Sample records for cyclic co2 flood

  1. Case Studies of the ROZ CO 2 Flood and the Combined ROZ/MPZ CO 2 Flood at the Goldsmith Landreth Unit, Ector County, Texas. Using ''Next Generation'' CO 2 EOR Technologies to Optimize the Residual Oil Zone CO 2 Flood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trentham, Robert C.; Melzer, L. Stephen; Kuuskraa, Vello

    2015-06-30

    The technology for CO 2 Enhanced Oil Recovery (CO 2 EOR) has significantly advanced since the earliest floods were implemented in the 1970s. At least for the Permian Basin region of the U.S., the oil recovery has been now been extended into residual oil zones (ROZs) where the mobile fluid phase is water and immobile phase is oil. But the nature of the formation and fluids within the ROZs has brought some challenges that were not present when flooding the MPZs. The Goldsmith-Landreth project in the Permian Basin was intended to first identify the most pressing issues of the ROZsmore » floods and, secondly, begin to address them with new techniques designed to optimize a flood that commingled the MPZ and the ROZ. The early phase of the research conducted considerable reservoir and fluid characterization work and identified both technical and commercial challenges of producing the enormous quantities of water when flooding the ROZs. It also noted the differing water compositions in the ROZ as compared to the overlying MPZs. A new CO 2 gas lift system using a capillary string was successfully applied during the project which conveyed the CO 2 to the deeper and differing ROZ reservoir conditions at Goldsmith and added a second capillary string that facilitated applying scale inhibitors to mitigate the scaling tendencies of the mixing ROZ and MPZ formation waters. The project also undertook a reservoir modeling effort, using the acquired reservoir characterization data, to history match both the primary and water flood phases of the MPZ and to establish the initial conditions for a modeling effort to forecast response of the ROZ to CO 2 EOR. With the advantage of many profile logs acquired from the operator, some concentration on the original pattern area for the ROZ pilot was accomplished to attempt to perfect the history match for that area. Several optional scenarios for producing the ROZ were simulated seeking to find the preferred mode of producing the two

  2. Visualization of CO2 flooding in an artificial porous structure using micromodels

    NASA Astrophysics Data System (ADS)

    Park, B.; Wang, S.; Lee, M.; Um, J. G.

    2014-12-01

    Geological CO2 sequestration is one of the most important technologies to mitigate greenhouse gas emission into the atmosphere by isolating great volumes of CO2 in deep geological formations. This novel storage option for CO2 involves injecting supercritical CO2 into porous formations saturated with pore fluid such as brine and initiate CO2 flooding with immiscible displacement. Despite of significant effects on macroscopic migration and distribution of injected CO2, however, only a limited information is available on wettability in microscopic scCO2-brine-mineral systems. In this study, a micromodel had been developed to improve our understanding of how CO2 flooding and residual characteristics of pore water are affected by the wettability in scCO2-water-glass bead systems. The micromodel (a transparent pore structure made of 0.5 mm diameter glass beads between two glass plates) in a high-pressure cell provided the opportunity to visualize spread of supercritical CO2 and displacement of pore water in high pressure and high temperature conditions. CO2 flooding followed by fingering migration and dewatering followed by formation of residual water were observed through a imaging system with a microscope. Measurement of contact angles of droplets of residual water on and between glass beads in a micromodel were conducted to estimate differential pressure between wetting and nonwetting fluids in a scCO2-water-glass bead system. The experimental observation results could provide important fundamental informations on capillary characteristics of reservoirs and caprocks for geological CO2 sequestration.

  3. Productivity responses of Acer rubrum and Taxodium distichum seedlings to elevated CO2 and flooding

    USGS Publications Warehouse

    Vann, C.D.; Megonigal, J.P.

    2002-01-01

    Elevated levels of atmospheric CO2 are expected to increase photosynthetic rates of C3 tree species, but it is uncertain whether this will result in an increase in wetland seedling productivity. Separate short-term experiments (12 and 17 weeks) were performed on two wetland tree species, Taxodium distichum and Acer rubrum, to determine if elevated CO2 would influence the biomass responses of seedlings to flooding. T. distichum were grown in replicate glasshouses (n = 2) at CO2 concentrations of 350 or 700 ppm, and A. rubrum were grown in growth chambers at CO2 concentrations of 422 or 722 ppm. Both species were grown from seed. The elevated CO2 treatment was crossed with two water table treatments, flooded and non-flooded. Elevated CO2 increased leaf-level photosynthesis, whole-plant photosynthesis, and trunk diameter of T. distichum in both flooding treatments, but did not increase biomass of T. distichum or A. rubrum. Flooding severely reduced biomass, height, and leaf area of both T. distichum and A. rubrum. Our results suggest that the absence of a CO2-induced increase in growth may have been due to an O2 limitation on root production even though there was a relatively deep (??? 10 cm) aerobic soil surface in the non-flooded treatment. ?? 2001 Elsevier Science Ltd. All rights reserved.

  4. Mobility control experience in the Joffre Viking miscible CO[sub 2] flood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luhning, R.W.; Stephenson, D.J.; Graham, A.G.

    1993-08-01

    This paper discusses mobility control in the Joffre Viking field miscible CO[sub 2] flood. Since 1984, three injection strategies have been tried: water-alternating-CO[sub 2] (WACO[sub 2]), continuous CO[sub 2], and simultaneous CO[sub 2] and water. The studies showed that simultaneous injection results in the best CO[sub 2] conformance. CO[sub 2]-foam injection has also been investigated.

  5. Chemical Method to Improve CO{sub 2} Flooding Sweep Efficiency for Oil Recovery Using SPI-CO{sub 2} Gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Lyle D.

    2009-04-14

    The problem in CO{sub 2} flooding lies with its higher mobility causing low conformance or sweep efficiency. This is an issue in oilfield applications where an injected fluid or gas used to mobilize and produce the oil in a marginal field has substantially higher mobility (function of viscosity and density and relative permeability) relative to the crude oil promoting fingering and early breakthrough. Conformance is particularly critical in CO{sub 2} oilfield floods where the end result is less oil recovered and substantially higher costs related to the CO{sub 2}. The SPI-CO{sub 2} (here after called “SPI”) gel system is amore » unique silicate based gel system that offers a technically effective solution to the conformance problem with CO{sub 2} floods. This SPI gel system remains a low viscosity fluid until an external initiator (CO{sub 2}) triggers gelation. This is a clear improvement over current technologies where the gels set up as a function of time, regardless of where it is placed in the reservoir. In those current systems, the internal initiator is included in the injected fluid for water shut off applications. In this new research effort, the CO{sub 2} is an external initiator contacted after SPI gel solution placement. This concept ensures in the proper water wet reservoir environment that the SPI gel sets up in the precise high permeability path followed by the CO{sub 2}, therefore improving sweep efficiency to a greater degree than conventional systems. In addition, the final SPI product in commercial quantities is expected to be low cost over the competing systems. This Phase I research effort provided “proof of concept” that SPI gels possess strength and may be formed in a sand pack reducing the permeability to brine and CO{sub 2} flow. This SPI technology is a natural extension of prior R & D and the Phase I effort that together show a high potential for success in a Phase II follow-on project. Carbon dioxide (CO{sub 2}) is a major by

  6. IMPLEMENTING A NOVEL CYCLIC CO2 FLOOD IN PALEOZOIC REEFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James R. Wood; W. Quinlan; A. Wylie

    2004-01-01

    Recycled CO2 will be used in this demonstration project to produce bypassed oil from the Silurian Dover 35 pinnacle reef (Otsego County) in the Michigan Basin. Contract negotiations by our industry partner to gain access to the CO2 supply have been completed and the State of Michigan has issued an order to allow operation of the project. Injection of CO2 is scheduled to begin in February, 2004. Subsurface characterization is being completed using well log tomography animations and 3D visualizations to map facies distributions and reservoir properties in two reefs, the Belle River Mills and Chester 18 Fields. The Bellemore » River Mills and Chester18 fields are being used as type-fields because they have excellent log and/or core data coverage. Amplitude slicing of the normalized gamma ray and core permeability and core porosity curves is showing trends that indicate significant heterogeneity and compartmentalization in these reservoirs associated with the original depositional fabric of the rocks. Digital and hard copy data continues to be compiled for the Niagaran reefs in the Michigan Basin. Technology transfer took place through technical presentations regarding visualization of the heterogeneity of the Niagaran reefs. An oral presentation was given at the AAPG Eastern Section Meeting and a booth at the same meeting was used to meet one-on-one with operators.« less

  7. Improved Efficiency of Miscible CO(2) Floods and Enhanced Prospects for CO(2) Flooding Heterogeneous Reservoirs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigg, R.B.; Schechter, D.S.

    The overall goal of this project was to improve the efficiency of miscible C0{sub 2} floods and enhance the prospects for flooding heterogeneous reservoirs. This objective was accomplished through experimental and modeling research in three task areas: (1) foams for selective mobility control in heterogeneous reservoirs,( 2) reduction of the amount of C0{sub 2} required in C0{sub 2} floods, and (3) low IFT processe and the possibility of C0{sub 2} flooding in fractured reservoirs. This report provides results from the three-year project for each of the three task areas.

  8. Visualization and measurement of CO2 flooding in an artificial porous structure using micromodels

    NASA Astrophysics Data System (ADS)

    Park, Bogyeong; Wang, Sookyun; Um, Jeong-Gi; Lee, Minhee; Kim, Seon-Ok

    2015-04-01

    Geological CO2 sequestration is one of the most important technologies to mitigate greenhouse gas emission into the atmosphere by isolating great volumes of CO2 in deep geological formations. This novel storage option for CO2 involves injecting supercritical CO2 into porous formations saturated with pore fluid such as brine and initiate CO2 flooding with immiscible displacement. Despite of significant effects on macroscopic migration and distribution of injected CO2, however, only a limited information is available on wettability in microscopic scCO2-brine-mineral systems. In this study, a micromodel had been developed to improve our understanding of how CO2 flooding and residual characteristics of pore water are affected by the wettability in scCO2-water-glass bead systems. The micromodel (a transparent pore structure made of 1 mm diameter glass beads between two glass plates) in a high-pressure cell provided the opportunity to visualize spread of supercritical CO2 and displacement of pore water in high pressure and high temperature conditions. CO2 flooding followed by fingering migration and dewatering followed by formation of residual water were observed through a imaging system with a microscope. Measurement of contact angles of droplets of residual water on and between glass beads in a micromodel were conducted to estimate differential pressure between wetting and nonwetting fluids in a scCO2-water-glass bead system. The experimental observation results could provide important fundamental informations on capillary characteristics of reservoirs and caprocks for geological CO2 sequestration.

  9. IMPLEMENTING A NOVEL CYCLIC CO2 FLOOD IN PALEOZOIC REEFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James R. Wood; W. quinlan; A. Wylie

    Recycled CO2 is being used in this demonstration project to produce bypassed oil from the Silurian Dover 35 Niagaran pinnacle reef located in Otsego County, Michigan. CO2 injection in the Dover 35 field into the Salling-Hansen 4-35A well began on May 6, 2004. A second injection well, the Salling-Hansen 1-35, commenced injection in August 2004. Oil production in the Pomerzynski 5-35 producing well increased from 9 BOPD prior to operations to an average of 165 BOPD in December, 2004 and has produced at an average rate of 61 BOPD (Jan-Dec, 2005). The Salling-Hansen 4-35A also produced during this reporting periodmore » an average of 29 BOPD. These increases have occurred as a result of CO2 injection and the production rate appears to be stabilizing. CO2 injection volume has reached approximately 2.18 BCF. The CO2 injection phase of this project has been fully operational since December 2004 and most downhole mechanical issues have been solved and surface facility modifications have been completed. It is anticipated that filling operations will run for another 6-12 months from July 1, 2005. In most other aspects, the demonstration is going well and hydrocarbon production has been stabilized at an average rate of 57 BOPD (July-Dec, 2005). Our industry partners continue to experiment with injection rates and pressures, various downhole and surface facility mechanical configurations, and the huff-n-puff technique to develop best practices for these types of enhanced recovery projects. Subsurface characterization was completed using well log tomography and 3D visualizations to map facies distributions and reservoir properties in the Belle River Mills, Chester 18, Dover 35, and Dover 36 Fields. The Belle River Mills and Chester 18 fields are being used as type-fields because they have excellent log and/or core data coverage. Amplitude slicing of the log porosity, normalized gamma ray, core permeability, and core porosity curves are showing trends that indicate significant

  10. IMPLEMENTING A NOVEL CYCLIC CO2 FLOOD IN PALEOZOIC REEFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James R. Wood; W. Quinlan; A. Wylie

    2003-07-01

    Recycled CO2 will be used in this demonstration project to produce bypassed oil from the Silurian Charlton 6 pinnacle reef (Otsego County) in the Michigan Basin. Contract negotiations by our industry partner to gain access to this CO2 that would otherwise be vented to the atmosphere are near completion. A new method of subsurface characterization, log curve amplitude slicing, is being used to map facies distributions and reservoir properties in two reefs, the Belle River Mills and Chester 18 Fields. The Belle River Mills and Chester18 fields are being used as typefields because they have excellent log-curve and core datamore » coverage. Amplitude slicing of the normalized gamma ray curves is showing trends that may indicate significant heterogeneity and compartmentalization in these reservoirs. Digital and hard copy data continues to be compiled for the Niagaran reefs in the Michigan Basin. Technology transfer took place through technical presentations regarding the log curve amplitude slicing technique and a booth at the Midwest PTTC meeting.« less

  11. Implementing A Novel Cyclic CO2 Flood In Paleozoic Reefs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James R. Wood; W. Quinlan; A. Wylie

    Recycled CO{sub 2} is being used in this demonstration project to produce bypassed oil from the Silurian Dover 35 Niagaran pinnacle reef located in Otsego County, Michigan. CO{sub 2} injection in the Dover 35 field into the Salling-Hansen 4-35A well began on May 6, 2004. A second injection well, the Salling-Hansen 1-35, commenced injection in August 2004. Oil production in the Pomerzynski 5-35 producing well increased from 9 BOPD prior to operations to an average of 165 BOPD in December, 2004 and is presently producing 52 BOPD. The Salling-Hansen 4-35A also produced during this reporting period an average of 21more » BOPD. These increases have occurred as a result of CO{sub 2} injection and the production rate appears to be stabilizing. CO{sub 2} injection volume has reached approximately 1.6 BCF. The CO{sub 2} injection phase of this project has been fully operational since December 2004 and most downhole mechanical issues have been solved and surface facility modifications have been completed. It is anticipated that filling operations will run for another 6-12 months from July 1, 2005. In most other aspects, the demonstration is going well and hydrocarbon production has been successfully increased to a stable rate of 73 BOPD. Our industry partners continue to experiment with injection rates and pressures, various downhole and surface facility mechanical configurations, and the huff-n-puff technique to develop best practices for these types of enhanced recovery projects. Subsurface characterization is being completed using well log tomography and 3D visualizations to map facies distributions and reservoir properties in the Belle River Mills, Chester 18, Dover 35, and Dover 36 Fields. The Belle River Mills and Chester 18 fields are being used as type-fields because they have excellent log and/or core data coverage. Amplitude slicing of the log porosity, normalized gamma ray, core permeability, and core porosity curves is showing trends that indicate significant

  12. Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen

    NASA Astrophysics Data System (ADS)

    Wunderlich, S.; Borken, W.

    2012-08-01

    Peatlands store large amounts of organic carbon, but the carbon stock is sensitive to changes in precipitation or water table manipulations. Restoration of drained peatlands by drain blocking and flooding is a common measure to conserve and augment the carbon stock of peatland soils. Here, we report to what extent flooding affected the contribution of heterotrophic and rhizosphere respiration to soil CO2 efflux in a grass-dominated mountain fen in Germany. Soil CO2 efflux was measured in three un-manipulated control plots and three flooded plots in two consecutive years. Flooding was achieved by permanent irrigation during the growing seasons. Radiocarbon signatures of CO2 from different sources including soil CO2 efflux, incubated peat cores and live grass roots were repeatedly analyzed for partitioning of soil CO2 efflux. Additionally, heterotrophic respiration and its radiocarbon signature were determined by eliminating rhizosphere respiration in trenched subplots (only control). In the control plots, rhizosphere respiration determined by 14C signatures contributed between 47 and 61% during the growing season, but was small (4 ± 8%) immediately before budding. Trenching revealed a smaller rhizosphere contribution of 33 ± 8% (2009) and 22 ± 9% (2010) during growing seasons. Flooding reduced annual soil CO2 efflux of the fen by 42% in 2009 and by 30% in 2010. The reduction was smaller in 2010 mainly through naturally elevated water level in the control plots. A one-week interruption of irrigation caused a strong short-lived increase in soil CO2 efflux, demonstrating the sensitivity of the fen to water table drawdown near the peat surface. The reduction in soil CO2 efflux in the flooded plots diminished the relative proportion of rhizosphere respiration from 56 to 46%, suggesting that rhizosphere respiration was slightly more sensitive to flooding than heterotrophic respiration.

  13. Continuous N-alkylation reactions of amino alcohols using γ-Al2O3 and supercritical CO2: unexpected formation of cyclic ureas and urethanes by reaction with CO2.

    PubMed

    Streng, Emilia S; Lee, Darren S; George, Michael W; Poliakoff, Martyn

    2017-01-01

    The use of γ-Al 2 O 3 as a heterogeneous catalyst in scCO 2 has been successfully applied to the amination of alcohols for the synthesis of N -alkylated heterocycles. The optimal reaction conditions (temperature and substrate flow rate) were determined using an automated self-optimising reactor, resulting in moderate to high yields of the target products. Carrying out the reaction in scCO 2 was shown to be beneficial, as higher yields were obtained in the presence of CO 2 than in its absence. A surprising discovery is that, in addition to cyclic amines, cyclic ureas and urethanes could be synthesised by incorporation of CO 2 from the supercritical solvent into the product.

  14. Partitioning of soil CO2 efflux in un-manipulated and experimentally flooded plots of a temperate fen

    NASA Astrophysics Data System (ADS)

    Wunderlich, S.; Borken, W.

    2012-05-01

    Peatlands store large amounts of organic carbon, but the carbon stock is sensitive to changes in precipitation or water table manipulations. Restoration of drained peatlands by drain blocking and flooding is a common measure to conserve and augment the carbon stock of peatland soils. Here, we report to what extent flooding affected the contribution of heterotrophic and rhizosphere respiration to soil CO2 efflux in a grass-dominated mountain fen, Germany. Soil CO2 efflux was measured in three un-manipulated control plots and three flooded plots in two consecutive years. Flooding was achieved by permanent irrigation during the growing seasons. Radiocarbon signatures of CO2 from different sources including soil CO2 efflux, incubated peat cores and live grass roots were repeatedly analyzed for partitioning of soil CO2 efflux. Additionally, heterotrophic respiration and its radiocarbon signature were determined by eliminating rhizosphere respiration in trenched subplots (only control). In the control plots, rhizosphere respiration determined by 14C signatures contributed between 47 and 61% during the growing season, but was small (4%) immediately before budding. Trenching revealed a smaller rhizosphere contribution of 33% (2009) and 22% (2010) during growing seasons. Flooding reduced annual soil CO2 efflux of the fen by 42% in 2009 and by 30% in 2010. The reduction was smaller in 2010 mainly through naturally elevated water level in the control plots. A 1-week interruption of irrigation caused a strong short-lived increase in soil CO2 efflux, demonstrating the sensitivity of the fen to water table drawdown near the peat surface. The reduction in soil CO2 efflux in the flooded plots diminished the relative proportion of rhizosphere respiration from 56 to 46%, suggesting that rhizosphere respiration was slightly more sensitive to flooding than heterotrophic respiration. We conclude that the moderate decrease in rhizosphere respiration following flooding arises from a

  15. Flooding-related increases in CO2 and N2O emissions from a temperate coastal grassland ecosystem

    NASA Astrophysics Data System (ADS)

    Gebremichael, Amanuel W.; Osborne, Bruce; Orr, Patrick

    2017-05-01

    Given their increasing trend in Europe, an understanding of the role that flooding events play in carbon (C) and nitrogen (N) cycling and greenhouse gas (GHG) emissions will be important for improved assessments of local and regional GHG budgets. This study presents the results of an analysis of the CO2 and N2O fluxes from a coastal grassland ecosystem affected by episodic flooding that was of either a relatively short (SFS) or long (LFS) duration. Compared to the SFS, the annual CO2 and N2O emissions were 1.4 and 1.3 times higher at the LFS, respectively. Mean CO2 emissions during the period of standing water were 144 ± 18.18 and 111 ± 9.51 mg CO2-C m-2 h-1, respectively, for the LFS and SFS sites. During the growing season, when there was no standing water, the CO2 emissions were significantly larger from the LFS (244 ± 24.88 mg CO2-C m-2 h-1) than the SFS (183 ± 14.90 mg CO2-C m-2 h-1). Fluxes of N2O ranged from -0.37 to 0.65 mg N2O-N m-2 h-1 at the LFS and from -0.50 to 0.55 mg N2O-N m-2 h-1 at the SFS, with the larger emissions associated with the presence of standing water at the LFS but during the growing season at the SFS. Overall, soil temperature and moisture were identified as the main drivers of the seasonal changes in CO2 fluxes, but neither adequately explained the variations in N2O fluxes. Analysis of total C, N, microbial biomass and Q10 values indicated that the higher CO2 emissions from the LFS were linked to the flooding-associated influx of nutrients and alterations in soil microbial populations. These results demonstrate that annual CO2 and N2O emissions can be higher in longer-term flooded sites that receive significant amounts of nutrients, although this may depend on the restriction of diffusional limitations due to the presence of standing water to periods of the year when the potential for gaseous emissions are low.

  16. Study of CO2 cyclic absorption stability of CaO-based sorbents derived from lime mud purified by sucrose method.

    PubMed

    Ma, AiHua; Jia, QingMing; Su, HongYing; Zhi, YunFei; Tian, Na; Wu, Jing; Shan, ShaoYun

    2016-02-01

    Using lime mud (LM) purified by sucrose method, derived from paper-making industry, as calcium precursor, and using mineral rejects-bauxite-tailings (BTs) from aluminum production as dopant, the CaO-based sorbents for high-temperature CO2 capture were prepared. Effects of BTs content, precalcining time, and temperature on CO2 cyclic absorption stability were illustrated. The cyclic carbonation behavior was investigated in a thermogravimetric analyzer (TGA). Phase composition and morphologies were analyzed by XRD and SEM. The results reflected that the as-synthesized CaO-based sorbent doped with 10 wt% BTs showed a superior CO2 cyclic absorption-desorption conversion during multiple cycles, with conversion being >38 % after 50 cycles. Occurrence of Ca12Al14O33 phase during precalcination was probably responsible for the excellent CO2 cyclic stability.

  17. IMPLEMENTING A NOVEL CYCLIC CO2 FLOOD IN PALEOZOIC REEFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James R. Wood; W. Quinlan; A. Wylie

    2004-07-01

    Recycled CO2 will be used in this demonstration project to produce bypassed oil from the Silurian Dover 35 pinnacle reef (Otsego County) in the Michigan Basin. We began injecting CO2 in the Dover 35 field into the Salling-Hansen 4-35A well on May 6, 2004. Subsurface characterization is being completed using well log tomography animations and 3D visualizations to map facies distributions and reservoir properties in three reefs, the Belle River Mills, Chester 18, and Dover 35 Fields. The Belle River Mills and Chester 18 fields are being used as type-fields because they have excellent log and/or core data coverage. Amplitudemore » slicing of the log porosity, normalized gamma ray, core permeability, and core porosity curves is showing trends that indicate significant heterogeneity and compartmentalization in these reservoirs associated with the original depositional fabric of the rocks. Digital and hard copy data continues to be compiled for the Niagaran reefs in the Michigan Basin. Technology transfer took place through technical presentations regarding visualization of the heterogeneity of the Niagaran reefs. Oral presentations were given at the Petroleum Technology Transfer Council workshop, Michigan Oil and Gas Association Conference, and Michigan Basin Geological Society meeting. A technical paper was submitted to the Bulletin of the American Association of Petroleum Geologists on the characterization of the Belle River Mills Field.« less

  18. Perovskite nanocomposites as effective CO2-splitting agents in a cyclic redox scheme

    PubMed Central

    Zhang, Junshe; Haribal, Vasudev; Li, Fanxing

    2017-01-01

    We report iron-containing mixed-oxide nanocomposites as highly effective redox materials for thermochemical CO2 splitting and methane partial oxidation in a cyclic redox scheme, where methane was introduced as an oxygen “sink” to promote the reduction of the redox materials followed by reoxidation through CO2 splitting. Up to 96% syngas selectivity in the methane partial oxidation step and close to complete conversion of CO2 to CO in the CO2-splitting step were achieved at 900° to 980°C with good redox stability. The productivity and production rate of CO in the CO2-splitting step were about seven times higher than those in state-of-the-art solar-thermal CO2-splitting processes, which are carried out at significantly higher temperatures. The proposed approach can potentially be applied for acetic acid synthesis with up to 84% reduction in CO2 emission when compared to state-of-the-art processes. PMID:28875171

  19. Analysis of microbial communities in the oil reservoir subjected to CO2-flooding by using functional genes as molecular biomarkers for microbial CO2 sequestration

    PubMed Central

    Liu, Jin-Feng; Sun, Xiao-Bo; Yang, Guang-Chao; Mbadinga, Serge M.; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Sequestration of CO2 in oil reservoirs is considered to be one of the feasible options for mitigating atmospheric CO2 building up and also for the in situ potential bioconversion of stored CO2 to methane. However, the information on these functional microbial communities and the impact of CO2 storage on them is hardly available. In this paper a comprehensive molecular survey was performed on microbial communities in production water samples from oil reservoirs experienced CO2-flooding by analysis of functional genes involved in the process, including cbbM, cbbL, fthfs, [FeFe]-hydrogenase, and mcrA. As a comparison, these functional genes in the production water samples from oil reservoir only experienced water-flooding in areas of the same oil bearing bed were also analyzed. It showed that these functional genes were all of rich diversity in these samples, and the functional microbial communities and their diversity were strongly affected by a long-term exposure to injected CO2. More interestingly, microorganisms affiliated with members of the genera Methanothemobacter, Acetobacterium, and Halothiobacillus as well as hydrogen producers in CO2 injected area either increased or remained unchanged in relative abundance compared to that in water-flooded area, which implied that these microorganisms could adapt to CO2 injection and, if so, demonstrated the potential for microbial fixation and conversion of CO2 into methane in subsurface oil reservoirs. PMID:25873911

  20. APPLICATION OF CYCLIC CO2 METHODS IN AN OVER-MATURE MISICBLE CO2 PILOT PROJECT-WEST MALLALIEU FIELD, LINCOLN COUNTY, MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd Stevens Getz

    2001-09-01

    This progress report summarizes the results of a miscible cyclic CO{sub 2} project conducted at West Mallalieu Field Unit (WMU) Lincoln County, MS by J.P. Oil Company, Inc. Lafayette, LA. Information is presented regarding the verification of the mechanical integrity of the present candidate well, WMU 17-2B, to the exclusion of nearby more desirable wells from a reservoir standpoint. Engineering summaries of both the injection and flow back phases of the cyclic process are presented. The results indicate that the target volume of 63 MMCF of CO{sub 2} was injected into the candidate well during the month of August 2000more » and a combined 73 MMCF of CO{sub 2} and formation gas were recovered during September, October, and November 2000. The fact that all of the injected CO{sub 2} was recovered is encouraging; however, only negligible volumes of liquid were produced with the gas. A number of different factors are explored in this report to explain the lack of economic success. These are divided into several groupings and include: Reservoir Factors, Process Factors, Mechanical Factors, and Special Circumstances Factors. It is impossible to understand precisely the one or combination of interrelated factors responsible for the failure of the experiment but I feel that the original reservoir quality concerns for the subject well WMU 17-2B were not surmountable. Based on the inferences made as to possible failure mechanisms, two future test candidates were selected, WMU 17-10 and 17-14. These lie a significant distance south of the WMU Pilot area and each have a much thicker and higher quality reservoir section than does WMU 17-2B. Both of these wells were productive on pumping units in the not too distant past. This was primary production not influenced by the distant CO{sub 2} injection. These wells are currently completed within somewhat isolated reservoir channels in the Lower Tuscaloosa ''A'' and ''B-2'' Sands that overlie the much more continuous and much larger

  1. Post waterflood CO{sub 2} miscible flood in light oil, fluvial-dominated deltaic reservoir. FY 1993 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, D.W.

    1995-03-01

    The project is a Class 1 DOE-sponsored field demonstration project of a CO{sub 2} miscible flood project at the Port Neches Field in Orange County, Texas. The project will determine the recovery efficiency of CO{sub 2} flooding a waterflooded and a partial waterdrive sandstone reservoir at a depth of 5,800. The project will also evaluate the use of a horizontal CO{sub 2} injection well placed at the original oil-water contact of the waterflooded reservoir. A PC-based reservoir screening model will be developed by Texaco`s research lab in Houston and Louisiana State University will assist in the development of a databasemore » of fluvial-dominated deltaic reservoirs where CO{sub 2} flooding may be applicable. This technology will be transferred throughout the oil industry through a series of technical papers and industry open forums.« less

  2. Cyclic Oxidation Behavior and Durability of ODS-FeCrAl Alloys in H2O and CO2 rich environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryepondt, Sebastien N; Pint, Bruce A

    Cyclic oxidation testing was conducted at 1200 C in O2, dry air and in atmospheres rich in H2O and/or CO2 to simulate combustion environments. The oxidation rates were significantly higher in air + 10%H2O and a mixture of O2-buffered 50%H2O-50%CO2, leading to shorter times to breakaway oxidation. Curve fitting using the COSP cyclic oxidation program confirmed that the presence of H2O results in an increase of the alumina spallation rate. The use of specimen mass gain modeling associated with the characterization of pre-oxidized specimens and in particular the determination of the remaining Al content after exposure, will allow to accuratelymore » estimate the durability of oxide dispersion-strengthened (ODS) FeCrAl alloys in combustion environments.« less

  3. CO2 Exsolution from CO2 Saturated Water: Core-Scale Experiments and Focus on Impacts of Pressure Variations.

    PubMed

    Xu, Ruina; Li, Rong; Ma, Jin; Jiang, Peixue

    2015-12-15

    For CO2 sequestration and utilization in the shallow reservoirs, reservoir pressure changes are due to the injection rate changing, a leakage event, and brine withdrawal for reservoir pressure balance. The amounts of exsolved CO2 which are influenced by the pressure reduction and the subsequent secondary imbibition process have a significant effect on the stability and capacity of CO2 sequestration and utilization. In this study, exsolution behavior of the CO2 has been studied experimentally using a core flooding system in combination with NMR/MRI equipment. Three series of pressure variation profiles, including depletion followed by imbibitions without or with repressurization and repetitive depletion and repressurization/imbibition cycles, were designed to investigate the exsolution responses for these complex pressure variation profiles. We found that the exsolved CO2 phase preferentially occupies the larger pores and exhibits a uniform spatial distribution. The mobility of CO2 is low during the imbibition process, and the residual trapping ratio is extraordinarily high. During the cyclic pressure variation process, the first cycle has the largest contribution to the amount of exsolved CO2. The low CO2 mobility implies a certain degree of self-sealing during a possible reservoir depletion.

  4. Cyclic stability testing of aminated-silica solid sorbent for post-combustion CO2 capture.

    PubMed

    Fisher, James C; Gray, McMahan

    2015-02-01

    The National Energy Technology Laboratory (NETL) is examining the use of solid sorbents for CO2 removal from coal-fired power plant flue gas streams. An aminated sorbent (previously reported by the NETL) is tested for stability by cyclic exposure to simulated flue gas and subsequent regeneration for 100 cycles. Each cycle was quantified using a traced gas in the simulated flue gas monitored by a mass spectrometer, which allowed for rapid determination of the capacity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Experimental research on microscopic displacement mechanism of CO2-water alternative flooding in low permeability reservoir

    NASA Astrophysics Data System (ADS)

    Han, Hongyan; Zhu, Weiyao; Long, Yunqian; Song, Hongqing; Huang, Kun

    2018-02-01

    This paper provides an experimental method to deal with the problems of low oil recovery ratio faced with water flooding utilizing the CO2/water alternate displacement technology. A series of CO2/water alternate flooding experiments were carried out under 60°C and 18.4MPa using high temperature / pressure microscopic visualization simulation system. Then, we used the image processing technique and software to analyze the proportion of remaining oil in the displacement process. The results show that CO2 can extract the lighter chemical components in the crude oil and make it easier to form miscible phase, which can reduce the viscosity and favorable mobility ratio of oil. What’s more, the displacement reduces the impact of gas channeling, which can achieve an enlarged sweeping efficiency to improve filtration ability. In addition, the CO2 dissolved in oil and water can greatly reduce the interfacial tension, which can increase the oil displacement efficiency in a large extent. Generally speaking, the recovery rate of residual oil in the micro - model can be elevated up to 15.89% ∼ 16.48% under formation condition by alternate displacement.

  6. Dryland Flood-Irrigation and its Impact on CO2 Production and the Accumulation of Pedogenic Carbonate in West Texas

    NASA Astrophysics Data System (ADS)

    Ortiz, A. C.; Jin, L.

    2016-12-01

    Agricultural fields in drylands are intensively irrigated. Indeed, pecan orchards at the El Paso, TX region are flooded with over one meter of water per growing season. The waters are usually oversaturated in calcite (CaCO3) and continuous evapotranspiration drives CaCO3 precipitation, releasing CO2. As such, the loading of CaCO3 through flood irrigation in drylands impacts Ca and C cycles greatly. We characterized soil, soil gas and soil water samples to quantify rates of pedogenic carbonate accumulation and CO2 release, identify the sources of C and Ca in pedogenic carbonates, and investigate kinetic and environmental controls of CaCO3 formation. Simple calculations show that up to 112000kg/km2/yr of Ca is loaded onto the fields by irrigation, evidenced by high water-soluble and acid-leachable Ca in soils, especially in clayey soils. We used 87Sr/86Sr ratios to quantify the relative importance of different Ca end-members including flood irrigation. Data show that water-soluble soil leachates have similar 87Sr/86Sr ratios as irrigation waters at depth, but lighter signatures at surface, probably due dust and fertilizer inputs. We measured daily soil-atmosphere CO2 efflux, δ13CCO2 and concentrations of CO2 gas samples at different soil depths between two irrigation events and at two sites with sandy versus clayey soils. These data help determine if sources of soil CO2 change with depth, irrigation event and if CO2 transport is controlled by texture. Correlations of δ13CCO2 and soil CO2 concentrations indicate mixing of organically respired, atmospheric and CaCO3-derived CO2. We found co-variation of δ13CCO2 and soil CO2 with time, where soil CO2 became heavier in carbon isotopes and more abundant in concentrations, illustrating shifts from soil respired CO2, characterized by lighter C, to increased proportions of CaCO3-derived CO2 with heavier C. Efflux data show peak values as soils dried, indicating supersaturation of soil waters and precipitation of pedogenic

  7. Going beyond the flood insurance rate map: insights from flood hazard map co-production

    NASA Astrophysics Data System (ADS)

    Luke, Adam; Sanders, Brett F.; Goodrich, Kristen A.; Feldman, David L.; Boudreau, Danielle; Eguiarte, Ana; Serrano, Kimberly; Reyes, Abigail; Schubert, Jochen E.; AghaKouchak, Amir; Basolo, Victoria; Matthew, Richard A.

    2018-04-01

    Flood hazard mapping in the United States (US) is deeply tied to the National Flood Insurance Program (NFIP). Consequently, publicly available flood maps provide essential information for insurance purposes, but they do not necessarily provide relevant information for non-insurance aspects of flood risk management (FRM) such as public education and emergency planning. Recent calls for flood hazard maps that support a wider variety of FRM tasks highlight the need to deepen our understanding about the factors that make flood maps useful and understandable for local end users. In this study, social scientists and engineers explore opportunities for improving the utility and relevance of flood hazard maps through the co-production of maps responsive to end users' FRM needs. Specifically, two-dimensional flood modeling produced a set of baseline hazard maps for stakeholders of the Tijuana River valley, US, and Los Laureles Canyon in Tijuana, Mexico. Focus groups with natural resource managers, city planners, emergency managers, academia, non-profit, and community leaders refined the baseline hazard maps by triggering additional modeling scenarios and map revisions. Several important end user preferences emerged, such as (1) legends that frame flood intensity both qualitatively and quantitatively, and (2) flood scenario descriptions that report flood magnitude in terms of rainfall, streamflow, and its relation to an historic event. Regarding desired hazard map content, end users' requests revealed general consistency with mapping needs reported in European studies and guidelines published in Australia. However, requested map content that is not commonly produced included (1) standing water depths following the flood, (2) the erosive potential of flowing water, and (3) pluvial flood hazards, or flooding caused directly by rainfall. We conclude that the relevance and utility of commonly produced flood hazard maps can be most improved by illustrating pluvial flood hazards

  8. Modulation of cyclic CO(2) release in response to endogenous changes of metabolism during pupal development of Zophobas rugipes (Coleoptera: Tenebrionidae).

    PubMed

    Kaiser, Alexander; Hartzendorf, Sandra; Wobschall, Annabell; Hetz, Stefan K

    2010-05-01

    Understanding the mechanisms of gas exchange regulation in insects currently is a hot topic of insect physiology. Endogenous variation of metabolism during pupal development offers a great opportunity to study the regulation of respiratory patterns in insects. Here we show that metabolic rates during pupal development of the tenebrionid beetle Zophobas rugipes reveal a typical U-shaped curve and that, with the exception of 9-day-old pupae, the time between two bursts of CO(2) (interburst phase) was the only parameter of cyclic CO(2) gas exchange patterns that was adjusted to changing metabolic rates. The volume of CO(2) released in a burst was kept constant, suggesting a regulation for accumulation and release of a fixed amount of CO(2) throughout pupal development. We detected a variety of discontinuous and cyclic gas exchange patterns, which were not correlated with any periods of pupal development, suggesting a high among individual variability. An occasional occurrence of continuous CO(2) release patterns at low metabolic rates was very likely caused by single defective non-occluding spiracles. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. The new management policy: Indonesian PSC-Gross split applied on CO2 flooding project

    NASA Astrophysics Data System (ADS)

    Irham, S.; Sibuea, S. N.; Danu, A.

    2018-01-01

    “SIAD” oil field will be developed by CO2 flooding. CO2, a famous pollutant gas, is injected into the oil reservoir to optimize the oil recovery. This technique should be conducted economically according to the energy management policy in Indonesia. In general, Indonesia has two policy contracts on oil and gas: the old one is PSC-Cost-Recovery, and the new one is PSC-Gross-Split (introduced in 2017 as the new energy management plan). The contractor must choose between PSC-Cost-Recovery and PSC-Gross-Split which makes more profit. The aim of this paper is to show the best oil and gas contract policy for the contractor. The methods are calculating and comparing the economic indicators. The result of this study are (1) NPV for the PSC-Cost-Recovery is -46 MUS, while for the PSC-Gross-Split is 73 MUS, and (2) IRR for the PSC-Cost-Recovery is 9%, whereas for the PSC-Gross-Split is 11%. The conclusion is that the NPV and IRR for PSC-Gross-Split are greater than the NPV and IRR of PSC-Cost-Recovery, but POT in PSC-Gross-split is longer than POT in PSC-Cost-Recovery. Thus, in this case, the new energy policy contract can be applied for CO2 flooding technology since it yields higher economic indicators than its antecendent.

  10. Attributing Increased River Flooding in the Future: Hydrodynamic Downscaling Reveals Role of Plant Physiological Responses to Increased CO2 is First Order

    NASA Astrophysics Data System (ADS)

    Fowler, M. D.; Kooperman, G. J.; Pritchard, M. S.; Randerson, J. T.

    2017-12-01

    River flooding events, which are the most frequently occurring natural disaster today, are expected to become more frequent and intense in response to climate change. However, the magnitude of these changes remains debated, in part due to uncertainty in our understanding of the physical processes that contribute to these events and their representation in global climate models. While the intensification of precipitation has been shown to be a primary driver of increased flooding, plant physiological responses to increasing CO2 may also play an important role. As the atmospheric concentration of CO2 increases, plants may respond by reducing the width of their stomata (i.e. stomatal conductance), which can decrease water lost through transpiration and in turn maintain higher soil moisture levels. On long timescales, reduced transpiration has been shown to increase average runoff, but on short timescales elevated soil moisture can also increase instantaneous runoff by limiting the rate at which water is able to infiltrate the soil surface. Here, through hydrodynamic downscaling, we isolate the portion of flooding amplification that can be attributed to the physiological response to increasing CO2. This builds on a new analysis that has revealed such physiological effects can rival changes caused by the atmospheric response alone in the tails of the runoff distribution. We use a set of four simulations run with the Community Earth System Model: one pre-industrial control simulation and three others that are forced with four times CO2. In the three climate change simulations, the increased CO2 is applied only to the land-surface, only to the atmosphere, and to both, respectively. Thirty years of daily runoff from these experiments are used as input for the hydrodynamic CaMa-Flood model. Our results reveal that both the radiative and physiological responses to climate change contribute significantly to future changes in flood return period and inundated area. This

  11. Water, energy and CO2 exchange over a seasonally flooded forest in the Sahel.

    NASA Astrophysics Data System (ADS)

    Kergoat, L.; Le Dantec, V.; Timouk, F.; Hiernaux, P.; Mougin, E.; Manuela, G.; Diawara, M.

    2014-12-01

    In semi-arid areas like the Sahel, perennial water bodies and temporary-flooded lowlands are critical for a number of activities. In some cases, their existence is simply a necessary condition for human societies to establish. They also play an important role in the water and carbon cycle and have strong ecological values. As a result of the strong multi-decadal drought that impacted the Sahel in the 70' to 90', a paradoxical increase of ponds and surface runoff has been observed ("Less rain, more water in the ponds", Gardelle 2010). In spite of this, there are excessively few data documenting the consequence of such a paradox on the water and carbon cycle. Here we present 2 years of eddy covariance data collected over the Kelma flooded Acacia forest in the Sahel (15.50 °N), in the frame of the AMMA project. The flooded forest is compared to the other major component of this Sahelian landscape: a grassland and a rocky outcrop sites. All sites are involved in the ALMIP2 data/LSM model comparison. The seasonal cycle of the flooded forest strongly departs from the surroundings grassland and bare soil sites. Before the rain season, the forest displays the strongest net radiation and sensible heat flux. Air temperature within the canopy reaches extremely high values. During the flood, it turns to the lowest sensible heat flux. In fact, due to an oasis effect, this flux is negative during the late flood. Water fluxes turn from almost zero in the dry season to strong evaporation during the flood, since it uses additional energy provided by negative sensible heat flux. The eddy covariance fluxes are consistent with sap flow data, showing that the flood greatly increases the length of the growing season. CO2 fluxes over the forest were twice as large as over the grassland, and the growing season was also longer, giving a much larger annual photosynthesis. In view of these data and data over surroundings grasslands and bare soil, as well as data from a long-term ecological

  12. Future flood risk in the tropics as measured by changes in extreme runoff intensity is strongly influenced by plant-physiological responses to rising CO2

    NASA Astrophysics Data System (ADS)

    Kooperman, G. J.; Hoffman, F. M.; Koven, C.; Lindsay, K. T.; Swann, A. L. S.; Randerson, J. T.

    2017-12-01

    Climate change is expected to increase the frequency of intense flooding events, and thus the risk of flood-related mortality, infrastructure damage, and economic loss. Assessments of future flooding from global climate models based only on precipitation intensity and temperature neglect important processes that occur within the land-surface, particularly the impacts of plant-physiological responses to rising CO2. Higher CO2 reduces stomatal conductance, leading to less water loss through transpiration and higher soil moisture. For a given precipitation rate, higher soil moisture decreases the amount of rainwater that infiltrates the surface and increases runoff. Here we assess the relative impacts of plant-physiological and radiative-greenhouse effects on changes in extreme runoff intensity over tropical continents using the Community Earth System Model. We find that extreme percentile rates increase significantly more than mean runoff in response to higher CO2. Plant-physiological effects contribute to only a small increase in precipitation intensity, but are a dominant driver of runoff intensification, contributing to one-half of the 99th percentile runoff intensity change and one-third of the 99.9th percentile change. Comprehensive assessments of future flooding risk need to account for the physiological as well as radiative impacts of CO2 in order to better inform flood prediction and mitigation practices.

  13. Bifunctional silver(I) complex-catalyzed CO2 conversion at ambient conditions: synthesis of α-methylene cyclic carbonates and derivatives.

    PubMed

    Song, Qing-Wen; Chen, Wei-Qiang; Ma, Ran; Yu, Ao; Li, Qiu-Yue; Chang, Yao; He, Liang-Nian

    2015-03-01

    The chemical conversion of CO2 at atmospheric pressure and room temperature remains a great challenge. The triphenylphosphine complex of silver(I) carbonate was proved to be a robust bifunctional catalyst for the carboxylative cyclization of propargylic alcohols and CO2 at ambient conditions leading to the formation of α-methylene cyclic carbonates in excellent yields. The unprecedented performance of [(PPh3)2Ag]2CO3 is presumably attributed to the simultaneous activation of CO2 and propargylic alcohol. Moreover, the highly compatible basicity of the catalytic species allows propargylic alcohol to react with CO2 leading to key silver alkylcarbonate intermediates: the bulkier [(Ph3P)2Ag(I)](+) effectively activates the carbon-carbon triple bond and enhances O-nucleophilicity of the alkylcarbonic anion, thereby greatly promoting the intramolecular nucleophilic cyclization. Notably, this catalytic protocol also worked well for the reaction of propargylic alcohols, secondary amines, and CO2 (at atmospheric pressure) to afford β-oxopropylcarbamates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Rapid, Microwave-Assisted Synthesis of Cubic, Three-Dimensional, Highly Porous MOF-205 for Room Temperature CO2 Fixation via Cyclic Carbonate Synthesis.

    PubMed

    Babu, Robin; Roshan, Roshith; Kathalikkattil, Amal Cherian; Kim, Dong Woo; Park, Dae-Won

    2016-12-14

    A dual-porous, three-dimensional, metal-organic framework [Zn 4 O(2,6-NDC)(BTB) 4/3 ] (MOF-205, BET = 4200 m 2 /g) has been synthesized using microwave power as an alternative energy source for the first time, and its catalytic activity has been exploited for CO 2 -epoxide coupling reactions to produce five-membered cyclic carbonates under solvent-free conditions. Microwave synthesis was performed at different time intervals to reveal the formation of the crystals. Significant conversion of various epoxides was obtained at room temperature, with excellent selectivity toward the desired five-membered cyclic carbonates. The importance of the dual porosity and the synergistic effect of quaternary ammonium salts on efficiently catalyzed CO 2 conversion were investigated using various experimental and physicochemical characterization techniques, and the results were compared with those of the solvothermally synthesized MOF-205 sample. On the basis of literature and experimental inferences, a rationalized mechanism mediated by the zinc center of MOF-205 for the CO 2 -epoxide cycloaddition reaction has been proposed.

  15. Determining CO2 storage potential during miscible CO2 enhanced oil recovery: Noble gas and stable isotope tracers

    USGS Publications Warehouse

    Shelton, Jenna L.; McIntosh, Jennifer C.; Hunt, Andrew; Beebe, Thomas L; Parker, Andrew D; Warwick, Peter D.; Drake, Ronald; McCray, John E.

    2016-01-01

    Rising atmospheric carbon dioxide (CO2) concentrations are fueling anthropogenic climate change. Geologic sequestration of anthropogenic CO2 in depleted oil reservoirs is one option for reducing CO2 emissions to the atmosphere while enhancing oil recovery. In order to evaluate the feasibility of using enhanced oil recovery (EOR) sites in the United States for permanent CO2 storage, an active multi-stage miscible CO2flooding project in the Permian Basin (North Ward Estes Field, near Wickett, Texas) was investigated. In addition, two major natural CO2 reservoirs in the southeastern Paradox Basin (McElmo Dome and Doe Canyon) were also investigated as they provide CO2 for EOR operations in the Permian Basin. Produced gas and water were collected from three different CO2 flooding phases (with different start dates) within the North Ward Estes Field to evaluate possible CO2 storage mechanisms and amounts of total CO2retention. McElmo Dome and Doe Canyon were sampled for produced gas to determine the noble gas and stable isotope signature of the original injected EOR gas and to confirm the source of this naturally-occurring CO2. As expected, the natural CO2produced from McElmo Dome and Doe Canyon is a mix of mantle and crustal sources. When comparing CO2 injection and production rates for the CO2 floods in the North Ward Estes Field, it appears that CO2 retention in the reservoir decreased over the course of the three injections, retaining 39%, 49% and 61% of the injected CO2 for the 2008, 2010, and 2013 projects, respectively, characteristic of maturing CO2 miscible flood projects. Noble gas isotopic composition of the injected and produced gas for the flood projects suggest no active fractionation, while δ13CCO2 values suggest no active CO2dissolution into formation water, or mineralization. CO2 volumes capable of dissolving in residual formation fluids were also estimated along with the potential to store pure-phase supercritical CO2. Using a combination

  16. Large CO2 and CH4 release from a flooded formerly drained fen

    NASA Astrophysics Data System (ADS)

    Sachs, T.; Franz, D.; Koebsch, F.; Larmanou, E.; Augustin, J.

    2016-12-01

    Drained peatlands are usually strong carbon dioxide (CO2) sources. In Germany, up to 4.5 % of the national CO2 emissions are estimated to be released from agriculturally used peatlands and for some peatland-rich northern states, such as Mecklenburg-Western Pomerania, this share increases to about 20%. Reducing this CO2 source and restoring the peatlands' natural carbon sink is one objective of large-scale nature protection and restoration measures, in which 37.000 ha of drained and degraded peatlands in Mecklenburg-Western Pomerania are slated for rewetting. It is well known, however, that in the initial phase of rewetting, a reduction of the CO2 source strength is usually accompanied by an increase in CH4 emissions. Thus, whether and when the intended effects of rewetting with regard to greenhouse gases are achieved, depends on the balance of CO2 and CH4 fluxes and on the duration of the initial CH4 emission phase. In 2013, a new Fluxnet site went online at a flooded formerly drained river valley fen site near Zarnekow, NE Germany (DE-Zrk), to investigate the combined CO2 and CH4 dynamics at such a heavily degraded and rewetted peatland. The site is dominated by open water with submerged and floating vegetation and surrounding Typha latifolia.Nine year after rewetting, we found large CH4 emissions of 53 g CH4 m-2 a-1 from the open water area, which are 4-fold higher than from the surrounding vegetation zone (13 g CH4 m-2 a-1). Surprisingly, both the open water and the vegetated area were net CO2 sources of 158 and 750 g CO2 m-2 a-1, respectively. Unusual meteorological conditions with a warm and dry summer and a mild winter might have facilitated high respiration rates, particularly from temporally non-inundated organic mud in the vegetation zone.

  17. The U.S. Gas Flooding Experience: CO2 Injection Strategies and Impact on Ultimate Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunez-Lopez, Vanessa; Hosseini, Seyyed; Gil-Egui, Ramon

    The Permian Basin in West Texas and southwestern New Mexico has seen 45 years of oil reserve growth through CO2 enhanced oil recovery (CO2 EOR). More than 60 CO2 EOR projects are currently active in the region’s limestone, sandstone and dolomite reservoirs. Water alternating gas (WAG) has been the development strategy of choice in the Permian for several technical and economic reasons. More recently, the technology started to get implemented in the much more porous and permeable clastic depositional systems of the onshore U.S. Gulf Coast. Continued CO2 injection (CGI), as opposed to WAG, was selected as the injection strategymore » to develop Gulf Coast oil fields, where CO2 injection volumes are significantly larger (up to 6 times larger) than those of the Permian. We conducted a compositional simulation based study with the objective of comparing the CO2 utilization ratios (volume of CO2 injected to produce a barrel of oil) of 4 conventional and novel CO2 injection strategies: (1) continuous gas injection (CGI), (2) water alternating gas (WAG), (3) water curtain injection (WCI), and (4) WAG and WCI combination. These injection scenarios were simulated using the GEM module from the Computer Modeling Group (CMG). GEM is an advanced general equation-of-state compositional simulator, which includes equation of state, CO2 miscible flood, CO2/brine interactions, and complex phase behavior. The simulator is set up to model three fluid phases including water, oil, and gas. Our study demonstrates how the selected field development strategy has a significant impact on the ultimate recovery of CO2-EOR projects, with GCI injection providing maximum oil recovery in absolute volume terms, but with WAG offering a more balanced technical-economical approach.« less

  18. Catalylic transformations of thiiranes by the W(CO){sub 5} grouping. A new route to cyclic polydisulfides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, R.D.; Queisser, J.A.; Yamamoto, J.H.

    1996-10-30

    This paper reports some interesting new transformations of thiirane, 2(R),3(S)-dimethylthiirane (cis-DMT), and 2(R),3(R)(2(S), 3(S))-dimethylthiirane (trans-DMT) by the W(CO){sub 5} group. The reaction of an excess of thiirane with W(CO){sub 5}-(NCMe) leads to the formation of the cyclic polydisulfides (CH{sub 2}-CH{sub 2}SS){sub n}, 1-4, n = 2-5 plus ethylene catalytically. The case of this new catalytic thiirane reaction indicates that it could be a practical route for the synthesis of large quantities of these and other cyclic polydisulfides. 17 refs., 1 fig.

  19. Cyclic voltammetric study of Co-Ni-Fe alloys electrodeposition in sulfate medium

    NASA Astrophysics Data System (ADS)

    Hanafi, I.; Daud, A. R.; Radiman, S.

    2013-11-01

    Electrochemical technique has been used to study the electrodeposition of cobalt, nickel, iron and Co-Ni-Fe alloy on indium tin oxide (ITO) coated glass substrate. To obtain the nucleation mechanism, cyclic voltammetry is used to characterize the Co-Ni-Fe system. The scanning rate effect on the deposition process was investigated. Deposition of single metal occurs at potential values more positive than that estimated stability potential. Based on the cyclic voltammetry results, the electrodeposition of cobalt, nickel, iron and Co-Ni-Fe alloy clearly show that the process of diffusion occurs is controlled by the typical nucleation mechanism.

  20. Has the magnitude of floods across the USA changed with global CO2 levels?

    USGS Publications Warehouse

    Hirsch, Robert M.; Ryberg, Karen R.

    2012-01-01

    Statistical relationships between annual floods at 200 long-term (85–127 years of record) streamgauges in the coterminous United States and the global mean carbon dioxide concentration (GMCO2) record are explored. The streamgauge locations are limited to those with little or no regulation or urban development. The coterminous US is divided into four large regions and stationary bootstrapping is used to evaluate if the patterns of these statistical associations are significantly different from what would be expected under the null hypothesis that flood magnitudes are independent of GMCO2. In none of the four regions defined in this study is there strong statistical evidence for flood magnitudes increasing with increasing GMCO2. One region, the southwest, showed a statistically significant negative relationship between GMCO2 and flood magnitudes. The statistical methods applied compensate both for the inter-site correlation of flood magnitudes and the shorter-term (up to a few decades) serial correlation of floods.

  1. Has the magnitude of floods across the USA changed with global CO 2 levels?

    USGS Publications Warehouse

    Hirsch, R.M.; Ryberg, K.R.

    2012-01-01

    Statistical relationships between annual floods at 200 long-term (85-127 years of record) streamgauges in the coterminous United States and the global mean carbon dioxide concentration (GMCO2) record are explored. The streamgauge locations are limited to those with little or no regulation or urban development. The coterminous US is divided into four large regions and stationary bootstrapping is used to evaluate if the patterns of these statistical associations are significantly different from what would be expected under the null hypothesis that flood magnitudes are independent of GMCO2. In none of the four regions defined in this study is there strong statistical evidence for flood magnitudes increasing with increasing GMCO2. One region, the southwest, showed a statistically significant negative relationship between GMCO2 and flood magnitudes. The statistical methods applied compensate both for the inter-site correlation of flood magnitudes and the shorter-term (up to a few decades) serial correlation of floods.

  2. Evaluating the purity of a {sup 57}Co flood source by PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiFilippo, Frank P., E-mail: difilif@ccf.org

    2014-11-01

    Purpose: Flood sources of {sup 57}Co are commonly used for quality control of gamma cameras. Flood uniformity may be affected by the contaminants {sup 56}Co and {sup 58}Co, which emit higher energy photons. Although vendors specify a maximum combined {sup 56}Co and {sup 58}Co activity, a convenient test for flood source purity that is feasible in a clinical environment would be desirable. Methods: Both {sup 56}Co and {sup 58}Co emit positrons with branching 19.6% and 14.9%, respectively. As is known from {sup 90}Y imaging, a positron emission tomography (PET) scanner is capable of quantitatively imaging very weak positron emission inmore » a high single-photon background. To evaluate this approach, two {sup 57}Co flood sources were scanned with a clinical PET/CT multiple times over a period of months. The {sup 56}Co and {sup 58}Co activity was clearly visible in the reconstructed PET images. Total impurity activity was quantified from the PET images after background subtraction of prompt gamma coincidences. Results: Time-of-flight PET reconstruction was highly beneficial for accurate image quantification. Repeated measurements of the positron-emitting impurities showed excellent agreement with an exponential decay model. For both flood sources studied, the fit parameters indicated a zero intercept and a decay half-life consistent with a mixture of {sup 56}Co and {sup 58}Co. The total impurity activity at the reference date was estimated to be 0.06% and 0.07% for the two sources, which was consistent with the vendor’s specification of <0.12%. Conclusions: The robustness of the repeated measurements and a thorough analysis of the detector corrections and physics suggest that the accuracy is acceptable and that the technique is feasible. Further work is needed to validate the accuracy of this technique with a calibrated high resolution gamma spectrometer as a gold standard, which was not available for this study, and for other PET detector models.« less

  3. Parcel-scale urban coastal flood mapping: Leveraging the multi-scale CoSMoS model for coastal flood forecasting

    NASA Astrophysics Data System (ADS)

    Gallien, T.; Barnard, P. L.; Sanders, B. F.

    2011-12-01

    California coastal sea levels are projected to rise 1-1.4 meters in the next century and evidence suggests mean tidal range, and consequently, mean high water (MHW) is increasing along portions of Southern California Bight. Furthermore, emerging research indicates wind stress patterns associated with the Pacific Decadal Oscillation (PDO) have suppressed sea level rise rates along the West Coast since 1980, and a reversal in this pattern would result in the resumption of regional sea level rise rates equivalent to or exceeding global mean sea level rise rates, thereby enhancing coastal flooding. Newport Beach is a highly developed, densely populated lowland along the Southern California coast currently subject to episodic flooding from coincident high tides and waves, and the frequency and intensity of flooding is expected to increase with projected future sea levels. Adaptation to elevated sea levels will require flood mapping and forecasting tools that are sensitive to the dominant factors affecting flooding including extreme high tides, waves and flood control infrastructure. Considerable effort has been focused on the development of nowcast and forecast systems including Scripps Institute of Oceanography's Coastal Data Information Program (CDIP) and the USGS Multi-hazard model, the Southern California Coastal Storm Modeling System (CoSMoS). However, fine scale local embayment dynamics and overtopping flows are needed to map unsteady flooding effects in coastal lowlands protected by dunes, levees and seawalls. Here, a recently developed two dimensional Godunov non-linear shallow water solver is coupled to water level and wave forecasts from the CoSMoS model to investigate the roles of tides, waves, sea level changes and flood control infrastructure in accurate flood mapping and forecasting. The results of this study highlight the important roles of topographic data, embayment hydrodynamics, water level uncertainties and critical flood processes required for

  4. Optimization of CO2 adsorption capacity and cyclical adsorption/desorption on tetraethylenepentamine-supported surface-modified hydrotalcite.

    PubMed

    Thouchprasitchai, Nutthavich; Pintuyothin, Nuthapol; Pongstabodee, Sangobtip

    2018-03-01

    The objective of this research was to investigate CO 2 adsorption capacity of tetraethylenepentamine-functionalized basic-modified calcined hydrotalcite (TEPA/b-cHT) sorbents at atmospheric pressure formed under varying TEPA loading levels, temperatures, sorbent weight to total gaseous flow rate (W/F) ratios and CO 2 concentrations in the influent gas. The TEPA/b-cHT sorbents were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA), Brunauer-Emmet-Teller (BET) analysis of nitrogen (N 2 ) adsorption/desorption and carbon-hydrogen-nitrogen (CHN) elemental analysis. Moreover, a full 2 4 factorial design with three central points at a 95% confidence interval was used to screen important factor(s) on the CO 2 adsorption capacity. It revealed that 85.0% variation in the capacity came from the influence of four main factors and the 15.0% one was from their interactions. A face-centered central composite design response surface method (FCCCD-RSM) was then employed to optimize the condition, the maximal capacity of 5.5-6.1mmol/g was achieved when operating with a TEPA loading level of 39%-49% (W/W), temperature of 76-90°C, W/F ratio of 1.7-2.60(g·sec)/cm 3 and CO 2 concentration of 27%-41% (V/V). The model fitted sufficiently the experimental data with an error range of ±1.5%. From cyclical adsorption/desorption and selectivity at the optimal condition, the 40%TEPA/b-cHT still expressed its effective performance after eight cycles. Copyright © 2017. Published by Elsevier B.V.

  5. How much CO2 is trapped in carbonate minerals of a natural CO2 occurrence?

    NASA Astrophysics Data System (ADS)

    Király, Csilla; Szabó, Zsuzsanna; Szamosfalvi, Ágnes; Cseresznyés, Dóra; Király, Edit; Szabó, Csaba; Falus, György

    2017-04-01

    Carbon Capture and Storage (CCS) is a transitional technology to decrease CO2 emissions from human fossil fuel usage and, therefore, to mitigate climate change. The most important criteria of a CO2 geological storage reservoir is that it must hold the injected CO2 for geological time scales without its significant seepage. The injected CO2 undergoes physical and chemical reactions in the reservoir rocks such as structural-stratigraphic, residual, dissolution or mineral trapping mechanisms. Among these, the safest is the mineral trapping, when carbonate minerals such as calcite, ankerite, siderite, dolomite and dawsonite build the CO2 into their crystal structures. The study of natural CO2 occurrences may help to understand the processes in CO2 reservoirs on geological time scales. This is the reason why the selected, the Mihályi-Répcelak natural CO2 occurrence as our research area, which is able to provide particular and highly significant information for the future of CO2 storage. The area is one of the best known CO2 fields in Central Europe. The main aim of this study is to estimate the amount of CO2 trapped in the mineral phase at Mihályi-Répcelak CO2 reservoirs. For gaining the suitable data, we apply petrographic, major and trace element (microprobe and LA-ICP-MS) and stable isotope analysis (mass spectrometry) and thermodynamic and kinetic geochemical models coded in PHREEQC. Rock and pore water compositions of the same formation, representing the pre-CO2 flooding stages of the Mihályi-Répcelak natural CO2 reservoirs are used in the models. Kinetic rate parameters are derived from the USGS report of Palandri and Kharaka (2004). The results of petrographic analysis show that a significant amount of dawsonite (NaAlCO3(OH)2, max. 16 m/m%) precipitated in the rock due to its reactions with CO2 which flooded the reservoir. This carbonate mineral alone traps about 10-30 kg/m3 of the reservoir rock from the CO2 at Mihályi-Répcelak area, which is an

  6. Post waterflood CO{sub 2} miscible flood in light oil, fluvial-dominated deltaic reservoir. Annual report, fiscal year 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-08-15

    The Port Neches CO{sub 2} flood has been operating for nearly 4 years. The project performance during the past year has been adversely affected by several factors including: water blockage, low residual oil saturation and wellbore mechanical problems. The company attempted to test a new procedure in a new fault block using CO{sub 2} to accelerate primary production in order to improve the primary reserves net present value. The test was abandoned when the discovery well Polk B-39 for the Marg Area 3 was a dry hole. Also, during this period the company terminated all new CO{sub 2} purchases frommore » Cardox for economical reasons, while continuing to recycle produced CO{sub 2}. A data base for FDD reservoirs for the Louisiana and Texas Gulf Coast Region was developed by LSU and SAIC. This data base includes reservoir parameters and performance data for reservoirs with significant production and OOIP volumes that are amenable to CO{sub 2} injection. A paper discussing the Port Neches CO{sub 2} project was presented at the 1996 SPE/DOE Symposium on Improved Oil Recovery.« less

  7. Relationships between the Efficiencies of Photosystems I and II and Stromal Redox State in CO(2)-Free Air : Evidence for Cyclic Electron Flow in Vivo.

    PubMed

    Harbinson, J; Foyer, C H

    1991-09-01

    The responses of the efficiencies of photosystems I and II, stromal redox state (as indicated by NADP-malate dehydrogenase activation state), and activation of the Benson-Calvin cycle enzymes ribulose 1,5-bisphosphate carboxylase and fructose 1,6-bisphosphatase to varying irradiance were measured in pea (Pisum sativum L.) leaves operating close to the CO(2) compensation point. A comparison of the relationships among these parameters obtained from leaves in air was made with those obtained when the leaves were maintained in air from which the CO(2) had been removed. P700 was more oxidized at any measured irradiance in CO(2)-free air than in air. The relationship between the quantum efficiencies of the photosystems in CO(2)-free air was distinctly curvilinear in contrast to the predominantly linear relationship obtained with leaves in air. This nonlinearity may be consistent with the operation of cyclic electron flow around photosystem I because the quantum efficiency of photosystem II was much more restricted than the quantum efficiency of photosystem I. In CO(2)-free air, measured NADP-malate dehydrogenase activities varied considerably at low irradiances. However, at high irradiance the activity of the enzyme was low, implying that the stroma was oxidized. In contrast, fructose-1,6-bisphosphatase activities tended to increase with increasing electron flux through the photosystems. Ribulose-1,5-bisphosphate carboxylase activity remained relatively constant with respect to irradiance in CO(2)-free air, with an activation state 50% of maximum. We conclude that, at the CO(2) compensation point and high irradiance, low redox states are favored and that cyclic electron flow may be substantial. These two features may be the requirements necessary to trigger and maintain the dissipative processes in the thylakoid membrane.

  8. Post Waterflood CO2 Miscible Flood in Light Oil, Fluvial-Dominated Deltaic Reservoir (Pre-Work and Project Proposal), Class I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bou-Mikael, Sami

    This project outlines a proposal to improve the recovery of light oil from waterflooded fluvial dominated deltaic (FDD) reservoir through a miscible carbon dioxide (CO2) flood. The site is the Port Neches Field in Orange County, Texas. The field is well explored and well exploited. The project area is 270 acres within the Port Neches Field.

  9. Magnetic resonance imaging study on near miscible supercritical CO2 flooding in porous media

    NASA Astrophysics Data System (ADS)

    Song, Yongchen; Zhu, Ningjun; Zhao, Yuechao; Liu, Yu; Jiang, Lanlan; Wang, Tonglei

    2013-05-01

    CO2 flooding is one of the most popular secondary or tertiary recoveries for oil production. It is also significant for studying the mechanisms of the two-phase and multiphase flow in porous media. In this study, an experimental study was carried out by using magnetic resonance imaging technique to examine the detailed effects of pressure and rates on CO2/decane flow in a bead-pack porous media. The displacing processes were conducted under various pressures in a region near the minimum miscibility pressure (the system tuned from immiscible to miscible as pressure is increasing in this region) and the temperature of 37.8 °C at several CO2 injection volumetric rates of 0.05, 0.10, and 0.15 ml/min (or linear rates of 3.77, 7.54, and 11.3 ft/day). The evolution of the distribution of decane and the characteristics of the two phase flow were investigated and analyzed by considering the pressure and rate. The area and velocity of the transition zone between the two phases were calculated and analyzed to quantify mixing. The area of transition zone decreased with pressure at near miscible region and a certain injection rate and the velocity of the transition zone was always less than the "volumetric velocity" due to mutual solution and diffusion of the two phases. Therefore, these experimental results give the fundamental understanding of tertiary recovery processes at near miscible condition.

  10. Cyclic nucleotide content of tobacco BY-2 cells.

    PubMed

    Richards, Helen; Das, Swadipa; Smith, Christopher J; Pereira, Louisa; Geisbrecht, Alan; Devitt, Nicola J; Games, David E; van Geyschem, Jan; Gareth Brenton, A; Newton, Russell P

    2002-11-01

    The cyclic nucleotide content of cultured tobacco bright yellow-2 (BY-2) cells was determined, after freeze-killing, perchlorate extraction and sequential chromatography, by radioimmunoassay. The identities of the putative cyclic nucleotides, adenosine 3',5'-cyclic monophosphate (cyclic AMP), guanosine 3',5'-cyclic monophosphate (cyclic GMP) and cytidine 3',5'-cyclic monophosphate (cyclic CMP) were unambiguously confirmed by tandem mass spectrometry. The potential of BY-2 cell cultures as a model system for future investigations of cyclic nucleotide function in higher plants is discussed.

  11. Cyclic degassing of Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Ilanko, Tehnuka; Oppenheimer, Clive; Burgisser, Alain; Kyle, Philip

    2015-06-01

    Field observations have previously identified rapid cyclic changes in the behaviour of the lava lake of Erebus volcano. In order to understand more fully the nature and origins of these cycles, we present here a wavelet-based frequency analysis of time series measurements of gas emissions from the lava lake, obtained by open-path Fourier transform infrared spectroscopy. This reveals (i) a cyclic change in total gas column amount, a likely proxy for gas flux, with a period of about 10 min, and (ii) a similarly phased cyclic change in proportions of volcanic gases, which can be explained in terms of chemical equilibria and pressure-dependent solubilities. Notably, the wavelet analysis shows a persistent periodicity in the CO2/CO ratio and strong periodicity in H2O and SO2 degassing. The `peaks' of the cycles, defined by maxima in H2O and SO2 column amounts, coincide with high CO2/CO ratios and proportionally smaller increases in column amounts of CO2, CO, and OCS. We interpret the cycles to arise from recharge of the lake by intermittent pulses of magma from shallow depths, which degas H2O at low pressure, combined with a background gas flux that is decoupled from this very shallow magma degassing.

  12. Residual CO2 trapping in Indiana limestone.

    PubMed

    El-Maghraby, Rehab M; Blunt, Martin J

    2013-01-02

    We performed core flooding experiments on Indiana limestone using the porous plate method to measure the amount of trapped CO(2) at a temperature of 50 °C and two pressures: 4.2 and 9 MPa. Brine was mixed with CO(2) for equilibration, then the mixture was circulated through a sacrificial core. Porosity and permeability tests conducted before and after 884 h of continuous core flooding confirmed negligible dissolution. A trapping curve for supercritical (sc)CO(2) in Indiana showing the relationship between the initial and residual CO(2) saturations was measured and compared with that of gaseous CO(2). The results were also compared with scCO(2) trapping in Berea sandstone at the same conditions. A scCO(2) residual trapping end point of 23.7% was observed, indicating slightly less trapping of scCO(2) in Indiana carbonates than in Berea sandstone. There is less trapping for gaseous CO(2) (end point of 18.8%). The system appears to be more water-wet under scCO(2) conditions, which is different from the trend observed in Berea; we hypothesize that this is due to the greater concentration of Ca(2+) in brine at higher pressure. Our work indicates that capillary trapping could contribute to the immobilization of CO(2) in carbonate aquifers.

  13. Soil CO2 venting as one of the mechanisms for tolerance of Zn deficiency by rice in flooded soils.

    PubMed

    Affholder, Marie-Cecile; Weiss, Dominik J; Wissuwa, Matthias; Johnson-Beebout, Sarah E; Kirk, Guy J D

    2017-12-01

    We sought to explain rice (Oryza sativa) genotype differences in tolerance of zinc (Zn) deficiency in flooded paddy soils and the counter-intuitive observation, made in earlier field experiments, that Zn uptake per plant increases with increasing planting density. We grew tolerant and intolerant genotypes in a Zn-deficient flooded soil at high and low planting densities and found (a) plant Zn concentrations and growth increased with planting density and more so in the tolerant genotype, whereas the concentrations of other nutrients decreased, indicating a specific effect on Zn uptake; (b) the effects of planting density and genotype on Zn uptake could only be explained if the plants induced changes in the soil to make Zn more soluble; and (c) the genotype and planting density effects were both associated with decreases in dissolved CO 2 in the rhizosphere soil solution and resulting increases in pH. We suggest that the increases in pH caused solubilization of soil Zn by dissolution of alkali-soluble, Zn-complexing organic ligands from soil organic matter. We conclude that differences in venting of soil CO 2 through root aerenchyma were responsible for the genotype and planting density effects. © 2017 John Wiley & Sons Ltd.

  14. Straw enhanced CO2 and CH4 but decreased N2O emissions from flooded paddy soils: Changes in microbial community compositions

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Yu, Jian-Guang; Zhao, Ya-Hui; Chang, Zhi-Zhou; Shi, Xiao-Xia; Ma, Lena Q.; Li, Hong-Bo

    2018-02-01

    To explore microbial mechanisms of straw-induced changes in CO2, CH4, and N2O emissions from paddy field, wheat straw was amended to two paddy soils from Taizhou (TZ) and Yixing (YX), China for 60 d under flooded condition. Illumia sequencing was used to characterize shift in bacterial community compositions. Compared to control, 1-5% straw amendment significantly elevated CO2 and CH4 emissions with higher increase at higher application rates, mainly due to increased soil DOC concentrations. In contrast, straw amendment decreased N2O emission. Considering CO2, CH4, and N2O emissions as a whole, an overall increase in global warming potential was observed with straw amendment. Total CO2 and CH4 emissions from straw-amended soils were significantly higher for YX than TZ soil, suggesting that straw-induced greenhouse gas emissions depended on soil characteristics. The abundance of C-turnover bacteria Firmicutes increased from 28-41% to 54-77% with straw amendment, thereby increasing CO2 and CH4 emissions. However, straw amendment reduced the abundance of denitrifying bacteria Proteobacteria from 18% to 7.2-13% or increased the abundance of N2O reducing bacteria Clostridium from 7.6-11% to 13-30%, thereby decreasing N2O emission. The results suggested straw amendment strongly influenced greenhouse gas emissions via alerting soil properties and bacterial community compositions. Future field application is needed to ascertain the effects of straw return on greenhouse gas emissions.

  15. Copper-Mediated SN2' Allyl-Alkyl and Allyl-Boryl Couplings of Vinyl Cyclic Carbonates.

    PubMed

    Miralles, Núria; Gómez, José Enrique; Kleij, Arjan W; Fernández, Elena

    2017-11-17

    A method for the copper-catalyzed borylmethylation and borylation of vinyl cyclic carbonates through an S N 2' mechanism is reported. These singular reactions involve selective S N 2' allylic substitutions with concomitant ring opening of the cyclic carbonate and with extrusion of CO 2 and formation of a useful hydroxyl functionality in a single step. The stereoselectivity of the homoallylic borylation and allylic borylation processes can be controlled, and synthetically useful unsaturated (E)-pent-2-ene-1,5-diols and (E)-but-2-ene-1,4-diols are accessed.

  16. Displacement front behavior of near miscible CO2 flooding in decane saturated synthetic sandstone cores revealed by magnetic resonance imaging.

    PubMed

    Liu, Yu; Teng, Ying; Jiang, Lanlan; Zhao, Jiafei; Zhang, Yi; Wang, Dayong; Song, Yongchen

    2017-04-01

    It is of great importance to study the CO 2 -oil two-phase flow characteristic and displacement front behavior in porous media, for understanding the mechanisms of CO 2 enhanced oil recovery. In this work, we carried out near miscible CO 2 flooding experiments in decane saturated synthetic sandstone cores to investigate the displacement front characteristic by using magnetic resonance imaging technique. Experiments were done in three consolidated sandstone cores with the permeabilities ranging from 80 to 450mD. The oil saturation maps and the overall oil saturation during CO 2 injections were obtained from the intensity of magnetic resonance imaging. Finally the parameters of the piston-like displacement fronts, including the front velocity and the front geometry factor (the length to width ratio) were analyzed. Experimental results showed that the near miscible vertical upward displacement is instable above the minimum miscible pressure in the synthetic sandstone cores. However, low permeability can restrain the instability to some extent. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A Versatile CuII Metal-Organic Framework Exhibiting High Gas Storage Capacity with Selectivity for CO2 : Conversion of CO2 to Cyclic Carbonate and Other Catalytic Abilities.

    PubMed

    De, Dinesh; Pal, Tapan K; Neogi, Subhadip; Senthilkumar, S; Das, Debasree; Gupta, Sayam Sen; Bharadwaj, Parimal K

    2016-03-01

    A linear tetracarboxylic acid ligand, H 4 L, with a pendent amine moiety solvothermally forms two isostructural metal-organic frameworks (MOFs) L M (M=Zn II , Cu II ). Framework L Cu can also be obtained from L Zn by post- synthetic metathesis without losing crystallinity. Compared with L Zn , the L Cu framework exhibits high thermal stability and allows removal of guest solvent and metal-bound water molecules to afford the highly porous, L Cu '. At 77 K, L Cu ' absorbs 2.57 wt % of H 2 at 1 bar, which increases significantly to 4.67 wt % at 36 bar. The framework absorbs substantially high amounts of methane (238.38 cm 3  g -1 , 17.03 wt %) at 303 K and 60 bar. The CH 4 absorption at 303 K gives a total volumetric capacity of 166 cm 3  (STP) cm -3 at 35 bar (223.25 cm 3  g -1 , 15.95 wt %). Interestingly, the NH 2 groups in the linker, which decorate the channel surface, allow a remarkable 39.0 wt % of CO 2 to be absorbed at 1 bar and 273 K, which comes within the dominion of the most famous MOFs for CO 2 absorption. Also, L Cu ' shows pronounced selectivity for CO 2 absorption over CH 4 , N 2 , and H 2 at 273 K. The absorbed CO 2 can be converted to value-added cyclic carbonates under relatively mild reaction conditions (20 bar, 120 °C). Finally, L Cu ' is found to be an excellent heterogeneous catalyst in regioselective 1,3-dipolar cycloaddition reactions ("click" reactions) and provides an efficient, economic route for the one-pot synthesis of structurally divergent propargylamines through three-component coupling of alkynes, amines, and aldehydes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Kinetic analysis for cyclic CO2 capture using lithium orthosilicate sorbents derived from different silicon precursors.

    PubMed

    Zhao, Ming; Fan, Hanlu; Yan, Feng; Song, Yinqiang; He, Xu; Memon, Muhammad Zaki; Bhatia, Suresh K; Ji, Guozhao

    2018-06-21

    A series of Li4SiO4 was synthesized using LiNO3 and six different silicon precursors. The precipitated-silica-derived Li4SiO4 presented the highest CO2 capacity in a 10 h sorption test, and ZSM-5-derived Li4SiO4 demonstrated the most rapid CO2 sorption. The CO2 sorption kinetics predominantly followed the nucleation mode and could be accurately described by the Avrami-Erofeev model. The Avrami-Erofeev model provided an in-depth analysis of correlation between sorption performance and material properties. Both the nucleation speed and nucleation dimensionality affected the overall sorption kinetics. The kinetics and pore-size distribution suggest that the sorption kinetics was dependent on the quantity of ∼4 nm-pores which favors nucleation dimensionality. For the cyclic tests, the precipitated-silica-derived sample presented the poorest performance with the capacity decreasing from 31.33 wt% at the 1st cycle to only 11.52 wt% at the 30th cycle. However, the sample made from fumed silica displayed an opposite trend with the capacity increasing from 19.90 wt% at the 1st cycle to 34.23 wt% at the 30th cycle. The radically distinct behaviour of samples during cycles was on account of the alternation of sorption kinetics. The decrease in ∼4 nm-pores after cycles was responsible for the decrease of nucleation dimensionality for the precipitated-silica-derived sample. The rearrangement during cycles could enrich the pores of ∼4 nm for the fumed silica-derived sample, which improved the nucleation growth, thus enhancing the kinetics with cycles.

  19. Characterization of amine-functionalized electrode for aqueous carbon dioxide (CO2) direct detection

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi

    2017-03-01

    In this study, fabrication of amino groups and ferrocenes co-modified sensor electrode and electrochemical detection of carbon dioxide (CO2) in the saline solution is reported. Electrochemical detection of CO2 was carried out using cyclic voltammetry in saline solution containing sodium bicarbonate as CO2 source. Oxidation and reduction peak current intensities computed from cyclic voltammograms varied as a function of concentration of CO2 molecules. The calibration curve was obtained by plotting oxidation peak current intensities as a function of CO2 concentration. The sensor electrode prepared in this study can estimate the differences between concentrations of CO2 in normal seawater up to 10 times higher. Furthermore, the surface analysis was performed to clarify the CO2 detection mechanism.

  20. Cessation of cyclic stretch induces atrophy of C2C12 myotubes.

    PubMed

    Soltow, Quinlyn A; Zeanah, Elizabeth H; Lira, Vitor A; Criswell, David S

    2013-05-03

    Cyclic stretch of differentiated myotubes mimics the loading pattern of mature skeletal muscle. We tested a cell culture model of disuse atrophy by the cessation of repetitive bouts of cyclic stretch in differentiated C2C12 myotubes. Myotubes were subjected to cyclic strain (12%, 0.7 Hz, 1 h/d) on collagen-I-coated Bioflex plates using a computer-controlled vacuum stretch apparatus (Flexcell Int.) for 2 (2dSTR) or 5 (5dSTR) consecutive days. Control cultures were maintained in the Bioflex plates without cyclic stretch for 2d or 5d. Additionally, some cultures were stretched for 2 d followed by cessation of stretch for 3d (2dSTR3dCES). Cyclic stretching (5dSTR) increased myotube diameter and overall myotube area by ~2-fold (P<0.05) compared to non-stretched controls, while cessation of stretch (2dSTR3dCES) resulted in ~80% smaller myotubes than 5dSTR cells, and 40-50% smaller than non-stretched controls (P<0.05). Further, the calpain-dependent cleavage products of αII-spectrin (150 kDa) and talin increased (3.5-fold and 2.2-fold, respectively; P<0.05) in 2dSTR3dCES myotubes, compared to non-stretched controls. The 1h cyclic stretching protocol acutely increased the phosphorylation of Akt (+4.5-fold; P<0.05) and its downstream targets, FOXO3a (+4.2-fold; P<0.05) and GSK-3β (+1.8-fold; P<0.05), which returned to baseline by 48 h after cessation of stretch. Additionally, nitric oxide production increased during stretch and co-treatment with the NOS inhibitor, l-NAME, inhibited the effects of stretch and cessation of stretch. We conclude that cessation of cyclic stretching causes myotube atrophy by activating calpains and decreasing activation of Akt. Stretch-induced myotube growth, as well as activation of atrophy signaling with cessation of stretch, are dependent on NOS activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Spatial variability of greenhouse gases emissions (CO2, CH4, N2O) in a tropical hydroelectric reservoir flooding primary forest (Petit Saut Reservoir, French Guiana)

    NASA Astrophysics Data System (ADS)

    Cailleaud, Emilie; Guérin, Frédéric; Bouillon, Steven; Sarrazin, Max; Serça, Dominique

    2014-05-01

    At the Petit Saut Reservoir (PSR, French Guiana, South America), vertical profiles were performed at 5 stations in the open waters (OW) and 6 stations in two shallow flooded forest (FF) areas between April 2012 and September 2013. Measurements included physico-chemical parameters, ammonium, nitrate and dissolved greenhouse gas (CO2, CH4, N2O) concentrations, dissolved and particulate organic carbon (DOC, POC) and nitrogen (PN), δ13C-POC and δ15N-PN . The diffusive fluxes were calculated from surface concentrations. The aim of this study was to estimate the spatial variations of greenhouse gas emissions at a dentrical hydroelectric reservoir located in the tropics and flooding primary forest. Twenty years after impoundment, the water column of the PSR is permanently and tightly stratified thermally in the FF whereas in the OW, the thermal gradients are not as stable. The different hydrodynamical behaviours between the two different zones have significant consequences on the biogeochemistry: oxygen barely diffuses down to the hypolimnion in the FF whereas destratification occurs sporadically during the rainy season in the OW. Although we found the same range of POC in the FF and the OW (2.5-29 μmol L-1) and 20% more DOC at the bottom of OW than in the FF (229-878 μmol L-1), CO2 and CH4 concentrations were always significantly higher in the FF (CO2: 11-1412 μmol L-1, CH4: 0.001-1015 μmol L-1) than in the OW. On average, the CO2 concentrations were 30-40% higher in the FF than in the OW and the CH4 concentrations were three times higher in the FF than in the OW. The δ13C-POC and C:N values did not suggest substantial differences in the sources of OM between the FF and OW. At all stations, POC at the bottom has an isotopic signature slightly lighter than the terrestrial OM in the surrounding forest whereas the isotopic signature of surface POM would result from phytoplankton and methanotrophs. The vertical profiles of nitrogen compounds reveal that the main

  2. Integrated Electrochemical Processes for CO 2 Capture and Conversion to Commodity Chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatton, T. Alan; Jamison, Timothy

    2013-09-30

    The Massachusetts Institute of Technology (MIT) and Siemens Corporations (SCR) are developing new chemical synthesis processes for commodity chemicals from CO 2. The process is assessed as a novel chemical sequestration technology that utilizes CO 2 from dilute gas streams generated at industrial carbon emitters as a raw material to produce useful commodity chemicals. Work at Massachusetts Institute of Technology (MIT) commenced on October 1st, 2010, and finished on September 30th, 2013. During this period, we have investigated and accomplished five objectives that mainly focused on converting CO 2 into high-value chemicals: 1) Electrochemical assessment of catalytic transformation of COmore » 2 and epoxides to cyclic carbonates; 2) Investigation of organocatalytic routes to convert CO 2 and epoxide to cyclic carbonates; 3) Investigation of CO 2 Capture and conversion using simple olefins under continuous flow; 4) Microwave assisted synthesis of cyclic carbonates from olefins using sodium bicarbonates in a green pathway; 5) Life cycle analyses of integrated chemical sequestration process. In this final report, we will describe the detailed study performed during the three year period and findings and conclusions drawn from our research.« less

  3. Surface modification of a low cost bentonite for post-combustion CO2 capture

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Park, Dong-Wha; Ahn, Wha-Seung

    2013-10-01

    A low cost bentonite was modified with PEI (polyethylenimine) through a physical impregnation method. Bentonite in its natural state and after amine modification were characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy, X-ray diffraction, N2 adsorption-desorption isotherms, and investigated for CO2 capture using a thermogravimetric analysis unit connected to a flow panel. The effect of adsorption temperature, PEI loading and CO2 partial pressure on the CO2 capture performance of the PEI-modified bentonite was examined. A cyclic CO2 adsorption-desorption test was also carried out to assess the stability of PEI-modified bentonite as a CO2 adsorbent. Bentonite in its natural state showed negligible CO2 uptake. After amine modification, the CO2 uptake increased significantly due to CO2 capture by amine species introduced via chemisorption. The PEI-modified bentonites showed high CO2 capture selectivity over N2, and exhibited excellent stability in cyclic CO2 adsorption-desorption runs.

