toxin.

  1. The Drosophila gene taranis encodes a novel trithorax group member potentially linked to the cell cycle regulatory apparatus.

    PubMed Central

    Calgaro, Stéphane; Boube, Muriel; Cribbs, David L; Bourbon, Henri-Marc

    2002-01-01

    Genes of the Drosophila Polycomb and trithorax groups (PcG and trxG, respectively) influence gene expression by modulating chromatin structure. Segmental expression of homeotic loci (HOM) initiated in early embryogenesis is maintained by a balance of antagonistic PcG (repressor) and trxG (activator) activities. Here we identify a novel trxG family member, taranis (tara), on the basis of the following criteria: (i) tara loss-of-function mutations act as genetic antagonists of the PcG genes Polycomb and polyhomeotic and (ii) they enhance the phenotypic effects of mutations in the trxG genes trithorax (trx), brahma (brm), and osa. In addition, reduced tara activity can mimic homeotic loss-of-function phenotypes, as is often the case for trxG genes. tara encodes two closely related 96-kD protein isoforms (TARA-alpha/-beta) derived from broadly expressed alternative promoters. Genetic and phenotypic rescue experiments indicate that the TARA-alpha/-beta proteins are functionally redundant. The TARA proteins share evolutionarily conserved motifs with several recently characterized mammalian nuclear proteins, including the cyclin-dependent kinase regulator TRIP-Br1/p34(SEI-1), the related protein TRIP-Br2/Y127, and RBT1, a partner of replication protein A. These data raise the possibility that TARA-alpha/-beta play a role in integrating chromatin structure with cell cycle regulation. PMID:11861561

  2. Mitochondrial Fusion and ERK Activity Regulate Steroidogenic Acute Regulatory Protein Localization in Mitochondria

    PubMed Central

    Duarte, Alejandra; Castillo, Ana Fernanda; Podestá, Ernesto J.; Poderoso, Cecilia

    2014-01-01

    The rate-limiting step in the biosynthesis of steroid hormones, known as the transfer of cholesterol from the outer to the inner mitochondrial membrane, is facilitated by StAR, the Steroidogenic Acute Regulatory protein. We have described that mitochondrial ERK1/2 phosphorylates StAR and that mitochondrial fusion, through the up-regulation of a fusion protein Mitofusin 2, is essential during steroidogenesis. Here, we demonstrate that mitochondrial StAR together with mitochondrial active ERK and PKA are necessary for maximal steroid production. Phosphorylation of StAR by ERK is required for the maintenance of this protein in mitochondria, observed by means of over-expression of a StAR variant lacking the ERK phosphorylation residue. Mitochondrial fusion regulates StAR levels in mitochondria after hormone stimulation. In this study, Mitofusin 2 knockdown and mitochondrial fusion inhibition in MA-10 Leydig cells diminished StAR mRNA levels and concomitantly mitochondrial StAR protein. Together our results unveil the requirement of mitochondrial fusion in the regulation of the localization and mRNA abundance of StAR. We here establish the relevance of mitochondrial phosphorylation events in the correct localization of this key protein to exert its action in specialized cells. These discoveries highlight the importance of mitochondrial fusion and ERK phosphorylation in cholesterol transport by means of directing StAR to the outer mitochondrial membrane to achieve a large number of steroid molecules per unit of StAR. PMID:24945345

  3. The Multifunctions of WD40 Proteins in Genome Integrity and Cell Cycle Progression

    PubMed Central

    Zhang, Caiguo; Zhang, Fan

    2015-01-01

    Eukaryotic genome encodes numerous WD40 repeat proteins, which generally function as platforms of protein-protein interactions and are involved in numerous biological process, such as signal transduction, gene transcriptional regulation, protein modifications, cytoskeleton assembly, vesicular trafficking, DNA damage and repair, cell death and cell cycle progression. Among these diverse functions, genome integrity maintenance and cell cycle progression are extremely important as deregulation of them is clinically linked to uncontrolled proliferative diseases such as cancer. Thus, we mainly summarize and discuss the recent understanding of WD40 proteins and their molecular mechanisms linked to genome stability and cell cycle progression in this review, thereby demonstrating their pervasiveness and importance in cellular networks. PMID:25653723

  4. Crystal structure of the stimulatory complex of GTP cyclohydrolase I and its feedback regulatory protein GFRP.

    PubMed

    Maita, Nobuo; Okada, Kengo; Hatakeyama, Kazuyuki; Hakoshima, Toshio

    2002-02-01

    In the presence of phenylalanine, GTP cyclohydrolase I feedback regulatory protein (GFRP) forms a stimulatory 360-kDa complex with GTP cyclohydrolase I (GTPCHI), which is the rate-limiting enzyme in the biosynthesis of tetrahydrobiopterin. The crystal structure of the stimulatory complex reveals that the GTPCHI decamer is sandwiched by two GFRP homopentamers. Each GFRP pentamer forms a symmetrical five-membered ring similar to beta-propeller. Five phenylalanine molecules are buried inside each interface between GFRP and GTPCHI, thus enhancing the binding of these proteins. The complex structure suggests that phenylalanine-induced GTPCHI x GFRP complex formation enhances GTPCHI activity by locking the enzyme in the active state. PMID:11818540

  5. Downregulation of key regulatory proteins in androgen dependent prostate tumor cells by oncolytic reovirus.

    PubMed

    Gupta-Saraf, Pooja; Meseke, Tyler; Miller, Cathy L

    2015-11-01

    As prostate tumor cell growth depends on hormones, androgen ablation is an effective therapy for prostate cancer (PCa). However, progression of PCa cells to androgen independent growth (castrate resistant prostate cancer, CRPC) results in relapse and mortality. Hypoxia, a microenvironment of low oxygen that modifies the activity of PCa regulatory proteins including the androgen receptor (AR), plays a critical role in progression to CRPC. Therapies targeting hypoxia and the AR may lengthen the time to CRPC progression thereby increasing survival time of PCa patients. Mammalian Orthoreovirus (MRV) has shown promise for the treatment of prostate tumors in vitro and in vivo. In this study, we found that MRV infection induces downregulation of proteins implicated in CRPC progression, interferes with hypoxia-induced AR activity, and induces apoptosis in androgen dependent cells. This suggests MRV possesses traits that could be exploited to create novel therapies for the inhibition of progression to CRPC. PMID:26264969

  6. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    SciTech Connect

    Matsushita, Y. Murakawa, T. Shimamura, K. Oishi, M. Ohyama, T. Kurita, N.

    2015-02-27

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.

  7. Protein phosphatase 2A regulatory subunit B56α limits phosphatase activity in the heart.

    PubMed

    Little, Sean C; Curran, Jerry; Makara, Michael A; Kline, Crystal F; Ho, Hsiang-Ting; Xu, Zhaobin; Wu, Xiangqiong; Polina, Iuliia; Musa, Hassan; Meadows, Allison M; Carnes, Cynthia A; Biesiadecki, Brandon J; Davis, Jonathan P; Weisleder, Noah; Györke, Sandor; Wehrens, Xander H; Hund, Thomas J; Mohler, Peter J

    2015-07-21

    Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme composed of a catalytic, scaffolding, and regulatory subunit. In the heart, PP2A activity is requisite for cardiac excitation-contraction coupling and central in adrenergic signaling. We found that mice deficient in the PP2A regulatory subunit B56α (1 of 13 regulatory subunits) had altered PP2A signaling in the heart that was associated with changes in cardiac physiology, suggesting that the B56α regulatory subunit had an autoinhibitory role that suppressed excess PP2A activity. The increase in PP2A activity in the mice with reduced B56α expression resulted in slower heart rates and increased heart rate variability, conduction defects, and increased sensitivity of heart rate to parasympathetic agonists. Increased PP2A activity in B56α(+/-) myocytes resulted in reduced Ca(2+) waves and sparks, which was associated with decreased phosphorylation (and thus decreased activation) of the ryanodine receptor RyR2, an ion channel on intracellular membranes that is involved in Ca(2+) regulation in cardiomyocytes. In line with an autoinhibitory role for B56α, in vivo expression of B56α in the absence of altered abundance of other PP2A subunits decreased basal phosphatase activity. Consequently, in vivo expression of B56α suppressed parasympathetic regulation of heart rate and increased RyR2 phosphorylation in cardiomyocytes. These data show that an integral component of the PP2A holoenzyme has an important inhibitory role in controlling PP2A enzyme activity in the heart. PMID:26198358

  8. Iron misregulation and neurodegenerative disease in mouse models that lack iron regulatory proteins.

    PubMed

    Ghosh, Manik C; Zhang, De-Liang; Rouault, Tracey A

    2015-09-01

    Iron regulatory proteins 1 and 2 (IRP1 and IRP2) are two cytosolic proteins that maintain cellular iron homeostasis by binding to RNA stem loops known as iron responsive elements (IREs) that are found in the untranslated regions of target mRNAs that encode proteins involved in iron metabolism. IRPs modify the expression of iron metabolism genes, and global and tissue-specific knockout mice have been made to evaluate the physiological significance of these iron regulatory proteins (Irps). Here, we will discuss the results of the studies that have been performed with mice engineered to lack the expression of one or both Irps and made in different strains using different methodologies. Both Irp1 and Irp2 knockout mice are viable, but the double knockout (Irp1(-/-)Irp2(-/-)) mice die before birth, indicating that these Irps play a crucial role in maintaining iron homeostasis. Irp1(-/-) mice develop polycythemia and pulmonary hypertension, and when these mice are challenged with a low iron diet, they die early of abdominal hemorrhages, suggesting that Irp1 plays an essential role in erythropoiesis and in the pulmonary and cardiovascular systems. Irp2(-/-) mice develop microcytic anemia, erythropoietic protoporphyria and a progressive neurological disorder, indicating that Irp2 has important functions in the nervous system and erythropoietic homeostasis. Several excellent review articles have recently been published on Irp knockout mice that mainly focus on Irp1(-/-) mice (referenced in the introduction). In this review, we will briefly describe the phenotypes and physiological implications of Irp1(-/-) mice and discuss the phenotypes observed for Irp2(-/-) mice in detail with a particular emphasis on the neurological problems of these mice. PMID:25771171

  9. The Positive Regulatory Roles of the TIFY10 Proteins in Plant Responses to Alkaline Stress

    PubMed Central

    Zhu, Dan; Li, Rongtian; Liu, Xin; Sun, Mingzhe; Wu, Jing; Zhang, Ning; Zhu, Yanming

    2014-01-01

    The TIFY family is a novel plant-specific protein family, and is characterized by a conserved TIFY motif (TIFF/YXG). Our previous studies indicated the potential roles of TIFY10/11 proteins in plant responses to alkaline stress. In the current study, we focused on the regulatory roles and possible physiological and molecular basis of the TIFY10 proteins in plant responses to alkaline stress. We demonstrated the positive function of TIFY10s in alkaline responses by using the AtTIFY10a and AtTIFY10b knockout Arabidopsis, as evidenced by the relatively lower germination rates of attify10a and attify10b mutant seeds under alkaline stress. We also revealed that ectopic expression of GsTIFY10a in Medicago sativa promoted plant growth, and increased the NADP-ME activity, citric acid content and free proline content but decreased the MDA content of transgenic plants under alkaline stress. Furthermore, expression levels of the stress responsive genes including NADP-ME, CS, H+-ppase and P5CS were also up-regulated in GsTIFY10a transgenic plants under alkaline stress. Interestingly, GsTIFY10a overexpression increased the jasmonate content of the transgenic alfalfa. In addition, we showed that neither GsTIFY10a nor GsTIFY10e exhibited transcriptional activity in yeast cells. However, through Y2H and BiFc assays, we demonstrated that GsTIFY10a, not GsTIFY10e, could form homodimers in yeast cells and in living plant cells. As expected, we also demonstrated that GsTIFY10a and GsTIFY10e could heterodimerize with each other in both yeast and plant cells. Taken together, our results provided direct evidence supporting the positive regulatory roles of the TIFY10 proteins in plant responses to alkaline stress. PMID:25375909

  10. Development of neurodevelopmental disorders: a regulatory mechanism involving bromodomain-containing proteins.

    PubMed

    Li, Junlin; Zhao, Guifang; Gao, Xiaocai

    2013-01-01

    Neurodevelopmental disorders are classified as diseases that cause abnormal functions of the brain or central nervous system. Children with neurodevelopmental disorders show impaired language and speech abilities, learning and memory damage, and poor motor skills. However, we still know very little about the molecular etiology of these disorders. Recent evidence implicates the bromodomain-containing proteins (BCPs) in the initiation and development of neurodevelopmental disorders. BCPs have a particular domain, the bromodomain (Brd), which was originally identified as specifically binding acetyl-lysine residues at the N-terminus of histone proteins in vitro and in vivo. Other domains of BCPs are responsible for binding partner proteins to form regulatory complexes. Once these complexes are assembled, BCPs alter chromosomal states and regulate gene expression. Some BCP complexes bind nucleosomes, are involved in basal transcription regulation, and influence the transcription of many genes. However, most BCPs are involved in targeting. For example, some BCPs function as a recruitment platform or scaffold through their Brds-binding targeting sites. Others are recruited to form a complex to bind the targeting sites of their partners. The regulation mediated by these proteins is especially critical during normal and abnormal development. Mutant BCPs or dysfunctional BCP-containing complexes are implicated in the initiation and development of neurodevelopmental disorders. However, the pathogenic molecular mechanisms are not fully understood. In this review, we focus on the roles of regulatory BCPs associated with neurodevelopmental disorders, including mental retardation, Fragile X syndrome (FRX), Williams syndrome (WS), Rett syndrome and Rubinstein-Taybi syndrome (RTS). A better understanding of the molecular pathogenesis, based upon the roles of BCPs, will lead to screening of targets for the treatment of neurodevelopmental disorders. PMID:23425632

  11. Development of neurodevelopmental disorders: a regulatory mechanism involving bromodomain-containing proteins

    PubMed Central

    2013-01-01

    Neurodevelopmental disorders are classified as diseases that cause abnormal functions of the brain or central nervous system. Children with neurodevelopmental disorders show impaired language and speech abilities, learning and memory damage, and poor motor skills. However, we still know very little about the molecular etiology of these disorders. Recent evidence implicates the bromodomain-containing proteins (BCPs) in the initiation and development of neurodevelopmental disorders. BCPs have a particular domain, the bromodomain (Brd), which was originally identified as specifically binding acetyl-lysine residues at the N-terminus of histone proteins in vitro and in vivo. Other domains of BCPs are responsible for binding partner proteins to form regulatory complexes. Once these complexes are assembled, BCPs alter chromosomal states and regulate gene expression. Some BCP complexes bind nucleosomes, are involved in basal transcription regulation, and influence the transcription of many genes. However, most BCPs are involved in targeting. For example, some BCPs function as a recruitment platform or scaffold through their Brds-binding targeting sites. Others are recruited to form a complex to bind the targeting sites of their partners. The regulation mediated by these proteins is especially critical during normal and abnormal development. Mutant BCPs or dysfunctional BCP-containing complexes are implicated in the initiation and development of neurodevelopmental disorders. However, the pathogenic molecular mechanisms are not fully understood. In this review, we focus on the roles of regulatory BCPs associated with neurodevelopmental disorders, including mental retardation, Fragile X syndrome (FRX), Williams syndrome (WS), Rett syndrome and Rubinstein-Taybi syndrome (RTS). A better understanding of the molecular pathogenesis, based upon the roles of BCPs, will lead to screening of targets for the treatment of neurodevelopmental disorders. PMID:23425632

  12. GTP Cyclohydrolase I Expression, Protein, and Activity Determine Intracellular Tetrahydrobiopterin Levels, Independent of GTP Cyclohydrolase Feedback Regulatory Protein Expression

    PubMed Central

    Tatham, Amy L.; Crabtree, Mark J.; Warrick, Nicholas; Cai, Shijie; Alp, Nicholas J.; Channon, Keith M.

