Science.gov

Sample records for cyclic gmp protects

  1. An endogenous protectant effect of cardiac cyclic GMP against reperfusion-induced ventricular fibrillation in the rat heart.

    PubMed Central

    Pabla, R.; Bland-Ward, P.; Moore, P. K.; Curtis, M. J.

    1995-01-01

    1. After a period of myocardial ischaemia, reperfusion of the myocardium can elicit cardiac arrhythmias. Susceptibility to these arrhythmias declines with time, such that a preceding period of more than approximately 40 min ischaemia is associated with few reperfusion-induced arrhythmias. We have tested the hypothesis that this decline in susceptibility occurs, in part, because of protection by endogenous guanosine 3':5'-cyclic monophosphate (cyclic GMP). 2. Rat isolated hearts were subjected to 60 min left regional ischaemia followed by reperfusion (n = 10 per group). Methylene blue (20 microM), a soluble guanylate cyclase inhibitor, raised the incidence of reperfusion-induced ventricular fibrillation (VF) from 10% in control hearts to 80% (P < 0.05). This effect of methylene blue was abolished by co-perfusion with zaprinast (100 microM), a phosphodiesterase inhibitor which, in the rat heart, is cyclic GMP-specific (specific for the type-V phosphodiesterase isozyme). 3. Methylene blue reduced cyclic GMP levels in the ischaemic, non-ischaemic and reperfused myocardium (P < 0.05) to 50 +/- 10, 52 +/- 12 and 70 +/- 7 fmol mg-1 tissue wet weight, respectively from control values of 143 +/- 38, 147 +/- 43 and 156 +/- 15 fmol mg-1. Co-perfusion with zaprinast prevented this effect, and cyclic GMP levels were actually elevated (P < 0.05) to 366 +/- 102, 396 +/- 130 and 293 +/- 22 fmol mg-1 in ischaemic, non-ischaemic and reperfused myocardium, respectively. Zaprinast by itself also elevated cyclic GMP content. Cyclic AMP levels were not affected by zaprinast or methylene blue. 4. In conclusion, when endogenous cardiac cyclic GMP synthesis is reduced, susceptibility to reperfusion-induced VF after sustained ischaemia is substantially increased. The effect is prevented by inhibiting cyclic GMP degradation. Therefore cyclic GMP appears to be an endogenous intracellular cardioprotectant, and its actions may account for the low susceptibility to VF normally encountered in

  2. Cyclic GMP and Cilia Motility

    PubMed Central

    Wyatt, Todd A.

    2015-01-01

    Motile cilia of the lungs respond to environmental challenges by increasing their ciliary beat frequency in order to enhance mucociliary clearance as a fundamental tenant of innate defense. One important second messenger in transducing the regulable nature of motile cilia is cyclic guanosine 3′,5′-monophosphate (cGMP). In this review, the history of cGMP action is presented and a survey of the existing data addressing cGMP action in ciliary motility is presented. Nitric oxide (NO)-mediated regulation of cGMP in ciliated cells is presented in the context of alcohol-induced cilia function and dysfunction. PMID:26264028

  3. Nitrated cyclic GMP modulates guard cell signaling in Arabidopsis.

    PubMed

    Joudoi, Takahiro; Shichiri, Yudai; Kamizono, Nobuto; Akaike, Takaaki; Sawa, Tomohiro; Yoshitake, Jun; Yamada, Naotaka; Iwai, Sumio

    2013-02-01

    Nitric oxide (NO) is a ubiquitous signaling molecule involved in diverse physiological processes, including plant senescence and stomatal closure. The NO and cyclic GMP (cGMP) cascade is the main NO signaling pathway in animals, but whether this pathway operates in plant cells, and the mechanisms of its action, remain unclear. Here, we assessed the possibility that the nitrated cGMP derivative 8-nitro-cGMP functions in guard cell signaling. Mass spectrometry and immunocytochemical analyses showed that abscisic acid and NO induced the synthesis of 8-nitro-cGMP in guard cells in the presence of reactive oxygen species. 8-Nitro-cGMP triggered stomatal closure, but 8-bromoguanosine 3',5'-cyclic monophosphate (8-bromo-cGMP), a membrane-permeating analog of cGMP, did not. However, in the dark, 8-bromo-cGMP induced stomatal opening but 8-nitro-cGMP did not. Thus, cGMP and its nitrated derivative play different roles in the signaling pathways that lead to stomatal opening and closure. Moreover, inhibitor and genetic studies showed that calcium, cyclic adenosine-5'-diphosphate-ribose, and SLOW ANION CHANNEL1 act downstream of 8-nitro-cGMP. This study therefore demonstrates that 8-nitro-cGMP acts as a guard cell signaling molecule and that a NO/8-nitro-cGMP signaling cascade operates in guard cells. PMID:23396828

  4. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms.

    PubMed

    Chou, Shan-Ho; Galperin, Michael Y

    2016-01-01

    Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms. PMID:26055114

  5. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms

    PubMed Central

    2015-01-01

    ABSTRACT Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms. PMID:26055114

  6. Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics

    PubMed Central

    Tsai, Emily J.; Kass, David A.

    2009-01-01

    Cyclic guanosine 3′,5′-monophosphate (cGMP) mediates a wide spectrum of physiologic processes in multiple cell types within the cardiovascular system. Dysfunctional signaling at any step of the cascade--- cGMP synthesis, effector activation, or catabolism--- have been implicated in numerous cardiovascular diseases, ranging from hypertension to atherosclerosis to cardiac hypertrophy and heart failure. In this review, we outline each step of the cGMP signaling cascade and discuss its regulation and physiologic effects within the cardiovascular system. In addition, we illustrate how cGMP signaling becomes dysregulated in specific cardiovascular disease states. The ubiquitous role cGMP plays in cardiac physiology and pathophysiology presents great opportunities for pharmacologic modulation of the cGMP signal in the treatment of cardiovascular diseases. We detail the various therapeutic interventional strategies that have been developed or are in development, summarizing relevant preclinical and clinical studies. PMID:19306895

  7. Cyclic GMP pathways in hepatic encephalopathy. Neurological and therapeutic implications.

    PubMed

    Montoliu, Carmina; Rodrigo, Regina; Monfort, Pilar; Llansola, Marta; Cauli, Omar; Boix, Jordi; Elmlili, Nisrin; Agusti, Ana; Felipo, Vicente

    2010-03-01

    Cyclic GMP (cGMP) modulates important cerebral processes including some forms of learning and memory. cGMP pathways are strongly altered in hyperammonemia and hepatic encephalopathy (HE). Patients with liver cirrhosis show reduced intracellular cGMP in lymphocytes, increased cGMP in plasma and increased activation of soluble guanylate cyclase by nitric oxide (NO) in lymphocytes, which correlates with minimal HE assessed by psychometric tests. Activation of soluble guanylate cyclase by NO is also increased in cerebral cortex, but reduced in cerebellum, from patients who died with HE. This opposite alteration is reproduced in vivo in rats with chronic hyperammonemia or HE. A main pathway modulating cGMP levels in brain is the glutamate-NO-cGMP pathway. The function of this pathway is impaired both in cerebellum and cortex of rats with hyperammonemia or HE. Impairment of this pathway is responsible for reduced ability to learn some types of tasks. Restoring the pathway and cGMP levels in brain restores learning ability. This may be achieved by administering phosphodiesterase inhibitors (zaprinast, sildenafil), cGMP, anti-inflammatories (ibuprofen) or antagonists of GABAA receptors (bicuculline). These data support that increasing cGMP by safe pharmacological means may be a new therapeutic approach to improve cognitive function in patients with minimal or clinical HE. PMID:20195723

  8. Nitric oxide-cyclic GMP signaling in stem cell differentiation

    PubMed Central

    Mujoo, Kalpana; Krumenacker, Joshua S.; Murad, Ferid

    2011-01-01

    The nitric oxide-cyclic GMP (NO-cGMP) pathway mediates important physiological functions associated with various integrative body systems including the cardiovascular and nervous systems. Furthermore, NO regulates cell growth, survival, apoptosis, proliferation and differentiation at the cellular level. To understand the significance of the NO-cGMP pathway in development and differentiation, studies have been conducted both in developing embryos and stem cells. Manipulation of the NO-cGMP pathway by employing activators and inhibitors as pharmacological probes and/or genetic manipulation of NO signaling components has implicated the involvement of this pathway in regulation of stem cell differentiation. This review will focus on some of the work pertaining to the role of NO-cGMP in differentiation of stem cells into cells of various lineages particularly into myocardial cells and stem cell based therapy. PMID:22019632

  9. Stimulation of innate immunity by in vivo cyclic di-GMP synthesis using adenovirus.

    PubMed

    Koestler, Benjamin J; Seregin, Sergey S; Rastall, David P W; Aldhamen, Yasser A; Godbehere, Sarah; Amalfitano, Andrea; Waters, Christopher M

    2014-11-01

    The bacterial second messenger cyclic di-GMP (c-di-GMP) stimulates inflammation by initiating innate immune cell recruitment and triggering the release of proinflammatory cytokines and chemokines. These properties make c-di-GMP a promising candidate for use as a vaccine adjuvant, and numerous studies have demonstrated that administration of purified c-di-GMP with different antigens increases protection against infection in animal models. Here, we have developed a novel approach to produce c-di-GMP inside host cells as an adjuvant to exploit a host-pathogen interaction and initiate an innate immune response. We have demonstrated that c-di-GMP can be synthesized in vivo by transducing a diguanylate cyclase (DGC) gene into mammalian cells using an adenovirus serotype 5 (Ad5) vector. Expression of DGC led to the production of c-di-GMP in vitro and in vivo, and this was able to alter proinflammatory gene expression in murine tissues and increase the secretion of numerous cytokines and chemokines when administered to animals. Furthermore, coexpression of DGC modestly increased T-cell responses to a Clostridium difficile antigen expressed from an adenovirus vaccine, although no significant differences in antibody titers were observed. This adenovirus c-di-GMP delivery system offers a novel method to administer c-di-GMP as an adjuvant to stimulate innate immunity during vaccination. PMID:25230938

  10. Role of Phosphodiesterase 5 and Cyclic GMP in Hypertension.

    PubMed

    Mergia, Evanthia; Stegbauer, Johannes

    2016-04-01

    Cyclic GMP (cGMP) is a ubiquitous intracellular second messenger that mediates a wide spectrum of physiologic processes in multiple cell types within the cardiovascular and nervous systems. Synthesis of cGMP occurs either by NO-sensitive guanylyl cyclases in response to nitric oxide or by membrane-bound guanylyl cyclases in response to natriuretic peptides and has been shown to regulate blood pressure homeostasis by influencing vascular tone, sympathetic nervous system, and sodium and water handling in the kidney. Several cGMPs degrading phosphodiesterases (PDEs), including PDE1 and PDE5, play an important role in the regulation of cGMP signaling. Recent findings revealed that increased activity of cGMP-hydrolyzing PDEs contribute to the development of hypertension. In this review, we will summarize recent research findings regarding the cGMP/PDE signaling in the vasculature, the central nervous system, and the kidney which are associated with the development and maintenance of hypertension. PMID:27079836

  11. Dexamethasone-dependent modulation of cyclic GMP synthesis in podocytes.

    PubMed

    Lewko, Barbara; Waszkiewicz, Anna; Maryn, Anna; Gołos, Magdalena; Latawiec, Elżbieta; Daca, Agnieszka; Witkowski, Jacek M; Angielski, Stefan; Stępiński, Jan

    2015-11-01

    Podocytes may be direct target for glucocorticoid therapy in glomerular proteinuric disease. Permeability of podocytes largely depends on their capacity to migrate which involves the contractile apparatus in their foot processes. In this study, we examined the effect of synthetic glucocorticoid dexamethasone (DEX) on the ability of podocytes to produce cyclic guanosine monophosphate (cGMP) in the presence of vasoactive factors, atrial natriuretic peptide (ANP), nitric oxide (NO), and angiotensin II (Ang II). We investigated also the effects of cGMP and DEX on podocyte motility. Primary rat podocytes and immortalized mouse podocytes were pretreated with 1 µM DEX for 4 or 24 h. Glomerular hypertension was mimicked by subjecting the cells to mechanical stress. Total and subcellular cGMP levels were determined in podocytes incubated with 0.1 µM ANP, 1 µM S-nitroso-N-acetyl penicillamine (SNAP), and 1 µM Ang II. Cell motility was estimated by a wound-healing assay. The ANP-dependent production of cGMP increased after 4 h exposition to DEX, but was attenuated after 24 h. Adversely, a 24-h pretreatment with DEX augmented the NO-dependent cGMP synthesis. Ang II suppressed the ANP-dependent cGMP production and the effect was enhanced by DEX in mechanical stress conditions. Mechanical stress reduced total cGMP production in the presence of all stimulators, whereas extracellular to total cGMP ratio increased. 8-Br cGMP enhanced podocyte migration which was accompanied by F-actin disassembly. In the presence of DEX these effects were prevented. We conclude that DEX modulates the production of cGMP in podocytes stimulated with vasoactive factors such as Ang II, ANP, and NO, and the effect is time-dependent. cGMP increases podocyte motility, which is prevented by DEX. This mechanism may account for the antiproteinuric effect of glucocorticoids. PMID:26272337

  12. Nitrated Cyclic GMP Modulates Guard Cell Signaling in Arabidopsis[W

    PubMed Central

    Joudoi, Takahiro; Shichiri, Yudai; Kamizono, Nobuto; Akaike, Takaaki; Sawa, Tomohiro; Yoshitake, Jun; Yamada, Naotaka; Iwai, Sumio

    2013-01-01

    Nitric oxide (NO) is a ubiquitous signaling molecule involved in diverse physiological processes, including plant senescence and stomatal closure. The NO and cyclic GMP (cGMP) cascade is the main NO signaling pathway in animals, but whether this pathway operates in plant cells, and the mechanisms of its action, remain unclear. Here, we assessed the possibility that the nitrated cGMP derivative 8-nitro-cGMP functions in guard cell signaling. Mass spectrometry and immunocytochemical analyses showed that abscisic acid and NO induced the synthesis of 8-nitro-cGMP in guard cells in the presence of reactive oxygen species. 8-Nitro-cGMP triggered stomatal closure, but 8-bromoguanosine 3′,5′-cyclic monophosphate (8-bromo-cGMP), a membrane-permeating analog of cGMP, did not. However, in the dark, 8-bromo-cGMP induced stomatal opening but 8-nitro-cGMP did not. Thus, cGMP and its nitrated derivative play different roles in the signaling pathways that lead to stomatal opening and closure. Moreover, inhibitor and genetic studies showed that calcium, cyclic adenosine-5′-diphosphate-ribose, and SLOW ANION CHANNEL1 act downstream of 8-nitro-cGMP. This study therefore demonstrates that 8-nitro-cGMP acts as a guard cell signaling molecule and that a NO/8-nitro-cGMP signaling cascade operates in guard cells. PMID:23396828

  13. Cyclic GMP alters Ca exchange in vascular smooth muscle

    SciTech Connect

    Magliola, L.; Bailey, B.; Jones, A.W.

    1986-03-05

    Contraction and /sup 42/K efflux from vascular smooth muscle stimulated either by norepinephrine (NE) or by K-depolarization is dependent on an increase in cytosolic Ca concentration. The purpose of this study was to determine if cyclic GMP (cGMP) inhibited these processes and if inhibition was secondary to the action of cGMP on Ca movements. Basal cGMP content of rat aorta was 1.2 fmol/mg wet wt. Sodium nitroprusside (NP) increased cGMP approx.2-fold at 1 nM and approx.750-fold at 1 ..mu..M with no effect on cAMP levels. A 5 min pretreatment with NP (1 ..mu..M) completely prevented tension development induced by 3 ..mu..M NE. The same concentration of NP also inhibited NE-stimulated /sup 42/K and /sup 45/Ca efflux > 90 and > 80%, respectively. Removal of NP in the continued presence of NE (3 ..mu..M) caused recovery of the /sup 42/K efflux response to approx.75% of control with a half-time of approx.2.5 min. NP (1 ..mu..M) also caused a rapid relaxation of aorta contracted with 3 ..mu..M NE and a loss of the /sup 42/K efflux response with half-times of 2-3 min. In contrast, 100 ..mu..M NP produced only a 50% inhibition of contraction induced by high K (55 mM). Also, NP (1 ..mu..M) inhibited K-stimulated /sup 42/K efflux only approx.25%. These results demonstrate both a concentration- and a time-dependent relationship between increases in cGMP induced by NP and decreases in NE-stimulated contraction, /sup 42/K and /sup 45/Ca effluxes. They also indicate that the sensitivity of NE-induced contraction and /sup 42/K efflux to NP is greater than that induced by high K. These studies suggest that cGMP modulates the control sites for Ca exchange in the plasma membrane and sarcoplasmic reticulum.

  14. A Filter Binding Assay to Quantify the Association of Cyclic di-GMP to Proteins

    PubMed Central

    Srivastava, Disha; Waters, Christopher M.

    2016-01-01

    Cyclic di-GMP (c-di-GMP) is a ubiquitous second messenger that regulates many processes in bacteria including biofilm formation, motility, and virulence (Hengge, 2009). Analysis of c-di-GMP binding properties of bacterial proteins is an important step to characterize c-di-GMP signaling pathways. C-di-GMP binds numerous proteins such as transcription factors, enzymes, and multimeric protein complexes (Hickman and Harwood, 2008, Ryjenkov et al., 2006, Weinhouse et al., 1997). The c-di-GMP binding assay described here is a relatively simple and cost effective method to characterize c-di-GMP binding to a protein using [32P]-labeled c-di-GMP. Radiolabeled c-di-GMP is readily synthesized with a purified GGDEF enzyme [such as WspR from Pseudomonas aeruginosa (P. aeruginosa)] and [a-32P]-GTP (Srivastava et al., 2013). After incubation of the labeled c-di-GMP with the protein of interest in solution, the resulting mixture is filtered through a nitrocellulose protein binding membrane. The amount of labeled c-di-GMP that is retained on the membrane indicates the interaction between the signal and protein. The specificity of c-di-GMP binding can be tested by competing with unlabeled c-di-GMP or other nucleotides such as GTP in the reaction. By examining binding of a fixed protein concentration to increasing concentrations of c-di-GMP, this method is able to determine the dissociation constant of c-di-GMP-protein interaction.

  15. Phosphorylation of bovine rod photoreceptor cyclic GMP phosphodiesterase.

    PubMed Central

    Udovichenko, I P; Cunnick, J; Gonzales, K; Takemoto, D J

    1993-01-01

    The cyclic GMP phosphodiesterase (PDE) of retinal rods plays a key role in phototransduction and consists of two catalytic subunits (PDE alpha and PDE beta) and two identical inhibitory subunits (PDE gamma). Here we report that PDE alpha and PDE gamma are phosphorylated by protein kinase(s) C (PKC) from brain and rod outer segments (ROS). These same two types of PKC also phosphorylate PDE alpha in trypsin-activated PDE (without PDE gamma). In contrast, cyclic-AMP-dependent protein kinase catalytic subunit phosphorylates both PDE alpha and PDE beta, but not PDE gamma. This kinase does not phosphorylate trypsin-activated PDE. The synthetic peptides AKVISNLLGPREAAV (PDE alpha 30-44) and KQRQTRQFKSKPPKK (PDE gamma 31-45) inhibited phosphorylation of PDE by PKC from ROS. These data suggest that sites (at least one for each subunit) for phosphorylation of PDE by PKC are localized in these corresponding regions of PDE alpha and PDE gamma. Isoenzyme-specific PKC antibodies against peptides unique to the alpha, beta, gamma, delta, epsilon and zeta isoforms of protein kinase C were used to show that a major form of PKC in ROS is PKC alpha. However, other minor forms were also present. Images Figure 1 Figure 4 Figure 6 Figure 7 PMID:8216238

  16. Biofilms and Cyclic di-GMP (c-di-GMP) Signaling: Lessons from Pseudomonas aeruginosa and Other Bacteria*

    PubMed Central

    Valentini, Martina

    2016-01-01

    The cyclic di-GMP (c-di-GMP) second messenger represents a signaling system that regulates many bacterial behaviors and is of key importance for driving the lifestyle switch between motile loner cells and biofilm formers. This review provides an up-to-date compendium of c-di-GMP pathways connected to biofilm formation, biofilm-associated motilities, and other functionalities in the ubiquitous and opportunistic human pathogen Pseudomonas aeruginosa. This bacterium is frequently adopted as a model organism to study bacterial biofilm formation. Importantly, its versatility and adaptation capabilities are linked with a broad range of complex regulatory networks, including a large set of genes involved in c-di-GMP biosynthesis, degradation, and transmission. PMID:27129226

  17. Biofilms and Cyclic di-GMP (c-di-GMP) Signaling: Lessons from Pseudomonas aeruginosa and Other Bacteria.

    PubMed

    Valentini, Martina; Filloux, Alain

    2016-06-10

    The cyclic di-GMP (c-di-GMP) second messenger represents a signaling system that regulates many bacterial behaviors and is of key importance for driving the lifestyle switch between motile loner cells and biofilm formers. This review provides an up-to-date compendium of c-di-GMP pathways connected to biofilm formation, biofilm-associated motilities, and other functionalities in the ubiquitous and opportunistic human pathogen Pseudomonas aeruginosa This bacterium is frequently adopted as a model organism to study bacterial biofilm formation. Importantly, its versatility and adaptation capabilities are linked with a broad range of complex regulatory networks, including a large set of genes involved in c-di-GMP biosynthesis, degradation, and transmission. PMID:27129226

  18. Cyclic GMP phosphodiesterase activity role in normal and inflamed human dental pulp.

    PubMed

    Spoto, G; Ferrante, M; D'Intino, M; Rega, L; Dolci, M; Trentini, P; Ciavarelli, L

    2004-01-01

    Cyclic GMP phosphodiesterase (cGMP PDE) plays an important role in pulp tissues. High levels of cGMP PDE are found in dental pulp cells. In the present study cGMP PDE activity was analyzed in normal healthy human dental pulps, in reversible pulpitis and in irreversible pulpitis. Enzymatic cGMP PDE control values for normal healthy pulps were 4.74+/-0.32 nmol/mg of proteins. In reversible pulpitis the cGMP PDE activity increased almost 3 times. In irreversible pulpitis specimens the values increased 4.5 times compared with the normal healthy pulps activity. The differences between the groups (control vs. reversible pulpitis and vs. irreversible pulpitis) were statistically significant. These results point to a role of cGMP PDE in the initial pulp response after injury. PMID:16857102

  19. Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger

    PubMed Central

    Galperin, Michael Y.; Gomelsky, Mark

    2013-01-01

    SUMMARY Twenty-five years have passed since the discovery of cyclic dimeric (3′→5′) GMP (cyclic di-GMP or c-di-GMP). From the relative obscurity of an allosteric activator of a bacterial cellulose synthase, c-di-GMP has emerged as one of the most common and important bacterial second messengers. Cyclic di-GMP has been shown to regulate biofilm formation, motility, virulence, the cell cycle, differentiation, and other processes. Most c-di-GMP-dependent signaling pathways control the ability of bacteria to interact with abiotic surfaces or with other bacterial and eukaryotic cells. Cyclic di-GMP plays key roles in lifestyle changes of many bacteria, including transition from the motile to the sessile state, which aids in the establishment of multicellular biofilm communities, and from the virulent state in acute infections to the less virulent but more resilient state characteristic of chronic infectious diseases. From a practical standpoint, modulating c-di-GMP signaling pathways in bacteria could represent a new way of controlling formation and dispersal of biofilms in medical and industrial settings. Cyclic di-GMP participates in interkingdom signaling. It is recognized by mammalian immune systems as a uniquely bacterial molecule and therefore is considered a promising vaccine adjuvant. The purpose of this review is not to overview the whole body of data in the burgeoning field of c-di-GMP-dependent signaling. Instead, we provide a historic perspective on the development of the field, emphasize common trends, and illustrate them with the best available examples. We also identify unresolved questions and highlight new directions in c-di-GMP research that will give us a deeper understanding of this truly universal bacterial second messenger. PMID:23471616

  20. Relaxation of intrapulmonary artery and vein by nitrogen oxide-containing vasodilators and cyclic GMP

    SciTech Connect

    Edwards, J.C.; Ignarro, L.J.; Hyman, A.L.; Kadowitz, P.J.

    1984-01-01

    The present study examines the relationship between tissue cyclic nucleotide levels and relaxation of bovine intrapulmonary arterial and venous smooth muscle in response to nitroglycerin, nitroprusside, S-nitroso-N-acetylpenicillamine and isoproterenol. Recent studies have suggested that cyclic GMP may be involved in the relaxation of vascular smooth muscle produced by nitrogen oxide-containing vasodilators and that S-nitrosothiols may act as intermediates of the latter agents. In the present study, nitroglycerin, nitroprusside and S-nitroso-N-acetylpenicillamine were more potent as relaxants of venous than arterial segments. Each of these agents elevated tissue cyclic GMP levels, but not cyclic AMP levels, before relaxation. These nitrogen oxide-containing agents were more potent as elevators of cyclic GMP levels in venous than arterial tissue and this correlated generally with their effects on vascular smooth muscle tone. Methylene blue antagonized both relaxation and increased cyclic GMP levels elicited by nitroglycerin, nitroprusside and S-nitroso-N-acetylpenicillamine. In contrast to the nitrogen oxide vasodilators, 8-bromo-cyclic GMP was equally effective in reducing induced tone in arterial or venous segments. Similarly, isoproterenol relaxed arterial and venous segments with equivalent sensitivities. Relaxation by isoproterenol was preceded by or occurred concomitantly with increased levels of cyclic AMP but not cyclic GMP and both effects were antagonized by propranolol. These findings are consistent with the hypothesis that vascular smooth muscle relaxation in response to nitrogen oxide-containing vasodilators or isoproterenol may be mediated or modulated by the intracellular accumulation of cyclic GMP or cyclic AMP, respectively.

