Science.gov

Sample records for cyclic compressive loading

  1. Cyclic Compressive Loading Facilitates Recovery after Eccentric Exercise

    PubMed Central

    BUTTERFIELD, TIMOTHY A.; ZHAO, YI; AGARWAL, SUDHA; HAQ, FURQAN; BEST, THOMAS M.

    2016-01-01

    Purpose To assess the biologic basis of massage therapies, we developed an experimental approach to mimic Swedish massage and evaluate this approach on recovery from eccentric exercise-induced muscle damage using a well-controlled animal model. Methods Tibialis anterior muscles of six New Zealand White rabbits were subjected to one bout of damaging, eccentric contractions. One muscle was immediately subjected to cyclic compressive loads, and the contralateral served as the exercised control. Results We found that commencing 30 min of cyclic compressive loading to the muscle, immediately after a bout of eccentric exercise, facilitated recovery of function and attenuated leukocyte infiltration. In addition, fiber necrosis and wet weight of the tissue were also reduced by compressive loading. Conclusion We conclude that subjecting muscle to compressive loads immediately after exercise leads to an enhanced recovery of muscle function and attenuation of the damaging effects of inflammation in the rabbit model. Although these observations suggest that skeletal muscle responds to cyclic compressive forces similar to those generated by clinical approaches, such as therapeutic massage, further research is needed to assess the translational efficacy of these findings. PMID:18580410

  2. Investigation of Cyclic Deformation and Fatigue of Polycrystalline Cu under Pure Compression Cyclic Loading Conditions

    NASA Astrophysics Data System (ADS)

    Hsu, Tzu-Yin Jean

    It is commonly accepted that fatigue crack is initiated under tensile fatigue stresses. However, practical examples demonstrate that cracks may also initiate under pure compressive fluctuating loads such as the failures observed in aircraft landing gear frames. However, the mechanism of such failures is rarely investigated. Furthermore, knowledge on cyclic deformation response under pure compressive fatigue condition is also very limited or non-existent. Our recent work already verified that fatigue cracks may nucleate from stress concentration sites under pure compression fatigue, but whether or not a form of stress concentration is always needed to initiate a crack under pure compression fatigue remains uncertain. In this study, compression fatigue tests under different peak stresses were carried out on smooth bars of fully annealed OFHC Copper. The purpose of these tests is to investigate not only the cyclic deformation response but also the possibility of crack nucleation without the stress concentrator. Results showed that overall the cyclic stress-strain response and microstructural evolution of OFHC Copper under pure compression fatigue exhibits rather dissimilar behaviour compared to those under symmetrical fatigue. The specimens hardened rapidly within 10 cycles under pure compression fatigue unlike the gradual cyclic hardening behaviour in symmetrical fatigue with the same peak stress amplitude. Compressive cyclic creep behaviour was also observed under the same testing conditions. Moreover, unlike conventional tension-compression fatigue, only moderate slip activity was detectable on the surface instead of typical PSB features detected from TEM observations. The surface observations has revealed that surface slip bands did not increase in number nor did they become more pronounced in height with increasing number of cycles. In addition, surface roughening by grain boundary extrusion was detected to become more severe as the cycling progressed. Therefore

  3. Investigation of Cyclic Deformation and Fatigue of Polycrystalline Cu under Pure Compression Cyclic Loading Conditions

    NASA Astrophysics Data System (ADS)

    Hsu, Tzu-Yin Jean

    It is commonly accepted that fatigue crack is initiated under tensile fatigue stresses. However, practical examples demonstrate that cracks may initiate under pure compressive fluctuating loads, e.g. the failures observed in aircraft landing gear frames. As the mechanism of such failures is rarely investigated, there is very limited or non-existent knowledge pool on cyclic deformation response under pure compressive fatigue condition. Our recent work verified that fatigue cracks may nucleate from stress concentration sites under pure compression fatigue, but whether or not a form of stress concentration is always needed to initiate a crack remains uncertain. In this study, compression fatigue tests under different peak stresses were carried out on smooth bars of fully annealed OFHC Copper. The purpose of these tests is to investigate not only the cyclic deformation response but also the possibility of crack nucleation without the stress concentrator. Results showed that overall the cyclic stress-strain response and microstructural evolution of OFHC Copper under pure compression fatigue exhibits rather dissimilar behaviour compared to those under symmetrical fatigue. The specimens hardened rapidly within 10 cycles under pure compression fatigue unlike the gradual cyclic hardening behaviour in symmetrical fatigue with the same peak stress amplitude. Compressive cyclic creep behaviour was also observed. Moreover, TEM observation showed that only moderate slip activity was detectable on the surface instead of typical PSB features. The surface observations revealed that surface slip bands did not increase in number nor height as cycling progressed. In addition, surface roughening by grain boundary extrusion was detected to become more severe with further cycling. Therefore, the plastic strain accommodated within the samples was not mainly related to dislocation activities. Instead, the mechanism of cyclic creep response for pure compression fatigue was correlated and

  4. Fatigue Behavior of Granite Subjected to Cyclic Loading Under Triaxial Compression Condition

    NASA Astrophysics Data System (ADS)

    Wang, Zhechao; Li, Shucai; Qiao, Liping; Zhao, Jiangang

    2013-11-01

    A series of laboratory tests were performed to examine the fatigue behavior of granite subjected to cyclic loading under triaxial compression condition. In these tests, the influences of volumetric change and residual strain on the deformation modulus of granite under triaxial cyclic compression were investigated. It is shown that the fatigue behavior of granite varies with the tendency for volumetric change in triaxial cyclic compression tests. In the stress-strain space, there are three domains for fatigue behavior of rock subjected to cyclic loading, namely the volumetric compaction, volumetric dilation with strain-hardening behavior, and volumetric dilation with strain-softening behavior domains. In the different domains, the microscopic mechanisms for rock deformation are different. It was also found that the stress level corresponding to the transition from volumetric compaction to volumetric dilation could be considered as the threshold for fatigue failure. The potential of fatigue deformation was compared with that of plastic deformation. The comparison shows that rocks exhibit higher resistances to volumetric deformation under cyclic loading than under plastic loading. The influence of residual strain on the fatigue behavior of rock was also investigated. It was found that the axial residual strain could be a better option to describe the fatigue behavior of rock than the loading cycle number. A constitutive model for the fatigue behavior of rock subjected to cyclic loading is proposed according to the test results and discussion. In the model, the axial residual strain is considered as an internal state variable. The influences of confining pressure and peak deviatoric stress on the deformation modulus are considered in a term named the equivalent stress. Comparison of test results with model predictions shows that the proposed model is capable of describing the prepeak fatigue behavior of rock subjected to cyclic loading.

  5. Fatigue response of notched laminates subjected to tension-compression cyclic loads

    NASA Technical Reports Server (NTRS)

    Bakis, C. E.; Stinchcomb, W. W.

    1986-01-01

    The fatigue response of a ((0/45/90/-45)(sub s))(sub 4) T300-5208 graphite-epoxy laminate with a drilled center-hole subjected to various components of tensile and compressive cyclic loads was investigated. Damage evaluation techniques such as stiffness monitoring, penetrant-enhanced X-ray radiography, C-scan, laminate deply and residual strength measurement were used to establish the mechanisms of damage development as well as the effect of such damage on the laminate strength, stiffness and life. Damage modes consisted of transverse matrix cracks, initiating at the hole, in all plies, followed by delamination between plies of different orientation. A characteristic stiffness repsonse during cyclic loading at two load levels was identified and utilized a more reliable indicator of material and residual properties than accumulated cycles. For the load ratios of tension-compression loading, residual tensile strength increased significantly above the virgin strength early in the fatigue life and remained approximately constant to near the end of life. A technique developed for predicting delamination initiation sites along the hole boundary correlated well with experimental evidence.

  6. Strain-energy release rate analysis of cyclic delamination growth in compressively loaded laminates

    NASA Technical Reports Server (NTRS)

    Whitcomb, J. D.

    1984-01-01

    Delamination growth in compressively loaded composite laminates was studied analytically and experimentally. The configuration used was a laminate with an across-the-width delamination. An approximate super-position stress analysis was developed to quantify the effects of various geometric, material, and load parameters on mode 1 and mode 2 strain energy release rates G sub 1 and G sub 2, respectively. Calculated values of G sub 1 and G sub 2 were then compared with measured cyclic delamination growth rates to determine the relative importance of G sub 1 and G sub 2. High growth rates were observed only when G sub 1 was large. However, slow growth was observed even when G sub 1 was negligibly small. This growth was apparently due to a large value of G sub 2.

  7. Strain energy release rate analysis of cyclic delamination growth in compressively loaded laminates

    NASA Technical Reports Server (NTRS)

    Whitcomb, J. D.

    1983-01-01

    Delamination growth in compressively loaded composite laminates was studied analytically and experimentally. The configuration used was a laminate with an across-the-width delamination. An approximate super-position stress analysis was developed to quantify the effects of various geometric, material, and load parameters on mode 2 and mode 2 strain energy release rates G sub/1 and G sub 2, respectively. Calculated values of G sub 1 and G sub 2 were then compared with measured cyclic delamination growth rates to determine the relative importance of G sub 1 and G sub 2. High growth rates were observed only when G sub 1 was large. However, slow growth was observed even when G sub 1 was negligibly small. This growth apparently was due to a large value of G sub 2.

  8. Impact of axial compression and torque on strain localization and fracture under complex cyclic loading of Plexiglas rods

    NASA Astrophysics Data System (ADS)

    Karpov, E. V.; Larichkin, A. Yu.

    2014-01-01

    Experimental studies of deformation and fracture of rods made of Plexiglas (PMMA) under complex loading (quasi-static and cyclic torsion under axial compression) are performed. The existence of a range of critical values of axial stress, within which the rod is fractured by the torque, is established. The localization of "frozen" highly elastic strains in constrained cyclic torsion is revealed, and the conditions of its occurrence are determined. The effect of axial stress on strain localization and fracture and the influence of cyclic torsion on the loss of stability of a rod under axial compression are shown.

  9. Response of thick, notched laminates subjected to tension-compression cyclic loads

    NASA Technical Reports Server (NTRS)

    Bakis, C. E.; Stinchcomb, W. W.

    1986-01-01

    The fatigue response of a (0/24/90/-45)s4 T300-5208 graphite-epoxy laminate with a drilled centerhole subjected to fully reversed tension-compression (R=-1, T-C) constant amplitude loading was investigated. Damage evaluation techniques such as stiffness monitoring, penetrant-enhanced X-ray radiography, C-scan, laminate deply and residual strength were used to establish the mechanisms of damage development as well as the relations between this damage and the stiffness, strength and life of the laminate. Damage initiated at the hole as matrix cracking parallel to the fibers in all plies. Matrix cracks had a significant effect on delamination initiation and growth. Delaminations initiated near the surface in the densely cracked region at the hole and grew along major matrix cracks. Compressive properties degraded more rapidly than tensile properties. At the stress levels used, residual tensile strength increased early in the fatigue life and remained approximately constant to near the end of life, when failure was precipitated by excessive laminate instability during the compressive portion of the loading.

  10. Response of thick, notched laminates subjected to tension-compression cyclic loads

    NASA Technical Reports Server (NTRS)

    Bakis, C. E.; Stinchcomb, W. W.

    1985-01-01

    The fatigue response of a (0/24/90/-45)s4 T300-5208 graphite-epoxy laminate with a drilled centerhole subjected to fully reversed tension-compression (R=-1, T-C) constant amplitude loading was investigated. Damage evaluation techniques such as stiffness monitoring, penetrant-enchanced X-ray radiography, C-scan, laminate deeply and residual strength were used to establish the mechanisms of damage development as well as the relations between this damage and the stiffness, strength and life of the laminate. Damage initiated at the hole as matrix cracking parallel to the fibers in all plies. Matrix cracks had a significant effect on delamination initiation and growth. Delaminations initiated near the surface in the densely cracked region at the hole and grew along major matrix cracks. Compressive properties degraded more rapidly than tensile properties. At the stress levels used, residual tensile strength increased early in the fatigue life and remained approximately constant to near the end of life, when failure was precipitated by excessive laminate instability during the compressive portion of the loading.

  11. The Impact of Posture on the Mechanical Properties of a Functional Spinal Unit During Cyclic Compressive Loading.

    PubMed

    Barrett, Jeff M; Gooyers, Chad E; Karakolis, Thomas; Callaghan, Jack P

    2016-08-01

    To assess how posture affects the transmission of mechanical energy up the spinal column during vibration, 18 porcine functional spinal units (FSUs) were exposed to a sinusoidal force (1500 ± 1200 N) at 5 Hz for 120 min in either a flexed, extended, or neutral posture. Force and FSU height were measured continuously throughout the collection. From these data, specimen height loss, dynamic stiffness, hysteresis, and parameters from a standard linear solid (SLS) model were determined and analyzed for differences between postures. Posture had an influence on all of these parameters. In extension, the FSU had higher dynamic stiffness values than when neutral or flexed (p < 0.0001). In flexion, the FSU had higher hysteresis than both an extended or neutral posture (p < 0.0001). Height loss was greatest in a flexed posture and smallest in an extended posture (p < 0.0001). In extension, the series spring element in the SLS model had a stiffness value higher than both flexed and neutral posture conditions, whereas the stiffness in the parallel spring was the same between extension and neutral (p < 0.01), both higher than in flexion. Viscosity coefficients were highest in extension compared to both flexed and neutral (p < 0.01). Based on these results, it was determined that posture had a significant influence in determining the mechanical properties of the spine when exposed to cyclic compressive loading. PMID:27322199

  12. Thermal conductivity of a graphite bipolar plate (BPP) and its thermal contact resistance with fuel cell gas diffusion layers: Effect of compression, PTFE, micro porous layer (MPL), BPP out-of-flatness and cyclic load

    NASA Astrophysics Data System (ADS)

    Sadeghifar, Hamidreza; Djilali, Ned; Bahrami, Majid

    2015-01-01

    This paper reports on measurements of thermal conductivity of a graphite bipolar plate (BPP) as a function of temperature and its thermal contact resistance (TCR) with treated and untreated gas diffusion layers (GDLs). The thermal conductivity of the BPP decreases with temperature and its thermal contact resistance with GDLs, which has been overlooked in the literature, is found to be dominant over a relatively wide range of compression. The effects of PTFE loading, micro porous layer (MPL), compression, and BPP out-of-flatness are also investigated experimentally. It is found that high PTFE loadings, MPL and even small BPP out-of-flatness increase the BPP-GDL thermal contact resistance dramatically. The paper also presents the effect of cyclic load on the total resistance of a GDL-BPP assembly, which sheds light on the behavior of these materials under operating conditions in polymer electrolyte membrane fuel cells.

  13. Cyclic Deformation Response of β-Annealed Ti-5Al-5V-5Mo-3Cr Alloy Under Compressive Loading Conditions

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Wang, Zhirui; Zhou, Jie

    2011-09-01

    This article reports the cyclic deformation behavior of the β-annealed metastable Ti-5Al-5V-5Mo-3Cr (Ti-5553) alloy under the condition of pure compressive fatigue stress. The following three aspects, namely, the mechanical response, the surface morphology evolution, and the dislocation structures, were systematically investigated. Under all testing conditions, the material demonstrated cyclic softening in the initial cycles followed by saturation. The progressive observation of surface morphology at fixed locations, but after different numbers of cycles, elucidated typical planar slip behavior and the early appearance of fatigue microcracks, which were found often to be induced by the highly localized planar slip bands. The transmission electron microscopy (TEM) study revealed dislocation annihilation upon cycling, i.e., the reduction of dislocation density as well as the simplification of dislocation configurations. In addition, detwinning and changed twin boundary structures upon cycling were also detected. Such activities, together with the intersection of coherent ω precipitates by moving dislocations, are considered to be responsible for the initial softening, whereas the dislocation dipole flip-flop mechanism is presumably responsible for the cyclic saturation behavior. An attempt was made to explain the strain-localized planar slip behavior by considering the stacking fault energy (SFE) as well as the free-electron-to-atom ( e/ a) ratio. The nanoscaled ω and α precipitation in the β matrix may also contribute to the planar slip behavior. The effect of the microstructure in the as-received material was also analyzed for the strain localization and planar-slip mode.

  14. Cyclic Loading Effects on the Creep and Dilation of Salt Rock

    NASA Astrophysics Data System (ADS)

    Roberts, Lance A.; Buchholz, Stuart A.; Mellegard, Kirby D.; Düsterloh, Uwe

    2015-11-01

    The Solution Mining Research Institute (SMRI) has embarked on inquiries into the effect cyclic loading might have on salt. This interest stems from the concept of using salt caverns as a storage medium for renewable energy projects such as compressed air energy storage where daily pressure cycles in the cavern are conceivable as opposed to the seasonal cycles that are typical for natural gas storage projects. RESPEC and the Institut für Aufbereitung und Deponietechnik at Clausthal University of Technology jointly executed a rock mechanics laboratory study using both facilities for performing triaxial cyclic loading creep tests on rock salt recovered from the Avery Island Mine in Louisiana, USA. The cyclic triaxial creep tests were performed under various load paths including compression, extension, and compression/extension. The tests were performed under both dilative and nondilative stress regimes. The cyclic compression creep data were compared to static creep tests performed under similar conditions to assess the effect of cycling of the applied stress. Furthermore, the cyclic compression tests were compared to a numerically simulated static creep test at the same stress and temperature conditions to determine if the creep behavior was similar under cyclic loading.

  15. Collagen network strengthening following cyclic tensile loading.

    PubMed

    Susilo, Monica E; Paten, Jeffrey A; Sander, Edward A; Nguyen, Thao D; Ruberti, Jeffrey W

    2016-02-01

    The bulk mechanical properties of tissues are highly tuned to the physiological loads they experience and reflect the hierarchical structure and mechanical properties of their constituent parts. A thorough understanding of the processes involved in tissue adaptation is required to develop multi-scale computational models of tissue remodelling. While extracellular matrix (ECM) remodelling is partly due to the changing cellular metabolic activity, there may also be mechanically directed changes in ECM nano/microscale organization which lead to mechanical tuning. The thermal and enzymatic stability of collagen, which is the principal load-bearing biopolymer in vertebrates, have been shown to be enhanced by force suggesting that collagen has an active role in ECM mechanical properties. Here, we ask how changes in the mechanical properties of a collagen-based material are reflected by alterations in the micro/nanoscale collagen network following cyclic loading. Surprisingly, we observed significantly higher tensile stiffness and ultimate tensile strength, roughly analogous to the effect of work hardening, in the absence of network realignment and alterations to the fibril area fraction. The data suggest that mechanical loading induces stabilizing changes internal to the fibrils themselves or in the fibril-fibril interactions. If such a cell-independent strengthening effect is operational in vivo, then it would be an important consideration in any multiscale computational approach to ECM growth and remodelling. PMID:26855760

  16. Stability of fuses under cyclic load

    NASA Astrophysics Data System (ADS)

    Namitokov, K. K.; Shklovskiy, I. G.

    1984-05-01

    Thermal stresses in fuses, stimulated by the high degree of mechanical stiffness and the cause of low stability under cyclic current loads, can be reduced by reducing the stiffness of the fuse element, which is typically a strap welded to contact caps at both ends. It is indicated that the stiffness can be reduced by increasing the length and decreasing the cross section. A thin strap consists of flat and bend segments. Simple bending and multiple bending were evaluated. It is indicated that bent fuse segments are less stiff than straight segments, that the relation between stiffness and amplitude of the bend is an inverse power law with the amplitude to a power much higher than squared, that the decrease of overall stiffness is approximately proportional to the number of bends, and that rectangular or circular bending reduce the stiffness most efficiently, inasmuch as such contours envelop the largest areas on the basis of fixed length.

  17. Effect of Cyclic Thermo-Mechanical Loads on Fatigue Reliability in Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Murthy, P. L. N.; Chamis, C. C.

    1996-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multi-factor interaction relationship developed at NASA Lewis Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability- based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)(sub s) graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  18. Stress Relaxation for Granular Materials near Jamming under Cyclic Compression

    NASA Astrophysics Data System (ADS)

    Farhadi, Somayeh; Zhu, Alex Z.; Behringer, Robert P.

    2015-10-01

    We have explored isotropically jammed states of semi-2D granular materials through cyclic compression. In each compression cycle, systems of either identical ellipses or bidisperse disks transition between jammed and unjammed states. We determine the evolution of the average pressure P and structure through consecutive jammed states. We observe a transition point ϕm above which P persists over many cycles; below ϕm, P relaxes slowly. The relaxation time scale associated with P increases with packing fraction, while the relaxation time scale for collective particle motion remains constant. The collective motion of the ellipses is hindered compared to disks because of the rotational constraints on elliptical particles.

  19. Cyclic Load Effects on Long Term Behavior of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Chamis, C. C.

    1996-01-01

    A methodology to compute the fatigue life for different ratios, r, of applied stress to the laminate strength based on first ply failure criteria combined with thermal cyclic loads has been developed and demonstrated. Degradation effects resulting from long term environmental exposure and thermo-mechanical cyclic loads are considered in the simulation process. A unified time-stress dependent multi-factor interaction equation model developed at NASA Lewis Research Center has been used to account for the degradation of material properties caused by cyclic and aging loads. Effect of variation in the thermal cyclic load amplitude on a quasi-symmetric graphite/epoxy laminate has been studied with respect to the impending failure modes. The results show that, for the laminate under consideration, the fatigue life under combined mechanical and low thermal amplitude cyclic loads is higher than that due to mechanical loads only. However, as the thermal amplitude increases, the life also decreases. The failure mode changes from tensile under mechanical loads only to the compressive and shear at high mechanical and thermal loads. Also, implementation of the developed methodology in the design process has been discussed.

  20. FUNDAMENTAL STUDY ON LOAD CARRYING CAPASITIES OF STEEL BRIDGE PIERS UNDER DOZENS OF CYCLIC LOADING

    NASA Astrophysics Data System (ADS)

    Kitahara, Takeshi; Tanaka, Kentaro; Yamaguchi, Takashi; Kishi, Yusuke; Hamano, Tsuyoshi

    Recently, long-period and long-duration time seismic waves caused by huge ocean-trench earthquakes have been observed in Japan, and a few dozen to several hundred times of cyclic shaking were occurred after principal motion in these waves. However, seismic performances of structures subjected to long-duration time motions are not clear. Therefore, this paper discusses the load bearing capacities of steel bridge piers during dozens of cyclic loading. Cyclic load carrying tests and a pseudo-dynamic test were carried out in order to investigate the cyclic load bearing capacity of steel bridge piers. Moreover, complex nonlinear analyses were conducted to simulate the experimental tests. Consequently, it is found that the load bearing capacity after maximum load is decreased about 10% due to cyclic loading over 10 times. Furthermore, numerical analyses have shown a part of the reason for deterioration of load bearing capacity after maximum load.

  1. Fatigue failure of dentin-composite disks subjected to cyclic diametral compression

    PubMed Central

    Li, Yuping; Carrera, Carola; Chen, Ruoqiong; Li, Jianying; Chen, Yungchung; Lenton, Patricia; Rudney, Joel. D.; Jones, Robert S.; Aparicio, Conrado; Fok, Alex

    2015-01-01

    Objective Our aim was to establish the relationship between cyclic loading and fatigue life of the dentin-composite interface using the newly developed disk in diametral compression tests. The results were then used to estimate the fatigue life of restored teeth under occlusal loading. Methods Disk specimens (5mm dia. × 2mm thick) were prepared using bovine incisors and restored with either a methacrylate-based composite Z100™ with Adper Single Bond Plus (Z100) or silorane-based composite Filtek ™ LS with LS System adhesive (LS). The dentin-composite disks were tested under cyclic diametral compression to determine the number of cycles to failure (Nf) at three load levels (n = 3 per group). Finite element analysis (FEA) was used to calculate the interfacial stresses (σ) within the specimen, to establish the σ vs. Nf curves, and those within a restored tooth under normal chewing forces (15N maximum). These were then used to estimate the lifetime of the restored tooth for the two restorative systems. Results The disks restored with LS had a higher fatigue resistance than those restored with Z100. The maximum interfacial stress in the restored tooth determined by FEA was ∼0.5MPa. Based on the estimate of 300,000 cycles of chewing per year, the predicted lifetime under occlusal loading for teeth restored with LS and Z100 was 33 and 10 years, respectively. Significance The disk in cyclic diametral compression has been used successfully to provide fatigue data which allows the lifetime of composite-restored teeth under occlusal loading to be predicted using numerical simulation. PMID:25958269

  2. Fuel cell stack compressive loading system

    DOEpatents

    Fahle, Ronald W.; Reiser, Carl A.

    1982-01-01

    A fuel cell module comprising a stack of fuel cells with reactant gas manifolds sealed against the external surfaces of the stack includes a constraint system for providing a compressive load on the stack wherein the constraint system maintains the stack at a constant height (after thermal expansion) and allows the compressive load to decrease with time as a result of the creep characteristics of the stack. Relative motion between the manifold sealing edges and the stack surface is virtually eliminated by this constraint system; however it can only be used with a stack having considerable resiliency and appropriate thermal expansion and creep characteristics.

  3. Actuator Exerts Tensile Or Compressive Axial Load

    NASA Technical Reports Server (NTRS)

    Nozzi, John; Richards, Cuyler H.

    1994-01-01

    Compact, manually operated mechanical actuator applies controlled, limited tensile or compressive axial force. Designed to apply loads to bearings during wear tests in clean room. Intended to replace hydraulic actuator. Actuator rests on stand and imparts axial force to part attached to clevis inside or below stand. Technician turns control screw at one end of lever. Depending on direction of rotation of control screw, its end of lever driven downward (for compression) or upward (for tension). Lever pivots about clevis pin at end opposite of control screw; motion drives downward or upward link attached via shearpin at middle of lever. Link drives coupling and, through it, clevis attached to part loaded.

  4. Specific Features of the Nucleation and Growth of Fatigue Cracks in Steel under Cyclic Dynamic Compression

    NASA Astrophysics Data System (ADS)

    Popelyukh, A. I.; Popelyukh, P. A.; Bataev, A. A.; Nikulina, A. A.; Smirnov, A. I.

    2016-03-01

    The processes of the fracture of 40Kh and U8 steels under cyclic dynamic compression are studied. It has been found that the main cause for the fracture of the cyclically compressed specimens is the propagation of cracks due to the effect of residual tensile stresses, which arise near the tips of the cracks at the stage of the unloading of the specimens. The growth rate of a crack has the maximum value at the initial stage of its propagation in the vicinity of the stress concentrator. As the crack propagates deep into the specimen, its growth rate decreases and depends only slightly on the real cross section of the specimen. The model of the process of the fatigue fracture of the steels under dynamic loading by a cyclically varied compressive force is proposed. It has been found that the high fatigue endurance is provided by tempering at 200°C for the 40Kh steel and at 300°C for the U8 steel.

  5. Microdamage assessment of bone-cement interfaces under monotonic and cyclic compression.

    PubMed

    Tozzi, Gianluca; Zhang, Qing-Hang; Tong, Jie

    2014-11-01

    Bone-cement interface has been investigated under selected loading conditions, utilising experimental techniques such as in situ mechanical testing and digital image correlation (DIC). However, the role of bone type in the overall load transfer and mechanical behaviour of the bone-cement construct is yet to be fully quantified. Moreover, microdamage accumulation at the interface and in the cement mantle has only been assessed on the exterior surfaces of the samples, where no volumetric information could be obtained. In this study, some typical bone-cement interfaces, representative of different fixation scenarios for both hip and knee replacements, were constructed using mainly trabecular bone, a mixture of trabecular and cortical bone and mainly cortical bone, and tested under static and cyclic compression. Axial displacement and strain fields were obtained by means of digital volume correlation (DVC) and microdamage due to static compression was assessed using DVC and finite element (FE) analysis, where yielded volumes and strains (εzz) were evaluated. A significantly higher load was transferred into the cement region when mainly cortical bone was used to interdigitate with the cement, compared with the other two cases. In the former, progressive damage accumulation under cyclic loading was observed within both the bone-cement interdigitated and the cement regions, as evidenced by the initiation of microcracks associated with high residual strains (εzz_res). PMID:25283468

  6. The effect of cyclic loading during ductile tearing on the fracture resistance of nuclear pipe steels

    SciTech Connect

    Rudland, D.L.; Brust, F.

    1997-12-01

    As part of the First International Piping and Integrity Research Group (IPIRG-1) program, a series of 152.4-mm (6-in.)-diameter Schedule 120, A106 Grade B carbon steel and TP304 stainless steel cyclic through-wall crack (TWC) pipe tests were conducted at 288 C (550 F). The conclusion reached from these experiments was that fully reversed loading decreases the ductile tearing resistance of nuclear pipe steels. As part of the Second International Piping and Integrity Research Group (IPIRG-2) program, a series of cyclically loaded compact tension [C(T)] tests were conducted to determine if this effect is present in laboratory specimens and whether these small-scale results can be used to predict larger through-wall crack pipe behavior. The specimens wee run in displacement control using several cyclic displacement increments and stress ratios. It was found that as the stress ratio was decreased, i.e., the amount of compressive plasticity is increased, the ductile tearing resistance of the material decreased. Fractographic analysis was performed on several C(T) specimens to determine the cyclic degradation mechanism. It was found that crack tip sharpening and void flattening were observed and could be the mechanisms that contributed to the cyclic degradation. In addition to the laboratory tests, finite element analyses were performed on a cyclic C(T) specimen to verify the ASTM E 1152 procedure used and to calculate the cyclic J-R curves.

  7. Effect of cyclic loading on the nanoscale deformation of hydroxyapatite and collagen fibrils in bovine bone.

    PubMed

    Singhal, Anjali; Stock, Stuart R; Almer, Jonathan D; Dunand, David C

    2014-06-01

    Cyclic compressive loading tests were carried out on bovine femoral bones at body temperature (37 °C), with varying mean stresses (-55 to -80 MPa) and loading frequencies (0.5-5 Hz). At various times, the cyclic loading was interrupted to carry out high-energy X-ray scattering measurements of the internal strains developing in the hydroxyapatite (HAP) platelets and the collagen fibrils. The residual strains upon unloading were always tensile in the HAP and compressive in the fibrils, and each increases in magnitude with loading cycles, which can be explained from damage at the HAP–collagen interface and accumulation of plastic deformation within the collagen phase. The samples tested at a higher mean stress and stress amplitude, and at lower loading frequencies exhibit greater plastic deformation and damage accumulation, which is attributed to greater contribution of creep. Synchrotron microcomputed tomography of some of the specimens showed that cracks are produced during cyclic loading and that they mostly occur concentric with Haversian canals. PMID:23958833

  8. Compressive cyclic ratcheting and fatigue of synthetic, soft biomedical polymers in solution.

    PubMed

    Miller, Andrew T; Safranski, David L; Smith, Kathryn E; Guldberg, Robert E; Gall, Ken

    2016-02-01

    The use of soft, synthetic materials for the replacement of soft, load-bearing tissues has been largely unsuccessful due to a lack of materials with sufficient fatigue and wear properties, as well as a lack of fundamental understanding on the relationship between material structure and behavior under cyclic loads. In this study, we investigated the response of several soft, biomedical polymers to cyclic compressive stresses under aqueous conditions and utilized dynamic mechanical analysis and differential scanning calorimetry to evaluate the role of thermo-mechanical transitions on such behavior. Studied materials include: polycarbonate urethane, polydimethylsiloxane, four acrylate copolymers with systematically varied thermo-mechanical transitions, as well as bovine meniscal tissue for comparison. Materials showed compressive moduli between 2.3 and 1900MPa, with polycarbonate urethane (27.3MPa) matching closest to meniscal tissue (37.0MPa), and also demonstrated a variety of thermo-mechanical transition behaviors. Cyclic testing resulted in distinct fatigue-life curves, with failure defined as either classic fatigue fracture or a defined increased in maximum strain due to ratcheting. Our study found that polymers with sufficient dissipation mechanisms at the testing temperature, as evidenced by tan delta values, were generally tougher than those with less dissipation and exhibited ratcheting rather than fatigue fracture much like meniscal tissue. Strain recovery tests indicated that, for some toughened polymers, the residual strain following our cyclic loading protocol could be fully recovered. The similarity in ratcheting behavior, and lack of fatigue fracture, between the meniscal tissue and toughened polymers indicates that such polymers may have potential as artificial soft tissue. PMID:26479427

  9. Mechanical annealing under low-amplitude cyclic loading in micropillars

    NASA Astrophysics Data System (ADS)

    Cui, Yi-nan; Liu, Zhan-li; Wang, Zhang-jie; Zhuang, Zhuo

    2016-04-01

    Mechanical annealing has been demonstrated to be an effective method for decreasing the overall dislocation density in submicron single crystal. However, simultaneously significant shape change always unexpectedly happens under extremely high monotonic loading to drive the pre-existing dislocations out of the free surfaces. In the present work, through in situ TEM experiments it is found that cyclic loading with low stress amplitude can drive most dislocations out of the submicron sample with virtually little change of the shape. The underlying dislocation mechanism is revealed by carrying out discrete dislocation dynamic (DDD) simulations. The simulation results indicate that the dislocation density decreases within cycles, while the accumulated plastic strain is small. By comparing the evolution of dislocation junction under monotonic, cyclic and relaxation deformation, the cumulative irreversible slip is found to be the key factor of promoting junction destruction and dislocation annihilation at free surface under low-amplitude cyclic loading condition. By introducing this mechanics into dislocation density evolution equations, the critical conditions for mechanical annealing under cyclic and monotonic loadings are discussed. Low-amplitude cyclic loading which strengthens the single crystal without seriously disturbing the structure has the potential applications in the manufacture of defect-free nano-devices.

  10. Fatigue crack growth under general-yielding cyclic-loading

    NASA Technical Reports Server (NTRS)

    Minzhong, Z.; Liu, H. W.

    1986-01-01

    In low cycle fatigue, cracks are initiated and propagated under general yielding cyclic loading. For general yielding cyclic loading, Dowling and Begley have shown that fatigue crack growth rate correlates well with the measured delta J. The correlation of da/dN with delta J was also studied by a number of other investigators. However, none of thse studies have correlated da/dN with delta J calculated specifically for the test specimens. Solomon measured fatigue crack growth in specimens in general yielding cyclic loading. The crack tips fields for Solomon's specimens are calculated using the finite element method and the J values of Solomon's tests are evaluated. The measured crack growth rate in Solomon's specimens correlates very well with the calculated delta J.

  11. Nonlinear behavior of shells of revolution under cyclic loading.

    NASA Technical Reports Server (NTRS)

    Levine, H. S.; Armen, H., Jr.; Winter, R.; Pifko, A.

    1973-01-01

    A large deflection elastic-plastic analysis is presented applicable to orthotropic axisymmetric plates and shells of revolution subjected to monotonic and cyclic loading conditions. The analysis is based on the finite-element method. It employs a new higher order, fully compatible, doubly curved orthotropic shell-of-revolution element using cubic Hermitian expansions for both meridional and normal displacements. Both perfectly plastic and strain hardening behavior are considered. Strain hardening is incorporated through use of the Prager-Ziegler kinematic hardening theory, which predicts an ideal Bauschinger effect. Numerous sample problems involving monotonic and cyclic loading conditions are analyzed.