    2009-01-01

    GTP cyclohydrolase I (GTPCH) is a key enzyme in the synthesis of tetrahydrobiopterin (BH4), a required cofactor for nitricoxide synthases and aromatic amino acid hydroxylases. Alterations of GTPCH activity and BH4 availability play an important role in human disease. GTPCH expression is regulated by inflammatory stimuli, in association with reduced expression of GTP cyclohydrolase feedback regulatory protein (GFRP). However, the relative importance of GTPCH expression versus GTPCH activity and the role of GFRP in relation to BH4 bioavailability remain uncertain. We investigated these relationships in a cell line with tet-regulated GTPCH expression and in the hph-1 mouse model of GTPCH deficiency. Doxycycline exposure resulted in a dose-dependent decrease in GTPCH protein and activity, with a strong correlation between GTPCH expression and BH4 levels (r2 = 0.85, p < 0.0001). These changes in GTPCH and BH4 had no effect on GFRP expression or protein levels. GFRP overexpression and knockdown in tet-GCH cells did not alter GTPCH activity or BH4 levels, and GTPCH-specific knockdown in sEnd.1 endothelial cells had no effect on GFRP protein. In mouse liver we observed a graded reduction of GTPCH expression, protein, and activity, from wild type, heterozygote, to homozygote littermates, with a striking linear correlation between GTPCH expression and BH4 levels (r2 = 0.82, p < 0.0001). Neither GFRP expression nor protein differed between wild type, heterozygote, nor homozygote mice, despite the substantial differences in BH4. We suggest that GTPCH expression is the primary regulator of BH4 levels, and changes in GTPCH or BH4 are not necessarily accompanied by changes in GFRP expression. PMID:19286659

  13. GTP cyclohydrolase I expression, protein, and activity determine intracellular tetrahydrobiopterin levels, independent of GTP cyclohydrolase feedback regulatory protein expression.

    PubMed

    Tatham, Amy L; Crabtree, Mark J; Warrick, Nicholas; Cai, Shijie; Alp, Nicholas J; Channon, Keith M

    2009-05-15

    GTP cyclohydrolase I (GTPCH) is a key enzyme in the synthesis of tetrahydrobiopterin (BH4), a required cofactor for nitricoxide synthases and aromatic amino acid hydroxylases. Alterations of GTPCH activity and BH4 availability play an important role in human disease. GTPCH expression is regulated by inflammatory stimuli, in association with reduced expression of GTP cyclohydrolase feedback regulatory protein (GFRP). However, the relative importance of GTPCH expression versus GTPCH activity and the role of GFRP in relation to BH4 bioavailability remain uncertain. We investigated these relationships in a cell line with tet-regulated GTPCH expression and in the hph-1 mouse model of GTPCH deficiency. Doxycycline exposure resulted in a dose-dependent decrease in GTPCH protein and activity, with a strong correlation between GTPCH expression and BH4 levels (r(2) = 0.85, p < 0.0001). These changes in GTPCH and BH4 had no effect on GFRP expression or protein levels. GFRP overexpression and knockdown in tet-GCH cells did not alter GTPCH activity or BH4 levels, and GTPCH-specific knockdown in sEnd.1 endothelial cells had no effect on GFRP protein. In mouse liver we observed a graded reduction of GTPCH expression, protein, and activity, from wild type, heterozygote, to homozygote littermates, with a striking linear correlation between GTPCH expression and BH4 levels (r(2) = 0.82, p < 0.0001). Neither GFRP expression nor protein differed between wild type, heterozygote, nor homozygote mice, despite the substantial differences in BH4. We suggest that GTPCH expression is the primary regulator of BH4 levels, and changes in GTPCH or BH4 are not necessarily accompanied by changes in GFRP expression. PMID:19286659

  14. The Paramyxovirus Simian Virus 5 V Protein Slows Progression of the Cell Cycle

    PubMed Central

    Lin, Grace Y.; Lamb, Robert A.

    2000-01-01

    Infection of cells by many viruses affects the cell division cycle of the host cell to favor viral replication. We examined the ability of the paramyxovirus simian parainfluenza virus 5 (SV5) to affect cell cycle progression, and we found that SV5 slows the rate of proliferation of HeLa T4 cells. The SV5-infected cells had a delayed transition from G1 to S phase and prolonged progression through S phase, and some of the infected cells were arrested in G2 or M phase. The levels of p53 and p21CIP1 were not increased in SV5-infected cells compared to mock-infected cells, suggesting that the changes in the cell cycle occur through a p53-independent mechanism. However, the phosphorylation of the retinoblastoma protein (pRB) was delayed and prolonged in SV5-infected cells. The changes in the cell cycle were also observed in cells expressing the SV5 V protein but not in the cells expressing the SV5 P protein or the V protein lacking its unique C terminus (VΔC). The unique C terminus of the V protein of SV5 was shown previously to interact with DDB1, which is the 127-kDa subunit of the multifunctional damage-specific DNA-binding protein (DDB) heterodimer. The coexpression of DDB1 with V can partially restore the changes in the cell cycle caused by expression of the V protein. PMID:10982362

  15. Identification of the binding sites of regulatory proteins in bacterial genomes

    PubMed Central

    Li, Hao; Rhodius, Virgil; Gross, Carol; Siggia, Eric D.

    2002-01-01

    We present an algorithm that extracts the binding sites (represented by position-specific weight matrices) for many different transcription factors from the regulatory regions of a genome, without the need for delineating groups of coregulated genes. The algorithm uses the fact that many DNA-binding proteins in bacteria bind to a bipartite motif with two short segments more conserved than the intervening region. It identifies all statistically significant patterns of the form W1NxW2, where W1 and W2 are two short oligonucleotides separated by x arbitrary bases, and groups them into clusters of similar patterns. These clusters are then used to derive quantitative recognition profiles of putative regulatory proteins. For a given cluster, the algorithm finds the matching sequences plus the flanking regions in the genome and performs a multiple sequence alignment to derive position-specific weight matrices. We have analyzed the Escherichia coli genome with this algorithm and found ≈1,500 significant patterns, which give rise to ≈160 distinct position-specific weight matrices. A fraction of these matrices match the binding sites of one-third of the ≈60 characterized transcription factors with high statistical significance. Many of the remaining matrices are likely to describe binding sites and regulons of uncharacterized transcription factors. The significance of these matrices was evaluated by their specificity, the location of the predicted sites, and the biological functions of the corresponding regulons, allowing us to suggest putative regulatory functions. The algorithm is efficient for analyzing newly sequenced bacterial genomes for which little is known about transcriptional regulation. PMID:12181488

  16. Heme binds to a short sequence that serves a regulatory function in diverse proteins.

    PubMed Central

    Zhang, L; Guarente, L

    1995-01-01

    Heme is a prosthetic group for numerous enzymes, cytochromes and globins, and it binds tightly, sometimes covalently, to these proteins. Interestingly, heme also potentiates binding of the yeast transcriptional activator HAP1 to DNA and inhibits mitochondrial import of the mammalian delta-aminolevulinate synthase (ALAS) and the catalytic activity of the reticulocyte kinase, HRI. All three of these proteins contain a short sequence, the heme regulatory motif (HRM), that occurs six times adjacent to the HAP1 DNA binding domain, twice in the leader targeting sequence of ALAS and twice near the catalytic domain of the HRI kinase. Here we show that a 10 amino acid peptide containing the HRM consensus binds to heme in the micromolar range, and shifts the heme absorption spectrum to a longer wavelength, a direction opposite to the change caused by cytochromes or globins. Further, we show that a single HRM regulates the acidic activation domains of HAP1 and GAL4 independently of regulation of DNA binding of the transcription factors. These findings thus establish a novel heme binding sequence which is structurally distinct from sequences in globins or cytochromes and which has a regulatory function. Images PMID:7835342

  17. Evolution of context dependent regulation by expansion of feast/famine regulatory proteins

    SciTech Connect

    Plaisier, Christopher L.; Lo, Fang -Yin; Ashworth, Justin; Brooks, Aaron N.; Beer, Karlyn D.; Kaur, Amardeep; Pan, Min; Reiss, David J.; Facciotti, Marc T.; Baliga, Nitin S.

    2014-11-14

    Expansion of transcription factors is believed to have played a crucial role in evolution of all organisms by enabling them to deal with dynamic environments and colonize new environments. We investigated how the expansion of the Feast/Famine Regulatory Protein (FFRP) or Lrp-like proteins into an eight-member family in Halobacterium salinarum NRC-1 has aided in niche-adaptation of this archaeon to a complex and dynamically changing hypersaline environment. We mapped genome-wide binding locations for all eight FFRPs, investigated their preference for binding different effector molecules, and identified the contexts in which they act by analyzing transcriptional responses across 35 growth conditions that mimic different environmental and nutritional conditions this organism is likely to encounter in the wild. Integrative analysis of these data constructed an FFRP regulatory network with conditionally active states that reveal how interrelated variations in DNA-binding domains, effector-molecule preferences, and binding sites in target gene promoters have tuned the functions of each FFRP to the environments in which they act. We demonstrate how conditional regulation of similar genes by two FFRPs, AsnC (an activator) and VNG1237C (a repressor), have striking environment-specific fitness consequences for oxidative stress management and growth, respectively. This study provides a systems perspective into the evolutionary process by which gene duplication within a transcription factor family contributes to environment-specific adaptation of an organism.

  18. Evolution of context dependent regulation by expansion of feast/famine regulatory proteins

    DOE PAGESBeta

    Plaisier, Christopher L.; Lo, Fang -Yin; Ashworth, Justin; Brooks, Aaron N.; Beer, Karlyn D.; Kaur, Amardeep; Pan, Min; Reiss, David J.; Facciotti, Marc T.; Baliga, Nitin S.

    2014-11-14

    Expansion of transcription factors is believed to have played a crucial role in evolution of all organisms by enabling them to deal with dynamic environments and colonize new environments. We investigated how the expansion of the Feast/Famine Regulatory Protein (FFRP) or Lrp-like proteins into an eight-member family in Halobacterium salinarum NRC-1 has aided in niche-adaptation of this archaeon to a complex and dynamically changing hypersaline environment. We mapped genome-wide binding locations for all eight FFRPs, investigated their preference for binding different effector molecules, and identified the contexts in which they act by analyzing transcriptional responses across 35 growth conditions thatmore » mimic different environmental and nutritional conditions this organism is likely to encounter in the wild. Integrative analysis of these data constructed an FFRP regulatory network with conditionally active states that reveal how interrelated variations in DNA-binding domains, effector-molecule preferences, and binding sites in target gene promoters have tuned the functions of each FFRP to the environments in which they act. We demonstrate how conditional regulation of similar genes by two FFRPs, AsnC (an activator) and VNG1237C (a repressor), have striking environment-specific fitness consequences for oxidative stress management and growth, respectively. This study provides a systems perspective into the evolutionary process by which gene duplication within a transcription factor family contributes to environment-specific adaptation of an organism.« less

  19. Theoretical investigations on the interactions of glucokinase regulatory protein with fructose phosphates.

    PubMed

    Ling, Baoping; Yan, Xueyuan; Sun, Min; Bi, Siwei

    2016-02-01

    Glucokinase (GK) plays a critical role in maintaining glucose homeostasis in the human liver and pancreas. In the liver, the activity of GK is modulated by the glucokinase regulatory protein (GKRP) which functions as a competitive inhibitor of glucose to bind to GK. Moreover, the inhibitory intensity of GKRP-GK is suppressed by fructose 1-phosphate (F1P), and reinforced by fructose 6-phosphate (F6P). Here, we employed a series of computational techniques to explore the interactions of fructose phosphates with GKRP. Calculation results reveal that F1P and F6P can bind to the same active site of GKRP with different binding modes, and electrostatic interaction provides a major driving force for the ligand binding. The presence of fructose phosphate severely influences the motions of protein and the conformational space, and the structural change of sugar phosphate influences its interactions with GKRP, leading to a large conformational rearrangement of loop2 in the SIS2 domain. In particular, the binding of F6P to GKRP facilitates the protruding loop2 contacting with GK to form the stable GK-GKRP complex. The conserved residues 179-184 of GKRP play a major role in the binding of phosphate group and maintaining the stability of GKRP. These results may provide deep insight into the regulatory mechanism of GKRP to the activity of GK. PMID:26629747

  20. Regulatory function of Arabidopsis lipid transfer protein 1 (LTP1) in ethylene response and signaling.

    PubMed

    Wang, Honglin; Sun, Yue; Chang, Jianhong; Zheng, Fangfang; Pei, Haixia; Yi, Yanjun; Chang, Caren; Dong, Chun-Hai

    2016-07-01

    Ethylene as a gaseous plant hormone is directly involved in various processes during plant growth and development. Much is known regarding the ethylene receptors and regulatory factors in the ethylene signal transduction pathway. In Arabidopsis thaliana, REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1) can interact with and positively regulates the ethylene receptor ETHYLENE RESPONSE1 (ETR1). In this study we report the identification and characterization of an RTE1-interacting protein, a putative Arabidopsis lipid transfer protein 1 (LTP1) of unknown function. Through bimolecular fluorescence complementation, a direct molecular interaction between LTP1 and RTE1 was verified in planta. Analysis of an LTP1-GFP fusion in transgenic plants and plasmolysis experiments revealed that LTP1 is localized to the cytoplasm. Analysis of ethylene responses showed that the ltp1 knockout is hypersensitive to 1-aminocyclopropanecarboxylic acid (ACC), while LTP1 overexpression confers insensitivity. Analysis of double mutants etr1-2 ltp1 and rte1-3 ltp1 demonstrates a regulatory function of LTP1 in ethylene receptor signaling through the molecular association with RTE1. This study uncovers a novel function of Arabidopsis LTP1 in the regulation of ethylene response and signaling. PMID:27097903

  1. From cradle-to-grave at the nanoscale: gaps in U.S. regulatory oversight along the nanomaterial life cycle.

    PubMed

    Beaudrie, Christian E H; Kandlikar, Milind; Satterfield, Terre

    2013-06-01

    Engineered nanomaterials (ENMs) promise great benefits for society, yet our knowledge of potential risks and best practices for regulation are still in their infancy. Toward the end of better practices, this paper analyzes U.S. federal environmental, health, and safety (EHS) regulations using a life cycle framework. It evaluates their adequacy as applied to ENMs to identify gaps through which emerging nanomaterials may escape regulation from initial production to end-of-life. High scientific uncertainty, a lack of EHS and product data, inappropriately designed exemptions and thresholds, and limited agency resources are a challenge to both the applicability and adequacy of current regulations. The result is that some forms of engineered nanomaterials may escape federal oversight and rigorous risk review at one or more stages along their life cycle, with the largest gaps occurring at the postmarket stages, and at points of ENM release to the environment. Oversight can be improved through pending regulatory reforms, increased research and development for the monitoring, control, and analysis of environmental and end-of-life releases, introduction of periodic re-evaluation of ENM risks, and fostering a "bottom-up" stewardship approach to the responsible management of risks from engineered nanomaterials. PMID:23668487

  2. Regulatory Implications of Non-Trivial Splicing: Isoform 3 of Rab1A Shows Enhanced Basal Activity and Is Not Controlled by Accessory Proteins.