  1. Tetrahydrobiopterin regulates cyclic GMP-dependent electrogenic Cl- secretion in mouse ileum in vitro.

    PubMed Central

    Rolfe, V E; Brand, M P; Heales, S J; Lindley, K J; Milla, P J

    1997-01-01

    1. Basal electrogenic Cl- secretion, measured as the short-circuit current (Isc), was variable in ileum removed from tetrahydrobiopterin (BH4)-deficient hph-1 mice and wild-type controls in vitro, although values were not significantly different. 2. The basal nitrite release and mucosal cyclic guanosine 3',5'-monophosphate (cyclic GMP) production were similar in control and BH4-deficient ileum. 3. Mucosally added Escherichia coli heat-stable toxin (STa, 55 ng ml-1) increased the nitrite release, cyclic GMP levels and the Isc in control ileum, but its secretory actions were reduced in BH4-deficient ileum. 4. L-Arginine (1 mM) increased the nitrite release, cyclic GMP production and the Isc in control ileum, but the actions were reduced in BH4-deficient ileum. 5. Serosal carbachol (1 mM) stimulated maximum short-circuit currents of similar magnitude in both control and BH4-deficient ileum, whilst nitrite release and cyclic GMP production were minimal. 6. E. coli STa and L-arginine increased electrogenic Cl- secretion across intact mouse ileum in vitro by releasing nitric oxide and elevating mucosal cyclic GMP. The inhibition of these processes in the hph-1 mouse ileum suggests that BH4 may be a target for the modulation of electrogenic transport, and highlight the complexity of the interactions between nitric oxide and cyclic GMP in the gut. PMID:9306277

  2. NO, nitrotyrosine, and cyclic GMP in signal transduction

    NASA Technical Reports Server (NTRS)

    Hanafy, K. A.; Krumenacker, J. S.; Murad, F.

    2001-01-01

    Over the past 25 years, the role of nitric oxide (NO) in biology has evolved from being recognized as an environmental pollutant to an endogenously produced substance involved in cell communication and signal transduction. NO is produced by a family of enzymes called nitric oxide synthases (NOSs), which can be stimulated by a variety of factors that mediate responses to various stimuli. NO can initiate its biological effects through activation of the heterodimeric enzyme, soluble guanylyl cyclase (sGC), or through several other chemical reactions. Activation of sGC results in the production of 3',5'-cyclic guanosine monophosphate (cGMP), an intracellular second messenger signaling molecule, which can subsequently mediate such diverse physiological events such as vasodilatation and immunomodulation. Chemically reactive NO can affect physiological changes through modifications to cellular proteins, one of which is tyrosine nitration. The demonstration that NO is involved in so many biological pathways indicates the importance of this endogenously produced substance, and suggests that there is much more to be discovered about its role in biology in years to come.

  3. Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris.

    PubMed

    Ryan, Robert P; Fouhy, Yvonne; Lucey, Jean F; Jiang, Bo-Le; He, Yong-Qiang; Feng, Jia-Xun; Tang, Ji-Liang; Dow, J Maxwell

    2007-01-01

    Cyclic di-GMP is a second messenger with a role in regulation of a range of cellular functions in diverse bacteria including the virulence of pathogens. Cellular levels of cyclic di-GMP are controlled through synthesis, catalysed by the GGDEF protein domain, and degradation by EAL or HD-GYP domains. Here we report a comprehensive study of cyclic di-GMP signalling in bacterial disease in which we examine the contribution of all proteins with GGDEF, EAL or HD-GYP domains to virulence and virulence factor production in the phytopathogen Xanthomonas campestris pathovar campestris (Xcc). Genes with significant roles in virulence to plants included those encoding proteins whose probable function is in cyclic-di-GMP synthesis as well as others (including the HD-GYP domain regulator RpfG) implicated in cyclic di-GMP degradation. Furthermore, RpfG controlled expression of a subset of these genes. A partially overlapping set of elements controlled the production of virulence factors in vitro. Other GGDEF-EAL domain proteins had no effect on virulence factor synthesis but did influence motility. These findings indicate the existence of a regulatory network that may allow Xcc to integrate information from diverse environmental inputs to modulate virulence factor synthesis as well as of cyclic di-GMP signalling systems dedicated to other specific tasks. PMID:17241199

  4. Changes in cyclic GMP level and phosphodiesterase activity during follicular development in the rat ovary.

    PubMed

    Fu, C Q; Shi, F X; Zhang, Z H; Li, J R; Huang, X H; Wang, Z C

    2014-01-01

    Guanosine 3',5'-cyclic monophosphate (cGMP), as a second messenger, plays potential roles in ovarian functions. To elucidate the role of phosphodiesterase (PDE) in cGMP signaling during ovarian follicular development, the present study was conducted to investigate ovarian cGMP level and cGMP-PDE activity by radioimmunoassay (RIA) in postnatal rats, immature rats during gonadotropin-primed follicular development, ovulation and luteinization, adult rats during normal estrous cycle, and aged rats that spontaneously developed persistent estrus (PE). All four rat models were confirmed by histological examination of one ovary, and the other ovary was used for RIA. In postnatal rats, cGMP level was high at birth and decreased dramatically by Day 5, and then, it increased maximally at Day 10 and declined at Day 21. However, cGMP-PDE activity did not significantly change during Days 1 to 10, but increased significantly on Day 21. In immature female rats, cGMP level markedly decreased upon treatment with equine chorionic gonadotropin (eCG), while cGMP-PDE activity did not show any significant changes; however, ovarian cGMP level and cGMP-PDE activity increased after injection of an ovulatory dose of human chorionic gonadotropin (hCG) for induction of ovulation and luteinization. In adult rats during normal estrous cycle, cGMP level was high on proestrus and metestrus days, while cGMP-PDE activity was high on estrus day. In PE rats, ovarian cGMP level was similar to that in adult rats on estrus and diestrus days but lower than that on proestrus and metestrus days; ovarian cGMP-PDE activity was lower than that on estrus days but similar as the other estrous cycle days. In addition, there was a significant negative correlation between ovarian cGMP level and cGMP-PDE activity during normal estrous cycles in the adult rat (r = -0.7715, N = 16, P < 0.05), but not in the postnatal rat (r = -0.1055, N = 20, P > 0.05). Together, the results of our present study indicated that ovarian

  5. Inhibition of cyclic GMP-dependent protein kinase-mediated effects by (Rp)-8-bromo-PET-cyclic GMPS.

    PubMed Central

    Butt, E.; Pöhler, D.; Genieser, H. G.; Huggins, J. P.; Bucher, B.

    1995-01-01

    1. The modulation of the guanosine 3':5'-cyclic monophosphate (cyclic GMP)- and adenosine 3':5'-cyclic monophosphate (cyclic AMP)-dependent protein kinase activities by the diastereomers of 8-bromo-beta phenyl-1, N2-ethenoguanosine 3':5'-cyclic monophosphorothioate, ((Rp)- and (Sp)-8-bromo-PET-cyclic GMPS) was investigated by use of purified protein kinases. In addition, the effects of (Rp)-8-bromo-PET-cyclic GMPS on protein phosphorylation in intact human platelets and on [3H]-noradrenaline release and neurogenic vasoconstriction in electrical field stimulated rat tail arteries were also studied. 2. Kinetic analysis with purified cyclic GMP-dependent protein kinase (PKG) type I alpha and I beta, which are expressed in the rat tail artery, revealed that (Rp)-8-bromo-PET-cyclic GMPS is a competitive inhibitor with an apparent Ki of 0.03 microM. The activation of purified cyclic AMP-dependent protein kinase (PKA) type II was antagonized with an apparent Ki of 10 microM. 3. In human platelets, (Rp)-8-bromo-PET-cyclic GMPS (0.1 mM) antagonized the activation of the PKG by the selective activator 8-(4-chlorophenylthio)-guanosine 3':5'-cyclic monophosphate (8-pCPT-cyclic GMP; 0.2 mM) without affecting the activation of PKA by (Sp)-5, 6-dichloro-1-beta-D-ribofurano-sylbenzimidazole- 3':5'-cyclic monophosphorothioate ((Sp)-5,6-DCl-cyclic BiMPS; 0.1 mM). 4. (Rp)-8-bromo-PET-cyclic GMPS was not hydrolysed by the cyclic GMP specific phosphodiesterase (PDE) type V from bovine aorta but potently inhibited this PDE. 5. The corresponding sulphur free cyclic nucleotide of the two studied phosphorothioate derivatives, 8-bromo-beta-phenyl-1, N2-ethenoguanosine-3':5'-cyclic monophosphate (8-bromo-PET-cyclic GMP), had no effect on electrically-induced [3H]-noradrenaline release but concentration-dependently decreased the stimulation-induced vasoconstriction. (Rp)-8-bromo-PET-cyclic GMPS (3 microM) shifted the vasoconstriction response to the right without affecting stimulation evoked

  6. Enhanced nitric oxide and cyclic GMP formation plays a role in the anti-platelet activity of simvastatin

    PubMed Central

    Chou, T-C; Lin, Y-F; Wu, W-C; Chu, K-M

    2008-01-01

    Background and purpose: It has been found that 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) exert various vascular protective effects, beyond their cholesterol-lowering property, including inhibition of platelet-dependent thrombus formation. The objective of the present study was to determine whether the nitric oxide (NO)/cyclic GMP-mediated processes in platelets contribute to the anti-aggregatory activity of simvastatin. Experimental approach: After rabbit platelets were incubated with simvastatin for 5 min, aggregation was induced and the platelet aggregation, nitric oxide synthase activity, guanylyl cyclase activity, NO and cyclic GMP formation were measured appropriately. Key results: Treatment with simvastatin concentration-dependently inhibited platelet aggregation induced by collagen or arachidonic acid with an IC50 range of 52–158 μM. We also demonstrated that simvastatin (20–80 μM) concentration-dependently further enhanced collagen-induced NO and cyclic GMP formation through increasing NOS activity (from 2.64±0.12 to 3.52±0.21–5.10±0.14 μmol min−1 mg protein−1) and guanylyl cyclase activity (from 142.9±7.2 to 163.5±17.5–283.8±19.5 pmol min−1 mg protein−1) in the platelets. On the contrary, inhibition of platelet aggregation by simvastatin was markedly attenuated (by about 50%) by addition of a nitric oxide synthase inhibitor, a NO scavenger or a NO-sensitive guanylyl cyclase inhibitor. The anti-aggregatory effects of simvastatin were significantly increased by addition of a selective inhibitor of cyclic GMP phosphodiesterase. Conclusions and implications: Our findings indicate that enhancement of a NO/cyclic GMP-mediated process plays an important role in the anti-aggregatory activity of simvastatin. PMID:18264124

  7. A new role for a classical gene: white transports cyclic GMP.

    PubMed

    Evans, Jennifer M; Day, Jonathan P; Cabrero, Pablo; Dow, Julian A T; Davies, Shireen-Anne

    2008-03-01

    Guanosine 3'-5' cyclic monophosphate (cGMP) and adenosine 3'-5' cyclic monophosphate (cAMP) are important regulators of cell and tissue function. However, cGMP and cAMP transport have received relatively limited attention, especially in model organisms where such studies can be conducted in vivo. The Drosophila Malpighian (renal) tubule transports cGMP and cAMP and utilises these as signalling molecules. We show here via substrate competition and drug inhibition studies that cAMP transport - but not cGMP transport - requires the presence of di- or tri-carboxylates; and that transport of both cyclic nucleotides occurs via ATP binding cassette sub-family G2 (ABCG2), but not via ABC sub-family C (ABCC), transporters. In Drosophila, the white (w) gene is known for the classic eye colour mutation. However, gene expression data show that of all adult tissues, w is most highly expressed in Malpighian tubules. Furthermore, as White is a member of the ABCG2 transporter class, it is a potential candidate for a tubule cGMP transporter. Assay of cGMP transport in w(-) (mutant) tubules shows that w is required for cGMP transport but not cAMP transport. Targeted over-expression of w in w(-) tubule principal cells significantly increases cGMP transport compared with that in w(-) controls. Conversely, treatment of wild-type tubules with cGMP increases w mRNA expression levels, implying that cGMP is a physiologically relevant substrate for White. Immunocytochemical localisation reveals that White is expressed in intracellular vesicles in tubule principal cells, suggesting that White participates in vesicular transepithelial transport of cGMP. PMID:18310115

  8. Cyclic GMP reduces ventricular myocyte stunning after simulated ischemia-reperfusion.

    PubMed

    Gandhi, A; Yan, L; Scholz, P M; Huang, M W; Weiss, H R

    1999-12-01

    We tested the hypothesis that the second messenger activated by nitric oxide, cyclic GMP, would reduce the effects of myocyte stunning following simulated ischemia-reperfusion and that this was related to cyclic GMP protein kinase. Ventricular cardiac myocytes were isolated from New Zealand White rabbits (n = 8). Cell shortening was measured by a video edge detector and protein phosphorylation was determined autoradiographically after SDS gel electrophoresis. Cell shortening data were acquired at: (i) baseline followed by 8-Bromo-cGMP 10(-6) M (8-Br-cGMP) and then KT 5823 10(-6) M (cyclic GMP protein kinase inhibitor) and (ii) simulated ischemia (20 min of 95% N(2)-5% CO(2) at 37 degrees C) followed by simulated reperfusion (reoxygenation) with addition of 8-Br-cGMP 10(-6) M followed by KT 5823 10(-6) M, (iii) addition of 8-Br-cGMP prior to ischemia followed by the addition of KT 5823 10(-6) M after 30 min of reoxygenation. In the control group, 8-Br-cGMP 10(-6) M decreased percentage shortening (%short) (5.0 +/- 0.6 vs 3.8 +/- 0. 4) and the maximum velocity (V(max), microm/s) (48.6 +/- 6.9 vs 40.2 +/- 6.4). KT 5823 10(-6) M added after 8-Br-cGMP partially restored %short (4.6 +/- 0.5) and V(max) (46.6 +/- 8.0). After stunning, baseline myocytes had decreased %short (3.4 +/- 0.2) and V(max) (36. 0 +/- 4.2). After the addition of 8-Br-cGMP, the %short (2.7 +/- 0. 2) and V(max) (27.6 +/- 2.5) decreased further. The addition of KT 5823 did not change either the %short or the V(max). The myocytes with 8-Br-cGMP during ischemia had increased %short (4.2 +/- 0.2) and V(max) (37.2 +/- 3.4) when compared to the stunned group. The addition of KT 5823 did not significantly alter %short (3.3 +/- 0.4) or V(max) (29.2 +/- 5.0) in the myocytes pretreated with 8-Br-cGMP. Protein phosphorylation was increased by 8-Br-cGMP in control and stunned myocytes. KT 5823 blocked this effect in control but not stunned myocytes, suggesting some change in the cyclic GMP protein kinase

  9. Occurrence of Cyclic di-GMP-Modulating Output Domains in Cyanobacteria: an Illuminating Perspective

    PubMed Central

    Agostoni, Marco; Koestler, Benjamin J.; Waters, Christopher M.; Williams, Barry L.; Montgomery, Beronda L.

    2013-01-01

    ABSTRACT Microorganisms use a variety of metabolites to respond to external stimuli, including second messengers that amplify primary signals and elicit biochemical changes in a cell. Levels of the second messenger cyclic dimeric GMP (c-di-GMP) are regulated by a variety of environmental stimuli and play a critical role in regulating cellular processes such as biofilm formation and cellular motility. Cyclic di-GMP signaling systems have been largely characterized in pathogenic bacteria; however, proteins that can impact the synthesis or degradation of c-di-GMP are prominent in cyanobacterial species and yet remain largely underexplored. In cyanobacteria, many putative c-di-GMP synthesis or degradation domains are found in genes that also harbor light-responsive signal input domains, suggesting that light is an important signal for altering c-di-GMP homeostasis. Indeed, c-di-GMP-associated domains are often the second most common output domain in photoreceptors—outnumbered only by a histidine kinase output domain. Cyanobacteria differ from other bacteria regarding the number and types of photoreceptor domains associated with c-di-GMP domains. Due to the widespread distribution of c-di-GMP domains in cyanobacteria, we investigated the evolutionary origin of a subset of genes. Phylogenetic analyses showed that c-di-GMP signaling systems were present early in cyanobacteria and c-di-GMP genes were both vertically and horizontally inherited during their evolution. Finally, we compared intracellular levels of c-di-GMP in two cyanobacterial species under different light qualities, confirming that light is an important factor for regulating this second messenger in vivo. PMID:23943760

  10. Cyclic GMP evoked calcium transients in olfactory receptor cell growth cones.

    PubMed

    Kafitz, K W; Leinders-Zufall, T; Zufall, F; Greer, C A

    2000-03-20

    Nitric oxide-induced calcium transients in growth cones are believed to be mediated by cyclic nucleotides. Because nitric oxide is thought to influence the development of olfactory receptor cells (ORCs), we have begun to explore the effect of cyclic nucleotides on ORC growth cones. Cultured ORCs were loaded with fluo-3 AM and confocal imaging was employed to monitor calcium transients following cyclic nucleotide-gated channel activation. Application of 8-bromo-cGMP at the growth cone caused transient increases in fluorescence which were restricted to the growth cone and lasted tens of seconds. The signal was abolished by LY83583, an inhibitor of cyclic nucleotide-gated channels. 8-Bromo-cGMP also inhibited further extension of growth cones. The data indicate that ORC growth cones exhibit cGMP-dependent calcium transients that are consistent with those generated by cyclic nucleotide-gated channels. PMID:10757499

  11. Cyclic GMP is involved in auxin signalling during Arabidopsis root growth and development

    PubMed Central

    Nan, Wenbin; Wang, Xiaomin; Bi, Yurong

    2014-01-01

    The second messenger cyclic guanosine 3′,5′-monophosphate (cGMP) plays an important role in plant development and responses to stress. Recent studies indicated that cGMP is a secondary signal generated in response to auxin stimulation. cGMP also mediates auxin-induced adventitious root formation in mung bean and gravitropic bending in soybean. Nonetheless, the mechanism of the participation of cGMP in auxin signalling to affect these growth and developmental processes is largely unknown. In this report we provide evidence that indole-3-acetic acid (IAA) induces cGMP accumulation in Arabidopsis roots through modulation of the guanylate cyclase activity. Application of 8-bromo-cGMP (a cell-permeable cGMP derivative) increases auxin-dependent lateral root formation, root hair development, primary root growth, and gene expression. In contrast, inhibitors of endogenous cGMP synthesis block these processes induced by auxin. Data also showed that 8-bromo-cGMP enhances auxin-induced degradation of Aux/IAA protein modulated by the SCFTIR1 ubiquitin-proteasome pathway. Furthermore, it was found that 8-bromo-cGMP is unable to directly influence the auxin-dependent TIR1-Aux/IAA interaction as evidenced by pull-down and yeast two-hybrid assays. In addition, we provide evidence for cGMP-mediated modulation of auxin signalling through cGMP-dependent protein kinase (PKG). Our results suggest that cGMP acts as a mediator to participate in auxin signalling and may govern this process by PKG activity via its influence on auxin-regulated gene expression and auxin/IAA degradation. PMID:24591051

  12. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation

    PubMed Central

    Tischler, Anna D.; Camilli, Andrew

    2009-01-01

    Summary While studying virulence gene regulation in Vibrio cholerae during infection of the host small intestine, we identified VieA as a two-component response regulator that contributes to activating expression of cholera toxin. Here we report that VieA represses transcription of Vibrio exopolysaccharide synthesis (vps) genes involved in biofilm formation by a mechanism independent of its phosphorelay and DNA-binding activities. VieA controls the intracellular concentration of the cyclic nucleotide second messenger cyclic diguanylate (c-di-GMP) using an EAL domain that functions as a c-di-GMP phosphodiesterase. Two-dimensional thin layer chromatography of nucleotide extracts confirmed that VieA reduces the concentration of c-di-GMP, opposing the action of c-di-GMP synthetase proteins. Expression of unrelated V. cholerae c-di-GMP synthetase or phosphodiesterae proteins also modulated c-di-GMP concentration and vps gene expression. We propose that c-di-GMP synthetase and phosphodiesterase domain-containing proteins contribute to regulating biofilm formation by controlling c-di-GMP concentration. PMID:15255898

  13. Cyclic Di-GMP Riboswitch-Regulated Type IV Pili Contribute to Aggregation of Clostridium difficile

    PubMed Central

    Bordeleau, Eric; Purcell, Erin B.; Lafontaine, Daniel A.; Fortier, Louis-Charles; Tamayo, Rita

    2014-01-01

    Clostridium difficile is an anaerobic Gram-positive bacterium that causes intestinal infections with symptoms ranging from mild diarrhea to fulminant colitis. Cyclic diguanosine monophosphate (c-di-GMP) is a bacterial second messenger that typically regulates the switch from motile, free-living to sessile and multicellular behaviors in Gram-negative bacteria. Increased intracellular c-di-GMP concentration in C. difficile was recently shown to reduce flagellar motility and to increase cell aggregation. In this work, we investigated the role of the primary type IV pilus (T4P) locus in c-di-GMP-dependent cell aggregation. Inactivation of two T4P genes, pilA1 (CD3513) and pilB1 (CD3512), abolished pilus formation and significantly reduced cell aggregation under high c-di-GMP conditions. pilA1 is preceded by a putative c-di-GMP riboswitch, predicted to be transcriptionally active upon c-di-GMP binding. Consistent with our prediction, high intracellular c-di-GMP concentration increased transcript levels of T4P genes. In addition, single-round in vitro transcription assays confirmed that transcription downstream of the predicted transcription terminator was dose dependent and specific to c-di-GMP binding to the riboswitch aptamer. These results support a model in which T4P gene transcription is upregulated by c-di-GMP as a result of its binding to an upstream transcriptionally activating riboswitch, promoting cell aggregation in C. difficile. PMID:25512308

  14. Application of Synthetic Peptide Arrays To Uncover Cyclic Di-GMP Binding Motifs

    PubMed Central

    Düvel, Juliane; Bense, Sarina; Möller, Stefan; Bertinetti, Daniela; Schwede, Frank; Morr, Michael; Eckweiler, Denitsa; Genieser, Hans-Gottfried; Jänsch, Lothar; Herberg, Friedrich W.; Frank, Ronald

    2015-01-01

    ABSTRACT High levels of the universal bacterial second messenger cyclic di-GMP (c-di-GMP) promote the establishment of surface-attached growth in many bacteria. Not only can c-di-GMP bind to nucleic acids and directly control gene expression, but it also binds to a diverse array of proteins of specialized functions and orchestrates their activity. Since its development in the early 1990s, the synthetic peptide array technique has become a powerful tool for high-throughput approaches and was successfully applied to investigate the binding specificity of protein-ligand interactions. In this study, we used peptide arrays to uncover the c-di-GMP binding site of a Pseudomonas aeruginosa protein (PA3740) that was isolated in a chemical proteomics approach. PA3740 was shown to bind c-di-GMP with a high affinity, and peptide arrays uncovered LKKALKKQTNLR to be a putative c-di-GMP binding motif. Most interestingly, different from the previously identified c-di-GMP binding motif of the PilZ domain (RXXXR) or the I site of diguanylate cyclases (RXXD), two leucine residues and a glutamine residue and not the charged amino acids provided the key residues of the binding sequence. Those three amino acids are highly conserved across PA3740 homologs, and their singular exchange to alanine reduced c-di-GMP binding within the full-length protein. IMPORTANCE In many bacterial pathogens the universal bacterial second messenger c-di-GMP governs the switch from the planktonic, motile mode of growth to the sessile, biofilm mode of growth. Bacteria adapt their intracellular c-di-GMP levels to a variety of environmental challenges. Several classes of c-di-GMP binding proteins have been structurally characterized, and diverse c-di-GMP binding domains have been identified. Nevertheless, for several c-di-GMP receptors, the binding motif remains to be determined. Here we show that the use of a synthetic peptide array allowed the identification of a c-di-GMP binding motif of a putative c-di-GMP

  15. Secreted Cyclic Di-GMP Induces Stalk Cell Differentiation in the Eukaryote Dictyostelium discoideum.

    PubMed

    Chen, Zhi-hui; Schaap, Pauline

    2016-01-01

    Cyclic di-GMP (c-di-GMP) is currently recognized as the most widely used intracellular signal molecule in prokaryotes, but roles in eukaryotes were only recently discovered. In the social amoeba Dictyostelium discoideum, c-di-GMP, produced by a prokaryote-type diguanylate cyclase, induces the differentiation of stalk cells, thereby enabling the formation of spore-bearing fruiting bodies. In this review, we summarize the currently known mechanisms that control the major life cycle transitions of Dictyostelium and focus particularly on the role of c-di-GMP in stalk formation. Stalk cell differentiation has characteristics of autophagic cell death, a process that also occurs in higher eukaryotes. We discuss the respective roles of c-di-GMP and of another signal molecule, differentiation-inducing factor 1, in autophagic cell death in vitro and in stalk formation in vivo. PMID:26013485

  16. Secreted Cyclic Di-GMP Induces Stalk Cell Differentiation in the Eukaryote Dictyostelium discoideum

    PubMed Central

    Chen, Zhi-hui

    2015-01-01

    Cyclic di-GMP (c-di-GMP) is currently recognized as the most widely used intracellular signal molecule in prokaryotes, but roles in eukaryotes were only recently discovered. In the social amoeba Dictyostelium discoideum, c-di-GMP, produced by a prokaryote-type diguanylate cyclase, induces the differentiation of stalk cells, thereby enabling the formation of spore-bearing fruiting bodies. In this review, we summarize the currently known mechanisms that control the major life cycle transitions of Dictyostelium and focus particularly on the role of c-di-GMP in stalk formation. Stalk cell differentiation has characteristics of autophagic cell death, a process that also occurs in higher eukaryotes. We discuss the respective roles of c-di-GMP and of another signal molecule, differentiation-inducing factor 1, in autophagic cell death in vitro and in stalk formation in vivo. PMID:26013485

  17. Contribution of cyclic GMP formation to KRN2391-induced relaxation in coronary artery of the pig.

    PubMed Central

    Jinno, Y.; Kasai, H.; Ohta, H.; Nishikori, K.; Fukushima, H.; Ogawa, N.