  4. Low temperature (550-700 K) oxidation pathways of cyclic ketones: Dominance of HO 2-elimination channels yielding conjugated cyclic coproducts

    DOE PAGES

    Scheer, Adam M.; Welz, Oliver; Vasu, Subith S.; ...

    2015-04-13

    The low-temperature oxidation of three cyclic ketones, cyclopentanone (CPO; C 5H 8O), cyclohexanone (CHO; C 6H 10 O), and 2-methyl-cyclopentanone (2-Me-CPO; CH 3–C 5H7 O), is studied between 550 and 700 K and at 4 or 8 Torr total pressure. Initial fuel radicals R are formedvia fast H-abstraction from the ketones by laser-photolytically generated chlorine atoms. Intermediates and products from the subsequent reactions of these radicals in the presence of excess O 2 are probed with time and isomeric resolution using multiplexed photoionization mass spectrometry with tunable synchrotron ionizing radiation. For CPO and CHO the dominant product channel in themore » R + O 2 reactions is chain-terminating HO 2-elimination yielding the conjugated cyclic coproducts 2-cyclopentenone and 2-cyclohexenone, respectively. Results on oxidation of 2-Me-CPO also show a dominant contribution from HO 2-elimination. Moreover, the photoionization spectrum of the co-product suggests formation of 2-methyl-2-cyclopentenone and/or 2-cyclohexenone, resulting from a rapid Dowd–Beckwith rearrangement, preceding addition to O 2, of the initial (2-oxocyclopentyl)methyl radical to 3-oxocyclohexyl. Cyclic ethers, markers for hydroperoxyalkyl radicals (QOOH), key intermediates in chain-propagating and chain-branching low-temperature combustion pathways, are only minor products. The interpretation of the experimental results is supported by stationary point calculations on the potential energy surfaces of the associated R + O 2 reactions at the CBS-QB3 level. Furthermore, the calculations indicate that HO 2-elimination channels are energetically favored and product formation via QOOH is disfavored. Lastly, the prominence of chain-terminating pathways linked with HO 2 formation in low-temperature oxidation of cyclic ketones suggests little low-temperature reactivity of these species as fuels in internal combustion engines.« less

  5. Low temperature (550-700 K) oxidation pathways of cyclic ketones: Dominance of HO 2-elimination channels yielding conjugated cyclic coproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheer, Adam M.; Welz, Oliver; Vasu, Subith S.

    The low-temperature oxidation of three cyclic ketones, cyclopentanone (CPO; C 5H 8O), cyclohexanone (CHO; C 6H 10 O), and 2-methyl-cyclopentanone (2-Me-CPO; CH 3–C 5H7 O), is studied between 550 and 700 K and at 4 or 8 Torr total pressure. Initial fuel radicals R are formedvia fast H-abstraction from the ketones by laser-photolytically generated chlorine atoms. Intermediates and products from the subsequent reactions of these radicals in the presence of excess O 2 are probed with time and isomeric resolution using multiplexed photoionization mass spectrometry with tunable synchrotron ionizing radiation. For CPO and CHO the dominant product channel in themore » R + O 2 reactions is chain-terminating HO 2-elimination yielding the conjugated cyclic coproducts 2-cyclopentenone and 2-cyclohexenone, respectively. Results on oxidation of 2-Me-CPO also show a dominant contribution from HO 2-elimination. Moreover, the photoionization spectrum of the co-product suggests formation of 2-methyl-2-cyclopentenone and/or 2-cyclohexenone, resulting from a rapid Dowd–Beckwith rearrangement, preceding addition to O 2, of the initial (2-oxocyclopentyl)methyl radical to 3-oxocyclohexyl. Cyclic ethers, markers for hydroperoxyalkyl radicals (QOOH), key intermediates in chain-propagating and chain-branching low-temperature combustion pathways, are only minor products. The interpretation of the experimental results is supported by stationary point calculations on the potential energy surfaces of the associated R + O 2 reactions at the CBS-QB3 level. Furthermore, the calculations indicate that HO 2-elimination channels are energetically favored and product formation via QOOH is disfavored. Lastly, the prominence of chain-terminating pathways linked with HO 2 formation in low-temperature oxidation of cyclic ketones suggests little low-temperature reactivity of these species as fuels in internal combustion engines.« less

  6. Pore-scale imaging of capillary trapped supercritical CO2 as controlled by water-wet vs. CO2-wet media and grain shapes

    NASA Astrophysics Data System (ADS)

    Chaudhary, K.; Cardenas, M.; Wolfe, W. W.; Maisano, J. A.; Ketcham, R. A.; Bennett, P.

    2013-12-01

    The capillary trapping of supercritical CO2 (s-CO2) is postulated to comprise up to 90% of permanently trapped CO2 injected during geologic sequestration. Successive s-CO2/brine flooding experiments under reservoir conditions showed that water-wet rounded beads trapped 15% of injected s-CO2 both as clusters and as individual ganglia, whereas CO2¬-wet beads trapped only 2% of the injected s-CO2 as minute pockets in pore constrictions. Angular water-wet grains trapped 20% of the CO2 but flow was affected by preferential flow. Thus, capillary trapping is a viable mechanism for the permanent CO2 storage, but its success is constrained by the media wettability.

  7. Thermochemical cyclic system for decomposing H/sub 2/O and/or CO/sub 2/ by means of cerium-titanium-sodium-oxygen compounds

    DOEpatents

    Bamberger, C.E.

    1980-04-24

    A thermochemical closed cyclic process for the decomposition of water and/or carbon dioxide to hydrogen and/or carbon monoxide begins with the reaction of ceric oxide (CeO/sub 2/), titanium dioxide (TiO/sub 2/) and sodium titanate (Na/sub 2/TiO/sub 3/) to form sodium cerous titanate (NaCeTi/sub 2/O/sub 6/) and oxygen. Sodium cerous titanate (NaCeTi/sub 2/O/sub 6/) reacted with sodium carbonate (Na/sub 2/CO/sub 3/) in the presence of steam, produces hydrogen. The same reaction, in the absence of steam, produces carbon monoxide. The products, ceric oxide and sodium titanate, obtained in either case, are treated with carbon dioxide and water to produce ceric oxide, titanium dioxide, sodium titanate, and sodium bicarbonate. After dissolving sodium bicarbonate from the mixture in water, the remaining insoluble compounds are used as starting materials for a subsequent cycle. The sodium bicarbonate can be converted to sodium carbonate by heating and returned to the cycle.

  8. Thermochemical cyclic system for decomposing H.sub.2 O and/or CO.sub.2 by means of cerium-titanium-sodium-oxygen compounds

    DOEpatents

    Bamberger, Carlos E.

    1982-01-01

    A thermochemical closed cyclic process for the decomposition of water and/or carbon dioxide to hydrogen and/or carbon monoxide begins with the reaction of ceric oxide (CeO.sub.2), titanium dioxide (TiO.sub.2) and sodium titanate (Na.sub.2 TiO.sub.3) to form sodium cerous titanate (NaCeTi.sub.2 O.sub.6) and oxygen. Sodium cerous titanate (NaCeTi.sub.2 O.sub.6) reacted with sodium carbonate (Na.sub.2 CO.sub.3) in the presence of steam, produces hydrogen. The same reaction, in the absence of steam, produces carbon monoxide. The products, ceric oxide and sodium titanate, obtained in either case, are treated with carbon dioxide and water to produce ceric oxide, titanium dioxide, sodium titanate, and sodium bicarbonate. After dissolving sodium bicarbonate from the mixture in water, the remaining insoluble compounds are used as starting materials for a subsequent cycle. The sodium bicarbonate can be converted to sodium carbonate by heating and returned to the cycle.

  9. Biosynthesis of cyclic 2,3-diphosphoglycerate. Isolation and characterization of 2-phosphoglycerate kinase and cyclic 2,3-diphosphoglycerate synthetase from Methanothermus fervidus.

    PubMed

    Lehmacher, A; Vogt, A B; Hensel, R

    1990-10-15

    Starting from 2-phosphoglycerate the biosynthesis of cDPG comprises two steps: (i) the phosphorylation of 2-phosphoglycerate to 2,3-diphosphoglycerate and (ii) the intramolecular cyclization to cyclic 2,3-diphosphoglycerate. The involved enzymes, 2-phosphoglycerate kinase and cyclic 2,3-diphosphoglycerate synthetase, were purified form Methanothermus fervidus. Their molecular and catalytic properties were characterized.

  10. Conditions Leading to High CO2 (>5 kPa) in Waterlogged–Flooded Soils and Possible Effects on Root Growth and Metabolism

    PubMed Central

    GREENWAY, HANK; ARMSTRONG, WILLIAM; COLMER, TIMOTHY D.

    2006-01-01

    • Aims Soil waterlogging impedes gas exchange with the atmosphere, resulting in low PO2 and often high PCO2. Conditions conducive to development of high PCO2 (5–70 kPa) during soil waterlogging and flooding are discussed. The scant information on responses of roots to high PCO2 in terms of growth and metabolism is reviewed. • Scope PCO2 at 15–70 kPa has been reported for flooded paddy-field soils; however, even 15 kPa PCO2 may not always be reached, e.g. when soil pH is above 7. Increases of PCO2 in soils following waterlogging will develop much more slowly than decreases in PO2; in soil from rice paddies in pots without plants, maxima in PCO2 were reached after 2–3 weeks. There are no reliable data on PCO2 in roots when in waterlogged or flooded soils. In rhizomes and internodes, PCO2 sometimes reached 10 kPa, inferring even higher partial pressures in the roots, as a CO2 diffusion gradient will exist from the roots to the rhizomes and shoots. Preliminary modelling predicts that when PCO2 is higher in a soil than in roots, PCO2 in the roots would remain well below the PCO2 in the soil, particularly when there is ventilation via a well-developed gas-space continuum from the roots to the atmosphere. The few available results on the effects of PCO2 at > 5 kPa on growth have nearly all involved sudden increases to 10–100 kPa PCO2; consequently, the results cannot be extrapolated with certainty to the much more gradual increases of PCO2 in waterlogged soils. Nevertheless, rice in an anaerobic nutrient solution was tolerant to 50 kPa CO2 being suddenly imposed. By contrast, PCO2 at 25 kPa retarded germination of some maize genotypes by 50 %. With regard to metabolism, assuming that the usual pH of the cytoplasm of 7·5 was maintained, every increase of 10 kPa CO2 would result in an increase of 75–90 mm HCO3− in the cytoplasm. pH maintenance would depend on the biochemical and biophysical pH stats (i.e. regulatory systems

  11. Health Co-Benefits of Green Building Design Strategies and Community Resilience to Urban Flooding: A Systematic Review of the Evidence

    PubMed Central

    Castillo-Salgado, Carlos

    2017-01-01

    Climate change is increasingly exacerbating existing population health hazards, as well as resulting in new negative health effects. Flooding is one particularly deadly example of its amplifying and expanding effect on public health. This systematic review considered evidence linking green building strategies in the Leadership in Energy and Environmental Design® (LEED) Rating System with the potential to reduce negative health outcomes following exposure to urban flooding events. Queries evaluated links between LEED credit requirements and risk of exposure to urban flooding, environmental determinants of health, co-benefits to public health outcomes, and co-benefits to built environment outcomes. Public health co-benefits to leveraging green building design to enhance flooding resilience included: improving the interface between humans and wildlife and reducing the risk of waterborne disease, flood-related morbidity and mortality, and psychological harm. We conclude that collaborations among the public health, climate change, civil society, and green building sectors to enhance community resilience to urban flooding could benefit population health. PMID:29210981

  12. Health Co-Benefits of Green Building Design Strategies and Community Resilience to Urban Flooding: A Systematic Review of the Evidence.

    PubMed

    Houghton, Adele; Castillo-Salgado, Carlos

    2017-12-06

    Climate change is increasingly exacerbating existing population health hazards, as well as resulting in new negative health effects. Flooding is one particularly deadly example of its amplifying and expanding effect on public health. This systematic review considered evidence linking green building strategies in the Leadership in Energy and Environmental Design ® (LEED) Rating System with the potential to reduce negative health outcomes following exposure to urban flooding events. Queries evaluated links between LEED credit requirements and risk of exposure to urban flooding, environmental determinants of health, co-benefits to public health outcomes, and co-benefits to built environment outcomes. Public health co-benefits to leveraging green building design to enhance flooding resilience included: improving the interface between humans and wildlife and reducing the risk of waterborne disease, flood-related morbidity and mortality, and psychological harm. We conclude that collaborations among the public health, climate change, civil society, and green building sectors to enhance community resilience to urban flooding could benefit population health.

  13. Synthesis of Co 2SnO 4@C core-shell nanostructures with reversible lithium storage

    NASA Astrophysics Data System (ADS)

    Qi, Yue; Du, Ning; Zhang, Hui; Wu, Ping; Yang, Deren

    This paper reports the synthesis of Co 2SnO 4@C core-shell nanostructures through a simple glucose hydrothermal and subsequent carbonization approach. The as-synthesized Co 2SnO 4@C core-shell nanostructures have been applied as anode materials for lithium-ion batteries, which exhibit improved cyclic performance compared to pure Co 2SnO 4 nanocrystals. The carbon matrix has good volume buffering effect and high electronic conductivity, which may be responsible for the improved cyclic performance.

  14. Evaluation of homogeneous electrocatalysts by cyclic voltammetry.

    PubMed

    Rountree, Eric S; McCarthy, Brian D; Eisenhart, Thomas T; Dempsey, Jillian L

    2014-10-06

    The pursuit of solar fuels has motivated extensive research on molecular electrocatalysts capable of evolving hydrogen from protic solutions, reducing CO2, and oxidizing water. Determining accurate figures of merit for these catalysts requires the careful and appropriate application of electroanalytical techniques. This Viewpoint first briefly presents the fundamentals of cyclic voltammetry and highlights practical experimental considerations before focusing on the application of cyclic voltammetry for the characterization of electrocatalysts. Key metrics for comparing catalysts, including the overpotential (η), potential for catalysis (E(cat)), observed rate constant (k(obs)), and potential-dependent turnover frequency, are discussed. The cyclic voltammetric responses for a general electrocatalytic one-electron reduction of a substrate are presented along with methods to extract figures of merit from these data. The extension of this analysis to more complex electrocatalytic schemes, such as those responsible for H2 evolution and CO2 reduction, is then discussed.

  15. CaO-Based CO2 Sorbents Effectively Stabilized by Metal Oxides.

    PubMed

    Naeem, Muhammad Awais; Armutlulu, Andac; Imtiaz, Qasim; Müller, Christoph R

    2017-11-17

    Calcium looping (i.e., CO 2 capture by CaO) is a promising second-generation CO 2 capture technology. CaO, derived from naturally occurring limestone, offers an inexpensive solution, but due to the harsh operating conditions of the process, limestone-derived sorbents undergo a rapid capacity decay induced by the sintering of CaCO 3 . Here, we report a Pechini method to synthesize cyclically stable, CaO-based CO 2 sorbents with a high CO 2 uptake capacity. The sorbents synthesized feature compositional homogeneity in combination with a nanostructured and highly porous morphology. The presence of a single (Al 2 O 3 or Y 2 O 3 ) or bimetal oxide (Al 2 O 3 -Y 2 O 3 ) provides cyclic stability, except for MgO which undergoes a significant increase in its particle size with the cycle number. We also demonstrate a direct relationship between the CO 2 uptake and the morphology of the synthesized sorbents. After 30 cycles of calcination and carbonation, the best performing sorbent, containing an equimolar mixture of Al 2 O 3 and Y 2 O 3 , exhibits a CO 2 uptake capacity of 8.7 mmol CO 2  g -1 sorbent, which is approximately 360 % higher than that of the reference limestone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Soil CO2 concentrations and efflux dynamics of a tree island in the Pantanal wetland

    NASA Astrophysics Data System (ADS)

    Lathuillière, Michael J.; Pinto, Osvaldo B.; Johnson, Mark S.; Jassal, Rachhpal S.; Dalmagro, Higo J.; Leite, Nei K.; Speratti, Alicia B.; Krampe, Daniela; Couto, Eduardo G.

    2017-08-01

    The Pantanal is the largest tropical wetland on the planet, and yet little information is available on the biome's carbon cycle. We used an automatic station to measure soil CO2 concentrations and oxidation-reduction potential over the 2014 and 2015 flood cycles of a tree island in the Pantanal that is immune to inundation during the wetland's annual flooding. The soil CO2 concentration profile was then used to estimate soil CO2 efflux over the two periods. In 2014, subsurface soil saturation at 0.30 m depth created conditions in that layer that led to CO2 buildup close to 200,000 ppm and soil oxidation-reduction potential below -300 mV, conditions that were not repeated in 2015 due to annual variability in soil saturation at the site. Mean CO2 efflux over the 2015 flood cycle was 0.023 ± 0.103 mg CO2-C m-2 s-1 representing a total annual efflux of 593 ± 2690 mg CO2-C m-2 y-1. Unlike a nearby tree island site that experiences full inundation during the wet season, here the soil dried quickly following repeated rain events throughout the year, which led to the release of CO2 pulses from the soil. This study highlights not only the complexity and heterogeneity in the Pantanal's carbon balance based on differences in topography, flood cycles, and vegetation but also the challenges of applying the gradient method in the Pantanal due to deviations from steady state conditions.

  17. A Co-Opted Hormonal Cascade Activates Dormant Adventitious Root Primordia upon Flooding in Solanum dulcamara.

    PubMed

    Dawood, Thikra; Yang, Xinping; Visser, Eric J W; Te Beek, Tim A H; Kensche, Philip R; Cristescu, Simona M; Lee, Sangseok; Floková, Kristýna; Nguyen, Duy; Mariani, Celestina; Rieu, Ivo

    2016-04-01

    Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR primordium reactivation in the dicot species Solanum dulcamara Transcriptome analysis indicated that flooding imposes a state of quiescence on the stem tissue, while increasing cellular activity in the AR primordia. Flooding led to ethylene accumulation in the lower stem region and subsequently to a drop in abscisic acid (ABA) level in both stem and AR primordia tissue. Whereas ABA treatment prevented activation of AR primordia by flooding, inhibition of ABA synthesis was sufficient to activate them in absence of flooding. Together, this reveals that there is a highly tissue-specific response to reduced ABA levels. The central role for ABA in the response differentiates the pathway identified here from the AR emergence pathway known from rice (Oryza sativa). Flooding and ethylene treatment also induced expression of the polar auxin transporter PIN2, and silencing of this gene or chemical inhibition of auxin transport inhibited primordium activation, even though ABA levels were reduced. Auxin treatment, however, was not sufficient for AR emergence, indicating that the auxin pathway acts in parallel with the requirement for ABA reduction. In conclusion, adaptation of S. dulcamara to wet habitats involved co-option of a hormonal signaling cascade well known to regulate shoot growth responses, to direct a root developmental program upon soil flooding. © 2016 American Society of Plant Biologists. All Rights Reserved.

  18. Cyclic oxidation behavior of plasma sprayed NiCrAlY/WC-Co/cenosphere coating

    NASA Astrophysics Data System (ADS)

    Mathapati, Mahantayya; Ramesh M., R.; Doddamani, Mrityunjay

    2018-04-01

    Components working at elevated temperature like boiler tubes of coal and gas fired power generation plants, blades of gas and steam turbines etc. experience degradation owing to oxidation. Oxidation resistance of such components can be increased by developing protective coatings. In the present investigation NiCrAlY-WC-Co/Cenosphere coating is deposited on MDN 321 steel substrate using plasma spray coating. Thermo cyclic oxidation behavior of coating and substrate is studied in static air at 600 °C for 20 cycles. The thermo gravimetric technique is used to approximate the kinetics of oxidation. X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray mapping techniques are used to characterize the oxidized samples. NiCrAlY-WC-Co/Cenosphere coating exhibited lower oxidation rate in comparison to MDN 321 steel substrate. The lower oxidation rate of coating is attributed to formation of Al2O3, Cr2O3, NiO and CoWO4 oxides on the outermost surface.

  19. On the potential for CO2 mineral storage in continental flood basalts – PHREEQC batch- and 1D diffusion–reaction simulations

    PubMed Central

    2012-01-01

    Continental flood basalts (CFB) are considered as potential CO2 storage sites because of their high reactivity and abundant divalent metal ions that can potentially trap carbon for geological timescales. Moreover, laterally extensive CFB are found in many place in the world within reasonable distances from major CO2 point emission sources. Based on the mineral and glass composition of the Columbia River Basalt (CRB) we estimated the potential of CFB to store CO2 in secondary carbonates. We simulated the system using kinetic dependent dissolution of primary basalt-minerals (pyroxene, feldspar and glass) and the local equilibrium assumption for secondary phases (weathering products). The simulations were divided into closed-system batch simulations at a constant CO2 pressure of 100 bar with sensitivity studies of temperature and reactive surface area, an evaluation of the reactivity of H2O in scCO2, and finally 1D reactive diffusion simulations giving reactivity at CO2 pressures varying from 0 to 100 bar. Although the uncertainty in reactive surface area and corresponding reaction rates are large, we have estimated the potential for CO2 mineral storage and identified factors that control the maximum extent of carbonation. The simulations showed that formation of carbonates from basalt at 40 C may be limited to the formation of siderite and possibly FeMg carbonates. Calcium was largely consumed by zeolite and oxide instead of forming carbonates. At higher temperatures (60 – 100 C), magnesite is suggested to form together with siderite and ankerite. The maximum potential of CO2 stored as solid carbonates, if CO2 is supplied to the reactions unlimited, is shown to depend on the availability of pore space as the hydration and carbonation reactions increase the solid volume and clog the pore space. For systems such as in the scCO2 phase with limited amount of water, the total carbonation potential is limited by the amount of water present for hydration of basalt

  20. Multishelled CaO Microspheres Stabilized by Atomic Layer Deposition of Al2 O3 for Enhanced CO2 Capture Performance.

    PubMed

    Armutlulu, Andac; Naeem, Muhammad Awais; Liu, Hsueh-Ju; Kim, Sung Min; Kierzkowska, Agnieszka; Fedorov, Alexey; Müller, Christoph R

    2017-11-01

    CO 2 capture and storage is a promising concept to reduce anthropogenic CO 2 emissions. The most established technology for capturing CO 2 relies on amine scrubbing that is, however, associated with high costs. Technoeconomic studies show that using CaO as a high-temperature CO 2 sorbent can significantly reduce the costs of CO 2 capture. A serious disadvantage of CaO derived from earth-abundant precursors, e.g., limestone, is the rapid, sintering-induced decay of its cyclic CO 2 uptake. Here, a template-assisted hydrothermal approach to develop CaO-based sorbents exhibiting a very high and cyclically stable CO 2 uptake is exploited. The morphological characteristics of these sorbents, i.e., a porous shell comprised of CaO nanoparticles coated by a thin layer of Al 2 O 3 (<3 nm) containing a central void, ensure (i) minimal diffusion limitations, (ii) space to accompany the substantial volumetric changes during CO 2 capture and release, and (iii) a minimal quantity of Al 2 O 3 for structural stabilization, thus maximizing the fraction of CO 2 -capture-active CaO. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Aqueous ethylenediamine for CO(2) capture.

    PubMed

    Zhou, Shan; Chen, Xi; Nguyen, Thu; Voice, Alexander K; Rochelle, Gary T

    2010-08-23

    Aqueous ethylenediamine (EDA) has been investigated as a solvent for CO(2) capture from flue gas. EDA can be used at 12 M (mol kg(-1) H(2)O) with an acceptable viscosity of 16 cP (1 cP=10(-3) Pa s) with 0.48 mol CO(2) per equivalent of EDA. Similar to monoethanolamine (MEA), EDA can be used up to 120 degrees C in a stripper without significant thermal degradation. Inhibitor A will effectively eliminate oxidative degradation. Above 120 degrees C, loaded EDA degrades with the production of its cyclic urea and other related compounds. Unlike piperazine, when exposed to oxidative degradation, EDA does not result in excessive foaming. Over much of the loading range, the CO(2) absorption rate with 12 M EDA is comparable to 7 M MEA. However, at typical rich loading, 12 M EDA absorbs CO(2) 2 times slower than 7 M MEA. The capacity of 12 M EDA is 0.72 mol CO(2)/(kg H(2)O+EDA) (for P(CO(2) )=0.5 to 5 kPa at 40 degrees C), which is about double that of MEA. The apparent heat of CO(2) desorption in EDA solution is 84 kJ mol(-1) CO(2); greater than most other amine systems.

  2. An Atmospheric CO2 Record Across the End-Cretaceous Extinction

    NASA Astrophysics Data System (ADS)

    Royer, D. L.; Milligan, J. N.; Kowalczyk, J.

    2017-12-01

    A bolide impact and flood-basalt emissions likely caused large changes to the end-Cretaceous carbon cycle. Presently, there is only one proxy record for atmospheric CO2 that captures these changes (Beerling et al., 2002, PNAS 99: 7836-7840). These authors estimated CO2 from the calibrated stomatal indices of Ginkgo dated to within 105 yrs before and after the extinction ( 300-500 ppm) in addition to that of Stenochlaena, a fern disaster taxa present in the Raton Basin, New Mexico, <104 yrs after the bolide impact (>2300 ppm). We revisited these fossil collections and applied a newer and more robust CO2 proxy that is based on leaf gas-exchange principles and does not require calibrations with present-day species (Franks et al., 2014, Geophys Res Lett 41: 4685-4694). We reconstruct pre- and post-extinction CO2 concentrations of 650 ppm from Ginkgo, compared to 850 ppm directly after the extinction from Stenochlaena. This change in CO2 of 200 ppm can be readily explained with carbon cycle models as a consequence of either the bolide impact or flood-basalt emissions. Placing these CO2 estimates into the broader context of other leaf gas-exchange CO2 estimates for the Cenozoic, the Earth system sensitivity was 3 K per CO2 doubling during the early Paleogene, before steepening to >6 K several million years before the Eocene-Oligocene boundary.

  3. Imidazolium salt-modified porous hypercrosslinked polymers for synergistic CO2 capture and conversion.

    PubMed

    Wang, Jinquan; Sng, Waihong; Yi, Guangshun; Zhang, Yugen

    2015-08-04

    A new type of imidazolium salt-modified porous hypercrosslinked polymer (BET surface area up to 926 m(2) g(-1)) was reported. These porous materials exhibited good CO2 capture capacities (14.5 wt%) and catalytic activities for the conversion of CO2 into various cyclic carbonates under metal-free conditions. The synergistic effect of CO2 capture and conversion was observed.

  4. Short-core acoustic resonant bar test and x-ray CT imaging on sandstone samples during super-critical CO2 flooding and dissolution

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Kneafsey, T. J.; Daley, T. M.; Freifeld, B. M.

    2010-12-01

    Geological sequestration of CO2 requires accurate monitoring of the spatial distribution and pore-level saturation of super-critical (sc-) CO2 for both optimizing reservoir performance and satisfying regulatory requirements. Fortunately, thanks to the high compliance of sc-CO2 compared to brine under in-situ temperatures and pressures, injection of sc-CO2 into initially brine-saturated rock will lead to significant reductions in seismic velocity and increased attenuation of seismic waves. Because of the frequency-dependent nature of this relationship, its determination requires testing at low frequencies (10 Hz-10 kHz) that are not usually employed in the laboratory. In this paper, we present the changes in seismic wave velocities and attenuation in sandstone cores during sc-CO2 core flooding and during subsequent brine re-injection and CO2 removal via convection and dissolution. The experiments were conducted at frequencies near 1 kHz using a variation of the acoustic resonant bar technique, called the Split Hopkinson Resonant Bar (SHRB) method, which allows measurements under elevated temperatures and pressures (up to 120°C, 35 MPa), using a short (several cm long) core. Concurrent x-ray CT scanning reveals sc-CO2 saturation and distribution within the cores. The injection experiments revealed different CO2 patch size distributions within the cores between the injection phase and the convection/dissolution phase of the tests. The difference was reflected particularly in the P-wave velocities and attenuation. Also, compared to seismic responses, which were separately measured during a gas CO2 injection/drainage test, the seismic responses from the sc-CO2 test showed measurable changes over a wider range of brine saturation. Considering the proximity of the frequency band employed by our measurement to the field seismic measurements, this result implies that seismic monitoring of sc-CO2, if constrained by laboratory data and interpreted using a proper

  5. Stomatal response of swordfern to volcanogenic CO2 and SO2 from Kilauea volcano

    NASA Astrophysics Data System (ADS)

    Tanner, Lawrence H.; Smith, David L.; Allan, Amanda

    2007-08-01

    The experimentally determined relationship between atmospheric pCO2 and plant stomata has been used to interpret large but transient changes in atmospheric composition, such as may have resulted from the eruptions of flood basalt. However, this relationship has not been tested in the field, i.e. in the vicinity of active volcanoes, to examine the specific effects of volcanogenic emissions. Moreover, the interpretation of paleoatmospheric pCO2 from fossil stomatal data assumes that the stomatal response resulted solely from variation in pCO2 and ignores the potential effect of outgassed SO2. We hypothesize that volcanogenic SO2 also has a significant effect on leaf stomata and test this hypothesis by measuring the stomatal index of the common swordfern (Nephrolepis exaltata) in the plumes of the actively outgassing vents of Kilauea volcano. We find that, compared to control locations, stomatal index is lowest at sample sites in the plume of Halema'uma'u Crater, where concentrations of both CO2 and SO2 are much higher than background. However, sites located directly in the plume of Pu'u O'o, where SO2 levels are high, but CO2 levels are not, also yield low values of stomatal index. We propose that shifts in the stomatal index of fossil leaves may record transient atmospheric increases in both SO2 and CO2, such as may be caused by eruptions of flood basalts. Calculations of pCO2 based on stomatal frequency are likely to be exaggerated.

  6. Carbon Dioxide Flux from Rice Paddy Soils in Central China: Effects of Intermittent Flooding and Draining Cycles

    PubMed Central

    Liu, Yi; Wan, Kai-yuan; Tao, Yong; Li, Zhi-guo; Zhang, Guo-shi; Li, Shuang-lai; Chen, Fang

    2013-01-01

    A field experiment was conducted to (i) examine the diurnal and seasonal soil carbon dioxide (CO2) fluxes pattern in rice paddy fields in central China and (ii) assess the role of floodwater in controlling the emissions of CO2 from soil and floodwater in intermittently draining rice paddy soil. The soil CO2 flux rates ranged from −0.45 to 8.62 µmol.m−2.s−1 during the rice-growing season. The net effluxes of CO2 from the paddy soil were lower when the paddy was flooded than when it was drained. The CO2 emissions for the drained conditions showed distinct diurnal variation with a maximum efflux observed in the afternoon. When the paddy was flooded, daytime soil CO2 fluxes reversed with a peak negative efflux just after midday. In draining/flooding alternating periods, a sudden pulse-like event of rapidly increasing CO2 efflux occured in response to re-flooding after draining. Correlation analysis showed a negative relation between soil CO2 flux and temperature under flooded conditions, but a positive relation was found under drained conditions. The results showed that draining and flooding cycles play a vital role in controlling CO2 emissions from paddy soils. PMID:23437170

  7. Can elevated CO2 modify regeneration from seed banks of floating freshwater marshes subjected to rising sea-level?

    USGS Publications Warehouse

    Middleton, Beth A.; McKee, Karen L.

    2012-01-01

    Higher atmospheric concentrations of CO2 can offset the negative effects of flooding or salinity on plant species, but previous studies have focused on mature, rather than regenerating vegetation. This study examined how interacting environments of CO2, water regime, and salinity affect seed germination and seedling biomass of floating freshwater marshes in the Mississippi River Delta, which are dominated by C3 grasses, sedges, and forbs. Germination density and seedling growth of the dominant species depended on multifactor interactions of CO2 (385 and 720 μl l-1) with flooding (drained, +8-cm depth, +8-cm depth-gradual) and salinity (0, 6% seawater) levels. Of the three factors tested, salinity was the most important determinant of seedling response patterns. Species richness (total = 19) was insensitive to CO2. Our findings suggest that for freshwater marsh communities, seedling response to CO2 is species-specific and secondary to salinity and flooding effects. Elevated CO2 did not ameliorate flooding or salinity stress. Consequently, climate-related changes in sea level or human-caused alterations in hydrology may override atmospheric CO2 concentrations in driving shifts in this plant community. The results of this study suggest caution in making extrapolations from species-specific responses to community-level predictions without detailed attention to the nuances of multifactor responses.

  8. Flexible and High Performance Supercapacitors Based on NiCo2O4for Wide Temperature Range Applications

    NASA Astrophysics Data System (ADS)

    Gupta, Ram K.; Candler, John; Palchoudhury, Soubantika; Ramasamy, Karthik; Gupta, Bipin Kumar

    2015-10-01

    Binder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures. The potential application of binder free NiCo2O4 as an electrode for supercapacitor devices was investigated using electrochemical methods. The cyclic voltammograms of NiCo2O4 electrode using alkaline aqueous electrolytes showed the presence of redox peaks suggesting pseudocapacitance behavior. Quasi-solid state supercapacitor device fabricated by sandwiching two NiCo2O4 electrodes and separating them by ion transporting layer. The performance of the device was tested using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The device showed excellent flexibility and cyclic stability. The temperature dependent charge storage capacity was measured for their variable temperature applications. Specific capacitance of the device was enhanced by ~150% on raising the temperature from 20 to 60 °C. Hence, the results suggest that NiCo2O4 grown under these conditions could be a suitable material for high performance supercapacitor devices that can be operated at variable temperatures.

  9. Flexible and High Performance Supercapacitors Based on NiCo2O4for Wide Temperature Range Applications.

    PubMed

    Gupta, Ram K; Candler, John; Palchoudhury, Soubantika; Ramasamy, Karthik; Gupta, Bipin Kumar

    2015-10-20

    Binder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures. The potential application of binder free NiCo2O4 as an electrode for supercapacitor devices was investigated using electrochemical methods. The cyclic voltammograms of NiCo2O4 electrode using alkaline aqueous electrolytes showed the presence of redox peaks suggesting pseudocapacitance behavior. Quasi-solid state supercapacitor device fabricated by sandwiching two NiCo2O4 electrodes and separating them by ion transporting layer. The performance of the device was tested using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The device showed excellent flexibility and cyclic stability. The temperature dependent charge storage capacity was measured for their variable temperature applications. Specific capacitance of the device was enhanced by ~150% on raising the temperature from 20 to 60 °C. Hence, the results suggest that NiCo2O4 grown under these conditions could be a suitable material for high performance supercapacitor devices that can be operated at variable temperatures.

  10. Flexible and High Performance Supercapacitors Based on NiCo2O4for Wide Temperature Range Applications

    PubMed Central

    Gupta, Ram K.; Candler, John; Palchoudhury, Soubantika; Ramasamy, Karthik; Gupta, Bipin Kumar

    2015-01-01

    Binder free nanostructured NiCo2O4 were grown using a facile hydrothermal technique. X-ray diffraction patterns confirmed the phase purity of NiCo2O4. The surface morphology and microstructure of the NiCo2O4 analyzed by scanning electron microscopy (SEM) showed flower-like morphology composed of needle-like structures. The potential application of binder free NiCo2O4 as an electrode for supercapacitor devices was investigated using electrochemical methods. The cyclic voltammograms of NiCo2O4 electrode using alkaline aqueous electrolytes showed the presence of redox peaks suggesting pseudocapacitance behavior. Quasi-solid state supercapacitor device fabricated by sandwiching two NiCo2O4 electrodes and separating them by ion transporting layer. The performance of the device was tested using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The device showed excellent flexibility and cyclic stability. The temperature dependent charge storage capacity was measured for their variable temperature applications. Specific capacitance of the device was enhanced by ~150% on raising the temperature from 20 to 60 °C. Hence, the results suggest that NiCo2O4 grown under these conditions could be a suitable material for high performance supercapacitor devices that can be operated at variable temperatures. PMID:26482921

  11. Reactivity of a series of isostructural cobalt pincer complexes with CO2, CO, and H(+).

    PubMed

    Shaffer, David W; Johnson, Samantha I; Rheingold, Arnold L; Ziller, Joseph W; Goddard, William A; Nielsen, Robert J; Yang, Jenny Y

    2014-12-15

    The preparation and characterization of a series of isostructural cobalt complexes [Co(t-Bu)2P(E)Py(E)P(t-Bu)2(CH3CN)2][BF4]2 (Py = pyridine, E = CH2, NH, O, and X = BF4 (1a-c)) and the corresponding one-electron reduced analogues [Co(t-Bu)2P(E)Py(E)P(t-Bu)2(CH3CN)2][BF4]2 (2a-c) are reported. The reactivity of the reduced cobalt complexes with CO2, CO, and H(+) to generate intermediates in a CO2 to CO and H2O reduction cycle are described. The reduction of 1a-c and subsequent reactivity with CO2 was investigated by cyclic voltammetry, and for 1a also by infrared spectroelectrochemistry. The corresponding CO complexes of (2a-c) were prepared, and the Co-CO bond strengths were characterized by IR spectroscopy. Quantum mechanical methods (B3LYP-d3 with solvation) were used to characterize the competitive reactivity of the reduced cobalt centers with H(+) versus CO2. By investigating a series of isostructural complexes, correlations in reactivity with ligand electron withdrawing effects are made.

  12. Active polymer materials for optical fiber CO2 sensors

    NASA Astrophysics Data System (ADS)

    Wysokiński, Karol; Filipowicz, Marta; Stańczyk, Tomasz; Lipiński, Stanisław; Napierała, Marek; Murawski, Michał; Nasiłowski, Tomasz

    2017-04-01

    CO2 optical fiber sensors based on polymer active materials are presented in this paper. Ethyl cellulose was proven to be a good candidate for a matrix material of the sensor, since it gives porous, thick and very sensitive layers. Low-cost sensors based on polymer optical fibers have been elaborated. Sensors have been examined for their sensitivity to CO2, temperature and humidity. Response time during cyclic exposures to CO2 have been also determined. Special layers exhibiting irreversible change of color during exposure to carbon dioxide have been developed. They have been verified for a possible use in smart food packaging.

  13. Identification of cytidine 2',3'-cyclic monophosphate and uridine 2',3'-cyclic monophosphate in Pseudomonas fluorescens pfo-1 culture.

    PubMed

    Bordeleau, Emily; Oberc, Christopher; Ameen, Eve; da Silva, Amanda Mendes; Yan, Hongbin

    2014-09-15

    Cytidine 2',3'-cyclic monophosphate (2',3'-cCMP) and uridine 2',3'-cyclic monophosphate (2',3'-cUMP) were isolated from Pseudomonas fluorescens pfo-1 cell extracts by semi-preparative reverse phase HPLC. The structures of the two compounds were confirmed by NMR and mass spectroscopy against commercially available authentic samples. Concentrations of both intracellular and extracellular 2',3'-cCMP and 2',3'-cUMP were determined. Addition of 2',3'-cCMP and 2',3'-cUMP to P. fluorescens pfo-1 culture did not significantly affect the level of biofilm formation in static liquid cultures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A Co-Opted Hormonal Cascade Activates Dormant Adventitious Root Primordia upon Flooding in Solanum dulcamara1[OPEN

    PubMed Central

    Dawood, Thikra; Kensche, Philip R.; Cristescu, Simona M.; Mariani, Celestina

    2016-01-01

    Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR primordium reactivation in the dicot species Solanum dulcamara. Transcriptome analysis indicated that flooding imposes a state of quiescence on the stem tissue, while increasing cellular activity in the AR primordia. Flooding led to ethylene accumulation in the lower stem region and subsequently to a drop in abscisic acid (ABA) level in both stem and AR primordia tissue. Whereas ABA treatment prevented activation of AR primordia by flooding, inhibition of ABA synthesis was sufficient to activate them in absence of flooding. Together, this reveals that there is a highly tissue-specific response to reduced ABA levels. The central role for ABA in the response differentiates the pathway identified here from the AR emergence pathway known from rice (Oryza sativa). Flooding and ethylene treatment also induced expression of the polar auxin transporter PIN2, and silencing of this gene or chemical inhibition of auxin transport inhibited primordium activation, even though ABA levels were reduced. Auxin treatment, however, was not sufficient for AR emergence, indicating that the auxin pathway acts in parallel with the requirement for ABA reduction. In conclusion, adaptation of S. dulcamara to wet habitats involved co-option of a hormonal signaling cascade well known to regulate shoot growth responses, to direct a root developmental program upon soil flooding. PMID:26850278

  15. Geologic CO2 Sequestration: Predicting and Confirming Performance in Oil Reservoirs and Saline Aquifers

    NASA Astrophysics Data System (ADS)

    Johnson, J. W.; Nitao, J. J.; Newmark, R. L.; Kirkendall, B. A.; Nimz, G. J.; Knauss, K. G.; Ziagos, J. P.

    2002-05-01

    Reducing anthropogenic CO2 emissions ranks high among the grand scientific challenges of this century. In the near-term, significant reductions can only be achieved through innovative sequestration strategies that prevent atmospheric release of large-scale CO2 waste streams. Among such strategies, injection into confined geologic formations represents arguably the most promising alternative; and among potential geologic storage sites, oil reservoirs and saline aquifers represent the most attractive targets. Oil reservoirs offer a unique "win-win" approach because CO2 flooding is an effective technique of enhanced oil recovery (EOR), while saline aquifers offer immense storage capacity and widespread distribution. Although CO2-flood EOR has been widely used in the Permian Basin and elsewhere since the 1980s, the oil industry has just recently become concerned with the significant fraction of injected CO2 that eludes recycling and is therefore sequestered. This "lost" CO2 now has potential economic value in the growing emissions credit market; hence, the industry's emerging interest in recasting CO2 floods as co-optimized EOR/sequestration projects. The world's first saline aquifer storage project was also catalyzed in part by economics: Norway's newly imposed atmospheric emissions tax, which spurred development of Statoil's unique North Sea Sleipner facility in 1996. Successful implementation of geologic sequestration projects hinges on development of advanced predictive models and a diverse set of remote sensing, in situ sampling, and experimental techniques. The models are needed to design and forecast long-term sequestration performance; the monitoring techniques are required to confirm and refine model predictions and to ensure compliance with environmental regulations. We have developed a unique reactive transport modeling capability for predicting sequestration performance in saline aquifers, and used it to simulate CO2 injection at Sleipner; we are now

  16. White Mars: A New Model for Mars' Surface and Atmosphere Based on CO 2

    NASA Astrophysics Data System (ADS)

    Hoffman, Nick

    2000-08-01

    A new model is presented for the Amazonian outburst floods on Mars. Rather than the working fluid being water, with the associated difficulties in achieving warm and wet conditions on Mars and on collecting and removing the water before and after the floods, instead this model suggests that CO 2 is the active agent in the "floods." The flow is not a conventional liquid flood but is instead a gas-supported density flow akin to terrestrial volcanic pyroclastic flows and surges and at cryogenic temperatures with support from degassing of CO 2-bearing ices. The flows are not sourced from volcanic vents, but from the collapse of thick layered regolith containing liquid CO 2 to form zones of chaotic terrain, as shown by R. St. J. Lambert and V. E. Chamberlain (1978, Icarus34, 568-580; 1992, Workshop on the Evolution of the Martian Atmosphere). Submarine turbidites are also analagous in the flow mechanism, but the martian cryogenic flows were both dry and subaerial, so there is no need for a warm and wet epoch nor an ocean on Mars. Armed with this new model for the floods we review the activity of volatiles on the surface of Mars in the context of a cold ice world—"White Mars." We find that many of the recognized paradoxes about Mars' surface and atmosphere are resolved. In particular, the lack of carbonates on Mars is due to the lack of liquid water. The CO 2 of the primordial atmosphere and the H 2O inventory remain largely sequestered in subsurface ices. The distribution of water ice on modern Mars is also reevaluated, with important potential consequences for future Mars exploration. The model for collapse of terrain due to ices that show decompression melting, and the generation of nonaqueous flows in these circumstances may also be applicable to outer Solar System bodies, where CO 2, SO 2, N 2, and other ices are stable.

  17. Practical method of CO.sub.2 sequestration

    DOEpatents

    Goswami, D Yogi [Gainesville, FL; Lee, Man Su [Houston, TX; Kothurkar, Nikhil K [Tampa, FL; Stefanakos, Elias K [Tampa, FL

    2011-03-01

    A process and device to capture of CO.sub.2 at its originating source, such as a power plant, is disclosed. Absorbent material is recharged by desorbing CO.sub.2, so that it may be sequestered or used in another application. Continual recharging results in loss of absorbent surface area, due to pore plugging and sintering of particles. Calcium oxide or calcium hydroxide was immobilized to a fibrous ceramic-based fabric substrate as a thin film and sintered, creating an absorbent material. The samples were characterized, showing continuous cyclic carbonation conversions between about 62% and 75% under mild calcination conditions at 750.degree. C. and no CO.sub.2 in N.sub.2. Under the more severe calcination condition at 850.degree. C. and 20 wt % CO.sub.2 in N.sub.2, yttria fabric was superior to alumina as a substrate for carbon dioxide capture and the reactivity of the calcium oxide absorbent immobilized to yttria was maintained at the same level in the 12 cycles.

  18. High throughput screening of CO2 solubility in aqueous monoamine solutions.

    PubMed

    Porcheron, Fabien; Gibert, Alexandre; Mougin, Pascal; Wender, Aurélie

    2011-03-15

    Post-combustion Carbon Capture and Storage technology (CCS) is viewed as an efficient solution to reduce CO(2) emissions of coal-fired power stations. In CCS, an aqueous amine solution is commonly used as a solvent to selectively capture CO(2) from the flue gas. However, this process generates additional costs, mostly from the reboiler heat duty required to release the carbon dioxide from the loaded solvent solution. In this work, we present thermodynamic results of CO(2) solubility in aqueous amine solutions from a 6-reactor High Throughput Screening (HTS) experimental device. This device is fully automated and designed to perform sequential injections of CO(2) within stirred-cell reactors containing the solvent solutions. The gas pressure within each reactor is monitored as a function of time, and the resulting transient pressure curves are transformed into CO(2) absorption isotherms. Solubility measurements are first performed on monoethanolamine, diethanolamine, and methyldiethanolamine aqueous solutions at T = 313.15 K. Experimental results are compared with existing data in the literature to validate the HTS device. In addition, a comprehensive thermodynamic model is used to represent CO(2) solubility variations in different classes of amine structures upon a wide range of thermodynamic conditions. This model is used to fit the experimental data and to calculate the cyclic capacity, which is a key parameter for CO(2) process design. Solubility measurements are then performed on a set of 50 monoamines and cyclic capacities are extracted using the thermodynamic model, to asses the potential of these molecules for CO(2) capture.

  19. Chemical weathering rate, denudation rate, and atmospheric and soil CO2 consumption of Paraná flood basalts in São Paulo State, Brazil

    NASA Astrophysics Data System (ADS)

    da Conceição, Fabiano Tomazini; dos Santos, Carolina Mathias; de Souza Sardinha, Diego; Navarro, Guillermo Rafael Beltran; Godoy, Letícia Hirata

    2015-03-01

    The chemical weathering rate and atmospheric/soil CO2 consumption of Paraná flood basalts in the Preto Stream basin, São Paulo State, Brazil, were evaluated using major elements as natural tracers. Surface and rain water samples were collected in 2006, and analyses were performed to assess pH, temperature, dissolved oxygen (DO), electrical conductivity (EC) and total dissolved solids (TDS), including SO42-, NO3-, PO43 -, HCO3-, Cl-, SiO2, Ca2 +, Mg2 +, Na+ and K+. Fresh rocks and C horizon samples were also collected, taking into account their geological context, abundance and spatial distribution, to analyze major elements and mineralogy. The Preto Stream, downstream from the city of Ribeirão Preto, receives several elements/compounds as a result of anthropogenic activities, with only sulfate yielding negative flux values. The negative flux of SO42 - can be attributed to atmospheric loading that is mainly related to anthropogenic inputs. After corrections were made for atmospheric inputs, the riverine transport of dissolved material was found to be 30 t km- 2 y- 1, with the majority of the dissolved material transported during the summer (wet) months. The chemical weathering rate and atmospheric/soil CO2 consumption were 6 m/Ma and 0.4 · 106 mol km- 2 y- 1, respectively. The chemical weathering rate falls within the lower range of Paraná flood basalt denudation rates between 135 and 35 Ma previously inferred from chronological studies. This comparison suggests that rates of basalt weathering in Brazil's present-day tropical climate differ by at most one order of magnitude from those prevalent at the time of hothouse Earth. The main weathering process is the monosiallitization of anorthoclase, augite, anorthite and microcline. Magnetite is not weathered and thus remains in the soil profile.

  20. Femtosecond Kerr index of cyclic olefin co/polymers for THz nonlinear optics

    NASA Astrophysics Data System (ADS)

    Noskovicova, E.; Lorenc, D.; Slusna, L.; Velic, D.

    2016-10-01

    The second-order nonlinear refractive index n2 (Kerr index) of cyclic olefin copolymer (TOPAS) and cyclic olefin polymers (ZEONEX, ZEONOR) was determined at the wavelength of 800 nm within this work. Bulk samples of ZEONEX, ZEONOR and TOPAS were measured using the single-beam Z-scan technique and the values of their nonlinear refractive index were determined to be approximately 2 × 10-20 m2W-1 for all cases. The obtained values of n2 play a vital role for ultrafast pulse evolution and corresponding phenomena such as nonlinear spectral transformation.

  1. Protection of Neuroblastoma Neuro2A Cells from Hypoxia-Induced Apoptosis by Cyclic Phosphatidic Acid (cPA)

    PubMed Central

    Murofushi, Hiromu; Murakami-Murofushi, Kimiko

    2012-01-01

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We have previously shown that cPA significantly suppresses ischemia-induced delayed neuronal death and the accumulation of glial fibrillary acidic protein in the CA1 region of the rat hippocampus. These results indicated that the systemic administration of cPA can protect hippocampal neurons against ischemia-induced delayed neuronal cell death. In the current study, we investigated the effects of cPA on neuronal cell death caused by hypoxia in vitro and the molecular mechanisms underlying these effects. We used cobalt chloride (CoCl2) to expose cells to hypoxic conditions in vitro. Treating mouse neuroblastoma (Neuro2A) cells with CoCl2 induced nuclear DNA condensation and phosphatidylserine exposure. However, adding cPA led to the suppression of CoCl2-induced apoptosis in a cPA dose-dependent manner and attenuated the increase in the Bax/Bcl-2 ratio caused by CoCl2. Quantitative PCR analysis showed that Neuro2A cells strongly express the LPA1, LPA2, and LPA6, which are G-protein coupled receptors that can be activated by cPA. To date, LPA1 and LPA2 have been reported to exhibit antiapoptotic activity. Therefore, to assess the roles of LPA1 and LPA2 on cPA-induced neuroprotective functions, Ki16425, a selective LPA1 and LPA3 antagonist, was adopted to know the LPA1 function and siRNA was used to knockdown the expression of LPA2. On the basis of our results, we propose that cPA-induced protection of Neuro2A cells from CoCl2-induced hypoxia damage is mediated via LPA2. PMID:23251428

  2. Protection of neuroblastoma Neuro2A cells from hypoxia-induced apoptosis by cyclic phosphatidic acid (cPA).

    PubMed

    Gotoh, Mari; Sano-Maeda, Katsura; Murofushi, Hiromu; Murakami-Murofushi, Kimiko

    2012-01-01

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We have previously shown that cPA significantly suppresses ischemia-induced delayed neuronal death and the accumulation of glial fibrillary acidic protein in the CA1 region of the rat hippocampus. These results indicated that the systemic administration of cPA can protect hippocampal neurons against ischemia-induced delayed neuronal cell death. In the current study, we investigated the effects of cPA on neuronal cell death caused by hypoxia in vitro and the molecular mechanisms underlying these effects. We used cobalt chloride (CoCl(2)) to expose cells to hypoxic conditions in vitro. Treating mouse neuroblastoma (Neuro2A) cells with CoCl(2) induced nuclear DNA condensation and phosphatidylserine exposure. However, adding cPA led to the suppression of CoCl(2)-induced apoptosis in a cPA dose-dependent manner and attenuated the increase in the Bax/Bcl-2 ratio caused by CoCl(2). Quantitative PCR analysis showed that Neuro2A cells strongly express the LPA(1), LPA(2), and LPA(6), which are G-protein coupled receptors that can be activated by cPA. To date, LPA(1) and LPA(2) have been reported to exhibit antiapoptotic activity. Therefore, to assess the roles of LPA(1) and LPA(2) on cPA-induced neuroprotective functions, Ki16425, a selective LPA(1) and LPA(3) antagonist, was adopted to know the LPA(1) function and siRNA was used to knockdown the expression of LPA(2). On the basis of our results, we propose that cPA-induced protection of Neuro2A cells from CoCl(2)-induced hypoxia damage is mediated via LPA(2).

  3. Development of a CO 2 Chemical Sensor for Downhole CO 2 Monitoring in Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning

    prepared and electrodeposited on stainless steel substrate by cyclic voltammetry. It was observed that the thin film of iridium oxide was formed on the substrate surface and such iridium oxide-based electrode displayed excellent performance under high pressure for longer term. A downhole CO 2 sensor with the iridium oxide-based electrode was prepared. The working principle of the CO 2 sensor is based on the measurement of the pH change of the internal electrolyte solution caused by the hydrolysis of CO 2 and then determination of the CO 2 concentration in water. The prepared downhole CO 2 sensor had the size of diameter of 0.7 in. and length of 1.5 in. The sensor was tested under the pressures of 500 psi, 2,000 psi, and 3,000 psi. A linear correlation was observed between the sensor potential change and dissolved CO 2 concentration in water. The response time of the CO 2 sensor was in the range of 60-100 minutes. Further tests indicated that the CO 2 sensor exhibited good reproducibility under high pressure. A CO 2/brine coreflooding system was constructed to simulate the real-world CO 2 storage process. The prepared downhole CO 2 sensor was loaded in the system to monitor CO 2 movement during CO 2/brine coreflooding test. The results indicated that the sensor could detect CO 2 movement in the tests. Further studies showed that the sensor could be recovered by brine flooding after CO 2/brine flushed the core. The results of the coreflooding tests demonstrated that the sensor had potential application for CO 2 monitoring in carbon sequestration. A data acquisition system for the downhoe CO 2 sensor was developed and coded. The system converted the sensor output signal into digital data and transported the data from downhole to wellhead surface. The data acquisition system was tested and evaluated in the laboratory with the prepared sensor for data collection.« less

  4. CO/sub 2/ line design needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recht, D.L.

    Large volumes of carbon dioxide are required for tertiary oil recovery projects that utilize the carbon dioxide miscible flooding method. Carbon dioxide can be successfully transported as a supercritical fluid through a pipeline designed and operated similar to a natural gas pipeline, with careful consideration given to specific differences in design and materials of construction. Carbon dioxide is a colorless, odorless, nonflammable, non-toxic substance that may exist as a gas, as a liquid, as a solid, or in all three forms at its triple point. The critical pressure and temperature of CO/sub 2/ are 1,070 psia and 88/sup 0/F, respectively.more » It is present in the normal atmosphere in a concentration of approximately 330 ppm, and somewhat higher concentrations may occur in occupied buildings. Air in lungs contains approximately 5.5% (55,000 ppm) of CO/sub 2/. Although it is non-toxic, air containing 10% to 20% CO/sub 2/ concentrations by volume is immediately hazardous to life by causing unconsciousness, failure of respiratory muscles, and a change in the pH of the blood stream. Carbon dioxide is commonly used for carbonated beverages, aerosol propellants, fire extinguishers, enrichment of air in greenhouses, fracturing and acidizing of oil wells, as a shielding gas for welding, and as dry ice for refrigeration. In tertiary recovery projects of suitable oil reservoirs, CO/sub 2/ is injected into the formation where it dissolves in the oil, swells the oil, reduces the oil's viscosity, exerts an acidic effect on the reservoir rock (in some cases), and vaporizes some of the oil. As a rough rule of thumb, approximately 6 to 10 mcf of CO/sub 2/ are required to be injected for recovery of 1 bbl of oil. Carbon dioxide miscible flooding will recover approximately 10% to 15% of the oil remaining in place after a waterflood program.« less

  5. Fines migration during CO 2 injection: Experimental results interpreted using surface forces

    DOE PAGES

    Xie, Quan; Saeedi, Ali; Delle Piane, Claudio; ...

    2017-09-04

    The South West Hub project is one of the Australian Flagship Carbon Capture and Storage projects located in the south-west of Western Australia. To evaluate the injectivity potential during the forthcoming full-scale CO 2 injection, we conducted three core-flooding experiments using reservoir core plugs from the well Harvey-1. We aimed to investigate in this paper whether the injection of CO 2 leads to fines migration and permeability reduction due to the relatively high kaolinite content (up to 13%) in the injection interval of the target formation (i.e. the Wonnerup Member of the Lesueur Formation). We imaged the core samples beforemore » flooding to verify the presence of kaolinite at the pore-scale using scanning electron microscopy (SEM). We also examined the pore network of the core plugs before and after the core-flooding experiments using Nuclear Magnetic Resonance (NMR). Moreover, to gain a better understanding of any kaolinite fines migration, we delineated surface force using two models based on Derjaguin-Landau-Verwey-Overbeek (denoted by DLVO) theory coupled hydrodynamic force: (1) sphere/flat model representing interaction between kaolinite/quartz, and (2) flat/flat model representing interaction between kaolinite/kaolinite. Our core-flooding experimental results showed that CO 2/brine injection triggered moderate to significant reduction in the permeability of the core samples with a negligible porosity change. NMR measurements supported the core-flooding results, suggesting that the relatively large pores disappeared in favour of a higher proportion of the medium to small pores after flooding. The DLVO calculations showed that some kaolinite particles probably lifted off and detached from neighbouring kaolinite particles rather than quartz grains. Moreover, the modelling results showed that the kaolinite fines migration would not occur under normal reservoir multiphase flow conditions. This is not because of the low hydrodynamic force. It is

  6. Fines migration during CO 2 injection: Experimental results interpreted using surface forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Quan; Saeedi, Ali; Delle Piane, Claudio

    The South West Hub project is one of the Australian Flagship Carbon Capture and Storage projects located in the south-west of Western Australia. To evaluate the injectivity potential during the forthcoming full-scale CO 2 injection, we conducted three core-flooding experiments using reservoir core plugs from the well Harvey-1. We aimed to investigate in this paper whether the injection of CO 2 leads to fines migration and permeability reduction due to the relatively high kaolinite content (up to 13%) in the injection interval of the target formation (i.e. the Wonnerup Member of the Lesueur Formation). We imaged the core samples beforemore » flooding to verify the presence of kaolinite at the pore-scale using scanning electron microscopy (SEM). We also examined the pore network of the core plugs before and after the core-flooding experiments using Nuclear Magnetic Resonance (NMR). Moreover, to gain a better understanding of any kaolinite fines migration, we delineated surface force using two models based on Derjaguin-Landau-Verwey-Overbeek (denoted by DLVO) theory coupled hydrodynamic force: (1) sphere/flat model representing interaction between kaolinite/quartz, and (2) flat/flat model representing interaction between kaolinite/kaolinite. Our core-flooding experimental results showed that CO 2/brine injection triggered moderate to significant reduction in the permeability of the core samples with a negligible porosity change. NMR measurements supported the core-flooding results, suggesting that the relatively large pores disappeared in favour of a higher proportion of the medium to small pores after flooding. The DLVO calculations showed that some kaolinite particles probably lifted off and detached from neighbouring kaolinite particles rather than quartz grains. Moreover, the modelling results showed that the kaolinite fines migration would not occur under normal reservoir multiphase flow conditions. This is not because of the low hydrodynamic force. It is

  7. The O2-assisted Al/CO2 electrochemical cell: A system for CO2 capture/conversion and electric power generation.

    PubMed

    Al Sadat, Wajdi I; Archer, Lynden A

    2016-07-01

    Economical and efficient carbon capture, utilization, and sequestration technologies are a requirement for successful implementation of global action plans to reduce carbon emissions and to mitigate climate change. These technologies are also essential for longer-term use of fossil fuels while reducing the associated carbon footprint. We demonstrate an O2-assisted Al/CO2 electrochemical cell as a new approach to sequester CO2 emissions and, at the same time, to generate substantial amounts of electrical energy. We report on the fundamental principles that guide operations of these cells using multiple intrusive electrochemical and physical analytical methods, including chronopotentiometry, cyclic voltammetry, direct analysis in real-time mass spectrometry, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and coupled thermogravimetric analysis-Fourier transform infrared spectroscopy. On this basis, we demonstrate that an electrochemical cell that uses metallic aluminum as anode and a carbon dioxide/oxygen gas mixture as the active material in the cathode provides a path toward electrochemical generation of a valuable (C2) species and electrical energy. Specifically, we show that the cell first reduces O2 at the cathode to form superoxide intermediates. Chemical reaction of the superoxide with CO2 sequesters the CO2 in the form of aluminum oxalate, Al2(C2O4)3, as the dominant product. On the basis of an analysis of the overall CO2 footprint, which considers emissions associated with the production of the aluminum anode and the CO2 captured/abated by the Al/CO2-O2 electrochemical cell, we conclude that the proposed process offers an important strategy for net reduction of CO2 emissions.

  8. The O2-assisted Al/CO2 electrochemical cell: A system for CO2 capture/conversion and electric power generation

    PubMed Central

    Al Sadat, Wajdi I.; Archer, Lynden A.

    2016-01-01

    Economical and efficient carbon capture, utilization, and sequestration technologies are a requirement for successful implementation of global action plans to reduce carbon emissions and to mitigate climate change. These technologies are also essential for longer-term use of fossil fuels while reducing the associated carbon footprint. We demonstrate an O2-assisted Al/CO2 electrochemical cell as a new approach to sequester CO2 emissions and, at the same time, to generate substantial amounts of electrical energy. We report on the fundamental principles that guide operations of these cells using multiple intrusive electrochemical and physical analytical methods, including chronopotentiometry, cyclic voltammetry, direct analysis in real-time mass spectrometry, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and coupled thermogravimetric analysis–Fourier transform infrared spectroscopy. On this basis, we demonstrate that an electrochemical cell that uses metallic aluminum as anode and a carbon dioxide/oxygen gas mixture as the active material in the cathode provides a path toward electrochemical generation of a valuable (C2) species and electrical energy. Specifically, we show that the cell first reduces O2 at the cathode to form superoxide intermediates. Chemical reaction of the superoxide with CO2 sequesters the CO2 in the form of aluminum oxalate, Al2(C2O4)3, as the dominant product. On the basis of an analysis of the overall CO2 footprint, which considers emissions associated with the production of the aluminum anode and the CO2 captured/abated by the Al/CO2-O2 electrochemical cell, we conclude that the proposed process offers an important strategy for net reduction of CO2 emissions. PMID:27453949

  9. CaO-based CO2 sorbents: from fundamentals to the development of new, highly effective materials.

    PubMed

    Kierzkowska, Agnieszka M; Pacciani, Roberta; Müller, Christoph R

    2013-07-01

    The enormous anthropogenic emission of the greenhouse gas CO2 is most likely the main reason for climate change. Considering the continuing and indeed growing utilisation of fossil fuels for electricity generation and transportation purposes, development and implementation of processes that avoid the associated emissions of CO2 are urgently needed. CO2 capture and storage, commonly termed CCS, would be a possible mid-term solution to reduce the emissions of CO2 into the atmosphere. However, the costs associated with the currently available CO2 capture technology, that is, amine scrubbing, are prohibitively high, thus making the development of new CO2 sorbents a highly important research challenge. Indeed, CaO, readily obtained through the calcination of naturally occurring limestone, has been proposed as an alternative CO2 sorbent that could substantially reduce the costs of CO2 capture. However, one of the major drawbacks of using CaO derived from natural sources is its rapidly decreasing CO2 uptake capacity with repeated carbonation-calcination reactions. Here, we review the current understanding of fundamental aspects of the cyclic carbonation-calcination reactions of CaO such as its reversibility and kinetics. Subsequently, recent attempts to develop synthetic, CaO-based sorbents that possess high and cyclically stable CO2 uptakes are presented. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Syntheses of some α-cyclic tripeptides as potential inhibitors for HMG-CoA Reductase.

    PubMed

    Chakraborty, Subrata; Lin, Shih-Hung; Shiuan, David; Tai, Dar-Fu

    2015-08-01

    α-Cyclic tripeptides (CtPs) are the most rigid members of the cyclic peptide family. However, due to their synthetic difficulty, biological activity has remained undisclosed. The incorporation of side-chain-protected natural amino acids into functional CtPs was performed to explore the potential biological functions. Several novel CtPs that consist of protected serine (S(Bn)) and/or glutamate (E(OBn)) were prepared from corresponding linear tripeptides by chemical synthesis. There is a strong possibility for CtPs that contain 3 phenyl groups to correlate with atorvastatin structure. The binding effects in human HMG-CoA reductase (hHMGR) activities were first evaluated by molecular docking. High docking scores were received with these CtPs for enzyme. Therefore, enzymatic assays were carried out and the compound cyclo(S(Bn))3 was indeed able to moderately inhibit hHMGR (IC50 = 110 μM).

  11. Cyclic Polymers: From Scientific Curiosity to Advanced Materials for Gene Delivery and Surface Modification.

    PubMed

    Verbraeken, Bart; Hoogenboom, Richard

    2017-06-12

    Cyclic versus linear: The superiority of cyclic polymers over their linear counterparts is highlighted. Cyclic poly(2-oxazoline)s have been shown to provide excellent shielding properties when grafted to TiO 2 surfaces and Fe 3 O 4 nanoparticles owing to their ultrahigh grafting densities leading to low friction surfaces, superior antifouling properties, and extreme nanoparticle stabilization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Contrasting Extreme Flooding Events and their Influence on Carbon Dynamics in a Salt Marsh

    NASA Astrophysics Data System (ADS)

    Vargas, R.; Kowalska, N.; Lule, A. V.; Seyfferth, A.; Reimer, J.; Cai, W. J.; Moffat, C. F.

    2017-12-01

    Coastal ecosystems are threatened by sea level rise, making them vulnerable to more frequent extreme flooding events. Thus, it is critical to understand the effect of different flooding events on carbon dynamics to test the resiliency of these ecosystems. We used the eddy covariance method to measure CO2 and CH4 fluxes and instrumented an adjacent creek to measure pCO2 and pCH4 in a temperate salt marsh. The site was influenced by flooding caused by a hurricane storm surge and then a freshwater flood during September-October of 2015 and 2016, respectively. Water level, salinity, dissolved oxygen and turbidity were significantly influenced by the events. Daily mean CO2 fluxes show that during the hurricane surge, the ecosystem became a source of CO2 to the atmosphere releasing about 1.8 umol CO2 m-2 s-1 daily. Ecosystem CH4 fluxes were generally low ( 0.05 umol CH4 m-2 s-1) and showed high temporal variability (maximum of 0.6 umol CH4 m-2 s-1). There was an intermittent temporal coherence at 12-hour period (i.e., subdaily tides) between water level and net ecosystem exchange (NEE) or ecosystem CH4 fluxes. There was strong temporal coherence between water level and pCO2 at 12-hour period during the hurricane surge. During the freshwater surge we did not observe temporal coherence between water level and pCO2 or pCH4, but concentrations of both gases increased in the water of the marsh. These results show that extreme flooding events significantly influence short-term carbon dynamics and provide insights on ecosystem resiliency and lateral transport of pCO2 and pCH4 to the coastal ocean.

  13. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres

    NASA Astrophysics Data System (ADS)

    Zhou, Junshuang; Lian, Jie; Hou, Li; Zhang, Junchuan; Gou, Huiyang; Xia, Meirong; Zhao, Yufeng; Strobel, Timothy A.; Tao, Lu; Gao, Faming

    2015-09-01

    Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric capacitance of 521 F cm-3 in aqueous electrolytes for non-porous carbon microsphere electrodes co-doped with fluorine and nitrogen synthesized by low-temperature solvothermal route, rivaling expensive RuO2 or MnO2 pseudo-capacitors. The new electrodes also exhibit excellent cyclic stability without capacitance loss after 10,000 cycles in both acidic and basic electrolytes at a high charge current of 5 A g-1. This work provides a new approach for designing high-performance electrodes with exceptional volumetric capacitance with high mass loadings and charge rates for long-lived electrochemical energy storage systems.

  14. Sequential capture of CO2 and SO2 in a pressurized TGA simulating FBC conditions.

    PubMed

    Sun, Ping; Grace, John R; Lim, C Jim; Anthony, Edward J

    2007-04-15

    Four FBC-based processes were investigated as possible means of sequentially capturing SO2 and CO2. Sorbent performance is the key to their technical feasibility. Two sorbents (a limestone and a dolomite) were tested in a pressurized thermogravimetric analyzer (PTGA). The sorbent behaviors were explained based on complex interaction between carbonation, sulfation, and direct sulfation. The best option involved using limestone or dolomite as a SO2-sorbent in a FBC combustor following cyclic CO2 capture. Highly sintered limestone is a good sorbent for SO2 because of the generation of macropores during calcination/carbonation cycling.

  15. Porous Metal Organic Polyhedral Framework Containing Cuboctahedron Cages as SBUs with High Affinity for H2 and CO2 Sorptions: A Heterogeneous Catalyst for Chemical Fixation of CO2.

    PubMed

    Biradha, Kumar; Maity, Kartik; Karan, Chandan Kumar

    2018-06-11

    Development of active porous materials that can efficiently adsorb H2 and CO2 are in need due to their practical utilities. Here we present the design and synthesis of an interpenetrated Cu(II)-MOF that is thermally stable, highly porous and can act as a heterogeneous catalyst. The Cu(II)-MOF contains highly symmetric polyhedral metal cluster (Cu24) with cuboctahedron geometry as SBU. The double interpenetration of such huge cluster containing nets provides high density of open metal sites due to which it exhibits remarkable H2 storage capacity (313 cm3g-1 at 1bar and 77K) as well as high CO2 capture ability (159 cm3g-1 at 1bar and 273K). Further, its propensity towards the CO2 sorption utilized for the heterogeneous catalysis of chemical conversion of CO2 into the corresponding cyclic carbonates upon reaction with epoxides with high TON and TOF values. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Increased spring flooding of agricultural fields will exhibit altered production of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Paul, R. F.; Smith, C. M.; Smyth, E. M.; Kantola, I. B.; DeLucia, E. H.

    2013-12-01

    The U.S. Corn Belt currently is a net source of carbon dioxide and nitrous oxide to the atmosphere, but is also a sink of methane. Among the proposed effects of climate change in the North American Midwest region is an increase in the frequency and duration of spring flooding events. This would cause ponding in fields which may change the greenhouse gas balance of the region, especially by providing a suitable anoxic environment for the proliferation of methanogens, increasing methane emissions. To determine whether methanogenesis occurs in flooded agricultural soils of the Midwest and how other gas fluxes are affected, we installed collars into the ground of a research field located in central Illinois. The control group was maintained at the same conditions as the surrounding field. Two groups of collars were sustained with water flooding the headspaces via a drip irrigation system; one treatment was analyzed for gas fluxes of CH4, N2O, and CO2 evolving from the collars, and a separate treatment of flooded collars was used for soil sampling. Comparing flooded soils versus control we measured reduced N2O fluxes (-3.12 x 10-6 × 6.8 x 10-7 g N m-2 min-1), reduced CO2 fluxes (-6.13 x 10-3 × 9.3 x 10-4 g CO2 m-2 min-1), and increased methane fluxes (+2.72 x 10-6 × 5.8 x 10-7 g CH4 m-2 min-1). After only one week of treatment the flooded soils switched from being sinks to sources of methane, which continued across the duration of the experiment. These preliminary results indicate that methanogenesis occurs in flooded agricultural fields, and suggest including regional modeling into further study. Although the global warming potential of methane is 25 times greater than CO2, our measured rates of methane production were compensated by reductions in nitrous oxide and CO2 fluxes, reducing the total 100-year horizon global warming potential of the flooded soils we studied by 64.8%. This indicates that accounting for more frequent seasonal ponding would significantly

  17. Cyclic electron flow is redox-controlled but independent of state transition.

    PubMed

    Takahashi, Hiroko; Clowez, Sophie; Wollman, Francis-André; Vallon, Olivier; Rappaport, Fabrice

    2013-01-01

    Photosynthesis is the biological process that feeds the biosphere with reduced carbon. The assimilation of CO2 requires the fine tuning of two co-existing functional modes: linear electron flow, which provides NADPH and ATP, and cyclic electron flow, which only sustains ATP synthesis. Although the importance of this fine tuning is appreciated, its mechanism remains equivocal. Here we show that cyclic electron flow as well as formation of supercomplexes, thought to contribute to the enhancement of cyclic electron flow, are promoted in reducing conditions with no correlation with the reorganization of the thylakoid membranes associated with the migration of antenna proteins towards Photosystems I or II, a process known as state transition. We show that cyclic electron flow is tuned by the redox power and this provides a mechanistic model applying to the entire green lineage including the vast majority of the cases in which state transition only involves a moderate fraction of the antenna.

  18. Levels of cyclic-2,3-diphosphoglycerate in Methanobacterium thermoautotrophicum during phosphate limitation.

    PubMed Central

    Seely, R J; Fahrney, D E

    1984-01-01

    Batch-grown Methanobacterium thermoautotrophicum cells grew nonexponentially in the absence of exogenous Pi until intracellular cyclic-2,3-diphosphoglycerate (cyclic DPG) had fallen below 2 mumol/g (dry weight), the limit of detection. Growth resumed immediately upon transfer to medium containing Pi Cyclic DPG levels were also below detection in Pi-limited chemostat cultures operating at a dilution rate of 0.173 h-1 (4-h doubling time), with reservoir Pi concentrations below 200 microM. At this dilution rate, the Pi concentration in the culture was 4 microM. An H2-limited steady state was achieved with 400 microM Pi in the inflowing medium (67 microM in the culture). The cyclic DPG content of these cells was 72 to 74 mumol/g, about one-third the amount in batch-grown cells. The specific growth rate accelerated immediately to 0.36 h-1 (1.9-h doubling time) under washout conditions at high dilution rate. The cellular content of cyclic DPG declined over a 2-h period, and then increased rapidly as the Pi level in the medium approached 200 microM. Expansion of the cyclic DPG pool coincided with a marked increase in Pi assimilation. These results indicated that M. thermoautotrophicum accumulated cyclic DPG only when Pi and H2 were readily available. PMID:6480564

  19. Levels of cyclic-2,3-diphosphoglycerate in Methanobacterium thermoautotrophicum during phosphate limitation.

    PubMed

    Seely, R J; Fahrney, D E

    1984-10-01

    Batch-grown Methanobacterium thermoautotrophicum cells grew nonexponentially in the absence of exogenous Pi until intracellular cyclic-2,3-diphosphoglycerate (cyclic DPG) had fallen below 2 mumol/g (dry weight), the limit of detection. Growth resumed immediately upon transfer to medium containing Pi Cyclic DPG levels were also below detection in Pi-limited chemostat cultures operating at a dilution rate of 0.173 h-1 (4-h doubling time), with reservoir Pi concentrations below 200 microM. At this dilution rate, the Pi concentration in the culture was 4 microM. An H2-limited steady state was achieved with 400 microM Pi in the inflowing medium (67 microM in the culture). The cyclic DPG content of these cells was 72 to 74 mumol/g, about one-third the amount in batch-grown cells. The specific growth rate accelerated immediately to 0.36 h-1 (1.9-h doubling time) under washout conditions at high dilution rate. The cellular content of cyclic DPG declined over a 2-h period, and then increased rapidly as the Pi level in the medium approached 200 microM. Expansion of the cyclic DPG pool coincided with a marked increase in Pi assimilation. These results indicated that M. thermoautotrophicum accumulated cyclic DPG only when Pi and H2 were readily available.

  20. Camp Marmal Flood Study

    DTIC Science & Technology

    2012-03-01

    was simulated by means of a broad - crested weir built into the topography of the mesh. There is 0.5 m of freeboard and the width of the weir is 30 m...ER D C/ CH L TR -1 2- 5 Camp Marmal Flood Study Co as ta l a nd H yd ra ul ic s La bo ra to ry Jeremy A. Sharp , Steve H. Scott...Camp Marmal Flood Study Jeremy A. Sharp , Steve H. Scott, Mark R. Jourdan, and Gaurav Savant Coastal and Hydraulics Laboratory U.S. Army Engineer

  1. Influence of the concentration of CO2 and SO2 on the absorption of CO2 by a lithium orthosilicate-based absorbent.

    PubMed

    Pacciani, R; Torres, J; Solsona, P; Coe, C; Quinn, R; Hufton, J; Golden, T; Vega, L F

    2011-08-15

    A novel, high temperature solid absorbent based on lithium orthosilicate (Li(4)SiO(4)) has shown promise for postcombustion CO(2) capture. Previous studies utilizing a clean, synthetic flue gas have shown that the absorbent has a high CO(2) capacity, >25 wt %, along with high absorption rates, lower heat of absorption and lower regeneration temperature than other solids such as calcium oxide. The current effort was aimed at evaluating the Li(4)SiO(4) based absorbent in the presence of contaminants found in typical flue gas, specifically SO(2), by cyclic exposure to gas mixtures containing CO(2), H(2)O (up to 25 vol. %), and SO(2) (up to 0.95 vol. %). In the absence of SO(2), a stable CO(2) capacity of ∼ 25 wt % over 25 cycles at 550 °C was achieved. The presence of SO(2), even at concentrations as low as 0.002 vol. %, resulted in an irreversible reaction with the absorbent and a decrease in CO(2) capacity. Analysis of SO(2)-exposed samples revealed that the absorbent reacted chemically and irreversibly with SO(2) at 550 °C forming Li(2)SO(4). Thus, industrial application would require desulfurization of flue gas prior to contacting the absorbent. Reactivity with SO(2) is not unique to the lithium orthosilicate material, so similar steps would be required for other absorbents that chemically react with SO(2).

  2. Effect of H2O and CO2 on The Oxidation Behavior and Durability at High Temperature of ODS-FeCrAl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryepondt, Sebastien N; Rouaix-Vande Put, Aurelie; Pint, Bruce A

    Cyclic oxidation testing was conducted on alloy MA956 and two different batches of alloy PM2000 at 1100 and 1200 C in different atmospheres rich in O2, H2O and CO2. Compare to 1h cycle in dry O2, exposure in air + 10 vol.% H2O resulted in an increase of the oxidation rate and a decrease of the time to breakaway for both alloys at 1200 C, and a faster consumption of Al in the MA956 alloy. 1h cyclic testing in 50%CO2/50%H2O+0.75% O2 had less of an impact on the oxidation rate but led to an increased formation of voids for alloymore » MA956, which had an impact on the alloy creep resistance. At 1100 C, exposure in 50%CO2/50%H2O resulted in significant oxide spallation compared with oxidation in air, but it was not the case when 0.75% O2 was added to the CO2/H2O mixture as a buffer. The control of impurities levels drastically improved the PM2000 oxidation resistance.« less

  3. Effect of H2O and CO2 on The Oxidation Behavior and Durability at High Temperature of ODS-FeCrAl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dryepondt, Sebastien N; Pint, Bruce A; Rouaix-Vande Put, Aurelie

    Cyclic oxidation testing was conducted on alloy MA956 and two different batches of alloy PM2000 at 1100 and 1200 C in different atmospheres rich in O2, H2O and CO2. Compared to 1h cycles in dry O2, exposure in air+10 vol.% H2O resulted in an increase of the oxidation rate and a decrease of the time to breakaway for all alloys at 1200 C, and a faster consumption of Al in the MA956 alloy. One hour cyclic testing in 49.25%CO2+50%H2O+0.75% O2 had a smaller effect on the oxidation rate but led to increased formation of voids in alloy MA956, which hadmore » an impact on the alloy creep resistance. At 1100 C, exposure in 50%CO2+50%H2O resulted in significant oxide spallation compared with oxidation in air, but this was not the case when 0.75% O2 was added to the CO2/H2O mixture as a buffer. The control of impurity levels drastically improved the oxidation resistance of PM2000.« less

  4. RAPID Assessment of Extreme Reservoir Sedimentation Resulting from the September 2013 Flood, North St. Vrain Creek, CO

    NASA Astrophysics Data System (ADS)

    Rathburn, S. L.; McElroy, B. J.; Wohl, E.; Sutfin, N. A.; Huson, K.

    2014-12-01

    During mid-September 2013, approximately 360 mm of precipitation fell in the headwaters of the North St. Vrain drainage basin, Front Range, CO. Debris flows on steep hillslopes and extensive flooding along North St. Vrain Creek resulted in extreme sedimentation within Ralph Price Reservoir, municipal water supply for the City of Longmont. The event allows comparison of historical sedimentation with that of an unusually large flood because 1) no reservoir flushing has been conducted since dam construction, 2) reservoir stratigraphy chronicles uninterrupted delta deposition, and 3) this is the only on-channel reservoir with unimpeded, natural sediment flux from the Continental Divide to the mountain front in a basin with no significant historic flow modifications and land use impacts. Assessing the flood-related sedimentation prior to any dredging activities included coring the reservoir delta, a bathymetric survey of the delta, resistivity and ground penetrating radar surveys of the subaerial inlet deposit, and surveying tributary deposits. Over the 44-year life of the reservoir, two-thirds of the delta sedimentation is attributed to extreme discharges from the September 2013 storm. Total storm-derived reservoir sedimentation is approximately 275,000 m3, with 81% of that within the gravel-dominated inlet and 17% in the delta. Volumes of deposition within reservoir tributary inlets is negatively correlated with contributing area, possibly due to a lack of storage in these small basins (1-5 km2). Flood-related reservoir sedimentation will be compared to other research quantifying volumes from slope failures evident on post-storm lidar. Analysis of delta core samples will quantify organic carbon flux associated with the extreme discharge and develop a chronology of flood and fire disturbances for North St. Vrain basin. Applications of similar techniques are planned for two older Front Range reservoirs affected by the September flooding to fill knowledge gaps about

  5. Modelling CO2 emissions from water surface of a boreal hydroelectric reservoir.

    PubMed

    Wang, Weifeng; Roulet, Nigel T; Kim, Youngil; Strachan, Ian B; Del Giorgio, Paul; Prairie, Yves T; Tremblay, Alain

    2018-01-15

    To quantify CO 2 emissions from water surface of a reservoir that was shaped by flooding the boreal landscape, we developed a daily time-step reservoir biogeochemistry model. We calibrated the model using the measured concentrations of dissolved organic and inorganic carbon (C) in a young boreal hydroelectric reservoir, Eastmain-1 (EM-1), in northern Quebec, Canada. We validated the model against observed CO 2 fluxes from an eddy covariance tower in the middle of EM-1. The model predicted the variability of CO 2 emissions reasonably well compared to the observations (root mean square error: 0.4-1.3gCm -2 day -1 , revised Willmott index: 0.16-0.55). In particular, we demonstrated that the annual reservoir surface effluxes were initially high, steeply declined in the first three years, and then steadily decreased to ~115gCm -2 yr -1 with increasing reservoir age over the estimated "engineering" reservoir lifetime (i.e., 100years). Sensitivity analyses revealed that increasing air temperature stimulated CO 2 emissions by enhancing CO 2 production in the water column and sediment, and extending the duration of open water period over which emissions occur. Increasing the amount of terrestrial organic C flooded can enhance benthic CO 2 fluxes and CO 2 emissions from the reservoir water surface, but the effects were not significant over the simulation period. The model is useful for the understanding of the mechanism of C dynamics in reservoirs and could be used to assist the hydro-power industry and others interested in the role of boreal hydroelectric reservoirs as sources of greenhouse gas emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Conversion of a moderately rewetted fen to a shallow lake - implications for net CO2 exchange

    NASA Astrophysics Data System (ADS)

    Koebsch, Franziska; Glatzel, Stephan; Hofmann, Joachim; Forbrich, Inke; Jurasinski, Gerald

    2013-04-01

    Extensive rewetting projects to re-establish the natural carbon (C) sequestration function of degraded peatlands are currently taking place in Europe and North-America. Year-round flooding provides a robust measure to prevent periods of drought that are associated with ongoing peat mineralization and to initiate the accumulation of new organic matter. Here, we present measurements of net carbon dioxide (CO2) exchange during the gradual conversion of a moderately rewetted fen to a shallow lake. When we started our measurements in 2009, mean growing season water level (MWGL) was 0 cm. In 2010 the site was flooded throughout the year with MWGL of 36 cm. Extraordinary strong rainfalls in July 2011 resulted in a further increase of MWGL to 56 cm. Measurements of net ecosystem exchange (NEE) were conducted during growing seasons (May-October) using the Eddy Covariance method. Information about vegetation vitality was deduced from the enhanced vegetation index (EVI) based on MODIS data. Ecosystem respiration (Reco) and gross ecosystem production (GEP) were high during vegetation period 2009 (1273.4 and -1572.1 g CO2-C m-2), but decreased by 61 and 46% respectively when the fen was flooded throughout 2010. Under water-logged conditions, heterotrophic respiration declines and gas exchange is limited. Moreover, flooding is a severe stress factor for plants and decreases autotrophic respiration and photosynthesis. However, in comparison to 2010, rates of Reco and GEP doubled during the beginning of growing season 2011, indicating plastic response strategies of wetland plants to flooding. Presumably, plants were not able to cope with the further increase of water levels to up to 120 cm in June/July 2011, resulting in another drop of GEP and Reco. The effects of plant vitality on GEP were confirmed by the remote sensed vegetation index. Throughout all three growing seasons, the fen was a distinct net CO2 sink (2009: -333.3±12.3, 2010: -294.1±8.4, -352.4±5.1 g CO2-C m-2

  7. Soil CO2 Dynamics in a Tree Island Soil of the Pantanal: The Role of Soil Water Potential

    PubMed Central

    Johnson, Mark S.; Couto, Eduardo Guimarães; Pinto Jr, Osvaldo B.; Milesi, Juliana; Santos Amorim, Ricardo S.; Messias, Indira A. M.; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO2 research has been conducted in this region. We evaluated soil CO2 dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO2 concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO2 efflux and related environmental parameters. Soil CO2 efflux during the study averaged 3.53 µmol CO2 m−2 s−1, and was equivalent to an annual soil respiration of 1220 g C m−2 y−1. This efflux value, integrated over a year, is comparable to soil C stocks for 0–20 cm. Soil water potential was the measured parameter most strongly associated with soil CO2 concentrations, with high CO2 values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO2 efflux from the tree island soil, with soil CO2 dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO2 efflux from soil. The annual flood arrives later, and saturates soil from below. While CO2 concentrations in soil grew very high under both wetting mechanisms, the change in soil CO2 efflux was only significant when soils were wet from above. PMID:23762259

  8. Development and calibration of a reactive transport model for carbonate reservoir porosity and permeability changes based on CO 2 core-flood experiments

    DOE PAGES

    Smith, Megan M.; Hao, Y.; Carroll, S. A.