    PubMed

    Schöppner, Patricia; Csaba, Gergely; Braun, Tatjana; Daake, Marina; Richter, Bettina; Lange, Oliver F; Zacharias, Martin; Zimmer, Ralf; Haslbeck, Martin

    2016-04-24

    Alternative splicing often affects structured and highly conserved regions of proteins, generating so called non-trivial splicing variants of unknown structure and cellular function. The human small G-protein Rab1A is involved in the regulation of the vesicle transfer from the ER to Golgi. A conserved non-trivial splice variant lacks nearly 40% of the sequence of the native Rab1A, including most of the regulatory interaction sites. We show that this variant of Rab1A represents a stable and folded protein, which is still able to bind nucleotides and co-localizes with membranes. Nevertheless, it should be mentioned that compared to other wild-typeRabGTPases, the measured nucleotide binding affinities are dramatically reduced in the variant studied. Furthermore, the Rab1A variant forms hetero-dimers with wild-type Rab1A and its presence in the cell enhances the efficiency of alkaline phosphatase secretion. However, this variant shows no specificity for GXP nucleotides, a constantly enhanced GTP hydrolysis activity and is no longer controlled by GEF or GAP proteins, indicating a new regulatory mechanism for the Rab1A cycle via alternative non-trivial splicing. PMID:26953259

  3. Spatial proximity statistics suggest a regulatory role of protein phosphorylation on compound binding.

    PubMed

    Korkuć, Paula; Walther, Dirk

    2016-05-01

    Phosphorylation is an important post-translational modification that regulates protein function by the attachment of negatively charged phosphate groups to phosphorylatable amino acid residues. As a mode of action, an influence of phosphorylation on the binding of compounds to proteins has been discussed and described for a number of proteins in the literature. However, a systematic statistical survey probing for enriched phosphorylation sites close to compound binding sites in support of this notion and with properly chosen random reference distributions has not been presented yet. Using high-resolution protein structures from the Protein Data Bank including their co-crystallized non-covalently bound compounds and experimentally determined phosphorylation sites, we analyzed the pairwise distance distributions of phosphorylation and compound binding sites on protein surfaces. We found that phosphorylation sites are indeed located at significantly closer distances to compounds than expected by chance holding true specifically also for the subset of compound binding sites serving as catalytic sites of metabolic reactions. This tendency was particularly evident when treating phosphorylation sites as collective sets supporting the relevance of phosphorylation hotspots. Interestingly, phosphorylation sites were found to be closer to negatively charged than to positively charged compounds suggesting a stronger modulation of the binding of negatively charged compounds in dependence on phosphorylation status than on positively charged compounds. The enrichment of phosphorylation sites near compound binding sites confirms a regulatory role of phosphorylation in compound binding and provides a solid statistical basis for the literature-reported selected events. Proteins 2016; 84:565-579. © 2016 Wiley Periodicals, Inc. PMID:26817627

  4. Regulatory phosphorylation of the p34cdc2 protein kinase in vertebrates.

    PubMed Central

    Norbury, C; Blow, J; Nurse, P

    1991-01-01

    The p34cdc2 protein kinase is a conserved regulator of the eukaryotic cell cycle. Here we show that residues Thr14 and Tyr15 of mouse p34cdc2 become phosphorylated as mouse fibroblasts proceed through the cell cycle. We have mutated these residues and measured protein kinase activity of the p34cdc2 variants in a Xenopus egg extract. Phosphorylation of residues 14 and 15, which lie within the presumptive ATP-binding region of p34cdc2, normally restrains the protein kinase until it is specifically dephosphorylated and activated at the G2/M transition. Regulation by dephosphorylation of Tyr15 is conserved from fission yeast to mammals, while an extra level of regulation of mammalian p34cdc2 involves Thr14 dephosphorylation. In the absence of phosphorylation on these two residues, the kinase still requires cyclin B protein for its activation. Inhibition of DNA synthesis inhibits activation of wild-type p34cdc2 in the Xenopus system, but a mutant which cannot be phosphorylated at residues 14 and 15 escapes this inhibition, suggesting that these phosphorylation events form part of the pathway linking completion of DNA replication to initiation of mitosis. Images PMID:1655417

  5. Genetic Variation in the Adenosine Regulatory Cycle is Associated with Post-traumatic Epilepsy Development

    PubMed Central

    Diamond, Matthew L; Ritter, Anne C; Jackson, Edwin K; Conley, Yvette P; Kochanek, Patrick M; Boison, Detlev; Wagner, Amy K

    2015-01-01

    Objective Determine if genetic variation in enzymes/transporters influencing extracellular adenosine homeostasis, including adenosine kinase (ADK), ecto-5'-nucleotidase (NT5E, CD73), and equilibrative nucleoside transporter type-1 (ENT-1), is significantly associated with epileptogenesis and post-traumatic epilepsy (PTE) risk, as indicated by time to first seizure analyses. Methods Nine ADK, three CD73, and two ENT-1 tagging SNPs were genotyped in 162 white adults with moderate/severe TBI and no history of premorbid seizures. Kaplan Meier models were used to screen for genetic differences in time to first seizure occurring >1 week post-TBI. SNPs remaining significant after correction for multiple comparisons were examined using Cox Proportional Hazards analyses, adjusting for subdural hematoma, injury severity score, and isolated TBI status. SNPs significant in multivariate models were then entered simultaneously into an adjusted Cox model. Results Comparing Kaplan Meier curves, rs11001109 (ADK) rare allele homozygosity and rs9444348 (NT5E) heterozygosity were significantly associated with shorter time to first seizure and increased seizure rate 3 years post-TBI. Multivariate Cox Proportional Hazard models showed these genotypes remained significantly associated with increased PTE hazard up to 3yrs post-TBI after controlling for variables of interest [rs11001109: HR=4.47, 95%CI (1.27–15.77), p=0.020; rs9444348: HR=2.95, 95%CI (1.19–7.31), p=0.019]. Significance Genetic variation in ADK and NT5E may help explain variability in time to first seizure and PTE risk, independent of previously identified risk factors, after TBI. Once validated, identifying genetic variation in adenosine regulatory pathways relating to epileptogenesis and PTE may facilitate exploration of therapeutic targets and pharmacotherapy development. PMID:26040919

  6. Interdigestive gastroduodenal motility and cycling of putative regulatory hormones in severe obesity.

    PubMed

    Pieramico, O; Malfertheiner, P; Nelson, D K; Glasbrenner, B; Ditschuneit, H

    1992-07-01

    The aim of the present study was to evaluate interdigestive gastrointestinal motility and its coordination with plasma concentrations of motilin and pancreatic polypeptide (PP) in 14 patients with severe obesity and in 10 control subjects with normal body weight. Motor activity of the stomach, duodenum, and proximal jejunum was recorded by using an eight-lumen catheter. Blood samples were drawn for determination of interdigestive motilin and PP plasma concentrations. We observed no difference in total duration of the migrating motor complex (MMC) or of phases I, II, or III of the MMC. Gastric phase-III activity occurred less frequently in severely obese patients (only 15% originating in the stomach) than in controls (65%; p less than 0.01). Plasma motilin concentrations were decreased in obese patients in phase I (127 +/- 17 pg/ml in controls versus 87 +/- 10 pg/ml in obese), in phase II (189 +/- 26 pg/ml controls versus 134 +/- 15 obese) and in phase III (195 +/- 29 pg/ml controls versus 153 +/- 28 pg/ml obese). Peak motilin release occurred in synchrony with phase-III activity and was greater in controls than in obese patients. Plasma PP concentrations did not differ from those of controls during any phase of the MMC. These results further suggest a potential role for motilin in regulating gastrointestinal motor activity and indicate a potential defect in this regulatory mechanism in severe obesity. Whether the relationship between disordered motor activity and motilin release is etiologic with regard to the pathophysiology of obesity remains to be determined. PMID:1641580

  7. Assembly of the cysteine synthase complex and the regulatory role of protein-protein interactions.

    PubMed

    Kumaran, Sangaralingam; Yi, Hankuil; Krishnan, Hari B; Jez, Joseph M

    2009-04-10

    Macromolecular assemblies play critical roles in regulating cellular functions. The cysteine synthase complex (CSC), which is formed by association of serine O-acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), acts as a sensor and modulator of thiol metabolism by responding to changes in nutrient conditions. Here we examine the oligomerization and energetics of formation of the soybean CSC. Biophysical examination of the CSC by size exclusion chromatography and sedimentation ultracentrifugation indicates that this assembly (complex M(r) approximately 330,000) consists of a single SAT trimer (trimer M(r) approximately 110,000) and three OASS dimers (dimer M(r) approximately 70,000). Analysis of the SAT-OASS interaction by isothermal titration calorimetry reveals negative cooperativity with three distinct binding events during CSC formation with K(d) values of 0.3, 7.5, and 78 nm. The three binding events are also observed using surface plasmon resonance with comparable affinities. The stability of the CSC derives from rapid association and extremely slow dissociation of OASS with SAT and requires the C terminus of SAT for the interaction. Steady-state kinetic analysis shows that CSC formation enhances SAT activity and releases SAT from substrate inhibition and feedback inhibition by cysteine, the final product of the biosynthesis pathway. Cysteine inhibits SAT and the CSC with K(i) values of 2 and 70 microm, respectively. These results suggest a new model for the architecture of this regulatory complex and additional control mechanisms for biochemically controlling plant cysteine biosynthesis. Based on previous work and our results, we suggest that OASS acts as an enzyme chaperone of SAT in the CSC. PMID:19213732

  8. Self-cycling operation increases productivity of recombinant protein in Escherichia coli.

    PubMed

    Storms, Zachary J; Brown, Tobin; Sauvageau, Dominic; Cooper, David G

    2012-09-01

    Self-cycling fermentation (SCF), a cyclical, semi-continuous process that induces cell synchrony, was incorporated into a recombinant protein production scheme. Escherichia coli CY15050, a lac(-) mutant lysogenized with temperature-sensitive phage λ modified to over-express β-galactosidase, was used as a model system. The production scheme was divided into two de-coupled stages. The host cells were cultured under SCF operation in the first stage before being brought to a second stage where protein production was induced. In the first stage, the host strain demonstrated a stable cycling pattern immediately following the first cycle. This reproducible pattern was maintained over the course of the experiments and a significant degree of cell synchrony was obtained. By growing cells using SCF, productivity increased 50% and production time decreased by 40% compared to a batch culture under similar conditions. In addition, synchronized cultures induced from the end of a SCF cycle displayed shorter lysis times and a more complete culture-wide lysis than unsynchronized cultures. Finally, protein synthesis was influenced by the time at which the lytic phase was induced in the cell life cycle. For example, induction of a synchronized culture immediately prior to cell division resulted in the maximum protein productivity, suggesting protein production can be optimized with respect to the cell life cycle using SCF. PMID:22407770

  9. The human actin-regulatory protein Cap G: Gene structure and chromosome location

    SciTech Connect

    Mishra, V.S.; Southwick, F.S.; Henske, E.P.; Kwiatkowski, D.J.

    1994-10-01

    Cap G (formerly called macrophage capping protein or gCap39) is a member of the gelsolin/villin family of actin-regulatory proteins. Unlike all other members of this family, Cap G caps the barbed ends of actin filaments, but does not sever them. This protein is half the molecular weight and contains half the number of repeat subunits (3 vs. 6) of gelsolin and villin, suggesting that these two proteins may have arisen by gene duplication of the Cap G gene. To investigate this possibility we have cloned and sequenced the human Cap G gene (gene symbol CAPG). The gene is 16.6 kb in size, contains 10 exons and 9 introns, and is located on the proximal short arm of chromosome 2. The open reading frame is 6.9 kb, having 9 exons and 8 introns. This region contains 3 splice sites that are nearly identical to the human gelsolin gene, but shares only one with villin, indicating that CAPG is more closely related to gelsolin. Further comparisons of these three genes, however, indicate that the evolutionary steps resulting in human gelsolin and villin are likely to have been more complex than a simple tandem duplication of the Cap G gene. 30 refs., 4 figs., 2 tabs.

  10. Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein

    SciTech Connect

    Wang, Yeming; Opperman, Laura; Wickens, Marvin; Tanaka Hall, Traci M.

    2011-11-02

    Caenorhabditis elegans fem-3 binding factor (FBF) is a founding member of the PUMILIO/FBF (PUF) family of mRNA regulatory proteins. It regulates multiple mRNAs critical for stem cell maintenance and germline development. Here, we report crystal structures of FBF in complex with 6 different 9-nt RNA sequences, including elements from 4 natural mRNAs. These structures reveal that FBF binds to conserved bases at positions 1-3 and 7-8. The key specificity determinant of FBF vs. other PUF proteins lies in positions 4-6. In FBF/RNA complexes, these bases stack directly with one another and turn away from the RNA-binding surface. A short region of FBF is sufficient to impart its unique specificity and lies directly opposite the flipped bases. We suggest that this region imposes a flattened curvature on the protein; hence, the requirement for the additional nucleotide. The principles of FBF/RNA recognition suggest a general mechanism by which PUF proteins recognize distinct families of RNAs yet exploit very nearly identical atomic contacts in doing so.

  11. Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein

    PubMed Central

    Wang, Yeming; Opperman, Laura; Wickens, Marvin; Hall, Traci M. Tanaka

    2009-01-01

    Caenorhabditis elegans fem-3 binding factor (FBF) is a founding member of the PUMILIO/FBF (PUF) family of mRNA regulatory proteins. It regulates multiple mRNAs critical for stem cell maintenance and germline development. Here, we report crystal structures of FBF in complex with 6 different 9-nt RNA sequences, including elements from 4 natural mRNAs. These structures reveal that FBF binds to conserved bases at positions 1–3 and 7–8. The key specificity determinant of FBF vs. other PUF proteins lies in positions 4–6. In FBF/RNA complexes, these bases stack directly with one another and turn away from the RNA-binding surface. A short region of FBF is sufficient to impart its unique specificity and lies directly opposite the flipped bases. We suggest that this region imposes a flattened curvature on the protein; hence, the requirement for the additional nucleotide. The principles of FBF/RNA recognition suggest a general mechanism by which PUF proteins recognize distinct families of RNAs yet exploit very nearly identical atomic contacts in doing so. PMID:19901328

  12. Spectroscopic studies on peptides and proteins with cysteine-containing heme regulatory motifs (HRM).

    PubMed

    Schubert, Erik; Florin, Nicole; Duthie, Fraser; Henning Brewitz, H; Kühl, Toni; Imhof, Diana; Hagelueken, Gregor; Schiemann, Olav

    2015-07-01

    The role of heme as a cofactor in enzymatic reactions has been studied for a long time and in great detail. Recently it was discovered that heme can also serve as a signalling molecule in cells but so far only few examples of this regulation have been studied. In order to discover new potentially heme-regulated proteins, we screened protein sequence databases for bacterial proteins that contain sequence features like a Cysteine-Proline (CP) motif, which is known for its heme-binding propensity. Based on this search we synthesized a series of these potential heme regulatory motifs (HRMs). We used cw EPR spectroscopy to investigate whether these sequences do indeed bind to heme and if the spin state of heme is changed upon interaction with the peptides. The corresponding proteins of two potential HRMs, FeoB and GlpF, were expressed and purified and their interaction with heme was studied by cw EPR and UV-Visible (UV-Vis) spectroscopy. PMID:26050879

  13. ArsR arsenic-resistance regulatory protein from Cupriavidus metallidurans CH34.

    PubMed

    Zhang, Yian-Biao; Monchy, Sébastien; Greenberg, Bill; Mergeay, Max; Gang, Oleg; Taghavi, Safiyh; van der Lelie, Daniel

    2009-08-01

    The Cupriavidus metallidurans CH34 arsR gene, which is part of the arsRIC(2)BC(1)HP operon, and its putative arsenic-resistance regulatory protein were identified and characterized. The arsenic-induced transcriptome of C. metallidurans CH34 showed that the genes most upregulated in the presence of arsenate were all located within the ars operon, with none of the other numerous heavy metal resistance systems present in CH34 being induced. A transcriptional fusion between the luxCDABE operon and the arsR promoter/operator (P/O) region was used to confirm the in vivo induction of the ars operon by arsenite and arsenate. The arsR gene was cloned into expression vectors allowing for the overexpression of the ArsR protein as either his-tagged or untagged protein. The ability of the purified ArsR proteins to bind to the ars P/O region was analyzed in vitro by gel mobility shift assays. ArsR showed an affinity almost exclusively to its own ars P/O region. Dissociation of ArsR and its P/O region was metal dependent, and based on decreasing degrees of dissociation three groups of heavy metals could be distinguished: As(III), Bi(III), Co(II), Cu(II), Ni(II); Cd(II); Pb(II) and Zn(II), while no dissociation was observed in the presence of As(V). PMID:19238575

  14. ArsR arsenic-resistance regulatory protein from Cupriavidus metallidurans CH34

    SciTech Connect

    Zhang, Y.; van der Lelie, D.; Monchy, S.; Greenberg, B.; Gang, O.; Taghavi, S.