  12. A test method to measure the response of composite materials under reversed cyclic loads

    NASA Technical Reports Server (NTRS)

    Bakis, Charles E.; Simonds, Robert A.; Stinchcomb, Wayne W.

    1989-01-01

    A test method to measure the response of composite materials under reversed cyclic loads is described. The method approximates the long-term response of a component by permitting the composite specimen to respond to the imposed loads and fail in an unconstrained mode rather than in a constrained mode. The method has been successfully used for the reversed cyclic loading of unnotched and notched graphite/epoxy and graphite/PEEK laminates of various stacking sequences. Included in the paper are monotonic tensile and compressive stiffness and strength data at several points in the fatigue lifetime, and damage development information obtained via X-ray radiography for quasi-isotropic T300/5208 and AS4/PEEK laminates with unloaded circular holes.

  13. [Nitric oxide and prostaglandin E2 secretion in osteocytes induced by intermittent cyclic compressive force].

    PubMed

    Yin, Jian; Hao, Zhichao; Liao, Shuang; Liu, Ying; Shen, Jiefei; Liao, Yunmao; Wang, Hang

    2014-06-01

    This paper is aimed to investigate the effect of rest-inserted loading on the mechanosensitivity of osteocytes. In the investigation, cultured MLO-Y4 osteocyte-like cells were strained on cyclic compressive force (CCF) by the self-made compressive loading device. Then we observed the effect of different rest periods-inserted loading (5 s, 15 s, 30 s, respectively) on the mechanosensitivity of osteocytes. We then determined the levels of secreted nitric oxide (NO) and prostaglandin E2 (PGE2) by Griess method and enzyme linked immunosorbent assay (ELISA), respectively. We then stained the cytoskeleton F-actin using immunofluorescence. We found that the expressions of NO and PGE2 in rest-inserted strained groups (> 15 s) were significantly increased compared to those in the continuous strained group. And rest-inserted loading promoted the parallel alignment of stress fibers. It indicates that rest-inserted loading could promote the mechanosensitivity of osteocytes, and this might be related to the parallel alignment of stress fibers. PMID:25219246

  14. Design for cyclic loading endurance of composites

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Murthy, Pappu L. N.; Chamis, Christos C.; Liaw, Leslie D. G.

    1993-01-01

    The application of the computer code IPACS (Integrated Probabilistic Assessment of Composite Structures) to aircraft wing type structures is described. The code performs a complete probabilistic analysis for composites taking into account the uncertainties in geometry, boundary conditions, material properties, laminate lay-ups, and loads. Results of the analysis are presented in terms of cumulative distribution functions (CDF) and probability density function (PDF) of the fatigue life of a wing type composite structure under different hygrothermal environments subjected to the random pressure. The sensitivity of the fatigue life to a number of critical structural/material variables is also computed from the analysis.

  15. Design for cyclic loading endurance of composites

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Murthy, Pappu L. N.

    1992-01-01

    The present paper describes the application of the computer code IPACS (Integrated Probabilistic Assessment of Composite Structures) to air craft wing type structures. The code performs a complete probabilistic structural analysis for composites taking into account the uncertainties in geometry, boundary conditions, material properties, laminate lay-ups and loads. Results of the analysis are presented in terms of cumulative distribution functions (CDF) and probability density function (PDF) of life of a wing type composite structure under different hygrothermal environments subjected to random pressure. The sensitivity of fatigue life to a number of critical structural/material variables is also computed from the analysis.

  16. Evaluation of the electromechanical properties in GdBCO coated conductor tapes under low cyclic loading and bending

    NASA Astrophysics Data System (ADS)

    Shin, Hyung-Seop; Gorospe, Alking; Bautista, Zhierwinjay; Dedicatoria, Marlon J.

    2016-01-01

    The effects of low cyclic loading on the critical current, I c, under uniaxial and transverse loadings, and bending deformations in GdBCO coated conductor (CC) tapes were evaluated. Under monotonic continuous bending deformation, CC tapes exhibit a high tolerance of I c up to the lowest bending diameter of 12 mm using the Goldacker bending test rig. However, when the CC tape was subjected to alternate tension-compression bending, a lower irreversible bending strain limit was measured. This was also observed when cyclic bending was applied to the CC tapes which showed a significant decrease in I c just after 10 cycles of alternate tension-compression bending at 20 mm bending diameter. Such different I c degradation behavior under different bending deformation procedures gave insight into the proper handling of CC tapes from manufacturing, coiling and up to operating conditions. In the case of uniaxial tension, when electromechanical properties of CC tape were evaluated by repeated loading based on a critical stress level obtained under monotonic loading, I c also did not show significant change in its degradation behavior up to the irreversible stress limit. The GdBCO CC tape adopted can allow cyclic loading up to 100 cycles without significant irreversible degradation below the monotonic irreversible limit. In the case of the transverse cyclic test, with regard to the large scattering of data especially in the tensile direction, a different cyclic loading procedure was established. For 10 repeated loadings, the mechanical and electromechanical properties of the GdBCO CC tapes showed similar values within the reversible range under the monotonic loading. I c degraded abruptly indicating that no delamination occurred at the REBCO film during the subcritical cyclic loading. Different fracture morphologies were observed under cyclic loading depicting branch-like patterns of the remaining REBCO layer on the substrate of the CC tape.

  17. Development of a viscoelastic continuum damage model for cyclic loading

    NASA Astrophysics Data System (ADS)

    Sullivan, R. W.

    2008-12-01

    A previously developed spectrum model for linear viscoelastic behavior of solids is used to describe the rate-dependent damage growth of a time dependent material under cyclic loading. Through the use of the iterative solution of a special Volterra integral equation, the cyclic strain history is described. The spectrum-based model is generalized for any strain rate and any uniaxial load history to formulate the damage function. Damage evolution in the body is described through the use of a rate-type evolution law which uses a pseudo strain to express the viscoelastic constitutive equation with damage. The resulting damage function is used to formulate a residual strength model. The methodology presented is demonstrated by comparing the peak values of the computed cyclic strain history as well as the residual strength model predictions to the experimental data of a polymer matrix composite.

  18. Prediction of delamination growth under cyclic loading

    SciTech Connect

    Krueger, R.; Koenig, M.

    1997-12-31

    The growth of delaminations in carbon fiber-reinforced epoxy (CFRE) specimens during R = 0.1 and R = {minus}1 fatigue loading has been studied. Artificial circular and square delaminations as well as ply cuts have been introduced at various interfaces during manufacturing to simulate a pre-damaged structure and to cause delamination growth. Criteria based on fracture mechanics will be used to describe the delamination failure. Predicting delamination growth with this approach requires the distribution of the local energy release rate along the delamination front. For obtaining this energy release rate distribution, the virtual crack closure method was found to be most favorable for three-dimensional finite element analysis as the separation of the total energy release rate into the contributing modes is inherent to the method and only one complete finite element analysis is necessary. Plots of measured delamination progression per load cycle (da/dN-values) versus computed energy release rates have been included in a Paris law diagram as obtained experimentally using double cantilever beam (DCB) specimens to characterize Mode 1 and end-notched flexure (ENF) and transverse crack tension (TCT) specimens to characterize Mode 2 failure, respectively. Computed mixed-mode results lie well within the scatter band of the experimentally determined Paris law for Mode 1 and Mode 2 failure.

  19. In Situ Deformation of Cartilage in Cyclically Loaded Tibiofemoral Joints by Displacement-Encoded MRI

    PubMed Central

    Chan, D.D.; Neu, C.P.; Hull, M.L.

    2009-01-01

    Objectives Cartilage displacement and strain patterns were documented noninvasively in intact tibiofemoral joints in situ by magnetic resonance imaging (MRI). This study determined the number of compressive loading cycles required to precondition intact joints prior to imaging, the spatial distribution of displacements and strains in cartilage using displacement-encoded MRI, and the depth-dependency of these measures across specimens. Design Juvenile porcine tibiofemoral joints were cyclically compressed at one and two times body weight at 0.1 Hz to achieve quasi-steady state load-displacement response. A 7T MRI scanner was used for displacement-encoded stimulated echoes with a fast spin echo acquisition (DENSE-FSE) in eight intact joints. Two-dimensional displacements and strains were determined throughout the thickness of the tibial and femoral cartilage and then normalized over the tissue thickness. Results Two-dimensional displacements and strains were heterogeneous through the depth of femoral and tibial cartilage under cyclic compression. Strains in the loading direction were compressive and were maximal in the middle zone of femoral and tibial cartilage, and tensile strains were observed in the direction transverse to loading. Conclusions This study determined the depth-dependent displacements and strains in intact juvenile porcine tibiofemoral joints using displacement-encoded imaging. Displacement and strain distributions reflect the heterogeneous biochemistry of cartilage and the biomechanical response of the tissue to compression in the loading environment of an intact joint. This unique information about the biomechanics of cartilage has potential for comparisons of healthy and degenerated tissue and in the design of engineered replacement tissues. PMID:19447213

  20. Effect of cyclical loading on the macroscopic failure behaviour of fibre reinforced plastics

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Marder, J.; Kuesters, K.; Fischer, K.

    2014-05-01

    Fibre reinforced plastics (FRP) have become the preferred material choice for a wide range of lightweight applications. However, not only the static strength but also the strength and stiffness degradation under cyclical loading conditions have to be predicted for the efficient and reliable design of structures. The phenomenology of the macroscopic damage process of a laminate subjected to cyclical loads is commonly characterized by a first inter-fibre fracture (IFF) and a subsequent accumulation of these IFFs. Finally the laminate fails by one of the macroscopic failure modes named fibre failure (FF), inter-fibre fracture or delamination. Beside these macroscopic failure mechanisms, laminates are inherently characterized by microscopic flaws and cracks in the matrix and at the fibre matrix interface which accumulate especially in transversely loaded plies before the first macroscopic fracture occurs. In well-designed laminates the majority of the fibres are aligned with the loading direction. The fibre longitudinal compressive strength is therefore a critical value, since its inherently lower than the fibre longitudinal tensile strength. The fibre longitudinal compressive strength is influenced by a multitude of factors, such as fibre volume content, fibre and matrix material and also by the micro damage state of a ply. In this paper, the influence of the micro damage state on the fibre longitudinal compressive strength will be discussed. Experimental investigations have been performed to introduce a characteristic micro damage state into a ply by cyclical transverse preloading and quantify the effect of the preloading and the damage state on the fibre longitudinal compressive strength.

  1. Predicting the residual strength of open-hole (OH) composite specimens subjected to cyclic loading

    NASA Astrophysics Data System (ADS)

    Ceparano, Angelo; Dell'Aversano, Raffaella

    2016-05-01

    A procedure is reported that allows the prediction of the fatigue life and the residual strength of "open hole" composite specimens subjected to constant amplitude cyclic loadings. Based on a two-parameter phenomenological model explicitly accounting for the maximum applied stress, σmax, and the stress ratio, R, the procedure relies on a relatively small set of experimental fatigue life data. The approach reliability is checked in predicting the fatigue life and residual strength of AS4 carbon/epoxy 3k/E7K8 Plain Weave Fabric "open-hole" (OH) samples subjected to a very broad loading conditions from prevailing tension (R=0 and R=-0.2) to compression (R=5) to mixed tension/compression (R=-1) loadings.

  2. Dynamic performance of angle-steel concrete columns under low cyclic loading-II: parametric study

    NASA Astrophysics Data System (ADS)

    Zheng, Wenzhong; Ji, Jing

    2008-06-01

    Tests of nine angle-steel concrete column (ASCC) specimens under low cyclic loading are described in a companion paper (Zheng and Ji, 2008). In this paper, the skeleton curves from the numerical simulation are presented, and show good agreement with the test results. Furthermore, parametric studies are conducted to explore the influence of factors such as the axial compression ratio, shear steel plate ratio, steel ratio, prismatic concrete compression strength, yield strength of angle steel and shear span ratio, etc., on the monotonic load-displacement curves of the ASCCs. Based on a statistical analysis of the calculated results, hysteretic models for load-displacement and moment-curvature are proposed, which agree well with the test results. Finally, some suggestions concerning the conformation of ASCCs are proposed, which could be useful in engineering practice.

  3. Cyclic loading of an elastic-plastic adhesive spherical microcontact

    NASA Astrophysics Data System (ADS)

    Kadin, Y.; Kligerman, Y.; Etsion, I.

    2008-10-01

    A previous study of a single load-unload cycle of an adhesive contact between an elastic-plastic microscopic sphere and a rigid flat is extended here for several load-unload cycles. The interacting forces between the sphere and the flat obey the Lennard-Jones potential. Kinematic hardening is assumed for the sphere material to account for possible plastic shakedown, and the difference between kinematic and isotropic hardenings is discussed. The main goal of the current work is to investigate the evolution of the load-approach curves for the elastic-plastic spherical contact during its cyclic loading-unloading. These curves are presented for different physical conditions, represented by three main dimensionless parameters, which affect the behavior of the elastic-plastic adhesive contact. A transition value of the Tabor parameter is found, below which the load-approach curves are always continuous and jump-in and jump-out instabilities are not expected.

  4. Evaluation of flawed composite structure under static and cyclic loading

    NASA Technical Reports Server (NTRS)

    Porter, T. R.

    1977-01-01

    This paper presents the results of a program investigating the effects of initial defects on the fatigue and fracture response of composite laminates. The structural laminates investigated were a typical angle-ply laminate, a polar/hoop-wound pressure vessel laminate, and a typical engine fan blade laminate. Defects investigated were full- and half-penetration circular holes, full- and half-penetration slits, and countersink holes. Results are presented showing the effects of the defect size and type on the static fracture strength, fatigue performance, and residual static strength. The results of inspection procedures are shown, describing the effect of cyclic and static loadings on damage propagation in composite laminates. The data in this study were used to define proof test levels as a qualification procedure in composite structure subjected to cyclic loading.

  5. Matrix cracking in laminated composites under monotonic and cyclic loadings

    NASA Technical Reports Server (NTRS)

    Allen, David H.; Lee, Jong-Won

    1991-01-01

    An analytical model based on the internal state variable (ISV) concept and the strain energy method is proposed for characterizing the monotonic and cyclic response of laminated composites containing matrix cracks. A modified constitution is formulated for angle-ply laminates under general in-plane mechanical loading and constant temperature change. A monotonic matrix cracking criterion is developed for predicting the crack density in cross-ply laminates as a function of the applied laminate axial stress. An initial formulation for a cyclic matrix cracking criterion for cross-ply laminates is also discussed. For the monotonic loading case, a number of experimental data and well-known models are compared with the present study for validating the practical applicability of the ISV approach.

  6. Analysis Of The Interface Behavior Under Cyclic Loading

    SciTech Connect

    Mortara, Giuseppe

    2008-07-08

    This paper analyses the frictional behavior between soil and structures under cyclic loading conditions. In particular, the attention is focused on the stress degradation occurring in sand-metal interface tests and on the relevant parameters playing a role in such kind of tests. Also, the paper reports the analysis of the experimental data from the constitutive point of view with a two-surface elastoplastic model.

  7. Modeling of viscoplastic cyclic loading behavior of polymers

    NASA Astrophysics Data System (ADS)

    Spathis, G.; Kontou, E.

    2015-08-01

    A new theoretical approach, analyzed in previous works, is employed for the description of the nonlinear viscoelastic/viscoplastic response of high density polyethylene under tensile cyclic loading, experimentally studied elsewhere. The proposed analysis, developed for a 3-D problem, is applied for a uniaxial cyclic deformation, in a strain-controlled program, where tensile loading up to maximum strain is followed by unloading to zero stress. This procedure is repeated for ten cycles. The same model is also applied for the simulation of a stress-controlled program, where cyclic loading takes place between a and engineering stress. The hysteresis loops of both programs could be adequately captured, with a number of model parameters, related to both, nonlinear viscoelasticity and viscoplasticity. The simulated ratcheting strain as well as its evolution with number of cycles is a very good approximation of the experimental one. A systematic study of the values of the adjustable parameters has been performed in order to monitor the effect of every specific internal variable, responsible for either the nonlinear viscoelastic or viscoplastic path in the simulations. It was found that in the proposed analysis a rather low number of model parameters are required, compared to the works existing in the literature.

  8. DEFORMATION CHARACTERISTICS OF CRUSHED-STONE LAYER UNDER CYCLIC IMPACT LOADING FROM MICRO-MECHANICAL VIEW

    NASA Astrophysics Data System (ADS)

    Kono, Akiko; Matsushima, Takashi

    'Hanging sleepers', which have gaps between sleepers and ballast layer are often found in the neighborhood of rail joints or rugged surface rails. This suggests that differential settlement of the ballast layer is due to impact loading generated by the contact between running wheel and rugged surface rail. Then cyclic loading tests were performed on crushed-stone layer with two loading patterns, the one is a cyclic impact loading and the other one is cyclic 'standard' loading controlled at 1/10 loading velocity of the impact loading. It was shown that the crashed-stone layer deforms with volumetric expansion during every off-loading processes under the cyclic impact loading. This phenomena prevents crushed stone layer from forming stable grain columns, then the residual settlement under the cyclic impact loading is larger than that under the cyclic 'standard' loading. A simple mass-spring model simulates that two masses move in the opposite direction with increased frequency of harmonic excitation.

  9. Preload substantially influences the intervertebral disc stiffness in loading-unloading cycles of compression.

    PubMed

    Schmidt, Hendrik; Shirazi-Adl, Aboulfazl; Schilling, Christoph; Dreischarf, Marcel

    2016-06-14

    Disc hydration is controlled by fluid imbibition and exudation and hence by applied load magnitude and history, internal osmotic pressure and disc conditions. It affects both the internal load distribution and external load-bearing of a disc while variations therein give rise to the disc time-dependent characteristics. This study aimed to evaluate the effect of changes in compression preload magnitude on the disc axial cyclic compression stiffness under physiological loading. After 20h of free hydration, effects of various preload magnitudes (no preload, 0.06 and 0.28MPa, applied for eight hours) and disc-bone preparation conditions on disc height and axial stiffness were investigated using 36 disc-bone and 24 isolated disc (without bony endplates) bovine specimens. After preloading, specimens were subjected to ten loading/unloading cycles each of 7.5min compression at 0.5MPa followed by 7.5min at 0.06MPa. Under 0.06MPa preload, the specimen height losses during high loading periods of cyclic loading were greater than corresponding height recoveries during low loading phases. This resulted in a progressive reduction in the specimen height and increase in its stiffness. Differences between disc height losses in high cyclic loads and between stiffness in both load increase and release phases were significant for 0 and 0.06MPa vs. 0.28MPa preload. Results highlight the significant role of disc preload magnitude/history and hence disc height and hydration on disc stiffness in loading/unloading and disc height loss in loading periods. Proper preconditioning and hence hydration level should be achieved if recovery in height loss similar to in vivo conditions is expected. PMID:27209550

  10. Inverse Slip Accompanying Twinning and Detwinning during Cyclic Loading of Magnesium Single Crystal

    DOE PAGESBeta

    Yu, Qin; Wang, Jian; Jiang, Yanyao

    2013-01-01

    In situ , observation of twinning and detwinning in magnesium single crystals during tension-compression cyclic loading was made using optical microscopy. A quantitative analysis of plastic strain indicates that twinning and detwinning experience two stages, low and high work hardening de-twinning, and pure re-twinning and fresh twinning combined with retwinning. Slip is always activated. For the first time, inverse slip accompanying with pure retwinning and high work hardening detwinning was experimentally identified, which provides insights in better understanding of the activity of twining, detwinning, and slips.

  11. Stability of radiofrequency magnetron sputtered calcium phosphate coatings under cyclically loaded conditions.

    PubMed

    Wolke, J G; van der Waerden, J P; de Groot, K; Jansen, J A

    1997-03-01

    The stability of radiofrequency (RF) magnetron sputtered calcium phosphate was studied under cyclically loaded conditions. The coatings were deposited on titanium bars and tested in either dry or wet conditions X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis and Fourier transform infrared (FTIR) spectroscopy were used to characterize the as-sputtered and tested coatings. XRD demonstrated that the amorphous structure after annealing at 650 C changed into a crystalline apatite structure. The residual stresses were determined by the XRD cos 2 i/i method. These residual film stresses were influenced by the coating conditions and the crystalline sputtered coating showed the presence of compressive stresses. SEM demonstrated that, after cyclic loading conditions in air, the crystalline sputter-coated Ti-6A1-4V bars showed a partial coating loss. Furthermore, in wet conditions (simulated body fluid) only the heat-treated sputter-coated bars appeared to be stable. On the other hand, the amorphous coating only showed signs of delamination in the more highly stressed regions, while in the less stressed regions a Ca-P precipitate was formed. On the basis of these results we conclude that calcium phosphate coatings subjected to cyclic loading conditions show an important difference in fatigue behaviour when tested in either dry or wet conditions. PMID:9111952

  12. Cyclic stretch and compression forces alter microRNA-29 expression of human periodontal ligament cells.

    PubMed

    Chen, Yinghua; Mohammed, Arshad; Oubaidin, Maysaa; Evans, Carla A; Zhou, Xiaofeng; Luan, Xianghong; Diekwisch, Thomas G H; Atsawasuwan, Phimon

    2015-07-15

    MicroRNAs (miRs) play an important role in the development and remodeling of tissues through the regulation of large cohorts of extracellular matrix (ECM) genes. The purpose of the present study was to determine the response of miR-29 family expression to loading forces and their effects on ECM gene expression in periodontal ligament cells, the key effector cell population during orthodontic tooth movement. In a comparison between miRs from human periodontal ligament cells (PDLCs) and alveolar bone cells (ABCs) from healthy human subjects, the ABC cohort of miRs was substantially greater than the corresponding PDLC cohort. Cyclic mechanical stretch forces at 12% deformation at 0.1Hz for 24h decreased expression of miR-29 family member miRs about 0.5 fold while 2g/cm(2) compression force for 24h increased miR-29 family member expression in PDLCs 1.8-4 folds. Cyclic stretch up-regulated major ECM genes in PDLCs, such as COL1A1, COL3A1 and COL5A1, while the compression force resulted in a down-regulation of these ECM genes. Direct interactions of miR-29 and Col1a1, Col3a1 and Col5a1 were confirmed using a dual luciferase reporter gene assay. In addition, transient transfection of a miR-29b mimic in mouse PDLCs down-regulated Col1a1, Col3a1 and Col5a1 while the transfection of miR-29b inhibitor up-regulated these genes compared to control transfection indicating that these target ECM genes directly responded to the altered level of miR-29b. These results provided a possible explanation for the effects of the miR-29 family on loaded PDLCS and their roles in extracellular matrix gene expression. PMID:25827718

  13. Cyclic Plasticity under Shock Loading in an HCP Metal

    SciTech Connect

    Prime, Michael B.; Hunter, Abigail; Canfield, Thomas R.; Adams, Chris D.

    2012-06-08

    Plate impact experiments with pressures from 2 to 20 GPa, including one shock-partial release-reshock experiment, were performed on vacuum hot-pressed S-200F Beryllium. This hexagonal close-packed (HCP) metal shows significant plasticity effects in such conditions. The experiments were modeled in a Lagrangian hydrocode using an experimentally calibrated Preston-Tonks-Wallace (PTW) constitutive model. By using the shock data to constrain a high rate portion of PTW, the model was able to generally match plasticity effects on the measured wave profile (surface velocity) during the shock loading, but not unloading. A backstress-based cyclic plasticity model to capture the quasi-elastic release (Bauschinger-type effect) was explored in order to match the unloading and reloading portions of the measured wave profiles. A comparison is made with other approaches in the literature to capture the cyclic plasticity in shock conditions.

  14. Modeling of Anisotropic Rock Joints Under Cyclic Loading (Invited)

    NASA Astrophysics Data System (ADS)

    White, J. A.

    2013-12-01

    This work describes a constitutive framework for modeling the behavior of rough joints under cyclic loading. Particular attention is paid to the intrinsic links between dilatancy, surface degradation, and mobilized shear strength. The framework also accounts for the important effect of shear-induced anisotropy. Both the governing formulation and an algorithm for implicit numerical integration are presented. While the proposed methods are general, we also postulate a specific model that is compared with experimental data. It employs relatively few free parameters, but shows good agreement with laboratory tests.

  15. Mercury embrittlement of Cu-Al alloys under cyclic loading

    NASA Technical Reports Server (NTRS)

    Regan, T. M.; Stoloff, N. S.

    1977-01-01

    The effect of mercury on the room temperature, high cycle fatigue properties of three alloys: Cu-5.5 pct Al, Cu-7.3 pct Al, and Cu-6.3 pct Al-2.5 pct Fe has been determined. Severe embrittlement under cyclic loading in mercury is associated with rapid crack propagation in the presence of the liquid metal. A pronounced grain size effect is noted under mercury, while fatigue properties in air are insensitive to grain size. The fatigue results are discussed in relation to theories of adsorption-induced liquid metal embrittlement.

  16. Interactive evolution concept for analyzing a rock salt cavern under cyclic thermo-mechanical loading

    NASA Astrophysics Data System (ADS)

    König, Diethard; Mahmoudi, Elham; Khaledi, Kavan; von Blumenthal, Achim; Schanz, Tom

    2016-04-01

    The excess electricity produced by renewable energy sources available during off-peak periods of consumption can be used e.g. to produce and compress hydrogen or to compress air. Afterwards the pressurized gas is stored in the rock salt cavities. During this process, thermo-mechanical cyclic loading is applied to the rock salt surrounding the cavern. Compared to the operation of conventional storage caverns in rock salt the frequencies of filling and discharging cycles and therefore the thermo-mechanical loading cycles are much higher, e.g. daily or weekly compared to seasonally or yearly. The stress strain behavior of rock salt as well as the deformation behavior and the stability of caverns in rock salt under such loading conditions are unknown. To overcome this, existing experimental studies have to be supplemented by exploring the behavior of rock salt under combined thermo-mechanical cyclic loading. Existing constitutive relations have to be extended to cover degradation of rock salt under thermo-mechanical cyclic loading. At least the complex system of a cavern in rock salt under these loading conditions has to be analyzed by numerical modeling taking into account the uncertainties due to limited access in large depth to investigate material composition and properties. An interactive evolution concept is presented to link the different components of such a study - experimental modeling, constitutive modeling and numerical modeling. A triaxial experimental setup is designed to characterize the cyclic thermo-mechanical behavior of rock salt. The imposed boundary conditions in the experimental setup are assumed to be similar to the stress state obtained from a full-scale numerical simulation. The computational model relies primarily on the governing constitutive model for predicting the behavior of rock salt cavity. Hence, a sophisticated elasto-viscoplastic creep constitutive model is developed to take into account the dilatancy and damage progress, as well as

  17. High load operation in a homogeneous charge compression ignition engine

    SciTech Connect

    Duffy, Kevin P.; Kieser, Andrew J.; Liechty, Michael P.; Hardy, William L.; Rodman, Anthony; Hergart, Carl-Anders

    2008-12-23

    A homogeneous charge compression ignition engine is set up by first identifying combinations of compression ratio and exhaust gas percentages for each speed and load across the engines operating range. These identified ratios and exhaust gas percentages can then be converted into geometric compression ratio controller settings and exhaust gas recirculation rate controller settings that are mapped against speed and load, and made available to the electronic

  18. A study of lapped splices in reinforced concrete columns under severe cyclic loads

    NASA Astrophysics Data System (ADS)

    Lukose, K.; Gergely, P.; White, R. N.

    1981-07-01

    In an investigation of the behavior of overlapped reinforcing rods under high level, inelastic, reversing cyclic loads, 14 tests were conducted on column specimens with No. 6 spliced bars at the corners of surrounding No. 3 stirrups, subjected to combined bending and shear. The relationship between the splice length and the stirrup spacing was studied in detail. The most significant result is that a reasonable level of ductility in splices under combined bending and shear was achieved by providing uniformly spaced stirrups along the splice, and closely spaced stirrups just outside the high moment splice end. An equation for splice design was developed for specimens of the type tested. Experimental results are discussed in terms of load versus displacement, energy absorption, stiffness reduction, main bar strain variation, compression splice behavior and bond-shear interaction.

  19. Cyclic-loading Induced Lattice-Strain Asymmetry in Loading and Transverse Directions

    SciTech Connect

    Huang, E-Wen; Barabash, Rozaliya; Clausen, Bjorn; Liaw, Peter K

    2012-01-01

    Cyclic-loading effects on a nickel-based superalloy are investigated with in-situ neutron-diffraction measurements. The thermoelastic-temperature evolution subjected to cyclic loading is estimated based on the lattice-strain evolution. The atomic thermoelastic responses are compared with the measured bulk temperature evolution. Two transitions in the temperature-evolution are observed. The first transition, observed with the neutron-measurement results, is associated with the cyclic hardening/softening-structural transformation. The second transition is observed at larger number of fatigue cycles. It has a distinct origin and is related to the start of irreversible structural transformations during fatigue. A lattice-strain asymmetry behavior is observed. The lattice-strain asymmetry is quantified as a grain-orientation-dependent transverse/loading parameter (P-ratio). The P-ratio parameter evolution reveals the irreversible plastic deformation subjected to the fatigue. The irreversible fatigue phenomena might relate to the formation of the microcracks. At elevated temperatures the cyclic hardening/softening transition starts at lower fatigue cycles as compared to room temperature. A comparison between the room-temperature and the elevated-temperature fatigue experiments is performed. The P-ratio parameters show the same irreversible trends at both the room and the elevated temperatures.

  20. Fatigue life of anti-friction bearings subjected to cyclic loading

    SciTech Connect

    Dominik, W.K.

    1986-01-01

    Cyclic loading is defined as external loading that varies within the revolution of a bearing and is repeated for every revolution. The cyclicly varying loads may consist of a series of discrete loads that occur in a repeating pattern or a continuously varying force or a combination of these. A simple example of cyclic loading is a single cylinder, double acting piston pump in which the force on the bearings reverse every 180/sup 0/ of a revolution; as a result, the same half of the rotating bearing race passes under the load twice in a single revolution. More complex patterns of cyclic loads occur in rotary engines, fuel injection pumps, nutating engines, etc. The paper presents the theoretical relationships and methods that predict the effect of cyclic loading on the fatigue life of anti-friction bearings. An example problem solved with the aid of a special analysis program illustrates the results from these methods.

  1. Assessment of Composite Delamination Self-Healing Under Cyclic Loading

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin

    2009-01-01

    Recently, the promise of self-healing materials for enhanced autonomous durability has been introduced using a micro-encapsulation technique where a polymer based healing agent is encapsulated in thin walled spheres and embedded into a base polymer along with a catalyst phase. For this study, composite skin-stiffener flange debonding specimens were manufactured from composite prepreg containing interleaf layers with a polymer based healing agent encapsulated in thin-walled spheres. Constant amplitude fatigue tests in three-point bending showed the effect of self-healing on the fatigue response of the skin-stiffener flange coupons. After the cycling that created debonding, fatigue tests were held at the mean load for 24 hours. For roughly half the specimens tested, when the cyclic loading was resumed a decrease in compliance (increase in stiffness) was observed, indicating that some healing had occurred. However, with continued cycling, the specimen compliance eventually increased to the original level before the hold, indicating that the damage had returned to its original state. As was noted in a prevoius study conducted with specimens tested under monotonically increasing loads to failure, healing achieved via the micro-encapsulation technique may be limited to the volume of healing agent available relative to the crack volume.

  2. Fatigue damage initiation in Waspaloy under complex cyclic loading

    SciTech Connect

    Abdul-Latif, A.; Ferney, V.; Saanouni, K.

    1999-07-01

    The low-cycle fatigue damage initiation i n Waspaloy under complex cyclic loading (out-of-phase) is studied from experimental and theoretical viewpoints. Special emphasis is put on the transgranular damage development and results are compared to those reproduced in the literature. A physico-phenomenological model based on slip theory is used to predict the damage initiation lives as well as the directional aspect of the damage distribution. In this model, the micro-damage is supposed to initiate and then evolve on the activated crystallographic slip systems. The theoretical results are compared to both the experimental ones concerning the same material (Waspaloy) as well as other experimental results extracted from the literature.

  3. Reliability of piezoceramic patch sensors under cyclic mechanical loading

    NASA Astrophysics Data System (ADS)

    Thielicke, Bärbel; Gesang, Thomas; Wierach, Peter

    2003-12-01

    Piezoceramic patch sensors have to withstand the primary stresses and strains of a structure during operation. In the leading project 'Adaptronics' a lifespan of 106 cycles at 0.1% strain was required for sensors applied on components of steel and carbon fibre reinforced plastic (CFRP). In order to test the reliability of the patches themselves and of their adhesion on the substrate, special four-point bending tests were carried out under quasistatic loading and under cyclic loading at different strain levels. The specimens consisted in sheets of steel and CFRP as substrates on which the newly developed patches with embedded piezoelectric foils and fibres were glued. In the quasistatic bending tests the performance of each sensor was characterized by measuring the sensor signal (charge) as a function of strain before and after cycling. Damage of the specimens would result in a decreasing slope of the charge-strain-curve after cycling. However, all the specimens tested survived 107 cycles up to 0.12% strain without marked loss of performance.

  4. 78. PIPING CHANNEL FOR FUEL LOADING, FUEL TOPPING, COMPRESSED AIR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. PIPING CHANNEL FOR FUEL LOADING, FUEL TOPPING, COMPRESSED AIR, GASEOUS NITROGEN, AND HELIUM - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. Fatigue Life Estimation under Cumulative Cyclic Loading Conditions

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; McGaw, Michael A; Halford, Gary R.

    1999-01-01

    The cumulative fatigue behavior of a cobalt-base superalloy, Haynes 188 was investigated at 760 C in air. Initially strain-controlled tests were conducted on solid cylindrical gauge section specimens of Haynes 188 under fully-reversed, tensile and compressive mean strain-controlled fatigue tests. Fatigue data from these tests were used to establish the baseline fatigue behavior of the alloy with 1) a total strain range type fatigue life relation and 2) the Smith-Wastson-Topper (SWT) parameter. Subsequently, two load-level multi-block fatigue tests were conducted on similar specimens of Haynes 188 at the same temperature. Fatigue lives of the multi-block tests were estimated with 1) the Linear Damage Rule (LDR) and 2) the nonlinear Damage Curve Approach (DCA) both with and without the consideration of mean stresses generated during the cumulative fatigue tests. Fatigue life predictions by the nonlinear DCA were much closer to the experimentally observed lives than those obtained by the LDR. In the presence of mean stresses, the SWT parameter estimated the fatigue lives more accurately under tensile conditions than under compressive conditions.

  6. Behavior of tunnel form buildings under quasi-static cyclic lateral loading

    USGS Publications Warehouse

    Yuksel, S.B.; Kalkan, E.

    2007-01-01

    In this paper, experimental investigations on the inelastic seismic behavior of tunnel form buildings (i.e., box-type or panel systems) are presented. Two four-story scaled building specimens were tested under quasi-static cyclic lateral loading in longitudinal and transverse directions. The experimental results and supplemental finite element simulations collectively indicate that lightly reinforced structural walls of tunnel form buildings may exhibit brittle flexural failure under seismic action. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in outermost shear-walls. This type of failure takes place due to rupturing of longitudinal reinforcement without crushing of concrete, therefore is of particular interest in emphasizing the mode of failure that is not routinely considered during seismic design of shear-wall dominant structural systems.