    2017-01-02

    Here, beneficial pore space and permeability enhancements are likely to occur as CO 2-charged fluids partially dissolve carbonate minerals in carbonate reservoir formations used for geologic CO 2 storage. The ability to forecast the extent and impact of changes in porosity and permeability will aid geologic CO 2 storage operations and lower uncertainty in estimates of long-term storage capacity. Our work is directed toward developing calibrated reactive transport models that more accurately capture the chemical impacts of CO 2-fluid-rock interactions and their effects on porosity and permeability by matching pressure, fluid chemistry, and dissolution features that developed as a resultmore » of reaction with CO 2-acidified brines at representative reservoir conditions. We present new results from experiments conducted on seven core samples from the Arbuckle Dolostone (near Wellington, Kansas, USA, recovered as part of the South-Central Kansas CO 2 Demonstration). Cores were obtained from both target reservoir and lower-permeability baffle zones, and together these samples span over 3–4 orders of magnitude of permeability according to downhole measurements. Core samples were nondestructively imaged by X-ray computed tomography and the resulting characterization data were mapped onto a continuum domain to further develop a reactive transport model for a range of mineral and physical heterogeneity. We combine these new results with those from previous experimental studies to more fully constrain the governing equations used in reactive transport models to better estimate the transition of enhanced oil recovery operations to long-term geology CO 2 storage. Calcite and dolomite kinetic rate constants (mol m –2 s –1) derived by fitting the results from core-flood experiments range from k calcite,25C = 10 –6.8 to 10 –4.6, and k dolomite,25C = 10 –7.5 to 10 –5.3. The power law-based porosity-permeability relationship is sensitive to the overall pore space

  9. Development and calibration of a reactive transport model for carbonate reservoir porosity and permeability changes based on CO 2 core-flood experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Megan M.; Hao, Y.; Carroll, S. A.

    Here, beneficial pore space and permeability enhancements are likely to occur as CO 2-charged fluids partially dissolve carbonate minerals in carbonate reservoir formations used for geologic CO 2 storage. The ability to forecast the extent and impact of changes in porosity and permeability will aid geologic CO 2 storage operations and lower uncertainty in estimates of long-term storage capacity. Our work is directed toward developing calibrated reactive transport models that more accurately capture the chemical impacts of CO 2-fluid-rock interactions and their effects on porosity and permeability by matching pressure, fluid chemistry, and dissolution features that developed as a resultmore » of reaction with CO 2-acidified brines at representative reservoir conditions. We present new results from experiments conducted on seven core samples from the Arbuckle Dolostone (near Wellington, Kansas, USA, recovered as part of the South-Central Kansas CO 2 Demonstration). Cores were obtained from both target reservoir and lower-permeability baffle zones, and together these samples span over 3–4 orders of magnitude of permeability according to downhole measurements. Core samples were nondestructively imaged by X-ray computed tomography and the resulting characterization data were mapped onto a continuum domain to further develop a reactive transport model for a range of mineral and physical heterogeneity. We combine these new results with those from previous experimental studies to more fully constrain the governing equations used in reactive transport models to better estimate the transition of enhanced oil recovery operations to long-term geology CO 2 storage. Calcite and dolomite kinetic rate constants (mol m –2 s –1) derived by fitting the results from core-flood experiments range from k calcite,25C = 10 –6.8 to 10 –4.6, and k dolomite,25C = 10 –7.5 to 10 –5.3. The power law-based porosity-permeability relationship is sensitive to the overall pore space

  10. Ab initio study on the 1:2 reaction of CO 2 with dimethylamine

    NASA Astrophysics Data System (ADS)

    Jamróz, MichałH.; Dobrowolski, Jan Cz.; Borowiak, Marek A.

    1997-02-01

    The reaction between CO 2 and the dimethylamine molecule in the presence of a second dimethylamine molecule is modeled by the ab initio RHF/3-21G method. Starting from the most stable 1:2 complex, the most effective reaction pathway turned out to be proton transfer between amine molecules followed by immediate proton transfer from one of the amine molecules to the CO 2 moiety. The activation barrier for this pathway (9.54 kcal mol -1 with respect to the 1:2 complex) is within the range of activation energy values found in kinetic studies for similar reactions with different hydroxylamines (from 9.2 to 13.0 kcal mol -1). The reaction product is the cyclic hydrogen bonded complex of dimethylcarbamic acid with dimethylamine.

  11. Fast 2D flood modelling using GPU technology - recent applications and new developments

    NASA Astrophysics Data System (ADS)

    Crossley, Amanda; Lamb, Rob; Waller, Simon; Dunning, Paul

    2010-05-01

    In recent years there has been considerable interest amongst scientists and engineers in exploiting the potential of commodity graphics hardware for desktop parallel computing. The Graphics Processing Units (GPUs) that are used in PC graphics cards have now evolved into powerful parallel co-processors that can be used to accelerate the numerical codes used for floodplain inundation modelling. We report in this paper on experience over the past two years in developing and applying two dimensional (2D) flood inundation models using GPUs to achieve significant practical performance benefits. Starting with a solution scheme for the 2D diffusion wave approximation to the 2D Shallow Water Equations (SWEs), we have demonstrated the capability to reduce model run times in ‘real-world' applications using GPU hardware and programming techniques. We then present results from a GPU-based 2D finite volume SWE solver. A series of numerical test cases demonstrate that the model produces outputs that are accurate and consistent with reference results published elsewhere. In comparisons conducted for a real world test case, the GPU-based SWE model was over 100 times faster than the CPU version. We conclude with some discussion of practical experience in using the GPU technology for flood mapping applications, and for research projects investigating use of Monte Carlo simulation methods for the analysis of uncertainty in 2D flood modelling.

  12. Process for CO.sub.2 capture using a regenerable magnesium hydroxide sorbent

    DOEpatents

    Siriwardane, Ranjani V; Stevens, Jr., Robert W

    2013-06-25

    A process for CO.sub.2 separation using a regenerable Mg(OH).sub.2 sorbent. The process absorbs CO.sub.2 through the formation of MgCO.sub.3 and releases water product H.sub.2O. The MgCO.sub.3 is partially regenerated through direct contact with steam, which acts to heat the magnesium carbonate to a higher temperature, provide heat duty required to decompose the magnesium carbonate to yield MgO and CO.sub.2, provide an H.sub.2O environment over the magnesium carbonate thereby shifting the equilibrium and increasing the potential for CO.sub.2 desorption, and supply H.sub.2O for rehydroxylation of a portion of the MgO. The mixture is polished in the absence of CO.sub.2 using water product H.sub.2O produced during the CO.sub.2 absorption to maintain sorbent capture capacity. The sorbent now comprised substantially of Mg(OH).sub.2 is then available for further CO.sub.2 absorption duty in a cyclic process.

  13. Hurricane Harvey Riverine Flooding: Part 1 - Reconstruction of Hurricane Harvey Flooding for Harris County, TX using a GPU-accelerated 2D flood model for post-flood hazard analysis

    NASA Astrophysics Data System (ADS)

    Kalyanapu, A. J.; Dullo, T. T.; Gangrade, S.; Kao, S. C.; Marshall, R.; Islam, S. R.; Ghafoor, S. K.

    2017-12-01

    Hurricane Harvey that made landfall in the southern Texas this August is one of the most destructive hurricanes during the 2017 hurricane season. During its active period, many areas in coastal Texas region received more than 40 inches of rain. This downpour caused significant flooding resulting in about 77 casualties, displacing more than 30,000 people, inundating hundreds of thousands homes and is currently estimated to have caused more than $70 billion in direct damage. One of the significantly affected areas is Harris County where the city of Houston, TX is located. Covering over two HUC-8 drainage basins ( 2702 mi2), this county experienced more than 80% of its annual average rainfall during this event. This study presents an effort to reconstruct flooding caused by extreme rainfall due to Hurricane Harvey in Harris County, Texas. This computationally intensive task was performed at a 30-m spatial resolution using a rapid flood model called Flood2D-GPU, a graphics processing unit (GPU) accelerated model, on Oak Ridge National Laboratory's (ORNL) Titan Supercomputer. For this task, the hourly rainfall estimates from the National Center for Environmental Prediction Stage IV Quantitative Precipitation Estimate were fed into the Variable Infiltration Capacity (VIC) hydrologic model and Routing Application for Parallel computation of Discharge (RAPID) routing model to estimate flow hydrographs at 69 locations for Flood2D-GPU simulation. Preliminary results of the simulation including flood inundation extents, maps of flood depths and inundation duration will be presented. Future efforts will focus on calibrating and validating the simulation results and assessing the flood damage for better understanding the impacts made by Hurricane Harvey.

  14. Evaluation and Enhancement of Carbon Dioxide Flooding Through Sweep Improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Richard

    2009-09-30

    Carbon dioxide displacement is a common improved recovery method applied to light oil reservoirs (30-45{degrees}API). The economic and technical success of CO{sub 2} floods is often limited by poor sweep efficiency or large CO{sub 2} utilization rates. Projected incremental recoveries for CO{sub 2} floods range from 7% to 20% of the original oil in place; however, actual incremental recoveries range from 9% to 15% of the original oil in place, indicating the potential for significant additional recoveries with improved sweep efficiency. This research program was designed to study the effectiveness of carbon dioxide flooding in a mature reservoir to identifymore » and develop methods and strategies to improve oil recovery in carbon dioxide floods. Specifically, the project has focused on relating laboratory, theoretical and simulation studies to actual field performance in a CO{sub 2} flood in an attempt to understand and mitigate problems of areal and vertical sweep efficiency. In this work the focus has been on evaluating the status of existing swept regions of a mature CO{sub 2} flood and developing procedures to improve the design of proposed floods. The Little Creek Field, Mississippi has been studied through laboratory, theoretical, numerical and simulation studies in an attempt to relate performance predictions to historical reservoir performance to determine sweep efficiency, improve the understanding of the reservoir response to CO{sub 2} injection, and develop scaling methodologies to relate laboratory data and simulation results to predicted reservoir behavior. Existing laboratory information from Little Creek was analyzed and an extensive amount of field data was collected. This was merged with an understanding of previous work at Little Creek to generate a detailed simulation study of two portions of the field – the original pilot area and a currently active part of the field. This work was done to try to relate all of this information to an

  15. A comparative study of CO adsorption on tetrahexahedral Pt nanocrystals and interrelated Pt single crystal electrodes by using cyclic voltammetry and in situ FTIR spectroscopy.

    PubMed

    Liu, Hai-Xia; Tian, Na; Ye, Jin-Yu; Lu, Bang-An; Ren, Jie; Huangfu, Zhi-Chao; Zhou, Zhi-You; Sun, Shi-Gang

    2014-01-01

    This study focuses on CO adsorption at tetrahexahedral Pt nanocrystals (THH Pt NCs) by using cyclic voltammetry and in situ FTIR spectroscopy. Since the electrochemically prepared THH Pt NCs in this study are enclosed by {730} facets which could be considered by a subfacet configuration of 2{210} + {310}, we have also studied CO adsorption on the interrelated Pt(310) and Pt(210) single crystal electrodes as a comparison. Cyclic voltammetry results demonstrated that CO adsorbs dominantly on the (100) sites of THH Pt NCs at low CO coverage (θ(CO)≤ 0.135), while on both (100) and (110) sites at higher CO coverage. On ordered Pt(310) and Pt(210), i.e. they were flame annealed and then cooled in H(2) + Ar, CO adsorption also illustrates relative priority on (100) sites at low CO coverage; while at high CO coverage or on oxygen-disordered Pt(310) and Pt(210) when they were cooled in air after flame annealing, the adsorption of CO presents a weak preference on (100) sites of Pt(310) and even no preference at all on (100) sites of Pt(210). In situ FTIR spectroscopic studies illustrated that CO adsorption on THH Pt NCs yields anomalous infrared effects (AIREs), which are depicted by the Fano-like IR feature on a dense distribution (60 μm(-2)) and the enhancement of abnormal IR absorption on a sparse distribution (22 μm(-2)) of THH Pt NCs on glassy carbon substrate. Systematic investigation of CO coverage dependence of IR features revealed that, on THH Pt NCs, the IR band center (ν(COL)) of linearly bonded CO (COL) is rapidly shifted to higher wavenumbers along with the increase of CO coverage to 0.184, yielding a fast linear increase rate with a high slope (dν(COL)/dθ(IR)(CO) = 219 cm(-1)); when θ > 0.184, the increase of ν(COL) with θCO slows down and deviates drastically from linearity. In contrast, the ν(COL) on the ordered Pt(310) electrode maintains a linear increase with θ(IR)(CO) for the whole range of θ(IR)(CO) variation, and gives a much smaller

  16. Flood of July 1-2, 1987, in north-central Ohio

    USGS Publications Warehouse

    Mayo, R.I.; Mangus, J.P.

    1989-01-01

    During the night of July 1 and early morning of July 2, 1987, an intense summer storm produced flooding on headwater streams of the Scioto, Sandusky, and Mohican River in north-central Ohio. The heaviest flooding and resulting flood damage occurred in a five-county area in the north-central part of the state. From 3 to nearby 6 inches of rain fell in less than 10 hours on rain-saturated soil, and produced flooding that resulted in more than $20 million in damages. Estimated peak discharged for several of the small streams affected ranged from 1 to 2 1/2 times the magnitude of the 50-year flood of these sites.

  17. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta.

    PubMed

    Knox, Sara Helen; Sturtevant, Cove; Matthes, Jaclyn Hatala; Koteen, Laurie; Verfaillie, Joseph; Baldocchi, Dennis

    2015-02-01

    Agricultural drainage of organic soils has resulted in vast soil subsidence and contributed to increased atmospheric carbon dioxide (CO2) concentrations. The Sacramento-San Joaquin Delta in California was drained over a century ago for agriculture and human settlement and has since experienced subsidence rates that are among the highest in the world. It is recognized that drained agriculture in the Delta is unsustainable in the long-term, and to help reverse subsidence and capture carbon (C) there is an interest in restoring drained agricultural land-use types to flooded conditions. However, flooding may increase methane (CH4) emissions. We conducted a full year of simultaneous eddy covariance measurements at two conventional drained agricultural peatlands (a pasture and a corn field) and three flooded land-use types (a rice paddy and two restored wetlands) to assess the impact of drained to flooded land-use change on CO2 and CH4 fluxes in the Delta. We found that the drained sites were net C and greenhouse gas (GHG) sources, releasing up to 341 g C m(-2) yr(-1) as CO2 and 11.4 g C m(-2) yr(-1) as CH4. Conversely, the restored wetlands were net sinks of atmospheric CO2, sequestering up to 397 g C m(-2) yr(-1). However, they were large sources of CH4, with emissions ranging from 39 to 53 g C m(-2) yr(-1). In terms of the full GHG budget, the restored wetlands could be either GHG sources or sinks. Although the rice paddy was a small atmospheric CO2 sink, when considering harvest and CH4 emissions, it acted as both a C and GHG source. Annual photosynthesis was similar between sites, but flooding at the restored sites inhibited ecosystem respiration, making them net CO2 sinks. This study suggests that converting drained agricultural peat soils to flooded land-use types can help reduce or reverse soil subsidence and reduce GHG emissions. © 2014 John Wiley & Sons Ltd.

  18. Development of a preprototype sabatier CO2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Birbara, P.

    1980-01-01

    A preoprototype Sabatier CO2 Reduction Subsystem was successfully designed, fabricated and tested. The lightweight, quick starting reactor utilizes a highly active and physically durable methanation catalyst composed of ruthenium on alumina. The use of this improved catalyst permits a single straight through plug flow design with an average lean component H2/CO2 conversion efficiency of over 99% over a range of H2/CO2 molar ratios of 1.8 to 5 while operating with flows equivalent to a crew size of one person steadystate to 3 persons cyclical (equivalent to 5 persons steady state). The reactor requires no heater operation after start-up even during simulated 55 minute lightside/39 minute darkside orbital operation over the above range of molar ratios and crew loadings. The subsystem's operation and performance is controlled by a microprocessor and displayed on a nineteen inch multi-colored cathode ray tube.

  19. Porous MOF with Highly Efficient Selectivity and Chemical Conversion for CO2.

    PubMed

    Wang, Hai-Hua; Hou, Lei; Li, Yong-Zhi; Jiang, Chen-Yu; Wang, Yao-Yu; Zhu, Zhonghua

    2017-05-31

    A new Co(II)-based MOF, {[Co 2 (tzpa)(OH)(H 2 O) 2 ]·DMF} n (1) (H 3 tzpa = 5-(4-(tetrazol-5-yl)phenyl)isophthalic acid), was constructed by employing a tetrazolyl-carboxyl ligand H 3 tzpa. 1 possesses 1D tubular channels that are decorated by μ 3 -OH groups, uncoordinated carboxylate O atoms, and open metal centers generated by the removal of coordinated water molecules, leading to high CO 2 adsorption capacity and significantly selective capture for CO 2 over CH 4 and CO in the temperature range of 298-333 K. Moreover, 1 shows the chemical stability in acidic and basic aqueous solutions. Grand canonical Monte Carlo simulations identified multiple CO 2 -philic sites in 1. In addition, the activated 1 as the heterogeneous Lewis and Brønsted acid bifunctional catalyst facilitates the chemical fixation of CO 2 coupling with epoxides into cyclic carbonates under ambient conditions.

  20. Madeira Extreme Floods: 2009/2010 Winter. Case study - 2nd and 20th of February

    NASA Astrophysics Data System (ADS)

    Pires, V.; Marques, J.; Silva, A.

    2010-09-01

    Floods are at world scale the natural disaster that affects a larger fraction of the population. It is a phenomenon that extends it's effects to the surrounding areas of the hydrographic network (basins, rivers, dams) and the coast line. Accordingly to USA FEMA (Federal Emergency Management Agency) flood can be defined as:"A general and temporary condition of partial or complete inundation of two or more acres of normally dry land area or of two or more properties from: Overflow of inland or tidal waters; Unusual and rapid accumulation or runoff of surface waters from any source; Mudflow; Collapse or subsidence of land along the shore of a lake or similar body of water as a result of erosion or undermining caused by waves or currents of water exceeding anticipated cyclical levels that result in a flood as defined above." A flash flood is the result of intense and long duration of continuous precipitation and can result in dead casualties (i.e. floods in mainland Portugal in 1967, 1983 and 1997). The speed and strength of the floods either localized or over large areas, results in enormous social impacts either by the loss of human lives and or the devastating damage to the landscape and human infrastructures. The winter of 2009/2010 in Madeira Island was characterized by several episodes of very intense precipitation (specially in December 2009 and February 2010) adding to a new record of accumulated precipitation since there are records in the island. In February two days are especially rainy with absolute records for the month of February (daily records since 1949): 111mm and 97mm on the 2nd and 20th respectively. The accumulated precipitation ended up with the terrible floods on the 20th of February causing the lost of dozens of human lives and hundreds of millions of Euros of losses The large precipitation occurrences either more intense precipitation in a short period or less intense precipitation during a larger period are sometimes the precursor of

  1. Electrochemical investigation of [Co4(μ3-O)4(μ-OAc)4(py)4] and peroxides by cyclic voltammetry.

    PubMed

    Clatworthy, Edwin B; Li, Xiaobo; Masters, Anthony F; Maschmeyer, Thomas

    2016-12-13

    Two oxidative redox processes of the neutral cobalt(iii) cubane, [Co 4 (μ 3 -O) 4 (μ-OAc) 4 (py) 4 ], were investigated by cyclic voltammetry at a glassy carbon electrode in acetonitrile. In addition to the first quasi-reversible one-electron oxidation at E 1/2 = 0.283 V vs. Fc 0/+ , a second quasi-reversible one-electron oxidation was observed at E 1/2 = 1.44 V vs. Fc 0/+ . Oxidation at this potential does not facilitate water oxidation. In the presence of tert-butylhydroperoxide the peak current of this second oxidation increases, suggesting oxidation of the peroxide by the doubly oxidised cubane.

  2. CO2 hydrate formation and dissociation in cooled porous media: a potential technology for CO2 capture and storage.

    PubMed

    Yang, Mingjun; Song, Yongchen; Jiang, Lanlan; Zhu, Ningjun; Liu, Yu; Zhao, Yuechao; Dou, Binlin; Li, Qingping

    2013-09-03

    The purpose of this study was to investigate the hydrate formation and dissociation with CO2 flowing through cooled porous media at different flow rates, pressures, temperatures, and flow directions. CO2 hydrate saturation was quantified using the mean intensity of water. The experimental results showed that the hydrate block appeared frequently, and it could be avoided by stopping CO2 flooding early. Hydrate formed rapidly as the temperature was set to 274.15 or 275.15 K, but the hydrate formation delayed when it was 276.15 K. The flow rate was an important parameter for hydrate formation; a too high or too low rate was not suitable for CO2 hydration formation. A low operating pressure was also unacceptable. The gravity made hydrate form easily in the vertically upward flow direction. The pore water of the second cycle converted to hydrate more completely than that of the first cycle, which was a proof of the hydrate "memory effect". When the pressure was equal to atmospheric pressure, hydrate did not dissociate rapidly and abundantly, and a long time or reduplicate depressurization should be used in industrial application.

  3. cap alpha. /sub 2/-Adrenergic receptor-mediated sensitization of forskolin-stimulated cyclic AMP production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.B.; Toews, M.L.; Turner, J.T.

    1987-03-01

    Preincubation of HT29 human colonic adenocarcinoma cells with ..cap alpha../sub 2/-adrenergic agonists resulted in a 10- to 20-fold increase in forskolin-stimulated cyclic AMP production as compared to cells preincubated without agonist. Similar results were obtained using either a (/sup 3/H)adenine prelabeling assay or a cyclic AMP radioimmunoassay to measure cyclic AMP levels. This phenomenon, which is termed sensitization, is ..cap alpha../sub 2/-adrenergic receptor-mediated and rapid in onset and reversal. Yohimbine, an ..cap alpha../sub 2/-adrenergic receptor-selective antagonist, blocked norepinephrine-induced sensitization, whereas prazosin (..cap alpha../sub 1/-adrenergic) and sotalol (..beta..-adrenergic) did not. The time for half-maximal sensitization was 5 min and the half-timemore » for reversal was 10 min. Only a 2-fold sensitization of cyclic AMP production stimulated by vasoactive intestinal peptide was observed, indicating that sensitization is relatively selective for forskolin. Sensitization reflects an increased production of cyclic AMP and not a decreased degradation of cyclic AMP, since incubation with a phosphodiesterase inhibitor and forskolin did not mimic sensitization. Increasing the levels of cyclic AMP during the preincubation had no effect on sensitization, indicating that sensitization is not caused by decreased cyclic AMP levels during the preincubation. This rapid and dramatic sensitization of forskolin-stimulated cyclic AMP production is a previously unreported effect that can be added to the growing list of ..cap alpha../sub 2/-adrenergic responses that are not mediated by a decrease in cyclic AMP.« less

  4. CO 2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frailey, Scott M.; Krapac, Ivan G.; Damico, James R.

    2012-03-30

    The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO 2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO 2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO 2 flooding.

  5. Impacts of flood damage on airborne bacteria and fungi in homes after the 2013 Colorado Front Range flood.

    PubMed

    Emerson, Joanne B; Keady, Patricia B; Brewer, Tess E; Clements, Nicholas; Morgan, Emily E; Awerbuch, Jonathan; Miller, Shelly L; Fierer, Noah

    2015-03-03

    Flood-damaged homes typically have elevated microbial loads, and their occupants have an increased incidence of allergies, asthma, and other respiratory ailments, yet the microbial communities in these homes remain under-studied. Using culture-independent approaches, we characterized bacterial and fungal communities in homes in Boulder, CO, USA 2-3 months after the historic September, 2013 flooding event. We collected passive air samples from basements in 50 homes (36 flood-damaged, 14 non-flooded), and we sequenced the bacterial 16S rRNA gene (V4-V5 region) and the fungal ITS1 region from these samples for community analyses. Quantitative PCR was used to estimate the abundances of bacteria and fungi in the passive air samples. Results indicate significant differences in bacterial and fungal community composition between flooded and non-flooded homes. Fungal abundances were estimated to be three times higher in flooded, relative to non-flooded homes, but there were no significant differences in bacterial abundances. Penicillium (fungi) and Pseudomonadaceae and Enterobacteriaceae (bacteria) were among the most abundant taxa in flooded homes. Our results suggest that bacterial and fungal communities continue to be affected by flooding, even after relative humidity has returned to baseline levels and remediation has removed any visible evidence of flood damage.

  6. Cyclic process for producing methane with catalyst regeneration

    DOEpatents

    Frost, Albert C.; Risch, Alan P.

    1980-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. For practical commercial operations utilizing the two-step process of the invention of a cyclic basis, nickel, cobalt, ruthenium, thenium and alloys thereof are especially prepared for use in a metal state, with CO disproportionation being carried out at temperatures up to about 350.degree. C. and with the conversion of active surface carbon to methane being carried out by reaction with steam. The catalyst is employed in such cyclic operations without the necessity for employing a regeneration step as part of each processing cycle. Inactive carbon or coke that tends to form on the catalyst over the course of continuous operations utilizing such cyclic process is effectively and advantageously removed, on a periodic basis, in place of conventional burn off with an inert stream containing a low concentration of oxygen.

  7. Enzymatic degradation of cyclic 2,3-diphosphoglycerate to 2,3-diphosphoglycerate in Methanobacterium thermoautotrophicum.

    PubMed

    Sastry, M V; Robertson, D E; Moynihan, J A; Roberts, M F

    1992-03-24

    2,3-Diphosphoglycerate (2,3-DPG) has been found to be the product of the enzymatic degradation of cyclic 2,3-diphosphoglycerate (cDPG) in the archaebacterium Methanobacterium thermoautotrophicum delta H. Although 2,3-DPG has not previously been detected as a major soluble component of M. thermoautotrophicum, large pools accumulated at an incubation temperature of 50 degrees C (below the optimum growth temperature of 62 degrees C). Under these conditions, cellular activity was significantly decreased; a return of the culture to the optimum growth temperature restored the 2,3-DPG pool back to original low levels and caused steady-state cDPG levels to increase again. While 13CO2-pulse/12CO2-chase experiments at 50 degrees C showed that the cDPG turned over, the appearance of 2,3-DPG at NMR-visible concentrations required at least 10 h. Production of 2,3-DPG in vivo was prevented by exposure of the cells to O2. The enzyme responsible for this hydrolysis of cDPG was purified by affinity chromatography and appears to be a 33-kDa protein. Activity was detected in the presence of oxygen and was enhanced by a solution of 1 M KCl, 25 mM MgCl2, and dithiothreitol. Both Km and Vmax have been determined at 37 degrees C; kinetics also indicate that in vitro the product, 2,3-DPG, is an inhibitor of cDPG hydrolysis. These findings are discussed in view of a proposed role for cDPG in methanogens.

  8. Changes in erosion and flooding risk due to long-term and cyclic oceanographic trends

    USGS Publications Warehouse

    Wahl, Thomas; Plant, Nathaniel G.

    2015-01-01

    We assess temporal variations in waves and sea level, which are driving factors for beach 23 erosion and coastal flooding in the northern Gulf of Mexico. We find that long-term trends in 24 the relevant variables have caused an increase of ~30% in the erosion/flooding risk since the 25 1980s. Changes in the wave climate-which have often been ignored in earlier assessments-26 were at least as important as sea-level rise (SLR). In the next decades, SLR will likely become 27 the dominating driver and may in combination with ongoing changes in the wave climate (and 28 depending on the emission scenario) escalate the erosion/flooding risk by up to 300% over the 29 next 30 years. We also find significant changes in the seasonal cycles of sea level and 30 significant wave height, which have in combination caused a considerable increase of the 31 erosion/flooding risk in summer and decrease in winter (superimposed onto the long-term 32 trends)

  9. Imidazolium- and Triazine-Based Porous Organic Polymers for Heterogeneous Catalytic Conversion of CO2 into Cyclic Carbonates.

    PubMed

    Zhong, Hong; Su, Yanqing; Chen, Xingwei; Li, Xiaoju; Wang, Ruihu

    2017-12-22

    CO 2 adsorption and concomitant catalytic conversion into useful chemicals are promising approaches to alleviate the energy crisis and effects of global warming. This is highly desirable for developing new types of heterogeneous catalytic materials containing CO 2 -philic groups and catalytic active sites for CO 2 chemical transformation. Here, we present an imidazolium- and triazine-based porous organic polymer with counter chloride anion (IT-POP-1). The porosity and CO 2 affinity of IT-POP-1 may be modulated at the molecular level through a facile anion-exchange strategy. Compared with the post-modified polymers with iodide and hexafluorophosphate anions, IT-POP-1 possesses the highest surface area and the best CO 2 uptake capacity with excellent adsorption selectivity over N 2 . The roles of the task-specific components such as triazine, imidazolium, hydroxyl, and counter anions in CO 2 absorption and catalytic performance were illustrated. IT-POP-1 exhibits the highest catalytic activity and excellent recyclability in solvent- and additive-free cycloaddition reaction of CO 2 with epoxides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Coastal hazards in a changing world: projecting and communicating future coastal flood risk at the local-scale using the Coastal Storm Modeling System (CoSMoS)

    NASA Astrophysics Data System (ADS)

    O'Neill, Andrea; Barnard, Patrick; Erikson, Li; Foxgrover, Amy; Limber, Patrick; Vitousek, Sean; Fitzgibbon, Michael; Wood, Nathan

    2017-04-01

    The risk of coastal flooding will increase for many low-lying coastal regions as predominant contributions to flooding, including sea level, storm surge, wave setup, and storm-related fluvial discharge, are altered with climate change. Community leaders and local governments therefore look to science to provide insight into how climate change may affect their areas. Many studies of future coastal flooding vulnerability consider sea level and tides, but ignore other important factors that elevate flood levels during storm events, such as waves, surge, and discharge. Here we present a modelling approach that considers a broad range of relevant processes contributing to elevated storm water levels for open coast and embayment settings along the U.S. West Coast. Additionally, we present online tools for communicating community-relevant projected vulnerabilities. The Coastal Storm Modeling System (CoSMoS) is a numerical modeling system developed to predict coastal flooding due to both sea-level rise (SLR) and plausible 21st century storms for active-margin settings like the U.S. West Coast. CoSMoS applies a predominantly deterministic framework of multi-scale models encompassing large geographic scales (100s to 1000s of kilometers) to small-scale features (10s to 1000s of meters), resulting in flood extents that can be projected at a local resolution (2 meters). In the latest iteration of CoSMoS applied to Southern California, U.S., efforts were made to incorporate water level fluctuations in response to regional storm impacts, locally wind-generated waves, coastal river discharge, and decadal-scale shoreline and cliff changes. Coastal hazard projections are available in a user-friendly web-based tool (www.prbo.org/ocof), where users can view variations in flood extent, maximum flood depth, current speeds, and wave heights in response to a range of potential SLR and storm combinations, providing direct support to adaptation and management decisions. In order to capture

  11. Ultrafast and Stable CO2 Capture Using Alkali Metal Salt-Promoted MgO-CaCO3 Sorbents.

    PubMed

    Cui, Hongjie; Zhang, Qiming; Hu, Yuanwu; Peng, Chong; Fang, Xiangchen; Cheng, Zhenmin; Galvita, Vladimir V; Zhou, Zhiming

    2018-06-20

    As a potential candidate for precombustion CO 2 capture at intermediate temperatures (200-400 °C), MgO-based sorbents usually suffer from low kinetics and poor cyclic stability. Herein, a general and facile approach is proposed for the fabrication of high-performance MgO-based sorbents via incorporation of CaCO 3 into MgO followed by deposition of a mixed alkali metal salt (AMS). The AMS-promoted MgO-CaCO 3 sorbents are capable of adsorbing CO 2 at an ultrafast rate, high capacity, and good stability. The CO 2 uptake of sorbent can reach as high as above 0.5 g CO 2 g sorbent -1 after only 5 min of sorption at 350 °C, accounting for vast majority of the total uptake. In addition, the sorbents are very stable even under severe but more realistic conditions (desorption in CO 2 at 500 °C), where the CO 2 uptake of the best sorbent is stabilized at 0.58 g CO 2 g sorbent -1 in 20 consecutive cycles. The excellent CO 2 capture performance of the sorbent is mainly due to the promoting effect of molten AMS, the rapid formation of CaMg(CO 3 ) 2 , and the plate-like structure of sorbent. The exceptional ultrafast rate and the good stability of the AMS-promoted MgO-CaCO 3 sorbents promise high potential for practical applications, such as precombustion CO 2 capture from integrated gasification combined cycle plants and sorption-enhanced water gas shift process.

  12. Efficient MgO-based mesoporous CO2 trapper and its performance at high temperature.

    PubMed

    Han, Kun Kun; Zhou, Yu; Chun, Yuan; Zhu, Jian Hua

    2012-02-15

    A novel MgO-based porous adsorbent has been synthesized in a facile co-precipitation method for the first time, in order to provide a candidate for trapping CO(2) in flue gas at high temperature. The resulting composite exhibits a mesoporous structure with a wide pore size distribution, due to the even dispersion and distribution of microcrystalline MgO in the framework of alumina to form a concrete-like structure. These sorbents can capture CO(2) at high temperature (150-400°C), possessing high reactivity and stability in cyclic adsorption-desorption processes, providing competitive candidates to control CO(2) emission. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Nested 1D-2D approach for urban surface flood modeling

    NASA Astrophysics Data System (ADS)

    Murla, Damian; Willems, Patrick

    2015-04-01

    Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of

  14. Maine coastal storm and flood of February 2, 1976

    USGS Publications Warehouse

    Morrill, Richard Arthur; Chin, Edwin H.; Richardson, W.S.

    1979-01-01

    A business section of Bangor, Maine, was flooded with 12 feet (3.7 m) of water on February 2, 1976. The water surface elevation reached 17.46 feet (5.32 m) above national geodetic vertical datum of 1929 (NGVD), approximately 10.5 feet (3.2 m) above the predicted astronomical tide at Bangor. The unusually high water resulted from a tidal storm surge caused by prolonged strong, south-southeasterly winds which occurred near the time of astronomical high tide. Winds exceeded 64 knots off the New England coast. The resulting flood was the third highest since 1846 and is the first documented tidal flood at Bangor. This report documents the meteorological and hydrologic conditions associated with the flooding and also contains a brief description of storm damage from Eastport to Brunswick, Maine. Included are flood elevations in the city of Bangor and along the coast of Maine east of the Kennebec River. (Kosco-USGS)

  15. Efficient light hydrocarbon separation and CO2 capture and conversion in a stable MOF with oxalamide-decorated polar tubes.

    PubMed

    Li, Xiu-Yuan; Li, Yong-Zhi; Yang, Yun; Hou, Lei; Wang, Yao-Yu; Zhu, Zhonghua

    2017-11-30

    The first strontium-based MOF possessing polar tubular channels embedded with a high density of open Lewis acidic metal sites and basic oxalamide groups was constructed, which shows not only a high CO 2 and C 2 H 6 adsorption capability and significant selectivity for CO 2 over both CH 4 and CO, and for C 2 H 6 over CH 4 , but also size-selective chemical conversion of CO 2 with epoxides producing cyclic carbonates under ambient conditions.

  16. 3D in vitro co-culture models based on normal cells and tumor spheroids formed by cyclic RGD-peptide induced cell self-assembly.

    PubMed

    Akasov, Roman; Gileva, Anastasia; Zaytseva-Zotova, Daria; Burov, Sergey; Chevalot, Isabelle; Guedon, Emmanuel; Markvicheva, Elena

    2017-01-01

    To design novel 3D in vitro co-culture models based on the RGD-peptide-induced cell self-assembly technique. Multicellular spheroids from M-3 murine melanoma cells and L-929 murine fibroblasts were obtained directly from monolayer culture by addition of culture medium containing cyclic RGD-peptide. To reach reproducible architecture of co-culture spheroids, two novel 3D in vitro models with well pronounced core-shell structure from tumor spheroids and single mouse fibroblasts were developed based on this approach. The first was a combination of a RGD-peptide platform with the liquid overlay technique with further co-cultivation for 1-2 days. The second allowed co-culture spheroids to generate within polyelectrolyte microcapsules by cultivation for 2 weeks. M-3 cells (a core) and L-929 fibroblasts (a shell) were easily distinguished by confocal microscopy due to cell staining with DiO and DiI dyes, respectively. The 3D co-culture spheroids are proposed as a tool in tumor biology to study cell-cell interactions as well as for testing novel anticancer drugs and drug delivery vehicles.

  17. The effects of Cr, Co, Al, Mo and Ta on the cyclic oxidation behavior of a prototype cast Ni-base superalloy based on a 2(5) composite statistically designed experiment

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1984-01-01

    A series of cast Ni-base superalloys were systematically varied at selected levels of Co, Cr, Mo, Ta, and Al. The elemental levels varied were Mo, 0 to 4 percent; Cr, 6 to 18 percent; Co, 0 to 20 percent, Ta, 0 to 8 percent; and Al, 3.25 to 6.25 percent. The cyclic oxidation resistance was determined from specific weight change data as a function of time for 1 hr cycles in static air at 1100 C. The significant terms in decreasing order of their importance were Al, Ta, Cr2, Al-Cr, Cr-Co, Co2, Al-Mo, Cr-Mo, Al-Al, and Mo-Ta. The Al term alone accounted for close to 82 percent of the explained variability. The estimating equation showed that the Al level was the most important and should be at its 6.25 wt % maximum value. The Mo and Ta levels should also be at their maximum 4 and 8 wt % respectively. The cobalt composition should be as low as possible, i.e., 0 wt%. The Cr level optimum varies depending on the other 4 levels. The X-ray diffaction results indicate the most protective scales are alumina/aluminate spinel stabilizized with a tri-rutile oxide high in Ta and Mo.

  18. Validation of 2D flood models with insurance claims

    NASA Astrophysics Data System (ADS)

    Zischg, Andreas Paul; Mosimann, Markus; Bernet, Daniel Benjamin; Röthlisberger, Veronika

    2018-02-01

    Flood impact modelling requires reliable models for the simulation of flood processes. In recent years, flood inundation models have been remarkably improved and widely used for flood hazard simulation, flood exposure and loss analyses. In this study, we validate a 2D inundation model for the purpose of flood exposure analysis at the river reach scale. We validate the BASEMENT simulation model with insurance claims using conventional validation metrics. The flood model is established on the basis of available topographic data in a high spatial resolution for four test cases. The validation metrics were calculated with two different datasets; a dataset of event documentations reporting flooded areas and a dataset of insurance claims. The model fit relating to insurance claims is in three out of four test cases slightly lower than the model fit computed on the basis of the observed inundation areas. This comparison between two independent validation data sets suggests that validation metrics using insurance claims can be compared to conventional validation data, such as the flooded area. However, a validation on the basis of insurance claims might be more conservative in cases where model errors are more pronounced in areas with a high density of values at risk.

  19. Impact of elevated CO2, water table, and temperature changes on CO2 and CH4 fluxes from arctic tundra soils

    NASA Astrophysics Data System (ADS)

    Zona, Donatella; Haynes, Katherine; Deutschman, Douglas; Bryant, Emma; McEwing, Katherine; Davidson, Scott; Oechel, Walter

    2015-04-01

    Large uncertainties still exist on the response of tundra C emissions to future climate due, in part, to the lack of understanding of the interactive effects of potentially controlling variables on C emissions from Arctic ecosystems. In this study we subjected 48 soil cores (without active vegetation) from dominant arctic wetland vegetation types, to a laboratory manipulation of elevated atmospheric CO2, elevated temperature, and altered water table, representing current and future conditions in the Arctic for two growing seasons. To our knowledge this experiment comprised the most extensively replicated manipulation of intact soil cores in the Arctic. The hydrological status of the soil was the most dominant control on both soil CO2 and CH4 emissions. Despite higher soil CO2 emission occurring in the drier plots, substantial CO2 respiration occurred under flooded conditions, suggesting significant anaerobic respirations in these arctic tundra ecosystems. Importantly, a critical control on soil CO2 and CH4 fluxes was the original vascular plant cover. The dissolved organic carbon (DOC) concentration was correlated with cumulative CH4 emissions but not with cumulative CO2 suggesting C quality influenced CH4 production but not soil CO2 emissions. An interactive effect between increased temperature and elevated CO2 on soil CO2 emissions suggested a potential shift of the soils microbial community towards more efficient soil organic matter degraders with warming and elevated CO2. Methane emissions did not decrease over the course of the experiment, even with no input from vegetation. This result indicated that CH4 emissions are not carbon limited in these C rich soils. Overall CH4 emissions represented about 49% of the sum of total C (C-CO2 + C-CH4) emission in the wet treatments, and 15% in the dry treatments, representing a dominant component of the overall C balance from arctic soils.

  20. Cyclic flow underground coal gasification process

    DOEpatents

    Bissett, Larry A.

    1978-01-01

    The present invention is directed to a method of in situ coal gasification for providing the product gas with an enriched concentration of carbon monoxide. The method is practiced by establishing a pair of combustion zones in spaced-apart boreholes within a subterranean coal bed and then cyclically terminating the combustion in the first of the two zones to establish a forward burn in the coal bed so that while an exothermic reaction is occurring in the second combustion zone to provide CO.sub.2 -laden product gas, an endothermic CO-forming reaction is occurring in the first combustion zone between the CO.sub.2 -laden gas percolating thereinto and the hot carbon in the wall defining the first combustion zone to increase the concentration of CO in the product gas. When the endothermic reaction slows to a selected activity the roles of the combustion zones are reversed by re-establishing an exothermic combustion reaction in the first zone and terminating the combustion in the second zone.

  1. A statistical analysis of elevated temperature gravimetric cyclic oxidation data of 36 Ni- and Co-base superalloys based on an oxidation attack parameter

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    1992-01-01

    A large body of high temperature cyclic oxidation data generated from tests at NASA Lewis Research Center involving gravimetric/time values for 36 Ni- and Co-base superalloys was reduced to a single attack parameter, K(sub a), for each run. This K(sub a) value was used to rank the cyclic oxidation resistance of each alloy at 1000, 1100, and 1150 C. These K(sub a) values were also used to derive an estimating equation using multiple linear regression involving log(sub 10)K(sub a) as a function of alloy chemistry and test temperature. This estimating equation has a high degree of fit and could be used to predict cyclic oxidation behavior for similar alloys and to design an optimum high strength Ni-base superalloy with maximum high temperature cyclic oxidation resistance. The critical alloy elements found to be beneficial were Al, Cr, and Ta.

  2. Potassium-based sorbents from fly ash for high-temperature CO2 capture.

    PubMed

    Sanna, Aimaro; Maroto-Valer, M Mercedes

    2016-11-01

    Potassium-fly ash (K-FA) sorbents were investigated for high-temperature CO 2 sorption. K-FAs were synthesised using coal fly ash as source of silica and aluminium. The synthesised materials were also mixed with Li 2 CO 3 and Ca(OH) 2 to evaluate their effect on CO 2 capture. Temperature strongly affected the performance of the K-FA sorbents, resulting in a CO 2 uptake of 1.45 mmol CO 2 /g sorbent for K-FA 1:1 at 700 °C. The CO 2 sorption was enhanced by the presence of Li 2 CO 3 (10 wt%), with the K-FA 1:1 capturing 2.38 mmol CO 2 /g sorbent at 700 °C in 5 min. This sorption was found to be similar to previously developed Li-Na-FA (2.54 mmol/g) and Li-FA (2.4 mmol/g) sorbents. The presence of 10 % Li 2 CO 3 also accelerated sorption and desorption. The results suggest that the increased uptake of CO 2 and faster reaction rates in presence of K-FA can be ascribed to the formation of K-Li eutectic phase, which favours the diffusion of potassium and CO 2 in the material matrix. The cyclic experiments showed that the K-FA materials maintained stable CO 2 uptake and reaction rates over 10 cycles.

  3. Flood Inundation Modelling in the Kuantan River Basin using 1D-2D Flood Modeller coupled with ASTER-GDEM

    NASA Astrophysics Data System (ADS)

    Ng, Z. F.; Gisen, J. I.; Akbari, A.

    2018-03-01

    Topography dataset is an important input in performing flood inundation modelling. However, it is always difficult to obtain high resolution topography that provide accurate elevation information. Fortunately, there are some open source topography datasets available with reasonable resolution such as SRTM and ASTER-GDEM. In Malaysia particularly in Kuantan, the modelling research on the floodplain area is still lacking. This research aims to: a) to investigate the suitability of ASTER-GDEM to be applied in the 1D-2D flood inundation modelling for the Kuantan River Basin; b) to generate flood inundation map for Kuantan river basin. The topography dataset used in this study is ASTER-GDEM to generate physical characteristics of watershed in the basin. It is used to perform rainfall runoff modelling for hydrological studies and to delineate flood inundation area in the Flood Modeller. The results obtained have shown that a 30m resolution ASTER-GDEM is applicable as an input for the 1D-2D flood modelling. The simulated water level in 2013 has NSE of 0.644 and RSME of 1.259. As a conclusion, ASTER-GDEM can be used as one alternative topography datasets for flood inundation modelling. However, the flood level obtained from the hydraulic modelling shows low accuracy at flat urban areas.

  4. Electroreduction of CO{sub 2} using copper-deposited on boron-doped diamond (BDD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panglipur, Hanum Sekar; Ivandini, Tribidasari A., E-mail: ivandini.tri@sci.ui.ac.id; Einaga, Yasuaki

    Electroreduction of CO{sub 2} was studied at copper-modified boron-doped diamond (Cu-BDD) electrodes as the working electrode. The Cu-BDD electrodes were prepared by electrochemical reduction with various concentrations of CuSO{sub 4} solutions. FE-SEM was utilized to characterize the electrodes. At Cu-BDD electrodes, a reduction peak at around -1.2 V (vs Ag/AgCl) attributtable to CO{sub 2} reductions could be observed by cyclic voltammetry technique of CO{sub 2} bubbled in water containing 0.1M NaCl. Accordingly, electroreduction of CO{sub 2} was conducted at -1.2 V (vs Ag/AgCl) using amperometry technique. The chemical products of the electroreduction analyzed by using HPLC showed the formation of formaldehyde, formicmore » acid, and acetic acid at Cu-BDD electrodes.« less

  5. Flood hazard mapping of Palembang City by using 2D model

    NASA Astrophysics Data System (ADS)

    Farid, Mohammad; Marlina, Ayu; Kusuma, Muhammad Syahril Badri

    2017-11-01

    Palembang as the capital city of South Sumatera Province is one of the metropolitan cities in Indonesia that flooded almost every year. Flood in the city is highly related to Musi River Basin. Based on Indonesia National Agency of Disaster Management (BNPB), the level of flood hazard is high. Many natural factors caused flood in the city such as high intensity of rainfall, inadequate drainage capacity, and also backwater flow due to spring tide. Furthermore, anthropogenic factors such as population increase, land cover/use change, and garbage problem make flood problem become worse. The objective of this study is to develop flood hazard map of Palembang City by using two dimensional model. HEC-RAS 5.0 is used as modelling tool which is verified with field observation data. There are 21 sub catchments of Musi River Basin in the flood simulation. The level of flood hazard refers to Head Regulation of BNPB number 2 in 2012 regarding general guideline of disaster risk assessment. The result for 25 year return per iod of flood shows that with 112.47 km2 area of inundation, 14 sub catchments are categorized in high hazard level. It is expected that the hazard map can be used for risk assessment.

  6. Green Synthesis of Nanosilica from Coal Fly Ash and Its Stabilizing Effect on CaO Sorbents for CO2 Capture.

    PubMed

    Yan, Feng; Jiang, Jianguo; Li, Kaimin; Liu, Nuo; Chen, Xuejing; Gao, Yuchen; Tian, Sicong

    2017-07-05

    High-temperature sorption of CO 2 via calcium looping has wide applications in postcombustion carbon capture, sorption-enhanced hydrogen production, and inherent energy storage. However, fast deactivations of CaO sorbents and low CO 2 uptake in the fast carbonation stage are major drawbacks of this technology. For the first time, we developed a green approach through the reuse of nanosilica derived from coal fly ash (CFA) to enhance both the cyclic CO 2 uptakes and the sorption kinetics of CaO sorbents. The as-synthesized nanosilica-supported CaO sorbent showed superior cyclic stability even under realistic carbonation/calcination conditions, and maintained a final CO 2 uptake of 0.20 g(CO 2 ) g(sorbent) -1 within short carbonation time, markedly increased by 155% over conventional CaO sorbent. Significantly, it also exhibited very fast sorption rate and could achieve almost 90% of the total CO 2 uptake within ∼20 s after the second cycle, which is critical for practical applications. These positive effects were attributed to the formation of larnite (Ca 2 SiO 4 ) and the physical nanostructure of silica, which could yield and keep abundant reactive small pores directly exposed to CO 2 throughout multiple cycles. The proposed strategy, integrating the on-site recycling of CFA, appears to be promising for CO 2 abatement from coal-fired power plants.

  7. Brucella β 1,2 Cyclic Glucan Is an Activator of Human and Mouse Dendritic Cells

    PubMed Central

    Martirosyan, Anna; Pérez-Gutierrez, Camino; Banchereau, Romain; Dutartre, Hélène; Lecine, Patrick; Dullaers, Melissa; Mello, Marielle; Pinto Salcedo, Suzana; Muller, Alexandre; Leserman, Lee; Levy, Yves; Zurawski, Gerard; Zurawski, Sandy; Moreno, Edgardo; Moriyón, Ignacio; Klechevsky, Eynav; Banchereau, Jacques; Oh, SangKon; Gorvel, Jean-Pierre

    2012-01-01

    Bacterial cyclic glucans are glucose polymers that concentrate within the periplasm of alpha-proteobacteria. These molecules are necessary to maintain the homeostasis of the cell envelope by contributing to the osmolarity of Gram negative bacteria. Here, we demonstrate that Brucella β 1,2 cyclic glucans are potent activators of human and mouse dendritic cells. Dendritic cells activation by Brucella β 1,2 cyclic glucans requires TLR4, MyD88 and TRIF, but not CD14. The Brucella cyclic glucans showed neither toxicity nor immunogenicity compared to LPS and triggered antigen-specific CD8+ T cell responses in vivo. These cyclic glucans also enhanced antigen-specific CD4+ and CD8+ T cell responses including cross-presentation by different human DC subsets. Brucella β 1,2 cyclic glucans increased the memory CD4+ T cell responses of blood mononuclear cells exposed to recombinant fusion proteins composed of anti-CD40 antibody and antigens from both hepatitis C virus and Mycobacterium tuberculosis. Thus cyclic glucans represent a new class of adjuvants, which might contribute to the development of effective antimicrobial therapies. PMID:23166489

  8. Hydroxyalkylation with cyclic sulfates: synthesis of carbazole derived CB(2) ligands with increased polarity.

    PubMed

    Lueg, Corinna; Galla, Fabian; Frehland, Bastian; Schepmann, Dirk; Daniliuc, Constantin G; Deuther-Conrad, Winnie; Brust, Peter; Wünsch, Bernhard

    2014-01-01

    In order to increase the polarity of the potent CB2 ligand 1a, the homologous hydroxyalkyl carbazoles 2a-c were prepared and pharmacologically evaluated. An important step in the synthesis is the hydroxyalkylation of carbazole with cyclic sulfates providing the 2-hydroxyethyl and 3-hydroxypropyl derivatives 5a and 5b in a one-step reaction. The final propionamides 2a-c were prepared using the recently reported coupling reagent COMU®. The X-ray crystal structure of 2c displays an almost coplanar arrangement of the 3-phenyl-1,2,4-oxadiazole biaryl system. The increased polarity of 2a is associated with an almost 100-fold reduced CB2 affinity. The 3-hydroxypropyl derivative 2b represents the best compromise between lipophilicity and CB2 affinity (Ki  = 33 nM). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Comparative study of CO2 and H2O activation in the synthesis of carbon electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Taer, E.; Apriwandi, Yusriwandi, Mustika, W. S.; Zulkifli, Taslim, R.; Sugianto, Kurniasih, B.; Agustino, Dewi, P.

    2018-02-01

    The physical activation for the comparative study of carbon electrode synthesized for supercapacitor applications made from rubber wood sawdust has been performed successfully. Comparison of physical activation used in this research is based on the different gas activation such as CO2 and H2O. The CO2 and H2O activation are made by using an integrated carbonization and activation system. The carbonization process is performed in N2 atmosphere followed by CO2 and H2O activation process. The carbonization process at temperature of 600°C, the CO2 and H2O activation process at a temperature of 900°C and maintained at this condition for 2 h and 3 h. The electrochemical properties were analyzed using cyclic voltammetric (CV) method. The CV results show that the carbon electrode with CO2 activation has better capacitive properties than H2O, the highest specific capacitance obtained is 93.22 F/g for 3 h of activation time. In addition, the analysis of physical properties such as surface morphology and degree of crystallinity was also performed.

  10. Transplantation of allogenic bone marrow in canine cyclic neutropenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, D.C.; Graw, R.G. Jr.

    Transplantation of normal bone marrow cells to a gray collie dog with cyclic neutropenia resulted in normal granulocytopoiesis. The finding suggests that cyclic neutropenia occurs because the hematopoietic stem cells are defective. Because of the similarity of human and canine cyclic neutropenia, it also suggests that the human disease may be curable by marrow transplantation. One day before transplantation, the recipient received 1000 rads gamma irradiation from opposing /sup 60/Co sources at 9 rad/min. (CH)

  11. The Quarantine Bay 4RC CO/sub 2/-WAG pilot project: A post-flood evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsie, J.C.; Moore, J.S.

    1986-01-01

    This paper reviews the design, implementation, and performance of a miscible CO/sub 2/ - WAG (water-alternating-gas) project in a Gulf Coast reservoir. The field test data obtained since the inception of the project in October 1981 are presented, and solutions to operational problems such as downhole corrosion are discussed. Remarkable project response and recovery demonstrated that the CO/sub 2/-WAG process is technically viable for mobilizing considerable amounts of residual oil from watered-out Miocene reservoirs. A 14.7% recovery of original-oil-in-place (OOIP) was obtained using a CO/sub 2/ slug size of 18.9% original hydrocarbon pore volume (HCPV). The CO/sub 2/ requirement wasmore » 2.95 Mcf/bbl (531 m/sup 3//m/sup 3/) of oil recovered.« less

  12. Importance of Integrating High-Resoultion 2D Flood Hazard Maps in the Flood Disaster Management of Marikina City, Philippines

    NASA Astrophysics Data System (ADS)

    Tapales, Ben Joseph; Mendoza, Jerico; Uichanco, Christopher; Mahar Francisco Amante Lagmay, Alfredo; Moises, Mark Anthony; Delmendo, Patricia; Eneri Tingin, Neil

    2015-04-01

    Flooding has been a perennial problem in the city of Marikina. These incidences result in human and economic losses. In response to this, the city has been investing in their flood disaster mitigation program in the past years. As a result, flooding in Marikina was reduced by 31% from 1992 to 2004. [1] However, these measures need to be improved so as to mitigate the effects of floods with more than 100 year return period, such as the flooding brought by tropical storm Ketsana in 2009 which generated 455mm of rains over a 24-hour period. Heavy rainfall caused the streets to be completely submerged in water, leaving at least 70 people dead in the area. In 2012, the Southwest monsoon, enhanced by a typhoon, brought massive rains with an accumulated rainfall of 472mm for 22-hours, a number greater than that which was experienced during Ketsana. At this time, the local government units were much more prepared in mitigating the risk with the use of early warning and evacuation measures, resulting to zero casualty in the area. Their urban disaster management program, however, can be further improved through the integration of high-resolution 2D flood hazard maps in the city's flood disaster management. The use of these maps in flood disaster management is essential in reducing flood-related risks. This paper discusses the importance and advantages of integrating flood maps in structural and non-structural mitigation measures in the case of Marikina City. Flood hazard maps are essential tools in predicting the frequency and magnitude of floods in an area. An information that may be determined with the use of these maps is the locations of evacuation areas, which may be accurately positioned using high-resolution 2D flood hazard maps. Evacuation of people in areas that are not vulnerable of being inundated is one of the unnecessary measures that may be prevented and thus optimizing mitigation efforts by local government units. This paper also discusses proposals for a more

  13. Importance of Integrating High-Resoultion 2D Flood Hazard Maps in the Flood Disaster Management of Marikina City, Philippines

    NASA Astrophysics Data System (ADS)

    Tapales, B. J. M.; Mendoza, J.; Uichanco, C.; Lagmay, A. M. F. A.; Moises, M. A.; Delmendo, P.; Tingin, N. E.

    2014-12-01

    Flooding has been a perennial problem in the city of Marikina. These incidences result in human and economic losses. In response to this, the city has been investing in their flood disaster mitigation program in the past years. As a result, flooding in Marikina was reduced by 31% from 1992 to 2004. [1] However, these measures need to be improved so as to mitigate the effects of floods with more than 100 year return period, such as the flooding brought by tropical storm Ketsana in 2009 which generated 455mm of rains over a 24-hour period. Heavy rainfall caused the streets to be completely submerged in water, leaving at least 70 people dead in the area. In 2012, the Southwest monsoon, enhanced by a typhoon, brought massive rains with an accumulated rainfall of 472mm for 22-hours, a number greater than that which was experienced during Ketsana. At this time, the local government units were much more prepared in mitigating the risk with the use of early warning and evacuation measures, resulting to zero casualty in the area. Their urban disaster management program, however, can be further improved through the integration of high-resolution 2D flood hazard maps in the city's flood disaster management. The use of these maps in flood disaster management is essential in reducing flood-related risks. This paper discusses the importance and advantages of integrating flood maps in structural and non-structural mitigation measures in the case of Marikina City. Flood hazard maps are essential tools in predicting the frequency and magnitude of floods in an area. An information that may be determined with the use of these maps is the locations of evacuation areas, which may be accurately positioned using high-resolution 2D flood hazard maps. Evacuation of areas that are not vulnerable of being inundated is one of the unnecessary measures that may be prevented and thus optimizing mitigation efforts by local government units. This paper also discusses proposals for a more efficient

  14. NiCo2S4 nanorod embedded rGO sheets as electrodes for supercapacitor

    NASA Astrophysics Data System (ADS)

    Sarkar, Aatreyee; Bera, Supriya; Chakraborty, Amit Kumar

    2018-04-01

    We report the synthesis of a hybrid nanostructure based on NiCo2S4 and reduced graphene oxide (rGO) following a facile hydrothermal method. X-ray diffraction (XRD), and electron microscopy (FESEM and HRTEM) analyses showed rod-like NiCo2S4 nanostructures embedded in rGO sheets. The electrochemical analysis of the synthesized nanohybrid using cyclic voltammetry (CV) and galvanostatic charge discharge (GCD) revealed specific capacitance of 410 F/gm indicating its suitability as a good electrode material for supercapacitor.

  15. Probing the Reactivity of Cyclic "N,O"-Acetals versus Cyclic "O,O"-Acetals with NaBH[subscript 4] and CH[subscript 3]MgI

    ERIC Educational Resources Information Center

    Ciaccio, James A.; Saba, Shahrokh; Bruno, Samantha M.; Bruppacher, John H.; McKnight, Alexa G.

    2018-01-01

    An operationally straightforward, project-like laboratory experiment has been developed in which students directly compare the reactivity of two heterocycles, a cyclic "O,O"-acetal (standard C-O protecting group) and a cyclic "N,O"-acetal (oxazolidine), toward sodium borohydride and methylmagnesium iodide. Students synthesize a…

  16. Development of a preprototype Sabatier CO2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Birbara, P.

    1981-01-01

    A lightweight, quick starting reactor utilizes a highly active and physically durable methanation catalyst composed of ruthenium on alumina. The use of this improved catalyst permits a single straight through plug flow design with an average lean component H2/CO2 conversion efficiency of over 99% over a range of H2/CO2 molar ratios of 1.8 to 5 while operating with flows equivalent to a crew size of one person steadystate to 3 persons cyclical. The reactor requires no heater operation after start-up even during simulated 55 minute lightside/39 minute darkside orbital operation over the above range of molar ratios and crew loadings. Subsystem performance was proven by parametric testing and endurance testing over a wide range of crew sizes and metabolic loadings. The subsystem's operation and performance is controlled by a microprocessor and displayed on a nineteen inch multi-colored cathode ray tube.

  17. Raising awareness of the importance of engineering protections against floods with "Flood-o-poly" v.2

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Cheng, Ming

    2017-04-01

    This study presents the results of a survey focusing on the use of a new fit for purpose designed city in a sand-box model, namely "Flood-o-poly" version 2, which is building on the success of the previous model. "Flood-o-poly" has been successfully presented to thousands of students of all ages in the School of Engineering Open days (University of Glasgow), Widening Participation, Glasgow Science Festival, Glasgow Science Museum and Engineering Hydraulics classes and Design projects, over the last four years. The new design involves a new and extended 3D scaled model that accurately replicates the topography of a city along with its rivers, towards demonstrating the impacts of flooding (induced artificially in the scaled physical model via the use of small water pumps). "Flood-o-poly" is a highly visual and well popularized engineering outreach project (developed from the applicant at the University of Glasgow), which has already been extensively used to showcase the detrimental impacts of flooding, for both the natural ecosystems and the build infrastructure alike (see https://twitter.com/WaterEngLab/status/758270564561784832 on Twitter and https://youtu.be/H5oThT6QaTc on Youtube). This involves a highly interactive session where the students simulate the scenarios of "urbanization" (by placing more buildings on the flood-planes) and "climate change" where more extreme flow rates have to be routed through the river. The project demonstrates how this design can benefit the cohorts of the 3rd and 4rth year Civil Engineering undergraduate students, the students attending the School's Open days, Widening Participation Days, Glasgow Science Festival and Glasgow Science Museum events. "Flood-o-poly" focuses on personalizing the student experience with regard to flood impacts and promotes the need for resilient and sustainable flood protection designs. Further, using novel presentation and student-centered technologies, the students are given a truly unique experience

  18. Effect of Thaw Depth on Fluxes of CO2 and CH4 in Manipulated Arctic Coastal Tundra of Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Kim, Y.

    2014-12-01

    Changes in CO2 and CH4 emissions represent one of the most significant consequences of drastic climate change in the Arctic, by way of thawing permafrost, a deepened active layer, and decline of thermokarst lakes in the Arctic. This study conducted flux-measurements of CO2 and CH4, as well as environmental factors such as temperature, moisture, and thaw depth, as part of a water table manipulation experiment in the Arctic coastal plain tundra of Barrow, Alaska during autumn. The manipulation treatment consisted of draining, controlling, and flooding treated sections by adjusting standing water. Inundation increased CH4 emission by a factor of 4.3 compared to non-flooded sections. This may be due to the decomposition of organic matter under a limited oxygen environment by saturated standing water. On the other hand, CO2 emission in the dry section was 3.9-fold higher than in others. CH4 emission tends to increase with deeper thaw depth, which strongly depends on the water table; however, CO2 emission is not related to thaw depth. Quotients of global warming potential (GWPCO2) (dry/control) and GWPCH4 (wet/control) increased by 464 and 148 %, respectively, and GWPCH4 (dry/control) declined by 66 %. This suggests that CO2 emission in a drained section is enhanced by soil and ecosystem respiration, and CH4 emission in a flooded area is likely stimulated under an anoxic environment by inundated standing water. The findings of this manipulation experiment during the autumn period demonstrate the different production processes of CO2 and CH4, as well as different global warming potentials, coupled with change in thaw depth. Thus the outcomes imply that the expansion of tundra lakes leads the enhancement of CH4 release, and the disappearance of the lakes causes the stimulated CO2 production in response to the Arctic climate change.

  19. New group 6 metal carbonyl complexes with 4,5-dimethyl-N,N-bis(pyridine-2-yl-methylene)benzene-1,2-diimine Schiff base: synthesis, spectral, cyclic voltammetry and biological activity studies.

    PubMed

    Mohamed, Rania G; Elantabli, Fatma M; Helal, Nadia H; El-Medani, Samir M

    2015-04-15

    Thermal reaction of M(CO)6 (M=Cr, Mo or W) with a Schiff base (DMPA) derived from the condensation of 4,5-dimethyl-1,2-phenylenediamine and pyridine-2-carboxaldehyde in THF in absence and presence of a secondary ligand; 2-aminobenzimidazole (Abz), thiourea (Tu) or 2-(2'-pyridyl)benzimidazole (pybz) were studied. The reaction of Cr(CO)6 gave the four complexes Cr2(CO)2(DMPA)2; 1, Cr(DMPA)2(Abz)2; 2, Cr2(CO)4(DMPA)2(Tu)2; 3 and Cr(DMPA)2(Pybz); 4, while the thermal reaction of Mo(CO)6 resulted in the formation of the two complexes Mo2(O)6(DMPA)2; 5, and Mo2(O)2(CO)2(DMPA)2(Tu)2; 6. Thermal reaction of W(CO)6 and the Schiff base DMPA gave the complex W(O)2(DMPA)2; 7. The ligand DMPA and its metal complexes have been reported and characterized based on elemental analyses, IR, (1)H NMR, magnetic measurements, and thermal analysis. Cyclic voltammetry and biological activity were also investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effect of Mineral Dissolution/Precipitation and CO2 Exsolution on CO2 transport in Geological Carbon Storage.

    PubMed

    Xu, Ruina; Li, Rong; Ma, Jin; He, Di; Jiang, Peixue

    2017-09-19

    continuously injected through the core. The MRI results indicate dissolution of the carbonates during the experiments since the porosity has been increased after the core-flooding experiments. The mineral dissolution changes the pore structure by enlarging the throat diameters and decreasing the pore specific surface areas, resulting in lower CO 2 /water capillary pressures and changes in the relative permeability. When the reservoir pressure decreases, the CO 2 exsolution occurs due to the reduction of solubility. The CO 2 bubbles preferentially grow toward the larger pores instead of toward the throats or the finer pores during the depressurization. After exsolution, the exsolved CO 2 phase shows low mobility due to the highly dispersed pore-scale morphology, and the well dispersed small bubbles tend to merge without interface contact driven by the Ostwald ripening mechanism. During depressurization, the dissolved carbonate could also precipitate as a result of increasing pH. There is increasing formation water flow resistance and low mobility of the CO 2 in the presence of CO 2 exsolution and carbonate precipitation. These effects produce a self-sealing mechanism that may reduce unfavorable CO 2 migration even in the presence of sudden reservoir depressurization.

  1. Effects of experimental water table and temperature manipulations on ecosystem CO2 fluxes in an Alaskan rich fen

    USGS Publications Warehouse

    Chivers, M.R.; Turetsky, M.R.; Waddington, J.M.; Harden, J.W.; McGuire, A.D.

    2009-01-01

    Peatlands store 30% of the world's terrestrial soil carbon (C) and those located at northern latitudes are expected to experience rapid climate warming. We monitored growing season carbon dioxide (CO2) fluxes across a factorial design of in situ water table (control, drought, and flooded plots) and soil warming (control vs. warming via open top chambers) treatments for 2 years in a rich fen located just outside the Bonanza Creek Experimental Forest in interior Alaska. The drought (lowered water table position) treatment was a weak sink or small source of atmospheric CO2 compared to the moderate atmospheric CO2 sink at our control. This change in net ecosystem exchange was due to lower gross primary production and light-saturated photosynthesis rather than increased ecosystem respiration. The flooded (raised water table position) treatment was a greater CO2 sink in 2006 due largely to increased early season gross primary production and higher light-saturated photosynthesis. Although flooding did not have substantial effects on rates of ecosystem respiration, this water table treatment had lower maximum respiration rates and a higher temperature sensitivity of ecosystem respiration than the control plot. Surface soil warming increased both ecosystem respiration and gross primary production by approximately 16% compared to control (ambient temperature) plots, with no net effect on net ecosystem exchange. Results from this rich fen manipulation suggest that fast responses to drought will include reduced ecosystem C storage driven by plant stress, whereas inundation will increase ecosystem C storage by stimulating plant growth. ?? 2009 Springer Science+Business Media, LLC.

  2. Turnover of cyclic 2,3-diphosphoglycerate in Methanobacterium thermoautotrophicum. Phosphate flux in P1- and H2-limited chemostat cultures.

    PubMed

    Krueger, R D; Campbell, J W; Fahrney, D E

    1986-09-15

    The archaebacterium Methanobacterium thermoautotrophicum was grown at 65 degrees C in H2- and Pi-limited chemostat cultures at dilution rates corresponding to 3- and 4-h doubling times, respectively. Under these conditions the steady state concentration of cyclic 2,3-diphosphoglycerate was 44 mM in the H2-limited cells and 13 mM in the cells grown under Pi limitation. Flux of Pi into the cyclic pyrophosphate pool was estimated by two 32P-labeling procedures: approach to isotopic equilibrium and replacement of prelabeled cyclic diphosphoglycerate with unlabeled compound. The results unequivocally demonstrate turnover of the phosphoryl groups; either both phosphoryl groups of the cyclic pyrophosphate leave together or the second leaves at a faster rate. The half-life of the rate-determining step for loss of the phosphoryl groups was approximately equal to the culture doubling time. The Pi flowing into the cyclic diphosphoglycerate pool accounted for 19% of the total Pi flux into Pi-limited cells and 43% of the total for H2-limited cells. The high phosphate flux through the large cyclic diphosphoglycerate pool suggests that this molecule plays an important role in the phosphorus metabolism of this methanogen.

  3. Conversion of CO2 into cyclic carbonates by a Co(ii) metal-organic framework and the improvement of catalytic activity via nanocrystallization.

    PubMed

    Ji, Xiao-He; Zhu, Ning-Ning; Ma, Jian-Gong; Cheng, Peng

    2018-02-06

    The Co(ii) metal-organic framework (MOF) {[Co(μ 3 -L)(H 2 O)]·0.5H 2 O} n (1, H 2 L = thiazolidine 2,4-dicarboxylic acid) with rich Lewis acid sites was used as a catalyst for the conversion of CO 2 and propylene oxide into propylene carbonate with a yield of up to 98% under 50 °C and 1 atm. 1 exhibited excellent reusability, which could be regenerated easily for at least five runs without a decrease in the yield. Importantly, we synthesized two types of nano-crystals (N1 and N2) of 1 with polyvinylpyrrolidone (PVP) and hexadecyltrimethylammonium bromide (CTAB) as surfactants, respectively, and investigated their catalytic properties in comparison with that of 1 in the powder phase. A significant enhancement in both catalytic efficiency and product yield was observed when 1 was nano-crystallized. This is the first investigation about the relationship between the morphology and the catalytic parameters of MOFs. The results showed a strategy for efficiently applying MOFs as catalysts towards CO 2 conversion, which could also be used in other MOF-catalyzed processes.

  4. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise

    USGS Publications Warehouse

    Langley, J.A.; McKee, K.L.; Cahoon, D.R.; Cherry, J.A.; Megonigala, J.P.

    2009-01-01

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO2 concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO2] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO2 (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr−1in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO2 effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO2, may paradoxically aid some coastal wetlands in counterbalancing rising seas.

  5. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise.

    PubMed

    Langley, J Adam; McKee, Karen L; Cahoon, Donald R; Cherry, Julia A; Megonigal, J Patrick

    2009-04-14

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO(2) concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO(2)] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO(2) (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr(-1) in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO(2) effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO(2), may paradoxically aid some coastal wetlands in counterbalancing rising seas.

  6. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise

    PubMed Central

    Langley, J. Adam; McKee, Karen L.; Cahoon, Donald R.; Cherry, Julia A.; Megonigal, J. Patrick

    2009-01-01

    Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO2 concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO2] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO2 (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr−1 in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO2 effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO2, may paradoxically aid some coastal wetlands in counterbalancing rising seas. PMID:19325121

  7. Studies of Cobalt-Mediated Electrocatalytic CO2 Reduction Using a Redox-Active Ligand

    PubMed Central

    2015-01-01

    The cobalt complex [CoIIIN4H(Br)2]+ (N4H = 2,12-dimethyl-3,7,11,17-tetraazabicyclo-[11.3.1]-heptadeca-1(7),2,11,13,15-pentaene) was used for electrocatalytic CO2 reduction in wet MeCN with a glassy carbon working electrode. When water was employed as the proton source (10 M in MeCN), CO was produced (fCO= 45% ± 6.4) near the CoI/0 redox couple for [CoIIIN4H(Br)2]+ (E1/2 = −1.88 V FeCp2+/0) with simultaneous H2 evolution (fH2= 30% ± 7.8). Moreover, we successfully demonstrated that the catalytically active species is homogeneous through the use of control experiments and XPS studies of the working glassy-carbon electrodes. As determined by cyclic voltammetry, CO2 catalysis occurred near the formal CoI/0redox couple, and attempts were made to isolate the triply reduced compound (“[Co0N4H]”). Instead, the doubly reduced (“CoI”) compounds [CoN4] and [CoN4H(MeCN)]+ were isolated and characterized by X-ray crystallography. Their molecular structures prompted DFT studies to illuminate details regarding their electronic structure. The results indicate that reducing equivalents are stored on the ligand, implicating redox noninnocence in the ligands for H2 evolution and CO2 reduction electrocatalysis. PMID:24773584

  8. Effect of initial GnRH and time of insemination on reproductive performance in cyclic and acyclic beef heifers subjected to a 5-d Co-synch plus progesterone protocol.

    PubMed

    Helguera, I López; Whittaker, P; Behrouzi, A; Mapletoft, R J; Colazo, M G

    2018-01-15

    This study evaluated the effect of initial GnRH and timing of AI in a 5-d Co-synch plus CIDR (device containing 1.38 g of progesterone) protocol on pregnancy per AI (P/AI) and pregnancy loss in beef heifers. A secondary objective was to determine if the effect of initial GnRH on reproductive performance was influenced by cyclicity. Crossbred beef heifers (n = 1068; 301-514 kg of body weight, and 13-15 mo of age) at three locations were assigned to either a 5-d Co-synch plus CIDR protocol with (CIDR5G) or without (CIDR5NG) an initial injection of 100 μg of GnRH at CIDR insertion (Day 0). All heifers received a single dose of 500 μg of cloprostenol at CIDR removal (Day 5) and were divided into two groups to receive GnRH and TAI at either 66 or 72 h (Day 8) after CIDR removal. All heifers were inseminated by one technician with frozen-thawed semen from 1 of 4 sires available commercially. Transrectal ultrasonography was performed on Day 0 to determine cyclicity (presence of CL) and normalcy of the reproductive track, and 27 d after TAI to determine pregnancy status. Non-pregnant heifers (n = 470) were assigned to either a CIDR5G or a CIDR5NG protocol with TAI at 72 h after CIDR removal. Twelve days after second AI, heifers were exposure to bulls for 20 d and pregnancy diagnoses were performed approximately 30 d after second TAI and 60 d after bulls were removed to diagnose bull pregnancies and determine pregnancy loss rate. The percentage of acyclic heifers was 20.3%. Overall P/AI after first TAI was 55.6% (594/1068) and did not differ between CIDR5G and CIDR5NG (56.1 vs. 55.1%), or between TAI66 and TAI72 (55.8 vs. 55.4%). However, cyclic heifers were more likely to become pregnant than acyclic ones (59.3 vs. 41.2%; P < 0.01). Moreover, acyclic heifers subjected to the CIDR5NG had fewer P/AI than those subjected to CIDR5G (P < 0.01). Overall P/AI after resynchronization was 55.1% and did not differ between CIDR5G and CIDR5NG (51.3 vs. 59

  9. Using eddy covariance of CO2, 13CO2 and CH4, continuous soil respiration measurements, and PhenoCams to constrain a process-based biogeochemical model for carbon market-funded wetland restoration

    NASA Astrophysics Data System (ADS)

    Oikawa, P. Y.; Baldocchi, D. D.; Knox, S. H.; Sturtevant, C. S.; Verfaillie, J. G.; Dronova, I.; Jenerette, D.; Poindexter, C.; Huang, Y. W.

    2015-12-01

    We use multiple data streams in a model-data fusion approach to reduce uncertainty in predicting CO2 and CH4 exchange in drained and flooded peatlands. Drained peatlands in the Sacramento-San Joaquin River Delta, California are a strong source of CO2 to the atmosphere and flooded peatlands or wetlands are a strong CO2 sink. However, wetlands are also large sources of CH4 that can offset the greenhouse gas mitigation potential of wetland restoration. Reducing uncertainty in model predictions of annual CO2 and CH4 budgets is critical for including wetland restoration in Cap-and-Trade programs. We have developed and parameterized the Peatland Ecosystem Photosynthesis, Respiration, and Methane Transport model (PEPRMT) in a drained agricultural peatland and a restored wetland. Both ecosystem respiration (Reco) and CH4 production are a function of 2 soil carbon (C) pools (i.e. recently-fixed C and soil organic C), temperature, and water table height. Photosynthesis is predicted using a light use efficiency model. To estimate parameters we use a Markov Chain Monte Carlo approach with an adaptive Metropolis-Hastings algorithm. Multiple data streams are used to constrain model parameters including eddy covariance of CO2, 13CO2 and CH4, continuous soil respiration measurements and digital photography. Digital photography is used to estimate leaf area index, an important input variable for the photosynthesis model. Soil respiration and 13CO2 fluxes allow partitioning of eddy covariance data between Reco and photosynthesis. Partitioned fluxes of CO2 with associated uncertainty are used to parametrize the Reco and photosynthesis models within PEPRMT. Overall, PEPRMT model performance is high. For example, we observe high data-model agreement between modeled and observed partitioned Reco (r2 = 0.68; slope = 1; RMSE = 0.59 g C-CO2 m-2 d-1). Model validation demonstrated the model's ability to accurately predict annual budgets of CO2 and CH4 in a wetland system (within 14% and 1

  10. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes

    2005-09-01

    The objective of this research project is to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data to observe changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestones of the Lansing-Kansasmore » City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 18 months of seismic monitoring, one baseline and six monitor surveys clearly imaged changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators.« less

  11. Ethanol electrooxidation in alkaline medium on electrochemically synthesized Co(OH)2/Au composite

    NASA Astrophysics Data System (ADS)

    Babu, Sreejith P.; Elumalai, Perumal

    2017-01-01

    Gold (Au), cobalt hydroxide (Co(OH)2) and different Co(OH)2/Au compositions were electro-deposited onto stainless steel by a potentiodynamic method from the respective metal-ion solutions. The deposits were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transformed infra-red spectroscopy (FT-IR). The XRD and IR data confirmed that the deposits were Au, α-Co(OH)2 or Co(OH)2/Au composites. The SEM observations confirmed that the morphology of the Au was spherical, while the α-Co(OH)2 was flakey with pores. The morphology of the Co(OH)2/Au composites consisted of highly agglomerated Au grains distributed on the Co(OH)2 matrix. The electrocatalytic activity of each of the Au, Co(OH)2 and Co(OH)2/Au-composite electrodes towards ethanol electrooxidation in an alkaline medium was investigated by cyclic voltammetry and chronoamperometry. It turned out that the Co(OH)2/Au-composite electrodes exhibited superior catalytic activity for ethanol electrooxidation compared with the pristine Au or Co(OH)2 electrodes. A peak current density as high as 25 mA cm-2 was exhibited by the Co(OH)2/ Au composite while the Au and Co(OH)2 showed only 0.9 and 13 mA cm-2, respectively. The enhanced conductivity of the Co(OH)2/Au matrix due to the presence of Au, as well as the combined catalytic activity, seemed to be responsible for the superior performance of the Co(OH)2/Au-composite electrodes.

  12. Effects of cyclic structure inhibitors on the morphology and growth of tetrahydrofuran hydrate crystals

    NASA Astrophysics Data System (ADS)

    Li, Sijia; Wang, Yanhong; Lang, Xuemei; Fan, Shuanshi

    2013-08-01

    Morphology and growth of hydrate crystals with cyclic structure inhibitors at a hydrate-liquid interface were directly observed through a microscopic manipulating apparatus. Tetrahydrofuran (THF) hydrate was employed as an objective. The effects of four kind of cyclic structure inhibitors, polyvinylpyrrolidone (PVP), poly(N-vinyl-2-pyrrolidone-co-2-vinyl pyridine) (PVPP), poly(2-vinyl pyridine-co-N-vinylcaprolactam) (PVPC) and poly(N-vinylcaprolactam) (PVCap), were investigated. Morphological patterns between each hydrate crystal growth from hydrate-liquid interface into droplet were found differ significantly. Lamellar structure growth of hydrate crystal was observed without inhibitor, while with PVP was featheriness-like, PVPP was like long dendritic crystal, PVPC was Mimosa pudica leaf-like and PVCap was like weeds. The growth rate of hydrate crystal without inhibitor was 0.00498 mm3/s, while with PVPP, PVPC and PVCap, were 0.00339 mm3/s, 0.00350 mm3/s, 0.00386 mm3/s and 0.00426 mm3/s, respectively. Cyclic structure inhibitors can decrease the growth rate, degree of reduction in growth rate of hydrate crystals decrease with the increase of cylinder number.

  13. A benchmark of co-flow and cyclic deposition/etch approaches for the selective epitaxial growth of tensile-strained Si:P

    NASA Astrophysics Data System (ADS)

    Hartmann, J. M.; Veillerot, M.; Prévitali, B.

    2017-10-01

    We have compared co-flow and cyclic deposition/etch processes for the selective epitaxial growth of Si:P layers. High growth rates, relatively low resistivities and significant amounts of tensile strain (up to 10 nm min-1, 0.55 mOhm cm and a strain equivalent to 1.06% of substitutional C in Si:C layers) were obtained at 700 °C, 760 Torr with a co-flow approach and a SiH2Cl2 + PH3 + HCl chemistry. This approach was successfully used to thicken the sources and drains regions of n-type fin-shaped Field Effect Transistors. Meanwhile, the (Si2H6 + PH3/HCl + GeH4) CDE process evaluated yielded at 600 °C, 80 Torr even lower resistivities (0.4 mOhm cm, typically), at the cost however of the tensile strain which was lost due to (i) the incorporation of Ge atoms (1.5%, typically) into the lattice during the selective etch steps and (ii) a reduction by a factor of two of the P atomic concentration in CDE layers compared to that in layers grown in a single step (5 × 1020 cm-3 compared to 1021 cm-3).

  14. Multiple receptor conformation docking and dock pose clustering as tool for CoMFA and CoMSIA analysis - a case study on HIV-1 protease inhibitors.

    PubMed

    Sivan, Sree Kanth; Manga, Vijjulatha

    2012-02-01

    Multiple receptors conformation docking (MRCD) and clustering of dock poses allows seamless incorporation of receptor binding conformation of the molecules on wide range of ligands with varied structural scaffold. The accuracy of the approach was tested on a set of 120 cyclic urea molecules having HIV-1 protease inhibitory activity using 12 high resolution X-ray crystal structures and one NMR resolved conformation of HIV-1 protease extracted from protein data bank. A cross validation was performed on 25 non-cyclic urea HIV-1 protease inhibitor having varied structures. The comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models were generated using 60 molecules in the training set by applying leave one out cross validation method, r (loo) (2) values of 0.598 and 0.674 for CoMFA and CoMSIA respectively and non-cross validated regression coefficient r(2) values of 0.983 and 0.985 were obtained for CoMFA and CoMSIA respectively. The predictive ability of these models was determined using a test set of 60 cyclic urea molecules that gave predictive correlation (r (pred) (2) ) of 0.684 and 0.64 respectively for CoMFA and CoMSIA indicating good internal predictive ability. Based on this information 25 non-cyclic urea molecules were taken as a test set to check the external predictive ability of these models. This gave remarkable out come with r (pred) (2) of 0.61 and 0.53 for CoMFA and CoMSIA respectively. The results invariably show that this method is useful for performing 3D QSAR analysis on molecules having different structural motifs.