    2009-08-01

    The Cupriavidus metallidurans CH34 arsR gene, which is part of the arsRIC{sub 2}BC{sub 1}HP operon, and its putative arsenic-resistance regulatory protein were identified and characterized. The arsenic-induced transcriptome of C. metallidurans CH34 showed that the genes most upregulated in the presence of arsenate were all located within the ars operon, with none of the other numerous heavy metal resistance systems present in CH34 being induced. A transcriptional fusion between the luxCDABE operon and the arsR promoter/operator (P/O) region was used to confirm the in vivo induction of the ars operon by arsenite and arsenate. The arsR gene was cloned into expression vectors allowing for the overexpression of the ArsR protein as either his-tagged or untagged protein. The ability of the purified ArsR proteins to bind to the ars P/O region was analyzed in vitro by gel mobility shift assays. ArsR showed an affinity almost exclusively to its own ars P/O region. Dissociation of ArsR and its P/O region was metal dependent, and based on decreasing degrees of dissociation three groups of heavy metals could be distinguished: As(III), Bi(III), Co(II), Cu(II), Ni(II); Cd(II); Pb(II) and Zn(II), while no dissociation was observed in the presence of As(V).

  15. Discovery of Novel Splice Variants and Regulatory Mechanisms for Microsomal Triglyceride Transfer Protein in Human Tissues

    PubMed Central

    Suzuki, Takashi; Swift, Larry L.

    2016-01-01

    Microsomal triglyceride transfer protein (MTP) is a unique lipid transfer protein essential for the assembly of triglyceride-rich lipoproteins by the liver and intestine. Previous studies in mice identified a splice variant of MTP with an alternate first exon. Splice variants of human MTP have not been reported. Using PCR approaches we have identified two splice variants in human tissues, which we have named MTP-B and MTP-C. MTP-B has a unique first exon (Ex1B) located 10.5 kb upstream of the first exon (Ex1A) for canonical MTP (MTP-A); MTP-C contains both first exons for MTP-A and MTP-B. MTP-B was found in a number of tissues, whereas MTP-C was prominent in brain and testis. MTP-B does not encode a protein; MTP-C encodes the same protein encoded by MTP-A, although MTP-C translation is strongly inhibited by regulatory elements within its 5′-UTR. Using luciferase assays, we demonstrate that the promoter region upstream of exon 1B is quite adequate to drive expression of MTP. We conclude that alternate splicing plays a key role in regulating cellular MTP levels by introducing distinct promoter regions and unique 5′-UTRs, which contain elements that alter translation efficiency, enabling the cell to optimize MTP activity. PMID:27256115

  16. Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein

    SciTech Connect

    Wang, Yeming; Opperman, Laura; Wickens, Marvin; Tanaka Hall, Traci M.

    2010-08-19

    Caenorhabditis elegans fem-3 binding factor (FBF) is a founding member of the PUMILIO/FBF (PUF) family of mRNA regulatory proteins. It regulates multiple mRNAs critical for stem cell maintenance and germline development. Here, we report crystal structures of FBF in complex with 6 different 9-nt RNA sequences, including elements from 4 natural mRNAs. These structures reveal that FBF binds to conserved bases at positions 1-3 and 7-8. The key specificity determinant of FBF vs. other PUF proteins lies in positions 4-6. In FBF/RNA complexes, these bases stack directly with one another and turn away from the RNA-binding surface. A short region of FBF is sufficient to impart its unique specificity and lies directly opposite the flipped bases. We suggest that this region imposes a flattened curvature on the protein; hence, the requirement for the additional nucleotide. The principles of FBF/RNA recognition suggest a general mechanism by which PUF proteins recognize distinct families of RNAs yet exploit very nearly identical atomic contacts in doing so.

  17. Discovery of Novel Splice Variants and Regulatory Mechanisms for Microsomal Triglyceride Transfer Protein in Human Tissues.

    PubMed

    Suzuki, Takashi; Swift, Larry L

    2016-01-01

    Microsomal triglyceride transfer protein (MTP) is a unique lipid transfer protein essential for the assembly of triglyceride-rich lipoproteins by the liver and intestine. Previous studies in mice identified a splice variant of MTP with an alternate first exon. Splice variants of human MTP have not been reported. Using PCR approaches we have identified two splice variants in human tissues, which we have named MTP-B and MTP-C. MTP-B has a unique first exon (Ex1B) located 10.5 kb upstream of the first exon (Ex1A) for canonical MTP (MTP-A); MTP-C contains both first exons for MTP-A and MTP-B. MTP-B was found in a number of tissues, whereas MTP-C was prominent in brain and testis. MTP-B does not encode a protein; MTP-C encodes the same protein encoded by MTP-A, although MTP-C translation is strongly inhibited by regulatory elements within its 5'-UTR. Using luciferase assays, we demonstrate that the promoter region upstream of exon 1B is quite adequate to drive expression of MTP. We conclude that alternate splicing plays a key role in regulating cellular MTP levels by introducing distinct promoter regions and unique 5'-UTRs, which contain elements that alter translation efficiency, enabling the cell to optimize MTP activity. PMID:27256115

  18. Interactome Analysis of the NS1 Protein Encoded by Influenza A H1N1 Virus Reveals a Positive Regulatory Role of Host Protein PRP19 in Viral Replication.

    PubMed

    Kuo, Rei-Lin; Li, Zong-Hua; Li, Li-Hsin; Lee, Kuo-Ming; Tam, Ee-Hong; Liu, Helene M; Liu, Hao-Ping; Shih, Shin-Ru; Wu, Chih-Ching

    2016-05-01

    Influenza A virus, which can cause severe respiratory illnesses in infected individuals, is responsible for worldwide human pandemics. The NS1 protein encoded by this virus plays a crucial role in regulating the host antiviral response through various mechanisms. In addition, it has been reported that NS1 can modulate cellular pre-mRNA splicing events. To investigate the biological processes potentially affected by the NS1 protein in host cells, NS1-associated protein complexes in human cells were identified using coimmunoprecipitation combined with GeLC-MS/MS. By employing software to build biological process and protein-protein interaction networks, NS1-interacting cellular proteins were found to be related to RNA splicing/processing, cell cycle, and protein folding/targeting cellular processes. By monitoring spliced and unspliced RNAs of a reporter plasmid, we further validated that NS1 can interfere with cellular pre-mRNA splicing. One of the identified proteins, pre-mRNA-processing factor 19 (PRP19), was confirmed to interact with the NS1 protein in influenza A virus-infected cells. Importantly, depletion of PRP19 in host cells reduced replication of influenza A virus. In summary, the interactome of influenza A virus NS1 in host cells was comprehensively profiled, and our findings reveal a novel regulatory role for PRP19 in viral replication. PMID:27096427

  19. [New regulatory protein isolated from the bovine eye lens and its action on the cataract development in rat in vitro].

    PubMed

    Krasnov, M S; Gurmizov, E P; Iamskova, V P; Gundorova, R A; Iamskov, I A

    2005-01-01

    The regulatory protein was isolated from the eye lens extract by using an early designed scheme including by means of salting-out of proteins by ammonium sulphate, isoelectrofocusing in pH gradient and electrophoresis in PAAG. A high-purity fraction of the regulatory protein was obtained. The localization of the regulatory protein in the rat-eye lens was investigated by means of primary rabbit antibodies obtained within the case study and by FITS-marked secondary antibodies. Cataractogenesis was induced, in vitro, in Wistar rat lenses through adding, to the cultivation medium, hydrogen peroxide (0.5 mM) or calcium chloride (15 mM). The regulatory protein isolated from the bovine eye lens was added alongside with damaging antibodies to the nutrition medium, concentration 10(-12) mg/ml. The lenses were cultivated for as long as 8 days at 37 degrees C. The degree of opacification of lenses was evaluated visually with the help of a lined substrate as well as by spectrophotometry. The studied protein was shown immunohistochemically to be localized in the intercellular space of the lens epithelium in the region of the basic membrane. The cataractogenesis-related research of the regulatory protein was made on rabbit eye lenses, which were cultivated as a whole for as long as 8 days in vitro. Their transparency and morphology were preserved in them in full since they were cultivated in a serum-free nutrition without admixture of any destructive agents. Opacification of lenses was induced in vitro by changing the concentration of calcium ions in the cultivation medium or through adding hydrogen peroxide to the medium. The valuations of the lens opacity degree as observed in different research series and made by visual observation well correlate with the results of spectrophotometry of lenses made after their cultivation. It can be stated that the studied regulatory protein, when added to the cultivation medium, enhances about two-fold the lens transparency versus the lenses

  20. Crystal structures of the apo and ATP bound Mycobacterium tuberculosis nitrogen regulatory PII protein

    PubMed Central

    Shetty, Nishant D; Reddy, Manchi C M; Palaninathan, Satheesh K; Owen, Joshua L; Sacchettini, James C

    2010-01-01

    PII constitutes a family of signal transduction proteins that act as nitrogen sensors in microorganisms and plants. Mycobacterium tuberculosis (Mtb) has a single homologue of PII whose precise role has as yet not been explored. We have solved the crystal structures of the Mtb PII protein in its apo and ATP bound forms to 1.4 and 2.4 Å resolutions, respectively. The protein forms a trimeric assembly in the crystal lattice and folds similarly to the other PII family proteins. The Mtb PII:ATP binary complex structure reveals three ATP molecules per trimer, each bound between the base of the T-loop of one subunit and the C-loop of the neighboring subunit. In contrast to the apo structure, at least one subunit of the binary complex structure contains a completely ordered T-loop indicating that ATP binding plays a role in orienting this loop region towards target proteins like the ammonium transporter, AmtB. Arg38 of the T-loop makes direct contact with the γ-phosphate of the ATP molecule replacing the Mg2+ position seen in the Methanococcus jannaschii GlnK1 structure. The C-loop of a neighboring subunit encloses the other side of the ATP molecule, placing the GlnK specific C-terminal 310 helix in the vicinity. Homology modeling studies with the E. coli GlnK:AmtB complex reveal that Mtb PII could form a complex similar to the complex in E. coli. The structural conservation and operon organization suggests that the Mtb PII gene encodes for a GlnK protein and might play a key role in the nitrogen regulatory pathway. PMID:20521335

  1. Crystal structures of the apo and ATP bound Mycobacterium tuberculosis nitrogen regulatory PII protein

    SciTech Connect

    Shetty, Nishant D.; Reddy, Manchi C.M.; Palaninathan, Satheesh K.; Owen, Joshua L.; Sacchettini, James C.

    2010-10-11

    PII constitutes a family of signal transduction proteins that act as nitrogen sensors in microorganisms and plants. Mycobacterium tuberculosis (Mtb) has a single homologue of PII whose precise role has as yet not been explored. We have solved the crystal structures of the Mtb PII protein in its apo and ATP bound forms to 1.4 and 2.4 {angstrom} resolutions, respectively. The protein forms a trimeric assembly in the crystal lattice and folds similarly to the other PII family proteins. The Mtb PII:ATP binary complex structure reveals three ATP molecules per trimer, each bound between the base of the T-loop of one subunit and the C-loop of the neighboring subunit. In contrast to the apo structure, at least one subunit of the binary complex structure contains a completely ordered T-loop indicating that ATP binding plays a role in orienting this loop region towards target proteins like the ammonium transporter, AmtB. Arg38 of the T-loop makes direct contact with the {gamma}-phosphate of the ATP molecule replacing the Mg{sup 2+} position seen in the Methanococcus jannaschii GlnK1 structure. The C-loop of a neighboring subunit encloses the other side of the ATP molecule, placing the GlnK specific C-terminal 3{sub 10} helix in the vicinity. Homology modeling studies with the E. coli GlnK:AmtB complex reveal that Mtb PII could form a complex similar to the complex in E. coli. The structural conservation and operon organization suggests that the Mtb PII gene encodes for a GlnK protein and might play a key role in the nitrogen regulatory pathway.

  2. Cell Cycle Proteins and Retinal Degeneration: Evidences of New Potential Therapeutic Targets.

    PubMed

    Arsenijevic, Yvan

    2016-01-01

    During different forms of neurodegenerative diseases, including the retinal degeneration, several cell cycle proteins are expressed in the dying neurons from Drosophila to human revealing that these proteins are a hallmark of neuronal degeneration. This is true for animal models of Alzheimer's, and Parkinson's diseases, Amyotrophic Lateral Sclerosis and for Retinitis Pigmentosa as well as for acute injuries such as stroke and light damage. Longitudinal investigation and loss-of-function studies attest that cell cycle proteins participate to the process of cell death although with different impacts, depending on the disease. In the retina, inhibition of cell cycle protein action can result to massive protection. Nonetheless, the dissection of the molecular mechanisms of neuronal cell death is necessary to develop adapted therapeutic tools to efficiently protect photoreceptors as well as other neuron types. PMID:26427434

  3. Regulatory arrestin cycle secures the fidelity and maintenance of the fly photoreceptor cell.

    PubMed Central

    Byk, T; Bar-Yaacov, M; Doza, Y N; Minke, B; Selinger, Z

    1993-01-01

    Excitation of fly photoreceptor cells is initiated by photoisomerization of rhodopsin to the active form of metarhodopsin. Fly metarhodopsin is thermostable, does not bleach, and does not regenerate spontaneously to rhodopsin. For this reason, the activity of metarhodopsin must be stopped by an effective termination reaction. On the other hand, there is also a need to restore the inactivated photopigment to an excitable state in order to keep a sufficient number of photopigment molecules available for excitation. The following findings reveal how these demands are met. The photopigment undergoes rapid phosphorylation upon photoconversion of rhodopsin to metarhodopsin and an efficient Ca2+ dependent dephosphorylation upon regeneration of metarhodopsin to rhodopsin. Phosphorylation decreases the ability of metarhodopsin to activate the guanine nucleotide-binding protein. Binding of 49-kDa arrestin further quenches the activity of metarhodopsin and protects it from dephosphorylation. Light-dependent binding and release of 49-kDa arrestin from metarhodopsin- and rhodopsin-containing membranes, respectively, directs the dephosphorylation reaction toward rhodopsin. This ensures the return of phosphorylated metarhodopsin to the rhodopsin pool without initiating transduction in the dark. Assays of rhodopsin dephosphorylation in the Drosophila retinal degeneration C (rdgC) mutant, a mutant in a gene previously cloned and predicted to encode a serine/threonine protein phosphatase, reveal that phosphorylated rhodopsin is a major substrate for the rdgC phosphatase. We propose that mutations resulting in either a decrease or an improper regulation of rhodopsin phosphatase activity bring about degeneration of the fly photoreceptor cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8446607

  4. Absence of residual structure in the intrinsically disordered regulatory protein CP12 in its reduced state.

    PubMed

    Launay, Hélène; Barré, Patrick; Puppo, Carine; Manneville, Stéphanie; Gontero, Brigitte; Receveur-Bréchot, Véronique

    2016-08-12

    The redox switch protein CP12 is a key player of the regulation of the Benson-Calvin cycle. Its oxidation state is controlled by the formation/dissociation of two intramolecular disulphide bridges during the day/night cycle. CP12 was known to be globally intrinsically disordered on a large scale in its reduced state, while being partly ordered in the oxidised state. By combining Nuclear Magnetic Resonance and Small Angle X-ray Scattering experiments, we showed that, contrary to secondary structure or disorder predictions, reduced CP12 is fully disordered, with no transient or local residual structure likely to be precursor of the structures identified in the oxidised active state and/or in the bound state with GAPDH or PRK. These results highlight the diversity of the mechanisms of regulation of conditionally disordered redox switches, and question the stability of oxidised CP12 scaffold. PMID:27268235

  5. Experimental detection of short regulatory motifs in eukaryotic proteins: tips for good practice as well as for bad.

    PubMed

    Gibson, Toby J; Dinkel, Holger; Van Roey, Kim; Diella, Francesca

    2015-01-01

    It has become clear in outline though not yet in detail how cellular regulatory and signalling systems are constructed. The essential machines are protein complexes that effect regulatory decisions by undergoing internal changes of state. Subcomponents of these cellular complexes are assembled into molecular switches. Many of these switches employ one or more short peptide motifs as toggles that can move between one or more sites within the switch system, the simplest being on-off switches. Paradoxically, these motif modules (termed short linear motifs or SLiMs) are both hugely abundant but difficult to research. So despite the many successes in identifying short regulatory protein motifs, it is thought that only the "tip of the iceberg" has been exposed. Experimental and bioinformatic motif discovery remain challenging and error prone. The advice presented in this article is aimed at helping researchers to uncover genuine protein motifs, whilst avoiding the pitfalls that lead to reports of false discovery. PMID:26581338

  6. The selective phosphorylation of a guanine nucleotide-binding regulatory protein

    SciTech Connect

    Carlson, K.E.