  7. Characterization of ultrafine-grained aluminum tubes processed by Tube Cyclic Extrusion–Compression (TCEC)

    SciTech Connect

    Babaei, A. Mashhadi, M.M.

    2014-09-15

    Tube Cyclic Extrusion–Compression as a novel severe plastic deformation technique for tubes was utilized for processing ultrafine grained 1050 aluminum alloy for the first time. In this method, aluminum tube is fully constrained and deformed between mandrel and chamber with a small neck zone. The material deformation during Tube Cyclic Extrusion–Compression processing analyzed and the grain refinement mechanism were described. The capability of Tube Cyclic Extrusion–Compression in grain refinement of the aluminum alloy was demonstrated by transmission electron microscopy observations and X-ray diffraction line profile analysis. The micrographs of the evolved microstructure show grain size of 850 nm and 550 nm after the first and second processing cycles of Tube Cyclic Extrusion–Compression, respectively. Mechanical properties of the initial and processed specimens were extracted from ring-hoop tensile tests. The documented results confirm grain refinement by showing remarkable increase in the yield and ultimate strengths. The main increase in strength and decrease in elongation take place after the first cycle. The microhardness assessments illustrate increase from the initial value of 29 Hv to 44 and 49 Hv respectively after the first and second cycles of Tube Cyclic Extrusion–Compression. There is a good homogeneity in peripheral microhardness and microhardness across the tube thickness. - Highlights: • Tubes of AA1050 for the first time were successfully SPD processed by TCEC. • The grain size was refined to 550 nm after two cycles of TCEC. • Notable increase in the strength and decrease in the elongation were documented. • The microhardness increased to 49 Hv from the initial value of 29 Hv. • Good homogeneity in the microhardness distribution was recorded.

  8. Effect of load introduction on graphite epoxy compression specimens

    NASA Technical Reports Server (NTRS)

    Reiss, R.; Yao, T. M.

    1981-01-01

    Compression testing of modern composite materials is affected by the manner in which the compressive load is introduced. Two such effects are investigated: (1) the constrained edge effect which prevents transverse expansion and is common to all compression testing in which the specimen is gripped in the fixture; and (2) nonuniform gripping which induces bending into the specimen. An analytical model capable of quantifying these foregoing effects was developed which is based upon the principle of minimum complementary energy. For pure compression, the stresses are approximated by Fourier series. For pure bending, the stresses are approximated by Legendre polynomials.

  9. Tensile Fracture Strength of Brisbane Tuff by Static and Cyclic Loading Tests

    NASA Astrophysics Data System (ADS)

    Erarslan, N.; Alehossein, H.; Williams, D. J.

    2014-07-01

    This research presents the results of laboratory experiments during the investigation of tensile strength-strain characteristics of Brisbane tuff disc specimens under static and diametral cyclic loading. Three different cyclic loading methods were used; namely, sinusoidal cyclic loading, type I and II increasing cyclic loading with various amplitude values. The first method applied the stress amplitude-cycle number (s-n) curve approach to the measurement of the indirect tensile strength (ITS) and fracture toughness ( K IC) values of rocks for the first time in the literature. The type I and II methods investigated the effect of increasing cyclic loading on the ITS and K IC of rocks. For Brisbane tuff, the reduction in ITS was found to be 30 % under sinusoidal loading, whereas type I and II increasing cyclic loading caused a maximum reduction in ITS of 36 %. The maximum reduction of the static K IC of 46 % was obtained for the highest amplitude type I cyclic loading tested. For sinusoidal cyclic loading, a maximum reduction of the static K IC of 30 % was obtained. A continuous irreversible accumulation of damage was observed in dynamic cyclic tests conducted at different amplitudes and mean stress levels. Scanning electron microscope images showed that fatigue damage in Brisbane tuff is strongly influenced by the failure of the matrix because of both inter-granular fracturing and trans-granular fracturing. The main characteristic was grain breakage under cyclic loading, which probably starts at points of contact between grains and is accompanied by the production of very small fragments, probably due to frictional sliding within the weak matrix.

  10. A compressive failure model for anisotropic plates with a cutout under compressive and shear loads

    NASA Technical Reports Server (NTRS)

    Gurdal, Z.; Haftka, R. T.

    1986-01-01

    The paper introduces a failure model for laminated composite plates with a cutout under combined compressive and shear loads. The model is based on kinking failure of the load-carrying fibers around a cutout, and includes the effect of local shearing and compressive stresses. Comparison of predictions of the model with available experimental results for quasi-isotropic and orthotropic plates with a circular hole indicated a good agreement. Predictions for orthotropic plates under combined loading are compared with the predictions of a point-stress model. The present model indicates significant reductions in axial load-carrying capacity due to shearing loads for plates with principal axis of orthotropy oriented along the axial load direction. A gain in strength is achieved by rotating the axis of orthotropy to counteract the shearing stress, or by eliminating the compressive-shear deformation coupling.

  11. Internal loading of an inhomogeneous compressible Earth with phase boundaries

    NASA Technical Reports Server (NTRS)

    Defraigne, P.; Dehant, V.; Wahr, J. M.

    1996-01-01

    The geoid and the boundary topography caused by mass loads inside the earth were estimated. It is shown that the estimates are affected by compressibility, by a radially varying density distribution, and by the presence of phase boundaries with density discontinuities. The geoid predicted in the chemical boundary case is 30 to 40 percent smaller than that predicted in the phase case. The effects of compressibility and radially varying density are likely to be small. The inner core-outer core topography for loading inside the mantle and for loading inside the inner core were computed.

  12. Experimental investigation on mechanical damage characteristics of sandstone under triaxial cyclic loading

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Qi; Ranjith, P. G.; Huang, Yan-Hua; Yin, Peng-Fei; Jing, Hong-Wen; Gui, Yi-Lin; Yu, Qing-Lei

    2015-05-01

    The mechanical damage characteristics of sandstone subjected to cyclic loading is very significant to evaluate the stability and safety of deep excavation damage zones. However to date, there are very few triaxial experimental studies of sandstone under cyclic loading. Moreover, few X-ray micro-computed tomography (micro-CT) observations have been adopted to reveal the damage mechanism of sandstone under triaxial cyclic loading. Therefore, in this research, a series of triaxial cyclic loading tests and X-ray micro-CT observations were conducted to analyse the mechanical damage characteristics of sandstone with respect to different confining pressures. The results indicated that at lower confining pressures, the triaxial strength of sandstone specimens under cyclic loading is higher than that under monotonic loading; whereas at confining pressures above 20 MPa, the triaxial strength of sandstone under cyclic loading is approximately equal to that under monotonic loading. With the increase of cycle number, the crack damage threshold of sandstone first increases, and then significantly decreases and finally remains constant. Based on the damage evolution of irreversible deformation, it appears that the axial damage value of sandstone is all higher than the radial damage value before the peak strength; whereas the radial damage value is higher than the axial damage value after the peak strength. The evolution of Young's modulus and Poisson's ratio of sandstone can be characterized as having four stages: (i) Stage I: material strengthening; (ii) Stage II: material degradation; (iii) Stage III: material failure and (iv) Stage IV: structure slippage. X-ray micro-CT observations demonstrated that the CT scanning surface images of sandstone specimens are consistent with actual surface crack photographs. The analysis of the cross-sections of sandstone supports that the system of crack planes under triaxial cyclic loading is much more complicated than that under triaxial

  13. Elevated Temperature Slow Crack Growth of Silicon Nitride Under Dynamic, Static and Cyclic Flexural Loading

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.; Nemeth, Noel; Gyekenyesi, John P.

    1994-01-01

    The slow crack growth parameters of a hot-pressed silicon nitride were determined at 1200 and 1300 C in air by statically, dynamically and cyclicly loading bend specimens. The fatigue parameters were estimated using the recently developed CARES/Life computer code. Good agreement exists between the flexural results. However, fatigue susceptibility under static uniaxial tensile loading, reported elsewhere, was greater than in flexure. Cyclic flexural loading resulted in the lowest apparent flexural fatigue susceptibility.

  14. Structural strength of cancellous specimens from bovine femur under cyclic compression

    PubMed Central

    Endo, Kaori; Yamada, Satoshi; Todoh, Masahiro; Takahata, Masahiko; Iwasaki, Norimasa

    2016-01-01

    The incidence of osteoporotic fractures was estimated as nine million worldwide in 2000, with particular occurrence at the proximity of joints rich in cancellous bone. Although most of these fractures spontaneously heal, some fractures progressively collapse during the early post-fracture period. Prediction of bone fragility during progressive collapse following initial fracture is clinically important. However, the mechanism of collapse, especially the gradual loss of the height in the cancellous bone region, is not clearly proved. The strength of cancellous bone after yield stress is difficult to predict since structural and mechanical strength cannot be determined a priori. The purpose of this study was to identify whether the baseline structure and volume of cancellous bone contributed to the change in cancellous bone strength under cyclic loading. A total of fifteen cubic cancellous bone specimens were obtained from two 2-year-old bovines and divided into three groups by collection regions: femoral head, neck, and proximal metaphysis. Structural indices of each 5-mm cubic specimen were determined using micro-computed tomography. Specimens were then subjected to five cycles of uniaxial compressive loading at 0.05 mm/min with initial 20 N loading, 0.3 mm displacement, and then unloading to 0.2 mm with 0.1 mm displacement for five successive cycles. Elastic modulus and yield stress of cancellous bone decreased exponentially during five loading cycles. The decrease ratio of yield stress from baseline to fifth cycle was strongly correlated with bone volume fraction (BV/TV, r = 0.96, p < 0.01) and structural model index (SMI, r = − 0.81, p < 0.01). The decrease ratio of elastic modulus from baseline to fifth cycle was also correlated with BV/TV (r = 0.80, p < 0.01) and SMI (r = − 0.78, p < 0.01). These data indicate that structural deterioration of cancellous bone is associated with bone strength after yield stress. This study suggests that baseline cancellous

  15. The convergence of block cyclic projection with underrelaxation parameters for compressed sensing based tomography.

    PubMed

    Arroyo, Fangjun; Arroyo, Edward; Li, Xiezhang; Zhu, Jiehua

    2014-01-01

    The block cyclic projection method in the compressed sensing framework (BCPCS) was introduced for image reconstruction in computed tomography and its convergence had been proven in the case of unity relaxation (λ=1). In this paper, we prove its convergence with underrelaxation parameters λ∈(0,1). As a result, the convergence of compressed sensing based block component averaging algorithm (BCAVCS) and block diagonally-relaxed orthogonal projection algorithm (BDROPCS) with underrelaxation parameters under a certain condition are derived. Experiments are given to illustrate the convergence behavior of these algorithms with selected parameters. PMID:24699347

  16. Loading rate sensitivity of open hole composites in compression

    NASA Technical Reports Server (NTRS)

    Lubowinski, Steve J.; Guynn, E. G.; Elber, Wolf; Whitcomb, J. D.

    1988-01-01

    The results are reported of an experimental study on the compressive, time-dependent behavior of graphite fiber reinforced polymer composite laminates with open holes. The effect of loading rate on compressive strength was determined for six material systems ranging from brittle epoxies to thermoplastics at both 75 F and 220 F. Specimens were loaded to failure using different loading rates. The slope of the strength versus elapsed time-to-failure curve was used to rank the materials' loading rate sensitivity. All of the materials had greater strength at 75 F than at 220 F. All the materials showed loading rate effects in the form of reduced failure strength for longer elapsed-time-to-failure. Loading rate sensitivity was less at 220 F than the same material at 70 F. However, C12000/ULTEM and IM7/8551-7 were more sensitive to loading rate than the other materials at 220 F. AS4/APC2 laminates with 24, 32, and 48 plies and 1/16 and 1/4 inch diameter holes were tested. The sensitivity to loading rate was less for either increasing number of plies or larger hole size. The failure of the specimens made from brittle resins was accompanied by extensive delaminations while the failure of the roughened systems was predominantly by shear crippling. Fewer delamination failures were observed at the higher temperature.

  17. Electrical conductivity and compressibility of sulfur under shock loading

    SciTech Connect

    Postnov, V.I.; Anan'eva, L.A.; Dremin, A.N.; Nabatov, S.S.; Yakushev, V.V.

    1987-01-01

    The authors mathematically and experimentally assess the transition of orthorhombic elementary sulfur from a dielectric to a superconducting regime under the influence of pressure generated by shock wave loading. They also determine its compressibility over a range of 4-38 GPa.

  18. Seismic Load Rating Procedure for Welded Steel Frames Oligo-cyclic Fatigue

    SciTech Connect

    Ratiu, Mircea D.; Moisidis, Nicolae T.

    2004-07-01

    A dynamic load rating approach for seismic qualification of cold-formed steel welded frames is presented. Allowable seismic loads are developed from cyclic and monotonic tests of standard cold-formed steel components commonly used for piping and electrical raceway supports. The method permits simplified qualification of all connections of frame components through a single load comparison. Test input consists of rotation/cycles-to-failure data and monotonic moment/rotation data. Cyclic data are statistically evaluated to determine an acceptable maximum seismic rotation for the connection. The allowable seismic load is determined from the corresponding static rotation. Application to seismic qualification procedures is discussed. (authors)

  19. The fatigue growth of internal delaminations under compressive loading of cross-ply composite plates

    SciTech Connect

    Pelegri, A.A.; Kardomateas, G.A.; Malik, B.U.

    1997-12-31

    This study focuses on the mode dependence of delamination growth under cyclic compressive loads in cross-ply composite plates. The model proposed makes use of an initial postbuckling solution derived from a perturbation procedure. A mode-dependent crack growth criterion is introduced. Expressions describing the fatigue crack growth are derived in terms of the distribution of the mode adjusted energy release rate. The resulting crack growth laws are numerically integrated to produce delamination growth versus number of cycles diagrams. The model does not impose any restrictive assumptions on the relative thickness of the delaminated and the base plates, although transverse shear stress effects are not considered. Experimental results are presented for cross-ply graphite/epoxy specimens, and the results are compared with experimental results for unidirectional specimens. The test data are obtained for different delamination locations and for different values of applied compressive strain.

  20. Ultrasonic Measurement of Strain Distribution Inside Object Cyclically Compressed by Dual Acoustic Radiation Force

    NASA Astrophysics Data System (ADS)

    Odagiri, Yoshitaka; Hasegawa, Hideyuki; Kanai, Hiroshi

    2008-05-01

    One possible way to evaluate acupuncture therapy quantitatively is to measure the change in the elastic property of muscle after application of the therapy. Many studies have been conducted to measure mechanical properties of tissues using ultrasound-induced acoustic radiation force. To assess mechanical properties, strain must be generated in an object. However, a single radiation force is not effective because it mainly generates translational motion when the object is much harder than the surrounding medium. In this study, two cyclic radiation forces are simultaneously applied to a muscle phantom from two opposite horizontal directions so that the object is cyclically compressed in the horizontal direction. By the horizontal compression, the object is expanded vertically based on its incompressibility. The resultant vertical displacement is measured using another ultrasound pulse. Two ultrasonic transducers for actuation were both driven by the sum of two continuous sinusoidal signals at two slightly different frequencies [1 MHz and (1 M + 5) Hz]. The displacement of several micrometers in amplitude, which fluctuated at 5 Hz, was measured by the ultrasonic phased tracking method. Increase in thickness inside the object was observed just when acoustic radiation forces increased. Such changes in thickness correspond to vertical expansion due to horizontal compression.

  1. Analysis of delamination growth in compressively loaded composite laminates

    NASA Astrophysics Data System (ADS)

    Tratt, Matthew D.

    The present analytical and empirical study of composite structure delamination has attempted to predict the threshold stress for the initiation of delamination growth in compressively loaded composite laminates. The strain-energy release-rate distributions around circular delaminations are computed via MSC/NASTRAN analysis in conjunction with a virtual crack-opening technique. Static compression tests were conducted on specimens of graphite fiber-reinforced epoxy having circular delaminations of various sizes. Computed delamination growth threshold-stress prediction results were at substantial variance with the test data, but confirmed trends and gave qualitative insight into quasi-static delamination growth.

  2. Region Specific Response of Intervertebral Disc Cells to Complex Dynamic Loading: An Organ Culture Study Using a Dynamic Torsion-Compression Bioreactor

    PubMed Central

    Chan, Samantha C. W.; Walser, Jochen; Käppeli, Patrick; Shamsollahi, Mohammad Javad; Ferguson, Stephen J.; Gantenbein-Ritter, Benjamin

    2013-01-01

    The spine is routinely subjected to repetitive complex loading consisting of axial compression, torsion, flexion and extension. Mechanical loading is one of the important causes of spinal diseases, including disc herniation and disc degeneration. It is known that static and dynamic compression can lead to progressive disc degeneration, but little is known about the mechanobiology of the disc subjected to combined dynamic compression and torsion. Therefore, the purpose of this study was to compare the mechanobiology of the intervertebral disc when subjected to combined dynamic compression and axial torsion or pure dynamic compression or axial torsion using organ culture. We applied four different loading modalities [1. control: no loading (NL), 2. cyclic compression (CC), 3. cyclic torsion (CT), and 4. combined cyclic compression and torsion (CCT)] on bovine caudal disc explants using our custom made dynamic loading bioreactor for disc organ culture. Loads were applied for 8 h/day and continued for 14 days, all at a physiological magnitude and frequency. Our results provided strong evidence that complex loading induced a stronger degree of disc degeneration compared to one degree of freedom loading. In the CCT group, less than 10% nucleus pulposus (NP) cells survived the 14 days of loading, while cell viabilities were maintained above 70% in the NP of all the other three groups and in the annulus fibrosus (AF) of all the groups. Gene expression analysis revealed a strong up-regulation in matrix genes and matrix remodeling genes in the AF of the CCT group. Cell apoptotic activity and glycosaminoglycan content were also quantified but there were no statistically significant differences found. Cell morphology in the NP of the CCT was changed, as shown by histological evaluation. Our results stress the importance of complex loading on the initiation and progression of disc degeneration. PMID:24013824

  3. Insentropic compression of solid using pulsed magnetic loading

    SciTech Connect

    HALL,CLINT A.; ASAY,JAMES R.; STYGAR,WILLIAM A.; SPIELMAN,RICK B.; ROSENTHAL,STEPHEN E.; KNUDSON,MARCUS D.; REISMAN,D.; TOOR,A.; CAUBLE,R.; HAYES,D.B.

    2000-04-18

    Shock loading techniques are often used to determine material response along a specific pressure loading curve referred to as the Hugoniot. However, many technological and scientific applications require accurate determination of dynamic material response that is off-Hugoniot, covering large regions of the equation-of-state surface. Unloading measurements from the shocked state provide off-Hugoniot information, but experimental techniques for measuring compressive off-Hugoniot response have been limited. A new pulsed magnetic loading technique is presented which provides previously unavailable information on isentropic loading of materials to pressures of several hundred kbar. This smoothly increasing pressure loading provides a good approximation to the high-pressure material isentrope centered at ambient conditions. The approach uses high current densities to create ramped magnetic loading to a few hundred kbar over time intervals of 100--200 ns. The method has successfully determined the isentropic mechanical response of copper to about 200 kbar and has been used to evaluate the kinetics of the alpha-epsilon phase transition occurring in iron at 130 kbar. With refinements in progress, the method shows promise for performing isentropic compression experiments to multi-Mbar pressures.

  4. Effect of cyclic loading and retightening on reverse torque value in external and internal implants

    PubMed Central

    Cho, Woong-Rae; Huh, Yoon-Hyuk; Park, Chan-Jin

    2015-01-01

    PURPOSE The aim of this study was to evaluate the effect of cyclic loading and screw retightening on reverse torque value (RTV) in external and internal type implants. MATERIALS AND METHODS Cement-retained abutments were connected with 30 Ncm torque to external and internal type implants. Experimental groups were classified according to implant connection type and retightening/loading protocol. In groups with no retightening, RTV was evaluated after cyclic loading for 100,000 cycles. In groups with retightening, RTV was measured after 3, 10, 100 cycles as well as every 20,000 cycles until 100,000 cycles of loading. RESULTS Every group showed decreased RTV after cyclic loading. Before and after cyclic loading, external type implants had significantly higher RTVs than internal type implants. In external type implants, retightening did not affect the decrease in RTV. In contrast, retightening 5 times and retightening after 10 cycles of dynamic loading was effective for maintaining RTV in internal type implants. CONCLUSION Retightening of screws is more effective in internal type implants than external type implants. Retightening of screws is recommended in the early stage of functional loading. PMID:26330975

  5. Initiation and progression of mechanical damage in the intervertebral disc under cyclic loading using continuum damage mechanics methodology: A finite element study

    PubMed Central

    Qasim, Muhammad; Natarajan, Raghu N.; An, Howard S.; Andersson, Gunnar B.J.

    2013-01-01

    It is difficult to study the breakdown of disc tissue over several years of exposure to bending and lifting by experimental methods. There is also no finite element model that elucidates the failure mechanism due to repetitive loading of the lumbar motion segment. The aim of this study was to refine an already validated poro-elastic finite element model of lumbar motion segment to investigate the initiation and progression of mechanical damage in the disc under simple and complex cyclic loading conditions. Continuum damage mechanics methodology was incorporated into the finite element model to track the damage accumulation in the annulus in response to the repetitive loading. The analyses showed that the damage initiated at the posterior inner annulus adjacent to the endplates and propagated outwards towards its periphery under all loading conditions simulated. The damage accumulated preferentially in the posterior region of the annulus. The analyses also showed that the disc failure is unlikely to happen with repetitive bending in the absence of compressive load. Compressive cyclic loading with low peak load magnitude also did not create the failure of the disc. The finite element model results were consistent with the experimental and clinical observations in terms of the region of failure, magnitude of applied loads and the number of load cycles survived. PMID:22682891

  6. Initiation and progression of mechanical damage in the intervertebral disc under cyclic loading using continuum damage mechanics methodology: A finite element study.

    PubMed

    Qasim, Muhammad; Natarajan, Raghu N; An, Howard S; Andersson, Gunnar B J

    2012-07-26

    It is difficult to study the breakdown of disc tissue over several years of exposure to bending and lifting by experimental methods. There is also no finite element model that elucidates the failure mechanism due to repetitive loading of the lumbar motion segment. The aim of this study was to refine an already validated poro-elastic finite element model of lumbar motion segment to investigate the initiation and progression of mechanical damage in the disc under simple and complex cyclic loading conditions. Continuum damage mechanics methodology was incorporated into the finite element model to track the damage accumulation in the annulus in response to the repetitive loading. The analyses showed that the damage initiated at the posterior inner annulus adjacent to the endplates and propagated outwards towards its periphery under all loading conditions simulated. The damage accumulated preferentially in the posterior region of the annulus. The analyses also showed that the disc failure is unlikely to happen with repetitive bending in the absence of compressive load. Compressive cyclic loading with low peak load magnitude also did not create the failure of the disc. The finite element model results were consistent with the experimental and clinical observations in terms of the region of failure, magnitude of applied loads and the number of load cycles survived. PMID:22682891

  7. Finite-element analysis of crack growth under monotonic and cyclic loading

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1977-01-01

    An elastic-plastic (incremental) finite-element analysis, in conjunction with a crack-growth criterion, was used to study crack-growth behavior under monotonic and cyclic loading. The crack-growth criterion was based on crack-tip strain. Whenever the crack-tip strain equals or exceeds a critical strain value, the crack grows. The effects of element-mesh size, critical strain, strain hardening, and specimen type (tension or bending) on crack growth under monotonic loading were investigated. Crack growth under cyclic loading (constant amplitude and simple variable amplitude) were also studied. A combined hardening theory, which incorporates features of both isotropic and kinematic hardening under cyclic loading, was also developed for smooth yield surfaces and was used in the analysis.

  8. Physical properties and compression loading behaviour of corn seed

    NASA Astrophysics Data System (ADS)

    Babić, Lj.; Radojèin, M.; Pavkov, I.; Babić, M.; Turan, J.; Zoranović, M.; Stanišić, S.

    2013-03-01

    The aim of this study was to acquire data on the physical properties and compression loading behaviour of seed of six corn hybrid varieties. The mean values of length, width, thickness, geometric diameter, surface area, porosity, single kernel mass, sphericity, bulk and true density, 1 000 kernelmass and coefficient of friction were studied at single level of corn seed moisture content. The calculated secant modulus of elasticity during compressive loading for dent corn was 0.995 times that of the semi-flint type; there were no significant differences in the value of this mechanical property between semi-flint and dent corn varieties. The linear model showed a decreasing tendency of secant modulus of elasticity for all hybrids as the moisture content of seeds increased.

  9. Research on crack width evolution of RC beams strengthened with CFL under cyclic loads

    NASA Astrophysics Data System (ADS)

    Zhao, Chen; Huang, Peiyan; Guo, Xinyan

    2008-11-01

    Using carbon fiber laminate (CFL) invented by our group, we take the lead in studying the fatigue behaviors of the beams strengthened with FRP under the cyclic loads. The maximum crack width of the RC beams strengthened with CFL conforms to the law of three-stages, and the main factors which affect the fatigue crack propagation behavior was analyzed. Theoretical analyses are performed for the evolvement rule of maximum crack width of the strengthened RC beams under constant amplitude and random fatigue loads. Then, a method for calculating the propagation rule of maximum flexural crack width under fatigue loads is proposed, based on the initial crack width under static loads and the coefficient of the strain of CFL. This method can be used not only for crack width determination under constant amplitude cyclic load but also the random fatigue load. Using the method, permissive fatigue life can be estimated.

  10. Frictionless compression testing using load-applying platens made from porous graphite aerostatic bearings

    NASA Astrophysics Data System (ADS)

    El-Aguizy, Tarek; Plante, Jean-Sebastien; Slocum, Alexander H.; Vogan, John D.

    2005-07-01

    In compression testing of soft materials at high strains, friction between a sample and the load-applying platens induces a differential lateral expansion that is visually evident as barreling. Barreling reduces the accuracy of the tests as a means of establishing accurate material properties. Current techniques for reducing friction, which involve liquid squeeze film lubrication, may not achieve true frictionless interfaces, are messy, and may adversely affect some samples. This article examines the use of porous graphite aerostatic bearings as a frictionless testing interface. The physics of a soft material under compressive loading by porous air bearings is investigated with simple finite element analysis and air flow models. An aerostatic bearing assembly is also constructed and compared to other friction reduction techniques. The results of these experiments indicate that there are benefits to using air bearings as they are clean, chemically inert, extremely stiff, reduce friction to levels comparable to existing methods, have negligible squeeze film effect, are repeatable, and allow for cyclic compression testing.

  11. Fatigue degradation in compressively loaded composite laminates. FLD33 ERRCHK FLD04

    SciTech Connect

    Ramkumar, R.L.

    1981-04-01

    This report describes an experimental program conducted to assess the effect of imbedded delaminations on the compression fatigue behavior of quasi-isotropic, T300/5208, graphite/epoxy laminates. Teflon imbedments were introduced during panel layup to create delaminations. Test specimens were 64-ply thick, and had 3.81 cm square test sections that were unconstrained laterally during compression testing. Static and constant amplitude (R=10, omega= 10 Hz) fatigue tests were conducted. S-N data and half-life residual strength data were obtained. During static compression loading, the maximum deflection of the buckled delaminated region was recorded. Under compression fatigue, growth of the imbedded delamination was identified as the predominant failure mode in most of the test cases. Specimens that exhibited other failures had a single low stiffness ply above the Teflon imbedment. Delamination growth during fatigue was monitored using DIB- enhanced radiography. In specimens with buried delaminations, the dye-penetrant (DIB) was introduced into the delaminated region through a minute laser-drilled hole, using a hypodermic needle. A low-kV, microfocus, X-ray unit was mounted near the test equipment to efficiently record the cyclic growth of buried delaminations on Polaroid film.

  12. Inhomogeneous deformation in INCONEL 718 during monotonic and cyclic loadings

    NASA Technical Reports Server (NTRS)

    Worthem, D. W.; Robertson, I. M.; Socie, D. F.; Altstetter, C. J.; Leckie, F. A.

    1990-01-01

    The paper concentrates on the relation between microstructural observations of the dislocation structures and the macroscopic deformation responses of both aged and homogenized precipitate-hardened alloys at room temperature. The deformation responses are compared to the cyclic deformation response of an aged precipitate-hardened alloy. Early in the deformation, one deformation band per grain and little evidence of work hardening are observed; with increased deformation, work hardening begins, more bands nucleate, and their spacing becomes similar to that in the aged material. It is pointed out that the degree of coarseness of inhomogeneous deformation is not a result of a softening process within the bands due to precipitate shearing, but it is a function of the amount of work hardening within the bands.

  13. A study of binder materials subjected to isentropic compression loading.

    SciTech Connect

    Hall, Clint Allen; Orler, E. Bruce; Sheffield, Steve A; Gustavsen, Rick L.; Sutherland, Gerrit; Baer, Melvin R.; Hooks, D.E.

    2005-07-01

    Binders such as Estane, Teflon, Kel F and HTPB are typically used in heterogeneous explosives to bond polycrystalline constituents together as an energetic composite. Combined theoretical and experimental studies are underway to unravel the mechanical response of these materials when subjected to isentropic compression loading. Key to this effort is the determination of appropriate constitutive and EOS property data at extremely high stress-strain states as required for detailed mesoscale modeling. The Sandia Z accelerator and associated diagnostics provides new insights into mechanical response of these nonreactive constituents via isentropic ramp-wave compression loading. Several thicknesses of samples, varied from 0.3 to 1.2 mm, were subjected to a ramp load of {approx}42 Kbar over 500 ns duration using the Sandia Z-machine. Profiles of transmitted ramp waves were measured at window interfaces using conventional VISAR. Shock physics analysis is then used to determine the nonlinear material response of the binder materials. In this presentation we discuss experimental and modeling details of the ramp wave loading ICE experiments designed specifically for binder materials.

  14. Cyclic mechanical loading promotes bacterial penetration along composite restoration marginal gaps

    PubMed Central

    Khvostenko, D.; Salehi, S.; Naleway, S. E.; Hilton, T. J.; Ferracane, J. L.; Mitchell, J. C.; Kruzic, J. J.

    2015-01-01

    Objectives Secondary caries is the most common reason for composite restoration replacement and usually forms between dentin and the filling. The objective of this study was to investigate the combined effect of cyclic loading and bacterial exposure on bacterial penetration into gaps at the interface between dentin and resin composite restorative material using a novel bioreactor system and test specimen design. Methods Human molars were machined into 3 mm thick disks with 2 mm deep × 5 mm diameter cavity preparations into which composite restorations were placed. A ∼15-30 micrometer (small) or ∼300 micrometer wide (large) dentin-restoration gap was introduced along half of the interface between the dentin and restoration. Streptococcus mutans UA 159 biofilms were grown on each sample prior to testing in a bioreactor both with and without cyclic loading. Both groups of samples were tested for 2 weeks and post-test biofilm viability was confirmed with a live-dead assay. Samples were fixed, mounted and cross-sectioned to reveal the gaps and observe the depth of bacterial penetration. Results It was shown that for large gap samples the bacteria easily penetrated to the full depth of the gap independent of loading or non-loading conditions. The results for all cyclically loaded small gap samples show a consistently deep bacterial penetration down 100% of the gap while the average penetration depth was only 67% for the non-loaded samples with only two of six samples reaching 100%. Significance A new bioreactor was developed that allows combining cyclic mechanical loading and bacterial exposure of restored teeth for bacterial biofilm and demineralization studies. Cyclic loading was shown to aid bacterial penetration into narrow marginal gaps, which could ultimately promote secondary caries formation. PMID:25900624

  15. Fatigue Damage in Notched Composite Laminates Under Tension-Tension Cyclic Loads

    NASA Technical Reports Server (NTRS)

    Stinchcomb, W. W.; Henneke, E. G.; Reifsnider, K. L.; Kress, G. R.

    1985-01-01

    The results are given of an investigation to determine the damage states which develop in graphite epoxy laminates with center holes due to tension-tension cyclic loads, to determine the influence of stacking sequence on the initiation and interaction of damage modes and the process of damage development, and to establish the relationships between the damage states and the strength, stiffness, and life of the laminates. Two quasi-isotropic laminates were selected to give different distributions of interlaminar stresses around the hole. The laminates were tested under cyclic loads (R=0.1, 10 Hz) at maximum stresses ranging between 60 and 95 percent of the notched tensile strength.

  16. A micro-mechanical model to determine changes of collagen fibrils under cyclic loading

    NASA Astrophysics Data System (ADS)

    Chen, Michelle L.; Susilo, Monica E.; Ruberti, Jeffrey A.; Nguyen, Thao D.

    Dynamic mechanical loading induces growth and remodeling in biological tissues. It can alter the degradation rate and intrinsic mechanical properties of collagen through cellular activity. Experiments showed that repeated cyclic loading of a dense collagen fibril substrate increased collagen stiffness and strength, lengthened the substrate, but did not significantly change the fibril areal fraction or fibril anisotropy (Susilo, et al. ``Collagen Network Hardening Following Cyclic Tensile Loading'', Interface Focus, submitted). We developed a model for the collagen fibril substrate (Tonge, et al. ``A micromechanical modeling study of the mechanical stabilization of enzymatic degradation of collagen tissues'', Biophys J, in press.) to probe whether changes in the fibril morphology and mechanical properties can explain the tissue-level properties observed during cyclic loading. The fibrils were modeled as a continuous distribution of wavy elastica, based on experimental measurements of fibril density and collagen anisotropy, and can experience damage after a critical stress threshold. Other mechanical properties in the model were fit to the stress response measured before and after the extended cyclic loading to determine changes in the strength and stiffness of collagen fibrils.

  17. On the Microstructural Stability of Ultrafine-Grained Interstitial-Free Steel under Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Niendorf, T.; Canadinc, D.; Maier, H. J.; Karaman, I.

    2007-09-01

    The microstructural stability of ultrafine-grained (UFG) interstitial-free (IF) steel under cyclic loading was investigated. The samples were extracted from material processed along two different equal channel angular extrusion (ECAE) routes (4C and 4E) at room temperature. Low-cycle fatigue tests were carried out in addition to electron and optical microscopy in order to characterize the microstructural evolution induced by cyclic deformation. The results revealed substantial differences in microstructure resulting from different processing routes. Specifically, the volume fraction of high-angle grain boundaries (HAGBs) and low-angle grain boundaries (LAGBs) varied significantly depending on the processing route. The different microstructural characteristics stemming from different ECAE routes expressively influence the fatigue response. Route-4C-processed material displays cyclic softening, while processing along route 4E leads to microstructural stability under cyclic loading. This highly route-dependent trend in the cyclic stress-strain response is attributed to the instability of the LAGBs and stability of HAGBs during cyclic deformation, which is further supported by electron backscattering diffraction results.