  15. CO 2 Mineral Sequestration in Naturally Porous Basalt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Wei; Wells, Rachel K.; Horner, Jake A.

    2018-02-27

    Continental flood basalts are extensive geologic features currently being evaluated as reservoirs that are suitable for long-term storage of carbon emissions. Favorable attributes of these formations for containment of injected carbon dioxide (CO2) include high mineral trapping capacity, unique structural features, and enormous volumes. We experimentally investigated mineral carbonation in whole core samples retrieved from the Grand Ronde basalt, the same formation into which ~1000 t of CO2 was recently injected in an eastern Washington pilot-scale demonstration. The rate and extent of carbonate mineral formation at 100 °C and 100 bar were tracked via time-resolved sampling of bench-scale experiments. Basaltmore » cores were recovered from the reactor after 6, 20, and 40 weeks, and three-dimensional X-ray tomographic imaging of these cores detected carbonate mineral formation in the fracture network within 20 weeks. Under these conditions, a carbon mineral trapping rate of 1.24 ± 0.52 kg of CO2/m3 of basalt per year was estimated, which is orders of magnitude faster than rates for deep sandstone reservoirs. On the basis of these calculations and under certain assumptions, available pore space within the Grand Ronde basalt formation would completely carbonate in ~40 years, resulting in solid mineral trapping of ~47 kg of CO2/m3 of basalt.« less

  16. Spray‐Dried Sodium Zirconate: A Rapid Absorption Powder for CO2 Capture with Enhanced Cyclic Stability

    PubMed Central

    Bamiduro, Faith; Ji, Guozhao; Brown, Andy P.; Dupont, Valerie A.

    2017-01-01

    Abstract Improved powders for capturing CO2 at high temperatures are required for H2 production using sorption‐enhanced steam reforming. Here, we examine the relationship between particle structure and carbonation rate for two types of Na2ZrO3 powders. Hollow spray‐dried microgranules with a wall thickness of 100–300 nm corresponding to the dimensions of the primary acetate‐derived particles gave about 75 wt % theoretical CO2 conversion after a process‐relevant 5 min exposure to 15 vol % CO2. A conventional powder prepared by solid‐state reaction carbonated more slowly, achieving only 50 % conversion owing to a greater proportion of the reaction requiring bulk diffusion through the densely agglomerated particles. The hollow granular structure of the spray‐dried powder was retained postcarbonation but chemical segregation resulted in islands of an amorphous Na‐rich phase (Na2CO3) within a crystalline ZrO2 particle matrix. Despite this phase separation, the reverse reaction to re‐form Na2ZrO3 could be achieved by heating each powder to 900 °C in N2 (no dwell time). This resulted in a very stable multicycle performance in 40 cycle tests using thermogravimetric analysis for both powders. Kinetic analysis of thermogravimetric data showed the carbonation process fits an Avrami–Erofeyev 2 D nucleation and nuclei growth model, consistent with microstructural evidence of a surface‐driven transformation. Thus, we demonstrate that spray drying is a viable processing route to enhance the carbon capture performance of Na2ZrO3 powder. PMID:28371521

  17. Multi-dimensional perspectives of flood risk - using a participatory framework to develop new approaches to flood risk communication

    NASA Astrophysics Data System (ADS)

    Rollason, Edward; Bracken, Louise; Hardy, Richard; Large, Andy

    2017-04-01

    Flooding is a major hazard across Europe which, since, 1998 has caused over €52 million in damages and displaced over half a million people. Climate change is predicted to increase the risks posed by flooding in the future. The 2007 EU Flood Directive cemented the use of flood risk maps as a central tool in understanding and communicating flood risk. Following recent flooding in England, an urgent need to integrate people living at risk from flooding into flood management approaches, encouraging flood resilience and the up-take of resilient activities has been acknowledged. The effective communication of flood risk information plays a major role in allowing those at risk to make effective decisions about flood risk and increase their resilience, however, there are emerging concerns over the effectiveness of current approaches. The research presented explores current approaches to flood risk communication in England and the effectiveness of these methods in encouraging resilient actions before and during flooding events. The research also investigates how flood risk communications could be undertaken more effectively, using a novel participatory framework to integrate the perspectives of those living at risk. The research uses co-production between local communities and researchers in the environmental sciences, using a participatory framework to bring together local knowledge of flood risk and flood communications. Using a local competency group, the research explores what those living at risk from flooding want from flood communications in order to develop new approaches to help those at risk understand and respond to floods. Suggestions for practice are refined by the communities to co-produce recommendations. The research finds that current approaches to real-time flood risk communication fail to forecast the significance of predicted floods, whilst flood maps lack detailed information about how floods occur, or use scientific terminology which people at risk

  18. Flooding and Flood Management

    USGS Publications Warehouse

    Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim

    2011-01-01

    Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.

  19. New Insights into CO2 Adsorption on Layered Double Hydroxide (LDH)-Based Nanomaterials

    NASA Astrophysics Data System (ADS)

    Tang, Nian; He, Tingyu; Liu, Jie; Li, Li; Shi, Han; Cen, Wanglai; Ye, Zhixiang

    2018-02-01

    The interlamellar spacing of layered double hydroxides (LDHs) was enlarged by dodecyl sulfonate ions firstly, and then, (3-aminopropyl)triethoxysilane (APS) was chemically grafted (APS/LDHs). The structural characteristics and thermal stability of these prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), reflectance Fourier transform infrared spectrometer (FTIR), thermogravimetric analysis (TG), and elemental analysis (EA) respectively. The CO2 adsorption performance was investigated adopting TG and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The results presented that the CO2 adsorption capacity on APS/LDHs was as high as 90 mg/g and showed no obvious reduction during a five cyclic adsorption-desorption test, indicating its superior performance stability. The DRIFTS results showed that both carbamates and weakly bounded CO2 species were generated on APS/LDHs. The weakly adsorbed species was due to the different local chemical environment for CO2 capture provided by the surface moieties of LDHs like free silanol and hydrogen bonds.

  20. Escherichia coli pathotypes in Pakistan from consecutive floods in 2010 and 2011.

    PubMed

    Bokhari, Habib; Shah, Muhammad Ali; Asad, Saba; Akhtar, Sania; Akram, Muhammad; Wren, Brendan W

    2013-03-01

    This study compares Escherichia coli pathotypes circulating among children in Pakistan during the floods of 2010 and 2011 and from sporadic cases outside flood affected areas. Using multiplex polymerase chain reaction 115 of 205 stool samples (56.29%) were positive for diarrheagenic E. coli from specimens taken during the floods compared with 50 of 400 (12.5%) stool samples being positive for sporadic cases. The E. coli pathotypes were categorized as Enteropathogenic E. coli 33 (28.69%) and 13 (26%), Enterotoxigenic E. coli 29 (25.21%) and 15 (30%), Enteroaggregative E. coli 21 (18.2%) and 18 (36%), Enterohemorrhagic E. coli 5 (4.34%) and 1 (2%) from flood and sporadic cases, respectively. Furthermore, patients co-infected with more than one pathotype were 26 (22.60%) and 3 (6%) from flood and sporadic cases, respectively. The study shows an unexpectedly high rate of isolation of E. coli pathotypes suggesting Pakistan as an endemic region that requires active surveillance particularly during flood periods.

  1. Escherichia coli Pathotypes in Pakistan from Consecutive Floods in 2010 and 2011

    PubMed Central

    Bokhari, Habib; Shah, Muhammad Ali; Asad, Saba; Akhtar, Sania; Akram, Muhammad; Wren, Brendan W.

    2013-01-01

    This study compares Escherichia coli pathotypes circulating among children in Pakistan during the floods of 2010 and 2011 and from sporadic cases outside flood affected areas. Using multiplex polymerase chain reaction 115 of 205 stool samples (56.29%) were positive for diarrheagenic E. coli from specimens taken during the floods compared with 50 of 400 (12.5%) stool samples being positive for sporadic cases. The E. coli pathotypes were categorized as Enteropathogenic E. coli 33 (28.69%) and 13 (26%), Enterotoxigenic E. coli 29 (25.21%) and 15 (30%), Enteroaggregative E. coli 21 (18.2%) and 18 (36%), Enterohemorrhagic E. coli 5 (4.34%) and 1 (2%) from flood and sporadic cases, respectively. Furthermore, patients co-infected with more than one pathotype were 26 (22.60%) and 3 (6%) from flood and sporadic cases, respectively. The study shows an unexpectedly high rate of isolation of E. coli pathotypes suggesting Pakistan as an endemic region that requires active surveillance particularly during flood periods. PMID:23358642

  2. Cycle development and design for CO2 capture from flue gas by vacuum swing adsorption.

    PubMed

    Zhang, Jun; Webley, Paul A

    2008-01-15

    CO2 capture and storage is an important component in the development of clean power generation processes. One CO2 capture technology is gas-phase adsorption, specifically pressure (or vacuum) swing adsorption. The complexity of these processes makes evaluation and assessment of new adsorbents difficult and time-consuming. In this study, we have developed a simple model specifically targeted at CO2 capture by pressure swing adsorption and validated our model by comparison with data from a fully instrumented pilot-scale pressure swing adsorption process. The model captures nonisothermal effects as well as nonlinear adsorption and nitrogen coadsorption. Using the model and our apparatus, we have designed and studied a large number of cycles for CO2 capture. We demonstrate that by careful management of adsorption fronts and assembly of cycles based on understanding of the roles of individual steps, we are able to quickly assess the effect of adsorbents and process parameters on capture performance and identify optimal operating regimes and cycles. We recommend this approach in contrast to exhaustive parametric studies which tend to depend on specifics of the chosen cycle and adsorbent. We show that appropriate combinations of process steps can yield excellent process performance and demonstrate how the pressure drop, and heat loss, etc. affect process performance through their effect on adsorption fronts and profiles. Finally, cyclic temperature profiles along the adsorption column can be readily used to infer concentration profiles-this has proved to be a very useful tool in cyclic function definition. Our research reveals excellent promise for the application of pressure/vacuum swing adsorption technology in the arena of CO2 capture from flue gases.

  3. Electrical Resistance Tomography Field Trials to Image CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Newmark, R.

    2003-12-01

    If geologic formations are used to sequester or store carbon dioxide (CO2) for long periods of time, it will be necessary to verify the containment of injected CO2 by assessing leaks and flow paths, and by understanding the geophysical and geochemical interactions between the CO2 and the geologic minerals and fluids. Remote monitoring methods are preferred, to minimize cost and impact to the integrity of the disposal reservoir. Electrical methods are especially well suited for monitoring processes involving fluids, as electrical properties are most sensitive to the presence and nature of the fluids contained in the medium. High resolution tomographs of electrical properties have been used with success for site characterization, monitoring subsurface migration of fluids in instances of leaking underground tanks, water infiltration events, subsurface steam floods, contaminant movement, and assessing the integrity of subsurface barriers. These surveys are commonly conducted utilizing vertical arrays of point electrodes in a crosswell configuration. Alternative ways of monitoring the reservoir are desirable due to the high costs of drilling the required monitoring boreholes Recent field results obtained using steel well casings as long electrodes are also promising. We have conducted field trials to evaluate the effectiveness of long electrode ERT as a potential monitoring approach for CO2 sequestration. In these trials, CO2 is not being sequestered but rather is being used as a solvent for enhanced oil recovery. This setting offers the same conditions expected during sequestration so monitoring secondary oil recovery allows a test of the method under realistic physical conditions and operational constraints. Field experience has confirmed the challenges identified during model studies. The principal difficulty are the very small signals due to the fact that formation changes occur only over a small segment of the 5000 foot length of the electrodes. In addition

  4. Comparison of the 2-, 25-, and 100-year recurrence interval floods computed from observed data with the 1995 urban flood-frequency estimating equations for Georgia

    USGS Publications Warehouse

    Inman, Ernest J.

    1997-01-01

    Flood-frequency relations were computed for 28 urban stations, for 2-, 25-, and 100-year recurrence interval floods and the computations were compared to corresponding recurrence interval floods computed from the estimating equations from a 1995 investigation. Two stations were excluded from further comparisons or analyses because neither station had a significant flood during the period of observed record. The comparisons, based on the student's t-test statistics at the 0.05 level of significance, indicate that the mean residuals of the 25- and 100-year floods were negatively biased by 26.2 percent and 31.6 percent, respectively, at the 26 stations. However, the mean residuals of the 2-year floods were 2.5 percent lower than the mean of the 2-year floods computed from the equations, and were not significantly biased. The reason for this negative bias is that the period of observed record at the 26 stations was a relatively dry period. At 25 of the 26 stations, the two highest simulated peaks used to develop the estimating equations occurred many years before the observed record began. However, no attempt was made to adjust the estimating equations because higher peaks could occur after the period of observed record and an adjustment to the equations would cause an underestimation of design floods.

  5. Design, synthesis and biological evaluation of (S)-valine thiazole-derived cyclic and non-cyclic peptidomimetic oligomers as modulators of human P-glycoprotein (ABCB1)

    PubMed Central

    Singh, Satyakam; Prasad, Nagarajan Rajendra; Kapoor, Khyati; Chufan, Eduardo E.; Patel, Bhargav A.; Ambudkar, Suresh V.; Talele, Tanaji T.

    2014-01-01

    Multidrug resistance (MDR) caused by ATP-binding cassette (ABC) transporter P-glycoprotein (P-gp) through extrusion of anticancer drugs from the cells is a major cause of failure to cancer chemotherapy. Previously, selenazole containing cyclic peptides were reported as P-gp inhibitors and these were also used for co-crystallization with mouse P-gp, which has 87% homology to human P-gp. It has been reported that human P-gp, can simultaneously accommodate 2-3 moderate size molecules at the drug binding pocket. Our in-silico analysis based on the homology model of human P-gp spurred our efforts to investigate the optimal size of (S)-valine-derived thiazole units that can be accommodated at drug-binding pocket. Towards this goal, we synthesized varying lengths of linear and cyclic derivatives of (S)-valine-derived thiazole units to investigate the optimal size, lipophilicity and the structural form (linear and cyclic) of valine-derived thiazole peptides that can accommodate well in the P-gp binding pocket and affects its activity, previously an unexplored concept. Among these oligomers, lipophilic linear- (13) and cyclic-trimer (17) derivatives of QZ59S-SSS were found to be the most and equally potent inhibitors of human P-gp (IC50 = 1.5 μM). Cyclic trimer and linear trimer being equipotent, future studies can be focused on non-cyclic counterparts of cyclic peptides maintaining linear trimer length. Binding model of the linear trimer (13) within the drug-binding site on the homology model of human P-gp represents an opportunity for future optimization, specifically replacing valine and thiazole groups in the non-cyclic form. PMID:24288265

  6. Protective and therapeutic role of 2-carba-cyclic phosphatidic acid in demyelinating disease.

    PubMed

    Yamamoto, Shinji; Yamashina, Kota; Ishikawa, Masaki; Gotoh, Mari; Yagishita, Sosuke; Iwasa, Kensuke; Maruyama, Kei; Murakami-Murofushi, Kimiko; Yoshikawa, Keisuke

    2017-07-21

    Multiple sclerosis is a neuroinflammatory demyelinating and neurodegenerative disease of the central nervous system characterized by recurrent and progressive demyelination/remyelination cycles, neuroinflammation, oligodendrocyte loss, demyelination, and axonal degeneration. Cyclic phosphatidic acid (cPA) is a natural phospholipid mediator with a unique cyclic phosphate ring structure at the sn-2 and sn-3 positions of the glycerol backbone. We reported earlier that cPA elicits a neurotrophin-like action and protects hippocampal neurons from ischemia-induced delayed neuronal death. We designed, chemically synthesized, and metabolically stabilized derivatives of cPA: 2-carba-cPA (2ccPA), a synthesized compound in which one of the phosphate oxygen molecules is replaced with a methylene group at the sn-2 position. In the present study, we investigated whether 2ccPA exerts protective effects in oligodendrocytes and suppresses pathology in the two most common mouse models of multiple sclerosis. To evaluate whether 2ccPA has potential beneficial effects on the pathology of multiple sclerosis, we investigated the effects of 2ccPA on oligodendrocyte cell death in vitro and administrated 2ccPA to mouse models of experimental autoimmune encephalomyelitis (EAE) and cuprizone-induced demyelination. We demonstrated that 2ccPA suppressed the CoCl 2 -induced increase in the Bax/Bcl-2 protein expression ratio and phosphorylation levels of p38MAPK and JNK protein. 2ccPA treatment reduced cuprizone-induced demyelination, microglial activation, NLRP3 inflammasome, and motor dysfunction. Furthermore, 2ccPA treatment reduced autoreactive T cells and macrophages, spinal cord injury, and pathological scores in EAE, the autoimmune multiple sclerosis mouse model. We demonstrated that 2ccPA protected oligodendrocytes via suppression of the mitochondrial apoptosis pathway. Also, we found beneficial effects of 2ccPA in the multiperiod of cuprizone-induced demyelination and the pathology of EAE

  7. Advanced buffer materials for indoor air CO2 control in commercial buildings.

    PubMed

    Rajan, P E; Krishnamurthy, A; Morrison, G; Rezaei, F

    2017-11-01

    In this study, we evaluated solid sorbents for their ability to passively control indoor CO 2 concentration in buildings or rooms with cyclic occupancy (eg, offices, bedrooms). Silica supported amines were identified as suitable candidates and systematically evaluated in the removal of CO 2 from indoor air by equilibrium and dynamic techniques. In particular, sorbents with various amine loadings were synthesized using tetraethylenepentamine (TEPA), poly(ethyleneimine) (PEI) and a silane coupling agent 3-aminopropyltriethoxysilane (APS). TGA analysis indicates that TEPA impregnated silica not only displays a relatively high adsorption capacity when exposed to ppm level CO 2 concentrations, but also is capable of desorbing the majority of CO 2 by air flow (eg, by concentration gradient). In 10 L flow-through chamber experiments, TEPA-based sorbents reduced outlet CO 2 by up to 5% at 50% RH and up to 93% of CO 2 adsorbed over 8 hours was desorbed within 16 hours. In 8 m 3 flow-through chamber experiments, 18 g of the sorbent powder spread over a 2 m 2 area removed approximately 8% of CO 2 injected. By extrapolating these results to real buildings, we estimate that meaningful reductions in the CO 2 can be achieved, which may help reduce energy requirements for ventilation and/or improve air quality. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Preparation of boron doped diamond modified by iridium for electroreduction of carbon dioxide (CO2)

    NASA Astrophysics Data System (ADS)

    Ichzan, A. M.; Gunlazuardi, J.; Ivandini, T. A.

    2017-04-01

    Electroreduction of carbon dioxide (CO2) at iridium oxide-modified boron-doped diamond (IrOx-BDD) electrodes in aqueous electrolytes was studied by voltammetric method. The aim of this study was to find out the catalytic effect of IrOx to produce fine chemicals contained of two or more carbon atoms (for example acetic acid) in high percentage. Characterization using FE-SEM and XPS indicated that IrO2 can be deposited at BDD electrode, whereas characterization using cyclic voltammetry indicated that the electrode was applicable to be used as working electrode for CO2 electroreduction.

  9. Shifting locus of carbonate sedimentation and the trajectory of Paleozoic pCO2

    NASA Astrophysics Data System (ADS)

    Husson, J. M.; Peters, S. E.

    2016-12-01

    The burial of calcium carbonate is a determinant of planetary habitability, dictated by CO2 input to the surface environment and rates of chemical weathering. An important source of CO2 is the metamorphism of carbon-bearing sediments, which is responsive to the locus of sedimentation. For example, deep sea sediments are prone to recycling as sea floor is consumed at convergent margins; by contrast, sediments deposited on continental crust can be stable for billions of years.The predominant feature in the empirical sedimentary rock record, as measured by Macrostrat (https://macrostrat.org) and global geological syntheses, is a step-wise increase in continental sedimentation at the Neoproterozoic-Paleozoic transition. Although early Paleozoic carbonate volumes are sufficient to account for a CO2 flux 5x greater than present, Proterozoic continental burial fluxes were likely below the modern estimate. This observation implies that most carbonate sedimentation in the Proterozoic took place on the deep sea floor. The establishment of persistent, widespread continental flooding during the Paleozoic shifted the locus of carbonate sedimentation to continental interiors. A major implication of this shift is that CO2 flux declined during the Paleozoic as carbonate-laden Precambrian seafloor was metamorphosed and recycled. This prediction is consistent with independent proxy records and our model for Phanerozoic carbonate burial. An important corollary is that as carbonate-rich Precambrian seafloor was progressively destroyed, the carbonate content of deep sea sediments decreased concordantly because Paleozoic continents effectively captured global alkalinity fluxes. This process culminated near the Permian/Triassic, with metamorphic CO2 flux at a Phanerozoic minimum and the global ocean uniquely unbuffered against acidification. Such a condition could enhance the environmental effects of transient CO2 injections. Because the mid-Mesozoic appearance of pelagic calcifiers and

  10. Concurrent separation of CO2 and H2O from air by a temperature-vacuum swing adsorption/desorption cycle.

    PubMed

    Wurzbacher, Jan Andre; Gebald, Christoph; Piatkowski, Nicolas; Steinfeld, Aldo

    2012-08-21

    A temperature-vacuum swing (TVS) cyclic process is applied to an amine-functionalized nanofibrilated cellulose sorbent to concurrently extract CO(2) and water vapor from ambient air. The promoting effect of the relative humidity on the CO(2) capture capacity and on the amount of coadsorbed water is quantified. The measured specific CO(2) capacities range from 0.32 to 0.65 mmol/g, and the corresponding specific H(2)O capacities range from 0.87 to 4.76 mmol/g for adsorption temperatures varying between 10 and 30 °C and relative humidities varying between 20 and 80%. Desorption of CO(2) is achieved at 95 °C and 50 mbar(abs) without dilution by a purge gas, yielding a purity exceeding 94.4%. Sorbent stability and a closed mass balance for both H(2)O and CO(2) are demonstrated for ten consecutive adsorption-desorption cycles. The specific energy requirements of the TVS process based on the measured H(2)O and CO(2) capacities are estimated to be 12.5 kJ/mol(CO2) of mechanical (pumping) work and between 493 and 640 kJ/mol(CO2) of heat at below 100 °C, depending on the air relative humidity. For a targeted CO(2) capacity of 2 mmol/g, the heat requirement would be reduced to between 272 and 530 kJ/mol(CO2), depending strongly on the amount of coadsorbed water.

  11. Synthesis and redox properties of fac-BrRe(CO)3[1,2-(PPh2)2-closo-1,2-C2B10H10]: The first structurally characterized rhenium carbonyl containing a carboranyl-based diphosphine ligand

    NASA Astrophysics Data System (ADS)

    Lin, Chen-Hao; Nesterov, Vladimir N.; Richmond, Michael G.

    2018-03-01

    The diphosphine 1,2-(PPh2)2-closo-1,2-C2B10H10 reacts with BrRe(CO)5 and fac-BrRe(CO)3(THF)2 to give fac-BrRe(CO)3[1,2-(PPh2)2-closo-1,2-C2B10H10] (1) in high yields (>80%). Compound 1 is the first structurally characterized rhenium carbonyl that contains an ancillary carborane-based diphosphine ligand. 1 has been characterized in solution by IR and NMR spectroscopies (1H and 31P), and the solid-state structure has been determined by X-ray diffraction analysis. The electrochemical properties of 1 have been investigated by cyclic voltammetry, and the composition of the DFT-computed HOMO and LUMO levels are discussed relative to the electrochemical data. The thermodynamics for the formation of 1 from the rhenium precursors BrRe(CO)5 and fac-BrRe(CO)3(THF)2 have been evaluated by DFT calculations.

  12. Extended cyclic fatigue life of F2 ProTaper instruments used in reciprocating movement.

    PubMed

    De-Deus, G; Moreira, E J L; Lopes, H P; Elias, C N

    2010-12-01

    To evaluate the cyclic fatigue fracture resistance of engine-driven F2 ProTaper instruments under reciprocating movement. A sample of 30 NiTi ProTaper F2 instruments was used. An artificial canal was made from a stainless steel tube, allowing the instruments to rotate freely. During mechanical testing, different movement kinematics and speeds were used, which resulted in three experimental groups (n = 10). The instruments from the first group (G1) were rotated at a nominal speed of 250 rpm until fracture, whilst the instruments from the second group (G2) were rotated at 400 rpm. In the third instrument group (G3), the files were driven under reciprocating movement. The time of fracture for each instrument was measured, and statistical analysis was performed using parametric methods. Reciprocating movement resulted in a significantly longer cyclic fatigue life (P < 0.05). Moreover, operating rpm was a significant factor affecting cyclic fatigue life (P < 0.05); instruments used at a rotational speed of 400 rpm (approximately 95 s) failed more rapidly than those used at 250 rpm (approximately 25 s). Movement kinematics is amongst the factors determining the resistance of rotary NiTi instruments to cyclic fracture. Moreover, the reciprocating movement promoted an extended cyclic fatigue life of the F2 ProTaper instrument in comparison with conventional rotation.

  13. Wellbore Cement Porosity Evolution in Response to Mineral Alteration during CO 2 Flooding

    DOE PAGES

    Cheshire, Michael C.; Stack, Andrew G.; Carey, J. William; ...

    2016-12-13

    Mineral reactions during CO 2 sequestration will change the pore-size distribution and pore surface characteristics, complicating permeability and storage security predictions. In this study, we report a small/wide angle scattering study of wellbore cement that has been exposed to carbon dioxide for three decades. We have constructed detailed contour maps that describe local porosity distributions and the mineralogy of the sample and relate these quantities to the carbon dioxide reaction front on the cement. We find that the initial bimodal distribution of pores in the cement, 1–2 and 10–20 nm, is affected differently during the course of carbonation reactions. Initialmore » dissolution of cement phases occurs in the 10–20 nm pores and leads to the development of new pore spaces that are eventually sealed by CaCO 3 precipitation, leading to a loss of gel and capillary nanopores, smoother pore surfaces, and reduced porosity. This suggests that during extensive carbonation of wellbore cement, the cement becomes less permeable because of carbonate mineral precipitation within the pore space. Additionally, the loss of gel and capillary nanoporosities will reduce the reactivity of cement with CO 2 due to reactive surface area loss. Finally, this work demonstrates the importance of understanding not only changes in total porosity but also how the distribution of porosity evolves with reaction that affects permeability.« less

  14. Ethylene--and oxygen signalling--drive plant survival during flooding.

    PubMed

    Voesenek, L A C J; Sasidharan, R

    2013-05-01

    Flooding is a widely occurring environmental stress both for natural and cultivated plant species. The primary problems associated with flooding arise due to restricted gas diffusion underwater. This hampers gas exchange needed for the critical processes of photosynthesis and respiration. Plant acclimation to flooding includes the adaptation of a suite of traits that helps alleviate or avoid these stressful conditions and improves or restores exchange of O2 and CO2 . The manifestation of these traits is, however, reliant on the timely perception of signals that convey the underwater status. Flooding-associated reduced gas diffusion imposes a drastic change in the internal gas composition within submerged plant organs. One of the earliest changes is an increase in the levels of the gaseous plant hormone ethylene. Depending on the species, organ, flooding conditions and time of the day, plants will also subsequently experience a reduction in oxygen levels. This review provides a comprehensive overview on the roles of ethylene and oxygen as critical signals of flooding stress. It includes a discussion of the dynamics of these gases in plants when underwater, their interaction, current knowledge of their perception mechanisms and the resulting downstream changes that mediate important acclimative processes that allow endurance and survival under flooded conditions. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s bearing functionalizable carbonate building blocks: II. Enzymatic biodegradation and in vitro biocompatibility assay.

    PubMed

    Yang, Jing; Tian, Weisheng; Li, Qiaobo; Li, Yang; Cao, Amin

    2004-01-01

    In a previous study, we have reported chemical synthesis of novel aliphatic poly(butylene succinate-co-cyclic carbonate) P(BS-co-CC)s bearing various functionalizable carbonate building blocks, and this work will continue to present our new studies on their enzymatic degradation and in vitro cell biocompatibility assay. First, enzymatic degradation of the novel P(BS-co-CC) film samples was investigated with two enzymes of lipase B Candida Antartic (Novozyme 435) and lipase Porcine Pancreas PPL, and it was revealed that copolymerizing linear poly(butylene succinate) PBS with a functionalizable carbonate building block could remarkably accelerate the enzymatic degradation of a synthesized product P(BS-co-CC), and its biodegradation behavior was found to strongly depend on the overall impacts of several important factors as the cyclic carbonate (CC) comonomer structure and molar content, molar mass, thermal characteristics, morphology, the enzyme-substrate specificity, and so forth. Further, the biodegraded residual film samples and water-soluble enzymatic degradation products were allowed to be analyzed by means of proton nuclear magnetic resonance (1H NMR), gel permeation chromatograph (GPC), differential scanning calorimeter (DSC), attenuated total reflection FTIR (ATR-FTIR), scanning electron microscope (SEM), and liquid chromatograph-mass spectrometry (LC-MS). On the experimental evidences, an exo-type mechanism of enzymatic chain hydrolysis preferentially occurring in the noncrystalline domains was suggested for the synthesized new P(BS-co-CC) film samples. With regard to their cell biocompatibilities, an assay with NIH 3T3 mouse fibroblast cell was conducted using the novel synthesized P(BS-co-CC) films as substrates with respect to the cell adhesion and proliferation, and these new biodegradable P(BS-co-CC) samples were found to exhibit as low cell toxicity as the PLLA control, particularly the two samples of poly(butylene succinate-co-18.7 mol % dimethyl

  16. Enhanced catalyst stability for cyclic co methanation operations

    DOEpatents

    Risch, Alan P.; Rabo, Jule A.

    1983-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is thereafter reacted with steam or hydrogen to form methane. Enhanced catalyst stability for long term, cyclic operation is obtained by the incorporation of an alkali or alkaline earth dopant in a silica binding agent added to the catalyst-support additive composition.

  17. Fate of injected CO2 in the Wilcox Group, Louisiana, Gulf Coast Basin: Chemical and isotopic tracers of microbial–brine–rock–CO2 interactions

    USGS Publications Warehouse

    Shelton, Jenna L.; McIntosh, Jennifer C.; Warwick, Peter D.; Lee Zhi Yi, Amelia

    2014-01-01

    The “2800’ sandstone” of the Olla oil field is an oil and gas-producing reservoir in a coal-bearing interval of the Paleocene–Eocene Wilcox Group in north-central Louisiana, USA. In the 1980s, this producing unit was flooded with CO2 in an enhanced oil recovery (EOR) project, leaving ∼30% of the injected CO2 in the 2800’ sandstone post-injection. This study utilizes isotopic and geochemical tracers from co-produced natural gas, oil and brine to determine the fate of the injected CO2, including the possibility of enhanced microbial conversion of CO2 to CH4 via methanogenesis. Stable carbon isotopes of CO2, CH4 and DIC, together with mol% CO2 show that 4 out of 17 wells sampled in the 2800’ sandstone are still producing injected CO2. The dominant fate of the injected CO2appears to be dissolution in formation fluids and gas-phase trapping. There is some isotopic and geochemical evidence for enhanced microbial methanogenesis in 2 samples; however, the CO2 spread unevenly throughout the reservoir, and thus cannot explain the elevated indicators for methanogenesis observed across the entire field. Vertical migration out of the target 2800’ sandstone reservoir is also apparent in 3 samples located stratigraphically above the target sand. Reservoirs comparable to the 2800’ sandstone, located along a 90-km transect, were also sampled to investigate regional trends in gas composition, brine chemistry and microbial activity. Microbial methane, likely sourced from biodegradation of organic substrates within the formation, was found in all oil fields sampled, while indicators of methanogenesis (e.g. high alkalinity, δ13C-CO2 and δ13C-DIC values) and oxidation of propane were greatest in the Olla Field, likely due to its more ideal environmental conditions (i.e. suitable range of pH, temperature, salinity, sulfate and iron concentrations).

  18. Automatic domain updating technique for improving computational efficiency of 2-D flood-inundation simulation

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Tachikawa, Y.; Ichikawa, Y.; Yorozu, K.

    2017-12-01

    Flood is one of the most hazardous disasters and causes serious damage to people and property around the world. To prevent/mitigate flood damage through early warning system and/or river management planning, numerical modelling of flood-inundation processes is essential. In a literature, flood-inundation models have been extensively developed and improved to achieve flood flow simulation with complex topography at high resolution. With increasing demands on flood-inundation modelling, its computational burden is now one of the key issues. Improvements of computational efficiency of full shallow water equations are made from various perspectives such as approximations of the momentum equations, parallelization technique, and coarsening approaches. To support these techniques and more improve the computational efficiency of flood-inundation simulations, this study proposes an Automatic Domain Updating (ADU) method of 2-D flood-inundation simulation. The ADU method traces the wet and dry interface and automatically updates the simulation domain in response to the progress and recession of flood propagation. The updating algorithm is as follow: first, to register the simulation cells potentially flooded at initial stage (such as floodplains nearby river channels), and then if a registered cell is flooded, to register its surrounding cells. The time for this additional process is saved by checking only cells at wet and dry interface. The computation time is reduced by skipping the processing time of non-flooded area. This algorithm is easily applied to any types of 2-D flood inundation models. The proposed ADU method is implemented to 2-D local inertial equations for the Yodo River basin, Japan. Case studies for two flood events show that the simulation is finished within two to 10 times smaller time showing the same result as that without the ADU method.

  19. Integrated Reservoir Modeling of CO2-EOR Performance and Storage Potential in the Farnsworth Field Unit, Texas.

    NASA Astrophysics Data System (ADS)

    Ampomah, W.; Balch, R. S.; Cather, M.; Dai, Z.

    2017-12-01

    We present a performance assessment methodology and storage potential for CO2 enhanced oil recovery (EOR) in partially depleted reservoirs. A three dimensional heterogeneous reservoir model was developed based on geological, geophysics and engineering data from Farnsworth field Unit (FWU). The model aided in improved characterization of prominent rock properties within the Pennsylvanian aged Morrow sandstone reservoir. Seismic attributes illuminated previously unknown faults and structural elements within the field. A laboratory fluid analysis was tuned to an equation of state and subsequently used to predict the thermodynamic minimum miscible pressure (MMP). Datasets including net-to-gross ratio, volume of shale, permeability, and burial history were used to model initial fault transmissibility based on Sperivick model. An improved history match of primary and secondary recovery was performed to set the basis for a CO2 flood study. The performance of the current CO2 miscible flood patterns was subsequently calibrated to historical production and injection data. Several prediction models were constructed to study the effect of recycling, addition of wells and /or new patterns, water alternating gas (WAG) cycles and optimum amount of CO2 purchase on incremental oil production and CO2 storage in the FWU. The history matching study successfully validated the presence of the previously undetected faults within FWU that were seen in the seismic survey. The analysis of the various prediction scenarios showed that recycling a high percentage of produced gas, addition of new wells and a gradual reduction in CO2 purchase after several years of operation would be the best approach to ensure a high percentage of recoverable incremental oil and sequestration of anthropogenic CO2 within the Morrow reservoir. Larger percentage of stored CO2 were dissolved in residual oil and less amount existed as supercritical free CO2. The geomechanical analysis on the caprock proved to an

  20. Regional-scale advective, diffusive, and eruptive dynamics of CO2 and brine leakage through faults and wellbores

    NASA Astrophysics Data System (ADS)

    Jung, Na-Hyun; Han, Weon Shik; Han, Kyungdoe; Park, Eungyu

    2015-05-01

    Regional-scale advective, diffusive, and eruptive transport dynamics of CO2 and brine within a natural analogue in the northern Paradox Basin, Utah, were explored by integrating numerical simulations with soil CO2 flux measurements. Deeply sourced CO2 migrates through steeply dipping fault zones to the shallow aquifers predominantly as an aqueous phase. Dense CO2-rich brine mixes with regional groundwater, enhancing CO2 dissolution. Linear stability analysis reveals that CO2 could be dissolved completely within only 500 years. Assigning lower permeability to the fault zones induces fault-parallel movement, feeds up-gradient aquifers with more CO2, and impedes down-gradient fluid flow, developing anticlinal CO2 traps at shallow depths (<300 m). The regional fault permeability that best reproduces field spatial CO2 flux variation is estimated 1 × 10-17 ≤ kh < 1 × 10-16 m2 and 5 × 10-16 ≤ kv < 1 × 10-15 m2. The anticlinal trap serves as an essential fluid source for eruption at Crystal Geyser. Geyser-like discharge sensitively responds to varying well permeability, radius, and CO2 recharge rate. The cyclic behavior of wellbore CO2 leakage decreases with time.

  1. Flood resilience and uncertainty in flood risk assessment

    NASA Astrophysics Data System (ADS)

    Beven, K.; Leedal, D.; Neal, J.; Bates, P.; Hunter, N.; Lamb, R.; Keef, C.

    2012-04-01

    Flood risk assessments do not normally take account of the uncertainty in assessing flood risk. There is no requirement in the EU Floods Directive to do so. But given the generally short series (and potential non-stationarity) of flood discharges, the extrapolation to smaller exceedance potentials may be highly uncertain. This means that flood risk mapping may also be highly uncertainty, with additional uncertainties introduced by the representation of flood plain and channel geometry, conveyance and infrastructure. This suggests that decisions about flood plain management should be based on exceedance probability of risk rather than the deterministic hazard maps that are common in most EU countries. Some examples are given from 2 case studies in the UK where a framework for good practice in assessing uncertainty in flood risk mapping has been produced as part of the Flood Risk Management Research Consortium and Catchment Change Network Projects. This framework provides a structure for the communication and audit of assumptions about uncertainties.

  2. Co-Optimization of CO 2-EOR and Storage Processes in Mature Oil Reservoirs

    DOE PAGES

    Ampomah, William; Balch, Robert S.; Grigg, Reid B.; ...

    2016-08-02

    This article presents an optimization methodology for CO 2 enhanced oil recovery in partially depleted reservoirs. A field-scale compositional reservoir flow model was developed for assessing the performance history of an active CO 2 flood and for optimizing both oil production and CO 2 storage in the Farnsworth Unit (FWU), Ochiltree County, Texas. A geological framework model constructed from geophysical, geological, and engineering data acquired from the FWU was the basis for all reservoir simulations and the optimization method. An equation of state was calibrated with laboratory fluid analyses and subsequently used to predict the thermodynamic minimum miscible pressure (MMP).more » Initial history calibrations of primary, secondary and tertiary recovery were conducted as the basis for the study. After a good match was achieved, an optimization approach consisting of a proxy or surrogate model was constructed with a polynomial response surface method (PRSM). The PRSM utilized an objective function that maximized both oil recovery and CO 2 storage. Experimental design was used to link uncertain parameters to the objective function. Control variables considered in this study included: water alternating gas cycle and ratio, production rates and bottom-hole pressure of injectors and producers. Other key parameters considered in the modeling process were CO 2 purchase, gas recycle and addition of infill wells and/or patterns. The PRSM proxy model was ‘trained’ or calibrated with a series of training simulations. This involved an iterative process until the surrogate model reached a specific validation criterion. A sensitivity analysis was first conducted to ascertain which of these control variables to retain in the surrogate model. A genetic algorithm with a mixed-integer capability optimization approach was employed to determine the optimum developmental strategy to maximize both oil recovery and CO 2 storage. The proxy model reduced the computational cost

  3. Co-Optimization of CO 2-EOR and Storage Processes in Mature Oil Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ampomah, William; Balch, Robert S.; Grigg, Reid B.

    This article presents an optimization methodology for CO 2 enhanced oil recovery in partially depleted reservoirs. A field-scale compositional reservoir flow model was developed for assessing the performance history of an active CO 2 flood and for optimizing both oil production and CO 2 storage in the Farnsworth Unit (FWU), Ochiltree County, Texas. A geological framework model constructed from geophysical, geological, and engineering data acquired from the FWU was the basis for all reservoir simulations and the optimization method. An equation of state was calibrated with laboratory fluid analyses and subsequently used to predict the thermodynamic minimum miscible pressure (MMP).more » Initial history calibrations of primary, secondary and tertiary recovery were conducted as the basis for the study. After a good match was achieved, an optimization approach consisting of a proxy or surrogate model was constructed with a polynomial response surface method (PRSM). The PRSM utilized an objective function that maximized both oil recovery and CO 2 storage. Experimental design was used to link uncertain parameters to the objective function. Control variables considered in this study included: water alternating gas cycle and ratio, production rates and bottom-hole pressure of injectors and producers. Other key parameters considered in the modeling process were CO 2 purchase, gas recycle and addition of infill wells and/or patterns. The PRSM proxy model was ‘trained’ or calibrated with a series of training simulations. This involved an iterative process until the surrogate model reached a specific validation criterion. A sensitivity analysis was first conducted to ascertain which of these control variables to retain in the surrogate model. A genetic algorithm with a mixed-integer capability optimization approach was employed to determine the optimum developmental strategy to maximize both oil recovery and CO 2 storage. The proxy model reduced the computational cost

  4. CO2 and Amplification of Orbitally Forced Changes in the Hydrological Cycle across the end-Triassic extinction

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Schaller, M. F.; Palmer, M.; Milton, J. A.; Olsen, P. E.

    2016-12-01

    Models of increasing atmospheric pCO2 predict an intensification of the hydrological cycle coupled with warming, with an implied amplification of the effects of orbitally forced precipitation fluctuations. Supporting evidence exists for the Pleistocene, however such evidence has not yet been developed from ancient Mesozoic warm intervals that serve as partial analogues for greenhouse worlds. This study presents lithological, soil carbonate, and compound-specific hydrogen isotopic data (δD) from plant wax n-alkanes data from Late Triassic and Early Jurassic (pCO2values >1,000 ppm) marine and non-marine records from eastern North America and England with a particular emphasis on the end-Triassic mass extinction. In eastern North American Pangean rift basins, variance in lake level expression of the climatic precession cycle from lithology and compound-specific δD appears temporally linked to CO2 based on the soil carbonate proxy from the same strata. Cyclicity variance is high during times of high CO2 ( 4000 ppm) during most of the Late Triassic, drops precipitously as CO2 declines below 2,500 ppm during most of the Rhaetian, and dramatically increases when massive atmospheric CO2 increases ( 5,000 - 6,000 ppm) associated with the Central Atlantic Magmatic Province (and end-Triassic extinction) drove insolation-paced increases in precipitation. Cyclicity variance drops again as CO2 declines (<2,000 ppm) during the Jurassic. Preliminary data suggest significant variability in leaf wax δD corresponding to other environmental changes across the extinction interval. In addition, 87Sr/86Sr in marine strata (Tackett et al., 2014) tracks CO2 with a dramatic decrease from 0.70795 to 0.70765 suggesting a mechanistic link through weathering. Analyses of continuous paralic to marine samples, now underway, from the end-Triassic extinction and Triassic-Jurassic boundary interval at St. Audrie's Bay (Bristol Channel Basin) will test the generality of this pattern, in an area

  5. A novel adenosine precursor 2',3'-cyclic adenosine monophosphate inhibits formation of post-surgical adhesions.

    PubMed

    Forman, Mervyn B; Gillespie, Delbert G; Cheng, Dongmei; Jackson, Edwin K

    2014-09-01

    Intraperitoneal adenosine reduces abdominal adhesions. However, because of the ultra-short half-life and low solubility of adenosine, optimal efficacy requires multiple dosing. Here, we compared the ability of potential adenosine prodrugs to inhibit post-surgical abdominal adhesions after a single intraperitoneal dose. Abdominal adhesions were induced in mice using an electric toothbrush to damage the cecum. Also, 20 μL of 95 % ethanol was applied to the cecum to cause chemically induced injury. After injury, mice received intraperitoneally either saline (n = 18) or near-solubility limit of adenosine (23 mmol/L; n = 12); 5'-adenosine monophosphate (75 mmol/L; n = 11); 3'-adenosine monophosphate (75 mmol/L; n = 12); 2'-adenosine monophosphate (75 mmol/L; n = 12); 3',5'-cyclic adenosine monophosphate (75 mmol/L; n = 19); or 2',3'-cyclic adenosine monophosphate (75 mmol/L; n = 20). After 2 weeks, adhesion formation was scored by an observer blinded to the treatments. In a second study, intraperitoneal adenosine levels were measured using tandem mass spectrometry for 3 h after instillation of 2',3'-cyclic adenosine monophosphate (75 mmol/L) into the abdomen. The order of efficacy for attenuating adhesion formation was: 2',3'-cyclic adenosine monophosphate > 3',5'-cyclic adenosine monophosphate ≈ adenosine > 5'-adenosine monophosphate ≈ 3'-adenosine monophosphate ≈ 2'-adenosine monophosphate. The groups were compared using a one-factor analysis of variance, and the overall p value for differences between groups was p < 0.000001. Intraperitoneal administration of 2',3'-cAMP yielded pharmacologically relevant levels of adenosine in the abdominal cavity for >3 h. Administration of 2',3'-cyclic adenosine monophosphate into the surgical field is a unique, convenient and effective method of preventing post-surgical adhesions by acting as an adenosine prodrug.

  6. Synthesis of LiCoO 2 thin films by sol/gel process

    NASA Astrophysics Data System (ADS)

    Porthault, H.; Le Cras, F.; Franger, S.

    LiCoO 2 thin films were synthesized by sol/gel process using acrylic acid (AA) as chelating agent. The gel formulation was optimized by varying solvent (ethylene glycol or water) and precursors molar ratios (Li, Co, AA) in order to obtain a dense film for positive electrode of lithium batteries. The gel was deposited by spin-coating technique on an Au/TiO 2/SiN/SiO 2/Si substrate. Thin films were deposited by either single or multistep process to enhance the density of the thin film and then calcined during 5 h at 800 °C to obtain the R-3m phase (HT-LiCoO 2). A chemical characterization of the solution was realized by Fourier Transform Infrared (FTIR) spectroscopy. Thermal decomposition of precursors and gel was studied by Thermo Gravimetric Analyses (TGA). Further investigations were done to characterize rheologic behaviour of the gel and solvents affinity with the substrate. Crystallinity and morphology were analyzed respectively by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The formation of R-3m phase was confirmed by the electrochemical behaviour of the gel derived LiCoO 2. Cyclic voltammograms and galvanostatic cycling show typical curve shape of the HT-LiCoO 2.

  7. Layered Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Nguyen, Tuyen; Boudard, Michel; Carmezim, M. João; Montemor, M. Fátima

    2017-01-01

    Consecutive layers of Ni(OH)2 and Co(OH)2 were electrodeposited on stainless steel current collectors for preparing charge storage electrodes of high specific capacity with potential application in hybrid supercapacitors. Different electrodes were prepared consisting on films of Ni(OH)2, Co(OH)2, Ni1/2Co1/2(OH)2 and layered films of Ni(OH)2 on Co(OH)2 and Co(OH)2 on Ni(OH)2 to highlight the advantages of the new architecture. The microscopy studies revealed the formation of nanosheets in the Co(OH)2 films and of particles agglomerates in the Ni(OH)2 films. Important morphological changes were observed in the double hydroxides films and layered films. Film growth by electrodeposition was governed by instantaneous nucleation mechanism. The new architecture composed of Ni(OH)2 on Co(OH)2 displayed a redox response characterized by the presence of two peaks in the cyclic voltammograms, arising from redox reactions of the metallic species present in the layered film. These electrodes revealed a specific capacity of 762 C g-1 at the specific current of 1 A g-1. The hybrid cell using Ni(OH)2 on Co(OH)2 as positive electrode and carbon nanofoam paper as negative electrode display specific energies of 101.3 W h g-1 and 37.8 W h g-1 at specific powers of 0.2 W g-1 and 2.45 W g-1, respectively.

  8. Layered Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors

    PubMed Central

    Nguyen, Tuyen; Boudard, Michel; Carmezim, M. João; Montemor, M. Fátima

    2017-01-01

    Consecutive layers of Ni(OH)2 and Co(OH)2 were electrodeposited on stainless steel current collectors for preparing charge storage electrodes of high specific capacity with potential application in hybrid supercapacitors. Different electrodes were prepared consisting on films of Ni(OH)2, Co(OH)2, Ni1/2Co1/2(OH)2 and layered films of Ni(OH)2 on Co(OH)2 and Co(OH)2 on Ni(OH)2 to highlight the advantages of the new architecture. The microscopy studies revealed the formation of nanosheets in the Co(OH)2 films and of particles agglomerates in the Ni(OH)2 films. Important morphological changes were observed in the double hydroxides films and layered films. Film growth by electrodeposition was governed by instantaneous nucleation mechanism. The new architecture composed of Ni(OH)2 on Co(OH)2 displayed a redox response characterized by the presence of two peaks in the cyclic voltammograms, arising from redox reactions of the metallic species present in the layered film. These electrodes revealed a specific capacity of 762 C g−1 at the specific current of 1 A g−1. The hybrid cell using Ni(OH)2 on Co(OH)2 as positive electrode and carbon nanofoam paper as negative electrode display specific energies of 101.3 W h g−1 and 37.8 W h g−1 at specific powers of 0.2 W g−1 and 2.45 W g−1, respectively. PMID:28051143

  9. Layered Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors.

    PubMed

    Nguyen, Tuyen; Boudard, Michel; Carmezim, M João; Montemor, M Fátima

    2017-01-04

    Consecutive layers of Ni(OH) 2 and Co(OH) 2 were electrodeposited on stainless steel current collectors for preparing charge storage electrodes of high specific capacity with potential application in hybrid supercapacitors. Different electrodes were prepared consisting on films of Ni(OH) 2 , Co(OH) 2 , Ni 1/2 Co 1/2 (OH) 2 and layered films of Ni(OH) 2 on Co(OH) 2 and Co(OH) 2 on Ni(OH) 2 to highlight the advantages of the new architecture. The microscopy studies revealed the formation of nanosheets in the Co(OH) 2 films and of particles agglomerates in the Ni(OH) 2 films. Important morphological changes were observed in the double hydroxides films and layered films. Film growth by electrodeposition was governed by instantaneous nucleation mechanism. The new architecture composed of Ni(OH) 2 on Co(OH) 2 displayed a redox response characterized by the presence of two peaks in the cyclic voltammograms, arising from redox reactions of the metallic species present in the layered film. These electrodes revealed a specific capacity of 762 C g -1 at the specific current of 1 A g -1 . The hybrid cell using Ni(OH) 2 on Co(OH) 2 as positive electrode and carbon nanofoam paper as negative electrode display specific energies of 101.3 W h g -1 and 37.8 W h g -1 at specific powers of 0.2 W g -1 and 2.45 W g -1 , respectively.

  10. Integrated Geophysical Monitoring Program to Study Flood Performance and Incidental CO2 Storage Associated with a CO2 EOR Project in the Bell Creek Oil Field

    NASA Astrophysics Data System (ADS)

    Burnison, S. A.; Ditty, P.; Gorecki, C. D.; Hamling, J. A.; Steadman, E. N.; Harju, J. A.

    2013-12-01

    The Plains CO2 Reduction (PCOR) Partnership, led by the Energy & Environmental Research Center, is working with Denbury Onshore LLC to determine the effect of a large-scale injection of carbon dioxide (CO2) into a deep clastic reservoir for the purpose of simultaneous CO2 enhanced oil recovery (EOR) and to study incidental CO2 storage at the Bell Creek oil field located in southeastern Montana. This project will reduce CO2 emissions by more than 1 million tons a year while simultaneously recovering an anticipated 30 million barrels of incremental oil. The Bell Creek project provides a unique opportunity to use and evaluate a comprehensive suite of technologies for monitoring, verification, and accounting (MVA) of CO2 on a large-scale. The plan incorporates multiple geophysical technologies in the presence of complementary and sometimes overlapping data to create a comprehensive data set that will facilitate evaluation and comparison. The MVA plan has been divided into shallow and deep subsurface monitoring. The deep subsurface monitoring plan includes 4-D surface seismic, time-lapse 3-D vertical seismic profile (VSP) surveys incorporating a permanent borehole array, and baseline and subsequent carbon-oxygen logging and other well-based measurements. The goal is to track the movement of CO2 in the reservoir, evaluate the recovery/storage efficiency of the CO2 EOR program, identify fluid migration pathways, and determine the ultimate fate of injected CO2. CO2 injection at Bell Creek began in late May 2013. Prior to injection, a monitoring and characterization well near the field center was drilled and outfitted with a distributed temperature-monitoring system and three down-hole pressure gauges to provide continuous real-time data of the reservoir and overlying strata. The monitoring well allows on-demand access for time-lapse well-based measurements and borehole seismic instrumentation. A 50-level permanent borehole array of 3-component geophones was installed in a

  11. Elevated CO2 causes changes in the photosynthetic apparatus of a toxic cyanobacterium, Cylindrospermopsis raciborskii.

    PubMed

    Pierangelini, Mattia; Stojkovic, Slobodanka; Orr, Philip T; Beardall, John

    2014-07-15

    We studied the physiological acclimation of growth, photosynthesis and CO2-concentrating mechanism (CCM) in Cylindrospermopsis raciborskii exposed to low (present day; L-CO2) and high (1300ppm; H-CO2) pCO2. Results showed that under H-CO2 the cell specific division rate (μc) was higher and the CO2- and light-saturated photosynthetic rates (Vmax and Pmax) doubled. The cells' photosynthetic affinity for CO2 (K0.5CO2) was halved compared to L-CO2 cultures. However, no significant differences were found in dark respiration rates (Rd), pigment composition and light harvesting efficiency (α). In H-CO2 cells, non-photochemical quenching (NPQ), associated with state transitions of the electron transport chain (ETC), was negligible. Simultaneously, a reorganisation of PSII features including antenna connectivity (JconPSIIα), heterogeneity (PSIIα/β) and effective absorption cross sectional area (σPSIIα/β) was observed. In relation to different activities of the CCM, our findings suggest that for cells grown under H-CO2: (1) there is down-regulation of CCM activity; (2) the ability of cells to use the harvested light energy is altered; (3) the occurrence of state transitions is likely to be associated with changes of electron flow (cyclic vs linear) through the ETC; (4) changes in PSII characteristics are important in regulating state transitions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Pyropia yezoensis can utilize CO2 in the air during moderate dehydration

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; He, Linwen; Yang, Fang; Lin, Apeng; Zhang, Baoyu; Niu, Jianfeng; Wang, Guangce

    2014-03-01

    Pyropia yezoensis, an intertidal seaweed, experiences regular dehydration and rehydration with the tides. In this study, the responses of P. yezoensis to dehydration and rehydration under high and low CO2 concentrations ((600-700)×10-6 and (40-80)×10-6, named Group I and Group II respectively) were investigated. The thalli of Group I had a significantly higher effective photosystem II quantum yield than the thalli of Group II at 71% absolute water content (AWC). There was little difference between thalli morphology, total Rubisco activity and total protein content at 100% and 71% AWC, which might be the basis for the normal performance of photosynthesis during moderate dehydration. A higher effective photosystem I quantum yield was observed in the thalli subjected to a low CO2 concentration during moderate dehydration, which might be caused by the enhancement of cyclic electron flow. These results suggested that P. yezoensis can directly utilize CO2 in ambient air during moderate dehydration.

  13. Probabilistic flood extent estimates from social media flood observations

    NASA Astrophysics Data System (ADS)

    Brouwer, Tom; Eilander, Dirk; van Loenen, Arnejan; Booij, Martijn J.; Wijnberg, Kathelijne M.; Verkade, Jan S.; Wagemaker, Jurjen

    2017-05-01

    The increasing number and severity of floods, driven by phenomena such as urbanization, deforestation, subsidence and climate change, create a growing need for accurate and timely flood maps. In this paper we present and evaluate a method to create deterministic and probabilistic flood maps from Twitter messages that mention locations of flooding. A deterministic flood map created for the December 2015 flood in the city of York (UK) showed good performance (F(2) = 0.69; a statistic ranging from 0 to 1, with 1 expressing a perfect fit with validation data). The probabilistic flood maps we created showed that, in the York case study, the uncertainty in flood extent was mainly induced by errors in the precise locations of flood observations as derived from Twitter data. Errors in the terrain elevation data or in the parameters of the applied algorithm contributed less to flood extent uncertainty. Although these maps tended to overestimate the actual probability of flooding, they gave a reasonable representation of flood extent uncertainty in the area. This study illustrates that inherently uncertain data from social media can be used to derive information about flooding.

  14. A new approach for river flood extent delineation in rural and urban areas combining RADARSAT-2 imagery and flood recurrence interval data

    NASA Astrophysics Data System (ADS)

    Tanguy, Marion; Bernier, Monique; Chokmani, Karem

    2015-04-01

    When a flood hits an inhabited area, managers and services responsible for public safety need precise, reliable and up to date maps of the areas affected by the flood, in order to quickly roll out and to coordinate the adequate intervention and assistance plans required to limit the human and material damages caused by the disaster. Synthetic aperture radar (SAR) sensors are now considered as one of the most adapted tool for flood detection and mapping in a context of crisis management. Indeed, due to their capacity to acquire data night and day, in almost all meteorological conditions, SAR sensors allow the acquisition of synoptic but detailed views of the areas affected by the flood, even during the active phases of the event. Moreover, new generation sensors such as RADARSAT-2, TerraSAR-X, COSMO-SkyMed, are providing very high resolution images of the disaster (down to 1m ground resolution). Further, critical improvements have been made on the temporal repetitivity of acquisitions and on data availability, through the development of satellite constellations (i.e the four COSMO-Skymed or the Sentinel-1A and 1B satellites) and thanks to the implementation of the International Charter "Space and Major Disasters", which guarantees high priority images acquisition and delivery with 4 to 12 hours. If detection of open water flooded areas is relatively straightforward with SAR imagery, flood detection in built-up areas is often associated with important issues. Indeed, because of the side looking geometry of the SAR sensors, structures such as tall vegetation and structures parallel to the satellite direction of travel may produce shadow and layover effects, leading to important over and under-detections of flooded pixels. Besides, the numerous permanent water-surfaces like radar response areas present in built-up environments, such as parking lots, roads etc., may be mixed up with flooded areas, resulting in substantial inaccuracies in the final flood map. In spite of

  15. CO{sub 2} adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhijian Liang; Marc Marshall; Alan L. Chaffee

    2009-05-15

    The potential for the metal organic framework (MOF) Cu-BTC to selectively adsorb and separate CO{sub 2} is considered. Isotherms for CO{sub 2}, CH{sub 4}, and N{sub 2} were measured from 0 to 15 bar and at temperatures between 25 and 105{sup o}C. The isotherms suggest a much higher working capacity (x4) for CO{sub 2} adsorption on Cu-BTC relative to the benchmark zeolite 13X over the same pressure range. Higher CO{sub 2}/N{sub 2} and CO{sub 2}/CH{sub 4} selectivities in the higher pressure range (1-15 bar) and with lower heats of adsorption were also demonstrated. Cu-BTC was observed to be stable inmore » O{sub 2} at 25{sup o}C, but its crystallinity was reduced in humid environments. The CO{sub 2} adsorption capacity was progressively reduced upon cyclic exposure to water vapor at low relative humidity (<30%), but leveled out at 75% of its original value after several water adsorption/desorption cycles. 27 refs., 1 fig.« less

  16. Synthesis of Mesoporous Single Crystal Co(OH)2 Nanoplate and Its Topotactic Conversion to Dual-Pore Mesoporous Single Crystal Co3O4.

    PubMed

    Jia, Bao-Rui; Qin, Ming-Li; Li, Shu-Mei; Zhang, Zi-Li; Lu, Hui-Feng; Chen, Peng-Qi; Wu, Hao-Yang; Lu, Xin; Zhang, Lin; Qu, Xuan-Hui

    2016-06-22

    A new class of mesoporous single crystalline (MSC) material, Co(OH)2 nanoplates, is synthesized by a soft template method, and it is topotactically converted to dual-pore MSC Co3O4. Most mesoporous materials derived from the soft template method are reported to be amorphous or polycrystallined; however, in our synthesis, Co(OH)2 seeds grow to form single crystals, with amphiphilic block copolymer F127 colloids as the pore producer. The single-crystalline nature of material can be kept during the conversion from Co(OH)2 to Co3O4, and special dual-pore MSC Co3O4 nanoplates can be obtained. As the anode of lithium-ion batteries, such dual-pore MSC Co3O4 nanoplates possess exceedingly high capacity as well as long cyclic performance (730 mAh g(-1) at 1 A g(-1) after the 350th cycle). The superior performance is because of the unique hierarchical mesoporous structure, which could significantly improve Li(+) diffusion kinetics, and the exposed highly active (111) crystal planes are in favor of the conversion reaction in the charge/discharge cycles.

  17. Effective Wettability Measurements of CO2-Brine-Sandstone System at Different Reservoir Conditions

    NASA Astrophysics Data System (ADS)

    Al-Menhali, Ali; Krevor, Samuel

    2014-05-01

    The wetting properties of CO2-brine-rock systems will have a major impact on the management of CO2 injection processes. The wettability of a system controls the flow and trapping efficiency during the storage of CO2 in geological formations as well as the efficiency of enhanced oil recovery operations. Despite its utility in EOR and the continued development of CCS, little is currently known about the wetting properties of the CO2-brine system on reservoir rocks, and no investigations have been performed assessing the impact of these properties on CO2 flooding for CO2 storage or EOR. The wetting properties of multiphase fluid systems in porous media have major impacts on the multiphase flow properties such as the capillary pressure and relative permeability. While recent studies have shown CO2 to generally act as a non-wetting phase in siliciclastic rocks, some observations report that the contact angle varies with pressure, temperature and water salinity. Additionally, there is a wide range of reported contact angles for this system, from strongly to weakly water-wet. In the case of some minerals, intermediate wet contact angles have been observed. Uncertainty with regard to the wetting properties of CO2-brine systems is currently one of the remaining major unresolved issues with regards to reservoir management of CO2 storage. In this study, we make semi-dynamic capillary pressure measurements of supercritical CO2 and brine at reservoir conditions to observe shifts in the wetting properties. We utilize a novel core analysis technique recently developed by Pini et al in 2012 to evaluate a core-scale effective contact angle. Carbon dioxide is injected at constant flow rate into a core that is initially fully saturated with water, while maintaining a constant outlet pressure. In this scenario, the pressure drop across the core corresponds to the capillary pressure at the inlet face of the core. When compared with mercury intrusion capillary pressure measurements

  18. The Human Dimension of Flood Risk: Towards Building Resilience in Vulnerable Communities

    NASA Astrophysics Data System (ADS)

    Goodrich, K.

    2015-12-01

    Significant advancements have been made in hydrodynamic modeling for natural disasters such as floods; however, it is vital to better understand how to effectively communicate risk to promote hazard preparedness. In many poor communities throughout the world, individuals live in areas that are hazardous because of the conditions of both the natural environment and built environment. Furthermore, environmental risks from the natural environment can be exacerbated by human development. Planning, behavioral change, and strategic actions taken by community members can mitigate risk, however, it is critical to first understand the perspective of those who are most vulnerable to (1) better communicate risk and (2) improve hazardous conditions. Thus, the Flood Resilient Infrastructure and Sustainable Environments (FloodRISE) project conducted a household level survey of over 350 participants in Los Laureles Canyon, a colonia in Tijuana, Mexico that is vulnerable to flooding. Preliminary results from the study will be discussed, specifically addressing: (1) the relationship between compounding risk factors, such as flooding and erosion, and (2) data that speaks to next steps for engaging community in the co-generation of local knowledge about flood hazards, and other strategies that contribute to more flood resilient communities.

  19. Recycling of cobalt from spent Li-ion batteries as β-Co(OH)2 and the application of Co3O4 as a pseudocapacitor

    NASA Astrophysics Data System (ADS)

    Barbieri, E. M. S.; Lima, E. P. C.; Lelis, M. F. F.; Freitas, M. B. J. G.

    2014-12-01

    This work has investigated recycling cobalt from the cathodes of spent Li-ion batteries as β-Co(OH)2, obtaining Co3O4. β-Co(OH)2 with a hexagonal structure by using chemical precipitation (CP) or electrochemical precipitation (EP). In addition, the study has investigated whether the charge density applied directly affects the β-Co(OH)2 morphology. Co3O4 is formed by heat-treating β-Co(OH)2 at 450 °C for 3 h (h) in an air atmosphere. After calcining, the Co3O4 shows a cubic structure and satisfactory purity grade, regardless of the route used for preparation via which it was obtained. Cyclic voltammetry (CV) is then used for electrochemical characterization of the Co3O4 composite electrodes. In the cathodic process, CoO2 undergoes reduction to CoOOH, which undergoes further reduction to Co3O4. In the anodic process, Co3O4 undergoes oxidation to CoOOH, which simultaneously undergoes further oxidation to CoO2. The composite electrodes containing Co3O4, carbon black, and epoxy resin show great reversibility, charge efficiency, and a specific capacitance of 13.0 F g-1 (1.0 mV s-1). The synthesis method of Co(OH)2 influences the charge efficiency of Co3O4 composite electrodes at a scan rate of 10.0 mV s-1. Therefore, in addition to presenting an alternative use for exhausted batteries, Co3O4 composites exhibit favorable characteristics for use as pseudocapacitors.

  20. Intermittent spring flooding of agricultural fields will increase net global-warming potential of greenhouse gas fluxes

    NASA Astrophysics Data System (ADS)

    Paul, R. F.; Smyth, E. M.; Smith, C. M.; Kantola, I. B.; Krichels, A.; Yang, W. H.; DeLucia, E. H.

    2014-12-01

    The U.S. Corn Belt is currently a net source of carbon dioxide and nitrous dioxide to the atmosphere but is also a weak sink for methane. Climate change is projected to increase the frequency and duration of spring precipitation in the North American Midwest, resulting in intermittent flooding and ponding in agricultural fields. Inundation changes the greenhouse gas (GHG) fluxes of the soil, especially by promoting methanogenesis under anoxic conditions. DNA and 16S cDNA sequencing results of earlier, similar experiments confirmed the presence of methanogens in soil samples, albeit in low abundance (representing <0.01% of reads per sample). We installed collars into bare ground of a central Illinois research field to experiment with flooding conditions and observe changes in gas fluxes, microbial community, and soil chemistry. We established three treatments of five replicates—control, continuously flooded, and intermittently flooded—each with separate collars for gas flux measurements, soil sample collection, and soil probe measurements. A drip irrigation system flooded the headspaces of the collars to produce flooding events. The continuously flooded collars were maintained in a flooded condition for the duration of the experiment, and the intermittently flooded collars were flooded for 72 hours per flooding event and then kept dry for at least 5 days before the next flooding event. We measured net concentrations of N2O, CH4, and CO2 in situ using a static chamber connected to a cavity ringdown spectrometer. We found that the periodicity of wetting and drying events induces hysteresis effects that push GHG shifts to occur rapidly (< 1 hr). Integrating fluxes across the period of the experiment, the intermittently flooded collars showed 88.7% higher global-warming potential of GHG fluxes at the 100-year horizon versus control, with most of change driven by increased net CO2 flux (87.1% higher) and net methane flux (29 times higher). These data indicate that

  1. Flood of April 2-3, 2005, Neversink River Basin, New York

    USGS Publications Warehouse

    Suro, Thomas P.; Firda, Gary D.

    2006-01-01

    Heavy rain on April 2-3, 2005 produced rainfall amounts of 3 inches to almost 6 inches within a 36-hour period throughout the Delaware River basin. Major flooding occurred in the East and West Branches of the Delaware River and their tributaries, the main stem of the Delaware River and the Neversink River, a major tributary to the Delaware River. The resultant flooding damaged hundreds of homes, caused millions of dollars in damage to infrastructure in Orange and Sullivan Counties, and forced more than 1,000 residents to evacuate their homes. A total of 20 New York counties were declared Federal disaster areas. Some of the most extensive flooding occurred along the Neversink and Delaware Rivers in Orange and Sullivan Counties, New York. Disaster recovery assistance from the April 2005 flooding in New York stood at almost $35 million in 2005, at which time more than 3,400 New Yorkers had registered for Federal aid. All U.S. Geological Survey stream-gaging stations on the Neversink River below the Neversink Reservoir recorded peak water-surface elevations higher than those recorded during the September 2004 flooding. Peak water-surface elevations at some study sites on the Neversink River exceeded the 500-year flood elevation as documented in flood-insurance studies by the Federal Emergency Management Agency. Flood peaks at some long-term U.S. Geological Survey stream-gaging stations were the highest ever recorded. Several U.S. Geological Survey stream-gaging stations on the Delaware River also recorded peak water-surface elevations that exceeded those recorded during the September 2004 flooding.

  2. Inedible saccharides: a platform for CO2 capturing.

    PubMed

    Qaroush, Abdussalam K; Alshamaly, Hiba S; Alazzeh, Shrouq S; Abeskhron, Ream H; Assaf, Khaleel I; Eftaiha, Ala'a F

    2018-02-07

    The economic viability of eco-friendly and renewable materials promotes the development of an alternative technology for climate change mitigation. Investigations reported over the past few years have allowed understanding the mechanism of action for a wide spectrum of saccharides toward carbon dioxide (CO 2 ), in terms of reactivity, reversibility, stability and uptake. Exploiting bio-renewables, viz. , inedible saccharides, to reduce the anthropogenic carbon footprint upon providing a sustainable and promising technology that is of interest to different groups of scientists, to overcome demerits associated with the current state-of-the-art aqueous amine scrubbing agents, following a "green chemistry guideline", by employing materials with properties relevant to the environment toward sustainable development. The interdisciplinary nature of research in this area provides a large body of literature that would meet the interest of the broad readership of different multidisciplinary fields. Although many reports emphasize the use of biomass in various industrial products ranging from pharmaceutics, medical preparations, soaps, textiles, cosmetics, household cleaners, and so on, to our knowledge there is no focused article that addresses the application of saccharides for CO 2 sequestration. In this review, we highlight the recent advances on the use of oligo-, poly- and cyclic saccharides to achieve a reversible binding of CO 2 . The future research directions are discussed to provide insight toward achieving sustainable development through implementing bio-renewables.

  3. Inedible saccharides: a platform for CO2 capturing

    PubMed Central

    Alshamaly, Hiba S.; Alazzeh, Shrouq S.; Abeskhron, Ream H.

    2018-01-01

    The economic viability of eco-friendly and renewable materials promotes the development of an alternative technology for climate change mitigation. Investigations reported over the past few years have allowed understanding the mechanism of action for a wide spectrum of saccharides toward carbon dioxide (CO2), in terms of reactivity, reversibility, stability and uptake. Exploiting bio-renewables, viz., inedible saccharides, to reduce the anthropogenic carbon footprint upon providing a sustainable and promising technology that is of interest to different groups of scientists, to overcome demerits associated with the current state-of-the-art aqueous amine scrubbing agents, following a “green chemistry guideline”, by employing materials with properties relevant to the environment toward sustainable development. The interdisciplinary nature of research in this area provides a large body of literature that would meet the interest of the broad readership of different multidisciplinary fields. Although many reports emphasize the use of biomass in various industrial products ranging from pharmaceutics, medical preparations, soaps, textiles, cosmetics, household cleaners, and so on, to our knowledge there is no focused article that addresses the application of saccharides for CO2 sequestration. In this review, we highlight the recent advances on the use of oligo-, poly- and cyclic saccharides to achieve a reversible binding of CO2. The future research directions are discussed to provide insight toward achieving sustainable development through implementing bio-renewables. PMID:29675154

  4. SeCom - Serious Community 2.0 prevent flooding

    NASA Astrophysics Data System (ADS)

    Komma, Juergen; Breuer, Roman; Sewilam, Hani; Concia, Francesca; Aliprandi, Bruno; Siegmund, Sabine; Goossens, Jannis

    2013-04-01

    There is a significant need for raising the awareness and building the capacity of water professionals in different water sectors cross Europe. There is also a need for qualified graduates to implement the EU Flood Risk Directive (FRD). The main aim of this work is to prepare and build the capacity of both groups in flood risk management through identifying synergies, sharing knowledge, and strengthen partnerships between universities and different stakeholders(mainly water professionals). The specific objectives are to develop; a) Development of a dynamic and active tool that allows all target-groups/users to assess their knowledge about flood risk management. b) Development of an innovative, active and problem-based learning methodology for flood risk education and training. c)Development of flood related Vocational Education & Training (VET) modules for water professionals (involving the students to gain practical experience). This will include some modules for undergraduate students on flood risk management and protection.

  5. Cyclic-2,3-diphosphoglycerate levels in Methanobacterium thermoautotrophicum reflect inorganic phosphate availability.

    PubMed

    Seely, R J; Krueger, R D; Fahrney, D E

    1983-11-15

    Methanobacterium thermoautotrophicum was grown in phosphate-limited chemostat cultures at a dilution rate corresponding to a doubling time of 13.2 h. The cyclic-2,3-diphospho-D-glycerate content of these cells was 8 to 10-fold lower than that of cells grown in batch cultures having a doubling time of 11.5 h. This metabolite accounted for 5% of cell dry weight during batch growth on 2 mM phosphate. In the chemostat the steady-state concentration of phosphate was 4 microM, showing that this methanogen is adapted to highly efficient growth at low phosphate concentrations. Since growth rates were similar in both cultures, the growth rate clearly does not depend on intracellular levels of cyclic-2,3-diphosphoglycerate.

  6. Development of a cost-effective CO2 adsorbent from petroleum coke via KOH activation

    NASA Astrophysics Data System (ADS)

    Jang, Eunji; Choi, Seung Wan; Hong, Seok-Min; Shin, Sangcheol; Lee, Ki Bong

    2018-01-01

    The capture of CO2 via adsorption is considered an effective technology for decreasing global warming issues; hence, adsorbents for CO2 capture have been actively developed. Taking into account cost-effectiveness and environmental concerns, the development of CO2 adsorbents from waste materials is attracting considerable attention. In this study, petroleum coke (PC), which is the carbon residue remaining after heavy oil upgrading, was used to produce high-value-added porous carbon for CO2 capture. Porous carbon materials were prepared by KOH activation using different weight ratios of KOH/PC (1:1, 2:1, 3:1, and 4:1) and activation temperatures (600, 700, and 800 °C). The specific surface area and total pore volume of resulting porous carbon materials increased with KOH amount, reaching up to 2433 m2/g and 1.11 cm3/g, respectively. The sample prepared under moderate conditions with a KOH/PC weight ratio of 2:1 and activation temperature of 700 °C exhibited the highest CO2 adsorption uptake of 3.68 mmol/g at 25 °C and 1 bar. Interestingly, CO2 adsorption uptake was linearly correlated with the volume of micropores less than 0.8 nm, indicating that narrow micropore volume is crucial for CO2 adsorption. The prepared porous carbon materials also exhibited good selectivity for CO2 over N2, rapid adsorption, facile regeneration, and stable adsorption-desorption cyclic performance, demonstrating potential as a candidate for CO2 capture.

  7. A new gel route to synthesize LiCoO{sub 2} for lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, N.; Ge, X.W.; Chen, C.H.

    2005-09-01

    A new synthetic route, i.e. the radiated polymer gel (RPG) method, has been developed and demonstrated for the production of LiCoO{sub 2} powders. The process involved two processes: (1) obtaining a gel by polymerizing a mixed solution of an acrylic monomer and an aqueous solution of lithium and cobalt salts under {gamma}-ray irradiation conditions and (2) obtaining LiCoO{sub 2} powders by drying and calcining the gel. Thermogravimetric analysis (TGA), X-ray diffraction (XRD) and electron scanning microscopy (SEM) were employed to study the reaction process and the structures of the powders. Galvanostatic cell cycling, cyclic voltammetry and ac impedance spectroscopy weremore » used to evaluate the electrochemical properties of the LiCoO{sub 2} powders. It was found that a pure phase of LiCoO{sub 2} can be obtained at the calcination temperature of 800 deg. C. Both the particle size (micrometer range) and specific charge/discharge capacity of an RPG-LiCoO{sub 2} powder increase with increasing the concentration of its precursor solution.« less

  8. Cycle development and design for CO{sub 2} capture from flue gas by vacuum swing adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun Zhang; Paul A. Webley

    CO{sub 2} capture and storage is an important component in the development of clean power generation processes. One CO{sub 2} capture technology is gas-phase adsorption, specifically pressure (or vacuum) swing adsorption. The complexity of these processes makes evaluation and assessment of new adsorbents difficult and time-consuming. In this study, we have developed a simple model specifically targeted at CO{sub 2} capture by pressure swing adsorption and validated our model by comparison with data from a fully instrumented pilot-scale pressure swing adsorption process. The model captures non-isothermal effects as well as nonlinear adsorption and nitrogen coadsorption. Using the model and ourmore » apparatus, we have designed and studied a large number of cycles for CO{sub 2} capture. We demonstrate that by careful management of adsorption fronts and assembly of cycles based on understanding of the roles of individual steps, we are able to quickly assess the effect of adsorbents and process parameters on capture performance and identify optimal operating regimes and cycles. We recommend this approach in contrast to exhaustive parametric studies which tend to depend on specifics of the chosen cycle and adsorbent. We show that appropriate combinations of process steps can yield excellent process performance and demonstrate how the pressure drop, and heat loss, etc. affect process performance through their effect on adsorption fronts and profiles. Finally, cyclic temperature profiles along the adsorption column can be readily used to infer concentration profiles - this has proved to be a very useful tool in cyclic function definition. Our research reveals excellent promise for the application of pressure/vacuum swing adsorption technology in the arena of CO{sub 2} capture from flue gases. 20 refs., 6 figs., 2 tabs.« less

  9. Post Waterflood CO2 Miscible Flood in Light Oil, Fluvial-Dominated Deltaic Reservoir, Class I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bou-Mikael, Sami

    This report demonstrates the effectiveness of the CO2 miscible process in Fluvial Dominated Deltaic reservoirs. It also evaluated the use of horizontal CO2 injection wells to improve the overall sweep efficiency. A database of FDD reservoirs for the gulf coast region was developed by LSU, using a screening model developed by Texaco Research Center in Houston. The results of the information gained in this project is disseminated throughout the oil industry via a series of SPE papers and industry open forums.

  10. Using Pressure and Volumetric Approaches to Estimate CO2 Storage Capacity in Deep Saline Aquifers

    DOE PAGES

    Thibeau, Sylvain; Bachu, Stefan; Birkholzer, Jens; ...

    2014-12-31

    Various approaches are used to evaluate the capacity of saline aquifers to store CO 2, resulting in a wide range of capacity estimates for a given aquifer. The two approaches most used are the volumetric “open aquifer” and “closed aquifer” approaches. We present four full-scale aquifer cases, where CO 2 storage capacity is evaluated both volumetrically (with “open” and/or “closed” approaches) and through flow modeling. These examples show that the “open aquifer” CO 2 storage capacity estimation can strongly exceed the cumulative CO 2 injection from the flow model, whereas the “closed aquifer” estimates are a closer approximation to themore » flow-model derived capacity. An analogy to oil recovery mechanisms is presented, where the primary oil recovery mechanism is compared to CO 2 aquifer storage without producing formation water; and the secondary oil recovery mechanism (water flooding) is compared to CO 2 aquifer storage performed simultaneously with extraction of water for pressure maintenance. This analogy supports the finding that the “closed aquifer” approach produces a better estimate of CO 2 storage without water extraction, and highlights the need for any CO 2 storage estimate to specify whether it is intended to represent CO 2 storage capacity with or without water extraction.« less

  11. One-step engineered self-assembly Co3O4 nanoparticles to nanocubes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Nagajyothi, P. C.; Pandurangan, M.; Sreekanth, T. V. M.; Shim, Jaesool

    2018-02-01

    Tricobalt tetraoxide or cobalt oxide (Co3O4) nanocubes (NCs) were synthesized from the self-assemblies of Co3O4 nanoparticles (NPs) via a simple one-step hydrothermal method. X-ray diffraction analysis confirmed the cubic crystal structure of Co3O4 NCs. The surface properties were investigated by x-ray photoelectron spectroscopy, which suggests the co-existence of Co in +2 and +3 states. The self-assemblies of aggregation of NPs to NCs were inspected using scanning electron microscopy, which is supported by transmission electron microscopy. The electrochemical properties of Co3O4 NCs were carried out by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) curves and impedance analysis. The areal capacitance of 3.04 mF cm-2 was obtained at current density of 10 μA cm-2. The Co3O4 NCs electrode exhibits good long-cyclic stability with 92.1% capacitance retention over 3000 cycles. The CV, GCD and impedance curves of Co3O4 NCs were recorded after cyclic test, which are similar to the curves recorded before the test. Therefore, the Co3O4 NCs serves good candidate as positive electrode materials for asymmetric supercapacitors.

  12. Development of Highly Durable and Reactive Regenerable Magnesium-Based Sorbents for CO2 Separation in Coal Gasification Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javad Abbasian; Armin Hassanzadeh Khayyat; Rachid B. Slimane

    magnitude higher than those of the sol-gel based sorbents. The results of the tests conducted with various dolomite-based sorbent indicate that the reactivity of the modified dolomite sorbent increases with increasing potassium concentration, while higher calcination temperature adversely affects the sorbent reactivity. Furthermore, the results indicate that as long as the absorption temperature is well below the equilibrium temperature, the reactivity of the sorbent improves with increasing temperature (350-425 C). As the temperature approaches the equilibrium temperature, because of the significant increase in the rate of reverse (i.e., regeneration) reaction, the rate of CO{sub 2} absorption decreases. The results of cyclic tests show that the reactivity of the sorbent gradually decreases in the cyclic process. To improve long-term durability (i.e., reactivity and capacity) of the sorbent, the sorbent was periodically re-impregnated with potassium additive and calcined. The results indicate that, in general, re-treatment improves the performance of the sorbent, and that, the extent of improvement gradually decreases in the cyclic process. The presence of steam significantly enhances the sorbent reactivity and significantly decreases the rate of decline in sorbent deactivation in the cyclic process.« less

  13. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes

    2007-06-30

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestonesmore » of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.« less

  14. Inferences from Microfractures and Geochemistry in Dynamic Shale-CO2 Packed Bed Experiments

    NASA Astrophysics Data System (ADS)

    Radonjic, M.; Olabode, A.

    2016-12-01

    Subsurface storage of large volumes of carbondioxide (CO2) is expected to have long term rock-fluid interactions impact on reservoir and seal rocks properties. Caprocks, particularly sedimentary types, are the ultimate hydraulic barrier in carbon sequestration. The mineralogical components of sedimentary rocks are geochemically active under enormous earth stresses, which generate high pressure and temperature conditions. It has been postulated that in-situ mineralization can lead to flow impedance in natural fractures in the presence of favorable geochemical and thermodynamic conditions. This experimental modelling research investigated the impact of in-situ geochemical precipitation on conductivity of fractures. Geochemical analyses were performed on four different samples of shale rocks, effluent fluids and recovered precipitates both before and after CO2-brine flooding of crushed shale rocks at moderately high temperature and pressure conditions. The results showed that most significant diagenetic changes in shale rocks after flooding with CO2-brine, reflected in the effluent fluid with predominantly calcium based minerals dissolving and precipitating under experimental conditions. Major and trace elements in the effluent (using ICP-OES analysis) indicated that multiple geochemical reactions are occurring with almost all of the constituent minerals participating. The geochemical composition of precipitates recovered after the experiments showed diagenetic carbonates and opal as the main constituents. The bulk rock showed little changes in composition except for sharper and more refined peaks on XRD analysis, suggesting that a significant portion of the amorphous content of the rocks have been removed via dissolution by the slightly acid CO2-brine fluid that was injected. Micro-indentation results captured slight reduction in the hardness of the shale rocks and this reduction appeared dependent on diagenetic quartz content. It can be inferred that convective

  15. Seasonality of Carbonate Chemistry and CO2 Flux in a Northwestern Gulf of Mexico estuary

    NASA Astrophysics Data System (ADS)

    Yao, H.; Hu, X.