    1989-01-01

    Receptor-activated signal transduction pathways regulate the responsiveness of cells to external stimuli. These transduction pathways themselves are subject to regulation, most commonly by phosphorylation. Guanine nucleotide-binding regulatory proteins (G Proteins), as requisite signal transducing elements for many plasma membrane receptors, are considered likely targets for regulation by phosphorylation. Protein kinase C (PKC) has been shown to phosphorylate the {alpha} subunit of G{sub i} and other G proteins in solution. However, the occurrence of the phosphorylation of G{sub 1} within intact cells in response to activation of PKC has not been rigorously demonstrated. In this thesis, the extent to which the {alpha} subunits of G{sub i} undergo phosphorylation within human platelets in response to activation of PKC was examined by means of radiolabeling and immunoprecipitation. Incubation of platelets with phorbol-12-myristate-13-acetate (PMA), a potent activator of PKC, promoted the phosphorylation of several proteins within saponin-permeabilized and intact platelets incubated with ({gamma}{sup 32}P)ATP and ({sup 32}P)H{sub 3}PO{sub 4}, respectively. None of the phosphoproteins, however, were precipitated by either of two antisera containing antibodies differing in specificities for epitopes within G{sub i{alpha}}-despite precipitation of a substantial fraction of the subunit itself. In contrast, other antisera, containing antibodies specific for the recently describe G{sub z{alpha}}, or antibodies for both G{sub z{alpha}} and G{sub i{alpha}}, precipitated a 40-kDa phosphoprotein.

  7. Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants.

    PubMed

    Durian, Guido; Rahikainen, Moona; Alegre, Sara; Brosché, Mikael; Kangasjärvi, Saijaliisa

    2016-01-01

    Biotic stress factors pose a major threat to plant health and can significantly deteriorate plant productivity by impairing the physiological functions of the plant. To combat the wide range of pathogens and insect herbivores, plants deploy converging signaling pathways, where counteracting activities of protein kinases and phosphatases form a basic mechanism for determining appropriate defensive measures. Recent studies have identified Protein Phosphatase 2A (PP2A) as a crucial component that controls pathogenesis responses in various plant species. Genetic, proteomic and metabolomic approaches have underscored the versatile nature of PP2A, which contributes to the regulation of receptor signaling, organellar signaling, gene expression, metabolic pathways, and cell death, all of which essentially impact plant immunity. Associated with this, various PP2A subunits mediate post-translational regulation of metabolic enzymes and signaling components. Here we provide an overview of protein kinase/phosphatase functions in plant immunity signaling, and position the multifaceted functions of PP2A in the tightly inter-connected regulatory network that controls the perception, signaling and responding to biotic stress agents in plants. PMID:27375664

  8. Role of Signal Regulatory Protein α in Arsenic Trioxide-induced Promyelocytic Leukemia Cell Apoptosis.

    PubMed

    Pan, Chaoyun; Zhu, Dihan; Zhuo, Jianjiang; Li, Limin; Wang, Dong; Zhang, Chen-Yu; Liu, Yuan; Zen, Ke

    2016-01-01

    Signal regulatory protein α (SIRPα) has been shown to operate as a negative regulator in cancer cell survival. The mechanism underneath such function, however, remains poorly defined. In the present study, we demonstrate that overexpression of SIRPα in acute promyelocytic leukemia (APL) cells results in apoptosis possibly via inhibiting the β-catenin signaling pathway and upregulating Foxo3a. Pharmacological activation of β-catenin signal pathway attenuates apoptosis caused by SIRPα. Interestingly, we also find that the pro-apoptotic effect of SIRPα plays an important role in arsenic trioxide (ATO)-induced apoptosis in APL cells. ATO treatment induces the SIRPα protein expression in APL cells and abrogation of SIRPα induction by lentivirus-mediated SIRPα shRNA significantly reduces the ATO-induced apoptosis. Mechanistic study further shows that induction of SIRPα protein in APL cells by ATO is mediated through suppression of c-Myc, resulting in reduction of three SIRPα-targeting microRNAs: miR-17, miR-20a and miR-106a. In summary, our results demonstrate that SIRPα inhibits tumor cell survival and significantly contributes to ATO-induced APL cell apoptosis. PMID:27010069

  9. Role of Signal Regulatory Protein α in Arsenic Trioxide-induced Promyelocytic Leukemia Cell Apoptosis

    PubMed Central

    Pan, Chaoyun; Zhu, Dihan; Zhuo, Jianjiang; Li, Limin; Wang, Dong; Zhang, Chen-Yu; Liu, Yuan; Zen, Ke

    2016-01-01

    Signal regulatory protein α (SIRPα) has been shown to operate as a negative regulator in cancer cell survival. The mechanism underneath such function, however, remains poorly defined. In the present study, we demonstrate that overexpression of SIRPα in acute promyelocytic leukemia (APL) cells results in apoptosis possibly via inhibiting the β-catenin signaling pathway and upregulating Foxo3a. Pharmacological activation of β-catenin signal pathway attenuates apoptosis caused by SIRPα. Interestingly, we also find that the pro-apoptotic effect of SIRPα plays an important role in arsenic trioxide (ATO)-induced apoptosis in APL cells. ATO treatment induces the SIRPα protein expression in APL cells and abrogation of SIRPα induction by lentivirus-mediated SIRPα shRNA significantly reduces the ATO-induced apoptosis. Mechanistic study further shows that induction of SIRPα protein in APL cells by ATO is mediated through suppression of c-Myc, resulting in reduction of three SIRPα-targeting microRNAs: miR-17, miR-20a and miR-106a. In summary, our results demonstrate that SIRPα inhibits tumor cell survival and significantly contributes to ATO-induced APL cell apoptosis. PMID:27010069

  10. Structural Basis of Reversible Phosphorylation by Maize Pyruvate Orthophosphate Dikinase Regulatory Protein1[OPEN

    PubMed Central

    Jiang, Lun; Chen, Yi-bo; Zheng, Jiangge; Chen, Zhenhang; Liu, Yujie; Tao, Ye; Wu, Wei; Wang, Bai-chen

    2016-01-01

    Pyruvate orthophosphate dikinase (PPDK) is one of the most important enzymes in C4 photosynthesis. PPDK regulatory protein (PDRP) regulates the inorganic phosphate-dependent activation and ADP-dependent inactivation of PPDK by reversible phosphorylation. PDRP shares no significant sequence similarity with other protein kinases or phosphatases. To investigate the molecular mechanism by which PDRP carries out its dual and competing activities, we determined the crystal structure of PDRP from maize (Zea mays). PDRP forms a compact homo-dimer in which each protomer contains two separate N-terminal (NTD) and C-terminal (CTD) domains. The CTD includes several key elements for performing both phosphorylation and dephosphorylation activities: the phosphate binding loop (P-loop) for binding the ADP and inorganic phosphate substrates, residues Lys-274 and Lys-299 for neutralizing the negative charge, and residue Asp-277 for protonating and deprotonating the target Thr residue of PPDK to promote nucleophilic attack. Surprisingly, the NTD shares the same protein fold as the CTD and also includes a putative P-loop with AMP bound but lacking enzymatic activities. Structural analysis indicated that this loop may participate in the interaction with and regulation of PPDK. The NTD has conserved intramolecular and intermolecular disulfide bonds for PDRP dimerization. Moreover, PDRP is the first structure of the domain of unknown function 299 enzyme family reported. This study provides a structural basis for understanding the catalytic mechanism of PDRP and offers a foundation for the development of selective activators or inhibitors that may regulate photosynthesis. PMID:26620526

  11. Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants

    PubMed Central

    Durian, Guido; Rahikainen, Moona; Alegre, Sara; Brosché, Mikael; Kangasjärvi, Saijaliisa

    2016-01-01

    Biotic stress factors pose a major threat to plant health and can significantly deteriorate plant productivity by impairing the physiological functions of the plant. To combat the wide range of pathogens and insect herbivores, plants deploy converging signaling pathways, where counteracting activities of protein kinases and phosphatases form a basic mechanism for determining appropriate defensive measures. Recent studies have identified Protein Phosphatase 2A (PP2A) as a crucial component that controls pathogenesis responses in various plant species. Genetic, proteomic and metabolomic approaches have underscored the versatile nature of PP2A, which contributes to the regulation of receptor signaling, organellar signaling, gene expression, metabolic pathways, and cell death, all of which essentially impact plant immunity. Associated with this, various PP2A subunits mediate post-translational regulation of metabolic enzymes and signaling components. Here we provide an overview of protein kinase/phosphatase functions in plant immunity signaling, and position the multifaceted functions of PP2A in the tightly inter-connected regulatory network that controls the perception, signaling and responding to biotic stress agents in plants. PMID:27375664

  12. Regulation of the endogenous VEGF-A gene by exogenous designed regulatory proteins

    PubMed Central

    Tachikawa, Kiyoshi; Schröder, Oliver; Frey, Gerhard; Briggs, Steven P.; Sera, Takashi

    2004-01-01

    We describe a facile method to activate or repress transcription of endogenous genes in a quantitative and specific manner by treatment with designed regulatory proteins (DRPs), in which artificial transcription factors (ATFs) are fused to cell-penetrating peptides (CPPs). Penetration of DRPs into cells is mediated by an N-terminal CPP fused to a nuclear localization signal; a DNA-binding domain and a transactivation domain follow. The DNA-binding domain was targeted to the vascular endothelial growth factor (VEGF)-A gene. An agonist DRP was rapidly taken up by cells and transported to the nucleus; soon after, the cells began transcribing the gene and secreting VEGF-A protein in a dose-dependent manner. Multiple copies of a short oligopeptide derived from a minimal transactivation domain of human β-catenin was stronger than VP-16. The SRDX domain from the plant transcription factor, SUPERMAN, changed the DRP to a hypoxia-induced antagonist of VEGF-A. DRPs combine many of the potential benefits of transgenes with those of recombinant proteins. PMID:15475575

  13. A direct role for murine Cdx proteins in the trunk neural crest gene regulatory network.

    PubMed

    Sanchez-Ferras, Oraly; Bernas, Guillaume; Farnos, Omar; Touré, Aboubacrine M; Souchkova, Ouliana; Pilon, Nicolas

    2016-04-15

    Numerous studies in chordates and arthropods currently indicate that Cdx proteins have a major ancestral role in the organization of post-head tissues. In urochordate embryos, Cdx loss-of-function has been shown to impair axial elongation, neural tube (NT) closure and pigment cell development. Intriguingly, in contrast to axial elongation and NT closure, a Cdx role in neural crest (NC)-derived melanocyte/pigment cell development has not been reported in any other chordate species. To address this, we generated a new conditional pan-Cdx functional knockdown mouse model that circumvents Cdx functional redundancy as well as the early embryonic lethality of Cdx mutants. Through directed inhibition in the neuroectoderm, we providein vivoevidence that murine Cdx proteins impact melanocyte and enteric nervous system development by, at least in part, directly controlling the expression of the key early regulators of NC ontogenesisPax3,Msx1andFoxd3 Our work thus reveals a novel role for Cdx proteins at the top of the trunk NC gene regulatory network in the mouse, which appears to have been inherited from their ancestral ortholog. PMID:26952979

  14. Signal regulatory protein α regulates the homeostasis of T lymphocytes in the spleen.

    PubMed

    Sato-Hashimoto, Miho; Saito, Yasuyuki; Ohnishi, Hiroshi; Iwamura, Hiroko; Kanazawa, Yoshitake; Kaneko, Tetsuya; Kusakari, Shinya; Kotani, Takenori; Mori, Munemasa; Murata, Yoji; Okazawa, Hideki; Ware, Carl F; Oldenborg, Per-Arne; Nojima, Yoshihisa; Matozaki, Takashi

    2011-07-01

    The molecular basis for formation of lymphoid follicle and its homeostasis in the secondary lymphoid organs remains unclear. Signal regulatory protein α (SIRPα), an Ig superfamily protein that is predominantly expressed in dendritic cells or macrophages, mediates cell-cell signaling by interacting with CD47, another Ig superfamily protein. In this study, we show that the size of the T cell zone as well as the number of CD4(+) T cells were markedly reduced in the spleen of mice bearing a mutant (MT) SIRPα that lacks the cytoplasmic region compared with those of wild-type mice. In addition, the expression of CCL19 and CCL21, as well as of IL-7, which are thought to be important for development or homeostasis of the T cell zone, was markedly decreased in the spleen of SIRPα MT mice. By the use of bone marrow chimera, we found that hematopoietic SIRPα is important for development of the T cell zone as well as the expression of CCL19 and CCL21 in the spleen. The expression of lymphotoxin and its receptor, lymphotoxin β receptor, as well as the in vivo response to lymphotoxin β receptor stimulation were also decreased in the spleen of SIRPα MT mice. CD47-deficient mice also manifested phenotypes similar to SIRPα MT mice. These data suggest that SIRPα as well as its ligand CD47 are thus essential for steady-state homeostasis of T cells in the spleen. PMID:21632712

  15. PreImplantation factor (PIF*) regulates systemic immunity and targets protective regulatory and cytoskeleton proteins.