  18. Cyclic loading of tendon fascicles using a novel fatigue loading system increases interleukin-6 expression by tenocytes

    PubMed Central

    Legerlotz, K; Jones, G C; Screen, H R C; Riley, G P

    2013-01-01

    Repetitive strain or ‘overuse’ is thought to be a major factor contributing to the development of tendinopathy. The aims of our study were to develop a novel cyclic loading system, and use it to investigate the effect of defined loading conditions on the mechanical properties and gene expression of isolated tendon fascicles. Tendon fascicles were dissected from bovine-foot extensors and subjected to cyclic tensile strain (1 Hz) at 30% or 60% of the strain at failure, for 0 h (control), 15 min, 30 min, 1 h, or 5 h. Post loading, a quasi-static test to failure assessed damage. Gene expression at a selected loading regime (1 h at 30% failure strain) was analyzed 6 h post loading by quantitative real-time polymerase chain reaction. Compared with unloaded controls, loading at 30% failure strain took 5 h to lead to a significant decrease in failure stress, whereas loading to 60% led to a significant reduction after 15 min. Loading for 1 h at 30% failure strain did not create significant structural damage, but increased Collagen-1-alpha-chain-1 and interleukin-6 (IL6) expression, suggesting a role of IL6 in tendon adaptation to exercise. Correlating failure properties with fatigue damage provides a method by which changes in gene expression can be associated with different degrees of fatigue damage. PMID:22092479

  19. Finite Element Analysis of Sacroiliac Joint Fixation under Compression Loads

    PubMed Central

    Bruna-Rosso, Claire; Arnoux, Pierre-Jean; Bianco, Rohan-Jean; Godio-Raboutet, Yves; Fradet, Léo

    2016-01-01

    Background Sacroiliac joint (SIJ) is a known chronic pain-generator. The last resort of treatment is the arthrodesis. Different implants allow fixation of the joint, but to date there is no tool to analyze their influence on the SIJ biomechanics under physiological loads. The objective was to develop a computational model to biomechanically analyze different parameters of the stable SIJ fixation instrumentation. Methods A comprehensive finite element model (FEM) of the pelvis was built with detailed SIJ representation. Bone and sacroiliac joint ligament material properties were calibrated against experimentally acquired load-displacement data of the SIJ. Model evaluation was performed with experimental load-displacement measurements of instrumented cadaveric SIJ. Then six fixation scenarios with one or two implants on one side with two different trajectories (proximal, distal) were simulated and assessed with the FEM under vertical compression loads. Results The simulated S1 endplate displacement reduction achieved with the fixation devices was within 3% of the experimentally measured data. Under compression loads, the uninstrumented sacrum exhibited mainly a rotation motion (nutation) of 1.38° and 2.80° respectively at 600 N and 1000 N, with a combined relative translation (0.3 mm). The instrumentation with one screw reduced the local displacement within the SIJ by up to 62.5% for the proximal trajectory vs. 15.6% for the distal trajectory. Adding a second implant had no significant additional effect. Conclusion A comprehensive finite element model was developed to assess the biomechanics of SIJ fixation. SIJ devices enable to reduce the motion, mainly rotational, between the sacrum and ilium. Positioning the implant farther from the SIJ instantaneous rotation center was an important factor to reduce the intra-articular displacement. Clinical relevance Knowledge provided by this biomechanical study enables improvement of SIJ fixation through optimal implant

  20. An in-situ neutron diffraction study of a multi-phase transformation and twinning-induced plasticity steel during cyclic loading

    SciTech Connect

    Saleh, Ahmed A.; Brown, Donald W.; Clausen, Bjørn; Tomé, Carlos N.; Pereloma, Elena V.; Davies, Christopher H. J.; Gazder, Azdiar A.

    2015-04-27

    In-situ neutron diffraction during cyclic tension-compression loading (∼+3.5% to −2.8%) of a 17Mn-3Al-2Si-1Ni-0.06C steel that exhibits concurrent transformation and twinning -induced plasticity effects indicated a significant contribution of intragranular back stresses to the observed Bauschinger effect. Rietveld analysis revealed a higher rate of martensitic transformation during tension compared to compression. Throughout cycling, α′-martensite exhibited the highest phase strains such that it bears an increasing portion of the macroscopic load as its weight fraction evolves. On the other hand, the ε-martensite strain remained compressive as it accommodated most of the internal strains caused by the shape misfit associated with the γ→ε and/or ε→α′ transformations.

  1. An in-situ neutron diffraction study of a multi-phase transformation and twinning-induced plasticity steel during cyclic loading

    NASA Astrophysics Data System (ADS)

    Saleh, Ahmed A.; Brown, Donald W.; Pereloma, Elena V.; Clausen, Bjørn; Davies, Christopher H. J.; Tomé, Carlos N.; Gazder, Azdiar A.

    2015-04-01

    In-situ neutron diffraction during cyclic tension-compression loading (˜+3.5% to -2.8%) of a 17Mn-3Al-2Si-1Ni-0.06C steel that exhibits concurrent transformation and twinning -induced plasticity effects indicated a significant contribution of intragranular back stresses to the observed Bauschinger effect. Rietveld analysis revealed a higher rate of martensitic transformation during tension compared to compression. Throughout cycling, α'-martensite exhibited the highest phase strains such that it bears an increasing portion of the macroscopic load as its weight fraction evolves. On the other hand, the ɛ-martensite strain remained compressive as it accommodated most of the internal strains caused by the shape misfit associated with the γ→ɛ and/or ɛ→α' transformations.

  2. One-dimensional consolidation in unsaturated soils under cyclic loading

    NASA Astrophysics Data System (ADS)

    Lo, Wei-Cheng; Sposito, Garrison; Lee, Jhe-Wei; Chu, Hsiuhua

    2016-05-01

    The one-dimensional consolidation model of poroelasticity of Lo et al. (2014) for an unsaturated soil under constant loading is generalized to include an arbitrary time-dependent loading. A closed-form solution for the pore water and air pressures along with the total settlement is derived by employing a Fourier series representation in the spatial domain and a Laplace transformation in the time domain. This solution is illustrated for the important example of a fully-permeable soil cylinder with an undrained initial condition acted upon by a periodic stress. Our results indicate that, in terms of a dimensionless time scale, the transient solution decays to zero most slowly in a water-saturated soil, whereas for an unsaturated soil, the time for the transient solution to die out is inversely proportional to the initial water saturation. The generalization presented here shows that the diffusion time scale for pore water in an unsaturated soil is orders of magnitude greater than that in a water-saturated soil, mainly because of the much smaller hydraulic conductivity of the former.

  3. Numerical modeling and experiments of creep crack growth under cyclic loading

    SciTech Connect

    Brust, F.W.

    1995-12-31

    This paper presents a summary of some recent studies of creep crack growth under history dependent load conditions. The effect of a proper constitutive law is illustrated. Moreover, the asymptotic fields are reconsidered under cyclic creep conditions. In addition, several experiments are modeled and the behavior of integral parameters is discussed.

  4. Behavior of prestressed concrete subjected to low temperatures and cyclic loading

    SciTech Connect

    Berner, D.E.

    1984-01-01

    Concrete has exhibited excellent behavior in cryogenic containment vessels for several decades under essentially static conditions. Tests were conducted to determine the response of prestressed lightweight concrete subjected to high-intensity cyclic loading and simultaneous cryogenic thermal shock, simulating the relatively dynamic conditions encountered offshore or in seismic areas. Lightweight concrete has several attractive properties for cryogenic service including: (1) very low permeability, (2) good strain capacity, (3) relatively low thermal conductivity, and (4) a low modulus of elasticity. Experimental results indicated that the mechanical properties of plain lightweight concrete significantly increase with moisture content at low temperatures, while cyclic loading fatigue effects are reduced at low temperatures. Also, tests on uniaxially and on biaxially prestressed lightweight concrete both indicate that the test specimens performed well under severe cyclic loading and cryogenic thermal shock with only moderate reduction in flexural stiffness. Supplementary tests conducted in this study indicate that conventionally reinforced concrete degrades significantly faster than prestressed concrete when subjected to cyclic loading and thermal shock.

  5. The effects of high magnitude cyclic tensile load on cartilage matrix metabolism in cultured chondrocytes.

    PubMed

    Honda, K; Ohno, S; Tanimoto, K; Ijuin, C; Tanaka, N; Doi, T; Kato, Y; Tanne, K

    2000-09-01

    Excessive mechanical load is thought to be responsible for the onset of osteoarthrosis (OA), but the mechanisms of cartilage destruction caused by mechanical loads remain unknown. In this study we applied a high magnitude cyclic tensile load to cultured chondrocytes using a Flexercell strain unit, which produces a change in cell morphology from a polygonal to spindle-like shape, and examined the protein level of cartilage matrixes and the gene expression of matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs) and proinflammatory cytokines such as IL-1beta and TNF-alpha. Toluidine blue staining, type II collagen immunostaining, and an assay of the incorporation of [35S]sulfate into proteoglycans revealed a decrease in the level of cartilage-specific matrixes in chondrocyte cultures subjected to high magnitude cyclic tensile load. PCR-Southern blot analysis showed that the high magnitude cyclic tensile load increased the mRNA level of MMP-1, MMP-3, MMP-9, IL-1beta, TNF-alpha and TIMP-1 in the cultured chondrocytes, while the mRNA level of MMP-2 and TIMP-2 was unchanged. Moreover, the induction of MMP-1, MMP-3 and MMP-9 mRNA expression was observed in the presence of cycloheximide, an inhibitor of protein synthesis. These findings suggest that excessive mechanical load directly changes the metabolism of cartilage by reducing the matrix components and causing a quantitative imbalance between MMPs and TIMPs. PMID:11043401

  6. Fatigue degradation in compressively loaded composite laminates. [graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Ramkumar, R. L.

    1981-01-01

    The effect of imbedded delaminations on the compression fatigue behavior of quasi-isotropic, T300/5208, graphite/epoxy laminates was investigated. Teflon imbedments were introduced during panel layup to create delaminations. Static and constant amplitude (R=10, omega = 10 Hz) fatigue tests were conducted. S-N data and half life residual strength data were obtained. During static compression loading, the maximum deflection of the buckled delaminated region was recorded. Under compression fatigue, growth of the imbedded delamination was identified as the predominant failure mode in most of the test cases. Specimens that exhibited others failures had a single low stiffness ply above the Teflon imbedment. Delamination growth during fatigue was monitored using DIB enhanced radiography. In specimens with buried delaminations, the dye penetrant (DIB) was introduced into the delaminated region through a minute laser drilled hole, using a hypodermic needle. A low kV, microfocus, X-ray unit was mounted near the test equipment to efficiently record the cyclic growth of buried delaminations on Polaroid film.

  7. Mechanics of cranial sutures during simulated cyclic loading.

    PubMed

    Jasinoski, S C; Reddy, B D

    2012-07-26

    Previous computational and experimental analyses revealed that cranial sutures, fibrous joints between the bones, can reduce the strain experienced by the surrounding skull bones during mastication. This damping effect reflects the importance of including sutures in finite element (FE) analyses of the skull. Using the FE method, the behaviour of three suture morphologies of increasing complexity (butt-ended, moderate interdigitated, and complex interdigitated) during static loading was recently investigated, and the sutures were assumed to have linear elastic properties. In the current study, viscoelastic properties, derived from published experimental results of the nasofrontal suture of young pigs (Sus scrofa), are applied to the three idealised bone-suture models. The effects of suture viscoelasticity on the stress, strain, and strain energy in the models were computed for three different frequencies (corresponding to periods of 1, 10, and 100s) and compared to the results of a static, linear elastic analysis. The range of applied frequencies broadly represents different physiological activities, with the highest frequency simulating mastication and the lowest frequency simulating growth and pressure of the surrounding tissues. Comparing across all three suture morphologies, strain energy and strain in the suture decreased with the increase in suture complexity. For each suture model, the magnitude of strain decreased with an increase in frequency, and the magnitudes were similar for both the elastic and 1s frequency analyses. In addition, a viscous response is less apparent in the higher frequency analyses, indicating that viscous properties are less important to the behaviour of the suture during those analyses. The FE results suggest that implementation of viscoelastic properties may not be necessary for computational studies of skull behaviour during masticatory loading but instead might be more relevant for studies examining lower frequency physiological

  8. Cyclic tension compression testing of AHSS flat specimens with digital image correlation system

    NASA Astrophysics Data System (ADS)

    Knoerr, Lay; Sever, Nimet; McKune, Paul; Faath, Timo

    2013-12-01

    A cyclic tension-compression testing program was conducted on flat specimens of TPN-W®780 (Three Phase Nano) and DP980 (Dual Phase) Advanced High Strength Steels (AHSS). This experimental method was enabled utilizing an anti-buckling clamping device performed in a test machine, and the surface strains along the thickness edge are measured with a three-dimensional Digital Image Correlation (DIC) system. The in-plane pre-strain and reversed strain values, at specified strain rates, are investigated to observe the potential plastic flow and the nonlinear strain hardening behavior of the materials. The validity of the test results is established with the monotonic tension tests, to substantiate the true stress-strain curves corrected for the frictional and biaxial stresses induced by the clamping device. A process method for analyzing the correction using a macro script is shown to simplify the output of the true stress-strain results for material model calibration. An in progress study to validate the forming and spring-back predictive capabilities of a calibrated TPN-W®780 complex material model to an actual stamping of an automotive component will demonstrate the usefulness of the experimental cyclic test method. Suggestions to improve the testing, strain analysis and calibration of the model parameters are proposed for augmented use of this test method.

  9. Effective Widths of Compression-Loaded Plates With a Cutout

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.; Starnes, James H., Jr.

    2000-01-01

    A study of the effects of cutouts and laminate construction on the prebuckling and initial postbuckling stiffnesses, and the effective widths of compression-loaded, laminated-composite and aluminum square plates is presented. The effective-width concept is extended to plates with cutouts, and experimental and nonlinear finite-element analysis results are presented. Behavioral trends are compared for seven plate families and for cutout-diameter-to-plate-width ratios up to 0.66. A general compact design curve that can be used to present and compare the effective widths for a wide range of laminate constructions is also presented. A discussion of how the results can be used and extended to include certain types of damage, cracks, and other structural discontinuities or details is given. Several behavioral trends are described that initially appear to be nonintuitive. The results demonstrate a complex interaction between cutout size and plate orthotropy that affects the axial stiffness and effective width of a plate subjected to compression loads.

  10. Case study of preliminary cyclic load evaluation and triaxial soil testing in offshore wind farm planning

    NASA Astrophysics Data System (ADS)

    Otto, Daniel; Ossig, Benjamin; Kreiter, Stefan; Kouery, Saed; Moerz, Tobias

    2010-05-01

    In 2020 Germany aims to produce 20% of its electrical power trough renewable energy sources. Assigned Offshore Wind farms in the German exclusive economic zone of the North- and the Baltic Sea are important step toward a fulfilment of this goal. However the save erecting of 5-6 MW wind power plants (total construction size: > 200m) in water depth of around 40 m is related to unprecedented technical, logistical and financial challenges. With an intended lifetime expectation of 50 years for the foundations, construction materials and the soils around the foundation are subject to high and continued stresses from self-weight, waves, wind and current. These stresses are not only static, but have also a significant cyclic component. An estimated 250 million cyclic load changes may lead to an accumulation of plastic deformation in the soil that potentially may affect operability or lifespan of the plant. During a preliminary geotechnical site survey of one of the largest (~150 km2) offshore wind project sites within the German Bight (~45 km North off the island Juist) a total of 16 drill cores with in situ cone penetration data and a total sample length of ~800 m where recovered. Preliminary foundation designs and static self weight and lateral load calculations were used to design a cycling triaxial lab testing program on discrete natural soil samples. Individual tests were performed by foundation type and at vertical and lateral load maxima to evaluate the long-term soil behaviour under cyclic load. Tests have been performed on granular, cohesive and intermediate natural soils. Following an introduction to the unique MARUM triaxial apparatus and testing conditions, the cyclic triaxial test results are shown and explained. Furthermore cyclic shear strength and stiffness are compared to their static counterparts. Unique soil behaviour like abrupt partial failure, pore pressure response and unexpected in part load independent cyclic deformation behaviour is discussed and

  11. TEST AND ANALYSIS ON THE PROGRESSIVE COLLAPSE OF STEEL TRUSSES UNDER CYCLIC LOADING

    NASA Astrophysics Data System (ADS)

    Imase, Fumiaki; Usami, Tsutomu; Funayama, Jyunki; Wang, Chun-Lin

    The objective of this study is to examine experimentally and analytically the damage progress of steel truss structures in cyclic loadings. The adequacy of a numerical model developed in the past study for analyzing truss structures under cyclic or dynamic loadings is examined in view of the test results of model truss structures. Seven steel truss specimens whose panel points are rigidly connected through gusset plates by high-tension bolts were tested under constant vertical loads and cyclically increasing horizontal loads. Two truss models equipped with buckling restrained braces as diagonal members were tested. Moreover, elastic-plastic large displacement analysis is executed with appropriate modeling of test truss structures and with initial lateral loads simulating initial imperfections. In many cases, good correlation between test and analysis is observed up to the points where local bolt hole damages appear near the lower panel points of test truss structures. In addition an analytical model that can examine the up-lift effect of a base plate on the hinge-support has been proposed to improve the analytical modeling.

  12. Structural effects of three-dimensional angle-interlock woven composite undergoing bending cyclic loading

    NASA Astrophysics Data System (ADS)

    Jin, LiMin; Yao, Yao; Yu, YiMin; Rotich, Gideon; Sun, BaoZhong; Gu, BoHong

    2014-03-01

    This paper reports the structural effects of three-dimensional (3-D) angle-interlock woven composite (3DAWC) undergoing three-point bending cyclic loading from experimental and finite element analysis (FEA) approaches. In experiment, the fatigue tests were conducted to measure the bending deflection and to observe the damage morphologies. By the FEA approach, a micro-structural unit-cell model of the 3DAWC was established at the yarn level to simulate the fatigue damage. The stress degradation at the loading condition of constant deformation amplitude was calculated to show the degradation of mechanical properties. In addition, the stress distribution, fatigue damage evolution and critical damage regions were also obtained to qualitatively reveal the structural effects and damage mechanisms of the 3DAWC subjected to three-point bending cyclic loading.

  13. Smart aggregate based damage detection of circular RC columns under cyclic combined loading

    NASA Astrophysics Data System (ADS)

    Moslehy, Yashar; Gu, Haichang; Belarbi, Abdeldjelil; Mo, Y. L.; Song, Gangbing

    2010-06-01

    Structural health monitoring is an important issue for the maintenance of large-scale civil infrastructures, especially for bridge columns. In this paper, an innovative piezoceramic-based approach is developed for the structural health monitoring of reinforced concrete columns. An innovative piezoceramic-based device, the smart aggregate, is utilized as a transducer for the purpose of health monitoring. To investigate the seismic behavior of reinforced concrete (RC) bridge columns, structural health monitoring tests were performed on two bridge columns under combined reversed cyclic loading at the Missouri University of Science and Technology. The proposed smart aggregate based approach successfully evaluated the health status of concrete columns during the loading procedure. Sensor energy plots and 3D normalized sensor energy plots demonstrated that the damage inside attenuated the transmitted energy. The wavelet packet based damage index and sensor history damage index evaluate the damage development in concrete columns under cyclic loading.

  14. Durability of polymer/metal interfaces under cyclic loading

    NASA Astrophysics Data System (ADS)

    Du, Tianbao

    Fatigue crack growth along metal/epoxy interface was examined in an aqueous environment and under mixed-mode conditions. A stress corrosion cracking mechanism was identified in this process. The fatigue crack growth rate in an aqueous environment was increased by several orders of magnitude and the fatigue threshold decreased by a factor of 10. The loss of adhesion in the aqueous environment was induced by the hydration of the surface oxide which resulted in a hydroxide with poor adhesion to the substrate metal. Self-assembled monolayer of long chain alkyl phosphonic acid and amino phosphonic acid were synthesized to enhance the adhesion and improve the durability of Al/epoxy interfacial bonding system. The same approach was taken to promote adhesion between copper and epoxy, where a two-component coupling system of 11-mercapto-1-undercanol and 3-aminopropyltriethoxysilane provided the most significant improvement in the copper/epoxy adhesion. The mixed-mode was applied by a piezoelectric actuator. Subcritical crack growth was observed along the epoxy/aluminum interface and the growth rate was found to depend on the magnitude of the applied electric field. Kinetics of the crack growth was correlated with the piezoelectric driving force. The resulting crack growth behavior was compared with the results from the conventional mechanical testing technique. Large differences were found between these two methods. Using this newly developed technique, effects of loading mode and frequency were studied. The fatigue resistance was found to increase with the mode II component and was expressed as a function of the KII/K I ratio. A strong frequency effect was observed for the subcritical crack growth along the Al/Epoxy interface, their fatigue resistance increased with the testing frequency.

  15. Behavior of pile group with elevated cap subjected to cyclic lateral loads

    NASA Astrophysics Data System (ADS)

    Chen, Yun-min; Gu, Ming; Chen, Ren-peng; Kong, Ling-gang; Zhang, Zhe-hang; Bian, Xue-cheng

    2015-06-01

    The pile group with elevated cap is widely used as foundation of offshore structures such as turbines, power transmission towers and bridge piers, and understanding its behavior under cyclic lateral loads induced by waves, tide water and winds, is of great importance to designing. A large-scale model test on 3×3 pile group with elevated cap subjected to cyclic lateral loads was performed in saturated silts. The preparation and implementation of the test is presented. Steel pipes with the outer diameter of 114 mm, thickness of 4.5 mm, and length of 6 m were employed as model piles. The pile group was cyclic loaded in a multi-stage sequence with the lateral displacement controlled. In addition, a single pile test was also conducted at the same site for comparison. The displacement of the pile cap, the internal forces of individual piles, and the horizontal stiffness of the pile group are presented and discussed in detail. The results indicate that the lateral cyclic loads have a greater impact on pile group than that on a single pile, and give rise to the significant plastic strain in the soil around piles. The lateral loads carried by each row of piles within the group would be redistributed with loading cycles. The lateral stiffness of the pile group decreases gradually with cycles and broadly presents three different degradation patterns in the test. Significant axial forces were measured out in some piles within the group, owing to the strong restraint provided by the cap, and finally lead to a large settlement of the pile group. These findings can be referred for foundation designing of offshore structures.

  16. Static and cyclic mechanical loading of mesenchymal stem cells on elastomeric, electrospun polyurethane meshes.

    PubMed

    Cardwell, Robyn D; Kluge, Jonathan A; Thayer, Patrick S; Guelcher, Scott A; Dahlgren, Linda A; Kaplan, David L; Goldstein, Aaron S

    2015-07-01

    Biomaterial substrates composed of semi-aligned electrospun fibers are attractive supports for the regeneration of connective tissues because the fibers are durable under cyclic tensile loads and can guide cell adhesion, orientation, and gene expression. Previous studies on supported electrospun substrates have shown that both fiber diameter and mechanical deformation can independently influence cell morphology and gene expression. However, no studies have examined the effect of mechanical deformation and fiber diameter on unsupported meshes. Semi-aligned large (1.75 μm) and small (0.60 μm) diameter fiber meshes were prepared from degradable elastomeric poly(esterurethane urea) (PEUUR) meshes and characterized by tensile testing and scanning electron microscopy (SEM). Next, unsupported meshes were aligned between custom grips (with the stretch axis oriented parallel to axis of fiber alignment), seeded with C3H10T1/2 cells, and subjected to a static load (50 mN, adjusted daily), a cyclic load (4% strain at 0.25 Hz for 30 min, followed by a static tensile loading of 50 mN, daily), or no load. After 3 days of mechanical stimulation, confocal imaging was used to characterize cell shape, while measurements of deoxyribonucleic acid (DNA) content and messenger ribonucleic acid (mRNA) expression were used to characterize cell retention on unsupported meshes and expression of the connective tissue phenotype. Mechanical testing confirmed that these materials deform elastically to at least 10%. Cells adhered to unsupported meshes under all conditions and aligned with the direction of fiber orientation. Application of static and cyclic loads increased cell alignment. Cell density and mRNA expression of connective tissue proteins were not statistically different between experimental groups. However, on large diameter fiber meshes, static loading slightly elevated tenomodulin expression relative to the no load group, and tenascin-C and tenomodulin expression

  17. The use of a lock-in amplifier to apply digital image correlation to cyclically loaded components

    NASA Astrophysics Data System (ADS)

    Fruehmann, R. K.; Dulieu-Barton, J. M.; Quinn, S.; Tyler, J. P.

    2015-05-01

    An approach for processing strain data obtained from Digital Image Correlation (DIC) that can be used directly on components subject to cyclic loading, such as in fatigue testing, is described. A key challenge addressed herein is obtaining an accurate and precise surface strain map without recourse to expensive high speed cameras to capture data to map the load cycle. The basis of the approach is the application of a lock-in amplifier to the strain data obtained from images taken from low-cost low-frame rate cameras. The technique enables images to be captured throughout a fatigue test and hence evaluate the effect of any damage on the strain field, without interrupting the test. The methodology is assessed using an aluminium disc in diametric compression. It is demonstrated that the approach enables accurate strain maps to be obtained using a range of loading frequencies that are greater than the camera frame rate. A realistic example application of the technique on a fatigue test with an evolving crack in a T-shaped specimen is presented.

  18. Life prediction of materials exposed to monotonic and cyclic loading: Bibliography

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Moya, N.; Stuhrke, W. F.

    1975-01-01

    This bibliography is comprised of approximately 1200 reference citations related to the mechanics of failure in aerospace structures. Most of the references are for information on life prediction for materials exposed to monotonic and cyclic loading in elevated temperature environments such as that in the hot end of a gas turbine engine. Additional citations listed are for documents on the thermal and mechanical effects on solar cells in the cryogenic vacuum environment; radiation effects on high temperature mechanical properties; and high cycle fatigue technology as applicable to gas turbine engine bearings. The bibliography represents a search of the literature published in the period April 1962 through April 1974 and is largely limited to documents published in the United States. It is a companion volume to NASA CR-134750, Life Prediction of Materials Exposed to Monotonic and cyclic Loading - A Technology Survey.

  19. Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading

    NASA Astrophysics Data System (ADS)

    Luo, Xue-Mei; Zhu, Xiao-Fei; Zhang, Guang-Ping

    2014-01-01

    Under mechanical loading, nanocrystalline metals show unique behaviour, among the most common of which are high strength, mechanically induced grain growth and twin formation. However, mechanically induced grain growth is seldom correlated with twins. Here we report a clear relationship between grain growth and nanoscale twins in 20-nm-thick gold films with a grain size of ~19 nm under cyclic loading based on atomic-scale observations and analyses. We find that the formation of nanotwins is an effective way to assist grain coarsening, following a fundamental process that the mutual formation of nanotwins in two neighbouring grains changes the local grain orientation and dissociates the grain boundary into new segments, which become more mobile. The proposed mechanism of nanotwin-assisted grain growth may have important implications for understanding the interface-mediated mechanisms of cyclic plastic deformation and for the interface engineering design of nanostructured metals with both high strength and good fatigue resistance.

  20. Subcritical crack growth in glasses under cyclic loads: Effect of hydrodynamic pressure in aqueous environments

    SciTech Connect

    Yi, K.S.; Dill, S.J.; Dauskardt, R.H.

    1997-07-01

    The effect of hydrodynamic pressure developed in the wake of a crack growing in a brittle material under cyclic loads in an aqueous environment is considered. The pressure acts in opposition to the movement of the crack faces, thus shielding the crack up from the applied loads. A general hydrodynamic fluid pressure relation based on a one-dimensional Reynolds equation, which applicable to a crack with an arbitrary crack opening profile, is developed. The model is modified to account for side flow through the thickness of the sample and cavitation near the crack tip. Both effects significantly modify the hydrodynamic pressure distribution. Finally, the resulting hydrodynamic pressure relations are combined with a fracture mechanics model to account for the change in the near-tip stress intensity. Resulting predictions of the cyclic crack-growth rate are found to be in good agreement with measured values for a borosilicate glass tested at various frequencies in a water environment.

  1. Modeling and Simulation of the Effects of Cyclic Loading on Articular Cartilage Lesion Formation

    PubMed Central

    Wang, Xiayi; Ayati, Bruce P.; Brouillete, Marc J.; Graham, Jason M.; Ramakrishnan, Prem S.; Martin, James A.

    2015-01-01

    We present a model of articular cartilage lesion formation to simulate the effects of cyclic loading. This model extends and modifies the reaction-diffusion-delay model by Graham et al. [20] for the spread of a lesion formed though a single traumatic event. Our model represents “implicitly” the effects of loading, meaning through a cyclic sink term in the equations for live cells. Our model forms the basis for in silico studies of cartilage damage relevant to questions in osteoarthritis, for example, that may not be easily answered through in vivo or in vitro studies. Computational results are presented that indicate the impact of differing levels of EPO on articular cartilage lesion abatement. PMID:24753483

  2. Life prediction of materials exposed to monotonic and cyclic loading: A new technology survey

    NASA Technical Reports Server (NTRS)

    Stuhrke, W. F.; Carpenter, J. L., Jr.

    1975-01-01

    Reviewed and evaluated technical abstracts for about 100 significant documents are reported relating primarily to life prediction for structural materials exposed to monotonic and cyclic loading, particularly in elevated temperature environments. The abstracts in the report are mostly for publications in the period April 1962 through April 1974. The purpose of this report is to provide, in quick reference form, a dependable source for current information

  3. Does Abutment Collar Length Affect Abutment Screw Loosening After Cyclic Loading?

    PubMed

    Siadat, Hakimeh; Pirmoazen, Salma; Beyabanaki, Elaheh; Alikhasi, Marzieh

    2015-07-01

    A significant vertical space that is corrected with vertical ridge augmentation may necessitate selection of longer abutments, which would lead to an increased vertical cantilever. This study investigated the influence of different abutment collar heights on single-unit dental implant screw-loosening after cyclic loading. Fifteen implant-abutment assemblies each consisted of an internal hexagonal implant were randomly assigned to 3 groups: Group1, consisting of 5 abutments with 1.5 mm gingival height (GH); Group2, 5 abutments with 3.5 mm GH; and Group3, 5 abutments with 5.5 mm GH. Each specimen was mounted in transparent auto-polymerizing acrylic resin block, and the abutment screw was tightened to 35 Ncm with an electric torque wrench. After 5 minutes, initial torque loss (ITL) was recorded for all specimens. Metal crowns were fabricated with 45° occlusal surface and were placed on the abutments. A cyclic load of 75 N and frequency of 1 Hz were applied perpendicular to the long axis of each specimen. After 500 000 cycles, secondary torque loss (STL) was recorded. One-way ANOVA analysis was used to evaluate the effects of abutment collar height before and after cyclic loading. One-way ANOVA showed that ITL among the groups was not significantly different (P = .52), while STL was significantly different among the groups (P = .008). Post-hoc Tukey HSD tests showed that STL values were significantly different between the abutments with 1.5 mm GH (Group1) and with 5.5 mm GH (Group3) (P = .007). A paired comparison t-test showed that cyclic loading significantly influenced the STL in comparison with the ITL in each group. Within the limitations of this study, it can be concluded that increase in height of the abutment collar could adversely affect the torque loss of the abutment screw. PMID:26237093

  4. Progressive lossless compression of volumetric data using small memory load.

    PubMed

    Klajnsek, Gregor; Zalik, Borut

    2005-06-01

    Nowadays, applications dealing with volumetric datasets, Medical applications being a typical representative, have become possible even on low cost computers due to a rapid increase of computer memory and processing power. However, even today, dealing with volumetric datasets creates two considerable problems: slow visualization and large file sizes. While recently, due to significant progress in graphics hardware, real-time or near real-time volume visualization has become possible, volume compression still remains a problematic issue. This paper introduces a new method for lossless compression of volumetric datasets. It is based on quadtree encoding. The method consists of three steps: during initialization, so-called division quadtree is built. The smallest unit of the division quadtree is called basic macro-block. During the processing phase, Boolean intersection is built on pairs of quadtrees, and the differences are stored. In the last phase, the variable length encoding is applied to reduce the entropy among the differences. Proposed method supports progressive visualization, what is especially important when a transfer trough the internet is needed. To test the efficiency of this method it was compared to popular octree encoding scheme. The results proved that data coherence is exploited more sufficiently using proposed quadtree approach. Additional advantage of this approach is that the algorithm does not need a lot of memory space. Only two quadtrees of two consecutive slices need be loaded in the memory at the same time. This feature makes this algorithm extremely attractive for possible hardware implementation. This paper introduces a new method for the compression of volumetric datasets. It is based on quadtree encoding. This method consists of three steps: during initialization, a so-called division quadtree is built. The smallest, unit of the division quadtree is called a basic macro-block. A Boolean intersection is built on pairs of quadtrees during

  5. Modelling of Fiber/Matrix Debonding of Composites Under Cyclic Loading

    NASA Technical Reports Server (NTRS)

    Naghipour, Paria; Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.

    2013-01-01

    The micromechanics theory, generalized method of cells (GMC), was employed to simulate the debonding of fiber/matrix interfaces, within a repeating unit cell subjected to global, cyclic loading, utilizing a cyclic crack growth law. Cycle dependent, interfacial debonding was implemented as a new module to the available GMC formulation. The degradation of interfacial stresses, with applied load cycles, was achieved via progressive evolution of the interfacial compliance. A periodic repeating unit cell, representing the fiber/matrix architecture of a composite, was subjected to combined normal and shear loadings, and degradation of the global transverse stress in successive cycles was monitored. The obtained results were compared to values from a corresponding finite element model. Reasonable agreement was achieved for combined normal and shear loading conditions, with minimal variation for pure loading cases. The local effects of interfacial debonding, and fatigue damage will later be combined as sub-models to predict the experimentally obtained fatigue life of Ti-15-3/Sic composites at the laminate level.

  6. The Characterization of Mechanical Properties of a Rabbit Femur-Anterior Cruciate Ligament-Tibia Complex During Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Hidetaka; Han, Jungsoo; Ryu, Jaiyoung; Han, Changsoo

    The purpose of this study was to investigate the effect of cyclic loading, which produced the condition of ACLs during sports activities, on tensile properties of femur-ACL-tibia complexes (FATCs). Paired FATCs of 40 New Zealand white rabbits were tested on a materials testing machine. One specimen of each pair was designated as a control and loaded until failure. The contralateral specimen was loaded cyclically (1.4 Hz, 1 hr.) with 20%, 30%, 40%, or 50% of ultimate tensile strength (UTS) of the control and then loaded until failure. The UTS and mode of failure were recorded after each test. Five specimens ruptured during cyclic loading in the 50% group. In the 40% group, the mean value of UTS of cycled specimens was significantly lower than that of controls. There was no statistically significant difference in UTS values between control and cycled specimens in the 20% and 30% groups. Cycled specimens had a significantly higher incidence of substance failure than controls. Our results demonstrated that FATCs have the strength to withstand cyclic loading within normal sports activity levels. However, FACTs can be damaged by cyclic loading under strenuous sports activity levels. We speculate that cyclic loading makes the ACL substance weaker than the insertion site.

  7. Electrical Conductivity, Thermal Stability, and Lattice Defect Evolution During Cyclic Channel Die Compression of OFHC Copper

    NASA Astrophysics Data System (ADS)

    Satheesh Kumar, S. S.; Raghu, T.