    2016-02-01

    Estuaries are important CO2 source to the atmosphere and exhibit significant spatial and temporal variability. Currently, relatively little is known regarding the role of subtropical semiarid estuaries in the carbon cycle and their carbonate chemistry. In this study we examined seasonality of carbonate system and CO2 flux in the Mission-Aransas estuary, a shallow subtropical semiarid estuary in the Northwestern Gulf of Mexico, during a one-year period (05/2014-04/2015). This estuary includes three interconnected coastal bays (Aransas, Copano, and Mesquite) that have little direct freshwater input from rivers. Average pH (total scale) was 8.017±0.096 and varied between 7.515 and 8.317. Annual mean total dissolved inorganic carbon (DIC) and total alkalinity (TA) were 2183.2±180.4 µmol kg-1 and 2467.2±206.7 µmol·kg-1, respectively. Both DIC and TA decreased from June to October, 2014 with increasing salinity, then started to increase when salinity decreased after heavy precipitation evens in November, 2014. Contrary to DIC and TA patterns, the highest carbonate saturation state (4.89) with respect to aragonite (Ωaragonite) was observed in August 2014, and the lowest (0.20) in March 2015. Overall, high Ωaragonite (>4.0) occurred in hypersaline seawater (salinity>35). Calculated annual average pCO2 was 487±138 µatm, with the annual high occurring in early summer (May to June, 2014, 544±76 µatm) and annual low at 352±33 µatm in winter (January to February, 2015). During the flooding period from January to April, 2015, DIC and TA decreased dramatically while pCO2 first decreased to below the atmosphere level and then increased with maximum level reaching nearly 1700 µatm, indicating a trophic state transition during the development and relaxation periods of the flood. Average annual CO2 flux in this estuary was estimated to be 7.0±2.0 109g-C·yr-1. The highest CO2 efflux (20.6±10.9 mmol·m-2·d-1) occurred in August, 2014, and this estuary turned to a CO2

  16. Tidal marsh plant responses to elevated CO2 , nitrogen fertilization, and sea level rise.

    PubMed

    Adam Langley, J; Mozdzer, Thomas J; Shepard, Katherine A; Hagerty, Shannon B; Patrick Megonigal, J

    2013-05-01

    Elevated CO2 and nitrogen (N) addition directly affect plant productivity and the mechanisms that allow tidal marshes to maintain a constant elevation relative to sea level, but it remains unknown how these global change drivers modify marsh plant response to sea level rise. Here we manipulated factorial combinations of CO2 concentration (two levels), N availability (two levels) and relative sea level (six levels) using in situ mesocosms containing a tidal marsh community composed of a sedge, Schoenoplectus americanus, and a grass, Spartina patens. Our objective is to determine, if elevated CO2 and N alter the growth and persistence of these plants in coastal ecosystems facing rising sea levels. After two growing seasons, we found that N addition enhanced plant growth particularly at sea levels where plants were most stressed by flooding (114% stimulation in the + 10 cm treatment), and N effects were generally larger in combination with elevated CO2 (288% stimulation). N fertilization shifted the optimal productivity of S. patens to a higher sea level, but did not confer S. patens an enhanced ability to tolerate sea level rise. S. americanus responded strongly to N only in the higher sea level treatments that excluded S. patens. Interestingly, addition of N, which has been suggested to accelerate marsh loss, may afford some marsh plants, such as the widespread sedge, S. americanus, the enhanced ability to tolerate inundation. However, if chronic N pollution reduces the availability of propagules of S. americanus or other flood-tolerant species on the landscape scale, this shift in species dominance could render tidal marshes more susceptible to marsh collapse. © 2013 Blackwell Publishing Ltd.

  17. 1D and 2D urban dam-break flood modelling in Istanbul, Turkey

    NASA Astrophysics Data System (ADS)

    Ozdemir, Hasan; Neal, Jeffrey; Bates, Paul; Döker, Fatih

    2014-05-01

    Urban flood events are increasing in frequency and severity as a consequence of several factors such as reduced infiltration capacities due to continued watershed development, increased construction in flood prone areas due to population growth, the possible amplification of rainfall intensity due to climate change, sea level rise which threatens coastal development, and poorly engineered flood control infrastructure (Gallegos et al., 2009). These factors will contribute to increased urban flood risk in the future, and as a result improved modelling of urban flooding according to different causative factor has been identified as a research priority (Gallegos et al., 2009; Ozdemir et al. 2013). The flooding disaster caused by dam failures is always a threat against lives and properties especially in urban environments. Therefore, the prediction of dynamics of dam-break flows plays a vital role in the forecast and evaluation of flooding disasters, and is of long-standing interest for researchers. Flooding occurred on the Ayamama River (Istanbul-Turkey) due to high intensity rainfall and dam-breaching of Ata Pond in 9th September 2009. The settlements, industrial areas and transportation system on the floodplain of the Ayamama River were inundated. Therefore, 32 people were dead and millions of Euros economic loses were occurred. The aim of this study is 1 and 2-Dimensional flood modelling of the Ata Pond breaching using HEC-RAS and LISFLOOD-Roe models and comparison of the model results using the real flood extent. The HEC-RAS model solves the full 1-D Saint Venant equations for unsteady open channel flow whereas LISFLOOD-Roe is the 2-D shallow water model which calculates the flow according to the complete Saint Venant formulation (Villanueva and Wright, 2006; Neal et al., 2011). The model consists a shock capturing Godunov-type scheme based on the Roe Riemann solver (Roe, 1981). 3 m high resolution Digital Surface Model (DSM), natural characteristics of the pond

  18. Mapping Flood Protection Benefits from Restored Wetlands at the Urban-Suburban Interface

    EPA Science Inventory

    Urbanization exacerbates flooding by increasing runoff and decreasing surface water storage. Restoring wetlands can enhance flood protection while providing a suite of co-benefits such as temperature regulation and access to open space. Spatial modeling of the delivery of flood p...

  19. Final report : CO2 reduction using biomimetic photocatalytic nanodevices.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Robert M.; Shelnutt, John Allen; Medforth, Craig John

    2009-11-01

    Nobel Prize winner Richard Smalley was an avid champion for the cause of energy research. Calling it 'the single most important problem facing humanity today,' Smalley promoted the development of nanotechnology as a means to harness solar energy. Using nanotechnology to create solar fuels (i.e., fuels created from sunlight, CO{sub 2}, and water) is an especially intriguing idea, as it impacts not only energy production and storage, but also climate change. Solar irradiation is the only sustainable energy source of a magnitude sufficient to meet projections for global energy demand. Biofuels meet the definition of a solar fuel. Unfortunately, themore » efficiency of photosynthesis will need to be improved by an estimated factor of ten before biofuels can fully replace fossil fuels. Additionally, biological organisms produce an array of hydrocarbon products requiring further processing before they are usable for most applications. Alternately, 'bio-inspired' nanostructured photocatalytic devices that efficiently harvest sunlight and use that energy to reduce CO{sub 2} into a single useful product or chemical intermediate can be envisioned. Of course, producing such a device is very challenging as it must be robust and multifunctional, i.e. capable of promoting and coupling the multi-electron, multi-photon water oxidation and CO{sub 2} reduction processes. Herein, we summarize some of the recent and most significant work towards creating light harvesting nanodevices that reduce CO{sub 2} to CO (a key chemical intermediate) that are based on key functionalities inspired by nature. We report the growth of Co(III)TPPCl nanofibers (20-100 nm in diameter) on gas diffusion layers via an evaporation induced self-assembly (EISA) method. Remarkably, as-fabricated electrodes demonstrate light-enhanced activity for CO{sub 2} reduction to CO as evidenced by cyclic voltammograms and electrolysis with/without light irradiation. To the best of our knowledge, it is the first time

  20. Carbon dioxide field flooding reduces neurologic impairment after open heart surgery.

    PubMed

    Martens, Sven; Neumann, Katrin; Sodemann, Christian; Deschka, Heinz; Wimmer-Greinecker, Gerhard; Moritz, Anton

    2008-02-01

    Air emboli released from incompletely deaired cardiac chambers may cause neurocognitive decline after open heart surgery. Carbon dioxide (CO2) field flooding is reported to reduce residual intracavital air during cardiac surgery. A protective effect of carbon dioxide insufflation on postoperative brain function remains unproven in clinical trials. Eighty patients undergoing heart valve operations by median sternotomy were randomly assigned to either CO2 insufflation (group I, n = 39) or unprotected controls (group II, n = 41). Preoperative evaluation included neurocognitive test batteries consisting of six different tests, and objective measurements of brain function by means of P300 wave auditory-evoked potentials (peak latencies, ms). Neurocognitive testing and P300 measurements were repeated on postoperative day 5. Neurocognitive deficit (ND) was defined as a 20% decrement in two or more tests. Preoperatively, P300 peak latencies did not differ between groups (374 +/- 75 vs 366 +/- 72 ms, not significant [n.s.]). Five days after surgery, P300 peak latencies were significantly shorter with CO2 protection as compared with the unprotected control group (group I: 390 +/- 68 ms, group II: 429 +/- 75 ms, p = 0.02). Clinical outcome was comparable as for mortality (group I: 1 patient; group II: 2 patients) and cerebrovascular events or confusional syndromes (group I: 5 patients; group II: 4 patients) or other clinical variables as intubation time or hospital stay. Neurocognitive test batteries did not reveal differences between groups. Shorter P300 peak latencies after surgery indicate less brain damage in patients who underwent heart valve operations with CO2 flooding of the thoracic cavity. Even if these findings were not supported by clinical results or neurocognitive test batteries in our cohort, carbon dioxide field flooding has proven efficiency and should be advocated for all patients undergoing open heart surgery.

  1. Hurricane Harvey Riverine Flooding: Part 2: Integration of Heterogeneous Earth Observation Data for Comparative Analysis with High-Resolution Inundation Boundaries Reconstructed from Flood2D-GPU Model

    NASA Astrophysics Data System (ADS)

    Jackson, C.; Sava, E.; Cervone, G.

    2017-12-01

    Hurricane Harvey has been noted as the wettest cyclone on record for the US as well as the most destructive (so far) for the 2017 hurricane season. An entire year worth of rainfall occurred over the course of a few days. The city of Houston was greatly impacted as the storm lingered over the city for five days, causing a record-breaking 50+ inches of rain as well as severe damage from flooding. Flood model simulations were performed to reconstruct the event in order to better understand, assess, and predict flooding dynamics for the future. Additionally, number of remote sensing platforms, and on ground instruments that provide near real-time data have also been used for flood identification, monitoring, and damage assessment. Although both flood models and remote sensing techniques are able to identify inundated areas, rapid and accurate flood prediction at a high spatio-temporal resolution remains a challenge. Thus a methodological approach which fuses the two techniques can help to better validate what is being modeled and observed. Recent advancements in data fusion techniques of remote sensing with near real time heterogeneous datasets have allowed emergency responders to more efficiently extract increasingly precise and relevant knowledge from the available information. In this work the use of multiple sources of contributed data, coupled with remotely sensed and open source geospatial datasets is demonstrated to generate an understanding of potential damage assessment for the floods after Hurricane Harvey in Harris County, Texas. The feasibility of integrating multiple sources at different temporal and spatial resolutions into hydrodynamic models for flood inundation simulations is assessed. Furthermore the contributed datasets are compared against a reconstructed flood extent generated from the Flood2D-GPU model.

  2. Effects of 12-crown-4 ether on the electrochemical performance of CoO2 and TiS2 cathodes in Li polymer electrolyte cells

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, G.; Attia, Alan I.; Halpert, G.

    1992-01-01

    The effect of adding 12-crown-4 ether (12Cr4) to the polyethylene oxide (PEO) electrolyte on the electrochemical properties of cells with Li(x)CoO2 or TiS2 as the cathode was investigated. The polymer electrolyte films were: (1) PEO, LiBF4; (2) PEO, LiBF4 with 12Cr4; (3) Li(x)CoO2, PEO, and LiBF4; and (4) Li(x)CoO2, PEO, LiBF4, and 12Cr4. It was found that, although 12Cr4 improved the cell performance over cells without 12Cr4 in the shallow c/d cycles (cyclic voltammetric behavior), it did not seem to prolong the active life of the cell. The cells with CoO2 as the cathode failed after a few c/d cycles, while similar cells with TiS2 did not fail even after 12 c/d cycles. The probable cause of failure in the case of CoO2 is ascribed to the instability of the CoO2 cathode.

  3. A 2D simulation model for urban flood management

    NASA Astrophysics Data System (ADS)

    Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo

    2014-05-01

    The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and

  4. Relationships between the Efficiencies of Photosystems I and II and Stromal Redox State in CO2-Free Air 1

    PubMed Central

    Harbinson, Jeremy; Foyer, Christine H.

    1991-01-01

    The responses of the efficiencies of photosystems I and II, stromal redox state (as indicated by NADP-malate dehydrogenase activation state), and activation of the Benson-Calvin cycle enzymes ribulose 1,5-bisphosphate carboxylase and fructose 1,6-bisphosphatase to varying irradiance were measured in pea (Pisum sativum L.) leaves operating close to the CO2 compensation point. A comparison of the relationships among these parameters obtained from leaves in air was made with those obtained when the leaves were maintained in air from which the CO2 had been removed. P700 was more oxidized at any measured irradiance in CO2-free air than in air. The relationship between the quantum efficiencies of the photosystems in CO2-free air was distinctly curvilinear in contrast to the predominantly linear relationship obtained with leaves in air. This nonlinearity may be consistent with the operation of cyclic electron flow around photosystem I because the quantum efficiency of photosystem II was much more restricted than the quantum efficiency of photosystem I. In CO2-free air, measured NADP-malate dehydrogenase activities varied considerably at low irradiances. However, at high irradiance the activity of the enzyme was low, implying that the stroma was oxidized. In contrast, fructose-1,6-bisphosphatase activities tended to increase with increasing electron flux through the photosystems. Ribulose-1,5-bisphosphate carboxylase activity remained relatively constant with respect to irradiance in CO2-free air, with an activation state 50% of maximum. We conclude that, at the CO2 compensation point and high irradiance, low redox states are favored and that cyclic electron flow may be substantial. These two features may be the requirements necessary to trigger and maintain the dissipative processes in the thylakoid membrane. PMID:16668401

  5. Understanding the geomorphology of macrochannel systems for flood risk management in Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Thompson, Chris; Croke, Jacky

    2016-04-01

    The year 2010-2011 was the wettest on record for the state of Queensland, Australia producing catastrophic floods. A tropical low pressure system in 2013 delivered further extreme flood events across South East Queensland (SEQ) which prompted state and local governments to conduct studies into flood magnitude and frequency in the region and catchment factors contributing to flood hazards. The floods in the region are strongly influenced by El Nino-Southern Oscillation (ENSO) phenomenon, but also modulated by the Interdecadal Pacific Oscillation (IPO) which leads to flood and drought dominated regimes and high hydrological variability. One geomorphic feature in particular exerted a significant control on the transmission speed, the magnitude of flood inundation and resultant landscape resilience. This feature was referred to as a 'macrochannel', a term used to describe a 'large-channel' which has bankfull recurrence intervals generally greater than 10 years. The macrochannels display non-linear downstream hydraulic geometry which leads to zones of flood expansion (when hydraulic geometry decreases) and zones of flood contraction (when hydraulic geometry increases). The pattern of contraction and expansion zones determines flood hazard zones. The floods caused significant wet flow bank mass failures that mobilised over 1,000,000 m3 of sediment in one subcatchment. Results suggest that the wetflow bank mass failures are a stage in a cyclical evolution process which maintains the macrochannel morphology, hence channel resilience to floods. Chronological investigations further show the macrochannels are laterally stable and identify periods of heightened flood activity over the past millennium and upper limits on flood magnitude. This paper elaborates on the results of the geomorphic investigations on Lockyer Creek in SEQ and how the results have alerted managers and policy makers to the different flood responses of these systems and how flood risk management plans can

  6. Microfluidic study for investigating migration and residual phenomena of supercritical CO2 in porous media

    NASA Astrophysics Data System (ADS)

    Park, Gyuryeong; Wang, Sookyun; Lee, Minhee; Um, Jeong-Gi; Kim, Seon-Ok

    2017-04-01

    The storage of CO2 in underground geological formation such as deep saline aquifers or depleted oil and gas reservoirs is one of the most promising technologies for reducing the atmospheric CO2 release. The processes in geological CO2 storage involves injection of supercritical CO2 (scCO2) into porous formations saturated with brine and initiates CO2 flooding with immiscible displacement. The CO2 migration and porewater displacement within geological formations, and , consequentially, the storage efficiency are governed by the interaction of fluid and rock properties and are affected by the interfacial tension, capillarity, and wettability in supercritical CO2-brine-mineral systems. This study aims to observe the displacement pattern and estimate storage efficiency by using micromodels. This study aims to conduct scCO2 injection experiments for visualization of distribution of injected scCO2 and residual porewater in transparent pore networks on microfluidic chips under high pressure and high temperature conditions. In order to quantitatively analyze the porewater displacement by scCO2 injection under geological CO2 storage conditions, the images of invasion patterns and distribution of CO2 in the pore network are acquired through a imaging system with a microscope. The results from image analysis were applied in quantitatively investigating the effects of major environmental factors and scCO2 injection methods on porewater displacement process by scCO2 and storage efficiency. The experimental observation results could provide important fundamental information on capillary characteristics of reservoirs and improve our understanding of CO2 sequestration progress.

  7. Cyclic biogeochemical processes and nitrogen fate beneath a subtropical stormwater infiltration basin

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.

    2012-01-01

    A stormwater infiltration basin in north–central Florida, USA, was monitored from 2007 through 2008 to identify subsurface biogeochemical processes, with emphasis on N cycling, under the highly variable hydrologic conditions common in humid, subtropical climates. Cyclic variations in biogeochemical processes generally coincided with wet and dry hydrologic conditions. Oxidizing conditions in the subsurface persisted for about one month or less at the beginning of wet periods with dissolved O2 and NO3- showing similar temporal patterns. Reducing conditions in the subsurface evolved during prolonged flooding of the basin. At about the same time O2 and NO3- reduction concluded, Mn, Fe and SO42- reduction began, with the onset of methanogenesis one month later. Reducing conditions persisted up to six months, continuing into subsequent dry periods until the next major oxidizing infiltration event. Evidence of denitrification in shallow groundwater at the site is supported by median NO3-–N less than 0.016 mg L-1, excess N2 up to 3 mg L-1 progressively enriched in δ15N during prolonged basin flooding, and isotopically heavy δ15N and δ18O of NO3- (up to 25‰ and 15‰, respectively). Isotopic enrichment of newly infiltrated stormwater suggests denitrification was partially completed within two days. Soil and water chemistry data suggest that a biogeochemically active zone exists in the upper 1.4 m of soil, where organic carbon was the likely electron donor supplied by organic matter in soil solids or dissolved in infiltrating stormwater. The cyclic nature of reducing conditions effectively controlled the N cycle, switching N fate beneath the basin from NO3- leaching to reduction in the shallow saturated zone. Results can inform design of functionalized soil amendments that could replace the native soil in a stormwater infiltration basin and mitigate potential NO3- leaching to groundwater by replicating the biogeochemical conditions under the observed basin.

  8. Using Combined X-ray Computed Tomography and Acoustic Resonance to Understand Supercritical CO2 Behavior in Fractured Sandstone

    NASA Astrophysics Data System (ADS)

    Kneafsey, T. J.; Nakagawa, S.

    2015-12-01

    Distribution of supercritical (sc) CO2 has a large impact on its flow behavior as well as on the properties of seismic waves used for monitoring. Simultaneous imaging of scCO2 distribution in a rock core using X-ray computed tomography (CT) and measurements of seismic waves in the laboratory can help understand how the distribution evolves as scCO2 invades through rock, and the resulting seismic signatures. To this end, we performed a series of laboratory scCO2 core-flood experiments in intact and fractured anisotropic Carbon Tan sandstone samples. In these experiments, we monitored changes in the CO2 saturation distribution and sonic-frequency acoustic resonances (yielding both seismic velocity and attenuation) over the course of the floods. A short-core resonant bar test system (Split-Hopkinson Resonant Bar Apparatus) custom fit into a long X-ray transparent pressure vessel was used for the seismic measurements, and a modified General Electric medical CT scanner was used to acquire X-ray CT data from which scCO2 saturation distributions were determined. The focus of the experiments was on the impact of single fractures on the scCO2 distribution and the seismic properties. For this reason, we examined several cases including 1. intact, 2. a closely mated fracture along the core axis, 3. a sheared fracture along the core axis (both vertical and horizontal for examining the buoyancy effect), and 4. a sheared fracture perpendicular to the core axis. For the intact and closely mated fractured cores, Young's modulus declined with increasing CO2 saturation, and attenuation increased up to about 15% CO2 saturation after which attenuation declined. For cores having wide axial fractures, the Young's modulus was lower than for the intact and closely mated cases, however did not change much with CO2 pore saturation. Much lower CO2 pore saturations were achieved in these cases. Attenuation increased more rapidly however than for the intact sample. For the core

  9. Investigation of uncertainty in CO 2 reservoir models: A sensitivity analysis of relative permeability parameter values

    DOE PAGES

    Yoshida, Nozomu; Levine, Jonathan S.; Stauffer, Philip H.

    2016-03-22

    Numerical reservoir models of CO 2 injection in saline formations rely on parameterization of laboratory-measured pore-scale processes. Here, we have performed a parameter sensitivity study and Monte Carlo simulations to determine the normalized change in total CO 2 injected using the finite element heat and mass-transfer code (FEHM) numerical reservoir simulator. Experimentally measured relative permeability parameter values were used to generate distribution functions for parameter sampling. The parameter sensitivity study analyzed five different levels for each of the relative permeability model parameters. All but one of the parameters changed the CO 2 injectivity by <10%, less than the geostatistical uncertainty that applies to all large subsurface systems due to natural geophysical variability and inherently small sample sizes. The exception was the end-point CO 2 relative permeability, kmore » $$0\\atop{r}$$ CO2, the maximum attainable effective CO 2 permeability during CO 2 invasion, which changed CO2 injectivity by as much as 80%. Similarly, Monte Carlo simulation using 1000 realizations of relative permeability parameters showed no relationship between CO 2 injectivity and any of the parameters but k$$0\\atop{r}$$ CO2, which had a very strong (R 2 = 0.9685) power law relationship with total CO 2 injected. Model sensitivity to k$$0\\atop{r}$$ CO2 points to the importance of accurate core flood and wettability measurements.« less

  10. Investigation of uncertainty in CO 2 reservoir models: A sensitivity analysis of relative permeability parameter values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Nozomu; Levine, Jonathan S.; Stauffer, Philip H.

    Numerical reservoir models of CO 2 injection in saline formations rely on parameterization of laboratory-measured pore-scale processes. Here, we have performed a parameter sensitivity study and Monte Carlo simulations to determine the normalized change in total CO 2 injected using the finite element heat and mass-transfer code (FEHM) numerical reservoir simulator. Experimentally measured relative permeability parameter values were used to generate distribution functions for parameter sampling. The parameter sensitivity study analyzed five different levels for each of the relative permeability model parameters. All but one of the parameters changed the CO 2 injectivity by <10%, less than the geostatistical uncertainty that applies to all large subsurface systems due to natural geophysical variability and inherently small sample sizes. The exception was the end-point CO 2 relative permeability, kmore » $$0\\atop{r}$$ CO2, the maximum attainable effective CO 2 permeability during CO 2 invasion, which changed CO2 injectivity by as much as 80%. Similarly, Monte Carlo simulation using 1000 realizations of relative permeability parameters showed no relationship between CO 2 injectivity and any of the parameters but k$$0\\atop{r}$$ CO2, which had a very strong (R 2 = 0.9685) power law relationship with total CO 2 injected. Model sensitivity to k$$0\\atop{r}$$ CO2 points to the importance of accurate core flood and wettability measurements.« less

  11. Charged Covalent Triazine Frameworks for CO2 Capture and Conversion.

    PubMed

    Buyukcakir, Onur; Je, Sang Hyun; Talapaneni, Siddulu Naidu; Kim, Daeok; Coskun, Ali

    2017-03-01

    The quest for the development of new porous materials addressing both CO 2 capture from various sources and its conversion into useful products is a very active research area and also critical in order to develop a more sustainable and environmentally-friendly society. Here, we present the first charged covalent triazine framework (cCTF) prepared by simply heating nitrile functionalized dicationic viologen derivatives under ionothermal reaction conditions using ZnCl 2 as both solvent and trimerization catalyst. It has been demonstrated that the surface area, pore volume/size of cCTFs can be simply controlled by varying the synthesis temperature and the ZnCl 2 content. Specifically, increasing the reaction temperature led to controlled increase in the mesopore content and facilitated the formation of hierarchical porosity, which is critical to ensure efficient mass transport within porous materials. The resulting cCTFs showed high specific surface areas up to 1247 m 2 g -1 , and high physicochemical stability. The incorporation of ionic functional moieties to porous organic polymers improved substantially their CO 2 affinity (up to 133 mg g -1 , at 1 bar and 273 K) and transformed them into hierarchically porous organocatalysts for CO 2 conversion. More importantly, the ionic nature of cCTFs, homogeneous charge distribution together with hierarchical porosity offered a perfect platform for the catalytic conversion of CO 2 into cyclic carbonates in the presence of epoxides through an atom economy reaction in high yields and exclusive product selectivity. These results clearly demonstrate the promising aspect of incorporation of charged units into the porous organic polymers for the development of highly efficient porous organocatalysts for CO 2 capture and fixation.

  12. Evaluation of various modelling approaches in flood routing simulation and flood area mapping

    NASA Astrophysics Data System (ADS)

    Papaioannou, George; Loukas, Athanasios; Vasiliades, Lampros; Aronica, Giuseppe

    2016-04-01

    An essential process of flood hazard analysis and mapping is the floodplain modelling. The selection of the modelling approach, especially, in complex riverine topographies such as urban and suburban areas, and ungauged watersheds may affect the accuracy of the outcomes in terms of flood depths and flood inundation area. In this study, a sensitivity analysis implemented using several hydraulic-hydrodynamic modelling approaches (1D, 2D, 1D/2D) and the effect of modelling approach on flood modelling and flood mapping was investigated. The digital terrain model (DTMs) used in this study was generated from Terrestrial Laser Scanning (TLS) point cloud data. The modelling approaches included 1-dimensional hydraulic-hydrodynamic models (1D), 2-dimensional hydraulic-hydrodynamic models (2D) and the coupled 1D/2D. The 1D hydraulic-hydrodynamic models used were: HECRAS, MIKE11, LISFLOOD, XPSTORM. The 2D hydraulic-hydrodynamic models used were: MIKE21, MIKE21FM, HECRAS (2D), XPSTORM, LISFLOOD and FLO2d. The coupled 1D/2D models employed were: HECRAS(1D/2D), MIKE11/MIKE21(MIKE FLOOD platform), MIKE11/MIKE21 FM(MIKE FLOOD platform), XPSTORM(1D/2D). The validation process of flood extent achieved with the use of 2x2 contingency tables between simulated and observed flooded area for an extreme historical flash flood event. The skill score Critical Success Index was used in the validation process. The modelling approaches have also been evaluated for simulation time and requested computing power. The methodology has been implemented in a suburban ungauged watershed of Xerias river at Volos-Greece. The results of the analysis indicate the necessity of sensitivity analysis application with the use of different hydraulic-hydrodynamic modelling approaches especially for areas with complex terrain.

  13. Using Strontium Isotopes in Arid Agricultural Soils to Determine a Sink or Source of CO2

    NASA Astrophysics Data System (ADS)

    Ortiz, A. C.; Jin, L.

    2014-12-01

    Arid and semi-arid regions of the world are predicted to continue to expand through land degradation and prolonged drought events. Agricultural practices in these drylands degrade soils through elevated salinity, sodicity and alkalinity. Indeed, flood irrigation loads salts onto the soils including carbonate minerals in the form of calcite. Alfalfa and Pecan are salt tolerant and commonly grown in the arid El Paso region, but need irrigation using Rio Grande water with little to no contribution from local ground waters. We hypothesize that the irrigation is loading extra Ca and bicarbonate to soils and anthropogenically enhancing the precipitation of carbonates. We intend to monitor soil CO2 efflux after irrigation, characterize soil minerals, and combine them to isotopic data of soil, irrigation, and drainage waters to link the sources of Ca and C, kinetics of calcite precipitation, to irrigation events. This will include strontium isotopic analysis to determine the source of calcium in the agricultural fields, U-disequilibrium isotopes to estimate the carbonate ages, and CO2 efflux to monitor atmosphere-soil exchange. Carbon dioxide emissions are expected to change during flood irrigation when soils are saturated. After irrigation events, evaporative effects increase Ca and dissolved inorganic carbon concentration in soil waters leading to precipitation of calcite and thus elevated CO2efflux. Preliminary measurements in the pecan field show a marginally significant difference in CO2 fluxes before and after irrigation (p=0.07, t-test). Carbon dioxide emissions are lower during moist conditions (0.6 g m-2hr-1 CO2) than those in dry conditions (1.0 g m-2hr-1 CO2). Future C isotope data are needed to identify the source of extra CO2, biogenic or calcite-precipitation related. A water leachable extraction of alfalfa soils shows 87Sr/86Sr ratios ranged from 0.7101 to 0.7103, indicating Rio Grande river as a dominant calcium source. Further Sr isotopic analysis of

  14. Solubility trapping in formation water as dominant CO(2) sink in natural gas fields.

    PubMed

    Gilfillan, Stuart M V; Lollar, Barbara Sherwood; Holland, Greg; Blagburn, Dave; Stevens, Scott; Schoell, Martin; Cassidy, Martin; Ding, Zhenju; Zhou, Zheng; Lacrampe-Couloume, Georges; Ballentine, Chris J

    2009-04-02

    Injecting CO(2) into deep geological strata is proposed as a safe and economically favourable means of storing CO(2) captured from industrial point sources. It is difficult, however, to assess the long-term consequences of CO(2) flooding in the subsurface from decadal observations of existing disposal sites. Both the site design and long-term safety modelling critically depend on how and where CO(2) will be stored in the site over its lifetime. Within a geological storage site, the injected CO(2) can dissolve in solution or precipitate as carbonate minerals. Here we identify and quantify the principal mechanism of CO(2) fluid phase removal in nine natural gas fields in North America, China and Europe, using noble gas and carbon isotope tracers. The natural gas fields investigated in our study are dominated by a CO(2) phase and provide a natural analogue for assessing the geological storage of anthropogenic CO(2) over millennial timescales. We find that in seven gas fields with siliciclastic or carbonate-dominated reservoir lithologies, dissolution in formation water at a pH of 5-5.8 is the sole major sink for CO(2). In two fields with siliciclastic reservoir lithologies, some CO(2) loss through precipitation as carbonate minerals cannot be ruled out, but can account for a maximum of 18 per cent of the loss of emplaced CO(2). In view of our findings that geological mineral fixation is a minor CO(2) trapping mechanism in natural gas fields, we suggest that long-term anthropogenic CO(2) storage models in similar geological systems should focus on the potential mobility of CO(2) dissolved in water.

  15. The influence of episodic flooding on a pelagic ecosystem in the East China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Chung-Chi; Gong, Gwo-Ching; Chou, Wen-Chen; Chung, Chih-Ching; Hsieh, Chih-Hao; Shiah, Fuh-Kwo; Chiang, Kuo-Ping

    2017-05-01

    This study was designed to determine the effects of flooding on a pelagic ecosystem in the East China Sea (ECS) with a focus on plankton activity and plankton community respiration (CR). In July 2010, a flood occurred in the Changjiang River. As a comparison, a variety of abiotic and biotic parameters were monitored during this flooding event and during a non-flooding period (July 2009). During the flood, the Changjiang diluted water (CDW) zone covered almost two-thirds of the ECS, which was approximately 6 times the area covered during the non-flooding period. The mean nitrate concentration was 3-fold higher during the 2010 flood (6.2 vs. 2.0 µM in 2009). CR was also higher in the 2010 flood: 105.6 mg C m-3 d-1 vs. only 73.2 mg C m-3 d-1 in 2009. The higher CR in 2010 could be attributed to phytoplankton respiration, especially at stations in the CDW zone that were not previously characterized by low sea surface salinity in 2009. In addition, zooplankton (> 330 µm) were another important component contributing to the high CR rate observed during the 2010 flood; this was a period also associated with a significant degree of fCO2 drawdown. These results collectively suggest that the 2010 flood had a significant effect on the carbon balance in the ECS. This effect might become more pronounced in the future, as extreme rainfall and flooding events are predicted to increase in both frequency and magnitude due to climate change.

  16. Effect of Molybdenum on the Corrosion Behavior of High-Entropy Alloys CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 under Sodium Chloride Aqueous Conditions

    DOE PAGES

    Rodriguez, Alvaro A.; Tylczak, Joseph H.; Gao, Michael C.; ...

    2018-01-01

    The corrosion behavior of high-entropy alloys (HEAs) CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl) at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276) and stainless steel 316L (UNS 31600) to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pittingmore » corrosion. Cyclic voltammetry (CV) can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS) elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM) analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi 2 Mo 0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi 2 and stainless steel 316L.« less

  17. Effect of Molybdenum on the Corrosion Behavior of High-Entropy Alloys CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 under Sodium Chloride Aqueous Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Alvaro A.; Tylczak, Joseph H.; Gao, Michael C.

    The corrosion behavior of high-entropy alloys (HEAs) CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl) at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276) and stainless steel 316L (UNS 31600) to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pittingmore » corrosion. Cyclic voltammetry (CV) can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS) elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM) analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi 2 Mo 0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi 2 and stainless steel 316L.« less

  18. Final Research Performance Report - Small Molecular Associative Carbon Dioxide (CO 2) Thickeners for Improved Mobility Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enick, Robert M.

    The initial objective of this project was to promote the application of a CO 2 thickener for improved mobility control during CO 2 EOR based on solubility tests, viscosity tests, and core floods. Ultimately, it was demonstrated that the CO 2-soluble polymeric thickeners are much better suited for use a CO 2-soluble conformance control agents for diverting the flow of CO 2 away from thief zones. Our team generated several effective small molecule CO 2 thickeners with ARPA-e funding. Unfortunately, none of these small molecule thickeners could dissolve in CO 2 without the addition of unacceptably large amounts of hexanemore » or toluene as a co-solvent Therefore none were viable candidates for the core flooding studies associated with NETL award. Therefore during the entire core flood testing program associated with this NETL award, our team used only the most promising polymeric CO 2 thickener, a polyfluoroacrylate (PFA). In order to produce an environmentally benign polymer, the monomer used to make the new polymers used in this study was a fluoroacrylate that contains only six fluorinated carbons. We verified CO 2 solubility with a phase behavior cell. The thickening potential of all polymer samples was substantiated with a falling ball viscometer and a falling cylinder viscometer at Pitt. Two different viscometers were used to determine the increase in CO 2 viscosity that could be achieved via the dissolution of PFA. Praxair, which has an interest in thickening CO 2 for pilot EOR projects and for waterless hydraulic fracturing, agreed to measure the viscosity of CO 2-PFA solutions at no cost to the project. Falling cylinder viscometery was conducted at Pitt in our windowed high pressure phase behavior cell. Both apparatuses indicated that at very low shear rates the CO 2 viscosity increased by a factor of roughly 3.5 when 1wt% PFA was dissolved in the CO 22. Our team also planned thickener concentrations and compositions at Pitt for the core tests that were

  19. Divergent biophysical controls of aquatic CO2 and CH4 in the World's two largest rivers.

    PubMed

    Borges, Alberto V; Abril, Gwenaël; Darchambeau, François; Teodoru, Cristian R; Deborde, Jonathan; Vidal, Luciana O; Lambert, Thibault; Bouillon, Steven

    2015-10-23

    Carbon emissions to the atmosphere from inland waters are globally significant and mainly occur at tropical latitudes. However, processes controlling the intensity of CO2 and CH4 emissions from tropical inland waters remain poorly understood. Here, we report a data-set of concurrent measurements of the partial pressure of CO2 (pCO2) and dissolved CH4 concentrations in the Amazon (n = 136) and the Congo (n = 280) Rivers. The pCO2 values in the Amazon mainstem were significantly higher than in the Congo, contrasting with CH4 concentrations that were higher in the Congo than in the Amazon. Large-scale patterns in pCO2 across different lowland tropical basins can be apprehended with a relatively simple statistical model related to the extent of wetlands within the basin, showing that, in addition to non-flooded vegetation, wetlands also contribute to CO2 in river channels. On the other hand, dynamics of dissolved CH4 in river channels are less straightforward to predict, and are related to the way hydrology modulates the connectivity between wetlands and river channels.

  20. Effects of salinity and flooding on seedlings of cabbage palm (Sabal palmetto).

    PubMed

    Perry, L; Williams, K

    1996-03-01

    Sabal palmetto (Walt.) Lodd. ex Schultes (cabbage palm) dominates the coastal limit of many forests in North Florida and Georgia, United States. Changes in saltwater flooding due to sea level rise have been credicted with pushing the coastal limit of cabbage palms inland, eliminating regeneration before causing death of mature trees. Localized freshwater discharge along the coast causes different forest stands to experience tidal flooding with waters that differ in salinity. To elucidate the effect of such variation on regeneration failure under tidal flooding, we examined relative effects of flooding and salinity on the performance of cabbage palm seedlings. We examined the relationship between seedling establishment and degree of tidal inundation in the field, compared the ability of seedlings to withstand tidal flooding at two coastal sites that differed in tidal water salinity, and investigated the physiological responses of cabbage palm seedlings to salinity and flooding in a factorial greenhouse experiment. Seedling survival was inversely correlated with depth and frequency of tidal flooding. Survival of seedlings at a coastal site flooded by waters low in salinity [c. 3 parts per thousand (ppt)] was greater than that at a site flooded by waters higher in salinity (up to 23 ppt). Greenhouse experiments revealed that leaves of seedlings in pots flushed twice daily with salt solutions of 0 ppt and 8 ppt exhibited little difference in midmorning net CO 2 assimilation rates; those flushed with solutions of 15 ppt and 22 ppt, in contrast, had such low rates that they could not be detected. Net CO 2 assimilation rates also declined with increasing salinity for seedlings in pots that were continuously inundated. Continuous root zone inundation appeared to ameliorate effects of salinity on photosynthesis, presumably due to increased salt concentrations and possibly water deficits in periodically flushed pots. Such problems associated with periodic flushing by salt

  1. Floods and Flash Flooding

    MedlinePlus

    Floods and flash flooding Now is the time to determine your area’s flood risk. If you are not sure whether you live in ... If you are in a floodplain, consider buying flood insurance. Do not drive around barricades. If your ...

  2. Enhanced transfer of terrestrially derived carbon to the atmosphere in a flooding event

    USGS Publications Warehouse

    Bianchi, Thomas S.; Garcia-Tigreros, Fenix; Yvon-Lewis, Shari A.; Shields, Michael; Mills, Heath J.; Butman, David; Osburn, Christopher; Raymond, Peter A.; Shank, G. Christopher; DiMarco, Steven F.; Walker, Nan; Kiel Reese, Brandi; Mullins-Perry, Ruth; Quigg, Antonietta; Aiken, George R.; Grossman, Ethan L.

    2013-01-01

    Rising CO2 concentration in the atmosphere, global climate change, and the sustainability of the Earth's biosphere are great societal concerns for the 21st century. Global climate change has, in part, resulted in a higher frequency of flooding events, which allow for greater exchange between soil/plant litter and aquatic carbon pools. Here we demonstrate that the summer 2011 flood in the Mississippi River basin, caused by extreme precipitation events, resulted in a “flushing” of terrestrially derived dissolved organic carbon (TDOC) to the northern Gulf of Mexico. Data from the lower Atchafalaya and Mississippi rivers showed that the DOC flux to the northern Gulf of Mexico during this flood was significantly higher than in previous years. We also show that consumption of radiocarbon-modern TDOC by bacteria in floodwaters in the lower Atchafalaya River and along the adjacent shelf contributed to northern Gulf shelf waters changing from a net sink to a net source of CO2 to the atmosphere in June and August 2011. This work shows that enhanced flooding, which may or may not be caused by climate change, can result in rapid losses of stored carbon in soils to the atmosphere via processes in aquatic ecosystems.

  3. Wettability impact on supercritical CO2 capillary trapping: Pore-scale visualization and quantification

    NASA Astrophysics Data System (ADS)

    Hu, Ran; Wan, Jiamin; Kim, Yongman; Tokunaga, Tetsu K.

    2017-08-01

    How the wettability of pore surfaces affects supercritical (sc) CO2 capillary trapping in geologic carbon sequestration (GCS) is not well understood, and available evidence appears inconsistent. Using a high-pressure micromodel-microscopy system with image analysis, we studied the impact of wettability on scCO2 capillary trapping during short-term brine flooding (80 s, 8-667 pore volumes). Experiments on brine displacing scCO2 were conducted at 8.5 MPa and 45°C in water-wet (static contact angle θ = 20° ± 8°) and intermediate-wet (θ = 94° ± 13°) homogeneous micromodels under four different flow rates (capillary number Ca ranging from 9 × 10-6 to 8 × 10-4) with a total of eight conditions (four replicates for each). Brine invasion processes were recorded and statistical analysis was performed for over 2000 images of scCO2 saturations, and scCO2 cluster characteristics. The trapped scCO2 saturation under intermediate-wet conditions is 15% higher than under water-wet conditions under the slowest flow rate (Ca ˜ 9 × 10-6). Based on the visualization and scCO2 cluster analysis, we show that the scCO2 trapping process in our micromodels is governed by bypass trapping that is enhanced by the larger contact angle. Smaller contact angles enhance cooperative pore filling and widen brine fingers (or channels), leading to smaller volumes of scCO2 being bypassed. Increased flow rates suppress this wettability effect.

  4. Azole-Anion-Based Aprotic Ionic Liquids: Functional Solvents for Atmospheric CO2 Transformation into Various Heterocyclic Compounds.

    PubMed

    Zhao, Yanfei; Wu, Yunyan; Yuan, Guangfeng; Hao, Leiduan; Gao, Xiang; Yang, Zhenzhen; Yu, Bo; Zhang, Hongye; Liu, Zhimin

    2016-10-06

    The chemical transformation of atmospheric CO 2 is of great significance yet still poses a great challenge. Herein, azole-anion-based aprotic ionic liquids (ILs) were synthesized by the deprotonation of weak proton donors (e.g., 2-methylimidazole, 4-methylimidazole, and 2,4-dimethylimidazole) with tetrabutylphosphonium hydroxide, [Bu 4 P][OH]. We found that these ILs, such as [Bu 4 P][2-MIm], could activate atmospheric CO 2 through the formation of carbamates. The resultant carbamate intermediates could further react with various types of substrate, including propargylic alcohols, 2-aminobenzonitriles, ortho-phenylenediamines, and 2-aminothiophenol, thereby producing α-alkylidene cyclic carbonates, quinazoline-2,4(1 H,3 H)-diones, benzimidazolones, and benzothiazoline, respectively, in moderate-to-good yields. Thus, we have achieved the transformation of CO 2 at atmospheric pressure, and we expect this method to open up new routes for the synthesis of various oxygen-containing heterocyclic compounds under metal-free conditions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni- Base Alloys Evaluated at 982 deg. C (1800 deg. F)

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    1999-01-01

    Power systems with operating temperatures in the range of 815 to 982 C (1500 to 1800 F) frequently require alloys that can operate for long times at these temperatures. A critical requirement is that these alloys have adequate oxidation resistance. The alloys used in these power systems require thousands of hours of operating life with intermittent shutdown to room temperature. Intermittent power plant shutdowns, however, offer the possibility that the protective scale will tend to spall (i.e., crack and flake off) upon cooling, increasing the rate of oxidative attack in subsequent heating cycles. Thus, it is critical that candidate alloys be evaluated for cyclic oxidation behavior. It was determined that exposing test alloys to ten 1000-hr cycles in static air at 982 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni-Base Alloys Evaluated at 982 C (1800 F) could give a reasonable simulation of long-time power plant operation. Iron- (Fe-), nickel- (Ni-), and cobalt- (Co-) based high-temperature alloys with sufficient chromium (Cr) and/or aluminum (Al) content can exhibit excellent oxidation resistance. The protective oxides formed by these classes of alloys are typically Cr2O3 and/or Al2O3, and are usually influenced by their Cr, or Cr and Al, content. Sixty-eight Co-, Fe-, and Ni-base high-temperature alloys, typical of those used at this temperature or higher, were used in this study. At the NASA Lewis Research Center, the alloys were tested and compared on the basis of their weight change as a function of time, x-ray diffraction of the protective scale composition, and the physical appearance of the exposed samples. Although final appearance and x-ray diffraction of the final scale products were two factors used to evaluate the oxidation resistance of each alloy, the main criterion was the oxidation kinetics inferred from the specific weight change versus time data. These data indicated a range of oxidation behavior including parabolic

  6. Calcium-independent activation of extracellular signal-regulated kinases 1 and 2 by cyclic strain

    NASA Technical Reports Server (NTRS)

    Ikeda, M.; Takei, T.; Mills, I.; Sumpio, B. E.

    1998-01-01

    We have previously demonstrated that cyclic strain induces extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation in endothelial cells (EC). The aim of this study was to investigate the effect of Ca2+ on the activation of ERK1/2. Bovine aortic EC were pretreated with a chelator of extracellular Ca2+, ethylaneglycol-bis(aminoethylether)-tetra-acetate (EGTA), a depleter of Ca2+ pools, 2,5-Di-(tert-butyl)-1,4-benzohydroquinone (BHQ), or a Ca2+ channel blocker, GdCl3, and subjected to an average 10 % strain at a rate of 60 cycles/min for 10 min. BHQ and GdCl3 did not inhibit the strain-induced ERK1/2 activation. Chelation of normal extracellular Ca2+ (1.8 mM) medium with EGTA (3 mM) acutely stimulated baseline phosphorylation and activation of ERK1/2, thereby obscuring any strain-induced activation of ERK1/2. However, in EC preincubated for 24 hours in Ca2+-free medium, elevated baseline phosphorylation was minimally activated by EGTA (200 microM) such that cyclic strain stimulated ERK1/2 in the presence or absence of BHQ. These results suggest a Ca2+ independence of the ERK1/2 signaling pathway by cyclic strain. Copyright 1998 Academic Press.

  7. The investigation of photo-induced chemiluminescence on Co2+-doped TiO2 nanoparticles and its analytical application.

    PubMed

    Li, Guixin; Nan, Hongyan; Zheng, Xingwang

    2009-07-01

    A novel space- and time-resolved photo-induced chemiluminescence (PICL) analytical method was developed based on the photocatalysis of the Co2+-doped TiO2 nanoparticles. The PICL reaction procedure under the photocatalysis of Co2+-doped TiO2 nanoparticles was investigated using cyclic voltammetry and potentiometry. Meanwhile, the effect of the electrical double layer outside the Co2+-doped TiO2 nanoparticles on the PICL was investigated by contrasting with the Co2+-doped TiO2-SiO2 core-shell nanoparticles. Significantly, the CL intensity increased apparently and the time of the CL was prolonged in the presence of procaterol hydrochloride because the mechanism of the enhanced PICL reaction may be modified. The route of the PICL was changed due to the participation of the procaterol hydrochloride enriched at the surface of the Co2+-doped TiO2-SiO2 in the PICL reaction, which prolonged the time of the CL reaction and resulted in the long-term PICL. The analytical characteristics of the proposed in-situ PICL method were investigated using the procaterol hydrochloride as the model analyte. The investigation results showed that this new PICL analytical method offered higher sensitivity to the analysis of the procaterol hydrochloride and the PICL intensity was linear with the concentration of the procaterol hydrochloride in the range from ca. 2.0 x 10(-10) to 1.0 x 10(-8) g mL(-1).

  8. Coupling Fluvial and Oceanic Drivers in Flooding Forecasts for San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Herdman, L.; Kim, J.; Cifelli, R.; Barnard, P.; Erikson, L. H.; Johnson, L. E.; Chandrasekar, V.

    2016-12-01

    San Francisco Bay is a highly urbanized estuary and the surrounding communities are susceptible to flooding along the bay shoreline and inland rivers and creeks that drain to the Bay. A forecast model that integrates fluvial and oceanic drivers is necessary for predicting flooding in this complex urban environment. This study introduces the state-of-the-art coupling of the USGS Coastal Storm Modeling System (CoSMoS) with the NWS Research Distributed Hydrologic Model (RDHM) for San Francisco Bay. For this application, we utilize Delft3D-FM, a hydrodynamic model based on a flexible mesh grid, to calculate water levels that account for tidal forcing, seasonal water level anomalies, surge and in-Bay generated wind waves from the wind and pressure fields of a NWS forecast model. The tributary discharges from RDHM are dynamic, meteorologically driven allowing for operational use of CoSMoS which has previously relied on statistical estimates of river discharge. The flooding extent is determined by overlaying the resulting maximum water levels onto a recently updated 2-m digital elevation model of the study area which best resolves the extensive levee and tidal marsh systems in the region. The results we present here are focused on the interaction of the Bay and the Napa River watershed. This study demonstrates the interoperability of the CoSMoS and RDHM prediction models. We also use this pilot region to examine storm flooding impacts in a series of storm scenarios that simulate 5-100yr return period events in terms of either coastal or fluvial events. These scenarios demonstrate the wide range of possible flooding outcomes considering rainfall recurrence intervals, soil moisture conditions, storm surge, wind speed, and tides (spring and neap). With a simulated set of over 25 storm scenarios we show how the extent, level, and duration of flooding is dependent on these atmospheric and hydrologic parameters and we also determine a range of likely flood events.

  9. Hierarchical Core/Shell NiCo2O4@NiCo2O4 Nanocactus Arrays with Dual-functionalities for High Performance Supercapacitors and Li-ion Batteries

    PubMed Central

    Cheng, Jinbing; Lu, Yang; Qiu, Kangwen; Yan, Hailong; Xu, Jinyou; Han, Lei; Liu, Xianming; Luo, Jingshan; Kim, Jang-Kyo; Luo, Yongsong

    2015-01-01

    We report the synthesis of three dimensional (3D) NiCo2O4@NiCo2O4 nanocactus arrays grown directly on a Ni current collector using a facile solution method followed by electrodeposition. They possess a unique 3D hierarchical core-shell structure with large surface area and dual-functionalities that can serve as electrodes for both supercapacitors (SCs) and lithium-ion batteries (LIBs). As the SC electrode, they deliver a remarkable specific capacitance of 1264 F g−1 at a current density of 2 A g−1 and ~93.4% of capacitance retention after 5000 cycles at 2 A g−1. When used as the anode for LIBs, a high reversible capacity of 925 mA h g−1 is achieved at a rate of 120 mA g−1 with excellent cyclic stability and rate capability. The ameliorating features of the NiCo2O4 core/shell structure grown directly on highly conductive Ni foam, such as hierarchical mesopores, numerous hairy needles and a large surface area, are responsible for the fast electron/ion transfer and large active sites which commonly contribute to the excellent electrochemical performance of both the SC and LIB electrodes. PMID:26131926

  10. Hierarchical Core/Shell NiCo2O4@NiCo2O4 Nanocactus Arrays with Dual-functionalities for High Performance Supercapacitors and Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Cheng, Jinbing; Lu, Yang; Qiu, Kangwen; Yan, Hailong; Xu, Jinyou; Han, Lei; Liu, Xianming; Luo, Jingshan; Kim, Jang-Kyo; Luo, Yongsong

    2015-07-01

    We report the synthesis of three dimensional (3D) NiCo2O4@NiCo2O4 nanocactus arrays grown directly on a Ni current collector using a facile solution method followed by electrodeposition. They possess a unique 3D hierarchical core-shell structure with large surface area and dual-functionalities that can serve as electrodes for both supercapacitors (SCs) and lithium-ion batteries (LIBs). As the SC electrode, they deliver a remarkable specific capacitance of 1264 F g-1 at a current density of 2 A g-1 and ~93.4% of capacitance retention after 5000 cycles at 2 A g-1. When used as the anode for LIBs, a high reversible capacity of 925 mA h g-1 is achieved at a rate of 120 mA g-1 with excellent cyclic stability and rate capability. The ameliorating features of the NiCo2O4 core/shell structure grown directly on highly conductive Ni foam, such as hierarchical mesopores, numerous hairy needles and a large surface area, are responsible for the fast electron/ion transfer and large active sites which commonly contribute to the excellent electrochemical performance of both the SC and LIB electrodes.

  11. Hierarchical Core/Shell NiCo2O4@NiCo2O4 Nanocactus Arrays with Dual-functionalities for High Performance Supercapacitors and Li-ion Batteries.

    PubMed

    Cheng, Jinbing; Lu, Yang; Qiu, Kangwen; Yan, Hailong; Xu, Jinyou; Han, Lei; Liu, Xianming; Luo, Jingshan; Kim, Jang-Kyo; Luo, Yongsong

    2015-07-01

    We report the synthesis of three dimensional (3D) NiCo2O4@NiCo2O4 nanocactus arrays grown directly on a Ni current collector using a facile solution method followed by electrodeposition. They possess a unique 3D hierarchical core-shell structure with large surface area and dual-functionalities that can serve as electrodes for both supercapacitors (SCs) and lithium-ion batteries (LIBs). As the SC electrode, they deliver a remarkable specific capacitance of 1264 F g(-1) at a current density of 2 A g(-1) and ~93.4% of capacitance retention after 5000 cycles at 2 A g(-1). When used as the anode for LIBs, a high reversible capacity of 925 mA h g(-1) is achieved at a rate of 120 mA g(-1) with excellent cyclic stability and rate capability. The ameliorating features of the NiCo2O4 core/shell structure grown directly on highly conductive Ni foam, such as hierarchical mesopores, numerous hairy needles and a large surface area, are responsible for the fast electron/ion transfer and large active sites which commonly contribute to the excellent electrochemical performance of both the SC and LIB electrodes.

  12. Validating predictions of evolving porosity and permeability in carbonate reservoir rocks exposed to CO2-brine

    NASA Astrophysics Data System (ADS)

    Smith, M. M.; Hao, Y.; Carroll, S.

    2017-12-01

    Improving our ability to better forecast the extent and impact of changes in porosity and permeability due to CO2-brine-carbonate reservoir interactions should lower uncertainty in long-term geologic CO2 storage capacity estimates. We have developed a continuum-scale reactive transport model that simulates spatial and temporal changes to porosity, permeability, mineralogy, and fluid composition within carbonate rocks exposed to CO2 and brine at storage reservoir conditions. The model relies on two primary parameters to simulate brine-CO2-carbonate mineral reaction: kinetic rate constant(s), kmineral, for carbonate dissolution; and an exponential parameter, n, relating porosity change to resulting permeability. Experimental data collected from fifteen core-flooding experiments conducted on samples from the Weyburn (Saskatchewan, Canada) and Arbuckle (Kansas, USA) carbonate reservoirs were used to calibrate the reactive-transport model and constrain the useful range of k and n values. Here we present the results of our current efforts to validate this model and the use of these parameter values, by comparing predictions of extent and location of dissolution and the evolution of fluid permeability against our results from new core-flood experiments conducted on samples from the Duperow Formation (Montana, USA). Agreement between model predictions and experimental data increase our confidence that these parameter ranges need not be considered site-specific but may be applied (within reason) at various locations and reservoirs. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Quantifying the Effects of Spatial Uncertainty in Fracture Permeability on CO2 Leakage through Columbia River Basalt Flow Interiors

    NASA Astrophysics Data System (ADS)

    Gierzynski, A.; Pollyea, R.

    2016-12-01

    Recent studies suggest that continental flood basalts may be suitable for geologic carbon sequestration, due to fluid-rock reactions that mineralize injected CO2 on relatively short time-scales. Flood basalts also possess a morphological structure conducive to injection, with alternating high-permeability (flow margin) and low-permeability (flow interior) layers. However, little information exists on the behavior of CO2 migration within field-scale fracture networks, particularly within flow interiors and at conditions near the critical point for CO2. In this study, numerical simulation is used to investigate the influence of fracture permeability uncertainty during gravity-driven CO2 migration within a jointed basalt flow interior as CO2 undergoes phase change from supercritical fluid to a subcritical phase. The model domain comprises a 2D fracture network mapped with terrestrial LiDAR scans of Columbia River Basalt acquired near Starbuck, WA. The model domain is 5 m × 5 m with bimodal heterogeneity (fracture and matrix), and initial conditions corresponding to a hydrostatic pressure gradient between 750 and 755 m depth. Under these conditions, the critical point for CO2 occurs 1.5 m above the bottom of the domain. For this model scenario, CO2 enters the base of the fracture network at 0.5 MPa overpressure, and matrix permeability is assumed constant. Fracture permeability follows a lognormal distribution on the basis of fracture aperture values from literature. In order to account for spatial uncertainty, the lognormal fracture permeability distribution is randomly located in the model domain and CO2 migration is simulated within the same fracture network for 50 equally probable realizations. Model results suggest that fracture connectivity, which is independent of permeability distribution, governs the path taken by buoyant CO2 as it rises through the flow interior; however, the permeability distribution strongly governs the CO2 flux magnitude. In particular

  14. Flood of April 2-3, 2005, Esopus Creek Basin, New York

    USGS Publications Warehouse

    Suro, Thomas P.; Firda, Gary D.

    2007-01-01

    On April 2-3, 2005, heavy rain moved into southern New York and delivered rainfall amounts that ranged from about 2 in. to almost 6 in. within a 36-hour period. Significant flooding occurred on many small streams and tributaries in the area, and extensive flooding occurred on the Esopus and Roundout Creeks in Ulster and Greene Counties, New York. The flooding damaged many homes, caused millions of dollars worth of damage, and forced hundreds of residents to evacuate their homes. A total of 20 New York counties were declared Federal disaster areas. Disaster recovery assistance for those people affected stands at almost $35 million, according to the Federal Emergency Management Agency, as more than 3,400 New Yorkers registered for Federal aid. U.S. Geological Survey stream-gaging stations on the Esopus Creek above the Ashokan Reservoir at Allaben, N.Y., and below the Ashokan Reservoir at Mount Marion, N.Y., each recorded a new record maximum water-surface elevation and discharge for the respective periods of record as a result of this storm. The peak water-surface elevation and discharge recorded during the April 2-3, 2005, storm at the U.S. Geological Survey stream-gaging station on the Esopus Creek at Cold Brook, N.Y. were the third highest elevation and discharge since the station was put into operation in 1914. Most of the study sites along the Esopus Creek indicated water-surface elevations near the 50-year flood elevations, as documented in flood-insurance studies by the Federal Emergency Management Agency.

  15. An Uncommon Carboxyl-Decorated Metal-Organic Framework with Selective Gas Adsorption and Catalytic Conversion of CO2.

    PubMed

    Li, Yong-Zhi; Wang, Hai-Hua; Yang, Hong-Yun; Hou, Lei; Wang, Yao-Yu; Zhu, Zhonghua

    2018-01-19

    A new three-dimensional (3D) framework, [Ni(btzip)(H 2 btzip)]⋅2 DMF⋅2 H 2 O (1) (H 2 btzip=4,6-bis(triazol-1-yl)isophthalic acid) as an acidic heterogeneous catalyst was constructed by the reaction of nickel wire and a triazolyl-carboxyl linker. Framework 1 possesses intersected 2D channels decorated by free COOH groups and uncoordinated triazolyl N atoms, leading to not only high CO 2 and C 2 H 6 adsorption capacity but also significant selective capture for CO 2 and C 2 H 6 over CH 4 and CO in 273-333 K. Moreover, 1 reveals chemical stability toward water. Grand Canonical Monte Carlo simulations confirmed the multiple CO 2 - and C 2 H 6 -philic sites. As a result of the presence of accessible Brønsted acidic COOH groups in the channels, the activated framework demonstrates highly efficient catalytic activity in the cycloaddition reaction of CO 2 with propylene oxide/4-chloromethyl-1,3-dioxolan-2-one/3-butoxy-1,2-epoxypropane into cyclic carbonates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Pump Hydro Energy Storage systems (PHES) in groundwater flooded quarries

    NASA Astrophysics Data System (ADS)

    Poulain, Angélique; de Dreuzy, Jean-Raynald; Goderniaux, Pascal

    2018-04-01

    Pump storage hydroelectricity is an efficient way to temporarily store energy. This technique requires to store temporarily a large volume of water in an upper reservoir, and to release it through turbines to the lower reservoir, to produce electricity. Recently, the idea of using old flooded quarries as a lower reservoir has been evoked. However, these flooded quarries are generally connected to unconfined aquifers. Consequently, pumping or injecting large volumes of water, within short time intervals, will have an impact on the adjacent aquifers. Conversely, water exchanges between the quarry and the aquifer may also influence the water level fluctuations in the lower reservoir. Using numerical modelling, this study investigates the interactions between generic flooded open pit quarries and adjacent unconfined aquifers, during various pump-storage cyclic stresses. The propagation of sinusoidal stresses in the adjacent porous media and the amplitude of water level fluctuations in the quarry are studied. Homogeneous rock media and the presence of fractures in the vicinity of the quarry are considered. Results show that hydrological quarry - rock interactions must be considered with caution, when implementing pump - storage systems. For rock media characterized by high hydraulic conductivity and porosity values, water volumes exchanges during cycles may affect significantly the amplitude of the water level fluctuations in the quarry, and as a consequence, the instantaneous electricity production. Regarding the impact of the pump - storage cyclic stresses on the surrounding environment, the distance of influence is potentially high under specific conditions, and is enhanced with the occurrence of rock heterogeneities, such as fractures. The impact around the quarry used as a lower reservoir thus appears as an important constraining factor regarding the feasibility of pump - storage systems, to be assessed carefully if groundwater level fluctuations around the quarry

  17. Studies of CW lasing action in CO2-CO, N2O-CO, CO2-H2O, and N2O-H2O mixtures pumped by blackbody radiation

    NASA Technical Reports Server (NTRS)

    Abel, Robert W.; Christiansen, Walter H.; Li, Jian-Guo

    1988-01-01

    A proof of principle experiment to evaluate the efficacy of CO and H2O in increasing the power output for N2O and CO2 lasing mixtures has been conducted and theoretically analyzed for a blackbody radiation-pumped laser. The results for N2O-CO, CO2-CO, N2O-H2O and CO2-H2O mixtures are presented. Additions of CO to the N2O lasant increased power up to 28 percent for N2O laser mixtures, whereas additions of CO to the CO2 lasant, and the addition of H2O to both the CO2 and N2O lasants, resulted in decreased output power.

  18. Homoleptic diphosphacyclobutadiene complexes [M(η(4)-P2C2R2)2]x- (M = Fe, Co; x = 0, 1).

    PubMed

    Wolf, Robert; Ehlers, Andreas W; Khusniyarov, Marat M; Hartl, František; de Bruin, Bas; Long, Gary J; Grandjean, Fernande; Schappacher, Falko M; Pöttgen, Rainer; Slootweg, J Chris; Lutz, Martin; Spek, Anthony L; Lammertsma, Koop

    2010-12-27

    The preparation and comprehensive characterization of a series of homoleptic sandwich complexes containing diphosphacyclobutadiene ligands are reported. Compounds [K([18]crown-6)(thf)(2)][Fe(η(4)-P(2)C(2)tBu(2))(2)] (K1), [K([18]crown-6)(thf)(2)][Co(η(4)-P(2)C(2)tBu(2))(2)] (K2), and [K([18]crown-6)(thf)(2)][Co(η(4)-P(2)C(2)Ad(2))(2)] (K3, Ad = adamantyl) were obtained from reactions of [K([18]crown-6)(thf)(2)][M(η(4)-C(14)H(10))(2)] (M = Fe, Co) with tBuC[triple bond]P (1, 2), or with AdC[triple bond]P (3). Neutral sandwiches [M(η(4)-P(2)C(2)tBu(2))(2)] (4: M = Fe 5: M = Co) were obtained by oxidizing 1 and 2 with [Cp(2)Fe]PF(6). Cyclic voltammetry and spectro-electrochemistry indicate that the two [M(η(4)-P(2)C(2)tBu(2))(2)](-)/[M(η(4)-P(2)C(2)tBu(2))(2)] moieties can be reversibly interconverted by one electron oxidation and reduction, respectively. Complexes 1-5 were characterized by multinuclear NMR, EPR (1 and 5), UV/Vis, and Mössbauer spectroscopies (1 and 4), mass spectrometry (4 and 5), and microanalysis (1-3). The molecular structures of 1-5 were determined by using X-ray crystallography. Essentially D(2d)-symmetric structures were found for all five complexes, which show the two 1,3-diphosphacyclobutadiene rings in a staggered orientation. Density functional theory calculations revealed the importance of covalent metal-ligand π bonding in 1-5. Possible oxidation state assignments for the metal ions are discussed.

  19. Advanced Reservoir Characterization and Evaluation of CO2 Gravity Drainage in the Naturally Fractured Spraberry Trend Area, Class III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, Bill; Schechter, David S.

    The goal of this project was to assess the economic feasibility of CO2 flooding the naturally fractured Spraberry Trend Area in west Texas. This objective was accomplished through research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This provides results of the final year of the six-year project for each of the four areas.

  20. Adsorption of CO2 from flue gas streams by a highly efficient and stable aminosilica adsorbent.

    PubMed

    Liu, Shou-Heng; Lin, Yuan-Chung; Chien, Yi-Chi; Hyu, Han-Ren

    2011-02-01

    Three ordered mesoporous silicas (OMSs) with different pore sizes and pore architectures were prepared and modified with amine functional groups by a postgrafting method. The carbon dioxide (CO2) adsorption on these amine-modified OMSs was measured by using microbalances at 348 K, and their adsorption capacities were found to be 0.2-1.4 mmol g(-1) under ambient pressure using dry 15% CO2. It was found experimentally that the CO2 adsorption capacity and adsorption rate were attributed to the density of amine groups and pore volume, respectively. A simple method is described for the production of densely anchored amine groups on a solid adsorbent invoking direct incorporation of tetraethylenepentamine onto the as-synthesized OMSs. Unlike conventional amine-modified OMSs, which typically show CO2 adsorption capacity less than 2 mmol g(-1), such organic template occluded amine-OMS composites possessed remarkably high CO2 uptake of approximately 4.6 mmol g(-1) at 348 K and 1 atm for a dry 15% CO2/nitrogen feed mixture. The enhancement of 8% in CO2 adsorption capacity was also observed in the presence of 10.6% water vapor. Durability tests done by cyclic adsorption-desorption revealed that these adsorbents also possess excellent stability.

  1. The Efficacy of Cyclic Injection of Bone Morphogenetic Protein-2 in Large-Scale Calvarial Bone Defects.

    PubMed

    Choi, Jin Mi; Jeong, Woo Shik; Park, Eun Jung; Choi, Jong Woo

    2017-03-01

    Bone morphogenetic protein-2 (BMP-2) appears to be one of the most potent growth factors thus far studied. However, recent publications on the clinical application of BMP-2 revealed that its correct control is the paramount issue in clinical practice. For improving BMP-2 delivery, the cyclic administration might be an alternative. Accordingly, the authors cyclically injected BMP-2 in a cyclic injection model of large cranial defects to maintain the proper dosage during the bone healing process. A 10-mm diameter calvarial bone defect was produced using a round drill in 8-week-old Sprague-Dawley rats. Silk-hydroxyapatite scaffolds soaked in the appropriate concentration of BMP-2 were implanted into the defect. The animals were split into 4 single-injection groups and 3 multiple-injection groups; the latter groups received weekly subcutaneous injections of BMP-2 solution (1, 5, and 10 μg/mL) for 4 weeks, whereas the former groups received a single injection of BMP-2 at these concentrations. Each rat underwent computed tomography at 8 weeks. In terms of total volumes of the new bone, the 5 μg/mL multiple-injection BMP-2 group had significantly greater increases in bone volume than the single-injection groups. In terms of bone thickness, the multiple-injection groups had better outcomes than the single-injection groups. Thus, the cyclic injection protocol restored the original thickness without overgrowth. Cyclic injection of BMP-2 permits more accurate dosage control than single injection and improves thickness and dense bone regeneration. Therefore, it may represent a promising approach for future clinical trials. Further investigation using a greater number of animals is required.

  2. Counting surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group with motivations from string theory and QFT

    NASA Astrophysics Data System (ADS)

    Bibak, Khodakhast; Kapron, Bruce M.; Srinivasan, Venkatesh

    2016-09-01

    Graphs embedded into surfaces have many important applications, in particular, in combinatorics, geometry, and physics. For example, ribbon graphs and their counting is of great interest in string theory and quantum field theory (QFT). Recently, Koch et al. (2013) [12] gave a refined formula for counting ribbon graphs and discussed its applications to several physics problems. An important factor in this formula is the number of surface-kernel epimorphisms from a co-compact Fuchsian group to a cyclic group. The aim of this paper is to give an explicit and practical formula for the number of such epimorphisms. As a consequence, we obtain an 'equivalent' form of Harvey's famous theorem on the cyclic groups of automorphisms of compact Riemann surfaces. Our main tool is an explicit formula for the number of solutions of restricted linear congruence recently proved by Bibak et al. using properties of Ramanujan sums and of the finite Fourier transform of arithmetic functions.

  3. Influence of Na+, K+, Mn2+, Fe2+ and Zn2+ ions on the electrodeposition of Ni-Co alloys: Implications for the recycling of Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Blanco, S.; Orta-Rodriguez, R.; Delvasto, P.

    2017-01-01

    A hydrometallurgical recycling procedure for the recovery of a mixed rare earths sulfate and an electrodeposited Ni-Co alloy has been described. The latter step was found to be complex, due to the presence of several ions in the battery electrode materials. Electrochemical evaluation of the influence of the ions on the Ni-Co alloy deposition was carried out by cyclic voltammetry test. It was found that ions such as K+, Fe2+ and Mn2+ improved the current efficiency for the Ni-Co deposition process on a copper surface. On the other hand, Na+ and Zn2+ ions exhibited a deleterious behaviour, minimizing the values of the reduction current. The results were used to suggest the inclusion of additional steps in the process flow diagram of the recycling operation, in order to eliminate deleterious ions from the electroplating solution.

  4. Improving CO2 permeation and separation performance of CO2-philic polymer membrane by blending CO2 absorbents

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Hu, Leiqing; Li, Yannan; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2017-07-01

    To research effects of CO2 absorption capacity and type of CO2 absorbent on the CO2 separation and free-volume properties of facilitated transport membranes, two types of CO2 absorbents, namely monoethanolamine (MEA) and ionic liquids (ILs:[P66614][Triz] and [P66614][2-Op]), were adopted. The CO2 absorption capacities of MEA, [P66614][Triz] and [P66614][2-Op] were about 0.561 mol CO2 per mol, 0.95 mol CO2 per mol and 1.60 mol CO2 per mol, respectively. All mean free-volume hole radiuses of membranes decreased after blending CO2 absorbents. After polymer membrane blended with two ILs, number of free-volume hole increased, resulting in modest increase of the fractional free volume. Both CO2 permeability and selectivity increased after blending MEA and ILs. The increasing range of CO2 permeability corresponded with CO2 absorption capacity of CO2 absorbents, and membrane blending with [P66614][2-Op] showed the highest CO2 permeability of 672.1 Barrers at 25 °C. Pebax/PEGDME membrane blending with MEA obtained the highest CO2/H2 and CO2/CH4 selectivity at 17.8 and 20.5, respectively.

  5. Large-scale boiling experiments of the flooded cavity concept for in-vessel core retention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.Y.; Slezak, S.E.; Bentz, J.H.

    1994-03-01

    This paper presents results of ex-vessel boiling experiments performed in the CYBL (CYlindrical BoiLing) facility. CYBL is a reactor-scale facility for confirmatory research of the flooded cavity concept for accident management. CYBL has a tank-within-a-tank design; the inner tank simulates the reactor vessel and the outer tank simulates the reactor cavity. Experiments with uniform and edge-peaked heat flux distributions up to 20 W/cm{sup 2} across the vessel bottom were performed. Boiling outside the reactor vessel was found to be subcooled nucleate boiling. The subcooling is mainly due to the gravity head which results from flooding the sides of the reactormore » vessel. The boiling process exhibits a cyclic pattern with four distinct phases: direct liquid/solid contact, bubble nucleation and growth, coalescence, and vapor mass dispersion (ejection). The results suggest that under prototypic heat load and heat flux distributions, the flooded cavity in a passive pressurized water reactor like the AP-600 should be capable of cooling the reactor pressure vessel in the central region of the lower head that is addressed by these tests.« less

  6. Updated NASA Satellite Flood Map of Southeastern Texas (ALOS-2 Data)

    NASA Image and Video Library

    2017-08-31

    The Advanced Rapid Imaging and Analysis (ARIA) team at NASA's Jet Propulsion Laboratory in Pasadena, California, used synthetic aperture radar imagery from the Japan Aerospace Exploration Agency's (JAXA) ALOS-2 satellite to create this Flood Proxy Map depicting areas of Southeastern Texas that are likely flooded as a result of Hurricane Harvey (shown by light blue pixels). The map is derived images taken before (July 30, 2017) and after (Aug. 27, 2017) Hurricane Harvey made landfall. The map covers an area of 220 by 400 miles (350 by 640 kilometers). Each pixel measures about 55 yards (50 meters) across. Local ground observations provided anecdotal preliminary validation. The results are also cross-validated with ARIA Sentinel-1 flood proxy map v0.2. The map should be used as guidance, and may be less reliable over urban areas. ALOS-2 data were accessed through the International Charter. https://photojournal.jpl.nasa.gov/catalog/PIA21931

  7. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Bhavna; Spycher, Nicolas F.; Steefel, Carl I.

    2016-02-01

    Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Modelmore » simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe?2 and S-2 oxidation) to match locally-observed high CO2 concentrations above reduced zones. Observed seasonal variations in CO2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m-2 d-1, while including water table variations resulted in an overall decrease in the simulated fluxes. We conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations.« less

  8. The 2-3 November 2015 flood of the Sió River (NE Iberian Peninsula): a flash flood that turns into a mudflow downstream

    NASA Astrophysics Data System (ADS)

    Carles Balasch Solanes, Josep; Lluís Ruiz-Bellet, Josep; Rodríguez, Rafael; Tuset, Jordi; Castelltort, Xavier; Barriendos, Mariano; Pino, David; Mazón, Jordi

    2016-04-01

    Historical and recent evidence shows that many floods in the interior of Catalonia (NE Iberian Peninsula) usually have such a great sediment load that can even alter the hydraulic behaviour of the flow. This is especially true in catchments with a great proportion of agricultural soils, which are the main source of sediment. The night of 2-3 November 2015 torrential rains fell on the headwaters of the Sió River catchment (508 km2); the subsequent flood caused four deaths and many damages along the stream. The hydrological, hydraulic and sedimentary characteristics of this recent flood have been analysed in order to gain a better insight on the characteristics of the major historical floods in the same catchment. The rainfall height on the headwaters was between 139 and 146 mm in ten hours, with a maximum intensity of about 50 mm·h-1. In the rest of the catchment it rained much less (22-71 mm). The agricultural soils in the headwaters show evidence of intense erosion by laminar and concentrated Hortonian overland flow in their superficial layer (Ap1; 10 cm), which uncovered the more compact underlying layer (Ap2). The peak flow in the headwaters (Oluges) was 90 m3·s-1 (that is, a specific peak flow near 1 m3·s-1·km-2) and it diminished downstream: 40 m3·s-1 in the centre of the catchment (Oluges + 27 km) and 15 m3·s-1 in the outlet (Oluges + 54 km). The suspended sediment load was 10-15% in volume in the headwaters and, judging from recorded images and eyewitnesses, it increased as the flow moved downstream, turning the flash flood into a mudflow. This concentration gain was most probably caused by the flood wave's water loss due to the dryness of the riverbed and translated in an increased viscosity that ultimately altered the hydraulic behaviour of the flow, slowing it down. This process of water loss has been observed in flash floods in dry riverbeds in arid and semiarid areas such as Negev (Israel) and Atacama (Chile). Historical floods in neighbouring

  9. In-situ TOF neutron diffraction studies of cyclic softening in superelasticity of a NiFeGaCo shape memory alloy

    DOE PAGES

    Yang, Hui; Yu, Dunji; Chen, Yan; ...

    2016-10-24

    Real-time in-situ neutron diffraction was conducted during uniaxial cycling compression of a Ni 49.3Fe 18Ga 27Co 5.7 shape memory alloy to explore the mechanism on its superelasticity at room temperature, which was manifested by the almost recoverable large strains and the apparent cyclic softening. Based on the Rietveld refinements, the real-time evolution of volume fraction of martensite was in-situ monitored, indicating the incremental amount of residual martensite with increasing load cycles. Real-time changes in intensities and lattice strains of { hkl} reflections for individual phase were obtained through fitting individual peaks, which reveal the quantitative information on phase transformation kineticsmore » as a function of grain orientation and stress/strain partitioning. Moreover, a large compressive residual stress was evidenced in the parent phase, which should be balanced by the residual martensite after the second unloading cycle. As a result, the large compressive residual stress found in the parent austenite phase may account for the cyclic effect on critical stress required for triggering the martensitic transformation in the subsequent loading.« less

  10. Hydro-geophysical responses to the injection of CO2 in core plugs of Berea sandstone

    NASA Astrophysics Data System (ADS)

    Song, I.; Park, K. G.

    2017-12-01

    We have built a laboratory-scale core flooding system to measure the relative permeability of a core sample and the acoustic response to the CO2 saturation degree at in situ condition of pressure and temperature down to a few kilometer depths. The system consisted of an acoustic velocity core holder (AVC model from the Core Laboratories) between upstream where CO2 and H2O were injected separately and downstream where the mixed fluids came out of a core sample. Core samples with 4 cm in diameter and 5 cm in length of Berea sandstone were in turn placed in the core holder for confining and axial pressures. The flooding operations of the multiphase fluids were conducted through the sample at 40ºC in temperature and 8 MPa in backpressure. CO2 and H2O in the physical condition were injected separately into a sample at constant rate with various ratios. The two phases were mixed during flowing through the sample. The mixed fluids out of the sample were separated again by their different densities in a chamber equipped with a level gauge of the interface. From the level change of the water in the separator, we measured the volume of water coming out of the sample for each test with a constant ratio of the injection rates. Then it was possible to calculate the saturation degree of CO2 from the difference between input volume and output volume of water. The differential pressure between upstream and downstream was directly measured to calculate the relative permeability as a function of the CO2 saturation degree. We also conducted ultrasonic measurements using piezoelectric sensors on the end plugs. An electric pulse was given to a sensor on one end of sample, and then ultrasonic waves were recorded from the other end. The various ratios of injection rate of CO2 and H2O into Berea sandstone yielded a range of 0.1-0.7 in CO2 saturation degree. The relative permeability was obtained at the condition of steady-state flow for given stages from the velocity of each phase and

  11. SUBTASK 2.19 – OPERATIONAL FLEXIBILITY OF CO2 TRANSPORT AND STORAGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Melanie; Schlasner, Steven; Sorensen, James

    2014-12-31

    -scale projects. The experts represented a range of disciplines and hailed from North America and Europe. Major findings of the study are that compression and transport of CO2 for enhanced oil recovery (EOR) purposes in the United States has shown that impurities are not likely to cause transport problems if CO2 stream composition standards are maintained and pressures are kept at 10.3 MPa or higher. Cyclic, or otherwise intermittent, CO2 supplies historically have not impacted in-field distribution pipeline networks, wellbore integrity, or reservoir conditions. The U.S. EOR industry has demonstrated that it is possible to adapt to variability and intermittency in CO2 supply through flexible operation of the pipeline and geologic storage facility. This CO2 transport and injection experience represents knowledge that can be applied in future CCS projects. A number of gaps in knowledge were identified that may benefit from future research and development, further enhancing the possibility for widespread application of CCS. This project was funded through the Energy & Environmental Research Center–U.S. Department of Energy Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the IEA Greenhouse Gas R&D Programme.« less

  12. Effect of Climate Extremes, Seasonal Change, and Agronomic Practices on Measured Evapotranspiration and CO2 Exchange in Sacramento-San Joaquin River Delta Alfalfa Fields

    NASA Astrophysics Data System (ADS)

    Clay, J.; Kent, E. R.; Leinfelder-Miles, M.; Paw U, K. T.; Little, C.; Lambert, J. J.

    2017-12-01

    Evapotranspiration and CO2 exchange was measured in five alfalfa fields in the Sacramento-San Joaquin River Delta region from 2016 to 2017 using eddy covariance and surface renewal methods. Seasonal changes of evapotranspiration and CO2 fluxes were compared between 2016, a drought year, and 2017, a high rainfall year. Additionally, changes in evapotranspiration and CO2 flux were investigated across various agronomic considerations, such as irrigation methods (border-check flood and sub-surface), stand life, and herbicide programs. Components of the energy balance, including net radiation, latent heat, ground heat flux, and sensible heat, were evaluated considering correlations to wind speed measured by three sonic anemometers, irrigation frequency, and crop cutting cycle. Comparisons between two different types of radiometers were also carried out. Under drought conditions, we observed higher amounts of evapotranspiration in a field having a stand life of less than two years of age compared to older stands, and in a sub-surface irrigated field compared to flood irrigated fields.

  13. Flood information for flood-plain planning

    USGS Publications Warehouse

    Bue, Conrad D.

    1967-01-01

    Floods are natural and normal phenomena. They are catastrophic simply because man occupies the flood plain, the highwater channel of a river. Man occupies flood plains because it is convenient and profitable to do so, but he must purchase his occupancy at a price-either sustain flood damage, or provide flood-control facilities. Although large sums of money have been, and are being, spent for flood control, flood damage continues to mount. However, neither complete flood control nor abandonment of the flood plain is practicable. Flood plains are a valuable resource and will continue to be occupied, but the nature and degree of occupancy should be compatible with the risk involved and with the degree of protection that is practicable to provide. It is primarily to meet the needs for defining the risk that the flood-inundation maps of the U.S. Geological Survey are prepared.

  14. Cyclic AMP is a key regulator of M1 to M2a phenotypic conversion of microglia in the presence of Th2 cytokines.

    PubMed

    Ghosh, Mousumi; Xu, Yong; Pearse, Damien D

    2016-01-13

    Microglia and macrophages play a central role in neuroinflammation. Pro-inflammatory cytokines trigger their conversion to a classically activated (M1) phenotype, sustaining inflammation and producing a cytotoxic environment. Conversely, anti-inflammatory cytokines polarize the cells towards an alternatively activated (M2), tissue reparative phenotype. Elucidation of the signal transduction pathways involved in M1 to M2 phenotypic conversion may provide insight into how the innate immune response can be harnessed during distinct phases of disease or injury to mediate neuroprotection and neurorepair. Microglial cells (cell line and primary) were subjected to combined cyclic adenosine monophosphate (cyclic AMP) and IL-4, or either alone, in the presence of pro-inflammatory mediators, lipopolysaccharide (LPS), or tumor necrosis factor-α (TNF-α). Their effects on the expression of characteristic markers for M1 and M2 microglia were assessed. Similarly, the M1 and M2 phenotypes of microglia and macrophages within the lesion site were then evaluated following a contusive spinal cord injury (SCI) to the thoracic (T8) spinal cord of rats and mice when the agents were administered systemically. It was demonstrated that cyclic AMP functions synergistically with IL-4 to promote M1 to M2 conversion of microglia in culture. The combination of cyclic AMP and IL-4, but neither alone, induced an Arg-1(+)/iNOS(-)cell phenotype with concomitant expression of other M2-specific markers including TG2 and RELM-α. M2-converted microglia showed ameliorated production of pro-inflammatory cytokines (TNF-α and IP-10) and reactive oxygen species, with no alteration in phagocytic properties. M2a conversion required protein kinase A (PKA), but not the exchange protein directly activated by cyclic AMP (EPAC). Systemic delivery of cyclic AMP and IL-4 after experimental SCI also promoted a significant M1 to M2a phenotypic change in microglia and macrophage population dynamics in the lesion

  15. Unit 2, downstream from Coppersdale Bridge Johnstown Local Flood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 2, downstream from Coppersdale Bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  16. Spatial patterns of frequent floods in Switzerland

    NASA Astrophysics Data System (ADS)

    Schneeberger, Klaus; Rössler, Ole; Weingartner, Rolf

    2017-04-01

    Information about the spatial characteristics of high and extreme streamflow is often needed for an accurate analysis of flood risk and effective co-ordination of flood related activities, such as flood defence planning. In this study we analyse the spatial dependence of frequent floods in Switzerland across different scales. Firstly, we determine the average length of high and extreme flow events for 56 runoff time series of Swiss rivers. Secondly, a dependence measure expressing the probability that streamflow peaks are as high as peaks at a conditional site is used to describe and map the spatial extend of joint occurrence of frequent floods across Switzerland. Thirdly, we apply a cluster analysis to identify groups of sites that are likely to react similarly in terms of joint occurrence of high flow events. The results indicate that a time interval with a length of 3 days seems to be most appropriate to characterise the average length of high streamflow events across spatial scales. In the main Swiss basins, high and extreme streamflows were found to be asymptotically independent. In contrast, at the meso-scale distinct flood regions, which react similarly in terms of occurrence of frequent flood, were found. The knowledge about these regions can help to optimise flood defence planning or to estimate regional flood risk properly.

  17. ELSA flood stack for MIS 2-3 from dry maar lakestructure Auel (Eifel/Germany)

    NASA Astrophysics Data System (ADS)

    Brunck, Heiko; Sirocko, Frank

    2015-04-01

    Lacustrine sediments are very sensitive to natural and anthropogenically enviromental changes. Thus, lake sediments are excellent climate archives and can be used for reconstructions of past precipitation and flood events. However, until now, there is no continous flood record for the entire last 60 000 years for Central Europe. The present study reconstructs paleo floods from event layers in the sediment, of dry maar lakestructure Auel (Eifel). This silted up basin has an inflow by a local stream. Accordingly the sedimentation rate is directly linked to runoff activity. The bioturbation was low so that event layers become visible, but varves are not preserved. The maar site is near to the town of Gerolstein in the Eifel; the core AU2 was drilled in the ELSA (Eifel Laminated Sediment archive) project and is 123m long. AU2 has the highest sedimentation rate of all ELSA cores, due to abundant fluvial input. The Eifel area is well suited to approximate Central European weather, because modern water level gauge data from Eifel rivers correlate with respective data from the Rhine (Wernli and Pfahl, 2009). Due to the high inflow into the maar, Auel has the highest number of botanical macro remains of all ELSA cores. These specific conditions explain why only in AU2 all 21 Greenland interstadials can be observed in the abundance of wood remains and the organic carbon concentration. In a final stratigraphic step the time series of Corg was tuned to the Greenland ice core chronology to link the central European landscape evolution directly to the Greenland climate curve (Svensson et al., 2008). Combined sedimentological, paleobotanical and geochemical data received from AU2 builds the foundation of the 14C based chronology. The synchronisation of the record with other cores is controlled by tephra time markers and pollen. Both are used to align the main cores of the ELSA project and construct an integrated age model for the last 220 000 years [b2k] (Förster and Sirocko

  18. Can the Solid State Greenhouse Effect Produce ~100 Year Cycles in the Mars South Polar Residual CO2 Ice Cap?

    NASA Astrophysics Data System (ADS)

    Line, M. R.; Ingersoll, A. P.