    1992-01-01

    1. In the present study, we investigated the relationship between relaxation and guanosine 3':5'-cyclic monophosphate (cyclic GMP) formation induced by KRN2391, compared with those induced by nicorandil and nitroglycerin, in the coronary artery of the pig. 2. KRN2391 (10(-8)-3 X 10(-5) M), nicorandil (10(-8)-3 X 10(-4) M) and nitroglycerin (10(-9)-10(-5) M) antagonized the contraction caused by 25 mM KCl in a concentration-dependent manner. 3. The concentration-relaxation curves for KRN2391, nicorandil and nitroglycerin shifted rightward in the presence of methylene blue (10(-5) M). 4. KRN2391 (10(-6) M), nicorandil (10(-4) M) and nitroglycerin (10(-6) M) induced an increased in cyclic GMP. 5. The magnitude of the shift of the concentration-relaxation curve caused by methylene blue and the increase in cyclic GMP with KRN2391 were lower than those with nicorandil and nitroglycerin. 6. The adenosine 3':5'-cyclic monophosphate (cyclic AMP) level was not increased by KRN2391 even at a concentration that produced full relaxation. 7. The present results suggest that KRN2391-induced relaxation in the coronary artery of the pig is partly due to the increase in cyclic GMP formation through the stimulation of guanylate cyclase. PMID:1327392

  18. Clinical relevance of cyclic GMP modulators: A translational success story of network pharmacology.

    PubMed

    Oettrich, J M; Dao, V T; Frijhoff, J; Kleikers, Pwm; Casas, A I; Hobbs, A J; Schmidt, H H H W

    2016-04-01

    Therapies that modulate cyclic guanosine-3'-5'-monophosphate (cGMP) have emerged as one of the most successful areas in recent drug discovery and clinical pharmacology. Historically, their focus has been on cardiovascular disease phenotypes; however, cGMP's relevance is likely to go beyond this rather limited organ-based set of indications. Moreover, the multitude of targets and their apparent interchangeability is a proof-of-concept of network pharmacology. PMID:26765222

  19. The cyclic-di-GMP signaling pathway in the Lyme disease spirochete, Borrelia burgdorferi

    PubMed Central

    Novak, Elizabeth A.; Sultan, Syed Z.; Motaleb, Md. A.

    2014-01-01

    In nature, the Lyme disease spirochete Borrelia burgdorferi cycles between the unrelated environments of the Ixodes tick vector and mammalian host. In order to survive transmission between hosts, B. burgdorferi must be able to not only detect changes in its environment, but also rapidly and appropriately respond to these changes. One manner in which this obligate parasite regulates and adapts to its changing environment is through cyclic-di-GMP (c-di-GMP) signaling. c-di-GMP has been shown to be instrumental in orchestrating the adaptation of B. burgdorferi to the tick environment. B. burgdorferi possesses only one set of c-di-GMP-metabolizing genes (one diguanylate cyclase and two distinct phosphodiesterases) and one c-di-GMP-binding PilZ-domain protein designated as PlzA. While studies in the realm of c-di-GMP signaling in B. burgdorferi have exploded in the last few years, there are still many more questions than answers. Elucidation of the importance of c-di-GMP signaling to B. burgdorferi may lead to the identification of mechanisms that are critical for the survival of B. burgdorferi in the tick phase of the enzootic cycle as well as potentially delineate a role (if any) c-di-GMP may play in the transmission and virulence of B. burgdorferi during the enzootic cycle, thereby enabling the development of effective drugs for the prevention and/or treatment of Lyme disease. PMID:24822172

  20. A new nonhydrolyzable reactive cGMP analogue, (Rp)-Guanosine-3′, 5′-cyclic-S-(4-bromo-2, 3-dioxobutyl)monophosphorothioate, which targets the cGMP binding site of human platelet PDE3A

    PubMed Central

    Hung, Su H.; Liu, Andy H.; Pixley, Robin A.; Francis, Penelope; Williams, LaTeeka D.; Matsko, Christopher M.; Barnes, Karine D.; Sivendran, Sharmila; Colman, Roberta F.; Colman, Robert W.

    2008-01-01

    The amino acids involved in substrate (cAMP) binding to human platelet cGMP-inhibited cAMP phosphodiesterase (PDE3A) are identified. Less is known about the inhibitor (cGMP) binding site. We have now synthesized a nonhydrolyzable reactive cGMP analog, Rp-guanosine-3′, 5′-cyclic-S-(4-bromo-2, 3-dioxobutyl)monophosphorothioate (Rp-cGMPS-BDB). Rp-cGMPS-BDB irreversibly inactivates PDE3A (KI = 43.4 ± 7.2 μM and kcart = 0.007 ± 0.0006 min−1). The effectiveness of protectants in decreasing the rate of inactivation by Rp-cGMPS-BDB is: Rp-cGMPS (Kd = 72 μM) > Sp-cGMPS (124), Sp-cAMPS (182) > GMP (1517), Rp-cAMPS (3762), AMP (4370 μM). NAD+, neither a substrate nor an inhibitor of PDE3A, does not protect. Nonhydrolyzable cGMP analogs exhibit greater affinity than the cAMP analogs. These results indicate that Rp-cGMPS-BDB targets favorably the cGMP binding site consistent with a docking model of PDE3A-Rp-cGMPS-BDB active site. We conclude that Rp-cGMPS-BDB is an effective active site-directed affinity label for PDE3A with potential for other cGMP-dependent enzymes. PMID:18394675

  1. The Cyclic AMP-Vfr Signaling Pathway in Pseudomonas aeruginosa Is Inhibited by Cyclic Di-GMP

    PubMed Central

    Almblad, Henrik; Harrison, Joe J.; Rybtke, Morten; Groizeleau, Julie; Givskov, Michael; Parsek, Matthew R.

    2015-01-01

    ABSTRACT The opportunistic human pathogen Pseudomonas aeruginosa expresses numerous acute virulence factors in the initial phase of infection, and during long-term colonization it undergoes adaptations that optimize survival in the human host. Adaptive changes that often occur during chronic infection give rise to rugose small colony variants (RSCVs), which are hyper-biofilm-forming mutants that commonly possess mutations that increase production of the biofilm-promoting secondary messenger cyclic di-GMP (c-di-GMP). We show that RSCVs display a decreased production of acute virulence factors as a direct result of elevated c-di-GMP content. Overproduction of c-di-GMP causes a decrease in the transcription of virulence factor genes that are regulated by the global virulence regulator Vfr. The low level of Vfr-dependent transcription is caused by a low level of its coactivator, cyclic AMP (cAMP), which is decreased in response to a high level of c-di-GMP. Mutations that cause reversion of the RSCV phenotype concomitantly reactivate Vfr-cAMP signaling. Attempts to uncover the mechanism underlying the observed c-di-GMP-mediated lowering of cAMP content provided evidence that it is not caused by inhibition of adenylate cyclase production or activity and that it is not caused by activation of cAMP phosphodiesterase activity. In addition to the studies of the RSCVs, we present evidence that the deeper layers of wild-type P. aeruginosa biofilms have high c-di-GMP levels and low cAMP levels. IMPORTANCE Our work suggests that cross talk between c-di-GMP and cAMP signaling pathways results in downregulation of acute virulence factors in P. aeruginosa biofilm infections. Knowledge about this cross-regulation adds to our understanding of virulence traits and immune evasion by P. aeruginosa in chronic infections and may provide new approaches to eradicate biofilm infections. PMID:25897033

  2. Cyclic GMP regulation of the L-type Ca2+ channel current in human atrial myocytes

    PubMed Central

    Vandecasteele, Grégoire; Verde, Ignacio; Rücker-Martin, Catherine; Donzeau-Gouge, Patrick; Fischmeister, Rodolphe

    2001-01-01

    The regulation of the L-type Ca2+ current (ICa) by intracellular cGMP was investigated in human atrial myocytes using the whole-cell patch-clamp technique. Intracellular application of 0.5 μm cGMP produced a strong stimulation of basal ICa (+64 ± 5%, n = 60), whereas a 10-fold higher cGMP concentration induced a 2-fold smaller increase (+36 ± 8%, n = 35). The biphasic response of ICa to cGMP was not mimicked by the cGMP-dependent protein kinase (PKG) activator 8-bromoguanosine 3′,5′ cyclic monophosphate (8-bromo-cGMP, 0.5 or 5 μm), and was not affected by the PKG inhibitor KT 5823 (100 nm). In contrast, cGMP stimulation of ICa was abolished by intracellular perfusion with PKI (10 μm), a selective inhibitor of the cAMP-dependent protein kinase (PKA). Selective inhibition of the cGMP-inhibited phosphodiesterase (PDE3) by extracellular cilostamide (100 nm) strongly enhanced basal ICa in control conditions (+78 ± 13%, n = 7) but had only a marginal effect in the presence of intracellular cGMP (+22 ± 7% in addition to 0.5 μm cGMP, n = 11; +20 ± 22% in addition to 5 μm cGMP, n = 7). Application of erythro-9-[2-hydroxy-3-nonyl]adenine (EHNA, 30 μm), a selective inhibitor of the cGMP-stimulated phosphodiesterase (PDE2), fully reversed the secondary inhibitory effect of 5 μm cGMP on ICa (+99 ± 16% stimulation, n = 7). Altogether, these data indicate that intracellular cGMP regulates basal ICa in human atrial myocytes in a similar manner to NO donors. The effect of cGMP involves modulation of the cAMP level and PKA activity via opposite actions of the nucleotide on PDE2 and PDE3. PMID:11389195

  3. Cyclic Di-GMP modulates the disease progression of Erwinia amylovora.

    PubMed

    Edmunds, Adam C; Castiblanco, Luisa F; Sundin, George W; Waters, Christopher M

    2013-05-01

    The second messenger cyclic di-GMP (c-di-GMP) is a nearly ubiquitous intracellular signal molecule known to regulate various cellular processes, including biofilm formation, motility, and virulence. The intracellular concentration of c-di-GMP is inversely governed by diguanylate cyclase (DGC) enzymes and phosphodiesterase (PDE) enzymes, which synthesize and degrade c-di-GMP, respectively. The role of c-di-GMP in the plant pathogen and causal agent of fire blight disease Erwinia amylovora has not been studied previously. Here we demonstrate that three of the five predicted DGC genes in E. amylovora (edc genes, for Erwinia diguanylate cyclase), edcA, edcC, and edcE, are active diguanylate cyclases. We show that c-di-GMP positively regulates the secretion of the main exopolysaccharide in E. amylovora, amylovoran, leading to increased biofilm formation, and negatively regulates flagellar swimming motility. Although amylovoran secretion and biofilm formation are important for the colonization of plant xylem tissues and the development of systemic infections, deletion of the two biofilm-promoting DGCs increased tissue necrosis in an immature-pear infection assay and an apple shoot infection model, suggesting that c-di-GMP negatively regulates virulence. In addition, c-di-GMP inhibited the expression of hrpA, a gene encoding the major structural component of the type III secretion pilus. Our results are the first to describe a role for c-di-GMP in E. amylovora and suggest that downregulation of motility and type III secretion by c-di-GMP during infection plays a key role in the coordination of pathogenesis. PMID:23475975

  4. Coordinated Cyclic-Di-GMP Repression of Salmonella Motility through YcgR and Cellulose

    PubMed Central

    Zorraquino, Violeta; García, Begoña; Latasa, Cristina; Echeverz, Maite; Toledo-Arana, Alejandro; Valle, Jaione

    2013-01-01

    Cyclic di-GMP (c-di-GMP) is a secondary messenger that controls a variety of cellular processes, including the switch between a biofilm and a planktonic bacterial lifestyle. This nucleotide binds to cellular effectors in order to exert its regulatory functions. In Salmonella, two proteins, BcsA and YcgR, both of them containing a c-di-GMP binding PilZ domain, are the only known c-di-GMP receptors. BcsA, upon c-di-GMP binding, synthesizes cellulose, the main exopolysaccharide of the biofilm matrix. YcgR is dedicated to c-di-GMP-dependent inhibition of motility through its interaction with flagellar motor proteins. However, previous evidences indicate that in the absence of YcgR, there is still an additional element that mediates motility impairment under high c-di-GMP levels. Here we have uncovered that cellulose per se is the factor that further promotes inhibition of bacterial motility once high c-di-GMP contents drive the activation of a sessile lifestyle. Inactivation of different genes of the bcsABZC operon, mutation of the conserved residues in the RxxxR motif of the BcsA PilZ domain, or degradation of the cellulose produced by BcsA rescued the motility defect of ΔycgR strains in which high c-di-GMP levels were reached through the overexpression of diguanylate cyclases. High c-di-GMP levels provoked cellulose accumulation around cells that impeded flagellar rotation, probably by means of steric hindrance, without affecting flagellum gene expression, exportation, or assembly. Our results highlight the relevance of cellulose in Salmonella lifestyle switching as an architectural element that is both essential for biofilm development and required, in collaboration with YcgR, for complete motility inhibition. PMID:23161026

  5. Cyclic Di-GMP Modulates the Disease Progression of Erwinia amylovora

    PubMed Central

    Edmunds, Adam C.; Castiblanco, Luisa F.; Sundin, George W.

    2013-01-01

    The second messenger cyclic di-GMP (c-di-GMP) is a nearly ubiquitous intracellular signal molecule known to regulate various cellular processes, including biofilm formation, motility, and virulence. The intracellular concentration of c-di-GMP is inversely governed by diguanylate cyclase (DGC) enzymes and phosphodiesterase (PDE) enzymes, which synthesize and degrade c-di-GMP, respectively. The role of c-di-GMP in the plant pathogen and causal agent of fire blight disease Erwinia amylovora has not been studied previously. Here we demonstrate that three of the five predicted DGC genes in E. amylovora (edc genes, for Erwinia diguanylate cyclase), edcA, edcC, and edcE, are active diguanylate cyclases. We show that c-di-GMP positively regulates the secretion of the main exopolysaccharide in E. amylovora, amylovoran, leading to increased biofilm formation, and negatively regulates flagellar swimming motility. Although amylovoran secretion and biofilm formation are important for the colonization of plant xylem tissues and the development of systemic infections, deletion of the two biofilm-promoting DGCs increased tissue necrosis in an immature-pear infection assay and an apple shoot infection model, suggesting that c-di-GMP negatively regulates virulence. In addition, c-di-GMP inhibited the expression of hrpA, a gene encoding the major structural component of the type III secretion pilus. Our results are the first to describe a role for c-di-GMP in E. amylovora and suggest that downregulation of motility and type III secretion by c-di-GMP during infection plays a key role in the coordination of pathogenesis. PMID:23475975

  6. The nitric oxide-cyclic GMP pathway and synaptic plasticity in the rat superior cervical ganglion.

    PubMed Central

    Southam, E.; Charles, S. L.; Garthwaite, J.

    1996-01-01

    1. We have investigated the possibility that nitric oxide (NO) and soluble guanylyl cyclase, an enzyme that synthesizes guanosine 3':5'-cyclic monophosphate (cyclic GMP) in response to NO, contributes to plasticity of synaptic transmission in the rat isolated superior cervical ganglion (SCG). 2. Exposure of ganglia to the NO donor, nitroprusside, caused a concentration-dependent accumulation of cyclic GMP which was augmented in the presence of the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine. The compound, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a selective inhibitor of soluble guanylyl cyclase, completely blocked this cyclic GMP response. 3. As assessed by extracellular recording, nitroprusside (100 microM) and another NO donor, S-nitrosoglutathione (30 microM) increased the efficacy of ganglionic synaptic transmission in response to electrical stimulation of the preganglionic nerve, an effect that was reversible and which could be replicated by the cyclic GMP analogue, 8-bromo-cyclic GMP. Ganglionic depolarizations resulting from stimulation of nicotinic receptors with carbachol were not increased by nitroprusside. The potentiating actions of the NO donors on synaptic transmission, but not that of 8-bromo-cyclic GMP, were inhibited by ODQ. 4. Brief tetanic stimulation of the preganglionic nerve resulted in a long-term potentiation (LTP) of synaptic transmission that was unaffected by ODQ, either in the absence or presence of the NO synthase inhibitor, NG-nitro-L-arginine (L-NOARG, 100 microM). A lack of influence of L-NOARG was confirmed in intracellular recordings of LTP of the excitatory postsynaptic potential. Furthermore, under conditions where tetanically-induced LTP was saturated, nitroprusside was still able to potentiate synaptic transmission, as judged from extracellular recording. 5. We conclude that NO is capable of potentiating ganglionic neurotransmission and this effect is mediated through the stimulation of soluble guanylyl

  7. An Extended Cyclic Di-GMP Network in the Predatory Bacterium Bdellovibrio bacteriovorus

    PubMed Central

    Rotem, Or; Nesper, Jutta; Borovok, Ilya; Gorovits, Rena; Kolot, Mikhail; Pasternak, Zohar; Shin, Irina; Glatter, Timo; Pietrokovski, Shmuel; Jenal, Urs

    2015-01-01

    ABSTRACT Over the course of the last 3 decades the role of the second messenger cyclic di-GMP (c-di-GMP) as a master regulator of bacterial physiology was determined. Although the control over c-di-GMP levels via synthesis and breakdown and the allosteric regulation of c-di-GMP over receptor proteins (effectors) and riboswitches have been extensively studied, relatively few effectors have been identified and most are of unknown functions. The obligate predatory bacterium Bdellovibrio bacteriovorus has a peculiar dimorphic life cycle, in which a phenotypic transition from a free-living attack phase (AP) to a sessile, intracellular predatory growth phase (GP) is tightly regulated by specific c-di-GMP diguanylate cyclases. B. bacteriovorus also bears one of the largest complement of defined effectors, almost none of known functions, suggesting that additional proteins may be involved in c-di-GMP signaling. In order to uncover novel c-di-GMP effectors, a c-di-GMP capture-compound mass-spectroscopy experiment was performed on wild-type AP and host-independent (HI) mutant cultures, the latter serving as a proxy for wild-type GP cells. Eighty-four proteins were identified as candidate c-di-GMP binders. Of these proteins, 65 did not include any recognized c-di-GMP binding site, and 3 carried known unorthodox binding sites. Putative functions could be assigned to 59 proteins. These proteins are included in metabolic pathways, regulatory circuits, cell transport, and motility, thereby creating a potentially large c-di-GMP network. False candidate effectors may include members of protein complexes, as well as proteins binding nucleotides or other cofactors that were, respectively, carried over or unspecifically interacted with the capture compound during the pulldown. Of the 84 candidates, 62 were found to specifically bind the c-di-GMP capture compound in AP or in HI cultures, suggesting c-di-GMP control over the whole-cell cycle of the bacterium. High affinity and

  8. Cyclic Di-GMP Regulates Type IV Pilus-Dependent Motility in Myxococcus xanthus

    PubMed Central

    Skotnicka, Dorota; Petters, Tobias; Heering, Jan; Hoppert, Michael; Kaever, Volkhard

    2015-01-01

    ABSTRACT The nucleotide-based second messenger bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) is involved in regulating a plethora of processes in bacteria that are typically associated with lifestyle changes. Myxococcus xanthus undergoes major lifestyle changes in response to nutrient availability, with the formation of spreading colonies in the presence of nutrients and spore-filled fruiting bodies in the absence of nutrients. Here, we investigated the function of c-di-GMP in M. xanthus and show that this bacterium synthesizes c-di-GMP during growth. Manipulation of the c-di-GMP level by expression of either an active, heterologous diguanylate cyclase or an active, heterologous phosphodiesterase correlated with defects in type IV pilus (T4P)-dependent motility, whereas gliding motility was unaffected. An increased level of c-di-GMP correlated with reduced transcription of the pilA gene (which encodes the major pilin of T4P), reduced the assembly of T4P, and altered cell agglutination, whereas a decreased c-di-GMP level correlated with altered cell agglutination. The systematic inactivation of the 24 genes in M. xanthus encoding proteins containing GGDEF, EAL, or HD-GYP domains, which are associated with c-di-GMP synthesis, degradation, or binding, identified three genes encoding proteins important for T4P-dependent motility, whereas all mutants had normal gliding motility. Purified DmxA had diguanylate cyclase activity, whereas the hybrid histidine protein kinases TmoK and SgmT, each of which contains a GGDEF domain, did not have diguanylate cyclase activity. These results demonstrate that c-di-GMP is important for T4P-dependent motility in M. xanthus. IMPORTANCE We provide the first direct evidence that M. xanthus synthesizes c-di-GMP and demonstrate that c-di-GMP is important for T4P-dependent motility, whereas we did not obtain evidence that c-di-GMP regulates gliding motility. The data presented uncovered a novel mechanism for regulation of T4P

  9. Modulation by cyclic GMP of the odour sensitivity of vertebrate olfactory receptor cells

    NASA Technical Reports Server (NTRS)

    Leinders-Zufall, T.; Shepherd, G. M.; Zufall, F.

    1996-01-01

    Recent evidence has indicated a significant role for the cGMP second messenger system in vertebrate olfactory transduction but no clear functions have been identified for cGMP so far. Here, we have examined the effects of 8-Br-cGMP and carbon monoxide (CO) on odour responses of salamander olfactory receptor neurons using perforated patch recordings. We report that 8-Br-cGMP strongly down-regulates the odour sensitivity of the cells, with a K1/2 of 460 nM. This adaptation-like effect can be mimicked by CO, an activator of soluble guanylyl cyclase, with a K1/2 of 1 microM. Sensitivity modulation is achieved through a regulatory chain of events in which cGMP stimulates a persistent background current due to the activation of cyclic nucleotide-gated channels. This in turn leads to sustained Ca2+ entry providing a negative feedback signal. One consequence of the Ca2+ entry is a shift to the right of the stimulus-response curve and a reduction in saturating odour currents. Together, these two effects can reduce the sensory generator current by up to twenty-fold. Thus, cGMP functions to control the gain of the G-protein coupled cAMP pathway. Another consequence of the action of cGMP is a marked prolongation of the odour response kinetics. The effects of CO/cGMP are long-lasting and can continue for minutes. Hence, we propose that cGMP helps to prevent saturation of the cell's response by adjusting the operational range of the cAMP cascade and contributes to olfactory adaptation by decreasing the sensitivity of olfactory receptor cells to repeated odour stimuli.

  10. Atrial natriuretic peptide receptor heterogeneity and effects on cyclic GMP accumulation

    SciTech Connect

    Leitman, D.C.

    1988-01-01

    The effects of atrial natriuretic peptide (ANP), oxytocin (OT) and vasopressin (AVP) on guanylate cyclase activity and cyclic GMP accumulation were examined, since these hormones appear to be intimately associated with blood pressure and intravascular volume homeostasis. ANP was found to increase cyclic GMP accumulation in ten cell culture systems, which were derived from blood vessels, adrenal cortex, kidney, lung, testes and mammary gland. ANP receptors were characterized in intact cultured cells using {sup 125}I-ANP{sub 8-33}. Specific {sup 125}I-ANP binding was saturable and of high affinity. Scratchard analysis of the binding data for all cell types exhibited a straight line, indicating that these cells possessed a single class of binding sites. Despite the presence of linear Scatchard plots, these studies demonstrated that cultured cells possess two functionally and physically distinct ANP-binding sites. Most of the ANP-binding sites in cultured cells have a molecular size of 66,000 daltons under reducing conditions. The identification of cultured cell types in which hormones (ANP and oxytocin) regulate guanylate cyclase activity and increase cyclic GMP synthesis will provide valuable systems to determine the mechanisms of hormone-receptor coupling to guanylate cyclase and the cellular processes regulated by cyclic GMP.

  11. Opposing functional effects of cyclic GMP and cyclic AMP may act through protein phosphorylation in rabbit cardiac myocytes.