    2015-02-01

    Oxygen-free high-conductivity (OFHC) copper samples are severe plastically deformed by cyclic channel die compression (CCDC) technique at room temperature up to an effective plastic strain of 7.2. Effect of straining on variation in electrical conductivity, evolution of deformation stored energy, and recrystallization onset temperatures are studied. Deformation-induced lattice defects are quantified using three different methodologies including x-ray diffraction profile analysis employing Williamson-Hall technique, stored energy based method, and electrical resistivity-based techniques. Compared to other severe plastic deformation techniques, electrical conductivity degrades marginally from 100.6% to 96.6% IACS after three cycles of CCDC. Decrease in recrystallization onset and peak temperatures is noticed, whereas stored energy increases and saturates at around 0.95-1.1J/g after three cycles of CCDC. Although drop in recrystallization activation energy is observed with the increasing strain, superior thermal stability is revealed, which is attributed to CCDC process mechanics. Low activation energy observed in CCDC-processed OFHC copper is corroborated to synergistic influence of grain boundary characteristics and lattice defects distribution. Estimated defects concentration indicated continuous increase in dislocation density and vacancy with strain. Deformation-induced vacancy concentration is found to be significantly higher than equilibrium vacancy concentration ascribed to hydrostatic stress states experienced during CCDC.

  8. Effect of cyclic load on vertical misfit of prefabricated and cast implant single abutment

    PubMed Central

    DE JESUS TAVAREZ, Rudys Rodolfo; BONACHELA, Wellington Cardoso; XIBLE, Anuar Antônio

    2011-01-01

    Objective The purpose of this in vitro study was to evaluate misfit alterations at the implant/abutment interface of external and internal connection implant systems when subjected to cyclic loading. Material and Methods Standard metal crowns were fabricated for 5 groups (n=10) of implant/abutment assemblies: Group 1, external hexagon implant and UCLA cast-on premachined abutment; Group 2, internal hexagon implant and premachined abutment; Group 3, internal octagon implant and prefabricated abutment; Group 4, external hexagon implant and UCLA cast-on premachined abutment; and Group 5, external hexagon implant and Ceraone abutment. For groups 1, 2, 3 and 5, the crowns were cemented on the abutments and in group 4 crowns were screwed directly on the implant. The specimens were subjected to 500,000 cycles at 19.1 Hz of frequency and non-axial load of 133 N in a MTS 810 machine. The vertical misfit (μm) at the implant/abutment interface was evaluated before (B) and after (A) application of the cyclic loading. Data were analyzed statistically by using two-away ANOVA and Tukey’s post-hoc test (p<0.05). Results Before loading values showed no difference among groups 2 (4.33±3.13), 3 (4.79±3.43) and 5 (3.86±4.60); between groups 1 (12.88±6.43) and 4 (9.67±3.08), and among groups 2, 3 and 4. However, groups 1 and 4 were significantly different from groups 2, 3 and 5. After loading values of groups 1 (17.28±8.77) and 4 (17.78±10.99) were significantly different from those of groups 2 (4.83±4.50), 3 (8.07±4.31) and 5 (3.81±4.84). There was a significant increase in misfit values of groups 1, 3 and 4 after cyclic loading, but not for groups 2 and 5. Conclusion The cyclic loading and type of implant/abutment connection may develop a role on the vertical misfit at the implant/abutment interface. PMID:21437464

  9. Strain Amplification Analysis of an Osteocyte under Static and Cyclic Loading: A Finite Element Study

    PubMed Central

    Xian, Cory J.

    2015-01-01

    Osteocytes, the major type of bone cells which reside in their lacunar and canalicular system within the bone matrix, function as biomechanosensors and biomechanotransducers of the bone. Although biomechanical behaviour of the osteocyte-lacunar-canalicular system has been investigated in previous studies mostly using computational 2-dimensional (2D) geometric models, only a few studies have used the 3-dimensional (3D) finite element (FE) model. In the current study, a 3D FE model was used to predict the responses of strain distributions of osteocyte-lacunar-canalicular system analyzed under static and cyclic loads. The strain amplification factor was calculated for all simulations. Effects on the strain of the osteocyte system were investigated under 500, 1500, 2000, and 3000 microstrain loading magnitudes and 1, 5, 10, 40, and 100 Hz loading frequencies. The maximum strain was found to change with loading magnitude and frequency. It was observed that maximum strain under 3000-microstrain loading was higher than those under 500, 1500, and 2000 microstrains. When the loading strain reached the maximum magnitude, the strain amplification factor of 100 Hz was higher than those of the other frequencies. Data from this 3D FE model study suggests that the strain amplification factor of the osteocyte-lacunar-canalicular system increases with loading frequency and loading strain increasing. PMID:25664319

  10. Effect of dynamic monotonic and cyclic loading on fracture behavior for Japanese carbon steel pipe STS410

    SciTech Connect

    Kinoshita, Kanji; Murayama, Kouichi; Ogata, Hiroyuki

    1997-04-01

    The fracture behavior for Japanese carbon steel pipe STS410 was examined under dynamic monotonic and cyclic loading through a research program of International Piping Integrity Research Group (EPIRG-2), in order to evaluate the strength of pipe during the seismic event The tensile test and the fracture toughness test were conducted for base metal and TIG weld metal. Three base metal pipe specimens, 1,500mm in length and 6-inch diameter sch.120, were employed for a quasi-static monotonic, a dynamic monotonic and a dynamic cyclic loading pipe fracture tests. One weld joint pipe specimen was also employed for a dynamic cyclic loading test In the dynamic cyclic loading test, the displacement was controlled as applying the fully reversed load (R=-1). The pipe specimens with a circumferential through-wall crack were subjected four point bending load at 300C in air. Japanese STS410 carbon steel pipe material was found to have high toughness under dynamic loading condition through the CT fracture toughness test. As the results of pipe fracture tests, the maximum moment to pipe fracture under dynamic monotonic and cyclic loading condition, could be estimated by plastic collapse criterion and the effect of dynamic monotonic loading and cyclic loading was a little on the maximum moment to pipe fracture of the STS410 carbon steel pipe. The STS410 carbon steel pipe seemed to be less sensitive to dynamic and cyclic loading effects than the A106Gr.B carbon steel pipe evaluated in IPIRG-1 program.

  11. Influence of varying compressive loading methods on physiologic motion patterns in the cervical spine.

    PubMed

    Bell, Kevin M; Yan, Yiguo; Debski, Richard E; Sowa, Gwendolyn A; Kang, James D; Tashman, Scott

    2016-01-25

    The human cervical spine supports substantial compressive load in-vivo arising from muscle forces and the weight of the head. However, the traditional in-vitro testing methods rarely include compressive loads, especially in investigations of multi-segment cervical spine constructs. Various methods of modeling physiologic loading have been reported in the literature including axial forces produced with inclined loading plates, eccentric axial force application, follower load, as well as attempts to individually apply/model muscle forces in-vitro. The importance of proper compressive loading to recreate the segmental motion patterns exhibited in-vivo has been highlighted in previous studies. However, appropriate methods of representing the weight of head and muscle loading are currently unknown. Therefore, a systematic comparison of standard pure moment with no compressive loading versus published and novel compressive loading techniques (follower load - FL, axial load - AL, and combined load - CL) was performed. The present study is unique in that a direct comparison to continuous cervical kinematics over the entire extension to flexion motion path was possible through an ongoing intra-institutional collaboration. The pure moment testing protocol without compression or with the application of follower load was not able to replicate the typical in-vivo segmental motion patterns throughout the entire motion path. Axial load or a combination of axial and follower load was necessary to mimic the in-vivo segmental contributions at the extremes of the extension-flexion motion path. It is hypothesized that dynamically altering the compressive loading throughout the motion path is necessary to mimic the segmental contribution patterns exhibited in-vivo. PMID:26708967

  12. Quantifying fatigue generated in high strain rate cyclic loading of Norway spruce

    NASA Astrophysics Data System (ADS)

    Salmi, Ari; Salminen, Lauri; Hæggström, Edward

    2009-11-01

    Papermaking, especially mechanical pulping, consumes much energy. To reduce this energy consumption one has to understand and exploit the phenomena present during the pulping. An important phenomenon to understand is wood fatigue. We quantitatively measure the fatigue generated during high strain rate cyclic loading of spruce wood performed under conditions resembling those present during mechanical pulping. We impacted the samples with 5% strain pulses at 500 Hz. The radial direction stiffness drop in the samples was quantified by 500 kHz ultrasonic through-transmission postimpacting. The depth profile of the generated fatigue was also determined. A dependency of the amount of fatigue generated during cyclic straining on the moisture content was detected. A hypothesis about the temporal and spatial evolution of the fatigue during the process is presented. The results, supporting the hypothesis, provide insight into wood behavior under mechanical pulping conditions.

  13. Characterization of Focal Muscle Compression Under Impact Loading

    NASA Astrophysics Data System (ADS)

    Butler, Ben; Sory, David; Nguyen, Thuy-Tien; Curry, Richard; Clasper, Jon; Proud, William; Williams, Alun; Brown, Kate

    2015-06-01

    The pattern of battle injuries sustained in modern wars shows that over 70% of combat wounds are to the extremities. These injuries are characterized by disruption and contamination of the limb soft tissue envelope. The extent of this tissue trauma and contamination determine the outcome in extremity injury. In military injury, common post-traumatic complications at amputation sites include heterotopic ossification (formation of bone in soft tissue), and severe soft tissue and bone infections. We are currently developing a model of soft tissue injury that recreates pathologies observed in combat injuries. Here we present characterization of a controlled focal compression of the rabbit flexor carpi ulnaris (FCU) muscle group. The FCU was previously identified as a suitable site for studying impact injury because its muscle belly can easily be mobilized from the underlying bone without disturbing anatomical alignment in the limb. We show how macroscopic changes in tissue organization, as visualized using optical microscopy, can be correlated with data from temporally resolved traces of loading conditions. Funding provided by the Royal British Legion.

  14. Micro-CT and histologic analyses of bone surrounding immediately loaded miniscrew implants: comparing compression and tension loading.

    PubMed

    Nakagaki, Susumu; Iijima, Masahiro; Handa, Keisuke; Koike, Toshiyuki; Yasuda, Yoshitaka; Saito, Takashi; Mizoguchi, Itaru

    2014-01-01

    This study investigated the effect of immediate force on bone adaptations surrounding miniscrew implants. Ten miniscrew implants were placed on the mandibles in three beagle dogs. Five pairs of miniscrew implants were immediately loaded with 150 g of continuous force using nickel-titanium coil springs for 8 weeks. The values of bone mineral density (BMD), bone mineral content (BMC), and bone volume (BV) of cortical and trabecular bone for compression loading and tension loading were obtained by µCT analysis. The percentages of bone-to-implant contact (BIC) in the compression and tension regions for cortical and trabecular bone were obtained by histologic analysis. The BMD values for the compression region of cortical bone were significantly higher compared to the tension region. The BIC values in cortical and trabecular bone at tension and compression regions were similar. In conclusion, immediate loading does not inhibit osseointegration of miniscrew implants but may stimulate bone mineralization. PMID:24583644

  15. Field testing of stiffened deep cement mixing piles under lateral cyclic loading

    NASA Astrophysics Data System (ADS)

    Raongjant, Werasak; Jing, Meng

    2013-06-01

    Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.

  16. A Fatigue Life Prediction Model of Welded Joints under Combined Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Goes, Keurrie C.; Camarao, Arnaldo F.; Pereira, Marcos Venicius S.; Ferreira Batalha, Gilmar

    2011-01-01

    A practical and robust methodology is developed to evaluate the fatigue life in seam welded joints when subjected to combined cyclic loading. The fatigue analysis was conducted in virtual environment. The FE stress results from each loading were imported to fatigue code FE-Fatigue and combined to perform the fatigue life prediction using the S x N (stress x life) method. The measurement or modelling of the residual stresses resulting from the welded process is not part of this work. However, the thermal and metallurgical effects, such as distortions and residual stresses, were considered indirectly through fatigue curves corrections in the samples investigated. A tube-plate specimen was submitted to combined cyclic loading (bending and torsion) with constant amplitude. The virtual durability analysis result was calibrated based on these laboratory tests and design codes such as BS7608 and Eurocode 3. The feasibility and application of the proposed numerical-experimental methodology and contributions for the technical development are discussed. Major challenges associated with this modelling and improvement proposals are finally presented.

  17. In-Situ TEM Observation of Twinning and Detwinning During Cyclic Loading in Mg

    NASA Astrophysics Data System (ADS)

    Morrow, Benjamin M.; McCabe, Rodney J.; Cerreta, Ellen K.; Tomé, Carlos N.

    2013-04-01

    In-situ transmission electron microscopy (TEM) is used to directly observe twin evolution in Mg under tension and compression. Twins grow during tensile loading. Upon load reversal, the first-generation twin detwins by nucleation and growth of a second-generation twin within its volume. This mechanism for detwinning is different from the more traditional mechanism of detwinning by reverse motion of a twin boundary. Reloading in tension causes the second-generation twin to recede, leaving behind residual features. In compression, the second-generation twin re-nucleates in the area of this debris, and grows. Interactions between dislocations and twin boundaries change the character of the observed dislocations. Direct observation of such behavior aids in clearer understanding of the observed microstructures from post-mortem TEM.

  18. In-Situ TEM Observation of Twinning and Detwinning During Cyclic Loading in Mg

    NASA Astrophysics Data System (ADS)

    Morrow, Benjamin M.; McCabe, Rodney J.; Cerreta, Ellen K.; Tomé, Carlos N.

    2014-01-01

    In-situ transmission electron microscopy (TEM) is used to directly observe twin evolution in Mg under tension and compression. Twins grow during tensile loading. Upon load reversal, the first-generation twin detwins by nucleation and growth of a second-generation twin within its volume. This mechanism for detwinning is different from the more traditional mechanism of detwinning by reverse motion of a twin boundary. Reloading in tension causes the second-generation twin to recede, leaving behind residual features. In compression, the second-generation twin re-nucleates in the area of this debris, and grows. Interactions between dislocations and twin boundaries change the character of the observed dislocations. Direct observation of such behavior aids in clearer understanding of the observed microstructures from post-mortem TEM.

  19. Damage & fracture of high-explosive mock subject to cyclic loading

    SciTech Connect

    Liu, Cheng; Rae, Philip J; Cady, Carl M; Lovato, Manuel L

    2011-01-11

    We use four-point bend specimen with a single shallow edge notch to study the fracture process in Mock 900-21, a PBX 9501 high explosive simulant mock. Subject to monotonic loading we determine quantitatively the threshold load for macroscopic crack initiation from the notch tip. The four-point bend specimen is then subject to cyclic loading in such a way that during the first cycle, the applied force approaches but does not exceed the threshold load determined from the monotonic loading test and in the subsequent cycles, the overall maximum deformation is maintained to be equal to that of the first cycle. It is expected and is also confirmed that no macroscopic damage and cracking occur during the first cycle. However, we observe that sizable macroscopic crack is generated and enlarged during the subsequent cycles, even though the applied force never exceeds the threshold load. Details of the process of damage fonnation, accumulation, and crack extension are presented and the mechanical mechanism responsible for such failure process is postulated and discussed.

  20. Fabric Evolution in Granular Materials Subject to Drained, Strain Controlled Cyclic Loading

    NASA Astrophysics Data System (ADS)

    O'Sullivan, C.; Cui, L.

    2009-06-01

    While there have been many discrete element method (DEM) publications considering the micromechanics of granular materials subject to monotonic loading, studies of the particle-scale material response to cyclic or repeated loading have been comparatively rare. From a geotechnical perspective soil is subjected to repeated loading in a variety of situations. Examples include foundations to railways and roads, foundations to wind turbines, soil adjacent to integral bridges, etc. The work described in this paper extends an earlier study by O'Sullivan et al.. [1]. In this earlier study, DEM simulations of strain controlled cyclic triaxial tests were coupled with laboratory experiments to validate a DEM model. The simulations were performed using the axi-symmetric DEM formulation proposed by [2] and a stress controlled membrane algorithm was used to apply forces to balls along the outer vertical boundaries to model the latex membrane used in the laboratory tests. Specimens of uniform spheres and mixtures of sphere sizes were considered in the validation stage of this research. The earlier study considered strain amplitudes of 1%, 0.5% and 0.1%. In the current study the response is extended to consider the smaller strain amplitude of 0.01%. All of the simulations were carried out in a quasi-static mode and in all cases the maximum stress level mobilized was significantly lower than the peak stress measured in equivalent monotonic physical tests and DEM simulations [2]. In examining the response of the material to the smaller strain amplitude, the macro scale analyses considered the stress strain response and specimen stiffness. At the particle scale, the variation in coordination number and deviator fabric are considered as well as the distribution of the contact forces orientations. The findings may provide insight to the development of continuum constitutive models for cyclic soil response that include fabric parameters [3].

  1. The effect of cyclic loading on the stiffness degradation of angle-ply composite laminates

    NASA Technical Reports Server (NTRS)

    Jones, D. L.; Whitworth, H. A.

    1984-01-01

    An experimental investigation has been conducted to determine the effect of cyclic loading on the stiffness degradation of composite laminates. Specimens were tested in tension-tension fatigue at a frequency of 10 Hz and a stress ratio of 0.1, over a wide range of stress levels. The laminate employed for this investigation was made of graphite/epoxy in an angle-ply (+ or - 35)2s orientation. During this investigation both static and dynamic stiffness reduction data were recorded during constant amplitude fatigue testing, and the results are presented in tabular and graphical form.

  2. Damage Accumulation in Cyclically-Loaded Glass-Ceramic Matrix Composites Monitored by Acoustic Emission

    PubMed Central

    Aggelis, D. G.; Dassios, K. G.; Kordatos, E. Z.; Matikas, T. E.

    2013-01-01

    Barium osumilite (BMAS) ceramic matrix composites reinforced with SiC-Tyranno fibers are tested in a cyclic loading protocol. Broadband acoustic emission (AE) sensors are used for monitoring the occurrence of different possible damage mechanisms. Improved use of AE indices is proposed by excluding low-severity signals based on waveform parameters, rather than only threshold criteria. The application of such improvements enhances the accuracy of the indices as accumulated damage descriptors. RA-value, duration, and signal energy follow the extension cycles indicating moments of maximum or minimum strain, while the frequency content of the AE signals proves very sensitive to the pull-out mechanism. PMID:24381524

  3. An x-ray diffraction study of microstructural deformation induced by cyclic loading of selected steels

    SciTech Connect

    Fourspring, P.M.; Pangborn, R.N.

    1997-12-31

    X-ray double crystal diffractometry (XRDCD) was used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The objectives of the investigation were to determine if XRDCD could be used effectively to monitor cyclic microstructural deformation in polycrystalline Fe alloys and to study the distribution of the microstructural deformation induced by cyclic loading in these alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0--10 {micro}m), subsurface (10--300 {micro}m), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels.

  4. Self-Sensing of Damage Progression in Unidirectional Multiscale Hierarchical Composites Subjected to Cyclic Tensile Loading.

    PubMed

    Ku-Herrera, J J; Pacheco-Salazar, O F; Ríos-Soberanis, C R; Domínguez-Rodríguez, G; Avilés, F

    2016-01-01

    The electrical sensitivity of glass fiber/multiwall carbon nanotube/vinyl ester hierarchical composites containing a tailored electrically-percolated network to self-sense accumulation of structural damage when subjected to cyclic tensile loading-unloading is investigated. The hierarchical composites were designed to contain two architectures differentiated by the location of the multiwall carbon nanotubes (MWCNTs), viz. MWCNTs deposited on the fibers and MWCNTs dispersed within the matrix. The changes in electrical resistance of the hierarchical composites are associated to their structural damage and correlated to acoustic emissions. The results show that such tailored hierarchical composites are able to self-sense damage onset and accumulation upon tensile loading-unloading cycles by means of their electrical response, and that the electrical response depends on the MWCNT location. PMID:26999158

  5. Self-Sensing of Damage Progression in Unidirectional Multiscale Hierarchical Composites Subjected to Cyclic Tensile Loading

    PubMed Central

    Ku-Herrera, J. J.; Pacheco-Salazar, O. F.; Ríos-Soberanis, C. R.; Domínguez-Rodríguez, G.; Avilés, F.

    2016-01-01

    The electrical sensitivity of glass fiber/multiwall carbon nanotube/vinyl ester hierarchical composites containing a tailored electrically-percolated network to self-sense accumulation of structural damage when subjected to cyclic tensile loading-unloading is investigated. The hierarchical composites were designed to contain two architectures differentiated by the location of the multiwall carbon nanotubes (MWCNTs), viz. MWCNTs deposited on the fibers and MWCNTs dispersed within the matrix. The changes in electrical resistance of the hierarchical composites are associated to their structural damage and correlated to acoustic emissions. The results show that such tailored hierarchical composites are able to self-sense damage onset and accumulation upon tensile loading-unloading cycles by means of their electrical response, and that the electrical response depends on the MWCNT location. PMID:26999158

  6. An x-ray diffraction study of microstructural deformation induced by cyclic loading of selected steels

    SciTech Connect

    Fourspring, P.M.; Pangborn, R.N.

    1996-06-01

    X-ray double crystal diffractometry (XRDCD) was used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The first objective of the investigation was to determine if XRDCD could be used to effectively monitor cyclic microstructural deformation in polycrystalline Fe alloys. A second objective was to study the microstructural deformation induced by cyclic loading of polycrystalline Fe alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0--10 {micro}m), subsurface (10--300 {micro}m), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys.

  7. An x-ray diffraction study of microstructural deformation induced by cyclic loading of selected steel

    NASA Astrophysics Data System (ADS)

    Fourspring, Patrick Michael

    X-ray double crystal diffractometry (XRDCD) and X-ray scanning diffractometry (XRSD) were used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The objectives of the investigation were to determine if X-ray diffraction could be used effectively to monitor cyclic microstructural deformation in polycrystalline Fe alloys and to study the distribution of the microstructural deformation induced by cyclic loading in these alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0-10 mum), subsurface (10-300 mum), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. The results from the XRSD data show similar but less coherent trends than the results from the XRDCD data. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys.

  8. Loosening torque of Universal Abutment screws after cyclic loading: influence of tightening technique and screw coating

    PubMed Central

    Regalin, Alexandre; Bhering, Claudia Lopes Brilhante; Alessandretti, Rodrigo; Spazzin, Aloisio Oro

    2015-01-01

    PURPOSE The purpose of this study was to evaluate the influence of tightening technique and the screw coating on the loosening torque of screws used for Universal Abutment fixation after cyclic loading. MATERIALS AND METHODS Forty implants (Titamax Ti Cortical, HE, Neodent) (n=10) were submerged in acrylic resin and four tightening techniques for Universal Abutment fixation were evaluated: A - torque with 32 Ncm (control); B - torque with 32 Ncm holding the torque meter for 20 seconds; C - torque with 32 Ncm and retorque after 10 minutes; D - torque (32 Ncm) holding the torque meter for 20 seconds and retorque after 10 minutes as initially. Samples were divided into subgroups according to the screw used: conventional titanium screw or diamond like carbon-coated (DLC) screw. Metallic crowns were fabricated for each abutment. Samples were submitted to cyclic loading at 106 cycles and 130 N of force. Data were analyzed by two-way ANOVA and Tukey's test (5%). RESULTS The tightening technique did not show significant influence on the loosening torque of screws (P=.509). Conventional titanium screws showed significant higher loosening torque values than DLC (P=.000). CONCLUSION The use of conventional titanium screw is more important than the tightening techniques employed in this study to provide long-term stability to Universal Abutment screws. PMID:26576253

  9. FEA Based Tool Life Quantity Estimation of Hot Forging Dies Under Cyclic Thermo-Mechanical Loads

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Bouguecha, A.; Schäfer, F.; Hadifi, T.

    2011-01-01

    Hot forging dies are exposed during service to a combination of cyclic thermo-mechanical, tribological and chemical loads. Besides abrasive and adhesive wear on the die surface, fatigue crack initiation with subsequent fracture is one of the most frequent causes of failure. In order to extend the tool life, the finite element analysis (FEA) may serve as a means for process design and process optimisation. So far the FEA based estimation of the production cycles until initial cracking is limited as tool material behaviour due to repeated loading is not captured with the required accuracy. Material models which are able to account for cyclic effects are not verified for the fatigue life predictions of forging dies. Furthermore fatigue properties from strain controlled fatigue tests of relevant hot work steels are to date not available to allow for a close-to-reality fatigue life prediction. Two industrial forging processes, where clear fatigue crack initiation has been observed are considered for a fatigue analysis. For this purpose the relevant tool components are modelled with elasto-plastic material behaviour. The predicted sites, where crack initiation occurs, agree with the ones observed on the real die component.

  10. Phase Transformation Evolution in NiTi Shape Memory Alloy under Cyclic Nanoindentation Loadings at Dissimilar Rates

    PubMed Central

    Amini, Abbas; Cheng, Chun; Kan, Qianhua; Naebe, Minoo; Song, Haisheng

    2013-01-01

    Hysteresis energy decreased significantly as nanocrystalline NiTi shape memory alloy was under triangular cyclic nanoindentation loadings at high rate. Jagged curves evidenced discrete stress relaxations. With a large recovery state of maximum deformation in each cycle, this behavior concluded in several nucleation sites of phase transformation in stressed bulk. Additionally, the higher initial propagation velocity of interface and thermal activation volume, and higher levels of phase transition stress in subsequent cycles explained the monotonic decreasing trend of dissipated energy. In contrast, the dissipated energy showed an opposite increasing trend during triangular cyclic loadings at a low rate and 60 sec holding time after each unloading stage. Due to the isothermal loading rate and the holding time, a major part of the released latent heat was transferred during the cyclic loading resulting in an unchanged phase transition stress. This fact with the reorientation phenomenon explained the monotonic increasing trend of hysteresis energy. PMID:24336228

  11. The use of a constant load to generate equivalent viscoelastic strain in finite element analysis of cemented prosthetic joints subjected to cyclic loading.

    PubMed

    Lu, Z; McKellop, H A

    2011-08-01

    Polymers such as polymethyl-methacrylate (PMMA) surgical cement undergo elastic and viscoelastic deformation (creep) in response to physiological cyclic loading. Theoretically, the effect of gradual creep deformation on the stresses, strains, and displacements of a prosthetic joint can be evaluated by running a finite element analysis (FEA) model through a large number of loading cycles. However, with complex (i.e. realistic) models, this approach may require extensive computational time, and may accumulate unacceptably large numerical errors over the many iterations of the model. The present study utilized a Fourier series to represent a periodic stress and incorporated it in the linear viscoelastic constitutive equation. It was demonstrated that, for a linear viscoelastic material, the time average (i.e. the constant in the Fourier series) of the cyclic stress determined the accumulated creep strain and the sinusoidal components of the stress produced the periodic creep strain with a zero average and negligible amplitude. For a geometrically linear FEA model, the solution based on a cyclic stress can be readily applied to an external cyclic load, that is, the creep strain is determined by the time average of the cyclic load. While femoral component models were considered as geometrically non-linear, an FEA model of a femur implanted with an Exeter hip prosthesis showed that there was only a minor difference between the profile of the applied sinusoidal load and that of the resulting displacement. In such cases, applying the time average of a cyclic load to calculate the resulting creep strain with a given duration of loading should expect to provide acceptable accuracy, with a marked reduction in the computational time. PMID:21922957

  12. Abutment screw loosening of endosseous dental implant body/abutment joint by cyclic torsional loading test at the initial stage.

    PubMed

    Katsuta, Yasuhiro; Watanabe, Fumihiko

    2015-01-01

    Cyclic torsional loading tests were carried out in the laboratory using various implant systems, in order to clarify differences between the systems in loosening of abutment screws. Six samples from six commercially available abutment systems were used, giving a total of 36 samples. Four of the systems used internal connections, and two used external connections. The abutment screw for each system was tightened to a torque value specified by the manufacturer, and after 5 min, the loosening torque was measured using a digital torque meter. Measurements were taken twice, and a second measurement was taken as a reference value. A cyclic torsional loading test with 100,000 cycles was performed on the sample, and the loosening torque was again measured after the test. In conclusion, loosening of the abutment screw occurred as a result of cyclic torsional loading, and the degree of loosening varied with each implant system. PMID:26632240

  13. Cyclic debonding of unidirectional composite bonded to aluminum sheet for constant-amplitude loading

    NASA Technical Reports Server (NTRS)

    Roderick, G. L.; Everett, R. A., Jr.; Crews, J. H., Jr.

    1976-01-01

    Cyclic debonding rates were measured during constant-amplitude loading of specimens made of graphite/epoxy bonded to aluminum and S-glass/epoxy bonded to aluminum. Both room-temperature and elevated-temperature curing adhesives were used. Debonding was monitored with a photoelastic coating technique. The debonding rates were compared with three expressions for strain-energy release rate calculated in terms of the maximum stress, stress range, or a combination of the two. The debonding rates were influenced by both adherent thickness and the cyclic stress ratio. For a given value of maximum stress, lower stress ratios and thicker specimens produced faster debonding. Microscopic examination of the debonded surfaces showed different failure mechanisms both for identical adherends bonded with different adhesive and, indeed, even for different adherends bonded with identical adhesives. The expressions for strain-energy release rate correlated the data for different specimen thicknesses and stress ratios quite well for each material system, but the form of the best correlating expression varied among material systems. Empirical correlating expressions applicable to one material system may not be appropriate for another system.

  14. Effect of Cyclic Loading on Bond Strength of Fiber Posts to Root Canal Dentin

    PubMed Central

    Khamverdi, Zahra; Damavandi, Leila Yazdani; Kasraei, Shahin

    2014-01-01

    Objective: The aim of this study was to evaluate the effect of cyclic loading on the bond strength of quartz fiber posts to root canal dentin after different surface treatments of different regions of root canal dentin. Materials and Methods: Forty-eight single-rooted human teeth were selected. Post spaces were prepared and then the teeth were divided into four groups: G1: no treatment (control); G2: irrigation with a chemical solvent; G3: etching with 37% phosphoric acid; G4: treatment with ultrasonic file. The fiber posts were cemented using dual-cured resin cement. Half of the specimens were load-cycled (10000 cycles, 3 cycles/s) and the others did not undergo any load cycling. From each root, two slides measuring 1 mm in thickness were obtained from the apical and cervical regions. The push-out bond strength test was performed for each slice. Data were analyzed by using 3-way ANOVA and Tukey HSD tests. The fracture modes were evaluated under a stereomicroscope at ×20. Results: The effect of load cycling and surface treatment as the main factors and the interaction of main factors were not significant (P=0.734, P=0.180, and P=0.539, respectively). The most frequent failure mode under the stereomicroscope was adhesive. Conclusion: It appears that load cycling and surface treatment methods had no effect on the bond strength of fiber posts to root canal dentin, but it depended on the region of the root canal dentin. PMID:24910680

  15. Cyclic fatigue damage characteristics observed for simple loadings extended to multiaxial life prediction

    NASA Technical Reports Server (NTRS)

    Jones, David J.; Kurath, Peter

    1988-01-01

    Fully reversed uniaxial strain controlled fatigue tests were performed on smooth cylindrical specimens made of 304 stainless steel. Fatigue life data and cracking observations for uniaxial tests were compared with life data and cracking behavior observed in fully reversed torsional tests. It was determined that the product of maximum principle strain amplitude and maximum principle stress provided the best correlation of fatigue lives for these two loading conditions. Implementation of this parameter is in agreement with observed physical damage and it accounts for the variation of stress-strain response, which is unique to specific loading conditions. Biaxial fatigue tests were conducted on tubular specimens employing both in-phase and out-of-phase tension torsion cyclic strain paths. Cracking observations indicated that the physical damage which occurred in the biaxial tests was similar to the damage observed in uniaxial and torsional tests. The Smith, Watson, and Topper parameter was then extended to predict the fatigue lives resulting from the more complex loading conditions.

  16. Damage mechanisms in PBT-GF30 under thermo-mechanical cyclic loading

    SciTech Connect

    Schaaf, A. De Monte, M. Hoffmann, C.; Vormwald, M.; Quaresimin, M.

    2014-05-15

    The scope of this paper is the investigation of damage mechanisms at microscopic scale on a short glass fiber reinforced polybutylene terephthalate (PBT-GF30) under thermo-mechanical cyclic loading. In addition the principal mechanisms are verified through micro mechanical FE models. In order to investigate the fatigue behavior of the material both isothermal strain controlled fatigue (ISCF) tests at three different temperatures and thermo-mechanical fatigue (TMF) tests were conducted on plain and notched specimens, manufactured by injection molding. The goal of the work is to determine the damage mechanisms occurring under TMF conditions and to compare them with the mechanisms occurring under ISCF. For this reason fracture surfaces of TMF and ISCF samples loaded at different temperature levels were analyzed using scanning electron microscopy. Furthermore, specimens that failed under TMF were examined on microsections revealing insight into both crack initiation and crack propagation. The findings of this investigation give valuable information about the main damage mechanisms of PBT-GF30 under TMF loading and serve as basis for the development of a TMF life estimation methodology.

  17. Damage development under compression-compression fatigue loading in a stitched uniwoven graphite/epoxy composite material

    NASA Technical Reports Server (NTRS)

    Vandermey, Nancy E.; Morris, Don H.; Masters, John E.

    1991-01-01

    Damage initiation and growth under compression-compression fatigue loading were investigated for a stitched uniweave material system with an underlying AS4/3501-6 quasi-isotropic layup. Performance of unnotched specimens having stitch rows at either 0 degree or 90 degrees to the loading direction was compared. Special attention was given to the effects of stitching related manufacturing defects. Damage evaluation techniques included edge replication, stiffness monitoring, x-ray radiography, residual compressive strength, and laminate sectioning. It was found that the manufacturing defect of inclined stitches had the greatest adverse effect on material performance. Zero degree and 90 degree specimen performances were generally the same. While the stitches were the source of damage initiation, they also slowed damage propagation both along the length and across the width and affected through-the-thickness damage growth. A pinched layer zone formed by the stitches particularly affected damage initiation and growth. The compressive failure mode was transverse shear for all specimens, both in static compression and fatigue cycling effects.

  18. Compressive Loading and Modeling of Stitched Composite Stiffeners

    NASA Technical Reports Server (NTRS)

    Leone, Frank A., Jr.; Jegley, Dawn C.; Linton, Kim A.

    2016-01-01

    A series of single-frame and single-stringer compression tests were conducted at NASA Langley Research Center on specimens harvested from a large panel built using the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. Different frame and stringer designs were used in fabrication of the PRSEUS panel. In this paper, the details of the experimental testing of single-frame and single-stringer compression specimens are presented, as well as discussions on the performance of the various structural configurations included in the panel. Nonlinear finite element models were developed to further understand the failure processes observed during the experimental campaign.

  19. Self-sensing of carbon nanofiber concrete columns subjected to reversed cyclic loading

    NASA Astrophysics Data System (ADS)

    Howser, R. N.; Dhonde, H. B.; Mo, Y. L.