    2010-12-01

    Malin et al. (2001) reported that the south perennial cap consists of quasi-circular pits ~8 meters deep, with a flat surface in between. The walls of the pits are retreating at a rate of 1 to 3 meters per year. Byrne and Ingersoll (2003a, 2003b) showed evidence that the floors of the pits are water ice and the upper layer is CO2. This layer will be gone in a few Martian centuries, if the observations are taken at face value. This raises some difficult questions: How likely is it that mankind would be witnessing the final few hundred years of the residual CO2 frost on Mars? Can one imagine extreme weather events that could recharge the residual CO2 frost once it is gone? Both seem unlikely, and we propose a different mechanism. Kieffer et al. (2000) showed that sunlight can penetrate several meters through the seasonal CO2 frost, where it warms the surface below. We have observational evidence that the same is happening in the perennial CO2 frost. Further, we have a model that shows how this "solid-state greenhouse" can lead to cyclic behavior, in which layers of CO2 build up on a water ice substrate, are heated internally by sunlight and lose mass from within. Eventually the layer becomes too weak to support itself, and it collapses to form pits. Then a new CO2 layer accumulates and the process repeats. Our study addresses fundamental questions of long-term stability of the Martian polar caps and how the caps control the atmospheric pressure. Instead of invoking extreme climate events to explain the data, we propose that processes within the frost itself can lead to cyclic growth and collapse of the pits. Our model implies that there is no long-term change in the ~8 meter layer of CO2 and no extreme weather events to make it change.

  19. Tacking Flood Risk from Watersheds using a Natural Flood Risk Management Toolkit

    NASA Astrophysics Data System (ADS)

    Reaney, S. M.; Pearson, C.; Barber, N.; Fraser, A.

    2017-12-01

    In the UK, flood risk management is moving beyond solely mitigating at the point of impact in towns and key infrastructure to tackle problem at source through a range of landscape based intervention measures. This natural flood risk management (NFM) approach has been trailed within a range of catchments in the UK and is moving towards being adopted as a key part of flood risk management. The approach offers advantages including lower cost and co-benefits for water quality and habitat creation. However, for an agency or group wishing to implement NFM within a catchment, there are two key questions that need to be addressed: Where in the catchment to place the measures? And how many measures are needed to be effective? With this toolkit, these questions are assessed with a two-stage workflow. First, SCIMAP-Flood gives a risk based mapping of likely locations that contribute to the flood peak. This tool uses information on land cover, hydrological connectivity, flood generating rainfall patterns and hydrological travel time distributions to impacted communities. The presented example applies the tool to the River Eden catchment, UK, with 5m grid resolution and hence provide sub-field scale information at the landscape extent. SCIMAP-Flood identifies sub-catchments where physically based catchment hydrological simulation models can be applied to test different NFM based mitigation measures. In this example, the CRUM3 catchment hydrological model has been applied within an uncertainty framework to consider the effectiveness of soil compaction reduction and large woody debris dams within a sub-catchment. It was found that large scale soil aeration to reduce soil compaction levels throughout the catchment is probably the most useful natural flood management measure for this catchment. NFM has potential for wide-spread application and these tools help to ensure that the measures are correctly designed and the scheme performance can be quantitatively assessed and predicted.

  20. Zeolites for CO2-CO-O2 Separation to Obtain CO2-Neutral Fuels.

    PubMed

    Perez-Carbajo, Julio; Matito-Martos, Ismael; Balestra, Salvador R G; Tsampas, Mihalis N; van de Sanden, Mauritius C M; Delgado, José A; Águeda, V Ismael; Merkling, Patrick J; Calero, Sofia

    2018-06-20

    Carbon dioxide release has become an important global issue due to the significant and continuous rise in atmospheric CO 2 concentrations and the depletion of carbon-based energy resources. Plasmolysis is a very energy-efficient process for reintroducing CO 2 into energy and chemical cycles by converting CO 2 into CO and O 2 utilizing renewable electricity. The bottleneck of the process is that CO remains mixed with O 2 and residual CO 2 . Therefore, efficient gas separation and recuperation are essential for obtaining pure CO, which, via water gas shift and Fischer-Tropsch reactions, can lead to the production of CO 2 -neutral fuels. The idea behind this work is to provide a separation mechanism based on zeolites to optimize the separation of carbon dioxide, carbon monoxide, and oxygen under mild operational conditions. To achieve this goal, we performed a thorough screening of available zeolites based on topology and adsorptive properties using molecular simulation and ideal adsorption solution theory. FAU, BRE, and MTW are identified as suitable topologies for these separation processes. FAU can be used for the separation of carbon dioxide from carbon monoxide and oxygen and BRE or MTW for the separation of carbon monoxide from oxygen. These results are reinforced by pressure swing adsorption simulations at room temperature combining adsorption columns with pure silica FAU zeolite and zeolite BRE at a Si/Al ratio of 3. These zeolites have the added advantage of being commercially available.

  1. The ventilatory responsiveness to CO2 below eupnoea as a determinant of ventilatory stability in sleep

    PubMed Central

    Dempsey, Jerome A; Smith, Curtis A; Przybylowski, Tadeuez; Chenuel, Bruno; Xie, Ailiang; Nakayama, Hideaki; Skatrud, James B

    2004-01-01

    Sleep unmasks a highly sensitive hypocapnia-induced apnoeic threshold, whereby apnoea is initiated by small transient reductions in arterial CO2 pressure (PaCO2) below eupnoea and respiratory rhythm is not restored until PaCO2 has risen significantly above eupnoeic levels. We propose that the ‘CO2 reserve’ (i.e. the difference in PaCO2 between eupnoea and the apnoeic threshold (AT)), when combined with ‘plant gain’ (or the ventilatory increase required for a given reduction in PaCO2) and ‘controller gain’ (ventilatory responsiveness to CO2 above eupnoea) are the key determinants of breathing instability in sleep. The CO2 reserve varies inversely with both plant gain and the slope of the ventilatory response to reduced CO2 below eupnoea; it is highly labile in non-random eye movement (NREM) sleep. With many types of increases or decreases in background ventilatory drive and PaCO2, the slope of the ventilatory response to reduced PaCO2 below eupnoea remains unchanged from control. Thus, the CO2 reserve varies inversely with plant gain, i.e. it is widened with hyperventilation and narrowed with hypoventilation, regardless of the stimulus and whether it acts primarily at the peripheral or central chemoreceptors. However, there are notable exceptions, such as hypoxia, heart failure, or increased pulmonary vascular pressures, which all increase the slope of the CO2 response below eupnoea and narrow the CO2 reserve despite an accompanying hyperventilation and reduced plant gain. Finally, we review growing evidence that chemoreceptor-induced instability in respiratory motor output during sleep contributes significantly to the major clinical problem of cyclical obstructive sleep apnoea. PMID:15284345

  2. Cyclic Oxidation of FeCrAlY/Al2O3 Composites

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Draper, Susan L.; Barrett, Charles A.

    1999-01-01

    Three-ply FeCrAlY/Al2O3 composites and FeCrAlY matrix-only samples were cyclically oxidized at 1000 C and 1100 C for up to 1000 1-hr cycles. Fiber ends were exposed at the ends of the composite samples. Following cyclic oxidation, cracks running parallel to and perpendicular to the fibers were observed on the large surface of the composite. In addition, there was evidence of increased scale damage and spallation around the exposed fiber ends, particularly around the middle ply fibers. This damage was more pronounced at the higher temperature. The exposed fiber ends showed cracking between fibers in the outer plies, occasionally with Fe and Cr-rich oxides growing out of the cracks. Large gaps developed at the fiber/matrix interface around many of the fibers, especially those in the outer plies. Oxygen penetrated many of these gaps resulting in significant oxide formation at the fiber/matrix interface far within the composite sample. Around several fibers, the matrix was also internally oxidized showing Al2O3 precipitates in a radial band around the fibers. The results show that these composites have poor cyclic oxidation resistance due to the CTE mismatch and inadequate fiber/matrix bond strength at temperatures of 1000 C and above.

  3. How useful are Swiss flood insurance data for flood vulnerability assessments?

    NASA Astrophysics Data System (ADS)

    Röthlisberger, Veronika; Bernet, Daniel; Zischg, Andreas; Keiler, Margreth

    2015-04-01

    The databases of Swiss flood insurance companies build a valuable but to date rarely used source of information on physical flood vulnerability. Detailed insights into the Swiss flood insurance system are crucial for using the full potential of the different databases for research on flood vulnerability. Insurance against floods in Switzerland is a federal system, the modalities are manly regulated on cantonal level. However there are some common principles that apply throughout Switzerland. First of all coverage against floods (and other particular natural hazards) is an integral part of every fire insurance policy for buildings or contents. This coupling of insurance as well as the statutory obligation to insure buildings in most of the cantons and movables in some of the cantons lead to a very high penetration. Second, in case of damage, the reinstatement costs (value as new) are compensated and third there are no (or little) deductible and co-pay. High penetration and the fact that the compensations represent a large share of the direct, tangible losses of the individual policy holders make the databases of the flood insurance companies a comprehensive and therefore valuable data source for flood vulnerability research. Insurance companies not only store electronically data about losses (typically date, amount of claims payment, cause of damage, identity of the insured object or policyholder) but also about insured objects. For insured objects the (insured) value and the details on the policy and its holder are the main feature to record. On buildings the insurance companies usually computerize additional information such as location, volume, year of construction or purpose of use. For the 19 (of total 26) cantons with a cantonal monopoly insurer the data of these insurance establishments have the additional value to represent (almost) the entire building stock of the respective canton. Spatial referenced insurance data can be used for many aspects of

  4. A framework for probabilistic pluvial flood nowcasting for urban areas

    NASA Astrophysics Data System (ADS)

    Ntegeka, Victor; Murla, Damian; Wang, Lipen; Foresti, Loris; Reyniers, Maarten; Delobbe, Laurent; Van Herk, Kristine; Van Ootegem, Luc; Willems, Patrick

    2016-04-01

    Pluvial flood nowcasting is gaining ground not least because of the advancements in rainfall forecasting schemes. Short-term forecasts and applications have benefited from the availability of such forecasts with high resolution in space (~1km) and time (~5min). In this regard, it is vital to evaluate the potential of nowcasting products for urban inundation applications. One of the most advanced Quantitative Precipitation Forecasting (QPF) techniques is the Short-Term Ensemble Prediction System, which was originally co-developed by the UK Met Office and Australian Bureau of Meteorology. The scheme was further tuned to better estimate extreme and moderate events for the Belgian area (STEPS-BE). Against this backdrop, a probabilistic framework has been developed that consists of: (1) rainfall nowcasts; (2) sewer hydraulic model; (3) flood damage estimation; and (4) urban inundation risk mapping. STEPS-BE forecasts are provided at high resolution (1km/5min) with 20 ensemble members with a lead time of up to 2 hours using a 4 C-band radar composite as input. Forecasts' verification was performed over the cities of Leuven and Ghent and biases were found to be small. The hydraulic model consists of the 1D sewer network and an innovative 'nested' 2D surface model to model 2D urban surface inundations at high resolution. The surface components are categorized into three groups and each group is modelled using triangular meshes at different resolutions; these include streets (3.75 - 15 m2), high flood hazard areas (12.5 - 50 m2) and low flood hazard areas (75 - 300 m2). Functions describing urban flood damage and social consequences were empirically derived based on questionnaires to people in the region that were recently affected by sewer floods. Probabilistic urban flood risk maps were prepared based on spatial interpolation techniques of flood inundation. The method has been implemented and tested for the villages Oostakker and Sint-Amandsberg, which are part of the

  5. Unprecedented Carbonato Intermediates in Cyclic Carbonate Synthesis Catalysed by Bimetallic Aluminium(Salen) Complexes.

    PubMed

    Castro-Osma, José A; North, Michael; Offermans, Willem K; Leitner, Walter; Müller, Thomas E

    2016-04-21

    The mechanism by which [Al(salen)]2 O complexes catalyse the synthesis of cyclic carbonates from epoxides and carbon dioxide in the absence of a halide cocatalyst has been investigated. Density functional theory (DFT) studies, mass spectrometry and (1) H NMR, (13) C NMR and infrared spectroscopies provide evidence for the formation of an unprecedented carbonato bridged bimetallic aluminium complex which is shown to be a key intermediate for the halide-free synthesis of cyclic carbonates from epoxides and carbon dioxide. Deuterated and enantiomerically-pure epoxides were used to study the reaction pathway. Based on the experimental and theoretical results, a catalytic cycle is proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Bifunctional bamboo-like CoSe2 arrays for high-performance asymmetric supercapacitor and electrocatalytic oxygen evolution.

    PubMed

    Chen, Tian; Li, Songzhan; Gui, Pengbin; Wen, Jian; Fu, Xuemei; Fang, Guojia

    2018-05-18

    Bifunctional bamboo-like CoSe 2 arrays are synthesized by thermal annealing of Co(CO 3 ) 0.5 OH grown on carbon cloth in Se atmosphere. The CoSe 2 arrays obtained have excellent electrical conductivity, larger electrochemical active surface areas, and can directly serve as a binder-free electrode for supercapacitors and the oxygen evolution reaction (OER). When tested as a supercapacitor electrode, the CoSe 2 delivers a higher specific capacitance (544.6 F g -1 at current density of 1 mA cm -2 ) compared with CoO (308.2 F g -1 ) or Co 3 O 4 (201.4 F g -1 ). In addition, the CoSe 2 electrode possesses excellent cycling stability. An asymmetric supercapacitor (ASC) is also assembled based on bamboo-like CoSe 2 as a positive electrode and active carbon as a negative electrode in a 3.0 M KOH aqueous electrolyte. Owing to the unique stucture and good electrochemical performance of bamboo-like CoSe 2 , the as-assembled ACS can achieve a maximum operating voltage window of 1.7 V, a high energy density of 20.2 Wh kg -1 at a power density of 144.1 W kg -1 , and an outstanding cyclic stability. As the catalyst for the OER, the CoSe 2 exhibits a lower potential of 1.55 V (versus RHE) at current density of 10 mA cm -2 , a smaller Tafel slope of 62.5 mV dec -1 and an also outstanding stability.

  7. Bifunctional bamboo-like CoSe2 arrays for high-performance asymmetric supercapacitor and electrocatalytic oxygen evolution

    NASA Astrophysics Data System (ADS)

    Chen, Tian; Li, Songzhan; Gui, Pengbin; Wen, Jian; Fu, Xuemei; Fang, Guojia

    2018-05-01

    Bifunctional bamboo-like CoSe2 arrays are synthesized by thermal annealing of Co(CO3)0.5OH grown on carbon cloth in Se atmosphere. The CoSe2 arrays obtained have excellent electrical conductivity, larger electrochemical active surface areas, and can directly serve as a binder-free electrode for supercapacitors and the oxygen evolution reaction (OER). When tested as a supercapacitor electrode, the CoSe2 delivers a higher specific capacitance (544.6 F g‑1 at current density of 1 mA cm‑2) compared with CoO (308.2 F g‑1) or Co3O4 (201.4 F g‑1). In addition, the CoSe2 electrode possesses excellent cycling stability. An asymmetric supercapacitor (ASC) is also assembled based on bamboo-like CoSe2 as a positive electrode and active carbon as a negative electrode in a 3.0 M KOH aqueous electrolyte. Owing to the unique stucture and good electrochemical performance of bamboo-like CoSe2, the as-assembled ACS can achieve a maximum operating voltage window of 1.7 V, a high energy density of 20.2 Wh kg‑1 at a power density of 144.1 W kg‑1, and an outstanding cyclic stability. As the catalyst for the OER, the CoSe2 exhibits a lower potential of 1.55 V (versus RHE) at current density of 10 mA cm‑2, a smaller Tafel slope of 62.5 mV dec‑1 and an also outstanding stability.

  8. Volcanic CO2 Emissions and Glacial Cycles: Coupled Oscillations

    NASA Astrophysics Data System (ADS)

    Burley, J. M.; Huybers, P. J.; Katz, R. F.

    2016-12-01

    Following the mid-Pleistocene transition, the dominant period of glacial cycles changed from 40 ka to 100 ka. It is broadly accepted that the 40 ka glacial cycles were driven by cyclical changes in obliquity. However, this forcing does not explain the 100 ka glacial cycles. Mechanisms proposed for 100 ka cycles include isostatic bed depression and proglacial lakes destabilising the Laurentide ice sheet, non-linear responses to orbital eccentricity, and Antarctic ice sheets influencing deep-ocean stratification. None of these are universally accepted. Here we investigate the hypothesis that variations in volcanic CO2 emissions can cause 100 ka glacial cycles. Any proposed mechanism for 100 ka glacial cycles must give the Earth's climate system a memory of 10^4 - 10^5years. This timescale is difficult to achieve for surface processes, however it is possible for the solid Earth. Recent work suggests volcanic CO2 emissions change in response to glacial cycles [1] and that there could be a 50 ka delay in that response [2]. Such a lagged response could drive glacial cycles from 40 ka cycles to an integer multiple of the forcing period. Under what conditions could the climate system admit such a response? To address this, we use a simplified climate model modified from Huybers and Tziperman [3]. Our version comprises three component models for energy balance, ice sheet growth and atmospheric CO2 concentration. The model is driven by insolation alone with other components varying according to a system of coupled, differential equations. The model is run for 500 ka to produce several glacial cycles and the resulting changes in global ice volume and atmospheric CO2 concentration.We obtain a switch from 40 ka to 100 ka cycles as the volcanic CO2 response to glacial cycles is increased. These 100 ka cycles are phase-locked to obliquity, lasting 80 or 120 ka. Whilst the MOR response required (in this model) is larger than plausible estimates based on [2], it illustrates the

  9. Attempts To Catalyze the Electrochemical CO2-to-Methanol Conversion by Biomimetic 2e(-) + 2H(+) Transferring Molecules.

    PubMed

    Saveant, Jean-Michel; Tard, Cédric

    2016-01-27

    In the context of the electrochemical and photochemical conversion of CO2 to liquid fuels, one of the most important issues of contemporary energy and environmental issues, the possibility of pushing the reduction beyond the CO and formate level and catalytically generate products such as methanol is particularly attractive. Biomimetic 2e(-) + 2H(+) is often viewed as a potential hydride donor. This has been the object of a recent interesting attempt (J. Am. Chem. Soc. 2014, 136, 14007) in which 6,7-dimethyl-4-hydroxy-2-mercaptopteridine was reported as a catalyst of the electrochemical conversion of CO2 to methanol and formate, based on cyclic voltammetric, (13)C NMR, IR, and GC analyses. After checking electrolysis at the reported potential and at a more negative potential to speed up the reaction, it appears, on (1)H NMR and gas chromatographic grounds, that there is neither catalysis nor methanol and nor formate production. (1)H NMR (with H2O presaturation) brings about an unambiguous answer to the eventual production of methanol and formate, much more so than (13)C NMR, which can even be misleading when no internal standard is used as in the above-mentioned paper. IR analysis is even less conclusive. Use of a GC technique with sufficient sensitivity confirmed the lack of methanol formation. The direct or indirect hydride transfer electrochemical reduction of CO2 to formate and to methanol remains an open question. Original ideas and efforts such as those discussed here are certainly worth tempting. However, in view of the importance of the stakes, it appears necessary to carefully check reports in this area.

  10. Unsymmetrical cyclic ureas as HIV-1 protease inhibitors: novel biaryl indazoles as P2/P2' substituents.

    PubMed

    Patel, M; Rodgers, J D; McHugh, R J; Johnson, B L; Cordova, B C; Klabe, R M; Bacheler, L T; Erickson-Viitanen, S; Ko, S S

    1999-11-15

    The preparation of unsymmetrical cyclic ureas bearing novel biaryl indazoles as P2/P2' substituents was undertaken, utilizing a Suzuki coupling reaction as the key step. Compound 6i was equipotent to the lead compound of the series SE063.

  11. Epic Flooding in Georgia, 2009

    USGS Publications Warehouse

    Gotvald, Anthony J.; McCallum, Brian E.

    2010-01-01

    Metropolitan Atlanta-September 2009 Floods The epic floods experienced in the Atlanta area in September 2009 were extremely rare. Eighteen streamgages in the Metropolitan Atlanta area had flood magnitudes much greater than the estimated 0.2-percent (500-year) annual exceedance probability. The Federal Emergency Management Agency (FEMA) reported that 23 counties in Georgia were declared disaster areas due to this flood and that 16,981 homes and 3,482 businesses were affected by floodwaters. Ten lives were lost in the flood. The total estimated damages exceed $193 million (H.E. Longenecker, Federal Emergency Management Agency, written commun., November 2009). On Sweetwater Creek near Austell, Ga., just north of Interstate 20, the peak stage was more than 6 feet higher than the estimated peak stage of the 0.2-percent (500-year) flood. Flood magnitudes in Cobb County on Sweetwater, Butler, and Powder Springs Creeks greatly exceeded the estimated 0.2-percent (500-year) floods for these streams. In Douglas County, the Dog River at Ga. Highway 5 near Fairplay had a peak stage nearly 20 feet higher than the estimated peak stage of the 0.2-percent (500-year) flood. On the Chattahoochee River, the U.S. Geological Survey (USGS) gage at Vinings reached the highest level recorded in the past 81 years. Gwinnett, De Kalb, Fulton, and Rockdale Counties also had record flooding.South Georgia March and April 2009 FloodsThe March and April 2009 floods in South Georgia were smaller in magnitude than the September floods but still caused significant damage. No lives were lost in this flood. Approximately $60 million in public infrastructure damage occurred to roads, culverts, bridges and a water treatment facility (Joseph T. McKinney, Federal Emergency Management Agency, written commun., July 2009). Flow at the Satilla River near Waycross, exceeded the 0.5-percent (200-year) flood. Flows at seven other stations in South Georgia exceeded the 1-percent (100-year) flood.

  12. Catalytic Space Engineering in Porphyrin Metal-Organic Frameworks for Combinatorial CO2 Capture and Conversion under Low Concentration.

    PubMed

    Zhang, Li; Liu, Jiewei; Fan, Yan-Zhong; Li, Xin; Xu, Yao-Wei; Su, Cheng-Yong

    2018-05-22

    Porous porphyrin metal-organic frameworks (PMOFs) provide a promising platform to study CO2 capture and conversion (C3) owing to their versatility in photoelectric, catalytic and redox activities and porphyrin coordination chemistry. Herein, we report the C3 application of two PMOFs by engineering the coordination space through introduction of two catalytic metalloporphyrins, Rh-PMOF-1 and Ir-PMOF-1, both of which can serve as heterogeneous catalysts for the chemical fixation of CO2 into cyclic carbonates with up to 99% yields. Remarkably, the catalytic reactions can effectively proceed under low concentration of CO2, and the high yields of 83% and 73% can be obtained under 5% concentration of CO2 in the presence of Rh-PMOF-1 and Ir-PMOF-1, respectively. The synergistic effect of the metalloporphyrin ligand and the Zr6O8 cluster, in combination with the CO2 concentrating effect from the pore space, might account for the excellent catalytic performance of Rh-PMOF-1 under low CO2 concentration. Recycling tests of Rh-PMOF-1 show negligible loss of catalytic activity after 10 runs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Li-ion transport in all-solid-state lithium batteries with LiCoO 2 using NASICON-type glass ceramic electrolytes

    NASA Astrophysics Data System (ADS)

    Xie, J.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O.

    LiCoO 2 thin films were deposited on the NASICON-type glass ceramics, Li 1+ x+ yAl xTi 2- xSi yP 3- yO 12, by radio frequency (RF) magnetron sputtering and were annealed at different temperatures. The as-deposited and the annealed LiCoO 2 thin films were characterized by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). It was found that the films exhibited a (1 0 4) preferred orientation after annealing and Co 3O 4 was observed by annealing over 500 °C due to the reaction between the LiCoO 2 and the glass ceramics. The effect of annealing temperature on the interfacial resistance of glass ceramics/LiCoO 2 and Li-ion transport in the bulk LiCoO 2 thin film was investigated by galvanostatic cycling, cyclic voltammetry (CV), potentiostatic intermittent titration technique (PITT) and electrochemical impedance spectroscopy (EIS) with the Li/PEO/glass ceramics/LiCoO 2 cell. The cell performance was limited by the Li-ion diffusion resistance in Ohara/LiCoO 2 interface as well as in bulk LiCoO 2.

  14. Cyclic Peptidic Mimetics of Apollo Peptides Targeting Telomeric Repeat Binding Factor 2 (TRF2) and Apollo Interaction.

    PubMed

    Chen, Xia; Liu, Liu; Chen, Yong; Yang, Yuting; Yang, Chao-Yie; Guo, Tianyue; Lei, Ming; Sun, Haiying; Wang, Shaomeng

    2018-05-10

    Telomeric repeat binding factor 2 (TRF2) is a telomere-associated protein that plays an important role in the formation of the 3' single strand DNA overhang and the "T loop", two structures critical for the stability of the telomeres. Apollo is a 5'-exonuclease recruited by TRF2 to the telomere and contributes to the formation of the 3' single strand DNA overhang. Knocking down of Apollo can induce DNA damage response similar to that caused by the knocking down of TRF2. In this Letter, we report the design and synthesis of a class of cyclic peptidic mimetics of the TRFH binding motif of Apollo (Apollo TBM ). We found conformational control of the C terminal residues of Apollo TBM can effectively improve the binding affinity. We have obtained a crystal structure of a cyclic peptidic Apollo peptide mimetic ( 34 ) complexed with TRF2, which provides valuable guidance to the future design of TRF2 inhibitors.

  15. Identification of flood-rich and flood-poor periods in flood series

    NASA Astrophysics Data System (ADS)

    Mediero, Luis; Santillán, David; Garrote, Luis

    2015-04-01

    Recently, a general concern about non-stationarity of flood series has arisen, as changes in catchment response can be driven by several factors, such as climatic and land-use changes. Several studies to detect trends in flood series at either national or trans-national scales have been conducted. Trends are usually detected by the Mann-Kendall test. However, the results of this test depend on the starting and ending year of the series, which can lead to different results in terms of the period considered. The results can be conditioned to flood-poor and flood-rich periods located at the beginning or end of the series. A methodology to identify statistically significant flood-rich and flood-poor periods is developed, based on the comparison between the expected sampling variability of floods when stationarity is assumed and the observed variability of floods in a given series. The methodology is applied to a set of long series of annual maximum floods, peaks over threshold and counts of annual occurrences in peaks over threshold series observed in Spain in the period 1942-2009. Mediero et al. (2014) found a general decreasing trend in flood series in some parts of Spain that could be caused by a flood-rich period observed in 1950-1970, placed at the beginning of the flood series. The results of this study support the findings of Mediero et al. (2014), as a flood-rich period in 1950-1970 was identified in most of the selected sites. References: Mediero, L., Santillán, D., Garrote, L., Granados, A. Detection and attribution of trends in magnitude, frequency and timing of floods in Spain, Journal of Hydrology, 517, 1072-1088, 2014.

  16. Chemical and Electrochemical Asymmetric Dihydroxylation of Olefins in I(2)-K(2)CO(3)-K(2)OsO(2)(OH)(4) and I(2)-K(3)PO(4)/K(2)HPO(4)-K(2)OsO(2)(OH)(4) Systems with Sharpless' Ligand.

    PubMed

    Torii, Sigeru; Liu, Ping; Bhuvaneswari, Narayanaswamy; Amatore, Christian; Jutand, Anny

    1996-05-03

    Iodine-assisted chemical and electrochemical asymmetric dihydroxylation of various olefins in I(2)-K(2)CO(3)-K(2)OsO(2)(OH)(4) and I(2)-K(3)PO(4)/K(2)HPO(4)-K(2)OsO(2)(OH)(4) systems with Sharpless' ligand provided the optically active glycols in excellent isolated yields and high enantiomeric excesses. Iodine (I(2)) was used stoichiometrically for the chemical dihydroxylation, and good results were obtained with nonconjugated olefins in contrast to the case of potassium ferricyanide as a co-oxidant. The potentiality of I(2) as a co-oxidant under stoichiometric conditions has been proven to be effective as an oxidizing mediator in electrolysis systems. Iodine-assisted asymmetric electro-dihydroxylation of olefins in either a t-BuOH/H(2)O(1/1)-K(2)CO(3)/(DHQD)(2)PHAL-(Pt) or t-BuOH/H(2)O(1/1)-K(3)PO(4)/K(2)HPO(4)/(DHQD)(2)PHAL-(Pt) system in the presence of potassium osmate in an undivided cell was investigated in detail. Irrespective of the substitution pattern, all the olefins afforded the diols in high yields and excellent enantiomeric excesses. A plausible mechanism is discussed on the basis of cyclic voltammograms as well as experimental observations.

  17. Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors.

    PubMed

    Zhang, Yufei; Ma, Mingze; Yang, Jun; Sun, Chencheng; Su, Haiquan; Huang, Wei; Dong, Xiaochen

    2014-08-21

    In this work, a facile hydrothermal approach for the shape-controlled synthesis of NiCo2S4 architectures is reported. Four different morphologies, urchin-, tube-, flower-, and cubic-like NiCo2S4 microstructures, have been successfully synthesized by employing various solvents. The obtained precursors and products have been characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. It is revealed that the supersaturation of nucleation and crystal growth is determined by the solvent polarity and solubility, which can precisely control the morphology of NiCo2S4 microstructures. The detailed electrochemical performances of the various NiCo2S4 microstructures are investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The results indicate that the tube-like NiCo2S4 exhibits promising capacitive properties with high capacitance and excellent retention. Its specific capacitance can reach 1048 F g(-1) at the current density of 3.0 A g(-1) and 75.9% of its initial capacitance is maintained at the current density of 10.0 A g(-1) after 5000 charge-discharge cycles.

  18. Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Yufei; Ma, Mingze; Yang, Jun; Sun, Chencheng; Su, Haiquan; Huang, Wei; Dong, Xiaochen

    2014-07-01

    In this work, a facile hydrothermal approach for the shape-controlled synthesis of NiCo2S4 architectures is reported. Four different morphologies, urchin-, tube-, flower-, and cubic-like NiCo2S4 microstructures, have been successfully synthesized by employing various solvents. The obtained precursors and products have been characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. It is revealed that the supersaturation of nucleation and crystal growth is determined by the solvent polarity and solubility, which can precisely control the morphology of NiCo2S4 microstructures. The detailed electrochemical performances of the various NiCo2S4 microstructures are investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The results indicate that the tube-like NiCo2S4 exhibits promising capacitive properties with high capacitance and excellent retention. Its specific capacitance can reach 1048 F g-1 at the current density of 3.0 A g-1 and 75.9% of its initial capacitance is maintained at the current density of 10.0 A g-1 after 5000 charge-discharge cycles.

  19. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment

    DOE PAGES

    Arora, Bhavna; Spycher, Nicolas F.; Steefel, Carl I.; ...

    2016-02-12

    Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Modelmore » simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO 2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe +2 and S -2 oxidation) to match locally-observed high CO 2 concentrations above reduced zones. Observed seasonal variations in CO 2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m -2 d -1, while including water table variations resulted in an overall decrease in the simulated fluxes. We thus conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations.« less

  20. Ar + CO2 and He + CO2 Plasmas in ASTRAL

    NASA Astrophysics Data System (ADS)

    Boivin, R. F.; Gardner, A.; Munoz, J.; Kamar, O.; Loch, S.

    2007-11-01

    Spectroscopy study of the ASTRAL helicon plasma source running Ar + CO2 and He + CO2 gas mixes is presented. ASTRAL produces plasmas with the following parameters: ne = 10^10 - 10^13 cm-3, Te = 2 - 10 eV and Ti = 0.03 - 0.5 eV, B-field <= 1.3 kGauss, rf power <= 2 kWatt. A 0.33 m scanning monochromator is used for this study. Using Ar + CO2 gas mixes, very different plasmas are observed as the concentration of CO2 is changed. At low CO2 concentration, the bluish plasma is essentially atomic and argon transitions dominate the spectra. Weak C I and O I lines are present in the 750 - 1000 nm range. At higher CO2 concentration, the plasma becomes essentially molecular and is characterized by intense, white plasma columns. Here, spectra are filled with molecular bands (CO2, CO2^+, CO and CO^+). Limited molecular dissociative excitation processes associated with the production of C I and O I emission are also observed. On the other hand, He + CO2 plasmas are different. Here, rf matches are only possible at low CO2 concentration. Under these conditions, the spectra are characterized by strong C I and O I transitions with little or no molecular bands. Strong dissociative processes observed in these plasmas can be link to the high Te associated with He plasmas. An analysis of the spectra with possible scientific and industrial applications will be presented.

  1. Towards an Efficient Flooding Scheme Exploiting 2-Hop Backward Information in MANETs

    NASA Astrophysics Data System (ADS)

    Le, Trong Duc; Choo, Hyunseung

    Flooding is an indispensable operation for providing control or routing functionalities to mobile ad hoc networks (MANETs). Previously, many flooding schemes have been studied with the intention of curtailing the problems of severe redundancies, contention, and collisions in traditional implementations. A recent approach with relatively high efficiency is 1HI by Liu et al., which uses only 1-hop neighbor information. The scheme achieves local optimality in terms of the number of retransmission nodes with time complexity &Theta(n log n), where n is the number of neighbors of a node; however, this method tends to make many redundant transmissions. In this paper, we present a novel flooding algorithm, 2HBI (2-hop backward information), that efficiently reduces the number of retransmission nodes and solves the broadcast storm problem in ad hoc networks using our proposed concept, “2-hop backward information.” The most significant feature of the proposed algorithm is that it does not require any extra communication overhead other than the exchange of 1-hop HELLO messages but maintains high deliverability. Comprehensive computer simulations show that the proposed scheme significantly reduces redundant transmissions in 1HI and in pure flooding, up to 38% and 91%, respectively; accordingly it alleviates contention and collisions in networks.

  2. ADVANCED RESERVOIR CHARACTERIZATION IN THE ANTELOPE SHALE TO ESTABLISH THE VIABILITY OF CO2 ENHANCED OIL RECOVERY IN CALIFORNIA'S MONTEREY FORMATION SILICEOUS SHALES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasquale R. Perri

    2003-05-15

    This report describes the evaluation, design, and implementation of a DOE funded CO{sub 2} pilot project in the Lost Hills Field, Kern County, California. The pilot consists of four inverted (injector-centered) 5-spot patterns covering approximately 10 acres, and is located in a portion of the field, which has been under waterflood since early 1992. The target reservoir for the CO{sub 2} pilot is the Belridge Diatomite. The pilot location was selected based on geologic considerations, reservoir quality and reservoir performance during the waterflood. A CO{sub 2} pilot was chosen, rather than full-field implementation, to investigate uncertainties associated with CO{sub 2}more » utilization rate and premature CO{sub 2} breakthrough, and overall uncertainty in the unproven CO{sub 2} flood process in the San Joaquin Valley. A summary of the design and objectives of the CO{sub 2} pilot are included along with an overview of the Lost Hills geology, discussion of pilot injection and production facilities, and discussion of new wells drilled and remedial work completed prior to commencing injection. Actual CO{sub 2} injection began on August 31, 2000 and a comprehensive pilot monitoring and surveillance program has been implemented. Since the initiation of CO{sub 2} injection, the pilot has been hampered by excessive sand production in the pilot producers due to casing damage related to subsidence and exacerbated by the injected CO{sub 2}. Therefore CO{sub 2} injection was very sporadic in 2001 and 2002 and we experienced long periods of time with no CO{sub 2} injection. As a result of the continued mechanical problems, the pilot project was terminated on January 30, 2003. This report summarizes the injection and production performance and the monitoring results through December 31, 2002 including oil geochemistry, CO{sub 2} injection tracers, crosswell electromagnetic surveys, crosswell seismic, CO{sub 2} injection profiling, cased hole resistivity, tiltmetering

  3. CO2 Capture in the Sustainable Wheat-Derived Activated Microporous Carbon Compartments

    PubMed Central

    Hong, Seok-Min; Jang, Eunji; Dysart, Arthur D.; Pol, Vilas G.; Lee, Ki Bong

    2016-01-01

    Microporous carbon compartments (MCCs) were developed via controlled carbonization of wheat flour producing large cavities that allow CO2 gas molecules to access micropores and adsorb effectively. KOH activation of MCCs was conducted at 700 °C with varying mass ratios of KOH/C ranging from 1 to 5, and the effects of activation conditions on the prepared carbon materials in terms of the characteristics and behavior of CO2 adsorption were investigated. Textural properties, such as specific surface area and total pore volume, linearly increased with the KOH/C ratio, attributed to the development of pores and enlargement of pores within carbon. The highest CO2 adsorption capacities of 5.70 mol kg−1 at 0 °C and 3.48 mol kg−1 at 25 °C were obtained for MCC activated with a KOH/C ratio of 3 (MCC-K3). In addition, CO2 adsorption uptake was significantly dependent on the volume of narrow micropores with a pore size of less than 0.8 nm rather than the volume of larger pores or surface area. MCC-K3 also exhibited excellent cyclic stability, facile regeneration, and rapid adsorption kinetics. As compared to the pseudo-first-order model, the pseudo-second-order kinetic model described the experimental adsorption data methodically. PMID:27698448

  4. CO 2 capture in the sustainable wheat-derived activated microporous carbon compartments

    DOE PAGES

    Hong, Seok -Min; Jang, Eunji; Dysart, Arthur D.; ...

    2016-10-04

    Here, microporous carbon compartments (MCCs) were developed via controlled carbonization of wheat flour producing large cavities that allow CO 2 gas molecules to access micropores and adsorb effectively. KOH activation of MCCs was conducted at 700 °C with varying mass ratios of KOH/C ranging from 1 to 5, and the effects of activation conditions on the prepared carbon materials in terms of the characteristics and behavior of CO 2 adsorption were investigated. Textural properties, such as specific surface area and total pore volume, linearly increased with the KOH/C ratio, attributed to the development of pores and enlargement of pores withinmore » carbon. The highest CO 2 adsorption capacities of 5.70 mol kg -1 at 0 °C and 3.48 mol kg -1 at 25 °C were obtained for MCC activated with a KOH/C ratio of 3 (MCC-K3). In addition, CO 2 adsorption uptake was significantly dependent on the volume of narrow micropores with a pore size of less than 0.8 nm rather than the volume of larger pores or surface area. MCC-K3 also exhibited excellent cyclic stability, facile regeneration, and rapid adsorption kinetics. As compared to the pseudofirst-order model, the pseudo-second-order kinetic model described the experimental adsorption data methodically.« less

  5. CO2 Capture in the Sustainable Wheat-Derived Activated Microporous Carbon Compartments

    NASA Astrophysics Data System (ADS)

    Hong, Seok-Min; Jang, Eunji; Dysart, Arthur D.; Pol, Vilas G.; Lee, Ki Bong

    2016-10-01

    Microporous carbon compartments (MCCs) were developed via controlled carbonization of wheat flour producing large cavities that allow CO2 gas molecules to access micropores and adsorb effectively. KOH activation of MCCs was conducted at 700 °C with varying mass ratios of KOH/C ranging from 1 to 5, and the effects of activation conditions on the prepared carbon materials in terms of the characteristics and behavior of CO2 adsorption were investigated. Textural properties, such as specific surface area and total pore volume, linearly increased with the KOH/C ratio, attributed to the development of pores and enlargement of pores within carbon. The highest CO2 adsorption capacities of 5.70 mol kg-1 at 0 °C and 3.48 mol kg-1 at 25 °C were obtained for MCC activated with a KOH/C ratio of 3 (MCC-K3). In addition, CO2 adsorption uptake was significantly dependent on the volume of narrow micropores with a pore size of less than 0.8 nm rather than the volume of larger pores or surface area. MCC-K3 also exhibited excellent cyclic stability, facile regeneration, and rapid adsorption kinetics. As compared to the pseudo-first-order model, the pseudo-second-order kinetic model described the experimental adsorption data methodically.

  6. Cyclic-RGD penta-peptides cRGDyK derivatized with cyclopentadienyl complexes of technetium and rhenium as radiopharmaceutical probes.

    PubMed

    Nadeem, Qaisar; Shen, Yunjun; Warsi, Muhammad Farooq; Nasar, Gulfam; Qadir, Muhammad Abdul; Alberto, Roger

    2017-07-01

    The present study reports the syntheses of half-sandwich complexes of the type [M(η 5 -C 5 H 4 CONH-R)(CO) 3 ] (M═Re, 99m Tc;R═cyclic RGD peptide (cRGDyK) for potential imaging of α v β 3 integrin expression. The 99m Tc complex was prepared directly from the reaction of [ 99m Tc(OH 2 ) 3 (CO) 3 ] + with cRGDyK, doubly conjugated to Thiele's acid [(C 5 H 5 COOH) 2 ] in water. This approach extends the viability of metal-mediated retro Diels-Alder reactions for the preparation of small molecules such as linear tripeptides to a more complex cyclic peptide carrying a [(η 5 -C 5 H 4 ) 99m Tc(CO) 3 ] tag. The Diels-Alder product [(C 5 H 5 CONH-cRGDyK) 2 ] was prepared from Thiele's acid via double peptide coupling. The Re-complex [Re(η 5 -C 5 H 4 CONH-cRGDyK)(CO) 3 ] was obtained by attaching [Re(η 5 -C 5 H 4 COOH)(CO) 3 ] directly to the N-terminus of cRGDyK. The identity of the 99m Tc-complex is confirmed by chromatographic comparison with the corresponding rhenium complex, fully characterized by spectroscopic techniques. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Stereoselective synthesis of functionalized cyclic amino acid derivatives via a [2,3]-Stevens rearrangement and ring-closing metathesis.

    PubMed

    Nash, Aaron; Soheili, Arash; Tambar, Uttam K

    2013-09-20

    Unnatural cyclic amino acids are valuable tools in biomedical research and drug discovery. A two-step stereoselective strategy for converting simple glycine-derived aminoesters into unnatural cyclic amino acid derivatives has been developed. The process includes a palladium-catalyzed tandem allylic amination/[2,3]-Stevens rearrangement followed by a ruthenium-catalyzed ring-closing metathesis. The [2,3]-rearrangement proceeds with high diastereoselectivity through an exo transition state. Oppolzer's chiral auxiliary was utilized to access an enantiopure cyclic amino acid by this approach, which will enable future biological applications.

  8. Validating high-resolution California coastal flood modeling with Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR)

    NASA Astrophysics Data System (ADS)

    O'Neill, A.

    2015-12-01

    The Coastal Storm Modeling System (CoSMoS) is a numerical modeling scheme used to predict coastal flooding due to sea level rise and storms influenced by climate change, currently in use in central California and in development for Southern California (Pt. Conception to the Mexican border). Using a framework of circulation, wave, analytical, and Bayesian models at different geographic scales, high-resolution results are translated as relevant hazards projections at the local scale that include flooding, wave heights, coastal erosion, shoreline change, and cliff failures. Ready access to accurate, high-resolution coastal flooding data is critical for further validation and refinement of CoSMoS and improved coastal hazard projections. High-resolution Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) provides an exceptional data source as appropriately-timed flights during extreme tides or storms provide a geographically-extensive method for determining areas of inundation and flooding extent along expanses of complex and varying coastline. Landward flood extents are numerically identified via edge-detection in imagery from single flights, and can also be ascertained via change detection using additional flights and imagery collected during average wave/tide conditions. The extracted flooding positions are compared against CoSMoS results for similar tide, water level, and storm-intensity conditions, allowing for robust testing and validation of CoSMoS and providing essential feedback for supporting regional and local model improvement.

  9. Theoretical Studies of Some HEDM Species: Cyclic O4, Cyclic O3 and Cubane

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Langhoff, Steve R. (Technical Monitor)

    1996-01-01

    Calculations have been carried out for the HEDM species (cyclic O4, cyclic O3, and cubane) using CASSCF/derivative and CASSCF/ICCI methods. Cyclic O4 is of interest both as a potential HEDM species and because of its possible role in the ozone deficit problem in atmospheric chemistry. We have studied the pathway for decomposition from the D(2d) minimum and also have found the approximate location of the singlet triplet crossing. The barrier to decomposition is found to be about 9 kcal/mol and is not limited by the singlet triplet crossing. For cyclic O3 we have focused on the crossings between the lowest five surfaces (X(1)A(1), s(1)A(1), (1)A(2), (1)B(1), and (1)B(2)) to provide some insight into ways to form cyclic O3 photochemically. The crossing region between the X(1)A(1) and 2(1)A(1) surfaces is in agreement with the work of Xantheas et al. The calculations show that vertical excitation from the ground state to the (1)A(2) state leads to a crossing with the (1)A(1) manifold near the crossing region of the X(1)A(1) and 2(1)A(1) surfaces. We have studied the decomposition pathways for cubane to benzene plus acetylene and to cyclooctatetraene. We have also studied the ground and excited states for the photochemical ring closure step. The state which closes to cubane can be described as a double triplet pi to pi* excitation with respect to the ground state. Thus, this state has only a small oscillator strength with respect to the ground state. However, there is a singlet pi to pi* state at nearly the same energy and excitation to this state followed by intersystem crossing could lead to the triplet pi to pi* state.

  10. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area, Class III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckman, Tracy; Schechter, David S.

    2000-04-11

    The overall goal of this project was to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective was accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the fourth year of the five-year project for each of the four areas including a status report of field activities leading upmore » to injection of CO{sub 2}.« less

  11. Effects of experimental water table and temperature manipulations on ecosystem CO2 fluxes in an Alaskan rich fen

    Treesearch

    M.R. Chivers; M.R. Turetsky; J.M. Waddington; J.W. Harden; A.D. McGuire

    2009-01-01

    Peatlands store 30% of the world's terrestrial soil carbon (C) and those located at northern latitudes are expected to experience rapid climate warming. We monitored growing season carbon dioxide (CO2) fluxes across a factorial design of in situ water table (control, drought, and flooded plots) and soil warming (control vs. warming via open...

  12. Flood Resilient Systems and their Application for Flood Resilient Planning

    NASA Astrophysics Data System (ADS)

    Manojlovic, N.; Gabalda, V.; Antanaskovic, D.; Gershovich, I.; Pasche, E.

    2012-04-01

    Following the paradigm shift in flood management from traditional to more integrated approaches, and considering the uncertainties of future development due to drivers such as climate change, one of the main emerging tasks of flood managers becomes the development of (flood) resilient cities. It can be achieved by application of non-structural - flood resilience measures, summarised in the 4As: assistance, alleviation, awareness and avoidance (FIAC, 2007). As a part of this strategy, the key aspect of development of resilient cities - resilient built environment can be reached by efficient application of Flood Resilience Technology (FReT) and its meaningful combination into flood resilient systems (FRS). FRS are given as [an interconnecting network of FReT which facilitates resilience (including both restorative and adaptive capacity) to flooding, addressing physical and social systems and considering different flood typologies] (SMARTeST, http://www.floodresilience.eu/). Applying the system approach (e.g. Zevenbergen, 2008), FRS can be developed at different scales from the building to the city level. Still, a matter of research is a method to define and systematise different FRS crossing those scales. Further, the decision on which resilient system is to be applied for the given conditions and given scale is a complex task, calling for utilisation of decision support tools. This process of decision-making should follow the steps of flood risk assessment (1) and development of a flood resilience plan (2) (Manojlovic et al, 2009). The key problem in (2) is how to match the input parameters that describe physical&social system and flood typology to the appropriate flood resilient system. Additionally, an open issue is how to integrate the advances in FReT and findings on its efficiency into decision support tools. This paper presents a way to define, systematise and make decisions on FRS at different scales of an urban system developed within the 7th FP Project

  13. Characterization of the 2′,3′ cyclic phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase-phosphatase and bacteriophage λ phosphatase

    PubMed Central

    Keppetipola, Niroshika; Shuman, Stewart

    2007-01-01

    Clostridium thermocellum polynucleotide kinase-phosphatase (CthPnkp) catalyzes 5′ and 3′ end-healing reactions that prepare broken RNA termini for sealing by RNA ligase. The central phosphatase domain of CthPnkp belongs to the dinuclear metallophosphoesterase superfamily exemplified by bacteriophage λ phosphatase (λ-Pase). CthPnkp is a Ni2+/Mn2+-dependent phosphodiesterase-monoesterase, active on nucleotide and non-nucleotide substrates, that can be transformed toward narrower metal and substrate specificities via mutations of the active site. Here we characterize the Mn2+-dependent 2′,3′ cyclic nucleotide phosphodiesterase activity of CthPnkp, the reaction most relevant to RNA repair pathways. We find that CthPnkp prefers a 2′,3′ cyclic phosphate to a 3′,5′ cyclic phosphate. A single H189D mutation imposes strict specificity for a 2′,3′ cyclic phosphate, which is cleaved to form a single 2′-NMP product. Analysis of the cyclic phosphodiesterase activities of mutated CthPnkp enzymes illuminates the active site and the structural features that affect substrate affinity and kcat. We also characterize a previously unrecognized phosphodiesterase activity of λ-Pase, which catalyzes hydrolysis of bis-p-nitrophenyl phosphate. λ-Pase also has cyclic phosphodiesterase activity with nucleoside 2′,3′ cyclic phosphates, which it hydrolyzes to yield a mixture of 2′-NMP and 3′-NMP products. We discuss our results in light of available structural and functional data for other phosphodiesterase members of the binuclear metallophosphoesterase family and draw inferences about how differences in active site composition influence catalytic repertoire. PMID:17986465

  14. An experimental study of relative permeability hysteresis, capillary trapping characteristics, and capillary pressure of CO2/brine systems at reservoir conditions

    NASA Astrophysics Data System (ADS)

    Akbarabadi, Morteza

    We present the results of an extensive experimental study on the effects of hysteresis on permanent capillary trapping and relative permeability of CO2/brine and supercritical (sc)CO2+SO2/brine systems. We performed numerous unsteady- and steady-state drainage and imbibition full-recirculation flow experiments in three different sandstone rock samples, i.e., low and high-permeability Berea, Nugget sandstones, and Madison limestone carbonate rock sample. A state-of-the-art reservoir conditions core-flooding system was used to perform the tests. The core-flooding apparatus included a medical CT scanner to measure in-situ saturations. The scanner was rotated to the horizontal orientation allowing flow tests through vertically-placed core samples with about 3.8 cm diameter and 15 cm length. Both scCO2 /brine and gaseous CO2 (gCO2)/brine fluid systems were studied. The gaseous and supercritical CO2/brine experiments were carried out at 3.46 and 11 MPa back pressures and 20 and 55°C temperatures, respectively. Under the above-mentioned conditions, the gCO2 and scCO2 have 0.081 and 0.393 gr/cm3 densities, respectively. During unsteady-state tests, the samples were first saturated with brine and then flooded with CO2 (drainage) at different maximum flow rates. The drainage process was then followed by a low flow rate (0.375 cm 3/min) imbibition until residual CO2 saturation was achieved. Wide flow rate ranges of 0.25 to 20 cm3/min for scCO2 and 0.125 to 120 cm3min for gCO2 were used to investigate the variation of initial brine saturation (Swi) with maximum CO2 flow rate and variation of trapped CO2 saturation (SCO2r) with Swi. For a given Swi, the trapped scCO2 saturation was less than that of gCO2 in the same sample. This was attributed to brine being less wetting in the presence of scCO2 than in the presence of gCO 2. During the steady-state experiments, after providing of fully-brine saturated core, scCO2 was injected along with brine to find the drainage curve and as

  15. Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2015-2016

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Cmarik, Gregory E.; Watson, David

    2016-01-01

    Design of advanced carbon dioxide removal systems begins with the study of sorbents. Specifically, new CO2 sorbents and desiccants need to be studied to enable greater productivity from existing and future spaceflight systems. This presentation will discuss the studies used as input for selecting future CO2 sorbent materials. Also, the adjoining issues of understanding the effects of water co-adsorption and material selection for desiccant beds will be discussed. Current sorbents for CO2 removal are based on 5A zeolites, but a transition to sorbents derived from 13X will be necessary as CO2 levels in cabin air become leaner. Unfortunately, these 13X zeolites are more susceptible to long-term performance loss due to water co-adsorption than 5A due at achievable regeneration temperatures. A study on how impactful the presence of trace water will be to the cyclic operation of small-scale beds will be discussed. Also, methods to recover the performance of beds in a space environment after a major moisture adsorption event will be discussed. The information obtained from the water co-adsorption studies will play a major part in selecting a CO2 sorbent for advanced removal systems. Pellet structural properties play another major role in the selection process. One factor for long-term, hands-off operation of a system is pellet integrity. Maintaining integrity means preventing pellet fracture and the generation of fines due to various thermal and mechanical means which would eventually clog filters or damage downstream systems. Either of these problems require significant shutdowns and maintenance operations and must be avoided. Therefore, study of high-integrity pellets and design of new pellets will be discussed.

  16. Robust Immobilized Amine CO 2 Sorbent Pellets Utilizing a Poly(Chloroprene) Polymer Binder and Fly Ash Additive

    DOE PAGES

    Wilfong, Walter Christopher; Kail, Brian W.; Howard, Bret H.; ...

    2016-08-04

    Pelletization of ca. 50 wt % amine/silica carbon dioxide sorbents was achieved with the novel combination of fly ash (FA) as a strength additive and hydrophobic poly(chloroprene) (PC) as a binder. The PC content and overall synthesis procedure of these materials were optimized to produce pellets, labeled as FA/E100-S_(20/80)_12.2, with the highest ball-mill attrition resistance (<0.5 wt % by fines, 24 h) and maximum CO 2 capture capacity of 1.78 mmol CO 2 g -1. The strength of the pellets was attributed to hydrogen-bonding of the relatively homogeneous PC network with the interlocked FA and BIAS particles (DRIFTS, SEM-EDS). Themore » low degradation of 3–4 % in the pellet's CO 2 capture capacity under both dry TGA (7.5 h) and practical fixed-bed (6.5 h dry; 4.5 h humid,≈5 vol % H 2O) CO 2 adsorption–desorption conditions highlights the pellet's excellent cyclic stability. These robust pellet characteristics make PC/FA/sorbent materials promising for commercial scale, point-source CO 2 capture.« less

  17. TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion

    PubMed Central

    Togashi, Kazuya; Hara, Yuji; Tominaga, Tomoko; Higashi, Tomohiro; Konishi, Yasunobu; Mori, Yasuo; Tominaga, Makoto

    2006-01-01

    There are eight thermosensitive TRP (transient receptor potential) channels in mammals, and there might be other TRP channels sensitive to temperature stimuli. Here, we demonstrate that TRPM2 can be activated by exposure to warm temperatures (>35°C) apparently via direct heat-evoked channel gating. β-NAD+- or ADP-ribose-evoked TRPM2 activity is robustly potentiated at elevated temperatures. We also show that, even though cyclic ADP-ribose (cADPR) does not activate TRPM2 at 25°C, co-application of heat and intracellular cADPR dramatically potentiates TRPM2 activity. Heat and cADPR evoke similar responses in rat insulinoma RIN-5F cells, which express TRPM2 endogenously. In pancreatic islets, TRPM2 is coexpressed with insulin, and mild heating of these cells evokes increases in both cytosolic Ca2+ and insulin release, which is KATP channel-independent and protein kinase A-mediated. Heat-evoked responses in both RIN-5F cells and pancreatic islets are significantly diminished by treatment with TRPM2-specific siRNA. These results identify TRPM2 as a potential molecular target for cADPR, and suggest that TRPM2 regulates Ca2+ entry into pancreatic β-cells at body temperature depending on the production of cADPR-related molecules, thereby regulating insulin secretion. PMID:16601673

  18. Divergent biophysical controls of aquatic CO2 and CH4 in the World’s two largest rivers

    PubMed Central

    Borges, Alberto V.; Abril, Gwenaël; Darchambeau, François; Teodoru, Cristian R.; Deborde, Jonathan; Vidal, Luciana O.; Lambert, Thibault; Bouillon, Steven

    2015-01-01

    Carbon emissions to the atmosphere from inland waters are globally significant and mainly occur at tropical latitudes. However, processes controlling the intensity of CO2 and CH4 emissions from tropical inland waters remain poorly understood. Here, we report a data-set of concurrent measurements of the partial pressure of CO2 (pCO2) and dissolved CH4 concentrations in the Amazon (n = 136) and the Congo (n = 280) Rivers. The pCO2 values in the Amazon mainstem were significantly higher than in the Congo, contrasting with CH4 concentrations that were higher in the Congo than in the Amazon. Large-scale patterns in pCO2 across different lowland tropical basins can be apprehended with a relatively simple statistical model related to the extent of wetlands within the basin, showing that, in addition to non-flooded vegetation, wetlands also contribute to CO2 in river channels. On the other hand, dynamics of dissolved CH4 in river channels are less straightforward to predict, and are related to the way hydrology modulates the connectivity between wetlands and river channels. PMID:26494107

  19. NiCo2O4/N-doped graphene as an advanced electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Li, Huiyong; Wang, Haiyan; He, Kejian; Wang, Shuangyin; Tang, Yougen; Chen, Jiajie

    2015-04-01

    Developing low-cost catalyst for high-performance oxygen reduction reaction (ORR) is highly desirable. Herein, NiCo2O4/N-doped reduced graphene oxide (NiCo2O4/N-rGO) hybrid is proposed as a high-performance catalyst for ORR for the first time. The well-formed NiCo2O4/N-rGO hybrid is studied by cyclic voltammetry (CV) curves and linear-sweep voltammetry (LSV) performed on the rotating-ring-disk-electrode (RDE) in comparison with N-rGO-free NiCo2O4 and the bare N-rGO. Due to the synergistic effect, the NiCo2O4/N-rGO hybrid exhibits significant improvement of catalytic performance with an onset potential of -0.12 V, which mainly favors a direct four electron pathway in ORR process, close to the behavior of commercial carbon-supported Pt. Also, the benefits of N-incorporation are investigated by comparing NiCo2O4/N-rGO with NiCo2O4/rGO, where higher cathodic currents, much more positive half-wave potential and more electron transfer numbers are observed for the N-doping one, which should be ascribed to the new highly efficient active sites created by N incorporation into graphene. The NiCo2O4/N-rGO hybrid could be used as a promising catalyst for high power metal/air battery.

  20. Fast synthesis of porous NiCo2O4 hollow nanospheres for a high-sensitivity non-enzymatic glucose sensor

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Cao, Yang; Chen, Yong; Peng, Juan; Lai, Xiaoyong; Tu, Jinchun

    2017-02-01

    In this paper, we report the fast synthesis of porous NiCo2O4 hollow nanospheres via a polycrystalline Cu2O-templated route based on the elaborately designed "coordinating etching and precipitating" process. The composition and morphology of the porous NiCo2O4 hollow nanospheres were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The electron-transfer capability and electrocatalytic activity of the materials were investigated by electrochemical impedance spectroscopy and cyclic voltammetry. NiCo2O4 was endowed with superior electron-transfer capability, large surface area, and abundant intrinsic redox couples of Ni2+/Ni3+ and Co2+/Co3+ ions; thus, the modified electrode exhibited excellent glucose-sensing properties, with a high sensitivity of 1917 μA·mM-1·cm-2 at a low concentration, a good linear range from 0.01 mM to 0.30 mM and from 0.30 mM to 2.24 mM, and a low detection limit of 0.6 μM (S/N = 3).

  1. Short-Term Flooding Effects on Gas Exchange and Quantum Yield of Rabbiteye Blueberry (Vaccinium ashei Reade) 1

    PubMed Central

    Davies, Frederick S.; Flore, James A.

    1986-01-01

    Roots of 1.5-year-old `Woodard' rabbiteye blueberry plants (Vaccinium ashei Reade) were flooded in containers or maintained at container capacity over a 5-day period. Carbon assimilation, and stomatal and residual conductances were monitored on one fully expanded shoot/plant using an open flow gas analysis system. Quantum yield was calculated from light response curves. Carbon assimilation and quantum yield of flooded plants decreased to 64 and 41% of control values, respectively, after 1 day of flooding and continued decreasing to 38 and 27% after 4 days. Stomatal and residual conductances to CO2 also decreased after 1 day of flooding compared with those of unflooded plants with residual conductance severely limiting carbon assimilation after 4 days of flooding. Stomatal opening occurred in 75 to 90 minutes and rate of opening was unaffected by flooding. PMID:16664791

  2. Cyclic voltammetry using silver as cathode material: a simple method for determining electro and chemical features and solubility values of CO2 in ionic liquids.

    PubMed

    Reche, Irene; Gallardo, Iluminada; Guirado, Gonzalo

    2015-01-28

    A report is presented on the use of cyclic voltammetry using silver as a working electrode. The combined electrocatalytic properties of silver and ionic liquids allow cyclic voltammetry to be turned into an ideal tool for the rapid and accurate access to diffusion coefficient values and solubility values of carbon dioxide in ionic liquids under standard conditions.

  3. Temporal distribution of floods and landslides in Portugal (1865-2010)

    NASA Astrophysics Data System (ADS)

    Santos, Monica; Bateira, Carlos; Hermenegildo, Carlos; Soares, Laura; Pereira, Susana; Quaresma, Ivânia; Santos, Pedro

    2013-04-01

    Hydro-geomorphological events are the natural hazards that most affect Portugal. Under the DISASTER research project, was created a GIS database (DB) about floods and landslides that occurred in this country, from 1865 to 2010. The inventory of these processes was based on a systematic compilation of national and regional newspapers articles, focusing occurrences with direct consequences on the population, i.e., those that implied killed, injured, missing, evacuated or displaced people, independently of the number of affected and the economic value of damage. The main objective of this DB is to support the development of risk studies related with these events, analysing their spatial and temporal distribution, the susceptibility of the territories and the vulnerability of the exposed elements. It is essential for risk management, providing a decision support for spatial and emergency planning. This study aims to analyse the temporal rhythm of floods and landslides that occurred in the above mentioned period, as well as its evolutionary trend and the relationship between these processes and the precipitation, the main triggering factor of hydro-geomorphological events in Portugal mainland. The trends are analysed using the nonparametric Mann-Kendall (M-K) and Theil-Sen statistical tests (B), in order to estimate its magnitude. The results show that from the 1903 records integrated in the Disaster DB (in the 145 years under analysis), 85.2% of occurrences correspond to floods and 14.8% to landslides. Until 1935 the number of occurrences per year is less than 10 (except 1909), but after this date there was a significant increase of this value, mainly in the years of 1936, 1966/67, 1979, 1996 and 2001, with more than 50 occurrences/year. In the period between 1935 and 1975, the mean number of occurrences is 22.5/year, but between 1975-2010 it changes to 16.5. The results suggest the absence of a statistically significant increasing trend of occurrences, during all the

  4. Rechargeable Al-CO2 Batteries for Reversible Utilization of CO2.

    PubMed

    Ma, Wenqing; Liu, Xizheng; Li, Chao; Yin, Huiming; Xi, Wei; Liu, Ruirui; He, Guang; Zhao, Xian; Luo, Jun; Ding, Yi

    2018-05-21

    The excessive emission of CO 2 and the energy crisis are two major issues facing humanity. Thus, the electrochemical reduction of CO 2 and its utilization in metal-CO 2 batteries have attracted wide attention because the batteries can simultaneously accelerate CO 2 fixation/utilization and energy storage/release. Here, rechargeable Al-CO 2 batteries are proposed and realized, which use chemically stable Al as the anode. The batteries display small discharge/charge voltage gaps down to 0.091 V and high energy efficiencies up to 87.7%, indicating an efficient battery performance. Their chemical reaction mechanism to produce the performance is revealed to be 4Al + 9CO 22Al 2 (CO 3 ) 3 + 3C, by which CO 2 is reversibly utilized. These batteries are envisaged to effectively and safely serve as a potential CO 2 fixation/utilization strategy with stable Al. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. 1H,1H,5H-Perfluoropentyl-1,1,2,2-tetrafluoroethylether as a co-solvent for high voltage LiNi1/3Co1/3Mn1/3O2/graphite cells

    NASA Astrophysics Data System (ADS)

    Wang, Chengyun; Zuo, Xiaoxi; Zhao, Minkai; Xiao, Xin; Yu, Le; Nan, Junmin

    2016-03-01

    1H,1H,5H-Perfluoropentyl-1,1,2,2-tetrafluoroethylether (F-EAE) mixed with ethylene carbonate (EC), diethyl carbonate (DEC), and lithium hexafluorophosphate (LiPF6) is evaluated as a co-solvent high-potential electrolyte of LiNi1/3Co1/3Mn1/3O2/graphite batteries. Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) indicate that the EC/DEC-based electrolyte with F-EAE possesses a high oxidation potential (>5.2 V vs. Li/Li+) and excellent film-forming characteristics. With 40 wt% F-EAE in the electrolyte, the capacity retention of the LiNi1/3Co1/3Mn1/3O2/graphite pouch cells that are cycled between 3.0 and 4.5 V is significantly improved from 28.8% to 86.8% after 100 cycles. In addition, electrochemical impedance spectroscopy (EIS) of three-electrode pouch cells, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) are used to characterize the effects of F-EAE on the enhanced capacity retention. It is demonstrated that F-EAE facilitates the formation of a stable surface electrolyte interface (SEI) layer with low impedance on the anode and effectively suppresses an increase in the charge-transfer resistance on the cathode. These results suggest that F-EAE can serve as an alternative electrolyte solvent for 4.5 V high voltage rechargeable lithium-ion batteries.

  6. Electroreduction of CO2 Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center

    PubMed Central

    2017-01-01

    Transition-metal-based molecular complexes are a class of catalyst materials for electrochemical CO2 reduction to CO that can be rationally designed to deliver high catalytic performance. One common mechanistic feature of these electrocatalysts developed thus far is an electrogenerated reduced metal center associated with catalytic CO2 reduction. Here we report a heterogenized zinc–porphyrin complex (zinc(II) 5,10,15,20-tetramesitylporphyrin) as an electrocatalyst that delivers a turnover frequency as high as 14.4 site–1 s–1 and a Faradaic efficiency as high as 95% for CO2 electroreduction to CO at −1.7 V vs the standard hydrogen electrode in an organic/water mixed electrolyte. While the Zn center is critical to the observed catalysis, in situ and operando X-ray absorption spectroscopic studies reveal that it is redox-innocent throughout the potential range. Cyclic voltammetry indicates that the porphyrin ligand may act as a redox mediator. Chemical reduction of the zinc–porphyrin complex further confirms that the reduction is ligand-based and the reduced species can react with CO2. This represents the first example of a transition-metal complex for CO2 electroreduction catalysis with its metal center being redox-innocent under working conditions. PMID:28852698

  7. Electroreduction of CO 2 Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center

    DOE PAGES

    Wu, Yueshen; Jiang, Jianbing; Weng, Zhe; ...

    2017-07-26

    Transition-metal-based molecular complexes are a class of catalyst materials for electrochemical CO 2 reduction to CO that can be rationally designed to deliver high catalytic performance. One common mechanistic feature of these electrocatalysts developed thus far is an electrogenerated reduced metal center associated with catalytic CO 2 reduction. Here in this paper, we report a heterogenized zinc–porphyrin complex (zinc(II) 5,10,15,20-tetramesitylporphyrin) as an electrocatalyst that delivers a turnover frequency as high as 14.4 site –1 s –1 and a Faradaic efficiency as high as 95% for CO 2 electroreduction to CO at -1.7 V vs the standard hydrogen electrode in anmore » organic/water mixed electrolyte. While the Zn center is critical to the observed catalysis, in situ and operando X-ray absorption spectroscopic studies reveal that it is redox-innocent throughout the potential range. Cyclic voltammetry indicates that the porphyrin ligand may act as a redox mediator. Chemical reduction of the zinc–porphyrin complex further confirms that the reduction is ligand-based and the reduced species can react with CO 2. This represents the first example of a transition-metal complex for CO 2 electroreduction catalysis with its metal center being redox-innocent under working conditions.« less

  8. Electroreduction of CO 2 Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yueshen; Jiang, Jianbing; Weng, Zhe

    Transition-metal-based molecular complexes are a class of catalyst materials for electrochemical CO 2 reduction to CO that can be rationally designed to deliver high catalytic performance. One common mechanistic feature of these electrocatalysts developed thus far is an electrogenerated reduced metal center associated with catalytic CO 2 reduction. Here in this paper, we report a heterogenized zinc–porphyrin complex (zinc(II) 5,10,15,20-tetramesitylporphyrin) as an electrocatalyst that delivers a turnover frequency as high as 14.4 site –1 s –1 and a Faradaic efficiency as high as 95% for CO 2 electroreduction to CO at -1.7 V vs the standard hydrogen electrode in anmore » organic/water mixed electrolyte. While the Zn center is critical to the observed catalysis, in situ and operando X-ray absorption spectroscopic studies reveal that it is redox-innocent throughout the potential range. Cyclic voltammetry indicates that the porphyrin ligand may act as a redox mediator. Chemical reduction of the zinc–porphyrin complex further confirms that the reduction is ligand-based and the reduced species can react with CO 2. This represents the first example of a transition-metal complex for CO 2 electroreduction catalysis with its metal center being redox-innocent under working conditions.« less

  9. Electroreduction of CO 2 Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yueshen; Jiang, Jianbing; Weng, Zhe

    Transition-metal-based molecular complexes are a class of catalyst materials for electrochemical CO2 reduction to CO that can be rationally designed to deliver high catalytic performance. One common mechanistic feature of these electrocatalysts developed thus far is an electrogenerated reduced metal center associated with catalytic CO2 reduction. Here we report a heterogenized zinc–porphyrin complex (zinc(II) 5,10,15,20-tetramesitylporphyrin) as an electrocatalyst that delivers a turnover frequency as high as 14.4 site–1 s–1 and a Faradaic efficiency as high as 95% for CO2 electroreduction to CO at -1.7 V vs the standard hydrogen electrode in an organic/water mixed electrolyte. While the Zn center ismore » critical to the observed catalysis, in situ and operando X-ray absorption spectroscopic studies reveal that it is redox-innocent throughout the potential range. Cyclic voltammetry indicates that the porphyrin ligand may act as a redox mediator. Chemical reduction of the zinc–porphyrin complex further confirms that the reduction is ligand-based and the reduced species can react with CO2. This represents the first example of a transition-metal complex for CO2 electroreduction catalysis with its metal center being redox-innocent under working conditions.« less

  10. Cyclic stretch induces cyclooxygenase-2 gene expression in vascular endothelial cells via activation of nuclear factor kappa-{beta}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haige; Hiroi, Toyoko; Hansen, Baranda S.

    2009-11-27

    Vascular endothelial cells respond to biomechanical forces, such as cyclic stretch and shear stress, by altering gene expression. Since endothelial-derived prostanoids, such as prostacyclin and thromboxane A{sub 2}, are key mediators of endothelial function, we investigated the effects of cyclic stretch on the expression of genes in human umbilical vein endothelial cells controlling prostanoid synthesis: cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), prostacyclin synthase (PGIS) and thromboxane A{sub 2} synthase (TXAS). COX-2 and TXAS mRNAs were upregulated by cyclic stretch for 24 h. In contrast, PGIS mRNA was decreased and stretch had no effect on COX-1 mRNA expression. We further show that stretch-inducedmore » upregulation of COX-2 is mediated by activation of the NF-{kappa}{beta} signaling pathway.« less

  11. Nitrate fertilisation does not enhance CO2 responses in two tropical seagrass species

    NASA Astrophysics Data System (ADS)

    Ow, Y. X.; Vogel, N.; Collier, C. J.; Holtum, J. A. M.; Flores, F.; Uthicke, S.

    2016-03-01

    Seagrasses are often considered “winners” of ocean acidification (OA); however, seagrass productivity responses to OA could be limited by nitrogen availability, since nitrogen-derived metabolites are required for carbon assimilation. We tested nitrogen uptake and assimilation, photosynthesis, growth, and carbon allocation responses of the tropical seagrasses Halodule uninervis and Thalassia hemprichii to OA scenarios (428, 734 and 1213 μatm pCO2) under two nutrients levels (0.3 and 1.9 μM NO3-). Net primary production (measured as oxygen production) and growth in H. uninervis increased with pCO2 enrichment, but were not affected by nitrate enrichment. However, nitrate enrichment reduced whole plant respiration in H. uninervis. Net primary production and growth did not show significant changes with pCO2 or nitrate by the end of the experiment (24 d) in T. hemprichii. However, nitrate incorporation in T. hemprichii was higher with nitrate enrichment. There was no evidence that nitrogen demand increased with pCO2 enrichment in either species. Contrary to our initial hypothesis, nutrient increases to levels approximating present day flood plumes only had small effects on metabolism. This study highlights that the paradigm of increased productivity of seagrasses under ocean acidification may not be valid for all species under all environmental conditions.

  12. Nitrate fertilisation does not enhance CO2 responses in two tropical seagrass species.

    PubMed

    Ow, Y X; Vogel, N; Collier, C J; Holtum, J A M; Flores, F; Uthicke, S

    2016-03-15

    Seagrasses are often considered "winners" of ocean acidification (OA); however, seagrass productivity responses to OA could be limited by nitrogen availability, since nitrogen-derived metabolites are required for carbon assimilation. We tested nitrogen uptake and assimilation, photosynthesis, growth, and carbon allocation responses of the tropical seagrasses Halodule uninervis and Thalassia hemprichii to OA scenarios (428, 734 and 1213 μatm pCO2) under two nutrients levels (0.3 and 1.9 μM NO3(-)). Net primary production (measured as oxygen production) and growth in H. uninervis increased with pCO2 enrichment, but were not affected by nitrate enrichment. However, nitrate enrichment reduced whole plant respiration in H. uninervis. Net primary production and growth did not show significant changes with pCO2 or nitrate by the end of the experiment (24 d) in T. hemprichii. However, nitrate incorporation in T. hemprichii was higher with nitrate enrichment. There was no evidence that nitrogen demand increased with pCO2 enrichment in either species. Contrary to our initial hypothesis, nutrient increases to levels approximating present day flood plumes only had small effects on metabolism. This study highlights that the paradigm of increased productivity of seagrasses under ocean acidification may not be valid for all species under all environmental conditions.

  13. Flood hazard assessment using 1D and 2D approaches

    NASA Astrophysics Data System (ADS)

    Petaccia, Gabriella; Costabile, Pierfranco; Macchione, Francesco; Natale, Luigi

    2013-04-01

    The EU flood risk Directive (Directive 2007/60/EC) prescribes risk assessment and mapping to develop flood risk management plans. Flood hazard mapping may be carried out with mathematical models able to determine flood-prone areas once realistic conditions (in terms of discharge or water levels) are imposed at the boundaries of the case study. The deterministic models are mainly based on shallow water equations expressed in their 1D or 2D formulation. The 1D approach is widely used, especially in technical studies, due to its relative simplicity, its computational efficiency and also because it requires topographical data not as expensive as the ones needed by 2D models. Even if in a great number of practical situations, such as modeling in-channel flows and not too wide floodplains, the 1D approach may provide results close to the prediction of a more sophisticated 2D model, it must be pointed out that the correct use of a 1D model in practical situations is more complex than it may seem. The main issues to be correctly modeled in a 1D approach are the definition of hydraulic structures such as bridges and buildings interacting with the flow and the treatment of the tributaries. Clearly all these aspects have to be taken into account also in the 2D modeling, but with fewer difficulties. The purpose of this paper is to show how the above cited issues can be described using a 1D or 2D unsteady flow modeling. In particular the Authors will show the devices that have to be implemented in 1D modeling to get reliable predictions of water levels and discharges comparable to the ones obtained using a 2D model. Attention will be focused on an actual river (Crati river) located in the South of Italy. This case study is quite complicated since it deals with the simulation of channeled flows, overbank flows, interactions with buildings, bridges and tributaries. Accurate techniques, intentionally developed by the Authors to take into account all these peculiarities in 1D and 2

  14. Water use of three hardwood species under variable CO[sub 2] and soil water conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, P.J.; Tscaplinkski, T.J.; Stewart, D.B.

    1994-06-01

    The impacts of elevated CO[sub 2] and cyclic water stress on water use of American sycamore (Platanus occidentalis L.), sweetgum (Liquidambar styraciflua L.) and sugar maple (Acer saccharum Marsh.) were evaluated. One-year-old seedlings were planted in 8-L pots and grown in four open-top chambers containing either ambient or ambient +3-- [mu]mol mol[sup [minus]1]CO[sub 2]. Soil moisture regimes were nested within each chamber. Well-watered plants were watered daily and water-stressed plants were exposed to drought cycles. Differences in plant leaf area and conductance between species altered the rate of water use, such that sycamore plants experienced 11 drought cycles whereas sweetgummore » and maple only had 5. Mean soil matric potentials at the depth of the drought cycles were [minus]1.5, [minus]0.7, and [minus]0.5 MPa for sycamore, sweetgum, and maple, respectively. Leaf-level gas exchange measures agreed with direct gravimetric observations not reduced under elevated CO[sub 2] because of increased leaf area production. Drought reduced total water use per plant and leaf, but did not preclude the CO[sub 2] effects on water use.« less

  15. Cyclic carbonation calcination studies of limestone and dolomite for CO{sub 2} separation from combustion flue gases - article no. 011801

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senthoorselvan, S.; Gleis, S.; Hartmut, S.

    2009-01-15

    Naturally occurring limestone and dolomite samples, originating from different geographical locations, were tested as potential sorbents for carbonation/calcination based CO{sub 2} capture from combustion flue gases. Samples have been studied in a thermogravimetric analyzer under simulated flue gas conditions at three calcination temperatures, viz., 750{sup o}C, 875{sup o}C, and 930{sup o}C for four carbonation calcination reaction (CCR) cycles. The dolomite sample exhibited the highest rate of carbonation than the tested limestones. At the third cycle, its CO{sub 2} capture capacity per kilogram of the sample was nearly equal to that of Gotland, the highest reacting limestone tested. At the fourthmore » cycle it surpassed Gotland, despite the fact that the CaCO{sub 3} content of the Sibbo dolomite was only 2/3 of that of the Gotland. Decay coefficients were calculated by a curve fitting exercise and its value is lowest for the Sibbo dolomite. That means, most probably its capture capacity per kilogram of the sample would remain higher well beyond the fourth cycle. There was a strong correlation between the calcination temperature, the specific surface area of the calcined samples, and the degree of carbonation. It was observed that the higher the calcination temperature, the lower the sorbent reactivity. For a given limestone/dolomite sample, sorbents CO{sub 2} capture capacity depended on the number of CCR cycles and the calcination temperature. According to the equilibrium thermodynamics, the CO{sub 2} partial pressure in the calciner should be lowered to lower the calcination temperature. This can be achieved by additional steam supply into the calciner. Steam could then be condensed in an external condenser to single out the CO{sub 2} stream from the exit gas mixture of the calciner. A calciner design based on this concept is illustrated.« less

  16. Floods in Colorado

    USGS Publications Warehouse

    Follansbee, Robert; Sawyer, Leon R.

    1948-01-01

    resulting from a cloudburst rises so quickly that it is usually described as a 'wall of water.' It has a peak duration of only a few minutes, followed by a rapid subsidence. Nearly 90 cloudburst floods in Colorado are described in varying detail in this report. The earliest recorded cloudburst--called at that time a waterspout--occurred in Golden Gate Gulch, July 14, 1872. The 'wall of water' was described as a 'perpendicular breast of 10 or 12 feet.' A cloudburst flood on Kiowa Creek in May 1878 caused the loss of a standard-gage locomotive, and although search was made by means of long metallic rods, the locomotive was never recovered, as bedrock was about 50 feet below the creek bed. All available information relative to floods in Colorado, beginning with the flood of 1826 on the Arkansas River, is presented in this report, although for many of the earlier floods estimates of discharge are lacking. Floods throughout a large part of the State have occurred in 1844, June 1864, June 1884, May 1894, and June 1921. The highest floods of record were on the larger streams and occurred as follows: South Platte River, June 1921; Rio Grande, June 1927; Colorado River, June and July 1884; San Juan River, October 1911. The greatest floods on the plains streams occurred during May and June 1935 and were caused by cloudbursts. Ranchers living in the vicinity noted rainfalls as high as 24 inches in a 13-hour period, measurements being made in a stock tank. The effect of settlement on channel capacities can be clearly traced. When settlement began, and with it the beginning of the livestock industry, the plains were thickly covered with a luxuriant growth of grasses. With the development of the livestock industry the grass cover was grazed so closely that it afforded little protection against erosion during the violent rains and resulting floods. The intensive grazing packed the soil so hard as to increase greatly the percentage of rainfall that entered the streams. This co

  17. The CO 2 permeability and mixed gas CO 2/H 2 selectivity of membranes composed of CO 2-philic polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barillas, Mary Katharine; Enick, Robert M.; O’Brien, Michael

    2011-04-01

    The objective of this work was to design polymeric membranes that have very high CO 2 permeability and high mixed gas selectivity toward CO 2 rather than hydrogen. Therefore the membranes were based on "CO 2-philic" polymers that exhibit thermodynamically favorable Lewis acid:Lewis base and hydrogen bonding interactions with CO 2. CO 2-philic polymers that are solid at ambient temperature include polyfluoroacrylate (PFA); polyvinyl acetate (PVAc); and amorphous polylactic acid (PLA). Literature CO 2 permeability values for PVAc and PLA are disappointingly low. The cast PFA membranes from this study had low permeabilities (45 barrers at 25º C) and verymore » low CO 2/H 2 selectivity of 1.4. CO 2-philic polymers that are liquid at ambient conditions include polyethylene glycol (PEG), polypropylene glycol (PPG), polybutylene glycol with a linear -((CH 2) 4O)-repeat unit (i.e., polytetramethylene ether glycol (PTMEG)), polybutylene glycol (PBG) with a branched repeat unit, perfluoropolyether (PFPE), poly(dimethyl siloxane) (PDMS), and polyacetoxy oxetane (PAO). A small compound, glycerol triacetate (GTA) was also considered because it is similar in chemical structure to a trimer of PVAc. These liquids were tested as supported liquid membranes (SLM) and also (with the exception of PAD and GTA) as rubbery, crosslinked materials. Mixed gas permeability was measured using equimolar mixtures of CO 2 and H 2 feed streams at one atmosphere total pressure in steady-state flux experiments over the 298-423 K temperature range. The most promising SLMs were those composed of PEG, PTMEG, GTA, and PDMS. For example, at 37º C the PEG-, PTMEG-, GTA- and PDMS-based SLMs exhibited CO 2/H 2 selectivity values of ~11, 9, 9, and 3.5, respectively, and CO 2 permeability values of ~800, 900, 1900, and 2000 barrers, respectively. Crosslinked versions of the PEG, PTMEG and PDMS membranes at 37º C exhibited selectivity values of ~5, 6, and 3.5, respectively, and CO 2 permeability values of

  18. Large-scale derived flood frequency analysis based on continuous simulation

    NASA Astrophysics Data System (ADS)

    Dung Nguyen, Viet; Hundecha, Yeshewatesfa; Guse, Björn; Vorogushyn, Sergiy; Merz, Bruno

    2016-04-01

    There is an increasing need for spatially consistent flood risk assessments at the regional scale (several 100.000 km2), in particular in the insurance industry and for national risk reduction strategies. However, most large-scale flood risk assessments are composed of smaller-scale assessments and show spatial inconsistencies. To overcome this deficit, a large-scale flood model composed of a weather generator and catchments models was developed reflecting the spatially inherent heterogeneity. The weather generator is a multisite and multivariate stochastic model capable of generating synthetic meteorological fields (precipitation, temperature, etc.) at daily resolution for the regional scale. These fields respect the observed autocorrelation, spatial correlation and co-variance between the variables. They are used as input into catchment models. A long-term simulation of this combined system enables to derive very long discharge series at many catchment locations serving as a basic for spatially consistent flood risk estimates at the regional scale. This combined model was set up and validated for major river catchments in Germany. The weather generator was trained by 53-year observation data at 528 stations covering not only the complete Germany but also parts of France, Switzerland, Czech Republic and Australia with the aggregated spatial scale of 443,931 km2. 10.000 years of daily meteorological fields for the study area were generated. Likewise, rainfall-runoff simulations with SWIM were performed for the entire Elbe, Rhine, Weser, Donau and Ems catchments. The validation results illustrate a good performance of the combined system, as the simulated flood magnitudes and frequencies agree well with the observed flood data. Based on continuous simulation this model chain is then used to estimate flood quantiles for the whole Germany including upstream headwater catchments in neighbouring countries. This continuous large scale approach overcomes the several

  19. Facial synthesis of nanostructured ZnCo2O4 on carbon cloth for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Patil, Swati J.; Park, Jungsung; Lee, Dong-Weon

    2017-12-01

    In this work, we have synthesized the ZnCo2O4 electrode by a facial one-step hydrothermal method on a carbon cloth for the supercapacitor application. The structural and phase purity of the prepared electrode material was confirmed by X-ray diffraction (XRD) technique. The surface morphology and elemental stoichiometry were studied using field emission scanning electron microscopy (FE-SEM). The FE-SEM micrograph illustrates that the ZnCo2O4 material is composed of microstrips with a ~0.5 μm width and length in micron uniformly covered the carbon cloth surface. The ZnCo2O4 electrode material further investigated for electrochemical analyses. The cyclic voltammetry results showed that the ZnCo2O4 microstrips electrode exhibited the highest specific capacitance of 1084 F/g at 2 mV/s scan rate. Remarkably, a maximum energy density of 12.5 Wh/kg was attained at a current density of 2 mA/cm2 with the power density of 3.6 kW/kg for the ZnCo2O4 microstrips electrode. Furthermore, the 96.2 % capacitive retention is obtained at a higher scan rate of 100 mV/s after 1000 CV cycles, indicating excellent cycling stability of the ZnCo2O4 microstrips electrode. The frequency-dependent rate capability and an ideal capacitive behaviour of the ZnCo2O4 microstrips electrode were analyzed using impedance analyses; a representing the ion diffusion structure of the material. These results show that the ZnCo2O4 microstrips electrode could be a promising material for supercapacitor application.