    PubMed

    Yan, L; Lee, H; Huang, M W; Scholz, P M; Weiss, H R

    2000-04-01

    1. We tested the hypothesis that the negative functional effects of cyclic GMP (cGMP) oppose the positive effects of cyclic AMP (cAMP) in cardiac myocytes through interaction at the level of their respective protein kinases. 2. Cell shortening was studied using a video-edge detector. The O2 consumption of a suspension of rabbit ventricular myocytes was measured using O2 electrodes. Protein phosphorylation was measured autoradiographically following SDS-PAGE. Data were collected with: (1) 8-bromo-cGMP (8-Br-cGMP) 10(-7) or 10(-5) M; (2) 8-bromo-cAMP (8-Br-cAMP) 10(-7) or 10(-5) M; (3) 8-Br-cAMP 10(-5) M followed by 8-Br-cGMP 10(-7) or 10(-5) M; (4) 8-Br-cGMP 10(-5) M followed by 8-Br-cAMP 10(-7) or 10(-5) M; (5) 8-Br-cGMP 10(-7) or 10(-5) M followed by KT 5720 (cAMP-dependent protein kinase inhibitor) or KT 5823 (cGMP-dependent protein kinase inhibitor) 10(-6) M; and (6) 8-Br-cAMP 10(-7) or 10(-5) M followed by KT 5720 or KT 5823 10(-6) M. 3. 8-Br-cGMP 10(-5) M decreased percent shortening (Pcs) from 6.3+/-0.6 to 3.6+/-0.4% and rate of shortening (Rs) from 66.7+/-4.4 to 41.8+/-4.2 microm s(-1). 8-Br-cAMP 10(-5) M increased Pcs (from 3.7+/-0.2 to 4.8+/-0.2) and Rs (from 50.0+/-3.0 to 60.0+/-3.1). With 8-Br-cAMP 10(-5) M, 8-Br-cGMP 10(-5) M decreased Pcs and Rs less. The positive functional effects of 8-Br-cAMP 10(-7) or 10(-5) M were also diminished with 8-Br-cGMP 10(-5) M. Following 8-Br-cGMP 10(-7) or 10(-5) M, KT 5720 10(-6) M further decreased Pcs to 2.5+/-0.3 and Rs to 30.0+/-4.1. KT 5823 10(-6) M returned Pcs to 4.7+/-0.4 and Rs to 61.3+/-5.3. Following 8-Br-cAMP 10(-7) or 10(-5) M, KT 5720 decreased the elevated Pcs and Rs significantly and KT 5823 10(-6) M further increased these parameters. 4. cGMP and cAMP phosphorylated the same five protein bands. With KT 5720 or KT 5823, all of the bands were lighter at the same concentration of 8-Br-cAMP and 8-Br-cGMP. 5. We conclude that, in rabbit ventricular myocytes, the opposing functional effects of cGMP and c

  12. Effect of cyanide on nitrovasodilator-induced relaxation, cyclic GMP accumulation and guanylate cyclase activation in rat aorta.

    PubMed

    Rapoport, R M; Murad, F

    1984-09-01

    The effects of sodium cyanide on relaxation, increases in cyclic GMP accumulation and guanylate cyclase activation induced by sodium nitroprusside and other nitrovasodilators were examined in rat thoracic aorta. Cyanide abolished nitroprusside-induced relaxation and the associated increase in cyclic GMP levels. Basal levels of cyclic GMP and cyclic AMP were also depressed. Reversal of nitroprusside-induced relaxation by cyanide was independent of the tissue level of cyclic GMP prior to addition of cyanide. Incubation of nitroprusside with cyanide prior to addition to aortic strips did not alter the relaxant effect of nitroprusside. Sodium azide-, hydroxylamine-, N-methyl-N'-nitro-N-nitrosoguanide-, nitroglycerin- and acetylcholine-induced relaxations and increased levels of cyclic GMP were also inhibited by cyanide. Relaxations induced by nitric oxide were also inhibited by cyanide, although the relaxation with the low concentration of nitric oxide employed was not accompanied by detectable increases in cyclic GMP. Relaxation to 8-bromo-cyclic GMP was essentially unaltered by cyanide; however, isoproterenol-induced relaxation was inhibited. Guanylate cyclase in soluble and particulate fractions of aorta homogenates was activated by nitroprusside and the activation was prevented by cyanide. The present results suggest that cyanide inhibits nitrovasodilator-induced relaxation through inhibition of guanylate cyclase activation; however, cyanide may also have nonspecific effects which inhibit relaxation. PMID:6149944

  13. Cyclic-di-GMP signalling regulates motility and biofilm formation in Bordetella bronchiseptica

    PubMed Central

    Sisti, Federico; Ha, Dae-Gon; O'Toole, George A.; Hozbor, Daniela

    2013-01-01

    The signalling molecule bis-(3′–5′)-cyclic-dimeric guanosine monophosphate (c-di-GMP) is a central regulator of diverse cellular functions, including motility, biofilm formation, cell cycle progression and virulence, in bacteria. Multiple diguanylate cyclase and phosphodiesterase-domain-containing proteins (GGDEF and EAL/HD-GYP, respectively) modulate the levels of the second messenger c-di-GMP to transmit signals and obtain such specific cellular responses. In the genus Bordetella this c-di-GMP network is poorly studied. In this work, we evaluated the expression of two phenotypes in Bordetella bronchiseptica regulated by c-di-GMP, biofilm formation and motility, under the influence of ectopic expression of Pseudomonas aeruginosa proteins with EAL or GGDEF domains that regulates the c-di-GMP level. In agreement with previous reports for other bacteria, we observed that B. bronchiseptica is able to form biofilm and reduce its motility only when GGDEF domain protein is expressed. Moreover we identify a GGDEF domain protein (BB3576) with diguanylate cyclase activity that participates in motility and biofilm regulation in B. bronchiseptica. These results demonstrate for the first time, to our knowledge, the presence of c-di-GMP regulatory signalling in B. bronchiseptica. PMID:23475948

  14. Bacterial Signal Transduction by Cyclic Di-GMP and Other Nucleotide Second Messengers

    PubMed Central

    Gründling, Angelika; Jenal, Urs; Ryan, Robert; Yildiz, Fitnat

    2015-01-01

    The first International Symposium on c-Di-GMP Signaling in Bacteria (22 to 25 March 2015, Harnack-Haus, Berlin, Germany) brought together 131 molecular microbiologists from 17 countries to discuss recent progress in our knowledge of bacterial nucleotide second messenger signaling. While the focus was on signal input, synthesis, degradation, and the striking diversity of the modes of action of the current second messenger paradigm, i.e., cyclic di-GMP (c-di-GMP), “classics” like cAMP and (p)ppGpp were also presented, in novel facets, and more recent “newcomers,” such as c-di-AMP and c-AMP-GMP, made an impressive appearance. A number of clear trends emerged during the 30 talks, on the 71 posters, and in the lively discussions, including (i) c-di-GMP control of the activities of various ATPases and phosphorylation cascades, (ii) extensive cross talk between c-di-GMP and other nucleotide second messenger signaling pathways, and (iii) a stunning number of novel effectors for nucleotide second messengers that surprisingly include some long-known master regulators of developmental pathways. Overall, the conference made it amply clear that second messenger signaling is currently one of the most dynamic fields within molecular microbiology, with major impacts in research fields ranging from human health to microbial ecology. PMID:26055111

  15. Bacterial Signal Transduction by Cyclic Di-GMP and Other Nucleotide Second Messengers.

    PubMed

    Hengge, Regine; Gründling, Angelika; Jenal, Urs; Ryan, Robert; Yildiz, Fitnat

    2016-01-01

    The first International Symposium on c-Di-GMP Signaling in Bacteria (22 to 25 March 2015, Harnack-Haus, Berlin, Germany)brought together 131 molecular microbiologists from 17 countries to discuss recent progress in our knowledge of bacterial nucleotide second messenger signaling. While the focus was on signal input, synthesis, degradation, and the striking diversity of the modes of action of the current second messenger paradigm, i.e., cyclic di-GMP (c-di-GMP), “classics” like cAMP and (p)ppGpp were also presented, in novel facets, and more recent “newcomers,” such as c-di-AMP and c-AMP-GMP, made an impressive appearance. A number of clear trends emerged during the 30 talks, on the 71 posters, and in the lively discussions, including (i)c-di-GMP control of the activities of various ATPases and phosphorylation cascades, (ii) extensive cross talk between c-di-GMP and other nucleotide second messenger signaling pathways, and (iii) a stunning number of novel effectors for nucleotide second messengers that surprisingly include some long-known master regulators of developmental pathways. Overall, the conference made it amply clear that second messenger signaling is currently one of the most dynamic fields within molecular microbiology,with major impacts in research fields ranging from human health to microbial ecology. PMID:26055111

  16. The Nitric Oxide/Cyclic GMP Pathway in Organ Transplantation: Critical Role in Successful Lung Preservation

    NASA Astrophysics Data System (ADS)

    Pinsky, David J.; Naka, Yoshifumi; Chowdhury, Nepal C.; Liao, Hui; Oz, Mehmet C.; Michler, Robert E.; Kubaszewski, Eugeniusz; Malinski, Tadeusz; Stern, David M.

    1994-12-01

    Reestablishment of vascular homeostasis following ex vivo preservation is a critical determinant of successful organ transplantation. Because the nitric oxide (NO) pathway modulates pulmonary vascular tone and leukocyte/endothelial interactions, we hypothesized that reactive oxygen intermediates would lead to decreased NO (and hence cGMP) levels following pulmonary reperfusion, leading to increased pulmonary vascular resistance and leukostasis. Using an orthotopic rat model of lung transplantation, a porphyrinic microsensor was used to make direct in vivo measurements of pulmonary NO. NO levels measured at the surface of the transplanted lung plummeted immediately upon reperfusion, with levels moderately increased by topical application of superoxide dismutase. Because cGMP levels declined in preserved lungs after reperfusion, this led us to buttress the NO pathway by adding a membrane-permeant cGMP analog to the preservation solution. Compared with grafts stored in its absence, grafts stored with supplemental 8-Br-cGMP and evaluated 30 min after reperfusion demonstrated lower pulmonary vascular resistances with increased graft blood flow, improved arterial oxygenation, decreased neutrophil infiltration, and improved recipient survival. These beneficial effects were dose dependent, mimicked by the type V phosphodiesterase inhibitor 2-o-propoxyphenyl-8-azapurin-6-one, and inhibited by a cGMP-dependent protein kinase antagonist, the R isomer of 8-(4-chlorophenylthio)guanosine 3',5'-cyclic monophosphorothioate. Augmenting the NO pathway at the level of cGMP improves graft function and recipient survival following lung transplantation.

  17. A Cyclic GMP-Dependent K+ Channel in the Blastocladiomycete Fungus Blastocladiella emersonii

    PubMed Central

    Avelar, Gabriela Mól; Glaser, Talita; Leonard, Guy; Richards, Thomas A.; Ulrich, Henning

    2015-01-01

    Phototaxis in flagellated zoospores of the aquatic fungus Blastocladiella emersonii depends on a novel photosensor, Blastocladiella emersonii GC1 (BeGC1), comprising a type I (microbial) rhodopsin fused to a guanylyl cyclase catalytic domain, that produces the conserved second messenger cyclic GMP (cGMP). The rapid and transient increase in cGMP levels during the exposure of zoospores to green light was shown to be necessary for phototaxis and dependent on both rhodopsin function and guanylyl cyclase activity. It is noteworthy that BeGC1 was localized to the zoospore eyespot apparatus, in agreement with its role in the phototactic response. A putative cyclic nucleotide-gated channel (BeCNG1) was also identified in the genome of the fungus and was implicated in flagellar beating via the action of a specific inhibitor (l-cis-diltiazem) that compromised zoospore motility. Here we show that B. emersonii expresses a K+ channel that is activated by cGMP. The use of specific channel inhibitors confirmed the activation of the channel by cGMP and its K+ selectivity. These characteristics are consistent with the function of an ion channel encoded by the BeCNG1 gene. Other blastocladiomycete fungi, such as Allomyces macrogynus and Catenaria anguillulae, possess genes encoding a similar K+ channel and the rhodopsin–guanylyl cyclase fusion protein, while the genes encoding both these proteins are absent in nonflagellated fungi. The presence of these genes as a pair seems to be an exclusive feature of blastocladiomycete fungi. Taken together, these data demonstrate that the B. emersonii cGMP-activated K+ channel is involved in the control of zoospore motility, most probably participating in the cGMP-signaling pathway for the phototactic response of the fungus. PMID:26150416

  18. A Cyclic GMP-Dependent K+ Channel in the Blastocladiomycete Fungus Blastocladiella emersonii.

    PubMed

    Avelar, Gabriela Mól; Glaser, Talita; Leonard, Guy; Richards, Thomas A; Ulrich, Henning; Gomes, Suely L

    2015-09-01

    Phototaxis in flagellated zoospores of the aquatic fungus Blastocladiella emersonii depends on a novel photosensor, Blastocladiella emersonii GC1 (BeGC1), comprising a type I (microbial) rhodopsin fused to a guanylyl cyclase catalytic domain, that produces the conserved second messenger cyclic GMP (cGMP). The rapid and transient increase in cGMP levels during the exposure of zoospores to green light was shown to be necessary for phototaxis and dependent on both rhodopsin function and guanylyl cyclase activity. It is noteworthy that BeGC1 was localized to the zoospore eyespot apparatus, in agreement with its role in the phototactic response. A putative cyclic nucleotide-gated channel (BeCNG1) was also identified in the genome of the fungus and was implicated in flagellar beating via the action of a specific inhibitor (l-cis-diltiazem) that compromised zoospore motility. Here we show that B. emersonii expresses a K(+) channel that is activated by cGMP. The use of specific channel inhibitors confirmed the activation of the channel by cGMP and its K(+) selectivity. These characteristics are consistent with the function of an ion channel encoded by the BeCNG1 gene. Other blastocladiomycete fungi, such as Allomyces macrogynus and Catenaria anguillulae, possess genes encoding a similar K(+) channel and the rhodopsin-guanylyl cyclase fusion protein, while the genes encoding both these proteins are absent in nonflagellated fungi. The presence of these genes as a pair seems to be an exclusive feature of blastocladiomycete fungi. Taken together, these data demonstrate that the B. emersonii cGMP-activated K(+) channel is involved in the control of zoospore motility, most probably participating in the cGMP-signaling pathway for the phototactic response of the fungus. PMID:26150416

  19. Cyclic GMP and protein kinase-G in myocardial ischaemia-reperfusion: opportunities and obstacles for survival signaling

    PubMed Central

    Burley, D S; Ferdinandy, P; Baxter, G F

    2007-01-01

    It is clear that multiple signalling pathways regulate the critical balance between cell death and survival in myocardial ischaemia–reperfusion. Recent attention has focused on the activation of survival or salvage kinases, particularly during reperfusion, as a common mechanism of many cardioprotective interventions. The phosphatidyl inositol 3′-hydroxy kinase/Akt complex (PI3K/Akt) and p42/p44 mitogen-activated protein kinase cascades have been widely promoted in this respect but the cyclic guanosine 3′,5′-monophosphate/cGMP-dependent protein kinase (cGMP/PKG) signal transduction cassette has been less systematically investigated as a survival cascade. We propose that activation of the cGMP/PKG signalling pathway, following activation of soluble or particulate guanylate cyclases, may play a pivotal role in survival signalling in ischaemia–reperfusion, especially in the classical preconditioning, delayed preconditioning and postconditioning paradigms. The resurgence of interest in reperfusion injury, largely as a result of postconditioning-related research, has confirmed that the cGMP/PKG pathway is a pivotal salvage mechanism in reperfusion. Numerous studies suggest that the infarct-limiting effects of preconditioning and postconditioning, exogenously donated nitric oxide (NO), natriuretic peptides, phosphodiesterase inhibitors, and other diverse drugs and mediators such as HMG co-A reductase inhibitors (statins), Rho-kinase inhibitors and adrenomedullin, whether given before and during ischaemia, or specifically at the onset of reperfusion, may be mediated by activation or enhancement of the cGMP pathway, either directly or indirectly via endogenous NO generation downstream of PI3K/Akt. Putative mechanisms of protection include PKG regulation of Ca2+ homeostasis through the modification of sarcoplasmic reticulum Ca2+ uptake mechanisms, and PKG-induced opening of ATP-sensitive K+ channels during ischaemia and/or reperfusion. At present, significant

  20. Dual mechanism of the relaxing effect of nicorandil by stimulation of cyclic GMP formation and by hyperpolarization.

    PubMed

    Kukovetz, W R; Holzmann, S; Braida, C; Pöch, G

    1991-04-01

    In addition to previous results from our laboratory showing that nicorandil relaxed vascular smooth muscle by increasing cyclic GMP levels, it was shown to activate K-channels as well, an effect that also leads to relaxation. In the present study, we attempted to differentiate quantitatively between these two effects in isolated bovine coronary artery strips with simultaneous isotonic measurement of length and radioimmunoassay (RIA) determination of cyclic GMP. When the strips were contracted by the thromboxane A2 analogue U 46619 (1 microM) with 10 microM methylene blue added, nicorandil produced 30-50% relaxation without significant changes in cyclic GMP. When in U 46619-contracted strips the hyperpolarizing effect of nicorandil was suppressed by increasing extracellular K+ to 80.4 mM (30-fold), nicorandil caused only 52% relaxation, whereas cyclic GMP increases were not significantly suppressed. Quantitative separation of both mechanisms of relaxation by nicorandil was further achieved through calculation of the cyclic GMP-mediated component from a correlation between increases in cyclic GMP and percentage of relaxation as produced by nicorandil under conditions of inhibited hyperpolarization, i.e., in strips contracted with 1 microM U 46619 or 26.8 mM K+ (10-fold) and exposed to either 30-fold K+ or 10 mM Ba2+. Under both conditions, similar correlations between cyclic GMP and relaxation were obtained. Because U 46619, in addition to its contractile effect, partially antagonized the relaxation by nicorandil without changing cyclic GMP, the correlation was corrected for this effect and indicated a participation of cyclic GMP in the overall relaxant response of approximately 30-40% at low and less than or equal to 80-90% at high concentrations of nicorandil. PMID:1711631

  1. Expression and Genetic Activation of Cyclic Di-GMP-Specific Phosphodiesterases in Escherichia coli

    PubMed Central

    Reinders, Alberto; Hee, Chee-Seng; Ozaki, Shogo; Mazur, Adam; Boehm, Alex; Schirmer, Tilman

    2015-01-01

    ABSTRACT Intracellular levels of the bacterial second messenger cyclic di-GMP (c-di-GMP) are controlled by antagonistic activities of diguanylate cyclases and phosphodiesterases. The phosphodiesterase PdeH was identified as a key regulator of motility in Escherichia coli, while deletions of any of the other 12 genes encoding potential phosphodiesterases did not interfere with motility. To analyze the roles of E. coli phosphodiesterases, we demonstrated that most of these proteins are expressed under laboratory conditions. We next isolated suppressor mutations in six phosphodiesterase genes, which reinstate motility in the absence of PdeH by reducing cellular levels of c-di-GMP. Expression of all mutant alleles also led to a reduction of biofilm formation. Thus, all of these proteins are bona fide phosphodiesterases that are capable of interfering with different c-di-GMP-responsive output systems by affecting the global c-di-GMP pool. This argues that E. coli possesses several phosphodiesterases that are inactive under laboratory conditions because they lack appropriate input signals. Finally, one of these phosphodiesterases, PdeL, was studied in more detail. We demonstrated that this protein acts as a transcription factor to control its own expression. Motile suppressor alleles led to a strong increase of PdeL activity and elevated pdeL transcription, suggesting that enzymatic activity and transcriptional control are coupled. In agreement with this, we showed that overall cellular levels of c-di-GMP control pdeL transcription and that this control depends on PdeL itself. We thus propose that PdeL acts both as an enzyme and as a c-di-GMP sensor to couple transcriptional activity to the c-di-GMP status of the cell. IMPORTANCE Most bacteria possess multiple diguanylate cyclases and phosphodiesterases. Genetic studies have proposed that these enzymes show signaling specificity by contributing to distinct cellular processes without much cross talk. Thus, spatial

  2. Cyclic di-GMP stimulates biofilm formation and inhibits virulence of Francisella novicida.

    PubMed

    Zogaj, Xhavit; Wyatt, Geoff C; Klose, Karl E

    2012-12-01

    Francisella tularensis is a gram-negative bacterium that is highly virulent in humans, causing the disease tularemia. F. novicida is closely related to F. tularensis and exhibits high virulence in mice, but it is avirulent in healthy humans. An F. novicida-specific gene cluster (FTN0451 to FTN0456) encodes two proteins with diguanylate cyclase (DGC) and phosphodiesterase (PDE) domains that modulate the synthesis and degradation of cyclic di-GMP (cdGMP). No DGC- or PDE-encoding protein genes are present in the F. tularensis genome. F. novicida strains lacking either the two DGC/PDE genes (cdgA and cdgB) or the entire gene cluster (strain KKF457) are defective for biofilm formation. In addition, expression of CdgB or a heterologous DGC in strain KKF457 stimulated F. novicida biofilms, even in a strain lacking the biofilm regulator QseB. Genetic evidence suggests that CdgA is predominantly a PDE, while CdgB is predominantly a DGC. The F. novicida qseB strain showed reduced cdgA and cdgB transcript levels, demonstrating an F. novicida biofilm signaling cascade that controls cdGMP levels. Interestingly, KKF457 with elevated cdGMP levels exhibited a decrease in intramacrophage replication and virulence in mice, as well as increased growth yields and biofilm formation in vitro. Microarray analyses revealed that cdGMP stimulated the transcription of a chitinase (ChiB) known to contribute to biofilm formation. Our results indicate that elevated cdGMP in F. novicida stimulates biofilm formation and inhibits virulence. We suggest that differences in human virulence between F. novicida and F. tularensis may be due in part to the absence of cdGMP signaling in F. tularensis. PMID:22988021

  3. Cyclic Di-GMP Stimulates Biofilm Formation and Inhibits Virulence of Francisella novicida

    PubMed Central

    Zogaj, Xhavit; Wyatt, Geoff C.

    2012-01-01

    Francisella tularensis is a Gram-negative bacterium that is highly virulent in humans, causing the disease tularemia. F. novicida is closely related to F. tularensis and exhibits high virulence in mice, but it is avirulent in healthy humans. An F. novicida-specific gene cluster (FTN0451 to FTN0456) encodes two proteins with diguanylate cyclase (DGC) and phosphodiesterase (PDE) domains that modulate the synthesis and degradation of cyclic di-GMP (cdGMP). No DGC- or PDE-encoding protein genes are present in the F. tularensis genome. F. novicida strains lacking either the two DGC/PDE genes (cdgA and cdgB) or the entire gene cluster (strain KKF457) are defective for biofilm formation. In addition, expression of CdgB or a heterologous DGC in strain KKF457 stimulated F. novicida biofilms, even in a strain lacking the biofilm regulator QseB. Genetic evidence suggests that CdgA is predominantly a PDE, while CdgB is predominantly a DGC. The F. novicida qseB strain showed reduced cdgA and cdgB transcript levels, demonstrating an F. novicida biofilm signaling cascade that controls cdGMP levels. Interestingly, KKF457 with elevated cdGMP levels exhibited a decrease in intramacrophage replication and virulence in mice, as well as increased growth yields and biofilm formation in vitro. Microarray analyses revealed that cdGMP stimulated the transcription of a chitinase (ChiB) known to contribute to biofilm formation. Our results indicate that elevated cdGMP in F. novicida stimulates biofilm formation and inhibits virulence. We suggest that differences in human virulence between F. novicida and F. tularensis may be due in part to the absence of cdGMP signaling in F. tularensis. PMID:22988021

  4. Impaired microtubule function correctable by cyclic GMP and cholinergic agonists in the Chediak-Higashi syndrome.

    PubMed Central

    Oliver, J. M.

    1976-01-01

    The Chediak-Higashi (CH) syndrome of man and several animal species is characterized by the presence of abnormal giant granules in all granule-containing cells and by defects in chemotaxis and lysosomal degranulation during phagocytosis in polymorphonuclear leukocytes (PMNs). Since similar functional abnormalities have been reported in normal PMNs following exposure to colchicine and other agents that disrupt microtubles it was proposed that microtubule function may be impaired in the CH syndrome. The mobility of concanavalin A (con A)-receptor complexes on PMN membranes was used to test microtubule integrity. Normal PMNs showed a uniform distribution of membrane-bound con A. By contrast, con A was aggregated into surface caps on both colchicine-treated normal PMNs and untreated PMNs from mice and a patient with CH syndrome. This result is consistent with impaired microtubule function in the CH cells. The spontaneous capping response of CH PMNs was inhibited by cyclic GMP and by cholinergic agonists that can elevate cyclic GMP levels in neutrophils. This raised the possibility that the microtubule defect in CH cells may be correctable by treatments that increase cyclic GMP generation. Direct evidence for both the absence of microtubule assembly in con A-treated PMNs from the CH patient and for normal microtubule assembly in CH PMNs incubated with cyclic GMP and cholinergic agonists prior to con A treatment was obtained by electron microscopy. In addition, evidence for a direct relationship between the microtubule defect and the development of giant lysosomes in CH cells was obtained. Thus, CH fibroblasts grown in vitro developed abnormal lysosomes in the majority of cells. However, the same cells cultured in the presence of cholinergic agonists developed a majority of lysosomes that were morphologically normal at the level of the light microscope. Similarly, granule morphology appeared normal in peripheral blood leukocytes from mice treated chronically in vivo with

  5. A minimalist biosensor: Quantitation of cyclic di-GMP using the conformational change of a riboswitch aptamer

    PubMed Central

    Kellenberger, Colleen A; Sales-Lee, Jade; Pan, Yuchen; Gassaway, Madalee M; Herr, Amy E; Hammond, Ming C

    2015-01-01

    Cyclic di-GMP (c-di-GMP) is a second messenger that is important in regulating bacterial physiology and behavior, including motility and virulence. Many questions remain about the role and regulation of this signaling molecule, but current methods of detection are limited by either modest sensitivity or requirements for extensive sample purification. We have taken advantage of a natural, high affinity receptor of c-di-GMP, the Vc2 riboswitch aptamer, to develop a sensitive and rapid electrophoretic mobility shift assay (EMSA) for c-di-GMP quantitation that required minimal engineering of the RNA. PMID:26114964

  6. Involvement of platelet cyclic GMP but not cyclic AMP suppression in leukocyte-dependent platelet adhesion to endothelial cells induced by platelet-activating factor in vitro.