    2011-08-01

    Civil infrastructures are generally a country's most expensive investment, and concrete is the most widely used material in the construction of civil infrastructures. During a structure's service life, concrete ages and deteriorates, leading to substantial loss of structural integrity and potentially resulting in catastrophic disasters such as highway bridge collapses. A solution for preventing such occurrences is the use of structural health monitoring (SHM) technology for concrete structures containing carbon nanofibers (CNF). CNF concrete has many structural benefits. CNF restricts the growth of nanocracks in addition to yielding higher strength and ductility. Additionally, test results indicate a relationship between electrical resistance and concrete strain, which can be well utilized for SHM. A series of reinforced concrete (RC) columns were built and tested under a reversed cyclic loading using CNF as a SHM device. The SHM device detected and assessed the level of damage in the RC columns, providing a real-time health monitoring system for the structure's overall integrity.

  20. Results of a Cyclic Load Test of an RB-47E Airplane

    NASA Technical Reports Server (NTRS)

    Huston, Wilber B.

    1959-01-01

    Results of a cyclic load test made by NASA on an EB-47E airplane are given. The test reported on is for one of three B-47 airplanes in a test program set up by the U. S. Air Force to evaluate the effect of wing structural reinforcements on fatigue life. As a result of crack development in the upper fuselage longerons of the other two airplanes in the program, a longeron and fuselage skin modification was incorporated early in the test. Fuselage strain-gage measurements made before and after the longeron modification and wing strain-gage measurements made only after wing reinforcement are summarized. The history of crack development and repair is given in detail. Testing was terminated one sequence short of the planned end of the program with the occurrence of a major crack in the lower right wing skin.

  1. Strain distributions in a type 316/16-8-2 stainless steel weldment during cyclic loading

    SciTech Connect

    Korth, G.E.; Harper, M.D.

    1984-06-01

    Test specimens were cut from a 25-mm thick Type 316 stainless steel plate butt welded with 16-8-2 filler wire. The specimens were oriented transverse to the weld seam and contained base metal, heat-affected zone (HAZ), and weld metal in the gage section. Strain-controlled cyclic loading was imposed across the heterogeneous weldment while local strains at various points within the gage section were continuously monitored. Results show that strains at the local points can vary markedly from the average strain of the composite section. Strain concentrations occurred in the softer base metal which led to failure much sooner than the composite strain would indicate. However, when the maximum strain range from a local area was compared to baseline data, the life correlation was very good.

  2. Strain distributions in a Type 316/16-8-2 stainless steel weldment during cyclic loading

    SciTech Connect

    Korth, G.E.; Harper, M.D.

    1984-01-01

    Test specimens were cut from a 25-mm thick Type 316 stainless steel plate butt welded with 16-8-2 filler wire. The specimens were oriented transverse to the weld seam and contained base metal, heat-affected zone (HAZ), and weld metal in the gage section. Strain-controlled cyclic loading was imposed across the heterogeneous weldment while local strains at various points within the gage section were continuously monitored. Results show that strains at the local points can vary markedly from the average strain of the composite section. Strain concentrations occurred in the softer base metal which led to failure much sooner than the composite strain would indicate. However, when the maximum strain range from a local area was compared to baseline data, the life correlation was very good.

  3. Electrochemical Behavior of Novel Superelastic Biomedical Alloys in Simulated Physiological Media Under Cyclic Load

    NASA Astrophysics Data System (ADS)

    Zhukova, Yu. S.; Pustov, Yu. A.; Konopatsky, A. S.; Filonov, M. R.; Prokoshkin, S. D.

    2014-07-01

    The aim of the present work was to study corrosion and electrochemical behavior of Ti-22Nb-6Ta and Ti-22Nb-6Zr (at.%) superelastic alloys under conditions which imitate the performance mode of target devices (bone implants), i.e., under cyclic load in simulated physiological solutions. Open circuit potential (OCP) measurements were carried out on wire specimens in Hank's solution and artificial saliva at 37 °C with various strain values up to 1.5%. It is shown that at clinically relevant strain values (about 0.2%) the alloys exhibit OCP growth indicating their high stability and resistance to corrosion fatigue under these cycling conditions. At much higher strains (about 1%), fatigue crack initiation and propagation take place, however, the corresponding OCP variation indicates that the fracture process is significantly restrained by reversible martensitic transformation during cycling.

  4. Models for predicting damage evolution in metal matrix composites subjected to cyclic loading

    SciTech Connect

    Allen, D.H.; Hurtado, L.D.; Helms, K.L.E.

    1995-03-01

    A thermomechanical analysis of a continuous fiber metal matrix composite (MMC) subjected to cyclic loading is performed herein. The analysis includes the effects of processing induced residual thermal stresses, matrix inelasticity, and interface cracking. Due to these complexities, the analysis is performed computationally using the finite element method. Matrix inelasticity is modelled with a rate dependent viscoplasticity model. Interface fracture is modelled by the use of a nonlinear interface constitutive model. The problem formulation is summarized, and results are given for a four-ply unidirectional SCS-6/{beta}21S titanium composite under high temperature isothermal mechanical fatigue. Results indicate rate dependent viscoplasticity can be a significant mechanism for dissipating the energy available for damage propagation, thus contributing to improved ductility of the composite. Results also indicate that the model may be useful for inclusion in life prediction methodologies for MMC`s.

  5. Stabilizing effects of ankle bracing under a combination of inversion and axial compression loading.

    PubMed

    Tohyama, Harukazu; Yasuda, Kazunori; Beynnon, Bruce D; Renstrom, Per A

    2006-04-01

    The combined effects of bracing, axial compression and inversion rotation on the ankle-subtalar complexes were evaluated. Ex vivo tests under the load-controlled condition were performed on six cadaver ankle specimens using a six degree-of-freedom fixture. Inversion rotation was measured while subjecting the ankle-subtalar complex to a 2.5 N-m inversion moment and a combination of the testing variables (brace type, no brace, 178 N axial compression load, no compression load, 0 degrees and 20 degrees of plantar flexion) for a total of 16 tests per specimen. Three commercially available braces (two semirigid types and one lace up type) were evaluated. An axial compression load significantly decreased ankle-subtalar motion in unbraced ankles for the tested inversion moment. The contribution of bracing to stabilization of the ankle was smaller in the axial loading condition than in the no axial loading condition. The semirigid braces had greater stabilizing effects in response to the inversion moment than the lace up brace. Stabilizing effects of bracing were significantly greater in 20 degrees of plantar flexion than in 0 degrees of plantar flexion. The most common mechanism for an ankle sprain injury is inversion rotation on a weight-bearing ankle. Therefore, we should not overestimate stabilizing effects of bracing from evaluations of bracing without axial compression loading. PMID:15959767

  6. Mechanical behaviors of multi-filament twist superconducting strand under tensile and cyclic loading

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Li, Yingxu; Gao, Yuanwen

    2016-01-01

    The superconducting strand, serving as the basic unit cell of the cable-in-conduit-conductors (CICCs), is a typical multi-filament twist composite which is always subjected to a cyclic loading under the operating condition. Meanwhile, the superconducting material Nb3Sn in the strand is sensitive to strain frequently relating to the performance degradation of the superconductivity. Therefore, a comprehensive study on the mechanical behavior of the strand helps understanding the superconducting performance of the strained Nb3Sn strands. To address this issue, taking the LMI (internal tin) strand as an example, a three-dimensional structural finite element model, named as the Multi-filament twist model, of the strand with the real configuration of the LMI strand is built to study the influences of the plasticity of the component materials, the twist of the filament bundle, the initial thermal residual stress and the breakage and its evolution of the filaments on the mechanical behaviors of the strand. The effective properties of superconducting filament bundle with random filament breakage and its evolution versus strain are obtained based on the damage theory of fiber-reinforced composite materials proposed by Curtin and Zhou. From the calculation results of this model, we find that the occurrence of the hysteresis loop in the cyclic loading curve is determined by the reverse yielding of the elastic-plastic materials in the strand. Both the initial thermal residual stress in the strand and the pitch length of the filaments have significant impacts on the axial and hysteretic behaviors of the strand. The damage of the filaments also affects the axial mechanical behavior of the strand remarkably at large axial strain. The critical current of the strand is calculated by the scaling law with the results of the Multi-filament twist model. The predicted results of the Multi-filament twist model show an acceptable agreement with the experiment.

  7. Buckling and Failure of Compression-loaded Composite Cylindrical Shells with Reinforced Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.

    2005-01-01

    Results from a numerical and experimental study that illustrate the effects of selected cutout reinforcement configurations on the buckling and failure response of compression-loaded composite cylindrical shells with a cutout are presented. The effects of reinforcement size, thickness, and orthotropy on the overall response of compression-loaded shells are described. In general, reinforcement around a cutout in a compression-loaded shell can retard or eliminate the local buckling response and material failure near the cutout and increase the buckling load of the shell. However, some results show that certain reinforcement configurations can cause a significant increase in the local interlaminar failures that can accumulate near the free edges of a cutout during a local buckling event.

  8. Subcritical crack-growth behavior of borosilicate glass under cyclic loads: Evidence of a mechanical fatigue effect

    SciTech Connect

    Dill, S.J.; Dauskardt, R.H.; Bennison, S.J.

    1997-03-01

    Amorphous glasses are generally considered immune to mechanical fatigue effects associated with cyclic loading. In this study surprising new evidence is presented for a mechanical fatigue effect in borosilicate glass, in both moist air and dry nitrogen environments. The fatigue effect occurs at near threshold subcritical crack-growth rates (da/dt < 3 {times} 10{sup {minus}8} m/s) as the crack extension per cycle approaches the dimensions of the borosilicate glass network. While subcritical crack growth under cyclic loads at higher load levels is entirely consistent with environmentally assisted crack growth, lower growth rates actually exceed those measured under monotonic loads. This suggests a mechanical fatigue effect which accelerates subcritical crack-growth rates. Likely mechanisms for the mechanical fatigue effect are presented.

  9. Portevin-Le Chatelier effect under cyclic loading: experimental and numerical investigations

    NASA Astrophysics Data System (ADS)

    Mazière, M.; Pujol d'Andrebo, Q.

    2015-10-01

    The Portevin-Le Chatelier (PLC) effect is generally evidenced by the apparition of serrated yielding under monotonic tensile loading conditions. It appears at room temperature in some aluminium alloys, around ? in some steels and in many other metallic materials. This effect is associated with the propagation of bands of plastic deformation in tensile specimens and can in some cases lead to unexpected failures. The PLC effect has been widely simulated under monotonic conditions using finite elements and an appropriate mechanical model able to reproduce serrations and strain localization. The occurrence of serrations can be predicted using an analytical stability analysis. Recently, this serrated yielding has also been observed in specimens made of Cobalt-based superalloy under cyclic loading, after a large number of cycles. The mechanical model has been identified in this case to accurately reproduce this critical number of cycle where serrations appear. The associated apparition of localized bands of deformation in specimens and their influence on its failure has also been investigated using finite element simulations.

  10. Fascicles from energy-storing tendons show an age-specific response to cyclic fatigue loading

    PubMed Central

    Thorpe, Chavaunne T.; Riley, Graham P.; Birch, Helen L.; Clegg, Peter D.; Screen, Hazel R. C.

    2014-01-01

    Some tendons, such as the human Achilles and equine superficial digital flexor tendon (SDFT), act as energy stores, stretching and recoiling to increase efficiency during locomotion. Our previous observations of rotation in response to applied strain in SDFT fascicles suggest a helical structure, which may provide energy-storing tendons with a greater ability to extend and recoil efficiently. Despite this specialization, energy-storing tendons are prone to age-related tendinopathy. The aim of this study was to assess the effect of cyclic fatigue loading (FL) on the microstructural strain response of SDFT fascicles from young and old horses. The data demonstrate two independent age-related mechanisms of fatigue failure; in young horses, FL caused low levels of matrix damage and decreased rotation. This suggests that loading causes alterations to the helix substructure, which may reduce their ability to recoil and recover. By contrast, fascicles from old horses, in which the helix is already compromised, showed greater evidence of matrix damage and suffer increased fibre sliding after FL, which may partially explain the age-related increase in tendinopathy. Elucidation of helix structure and the precise alterations occurring owing to both ageing and FL will help to develop appropriate preventative and repair strategies for tendinopathy. PMID:24402919

  11. A coupled damage-plasticity model for the cyclic behavior of shear-loaded interfaces

    NASA Astrophysics Data System (ADS)

    Carrara, P.; De Lorenzis, L.

    2015-12-01

    The present work proposes a novel thermodynamically consistent model for the behavior of interfaces under shear (i.e. mode-II) cyclic loading conditions. The interface behavior is defined coupling damage and plasticity. The admissible states' domain is formulated restricting the tangential interface stress to non-negative values, which makes the model suitable e.g. for interfaces with thin adherends. Linear softening is assumed so as to reproduce, under monotonic conditions, a bilinear mode-II interface law. Two damage variables govern respectively the loss of strength and of stiffness of the interface. The proposed model needs the evaluation of only four independent parameters, i.e. three defining the monotonic mode-II interface law, and one ruling the fatigue behavior. This limited number of parameters and their clear physical meaning facilitate experimental calibration. Model predictions are compared with experimental results on fiber reinforced polymer sheets externally bonded to concrete involving different load histories, and an excellent agreement is obtained.

  12. The resistance of cortical bone tissue to failure under cyclic loading is reduced with alendronate.

    PubMed

    Bajaj, Devendra; Geissler, Joseph R; Allen, Matthew R; Burr, David B; Fritton, J C

    2014-07-01

    Bisphosphonates are the most prescribed preventative treatment for osteoporosis. However, their long-term use has recently been associated with atypical fractures of cortical bone in patients who present with low-energy induced breaks of unclear pathophysiology. The effects of bisphosphonates on the mechanical properties of cortical bone have been exclusively studied under simple, monotonic, quasi-static loading. This study examined the cyclic fatigue properties of bisphosphonate-treated cortical bone at a level in which tissue damage initiates and is accumulated prior to frank fracture in low-energy situations. Physiologically relevant, dynamic, 4-point bending applied to beams (1.5 mm × 0.5 mm × 10 mm) machined from dog rib (n=12/group) demonstrated mechanical failure and micro-architectural features that were dependent on drug dose (3 groups: 0, 0.2, 1.0mg/kg/day; alendronate [ALN] for 3 years) with cortical bone tissue elastic modulus (initial cycles of loading) reduced by 21% (p<0.001) and fatigue life (number of cycles to failure) reduced in a stress-life approach by greater than 3-fold with ALN1.0 (p<0.05). While not affecting the number of osteons, ALN treatment reduced other features associated with bone remodeling, such as the size of osteons (-14%; ALN1.0: 10.5±1.8, VEH: 12.2±1.6, ×10(3) μm2; p<0.01) and the density of osteocyte lacunae (-20%; ALN1.0: 11.4±3.3, VEH: 14.3±3.6, ×10(2) #/mm2; p<0.05). Furthermore, the osteocyte lacunar density was directly proportional to initial elastic modulus when the groups were pooled (R=0.54, p<0.01). These findings suggest that the structural components normally contributing to healthy cortical bone tissue are altered by high-dose ALN treatment and contribute to reduced mechanical properties under cyclic loading conditions. PMID:24704262

  13. The Resistance of Cortical Bone Tissue to Failure under Cyclic Loading is Reduced with Alendronate

    PubMed Central

    Bajaj, Devendra; Geissler, Joseph R.; Allen, Matthew R.; Burr, David B.; Fritton, J. Christopher

    2014-01-01

    Bisphosphonates are the most prescribed preventative treatment for osteoporosis. However, their long-term use has recently been associated with atypical fractures of cortical bone in patients who present with low-energy induced breaks of unclear pathophysiology. The effects of bisphosphonates on the mechanical properties of cortical bone have been exclusively studied under simple, monotonic, quasi-static loading. This study examined the cyclic fatigue properties of bisphosphonate-treated cortical bone at a level in which tissue damage initiates and is accumulated prior to frank fracture in low-energy situations. Physiologically relevant, dynamic, 4-point bending applied to beams (1.5 mm × 0.5 mm × 10 mm) machined from dog rib (n=12/group) demonstrated mechanical failure and micro-architectural features that were dependent on drug dose (3 groups: 0, 0.2, 1.0 mg/kg/day; Alendronate [ALN] for 3 years) with cortical bone tissue elastic modulus (initial cycles of loading) reduced by 21% (p<0.001) and fatigue life (number of cycles to failure) reduced in a stress-life approach by greater than 3-fold with ALN1.0 (p<0.05). While not affecting the number of osteons, ALN treatment reduced other features associated with bone remodeling, such as the size of osteons (−14%, ALN1.0: 10.5±1.8, VEH: 12.2±1.6, ×103 µm2; p<0.01) and the density of osteocyte lacunae (−20%; ALN1.0: 11.4±3.3, VEH: 14.3±3.6, ×102 #/mm2; p<0.05). Furthermore, the osteocyte lacunar density was directly proportional to initial elastic modulus when the groups were pooled (R=0.54, p<0.01). These findings suggest that the structural components normally contributing to healthy cortical bone tissue are altered by high-dose ALN treatment and contribute to reduced mechanical properties under cyclic loading conditions. PMID:24704262

  14. Validation of Lower-Bound Estimates for Compression-Loaded Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Haynie, Waddy T.; Hilburger, Mark W.; Bogge, Massimiliano; Kriegesmann, Benedikt

    2012-01-01

    The traditional approach used in the design of stability critical thin-walled circular cylin- ders, is to reduce unconservative buckling load predictions with an empirical knockdown factor. An alternative analysis-based approach to determine a lower bound buckling load for cylinders under axial compression is to use a lateral perturbation load to create an initial imperfection and determine the buckling load while that load is applied. This paper describes a preliminary e ort to develop a test capability to verify this approach. Results from tests of three aluminum alloy cylinders are described and compared to nite element predictions.

  15. Behavior of a Ni-Ti shape memory alloy under cyclic proportional and nonproportional loading

    NASA Astrophysics Data System (ADS)

    Lim, Tzishing Jesse

    Ni-Ti shape memory alloy behaves pseudoelastically above the austenite finish temperature, Af, due to stress-induced austenite-martensite phase transformation. In this work, novel multiaxial proportional and nonproportional loading experiments were conducted on a Ni-Ti shape memory alloy above the Af temperature. Several features of pseudoelasticity were highlighted, namely, the tension-compression asymmetry, near symmetry in both senses of shear, apparent strain rate dependence and relaxation (thermo-mechanical effects) and nonconformity to J2--J3 theory of phase transformation under nonproportional loading. Both a simplified representative volume element (RVE) numerical scheme and finite element (FE) modeling based on a micromechanical constitutive model were conducted in order to study the mechanics of phase transformation, interaction between different martensite variants, and intergranular interactions in a polycrystalline structure. In simulations, the austenite to martensite phase transformation can be quite accurately predicted for different modes of loading. Strain rate effects can also be quite accurately modeled; specimen heating/cooling due to latent heat generation/absorption during phase transformation is the primary cause of strain rate dependence.

  16. Multiscale Electrophysiology Format: An Open Open-source Electrophysiology Format Using Data Compression, Encryption, and Cyclic Redundancy Check

    PubMed Central

    Brinkmann, Benjamin H.; Bower, Mark R.; Stengel, Keith A.; Worrell, Gregory A.; Stead, Matt

    2010-01-01

    Continuous, long-term (up to 10 days) electrophysiological monitoring using hybrid intracranial electrodes is an emerging tool for presurgical epilepsy evaluation and fundamental investigations of seizure generation. Detection of high-frequency oscillations and microseizures could provide valuable insights into causes and therapies for the treatment of epilepsy, but requires high spatial and temporal resolution. Our group is currently using hybrid arrays composed of up to 320 micro- and clinical macroelectrode arrays sampled at 32 kHz per channel with 18-bits of A/D resolution. Such recordings produce approximately 3 terabytes of data per day. Existing file formats have limited data compression capabilities, and do not offer mechanisms for protecting patient identifying information or detecting data corruption during transmission or storage. We present a novel file format that employs range encoding to provide a high degree of data compression, a three-tiered 128-bit encryption system for patient information and data security, and a 32-bit cyclic redundancy check to verify the integrity of compressed data blocks. Open-source software to read, write, and process these files are provided. PMID:19963940

  17. Effect of cyclic loading on marginal adaptation and bond strength in direct vs. indirect class II MO composite restorations.

    PubMed

    Aggarwal, Vivek; Logani, Ajay; Jain, Veena; Shah, Naseem

    2008-01-01

    This study evaluated the effect of cyclic loading on the marginal adaptation and microtensile bond strength of direct vs indirect Class II composite restorations in an in-vitro model. Forty Class II cavities were prepared on the mesial surface of extracted human maxillary first premolars and divided into two groups: Group I--direct composite restorations and Group II--indirect composite restorations. Groups I and II were further divided into subgroups: A (without cyclic loading) and B (with cyclic loading of 150,000 cycles at 60N). The gingival margin of the proximal box was evaluated at 200x magnification for marginal adaptation in a low vacuum scanning electron microscope. The restorations were sectioned perpendicular to the bonded surface into 1 mm thickslabs. The slabswere further trimmed at the interface to produce a cross-sectional surface area of approximately 1 mm2. All specimens were subjected to microtensile bond strength testing. The marginal adaptation was analyzed using descriptive studies and bond strength data were analyzed by one-way ANOVA test. The indirect composite restorations performed better under cyclic loading. PMID:18833866

  18. Diagnostics for piezoelectric transducers under cyclic loads deployed for structural health monitoring applications

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart G.; Park, Gyuhae; Farinholt, Kevin M.; Todd, Michael D.

    2013-02-01

    Accurate sensor self-diagnostics are a key component of successful structural health monitoring (SHM) systems. Transducer failure can be a significant source of failure in SHM systems, and neglecting to incorporate an adequate sensor diagnostics capability can lead to false positives in damage detection. Any permanently installed SHM system will thus require the ability to accurately monitor the health of the sensors themselves, so that when deviations in baseline measurements are observed, one can clearly distinguish between structural changes and sensor malfunction. This paper presents an overview of sensor diagnostics for active-sensing SHM systems employing piezoelectric transducers, and it reviews the sensor diagnostics results from an experimental case study in which a 9 m wind turbine rotor blade was dynamically loaded in a fatigue test until reaching catastrophic failure. The fatigue test for this rotor blade was unexpectedly long, requiring more than 8 million fatigue cycles before failure. Based on previous experiments, it was expected that the rotor blade would reach failure near 2 million fatigue cycles. Several sensors failed in the course of this much longer than expected test, although 48 out of 49 installed piezoelectric transducers survived beyond the anticipated 2 million fatigue cycles. Of the transducers that did fail in the course of the test, the sensor diagnostics methods presented here were effective in identifying them for replacement and/or data cleansing. Finally, while most sensor diagnostics studies have been performed in a controlled, static environment, some data in this study were collected as the rotor blade underwent cyclic loading, resulting in nonstationary structural impedance. This loading condition motivated the implementation of a new, additional data normalization step for sensor diagnostics with piezoelectric transducers in operational environments.

  19. Load-bearing capacity of screw-retained CAD/CAM-produced titanium implant frameworks (I-Bridge®2) before and after cyclic mechanical loading

    PubMed Central

    DITTMER, Marc Philipp; NENSA, Moritz; STIESCH, Meike; KOHORST, Philipp

    2013-01-01

    Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics. Objective The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks. Material and Methods Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). Results All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. Conclusion The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo

  20. Monotonic and fatigue properties of kenaf /glass hybrid composites under fully reversed cyclic loading

    NASA Astrophysics Data System (ADS)

    Sharba, M. J.; Leman, Z.; Sultan, M. T. H.; Ishak, M. R.; Hanim, M. A. A.

    2015-12-01

    The aim of this work is to investigate the effect of hybridization of kenaf-glass fibers reinforced unsaturated polyester on fatigue life. Three types of composites were fabricated using hands lay-up method, namely, kenaf, glass, and hybrid composites with 30% of weight fraction, the hybrid was mixed with a ratio of kenaf: glass 10:20. Monotonic tests were achieved (Tensile and compression) to determine the fatigue stress levels. Fully reversed fatigue loading was conducted with a stress ratio of -1 and stress levels 55-85% of the ultimate static stresses, all tests were conducted at 10 Hz of frequency. The results proof a positive hybrid composite; also agree with the rule of mixture that can predict the final composite properties. Moreover, it's been observed an improvement in overall mechanical properties of hybrid compared to individual ones.

  1. Dynamic Crush Behaviors Of Aluminum Honeycomb Specimens Under Compression Dominant Inclined Loads

    SciTech Connect

    Hong, Sung-tae; Pan, Jwo; Tyan, Tau; Prasad, Priya

    2008-01-01

    The quasi-static and dynamic crush behaviors of aluminum 5052-H38 honeycomb specimens under out-of-plane inclined loads are investigated by experiments. Different types of honeycomb specimens were designed for crush tests under pure compressive and inclined loads with respect to the out-of-plane direction. A test fixture was designed for both quasi-static and dynamic crush tests under inclined loads. The results of the quasi-static crush tests indicate that the normal crush and shear strengths under inclined loads are consistent with the corresponding results under combined loads. The results of the dynamic crush tests indicate that as the impact velocity increases, the normal crush strength increases and the shear strength remains nearly the same. The trends of the normalized normal crush strengths under inclined loads for specimens with different in-plane orientation angles as functions of the impact velocity are very similar to each other. Based on the experimental results, a macroscopic yield criterion as a function of the impact velocity is proposed. The experimental results suggest that as the impact velocity increases, the shape of the macroscopic yield surface changes, or more specifically, the curvature of the yield surface increases near the pure compression state. The experimental results also show similar microscopic progressive folding mechanisms in honeycomb specimens under pure compressive and inclined loads. However, honeycomb specimens under inclined loads show inclined stacking patterns of folds due to the asymmetric location of horizontal plastic hinge lines.

  2. Effect of the loading rate on compressive properties of goose eggs.

    PubMed

    Nedomová, Š; Kumbár, V; Trnka, J; Buchar, J

    2016-03-01

    The resistance of goose (Anser anser f. domestica) eggs to damage was determined by measuring the average rupture force, specific deformation and rupture energy during their compression at different compression speeds (0.0167, 0.167, 0.334, 1.67, 6.68 and 13.36 mm/s). Eggs have been loaded between their poles (along X axis) and in the equator plane (Z axis). The greatest amount of force required to break the eggs was required when eggs were loaded along the X axis and the least compression force was required along the Z axis. This effect of the loading orientation can be described in terms of the eggshell contour curvature. The rate sensitivity of the eggshell rupture force is higher than that observed for the Japanese quail's eggs. PMID:26507435

  3. Micromechanics of ambient temperature cyclic fatigue loading in a composite of CAS glass ceramic reinforced with Nicalon fibers

    SciTech Connect

    Rousseau, C.Q.; Davidson, D.L.; Campbell, J.B. )

    1994-04-01

    The behavior of a Nicalon fiber reinforced glass ceramic composite cyclicly loaded has been evaluated at ambient temperature using high-resolution micromechanical test methods. On this basis, the events leading to fracture have been found to be similar to those accompanying fracture in unidirectional tension tests. Matrix strains were determined locally at the point of matrix fracture. Crack opening displacements (CODs) were measured as a function of loading cycles, and fiber strains were determined, in some cases. It is concluded that debonding of fibers begins at the point of matrix cracking and rapidly increases. Most of the cyclic lifetime of the material is spent with fibers debonded over large distances (fractions of a millimeter); these fibers are pulled out of the matrix on each loading cycle. Final debond length, as determined by fractography, is a function of the number of cycles to fracture, and of the applied stress level. 23 refs.

  4. Longitudinal Weld Land Buckling in Compression-Loaded Orthogrid Cylinders

    NASA Technical Reports Server (NTRS)

    Thornburgh, Robert P.; Hilburger, Mark W.

    2010-01-01

    Large stiffened cylinders used in launch vehicles (LV), such as the Space Shuttle External Tank, are manufactured by welding multiple curved panel sections into complete cylinders. The effects of the axial weld lands between the panel sections on the buckling load were studied, along with the interaction between the acreage stiffener arrangement and the weld land geometry. This document contains the results of the studies.

  5. Effect of cyclic loading on microleakage of silorane based composite compared with low shrinkage methacrylate-based composites

    PubMed Central

    Kermanshah, Hamid; Yasini, Esmail; Hoseinifar, Razieh

    2016-01-01

    Background: There are many concerns regarding the marginal seal of composite restorations, especially when composite restorations are subjected to cyclic loading. The aim of this study was to evaluate the effect of cyclic loading on the microleakage of silorane based composite compared with low shrinkage methacrylate-based composites in class V cavities. Materials and Methods: In this in vitro study, class V cavities were prepared on the facial and lingual surfaces of 48 human premolars (96 cavities). The teeth were randomly divided into four groups of 12 teeth (24 cavities) each and restored as follows: Group 1 (Siloran System Adhesive + Filtek P90), Group 2 (All Bond SE + Aelite LS Posterior), Group 3 (Futurabond NR + Grandio), and Group 4 (G-Bond + Kalore-GC). All the specimens were thermocycled for 2000 cycles (5-55°C) and then half of the specimens from each group, were Load cycled. All teeth were immersed in 0.5% basic fuchsine dye, sectioned, and observed under a stereomicroscope. Data were analyzed using Wilcoxon test, Kruskal–Wallis, and Mann–Whitney U-tests. P < 0.05 was considered as significant. Results: In both unloaded and loaded groups, no statistically significant differences were observed among four composites at the occlusal margin, but a significant difference in gingival microleakage was found between Aelite and silorane. Occlusal and gingival microleakage was not affected by cyclic loading in none of the four restorative materials. Conclusion: Silorane did not provide better marginal seal than the low shrinkage methacrylate-based composites (except Aelite). In addition, cyclic loading did not affect the marginal microleakage of evaluated composite restorations. PMID:27274348

  6. In vitro analysis of resistance to cyclic load and preload distribution of two implant/abutment screwed connections.

    PubMed

    Murmura, Giovanna; Di Iorio, Donato; Cicchetti, Angelo Raffaele; Sinjari, Bruna; Caputi, Sergio

    2013-06-01

    The aim of the present research is an in vitro evaluation of the preload distribution in screw-retained implant systems under cyclic load. Two implant systems with internal connection were tested: fifteen 4.5 × 10 mm implants with internal hexagon and fifteen 4.5 × 10 mm implants with internal octagon. Samples underwent cyclic load that was between 20 N and 200 N for 1 × 10(6) cycles. After mechanical tests, samples were sectioned along the long axis and analyzed under a scanning electron microscope. Five 4.5 × 10 mm implants with internal hexagon and five 4.5 × 10 mm implants with internal octagon were collected for photoelastic analysis. Each fixture was mounted in a wax-made parallelepiped measuring 20 mm × 20 mm × 10 mm. A mold was made for each wax parallelepiped/fixture assembly using a silicone-based impression material, and an epoxy resin was poured in each mold. After setting of the resin, 25° angled titanium abutments were screwed onto each replica; afterwards, assemblies underwent photoelastic analysis. After cyclic load, screw threads and heads were still in contact with internal fixture threads and abutment holes, respectively, suggesting that preload has not been lost during load. During load, SSO and Xsigñ implants behave in a different way. SSO samples revealed the presence of fringes radiating from the base of the abutment. Xsigñ implants showed the presence of fringes radiating from the threads of the retention screw. From the present in vitro research, it is possible to state that screw-retained abutment based on an internal octagonal connection is less likely to come loose after cyclic load. PMID:21231867

  7. Experimental and Numerical Studies on Development of Fracture Process Zone (FPZ) in Rocks under Cyclic and Static Loadings

    NASA Astrophysics Data System (ADS)

    Ghamgosar, M.; Erarslan, N.

    2016-03-01

    The development of fracture process zones (FPZ) in the Cracked Chevron Notched Brazilian Disc (CCNBD) monsonite and Brisbane tuff specimens was investigated to evaluate the mechanical behaviour of brittle rocks under static and various cyclic loadings. An FPZ is a region that involves different types of damage around the pre-existing and/or stress-induced crack tips in engineering materials. This highly damaged area includes micro- and meso-cracks, which emerge prior to the main fracture growth or extension and ultimately coalescence to macrofractures, leading to the failure. The experiments and numerical simulations were designed for this study to investigate the following features of FPZ in rocks: (1) ligament connections and (2) microcracking and its coalescence in FPZ. A Computed Tomography (CT) scan technique was also used to investigate the FPZ behaviour in selected rock specimens. The CT scan results showed that the fracturing velocity is entirely dependent on the appropriate amount of fracture energy absorbed in rock specimens due to the change of frequency and amplitudes of the dynamic loading. Extended Finite Element Method (XFEM) was used to compute the displacements, tensile stress distribution and plastic energy dissipation around the propagating crack tip in FPZ. One of the most important observations, the shape of FPZ and its extension around the crack tip, was made using numerical and experimental results, which supported the CT scan results. When the static rupture and the cyclic rupture were compared, the main differences are twofold: (1) the number of fragments produced is much greater under cyclic loading than under static loading, and (2) intergranular cracks are formed due to particle breakage under cyclic loading compared with smooth and bright cracks along cleavage planes under static loading.

  8. An experimental investigation of domain wall motion in polycrystalline Ni during high-rate compressive loading

    NASA Astrophysics Data System (ADS)

    Ghosh, Dipankar; Bah, Abubakarr; Carman, Gregory P.; Ravichandran, Guruswami

    2016-01-01

    This paper describes experimental data on a polycrystalline nickel subjected to compressive loads induced in a split Hopkinson pressure bar test. A perpendicular bias magnetic field with respect to the loading direction is used to orient the domains and a pick-up coil measures the magnetic response of the sample during loading. Utilizing this experimental configuration, this study investigated the coupled effects of the magnetic and mechanical fields on domain wall motion in a polycrystalline magnetostrictive material (Ni) during the high-rate elastic loading. The experimental measurements reveal that the magnitude of the stress-induced magnetization change is dependent upon bias magnetic field.

  9. Creep-fatigue of High Temperature Materials for VHTR: Effect of Cyclic Loading and Environment

    SciTech Connect

    Celine Cabet; L. Carroll; R. Wright; R. Madland

    2011-05-01

    Alloy 617 is the one of the leading candidate materials for Intermediate Heat eXchangers (IHX) of a Very High Temperature Reactor (VHTR). System start-ups and shut-downs as well as power transients will produce low cycle fatigue (LCF) loadings of components. Furthermore, the anticipated IHX operating temperature, up to 950°C, is in the range of creep so that creep-fatigue interaction, which can significantly increase the fatigue crack growth, may be one of the primary IHX damage modes. To address the needs for Alloy 617 codification and licensing, a significant creep-fatigue testing program is underway at Idaho National Laboratory. Strain controlled LCF tests including hold times up to 1800s at maximum tensile strain were conducted at total strain range of 0.3% and 0.6% in air at 950°C. Creep-fatigue testing was also performed in a simulated VHTR impure helium coolant for selected experimental conditions. The creep-fatigue tests resulted in failure times up to 1000 hrs. Fatigue resistance was significantly decreased when a hold time was added at peak stress and when the total strain was increased. The fracture mode also changed from transgranular to intergranular with introduction of a tensile hold. Changes in the microstructure were methodically characterized. A combined effect of temperature, cyclic and static loading and environment was evidenced in the targeted operating conditions of the IHX. This paper This paper reviews the data previously published by Carroll and co-workers in references 10 and 11 focusing on the role of inelastic strain accumulation and of oxidation in the initiation and propagation of surface fatigue cracks.