  20. Floods and climate: emerging perspectives for flood risk assessment and management

    NASA Astrophysics Data System (ADS)

    Merz, B.; Aerts, J.; Arnbjerg-Nielsen, K.; Baldi, M.; Becker, A.; Bichet, A.; Blöschl, G.; Bouwer, L. M.; Brauer, A.; Cioffi, F.; Delgado, J. M.; Gocht, M.; Guzzetti, F.; Harrigan, S.; Hirschboeck, K.; Kilsby, C.; Kron, W.; Kwon, H.-H.; Lall, U.; Merz, R.; Nissen, K.; Salvatti, P.; Swierczynski, T.; Ulbrich, U.; Viglione, A.; Ward, P. J.; Weiler, M.; Wilhelm, B.; Nied, M.

    2014-07-01

    Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction of local, catchment-specific characteristics, such as meteorology, topography and geology. These traditional views have been beneficial, but they have a narrow framing. In this paper we contrast traditional views with broader perspectives that are emerging from an improved understanding of the climatic context of floods. We come to the following conclusions: (1) extending the traditional system boundaries (local catchment, recent decades, hydrological/hydraulic processes) opens up exciting possibilities for better understanding and improved tools for flood risk assessment and management. (2) Statistical approaches in flood estimation need to be complemented by the search for the causal mechanisms and dominant processes in the atmosphere, catchment and river system that leave their fingerprints on flood characteristics. (3) Natural climate variability leads to time-varying flood characteristics, and this variation may be partially quantifiable and predictable, with the perspective of dynamic, climate-informed flood risk management. (4) Efforts are needed to fully account for factors that contribute to changes in all three risk components (hazard, exposure, vulnerability) and to better understand the interactions between society and floods. (5) Given the global scale and societal importance, we call for the organization of an international multidisciplinary collaboration and data-sharing initiative to further understand the links between climate and flooding and to advance flood research.

  1. Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise

    USGS Publications Warehouse

    Cherry, J.A.; McKee, K.L.; Grace, J.B.

    2009-01-01

    1. Sea-level rise, one indirect consequence of increasing atmospheric CO2, poses a major challenge to long-term stability of coastal wetlands. An important question is whether direct effects of elevated CO 2 on the capacity of marsh plants to accrete organic material and to maintain surface elevations outweigh indirect negative effects of stressors associated with sea-level rise (salinity and flooding). 2. In this study, we used a mesocosm approach to examine potential direct and indirect effects of atmospheric CO2 concentration, salinity and flooding on elevation change in a brackish marsh community dominated by a C3 species, Schoenoplectus americanus, and a C4 grass, Spartina patens. This experimental design permitted identification of mechanisms and their role in controlling elevation change, and the development of models that can be tested in the field. 3. To test hypotheses related to CO2 and sea-level rise, we used conventional anova procedures in conjunction with structural equation modelling (SEM). SEM explained 78% of the variability in elevation change and showed the direct, positive effect of S. americanus production on elevation. The SEM indicated that C3 plant response was influenced by interactive effects between CO2 and salinity on plant growth, not a direct CO2 fertilization effect. Elevated CO2 ameliorated negative effects of salinity on S. americanus and enhanced biomass contribution to elevation. 4. The positive relationship between S. americanus production and elevation change can be explained by shoot-base expansion under elevated CO 2 conditions, which led to vertical soil displacement. While the response of this species may differ under other environmental conditions, shoot-base expansion and the general contribution of C3 plant production to elevation change may be an important mechanism contributing to soil expansion and elevation gain in other coastal wetlands. 5. Synthesis. Our results revealed previously unrecognized interactions and

  2. Noninnocent Proton-Responsive Ligand Facilitates Reductive Deprotonation and Hinders CO 2 Reduction Catalysis in [Ru(tpy)(6DHBP)(NCCH 3 )] 2+ (6DHBP = 6,6'-(OH) 2 bpy)

    DOE PAGES

    Duan, Lele; Manbeck, Gerald F.; Kowalczyk, Marta; ...

    2016-04-14

    Ruthenium complexes with proton-responsive ligands [Ru(tpy)(nDHBP)(NCCH 3)](CF 3SO 3) 2 (tpy = 2,2':6',2"-terpyridine; nDHBP = n,n'-dihydroxy-2,2'-bipyridine, n = 4 or 6) were examined in this study for reductive chemistry and as catalysts for CO 2 reduction. Electrochemical reduction of [Ru(tpy)(nDHBP)(NCCH 3)] 2+ generates deprotonated species through interligand electron transfer in which the initially formed tpy radical anion reacts with a proton source to produce singly and doubly deprotonated complexes that are identical to those obtained by base titration. A third reduction (i.e., reduction of [Ru(tpy)(nDHBP–2H +)] 0) triggers catalysis of CO 2 reduction; however, the catalytic efficiency is strikingly lowermore » than that of unsubstituted [Ru(tpy)(bpy)(NCCH 3)] 2+ (bpy = 2,2'-bipyridine). Cyclic voltammetry, bulk electrolysis, and spectroelectrochemical infrared experiments suggest the reactivity of CO 2 at both the Ru center and the deprotonated quinone-type ligand. Lastly, the Ru carbonyl formed by the intermediacy of a metallocarboxylic acid is stable against reduction, and mass spectrometry analysis of this product indicates the presence of two carbonates formed by the reaction of DHBP–2H + with CO 2.« less

  3. The complexities of urban flood response: Flood frequency analyses for the Charlotte metropolitan region

    NASA Astrophysics Data System (ADS)

    Zhou, Zhengzheng; Smith, James A.; Yang, Long; Baeck, Mary Lynn; Chaney, Molly; Ten Veldhuis, Marie-Claire; Deng, Huiping; Liu, Shuguang

    2017-08-01

    We examine urban flood response through data-driven analyses for a diverse sample of "small" watersheds (basin scale ranging from 7.0 to 111.1 km2) in the Charlotte Metropolitan region. These watersheds have experienced extensive urbanization and suburban development since the 1960s. The objective of this study is to develop a broad characterization of land surface and hydrometeorological controls of urban flood hydrology. Our analyses are based on peaks-over-threshold flood data developed from USGS streamflow observations and are motivated by problems of flood hazard characterization for urban regions. We examine flood-producing rainfall using high-resolution (1 km2 spatial resolution and 15 min time resolution), bias-corrected radar rainfall fields that are developed through the Hydro-NEXRAD system. The analyses focus on the 2001-2015 period. The results highlight the complexities of urban flood response. There are striking spatial heterogeneities in flood peak magnitudes, response times, and runoff ratios across the study region. These spatial heterogeneities are mainly linked to watershed scale, the distribution of impervious cover, and storm water management. Contrasting land surface properties also determine the mixture of flood-generating mechanisms for a particular watershed. Warm-season thunderstorm systems and tropical cyclones are main flood agents in Charlotte, with winter/spring storms playing a role in less-urbanized watersheds. The mixture of flood agents exerts a strong impact on the upper tail of flood frequency distributions. Antecedent watershed wetness plays a minor role in urban flood response, compared with less-urbanized watersheds. Implications for flood hazard characterization in urban watersheds and for advances in flood science are discussed.

  4. Urban flood return period assessment through rainfall-flood response modelling

    NASA Astrophysics Data System (ADS)

    Murla Tuyls, Damian; Thorndahl, Søren

    2017-04-01

    Intense rainfall can often cause severe floods, especially in urbanized areas, where population density or large impermeable areas are found. In this context, floods can generate a direct impact in a social-environmental-economic viewpoint. Traditionally, in design of Urban Drainage Systems (UDS), correlation between return period (RP) of a given rainfall and RP of its consequent flood has been assumed to be linear (e.g. DS/EN752 (2008)). However, this is not always the case. Complex UDS, where diverse hydraulic infrastructures are often found, increase the heterogeneity of system response, which may cause an alteration of the mentioned correlation. Consequently, reliability on future urban planning, design and resilience against floods may be also affected by this misassumption. In this study, an assessment of surface flood RP across rainfall RP has been carried out at Lystrup, a urbanized catchment area of 440ha and 10.400inhab. located in Jutland (Denmark), which has received the impact of several pluvial flooding in the last recent years. A historical rainfall dataset from the last 35 years from two different rain gauges located at 2 and 10 km from the study area has been provided by the Danish Wastewater Pollution Committee and the Danish Meteorological Institute (DMI). The most extreme 25 rainfall events have been selected through a two-step multi-criteria procedure, ensuring an adequate variability of rainfall, from extreme high peak storms with a short duration to moderate rainfall with longer duration. In addition, a coupled 1D/2D surface and network UDS model of the catchment area developed in an integrated MIKE URBAN and MIKE Flood model (DHI 2014), considering both permeable and impermeable areas, in combination with a DTM (2x2m res.) has been used to study and assess in detail flood RP. Results show an ambiguous relation between rainfall RP and flood response. Local flood levels, flood area and volume RP estimates should therefore not be neglected in

  5. Predicting Flood Hazards in Systems with Multiple Flooding Mechanisms

    NASA Astrophysics Data System (ADS)

    Luke, A.; Schubert, J.; Cheng, L.; AghaKouchak, A.; Sanders, B. F.

    2014-12-01

    Delineating flood zones in systems that are susceptible to flooding from a single mechanism (riverine flooding) is a relatively well defined procedure with specific guidance from agencies such as FEMA and USACE. However, there is little guidance in delineating flood zones in systems that are susceptible to flooding from multiple mechanisms such as storm surge, waves, tidal influence, and riverine flooding. In this study, a new flood mapping method which accounts for multiple extremes occurring simultaneously is developed and exemplified. The study site in which the method is employed is the Tijuana River Estuary (TRE) located in Southern California adjacent to the U.S./Mexico border. TRE is an intertidal coastal estuary that receives freshwater flows from the Tijuana River. Extreme discharge from the Tijuana River is the primary driver of flooding within TRE, however tide level and storm surge also play a significant role in flooding extent and depth. A comparison between measured flows at the Tijuana River and ocean levels revealed a correlation between extreme discharge and ocean height. Using a novel statistical method based upon extreme value theory, ocean heights were predicted conditioned up extreme discharge occurring within the Tijuana River. This statistical technique could also be applied to other systems in which different factors are identified as the primary drivers of flooding, such as significant wave height conditioned upon tide level, for example. Using the predicted ocean levels conditioned upon varying return levels of discharge as forcing parameters for the 2D hydraulic model BreZo, the 100, 50, 20, and 10 year floodplains were delineated. The results will then be compared to floodplains delineated using the standard methods recommended by FEMA for riverine zones with a downstream ocean boundary.

  6. Performance of laser glazed Zr02 TBCs in cyclic oxidation and corrosion burner test rigs

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1982-01-01

    The performance of laser glazed zirconia thermal barrier coatings (TBCs) was evaluated in cyclic oxidation and cyclic corrosion tests. Plasma sprayed zirconia coatings of two thicknesses were partially melted with a CO2 laser. The power density of the focused laser beam was varied from 35 to 75 W/sq mm, while the scanning speed was about 80 cm per minute. In cyclic oxidation tests, the specimens were heated in a burner rig for 6 minutes and cooled for 3 minutes. It is indicated that the laser treated samples have the same life as the untreated ones. However, in corrosion tests, in which the burner rig flame contained 100 PPM sodium fuel equivalent, the laser treated samples exhibit nearly a fourfold life improvement over that of the reference samples vary. In both tests, the lives of the samples inversely with the thickness of the laser melted layer of zirconia.

  7. Structural and electrical properties of nanostructured Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhaouadi, Hassouna, E-mail: dhaouadihassouna@yahoo.fr; Kouass, Salah; Jaouad, Najeh

    2014-01-01

    Graphical abstract: - Highlights: • Nanostructured pyrophosphate Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} were synthesized and characterized by XRD and SEM. • The ac-conductivity at different values of temperature for Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} nanomaterials shows frequency independence in the lower frequency range. • Obvious improvements of the electrical conductivity and the electrochemical properties are achieved comparatively Mn{sub 2}P{sub 2}O{sub 7}. • The electrochemical behaviors of Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} were studied using cyclic voltammetry. - Abstract: The nanostructured pyrophosphate Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} was prepared. The synthesis technique was based on the hydrothermal method at 150 °Cmore » using poly-ethylene-glycol (PEG-10000) as surfactant with further calcination at 500 °C. A structural analysis of Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} compound was carried out by applying X-ray diffraction (XRD) and using the Rietveld method. Morphological characterizations were performed using a scanning electron microscope (SEM) and transmission electron microscopy (TEM). A comparative study of the electrical conductivity of Mn{sub 2}P{sub 2}O{sub 7} and Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} nanomaterials was carried out by impedance spectroscopy in the temperature range 500–680 °C. The activation energies for MnP{sub 2}O{sub 7} and Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} were 2.00 and 0.88 eV, respectively. Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} nanomaterial presents a good electric conductivity compared to Mn{sub 2}P{sub 2}O{sub 7}, due to the substitution effect. The improvement of the electronic and ionic conductivity makes the Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} nanomaterial possible electrode materials for rechargeable batteries. The electrochemical behaviors of Ni{sub 0.25}Co{sub 0.75}MnP{sub 2}O{sub 7} were studied using cyclic voltammetry.« less

  8. The August 2002 flood in Salzburg / Austria experience gained and lessons learned from the ``Flood of the century''?

    NASA Astrophysics Data System (ADS)

    Wiesenegger, H.

    2003-04-01

    On the {12th} of August 2002 a low pressure system moved slowly from northern Italy towards Slovakia. It continuously carried moist air from the Mediterranean towards the northern rim of the Alps with the effect of wide-spread heavy rainfall in Salzburg and other parts of Austria. Daily precipitation amounts of 100 - 160 mm, in some parts even more, as well as rainfall intensities of 5 - 10 mm/h , combined with well saturated soils lead to a rare flood with a return period of 100 years and more. This rare hydrological event not only caused a national catastrophe with damages of several Billion Euro, but also endangered more than 200,000 people, and even killed some. As floods are dangerous, life-threatening, destructive, and certainly amongst the most frequent and costly natural disasters in terms of human hardship as well as economic loss, a great effort, therefore, has to be made to protect people against negative impacts of floods. In order to achieve this objective, various regulations in land use planning (flood maps), constructive measurements (river regulations and technical constructions) as well as flood warning systems, which are not suitable to prevent big floods, but offer in-time-warnings to minimize the loss of human lives, are used in Austria. HYDRIS (Hydrological Information System for flood forecasting in Salzburg), a modular river basin model, developed at Technical University Vienna and operated by the Hydrological Service of Salzburg, was used during the August 2002 flood providing accurate 3 to 4 hour forecasts within 3 % of the real peak discharge of the fast flowing River Salzach. The August {12^th}} flood was in many ways an exceptional, very fast happening event which took many people by surprise. At the gauging station Salzburg / Salzach (catchment area 4425 {km^2}) it took only eighteen hours from mean annual discharge (178 {m3/s}) to the hundred years flood (2300 {m3/s}). The August flood made clear, that there is a strong need for

  9. Numerical Analysis of Flood modeling of upper Citarum River under Extreme Flood Condition

    NASA Astrophysics Data System (ADS)

    Siregar, R. I.

    2018-02-01

    This paper focuses on how to approach the numerical method and computation to analyse flood parameters. Water level and flood discharge are the flood parameters solved by numerical methods approach. Numerical method performed on this paper for unsteady flow conditions have strengths and weaknesses, among others easily applied to the following cases in which the boundary irregular flow. The study area is in upper Citarum Watershed, Bandung, West Java. This paper uses computation approach with Force2 programming and HEC-RAS to solve the flow problem in upper Citarum River, to investigate and forecast extreme flood condition. Numerical analysis based on extreme flood events that have occurred in the upper Citarum watershed. The result of water level parameter modeling and extreme flood discharge compared with measurement data to analyse validation. The inundation area about flood that happened in 2010 is about 75.26 square kilometres. Comparing two-method show that the FEM analysis with Force2 programs has the best approach to validation data with Nash Index is 0.84 and HEC-RAS that is 0.76 for water level. For discharge data Nash Index obtained the result analysis use Force2 is 0.80 and with use HEC-RAS is 0.79.

  10. Tailored Cyclic and Linear Polycarbosilazanes by Barium-Catalyzed N-H/H-Si Dehydrocoupling Reactions.

    PubMed

    Bellini, Clément; Orione, Clément; Carpentier, Jean-François; Sarazin, Yann

    2016-03-07

    Ba[CH(SiMe3 )2 ]2 (THF)3 catalyzes the fast and controlled dehydrogenative polymerization of Ph2 SiH2 and p-xylylenediamine to afford polycarbosilazanes. The structure (cyclic versus linear; end-groups) and molecular weight of the macromolecules can be tuned by adjusting the Ph2 SiH2 /diamine feed ratio. A detailed analysis of the resulting materials (mol. wt up to ca. 10 000 g mol(-1) ) is provided. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Two molecular wheels 12-MC-6 complexes: Synthesis, structure and magnetic property of [Co(μ{sub 2}-SEt){sub 2}]{sub 6} and [Fe(μ{sub 2}-SEt){sub 2}]{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Jian, Fangfang, E-mail: ffj2003@163169.net; Huang, Baoxin

    2013-08-15

    The syntheses and structures of two ethyl mercaptan molecular wheels complexes, [M(μ{sub 2}-SCH{sub 2}CH{sub 3}){sub 2}]{sub 6} (M=Fe, Co), have been reported. Each metal atom is surrounded by four S atoms of the μ{sub 2}-SCH{sub 2}CH{sub 3} ligands in a distorted square plane fashion. The edge-sharing S{sub 4} square planes connect with each other to form a ring. Six metal atoms are located at the vertices of an almost hexagon, with M···M separations in the range of 2.903(1)∼2.936(2) Å for Fe and 2.889(2)∼2.962(2) Å for Co. The diameter of the ring, defined as the average distance between two opposing metalmore » atoms, is 5.850(1) Å for Fe and 5.780(1) Å for Co, respectively. The magnetic property behaves of cobalt(II) cluster complex is studied. Highlights: • Two new ethyl mercaptan cyclic hexanuclear complexes were reported. • The crystal structures shown center formation of M{sub 6}S{sub 12} molecular wheels. • The Co{sub 6} ring cluster complex represents as weak ferromagnet.« less

  12. CH4 and CO2 exchange of a brackish degraded peatland within the drainage-rewetting sequence - Synthesis from an interdisciplinary multi-year approach

    NASA Astrophysics Data System (ADS)

    Sachs, T.; Koebsch, F.; Boettcher, M. E.; Glatzel, S.; Liebner, S.; Matthias, W.; Koch, M.; Westphal, J.; Jurasinski, G.

    2016-12-01

    Rewetting is considered as common measure to stop aerobic peat decomposition and to re-establish the net natural C sink function of peatlands. In this long-term study, we accompanied the development of a degraded brackish peatland from drainage to year-round flooding. Based on eddy covariance measurements of CH4 and CO2 fluxes, remote sensing monitoring of vegetation succession and insights into major dissimilatory pathways, we develop a more differentiated perspective on the greenhouse gas (GHG) effect of rewetting measures conducted in brackish peatlands. Contrary to the common assumption that CH4 production is inhibited in coastal ecosystems, CH4 emissions increased remarkably after rewetting. Despite few local exceptions, sulfate - the major electron acceptor in marine environments - was completely converted to stable organic and metal sulfides. Sulfate depletion in concert with high substrate supply derived from a destabilized peat C pool and the extensive die-back of vegetation fuel CH4 emissions especially in the initial rewetting phase. CH4 fluxes are further interpreted in light of climate variables and vegetation data to differentiate between short-term response to climate variation and long-term trends based on ecosystem succession after flooding. High CH4 emissions in the initial rewetting phase are considered to be (at least partially) compensated as CO2 release by aerobic respiration decreases. However, our results indicate that flooding does not only cease CO2 release by ecosystem respiration, but that also CO2 uptake by canopy photosynthesis is affected to the same degree when vegetation cannot cope with the rapid rise in water level. Our study highlights the importance of a multi-year monitoring to cover the dynamic ecosystem development within the drainage-rewetting sequence. We further emphasize the relevance of interdisciplinary approaches to understand the complex interactions between ecosystem compartments as basic controls for GHG exchange.

  13. Different roles for the cyclic nucleotide binding domain and amino terminus in assembly and expression of hyperpolarization-activated, cyclic nucleotide-gated channels.

    PubMed

    Proenza, Catherine; Tran, Neil; Angoli, Damiano; Zahynacz, Kristin; Balcar, Petr; Accili, Eric A

    2002-08-16

    In mammalian heart and brain, pacemaker currents are produced by hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, which probably exist as heteromeric assemblies of different subunit isoforms. To investigate the molecular domains that participate in assembly and membrane trafficking of HCN channels, we have used the yeast two-hybrid system, patch clamp electrophysiology, and confocal microscopy. We show here that the N termini of the HCN1 and HCN2 isoforms interacted and were essential for expression of functional homo- or heteromeric channels on the plasma membrane of Chinese hamster ovary cells. We also show that the cyclic nucleotide binding domain (CNBD) of HCN2 was required for the expression of functional homomeric channels. This expression was dependent on a 12-amino acid domain corresponding to the B-helix in the CNBD of the catabolite activator protein. However, co-expression with HCN1 of an HCN2 deletion mutant lacking the CNBD rescued surface immunofluorescence and currents, indicating that a CNBD need not be present in each subunit of a heteromeric HCN channel. Furthermore, neither CNBDs nor other COOH-terminal domains of HCN1 and HCN2 interacted in yeast two-hybrid assays. Thus, interaction between NH(2)-terminal domains is important for HCN subunit assembly, whereas the CNBD is important for functional expression, but its absence from some subunits will still allow for the assembly of functional channels.

  14. Component-specific dynamics of riverine mangrove CO2 efflux in the Florida coastal Everglades

    USGS Publications Warehouse

    Troxler, Tiffany G.; Barr, Jordan G.; Fuentes, Jose D.; Engel, Victor C.; Anderson, Gordon H.; Sanchez, Christopher; Lagomosino, David; Price, Rene; Davis, Stephen E.

    2015-01-01

    Carbon cycling in mangrove forests represents a significant portion of the coastal wetland carbon (C) budget across the latitudes of the tropics and subtropics. Previous research suggests fluctuations in tidal inundation, temperature and salinity can influence forest metabolism and C cycling. Carbon dioxide (CO2) from respiration that occurs from below the canopy is contributed from different components. In this study, we investigated variation in CO2 flux among different below-canopy components (soil, leaf litter, course woody debris, soil including pneumatophores, prop roots, and surface water) in a riverine mangrove forest of Shark River Slough estuary, Everglades National Park (Florida, USA). The range in CO2 flux from different components exceeded that measured among sites along the oligohaline-saline gradient. Black mangrove (Avicennia germinans) pneumatophores contributed the largest average CO2 flux. Over a narrow range of estuarine salinity (25–35 practical salinity units (PSU)), increased salinity resulted in lower CO2 flux to the atmosphere. Tidal inundation reduced soil CO2 flux overall but increased the partial pressure of CO2 (pCO2) observed in the overlying surface water upon flooding. Higher pCO2 in surface water is then subject to tidally driven export, largely as HCO3. Integration and scaling of CO2 flux rates to forest scale allowed for improved understanding of the relative contribution of different below-canopy components to mangrove forest ecosystem respiration (ER). Summing component CO2fluxes suggests a more significant contribution of below-canopy respiration to ER than previously considered. An understanding of below-canopy CO2 component fluxes and their contributions to ER can help to elucidate how C cycling will change with discrete disturbance events (e.g., hurricanes) and long-term change, including sea-level rise, and potential impact mangrove forests. As such, key controls on below-canopy ER must be taken into consideration when

  15. Flood resilience urban territories. Flood resilience urban territories.

    NASA Astrophysics Data System (ADS)

    Beraud, Hélène; Barroca, Bruno; Hubert, Gilles

    2010-05-01

    flood but also to restart as fast as possible (for example, the clearing of roads is a prerequisite for electricity's restoration which is a vital network for territory's functioning). While the waste management is a main stage of post crisis, these questions are still without answer. The extend of this network influence also leads us to think about the means to prevent from waste production and service's dysfunction. How to develop the territory to limit the floods' impact on the waste management network? Are there techniques or equipments allowing stakeholders to limit these impacts? How to increase population's, entrepreneur's or farmer's awareness to get ready to face floods, to limit the waste production, but also to react well during and after the floods? Throughout means of prevention and thanks to actor's technical and organizational adaptations towards the waste network, or by raising population's awareness and preparation, economic and institutional actors of urban territories might improve the waste's network flood resilience, and thus, cities' flood resilience. Through experience feedbacks about countries recently affected by large-extended floods and field reflection with local actors, the stakes of this PhD research are thus to think about means (1) to maintain the activity out of flood plains during a flood, (2) to increase the waste management network's activity in post crisis period in order to be able to deal with a new waste production both by its quality and its quantity, but also (3) to study the means to prevent this new production. This work will use the concept of urban system to describe urban territory because it allows us to study both its behaviour and functioning. The interest of this methodological choice is to take into account the impacts of the disruption of waste management networks on cities' functioning, and thus, on cities' flood resilience.

  16. Porous Ionic Polymers as a Robust and Efficient Platform for Capture and Chemical Fixation of Atmospheric CO2.

    PubMed

    Sun, Qi; Jin, Yingyin; Aguila, Briana; Meng, Xiangju; Ma, Shengqian; Xiao, Feng-Shou

    2017-03-22

    Direct use of atmospheric CO 2 as a C 1 source to synthesize high-value chemicals through environmentally benign processes is of great interest, yet challenging. Porous heterogeneous catalysts that are capable of simultaneously capturing and converting CO 2 are promising candidates for such applications. Herein, a family of organic ionic polymers with nanoporous structure, large surface area, strong affinity for CO 2 , and very high density of catalytic active sites (halide ions) was synthesized through the free-radical polymerization of vinylfunctionalized quaternary phosphonium salts. The resultant porous ionic polymers (PIPs) exhibit excellent activities in the cycloaddition of epoxides with atmospheric CO 2 , outperforming the corresponding soluble phosphonium salt analogues and ranking among the highest of known metal-free catalytic systems. The high CO 2 uptake capacity of the PIPs facilitates the enrichment of CO 2 molecules around the catalytic centers, thereby benefiting its conversion. We have demonstrated for the first time that atmospheric CO 2 can be directly converted to cyclic carbonates at room temperature using a heterogeneous catalytic system under metal-solvent free conditions. Moreover, the catalysts proved to be robust and fully recyclable, demonstrating promising potential for practical utilization for the chemical fixation of CO 2 . Our work thereby paves a way to the advance of PIPs as a new type of platform for capture and conversion of CO 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Flood-Ring Formation and Root Development in Response to Experimental Flooding of Young Quercus robur Trees

    PubMed Central

    Copini, Paul; den Ouden, Jan; Robert, Elisabeth M. R.; Tardif, Jacques C.; Loesberg, Walter A.; Goudzwaard, Leo; Sass-Klaassen, Ute

    2016-01-01

    Spring flooding in riparian forests can cause significant reductions in earlywood-vessel size in submerged stem parts of ring-porous tree species, leading to the presence of ‘flood rings’ that can be used as a proxy to reconstruct past flooding events, potentially over millennia. The mechanism of flood-ring formation and the relation with timing and duration of flooding are still to be elucidated. In this study, we experimentally flooded 4-year-old Quercus robur trees at three spring phenophases (late bud dormancy, budswell, and internode expansion) and over different flooding durations (2, 4, and 6 weeks) to a stem height of 50 cm. The effect of flooding on root and vessel development was assessed immediately after the flooding treatment and at the end of the growing season. Ring width and earlywood-vessel size and density were measured at 25- and 75-cm stem height and collapsed vessels were recorded. Stem flooding inhibited earlywood-vessel development in flooded stem parts. In addition, flooding upon budswell and internode expansion led to collapsed earlywood vessels below the water level. At the end of the growing season, mean earlywood-vessel size in the flooded stem parts (upon budswell and internode expansion) was always reduced by approximately 50% compared to non-flooded stem parts and 55% compared to control trees. This reduction was already present 2 weeks after flooding and occurred independent of flooding duration. Stem and root flooding were associated with significant root dieback after 4 and 6 weeks and mean radial growth was always reduced with increasing flooding duration. By comparing stem and root flooding, we conclude that flood rings only occur after stem flooding. As earlywood-vessel development was hampered during flooding, a considerable number of narrow earlywood vessels present later in the season, must have been formed after the actual flooding events. Our study indicates that root dieback, together with strongly reduced hydraulic

  18. New cyclic sulfides extracted from Allium sativum: garlicnins P, J2, and Q.

    PubMed

    Nohara, Toshihiro; Ono, Masateru; Nishioka, Naho; Masuda, Fuka; Fujiwara, Yukio; Ikeda, Tsuyoshi; Nakano, Daisuke; Kinjo, Junei

    2018-01-01

    Two atypical cyclic-type sulfides, garlicnin P (1) and garlicnin J 2 (2), and one thiabicyclic-type sulfide, garlicnin Q (3), were isolated from the acetone extracts of garlic, Allium sativum, bulbs cultivated in the Kumamoto city area, and their structures characterized. Their production pathways are also discussed.

  19. Hydrogen-induced slow crack growth of a plain carbon pipeline steel under conditions of cyclic loading

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.

    1976-01-01

    The investigation described was aimed at establishing the degree of compatibility between a plain carbon pipeline-type steel and hydrogen and also hydrogen-rich environments containing small additions of H2S, O2, H2O, CO, CO2, CH4, and natural gas at pressures near 1 atm. Test were carried out under conditions of static and cyclic loading; the subcritical crack growth was monitored. The rates of crack growth observed in the hydrogen and hydrogen-rich environments are compared with the crack rate observed in a natural gas environment to determine the compatibility of the present natural gas transmission system with gaseous hydrogen transport.

  20. General characteristics of causes of urban flood damage and flood forecasting/warning system in Seoul, Korea Young-Il Moon1, 2, Jong-Suk Kim1, 2 1 Department of Civil Engineering, University of Seoul, Seoul 130-743, South Korea 2 Urban Flood Research Inst

    NASA Astrophysics Data System (ADS)

    Moon, Young-Il; Kim, Jong-Suk

    2015-04-01

    Due to rapid urbanization and climate change, the frequency of concentrated heavy rainfall has increased, causing urban floods that result in casualties and property damage. As a consequence of natural disasters that occur annually, the cost of damage in Korea is estimated to be over two billion US dollars per year. As interest in natural disasters increase, demands for a safe national territory and efficient emergency plans are on the rise. In addition to this, as a part of the measures to cope with the increase of inland flood damage, it is necessary to build a systematic city flood prevention system that uses technology to quantify flood risk as well as flood forecast based on both rivers and inland water bodies. Despite the investment and efforts to prevent landside flood damage, research and studies of landside-river combined hydro-system is at its initial stage in Korea. Therefore, the purpose of this research introduces the causes of flood damage in Seoul and shows a flood forecasting and warning system in urban streams of Seoul. This urban flood forecasting and warning system conducts prediction on flash rain or short-term rainfall by using radar and satellite information and performs prompt and accurate prediction on the inland flooded area and also supports synthetic decision-making for prevention through real-time monitoring. Although we cannot prevent damage from typhoons or localized heavy rain, we can minimize that damage with accurate and timely forecast and a prevention system. To this end, we developed a flood forecasting and warning system, so in case of an emergency there is enough time for evacuation and disaster control. Keywords: urban flooding, flood risk, inland-river system, Korea Acknowledgments This research was supported by a grant (13AWMP-B066744-01) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  1. Study on the association of green house gas (CO2) with monsoon rainfall using AIRS and TRMM satellite observations

    NASA Astrophysics Data System (ADS)

    Singh, R. B.; Janmaijaya, M.; Dhaka, S. K.; Kumar, V.

    Monsoon water cycle is the lifeline to over 60 per cent of the world's population. Throughout history, the monsoon-related calamities of droughts and floods have determined the life pattern of people. The association of Green House Gases (GHGs) particularly Carbon dioxide (CO2) with monsoon has been greatly debated amongst the scientific community in the past. The effect of CO2 on the monsoon rainfall over the Indian-Indonesian region (8-30°N, 65°-100°E) is being investigated using satellite data. The correlation coefficient (Rxy) between CO2 and monsoon is analysed. The Rxy is not significantly positive over a greater part of the study region, except a few regions. The inter-annual anomalies of CO2 is identified for playing a secondary role to influencing monsoon while other phenomenon like ENSO might be exerting a much greater influence.

  2. Causes of Rapid Carrion Beetle (Coleoptera: Silphidae) Death in Flooded Pitfall Traps, Response to Soil Flooding, Immersion Tolerance, and Swimming Behavior.

    PubMed

    Cavallaro, Michael C; Barnhart, M Christopher; Hoback, W Wyatt

    2017-04-01

    Terrestrial insects in water can often delay or escape drowning by floating and swimming. However, we observed that flooding of pitfall traps baited with rotting carrion results in high overnight mortality of captured beetles and reasoned that this risk may be enhanced by microbial respiration. By assessing carrion beetle (Coleoptera: Silphidae) response to flooding, tolerance to immersion, and swimming behavior, we offer insights to this cause of death and beetle behavioral physiology. Response of buried Nicrophorus orbicollis Say to soil flooding resulted in beetles moving to the soil surface. The lethal time to 50% mortality (LT50 (immersion); mean ± 95% CI) for Nicrophorus investigator Zetterstedt, Nicrophorus marginatus F., Necrodes surinamensis F., and Thanatophilus lapponicus Herbst was 14.8 ± 2.3, 9.0 ± 3.3, 3.2 ± 1.1, and 12.1 ± 2.5 h, respectively. Swimming behavior and survival time of N. investigator was tested using yeast:sucrose (Y:S) solutions to create a eutrophic, severely hypoxic aqueous environment. LT50 (swimming) for N. investigator was 7.5 ± 1.4, 6.0 ± 1.7, and 4.2 ± 1.2 h for the low, medium, and high Y:S solutions, respectively, and >24.0 h in control treatments. Nicrophorus investigator survived nearly twice as long when completely immersed in deoxygenated water, as might occur in flooded burrows, than when swimming on the surface. We document for the first time, the rapid induction of hypoxic coma and death for a terrestrial insect from enhanced microbial activity and CO2 production of an aqueous environment, as well as suggestions on trapping protocols related to the federally endangered Nicrophorus americanus Olivier. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Flood Insurance in Canada: Implications for Flood Management and Residential Vulnerability to Flood Hazards

    NASA Astrophysics Data System (ADS)

    Oulahen, Greg

    2015-03-01

    Insurance coverage of damage caused by overland flooding is currently not available to Canadian homeowners. As flood disaster losses and water damage claims both trend upward, insurers in Canada are considering offering residential flood coverage in order to properly underwrite the risk and extend their business. If private flood insurance is introduced in Canada, it will have implications for the current regime of public flood management and for residential vulnerability to flood hazards. This paper engages many of the competing issues surrounding the privatization of flood risk by addressing questions about whether flood insurance can be an effective tool in limiting exposure to the hazard and how it would exacerbate already unequal vulnerability. A case study investigates willingness to pay for flood insurance among residents in Metro Vancouver and how attitudes about insurance relate to other factors that determine residential vulnerability to flood hazards. Findings indicate that demand for flood insurance is part of a complex, dialectical set of determinants of vulnerability.

  4. Amplification of flood frequencies with local sea level rise and emerging flood regimes

    NASA Astrophysics Data System (ADS)

    Buchanan, Maya K.; Oppenheimer, Michael; Kopp, Robert E.

    2017-06-01

    The amplification of flood frequencies by sea level rise (SLR) is expected to become one of the most economically damaging impacts of climate change for many coastal locations. Understanding the magnitude and pattern by which the frequency of current flood levels increase is important for developing more resilient coastal settlements, particularly since flood risk management (e.g. infrastructure, insurance, communications) is often tied to estimates of flood return periods. The Intergovernmental Panel on Climate Change’s Fifth Assessment Report characterized the multiplication factor by which the frequency of flooding of a given height increases (referred to here as an amplification factor; AF). However, this characterization neither rigorously considered uncertainty in SLR nor distinguished between the amplification of different flooding levels (such as the 10% versus 0.2% annual chance floods); therefore, it may be seriously misleading. Because both historical flood frequency and projected SLR are uncertain, we combine joint probability distributions of the two to calculate AFs and their uncertainties over time. Under probabilistic relative sea level projections, while maintaining storm frequency fixed, we estimate a median 40-fold increase (ranging from 1- to 1314-fold) in the expected annual number of local 100-year floods for tide-gauge locations along the contiguous US coastline by 2050. While some places can expect disproportionate amplification of higher frequency events and thus primarily a greater number of historically precedented floods, others face amplification of lower frequency events and thus a particularly fast growing risk of historically unprecedented flooding. For example, with 50 cm of SLR, the 10%, 1%, and 0.2% annual chance floods are expected respectively to recur 108, 335, and 814 times as often in Seattle, but 148, 16, and 4 times as often in Charleston, SC.

  5. Dissolved Carbon Fluxes During the 2017 Mississippi River Flood

    NASA Astrophysics Data System (ADS)

    Reiman, J. H.; Xu, Y. J.

    2017-12-01

    The Mississippi River drains approximately 3.2 million square kilometres of land and discharges about 680 cubic kilometres of water into the Northern Gulf of Mexico annually, acting as a significant medium for carbon transport from land to the ocean. A few studies have documented annual carbon fluxes in the river, however it is unclear whether floods can create riverine carbon pulses. Such information is critical in understanding the effects that extreme precipitation events may have on carbon transport under the changing climate. We hypothesize that carbon concentration and mass loading will increase in response to an increase in river discharge, creating a carbon pulse, and that the source of carbon varies from river rising to falling due to terrestrial runoff processes. This study investigated dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) loadings during the 2017 Mississippi River early-summer flood. Water samples were taken from the Mississippi River at Baton Rouge on the rising limb, crest, and falling limb of the flood. All samples were analysed for concentrations of DOC, DIC, and their respective isotopic signature (δ13C). Partial pressure of carbon dioxide (pCO2) was also recorded in the field at each sampling trip. Additionally, the water samples were analysed for nutrients, dissolved metals, and suspended solids, and in-situ measurements were made on water temperature, pH, dissolved oxygen, and specific conductance. The preliminary findings suggest that carbon species responded differently to the flood event and that δ13C values were dependent on river flood stage. This single flood event transported a large quantity of carbon, indicating that frequent large pulses of riverine carbon should be expected in the future as climate change progresses.

  6. Struggle in the flood: tree responses to flooding stress in four tropical floodplain systems

    PubMed Central

    Parolin, Pia; Wittmann, Florian

    2010-01-01

    Background and aims In the context of the 200th anniversary of Charles Darwin's birth in 1809, this study discusses the variation in structure and adaptation associated with survival and reproductive success in the face of environmental stresses in the trees of tropical floodplains. Scope We provide a comparative review on the responses to flooding stress in the trees of freshwater wetlands in tropical environments. The four large wetlands we evaluate are: (i) Central Amazonian floodplains in South America, (ii) the Okavango Delta in Africa, (iii) the Mekong floodplains of Asia and (iv) the floodplains of Northern Australia. They each have a predictable ‘flood pulse’. Although flooding height varies between the ecosystems, the annual pulse is a major driving force influencing all living organisms and a source of stress for which specialized adaptations for survival are required. Main points The need for trees to survive an annual flood pulse has given rise to a large variety of adaptations. However, phenological responses to the flood are similar in the four ecosystems. Deciduous and evergreen species respond with leaf shedding, although sap flow remains active for most of the year. Growth depends on adequate carbohydrate supply. Physiological adaptations (anaerobic metabolism, starch accumulation) are also required. Conclusions Data concerning the ecophysiology and adaptations of trees in floodplain forests worldwide are extremely scarce. For successful floodplain conservation, more information is needed, ideally through a globally co-ordinated study using reproducible comparative methods. In the light of climatic change, with increasing drought, decreased groundwater availability and flooding periodicities, this knowledge is needed ever more urgently to facilitate fast and appropriate management responses to large-scale environmental change. PMID:22476061

  7. Effects of elevated root zone CO2 on xerophytic shrubs in re-vegetated sandy dunes at smaller spatial and temporal scales.

    PubMed

    Lei, Huang; Zhishan, Zhang

    2015-01-01

    The below-ground CO2 concentration in some crusted soils or flooded fields is usually ten or hundred times larger than the normal levels. Recently, a large number of studies have focused on elevated CO2 in the atmosphere; however, only few have examined the influence of elevated root zone CO2 on plant growth and vegetation succession. In the present study, a closed-air CO2 enrichment (CACE) system was designed to simulate elevated CO2 concentrations in the root zones. The physio-ecological characteristics of two typical xerophytic shrubs C. korshinskii and A. ordosica in re-vegetated desert areas were investigated at different soil CO2 concentrations from March 2011 to October 2013. Results showed that plant growth, phenophase, photosynthetic rate, stomatal conductance, transpiration rate, and water use efficiency for the two xerophytic shrubs were all increased at first and then decreased with increasing soil CO2 concentrations, and the optimal soil CO2 concentration thresholds for C. korshinskii and A. ordosica were 0.554 and 0.317%, respectively. And A. ordosica was more tolerate to root zone CO2 variation when compared with C. korshinskii, possible reasons and vegetation succession were also discussed.

  8. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales, Class III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perri, Pasquale R.

    2001-04-04

    This report describes the evaluation, design, and implementation of a DOE funded CO2 pilot project in the Lost Hills Field, Kern County, California. The pilot consists of four inverted (injector-centered) 5-spot patterns covering approximately 10 acres, and is located in a portion of the field, which has been under waterflood since early 1992. The target reservoir for the CO2 pilot is the Belridge Diatomite. The pilot location was selected based on geology, reservoir quality and reservoir performance during the waterflood. A CO2 pilot was chosen, rather than full-field implementation, to investigate uncertainties associated with CO2 utilization rate and premature CO2more » breakthrough, and overall uncertainty in the unproven CO2 flood process in the San Joaquin Valley.« less

  9. High net CO2 and CH4 release at a eutrophic shallow lake on a formerly drained fen

    NASA Astrophysics Data System (ADS)

    Franz, Daniela; Koebsch, Franziska; Larmanou, Eric; Augustin, Jürgen; Sachs, Torsten

    2016-05-01

    Drained peatlands often act as carbon dioxide (CO2) hotspots. Raising the groundwater table is expected to reduce their CO2 contribution to the atmosphere and revitalise their function as carbon (C) sink in the long term. Without strict water management rewetting often results in partial flooding and the formation of spatially heterogeneous, nutrient-rich shallow lakes. Uncertainties remain as to when the intended effect of rewetting is achieved, as this specific ecosystem type has hardly been investigated in terms of greenhouse gas (GHG) exchange. In most cases of rewetting, methane (CH4) emissions increase under anoxic conditions due to a higher water table and in terms of global warming potential (GWP) outperform the shift towards CO2 uptake, at least in the short term.Based on eddy covariance measurements we studied the ecosystem-atmosphere exchange of CH4 and CO2 at a shallow lake situated on a former fen grassland in northeastern Germany. The lake evolved shortly after flooding, 9 years previous to our investigation period. The ecosystem consists of two main surface types: open water (inhabited by submerged and floating vegetation) and emergent vegetation (particularly including the eulittoral zone of the lake, dominated by Typha latifolia). To determine the individual contribution of the two main surface types to the net CO2 and CH4 exchange of the whole lake ecosystem, we combined footprint analysis with CH4 modelling and net ecosystem exchange partitioning.The CH4 and CO2 dynamics were strikingly different between open water and emergent vegetation. Net CH4 emissions from the open water area were around 4-fold higher than from emergent vegetation stands, accounting for 53 and 13 g CH4 m-2 a-1 respectively. In addition, both surface types were net CO2 sources with 158 and 750 g CO2 m-2 a-1 respectively. Unusual meteorological conditions in terms of a warm and dry summer and a mild winter might have facilitated high respiration rates. In sum, even after 9

  10. Co-solvents with high coulombic efficiency in propylene carbonate based electrolytes

    DOEpatents

    Liu, Gao; Zhao, Hui; Park, Sang-Jae

    2017-06-27

    A homologous series of cyclic carbonate or propylene carbonate (PC) analogue solvents with increasing length of linear alkyl substitutes were synthesized and used as co-solvents with PC for graphite based lithium ion half cells. A graphite anode reaches a capacity around 310 mAh/g in PC and its analogue co-solvents with 99.95% Coulombic efficiency. Cyclic carbonate co-solvents with longer alkyl chains are able to prevent exfoliation of graphite when used as co-solvents with PC. The cyclic carbonate co-solvents of PC compete for solvation of Li ion with PC solvent, delaying PC co-intercalation. Reduction products of PC on graphite surfaces via single-electron path form a stable Solid Electrolyte Interphase (SEI), which allows the reversible cycling of graphite.

  11. Synthesis and characterization of mesoporous spinel NiCo2O4 using surfactant-assembled dispersion for asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Hsu, Chun-Tsung; Hu, Chi-Chang

    2013-11-01

    A simple and scalable process has been developed for synthesizing spinel NiCo2O4 nanocrystals through a thermal decomposition method. The introduction of hexadecyltrimethylammonium bromide (CTAB, (C16H33)N(CH3)3Br) into precursor solutions significantly enhances the homogeneity and porosity of spinel NiCo2O4. The porosity and high specific surface area of NiCo2O4 preserves the brilliant pseudo-capacitive performances due to providing smooth paths for electrolyte penetration and ion diffusion into inner active sites. Morphologies and microstructures of the active materials are examined by transmission electron microscopic (TEM) and X-ray diffraction (XRD) analyses. Thermogravimetric analysis (TGA) is used to evaluate the thermal properties of precursor solutions. The electrochemical performances of NiCo2O4 are systematically characterized by cyclic voltammetry and charge-discharge tests. Asymmetric supercapacitors are assembled with these brilliant binary oxides as the positive electrode and activated carbon as the negative electrode. The highly porous NiCo2O4 exhibits superior capacitive performances, i.e., high specific capacitance (764 F g-1 at 2 mV s-1) and long cycle life.

  12. Co-development of climate smart flooded rice farming systems

    NASA Astrophysics Data System (ADS)

    de Neergaard, Andreas; Stoumann Jensen, Lars; Ly, Proyuth; Pandey, Arjun; Duong Vu, Quynh; Tariq, Azeem; Islam, Syed; van Groenigen, Jan Willem; Sander, Bjoern Ole; de Tourdonnet, Stephane; Van Mai, Trinh; Wassmann, Reiner

    2017-04-01

    Mid-season drainage in flooded rice is known to reduce CH4 emission, while effects on N2O emission are more variable. Banning of crop-residue burning, and growing markets for organically fertilized rice, are resulting in systems with larger reactive C input, and potentially larger methane emissions. Tight farming systems with 2 or 3 annual crops are effective in mitigating emissions, in that the land sparing value is high, but put serious constraints on mitigation options under increased C input scenarios. In a series of field (Cambodia, Philippines and Vietnam) and greenhouse experiments, we investigated the effect of a variety of organic amendments and wetting and drying cycles on yield and GHG emissions. Specifically we have tested the effect of inserting very early, or even-pre-planting drainage, as a means to accelerate turnover of straw or other C sources, and reduce methane emission later in the season. Overall, our results showed that drying periods had minimal impact on yields, while reducing overall GHG emission. Methane emission was strongly controlled by C availability in the substrate (on equal total C-input basis), increasing in the order: biochar-composts-animal manure-fresh material. Nitrous oxide emissions generally increased with draining cycles, but did not lead to overall increase in GHG emissions as its contribution was balanced by lowered CH4 emissions. Growth chamber experiments showed that methane emission was significantly reduced for extended periods after re-flooding, hence the idea of early drainage was developed. Meanwhile, Cambodian farmers expressed concerns over re-supply of water after drainage. In response to that, we tested if early-season drainage could replace mid-season drainage. With addition of labile carbon substrates (straw) duration of early season drainage was more important for reducing GHG emissions, than duration of mid-season drainage, and had the highest potential for total emission reduction. In a farmers

  13. The Irma-sponge Program: Methodologies For Sustainable Flood Risk Management Along The Rhine and Meuse Rivers

    NASA Astrophysics Data System (ADS)

    Hooijer, A.; van Os, A. G.

    Recent flood events and socio-economic developments have increased the awareness of the need for improved flood risk management along the Rhine and Meuse Rivers. In response to this, the IRMA-SPONGE program incorporated 13 research projects in which over 30 organisations from all 6 River Basin Countries co-operated. The pro- gram is financed partly by the European INTERREG Rhine-Meuse Activities (IRMA). The main aim of IRMA-SPONGE is defined as: "The development of methodologies and tools to assess the impact of flood risk reduction measures and of land-use and climate change scenarios. This to support the spatial planning process in establish- ing alternative strategies for an optimal realisation of the hydraulic, economical and ecological functions of the Rhine and Meuse River Basins." Further important objec- tives are to promote transboundary co-operation in flood risk management by both scientific and management organisations, and to promote public participation in flood management issues. The projects in the program are grouped in three clusters, looking at measures from different scientific angles. The results of the projects in each cluster have been evaluated to define recommendations for flood risk management; some of these outcomes call for a change to current practices, e.g.: 1. (Flood Risk and Hydrol- ogy cluster): hydrological changes due to climate change exceed those due to further land use change, and are significant enough to necessitate a change in flood risk man- agement strategies if the currently claimed protection levels are to be sustained. 2. (Flood Protection and Ecology cluster): to not only provide flood protection but also enhance the ecological quality of rivers and floodplains, new flood risk management concepts ought to integrate ecological knowledge from start to finish, with a clear perspective on the type of nature desired and the spatial and time scales considered. 3. (Flood Risk Management and Spatial Planning cluster): extreme

  14. Investigation of using wavelet analysis for classifying pattern of cyclic voltammetry signals

    NASA Astrophysics Data System (ADS)

    Jityen, Arthit; Juagwon, Teerasak; Jaisuthi, Rawat; Osotchan, Tanakorn

    2017-09-01

    Wavelet analysis is an excellent technique for data processing analysis based on linear vector algebra since it has an ability to perform local analysis and is able to analyze an unspecific localized area of a large signal. In this work, the wavelet analysis of cyclic waveform was investigated in order to find the distinguishable feature from the cyclic data. The analyzed wavelet coefficients were proposed to be used as selected cyclic feature parameters. The cyclic voltammogram (CV) of different electrodes consisting of carbon nanotube (CNT) and several types of metal phthalocyanine (MPc) including CoPc, FePc, ZnPc and MnPc powders was used as several sets of cyclic data for various types of coffee. The mixture powder was embedded in a hollow Teflon rod and used as working electrodes. Electrochemical response of the fabricated electrodes in Robusta, blend coffee I, blend coffee II, chocolate malt and cocoa at the same concentrations was measured with scanning rate of 0.05V/s from -1.5 to 1.5V respectively to Ag/AgCl electrode for five scanning loops. The CV of blended CNT electrode with some MPc electrodes indicated the ionic interaction which can be the effect of catalytic oxidation of saccharides and/or polyphenol on the sensor surface. The major information of CV response can be extracted by using several mother wavelet families viz. daubechies (dB1 to dB3), coiflets (coiflet1), biorthogonal (Bior1.1) and symlets (sym2) and then the discrimination of these wavelet coefficients of each data group can be separated by principal component analysis (PCA). The PCA results indicated the clearly separate groups with total contribution more than 62.37% representing from PC1 and PC2.

  15. Cyclic voltammetric and spectroscopic studies of SOCl2 solutions

    NASA Astrophysics Data System (ADS)

    Venkatasetty, H. V.

    1980-11-01

    Cyclic voltammetric data on thionyl chloride (SOCl2) is presented as a function of SOCl2 concentration and scan rate in different aprotic organic solvents such as dimethyl-sulfite (DMSI), dimethylformamide (DMF), and acetonitrile (ACN) with lithium aluminum chloride and tetrabutylammonium hexafluorophosphate as supporting electrolytes. Using the diagnostic criteria of Nicholson and Shain (1964), the data are treated showing plots of current function vs voltage sweep rate which are consistent with an irreversible charge transfer followed by a chemical reaction. It is suggested that this type of chemical process occurring in a lithium-thionyl chloride battery might be important in regards to safety problems. Other experiments use constant potential electrolysis and ultraviolet spectroscopy of solutions of SOCl2 in acetonitrile with 0.1M tetrabutylammonium hexafluorophosphate.

  16. Uncertainty in surface water flood risk modelling

    NASA Astrophysics Data System (ADS)

    Butler, J. B.; Martin, D. N.; Roberts, E.; Domuah, R.

    2009-04-01

    Two thirds of the flooding that occurred in the UK during summer 2007 was as a result of surface water (otherwise known as ‘pluvial') rather than river or coastal flooding. In response, the Environment Agency and Interim Pitt Reviews have highlighted the need for surface water risk mapping and warning tools to identify, and prepare for, flooding induced by heavy rainfall events. This need is compounded by the likely increase in rainfall intensities due to climate change. The Association of British Insurers has called for the Environment Agency to commission nationwide flood risk maps showing the relative risk of flooding from all sources. At the wider European scale, the recently-published EC Directive on the assessment and management of flood risks will require Member States to evaluate, map and model flood risk from a variety of sources. As such, there is now a clear and immediate requirement for the development of techniques for assessing and managing surface water flood risk across large areas. This paper describes an approach for integrating rainfall, drainage network and high-resolution topographic data using Flowroute™, a high-resolution flood mapping and modelling platform, to produce deterministic surface water flood risk maps. Information is provided from UK case studies to enable assessment and validation of modelled results using historical flood information and insurance claims data. Flowroute was co-developed with flood scientists at Cambridge University specifically to simulate river dynamics and floodplain inundation in complex, congested urban areas in a highly computationally efficient manner. It utilises high-resolution topographic information to route flows around individual buildings so as to enable the prediction of flood depths, extents, durations and velocities. As such, the model forms an ideal platform for the development of surface water flood risk modelling and mapping capabilities. The 2-dimensional component of Flowroute employs

  17. IOMIDAZOLIUM-BASED INDIUM(III) TETRAHIDES: RECYCLABLE CATALYSTS FOR EFFICIENT COUPLING OF CARBON DIOXIDE WITH EXPOXIDES TO FORM CYCLIC CARBONATES

    EPA Science Inventory

    The transformation of CO2 an abundant greenhouse gas, into cyclic carbonates by coupling reaction with epoxides is receiving well-deserved attention. A series of imidazolium-based indium tetrahalides, prepared efficiently via microwave assisted reaction of InX3 with [1-R-3-metht...

  18. CO2 Permeability of Biological Membranes and Role of CO2 Channels

    PubMed Central

    Endeward, Volker; Arias-Hidalgo, Mariela; Al-Samir, Samer; Gros, Gerolf

    2017-01-01

    We summarize here, mainly for mammalian systems, the present knowledge of (a) the membrane CO2 permeabilities in various tissues; (b) the physiological significance of the value of the CO2 permeability; (c) the mechanisms by which membrane CO2 permeability is modulated; (d) the role of the intracellular diffusivity of CO2 for the quantitative significance of cell membrane CO2 permeability; (e) the available evidence for the existence of CO2 channels in mammalian and artificial systems, with a brief view on CO2 channels in fishes and plants; and, (f) the possible significance of CO2 channels in mammalian systems. PMID:29064458

  19. Coastal floods and decadal changes: the climate factor

    NASA Astrophysics Data System (ADS)

    Diez, J. Javier; Silvestre, J. Manuel; Lopez-Gutierrez, Jose S.

    2013-04-01

    Observation has widely shown for nearly all last century that the Spanish (Dynamic) Maritime Climate was following around 10 to 11 year cycles in its most significant figure, wind wave, despite it being better to register cycles of 20 to 22 years, in analogical way with the semi-diurnal and diurnal cycles of Cantabrian tides. Those cycles were soon linked to sun activity and, at the end of the century, the latter was related to the Solar System evolution. We know now that waves and storm surges are coupled and that (Dynamic) Maritime Climate forms part of a more complex "Thermal Machine" including Hydrological cycle. The analysis of coastal floods could so facilitate the extension of that experience. According to their immediate cause, simple flood are usually sorted out into flash, pluvial, fluvial, groundwater and coastal types, considering the last as caused by sea waters. But the fact is that most of coastal floods are the result of the concomitance of several former simple types. Actually, the several Southeastern Mediterranean coastal flood events show to be the result of the superposition within the coastal zone of flash, fluvial, pluvial and groundwater flood types under boundary condition imposed by the concomitant storm sea level rise. This work shall be regarded as an attempt to clarify that cyclic experience, through an in-depth review of a past flood events in Valencia (Turia and Júcar basins), as in Murcia (Segura's) as well. The Valencia case study has been specifically studied in relation to the FP7 SMARTeST Project. The historical records of the Turia/Jucar River basins floods are highly large, most of them affecting to Valencia City or surroundings. The following years are considered as having registered great major floods: 1321, 1328, 1340, 1358, 1406, 1427, 1475, 1476, 1487, 1517, 1540, 1546, 1555, 1557, 1577, 1581, 1589, 1590, 1610, 1651, 1672, 1731, 1737, 1766, 1770, 1776, 1783, 1793, 1845, 1860, 1864, 1870, 1897, 1949, 1957, 1982 and 2000

  20. Cyclic nucleotides and mitogen-activated protein kinases: regulation of simvastatin in platelet activation

    PubMed Central

    2010-01-01

    Background 3-Hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) have been widely used to reduce cardiovascular risk. These statins (i.e., simvastatin) may exert other effects besides from their cholesterol-lowering actions, including inhibition of platelet activation. Platelet activation is relevant to a variety of coronary heart diseases. Although the inhibitory effect of simvastatin in platelet activation has been studied; the detailed signal transductions by which simvastatin inhibit platelet activation has not yet been completely resolved. Methods The aim of this study was to systematically examine the detailed mechanisms of simvastatin in preventing platelet activation. Platelet aggregation, flow cytometric analysis, immunoblotting, and electron spin resonance studies were used to assess the antiplatelet activity of simvastatin. Results Simvastatin (20-50 μM) exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists (i.e., thrombin). Simvastatin inhibited collagen-stimulated platelet activation accompanied by [Ca2+]i mobilization, thromboxane A2 (TxA2) formation, and phospholipase C (PLC)γ2, protein kinase C (PKC), and mitogen-activated protein kinases (i.e., p38 MAPK, JNKs) phosphorylation in washed platelets. Simvastatin obviously increased both cyclic AMP and cyclic GMP levels. Simvastatin markedly increased NO release, vasodilator-stimulated phosphoprotein (VASP) phosphorylation, and endothelial nitric oxide synthase (eNOS) expression. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the simvastatin-mediated inhibitory effects on platelet aggregation, PLCγ2 and p38 MAPK phosphorylation, and simvastatin-mediated stimulatory effects on VASP and eNOS phosphorylation. Conclusion The most important findings of this study demonstrate for the first time that inhibitory effect of simvastatin in platelet activation may involve activation of the cyclic AMP-eNOS/NO-cyclic

  1. Extreme Precipitation, Stormwater, and Flooding in King County: Co-producing Research to Support Adaptation

    NASA Astrophysics Data System (ADS)

    Mauger, G. S.; Lorente-Plazas, R.; Salathe, E. P., Jr.; Mitchell, T. P.; Simmonds, J.; Lee, S. Y.; Hegewisch, K.; Warner, M.; Won, J.

    2017-12-01

    King County has experienced 12 federally declared flood disasters since 1990, and tens of thousands of county residents commute through, live, and work in floodplains. In addition to flooding, stormwater is a critical management challenge, exacerbated by aging infrastructure, combined sewer and drainage systems, and continued development. Even absent the effects of climate change these are challenging management issues. Recent studies clearly point to an increase in precipitation extremes for the Pacific Northwest (e.g., Warner et al. 2015). Yet very little information is available on the magnitude and spatial distribution of this change. Others clearly show that local-scale changes in extreme precipitation can only be accurately quantified with dynamical downscaling, i.e.: using a regional climate model. This talk will describe a suite of research and adaptation efforts developed in a close collaboration between King County and the UW Climate Impacts Group. Building on past collaborations, research efforts were defined in collaboration with King County managers, addressing three key science questions: (1) How are the mesoscale variations in extreme precipitation modulated by changes in large-scale weather conditions? (2) How will precipitation extremes change? This was assessed via two new high-resolution regional model projections using the Weather Research and Forecasting (WRF) mesoscale model (Skamarock et al. 2005). (3) What are the implications for stormwater and flooding in King County? This was assessed by both exploring the statistics of hourly precipitation extremes in the new projections, as well as new hydrologic modeling to assess the implications for river flooding. The talk will present results from these efforts, review the implications for King County planning and infrastructure, and synthesize lessons learned and opportunities for additional work.

  2. Co-ordinated expression of MMP-2 and its putative activator, MT1-MMP, in human placentation.

    PubMed

    Bjørn, S F; Hastrup, N; Lund, L R; Danø, K; Larsen, J F; Pyke, C

    1997-08-01

    The spatial expression of mRNA for matrix metalloproteinase 2 (MMP-2), its putative activator, the membrane-type 1 matrix metalloproteinase (MT1-MMP), and the MMP-2 substrate type IV collagen was investigated in human placentas of both normal and tubal ectopic pregnancies and in cyclic endometrium using in-situ hybridization. Cytokeratin staining applied to adjacent sections was used to identify epithelial and trophoblast cells. In both normal and tubal pregnancies MT1-MMP, MMP-2 and type IV collagen mRNA were highly expressed and co-localized in the extravillous cytotrophoblasts of anchoring villi, in cytotrophoblasts that had penatrated into the placental bed and in cytotrophoblastic cell islands. In addition, the decidual cells of normal pregnancies in some areas co-expressed MT1-MMP and MMP-2 mRNA, with moderate signals for both components. Fibroblast-like stromal cells in tubal pregnancies were positive for MMP-2 mRNA but generally negative for MT1-MMP mRNA. The consistent co-localization of MT1-MMP with MMP-2 and type IV collagen in the same subset of cytotrophoblasts strongly suggests that all three components co-operate in the tightly regulated fetal invasion process. The co-expression of MT1-MMP and MMP-2 mRNA in some of the decidual cells indicates that these cells are also actively involved in the placentation process.

  3. Using subseasonal-to-seasonal (S2S) extreme rainfall forecasts for extended-range flood prediction in Australia

    NASA Astrophysics Data System (ADS)

    White, C. J.; Franks, S. W.; McEvoy, D.

    2015-06-01

    Meteorological and hydrological centres around the world are looking at ways to improve their capacity to be able to produce and deliver skilful and reliable forecasts of high-impact extreme rainfall and flooding events on a range of prediction timescales (e.g. sub-daily, daily, multi-week, seasonal). Making improvements to extended-range rainfall and flood forecast models, assessing forecast skill and uncertainty, and exploring how to apply flood forecasts and communicate their benefits to decision-makers are significant challenges facing the forecasting and water resources management communities. This paper presents some of the latest science and initiatives from Australia on the development, application and communication of extreme rainfall and flood forecasts on the extended-range "subseasonal-to-seasonal" (S2S) forecasting timescale, with a focus on risk-based decision-making, increasing flood risk awareness and preparedness, capturing uncertainty, understanding human responses to flood forecasts and warnings, and the growing adoption of "climate services". The paper also demonstrates how forecasts of flood events across a range of prediction timescales could be beneficial to a range of sectors and society, most notably for disaster risk reduction (DRR) activities, emergency management and response, and strengthening community resilience. Extended-range S2S extreme flood forecasts, if presented as easily accessible, timely and relevant information are a valuable resource to help society better prepare for, and subsequently cope with, extreme flood events.

  4. Highly Efficient Catalytic Cyclic Carbonate Formation by Pyridyl Salicylimines.

    PubMed

    Subramanian, Saravanan; Park, Joonho; Byun, Jeehye; Jung, Yousung; Yavuz, Cafer T

    2018-03-21

    Cyclic carbonates as industrial commodities offer a viable nonredox carbon dioxide fixation, and suitable heterogeneous catalysts are vital for their widespread implementation. Here, we report a highly efficient heterogeneous catalyst for CO 2 addition to epoxides based on a newly identified active catalytic pocket consisting of pyridine, imine, and phenol moieties. The polymeric, metal-free catalyst derived from this active site converts less-reactive styrene oxide under atmospheric pressure in quantitative yield and selectivity to the corresponding carbonate. The catalyst does not need additives, solvents, metals, or co-catalysts, can be reused at least 10 cycles without the loss of activity, and scaled up easily to a kilogram scale. Density functional theory calculations reveal that the nucleophilicity of pyridine base gets stronger due to the conjugated imines and H-bonding from phenol accelerates the reaction forward by stabilizing the intermediate.

  5. Hierarchical MoS2 nanowires/NiCo2O4 nanosheets supported on Ni foam for high-performance asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Wen, Shiyang; Liu, Yu; Zhu, Fangfang; Shao, Rong; Xu, Wei

    2018-01-01

    The hierarchical MoS2 nanowires/NiCo2O4 nanosheets (MS/NCO) supercapacitor electrode materials supported on Ni foam were synthesized by a two-step hydrothermal method. The capacitance was investigated by using various electrochemical methods including cyclic voltammetry, constant-current galvanostatic charge/discharge curves and electrochemical impedance spectroscopy. The MS/NCO networks show 7 times more capacitance (7.1 F cm-2) than pure NiCo2O4 nanosheets by CV at a scan rate of 2 mV s-1. The specific capacitance of the assembled MS/NCO//active carbon (AC) asymmetric supercapacitor could reach up to 51.7 F g-1 at a current density of 1.5 A g-1. Also, the maximum energy density of 18.4 W h kg-1 at a power density of 1200.2 W kg-1 was achieved, with 98.2% specific capacitance retention after 8000 cycles. These exciting results exhibit potential application in developing energy storage devices with high energy density and high power density.

  6. Implementing the EU Floods Directive (2007/60/EC) in Austria: Flood Risk Management Plans

    NASA Astrophysics Data System (ADS)

    Neuhold, Clemens

    2013-04-01

    he Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks (EFD) aims at the reduction of the adverse consequences for human health, the environment, cultural heritage and economic activity associated with floods in the Community. This task is to be achieved based on three process steps (1) preliminary flood risk assessment (finalised by the end of 2011), (2) flood hazard maps and flood risk maps (due 2013) and (3) flood risk management plans (due 2015). Currently, an interdisciplinary national working group is defining the methodological framework for flood risk management plans in Austria supported by a constant exchange with international bodies and experts. Referring to the EFD the components of the flood risk management plan are (excerpt): 1. conclusions of the preliminary flood risk assessment 2. flood hazard maps and flood risk maps and the conclusions that can be drawn from those maps 3. a description of the appropriate objectives of flood risk management 4. a summary of measures and their prioritisation aiming to achieve the appropriate objectives of flood risk management The poster refers to some of the major challenges in this process, such as the legal provisions, coordination of administrative units, definition of public relations, etc. The implementation of the EFD requires the harmonisation of legal instruments of various disciplines (e.g. water management, spatial planning, civil protection) enabling a coordinated - and ideally binding - practice of flood risk management. This process is highly influenced by the administrative organisation in Austria - federal, provincial and municipality level. The Austrian approach meets this organisational framework by structuring the development of the flood risk management plan into 3 time-steps: (a) federal blueprint, (b) provincial editing and (c) federal finishing as well as reporting to the European Commission. Each time

  7. Development of Integrated Flood Analysis System for Improving Flood Mitigation Capabilities in Korea

    NASA Astrophysics Data System (ADS)

    Moon, Young-Il; Kim, Jong-suk

    2016-04-01

    Recently, the needs of people are growing for a more safety life and secure homeland from unexpected natural disasters. Flood damages have been recorded every year and those damages are greater than the annual average of 2 trillion won since 2000 in Korea. It has been increased in casualties and property damages due to flooding caused by hydrometeorlogical extremes according to climate change. Although the importance of flooding situation is emerging rapidly, studies related to development of integrated management system for reducing floods are insufficient in Korea. In addition, it is difficult to effectively reduce floods without developing integrated operation system taking into account of sewage pipe network configuration with the river level. Since the floods result in increasing damages to infrastructure, as well as life and property, structural and non-structural measures should be urgently established in order to effectively reduce the flood. Therefore, in this study, we developed an integrated flood analysis system that systematized technology to quantify flood risk and flood forecasting for supporting synthetic decision-making through real-time monitoring and prediction on flash rain or short-term rainfall by using radar and satellite information in Korea. Keywords: Flooding, Integrated flood analysis system, Rainfall forecasting, Korea Acknowledgments This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ011686022015)" Rural Development Administration, Republic of Korea

  8. Factors Increasing Vulnerability to Health Effects before, during and after Floods

    PubMed Central

    Lowe, Dianne; Ebi, Kristie L.; Forsberg, Bertil

    2013-01-01

    Identifying the risk factors for morbidity and mortality effects pre-, during and post-flood may aid the appropriate targeting of flood-related adverse health prevention strategies. We conducted a systematic PubMed search to identify studies examining risk factors for health effects of precipitation-related floods, among Organisation for Economic Co-Operation and Development (OECD) member countries. Research identifying flood-related morbidity and mortality risk factors is limited and primarily examines demographic characteristics such as age and gender. During floods, females, elderly and children appear to be at greater risk of psychological and physical health effects, while males between 10 to 29 years may be at greater risk of mortality. Post-flood, those over 65 years and males are at increased risk of physical health effects, while females appear at greater risk of psychological health effects. Other risk factors include previous flood experiences, greater flood depth or flood trauma, existing illnesses, medication interruption, and low education or socio-economic status. Tailoring messages to high-risk groups may increase their effectiveness. Target populations differ for morbidity and mortality effects, and differ pre-, during, and post-flood. Additional research is required to identify the risk factors associated with pre- and post-flood mortality and post-flood morbidity, preferably using prospective cohort studies. PMID:24336027

  9. Factors increasing vulnerability to health effects before, during and after floods.

    PubMed

    Lowe, Dianne; Ebi, Kristie L; Forsberg, Bertil

    2013-12-11

    Identifying the risk factors for morbidity and mortality effects pre-, during and post-flood may aid the appropriate targeting of flood-related adverse health prevention strategies. We conducted a systematic PubMed search to identify studies examining risk factors for health effects of precipitation-related floods, among Organisation for Economic Co-Operation and Development (OECD) member countries. Research identifying flood-related morbidity and mortality risk factors is limited and primarily examines demographic characteristics such as age and gender. During floods, females, elderly and children appear to be at greater risk of psychological and physical health effects, while males between 10 to 29 years may be at greater risk of mortality. Post-flood, those over 65 years and males are at increased risk of physical health effects, while females appear at greater risk of psychological health effects. Other risk factors include previous flood experiences, greater flood depth or flood trauma, existing illnesses, medication interruption, and low education or socio-economic status. Tailoring messages to high-risk groups may increase their effectiveness. Target populations differ for morbidity and mortality effects, and differ pre-, during, and post-flood. Additional research is required to identify the risk factors associated with pre- and post-flood mortality and post-flood morbidity, preferably using prospective cohort studies.

  10. [Removal of CO2 from simulated flue gas of power plants by membrane-based gas absorption processes].

    PubMed

    Yang, Ming-Fen; Fang, Meng-Xiang; Zhang, Wei-Feng; Wang, Shu-Yuan; Xu, Zhi-Kang; Luo, Zhong-Yang; Cen, Ke-Fa

    2005-07-01

    Three typical absorbents such as aqueous of aminoacetic acid potassium (AAAP), monoethanolamine (MEA) and methyldiethanolamine(MDEA) are selected to investigate the performance of CO2 separation from flue gas via membrane contactors made of hydrophobic hollow fiber polypropylene porous membrane. Impacts of absorbents, concentrations and flow rates of feeding gas and absorbent solution, cyclic loading of CO2 on the removal rate and the mass transfer velocity of CO2 are discussed. The results demonstrate that the mass transfer velocity was 7.1 mol x (m2 x s)(-1) for 1 mol x L(-1) MEA with flow rate of 0.1 m x s(-1) and flue gas with that of 0.211 m x s(-1). For 1 mol L(-1) AAAP with flow rate of 0.05 m x s(-1) and flue gas of 0.211 m x s(-1), CO2 removal rate (eta) was 93.2 % and eta was 98% for 4 mol x L(-1) AAAP under the same conditions. AAAP being absorbent, eta was higher than 90% in a wider range of concentrations of CO2. It indicates that membrane-based absorption process is a widely-applied and promising way of CO2 removal from flue gas of power plants, which not only appropriates for CO2 removal of flue gas of widely-used PF and NGCC, but also for that of flue gas of IGCC can be utilized widely in future.

  11. Novel 2D RuPt core-edge nanocluster catalyst for CO electro-oxidation

    NASA Astrophysics Data System (ADS)

    Grabow, Lars C.; Yuan, Qiuyi; Doan, Hieu A.; Brankovic, Stanko R.

    2015-10-01

    A single layer, bi-metallic RuPt catalyst on Au(111) is synthesized using surface limited red-ox replacement of underpotentially deposited Cu and Pb monolayers though a two-step process. The resulting 2D RuPt monolayer nanoclusters have a unique core-edge structure with a Ru core and Pt at the edge along the perimeter. The activity of this catalyst is evaluated using CO monolayer oxidation as the probe reaction. Cyclic voltammetry demonstrates that the 2D RuPt core-edge catalyst morphology is significantly more active than either Pt or Ru monolayer catalysts. Density functional theory calculations in combination with infra-red spectroscopy data point towards oscillating variations (ripples) in the adsorption energy landscape along the radial direction of the Ru core as the origin of the observed behavior. Both, CO and OH experience a thermodynamic driving force for surface migration towards the Ru-Pt interface, where they adsorb most strongly and react rapidly. We propose that the complex interplay between epitaxial strain, ligand and finite size effects is responsible for the formation of the rippled RuPt monolayer cluster, which provides optimal conditions for a quasi-ideal bi-functional mechanism for CO oxidation, in which CO is adsorbed mainly on Pt, and Ru provides OH to the active Pt-Ru interface.

  12. Comparisons of MN2S2vs. bipyridine as redox-active ligands to manganese and rhenium in (L-L)M'(CO)3Cl complexes.

    PubMed

    Lunsford, Allen M; Goldstein, Kristina F; Cohan, Matthew A; Denny, Jason A; Bhuvanesh, Nattamai; Ding, Shengda; Hall, Michael B; Darensbourg, Marcetta Y

    2017-04-19

    The bipyridine ligand is renowned as a photo- and redox-active ligand in catalysis; the latter has been particularly explored in the complex Re(bipy)(CO) 3 Cl for CO 2 reduction. We ask whether a bidentate, redox-active MN 2 S 2 metallodithiolate ligand in heterobimetallic complexes of Mn and Re might similarly serve as a receptor and conduit of electrons. In order to assess the electrochemical features of such designed bimetallics, a series of complexes featuring redox active MN 2 S 2 metallodithiolates, with M = Ni 2+ , {Fe(NO)} 2+ , and {Co(NO)} 2+ , bound to M'(CO) 3 X, where M' = Mn and Re, were synthesized and characterized using IR and EPR spectroscopies, X-ray diffraction, cyclic voltammetry, and density functional theory (DFT) computations. Butterfly type structures resulted from binding of the convergent lone pairs of the cis-sulfur atoms to the M'(CO) 3 X unit. Bond distances and angles are similar across the M' metal series regardless of the ligand attached. Electrochemical characterizations of [MN 2 S 2 ·Re(CO) 3 Cl] showed the redox potential of the Re is significantly altered by the identity of the metal in the N 2 S 2 pocket. DFT calculations proved useful to identify the roles played by the MN 2 S 2 ligands, upon reduction of the bimetallics, in altering the lability of the Re-Cl bond and the ensuing effect on the reduction of Re I to Re 0 .

  13. Vulnerability of riparian ecosystems to elevated CO2 and climate change in arid and semiarid western North America

    USGS Publications Warehouse

    Perry, Laura G.; Andersen, Douglas C.; Reynolds, Lindsay V.; Nelson, S. Mark; Shafroth, Patrick B.

    2012-01-01

    Riparian ecosystems, already greatly altered by water management, land development, and biological invasion, are being further altered by increasing atmospheric CO2 concentrations ([CO2]) and climate change, particularly in arid and semiarid (dryland) regions. In this literature review, we (1) summarize expected changes in [CO2], climate, hydrology, and water management in dryland western North America, (2) consider likely effects of those changes on riparian ecosystems, and (3) identify critical knowledge gaps. Temperatures in the region are rising and droughts are becoming more frequent and intense. Warmer temperatures in turn are altering river hydrology: advancing the timing of spring snow melt floods, altering flood magnitudes, and reducing summer and base flows. Direct effects of increased [CO2] and climate change on riparian ecosystems may be similar to effects in uplands, including increased heat and water stress, altered phenology and species geographic distributions, and disrupted trophic and symbiotic interactions. Indirect effects due to climate-driven changes in streamflow, however, may exacerbate the direct effects of warming and increase the relative importance of moisture and fluvial disturbance as drivers of riparian ecosystem response to global change. Together, climate change and climate-driven changes in streamflow are likely to reduce abundance of dominant, native, early-successional tree species, favor herbaceous species and both drought-tolerant and late-successional woody species (including many introduced species), reduce habitat quality for many riparian animals, and slow litter decomposition and nutrient cycling. Climate-driven changes in human water demand and associated water management may intensify these effects. On some regulated rivers, however, reservoir releases could be managed to protect riparian ecosystem. Immediate research priorities include determining riparian species' environmental requirements and monitoring riparian

  14. Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air.

    PubMed

    Choi, Sunho; Gray, McMahan L; Jones, Christopher W

    2011-05-23

    Silica supported poly(ethyleneimine) (PEI) materials are prepared via impregnation and demonstrated to be promising adsorbents for CO(2) capture from ultra-dilute gas streams such as ambient air. A prototypical class 1 adsorbent, containing 45 wt% PEI (PEI/silica), and two new modified PEI-based aminosilica adsorbents, derived from PEI modified with 3-aminopropyltrimethoxysilane (A-PEI/silica) or tetraethyl orthotitanate (T-PEI/silica), are prepared and characterized by using thermogravimetric analysis and FTIR spectroscopy. The modifiers are shown to enhance the thermal stability of the polymer-oxide composites, leading to higher PEI decomposition temperatures. The modified adsorbents present extremely high CO(2) adsorption capacities under conditions simulating ambient air (400 ppm CO(2) in inert gas), exceeding 2 mol(CO (2)) kg(sorbent)(-1), as well as enhanced adsorption kinetics compared to conventional class 1 sorbents. The new adsorbents show excellent stability in cyclic adsorption-desorption operations, even under dry conditions in which aminosilica adsorbents are known to lose capacity due to urea formation. Thus, the adsorbents of this type can be considered promising materials for the direct capture of CO(2) from ultra-dilute gas streams such as ambient air. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nitrate fertilisation does not enhance CO2 responses in two tropical seagrass species

    PubMed Central

    Ow, Y. X.; Vogel, N.; Collier, C. J.; Holtum, J. A. M.; Flores, F.; Uthicke, S.

    2016-01-01

    Seagrasses are often considered “winners” of ocean acidification (OA); however, seagrass productivity responses to OA could be limited by nitrogen availability, since nitrogen-derived metabolites are required for carbon assimilation. We tested nitrogen uptake and assimilation, photosynthesis, growth, and carbon allocation responses of the tropical seagrasses Halodule uninervis and Thalassia hemprichii to OA scenarios (428, 734 and 1213 μatm pCO2) under two nutrients levels (0.3 and 1.9 μM NO3−). Net primary production (measured as oxygen production) and growth in H. uninervis increased with pCO2 enrichment, but were not affected by nitrate enrichment. However, nitrate enrichment reduced whole plant respiration in H. uninervis. Net primary production and growth did not show significant changes with pCO2 or nitrate by the end of the experiment (24 d) in T. hemprichii. However, nitrate incorporation in T. hemprichii was higher with nitrate enrichment. There was no evidence that nitrogen demand increased with pCO2 enrichment in either species. Contrary to our initial hypothesis, nutrient increases to levels approximating present day flood plumes only had small effects on metabolism. This study highlights that the paradigm of increased productivity of seagrasses under ocean acidification may not be valid for all species under all environmental conditions. PMID:26976685

  16. Beyond 'flood hotspots': Modelling emergency service accessibility during flooding in York, UK

    NASA Astrophysics Data System (ADS)

    Coles, Daniel; Yu, Dapeng; Wilby, Robert L.; Green, Daniel; Herring, Zara

    2017-03-01

    This paper describes the development of a method that couples flood modelling with network analysis to evaluate the accessibility of city districts by emergency responders during flood events. We integrate numerical modelling of flood inundation with geographical analysis of service areas for the Ambulance Service and the Fire & Rescue Service. The method was demonstrated for two flood events in the City of York, UK to assess the vulnerability of care homes and sheltered accommodation. We determine the feasibility of emergency services gaining access within the statutory 8- and 10-min targets for high-priority, life-threatening incidents 75% of the time, during flood episodes. A hydrodynamic flood inundation model (FloodMap) simulates the 2014 pluvial and 2015 fluvial flood events. Predicted floods (with depth >25 cm and areas >100 m2) were overlain on the road network to identify sites with potentially restricted access. Accessibility of the city to emergency responders during flooding was quantified and mapped using; (i) spatial coverage from individual emergency nodes within the legislated timeframes, and; (ii) response times from individual emergency service nodes to vulnerable care homes and sheltered accommodation under flood and non-flood conditions. Results show that, during the 2015 fluvial flood, the area covered by two of the three Fire & Rescue Service stations reduced by 14% and 39% respectively, while the remaining station needed to increase its coverage by 39%. This amounts to an overall reduction of 6% and 20% for modelled and observed floods respectively. During the 2014 surface water flood, 7 out of 22 care homes (32%) and 15 out of 43 sheltered accommodation nodes (35%) had modelled response times above the 8-min threshold from any Ambulance station. Overall, modelled surface water flooding has a larger spatial footprint than fluvial flood events. Hence, accessibility of emergency services may be impacted differently depending on flood mechanism

  17. Comparison of 2D numerical models for river flood hazard assessment: simulation of the Secchia River flood in January, 2014

    NASA Astrophysics Data System (ADS)

    Shustikova, Iuliia; Domeneghetti, Alessio; Neal, Jeffrey; Bates, Paul; Castellarin, Attilio

    2017-04-01

    Hydrodynamic modeling of inundation events still brings a large array of uncertainties. This effect is especially evident in the models run for geographically large areas. Recent studies suggest using fully two-dimensional (2D) models with high resolution in order to avoid uncertainties and limitations coming from the incorrect interpretation of flood dynamics and an unrealistic reproduction of the terrain topography. This, however, affects the computational efficiency increasing the running time and hardware demands. Concerning this point, our study evaluates and compares numerical models of different complexity by testing them on a flood event that occurred in the basin of the Secchia River, Northern Italy, on 19th January, 2014. The event was characterized by a levee breach and consequent flooding of over 75 km2 of the plain behind the dike within 48 hours causing population displacement, one death and economic losses in excess of 400 million Euro. We test the well-established TELEMAC 2D, and LISFLOOD-FP codes, together with the recently launched HEC-RAS 5.0.3 (2D model), all models are implemented using different grid size (2-200 m) based on the 1 m digital elevation model resolution. TELEMAC is a fully 2D hydrodynamic model which is based on the finite-element or finite-volume approach. Whereas HEC-RAS 5.0.3 and LISFLOOD-FP are both coupled 1D-2D models. All models are calibrated against observed inundation extent and maximum water depths, which are retrieved from remotely sensed data and field survey reports. Our study quantitatively compares the three modeling strategies highlighting differences in terms of the ease of implementation, accuracy of representation of hydraulic processes within floodplains and computational efficiency. Additionally, we look into the different grid resolutions in terms of the results accuracy and computation time. Our study is a preliminary assessment that focuses on smaller areas in order to identify potential modeling schemes

  18. Evaluation of the wind pumped hydropower storage integrated flood mitigation system

    NASA Astrophysics Data System (ADS)

    Safi, Aishah; Basrawi, Firdaus

    2018-04-01

    As Wind Pumped Hydropower Storage (WPHS) need high cost to construct, it is important to study their impacts on economic and environmental aspects. Thus, this research aims to evaluate their economic and environmental performances. First, Hybrid Optimization Model for Electric Renewable (HOMER) was used to simulate power generation system with and without the flood reservoir. Next, the total amount of emitted air pollutant was used to evaluate the environmental impacts. It was found the wind-diesel with reservoir storage system (A-III) will have much lower NPC than other systems that do not include reservoir for flood mitigation when the cost of flood losses are included in the total Net Present Cost (NPC). The NPC for system A-III was RM 1.52 million and for diesel standalone system (A-I) is RM 10.8 million when the cost of flood losses are included in the total NPC. Between both energy systems, the amount of pollutants emitted by the A-III system was only 408 kg-CO2/year which is much less than the A-I system which is 99, 754 kg of carbon dioxide per year. To conclude, the WPHS integrated with flood mitigation system seems promising in the aspects of economic and environment.

  19. Physiological functions of the water-water cycle (Mehler reaction) and the cyclic electron flow around PSI in rice leaves.