    PubMed Central

    Hirafuji, M.; Nezu, A.; Shinoda, H.; Minami, M.

    1996-01-01

    1. Incubation of endothelial cells with platelets in the absence or the presence of PAF (10 nM) markedly increased platelet cyclic AMP levels, which were significantly decreased by indomethacin (3 microM). Co-incubation of endothelial cells and platelets with polymorphonuclear leukocytes (PMNs) did not change the platelet cyclic AMP levels. 2. Incubation of endothelial cells with platelets in the absence of PAF increased platelet cyclic GMP levels, which were increased 3.5 fold by PAF. These cyclic GMP levels were significantly decreased by NG-nitro-L-arginine (100 microM), and completely by methylene blue (10 microM). When endothelial cells and platelets were co-incubated with PMNs, the cyclic GMP level in the cell mixture was 42.5 and 65.3% lower than that in endothelial cells and platelets without and with PAF stimulation, respectively. 3. PAF induced platelet adhesion to endothelial cells only when PMNs were present. Methylene blue dose-dependently potentiated the PMN-dependent platelet adhesion induced by PAF, although it had no effect in the absence of PMNs. 4. Sodium nitroprusside and 8-bromo cyclic GMP but not dibutyryl cyclic AMP significantly, although partially, inhibited the platelet adhesion. Inhibition of cyclic GMP-specific phosphodiesterase by zaprinast slightly inhibited the PMN-induced platelet adhesion and potentiated the inhibitory effect of 8-bromo cyclic GMP, while these drugs markedly inhibited the adhesion of platelet aggregates induced by PMN sonicates. 5. These results suggest that the impairment by activated PMNs of EDRF-induced platelet cyclic GMP formation is involved in part in the mechanism of PMN-dependent platelet adhesion to endothelial cells induced by PAF in vitro. The precise mechanism still remains to be clarified. PMID:8789382

  7. Role of nitric oxide and cyclic GMP signaling in melanocyte response to hypergravity

    NASA Astrophysics Data System (ADS)

    Ivanova, Krassimira; Lambers, Britta; Tsiockas, Wasiliki; Block, Ingrid; Gerzer, Rupert

    Nitric oxide (NO) has a prominent role in many (patho)physiological processes in the skin including erythema, inflammation, and cancerogenesis. The soluble guanylyl cyclase (sGC), a key transducer in NO signaling, catalyzes the formation of the second messenger guanosine 3´,5´-cyclic monophosphate (cyclic cGMP or cGMP). For human melanocytes, which are responsible for skin pigmentation by synthesizing the pigment melanin, it has been reported that the NO/sGC/cGMP pathway is involved in UVB-induced melanogenesis. Melanin acts as a scavenger for free radicals that may arise during metabolic stress. It may also act as a photosensitizer that generates active oxygen species upon UV irradiation, which may initiate hypopigmentary disorders (e.g., vitiligo) as well as UV-induced oncogene cell transformation. In addition, melanoma, a deadly skin cancer, which arises from transformed melanocytes, is characterized by a resistance to chemotherapy. In our studies we have shown that NO can induce perturbation of melanocyte-extracellular matrix component interactions, which may contribute to loss of melanocytes or melanoma metastasis. Such NO effects appear to be modulated partly via cGMP. Moreover, we found that different guanylyl cyclase isoforms are responsible for cGMP synthesis in melanocytic cells. Normal human melanocytes and nonmetastatic melanoma cells predominantly express sGC, which appears to be associated with melanogenesis, whereas absence of NO-sensitive GC, but up-regulated activities of the natriuretic peptide-sensitive membrane guanylyl cyclase isoforms were found in highly metastatic phenotypes. Due to the growing interest in the regulation of signaling activities in normal and transformed cells under altered gravity conditions, we have further investigated whether the NO/cGMP signaling is involved in melanocyte response to gravitational stress. We found that normal human melanocytes and non-metastatic melanoma cell lines, but not highly metastatic cells

  8. Effects of 8-bromo cyclic GMP and verapamil on depolarization-evoked Ca2+ signal and contraction in rat aorta.

    PubMed Central

    Salomone, S; Morel, N; Godfraind, T

    1995-01-01

    1. The pharmacological action of NO donors is usually attributed to a cellular rise in guanosine 3':5'-cyclic monophosphate (cyclic GMP), but this hypothesis is based only on indirect evidence. Therefore, we have studied the effects of cyclic GMP on Ca2+ movements and contraction in rat isolated endothelium-denuded aorta stimulated by KCl depolarizing solution using the permeant analogue 8-bromo cyclic GMP (BrcGMP). Isometric contraction and fura-2 Ca2+ signals were measured simultaneously in preparations treated with BrcGMP and with verapamil. The activation of calcium channels was estimated by measuring the quenching rate of the intracellular fura-2 signal by Mn2+ and by the depolarization-dependent influx of 45Ca2+. 2. Stimulation with 67 mM KCl-solution evoked an increase in cytosolic Ca2+ concentration ([Ca2+]cyt) and a contractile response which were inhibited by pretreatment with verapamil (0.1 microM) or BrcGMP (0.1-1 mM). However, the inhibition of the fura-2 Ca2+ signal was significantly higher with verapamil than with BrcGMP, whereas the contraction was inhibited to a similar extent. 3. When preparations were exposed to K(+)-depolarizing solution in which the calcium concentration was cumulatively increased, the related increase in fura-2 Ca2+ signal was barely affected by BrcGMP, whereas the contractile tension was strongly and significantly inhibited. 4. Cellular Ca2+ changes were also estimated with 45Ca2+. 45Ca2+ influx in resting preparations was significantly reduced by BrcGMP (0.1 mM) but not by verapamil (0.1 microM); 45Ca2+ influx in KCl-depolarized preparations was reduced by verapamil but was unaffected by BrcGMP.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7599942

  9. The cyclic nucleotide cGMP is involved in plant hormone signalling and alters phosphorylation of Arabidopsis thaliana root proteins

    PubMed Central

    Isner, Jean Charles; Nühse, Thomas; Maathuis, Frans J. M.

    2012-01-01

    The cyclic nucleotide cGMP has been shown to play important roles in plant development and responses to abiotic and biotic stress. Yet much controversy remains regarding the exact role of this second messenger. Progress in unravelling cGMP function in plants was hampered by laborious and time-consuming methodology to measure changes in cellular [cGMP] but the development of fluorescence-based reporters has removed this disadvantage. This study used the FlincG cGMP reporter to investigate potential interactions between phytohormone and cGMP signalling and found a rapid and significant effect of the hormones abscisic acid (ABA), auxin (IAA), and jasmonic acid (JA) on cytoplasmic cGMP levels. In contrast, brassinosteroids and cytokinin did not evoke a cGMP signal. The effects of ABA, IAA, and JA were apparent at external concentrations in the nanomolar range with EC50 values of around 1000, 300, and 0.03 nmoles for ABA, IAA, and JA respectively. To examine potential mechanisms for how hormone-induced cGMP signals are propagated, the role of protein phosphorylation was tested. A phosphoproteomics analysis on Arabidopsis thaliana root microsomal proteins in the absence and presence of membrane-permeable cGMP showed 15 proteins that rapidly (within minutes) changed in phosphorylation status. Out of these, nine were previously shown to also alter phosphorylation status in response to plant hormones, pointing to protein phosphorylation as a target for hormone-induced cGMP signalling. PMID:22345640

  10. Opposing actions of dibutyryl cyclic AMP and GMP on temperature in conscious guinea-pigs

    NASA Technical Reports Server (NTRS)

    Kandasamy, S. B.; Williaes, B. A.

    1983-01-01

    It is shown that the intracerebroventricular administration of dibutyryl cyclic AMP (Db-cAMP) induced hyperthermia in guinea pigs which was not mediated through prostaglandins or norepinephrine since a prostaglandin synthesis inhibitor and an alpha-adrenergic receptor blocking agent did not antagonize the hyperthermia. However, the hyperthermic response to Db-cAMP was attenuated by the central administration of a beta-adrenergic receptor antagonist, which indicates that cAMP may be involved, through beta-adrenergic receptors, in the central regulation of heat production and conservation. The central administration of Db-cGMP produced hypothermia which was not mediated via histamine H1 or H2 receptors and serotonin. The antagonism of hypothermia induced by Db-cGMP and acetylcholine + physostigmine by central administration of a cholinergic muscarine receptor antagonist and not by a cholinergic nicotinic receptor antagonist suggests that cholinoceptive neurons and endogenous cGMP may regulate heat loss through cholinergic muscarine receptors. It is concluded that these results indicate a regulatory role in thermoregulation provided by a balance between opposing actions of cAMP and cGMP in guinea pigs.

  11. Cyclic GMP Balance Is Critical for Malaria Parasite Transmission from the Mosquito to the Mammalian Host

    PubMed Central

    Lakshmanan, Viswanathan; Fishbaugher, Matthew E.; Morrison, Bob; Baldwin, Michael; Macarulay, Michael; Vaughan, Ashley M.; Mikolajczak, Sebastian A.

    2015-01-01

    ABSTRACT Transmission of malaria occurs during Anopheles mosquito vector blood meals, when Plasmodium sporozoites that have invaded the mosquito salivary glands are delivered to the mammalian host. Sporozoites display a unique form of motility that is essential for their movement across cellular host barriers and invasion of hepatocytes. While the molecular machinery powering motility and invasion is increasingly well defined, the signaling events that control these essential parasite activities have not been clearly delineated. Here, we identify a phosphodiesterase (PDEγ) in Plasmodium, a regulator of signaling through cyclic nucleotide second messengers. Reverse transcriptase PCR (RT-PCR) analysis and epitope tagging of endogenous PDEγ detected its expression in blood stages and sporozoites of Plasmodium yoelii. Deletion of PDEγ (pdeγ−) rendered sporozoites nonmotile, and they failed to invade the mosquito salivary glands. Consequently, PDEγ deletion completely blocked parasite transmission by mosquito bite. Strikingly, pdeγ− sporozoites showed dramatically elevated levels of cyclic GMP (cGMP), indicating that a perturbation in cyclic nucleotide balance is involved in the observed phenotypic defects. Transcriptome sequencing (RNA-Seq) analysis of pdeγ− sporozoites revealed reduced transcript abundance of genes that encode key components of the motility and invasion apparatus. Our data reveal a crucial role for PDEγ in maintaining the cyclic nucleotide balance in the malaria parasite sporozoite stage, which in turn is essential for parasite transmission from mosquito to mammal. PMID:25784701

  12. [Networks involving quorum sensing, cyclic-di-GMP and nitric oxide on biofilm production in bacteria].

    PubMed

    Ramírez-Mata, Alberto; Fernández-Domínguez, Ileana J; Nuñez-Reza, Karen J; Xiqui-Vázquez, María L; Baca, Beatriz E

    2014-01-01

    Bacterial biofilms are ubiquitous in nature, and their flexibility is derived in part from a complex extracellular matrix that can be made-to-order to cope with environmental demand. Although common developmental stages leading to biofilm formation have been described, an in-depth knowledge of genetic and signaling is required to understand biofilm formation. Bacteria detect changes in population density by quorum sensing and particular environmental conditions, using signals such as cyclic di-GMP or nitric oxide. The significance of understanding these signaling pathways lies in that they control a broad variety of functions such as biofilm formation, and motility, providing benefits to bacteria as regards host colonization, defense against competitors, and adaptation to changing environments. Due to the importance of these features, we here review the signaling network and regulatory connections among quorum sensing, c-di-GMP and nitric oxide involving biofilm formation. PMID:25444134

  13. Regulation of biofilm formation and cellular buoyancy through modulating intracellular cyclic di-GMP levels in engineered cyanobacteria.

    PubMed

    Agostoni, Marco; Waters, Christopher M; Montgomery, Beronda L

    2016-02-01

    The second messenger cyclic dimeric (3'→5') GMP (cyclic di-GMP or c-di-GMP) has been implicated in the transition between motile and sessile lifestyles in bacteria. In this study, we demonstrate that biofilm formation, cellular aggregation or flocculation, and cellular buoyancy are under the control of c-di-GMP in Synechocystis sp. PCC 6803 (Synechocystis) and Fremyella diplosiphon. Synechocystis is a unicellular cyanobacterium and displays lower levels of c-di-GMP; F. diplosiphon is filamentous and displays higher intracellular c-di-GMP levels. We transformed Synechocystis and F. diplosiphon with a plasmid for constitutive expression of genes encoding diguanylate cylase (DGC) and phosphodiesterase (PDE) proteins from Vibrio cholerae or Escherichia coli, respectively. These engineered strains allowed us to modulate intracellular c-di-GMP levels. Biofilm formation and cellular deposition were induced in the DGC-expressing Synechocystis strain which exhibited high intracellular levels of c-di-GMP; whereas strains expressing PDE in Synechocystis and F. diplosiphon to drive low intracellular levels of c-di-GMP exhibited enhanced cellular buoyancy. In addition, the PDE-expressing F. diplosiphon strain showed elevated chlorophyll levels. These results imply roles for coordinating c-di-GMP homeostasis in regulating native cyanobacterial phenotypes. Engineering exogenous DGC or PDE proteins to regulate intracellular c-di-GMP levels represents an effective tool for uncovering cryptic phenotypes or modulating phenotypes in cyanobacteria for practical applications in biotechnology applicable in photobioreactors and in green biotechnologies, such as energy-efficient harvesting of cellular biomass or the treatment of metal-containing wastewaters. PMID:26192200

  14. Cyclic Di-GMP-Regulated Periplasmic Proteolysis of a Pseudomonas aeruginosa Type Vb Secretion System Substrate

    PubMed Central

    Cooley, Richard B.; Smith, T. Jarrod; Leung, Wilfred; Tierney, Valerie; Borlee, Bradley R.; O'Toole, George A.

    2015-01-01

    ABSTRACT We previously identified a second-messenger-regulated signaling system in the environmental bacterium Pseudomonas fluorescens which controls biofilm formation in response to levels of environmental inorganic phosphate. This system contains the transmembrane cyclic di-GMP (c-di-GMP) receptor LapD and the periplasmic protease LapG. LapD regulates LapG and controls the ability of this protease to process a large cell surface adhesin protein, LapA. While LapDG orthologs can be identified in diverse bacteria, predictions of LapG substrates are sparse. Notably, the opportunistic pathogen Pseudomonas aeruginosa harbors LapDG orthologs, but neither the substrate of LapG nor any associated secretion machinery has been identified to date. Here, we identified P. aeruginosa CdrA, a protein known to mediate cell-cell aggregation and biofilm maturation, as a substrate of LapG. We also demonstrated LapDG to be a minimal system sufficient to control CdrA localization in response to changes in the intracellular concentration of c-di-GMP. Our work establishes this biofilm signaling node as a regulator of a type Vb secretion system substrate in a clinically important pathogen. IMPORTANCE Here, the biological relevance of a conserved yet orphan signaling system in the opportunistic pathogen Pseudomonas aeruginosa is revealed. In particular, we identified the adhesin CdrA, the cargo of a two-partner secretion system, as a substrate of a periplasmic protease whose activity is controlled by intracellular c-di-GMP levels and a corresponding transmembrane receptor via an inside-out signaling mechanism. The data indicate a posttranslational control mechanism of CdrA via c-di-GMP, in addition to its established transcriptional regulation via the same second messenger. PMID:26100041

  15. Mangiferin Prevents Guinea Pig Tracheal Contraction via Activation of the Nitric Oxide-Cyclic GMP Pathway

    PubMed Central

    Vieira, Aline B.; Coelho, Luciana P.; Insuela, Daniella B. R.; Carvalho, Vinicius F.; dos Santos, Marcelo H.; Silva, Patricia MR.; Martins, Marco A.

    2013-01-01

    Previous studies have described the antispasmodic effect of mangiferin, a natural glucoside xanthone (2-C-β-Dgluco-pyranosyl-1,3,6,7-tetrahydroxyxanthone) that is present in mango trees and other plants, but its mechanism of action remains unknown. The aim of this study was to examine the potential contribution of the nitric oxide-cyclic GMP pathway to the antispasmodic effect of mangiferin on isolated tracheal rings preparations. The functional effect of mangiferin on allergic and non-allergic contraction of guinea pig tracheal rings was assessed in conventional organ baths. Cultured tracheal rings were exposed to mangiferin or vehicle, and nitric oxide synthase (NOS) 3 and cyclic GMP (cGMP) levels were quantified using western blotting and enzyme immunoassays, respectively. Mangiferin (0.1–10 µM) inhibited tracheal contractions induced by distinct stimuli, such as allergen, histamine, 5-hydroxytryptamine or carbachol, in a concentration-dependent manner. Mangiferin also caused marked relaxation of tracheal rings that were precontracted by carbachol, suggesting that it has both anti-contraction and relaxant properties that are prevented by removing the epithelium. The effect of mangiferin was inhibited by the nitric oxide synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME) (100 µM), and the soluble guanylate cyclase inhibitor, 1H-[1], [2], [4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (10 µM), but not the adenylate cyclase inhibitor, 9-(tetrahydro-2-furyl)adenine (SQ22536) (100 µM). The antispasmodic effect of mangiferin was also sensitive to K+ channel blockers, such as tetraethylammonium (TEA), glibenclamide and apamin. Furthermore, mangiferin inhibited Ca2+-induced contractions in K+ (60 mM)-depolarised tracheal rings preparations. In addition, mangiferin increased NOS3 protein levels and cGMP intracellular levels in cultured tracheal rings. Finally, mangiferin-induced increase in cGMP levels was abrogated by co-incubation with either ODQ or L

  16. Diffusion coefficient of cyclic GMP in salamander rod outer segments estimated with two fluorescent probes.

    PubMed Central

    Olson, A; Pugh, E N

    1993-01-01

    Experiments have demonstrated that single photoisomerizations in amphibian and primate rods can cause the suppression of 3-5% of the dark circulating current at the response peak (Baylor, D. A., T. D. Lamb, and K. W. Yau. 1979. J. Physiol. (Lond.). 288:613-634; Baylor, D. A., B. J. Nunn, and J. L. Schnapf. 1984. J. Physiol. (Lond.). 357:575-607). These results indicate that the change in [cGMP] effected by a single isomerization must spread longitudinally over at least the corresponding fractional length of the outer segment. The effective longitudinal diffusion coefficient, Dx, of cGMP is thus an important determinant of rod sensitivity. We report here measurements of the effective longitudinal diffusion coefficients, Dx, of two fluorescently labeled molecules: 5/6-carboxyfluorescein and 8-(fluoresceinyl)thioguanosine 3',5'-cyclic monophosphate, introduced into detached outer segments via whole-cell patch electrodes. For these compounds, the average time for equilibration of the entire outer segment with the patch pipette was approximately 6 min. Fluorescence images of rods were analyzed with a one-dimensional diffusion model that included limitations on transfer between the electrode and outer segment and the effects of intracellular binding of the dyes. The analyses yielded estimates of Dx of 1.9 and 1.0 microns 2.s-1 for the two dyes. It is shown that these results place an upper limit on Dx for cGMP of 11 microns2.s-1. The actual value of Dx for cGMP in the rod will depend on the degree of intracellular binding of cGMP. Estimates of the effective buffering power for cGMP in the rod at rest range from two to six (Lamb and Pugh, 1992; Cote and Brunnock, 1993). When combined with these estimates, our results predict that for cGMP itself, Dx falls within the range of 1.4-5.5 microns 2.s-1. Images FIGURE 5 FIGURE 6 PMID:8241412

  17. Involvement of cyclic GMP in phytochrome-controlled flowering of Pharbitis nil.

    PubMed

    Szmidt-Jaworska, Adriana; Jaworski, Krzysztof; Kopcewicz, Jan

    2008-05-26

    Light is one of the most important environmental factors influencing the induction of flowering in plants. Light is absorbed by specific photoreceptors--the phytochromes and cryptochromes system--which fulfil a sensory and a regulatory function in the process. The absorption of light by phytochromes initiates a cascade of related biochemical events in responsive cells, and subsequently changes plant growth and development. Induction of flowering is controlled by several paths. One is triggered by the guanosine-3':5'-cyclic monophosphate (cGMP) level. Thus, the aim of our study was to investigate the role of cGMP in phytochrome-controlled flowering. It is best to conduct such research on short-day plants because the photoperiodic reactions of only these plants are totally unequivocal. The most commonly used plant is the model short-day plant Pharbitis nil. The seedlings of P. nil were cultivated under special photoperiodic conditions: 72-h-long darkness, 24-h-long white light with low intensity and 24-h-long inductive night. Such light conditions cause a degradation of the light-labile phytochrome. Far red (FR) treatment before night causes inactivation of the remaining light-stable phytochrome. During the 24-h-long inductive darkness period, the total amount of cGMP in cotyledons underwent fluctuations, with maxima at the 4th, 8th and 14th hours. When plants were treated with FR before the long night, fluctuations were not observed. A red light pulse given after FR treatment could reverse the effect induced by FR, and the oscillation in the cGMP level was observed again. Because the intracellular level of cGMP is controlled by the opposite action of guanylyl cyclases (GCs) and phosphodiesterases (PDEs), we first tested whether accumulation of the nucleotide in P. nil tissue may be changed after treatment with a GC stimulator or PDE inhibitor. Accumulation of the nucleotide in P. nil cotyledons treated with a stimulator of cGMP synthesis (sodium nitroprusside) was

  18. Identification of a cyclic-di-GMP-modulating response regulator that impacts biofilm formation in a model sulfate reducing bacterium

    PubMed Central

    Rajeev, Lara; Luning, Eric G.; Altenburg, Sara; Zane, Grant M.; Baidoo, Edward E. K.; Catena, Michela; Keasling, Jay D.; Wall, Judy D.; Fields, Matthew W.; Mukhopadhyay, Aindrila

    2014-01-01

    We surveyed the eight putative cyclic-di-GMP-modulating response regulators (RRs) in Desulfovibrio vulgaris Hildenborough that are predicted to function via two-component signaling. Using purified proteins, we examined cyclic-di-GMP (c-di-GMP) production or turnover in vitro of all eight proteins. The two RRs containing only GGDEF domains (DVU2067, DVU0636) demonstrated c-di-GMP production activity in vitro. Of the remaining proteins, three RRs with HD-GYP domains (DVU0722, DVUA0086, and DVU2933) were confirmed to be Mn2+-dependent phosphodiesterases (PDEs) in vitro and converted c-di-GMP to its linear form, pGpG. DVU0408, containing both c-di-GMP production (GGDEF) and degradation domains (EAL), showed c-di-GMP turnover activity in vitro also with production of pGpG. No c-di-GMP related activity could be assigned to the RR DVU0330, containing a metal-dependent phosphohydrolase HD-OD domain, or to the HD-GYP domain RR, DVU1181. Studies included examining the impact of overexpressed cyclic-di-GMP-modulating RRs in the heterologous host E. coli and led to the identification of one RR, DVU0636, with increased cellulose production. Evaluation of a transposon mutant in DVU0636 indicated that the strain was impaired in biofilm formation and demonstrated an altered carbohydrate:protein ratio relative to the D. vulgaris wild type biofilms. However, grown in liquid lactate/sulfate medium, the DVU0636 transposon mutant showed no growth impairment relative to the wild-type strain. Among the eight candidates, only the transposon disruption mutant in the DVU2067 RR presented a growth defect in liquid culture. Our results indicate that, of the two diguanylate cyclases (DGCs) that function as part of two-component signaling, DVU0636 plays an important role in biofilm formation while the function of DVU2067 has pertinence in planktonic growth. PMID:25120537

  19. Bronchodilatation in vivo by carbon monoxide, a cyclic GMP related messenger

    PubMed Central

    Cardell, Lars-Olaf; Ueki, Iris F; Stjärne, Pär; Agusti, Carlos; Takeyama, Kiyoshi; Lindén, Anders; Nadel, Jay A

    1998-01-01

    Recent studies suggest that gaseous carbon monoxide (CO) is involved in neurotransmission and that this molecule also is an important vasodilator in vivo. In the present study we evaluated the effect of inhaled CO on guinea-pig airway smooth muscle tone. The mechanisms involved were characterized by use of a cyclic GMP antagonist, Rp-8Br-cyclic GMPS, and a nitric oxide synthase inhibitor, L-NAME. Anaesthetized, ventilated guinea-pigs were given a bolus injection of histamine (0.12 mg kg−1, i.v.), followed by a continuous infusion of histamine (0.30 μg kg−1 min−1) to increase total pulmonary resistance (RL). Subsequent exposure to 7, 15 or 30 breaths of CO (100%), resulted in a dose-dependent inhibition of the bronchoconstriction. In the highest dose tested (30 breaths), CO inhibited 80% of the histamine-induced increase in RL. In separate experiments, animals receiving histamine infusions followed by 30 breaths of CO, were pretreated with Rp-8Br-cyclic GMPS (0.05 mg kg−1). This pretreatment abolished >60% of the CO-induced reduction in RL, but it had no effect on the bronchodilator response induced by salbutamol. In another set of experiments animals were pretreated with L-NAME (1.60 mg kg−1). In contrast to the Rp-8Br-cyclic GMPS pretreatment, the pretreatment with L-NAME did not affect the CO-induced reduction in RL. The present findings indicate that CO causes bronchodilatation in vivo via cyclic GMP. PMID:9720774

  20. Structure of STING bound to c-di-GMP Reveals the Mechanism of Cyclic Dinucleotide Recognition by the Immune System

    PubMed Central

    Shu, Chang; Yi, Guanghui; Watts, Tylan; Kao, C. Cheng; Li, Pingwei

    2012-01-01

    STING, stimulator of interferon genes, is an innate immune sensor of cyclic dinucleotides that regulates the induction of type I interferons. STING C-terminal domain forms a V-shaped dimer and binds a c-di-GMP molecule at the dimer interface through direct and solvent-mediated hydrogen bonds. The guanine bases of c-di-GMP stack against the phenolic rings of a conserved tyrosine residue. Mutations at the c-di-GMP binding surface reduce nucleotide binding and affect signaling. PMID:22728658

  1. Systematic Identification of Cyclic-di-GMP Binding Proteins in Vibrio cholerae Reveals a Novel Class of Cyclic-di-GMP-Binding ATPases Associated with Type II Secretion Systems.