  10. Experimental study of hollow rectangular bridge column performance under vertical and cyclically bilateral loads

    NASA Astrophysics Data System (ADS)

    Han, Qiang; Du, Xiuli; Zhou, Yihui; Lee, George C.

    2013-09-01

    To investigate the seismic performance of hollow reinforced concrete (RC) bridge columns of rectangular cross section under constant axial load and cyclically biaxial bending, five specimens were tested. A parametric study is carried out for different axial load ratios, longitudinal reinforcement ratios and lateral reinforcement ratios. The experimental results showed that all tested specimens failed in the flexural failure mode and their ultimate performance was dominated by flexural capacity, which is represented by the rupture/buckling of tensile longitudinal rebars at the bottom of the bridge columns. Biaxial force and displacement hysteresis loops showed significant stiffness and strength degradations, and the pinching effect and coupling interaction effect of both directions severely decrease the structural seismic resistance. However, the measured ductility coefficient varying from 3.5 to 5.7 and the equivalent viscous damping ratio varying from 0.19 and 0.26 can meet the requirements of the seismic design. The hollow RC rectangular bridge columns with configurations of lateral reinforcement in this study have excellent performance under bidirectional earthquake excitations, and may be considered as a substitute for current hollow RC rectangular section configurations described in the Guideline for Seismic Design of Highway Bridges (JTG/T B02-01-2008). The length of the plastic hinge region was found to approach one sixth of the hollow RC rectangular bridge column height for all specimen columns, and it was much less than those specified in the current JTG/T. Thus, the length of the plastic hinge region is more concentrated for RC rectangular hollow bridge columns.

  11. Experimental investigation on yield behavior of PMMA under combined shear-compression loading

    NASA Astrophysics Data System (ADS)

    Zhang, Jianjun; Jin, Tao; Wang, Zhihua; Zhao, Longmao

    The work experimentally studies the yielding behavior of polymethyl methacrylate (PMMA) at three different loading rates through a developed combined shear-compression test technique which contains a universal materials testing machine, mental blocks with double beveled ends (combined shear-compression loading setup) and a column sleeve made of Teflon. The results show that the failure loci agree well with theoretical predictions involving the strain rate dependence, which indicates the validity of this test method. Additionally, the experimental data enrich the previous experimental work about polymer yielding surface in the principle stress space.

  12. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.

    PubMed

    Wagnac, Eric; Arnoux, Pierre-Jean; Garo, Anaïs; El-Rich, Marwan; Aubin, Carl-Eric

    2011-10-01

    Under fast dynamic loading conditions (e.g. high-energy impact), the load rate dependency of the intervertebral disc (IVD) material properties may play a crucial role in the biomechanics of spinal trauma. However, most finite element models (FEM) of dynamic spinal trauma uses material properties derived from quasi-static experiments, thus neglecting this load rate dependency. The aim of this study was to identify hyperelastic material properties that ensure a more biofidelic simulation of the IVD under a fast dynamic compressive load. A hyperelastic material law based on a first-order Mooney-Rivlin formulation was implemented in a detailed FEM of a L2-L3 functional spinal unit (FSU) to represent the mechanical behavior of the IVD. Bony structures were modeled using an elasto-plastic Johnson-Cook material law that simulates bone fracture while ligaments were governed by a viscoelastic material law. To mimic experimental studies performed in fast dynamic compression, a compressive loading velocity of 1 m/s was applied to the superior half of L2, while the inferior half of L3 was fixed. An exploratory technique was used to simulate dynamic compression of the FSU using 34 sets of hyperelastic material constants randomly selected using an optimal Latin hypercube algorithm and a set of material constants derived from quasi-static experiments. Selection or rejection of the sets of material constants was based on compressive stiffness and failure parameters criteria measured experimentally. The two simulations performed with calibrated hyperelastic constants resulted in nonlinear load-displacement curves with compressive stiffness (7335 and 7079 N/mm), load (12,488 and 12,473 N), displacement (1.95 and 2.09 mm) and energy at failure (13.5 and 14.7 J) in agreement with experimental results (6551 ± 2017 N/mm, 12,411 ± 829 N, 2.1 ± 0.2 mm and 13.0 ± 1.5 J respectively). The fracture pattern and location also agreed with experimental results. The simulation performed with

  13. Fatigue crack propagation in Ni-base superalloy single crystals under multiaxial cyclic loads

    NASA Astrophysics Data System (ADS)

    Chan, K. S.; Hack, J. E.; Leverant, G. R.

    1986-10-01

    The effects of crystallographic orientation and stress state on the multiaxial fatigue behavior of MAR-M200* single crystals were examined. Using notched tubular specimens subjected to combined tension/torsion cyclic loads, crack growth rates were determined at ambient temperature as functions of stress intensity range, the shear stress range-to-normal stress range ratio, and crystallographic orientation. Comparison of crack growth data at the same effective ΔK reveals a weak dependence of the crack growth rate on both the tube axis and the notch orientation. For a given set of tube axis and notch orientation, the crack growth rate might or might not vary with the applied stress state, depending on whether roughness-induced crack closure is present. In most cases, subcritical cracking occurs either along a single 111 slip plane or on ridges formed with two 111 slip planes. Neither fracture mode is altered by a change in the applied stress state. This complex crack growth behavior will be discussed in terms of the crack-tip stress field, slip morphology, and crack closure.

  14. Poroelastic analysis of interstitial fluid flow in a single lamellar trabecula subjected to cyclic loading.

    PubMed

    Kameo, Yoshitaka; Ootao, Yoshihiro; Ishihara, Masayuki

    2016-04-01

    Trabecula, an anatomical unit of the cancellous bone, is a porous material that consists of a lamellar bone matrix and interstitial fluid in a lacuno-canalicular porosity. The flow of interstitial fluid caused by deformation of the bone matrix is believed to initiate a mechanical response in osteocytes for bone remodeling. In order to clarify the effect of the lamellar structure of the bone matrix--i.e., variations in material properties--on the fluid flow stimuli to osteocytes embedded in trabeculae, we investigated the mechanical behavior of an individual trabecula subjected to cyclic loading based on poroelasticity. We focused on variations in the trabecular permeability and developed an analytical solution containing both transient and steady-state responses for interstitial fluid pressure in a single trabecular model represented by a multilayered two-dimensional poroelastic slab. Based on the obtained solution, we calculated the pressure and seepage velocity of the interstitial fluid in lacuno-canalicular porosity, within the single trabecula, under various permeability distributions. Poroelastic analysis showed that a heterogeneous distribution of permeability produces remarkable variations in the fluid pressure and seepage velocity in the cross section of the individual trabecula, and suggests that fluid flow stimuli to osteocytes are mostly governed by the value of permeability in the neighborhood of the trabecular surfaces if there is no difference in the average permeability in a single trabecula. PMID:26081726

  15. Numerical analyses of caisson breakwaters on soft foundations under wave cyclic loading

    NASA Astrophysics Data System (ADS)

    Wang, Yuan-zhan; Yan, Zhen; Wang, Yu-chi

    2016-03-01

    A caisson breakwater is built on soft foundations after replacing the upper soft layer with sand. This paper presents a dynamic finite element method to investigate the strength degradation and associated pore pressure development of the intercalated soft layer under wave cyclic loading. By combining the undrained shear strength with the empirical formula of overconsolidation clay produced by unloading and the development model of pore pressure, the dynamic degradation law that describes the undrained shear strength as a function of cycle number and stress level is derived. Based on the proposed dynamic degradation law and M-C yield criterion, a dynamic finite element method is numerically implemented to predict changes in undrained shear strength of the intercalated soft layer by using the general-purpose FEM software ABAQUS, and the accuracy of the method is verified. The effects of cycle number and amplitude of the wave force on the degradation of the undrained shear strength of the intercalated soft layer and the associated excess pore pressure response are investigated by analyzing an overall distribution and three typical sections underneath the breakwater. By comparing the undrained shear strength distributions obtained by the static method and the quasi-static method with the undrained shear strength distributions obtained by the dynamic finite element method in the three typical sections, the superiority of the dynamic finite element method in predicting changes in undrained shear strength is demonstrated.

  16. Design maps for failure of all-ceramic layer structures in concentrated cyclic loading

    PubMed Central

    Bhowmick, Sanjit; Meléndez-Martínez, Juan José; Zhang, Yu; Lawn, Brian R.

    2009-01-01

    A study is made of the competition between failure modes in ceramic-based bilayer structures joined to polymer-based substrates, in simulation of dental crown-like structures with a functional but weak “veneer” layer bonded onto a strong “core” layer. Cyclic contact fatigue tests are conducted in water on model flat systems consisting of glass plates joined to glass, sapphire, alumina or zirconia support layers glued onto polycarbonate bases. Critical numbers of cycles to take each crack mode to failure are plotted as a function of peak contact load on failure maps showing regions in which each fracture mode dominates. In low-cycle conditions, radial and outer cone cracks are competitive in specimens with alumina cores, and outer cone cracks prevail in specimens with zirconia cores; in high-cycle conditions, inner cone cracks prevail in all cases. The roles of other factors, e.g. substrate modulus, layer thickness, indenter radius and residual stresses from specimen preparation, are briefly considered. PMID:19562095

  17. Tolerance to organic loading rate by aerobic granular sludge in a cyclic aerobic granular reactor.

    PubMed

    Long, Bei; Yang, Chang-zhu; Pu, Wen-hong; Yang, Jia-kuan; Liu, Fu-biao; Zhang, Li; Zhang, Jing; Cheng, Kai

    2015-04-01

    Sodium acetate as carbon source, tolerance to organic loading rate (OLR) by aerobic granular sludge in a cyclic aerobic granular reactor (CAGR) was investigated by gradually increasing the influent COD. AGS could maintain stability in the continuous flow reactor under OLR⩽15kg/m(3)d in the former 65 days, and SVI, granulation rate, average particle size and water content was 21 ml/g, 98%, 1.8mm and 97.2% on the 65th day. However, AGS gradually disintegrated after the 66 th day when OLR increased to 18 kg/m(3)d, and granules' properties deteriorated rapidly in a short time. High removal rates to pollutants were achieved by CAGR in the former 65 days, but the removal rates of pollutants dropped sharply from the 66 th day. With the increase of OLR and particle size, anaerobic cores inside the granules were formed by massive dead cells, while instability of anaerobic core eventually led to the collapse of the system. PMID:25710570

  18. Buckling Behavior of Compression-Loaded Composite Cylindrical Shells with Reinforced Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2002-01-01

    Results from a numerical study of the response of thin-wall compression-loaded quasi-isotropic laminated composite cylindrical shells with reinforced and unreinforced square cutouts are presented. The effects of cutout reinforcement orthotropy, size, and thickness on the nonlinear response of the shells are described. A high-fidelity nonlinear analysis procedure has been used to predict the nonlinear response of the shells. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable dynamic buckling response characteristics. The results illustrate how a compression-loaded shell with an unreinforced cutout can exhibit a complex nonlinear response. In particular, a local buckling response occurs in the shell near the cutout and is caused by a complex nonlinear coupling between local shell-wall deformations and in-plane destabilizing compression stresses near the cutout. In general, the addition of reinforcement around a cutout in a compression-loaded shell can retard or eliminate the local buckling response near the cutout and increase the buckling load of the shell, as expected. However, results are presented that show how certain reinforcement configurations can actually cause an unexpected increase in the magnitude of local deformations and stresses in the shell and cause a reduction in the buckling load. Specific cases are presented that suggest that the orthotropy, thickness, and size of a cutout reinforcement in a shell can be tailored to achieve improved response characteristics.

  19. Shockless compression (loading rate of 5 x 105/s) of ballistic gel to 1 GPa

    NASA Astrophysics Data System (ADS)

    Toyoda, Yoshimasa; Gupta, Yogendra

    2013-06-01

    Ballistic gel has been commonly used as a soft tissue simulant in ballistic experiments for decades. However, experimental results needed to develop material models at stresses and loading rates comparable to ballistic loading are lacking. To examine the dynamic response of ballistic gel at the desired stresses and loading-rates, shockless uniaxial-strain compression experiments were conducted on 10 and 20 weight percent ballistic gel to 1 GPa peak stress. Plate-impact experiments were conducted using the following target configurations: fused silica/gel/PMMA optical window. The anomalous compression of fused silica resulted in a near-linear, shockless compression (5 x 105/s). Velocity histories at the front and the rear ballistic gel interfaces were simultaneously recorded using laser interferometry (VISAR). From the velocity histories, the loading paths (in the pressure-volume plane) for each gel concentration were determined. The 20 wt.% ballistic gel resulted in the steeper loading path, demonstrating that the dynamic compression response of 20 wt.% gel is stiffer than the 10 wt.% gel. The wave profiles and the quantitative results will be discussed. Dr. D. P. Dandekar (ARL) is thanked for his help and insightful discussions. Work supported by ARL and DOE/NNSA.

  20. Cyclic-loading-induced accumulation of geometrically necessary dislocations near grain boundaries in a an ni-based superalloy.

    SciTech Connect

    Huang, E. W.; Barabash, R. I.; Ice, G. I.; Liu, W.; Liu, Y. L.; Kai, J. J.; Liaw, P. K.; Univ.of Tennessee; ORNL; Tsing-Hua Univ.

    2009-01-01

    In this study, the fatigue-induced microstructure produced in a nickel-based polycrystalline superalloy that was subjected to cyclic loading was characterized by polychromatic x-ray microdiffraction (PXM) together with in-situ neutron diffraction and transmission-electron microscopy (TEM). In-situ neutron-diffraction measurements reveal two distinct stages of the fatigue damage: cyclic hardening followed by cyclic softening. Three-dimensional spatially resolved PXM micro-Laue measurements find an increase in the density of geometrically necessary dislocations near the grain boundaries, which is accompanied by lattice rotations and grain subdivisions. The PXM results are in agreement with the in-situ neutron-diffraction and TEM results.

  1. Effectiveness of a Load-Imposing Device for Cyclic Stretching of Isolated Human Bronchi: A Validation Study

    PubMed Central

    Le Guen, Morgan; Naline, Emmanuel; Grassin-Delyle, Stanislas; Devillier, Philippe; Faisy, Christophe

    2015-01-01

    Background Mechanical ventilation may induce harmful effects in the airways of critically ill patients. Nevertheless, the effects of cyclic stretching caused by repetitive inflation-deflation of the bronchial compartment have not been well characterized in humans. The objective of the present study was to assess the effectiveness of a load-imposing device for the cyclic stretching of human bronchi. Methods Intact bronchial segments were removed from 128 thoracic surgery patients. After preparation and equilibration in an organ bath, bronchi were stretched repetitively and cyclically with a motorized transducer. The peak force imposed on the bronchi was set to 80% of each individual maximum contraction in response to acetylcholine and the minimal force corresponded to the initial basal tone before stretching. A 1-min cycle (stretching for 15 sec, relaxing for 15 sec and resting for 30 sec) was applied over a time period ranging from 5 to 60 min. The device's performance level was assessed and the properties of the stretched bronchi were compared with those of paired, non-stretched bronchi. Results Despite the intrinsic capacities of the device, the targets of the tension adjustments remained variable for minimal tension (156–178%) while the peak force set point was unchanged (87–115%). In the stretched bronchi, a time-dependent rise in basal tone (P <.05 vs. non-stretched) was apparent after as little as 5 min of cyclic stretching. The stretch-induced rise in basal tone continued to increase (P <.01) after the stretching had ended. Only 60 min of cyclic stretching was associated with a significant (P <.05) increase in responsiveness to acetylcholine, relative to non-stretched bronchi. Conclusions Low-frequency, low-force, cyclic loading of human bronchi is associated with elevated basal tone and acetylcholine responsiveness. The present experimental model is likely to be a useful tool for future investigations of the bronchial response to repetitive stress

  2. The influence of low-temperature degradation and cyclic loading on the fracture resistance of monolithic zirconia molar crowns.

    PubMed

    Nakamura, K; Harada, A; Kanno, T; Inagaki, R; Niwano, Y; Milleding, P; Örtengren, U

    2015-07-01

    The present study analyzed the kinetics of low-temperature degradation (LTD) in zirconia, and evaluated the influence of LTD and cyclic loading on the fracture resistance of monolithic zirconia molar crowns. Bar-shaped zirconia specimens were divided into nine groups and autoclaved at 134°C for 0-200h to induce LTD. The surface fraction and penetration depth of the monoclinic phase were examined using X-ray diffraction and scanning electron microscopy. Monolithic zirconia molar crowns were prepared for crown fracture testing. The crowns were autoclaved for 0-100h (n=6) and cemented to dies. Six crown-die samples that were not autoclaved and six samples that were autoclaved for 100h were subjected to cyclic loading with a load of 300N for 240,000 cycles. All samples were tested in a load-to-failure test. The monoclinic fraction on the surface increased with autoclaving time and reached a plateau after 50h. The depth of the monoclinic phase increased without reaching a plateau. The fracture load of the crowns significantly decreased from 5683N (SD: 342) to 3975N (SD: 194) after 100h of autoclaving. Cyclic loading did not significantly affect the fracture resistance of the crowns in all cases. Kinetic analysis showed no linear correlation between the surface fraction and depth of the monoclinic phase after 50h of autoclaving. Even though LTD increased the monoclinic phase, resulting in lower strength, the fracture resistance of the monolithic zirconia crowns was still sufficient to withstand the loading conditions in the molar regions. PMID:25841216

  3. Engineering the periodontal ligament in hyaluronan-gelatin-type I collagen constructs: upregulation of apoptosis and alterations in gene expression by cyclic compressive strain.

    PubMed

    Saminathan, Aarthi; Sriram, Gopu; Vinoth, Jayasaleen Kumar; Cao, Tong; Meikle, Murray C

    2015-02-01

    To engineer constructs of the periodontal ligament (PDL), human PDL cells were incorporated into a matrix of hyaluronan, gelatin, and type I collagen (COLI) in sample holders (13×1 mm) of six-well Biopress culture plates. The loading dynamics of the PDL were mimicked by applying a cyclic compressive strain of 33.4 kPa (340.6 gm/cm(2)) to the constructs for 1.0 s every 60 s, for 6, 12, and 24 h in a Flexercell FX-4000C Strain Unit. Compression significantly increased the number of nonviable cells and increased the expression of several apoptosis-related genes, including initiator and executioner caspases. Of the 15 extracellular matrix genes screened, most were upregulated at some point after 6-12 h deformation, but all were downregulated at 24 h, except for MMPs1-3 and CTGF. In culture supernatants, matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinases-1 (TIMP-1) protein levels were upregulated at 24 h; receptor activator of nuclear kappa factor B (RANKL), osteoprotegerin (OPG) and fibroblast growth factor-2 (FGF-2) were unchanged; and connective tissue growth factor (CTGF) not detected. The low modulus of elasticity of the constructs was a disadvantage-future mechanobiology studies and tissue engineering applications will require constructs with much higher stiffness. Since the major structural protein of the PDL is COLI, a more rational approach would be to permeabilize preformed COLI scaffolds with PDL-populated matrices. PMID:25181942

  4. Effects of saline loading during head down tilt on ANP and cyclic GMP levels and on urinary fluid excretion

    NASA Astrophysics Data System (ADS)

    Drummer, C.; Lang, R. E.; Baisch, F.; Blomqvist, G.; Heer, M.; Gerzer, R.

    In the present study the renal and humoral effects of acute saline infusions were investigated in six healthy male volunteers before, during and after a ten day period of -6° head-down-tilt (HDT). During the whole 23-day study period the subjects received a standardized diet including 40 ml water and 125 mg NaCl per kg body weight per day. After the infusion of 0.9% saline (22 ml/kg within 20 minutes) plasma atrial natriuretic peptide (ANP) levels were only slightly increased (not significant) at the end of the infusion, while plasma cyclic GMP levels were significantly increased by about 40% (p<0.05) one hour later. No difference was observed in the plasma ANP and cyclic GMP changes between the pre-HDT, the HDT and the post-HDT infusion experiment. Urine flow, sodium excretion and urinary cyclic GMP excretion were significantly increased (p<0.05 and below) by 100 to 300% during the second and third hour after each saline infusion. However, during these short-term periods only 20% of the infused water and less than 20% of the infused sodium were excreted. Furthermore, a significantly increased volume, sodium and cyclic GMP excretion was observed for over 48 hours after each fluid load experiment. These data suggest that HDT does not induce major alterations in the regulation of an acute saline infusion and plasma ANP does not play a major role in the diuretic/natriuretic effects of volume loading.

  5. Loading rate sensitivity of open-hole composite specimens in compression

    NASA Technical Reports Server (NTRS)

    Lubowinski, S. J.; Guynn, E. G.; Elber, W.; Whitcomb, J. D.

    1990-01-01

    The results are reported of an experimental study on the compressive, time-dependent behavior of graphite fiber reinforced polymer composite laminates with open holes. The effect of loading rate on compressive strength was determined for six material systems ranging from brittle epoxies to thermoplastics at both 75 F and 220 F. Specimens were loaded to failure using different loading rates. The slope of the strength versus elapsed time-to-failure curve was used to rank the materials' loading rate sensitivity. All of the materials had greater strength at 75 F than at 220 F. All the materials showed loading rate effects in the form of reduced failure strength for longer elapsed-time-to-failure. Loading rate sensitivity was less at 220 F than the same material at 70 F. However, C12000/ULTEM and IM7/8551-7 were more sensitive to loading rate than the other materials at 220 F. AS4/APC2 laminates with 24, 32, and 48 plies and 1/16 and 1/4 inch diameter holes were tested. The sensitivity to loading rate was less for either increasing number of plies or larger hole size. The failure of the specimens made from brittle resins was accompanied by extensive delaminations while the failure of the roughened systems was predominantly by shear crippling. Fewer delamination failures were observed at the higher temperature.

  6. Dynamic compression of solid HMX-based explosives under ramp wave loading

    NASA Astrophysics Data System (ADS)

    Wang, G. J.; Cai, J. T.; Zhang, H. P.; Zhao, F.; Tan, F. L.; Wu, G.

    2012-11-01

    By means of the new techniques of magnetically driven quasi-isentropic compression based on compact capacitor bank facility CQ-1.5 developed by us, the dynamic compression of two mixed HMX-based plastic bonded explosives (PBX) explosives is researched under ramp wave loading. A pressure of 5-8 GPa over 600-800 ns is realized on explosive samples by optimizing loading electrodes and controlling charging voltages of CQ-1.5. And loading strain rates vary from 105 1/s to 106 1/s along the thickness of explosive samples. For experiments, the particle velocities of interface between explosive samples with different thicknesses and LiF windows are measured to determine material response by a displacement interferometry technique of Doppler pins system (DPS), and the experimental compression isentropes of researched explosives are obtained using the data processing method of backward integration and Lagrangian analysis for quasi-isentropic compression experiments, which are in agreement with the theoretical isentropes based on Mie-Grüneisen equation of state (EOS) and the results by Baer. For simulations, one-dimensional hydrodynamics code SSS is used to analyze the dynamic process, and the calculated results of particle velocity of interfaces are consistent with the experimental ones. Finally, one of the explosive constituents, the binder fluoride rubber F2311, is also investigated using this technique, and some properties under ramp wave loading are gained.

  7. Optimization of composite sandwich cover panels subjected to compressive loadings

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.

    1991-01-01

    An analysis and design method is presented for the design of composite sandwich cover panels that include the transverse shear effects and damage tolerance considerations. This method is incorporated into a sandwich optimization computer program entitled SANDOP. As a demonstration of its capabilities, SANDOP is used in the present study to design optimized composite sandwich cover panels for for transport aircraft wing applications. The results of this design study indicate that optimized composite sandwich cover panels have approximately the same structural efficiency as stiffened composite cover panels designed to satisfy individual constraints. The results also indicate that inplane stiffness requirements have a large effect on the weight of these composite sandwich cover panels at higher load levels. Increasing the maximum allowable strain and the upper percentage limit of the 0 degree and +/- 45 degree plies can yield significant weight savings. The results show that the structural efficiency of these optimized composite sandwich cover panels is relatively insensitive to changes in core density. Thus, core density should be chosen by criteria other than minimum weight (e.g., damage tolerance, ease of manufacture, etc.).

  8. Polycrystal plasticity modeling of nickel-based superalloy IN 617 subjected to cyclic loading at high temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Oskay, Caglar

    2016-06-01

    A crystal plasticity finite element (CPFE) model considering isothermal, large deformation and cyclic loading conditions has been formulated and employed to investigate the mechanical response of a nickel-based alloy at high temperature. The investigations focus on fatigue and creep-fatigue hysteresis response of IN 617 subjected to fatigue and creep-fatigue cycles. A new slip resistance evolution equation is proposed to account for cyclic transient features induced by solute drag creep that occur in IN 617 at 950 °C. The crystal plasticity model parameters are calibrated against the experimental fatigue and creep-fatigue data based on an optimization procedure that relies on a surrogate modeling (i.e. Gaussian process) technique to accelerate multi-parameter optimizations. The model predictions are validated against experimental data, which demonstrates the capability of the proposed model in capturing the hysteresis behavior for various hold times and strain ranges in the context of fatigue and creep-fatigue loading.

  9. Effects of Nesting on Compression-Loaded 2-D Woven Textile Composites

    NASA Technical Reports Server (NTRS)

    Adams, Daniel OHare; Breiling, Kurtis B.; Verhulst, Mark A.

    1995-01-01

    Layer nesting was investigated in five harness satin weave textile composite laminates under static compression loading. Two carbon/epoxy material systems, AS4/3501-6 and IM7/8551-7A were considered. Laminates were fabricated with three idealized nesting cases: stacked, split-span and diagonal. Similar compression strength reductions due to the effects of idealized nesting were identified for each material. The diagonal nesting geometry produced the largest reduction in static strength when compared to the compression strength of a conventional textile composite. All three nesting cases produced reductions in strength and ultimate strain due to the effects of idealized nesting. Finite element results showed consistent strength reduction trends for the idealized nesting cases, however the magnitudes of compressive strengths were overpredicted.

  10. Dynamic compressive response of the human pelvis axial loading of the sacroiliac joint.

    PubMed

    Kemper, Andrew R; McNally, Craig; Duma, Stefan M

    2008-01-01

    The purpose of this study was to quantify the biomechanical response of the intact human pelvis subjected to dynamic axial compressive loading. Axial compression tests were performed on a total of six fresh frozen human cadaver pelves, five male and one female. The intact pelves were fixed to a load cell with a custom aluminum pot placed around the sacrum. Special care was taken when potting the pelves in order to ensure that the orientation of the pelves was representative of that seen in normal upright seating. The pelves were then subjected to dynamic compressive loading at a rate of approximately 2 m/s using a servo-hydraulic Material Testing System (MTS). The average peak force, moment, and displacement at the point of failure were 5,896 +/- 1455 N, 33.4 +/- 28.6 N-m, and 6.4 +/- 0.7 mm, respectively. The failure of the all pelvis specimens corresponded to a bilateral dislocation of the sacroiliac joint. As a general trend, strain gage data showed that the right and left superior ramus were placed in tension and the right and left ischium were placed in compression. The peak strain values ranged from 746 mstr to 5717 mstr in tension and from -356 mstr to -2677 mstr in compression. The current study will help future researchers reduce the number of incidences and severity of pelvic fractures that can result from falls from heights, ejection seat loading, or motor vehicle crash environments by providing valuable test data that quantifies biomechanical response of the human pelvis in vertical loading. PMID:19141911

  11. A Numerical and Experimental Study of Compression-Loaded Composite Panels With Cutouts

    NASA Technical Reports Server (NTRS)

    Thornburgh, Robert P.; Hilburger, Mark W.

    2006-01-01

    Results from a numerical and experimental study on the effects of laminate orthotropy and circular cutout size on the response of compression-loaded composite curved panels are presented. Several 60-in-radius composite panels with four different laminate configurations were tested with cutout diameters that range from 10% to 60% of the panel width. Finite-element analyses were performed for each panel in order to identify the effects boundary conditions, measured initial geometric imperfections and thickness variations had on the nonlinear and buckling behavior of the panels. The compression-loaded panels considered herein exhibited two separate types of behavior depending on the laminate stacking sequence and cutout size. More specifically, some of the panels exhibited the classical snap-through type buckling response; however, some of the panels exhibited a monotonically increasing stable response and achieved compressive loads in excess of twice the predicted linear bifurcation buckling load. In general, the finite-element analyses were able to predict accurately the nonlinear response and buckling loads of the panels and the prebuckling and postbuckling out-of-plane deformations and strains.

  12. Buckling Behavior of Compression-Loaded Composite Cylindrical Shells With Reinforced Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Sarnes, James H., Jr.

    2004-01-01

    Results from a numerical study of the response of thin-walled compression-loaded quasi-isotropic laminated composite cylindrical shells with unreinforced and reinforced square cutouts are presented. The effects of cutout reinforcement orthotropy, size, and thickness on the nonlinear response of the shells are described. A nonlinear analysis procedure has been used to predict the nonlinear response of the shells. The results indicate that a local buckling response occurs in the shell near the cutout when subjected to load and is caused by a nonlinear coupling between local shell-wall deformations and in-plane destabilizing compression stresses near the cutout. In general, reinforcement around a cutout in a compression-loaded shell is shown to retard or eliminate the local buckling response near the cutout and increase the buckling load of the shell. However, some results show that certain reinforcement configurations can cause an unexpected increase in the magnitude of local deformations and stresses in the shell and cause a reduction in the buckling load. Specific cases are presented that suggest that the orthotropy, thickness, and size of a cutout reinforcement in a shell can be tailored to achieve improved buckling response characteristics.

  13. Compression loading-induced stress responses in intervertebral disc cells encapsulated in 3D collagen constructs

    PubMed Central

    Chooi, Wai Hon; Chan, Barbara Pui

    2016-01-01

    Cells protect themselves from stresses through a cellular stress response. In the interverebral disc, such response was also demonstrated to be induced by various environmental stresses. However, whether compression loading will cause cellular stress response in the nucleus pulposus cells (NPCs) is not well studied. By using an in vitro collagen microencapsulation model, we investigated the effect of compression loading on the stress response of NPCs. Cell viability tests, and gene and protein expression experiments were conducted, with primers for the heat shock response (HSR: HSP70, HSF1, HSP27 and HSP90), and unfolded protein response (UPR: GRP78, GRP94, ATF4 and CHOP) genes and an antibody to HSP72. Different gene expression patterns occurred due to loading type throughout experiments. Increasing the loading strain for a short duration did not increase the stress response genes significantly, but over longer durations, HSP70 and HSP27 were upregulated. Longer loading durations also resulted in a continuous upregulation of HSR genes and downregulation of UPR genes, even after load removal. The rate of apoptosis did not increase significantly after loading, suggesting that stress response genes might play a role in cell survival following mechanical stress. These results demonstrate how mechanical stress might induce and control the expression of HSR and UPR genes in NPCs. PMID:27197886

  14. Compression loading-induced stress responses in intervertebral disc cells encapsulated in 3D collagen constructs.

    PubMed

    Chooi, Wai Hon; Chan, Barbara Pui

    2016-01-01

    Cells protect themselves from stresses through a cellular stress response. In the interverebral disc, such response was also demonstrated to be induced by various environmental stresses. However, whether compression loading will cause cellular stress response in the nucleus pulposus cells (NPCs) is not well studied. By using an in vitro collagen microencapsulation model, we investigated the effect of compression loading on the stress response of NPCs. Cell viability tests, and gene and protein expression experiments were conducted, with primers for the heat shock response (HSR: HSP70, HSF1, HSP27 and HSP90), and unfolded protein response (UPR: GRP78, GRP94, ATF4 and CHOP) genes and an antibody to HSP72. Different gene expression patterns occurred due to loading type throughout experiments. Increasing the loading strain for a short duration did not increase the stress response genes significantly, but over longer durations, HSP70 and HSP27 were upregulated. Longer loading durations also resulted in a continuous upregulation of HSR genes and downregulation of UPR genes, even after load removal. The rate of apoptosis did not increase significantly after loading, suggesting that stress response genes might play a role in cell survival following mechanical stress. These results demonstrate how mechanical stress might induce and control the expression of HSR and UPR genes in NPCs. PMID:27197886

  15. Design of a miniature hydraulic compression load frame for microdiffraction tests at the Advanced Photon Source.

    SciTech Connect

    Shu, D.; Varma, R.; Krasnicki, S.; Sinha, S.

    1999-10-11

    In support of the x-ray synchrotrons radiation multidiffraction project of Los Alamos National Laboratory at the Advanced Photon Source (APS), we have designed and fabricated a miniature hydraulic compression load frame with 20000 N load capacity for metal specimen tests at the APS. The compact design allows the load frame to sit on the center of a 6-circle goniometer with six degrees of freedom and maximum solid angle accessibility for the incoming x-ray beam and diffraction beam detectors. A set of compact precision stages with submicron resolution has been designed for the load frame positioning to compensate the sample internal elastic and/or plastic deformation during the loading process. The system design, specifications, and test results are presented.