    PubMed

    Barnea, Eytan R; Hayrabedyan, Soren; Todorova, Krassimira; Almogi-Hazan, Osnat; Or, Reuven; Guingab, Joy; McElhinney, James; Fernandez, Nelson; Barder, Timothy

    2016-07-01

    Secreted by viable embryos, PIF is expressed by the placenta and found in maternal circulation. It promotes implantation and trophoblast invasion, achieving systemic immune homeostasis. Synthetic PIF successfully transposes endogenous PIF features to non-pregnant immune and transplant models. PIF affects innate and activated PBMC cytokines and genes expression. We report that PIF targets similar proteins in CD14+, CD4+ and CD8+ cells instigating integrated immune regulation. PIF-affinity chromatography followed by mass-spectrometry, pathway and heatmap analysis reveals that SET-apoptosis inhibitor, vimentin, myosin-9 and calmodulin are pivotal for immune regulation. PIF acts on macrophages down-stream of LPS (lipopolysaccharide-bacterial antigen) CD14/TLR4/MD2 complex, targeting myosin-9, thymosin-α1 and 14-3-3eta. PIF mainly targets platelet aggregation in CD4+, and skeletal proteins in CD8+ cells. Pathway analysis demonstrates that PIF targets and regulates SET, tubulin, actin-b, and S100 genes expression. PIF targets systemic immunity and has a short circulating half-life. Collectively, PIF targets identified; protective, immune regulatory and cytoskeleton proteins reveal mechanisms involved in the observed efficacy against immune disorders. PMID:26944449

  16. Arthritis protective regulatory potential of self–heat shock protein cross-reactive T cells

    PubMed Central

    van Eden, Willem; Wendling, Uwe; Paul, Liesbeth; Prakken, Berent; van Kooten, Peter; van der Zee, Ruurd

    2000-01-01

    Immunization with heat shock proteins has protective effects in models of induced arthritis. Analysis has shown a reduced synovial inflammation in such protected animals. Adoptive transfer and immunization with selected T cell epitopes (synthetic peptides) have indicated the protection to be mediated by T cells directed to conserved hsp epitopes. This was shown first for mycobacterial hsp60 and later for mycobacterial hsp70. Fine specificity analysis showed that such T cells were cross-reactive with the homologous self hsp. Therefore protection by microbial hsp reactive T cells can be by cross-recognition of self hsp overexpressed in the inflamed tissue. Preimmunization with hsp leads to a relative expansion of such self hsp cross-responsive T cells. The regulatory nature of such T cells may originate from mucosal tolerance maintained by commensal flora derived hsp or from partial activation through recognition of self hsp as a partial agonist (Altered Peptide Ligand) or in the absence of proper costimulation. Recently, we reported the selective upregulation of B7.2 on microbial hsp60 specific T cells in response to self hsp60. Through a preferred interaction with CTLA-4 on proinflammatory T cells this may constitute an effector mechanism of regulation. Also, regulatory T cells produced IL10. PMID:11189451

  17. Transcriptional control by two leucine-responsive regulatory proteins in Halobacterium salinarum R1

    PubMed Central

    2010-01-01

    Background Archaea combine bacterial-as well as eukaryotic-like features to regulate cellular processes. Halobacterium salinarum R1 encodes eight leucine-responsive regulatory protein (Lrp)-homologues. The function of two of them, Irp (OE3923F) and lrpA1 (OE2621R), were analyzed by gene deletion and overexpression, including genome scale impacts using microarrays. Results It was shown that Lrp affects the transcription of multiple target genes, including those encoding enzymes involved in amino acid synthesis, central metabolism, transport processes and other regulators of transcription. In contrast, LrpA1 regulates transcription in a more specific manner. The aspB3 gene, coding for an aspartate transaminase, was repressed by LrpA1 in the presence of L-aspartate. Analytical DNA-affinity chromatography was adapted to high salt, and demonstrated binding of LrpA1 to its own promoter, as well as L-aspartate dependent binding to the aspB3 promoter. Conclusion The gene expression profiles of two archaeal Lrp-homologues report in detail their role in H. salinarum R1. LrpA1 and Lrp show similar functions to those already described in bacteria, but in addition they play a key role in regulatory networks, such as controlling the transcription of other regulators. In a more detailed analysis ligand dependent binding of LrpA1 was demonstrated to its target gene aspB3. PMID:20509863

  18. Subcelluar compartmentalization of cAMP-dependent protein kinase regulatory subunits during palate ontogeny

    SciTech Connect

    Linask, K.K.; Greene, R.M. )

    1989-01-01

    Mammalian palatal ontogeny involves epithelial-mesenchymal interactions, cell differentiation, and cell movement. These events occur on days 12, 13, and 14 of gestation in the C57BL/6J mouse embryo. During this period intracellular cAMP levels and cAMP-dependent protein kinase (cAMP-dPK) levels in the palate transiently elevate. Cyclic AMP activates cAMP-dPK by binding primarily to two types of regulatory subunits of this enzyme, designated as R{sub I} and R{sub II}. To assess whether differential compartmentalization of the regulatory subunits occurs during palatal ontogeny, cytosolic, nuclear, and particulate fractions were prepared from day 12, 13, and 14 embryonic maxillary and palatal tissue. After photo-affinity labeling of each fraction with 8-azido ({sup 32}P) cAMP, SDS-PAGE, and autoradiography, autoradiograms were analyzed densitometrically. The R{sub I} isoform predominated in the nuclear and particulate fractions on all three developmental days; whereas R{sub II} predominated in the cytosolic fractions. Thus, differential compartmentalization of cAMP-dPK may be a means by which cAMP dependent responses are regulated during palatogenesis.

  19. Different expression of protein kinase A (PKA) regulatory subunits in normal and neoplastic thyroid tissues.

    PubMed

    Ferrero, Stefano; Vaira, Valentina; Del Gobbo, Alessandro; Vicentini, Leonardo; Bosari, Silvano; Beck-Peccoz, Paolo; Mantovani, Giovanna; Spada, Anna; Lania, Andrea G

    2015-04-01

    The four regulatory subunits (R1A, R1B, R2A, R2B) of protein kinase A (PKA) are differentially expressed in several cancer cell lines and exert distinct roles in both cell growth and cell differentiation control. Mutations of the PRKAR1A gene have been found in patients with Carney complex and in a minority of sporadic anaplastic thyroid carcinomas. The aim of the study was to retrospectively evaluate the expression of different PKA regulatory subunits in benign and non benign human thyroid tumours and to correlate their expression with clinical phenotype. Immunohistochemistry demonstrated a significant increase in PRKAR2B expression in both differentiated and undifferentiated (anaplastic) thyroid tumors in comparison with normal thyroid tissues. Conversely, a significant increase in PRKAR1A expression was only demonstrated in undifferentiated thyroid carcinomas in comparison with normal thyroid tissue and differentiated thyroid tumors. In thyroid cancers without lymph nodal metastases PRKAR1A expression was higher in tumours of more than 2 cm in size (T2 and T3) compared to smaller ones (T1). In conclusion, our data shows that an increased PRKAR1A expression is associated with aggressive and undifferentiated thyroid tumors. PMID:25393625

  20. Properties of Sequence Conservation in Upstream Regulatory and Protein Coding Sequences among Paralogs in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Richardson, Dale N.; Wiehe, Thomas

    Whole genome duplication (WGD) has catalyzed the formation of new species, genes with novel functions, altered expression patterns, complexified signaling pathways and has provided organisms a level of genetic robustness. We studied the long-term evolution and interrelationships of 5’ upstream regulatory sequences (URSs), protein coding sequences (CDSs) and expression correlations (EC) of duplicated gene pairs in Arabidopsis. Three distinct methods revealed significant evolutionary conservation between paralogous URSs and were highly correlated with microarray-based expression correlation of the respective gene pairs. Positional information on exact matches between sequences unveiled the contribution of micro-chromosomal rearrangements on expression divergence. A three-way rank analysis of URS similarity, CDS divergence and EC uncovered specific gene functional biases. Transcription factor activity was associated with gene pairs exhibiting conserved URSs and divergent CDSs, whereas a broad array of metabolic enzymes was found to be associated with gene pairs showing diverged URSs but conserved CDSs.

  1. The reduced soluble fibrinogen-like protein 2 and regulatory T cells in acute coronary syndrome.

    PubMed

    Liu, Kun; Li, Ting; Huang, Shiyuan; Long, Rui; You, Ya; Liu, Jinping; Wang, Zhaohui

    2016-02-01

    Soluble fibrinogen-like protein 2, sfgl2, is the new effector of CD4(+)CD25(+)FOXP3(+) regulatory T cell (Treg) and exerts immunosuppressive activity. We design this study to investigate the possible role of sfgl2 in atherosclerosis. A total of 58 acute coronary syndrome (ACS) patients, together with 22 stable angina (SA) patients and 31 normal coronary artery (NCA) people were enrolled in our study. Serum level of sfgl2 and plasma level of Treg were respectively measured. In line with the change of Treg, serum level of sfgl2 in ACS (8.70 ng/mL) was significantly decreased (P = 0.003), compared with that in SA (11.86 ng/mL) and NCA (17.55 ng/mL). Both sfgl2 and Treg level were obviously decreased in ACS; Sfgl2 may play a protective role in atherosclerosis. PMID:26515143

  2. Protein SUMOylation Is Required for Regulatory T Cell Expansion and Function.

    PubMed

    Ding, Xiao; Wang, Aibo; Ma, Xiaopeng; Demarque, Maud; Jin, Wei; Xin, Huawei; Dejean, Anne; Dong, Chen

    2016-07-26

    Foxp3-expressing regulatory T (Treg) cells are essential for immune tolerance; however, the molecular mechanisms underlying Treg cell expansion and function are still not well understood. SUMOylation is a protein post-translational modification characterized by covalent attachment of SUMO moieties to lysines. UBC9 is the only E2 conjugating enzyme involved in this process, and loss of UBC9 completely abolishes the SUMOylation pathway. Here, we report that selective deletion of Ubc9 within the Treg lineage results in fatal early-onset autoimmunity similar to Foxp3 mutant mice. Ubc9-deficient Treg cells exhibit severe defects in TCR-driven homeostatic proliferation, accompanied by impaired activation and compromised suppressor function. Importantly, TCR ligation enhanced SUMOylation of IRF4, a critical regulator of Treg cell function downstream of TCR signals, which regulates its stability in Treg cells. Our data thus have demonstrated an essential role of SUMOylation in the expansion and function of Treg cells. PMID:27425617

  3. Regulation of Phagocyte Migration by Signal Regulatory Protein-Alpha Signaling

    PubMed Central

    Alvarez-Zarate, Julian; Matlung, Hanke L.; Matozaki, Takashi; Kuijpers, Taco W.; Maridonneau-Parini, Isabelle; van den Berg, Timo K.

    2015-01-01

    Signaling through the inhibitory receptor signal regulatory protein-alpha (SIRPα) controls effector functions in phagocytes. However, there are also indications that interactions between SIRPα and its ligand CD47 are involved in phagocyte transendothelial migration. We have investigated the involvement of SIRPα signaling in phagocyte migration in vitro and in vivo using mice that lack the SIRPα cytoplasmic tail. During thioglycolate-induced peritonitis in SIRPα mutant mice, both neutrophil and macrophage influx were found to occur, but to be significantly delayed. SIRPα signaling appeared to be essential for an optimal transendothelial migration and chemotaxis, and for the amoeboid type of phagocyte migration in 3-dimensional environments. These findings demonstrate, for the first time, that SIRPα signaling can directly control phagocyte migration, and this may contribute to the impaired inflammatory phenotype that has been observed in the absence of SIRPα signaling. PMID:26057870

  4. Mitochondrial Protein Phosphorylation as a Regulatory Modality: Implications for Mitochondrial Dysfunction in Heart Failure

    PubMed Central

    O’Rourke, Brian; Van Eyk, Jennifer E.; Foster, D. Brian

    2014-01-01

    Phosphorylation of mitochondrial proteins has been recognized for decades, and the regulation of pyruvate- and branched-chain α-ketoacid dehydrogenases by an atypical kinase/phosphatase cascade is well established. More recently, the development of new mass spectrometry-based technologies has led to the discovery of many novel phosphorylation sites on a variety of mitochondrial targets. The evidence suggests that the major classes of kinase and several phosphatases may be present at the mitochondrial outer membrane, intermembrane space, inner membrane, and matrix, but many questions remain to be answered as to the location, timing, and reversibility of these phosphorylation events and whether they are functionally relevant. The authors review phosphorylation as a mitochondrial regulatory strategy and highlight its possible role in the pathophysiology of cardiac hypertrophy and failure. PMID:22103918

  5. Evolutionary Adaptation of an AraC-Like Regulatory Protein in Citrobacter rodentium and Escherichia Species

    PubMed Central

    Tan, Aimee; Petty, Nicola K.; Hocking, Dianna; Bennett-Wood, Vicki; Wakefield, Matthew; Praszkier, Judyta; Tauschek, Marija; Yang, Ji

    2015-01-01

    The evolution of pathogenic bacteria is a multifaceted and complex process, which is strongly influenced by the horizontal acquisition of genetic elements and their subsequent expression in their new hosts. A well-studied example is the RegA regulon of the enteric pathogen Citrobacter rodentium. The RegA regulatory protein is a member of the AraC/XylS superfamily, which coordinates the expression of a gene repertoire that is necessary for full pathogenicity of this murine pathogen. Upon stimulation by an exogenous, gut-associated signal, namely, bicarbonate ions, RegA activates the expression of a series of genes, including virulence factors, such as autotransporters, fimbriae, a dispersin-like protein, and the grlRA operon on the locus of enterocyte effacement pathogenicity island. Interestingly, the genes encoding RegA homologues are distributed across the genus Escherichia, encompassing pathogenic and nonpathogenic subtypes. In this study, we carried out a series of bioinformatic, transcriptional, and functional analyses of the RegA regulons of these bacteria. Our results demonstrated that regA has been horizontally transferred to Escherichia spp. and C. rodentium. Comparative studies of two RegA homologues, namely, those from C. rodentium and E. coli SMS-3-5, a multiresistant environmental strain of E. coli, showed that the two regulators acted similarly in vitro but differed in terms of their abilities to activate the virulence of C. rodentium in vivo, which evidently was due to their differential activation of grlRA. Our data indicate that RegA from C. rodentium has strain-specific adaptations that facilitate infection of its murine host. These findings shed new light on the development of virulence by C. rodentium and on the evolution of virulence-regulatory genes of bacterial pathogens in general. PMID:25624355

  6. Role of the steroidogenic acute regulatory protein in health and disease.

    PubMed

    Manna, Pulak R; Stetson, Cloyce L; Slominski, Andrzej T; Pruitt, Kevin

    2016-01-01

    Steroid hormones are an important class of regulatory molecules that are synthesized in steroidogenic cells of the adrenal, ovary, testis, placenta, brain, and skin, and influence a spectrum of developmental and physiological processes. The steroidogenic acute regulatory protein (STAR) predominantly mediates the rate-limiting step in steroid biosynthesis, i.e., the transport of the substrate of all steroid hormones, cholesterol, from the outer to the inner mitochondrial membrane. At the inner membrane, cytochrome P450 cholesterol side chain cleavage enzyme cleaves the cholesterol side chain to form the first steroid, pregnenolone, which is converted by a series of enzymes to various steroid hormones in specific tissues. Both basic and clinical evidence have demonstrated the crucial involvement of the STAR protein in the regulation of steroid biosynthesis. Multiple levels of regulation impinge on STAR action. Recent findings demonstrate that hormone-sensitive lipase, through its action on the hydrolysis of cholesteryl esters, plays an important role in regulating STAR expression and steroidogenesis which involve the liver X receptor pathway. Activation of the latter influences macrophage cholesterol efflux that is a key process in the prevention of atherosclerotic cardiovascular disease. Appropriate regulation of steroid hormones is vital for proper functioning of many important biological activities, which are also paramount for geriatric populations to live longer and healthier. This review summarizes the current level of understanding on tissue-specific and hormone-induced regulation of STAR expression and steroidogenesis, and provides insights into a number of cholesterol and/or steroid coupled physiological and pathophysiological consequences. PMID:26271515

  7. NSA2, a novel nucleolus protein regulates cell proliferation and cell cycle

    SciTech Connect

    Zhang, Heyu; Ma, Xi; Shi, Taiping; Song, Quansheng; Zhao, Hongshan; Ma, Dalong

    2010-01-01

    NSA2 (Nop seven-associated 2) was previously identified in a high throughput screen of novel human genes associated with cell proliferation, and the NSA2 protein is evolutionarily conserved across different species. In this study, we revealed that NSA2 is broadly expressed in human tissues and cultured cell lines, and located in the nucleolus of the cell. Both of the putative nuclear localization signals (NLSs) of NSA2, also overlapped with nucleolar localization signals (NoLSs), are capable of directing nucleolar accumulation. Moreover, over-expression of the NSA2 protein promoted cell growth in different cell lines and regulated the G1/S transition in the cell cycle. SiRNA silencing of the NSA2 transcript attenuated the cell growth and dramatically blocked the cell cycle in G1/S transition. Our results demonstrated that NSA2 is a nucleolar protein involved in cell proliferation and cell cycle regulation.