    PubMed

    Roelofs, Kevin G; Jones, Christopher J; Helman, Sarah R; Shang, Xiaoran; Orr, Mona W; Goodson, Jonathan R; Galperin, Michael Y; Yildiz, Fitnat H; Lee, Vincent T

    2015-10-01

    Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule that regulates a variety of complex processes through a diverse set of c-di-GMP receptor proteins. We have utilized a systematic approach to identify c-di-GMP receptors from the pathogen Vibrio cholerae using the Differential Radial Capillary Action of Ligand Assay (DRaCALA). The DRaCALA screen identified a majority of known c-di-GMP binding proteins in V. cholerae and revealed a novel c-di-GMP binding protein, MshE (VC0405), an ATPase associated with the mannose sensitive hemagglutinin (MSHA) type IV pilus. The known c-di-GMP binding proteins identified by DRaCALA include diguanylate cyclases, phosphodiesterases, PilZ domain proteins and transcription factors VpsT and VpsR, indicating that the DRaCALA-based screen of open reading frame libraries is a feasible approach to uncover novel receptors of small molecule ligands. Since MshE lacks the canonical c-di-GMP-binding motifs, a truncation analysis was utilized to locate the c-di-GMP binding activity to the N-terminal T2SSE_N domain. Alignment of MshE homologs revealed candidate conserved residues responsible for c-di-GMP binding. Site-directed mutagenesis of these candidate residues revealed that the Arg9 residue is required for c-di-GMP binding. The ability of c-di-GMP binding to MshE to regulate MSHA dependent processes was evaluated. The R9A allele, in contrast to the wild type MshE, was unable to complement the ΔmshE mutant for the production of extracellular MshA to the cell surface, reduction in flagella swimming motility, attachment to surfaces and formation of biofilms. Testing homologs of MshE for binding to c-di-GMP identified the type II secretion ATPase of Pseudomonas aeruginosa (PA14_29490) as a c-di-GMP receptor, indicating that type II secretion and type IV pili are both regulated by c-di-GMP. PMID:26506097

  2. Systematic Identification of Cyclic-di-GMP Binding Proteins in Vibrio cholerae Reveals a Novel Class of Cyclic-di-GMP-Binding ATPases Associated with Type II Secretion Systems

    PubMed Central

    Shang, Xiaoran; Orr, Mona W.; Goodson, Jonathan R.; Galperin, Michael Y.; Yildiz, Fitnat H.; Lee, Vincent T.

    2015-01-01

    Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule that regulates a variety of complex processes through a diverse set of c-di-GMP receptor proteins. We have utilized a systematic approach to identify c-di-GMP receptors from the pathogen Vibrio cholerae using the Differential Radial Capillary Action of Ligand Assay (DRaCALA). The DRaCALA screen identified a majority of known c-di-GMP binding proteins in V. cholerae and revealed a novel c-di-GMP binding protein, MshE (VC0405), an ATPase associated with the mannose sensitive hemagglutinin (MSHA) type IV pilus. The known c-di-GMP binding proteins identified by DRaCALA include diguanylate cyclases, phosphodiesterases, PilZ domain proteins and transcription factors VpsT and VpsR, indicating that the DRaCALA-based screen of open reading frame libraries is a feasible approach to uncover novel receptors of small molecule ligands. Since MshE lacks the canonical c-di-GMP-binding motifs, a truncation analysis was utilized to locate the c-di-GMP binding activity to the N-terminal T2SSE_N domain. Alignment of MshE homologs revealed candidate conserved residues responsible for c-di-GMP binding. Site-directed mutagenesis of these candidate residues revealed that the Arg9 residue is required for c-di-GMP binding. The ability of c-di-GMP binding to MshE to regulate MSHA dependent processes was evaluated. The R9A allele, in contrast to the wild type MshE, was unable to complement the ΔmshE mutant for the production of extracellular MshA to the cell surface, reduction in flagella swimming motility, attachment to surfaces and formation of biofilms. Testing homologs of MshE for binding to c-di-GMP identified the type II secretion ATPase of Pseudomonas aeruginosa (PA14_29490) as a c-di-GMP receptor, indicating that type II secretion and type IV pili are both regulated by c-di-GMP. PMID:26506097

  3. Systematic analysis of cyclic di-GMP signaling enzymes and their role in biofilm formation and virulence in Yersinia pestis

    PubMed Central

    Bobrov, Alexander G.; Kirillina, Olga; Ryjenkov, Dmitri A.; Waters, Christopher M.; Price, Paul A.; Fetherston, Jacqueline D.; Mack, Dietrich; Goldman, William E.; Gomelsky, Mark; Perry, Robert D.

    2011-01-01

    Cyclic di-GMP (c-di-GMP) is a signaling molecule that governs the transition between planktonic and biofilm states. Previously we showed that the diguanylate cyclase HmsT and the putative c-di-GMP phosphodiesterase HmsP inversely regulate biofilm formation through control of HmsHFRS-dependent poly-β-1,6-N-acetylglucosamine synthesis. Here, we systematically examine the functionality of the genes encoding putative c-di-GMP metabolic enzymes in Yersinia pestis. We determine that, in addition to hmsT and hmsP, only the gene y3730 encodes a functional enzyme capable of synthesizing c-di-GMP. The seven remaining genes are pseudogenes or encode proteins that do not function catalytically or are not expressed. Furthermore, we show that HmsP has c-di-GMP-specific phosphodiesterase activity. We report that a mutant incapable of c-di-GMP synthesis is unaffected in virulence in plague mouse models. Conversely, an hmsP mutant, unable to degrade c-di-GMP, is defective in virulence by a subcutaneous route of infection due to poly-β-1,6-N-acetylglucosamine overproduction. This suggests that c-di-GMP signaling is not only dispensable but deleterious for Y. pestis virulence. Our results show that a key event in the evolution of Y. pestis from the ancestral Yersinia pseudotuberculosis was a significant reduction in the complexity of its c-di-GMP signaling network likely resulting from the different disease cycles of these human pathogens. PMID:21219468

  4. Cyclic Di-GMP Regulates Multiple Cellular Functions in the Symbiotic Alphaproteobacterium Sinorhizobium meliloti

    PubMed Central

    Schäper, Simon; Krol, Elizaveta; Skotnicka, Dorota; Kaever, Volkhard; Hilker, Rolf; Søgaard-Andersen, Lotte

    2015-01-01

    ABSTRACT Sinorhizobium meliloti undergoes major lifestyle changes between planktonic states, biofilm formation, and symbiosis with leguminous plant hosts. In many bacteria, the second messenger 3′,5′-cyclic di-GMP (c-di-GMP, or cdG) promotes a sessile lifestyle by regulating a plethora of processes involved in biofilm formation, including motility and biosynthesis of exopolysaccharides (EPS). Here, we systematically investigated the role of cdG in S. meliloti Rm2011 encoding 22 proteins putatively associated with cdG synthesis, degradation, or binding. Single mutations in 21 of these genes did not cause evident changes in biofilm formation, motility, or EPS biosynthesis. In contrast, manipulation of cdG levels by overproducing endogenous or heterologous diguanylate cyclases (DGCs) or phosphodiesterases (PDEs) affected these processes and accumulation of N-Acyl-homoserine lactones in the culture supernatant. Specifically, individual overexpression of the S. meliloti genes pleD, SMb20523, SMb20447, SMc01464, and SMc03178 encoding putative DGCs and of SMb21517 encoding a single-domain PDE protein had an impact and resulted in increased levels of cdG. Compared to the wild type, an S. meliloti strain that did not produce detectable levels of cdG (cdG0) was more sensitive to acid stress. However, it was symbiotically potent, unaffected in motility, and only slightly reduced in biofilm formation. The SMc01790-SMc01796 locus, homologous to the Agrobacterium tumefaciens uppABCDEF cluster governing biosynthesis of a unipolarly localized polysaccharide, was found to be required for cdG-stimulated biofilm formation, while the single-domain PilZ protein McrA was identified as a cdG receptor protein involved in regulation of motility. IMPORTANCE We present the first systematic genome-wide investigation of the role of 3′,5′-cyclic di-GMP (c-di-GMP, or cdG) in regulation of motility, biosynthesis of exopolysaccharides, biofilm formation, quorum sensing, and symbiosis in a

  5. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response.

    PubMed

    Parvatiyar, Kislay; Zhang, Zhiqiang; Teles, Rosane M; Ouyang, Songying; Jiang, Yan; Iyer, Shankar S; Zaver, Shivam A; Schenk, Mirjam; Zeng, Shang; Zhong, Wenwan; Liu, Zhi-Jie; Modlin, Robert L; Liu, Yong-jun; Cheng, Genhong

    2012-12-01

    The induction of type I interferons by the bacterial secondary messengers cyclic di-GMP (c-di-GMP) or cyclic di-AMP (c-di-AMP) is dependent on a signaling axis that involves the adaptor STING, the kinase TBK1 and the transcription factor IRF3. Here we identified the heliase DDX41 as a pattern-recognition receptor (PRR) that sensed both c-di-GMP and c-di-AMP. DDX41 specifically and directly interacted with c-di-GMP. Knockdown of DDX41 via short hairpin RNA in mouse or human cells inhibited the induction of genes encoding molecules involved in the innate immune response and resulted in defective activation of STING, TBK1 and IRF3 in response to c-di-GMP or c-di-AMP. Our results suggest a mechanism whereby c-di-GMP and c-di-AMP are detected by DDX41, which forms a complex with STING to signal to TBK1-IRF3 and activate the interferon response. PMID:23142775

  6. Intestinal GPS: bile and bicarbonate control cyclic di-GMP to provide Vibrio cholerae spatial cues within the small intestine

    PubMed Central

    Koestler, Benjamin J; Waters, Christopher M

    2014-01-01

    The second messenger cyclic di-GMP (c-di-GMP) regulates numerous phenotypes in response to environmental stimuli to enable bacteria to transition between different lifestyles. Here we discuss our recent findings that the human pathogen Vibrio cholerae recognizes 2 host-specific signals, bile and bicarbonate, to regulate intracellular c-di-GMP. We have demonstrated that bile acids increase intracellular c-di-GMP to promote biofilm formation. We have also shown that this bile-mediated increase of intracellular c-di-GMP is negated by bicarbonate, and that this interaction is dependent on pH, suggesting that V. cholerae uses these 2 environmental cues to sense and adapt to its relative location in the small intestine. Increased intracellular c-di-GMP by bile is attributed to increased c-di-GMP synthesis by 3 diguanylate cyclases (DGCs) and decreased expression of one phosphodiesterase (PDE) in the presence of bile. The molecular mechanisms by which bile controls the activity of the 3 DGCs and the regulators of bile-mediated transcriptional repression of the PDE are not yet known. Moreover, the impact of varying concentrations of bile and bicarbonate at different locations within the small intestine and the response of V. cholerae to these cues remains unclear. The native microbiome and pharmaceuticals, such as omeprazole, can impact bile and pH within the small intestine, suggesting these are potential unappreciated factors that may alter V. cholerae pathogenesis. PMID:25621620

  7. Intestinal GPS: bile and bicarbonate control cyclic di-GMP to provide Vibrio cholerae spatial cues within the small intestine.

    PubMed

    Koestler, Benjamin J; Waters, Christopher M

    2014-01-01

    The second messenger cyclic di-GMP (c-di-GMP) regulates numerous phenotypes in response to environmental stimuli to enable bacteria to transition between different lifestyles. Here we discuss our recent findings that the human pathogen Vibrio cholerae recognizes 2 host-specific signals, bile and bicarbonate, to regulate intracellular c-di-GMP. We have demonstrated that bile acids increase intracellular c-di-GMP to promote biofilm formation. We have also shown that this bile-mediated increase of intracellular c-di-GMP is negated by bicarbonate, and that this interaction is dependent on pH, suggesting that V. cholerae uses these 2 environmental cues to sense and adapt to its relative location in the small intestine. Increased intracellular c-di-GMP by bile is attributed to increased c-di-GMP synthesis by 3 diguanylate cyclases (DGCs) and decreased expression of one phosphodiesterase (PDE) in the presence of bile. The molecular mechanisms by which bile controls the activity of the 3 DGCs and the regulators of bile-mediated transcriptional repression of the PDE are not yet known. Moreover, the impact of varying concentrations of bile and bicarbonate at different locations within the small intestine and the response of V. cholerae to these cues remains unclear. The native microbiome and pharmaceuticals, such as omeprazole, can impact bile and pH within the small intestine, suggesting these are potential unappreciated factors that may alter V. cholerae pathogenesis. PMID:25621620

  8. Inactivation of Cyclic Di-GMP Binding Protein TDE0214 Affects the Motility, Biofilm Formation, and Virulence of Treponema denticola

    PubMed Central

    Bian, Jiang; Liu, Xiangyang; Cheng, Yi-Qiang

    2013-01-01

    As a ubiquitous second messenger, cyclic dimeric GMP (c-di-GMP) has been studied in numerous bacteria. The oral spirochete Treponema denticola, a periodontal pathogen associated with human periodontitis, has a complex c-di-GMP signaling network. However, its function remains unexplored. In this report, a PilZ-like c-di-GMP binding protein (TDE0214) was studied to investigate the role of c-di-GMP in the spirochete. TDE0214 harbors a PilZ domain with two signature motifs: RXXXR and DXSXXG. Biochemical studies showed that TDE0214 binds c-di-GMP in a specific manner, with a dissociation constant (Kd) value of 1.73 μM, which is in the low range compared to those of other reported c-di-GMP binding proteins. To reveal the role of c-di-GMP in T. denticola, a TDE0214 deletion mutant (TdΔ214) was constructed and analyzed in detail. First, swim plate and single-cell tracking analyses showed that TdΔ214 had abnormal swimming behaviors: the mutant was less motile and reversed more frequently than the wild type. Second, we found that biofilm formation of TdΔ214 was substantially repressed (∼6.0-fold reduction). Finally, in vivo studies using a mouse skin abscess model revealed that the invasiveness and ability to induce skin abscesses and host humoral immune responses were significantly attenuated in TdΔ214, indicative of the impact that TDE0214 has on the virulence of T. denticola. Collectively, the results reported here indicate that TDE0214 plays important roles in motility, biofilm formation, and virulence of the spirochete. This report also paves a way to further unveil the roles of the c-di-GMP signaling network in the biology and pathogenicity of T. denticola. PMID:23794624

  9. Effects of saline loading during head down tilt on ANP and cyclic GMP levels and on urinary fluid excretion

    NASA Astrophysics Data System (ADS)

    Drummer, C.; Lang, R. E.; Baisch, F.; Blomqvist, G.; Heer, M.; Gerzer, R.

    In the present study the renal and humoral effects of acute saline infusions were investigated in six healthy male volunteers before, during and after a ten day period of -6° head-down-tilt (HDT). During the whole 23-day study period the subjects received a standardized diet including 40 ml water and 125 mg NaCl per kg body weight per day. After the infusion of 0.9% saline (22 ml/kg within 20 minutes) plasma atrial natriuretic peptide (ANP) levels were only slightly increased (not significant) at the end of the infusion, while plasma cyclic GMP levels were significantly increased by about 40% (p<0.05) one hour later. No difference was observed in the plasma ANP and cyclic GMP changes between the pre-HDT, the HDT and the post-HDT infusion experiment. Urine flow, sodium excretion and urinary cyclic GMP excretion were significantly increased (p<0.05 and below) by 100 to 300% during the second and third hour after each saline infusion. However, during these short-term periods only 20% of the infused water and less than 20% of the infused sodium were excreted. Furthermore, a significantly increased volume, sodium and cyclic GMP excretion was observed for over 48 hours after each fluid load experiment. These data suggest that HDT does not induce major alterations in the regulation of an acute saline infusion and plasma ANP does not play a major role in the diuretic/natriuretic effects of volume loading.

  10. Isolation and characterization of human cDNAs encoding a cGMP-stimulated 3',5'-cyclic nucleotide phosphodiesterase.

    PubMed

    Rosman, G J; Martins, T J; Sonnenburg, W K; Beavo, J A; Ferguson, K; Loughney, K

    1997-05-20

    Human cyclic GMP-stimulated 3',5'-cyclic nucleotide phosphodiesterase (PDE2A3) cDNAs were cloned from hippocampus and fetal brain cDNA libraries. A 4.2-kb composite DNA sequence constructed from overlapping cDNA clones encodes a 941 amino acid protein with a predicted molecular mass of 105,715 Da. Extracts prepared from yeast expressing the human PDE2A3 hydrolyzed both cyclic AMP (cAMP) and cyclic GMP (cGMP). This activity was inhibited by EHNA, a selective PDE2 inhibitor, and was stimulated three-fold by cGMP. Human PDE2A is expressed in brain and to a lesser extent in heart, placenta, lung, skeletal muscle, kidney and pancreas. The human PDE2A3 differs from the bovine PDE2A1 and rat PDE2A2 proteins at the amino terminus but its amino-terminal sequence is identical to the bovine PDE2A3 sequence. The different amino termini probably arise from alternative exon splicing of the PDE2A mRNA. PMID:9210593

  11. Mechanistic insight into the conserved allosteric regulation of periplasmic proteolysis by the signaling molecule cyclic-di-GMP

    PubMed Central

    Chatterjee, Debashree; Cooley, Richard B; Boyd, Chelsea D; Mehl, Ryan A; O'Toole, George A; Sondermann, Holger

    2014-01-01

    Stable surface adhesion of cells is one of the early pivotal steps in bacterial biofilm formation, a prevalent adaptation strategy in response to changing environments. In Pseudomonas fluorescens, this process is regulated by the Lap system and the second messenger cyclic-di-GMP. High cytoplasmic levels of cyclic-di-GMP activate the transmembrane receptor LapD that in turn recruits the periplasmic protease LapG, preventing it from cleaving a cell surface-bound adhesin, thereby promoting cell adhesion. In this study, we elucidate the molecular basis of LapG regulation by LapD and reveal a remarkably sensitive switching mechanism that is controlled by LapD's HAMP domain. LapD appears to act as a coincidence detector, whereby a weak interaction of LapG with LapD transmits a transient outside-in signal that is reinforced only when cyclic-di-GMP levels increase. Given the conservation of key elements of this receptor system in many bacterial species, the results are broadly relevant for cyclic-di-GMP- and HAMP domain-regulated transmembrane signaling. DOI: http://dx.doi.org/10.7554/eLife.03650.001 PMID:25182848

  12. Mechanistic insight into the conserved allosteric regulation of periplasmic proteolysis by the signaling molecule cyclic-di-GMP.

    PubMed

    Chatterjee, Debashree; Cooley, Richard B; Boyd, Chelsea D; Mehl, Ryan A; O'Toole, George A; Sondermann, Holger

    2014-01-01

    Stable surface adhesion of cells is one of the early pivotal steps in bacterial biofilm formation, a prevalent adaptation strategy in response to changing environments. In Pseudomonas fluorescens, this process is regulated by the Lap system and the second messenger cyclic-di-GMP. High cytoplasmic levels of cyclic-di-GMP activate the transmembrane receptor LapD that in turn recruits the periplasmic protease LapG, preventing it from cleaving a cell surface-bound adhesin, thereby promoting cell adhesion. In this study, we elucidate the molecular basis of LapG regulation by LapD and reveal a remarkably sensitive switching mechanism that is controlled by LapD's HAMP domain. LapD appears to act as a coincidence detector, whereby a weak interaction of LapG with LapD transmits a transient outside-in signal that is reinforced only when cyclic-di-GMP levels increase. Given the conservation of key elements of this receptor system in many bacterial species, the results are broadly relevant for cyclic-di-GMP- and HAMP domain-regulated transmembrane signaling. PMID:25182848

  13. Effects of the soluble guanylyl cyclase activator, YC-1, on vascular tone, cyclic GMP levels and phosphodiesterase activity

    PubMed Central

    Galle, Jan; Zabel, Ulrike; Hübner, Ulrich; Hatzelmann, Armin; Wagner, Birgit; Wanner, Christoph; Schmidt, Harald H H W

    1999-01-01

    The vasomotor and cyclic GMP-elevating activity of YC-1, a novel NO-independent activator of soluble guanylyl cyclase (sGC), was studied in isolated rabbit aortic rings and compared to that of the NO donor compounds sodium nitroprusside (SNP) and NOC 18.Similarly to SNP and NOC 18, YC-1 (0.3–300 μM) caused a concentration-dependent, endothelium-independent relaxation that was greatly reduced by the sGC inhibitor 1-H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ 10 μM; 59% inhibition of dilation induced by 100 μM YC-1) suggesting the activation of sGC as one mechanism of action.Preincubation with YC-1 (3 and 30 μM) significantly increased the maximal dilator responses mediated by endogenous NO in aortic rings that was released upon exposure to acetylcholine, and enhanced the dilator response to the exogenous NO-donors, SNP and NOC 18, by almost two orders of magnitude.Vasoactivity induced by SNP and YC-1 displayed different kinetics as evidenced by a long-lasting inhibition by YC-1 (300 μM) on the phenylephrine (PE)-induced contractile response, which was not fully reversible even after extensive washout (150 min) of YC-1, and was accompanied by a long-lasting elevation of intracellular cyclic GMP content. In contrast, SNP (30 μM) had no effect on the vasoconstrictor potency of PE, and increases in intravascular cyclic GMP levels were readily reversed after washout of this NO donor compound.Surprisingly, YC-1 not only activated sGC, but also affected cyclic GMP metabolism, as it inhibited both cyclic GMP break down in aortic extracts and the activity of phosphodiesterase isoforms 1–5 in vitro.In conclusion, YC-1 caused persistent elevation of intravascular cyclic GMP levels in vivo by activating sGC and inhibiting cyclic GMP break down. Thus, YC-1 is a highly effective vasodilator compound with a prolonged duration of action, and mechanisms that are unprecedented for any previously known sGC activator. PMID:10369473

  14. A Cyclic di-GMP-binding Adaptor Protein Interacts with Histidine Kinase to Regulate Two-component Signaling.

    PubMed

    Xu, Linghui; Venkataramani, Prabhadevi; Ding, Yichen; Liu, Yang; Deng, Yinyue; Yong, Grace Lisi; Xin, Lingyi; Ye, Ruijuan; Zhang, Lianhui; Yang, Liang; Liang, Zhao-Xun

    2016-07-29

    The bacterial messenger cyclic di-GMP (c-di-GMP) binds to a diverse range of effectors to exert its biological effect. Despite the fact that free-standing PilZ proteins are by far the most prevalent c-di-GMP effectors known to date, their physiological function and mechanism of action remain largely unknown. Here we report that the free-standing PilZ protein PA2799 from the opportunistic pathogen Pseudomonas aeruginosa interacts directly with the hybrid histidine kinase SagS. We show that PA2799 (named as HapZ: histidine kinase associated PilZ) binds directly to the phosphoreceiver (REC) domain of SagS, and that the SagS-HapZ interaction is further enhanced at elevated c-di-GMP concentration. We demonstrate that binding of HapZ to SagS inhibits the phosphotransfer between SagS and the downstream protein HptB in a c-di-GMP-dependent manner. In accordance with the role of SagS as a motile-sessile switch and biofilm growth factor, we show that HapZ impacts surface attachment and biofilm formation most likely by regulating the expression of a large number of genes. The observations suggest a previously unknown mechanism whereby c-di-GMP mediates two-component signaling through a PilZ adaptor protein. PMID:27231351

  15. Type IV Pilus Assembly in Pseudomonas aeruginosa over a Broad Range of Cyclic di-GMP Concentrations

    PubMed Central

    Jain, Ruchi; Behrens, Anna-Janina; Kaever, Volkhard

    2012-01-01

    Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that utilizes polar type IV pili (T4P) for twitching motility and adhesion in the environment and during infection. Pilus assembly requires FimX, a GGDEF/EAL domain protein that binds and hydrolyzes cyclic di-GMP (c-di-GMP). Bacteria lacking FimX are deficient in twitching motility and microcolony formation. We carried out an extragenic suppressor screen in PA103ΔfimX bacteria to identify additional regulators of pilus assembly. Multiple suppressor mutations were mapped to PA0171, PA1121 (yfiR), and PA3703 (wspF), three genes previously associated with small-colony-variant phenotypes. Multiple independent techniques confirmed that suppressors assembled functional surface pili, though at both polar and nonpolar sites. Whole-cell c-di-GMP levels were elevated in suppressor strains, in agreement with previous studies that had shown that the disrupted genes encoded negative regulators of diguanylate cyclases. Overexpression of the regulated diguanylate cyclases was sufficient to suppress the ΔfimX pilus assembly defect, as was overexpression of an unrelated diguanylate cyclase from Caulobacter crescentus. Furthermore, under natural conditions of high c-di-GMP, PA103ΔfimX formed robust biofilms that showed T4P staining and were structurally distinct from those formed by nonpiliated bacteria. These results are the first demonstration that P. aeruginosa assembles a surface organelle, type IV pili, over a broad range of c-di-GMP concentrations. Assembly of pili at low c-di-GMP concentrations requires a polarly localized c-di-GMP binding protein and phosphodiesterase, FimX; this requirement for FimX is bypassed at high c-di-GMP concentrations. Thus, P. aeruginosa can assemble the same surface organelle in distinct ways for motility or adhesion under very different environmental conditions. PMID:22685276

  16. GEMM-I riboswitches from Geobacter sense the bacterial second messenger cyclic AMP-GMP

    PubMed Central

    Kellenberger, Colleen A.; Wilson, Stephen C.; Hickey, Scott F.; Gonzalez, Tania L.; Su, Yichi; Hallberg, Zachary F.; Brewer, Thomas F.; Iavarone, Anthony T.; Carlson, Hans K.; Hsieh, Yu-Fang; Hammond, Ming C.