  16. Cyclic steady state stress-strain behavior of UHMW polyethylene.

    PubMed

    Krzypow, D J; Rimnac, C M

    2000-10-01

    To increase the long-term performance of total joint replacements, finite element analyses of ultra high molecular weight polyethylene (UHMWPE) components have been conducted to predict the effect of load on the stress and strain distributions occurring on and within these components. Early models incorporated the monotonic behavior of UHMWPE without considering the unloading and cyclic loading behavior. However, UHMWPE components undergo cyclic loading during use and at least two wear damage modes (pitting and delamination) are thought to be associated with the fatigue fracture properties of UHMWPE. The objective of this study was to examine the fully reversed uniaxial tension/compression cyclic steady state stress-strain behavior of UHMWPE as a first step towards developing a cyclic constitutive relationship for UHMWPE. The hypothesis that cycling results in a permanent change in the stress-strain relationship, that is, that the cyclic steady state represents a new cyclically stabilized state, was examined. It was found that, like other ductile polymers, UHMWPE substantially cyclically softens under fully reversed uniaxial straining. More cyclic softening occurred in tension than in compression. Furthermore, cyclic steady state was attained, but not cyclic stability. It is suggested that it may be more appropriate to base a material constitutive relationship for UHMWPE for finite element analyses of components upon a cyclically modified stress-strain relationship. PMID:10966018

  17. A Novel Blasted and Grooved Low Profile Pedicle Screw Able to Resist High Compression Bending Loads

    PubMed Central

    Kim, Young-Sung; Choi, Hong-June; Kim, Kyung-Hyun; Park, Jeong-Yoon; Jeong, Hyun-Yong; Chin, Dong-Kyu; Kim, Keun-Su; Yoon, Young-Sul; Lee, Yoon-Chul; Cho, Yong-Eun

    2012-01-01

    Objective Polyaxial pedicle screws are a safe, useful adjunct to transpedicular fixation. However, the large screw head size can cause soft tissue irritation, high rod positioning, and facet joint injury. However, the mechanical resistance provided by small and low profile pedicle screws is very limited. We therefore developed a novel, low profile pedicle screw using grooving and blasting treatment that is able to resist a high compression bending load. Methods We evaluated the compression bending force to displacement and yield loads for seven different screw head types that differed with regard to their groove intervals and whether or not they had been blasted. Results The rank order of screw types that had the greatest compression bending force to displacement was as follows: (1) universal polyaxial, (2) low polyaxial with 0.1mm grooves and blasting, (3) low polyaxial with blasting, (4) low polyaxial with 0.15mm grooves and blasting, (5) low polyaxial with 0.05mm grooves and blasting, (6) low polyaxial with 0.05mm grooves, (7) and low polyaxial. Low polyaxial screws with 0.1mm grooves and blasting had the maximum yield load and highest compression bending force to displacement of all seven polyaxial screw head systems evaluated. Conclusion Blasting and grooving treatment of pedicle screw heads resulted in screw heads with a high yield load and compression bending force relative to displacement because of increased friction. Low polyaxial pedicle screws with 0.1 mm grooves treated by blasting have mechanical characteristics similar to those of universal polyaxial pedicle screws. PMID:25983790

  18. Evaluation of a Compression-Loaded-Stitched-Multi-Bay Fuselage Panel With Barely Visible Impact Damage

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.; Li, Ji-An

    2005-01-01

    The experimental results from a stitched VaRTM carbon-epoxy composite panel tested under uni-axial compression loading are presented along with nonlinear finite element analysis prediction of the response. The curved panel is divided by frames and stringers into six bays with a column of three bays along the compressive loading direction. The frames are supported at the frame ends to resist out-of-plane translation. Back-to-back strain gages are used to record the strain and displacement transducers were used to record the out-of-plane displacements. In addition a full-field-displacement measurement technique that utilizes a camera-based-stereo-vision system was used to record the displacements. The panel was loaded to 1.5 times the predicted initial buckling load (1st bay buckling load, P(sub er) from the nonlinear finite element analysis and then was removed from the test machine for impact testing. After impacting with 20 ft-lbs of energy using a spherical impactor to produce barely visible damage the panel was loaded in compression until failure. The buckling load of the first bay to buckle was 97% of the buckling load before impact. The stitching constrained the impact damage from growing during the loading to failure. Impact damage had very little overall effect on panel stiffness. Panel stiffness measured by the full-field-displacement technique indicated a 13% loss in stiffness after impact. The panel failed at 1.64 times the first panel buckling load. The barely visible impact damage did not grow noticeably as the panel failed by global instability due to stringer-web terminations at the frame locations. The predictions from the nonlinear analysis of the finite element modeling of the entire specimen were very effective in the capture of the initial buckling and global behavior of the panel. In addition, the prediction highlighted the weakness of the panel under compression due to stringer web terminations. Both the test results and the nonlinear

  19. Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element.

    PubMed

    Shirazi-Adl, A

    2006-01-01

    Axial compression on the spine could reach large values especially in lifting tasks which also involve large rotations. Experimental and numerical investigations on the spinal multi motion segments in presence of physiological compression loads cannot adequately be carried out due to the structural instability and artefact loads. To circumvent these problems, a novel wrapping cable element is used in a nonlinear finite element model of the lumbosacral spine (L1-S1) to investigate the role of moderate to large compression loads on the lumbar stiffness in flexion and axial moments/rotations. The compression loads up to 2,700 N was applied with no instability or artefact loads. The lumbar stiffness substantially increased under compression force, flexion moment, and axial torque when applied alone. The presence of compression preloads significantly stiffened the load-displacement response under flexion and axial moments/rotations. This stiffening effect was much more pronounced under larger preloads and smaller moments/rotations. Compression preloads also increased intradiscal pressure, facet contact forces, and maximum disc fibre strain at different levels. Forces in posterior ligaments were, however, diminished with compression preload. The significant increase in spinal stiffness, hence, should be considered in biomechanical studies for accurate investigation of the load partitioning, system stability, and fixation systems/disc prostheses. PMID:16321628

  20. Failure of woven carbon-polyimide laminates under off-axis compression loading

    SciTech Connect

    Gupta, V.; Anand, K.; Grape, J.

    1998-01-05

    This paper reports the failure mechanisms in a woven 0/90 carbon-polyimide laminate under 45{degree} off-axis compression loading. The stress carried by the composite increased linearly with increasing levels of applied displacements and, at about 188 MPa, the load dropped suddenly to 172 MPa and remained constant thereafter till about 8.9% strain, at which point the load reduced drastically and resulted in the ultimate failure of the sample. The damage started with the nucleation of several in-plane cracks which split both the wrap and fill yarns completely, and ran diagonally across the sample`s entire width. Upon further loading, the cracking progressed in bundles towards the sample`s interior, and eventually, at a strain of about 5%, a saturation cracking state was reached with each bundle split by at least three-to-four longitudinal cracks. The sample was able to accommodate further strain via nucleation of additional cracks formed at the edges of the longitudinal cracks with their planes parallel to the loading axis and orthogonal to those occupied by the longitudinal cracks. Essentially, these new cracks separated the longitudinally-split bundles in the sample`s thickness direction and resulted in the creation of three-to-four independent bundles from the original well-bonded warp or fill bundle. At this stage, the compressive load carrying capacity of the original bundle was largely compromised and the sample failed through gross delaminations, resulting in the bulging of the sample normal to its largest faces. The above deformation was remarkably different from that observed under bundle-aligned compression loading where the samples failed at an average stress of 588 MPa in more or less brittle catastrophic manner after undergoing only 1.5% strain.

  1. Intervertebral disc responses during spinal loading with MRI-compatible spinal compression apparatus

    NASA Astrophysics Data System (ADS)

    Mitsui, Iwane; Yamada, Yoshiya

    2004-07-01

    This study addresses the development of an MRI-compatible spinal compression harness for use as a research and diagnostic tool. This apparatus adds valuable information to MRI imaging regarding the physiology/biomechanics of intervertebral discs and pathophysiology of back pain in patients and astronauts in space. All materials of the spinal compression apparatus are non-metallic for MRI compatibility. The compact design fits into standard MRI or CT scanners and loading is adjusted to specific percentages of BW with elastic cords. Previously this capability has not been available. Three healthy male subjects were fitted with a spinal compression harness and placed supine in a MRI scanner. Longitudinal distance between T7/8 and L5/S1 discs decreased 5.6 mm with 50% BW compression. Lumbosacral angle increased 17.2 degrees. T2 values of nucleus pulposus from L1/2 to L5/S1 discs increased 18.2+/-6.1% (+/-SD) during 50% BW compression and 25.3+/-7.4% (+/-SD) during 75% BW compression.

  2. High-resolution time-lapse tomography of rat vertebrae during compressive loading: deformation response analysis

    NASA Astrophysics Data System (ADS)

    Fíla, T.; Kytýř, D.; Zlámal, P.; Kumpová, I.; Doktor, T.; Koudelka, P.; Jiroušek, O.

    2014-05-01

    This paper is focused on investigation of mechanical properties of rat vertebrae during compressive loading in the longitudinal direction of rat's spine. High-resolution time-lapse micro-tomography was used as a tool to create models of the inner structure and deformed shape in pre-defined deformation steps. First, peripheral areas of vertebra specimen were embedded in polymethyl methacrylate to obtain proper boundary conditions of contact between specimen and loading plattens. Experimental loading device designed for application in X-ray setups was utilized to compress the vertebrae in several deformation steps. High-resolution micro-tomography scanning was carried out at each deformation step. Specimen was irradiated in tomography device equipped with microfocus X-ray tube with 5μm focal spot size and large area flat panel detector. Spatial resolution of reconstructed three-dimensional images was approximately 10μm. Digital volume correlation algorithm was utilized in order to assess displacements in the microstructure in every loading increment. Finite element model of vertebra was created from volumetric data reconstructed from tomography of the undeformed specimen. Simulated compressive test of the developed finite element model was performed in order to compare stiffness and displacements obtained by digital volume correlation and finite element simulation.

  3. The microstructure and properties of cyclic extrusion compression treated Mg-Zn-Y-Nd alloy for vascular stent application.

    PubMed

    Wu, Qiong; Zhu, Shijie; Wang, Liguo; Liu, Qian; Yue, Gaochao; Wang, Jun; Guan, Shaokang

    2012-04-01

    Magnesium alloys are promising candidate materials for cardiovascular stents due to their good biocompatibility and degradation properties in the human body. However, in vivo tests also show that improvement in their mechanical properties and corrosion resistance is necessary before wide application. In this study, cyclic extrusion compression (CEC) was used to enhance the mechanical properties and corrosion resistance of Mg-Zn-Y-Nd alloy. The results show that the grain size was greatly refined to 1 μm after CEC treatment. The second phase distributed along the grain boundaries with grid shape and nano-sized particles uniformly distributed in grains. The elongation (δ), ultimate tensile strength (UTS) and yield strength (YS) of the CEC treatment samples were 30.2%, 303 MPa and 185 MPa respectively. The CEC treated samples showed homogeneous corrosion because of the grain refinement and the homogeneous distribution of nano-sized second phase. The corrosion current density of the alloy decreased from 2.8×10(-4) A/cm(2) to 6.6×10(-5) A/cm(2) after CEC treatment. Therefore, improved mechanical properties, uniform corrosion and reduced corrosion rate could be achieved by CEC. PMID:22402149

  4. The Effects of Geometric and Loading Imperfections on the Response and Lower-Bound Buckling Load of a Compression-Loaded Cylindrical Shell

    NASA Technical Reports Server (NTRS)

    Kriegesmann, Benedikt; Hilburger, Mark W.; Rolfes, Raimund

    2012-01-01

    Results from a numerical study of the buckling response of a thin-walled compressionloaded isotropic circular cylindrical shell with initial geometric and loading imperfections are used to determine a lower bound buckling load estimate suitable for preliminary design. The lower bound prediction techniques presented herein include an imperfection caused by a lateral perturbation load, an imperfection in the shape of a single stress-free dimple (similar to the lateral pertubation imperfection), and a distributed load imperfection that induces a nonuniform load in the shell. The ABAQUS finite element code is used for the analyses. Responses of the cylinders for selected imperfection amplitudes and imperfection types are considered, and the effect of each imperfection is compared to the response of a geometrically perfect cylinder. The results indicate that compression-loaded shells subjected to a lateral perturbation load or a single dimple imperfection, and a nonuniform load imperfection, exhibit similar buckling behavior and lower bound trends and the predicted lower bounds are much less conservative than the corresponding design recommendation NASA SP-8007 for the design of buckling-critical shells. In addition, the lateral perturbation technique and the distributed load imperfection produce response characteristics that are physically meaningful and can be validated via laboratory testing.

  5. Effect of abutment screw length and cyclic loading on removal torque in external and internal hex implants

    PubMed Central

    Mohammed, Hnd Hadi; Lee, Jin-Han; Bae, Ji-Myung

    2016-01-01

    PURPOSE The purpose of this study was to evaluate the effects of abutment screw length and cyclic loading on the removal torque (RTV) in external hex (EH) and internal hex (IH) implants. MATERIALS AND METHODS Forty screw-retained single crowns were connected to external and internal hex implants. The prepared titanium abutment screws were classified into 8 groups based on the number of threads (n = 5 per group): EH 12.5, 6.5, 3.5, 2.5 and IH 6.5, 5, 3.5, 2.5 threads. The abutment screws were tightened with 20 Ncm torque twice with 10-minute intervals. After 5 minutes, the initial RTVs of the abutment screws were measured with a digital torque gauge (MGT12). A customized jig was constructed to apply a load along the implant long axis at the central fossa of the maxillary first molar. The post-loading RTVs were measured after 16,000 cycles of mechanical loading with 50 N at a 1-Hz frequency. Statistical analysis included one-way analysis of variance and paired t-tests. RESULTS The post-loading RTVs were significantly lower than the initial RTVs in the EH 2.5 thread and IH 2.5 thread groups (P<.05). The initial RTVs exhibited no significant differences among the 8 groups, whereas the post-loading RTVs of the EH 6.5 and EH 3.5 thread groups were higher than those of the IH 3.5 thread group (P<.05). CONCLUSION Within the limitations of this study, the external hex implants with short screw lengths were more advantageous than internal hex implants with short screw lengths in torque maintenance after cyclic loading. PMID:26949489

  6. Response of thoracolumbar vertebral bodies to high rate compressive loading - biomed 2013.

    PubMed

    Dooley, C J; Wester, B A; Wing, I D; Voo, L M; Armiger, R S; Merkle, A C

    2013-01-01

    Underbody blast (UBB) events created by improvised explosive devices are threats to warfighter survivability. High intensity blast waves emitted from these devices transfer large forces through vehicle structures to occupants, often resulting in injuries including debilitating spinal fractures. The vertical loading vector through the spine generates significant compressive forces at high strain rates. To better understand injury mechanisms and ultimately better protect vehicle occupants against UBB attacks, high-fidelity computational models are being developed to predict the human response to dynamic loading characteristic of these events. This effort details the results from a series of 23 high-rate compression tests on vertebral body specimen. A high-rate servo-hydraulic test system applied a range of compressive loading rates (.01 mm/s to 1238 mm/s) to vertebral bodies in the thoracolumbar region (T7-L5). The force-deflection curves generated indicate rate dependent sensitivity of vertebral stiffness, ultimate load and ultimate deflection. Specimen subjected to high-rate dynamic loading to failure experienced critical structural damage at 5.5% ± 2.1% deflection. Compared to quasi-static loading, vertebral bodies had greater stiffness, greater force to failure, and lower ultimate failure deflection at high rates. Post-failure, an average loss in height of 15% was observed, along with a mean reduction in strength of 48%. The resulting data from these tests will allow for enhanced biofidelity of computational models by characterizing the vertebral stiffness response and ultimate deflection at rates representative of UBB events. PMID:23686197

  7. Damage Progression in Buckle-Resistant Notched Composite Plates Loaded in Uniaxial Compression

    NASA Technical Reports Server (NTRS)

    McGowan, David M.; Davila, Carlos G.; Ambur, Damodar R.

    2001-01-01

    Results of an experimental and analytical evaluation of damage progression in three stitched composite plates containing an angled central notch and subjected to compression loading are presented. Parametric studies were conducted systematically to identify the relative effects of the material strength parameters on damage initiation and growth. Comparisons with experiments were conducted to determine the appropriate in situ values of strengths for progressive failure analysis. These parametric studies indicated that the in situ value of the fiber buckling strength is the most important parameter in the prediction of damage initiation and growth in these notched composite plates. Analyses of the damage progression in the notched, compression-loaded plates were conducted using in situ material strengths. Comparisons of results obtained from these analyses with experimental results for displacements and axial strains show good agreement.

  8. The fatigue behaviour of orthotropic laminates under tension-compression loading

    NASA Technical Reports Server (NTRS)

    Rotem, A.

    1991-01-01

    The fatigue behavior of orthotropic laminates (0, +/-45, 0 deg)2s and (90, +/-45, 90 deg)2s, has been evaluated under alternating tension-compression loading. Even though the first laminate is much stronger than the second, both started to fail by delamination. Visual damage started to show only at the very end of the fatigue life but measurement of the stiffness showed that degradation starts at about 80 percent of the fatigue life. The first laminate failed in compression after delamination between the 0 and the 45 deg laminae, while the second failed in tension after delamination between the +45 and -45 deg laminae. It is shown that the interlaminar fatigue strength of both laminate structures can be correlated to the applied fatigue load.

  9. Origin of compression-induced failure in brittle solids under shock loading

    NASA Astrophysics Data System (ADS)

    Huang, J. Y.; Li, Y.; Liu, Q. C.; Zhou, X. M.; Liu, L. W.; Liu, C. L.; Zhu, M. H.; Luo, S. N.

    2015-10-01

    The origin of compression-induced failure in brittle solids has been a subject of debate. Using in situ, high-speed, strain field mapping of a representative material, polymethylmethacrylate, we reveal that shock loading leads to heterogeneity in a compressive strain field, which in turn gives rise to localized lateral tension and shear through Poisson's effects, and, subsequently, localized microdamage. A failure wave nucleates from the impact surface and its propagation into the microdamage zone is self-sustained, triggering interior failure. Its velocity increases with increasing shock strength and eventually approaches the shock velocity. The seemingly puzzling phenomena observed in previous experiments, including incubation time, failure wave velocity variations, and surface roughness effects, can all be explained consistently with the nucleation and growth of the microdamage, and the effects of loading strength and preexisting defects.

  10. Buckling and Failure of Compression-Loaded Composite Laminated Shells With Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.

    2007-01-01

    Results from a numerical and experimental study that illustrate the effects of laminate orthotropy on the buckling and failure response of compression-loaded composite cylindrical shells with a cutout are presented. The effects of orthotropy on the overall response of compression-loaded shells is described. In general, preliminary numerical results appear to accurately predict the buckling and failure characteristics of the shell considered herein. In particular, some of the shells exhibit stable post-local-buckling behavior accompanied by interlaminar material failures near the free edges of the cutout. In contrast another shell with a different laminate stacking sequence appears to exhibit catastrophic interlaminar material failure at the onset of local buckling near the cutout and this behavior correlates well with corresponding experimental results.

  11. The high temperature deformation in cyclic loading of a single crystal nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Welsch, G.

    1989-01-01

    The high temperature cyclic stress softening response of the single crystal nickel-base superalloy PWA 1480 was investigated. Specimens oriented near the 001- and 111-lines were tested at 1050 C in low-cycle fatigue and then microstructurally evaluated. The 001- and 111-line specimens had dissimilar flow behavior in monotonic tensile tests, but comparable softening in low-cycle fatigue. This softening was accompanied by rapid generation of dislocation networks at the gamma-gamma-prime interfaces and by a slower time-dependent coarsening of gamma-prime precipitates. Due to the rapid formation of a dislocation substructure at the gamma-gamma-prime interfaces, the cyclic stress softening could be modeled with an existing theory which related cyclic stress to the evolving microstructure and dislocation structure.

  12. A nonlinear CDM model for ductile failure analysis of steel bridge columns under cyclic loading

    NASA Astrophysics Data System (ADS)

    Nguyen Van Do, Vuong; Lee, Chin-Hyung; Chang, Kyong-Ho

    2014-06-01

    A nonlinear cyclic plasticity damage model for ductile metals, which is able to take large deformation effects into consideration, has been developed using a new damage dissipation potential formulation in order to predict the cyclic inelastic behavior of steel bridge piers. The cyclic constitutive equations that employ the combined isotropic-kinematic hardening rule for plastic deformation is incorporated into the damage mechanics in conjunction with the large strain formulation. The damage growth law is based on the experimental observations that the evolution of microvoids results in nonlinear damage accumulation with plastic deformation. The damage model parameters and the procedure for their identification are presented. The proposed model has been validated and successfully applied to thin-walled steel bridge tubular columns subjected to alternating lateral displacements to evaluate the seismic performance.

  13. Evaluation of Composite Honeycomb Sandwich Panels Under Compressive Loads at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.

    1998-01-01

    Fourteen composite honeycomb sandwich panels were tested to failure under compressive loading. The test specimens included panels with both 8 and 24-ply graphite-bismaleimide composite facesheets and both titanium and graphite-polyimide core materials. The panels were designed to have the load introduced through fasteners attached to pairs of steel angles on the ends of the panels to simulate double shear splice joints. The unloaded edges were unconstrained. Test temperatures included room temperature, 250F, and 300F. For the room and 250F temperature tests, the 24-ply specimen failure strains were close to the unnotched allowable strain values and failure loads were well above the design loads. However, failure strains much lower than the unnotched allowable strain values, and failure loads below the design loads were observed with several of the 8-ply specimens. For each individual test temperature, large variations in the failure strains and loads were observed for the 8-ply specimens. Dramatic decreases in the failure strains and loads were observed for the 24-ply specimens as the test temperature was increased from 250F to 300F. All 8-ply specimens appeared to have failed in a facesheet strength failure mode for all test temperatures. The 24-ply specimens displayed appreciably greater amounts of bending prior to failure than the 8-ply specimens, and panel buckling occurred prior to facesheet strength failure for the 24-ply room and 250F temperature tests.

  14. Effects of specimen size on limiting compressive loading for silicate, ceramic, and other materials

    SciTech Connect

    Okhrimenko, G.M.

    1995-06-01

    Published data are examined on the ultimate strength in uniaxial compression for glass, glass ceramics, porcelain, crystalline silicon, periclase - spinel - chromite material PSCM, and ferrite in relation to the specimen dimensions. Two methods are proposed for combined experimental and computational estimation of the effects from the volume on the limiting load, which are based only on the data obtained from testing specimens with one or two standard dimensions.

  15. Isentropic Compression Loading of HMX and the Pressure-induced Phase Transition at 27 GPa

    SciTech Connect

    Hare, D E; Reisman, D B; Dick, J J; Forbes, J W

    2004-02-25

    The 27 GPa pressure-induced epsilon-phi phase transition in HMX is explored using the Isentropic Compression Experiment (ICE) technique at the Sandia National Laboratories Z-machine facility. Our data indicate that this phase transition is sluggish and if it does occur to any extent under the time scales (200-500 ns) and strain rates (5 x 10{sup 5}) typical of ICE loading conditions, the amount of conversion is small.

  16. Buckling and failure characteristics of compression-loaded stiffened composite panels with a hole

    NASA Astrophysics Data System (ADS)

    Nagendra, S.; Gurdal, Z.; Haftka, R. T.; Starnes, J. H.

    An experimental and analytical study was carried out to investigate the buckling and failure characteristics of stiffened compression-loaded panels with holes and to assess the validity of analytical models used for the design of such panels. Graphite-epoxy panels with four equally spaced blade stiffeners were fabricated with a laminate stacking sequence optimally designed for stiffened panels without holes. Panels with different hole sizes and panels without holes were tested.

  17. A potential means of using acoustic emission for crack detection under cyclic-load conditions.

    NASA Technical Reports Server (NTRS)

    Vary, A.; Klima, S. J.

    1973-01-01

    A preliminary investigation was conducted to assess the feasibility of monitoring acoustic emission signals from fatigue cracks during cyclic bend tests. Plate specimens of 6Al-4V titanium, 2219-T87 aluminum, and 18-Ni maraging steel were tested with and without crack starter notches. It was found that significant acoustic emission signals could be detected in the frequency range from 100 to 400 kHz. Cracks emanating from starter notches were monitored by the ultrasonic pulse-echo technique and periodically measured by micro-optical examination. The investigation indicated that it was possible to extract meaningful acoustic emission signals in a cyclic bend machine environment.

  18. Dry plant extracts loaded on fumed silica for direct compression: preparation and preformulation.

    PubMed

    Palma, S D; Manzo, R H; Allemandi, D A

    1999-01-01

    This paper describes the development of a method to load fumed silica with vegetal material (solid residue) from a liquid extract to obtain a solid loaded silica product (LSP) with satisfactory flow properties and compressibility to be processed by direct-compression technology. Extracts of Melissa officinalis L. (M.o.), Cardus marianus L. (C.m.), and Peumus boldus L. (P.b.) were used to load silica support. The release of boldine from LSP (P.b.) reached 100% in HCl 0.1 N solution and only approximately 70% in water. Some physical-mechanical properties of LSP (M.o. and C.m.) alone and LSP-excipient mixtures were determined. The densities (bulk and tap) of LSP were higher than those of fumed silica alone. Consequently, good flow properties of LSP products were observed. On the other hand, flowability, densities, and compactibility of directly compressible excipients (lactose, dicalcium phosphate dihydrate, and microcrystalline cellulose) were not adversely affected when mixed with LSP. PMID:10578506

  19. A Strip-Yield Model for Predicting the Growth of Part-Through Cracks Under Cyclic Loading

    NASA Technical Reports Server (NTRS)

    Daniewicz, S. R.; Newman, J. C., Jr. (Technical Monitor)

    2000-01-01

    Flaws exist in aircraft structures due to manufacturing operations and material defects. Under variable amplitude cyclic loading, these flaws grow as part-through cracks reducing the residual strength of structural components. To meet damage tolerant design requirements, accurate flaw growth predictions are needed which account for continual changes in crack shape as well as crack growth retardation and acceleration. Predicting the growth of part-through cracks under cyclic loading using an innovative and computationally efficient model is the focus of the research summarized in this report. In this research effort, a slice synthesis methodology was developed and used to construct a modified strip-yield model for the part-through semi-elliptical surface flaw, enabling prediction of plasticity-induced closure along the crack front and subsequent fatigue crack growth under constant amplitude and variable amplitude loading. While modeling the plasticity-induced closure in a part-through flaw may be performed using three dimensional elastic-plastic finite element analysis, this type of effort is impractical from an engineering perspective. A modified strip-yield model similar to that used in FASTRAN for part-through flaws is a much needed engineering design tool, particularly when computational resources are limited.

  20. Influence of high pressure hydrogen on cyclic load crack growth in metals

    NASA Technical Reports Server (NTRS)

    Jewett, R. P.; Walter, R. J.; Chandler, W. T.

    1978-01-01

    The effect of high pressure hydrogen on the crack growth rate of various nickel-base alloys was studied at ambient temperature. Considerable enhancement of the cyclic flaw growth rate was observed for Inconel 718, wrought and cast, and Waspaloy, a nickel-base alloy similar to Inconel 718. Only slight enhancement of the flaw growth rate for Alloy 903 was observed.

  1. Effect of cyclic loading on the creep performance of silicon nitride

    SciTech Connect

    Wereszczak, A.A.; Ferber, M.K.; Kirkland, T.P.; Lin, C.K.J.

    1995-04-01

    Tension-tension cyclic fatigue tests (triangular waveform, {sigma}{sub max} = 100 MPa, R = 0.1) were conducted on hot isostatically pressed (HIPed) silicon nitride at frequencies spanning several orders of magnitude (5.6 {times} 10{sup {minus}6} to 0.1 Hz or 10{sup {minus}3} MPa/s to 18 MPa/s) at 1,370 C in air. The amount of cyclic creep strain was found to be a function of the frequency or stressing rate with greater strains to failure observed as the frequency or stressing rate decreased. The total strain was viewed as the sum of elastic, anelastic (or transient recoverable), and plastic (viscous or non-recoverable) strain contributions, after the empirical Pao and Marin model. The plastic strain was found to be the dominant component of the total creep and was unsatisfactorily represented by the Pao and Marin model. To circumvent this, a time exponent was introduced in the plastic strain term in the Pao and Marin model. This modification resulted in good correlation between model and experiment at the slower frequencies examined but over-predicted the cyclic creep strain at the faster frequencies. The utility of using the modified Pao and Marin model to predict cyclic creep response from static creep and strain relaxation tests is described.

  2. MRI Evaluation of Spinal Length and Vertebral Body Angle During Loading with a Spinal Compression Harness

    NASA Technical Reports Server (NTRS)

    Campbell, James A.; Hargens, Alan R.; Murthy, G.; Ballard, R. E.; Watenpaugh, D. E.; Hargens, Alan, R.; Sanchez, E.; Yang, C.; Mitsui, I.; Schwandt, D.; Fechner, K. P.; Holton, Emily M. (Technical Monitor)

    1998-01-01

    Weight bearing by the spinal column during upright posture often plays a role in the common problem of low back pain. Therefore, we developed a non-ferromagnetic spinal compression harness to enable MRI investigations of the spinal column during axial loading. Human subjects were fitted with a Nest and a footplate which were connected by adjustable straps to an analog load cell. MRI scans of human subjects (5 males and 1 female with age range of 27-53 yrs) during loaded and unloaded conditions were accomplished with a 1.5 Tesla GE Signa scanner. Studies of two subjects undergoing sequentially increasing spinal loads revealed significant decreases (r(sup 2) = 0.852) in spinal length between T4 and L5 culminating in a 1.5 to 2% length decrease during loading with 75% body weight. Sagittal vertebral body angles of four subjects placed under a constant 50% body weight load for one hour demonstrated increased lordotic and kyphotic curvatures. In the lumbar spine, the L2 vertebral body experienced the greatest angular change (-3 deg. to -5 deg.) in most subjects while in the thoracic spine, T4 angles increased from the unloaded state by +2 deg. to +9 deg. Overall, our studies demonstrate: 1) a progressive, although surprisingly small, decrease in spinal length with increasing load and 2) relatively large changes in spinal column angulation with 50% body weight.

  3. Hydrogen-induced slow crack growth of a plain carbon pipeline steel under conditions of cyclic loading

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.

    1976-01-01

    The investigation described was aimed at establishing the degree of compatibility between a plain carbon pipeline-type steel and hydrogen and also hydrogen-rich environments containing small additions of H2S, O2, H2O, CO, CO2, CH4, and natural gas at pressures near 1 atm. Test were carried out under conditions of static and cyclic loading; the subcritical crack growth was monitored. The rates of crack growth observed in the hydrogen and hydrogen-rich environments are compared with the crack rate observed in a natural gas environment to determine the compatibility of the present natural gas transmission system with gaseous hydrogen transport.

  4. Investigation of Anomalous Behavior in Metallic-Based Materials Under Compressive Loading

    NASA Technical Reports Server (NTRS)

    Gil, Christopher M.; Lissenden, Cliff J.; Lerch, Bradley A.

    1998-01-01

    An anomalous material response has been observed under the action of applied compressive loads in fibrous SiC/Ti (both Ti-6242 and Ti-15-3 alloys) and the monolithic nickel-base alloy IN-718 in the aged condition. The observed behavior is an increase, rather than a decrease, in the instantaneous Young's modulus with increasing load. This increase is small, but can be significant in yield surface determination tests, where an equivalent offset strain on the order of 10 micron(1 x 10(exp -6) m/m) is being used. Stiffening has been quantified by calculating offset strains from the linear elastic loading line. The offset strains associated with stiffening during compressive loading are positive and of the same order as the target offset strains in yield surface determination tests. At this time we do not have a reasonable explanation for this response nor can we identify a deformation mechanism that might cause it. On the other hand, we are not convinced that it is an artifact of the experimental procedure because a number of issues have been identified and seemingly ruled out. In fact, stiffening appears to be temperature dependent, since it decreases as the temperature increases.

  5. The effect of microstructure on stress-induced martensitic transformation under cyclic loading in the SMA Nickel-Titanium

    NASA Astrophysics Data System (ADS)

    Kimiecik, Michael; Jones, J. Wayne; Daly, Samantha

    2016-04-01

    A combined experimental and analytical study to determine the configurations of transforming martensite during ambient temperature cyclic deformation of superelastic Nickel-Titanium has been conducted. Full-field, sub-grain-size microscale strain measurements were made in situ during cycling using distortion-corrected Digital Image Correlation combined with Scanning Electron Microscopy (SEM-DIC). Using grain orientation maps from Electron Backscatter Diffraction analysis, possible configurations of martensite formed during cyclic deformation were identified by matching the calculated and measured strain fields. This analysis showed that the inclusion of Correspondence Variants (CVs) in addition to Habit Plane Variants (HPVs) of transformed martensite was necessary to provide a robust fit between calculated and measured strain fields. The approach also provided evidence that there was a more rapid accumulation of residual strain in CV regions and that a correlation existed between residual strain accumulation and the loss of actively transforming martensite in later cycles. It was also found that regions of CVs could coexist with untransformed austenite and Habit Plane Variants (HPVs) in individual grains throughout the microstructure, and that these regions of CVs formed before the end of the macroscopic stress plateau. The CV structure that forms during the initial superelastic deformation of Nickel-Titanium plays a critical role in shaping and stabilizing subsequent martensite recovery during cyclic loading.

  6. Effect of a circular hole on the buckling of cylindrical shells loaded by axial compression.

    NASA Technical Reports Server (NTRS)

    Starnes, J. H., Jr.

    1972-01-01

    An experimental and analytical investigation of the effect of a circular hole on the buckling of thin cylindrical shells under axial compression was carried out. The experimental results were obtained from tests performed on seamless electroformed copper shells and Mylar shells with a lap joint seam. These results indicated that the character of the shell buckling was dependent on a parameter which is proportional to the hole radius divided by the square root of the product of the shell radius and thickness. For small values of this parameter, there was no apparent effect of the hole on the buckling load. For slightly larger values of the parameter, the shells still buckled into a general collapse configuration, but the buckling loads were sharply reduced as the parameter increased. For still larger values of the parameter, the buckling loads were further reduced, and the shells buckled into a stable local buckling configuration.

  7. Buckling and Failure of Compression-Loaded Composite Cylindrical Shells With Geometric and Material Imperfections

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2004-01-01

    The results of an experimental and numerical study of the effects of initial imperfections on the buckling response and failure of unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells are presented. The shells considered in the study have six different orthotropic or quasi-isotropic shell-wall laminates and two different shell-radius-to-thickness ratios. The numerical results include the effects of geometric shell-wall mid-surface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform end loads, and the effects of elastic boundary conditions. Selected cylinder parameter uncertainties were also considered. Results that illustrate the effects of imperfections and uncertainties on the nonlinear response characteristics, buckling loads and failure the shells are presented. In addition, a common failure analysis is used to predict material failures in the shells.

  8. Observation of the initiation and progression of damage in compressively loaded composite plates containing a cutout

    NASA Technical Reports Server (NTRS)

    Waas, A.; Babcock, C., Jr.

    1986-01-01

    A series of experiments was carried out to determine the mechanism of failure in compressively loaded laminated plates with a circular cutout. Real time holographic interferometry and photomicrography are used to observe the progression of failure. These observations together with post experiment plate sectioning and deplying for interior damage observation provide useful information for modelling the failure process. It is revealed that the failure is initiated as a localised instability in the zero layers, at the hole surface. With increasing load extensive delamination cracking is observed. The progression of failure is by growth of these delaminations induced by delamination buckling. Upon reaching a critical state, catastrophic failure of the plate is observed. The levels of applied load and the rate at which these events occur depend on the plate stacking sequence.

  9. Parametric Study on the Response of Compression-Loaded Composite Shells With Geometric and Material Imperfections

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2004-01-01

    The results of a parametric study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thinwalled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The imperfections considered include initial geometric shell-wall midsurface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity nonlinear shell analysis procedure that accurately accounts for the effects of these imperfections on the nonlinear responses and buckling loads of the shells is described. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable response characteristics.

  10. Design, fabrication and test of lightweight shell structure. [axial compression loads and torsion stress

    NASA Technical Reports Server (NTRS)

    Lager, J. R.

    1975-01-01

    A cylindrical shell structure 3.66 m (144 in.) high by 4.57 m (180 in.) diameter was designed using a wide variety of materials and structural concepts to withstand design ultimate combined loading 1225.8 N/cm (700 lb/in.) axial compression and 245.2 N/cm (140 lb/in.) torsion. The overall cylinder geometry and design loading are representative of that expected on a high performance space tug vehicle. The relatively low design load level results in designs that use thin gage metals and fibrous-composite laminates. Fabrication and structural tests of small panels and components representative of many of the candidate designs served to demonstrate proposed fabrication techniques and to verify design and analysis methods. Three of the designs evaluated, honeycomb sandwich with aluminum faceskins, honeycomb sandwich with graphite/epoxy faceskins, and aluminum truss with fiber-glass meteoroid protection layers, were selected for further evaluation.