  8. Adult neurogenesis: can analysis of cell cycle proteins move us "Beyond BrdU"?

    PubMed

    Eisch, Amelia J; Mandyam, Chitra D

    2007-06-01

    One of the greatest scientific discoveries of the 20th century is that the mammalian brain can give rise to new neurons throughout the lifespan. The phenomenon of adult neurogenesis raises hopes of harnessing neural stem cell for brain repair, and has sparked interest in novel roles for these new neurons, such as olfaction, spatial memory, and even regulation of mood. Traditionally, studies on adult neurogenesis have relied on exogenous markers of DNA synthesis, such as bromodeoxyuridine (BrdU), to label and track the birth of new cells. However, the exponential increase in our knowledge of endogenous markers of cycling cells has ushered in a new era of stem cell biology. Here we review the strides made in using endogenous cell cycle proteins to study adult neurogenesis in vivo. We (1) discuss the distribution of endogenous cell cycle proteins in proliferative regions of the adult mammalian brain; (2) review cell cycle phase-specific information gained from analyzing a combination of endogenous cell cycle proteins; and (3) provide data on the regulation of cell cycle proteins by a robust inhibitor of proliferation, morphine. The ability of BrdU to birthdate cells ensures it will always serve a role in studies of adult neurogenesis, thus preventing us from moving entirely 'beyond BrdU'. However, it is hoped that this review will provide interested researchers with the tools needed to apply the powerful and relatively novel approach of analyzing endogenous cell cycle proteins to the study of stem cells in general and adult neurogenesis in particular. PMID:17584088

  9. Pollutant emissions from vehicles with regenerating after-treatment systems in regulatory and real-world driving cycles.

    PubMed

    Alvarez, Robert; Weilenmann, Martin; Novak, Philippe

    2008-07-15

    Regenerating exhaust after-treatment systems are increasingly employed in passenger cars in order to comply with regulatory emission standards. These systems include pollutant storage units that occasionally have to be regenerated. The regeneration strategy applied, the resultant emission levels and their share of the emission level during normal operation mode are key issues in determining realistic overall emission factors for these cars. In order to investigate these topics, test series with four cars featuring different types of such after-treatment systems were carried out. The emission performance in legislative and real-world cycles was monitored as well as at constant speeds. The extra emissions determined during regeneration stages are presented together with the methodology applied to calculate their impact on overall emissions. It can be concluded that exhaust after-treatment systems with storage units cause substantial overall extra emissions during regeneration mode and can appreciably affect the emission factors of cars equipped with such systems, depending on the frequency of regenerations. Considering that the fleet appearance of vehicles equipped with such after-treatment systems will increase due to the evolution of statutory pollutant emission levels, extra emissions originating from regenerations of pollutant storage units consequently need to be taken into account for fleet emission inventories. Accurately quantifying these extra emissions is achieved by either conducting sufficient repetitions of emission measurements with an individual car or by considerably increasing the size of the sample of cars with comparable after-treatment systems. PMID:18420256

  10. Systematic identification of regulatory proteins critical for T-cell activation

    PubMed Central

    Chu, Peter; Pardo, Jorge; Zhao, Haoran; Li, Connie C; Pali, Erlina; Shen, Mary M; Qu, Kunbin; Yu, Simon X; Huang, Betty CB; Yu, Peiwen; Masuda, Esteban S; Molineaux, Susan M; Kolbinger, Frank; Aversa, Gregorio; de Vries, Jan; Payan, Donald G; Liao, X Charlene

    2003-01-01

    Background The activation of T cells, mediated by the T-cell receptor (TCR), activates a battery of specific membrane-associated, cytosolic and nuclear proteins. Identifying the signaling proteins downstream of TCR activation will help us to understand the regulation of immune responses and will contribute to developing therapeutic agents that target immune regulation. Results In an effort to identify novel signaling molecules specific for T-cell activation we undertook a large-scale dominant effector genetic screen using retroviral technology. We cloned and characterized 33 distinct genes from over 2,800 clones obtained in a screen of 7 × 108 Jurkat T cells on the basis of a reduction in TCR-activation-induced CD69 expression after expressing retrovirally derived cDNA libraries. We identified known signaling molecules such as Lck, ZAP70, Syk, PLCγ1 and SHP-1 (PTP1C) as truncation mutants with dominant-negative or constitutively active functions. We also discovered molecules not previously known to have functions in this pathway, including a novel protein with a RING domain (found in a class of ubiquitin ligases; we call this protein TRAC-1), transmembrane molecules (EDG1, IL-10Rα and integrin α2), cytoplasmic enzymes and adaptors (PAK2, A-Raf-1, TCPTP, Grb7, SH2-B and GG2-1), and cytoskeletal molecules (moesin and vimentin). Furthermore, using truncated Lck, PLCγ1, EDG1 and PAK2 mutants as examples, we showed that these dominant immune-regulatory molecules interfere with IL-2 production in human primary lymphocytes. Conclusions This study identified important signal regulators in T-cell activation. It also demonstrated a highly efficient strategy for discovering many components of signal transduction pathways and validating them in physiological settings. PMID:12974981

  11. Differential Expression of Proteins Associated with the Hair Follicle Cycle - Proteomics and Bioinformatics Analyses

    PubMed Central

    Tian, Tian; Yang, Mifang; Li, Zhongming; Ping, Fengfeng; Fan, Weixin

    2016-01-01

    Hair follicle cycling can be divided into the following three stages: anagen, catagen, and telogen. The molecular signals that orchestrate the follicular transition between phases are still unknown. To better understand the detailed protein networks controlling this process, proteomics and bioinformatics analyses were performed to construct comparative protein profiles of mouse skin at specific time points (0, 8, and 20 days). Ninety-five differentially expressed protein spots were identified by MALDI-TOF/TOF as 44 proteins, which were found to change during hair follicle cycle transition. Proteomics analysis revealed that these changes in protein expression are involved in Ca2+-regulated biological processes, migration, and regulation of signal transduction, among other processes. Subsequently, three proteins were selected to validate the reliability of expression patterns using western blotting. Cluster analysis revealed three expression patterns, and each pattern correlated with specific cell processes that occur during the hair cycle. Furthermore, bioinformatics analysis indicated that the differentially expressed proteins impacted multiple biological networks, after which detailed functional analyses were performed. Taken together, the above data may provide insight into the three stages of mouse hair follicle morphogenesis and provide a solid basis for potential therapeutic molecular targets for this hair disease. PMID:26752403

  12. Differential Expression of Proteins Associated with the Hair Follicle Cycle - Proteomics and Bioinformatics Analyses.

    PubMed

    Wang, Lei; Xu, Wenrong; Cao, Lei; Tian, Tian; Yang, Mifang; Li, Zhongming; Ping, Fengfeng; Fan, Weixin

    2016-01-01

    Hair follicle cycling can be divided into the following three stages: anagen, catagen, and telogen. The molecular signals that orchestrate the follicular transition between phases are still unknown. To better understand the detailed protein networks controlling this process, proteomics and bioinformatics analyses were performed to construct comparative protein profiles of mouse skin at specific time points (0, 8, and 20 days). Ninety-five differentially expressed protein spots were identified by MALDI-TOF/TOF as 44 proteins, which were found to change during hair follicle cycle transition. Proteomics analysis revealed that these changes in protein expression are involved in Ca2+-regulated biological processes, migration, and regulation of signal transduction, among other processes. Subsequently, three proteins were selected to validate the reliability of expression patterns using western blotting. Cluster analysis revealed three expression patterns, and each pattern correlated with specific cell processes that occur during the hair cycle. Furthermore, bioinformatics analysis indicated that the differentially expressed proteins impacted multiple biological networks, after which detailed functional analyses were performed. Taken together, the above data may provide insight into the three stages of mouse hair follicle morphogenesis and provide a solid basis for potential therapeutic molecular targets for this hair disease. PMID:26752403

  13. P(I) Release Limits the Intrinsic and RNA-Stimulated ATPase Cycles of DEAD-Box Protein 5 (Dbp5).

    PubMed

    Wong, Emily V; Cao, Wenxiang; Vörös, Judit; Merchant, Monique; Modis, Yorgo; Hackney, David D; Montpetit, Ben; De La Cruz, Enrique M

    2016-01-29

    mRNA export from the nucleus depends on the ATPase activity of the DEAD-box protein Dbp5/DDX19. Although Dbp5 has measurable ATPase activity alone, several regulatory factors (e.g., RNA, nucleoporin proteins, and the endogenous small molecule InsP6) modulate catalytic activity in vitro and in vivo to facilitate mRNA export. An analysis of the intrinsic and regulator-activated Dbp5 ATPase cycle is necessary to define how these factors control Dbp5 and mRNA export. Here, we report a kinetic and equilibrium analysis of the Saccharomyces cerevisiae Dbp5 ATPase cycle, including the influence of RNA on Dbp5 activity. These data show that ATP binds Dbp5 weakly in rapid equilibrium with a binding affinity (KT~4 mM) comparable to the KM for steady-state cycling, while ADP binds an order of magnitude more tightly (KD~0.4 mM). The overall intrinsic steady-state cycling rate constant (kcat) is limited by slow, near-irreversible ATP hydrolysis and even slower subsequent phosphate release. RNA increases kcat and rate-limiting Pi release 20-fold, although Pi release continues to limit steady-state cycling in the presence of RNA, in conjunction with RNA binding. Together, this work identifies RNA binding and Pi release as important biochemical transitions within the Dbp5 ATPase cycle and provides a framework for investigating the means by which Dbp5 and mRNA export is modulated by regulatory factors. PMID:26730886

  14. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells.

    PubMed

    Re, Angela; Workman, Christopher T; Waldron, Levi; Quattrone, Alessandro; Brunak, Søren

    2014-09-01

    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two programs. Functional analysis gathered insights in fate-specific candidates of interface functionalities. The non-transcriptionally regulated interface proteins were found to be highly regulated by post-translational ubiquitylation modification, which may synchronize the transition between cell proliferation and differentiation in ESCs. PMID:25173649

  15. Complement regulatory proteins are incorporated into lentiviral vectors and protect particles against complement inactivation.

    PubMed

    Schauber-Plewa, C; Simmons, A; Tuerk, M J; Pacheco, C D; Veres, G

    2005-02-01

    Lentiviral vectors pseudotyped with G glycoprotein from vesicular stomatitis virus (VSV-G) and baculovirus gp64 are inactivated by human complement. The extent of vector inactivation in serum from individual donors was examined and results showed wide donor-dependent variation in complement sensitivity for VSV-G-pseudotyped lentivectors. Amphotropic envelope (Ampho)-pseudotyped vectors were generally resistant to serum from all donors, while gp64-pseudotyped vectors were inactivated but showed less donor-to-donor variation than VSV-G. In animal sera, the vectors were mostly resistant to inactivation by rodent complement, whereas canine complement caused a moderate reduction in titer. In a novel advance for the lentiviral vector system, human complement-resistant-pseudotyped lentivector particles were produced through incorporation of complement regulatory proteins (CRPs). Decay accelerating factor (DAF)/CD55 provided the most effective protection using this method, while membrane cofactor protein (MCP)/CD46 showed donor-dependent protection and CD59 provided little or no protection against complement inactivation. Unlike previous approaches using CRPs to produce complement-resistant viral vectors, CRP-containing lentivectors particles were generated for this study without engineering the CRP molecules. Thus, through overexpression of native DAF/CD55 in the viral producer cell, an easy method was developed for generation of lentiviral vectors that are almost completely resistant to inactivation by human complement. Production of complement-resistant lentiviral particles is a critical step toward use of these vectors for in vivo gene therapy applications. PMID:15550926

  16. Activation of Interferon Regulatory Factor 3 Is Inhibited by the Influenza A Virus NS1 Protein

    PubMed Central

    Talon, Julie; Horvath, Curt M.; Polley, Rosalind; Basler, Christopher F.; Muster, Thomas; Palese, Peter; García-Sastre, Adolfo

    2000-01-01

    We present a novel mechanism by which viruses may inhibit the alpha/beta interferon (IFN-α/β) cascade. The double-stranded RNA (dsRNA) binding protein NS1 of influenza virus is shown to prevent the potent antiviral interferon response by inhibiting the activation of interferon regulatory factor 3 (IRF-3), a key regulator of IFN-α/β gene expression. IRF-3 activation and, as a consequence, IFN-β mRNA induction are inhibited in wild-type (PR8) influenza virus-infected cells but not in cells infected with an isogenic virus lacking the NS1 gene (delNS1 virus). Furthermore, NS1 is shown to be a general inhibitor of the interferon signaling pathway. Inhibition of IRF-3 activation can be achieved by the expression of wild-type NS1 in trans, not only in delNS1 virus-infected cells but also in cells infected with a heterologous RNA virus (Newcastle disease virus). We propose that inhibition of IRF-3 activation by a dsRNA binding protein significantly contributes to the virulence of influenza A viruses and possibly to that of other viruses. PMID:10933707

  17. Bacterial lipopolysaccharide down-regulates expression of GTP cyclohydrolase I feedback regulatory protein.

    PubMed

    Werner, Ernst R; Bahrami, Soheyl; Heller, Regine; Werner-Felmayer, Gabriele

    2002-03-22

    GTP cyclohydrolase I feedback regulatory protein (GFRP) is a 9.7-kDa protein regulating GTP cyclohydrolase I activity in dependence of tetrahydrobiopterin and phenylalanine concentrations, thus enabling stimulation of tetrahydrobiopterin biosynthesis by phenylalanine to ensure its efficient metabolism by phenylalanine hydroxylase. Here, we were interested in regulation of GFRP expression by proinflammatory cytokines and stimuli, which are known to induce GTP cyclohydrolase I expression. Recombinant human GFRP stimulated recombinant human GTP cyclohydrolase I in the presence of phenylalanine and mediated feedback inhibition by tetrahydrobiopterin. Levels of GFRP mRNA in human myelomonocytoma (THP-1) cells remained unaltered by treatment of cells with interferon-gamma or interleukin-1beta, but were significantly down-regulated by bacterial lipopolysaccharide (LPS, 1 microg/ml), without or with cotreatment by interferon-gamma, which strongly up-regulated GTP cyclohydrolase I expression and activity. GFRP expression was also suppressed in human umbilical vein endothelial cells treated with 1 microg/ml LPS, as well as in rat tissues 7 h post intraperitoneal injection of 10 mg/kg LPS. THP-1 cells stimulated with interferon-gamma alone showed increased pteridine synthesis by addition of phenylalanine to the culture medium. Cells stimulated with interferon-gamma plus LPS, in contrast, showed phenylalanine-independent pteridine synthesis. These results demonstrate that LPS down-regulates expression of GFRP, thus rendering pteridine synthesis independent of metabolic control by phenylalanine. PMID:11799107

  18. GTP cyclohydrolase I feedback regulatory protein-dependent and -independent inhibitors of GTP cyclohydrolase I.

    PubMed

    Yoneyama, T; Wilson, L M; Hatakeyama, K

    2001-04-01

    GTP cyclohydrolase I feedback regulatory protein (GFRP) mediates the feedback inhibition of GTP cyclohydrolase I activity by (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) through protein complex formation. Since guanine and BH4 have a common pyrimidine ring structure, we examined the inhibitory effect of guanine and its analogs on the enzyme activity. Guanine, 8-hydroxyguanine, 8-methylguanine, and 8-bromoguanine inhibited the enzyme activity in a GFRP-dependent and pH-dependent manner and induced complex formation between GTP cyclohydrolase I and GFRP. The type of inhibition by this group is a mixed type. All these properties were shared with BH4. In striking contrast, inhibition by 8-azaguanine and 8-mercaptoguanine was GFRP-independent and pH-independent. The type of inhibition by 8-azaguanine and 8-mercaptoguanine was a competitive type. The two compounds did not induce complex formation between the enzyme and GFRP. These results demonstrate that guanine compounds of the first group bind to the BH4-binding site of the GTP cyclohydrolase I/GFRP complex, whereas 8-azaguanine and 8-mercaptoguanine bind to the active site of the enzyme. Finally, the possible implications in Lesch-Nyhan syndrome and Parkinson diseases of the inhibition of GTP cyclohydrolase I by guanine and 8-hydroxyguanine are discussed. PMID:11361142

  19. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Garbers, C.; DeLong, A.; Deruere, J.; Bernasconi, P.; Soll, D.; Evans, M. L. (Principal Investigator)

    1996-01-01

    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis.