    2015-01-01

    Cyclic dinucleotides are an expanding class of signaling molecules that control many aspects of bacterial physiology. A synthase for cyclic AMP-GMP (cAG, also referenced as 3′-5′, 3′-5′ cGAMP) called DncV is associated with hyperinfectivity of Vibrio cholerae but has not been found in many bacteria, raising questions about the prevalence and function of cAG signaling. We have discovered that the environmental bacterium Geobacter sulfurreducens produces cAG and uses a subset of GEMM-I class riboswitches (GEMM-Ib, Genes for the Environment, Membranes, and Motility) as specific receptors for cAG. GEMM-Ib riboswitches regulate genes associated with extracellular electron transfer; thus cAG signaling may control aspects of bacterial electrophysiology. These findings expand the role of cAG beyond organisms that harbor DncV and beyond pathogenesis to microbial geochemistry, which is important to environmental remediation and microbial fuel cell development. Finally, we have developed an RNA-based fluorescent biosensor for live-cell imaging of cAG. This selective, genetically encodable biosensor will be useful to probe the biochemistry and cell biology of cAG signaling in diverse bacteria. PMID:25848022

  17. Cyclic GMP-AMP Synthase is Activated by Double-stranded DNA-Induced Oligomerization

    PubMed Central

    Li, Xin; Shu, Chang; Yi, Guanghui; Chaton, Catherine T.; Shelton, Catherine L.; Diao, Jiasheng; Zuo, Xiaobing; Kao, C Cheng; Herr, Andrew B.; Li, Pingwei

    2013-01-01

    Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor mediating innate antimicrobial immunity. It catalyzes the synthesis of a noncanonical cyclic dinucleotide 2′,5′ cGAMP that binds to STING and mediates the activation of TBK1 and IRF-3. Activated IRF-3 translocates to the nucleus and initiates the transcription of the IFN-β gene. The structure of mouse cGAS bound to an 18 bp dsDNA revealed that cGAS interacts with dsDNA through two binding sites, forming a 2:2 complex. Enzyme assays and IFN-β reporter assays of cGAS mutants demonstrated that interactions at both DNA binding sites are essential for cGAS activation. Mutagenesis and DNA binding studies showed that the two sites bind dsDNA cooperatively and site B plays a critical role in DNA binding. The structure of mouse cGAS bound to dsDNA and 2′,5′ cGAMP provided insight into the catalytic mechanism of cGAS. These results demonstrated that cGAS is activated by dsDNA-induced oligomerization. PMID:24332030

  18. Diurnal cycles in serotonin acetyltransferase activity and cyclic GMP content of cultured chick pineal glands.

    PubMed

    Wainwright, S D

    1980-06-12

    Levels of serotonin N-acetyltransferase (NAT: acetul CoA:arylamine N-acetyltransferase; EC 2.1.1.5.) activity in the chick pineal gland exhibit a marked diurnal variation in birds kept under a diurnal cycle of ilumination. Activity begins to rise rapidly at the start of the dark phase of the cycle and reaches maximum levels at mid-dark phase about 25-fold greater than the minimum basal level at mid-light phase. Thereafter, the level of activity declines to the basal level about the start of the light phase. This diurnal cycle in chick pineal NAT activity found in vivo has recently been reproduced in vitro with intact glands incubated in organ culture. The mechanism of the 'biological clock' which regulates these variations in level of chick pineal NAT activity is unknown. However, I now report that chick pineal glands cultured under a diurnal cycle of illumination exhibit a diurnal cycle in content of cyclic GMP which roughly parallels the cycles in NAT activity. In contrast, there was no correlation between variations in pineal content of cyclic AMP and in level of NAT activity. PMID:6250035

  19. Vibrio cholerae VpsT Regulates Matrix Production and Motility by Directly Sensing Cyclic di-GMP

    SciTech Connect

    Krasteva, P.; Fong, J; Shikuma, N; Beyhan, S; Navarro, M; Yildiz, F; Sondermann, H

    2010-01-01

    Microorganisms can switch from a planktonic, free-swimming life-style to a sessile, colonial state, called a biofilm, which confers resistance to environmental stress. Conversion between the motile and biofilm life-styles has been attributed to increased levels of the prokaryotic second messenger cyclic di-guanosine monophosphate (c-di-GMP), yet the signaling mechanisms mediating such a global switch are poorly understood. Here we show that the transcriptional regulator VpsT from Vibrio cholerae directly senses c-di-GMP to inversely control extracellular matrix production and motility, which identifies VpsT as a master regulator for biofilm formation. Rather than being regulated by phosphorylation, VpsT undergoes a change in oligomerization on c-di-GMP binding.

  20. Downregulation of nitrovasodilator-induced cyclic GMP accumulation in cells exposed to endotoxin or interleukin-1 beta.

    PubMed Central

    Papapetropoulos, A.; Abou-Mohamed, G.; Marczin, N.; Murad, F.; Caldwell, R. W.; Catravas, J. D.

    1996-01-01

    1. Induction of nitric oxide synthase (iNOS) results in overproduction of nitric oxide (NO), which may be a principal cause of the massive vasodilatation and hypotension observed in septic shock. Since NO-induced vasorelaxation is mediated via the soluble isoform of guanylate cyclase (sGC), the regulation of sGC activity during shock is of obvious importance, but yet poorly understood. The aim of the present study was to investigate the activation of sGC by sodium nitroprusside (SNP) before and after exposure of rat aortic smooth muscle cells to endotoxin (LPS) or interleukin-1 beta (IL-1 beta). 2. Exposure of rat aortic smooth muscle cells to SNP (10 microM) elicited up to 200 fold increases in cyclic GMP. This effect was attenuated by 30-70% in IL-1 beta- or LPS-pretreated cells, in a pretreatment time-and IL-1 beta- or LPS-concentration-dependent manner. When, however, cells were exposed to IL-1 beta or LPS and then stimulated with the particulate guanylate cyclase activator, atriopeptin II, no reduction in cyclic GMP accumulation was observed. 3. Pretreatment of rats with LPS (5 mg kg-1, i.v.) for 6 h led to a decrease in aortic ring SNP-induced cyclic GMP accumulation. 4. The IL-1 beta-induced reduction in SNP-stimulated cyclic GMP accumulation in cultured cells was dependent on NO production, as arginine depletion abolished the downregulation of cyclic GMP accumulation in response to SNP. 5. Reverse-transcriptase-polymerase chain reaction analysis revealed that the ratio of steady state mRNA for the alpha, subunit of sGC to glyceraldehyde phosphate dehydrogenase was decreased in LPS- or IL-1 beta-treated cells, as compared to vehicle-treated cells. 6. Protein levels of the alpha 1 sGC subunit remained unaltered upon exposure to LPS or IL-1 beta, suggesting that the early decreased cyclic GMP accumulation in IL-1 beta- or LPS-pretreated cells was probably due to reduced sGC activation. Thus, the observed decreased responsiveness of sGC to NO stimulation

  1. Increase in nitric oxide and cyclic GMP of rat cerebellum by radio frequency burst-type electromagnetic field radiation.

    PubMed Central

    Miura, M; Takayama, K; Okada, J

    1993-01-01

    1. Using rat cerebellum supernatant, the effects of radio frequency (RF) burst-type electromagnetic (EM) field radiation on the production of cyclic GMP were examined under various conditions. The radiation was generated by a generator coil, and set at a 10 MHz radiation frequency, a 50% burst time, a 10 kHz burst rate and a 5 V peak-to-peak generator voltage. 2. When the cerebellum supernatant was incubated with both exogenous L-arginine (nitric oxide (NO) donor) and NADPH, and irradiated by an RF burst-type EM field, the production of cyclic GMP was increased significantly from a level of 21-22 nmol min-1 (g tissue)-1 to 25-26 nmol min-1 (g tissue)-1. By contrast, such an effect was not found when the cerebellum supernatant was irradiated by an RF volley-type EM field. 3. When neither L-arginine nor NADPH were added to the cerebellum supernatant, the production of cyclic GMP was lowered to a level of 6 nmol min-1 (g tissue)-1 and the radiation effect was not found. When the cerebellum supernatant was chelated with EDTA, the production of cyclic GMP was lowered to a level of 7 nmol min-1 (g tissue)-1 and the radiation effect was not found. 4. Incubation with Methylene Blue, a guanylate cyclase inhibitor, lowered the production of cyclic GMP to a level of 10-12 nmol min-1 (g tissue)-1, and the radiation effect did not occur. On incubation with a NO synthase inhibitor, either NG-methyl-L-arginine or N omega-nitro-L-arginine methyl ester, the production of cyclic GMP was lowered to a level of 10-12 nmol min-1 (g tissue)-1 or 5-9 nmol min-1 (g tissue)-1 respectively, and the radiation effect was not observed. 5. Using electrochemical NO probes, the production of NO in the cerebellum supernatant was detected. The concentration of NO increased gradually after the onset of the EM field radiation. The radiation effect persisted, and reached a maximum after the cessation of the radiation. 6. In an in vivo study, the arterioles of the frog web were dilated by the radiation

  2. High levels of cyclic-di-GMP in plant-associated Pseudomonas correlate with evasion of plant immunity.

    PubMed

    Pfeilmeier, Sebastian; Saur, Isabel Marie-Luise; Rathjen, John Paul; Zipfel, Cyril; Malone, Jacob George

    2016-05-01

    The plant innate immune system employs plasma membrane-localized receptors that specifically perceive pathogen/microbe-associated molecular patterns (PAMPs/MAMPs). This induces a defence response called pattern-triggered immunity (PTI) to fend off pathogen attack. Commensal bacteria are also exposed to potential immune recognition and must employ strategies to evade and/or suppress PTI to successfully colonize the plant. During plant infection, the flagellum has an ambiguous role, acting as both a virulence factor and also as a potent immunogen as a result of the recognition of its main building block, flagellin, by the plant pattern recognition receptors (PRRs), including FLAGELLIN SENSING2 (FLS2). Therefore, strict control of flagella synthesis is especially important for plant-associated bacteria. Here, we show that cyclic-di-GMP [bis-(3'-5')-cyclic di-guanosine monophosphate], a central regulator of bacterial lifestyle, is involved in the evasion of PTI. Elevated cyclic-di-GMP levels in the pathogen Pseudomonas syringae pv. tomato (Pto) DC3000, the opportunist P. aeruginosa PAO1 and the commensal P. protegens Pf-5 inhibit flagellin synthesis and help the bacteria to evade FLS2-mediated signalling in Nicotiana benthamiana and Arabidopsis thaliana. Despite this, high cellular cyclic-di-GMP concentrations were shown to drastically reduce the virulence of Pto DC3000 during plant infection. We propose that this is a result of reduced flagellar motility and/or additional pleiotropic effects of cyclic-di-GMP signalling on bacterial behaviour. PMID:26202381

  3. Differential negative coupling of type 3 metabotropic glutamate receptor to cyclic GMP levels in neurons and astrocytes.

    PubMed

    Wroblewska, Barbara; Wegorzewska, Iga N; Bzdega, Tomasz; Olszewski, Rafal T; Neale, Joseph H

    2006-02-01

    Metabotropic receptors may couple to different G proteins in different cells or perhaps even in different regions of the same cell. To date, direct studies of group II and group III metabotropic glutamate receptors' (mGluRs) relationships to second messenger cascades have reported negative coupling of these receptors to cyclic AMP (cAMP) levels in neurons, astrocytes and transfected cells. In the present study, we found that the peptide neurotransmitter N-acetylaspartylglutamate (NAAG), an mGluR3-selective agonist, decreased sodium nitroprusside (SNP)-stimulated cyclic GMP (cGMP) levels in cerebellar granule cells and cerebellar astrocytes. The mGluR3 and group II agonists FN6 and LY354740 had similar effects on cGMP levels. The mGluR3 and group II antagonists beta-NAAG and LY341495 blocked these actions. Treatment with pertussis toxin inhibited the effects of NAAG on SNP-stimulated cGMP levels in rat cerebellar astrocytes but not in cerebellar neurons. These data support the conclusion that mGluR3 is also coupled to cGMP levels and that this mGluR3-induced reduction of cGMP levels is mediated by different G proteins in cerebellar astrocytes and neurons. We previously reported that this receptor is coupled to a cAMP cascade via a pertussis toxin-sensitive G protein in cerebellar neurons, astrocytes and transfected cells. Taken together with the present data, we propose that mGluR3 is coupled to two different G proteins in granule cell neurons. These data greatly expand knowledge of the range of second messenger cascades induced by mGluR3, and have implications for clinical conditions affected by NAAG and other group II mGluR agonists. PMID:16417588

  4. Cyclic Di-GMP-Mediated Repression of Swarming Motility by Pseudomonas aeruginosa PA14 Requires the MotAB Stator

    PubMed Central

    Kuchma, S. L.; Delalez, N. J.; Filkins, L. M.; Snavely, E. A.; Armitage, J. P.

    2014-01-01

    The second messenger cyclic diguanylate (c-di-GMP) plays a critical role in the regulation of motility. In Pseudomonas aeruginosa PA14, c-di-GMP inversely controls biofilm formation and surface swarming motility, with high levels of this dinucleotide signal stimulating biofilm formation and repressing swarming. P. aeruginosa encodes two stator complexes, MotAB and MotCD, that participate in the function of its single polar flagellum. Here we show that the repression of swarming motility requires a functional MotAB stator complex. Mutating the motAB genes restores swarming motility to a strain with artificially elevated levels of c-di-GMP as well as stimulates swarming in the wild-type strain, while overexpression of MotA from a plasmid represses swarming motility. Using point mutations in MotA and the FliG rotor protein of the motor supports the conclusion that MotA-FliG interactions are critical for c-di-GMP-mediated swarming inhibition. Finally, we show that high c-di-GMP levels affect the localization of a green fluorescent protein (GFP)-MotD fusion, indicating a mechanism whereby this second messenger has an impact on MotCD function. We propose that when c-di-GMP level is high, the MotAB stator can displace MotCD from the motor, thereby affecting motor function. Our data suggest a newly identified means of c-di-GMP-mediated control of surface motility, perhaps conserved among Pseudomonas, Xanthomonas, and other organisms that encode two stator systems. PMID:25349157

  5. Active Site Metal Occupancy and Cyclic Di-GMP Phosphodiesterase Activity of Thermotoga maritima HD-GYP.

    PubMed

    Miner, Kyle D; Kurtz, Donald M

    2016-02-16

    HD-GYPs make up a subclass of the metal-dependent HD phosphohydrolase superfamily and catalyze conversion of cyclic di(3',5')-guanosine monophosphate (c-di-GMP) to 5'-phosphoguanylyl-(3'→5')-guanosine (pGpG) and GMP. Until now, the only reported crystal structure of an HD-GYP that also exhibits c-di-GMP phosphodiesterase activity contains a His/carboxylate ligated triiron active site. However, other structural and phylogenetic correlations indicate that some HD-GYPs contain dimetal active sites. Here we provide evidence that an HD-GYP c-di-GMP phosphodiesterase, TM0186, from Thermotoga maritima can accommodate both di- and trimetal active sites. We show that an as-isolated iron-containing TM0186 has an oxo/carboxylato-bridged diferric site, and that the reduced (diferrous) form is necessary and sufficient to catalyze conversion of c-di-GMP to pGpG, but that conversion of pGpG to GMP requires more than two metals per active site. Similar c-di-GMP phosphodiesterase activities were obtained with divalent iron or manganese. On the basis of activity correlations with several putative metal ligand residue variants and molecular dynamics simulations, we propose that TM0186 can accommodate both di- and trimetal active sites. Our results also suggest that a Glu residue conserved in a subset of HD-GYPs is required for formation of the trimetal site and can also serve as a labile ligand to the dimetal site. Given the anaerobic growth requirement of T. maritima, we suggest that this HD-GYP can function in vivo with either divalent iron or manganese occupying di- and trimetal sites. PMID:26786892

  6. ChIP-seq reveals the global regulator AlgR mediating cyclic di-GMP synthesis in Pseudomonas aeruginosa

    PubMed Central

    Kong, Weina; Zhao, Jingru; Kang, Huaping; Zhu, Miao; Zhou, Tianhong; Deng, Xin; Liang, Haihua

    2015-01-01

    AlgR is a key transcriptional regulator required for the expression of multiple virulence factors, including type IV pili and alginate in Pseudomonas aeruginosa. However, the regulon and molecular regulatory mechanism of AlgR have yet to be fully elucidated. Here, among 157 loci that were identified by a ChIP-seq assay, we characterized a gene, mucR, which encodes an enzyme that synthesizes the intracellular second messenger cyclic diguanylate (c-di-GMP). A ΔalgR strain produced lesser biofilm than did the wild-type strain, which is consistent with a phenotype controlled by c-di-GMP. AlgR positively regulates mucR via direct binding to its promoter. A ΔalgRΔmucR double mutant produced lesser biofilm than did the single ΔalgR mutant, demonstrating that c-di-GMP is a positive regulator of biofilm formation. AlgR controls the levels of c-di-GMP synthesis via direct regulation of mucR. In addition, the cognate sensor of AlgR, FimS/AlgZ, also plays an important role in P. aeruginosa virulence. Taken together, this study provides new insights into the AlgR regulon and reveals the involvement of c-di-GMP in the mechanism underlying AlgR regulation. PMID:26206672

  7. Modulation by protein kinase C of nitric oxide and cyclic GMP poffation in cultured cerebellar granule cells.

    PubMed

    Riccio, A; Esposito, E; Eboli, M L

    1996-04-29

    The possible modulation of nitric oxide (NO) synthase (NOS) activity by protein kinase C (PKC) was investigated in primary cultures of rat cerebellar neurons. Incubation of the cells with L-arginine and nicotinamide-adenine dinucleotide phosphate (NADPH) produced detectable levels of NO, as quantified by photometric assay [0.14 +/- 0.03 nmol/h/dish (2.5 x 10(6) cells)]. The NO producing activity was paralleled by concomitant accumulation of cyclic GMP (cGMP) (0.12 +/- 0.02 pmol/dish). Downregulation of PKC by prolonged treatment with phorbol esters or inhibition of the kinase by treatment with 4taurosporine raised the basal levels of NO and cGMP five fold. When granule cells were incubated in the absence of extracellular Mg2+, N-methyl-D-aspartate and to a lesser extent, glutamate became effective in enhancing NO formation and cGMP accumulation with respect to the control. The NO and cGMP increases induced by the two agonists were almost doubled by treatment of the cells with staurosporine or depletion of PKC. Calphostin C. an inhibitor of the regulatory domain of PKC, was as effective as staurosporine in increasing the formation of NO in both resting and excited cells. These results indicate that downregulation or inhibition of PKC increase NOS activity in cerebellar neurons, and suggest that phosphorylation of NOS by PKC negatively modulates the catalytic activity of the enzyme in these cells. PMID:8773779

  8. Role of nitric oxide and cyclic GMP in glutamate-induced neuronal death.

    PubMed

    Montoliu, C; Llansola, M; Monfort, P; Corbalan, R; Fernandez-Marticorena, I; Hernandez-Viadel, M L; Felipo, V

    2001-04-01

    Glutamate is the main excitatory neurotransmitter in mammals. However, excessive activation of glutamate receptors is neurotoxic, leading to neuronal degeneration and death. In many systems, including primary cultures of cerebellar neurons, glutamate neurotoxicity is mainly mediated by excessive activation of NMDA receptors, leading to increased intracellular calcium which binds to calmodulin and activates neuronal nitric oxide synthase (NOS), increasing nitric oxide (NO) which in turn activates guanylate cyclase and increases cGMP. Inhibition of NOS prevents glutamate neurotoxicity, indicating that NO mediates glutamate-induced neuronal death in this system. NO generating agents such as SNAP also induce neuronal death. Compounds that can act as "scavengers" of NO such as Croman 6 (CR-6) prevent glutamate neurotoxicity. The role of cGMP in the mediation of glutamate neurotoxicity remains controversial. Some reports indicate that cGMP mediates glutamate neurotoxicity while others indicate that cGMP is neuroprotective. We have studied the role of cGMP in the mediation of glutamate and NO neurotoxicity in cerebellar neurons. Inhibition of soluble guanylate cyclase prevents glutamate and NO neurotoxicity. There is a good correlation between inhibition of cGMP formation and neuroprotection. Moreover 8-Br-cGMP, a cell permeable analog of cGMP, induced neuronal death. These results indicate that increased intracellular cGMP is involved in the mechanism of neurotoxicity. Inhibitors of phosphodiesterase increased extracellular but not intracellular cGMP and prevented glutamate neurotoxicity. Addition of cGMP to the medium also prevented glutamate neurotoxicity. These results are compatible with a neurotoxic effect of increased intracellular cGMP and a neuroprotective effect of increased extracellular cGMP. PMID:14715472

  9. Bacterial rotary export ATPases are allosterically regulated by the nucleotide second messenger cyclic-di-GMP.

    PubMed

    Trampari, Eleftheria; Stevenson, Clare E M; Little, Richard H; Wilhelm, Thomas; Lawson, David M; Malone, Jacob G

    2015-10-01

    The widespread second messenger molecule cyclic di-GMP (cdG) regulates the transition from motile and virulent lifestyles to sessile, biofilm-forming ones in a wide range of bacteria. Many pathogenic and commensal bacterial-host interactions are known to be controlled by cdG signaling. Although the biochemistry of cyclic dinucleotide metabolism is well understood, much remains to be discovered about the downstream signaling pathways that induce bacterial responses upon cdG binding. As part of our ongoing research into the role of cdG signaling in plant-associated Pseudomonas species, we carried out an affinity capture screen for cdG binding proteins in the model organism Pseudomonas fluorescens SBW25. The flagella export AAA+ ATPase FliI was identified as a result of this screen and subsequently shown to bind specifically to the cdG molecule, with a KD in the low micromolar range. The interaction between FliI and cdG appears to be very widespread. In addition to FliI homologs from diverse bacterial species, high affinity binding was also observed for the type III secretion system homolog HrcN and the type VI ATPase ClpB2. The addition of cdG was shown to inhibit FliI and HrcN ATPase activity in vitro. Finally, a combination of site-specific mutagenesis, mass spectrometry, and in silico analysis was used to predict that cdG binds to FliI in a pocket of highly conserved residues at the interface between two FliI subunits. Our results suggest a novel, fundamental role for cdG in controlling the function of multiple important bacterial export pathways, through direct allosteric control of export ATPase proteins. PMID:26265469

  10. Bacterial Rotary Export ATPases Are Allosterically Regulated by the Nucleotide Second Messenger Cyclic-di-GMP*

    PubMed Central

    Trampari, Eleftheria; Stevenson, Clare E. M.; Little, Richard H.; Wilhelm, Thomas; Lawson, David M.; Malone, Jacob G.