    PubMed

    Makino, Amane; Miyake, Chikahiro; Yokota, Akiho

    2002-09-01

    Changes in chlorophyll fluorescence, P700(+)-absorbance and gas exchange during the induction phase and steady state of photosynthesis were simultaneously examined in rice (Oryza sativa L.), including the rbcS antisense plants. The quantum yield of photosystem II (PhiPSII) increased more rapidly than CO(2) assimilation in 20% O(2). This rapid increase in PhiPSII resulted from the electron flux through the water-water cycle (WWC) because of its dependency on O(2). The electron flux of WWC reached a maximum just after illumination, and rapidly generated non-photochemical quenching (NPQ). With increasing CO(2) assimilation, the electron flux of WWC and NPQ decreased. In 2% O(2), WWC scarcely operated and PhiPSI was always higher than PhiPSII. This suggested that cyclic electron flow around PSI resulted in the formation of NPQ, which remained at higher levels in 2% O(2). The electron flux of WWC in the rbcS antisense plants was lower, but these plants always showed a higher NPQ. This was also caused by the operation of the cyclic electron flow around PSI because of a higher ratio of PhiPSI/PhiPSII, irrespective of O(2) concentration. The results indicate that WWC functions as a starter of photosynthesis by generating DeltapH across thylakoid membranes for NPQ formation, supplying ATP for carbon assimilation. However, WWC does not act to maintain a high NPQ, and PhiPSII is down-regulated by DeltapH generated via the cyclic electron flow around PSI.

  20. The Field-Laboratory for CO2 Storage 'CO2SINK

    NASA Astrophysics Data System (ADS)

    Würdemann, Hilke; Möller, Fabian; Kühn, Michael; Borm, Günter; Schilling, Frank R.

    2010-05-01

    The first European onshore geological CO2 storage project in a saline aquifer CO2SINK is designed as a field size experiment to better understand in situ storage processes and to test various monitoring techniques. This EU project is run by 18 partners from universities, research institutes and industry out of 9 European countries (www.co2sink.org). The CO2 is injected into Upper Triassic sandstones (Stuttgart Formation) of a double-anticline at a depth of 650 m. The Stuttgart Formation represents a flu vial environment comprised of sandstone channels and silty to muddy deposits. The anticline forms a classical multibarrier system: The first caprock is a playa type mudstone of the Weser and Arnstadt formations directly overlying the Stuttgart formation. Laboratory tests revealed permeabilities in a µDarcy-range. The second main caprock is a tertiary clay, the so-called Rupelton. To determine the maximum injection pressure modified leak-off tests (without fracturing the caprock) were performed resulting in values around 120 bar. Due to safety standards the pressure threshold is set to 82 bar until more experience on the reservoir behaviour is available. The sealing property of the secondary cap rock is well known from decades of natural gas storage operations at the testing site and was the basis for the permission to operate the CO2 storage by the mining authority. Undisturbed, initial reservoir conditions are 35 °C and 62 bar. The initial reservoir fluid is highly saline with about 235 g/l total dissolved solids primarily composed of sodium chloride with notable amounts of calcium chloride. The initial pH value is 6.6. Hydraulic tests as well as laboratory tests revealed a permeability between 50 and 100 mDarcy for the sand channels of the storage formation. Within twenty months of storage operation, about 30,000 t of CO2 have been injected. Spreading of the CO2 plume is monitored by a broad range of geophysical techniques. The injection well and the two

  1. 25. SAR2, SHOWING TAILRACE REPAIRS AFTER FLOOD OF JANUARY, 1916; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. SAR-2, SHOWING TAILRACE REPAIRS AFTER FLOOD OF JANUARY, 1916; ALSO FLUME CONNECTION TO MENTONE SYSTEM. SCE negative no. 3904, July 13, 1916. Photograph by G. Haven Bishop. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  2. Hydrothermal synthesis of NiCo2O4 nanowires/nitrogen-doped graphene for high-performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Yu, Mei; Chen, Jianpeng; Ma, Yuxiao; Zhang, Jingdan; Liu, Jianhua; Li, Songmei; An, Junwei

    2014-09-01

    NiCo2O4 nanowires/nitrogen-doped graphene (NCO/NG) composite materials were synthesized by hydrothermal treatment in a water-glycerol mixed solvent and subsequent thermal transformation. The obtained materials were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The electrochemical performance of the composites was evaluated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectrum techniques. NiCo2O4 nanowires are densely coated by nitrogen-doped graphene and the composite displays good electrochemical performance. The maximum specific capacitance of NCO/NG is 1273.13 F g-1 at 0.5 A g-1 in 6 M KOH aqueous solution, and it exhibits good capacity retention without noticeable degradation after 3000 cycles at 4 A g-1.

  3. Cloning, sequencing, and expression of the gene encoding cyclic 2, 3-diphosphoglycerate synthetase, the key enzyme of cyclic 2, 3-diphosphoglycerate metabolism in Methanothermus fervidus.

    PubMed

    Matussek, K; Moritz, P; Brunner, N; Eckerskorn, C; Hensel, R

    1998-11-01

    Cyclic 2,3-diphosphoglycerate synthetase (cDPGS) catalyzes the synthesis of cyclic 2,3-diphosphoglycerate (cDPG) by formation of an intramolecular phosphoanhydride bond in 2,3-diphosphoglycerate. cDPG is known to be accumulated to high intracellular concentrations (>300 mM) as a putative thermoadapter in some hyperthermophilic methanogens. For the first time, we have purified active cDPGS from a methanogen, the hyperthermophilic archaeon Methanothermus fervidus, sequenced the coding gene, and expressed it in Escherichia coli. cDPGS purification resulted in enzyme preparations containing two isoforms differing in their electrophoretic mobility under denaturing conditions. Since both polypeptides showed the same N-terminal amino acid sequence and Southern analyses indicate the presence of only one gene coding for cDPGS in M. fervidus, the two polypeptides originate from the same gene but differ by a not yet identified modification. The native cDPGS represents a dimer with an apparent molecular mass of 112 kDa and catalyzes the reversible formation of the intramolecular phosphoanhydride bond at the expense of ATP. The enzyme shows a clear preference for the synthetic reaction: the substrate affinity and the Vmax of the synthetic reaction are a factor of 8 to 10 higher than the corresponding values for the reverse reaction. Comparison with the kinetic properties of the electrophoretically homogeneous, apparently unmodified recombinant enzyme from E. coli revealed a twofold-higher Vmax of the enzyme from M. fervidus in the synthesizing direction.

  4. Cloning, Sequencing, and Expression of the Gene Encoding Cyclic 2,3-Diphosphoglycerate Synthetase, the Key Enzyme of Cyclic 2,3-Diphosphoglycerate Metabolism in Methanothermus fervidus

    PubMed Central

    Matussek, Karl; Moritz, Patrick; Brunner, Nina; Eckerskorn, Christoph; Hensel, Reinhard

    1998-01-01

    Cyclic 2,3-diphosphoglycerate synthetase (cDPGS) catalyzes the synthesis of cyclic 2,3-diphosphoglycerate (cDPG) by formation of an intramolecular phosphoanhydride bond in 2,3-diphosphoglycerate. cDPG is known to be accumulated to high intracellular concentrations (>300 mM) as a putative thermoadapter in some hyperthermophilic methanogens. For the first time, we have purified active cDPGS from a methanogen, the hyperthermophilic archaeon Methanothermus fervidus, sequenced the coding gene, and expressed it in Escherichia coli. cDPGS purification resulted in enzyme preparations containing two isoforms differing in their electrophoretic mobility under denaturing conditions. Since both polypeptides showed the same N-terminal amino acid sequence and Southern analyses indicate the presence of only one gene coding for cDPGS in M. fervidus, the two polypeptides originate from the same gene but differ by a not yet identified modification. The native cDPGS represents a dimer with an apparent molecular mass of 112 kDa and catalyzes the reversible formation of the intramolecular phosphoanhydride bond at the expense of ATP. The enzyme shows a clear preference for the synthetic reaction: the substrate affinity and the Vmax of the synthetic reaction are a factor of 8 to 10 higher than the corresponding values for the reverse reaction. Comparison with the kinetic properties of the electrophoretically homogeneous, apparently unmodified recombinant enzyme from E. coli revealed a twofold-higher Vmax of the enzyme from M. fervidus in the synthesizing direction. PMID:9811660

  5. The system-wide economics of a carbon dioxide capture, utilization, and storage network: Texas Gulf Coast with pure CO2-EOR flood

    NASA Astrophysics Data System (ADS)

    King, Carey W.; Gülen, Gürcan; Cohen, Stuart M.; Nuñez-Lopez, Vanessa

    2013-09-01

    This letter compares several bounding cases for understanding the economic viability of capturing large quantities of anthropogenic CO2 from coal-fired power generators within the Electric Reliability Council of Texas electric grid and using it for pure CO2 enhanced oil recovery (EOR) in the onshore coastal region of Texas along the Gulf of Mexico. All captured CO2 in excess of that needed for EOR is sequestered in saline formations at the same geographic locations as the oil reservoirs but at a different depth. We analyze the extraction of oil from the same set of ten reservoirs within 20- and five-year time frames to describe how the scale of the carbon dioxide capture, utilization, and storage (CCUS) network changes to meet the rate of CO2 demand for oil recovery. Our analysis shows that there is a negative system-wide net present value (NPV) for all modeled scenarios. The system comes close to breakeven economics when capturing CO2 from three coal-fired power plants to produce oil via CO2-EOR over 20 years and assuming no CO2 emissions penalty. The NPV drops when we consider a larger network to produce oil more quickly (21 coal-fired generators with CO2 capture to produce 80% of the oil within five years). Upon applying a CO2 emissions penalty of 602009/tCO2 to fossil fuel emissions to ensure that coal-fired power plants with CO2 capture remain in baseload operation, the system economics drop significantly. We show near profitability for the cash flow of the EOR operations only; however, this situation requires relatively cheap electricity prices during operation.

  6. Low pCO2 Air-Polarized CO2 Concentrator Development

    NASA Technical Reports Server (NTRS)

    Schubert, Franz H.

    1997-01-01

    Life Systems completed a Ground-based Space Station Experiment Development Study Program which verifies through testing the performance and applicability of the electrochemical Air-Polarized Carbon Dioxide Concentrator (APC) process technology for space missions requiring low (i.e., less than 3 mm Hg) CO2 partial pressure (pCO2) in the cabin atmosphere. Required test hardware was developed and testing was accomplished at an approximate one-person capacity CO2 removal level. Initially, two five-cell electrochemical modules using flight-like 0.5 sq ft cell hardware were tested individually, following by their testing at the integrated APC system level. Testing verified previously projected performance and established a database for sizing of APC systems. A four person capacity APC system was sized and compared with four candidate CO2 removal systems. At its weight of 252 lb, a volume of 7 cu ft and a power consumption of 566 W while operating at 2.2 mm Hg pCO2, the APC was surpassed only by an Electrochemical Depolarized CO2 Concentrator (EDC) (operating with H2), when compared on a total equivalent basis.

  7. Flood hazard assessment in areas prone to flash flooding

    NASA Astrophysics Data System (ADS)

    Kvočka, Davor; Falconer, Roger A.; Bray, Michaela

    2016-04-01

    Contemporary climate projections suggest that there will be an increase in the occurrence of high-intensity rainfall events in the future. These precipitation extremes are usually the main cause for the emergence of extreme flooding, such as flash flooding. Flash floods are among the most unpredictable, violent and fatal natural hazards in the world. Furthermore, it is expected that flash flooding will occur even more frequently in the future due to more frequent development of extreme weather events, which will greatly increase the danger to people caused by flash flooding. This being the case, there will be a need for high resolution flood hazard maps in areas susceptible to flash flooding. This study investigates what type of flood hazard assessment methods should be used for assessing the flood hazard to people caused by flash flooding. Two different types of flood hazard assessment methods were tested: (i) a widely used method based on an empirical analysis, and (ii) a new, physically based and experimentally calibrated method. Two flash flood events were considered herein, namely: the 2004 Boscastle flash flood and the 2007 Železniki flash flood. The results obtained in this study suggest that in the areas susceptible to extreme flooding, the flood hazard assessment should be conducted using methods based on a mechanics-based analysis. In comparison to standard flood hazard assessment methods, these physically based methods: (i) take into account all of the physical forces, which act on a human body in floodwater, (ii) successfully adapt to abrupt changes in the flow regime, which often occur for flash flood events, and (iii) rapidly assess a flood hazard index in a relatively short period of time.

  8. Flooding of December 29, 1984 through January 2, 1985, in northern New York State, with flood profiles of the Black and Salmon rivers

    USGS Publications Warehouse

    Lumia, Richard; Burke, P.M.; Johnston, W.H.

    1987-01-01

    Precipitation, snowmelt, and resultant flooding throughout northern New York from December 28 through January 2, 1985, were investigated through a detailed analysis of 56 precipitation stations, 101 stage and/or discharge gaging stations, and 9 miscellaneous measurement sites. Flood damage to property and roads and bridges exceeded $5 million. Lewis and Oswego Counties were declared Federal disaster areas, primarily a result of flooding of the Black River and Salmon River. Storm-precipitation and runoff maps show the storms ' greatest intensity to have been over the Tug Hill and southwest Adirondack areas. Total rainfall from December 28 through January 2 was 6.90 inches at Stillwater Reservoir but only 0.69 inches at Lake Placid. New peak discharges of record occurred at 17 gaging stations throughout northern New York, and the maximum discharge at 17 sites had recurrence intervals equal to or greater than 100 years. Computed inflows to 11 major lakes and reservoirs in northern New York indicate that significant volumes of water (as much as 5 inches of storm runoff at Stillwater Reservoir) were stored during the storm-runoff period. Maximum 1-day flood volumes at two gaging stations on the Black River had recurrence intervals greater than 100 years. To help evaluate the extent of flooding, 67 floodmarks were obtained along a 94-mile reach of the Black River from Dexter to Forestport, and several floodmarks were surveyed within major communities along the Salmon River. The floodmarks were obtained primarily near major bridges and dams along these rivers. (Author 's abstract)

  9. Improved Mobility Control for Carbon Dioxide (CO{sub 2}) Enhanced Oil Recovery Using Silica-Polymer-Initiator (SPI) Gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglesby, Kenneth

    2014-01-31

    SPI gels are multi-component silicate based gels for improving (areal and vertical) conformance in oilfield enhanced recovery operations, including water-floods and carbon dioxide (CO{sub 2}) floods, as well as other applications. SPI mixtures are like-water when pumped, but form light up to very thick, paste-like gels in contact with CO{sub 2}. When formed they are 3 to 10 times stronger than any gelled polyacrylamide gel now available, however, they are not as strong as cement or epoxy, allowing them to be washed / jetted out of the wellbore without drilling. This DOE funded project allowed 8 SPI field treatments tomore » be performed in 6 wells (5 injection wells and 1 production well) in 2 different fields with different operators, in 2 different basins (Gulf Coast and Permian) and in 2 different rock types (sandstone and dolomite). Field A was in a central Mississippi sandstone that injected CO{sub 2} as an immiscible process. Field B was in the west Texas San Andres dolomite formation with a mature water-alternating-gas miscible CO{sub 2} flood. Field A treatments are now over 1 year old while Field B treatments have only 4 months data available under variable WAG conditions. Both fields had other operational events and well work occurring before/ during / after the treatments making definitive evaluation difficult. Laboratory static beaker and dynamic sand pack tests were performed with Ottawa sand and both fields’ core material, brines and crude oils to improve SPI chemistry, optimize SPI formulations, ensure SPI mix compatibility with field rocks and fluids, optimize SPI treatment field treatment volumes and methods, and ensure that strong gels set in the reservoir. Field quality control procedures were designed and utilized. Pre-treatment well (surface) injectivities ranged from 0.39 to 7.9 MMCF/psi. The SPI treatment volumes ranged from 20.7 cubic meters (m{sup 3}, 5460 gallons/ 130 bbls) to 691 m{sup 3} (182,658 gallons/ 4349 bbls). Various size and

  10. Sulphation of CaO-Based Sorbent Modified in CO2 Looping Cycles

    NASA Astrophysics Data System (ADS)

    Manovic, Vasilije; Anthony, Edward J.; Loncarevic, Davor

    CaO-based looping cycles for CO2 capture at high temperatures are based on cyclical carbonation of CaO and regeneration of CaCO3. The main limitation of natural sorbents is the loss of carrying capacity with increasing numbers of reaction cycles, resulting in spent sorbent ballast. Use of spent sorbent from CO2 looping cycles for SO2 capture is a possible solution investigated in this study. Three limestones were investigated: Kelly Rock (Canada), La Blanca (Spain) and Katowice (Poland). Carbonation/calcination cycles were performed in a tube furnace with original limestones and samples thermally pretreated for different times (i.e., sintered). The spent sorbent samples were sulphated in a thermogravimetric analyzer. Changes in the resulting pore structure were then investigated using mercury porosimetry. Final conversions of both spent and pretreated sorbents after longer sulphation times were comparable or higher than those observed for the original sorbents. Maximum sulphation levels strongly depend on sorbent porosity and pore surface area. The shrinkage of sorbent particles during calcination/cycling resulted in a loss of sorbent porosity (≤48%), which corresponds to maximum sulphation levels ˜55% for spent Kelly Rock and Katowice. However, this is ˜10% higher than for the original samples. By contrast, La Blanca limestone had more pronounced particle shrinkage during pretreatment and cycling, leading to lower porosity, <35%, resulting in sulphation conversion of spent samples <30%, significantly lower than for the original sample (45%). These results showed that spent sorbent samples from CO2 looping cycles can be used as sorbents for SO2 retention if significant porosity loss does not occur during CO2 reaction cycles. For spent Kelly Rock and Katowice samples final conversions are determined by the total pore volume available for the bulky CaSO4 product.

  11. Push or Pull? Proton Responsive Ligand Effects in Rhenium Tricarbonyl CO 2 Reduction Catalysts

    DOE PAGES

    Manbeck, Gerald F.; Muckerman, James T.; Szalda, David J.; ...

    2015-02-19

    Proton responsive ligands offer control of catalytic reactions through modulation of pH-dependent properties, second coordination sphere stabilization of transition states, or by providing a local proton source for multi-proton, multi-electron reactions. Two fac-[ReI(α-diimine)(CO)₃Cl] complexes with α-diimine = 4,4'- (or 6,6'-) dihydroxy-2,2'-bipyridine (4DHBP and 6DHBP) have been prepared and analyzed as electrocatalysts for reduction of carbon dioxide. Consecutive electrochemical reduction of these complexes yields species identical to those obtained by chemical deprotonation. An energetically feasible mechanism for reductive deprotonation is proposed in which the bpy anion is protonated followed by loss of H₂ and 2H⁺. Cyclic voltammetry reveals a two-electron, three-wavemore » system owing to competing EEC and ECE pathways. The chemical step of the ECE pathway might be attributed to the reductive deprotonation. but cannot be distinguished from chloride dissociation. The rate obtained by digital simulation is approximately 8 s⁻¹. Under CO₂, these competing reactions generate a two-slope catalytic waveform with onset potential of –1.65 V vs Ag/AgCl. Reduction of CO₂ to CO by the [ReI (4DHBP–2H⁺)(CO)₃]⁻ suggests the interaction of CO₂ with the deprotonated species or a third reduction followed by catalysis. Conversely, the reduced form of [Re(6DHBP)(CO)₃Cl] converts CO₂ to CO with a single turnover.« less

  12. CO2 exsolution - challenges and opportunities in subsurface flow management

    NASA Astrophysics Data System (ADS)

    Zuo, Lin; Benson, Sally

    2014-05-01

    In geological carbon sequestration, a large amount of injected CO2 will dissolve in brine over time. Exsolution occurs when pore pressures decline and CO2 solubility in brine decreases, resulting in the formation of a separate CO2 phase. This scenario occurs in storage reservoirs by upward migration of carbonated brine, through faults, leaking boreholes or even seals, driven by a reverse pressure gradient from CO2 injection or ground water extraction. In this way, dissolved CO2 could migrate out of storage reservoirs and form a gas phase at shallower depths. This paper summarizes the results of a 4-year study regarding the implications of exsolution on storage security, including core-flood experiments, micromodel studies, and numerical simulation. Micromodel studies have shown that, different from an injected CO2 phase, where the gas remains interconnected, exsolved CO2 nucleates in various locations of a porous medium, forms disconnected bubbles and propagates by a repeated process of bubble expansion and snap-off [Zuo et al., 2013]. A good correlation between bubble size distribution and pore size distribution is observed, indicating that geometry of the pore space plays an important role in controlling the mobility of brine and exsolved CO2. Core-scale experiments demonstrate that as the exsolved gas saturation increases, the water relative permeability drops significantly and is disproportionately reduced compared to drainage relative permeability [Zuo et al., 2012]. The CO2 relative permeability remains very low, 10-5~10-3, even when the exsolved CO2 saturation increases to over 40%. Furthermore, during imbibition with CO2 saturated brines, CO2 remains trapped even under relatively high capillary numbers (uv/σ~10-6) [Zuo et al., submitted]. The water relative permeability at the imbibition endpoint is 1/3~1/2 of that with carbonated water displacing injected CO2. Based on the experimental evidence, CO2 exsolution does not appear to create significant risks

  13. Development of flood profiles and flood-inundation maps for the Village of Killbuck, Ohio

    USGS Publications Warehouse

    Ostheimer, Chad J.

    2013-01-01

    Digital flood-inundation maps for a reach of Killbuck Creek near the Village of Killbuck, Ohio, were created by the U.S. Geological Survey (USGS), in cooperation with Holmes County, Ohio. The inundation maps depict estimates of the areal extent of flooding corresponding to water levels (stages) at the USGS streamgage Killbuck Creek near Killbuck (03139000) and were completed as part of an update to Federal Emergency Management Agency Flood-Insurance Study. The maps were provided to the National Weather Service (NWS) for incorporation into a Web-based flood-warning system that can be used in conjunction with NWS flood-forecast data to show areas of predicted flood inundation associated with forecasted flood-peak stages. The digital maps also have been submitted for inclusion in the data libraries of the USGS interactive Flood Inundation Mapper. Data from the streamgage can be used by emergency-management personnel, in conjunction with the flood-inundation maps, to help determine a course of action when flooding is imminent. Flood profiles for selected reaches were prepared by calibrating a steady-state step-backwater model to an established streamgage rating curve. The step-backwater model then was used to determine water-surface-elevation profiles for 10 flood stages at the streamgage with corresponding streamflows ranging from approximately the 50- to 0.2-percent annual exceedance probabilities. The computed flood profiles were used in combination with digital elevation data to delineate flood-inundation areas.

  14. Understanding the Temporal Variation of CO2 and CH4 Fluxes in a Subtropical Seasonal Wetland

    NASA Astrophysics Data System (ADS)

    Gomez-Casanovas, N.; DeLucia, N.; DeLucia, E. H.; Boughton, E.; Bernacchi, C.

    2017-12-01

    The magnitude of the net greenhouse gas (GHG) sink strength of wetlands and mechanisms driving C fluxes remain uncertain, particularly for subtropical and tropical wetlands that are responsible for the majority of wetland CH4 emissions globally. We determined the exchange of CO2 and CH4 fluxes between a subtropical wetland and the atmosphere, and investigated how changes in water table (WT), soil temperature (ST), and Gross Primary Productivity (GPP) alter CH4 fluxes. Measurements were made using the eddy covariance technique from June, 2013 to December, 2015. As GPP was greater than ecosystem respiration, wetland was consistently a net sink of CO2 from the atmosphere (-480 gC m-2 in 2013, -275 gC m-2 in 2014 and -258 gC m-2 in 2015). Though variable among years, wetland was a net source of CH4 to the atmosphere (24.5 gC m-2 in 2013, 26.1 gC m-2 in 2014, 32.7 gC m-2 in 2015). WT and ST were strong drivers of net CH4 fluxes. Fluxes of CH4 exponentially increased with WT near the soil surface, and they were maximal and sustained after 3 days or more of preceding flooding suggesting that flooding duration and intensity drives CH4 emissions in this system. GPP also exerted a strong control on these fluxes, particularly when water was near the soil surface. The system emitted an average of 2 g more C-CH4 m-2 during the wet seasons of 2013 and 2015 than the wet season of 2014 due to higher WT, and increases in flooding days and cumulative GPP for days with water at near-surface (GPPWT). Although WT was higher during the dry season of 2015 than the wet season of 2014, CH4 fluxes were similar likely because of increased ST and GPPWT in the wet season of 2014. The contribution of CH4 fluxes during the dry season to annual fluxes was 41% in 2014 and 48% in 2015. Wetland was a strong sink of C, and it was a net sink of GHGs in 2014 and a net source in 2015 mainly attributable to increases in net CH4 emissions. Climate models predict that subtropical and tropical regions will

  15. Preparing for floods: flood forecasting and early warning

    NASA Astrophysics Data System (ADS)

    Cloke, Hannah

    2016-04-01

    Flood forecasting and early warning has continued to stride ahead in strengthening the preparedness phases of disaster risk management, saving lives and property and reducing the overall impact of severe flood events. For example, continental and global scale flood forecasting systems such as the European Flood Awareness System and the Global Flood Awareness System provide early information about upcoming floods in real time to various decisionmakers. Studies have found that there are monetary benefits to implementing these early flood warning systems, and with the science also in place to provide evidence of benefit and hydrometeorological institutional outlooks warming to the use of probabilistic forecasts, the uptake over the last decade has been rapid and sustained. However, there are many further challenges that lie ahead to improve the science supporting flood early warning and to ensure that appropriate decisions are made to maximise flood preparedness.

  16. Flood characteristics of Oklahoma streams techniques for calculating magnitude and frequency of floods in Oklahoma, with compilations of flood data through 1971

    USGS Publications Warehouse

    Sauer, Vernon B.

    1974-01-01

    The 2-, 5-, 10-, 25-, 50-, and 100-year recurrence interval floods are related to basin and climatic parameters for natural streams in Oklahoma by multiple regression techniques through the mathematical model, Qx=aAbScPd,where Qx is peak discharge for recurrence interval x, A is contributing drainage area, S is main channel slope, P is mean annual precipitation, and a, b, c, and d are regression constants and coefficients. One equation for each recurrence interval applies statewide for all natural streams of less than 2,500 mil (6,500 km2), except where manmade works, such as dams, flood-detention structures, levees, channelization, and urban development, appreciably affect flood runoff. The equations can be used to estimate flood frequency of a stream at an ungaged site if drainage area size, main channel slope, and mean annual precipitation are known. At or near gaged sites, a weighted average of the regression results and the gaging station data is recommended.Individual relations of flood magnitude to contributing drainage area are given for all or parts of the main stems of the Arkansas, Salt Fork Arkansas, Cimarron, North Canadian, Canadian, Washita, North Fork Red, and Red Rivers. Parts of some of these streams, and all of the Neosho and Verdigris Rivers are not included because the effects of. major regulation from large reservoirs cannot be evaluated within the scope of the report. Graphical relations of maximum floods of record for eastern and western Oklahoma provide a guide to maximum probable floods. A random sampling of the seasonal occurrence of floods indicated about two-thirds of all annual floods in Oklahoma occur during. April through July. Less than one-half of one percent of annual floods occur in December. A compilation of flood records at all gaging sites in Oklahoma and some selected sites in adjacent States is given in an appendix. Basin and climatic parameters and log-Pearson Type III frequency data and statistics are given for most

  17. A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative using NMR spectroscopy techniques.

    PubMed

    Hamzah, Rosniza; Bakar, Mohamad Abu; Khairuddean, Melati; Mohammed, Issam Ahmed; Adnan, Rohana

    2012-09-12

    A structural study of epoxidized natural rubber (ENR-50) and its cyclic dithiocarbonate derivative was carried out using NMR spectroscopy techniques. The overlapping (1)H-NMR signals of ENR-50 at δ 1.56, 1.68-1.70, 2.06, 2.15-2.17 ppm were successfully assigned. In this work, the <(13)C-NMR chemical shift assignments of ENR-50 were consistent to the previously reported work. A cyclic dithiocarbonate derivative of ENR-50 was synthesized from the reaction of purified ENR-50 with carbon disulfide (CS(2)), in the presence of 4-dimethylaminopyridine (DMAP) as catalyst at reflux temperature. The cyclic dithiocarbonate formation involved the epoxide ring opening of the ENR-50. This was followed by insertion of the C-S moiety of CS(2) at the oxygen attached to the quaternary carbon and methine carbon of epoxidized isoprene unit, respectively. The bands due to the C=S and C-O were clearly observed in the FTIR spectrum while the (1)H-NMR spectrum of the derivative revealed the peak attributed to the methylene protons had split. The (13)C-NMR spectrum of the derivative further indicates two new carbon peaks arising from the >C=S and quaternary carbon of cyclic dithiocarbonate. All other (1)H- and (13)C-NMR chemical shifts of the derivative remain unchanged with respect to the ENR-50.

  18. Minor floods of 1938 in the North Atlantic States

    USGS Publications Warehouse

    ,

    1947-01-01

    approached and on a few rivers exceeded previous maxima of record. Damage was extensive throughout the storm area, especially in Burlington, N. J., where Sylvan Lake Dam failed. The highest rate of flow per unit of area measured was 88 second-feet per square mile. However, all peak discharges were exceeded during the later floods of 1938 or by the flood of September 1, 1940, which produced discharges over 1,000 second-feet per square mile in southern New Jersey. The maximum volume of direct runoff during the flood, expressed in mean depth in inches on the drainage area, was 2.1 inches. From July 17 to 25, 1938, there was an irregular series of rainstorms over the eastern seaboard that brought more than 10 inches of rain over an area of 2,000 square miles and more than 6 inches over 23,000 square miles. Nearly 14 inches of rain fell at Long Branch, N. J. Extraordinary floods occurred mainly in the smaller tributary streams. Damage to highways, homes, factories, and crops, particularly the tobacco co-op in Connecticut, was extensive. Crest discharges at 12 gaging stations exceeded those previously observed. Maximum rates of discharge varied from 601 second-feet per square mile for an area of 2.91 square miles in New Jersey to 35 second-feet per square mile for an area of 711 square miles in Connecticut. Antecedent soil moisture prior to the storm was probably normal or a little above. The maximum volume of direct runoff was 4.75 inches in Massachusetts, 5.6 inches in eastern Connecticut, 6.75 inches in the Catskill Mountain region of New York, and 4.95 inches in the Raritan River Basin of New Jersey. Infiltration indices from 0.09 .to 0.21 inch per hour were computed, such rates being within the range defined for basins in the same areas during the floods of September 1938. The flood of August 6-11, 1938, in the Catskill Mountain region of New York resulted from heavy rains with a maximum of 8 inches at two centers. Rainfall exceeded 3 inches over more than 3,000

  19. Influence of plankton metabolism and mixing depth on CO2 dynamics in an Amazon floodplain lake.

    PubMed

    Amaral, João Henrique F; Borges, Alberto V; Melack, John M; Sarmento, Hugo; Barbosa, Pedro M; Kasper, Daniele; de Melo, Michaela L; De Fex-Wolf, Daniela; da Silva, Jonismar S; Forsberg, Bruce R

    2018-07-15

    We investigated plankton metabolism and its influence on carbon dioxide (CO 2 ) dynamics in a central Amazon floodplain lake (Janauacá, 3°23' S, 60°18' W) from September 2015 to May 2016, including a period with exceptional drought. We made diel measurements of CO 2 emissions to the atmosphere with floating chambers and depth profiles of temperature and CO 2 partial pressure (pCO 2 ) at two sites with differing wind exposure and proximity to vegetated habitats. Dissolved oxygen (DO) concentrations were monitored continuously during day and night in clear and dark chambers with autonomous optical sensors to evaluate plankton metabolism. Overnight community respiration (CR), and gross primary production (GPP) rates were higher in clear chambers and positively correlated with chlorophyll-a (Chl-a). CO 2 air-water fluxes varied over 24-h periods with changes in thermal structure and metabolism. Most net daily CO 2 fluxes during low water and mid-rising water at the wind exposed site were into the lake as a result of high rates of photosynthesis. All other measurements indicated net daily release to the atmosphere. Average GPP rates (6.8gCm -2 d -1 ) were high compared with other studies in Amazon floodplain lakes. The growth of herbaceous plants on exposed sediment during an exceptional drought led to large carbon inputs when these areas were flooded, enhancing CR, pCO 2 , and CO 2 fluxes. During the period when the submerged herbaceous vegetation decayed phytoplankton abundance increased and photosynthetic uptake of CO 2 occurred. While planktonic metabolism was often autotrophic (GPP:CR>1), CO 2 out-gassing occurred during most periods investigated indicating other inputs of carbon such as sediments or soils and wetland plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Development of flood index by characterisation of flood hydrographs

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Biswa; Suman, Asadusjjaman

    2015-04-01

    In recent years the world has experienced deaths, large-scale displacement of people, billions of Euros of economic damage, mental stress and ecosystem impacts due to flooding. Global changes (climate change, population and economic growth, and urbanisation) are exacerbating the severity of flooding. The 2010 floods in Pakistan and the 2011 floods in Australia and Thailand demonstrate the need for concerted action in the face of global societal and environmental changes to strengthen resilience against flooding. Due to climatological characteristics there are catchments where flood forecasting may have a relatively limited role and flood event management may have to be trusted upon. For example, in flash flood catchments, which often may be tiny and un-gauged, flood event management often depends on approximate prediction tools such as flash flood guidance (FFG). There are catchments fed largely by flood waters coming from upstream catchments, which are un-gauged or due to data sharing issues in transboundary catchments the flow of information from upstream catchment is limited. Hydrological and hydraulic modelling of these downstream catchments will never be sufficient to provide any required forecasting lead time and alternative tools to support flood event management will be required. In FFG, or similar approaches, the primary motif is to provide guidance by synthesising the historical data. We follow a similar approach to characterise past flood hydrographs to determine a flood index (FI), which varies in space and time with flood magnitude and its propagation. By studying the variation of the index the pockets of high flood risk, requiring attention, can be earmarked beforehand. This approach can be very useful in flood risk management of catchments where information about hydro-meteorological variables is inadequate for any forecasting system. This paper presents the development of FI and its application to several catchments including in Kentucky in the USA

  1. Spatial and Temporal Variations in the Partial Pressure and Emission of CO2 and CH4 in and Amazon Floodplain Lake

    NASA Astrophysics Data System (ADS)

    Forsberg, B. R.; Amaral, J. H.; Barbosa, P.; Kasper, D.; MacIntyre, S.; Cortes, A.; Sarmento, H.; Borges, A. V.; Melack, J. M.; Farjalla, V.

    2015-12-01

    The Amazon floodplain contains a variety of wetland environments which contribute CO2 and CH4 to the regional and global atmospheres. The partial pressure and emission of these greenhouse gases (GHGs) varies: 1) between habitats, 2) seasonally, as the characteristics these habitats changes and 3) diurnally, in response to diurnal stratification. In this study, we investigated the combined influence of these factors on the partial pressure and emission of GHGs in Lago Janauacá, a central Amazon floodplain lake (3o23' S; 60o18' O). All measurements were made between August of 2014 and April of 2015 at two different sites and in three distinct habitats: open water, flooded forest, flooded macrophytes. Concentrations of CO2 and CH4 in air were measured continuously with a cavity enhanced absorption spectrometer, Los Gatos Research´s Ultraportable Greenhouse Gas Analyzer (UGGA). Vertical profiles o pCO2 and pCH4 were measured using the UGGA connected to an electric pump and equilibrator. Diffusive surface emissions were estimated with the UGGA connected to a static floating chamber. To investigate the influence of vertical stratification and mixing on GHG partial pressure and emissions, a meteorological station and submersible sensor chain were deployed at each site. Meteorological sensors included wind speed and direction. The submersible chains included thermistors and oxygen sensors. Depth profiles of partial pressure and diffusive emissions for both CO2 and CH4 varied diurnally, seasonally and between habitats. Both pCO2 and pCH4 were consistently higher in bottom than surface waters with the largest differences occurring at high water when thermal stratification was most stable. Methane emissions and partial pressures were highest at low water while pCO2 and CO2 fluxes were highest during high water periods, with 35% of CO2 fluxes at low water being negative. The highest average surface value of pCO2 (5491 μatm), encountered during rising water, was ~3 times

  2. Selective hydrodeoxygenation of cyclic vicinal diols to cyclic alcohols over tungsten oxide-palladium catalysts.

    PubMed

    Amada, Yasushi; Ota, Nobuhiko; Tamura, Masazumi; Nakagawa, Yoshinao; Tomishige, Keiichi

    2014-08-01

    Hydrodeoxygenation of cyclic vicinal diols such as 1,4-anhydroerythritol was conducted over catalysts containing both a noble metal and a group 5-7 transition-metal oxide. The combination of Pd and WOx allowed the removal of one of the two OH groups selectively. 3-Hydroxytetrahydrofuran was obtained from 1,4-anhydroerythritol in 72 and 74% yield over WOx -Pd/C and WOx -Pd/ZrO2 , respectively. The WOx -Pd/ZrO2 catalyst was reusable without significant loss of activity if the catalyst was calcined as a method of regeneration. Characterization of WOx -Pd/C with temperature-programmed reduction, X-ray diffraction, and transmission electron microscopy/energy-dispersive X-ray spectroscopy suggested that Pd metal particles approximately 9 nm in size were formed on amorphous tungsten oxide particles. A reaction mechanism was proposed on the basis of kinetics, reaction results with tungsten oxides under an atmosphere of Ar, and density functional theory calculations. A tetravalent tungsten center (W(IV) ) was formed by reduction of WO3 with the Pd catalyst and H2 , and this center served as the reductant for partial hydrodeoxygenation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Flood of April 2-4, 2005, Delaware River Main Stem from Port Jervis, New York, to Cinnaminson, New Jersey

    USGS Publications Warehouse

    Reed, Timothy J.; Protz, Amy R.

    2007-01-01

    Several conditions, including saturated soils, snowmelt, and heavy rains, caused flooding on the Delaware River on April 2-4, 2005. The event occurred 50 years after the historic 1955 Delaware River flood, and only six months after a smaller but equally notable flood on September 18-19, 2004. The Delaware River flooded for a third time in 22 months in June, 2006. The peak flows and elevations of the 2005 flood were similar to those on June 28-29, 2006. The following report describes the April 2-4, 2005, Delaware River flood, and includes the associated precipitation amounts, peak flows and elevations, and flood frequencies. A comparison of historic Delaware River floods also is presented. The appendix of the report contains detailed information for 156 high-water mark elevations obtained on the main stem of the Delaware River from Port Jervis, New York, to Cinnaminson, New Jersey, for the April 2-4, 2005 flood. The April 2005 event originated with frequent precipitation from December 2004 to March 2005 which saturated the soils in the upper Delaware River Basin. The cold winter froze some of the soils and left a snowpack at higher elevations equivalent to as much as 10 inches of water in some areas. Temperatures rose above freezing, and heavy rains averaging 1 to 3 inches on March 27, 2005, melted some of the snow, causing the Delaware River to rise; however, peak elevations were still 2 to 7 feet below flood stage. Another round of rainfall averaging 2-5 inches in the basin on April 2, 2005, melted the remaining snowpack. The combination of snowmelt and runoff from the two storms produced flood conditions along the main stem of the Delaware River. Flood frequencies of flows at selected tributaries to the Delaware River did not exceed the 35-year recurrence intervals. The Delaware River main stem peak-flow recurrence intervals ranged from 40 to 80 years; flows were approximately 20 percent less than those from the peak of record in 1955. Peak elevations exceeded

  4. Lateral and vertical facies relationships of bedforms deposited by aggrading supercritical flows: From cyclic steps to humpback dunes

    NASA Astrophysics Data System (ADS)

    Lang, Jörg; Winsemann, Jutta

    2013-10-01

    The preservation of bedforms related to supercritical flows and hydraulic jumps is commonly considered to be rare in the geologic record, although these bedforms are known from a variety of depositional environments. This field-based study presents a detailed analysis of the sedimentary facies and stacking pattern of deposits of cyclic steps, chutes-and-pools, antidunes and humpback dunes from three-dimensional outcrops. The well exposed Middle Pleistocene successions from northern Germany comprise glacilacustrine ice-contact subaqueous fan and glacial lake-outburst flood deposits. The studied successions give new insights into the depositional architecture of bedforms related to supercritical flows and may serve as an analogue for other high-energy depositional environments such as fluvial settings, coarse-grained deltas or turbidite systems. Deposits of cyclic steps occur within the glacial lake-outburst flood succession and are characterised by lenticular scours infilled by gently to steeply dipping backsets. Cyclic steps formed due to acceleration and flow thinning when the glacial lake-outburst flood spilled over a push-moraine ridge. These bedforms are commonly laterally and vertically truncated and alternate with deposits of chutes-and-pools and antidunes. The subaqueous fan successions are dominated by laterally extensive sinusoidal waveforms, which are interpreted as deposits of aggrading stationary antidunes, which require quasi-steady flows at the lower limit of the supercritical flow stage and high rates of sedimentation. Humpback dunes are characterised by downflow divergent cross-stratification, displaying differentiation into topsets, foresets and bottomsets, and are interpreted as deposited at the transition from subcritical to supercritical flow conditions or vice versa. Gradual lateral and vertical transitions between humpback dunes and antidune deposits are very common. The absence of planar-parallel stratification in all studied successions

  5. Enhanced CO2 adsorptive performance of PEI/SBA-15 adsorbent using phosphate ester based surfactants as additives.

    PubMed

    Cheng, Dandan; Liu, Yue; Wang, Haiqiang; Weng, Xiaole; Wu, Zhongbiao

    2015-12-01

    In this study, a series of polyetherimide/SBA-15: 2-D hexagonal P6mm, Santa Barbara USA (PEI/SBA-15) adsorbents modified by phosphoric ester based surfactants (including tri(2-ethylhexyl) phosphate (TEP), bis(2-ethylhexyl) phosphate (BEP) and trimethyl phosphonoacetate (TMPA)) were prepared for CO2 adsorption. Experimental results indicated that the addition of TEP and BEP had positive effects on CO2 adsorption capacity over PEI/SBA-15. In particular, the CO2 adsorption amount could be improved by around 20% for 45PEI-5TEP/SBA-15 compared to the additive-free adsorbent. This could be attributed to the decrease of CO2 diffusion resistance in the PEI bulk network due to the interactions between TEP and loaded PEI molecules, which was further confirmed by adsorption kinetics results. In addition, it was also found that the cyclic performance of the TEP-modified adsorbent was better than the surfactant-free one. This could be due to two main reasons, based on the results of in situ DRIFT and TG-DSC tests. First and more importantly, adsorbed CO2 species could be desorbed more rapidly over TEP-modified adsorbent during the thermal desorption process. Furthermore, the enhanced thermal stability after TEP addition ensured lower degradation of amine groups during adsorption/desorption cycles. Copyright © 2015. Published by Elsevier B.V.

  6. Exceptionally High Efficient Co-Co2P@N, P-Codoped Carbon Hybrid Catalyst for Visible Light-Driven CO2-to-CO Conversion.

    PubMed

    Fu, Wen Gan

    2018-05-02

    Artificial photosynthesis has attracted wide attention, particularly the development of efficient solar light-driven methods to reduce CO2 to form energy-rich carbon-based products. Because CO2 reduction is an uphill process with a large energy barrier, suitable catalysts are necessary to achieve this transformation. In addition, CO2 adsorption on a catalyst and proton transfer to CO2 are two important factors for the conversion reaction,and catalysts with high surface area and more active sites are required to improve the efficiency of CO2 reduction. Here, we report a visible light-driven system for CO2-to-CO conversion that consists of a heterogeneous hybrid catalyst of Co and Co2P nanoparticles embedded in carbon nanolayers codoped with N and P (Co-Co2P@NPC) and a homogeneous Ru(II)-based complex photosensitizer. The average generation rate of CO of the system was up to 35,000 μmol h-1 g-1 with selectivity of 79.1% in 3 h. Linear CO production at an exceptionally high rate of 63,000 μmol h-1 g-1 was observed in the first hour of reaction. Inspired by this highly active catalyst, we also synthesized Co@NC and Co2P@NPC materials and explored their structure, morphology, and catalytic properties for CO2 photoreduction. The results showed that the nanoparticle size, partially adsorbed H2O molecules on the catalyst surface, and the hybrid nature of the systems influenced their photocatalytic CO2 reduction performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Use of documentary sources on past flood events for flood risk management and land planning

    NASA Astrophysics Data System (ADS)

    Cœur, Denis; Lang, Michel

    2008-09-01

    The knowledge of past catastrophic events can improve flood risk mitigation policy, with a better awareness against risk. As such historical information is usually available in Europe for the past five centuries, historians are able to understand how past society dealt with flood risk, and hydrologists can include information on past floods into an adapted probabilistic framework. In France, Flood Risk Mitigation Maps are based either on the largest historical known flood event or on the 100-year flood event if it is greater. Two actions can be suggested in terms of promoting the use of historical information for flood risk management: (1) the development of a regional flood data base, with both historical and current data, in order to get a good feedback on recent events and to improve the flood risk education and awareness; (2) the commitment to keep a persistent/perennial management of a reference network of hydrometeorological observations for climate change studies.

  8. Flood of April 2007 and Flood-Frequency Estimates at Streamflow-Gaging Stations in Western Connecticut

    USGS Publications Warehouse

    Ahearn, Elizabeth A.

    2009-01-01

    A spring nor'easter affected the East Coast of the United States from April 15 to 18, 2007. In Connecticut, rainfall varied from 3 inches to more than 7 inches. The combined effects of heavy rainfall over a short duration, high winds, and high tides led to widespread flooding, storm damage, power outages, evacuations, and disruptions to traffic and commerce. The storm caused at least 18 fatalities (none in Connecticut). A Presidential Disaster Declaration was issued on May 11, 2007, for two counties in western Connecticut - Fairfield and Litchfield. This report documents hydrologic and meteorologic aspects of the April 2007 flood and includes estimates of the magnitude of the peak discharges and peak stages during the flood at 28 streamflow-gaging stations in western Connecticut. These data were used to perform flood-frequency analyses. Flood-frequency estimates provided in this report are expressed in terms of exceedance probabilities (the probability of a flood reaching or exceeding a particular magnitude in any year). Flood-frequency estimates for the 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, and 0.002 exceedance probabilities (also expressed as 50-, 20-, 10-, 4-, 2-, 1-, and 0.2- percent exceedance probability, respectively) were computed for 24 of the 28 streamflow-gaging stations. Exceedance probabilities can further be expressed in terms of recurrence intervals (2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence interval, respectively). Flood-frequency estimates computed in this study were compared to the flood-frequency estimates used to derive the water-surface profiles in previously published Federal Emergency Management Agency (FEMA) Flood Insurance Studies. The estimates in this report update and supersede previously published flood-frequency estimates for streamflowgaging stations in Connecticut by incorporating additional years of annual peak discharges, including the peaks for the April 2007 flood. In the southwest coastal region of Connecticut, the

  9. Temporal clustering of floods in Germany: Do flood-rich and flood-poor periods exist?

    NASA Astrophysics Data System (ADS)

    Merz, Bruno; Nguyen, Viet Dung; Vorogushyn, Sergiy

    2016-10-01

    The repeated occurrence of exceptional floods within a few years, such as the Rhine floods in 1993 and 1995 and the Elbe and Danube floods in 2002 and 2013, suggests that floods in Central Europe may be organized in flood-rich and flood-poor periods. This hypothesis is studied by testing the significance of temporal clustering in flood occurrence (peak-over-threshold) time series for 68 catchments across Germany for the period 1932-2005. To assess the robustness of the results, different methods are used: Firstly, the index of dispersion, which quantifies the departure from a homogeneous Poisson process, is investigated. Further, the time-variation of the flood occurrence rate is derived by non-parametric kernel implementation and the significance of clustering is evaluated via parametric and non-parametric tests. Although the methods give consistent overall results, the specific results differ considerably. Hence, we recommend applying different methods when investigating flood clustering. For flood estimation and risk management, it is of relevance to understand whether clustering changes with flood severity and time scale. To this end, clustering is assessed for different thresholds and time scales. It is found that the majority of catchments show temporal clustering at the 5% significance level for low thresholds and time scales of one to a few years. However, clustering decreases substantially with increasing threshold and time scale. We hypothesize that flood clustering in Germany is mainly caused by catchment memory effects along with intra- to inter-annual climate variability, and that decadal climate variability plays a minor role.

  10. Cyclic Voltammetry Experiment.

    ERIC Educational Resources Information Center

    Van Benschoten, James J.; And Others

    1983-01-01

    Describes a three-part experiment designed to introduce cyclic voltammetry to graduate/undergraduate students. Part 1 demonstrates formal reduction potential, redox electron transfer, diffusion coefficient, and electrochemical reversibility. Part 2 investigates electrochemical behavior of acetaminophen. Part 3 examines such experimental variables…

  11. Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil.

    PubMed

    Shimamura, Satoshi; Yamamoto, Ryo; Nakamura, Takuji; Shimada, Shinji; Komatsu, Setsuko

    2010-08-01

    Aerenchyma provides a low-resistance O(2) transport pathway that enhances plant survival during soil flooding. When in flooded soil, soybean produces aerenchyma and hypertrophic stem lenticels. The aims of this study were to investigate O(2) dynamics in stem aerenchyma and evaluate O(2) supply via stem lenticels to the roots of soybean during soil flooding. Oxygen dynamics in aerenchymatous stems were investigated using Clark-type O(2) microelectrodes, and O(2) transport to roots was evaluated using stable-isotope (18)O(2) as a tracer, for plants with shoots in air and roots in flooded sand or soil. Short-term experiments also assessed venting of CO(2) via the stem lenticels. The radial distribution of the O(2) partial pressure (pO(2)) was stable at 17 kPa in the stem aerenchyma 15 mm below the water level, but rapidly declined to 8 kPa at 200-300 microm inside the stele. Complete submergence of the hypertrophic lenticels at the stem base, with the remainder of the shoot still in air, resulted in gradual declines in pO(2) in stem aerenchyma from 17.5 to 7.6 kPa at 13 mm below the water level, and from 14.7 to 6.1 kPa at 51 mm below the water level. Subsequently, re-exposure of the lenticels to air caused pO(2) to increase again to 14-17 kPa at both positions within 10 min. After introducing (18)O(2) gas via the stem lenticels, significant (18)O(2) enrichment in water extracted from roots after 3 h was confirmed, suggesting that transported O(2) sustained root respiration. In contrast, slight (18)O(2) enrichment was detected 3 h after treatment of stems that lacked aerenchyma and lenticels. Moreover, aerenchyma accelerated venting of CO(2) from submerged tissues to the atmosphere. Hypertrophic lenticels on the stem of soybean, just above the water surface, are entry points for O(2), and these connect to aerenchyma and enable O(2) transport into roots in flooded soil. Stems that develop aerenchyma thus serve as a 'snorkel' that enables O(2) movement from air to the

  12. Flood of August 2, 1972, in the Little Maquoketa River basin, Dubuque County, Iowa

    USGS Publications Warehouse

    Heinitz, Albert J.

    1973-01-01

    Flood-peak discharges at 12 sites, basin rainfall, a description of the 1972 flood, brief accounts of other major floods in the basin, maximum flood peaks in northeastern Iowa, selected flood-frequency data, and annual floods of record at 5 sites are given.

  13. Electrochemical Reduction of CO2 to Organic Acids by a Pd-MWNTs Gas-Diffusion Electrode in Aqueous Medium

    PubMed Central

    Lu, Guang; Bian, Zhaoyong; Liu, Xin

    2013-01-01

    Pd-multiwalled carbon nanotubes (Pd-MWNTs) catalysts for the conversion of CO2 to organic acids were prepared by the ethylene glycol reduction and fully characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) technologies. The amorphous Pd particles with an average size of 5.7 nm were highly dispersed on the surface of carbon nanotubes. Functional groups of the MWNTs played a key role in the palladium deposition. The results indicated that Pd-MWNTs could transform CO2 into organic acid with high catalytic activity and CO2 could take part in the reduction reaction directly. Additionally, the electrochemical reduction of CO2 was investigated by a diaphragm electrolysis device, using a Pd-MWNTs gas-diffusion electrode as a cathode and a Ti/RuO2 net as an anode. The main products in present system were formic acid and acetic acid identified by ion chromatograph. The selectivity of the products could be achieved by reaction conditions changing. The optimum faraday efficiencies of formic and acetic acids formed on the Pd-MWNTs gas-diffusion electrode at 4 V electrode voltages under 1 atm CO2 were 34.5% and 52.3%, respectively. PMID:24453849

  14. An Experimental System for a Global Flood Prediction: From Satellite Precipitation Data to a Flood Inundation Map

    NASA Technical Reports Server (NTRS)

    Adler, Robert

    2007-01-01

    Floods impact more people globally than any other type of natural disaster. It has been established by experience that the most effective means to reduce the property damage and life loss caused by floods is the development of flood early warning systems. However, advances for such a system have been constrained by the difficulty in estimating rainfall continuously over space (catchment-. national-, continental-. or even global-scale areas) and time (hourly to daily). Particularly, insufficient in situ data, long delay in data transmission and absence of real-time data sharing agreements in many trans-boundary basins hamper the development of a real-time system at the regional to global scale. In many countries around the world, particularly in the tropics where rainfall and flooding co-exist in abundance, satellite-based precipitation estimation may be the best source of rainfall data for those data scarce (ungauged) areas and trans-boundary basins. Satellite remote sensing data acquired and processed in real time can now provide the space-time information on rainfall fluxes needed to monitor severe flood events around the world. This can be achieved by integrating the satellite-derived forcing data with hydrological models, which can be parameterized by a tailored geospatial database. An example that is a key to this progress is NASA's contribution to the Tropical Rainfall Measuring Mission (TRMM), launched in November 1997. Hence, in an effort to evolve toward a more hydrologically-relevant flood alert system, this talk articulates a module-structured framework for quasi-global flood potential naming, that is 'up to date' with the state of the art on satellite rainfall estimation and the improved geospatial datasets. The system is modular in design with the flexibility that permits changes in the model structure and in the choice of components. Four major components included in the system are: 1) multi-satellite precipitation estimation; 2) characterization of

  15. Flood Risk Management in Iowa through an Integrated Flood Information System

    NASA Astrophysics Data System (ADS)

    Demir, Ibrahim; Krajewski, Witold

    2013-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 1100 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert

  16. Overlap corrections for emissivity calculations of H2O-CO2-CO-N2 mixtures

    NASA Astrophysics Data System (ADS)

    Alberti, Michael; Weber, Roman; Mancini, Marco

    2018-01-01

    Calculations of total gas emissivities of gas mixtures containing several radiatively active species require corrections for band overlapping. In this paper, we generate such overlap correction charts for H2O-CO2-N2, H2O-CO-N2, and CO2-CO-N2 mixtures. These charts are applicable in the 0.1-40 bar total pressure range and in the 500 K-2500 K temperature range. For H2O-CO2-N2 mixtures, differences between our charts and Hottel's graphs as well as models of Leckner and Modak are highlighted and analyzed.

  17. Are we preventing flood damage eco-efficiently? An integrated method applied to post-disaster emergency actions.

    PubMed

    Petit-Boix, Anna; Arahuetes, Ana; Josa, Alejandro; Rieradevall, Joan; Gabarrell, Xavier

    2017-02-15

    Flood damage results in economic and environmental losses in the society, but flood prevention also entails an initial investment in infrastructure. This study presents an integrated eco-efficiency approach for assessing flood prevention and avoided damage. We focused on ephemeral streams in the Maresme region (Catalonia, Spain), which is an urbanized area affected by damaging torrential events. Our goal was to determine the feasibility of post-disaster emergency actions implemented after a major event through an integrated hydrologic, environmental and economic approach. Life cycle assessment (LCA) and costing (LCC) were used to determine the eco-efficiency of these actions, and their net impact and payback were calculated by integrating avoided flood damage. Results showed that the actions effectively reduced damage generation when compared to the registered water flows and rainfall intensities. The eco-efficiency of the emergency actions resulted in 1.2kgCO 2 eq. per invested euro. When integrating the avoided damage into the initial investment, negative net impacts were obtained (e.g., -5.2E+05€ and -2.9E+04kgCO 2 eq. per event), which suggests that these interventions contributed with environmental and economic benefits to the society. The economic investment was recovered in two years, whereas the design could be improved to reduce their environmental footprint, which is recovered in 25years. Our method and results highlight the effects of integrating the environmental and economic consequences of decisions at an urban scale and might help the administration and insurance companies in the design of prevention plans and climate change adaptation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. iCVD Cyclic Polysiloxane and Polysilazane as Nanoscale Thin-Film Electrolyte: Synthesis and Properties.

    PubMed

    Chen, Nan; Reeja-Jayan, B; Liu, Andong; Lau, Jonathan; Dunn, Bruce; Gleason, Karen K

    2016-03-01

    A group of crosslinked cyclic siloxane (Si-O) and silazane (Si-N) polymers are synthesized via solvent-free initiated chemical vapor deposition (iCVD). Notably, this is the first report of cyclic polysilazanes synthesized via the gas-phase iCVD method. The deposited nanoscale thin films are thermally stable and chemically inert. By iCVD, they can uniformly and conformally cover nonplanar surfaces having complex geometry. Although polysiloxanes are traditionally utilized as dielectric materials and insulators, our research shows these cyclic organosilicon polymers can conduct lithium ions (Li(+) ) at room temperature. The conformal coating and the room temperature ionic conductivity make these cyclic organosilicon polymers attractive for use as thin-film electrolytes in solid-state batteries. Also, their synthesis process and properties have been systemically studied and discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Floods - Multiple Languages

    MedlinePlus

    ... Arabic (العربية) Expand Section Floods and Flash Flooding - English PDF Floods and Flash Flooding - العربية (Arabic) PDF ... Bosnian (bosanski) Expand Section Floods and Flash Flooding - English PDF Floods and Flash Flooding - bosanski (Bosnian) PDF ...

  20. Geochemical monitoring for potential environmental impacts of geologic sequestration of CO2

    USGS Publications Warehouse

    Kharaka, Yousif K.; Cole, David R.; Thordsen, James J.; Gans, Kathleen D.; Thomas, Randal B.

    2013-01-01

    Carbon dioxide sequestration is now considered an important component of the portfolio of options for reducing greenhouse gas emissions to stabilize their atmospheric levels at values that would limit global temperature increases to the target of 2 °C by the end of the century (Pacala and Socolow 2004; IPCC 2005, 2007; Benson and Cook 2005; Benson and Cole 2008; IEA 2012; Romanak et al. 2013). Increased anthropogenic emissions of CO2 have raised its atmospheric concentrations from about 280 ppmv during pre-industrial times to ~400 ppmv today, and based on several defined scenarios, CO2 concentrations are projected to increase to values as high as 1100 ppmv by 2100 (White et al. 2003; IPCC 2005, 2007; EIA 2012; Global CCS Institute 2012). An atmospheric CO2 concentration of 450 ppmv is generally the accepted level that is needed to limit global temperature increases to the target of 2 °C by the end of the century. This temperature limit likely would moderate the adverse effects related to climate change that could include sea-level rise from the melting of alpine glaciers and continental ice sheets and from the ocean warming; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; and changes in the amount, timing, and distribution of rain, snow, and runoff (IPCC 2007; Sundquist et al. 2009; IEA 2012). Rising atmospheric CO2 concentrations are also increasing the amount of CO2 dissolved in ocean water lowering its pH from 8.1 to 8.0, with potentially disruptive effects on coral reefs, plankton and marine ecosystems (Adams and Caldeira 2008; Schrag 2009; Sundquist et al. 2009). Sedimentary basins in general and deep saline aquifers in particular are being investigated as possible repositories for the large volumes of anthropogenic CO2 that must be sequestered to mitigate global warming and related climate changes (Hitchon 1996; Benson and Cole 2008; Verma and Warwick 2011).

  1. Sample environment for in situ synchrotron XRD measurements for CO2 interaction with subsurface materials

    NASA Astrophysics Data System (ADS)

    Elbakhshwan, M.; Gill, S.; Weidner, R.; Ecker, L.

    2017-12-01

    Sequestration of CO2 in geological formations requires a deep understanding of its interaction with the cement-casing components in the depleted oil and gas wells. Portland cement is used to seal the wellbores; however it tends to interact with the CO2. Therefore it is critical to investigate the wellbore integrity over long term exposure to CO2. Studies showed that, CO2 leakage is due to the flow through the casing-cement microannulus, cement-cement fractures, or the cement-caprock interface. The objective of this work is to gain a better understanding of the dissolution process of the cement-casing in the CO2 flow channels alongside with the carbonation reactions at the interfaces using XRF, XANES and X-ray tomography techniques. In this study, a synthetic wellbore system, consisting of cement with an embedded rectangular length of steel casing that had grooves to accommodate fluid flow, was used to investigate the casing-cement microannulus through core-flood experiments. The objective of this work is to gain a better understanding of the dissolution process of the cement-casing in the CO2 flow channels alongside with the carbonation reactions at the interfaces using a sample environment designed and built for in situ X-ray diffraction in the National Synchrotron Light Source II (NSLS II). The formation of carbonate phases at cement -fluid and cement-steel/fluid interfaces will be monitored in real time. Samples may be exposed to super critical CO2 at pressures above 1100 psi and temperatures around 50°C. The reaction cell is built from hastealloy to provide corrosion resistance, while the experimental temperature and pressure are controlled with thermocouples and pressure vessel.

  2. Detection of CO2 leakage by the surface-soil CO2-concentration monitoring (SCM) system in a small scale CO2 release test

    NASA Astrophysics Data System (ADS)

    Chae, Gitak; Yu, Soonyoung; Sung, Ki-Sung; Choi, Byoung-Young; Park, Jinyoung; Han, Raehee; Kim, Jeong-Chan; Park, Kwon Gyu

    2015-04-01

    Monitoring of CO2 release through the ground surface is essential to testify the safety of CO2 storage projects. We conducted a feasibility study of the multi-channel surface-soil CO2-concentration monitoring (SCM) system as a soil CO2 monitoring tool with a small scale injection. In the system, chambers are attached onto the ground surface, and NDIR sensors installed in each chamber detect CO2 in soil gas released through the soil surface. Before injection, the background CO2 concentrations were measured. They showed the distinct diurnal variation, and were positively related with relative humidity, but negatively with temperature. The negative relation of CO2 measurements with temperature and the low CO2 concentrations during the day imply that CO2 depends on respiration. The daily variation of CO2 concentrations was damped with precipitation, which can be explained by dissolution of CO2 and gas release out of pores through the ground surface with recharge. For the injection test, 4.2 kg of CO2 was injected 1 m below the ground for about 30 minutes. In result, CO2 concentrations increased in all five chambers, which were located less than 2.5 m of distance from an injection point. The Chamber 1, which is closest to the injection point, showed the largest increase of CO2 concentrations; while Chamber 2, 3, and 4 showed the peak which is 2 times higher than the average of background CO2. The CO2 concentrations increased back after decreasing from the peak around 4 hours after the injection ended in Chamber 2, 4, and 5, which indicated that CO2 concentrations seem to be recovered to the background around 4 hours after the injection ended. To determine the leakage, the data in Chamber 2 and 5, which had low increase rates in the CO2 injection test, were used for statistical analysis. The result shows that the coefficient of variation (CV) of CO2 measurements for 30 minutes is efficient to determine a leakage signal, with reflecting the abnormal change in CO2

  3. Distillation Column Flooding Predictor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillationmore » columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  4. U.S./China Bilateral Symposium on Extraordinary Floods

    NASA Astrophysics Data System (ADS)

    Kirby, W.

    Accurate appraisal of the risk of extreme floods has long been of concern to hydrologists and water resources managers in both the United States and China. In order to exchange information, assess current developments, and discuss further needs in extreme flood analysis, the U.S. Geological Survey (USGS) and the Bureau of Hydrology of the Ministry of Water Resources and Electric Power of the People's Republic of China (PRC) held the Bilateral Symposium on the Analysis of Extraordinary Flood Events, October 14-18, 1985, in Nanjing, China. Co-convenors of the symposium were Marshall E. Moss (USGS) and Hua Shiqian (Nanjing Research Institute of Hydrology). Liang Ruiju (East China Technical University of Water Resources) was executive secretary of the organizing committee. Participants included 23 U.S. delegates, 36 Chinese delegates, and five guests from other countries. Of the U.S. delegates, 13 were from federal agencies, seven were from universities, and three were private consultants. The U.S. National Science Foundation gave financial support to the nonfederal U.S. delegates. Major topics covered in the 52 papers presented included detection of historical floods and evaluation of the uncertainties in their peak discharges and times of occurrence,frequency analysis and design flood determination in the presence of extraordinary floods and historic floods, anduse of storm data in determining design storms and design floods, The symposium was followed by a 6-day study tour in central China, during which laboratories, field activities, and offices of various water resources agencies were visited and sites of documented historic floods on the Yangtze River and its tributaries were examined.

  5. Quantification of uncertainty in flood risk assessment for flood protection planning: a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Dittes, Beatrice; Špačková, Olga; Ebrahimian, Negin; Kaiser, Maria; Rieger, Wolfgang; Disse, Markus; Straub, Daniel

    2017-04-01

    Flood risk estimates are subject to significant uncertainties, e.g. due to limited records of historic flood events, uncertainty in flood modeling, uncertain impact of climate change or uncertainty in the exposure and loss estimates. In traditional design of flood protection systems, these uncertainties are typically just accounted for implicitly, based on engineering judgment. In the AdaptRisk project, we develop a fully quantitative framework for planning of flood protection systems under current and future uncertainties using quantitative pre-posterior Bayesian decision analysis. In this contribution, we focus on the quantification of the uncertainties and study their relative influence on the flood risk estimate and on the planning of flood protection systems. The following uncertainty components are included using a Bayesian approach: 1) inherent and statistical (i.e. limited record length) uncertainty; 2) climate uncertainty that can be learned from an ensemble of GCM-RCM models; 3) estimates of climate uncertainty components not covered in 2), such as bias correction, incomplete ensemble, local specifics not captured by the GCM-RCM models; 4) uncertainty in the inundation modelling; 5) uncertainty in damage estimation. We also investigate how these uncertainties are possibly reduced in the future when new evidence - such as new climate models, observed extreme events, and socio-economic data - becomes available. Finally, we look into how this new evidence influences the risk assessment and effectivity of flood protection systems. We demonstrate our methodology for a pre-alpine catchment in southern Germany: the Mangfall catchment in Bavaria that includes the city of Rosenheim, which suffered significant losses during the 2013 flood event.

  6. Different CO2 absorbents-modified SBA-15 sorbent for highly selective CO2 capture

    NASA Astrophysics Data System (ADS)

    Liu, Xiuwu; Zhai, Xinru; Liu, Dongyang; Sun, Yan

    2017-05-01

    Different CO2 absorbents-modified SBA-15 materials are used as CO2 sorbent to improve the selectivity of CH4/CO2 separation. The SBA-15 sorbents modified by physical CO2 absorbents are very limited to increasing CO2 adsorption and present poor selectivity. However, the SBA-15 sorbents modified by chemical CO2 absorbents increase CO2 adsorption capacity obviously. The separation coefficients of CO2/CH4 increase in this case. The adsorption and regeneration properties of the SBA-15 sorbents modified by TEA, MDEA and DIPA have been compared. The SBA-15 modified by triethanolamine (TEA) presents better CO2/CH4 separation performance than the materials modified by other CO2 absorbents.

  7. Accurate ab initio Quartic Force Fields of Cyclic and Bent HC2N Isomers

    NASA Technical Reports Server (NTRS)

    Inostroza, Natalia; Huang, Xinchuan; Lee, Timothy J.

    2012-01-01

    Highly correlated ab initio quartic force field (QFFs) are used to calculate the equilibrium structures and predict the spectroscopic parameters of three HC2N isomers. Specifically, the ground state quasilinear triplet and the lowest cyclic and bent singlet isomers are included in the present study. Extensive treatment of correlation effects were included using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, denoted CCSD(T). Dunning s correlation-consistent basis sets cc-pVXZ, X=3,4,5, were used, and a three-point formula for extrapolation to the one-particle basis set limit was used. Core-correlation and scalar relativistic corrections were also included to yield highly accurate QFFs. The QFFs were used together with second-order perturbation theory (with proper treatment of Fermi resonances) and variational methods to solve the nuclear Schr dinger equation. The quasilinear nature of the triplet isomer is problematic, and it is concluded that a QFF is not adequate to describe properly all of the fundamental vibrational frequencies and spectroscopic constants (though some constants not dependent on the bending motion are well reproduced by perturbation theory). On the other hand, this procedure (a QFF together with either perturbation theory or variational methods) leads to highly accurate fundamental vibrational frequencies and spectroscopic constants for the cyclic and bent singlet isomers of HC2N. All three isomers possess significant dipole moments, 3.05D, 3.06D, and 1.71D, for the quasilinear triplet, the cyclic singlet, and the bent singlet isomers, respectively. It is concluded that the spectroscopic constants determined for the cyclic and bent singlet isomers are the most accurate available, and it is hoped that these will be useful in the interpretation of high-resolution astronomical observations or laboratory experiments.

  8. Role of Biotic and Abiotic Processes on Soil CO2 Dynamics in the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Risk, D. A.; Macintyre, C. M.; Lee, C.; Cary, C.; Shanhun, F.; Almond, P. C.

    2016-12-01

    In the harsh conditions of the Antarctic Dry Valleys, microbial activity has been recorded via measurements of soil carbon dioxide (CO2) concentration and surface efflux. However, high temporal resolution studies in the Dry Valleys have also shown that abiotic solubility-driven processes can strongly influence (and perhaps even dominate) the CO2 dynamics in these low flux environments and suggests that biological activity may be lower than previously thought. In this study, we aim to improve our understanding of CO2 dynamics (biotic and abiotic) in Antarctic Dry Valley soils using long-term automated measurements of soil CO2 surface flux and soil profile concentration at several sites, often at sub-diel frequency. We hypothesize that soil CO2 variations are driven primarily by environmental factors affecting CO2 solubility in soil solution, mainly temperature, and that these processes may even overprint biologic production in representative Dry Valley soils. Monitoring of all sites revealed only one likely biotic CO2 production event, lasting three weeks during the Austral summer and reaching fluxes of 0.4 µmol/m2/s. Under more typical low flux conditions (<0.10 µmol/m2/s) we observed a cyclical daily sink/source pattern consistent with CO2 solubility cycling that would not generally have been evident with normal synoptic afternoon sampling campaigns. Subsurface CO2 monitoring and a lab-controlled Antarctic soil simulation experiment confirmed that abiotic processes are capable of dominating soil CO2 variability. Diel temperature cycles crossing the freezing boundary revealed a dual abiotic cycle of solubility cycling and gas exclusion from ice formation observed only by high temporal frequency measurements (30 min). This work demonstrates a need for a numerical model to partition the dynamic abiotic processes underlying any biotic CO2 production in order to understand potential climate-change induced increases in microbial productivity in terrestrial Antarctica.

  9. CO2 blood test

    MedlinePlus

    Bicarbonate test; HCO3-; Carbon dioxide test; TCO2; Total CO2; CO2 test - serum; Acidosis - CO2; Alkalosis - CO2 ... Many medicines can interfere with blood test results. Your health ... need to stop taking any medicines before you have this test. DO ...

  10. 4D seismic monitoring of the miscible CO2 flood of Hall-Gurney Field, Kansas, U.S

    USGS Publications Warehouse

    Raef, A.E.; Miller, R.D.; Byrnes, A.P.; Harrison, W.E.

    2004-01-01

    A cost-effective, highly repeatable, 4D-optimized, single-pattern/patch seismic data-acquisition approach with several 3D data sets was used to evaluate the feasibility of imaging changes associated with the " water alternated with gas" (WAG) stage. By incorporating noninversion-based seismic-attribute analysis, the time and cost of processing and interpreting the data were reduced. A 24-ms-thick EOR-CO 2 injection interval-using an average instantaneous frequency attribute (AIF) was targeted. Changes in amplitude response related to decrease in velocity from pore-fluid replacement within this time interval were found to be lower relative to background values than in AIF analysis. Carefully color-balanced AIF-attribute maps established the overall area affected by the injected EOR-CO2.

  11. Carbon nanotube aerogel-CoS2 hybrid catalytic counter electrodes for enhanced photovoltaic performance dye-sensitized solar cells.

    PubMed

    Liu, Tao; Mai, Xianmin; Chen, Haijun; Ren, Jing; Liu, Zheting; Li, Yingxiang; Gao, Lina; Wang, Ning; Zhang, Jiaoxia; He, Hongcai; Guo, Zhanhu

    2018-03-01

    The carbon nanotube aerogel (CNA) with an ultra-low density, three-dimensional network nanostructure, superior electronic conductivity and large surface area is being widely employed as a catalytic electrode and catalytic support. Impressively, dye-sensitized solar cells (DSSCs) assembled with a CNA counter electrode (CE) achieved a maximum power conversion efficiency (PCE) of 8.28%, which exceeded that of the conventional platinum (Pt)-based DSSC (7.20%) under the same conditions. Furthermore, highly dispersed CoS 2 nanoparticles endowed with excellent intrinsic catalytic activity were hydrothermally incorporated to form a CNA-supported CoS 2 (CNA-CoS 2 ) CE, which was due to the large number of catalytically active sites and sufficient connections between CoS 2 and the CNA. The electrocatalytic ability and stability were systematically evaluated by cyclic voltammetry (CV), electrochemical impedance spectra (EIS) and Tafel polarization, which confirmed that the resultant CNA-CoS 2 hybrid CE exhibited a remarkably higher electrocatalytic activity toward I 3 - reduction, and faster ion diffusion and electron transfer than the pure CNA CE. Such cost-effective DSSCs assembled with an optimized CNA-CoS 2 CE yielded an enhanced PCE of 8.92%, comparable to that of the cell fabricated with the CNA-Pt hybrid CE reported in our published literature (9.04%). These results indicate that the CNA-CoS 2 CE can be considered as a promising candidate for Pt-free CEs used in low-cost and high-performance DSSCs.

  12. CO2 deserts: implications of existing CO2 supply limitations for carbon management.

    PubMed

    Middleton, Richard S; Clarens, Andres F; Liu, Xiaowei; Bielicki, Jeffrey M; Levine, Jonathan S

    2014-10-07

    Efforts to mitigate the impacts of climate change will require deep reductions in anthropogenic CO2 emissions on the scale of gigatonnes per year. CO2 capture and utilization and/or storage technologies are a class of approaches that can substantially reduce CO2 emissions. Even though examples of this approach, such as CO2-enhanced oil recovery, are already being practiced on a scale >0.05 Gt/year, little attention has been focused on the supply of CO2 for these projects. Here, facility-scale data newly collected by the U.S. Environmental Protection Agency was processed to produce the first comprehensive map of CO2 sources from industrial sectors currently supplying CO2 in the United States. Collectively these sources produce 0.16 Gt/year, but the data reveal the presence of large areas without access to CO2 at an industrially relevant scale (>25 kt/year). Even though some facilities with the capability to capture CO2 are not doing so and in some regions pipeline networks are being built to link CO2 sources and sinks, much of the country exists in "CO2 deserts". A life cycle analysis of the sources reveals that the predominant source of CO2, dedicated wells, has the largest carbon footprint further confounding prospects for rational carbon management strategies.

  13. Spatio-temporal propagation of Ca2+ signals by cyclic ADP-ribose in 3T3 cells stimulated via purinergic P2Y receptors

    PubMed Central

    Bruzzone, Santina; Kunerth, Svenja; Zocchi, Elena; De Flora, Antonio; Guse, Andreas H.

    2003-01-01

    The role of cyclic ADP-ribose in the amplification of subcellular and global Ca2+ signaling upon stimulation of P2Y purinergic receptors was studied in 3T3 fibroblasts. Either (1) 3T3 fibroblasts (CD38− cells), (2) 3T3 fibroblasts preloaded by incubation with extracellular cyclic ADP-ribose (cADPR), (3) 3T3 fibroblasts microinjected with ryanodine, or (4) 3T3 fibroblasts transfected to express the ADP-ribosyl cyclase CD38 (CD38+ cells) were used. Both preincubation with cADPR and CD38 expression resulted in comparable intracellular amounts of cyclic ADP-ribose (42.3 ± 5.2 and 50.5 ± 8.0 pmol/mg protein). P2Y receptor stimulation of CD38− cells yielded a small increase of intracellular Ca2+ concentration and a much higher Ca2+ signal in CD38-transfected cells, in cADPR-preloaded cells, or in cells microinjected with ryanodine. Confocal Ca2+ imaging revealed that stimulation of ryanodine receptors by cADPR or ryanodine amplified localized pacemaker Ca2+ signals with properties resembling Ca2+ quarks and triggered the propagation of such localized signals from the plasma membrane toward the internal environment, thereby initiating a global Ca2+ wave. PMID:14623867

  14. Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation

    NASA Astrophysics Data System (ADS)

    Ding, Rui; Qi, Li; Jia, Mingjun; Wang, Hongyu

    2014-01-01

    Mesoporous spinel nickel cobaltite (NiCo2O4) nanostructures were synthesized via a facile chemical deposition method coupled with a simple post-annealing process. The physicochemical properties were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. The electrocatalytic performances were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The obtained NiCo2O4 materials exhibit typical agglomerate mesoporous nanostructures with a large surface area (190.1 m2 g-1) and high mesopore volume (0.943 cm3 g-1). Remarkably, the NiCo2O4 shows much higher catalytic activity, lower overpotential, better stability and greater tolerance towards urea electro-oxidation compared to those of cobalt oxide (Co3O4) synthesized by the same procedure. The NiCo2O4 electrode delivers a current density of 136 mA cm-2 mg-1 at 0.7 V (vs. Hg/HgO) in 1 M KOH and 0.33 M urea electrolytes accompanied with a desirable stability. The impressive electrocatalytic activity is largely ascribed to the high intrinsic electronic conductivity, superior mesoporous nanostructures and rich surface Ni active species of the NiCo2O4 materials, which can largely boost the interfacial electroactive sites and charge transfer rates for urea electro-oxidation, indicating promising applications in future wastewater remediation, hydrogen production and fuel cells.Mesoporous spinel nickel cobaltite (NiCo2O4) nanostructures were synthesized via a facile chemical deposition method coupled with a simple post-annealing process. The physicochemical properties were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. The electrocatalytic performances were investigated by cyclic voltammetry

  15. New Directions for the Photocatalytic Reduction of CO2: Supramolecular, scCO2 or Biphasic Ionic Liquid-scCO2 Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grills, D.C.; Fujita, E.

    2010-09-02

    There is an urgent need for the discovery of carbon-neutral sources of energy to avoid the consequences of global warming caused by ever-increasing atmospheric CO{sub 2} levels. An attractive possibility is to use CO{sub 2} captured from industrial emissions as a feedstock for the production of useful fuels and precursors such as carbon monoxide and methanol. An active field of research to achieve this goal is the development of catalysts capable of harnessing solar energy for use in artificial photosynthetic processes for CO{sub 2} reduction. Transition-metal complexes are excellent candidates, and it has already been shown that they can bemore » used to reduce CO{sub 2} with high quantum efficiency. However, they generally suffer from poor visible light absorption, short catalyst lifetimes, and poor reaction rates. In this Perspective, the field of photocatalytic CO{sub 2} reduction is introduced, and recent developments that seek to improve the efficiency of such catalytic processes are highlighted, especially CO{sub 2} reduction with supramolecules and molecular systems in supercritical CO{sub 2} (scCO{sub 2}) or biphasic ionic liquid-scCO{sub 2} mixtures.« less

  16. CO2-Switchable Membranes Prepared by Immobilization of CO2-Breathing Microgels.

    PubMed

    Zhang, Qi; Wang, Zhenwu; Lei, Lei; Tang, Jun; Wang, Jianli; Zhu, Shiping

    2017-12-20

    Herein, we report the development of a novel CO 2 -responsive membrane system through immobilization of CO 2 -responsive microgels into commercially available microfiltration membranes using a method of dynamic adsorption. The microgels, prepared from soap-free emulsion polymerization of CO 2 -responsive monomer 2-(diethylamino)ethyl methacrylate (DEA), can be reversibly expanded and shrunken upon CO 2 /N 2 alternation. When incorporated into the membranes, this switching behavior was preserved and further led to transformation between microfiltration and ultrafiltration membranes, as indicated from the dramatic changes on water flux and BSA rejection results. This CO 2 -regulated performance switching of membranes was caused by the changes of water transportation channel, as revealed from the dynamic water contact angle tests and SEM observation. This work represents a simple yet versatile strategy for making CO 2 -responsive membranes.

  17. The cyclic oxidation resistance at 1200 C of beta-NiAl, FeAl, and CoAl alloys with selected third element additions

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Titran, R. H.

    1992-01-01

    The intermetallic compounds Beta-NiAl, FeAl, and CoAl were tested in cyclic oxidation with selected third element alloy additions. Tests in static air for 200 1-hr cycles at 1200 C indicated by specific weight change/time data and x-ray diffraction analysis that the 5 at percent alloy additions did not significantly improve the oxidation resistance over the alumina forming baseline alloys without the additions. Many of the alloy additions were actually deleterious. Ta and Nb were the only alloy additions that actually altered the nature of the oxide(s) formed and still maintained the oxidation resistance of the protective alumina scale.

  18. Effect of La-doping on the structural, morphological and electrochemical properties of LiCoO2 nanoparticles using Sol-Gel technique

    NASA Astrophysics Data System (ADS)

    Farid, Ghulam; Murtaza, Ghulam; Umair, Muhammad; Shahab Arif, Hafiz; Saad Ali, Hafiz; Muhammad, Nawaz; Ahmad, Mukhtar

    2018-05-01

    Sol-Gel auto combustion technique was used to synthesis La3+substituted LiCoO2 lithium-rich cathode materials to improve the cycling performance and rate capability. Samples with different concentration of La containing LiCo1‑xLaxO2 (with 0 ≤ x ≤ 0.20) were chemically prepared and calcined the obtained powders at 850 °C for 6 h. Various techniques for the investigation of lanthanum behaviour in LiCoO2 have been utilised, such as x-ray diffraction (XRD), Field emission scanning electron microscope (FESEM), Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Near Edge x-ray absorption spectroscopy (NEXAS), Galvanostatic charge-discharge tests and cyclic voltammetry (CV). The formation of a hexagonal lattice of the α-NaFeO2 structure of LiCoO2, having space group R-3m is confirmed by x-ray diffraction analysis. FESEM results reveal that by increasing La contents the grain growth becomes distinct, well defined and smaller grains obtained. ATR-FTIR confirms the functional bonding in the prepared samples, as well XANES spectra reveals the electronic configuration valence state, chemical bonding character and local coordination of a specific atom. Maximum discharging capacities were observed in the La-doped material which is 182.38 mAhg‑1 and 56.2 mAhg‑1 at 0.1C and 5 C respectively and on average, this is more than 5% higher as compared to the pure LiCoO2. After 5C, the discharge capacity of the doped material at 0.1C can again reach 163.83 mAhg‑1, about 89% of the discharge capacity obtained in the first cycle. When 2032 type coin cells were cycled at a constant rate, an excellent cycling performance with capacity retention by a factor of ∼2 in comparison to the pristine LiCoO2 was observed for the composite cathode containing 4.0 mol% La. This reveals the structural stability induced by La doping. Remarkable improvement in reversibility and stability of the La-doped electrodes shown by cyclic voltammetry (CV). These

  19. trans-Methylpyridine cyclen versus cross-bridged trans-methylpyridine cyclen. Synthesis, acid-base and metal complexation studies (metal = Co2+, Cu2+, and Zn2+).

    PubMed

    Bernier, Nicolas; Costa, Judite; Delgado, Rita; Félix, Vítor; Royal, Guy; Tripier, Raphaël

    2011-05-07

    The synthesis of the cross-bridged cyclen CRpy(2) {4,10-bis((pyridin-2-yl)methyl)-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane}, a constrained analogue of the previously described trans-methylpyridine cyclen Cpy(2) is reported. The additional ethylene bridge confers to CRpy(2) proton-sponge type behaviour which was explored by NMR and potentiometric studies. Transition metal complexes have been synthesized (by complexation of both ligands with Co(2+), Cu(2+) and Zn(2+)) and characterized in solution and in the solid state. The single crystal X-ray structures of [CoCpy(2)](2+), [CuCpy(2)](2+) and [ZnCpy(2)](2+) complexes were determined. Stability constants of the complexes, including those of the cross-bridged derivative, were determined using potentiometric titration data and the kinetic inertness of the [CuCRpy(2)](2+) complex in an acidic medium (half-life values) was evaluated by spectrophotometry. The pre-organized structure of the cross-bridged ligand imposes an additional strain for the complexation leading to complexes with smaller thermodynamic stability in comparison with the related non-bridged ligand. The electrochemical study involving cyclic voltammetry underlines the importance of the ethylene cross-bridge on the redox properties of the transition metal complexes.

  20. The Importance of Studying Past Extreme Floods to Prepare for Uncertain Future Extremes

    NASA Astrophysics Data System (ADS)

    Burges, S. J.

    2016-12-01

    Hoyt and Langbein, 1955 in their book `Floods' wrote: " ..meteorologic and hydrologic conditions will combine to produce superfloods of unprecedented magnitude. We have every reason to believe that in most rivers past floods may not be an accurate measure of ultimate flood potentialities. It is this superflood with which we are always most concerned". I provide several examples to offer some historical perspective on assessing extreme floods. In one example, flooding in the Miami Valley, OH in 1913 claimed 350 lives. The engineering and socio-economic challenges facing the Morgan Engineering Co in how to mitigate against future flood damage and loss of life when limited information was available provide guidance about ways to face an uncertain hydroclimate future, particularly one of a changed climate. A second example forces us to examine mixed flood populations and illustrates the huge uncertainty in assigning flood magnitude and exceedance probability to extreme floods in such cases. There is large uncertainty in flood frequency estimates; knowledge of the total flood hydrograph, not the peak flood flow rate alone, is what is needed for hazard mitigation assessment or design. Some challenges in estimating the complete flood hydrograph in an uncertain future climate, including demands on hydrologic models and their inputs, are addressed.