  20. Proteins that bind regulatory regions identified by histone modification chromatin immunoprecipitations and mass spectrometry

    PubMed Central

    Engelen, Erik; Brandsma, Johannes H.; Moen, Maaike J.; Signorile, Luca; Dekkers, Dick H. W.; Demmers, Jeroen; Kockx, Christel E. M.; Ozgür, Zehila; van IJcken, Wilfred F. J.; van den Berg, Debbie L. C.; Poot, Raymond A.

    2015-01-01

    The locations of transcriptional enhancers and promoters were recently mapped in many mammalian cell types. Proteins that bind those regulatory regions can determine cell identity but have not been systematically identified. Here we purify native enhancers, promoters or heterochromatin from embryonic stem cells by chromatin immunoprecipitations (ChIP) for characteristic histone modifications and identify associated proteins using mass spectrometry (MS). 239 factors are identified and predicted to bind enhancers or promoters with different levels of activity, or heterochromatin. Published genome-wide data indicate a high accuracy of location prediction by ChIP-MS. A quarter of the identified factors are important for pluripotency and includes Oct4, Esrrb, Klf5, Mycn and Dppa2, factors that drive reprogramming to pluripotent stem cells. We determined the genome-wide binding sites of Dppa2 and find that Dppa2 operates outside the classical pluripotency network. Our ChIP-MS method provides a detailed read-out of the transcriptional landscape representative of the investigated cell type. PMID:25990348

  1. Dynamic Localization of Glucokinase and Its Regulatory Protein in Hypothalamic Tanycytes

    PubMed Central

    Ordenes, Patricio; Millán, Carola; Yañez, María José; Llanos, Paula; Villagra, Marcos; Elizondo-Vega, Roberto; Martínez, Fernando; Nualart, Francisco; Uribe, Elena; de los Angeles García-Robles, María

    2014-01-01

    Glucokinase (GK), the hexokinase involved in glucose sensing in pancreatic β cells, is also expressed in hypothalamic tanycytes, which cover the ventricular walls of the basal hypothalamus and are implicated in an indirect control of neuronal activity by glucose. Previously, we demonstrated that GK was preferentially localized in tanycyte nuclei in euglycemic rats, which has been reported in hepatocytes and is suggestive of the presence of the GK regulatory protein, GKRP. In the present study, GK intracellular localization in hypothalamic and hepatic tissues of the same rats under several glycemic conditions was compared using confocal microscopy and Western blot analysis. In the hypothalamus, increased GK nuclear localization was observed in hyperglycemic conditions; however, it was primarily localized in the cytoplasm in hepatic tissue under the same conditions. Both GK and GKRP were next cloned from primary cultures of tanycytes. Expression of GK by Escherichia coli revealed a functional cooperative protein with a S0.5 of 10 mM. GKRP, expressed in Saccharomyces cerevisiae, inhibited GK activity in vitro with a Ki 0.2 µM. We also demonstrated increased nuclear reactivity of both GK and GKRP in response to high glucose concentrations in tanycyte cultures. These data were confirmed using Western blot analysis of nuclear extracts. Results indicate that GK undergoes short-term regulation by nuclear compartmentalization. Thus, in tanycytes, GK can act as a molecular switch to arrest cellular responses to increased glucose. PMID:24739934

  2. Retinoid regulated macrophage cholesterol efflux involves the steroidogenic acute regulatory protein

    PubMed Central

    Manna, Pulak R.

    2016-01-01

    Elimination of excess cholesteryl esters from macrophage-derived foam cells is known to be a key process in limiting plaque stability and progression of atherosclerotic lesions. We have recently demonstrated that regulation of retinoid mediated cholesterol efflux is influenced by liver X receptor (LXR) signaling in mouse macrophages (Manna, P.R. et al., 2015, Biochem. Biophys. Res. Commun., 464:312-317). The data presented in this article evaluate the importance of the steroidogenic acute regulatory protein (StAR) in retinoid mediated macrophage cholesterol efflux. Overexpression of StAR in mouse RAW 264.7 macrophages increased the effects of both all-trans retinoic acid (atRA) and 9-cis RA on cholesterol efflux, suggesting StAR enhances the efficacy of retinoic acid receptor (RAR) and/or retinoid X receptor (RXR) ligands. Additional data revealed that atRA enhances (Bu)2cAMP induced StAR and ATP-binding cassette transporter A1 protein levels. Treatment of macrophages transfected with an LXRE reporter plasmid (pLXREx3-Luc) was found to induce the effects of RAR and RXR analogs on LXR activity. PMID:27081671

  3. Retinoid regulated macrophage cholesterol efflux involves the steroidogenic acute regulatory protein.

    PubMed

    Manna, Pulak R

    2016-06-01

    Elimination of excess cholesteryl esters from macrophage-derived foam cells is known to be a key process in limiting plaque stability and progression of atherosclerotic lesions. We have recently demonstrated that regulation of retinoid mediated cholesterol efflux is influenced by liver X receptor (LXR) signaling in mouse macrophages (Manna, P.R. et al., 2015, Biochem. Biophys. Res. Commun., 464:312-317). The data presented in this article evaluate the importance of the steroidogenic acute regulatory protein (StAR) in retinoid mediated macrophage cholesterol efflux. Overexpression of StAR in mouse RAW 264.7 macrophages increased the effects of both all-trans retinoic acid (atRA) and 9-cis RA on cholesterol efflux, suggesting StAR enhances the efficacy of retinoic acid receptor (RAR) and/or retinoid X receptor (RXR) ligands. Additional data revealed that atRA enhances (Bu)2cAMP induced StAR and ATP-binding cassette transporter A1 protein levels. Treatment of macrophages transfected with an LXRE reporter plasmid (pLXREx3-Luc) was found to induce the effects of RAR and RXR analogs on LXR activity. PMID:27081671

  4. Age-related changes in red blood cell complement regulatory proteins and susceptibility to severe malaria.

    PubMed

    Waitumbi, John N; Donvito, Béatrice; Kisserli, Aymric; Cohen, Jacques H M; Stoute, José A

    2004-09-15

    Severe malaria-associated anemia and cerebral malaria are life-threatening complications of Plasmodium falciparum infection. Red blood cell (RBC) complement regulatory proteins (CRPs) have been implicated in the pathogenesis of both. We sought to determine whether there are age-related changes in the expression of CRPs that could explain the susceptibility to severe malaria-associated anemia in young children and the susceptibility to cerebral malaria in older children and adults. In cross-sectional surveys in malaria-endemic and -nonendemic areas of Kenya and in Reims, France, the level of RBC CRPs was lowest in young children and increased into adulthood. In case-control studies, patients with cerebral malaria and matched control subjects had higher levels of RBC CRPs than did patients with severe anemia and matched control subjects, especially during convalescence. We conclude that RBC CRP levels vary with age and that the lower levels of these proteins in young children in areas of high transmission, such as western Kenya, may place these children at greater risk of severe malaria-associated anemia than cerebral malaria. PMID:15319870

  5. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis.

    PubMed Central

    Garbers, C; DeLong, A; Deruére, J; Bernasconi, P; Söll, D

    1996-01-01

    The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis. Images PMID:8641277

  6. Inhibition of ovarian cancer cell proliferation in vivo and incorporation of /sup 3/H-thymidine in vitro after follicle regulatory protein administration

    SciTech Connect

    Rodgers, K.E.; Montz, F.J.; Scott, L.; Condon, S.; Fujimori, K.; diZerega, G.S.

    1989-01-01

    Follicle regulatory protein immunoreactivity and biologic activity were measured in ascites from a patient with juvenile granulosa cell tumor. Microscopic examination of immunohistochemical staining of a juvenile granulosa cell tumor with anti-follicle regulatory protein antisera showed homogeneous cytosolic expression of follicle regulatory protein throughout the tumor. Tumor cells were injected subcutaneously into nude mice. Partially purified follicle regulatory protein (50 micrograms/day) was then injected daily for 10 days, or for 25 days once the tumor became palpable. Treatment with follicle regulatory protein significantly slowed the rate of tumor growth with both treatments. To test the tissue specificity of the effect, a metastatic, well-differentiated endometrial adenocarcinoma was also grown in nude mice. Follicle regulatory protein treatment did not alter the rate of tumor growth. An in vitro clonigenic assay confirmed these in vivo results. Partially purified follicle regulatory protein had a biphasic effect on the proliferation of juvenile granulosa tumor cell but did not affect the proliferation of endometrial adenocarcinoma cells. Clonigenic assays were performed on five ovarian adenocarcinomas passaged in vitro, and these tumor cells exhibited a biphasic response to follicle regulatory protein. Immunoneutralization studies showed that this biphasic response was due to impurities in the follicle regulatory protein preparations. The longer the exposure of the tumor cells to follicle regulatory protein, the greater the degree of inhibition of proliferation. In summary, administration of follicle regulatory protein slowed tumor growth through a direct effect on the tumor cell rather than an indirect effect on the hormonal or immune status of the host.

  7. Differential proteomic profiling reveals regulatory proteins and novel links between primary metabolism and spinosad production in Saccharopolyspora spinosa

    PubMed Central

    2014-01-01

    Background Saccharopolyspora spinosa is an important producer of antibiotic spinosad with clarified biosynthesis pathway but its complex regulation networks associated with primary metabolism and secondary metabolites production almost have never been concerned or studied before. The proteomic analysis of a novel Saccharopolyspora spinosa CCTCC M206084 was performed and aimed to provide a global profile of regulatory proteins. Results Two-dimensional-liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 1090, 1166, 701, and 509 proteins from four phases respectively, i.e., the logarithmic growth phase (T1), early stationary phase (T2), late stationary phase (T3), and decline phase (T4). Among the identified proteins, 1579 were unique to the S. spinosa proteome, including almost all the enzymes for spinosad biosynthesis. Trends in protein expression over the various time phases were deduced from using the modified protein abundance index (PAI), revealed the importance of stress pathway proteins and other global regulatory network proteins during spinosad biosynthesis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis followed by one-dimensional LC-MS/MS identification revealed similar trend of protein expression from four phases with the results of semi-quantification by PAI. qRT-PCR analysis revealed that 6 different expressed genes showed a positive correlation between changes at translational and transcriptional expression level. Expression of three proteins that likely promote spinosad biosynthesis, namely, 5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase (MHSM), glutamine synthetase (GS) and cyclic nucleotide-binding domain-containing protein (CNDP) was validated by western blot, which confirmed the results of proteomic analysis. Conclusions This study is the first systematic analysis of the S. spinosa proteome during fermentation and its valuable proteomic data of regulatory proteins may be used to enhance

  8. Influence of energy supply on expression of genes encoding for lipogenic enzymes and regulatory proteins in growing beef steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forty crossbred beef steers were used to determine the effects metabolizable energy (ME) intake and of site and complexity of carbohydrate (CHO) infusion on expression of genes encoding lipogenic enzymes and regulatory proteins in subcutaneous (SC), mesenteric (MES) and omental (OM) adipose. Treatm...

  9. STAT5 proteins are involved in down-regulation of iron regulatory protein 1 gene expression by nitric oxide.

    PubMed

    Starzynski, Rafal Radoslaw; Gonçalves, Ana Sofia; Muzeau, Françoise; Tyrolczyk, Zofia; Smuda, Ewa; Drapier, Jean-Claude; Beaumont, Carole; Lipinski, Pawel

    2006-12-01

    RNA-binding activity of IRP1 (iron regulatory protein 1) is regulated by the insertion/extrusion of a [4Fe-4S] cluster into/from the IRP1 molecule. NO (nitic oxide), whose ability to activate IRP1 by removing its [4Fe-4S] cluster is well known, has also been shown to down-regulate expression of the IRP1 gene. In the present study, we examine whether this regulation occurs at the transcriptional level. Analysis of the mouse IRP1 promoter sequence revealed two conserved putative binding sites for transcription factor(s) regulated by NO and/or changes in intracellular iron level: Sp1 (promoter-selective transcription factor 1) and MTF1 (metal transcription factor 1), plus GAS (interferon-gamma-activated sequence), a binding site for STAT (signal transducer and activator of transcription) proteins. In order to define the functional activity of these sequences, reporter constructs were generated through the insertion of overlapping fragments of the mouse IRP1 promoter upstream of the luciferase gene. Transient expression assays following transfection of HuH7 cells with these plasmids revealed that while both the Sp1 and GAS sequences are involved in basal transcriptional activity of the IRP1 promoter, the role of the latter is predominant. Analysis of protein binding to these sequences in EMSAs (electrophoretic mobility-shift assays) using nuclear extracts from mouse RAW 264.7 macrophages stimulated to synthesize NO showed a significant decrease in the formation of Sp1-DNA and STAT-DNA complexes, compared with controls. We have also demonstrated that the GAS sequence is involved in NO-dependent down-regulation of IRP1 transcription. Further analysis revealed that levels of STAT5a and STAT5b in the nucleus and cytosol of NO-producing macrophages are substantially lower than in control cells. These findings provide evidence that STAT5 proteins play a role in NO-mediated down-regulation of IRP1 gene expression. PMID:16886906

  10. STAT5 proteins are involved in down-regulation of iron regulatory protein 1 gene expression by nitric oxide

    PubMed Central

    Starzynski, Rafal Radoslaw; Gonçalves, Ana Sofia; Muzeau, Françoise; Tyrolczyk, Zofia; Smuda, Ewa; Drapier, Jean-Claude; Beaumont, Carole; Lipinski, Pawel

    2006-01-01

    RNA-binding activity of IRP1 (iron regulatory protein 1) is regulated by the insertion/extrusion of a [4Fe-4S] cluster into/from the IRP1 molecule. NO (nitic oxide), whose ability to activate IRP1 by removing its [4Fe-4S] cluster is well known, has also been shown to down-regulate expression of the IRP1 gene. In the present study, we examine whether this regulation occurs at the transcriptional level. Analysis of the mouse IRP1 promoter sequence revealed two conserved putative binding sites for transcription factor(s) regulated by NO and/or changes in intracellular iron level: Sp1 (promoter-selective transcription factor 1) and MTF1 (metal transcription factor 1), plus GAS (interferon-γ-activated sequence), a binding site for STAT (signal transducer and activator of transcription) proteins. In order to define the functional activity of these sequences, reporter constructs were generated through the insertion of overlapping fragments of the mouse IRP1 promoter upstream of the luciferase gene. Transient expression assays following transfection of HuH7 cells with these plasmids revealed that while both the Sp1 and GAS sequences are involved in basal transcriptional activity of the IRP1 promoter, the role of the latter is predominant. Analysis of protein binding to these sequences in EMSAs (electrophoretic mobility-shift assays) using nuclear extracts from mouse RAW 264.7 macrophages stimulated to synthesize NO showed a significant decrease in the formation of Sp1–DNA and STAT–DNA complexes, compared with controls. We have also demonstrated that the GAS sequence is involved in NO-dependent down-regulation of IRP1 transcription. Further analysis revealed that levels of STAT5a and STAT5b in the nucleus and cytosol of NO-producing macrophages are substantially lower than in control cells. These findings provide evidence that STAT5 proteins play a role in NO-mediated down-regulation of IRP1 gene expression. PMID:16886906