    2015-01-01

    The widespread second messenger molecule cyclic di-GMP (cdG) regulates the transition from motile and virulent lifestyles to sessile, biofilm-forming ones in a wide range of bacteria. Many pathogenic and commensal bacterial-host interactions are known to be controlled by cdG signaling. Although the biochemistry of cyclic dinucleotide metabolism is well understood, much remains to be discovered about the downstream signaling pathways that induce bacterial responses upon cdG binding. As part of our ongoing research into the role of cdG signaling in plant-associated Pseudomonas species, we carried out an affinity capture screen for cdG binding proteins in the model organism Pseudomonas fluorescens SBW25. The flagella export AAA+ ATPase FliI was identified as a result of this screen and subsequently shown to bind specifically to the cdG molecule, with a KD in the low micromolar range. The interaction between FliI and cdG appears to be very widespread. In addition to FliI homologs from diverse bacterial species, high affinity binding was also observed for the type III secretion system homolog HrcN and the type VI ATPase ClpB2. The addition of cdG was shown to inhibit FliI and HrcN ATPase activity in vitro. Finally, a combination of site-specific mutagenesis, mass spectrometry, and in silico analysis was used to predict that cdG binds to FliI in a pocket of highly conserved residues at the interface between two FliI subunits. Our results suggest a novel, fundamental role for cdG in controlling the function of multiple important bacterial export pathways, through direct allosteric control of export ATPase proteins. PMID:26265469

  11. Involvement of cyclic GMP and protein kinase G in the regulation of apoptosis and survival in neural cells.

    PubMed

    Fiscus, Ronald R

    2002-01-01

    Our current understanding of nitric oxide (NO), cyclic GMP (cGMP) and protein kinase G (PKG) signaling pathways in the nervous systems has its origins in the early studies conducted on vascular tissues during the late 1970s and early to mid-1980s. The pioneering research into the NO/cGMP/PKG pathway in blood vessels conducted by the laboratories of Drs. Ferid Murad, Louis Ignarro and Robert Furchgott ultimately led to the awarding of the 1998 Nobel Prize in Physiology or Medicine to these three scientists. On the basis of further pioneering studies by Drs. John Garthwaite, Solomon Snyder, Steven Vincent and many other neuroscientists during the late 1980s and throughout the 1990s, it became recognized that NO serves as a neurotransmitter/neuromodulator in the central and peripheral nervous systems and that certain neural cells possess a cGMP signaling pathway similar to that in vascular smooth muscle cells. Although NO (at high concentrations) is toxic and thought to participate in neuronal cell death during stroke and neurodegenerative diseases (e.g. amyotrophic lateral sclerosis, Alzheimer's disease, HIV dementia and Parkinson's disease), recent evidence suggests that NO at low physiological concentrations can act as an antiapoptotic/prosurvival factor in certain neural cells (e.g. PC12 cells, motor neurons and neurons of dorsal root ganglia, hippocampus and sympathetic nerves). The antiapoptotic effects of NO are mediated, in part, by cGMP and a downstream target protein, PKG. Other cGMP-elevating factors (e.g. atrial and brain natriuretic peptides) and direct PKG activator (e.g. 8-bromo-cGMP) also have antiapoptotic effects which have been quantified by the new capillary electrophoresis with laser-induced fluorescence detector technology. Inhibition of soluble guanylyl cyclase and lowering of basal cGMP levels cause apoptosis in unstressed neural cells (NG108-15 and N1E-115 cells). The cGMP/PKG pathway appears to play an essential role in preventing activation

  12. Cyclic GMP-mediated inhibition of L-type Ca2+ channel activity by human natriuretic peptide in rabbit heart cells.

    PubMed Central

    Tohse, N; Nakaya, H; Takeda, Y; Kanno, M

    1995-01-01

    1. Effects of atrial natriuretic peptide (ANP) on the L-type Ca2+ channels were examined in rabbit isolated ventricular cells by use of whole-cell and cell-attached configurations of the patch clamp methods. ANP produced a concentration-dependent decrease (10-100 nM) in amplitude of a basal Ca2+ channel current. 2. The inactive ANP (methionine-oxidized ANP, 30 nM) failed to decrease the current. 3. 8-Bromo-cyclic GMP (300 microM), a potent activator of cyclic GMP-dependent protein kinase (PKG), produced the same effects on the basal Ca2+ channel current as those produced by ANP. The cyclic GMP-induced inhibition of the Ca2+ channel current was still evoked in the presence of 1-isobutyl-3-methyl-xanthine, an inhibitor of phosphodiesterase. ANP failed to produce inhibition of the Ca2+ channel current in the presence of 8-bromo-cyclic GMP. 4. In the single channel recording, ANP and 8-bromo-cyclic GMP also inhibited the activities of the L-type Ca2+ channels. Both agents decreased the open probability (NPo) without affecting the unit amplitude. 5. The present results suggest that ANP inhibits the cardiac L-type Ca2+ channel activity through the intracellular production of cyclic GMP and then activation of PKG. PMID:7540093

  13. Nitric Oxide Signaling in Pseudomonas aeruginosa Biofilms Mediates Phosphodiesterase Activity, Decreased Cyclic Di-GMP Levels, and Enhanced Dispersal▿ †

    PubMed Central

    Barraud, Nicolas; Schleheck, David; Klebensberger, Janosch; Webb, Jeremy S.; Hassett, Daniel J.; Rice, Scott A.; Kjelleberg, Staffan

    2009-01-01

    Bacteria in biofilms often undergo active dispersal events and revert to a free-swimming, planktonic state to complete the biofilm life cycle. The signaling molecule nitric oxide (NO) was previously found to trigger biofilm dispersal in the opportunistic pathogen Pseudomonas aeruginosa at low, nontoxic concentrations (N. Barraud, D. J. Hassett, S. H. Hwang, S. A. Rice, S. Kjelleberg, and J. S. Webb, J. Bacteriol. 188:7344-7353, 2006). NO was further shown to increase cell motility and susceptibility to antimicrobials. Recently, numerous studies revealed that increased degradation of the secondary messenger cyclic di-GMP (c-di-GMP) by specific phosphodiesterases (PDEs) triggers a planktonic mode of growth in eubacteria. In this study, the potential link between NO and c-di-GMP signaling was investigated by performing (i) PDE inhibitor studies, (ii) enzymatic assays to measure PDE activity, and (iii) direct quantification of intracellular c-di-GMP levels. The results suggest a role for c-di-GMP signaling in triggering the biofilm dispersal event induced by NO, as dispersal requires PDE activity and addition of NO stimulates PDE and induces the concomitant decrease in intracellular c-di-GMP levels in P. aeruginosa. Furthermore, gene expression studies indicated global responses to low, nontoxic levels of NO in P. aeruginosa biofilms, including upregulation of genes involved in motility and energy metabolism and downregulation of adhesins and virulence factors. Finally, site-directed mutagenesis of candidate genes and physiological characterization of the corresponding mutant strains uncovered that the chemotaxis transducer BdlA is involved in the biofilm dispersal response induced by NO. PMID:19801410

  14. Cyclic di-GMP contributes to adaption and virulence of Bacillus thuringiensis through a riboswitch-regulated collagen adhesion protein.

    PubMed

    Tang, Qing; Yin, Kang; Qian, Hongliang; Zhao, Youwen; Wang, Wen; Chou, Shan-Ho; Fu, Yang; He, Jin

    2016-01-01

    Cyclic di-GMP is a ubiquitous second messenger that regulates diverse cellular processes in bacteria by binding to various protein or riboswitch effectors. In Bacillus thuringiensis BMB171, a c-di-GMP riboswitch termed Bc2 RNA resides in the 5'-untranslated region (5'-UTR) of an mRNA that encodes a collagen adhesion protein (Cap). The expression of cap was strongly repressed in parent strain BMB171 because of the presence of Bc2 RNA but was significantly promoted in the Bc2 RNA markerless deletion mutant. Bc2 RNA acts as a genetic "on" switch, which forms an anti-terminator structure to promote cap read-through transcription upon c-di-GMP binding. As a result, cap transcription was de-repressed under high c-di-GMP levels. Therefore, Bc2 RNA regulates cap expression using a repression/de-repression model. Bc2 RNA-regulated Cap was also found to be tightly associated with motility, aggregation, exopolysaccharide secretion, biofilm formation, and virulence of B. thuringiensis BMB171 against its host insect Helicoverpa armigera. PMID:27381437

  15. Cyclic di-GMP contributes to adaption and virulence of Bacillus thuringiensis through a riboswitch-regulated collagen adhesion protein

    PubMed Central

    Tang, Qing; Yin, Kang; Qian, Hongliang; Zhao, Youwen; Wang, Wen; Chou, Shan-Ho; Fu, Yang; He, Jin

    2016-01-01

    Cyclic di-GMP is a ubiquitous second messenger that regulates diverse cellular processes in bacteria by binding to various protein or riboswitch effectors. In Bacillus thuringiensis BMB171, a c-di-GMP riboswitch termed Bc2 RNA resides in the 5′-untranslated region (5′-UTR) of an mRNA that encodes a collagen adhesion protein (Cap). The expression of cap was strongly repressed in parent strain BMB171 because of the presence of Bc2 RNA but was significantly promoted in the Bc2 RNA markerless deletion mutant. Bc2 RNA acts as a genetic “on” switch, which forms an anti-terminator structure to promote cap read-through transcription upon c-di-GMP binding. As a result, cap transcription was de-repressed under high c-di-GMP levels. Therefore, Bc2 RNA regulates cap expression using a repression/de-repression model. Bc2 RNA-regulated Cap was also found to be tightly associated with motility, aggregation, exopolysaccharide secretion, biofilm formation, and virulence of B. thuringiensis BMB171 against its host insect Helicoverpa armigera. PMID:27381437

  16. Systematic Nomenclature for GGDEF and EAL Domain-Containing Cyclic Di-GMP Turnover Proteins of Escherichia coli.

    PubMed

    Hengge, Regine; Galperin, Michael Y; Ghigo, Jean-Marc; Gomelsky, Mark; Green, Jeffrey; Hughes, Kelly T; Jenal, Urs; Landini, Paolo

    2016-01-01

    In recent years, Escherichia coli has served as one of a few model bacterial species for studying cyclic di-GMP (c-di-GMP) signaling. The widely used E. coli K-12 laboratory strains possess 29 genes encoding proteins with GGDEF and/or EAL domains, which include 12 diguanylate cyclases (DGC), 13 c-di-GMP-specific phosphodiesterases (PDE), and 4 "degenerate" enzymatically inactive proteins. In addition, six new GGDEF and EAL (GGDEF/EAL) domain-encoding genes, which encode two DGCs and four PDEs, have recently been found in genomic analyses of commensal and pathogenic E. coli strains. As a group of researchers who have been studying the molecular mechanisms and the genomic basis of c-di-GMP signaling in E. coli, we now propose a general and systematic dgc and pde nomenclature for the enzymatically active GGDEF/EAL domain-encoding genes of this model species. This nomenclature is intuitive and easy to memorize, and it can also be applied to additional genes and proteins that might be discovered in various strains of E. coli in future studies. PMID:26148715

  17. Alterations in the Cerebellar (Phospho)Proteome of a Cyclic Guanosine Monophosphate (cGMP)-dependent Protein Kinase Knockout Mouse*

    PubMed Central

    Corradini, Eleonora; Vallur, Raghavan; Raaijmakers, Linsey M.; Feil, Susanne; Feil, Robert; Heck, Albert J. R.; Scholten, Arjen

    2014-01-01

    The cyclic nucleotide cyclic guanosine monophosphate (cGMP) plays an important role in learning and memory, but its signaling mechanisms in the mammalian brain are not fully understood. Using mass-spectrometry-based proteomics, we evaluated how the cerebellum adapts its (phospho)proteome in a knockout mouse model of cGMP-dependent protein kinase type I (cGKI). Our data reveal that a small subset of proteins in the cerebellum (∼3% of the quantified proteins) became substantially differentially expressed in the absence of cGKI. More changes were observed at the phosphoproteome level, with hundreds of sites being differentially phosphorylated between wild-type and knockout cerebellum. Most of these phosphorylated sites do not represent known cGKI substrates. An integrative computational network analysis of the data indicated that the differentially expressed proteins and proteins harboring differentially phosphorylated sites largely belong to a tight network in the Purkinje cells of the cerebellum involving important cGMP/cAMP signaling nodes (e.g. PDE5 and PKARIIβ) and Ca2+ signaling (e.g. SERCA3). In this way, removal of cGKI could be linked to impaired cerebellar long-term depression at Purkinje cell synapses. In addition, we were able to identify a set of novel putative (phospho)proteins to be considered in this network. Overall, our data improve our understanding of cerebellar cGKI signaling and suggest novel players in cGKI-regulated synaptic plasticity. PMID:24925903

  18. Cyclic di-GMP-dependent Signaling Pathways in the Pathogenic Firmicute Listeria monocytogenes

    PubMed Central

    Chen, Li-Hong; Köseoğlu, Volkan K.; Güvener, Zehra T.; Myers-Morales, Tanya; Reed, Joseph M.; D'Orazio, Sarah E. F.; Miller, Kurt W.; Gomelsky, Mark

    2014-01-01

    We characterized key components and major targets of the c-di-GMP signaling pathways in the foodborne pathogen Listeria monocytogenes, identified a new c-di-GMP-inducible exopolysaccharide responsible for motility inhibition, cell aggregation, and enhanced tolerance to disinfectants and desiccation, and provided first insights into the role of c-di-GMP signaling in listerial virulence. Genome-wide genetic and biochemical analyses of c-di-GMP signaling pathways revealed that L. monocytogenes has three GGDEF domain proteins, DgcA (Lmo1911), DgcB (Lmo1912) and DgcC (Lmo2174), that possess diguanylate cyclase activity, and three EAL domain proteins, PdeB (Lmo0131), PdeC (Lmo1914) and PdeD (Lmo0111), that possess c-di-GMP phosphodiesterase activity. Deletion of all phosphodiesterase genes (ΔpdeB/C/D) or expression of a heterologous diguanylate cyclase stimulated production of a previously unknown exopolysaccharide. The synthesis of this exopolysaccharide was attributed to the pssA-E (lmo0527-0531) gene cluster. The last gene of the cluster encodes the fourth listerial GGDEF domain protein, PssE, that functions as an I-site c-di-GMP receptor essential for exopolysaccharide synthesis. The c-di-GMP-inducible exopolysaccharide causes cell aggregation in minimal medium and impairs bacterial migration in semi-solid agar, however, it does not promote biofilm formation on abiotic surfaces. The exopolysaccharide also greatly enhances bacterial tolerance to commonly used disinfectants as well as desiccation, which may contribute to survival of L. monocytogenes on contaminated food products and in food-processing facilities. The exopolysaccharide and another, as yet unknown c-di-GMP-dependent target, drastically decrease listerial invasiveness in enterocytes in vitro, and lower pathogen load in the liver and gallbladder of mice infected via an oral route, which suggests that elevated c-di-GMP levels play an overall negative role in listerial virulence. PMID:25101646

  19. Cyclic GMP catabolism up-regulation in MRL/lpr lupus-prone mice is associated with organ remodeling.

    PubMed

    Yougbaré, Issaka; Keravis, Thérèse; Abusnina, Abdurazzag; Decossas, Marion; Schall, Nicolas; Muller, Sylviane; Lugnier, Claire

    2014-07-01

    Production of high titer of antibodies against nuclear components is a hallmark of systemic lupus erythematosus, an autoimmune disease characterized by the progressive chronic inflammation of multiple joints and organs. Organ damage and dysfunction such as renal failure are typical clinical features in lupus. Cell hypermetabolism and hypertrophy can accelerate organ dysfunction. In this study we focus on a specific murine model of lupus, the MRL/lpr strain, and investigated the role of cyclic guanosine monophosphate (cGMP) catabolism in organ remodeling of main target tissues (kidney, spleen and liver) in comparison with age-matched control mice. In MRL/lpr-prone mice, the cGMP-phosphodiesterase (PDE) activities were significantly increased in the kidney (3-fold, P<0.001), spleen (2-fold, P<0.001) and liver (1.6-fold, P<0.05). These raised activity levels were paralleled by both an increased activity of PDE1 in the kidney (associated with nephromegaly) and in the liver, and PDE2 in the spleen of lupus-prone mice. The up-regulation of PDE1 and PDE2 activities were associated with a decrease in intracellular cGMP levels. This underlines an alteration of cGMP-PDE signaling in the kidney, spleen and liver targeting different PDEs according to organs. In good agreement with these findings, a single intravenous administration to MRL/lpr mice of nimodipine (PDE1 inhibitor) but not of EHNA (PDE2 inhibitor) was able to significantly lower peripheral hypercellularity (P=0.0401), a characteristic feature of this strain of lupus-prone mice. Collectively, our findings are important for generating personalized strategies to prevent certain forms of the lupus disease as well as for understanding the role of PDEs and cGMP in the pathophysiology of lupus. PMID:24631654

  20. The Second Messenger Cyclic Di-GMP Regulates Clostridium difficile Toxin Production by Controlling Expression of sigD

    PubMed Central

    McKee, Robert W.; Mangalea, Mihnea R.; Purcell, Erin B.; Borchardt, Erin K.

    2013-01-01

    The Gram-positive obligate anaerobe Clostridium difficile causes potentially fatal intestinal diseases. How this organism regulates virulence gene expression is poorly understood. In many bacterial species, the second messenger cyclic di-GMP (c-di-GMP) negatively regulates flagellar motility and, in some cases, virulence. c-di-GMP was previously shown to repress motility of C. difficile. Recent evidence indicates that flagellar gene expression is tightly linked with expression of the genes encoding the two C. difficile toxins TcdA and TcdB, which are key virulence factors for this pathogen. Here, the effect of c-di-GMP on expression of the toxin genes tcdA and tcdB was determined, and the mechanism connecting flagellar and toxin gene expressions was examined. In C. difficile, increasing c-di-GMP levels reduced the expression levels of tcdA and tcdB, as well as that of tcdR, which encodes an alternative sigma factor that activates tcdA and tcdB expression. We hypothesized that the C. difficile orthologue of the flagellar alternative sigma factor SigD (FliA; σ28) mediates regulation of toxin gene expression in response to c-di-GMP. Indeed, ectopic expression of sigD in C. difficile resulted in increased expression levels of tcdR, tcdA, and tcdB. Furthermore, sigD expression enhanced toxin production and increased the cytopathic effect of C. difficile on cultured fibroblasts. Finally, evidence is provided that SigD directly activates tcdR expression and that SigD cannot activate tcdA or tcdB expression independent of TcdR. Taken together, these data suggest that SigD positively regulates toxin genes in C. difficile and that c-di-GMP can inhibit both motility and toxin production via SigD, making this signaling molecule a key virulence gene regulator in C. difficile. PMID:24039264

  1. Investigation of the role of nitric oxide and cyclic GMP in both the activation and inhibition of human neutrophils

    PubMed Central

    Wanikiat, P; Woodward, D F; Armstrong, R A

    1997-01-01

    The aim of this study was to establish the role of nitric oxide (NO) and cyclic GMP in chemotaxis and superoxide anion generation (SAG) by human neutrophils, by use of selective inhibitors of NO and cyclic GMP pathways. In addition, inhibition of neutrophil chemotaxis by NO releasing compounds and increases in neutrophil nitrate/nitrite and cyclic GMP levels were examined. The ultimate aim of this work was to resolve the paradox that NO both activates and inhibits human neutrophils. A role for NO as a mediator of N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced chemotaxis was supported by the finding that the NO synthase (NOS) inhibitor L-NMMA (500 μM) inhibited chemotaxis; EC50 for fMLP 28.76±5.62 and 41.13±4.77 pmol/106 cells with and without L-NMMA, respectively. Similarly the NO scavenger carboxy-PTIO (100 μM) inhibited chemotaxis; EC50 for fMLP 19.71±4.23 and 31.68±8.50 pmol/106 cells with and without carboxy-PTIO, respectively. A role for cyclic GMP as a mediator of chemotaxis was supported by the finding that the guanylyl cyclase inhibitor LY 83583 (100 μM) completely inhibited chemotaxis and suppressed the maximal response; EC50 for fMLP 32.53±11.18 and 85.21±15.14 pmol/106 cells with and without LY 83583, respectively. The same pattern of inhibition was observed with the G-kinase inhibitor KT 5823 (10 μM); EC50 for fMLP 32.16±11.35 and >135 pmol/106 cells with and without KT 5823, respectively. The phosphatase inhibitor, 2,3-diphosphoglyceric acid (DPG) (100 μM) which inhibits phospholipase D, attenuated fMLP-induced chemotaxis; EC50 for fMLP 19.15±4.36 and 61.52±16.2 pmol/106 cells with and without DPG, respectively. Although the NOS inhibitors L-NMMA and L-canavanine (500 μM) failed to inhibit fMLP-induced SAG, carboxy-PTIO caused significant inhibition (EC50 for fMLP 36.15±7.43 and 86.31±14.06 nM and reduced the maximal response from 22.14±1.5 to 9.8±1.6 nmol O2−/106 cells/10 min with and without

  2. Dissimilarities between methylene blue and cyanide on relaxation and cyclic GMP formation in endothelium-intact intrapulmonary artery caused by nitrogen oxide-containing vasodilators and acetylcholine

    SciTech Connect

    Ignarro, L.J.; Harbison, R.G.; Wood, K.S.; Kadowitz, P.J.

    1986-01-01

    The objective of the present study was to ascertain whether cyanide shares the properties of methylene blue as a selective inhibitor of vascular smooth muscle relaxation elicited by agents that stimulate the formation of cyclic GMP. Experiments were performed with endothelium-intact rings prepared from bovine intrapulmonary artery. Methylene blue, a good inhibitor of soluble guanylate cyclase, antagonized both arterial relaxation and cyclic GMP accumulation in response to sodium nitroprusside, glyceryl trinitrate, S-nitroso-N-acetylpenicillamine and acetylcholine. In contrast, cyanide inhibited only the responses to sodium nitroprusside. Increasing concentrations of methylene blue depressed resting arterial levels of cyclic GMP and caused slowly developing but marked contractions whereas cyanide was without effect. Contractile responses to phenylephrine, potassium and U46619 were potentiated by methylene blue but not by cyanide. Preincubation of dilute solutions of cyanide containing sodium nitroprusside in oxygenated Krebs' buffer at 37 degrees C for 15 min before addition to bath chambers depressed relaxation and cyclic GMP accumulation caused by sodium nitroprusside markedly. Similar treatment of glyceryl trinitrate, however, failed to alter its effects in arterial rings. A chemical inactivation of sodium nitroprusside by cyanide appears to account for the specific inhibitory action of cyanide on arterial responses to sodium nitroprusside. This study indicates clearly that cyanide does not share the properties of methylene blue as an inhibitor of arterial relaxation elicited by vasodilators that stimulate cyclic GMP formation.

  3. Differential contribution of the guanylyl cyclase-cyclic GMP-protein kinase G pathway to the proliferation of neural stem cells stimulated by nitric oxide.

    PubMed

    Carreira, Bruno P; Morte, Maria Inês; Lourenço, Ana Sofia; Santos, Ana Isabel; Inácio, Angela; Ambrósio, António F; Carvalho, Caetana M; Araújo, Inês M

    2013-01-01

    Nitric oxide (NO) is an important inflammatory mediator involved in the initial boost in the proliferation of neural stem cells following brain injury. However, the mechanisms underlying the proliferative effect of NO are still unclear. The aim of this work was to investigate whether cyclic GMP (cGMP) and the cGMP-dependent kinase (PKG) are involved in the proliferative effect triggered by NO in neural stem cells. For this purpose, cultures of neural stem cells isolated from the mouse subventricular zone (SVZ) were used. We observed that long-term exposure to the NO donor (24 h), NOC-18, increased the proliferation of SVZ cells in a cGMP-dependent manner, since the guanylate cyclase inhibitor, ODQ, prevented cell proliferation. Similarly to NOC-18, the cGMP analogue, 8-Br-cGMP, also increased cell proliferation. Interestingly, shorter exposures to NO (6 h) increased cell proliferation in a cGMP-independent manner via the ERK/MAP kinase pathway. The selective inhibitor of PKG, KT5823, prevented the proliferative effect induced by NO at 24 h but not at 6 h. In conclusion, the proliferative effect of NO is initially mediated by the ERK/MAPK pathway, and at later stages by the GC/cGMP/PKG pathway. Thus, our work shows that NO induces neural stem cell proliferation by targeting these two pathways in a biphasic manner. PMID:22378242

  4. In Vivo Synthesis of Cyclic-di-GMP Using a Recombinant Adenovirus Preferentially Improves Adaptive Immune Responses against Extracellular Antigens.

    PubMed

    Alyaqoub, Fadel S; Aldhamen, Yasser A; Koestler, Benjamin J; Bruger, Eric L; Seregin, Sergey S; Pereira-Hicks, Cristiane; Godbehere, Sarah; Waters, Christopher M; Amalfitano, Andrea

    2016-02-15

    There is a compelling need for more effective vaccine adjuvants to augment induction of Ag-specific adaptive immune responses. Recent reports suggested the bacterial second messenger bis-(3'-5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) acts as an innate immune system modulator. We recently incorporated a Vibrio cholerae diguanylate cyclase into an adenovirus vaccine, fostering production of c-di-GMP as well as proinflammatory responses in mice. In this study, we recombined a more potent diguanylate cyclase gene, VCA0848, into a nonreplicating adenovirus serotype 5 (AdVCA0848) that produces elevated amounts of c-di-GMP when expressed in mammalian cells in vivo. This novel platform further improved induction of type I IFN-β and activation of innate and adaptive immune cells early after administration into mice as compared with control vectors. Coadministration of the extracellular protein OVA and the AdVCA0848 adjuvant significantly improved OVA-specific T cell responses as detected by IFN-γ and IL-2 ELISPOT, while also improving OVA-specific humoral B cell adaptive responses. In addition, we found that coadministration of AdVCA0848 with another adenovirus serotype 5 vector expressing the HIV-1-derived Gag Ag or the Clostridium difficile-derived toxin B resulted in significant inhibitory effects on the induction of Gag and toxin B-specific adaptive immune responses. As a proof of principle, these data confirm that in vivo synthesis of c-di-GMP stimulates strong innate immune responses that correlate with enhanced adaptive immune responses to concomitantly administered extracellular Ag, which can be used as an adjuvant to heighten effective immune responses for protein-based vaccine platforms against microbial infections and cancers. PMID:26792800

  5. Hybrid promiscuous (Hypr) GGDEF enzymes produce cyclic AMP-GMP (3′, 3′-cGAMP)

    PubMed Central

    Hallberg, Zachary F.; Wang, Xin C.; Wright, Todd A.; Nan, Beiyan; Ad, Omer; Yeo, Jongchan; Hammond, Ming C.

    2016-01-01

    Over 30 years ago, GGDEF domain-containing enzymes were shown to be diguanylate cyclases that produce cyclic di-GMP (cdiG), a second messenger that modulates the key bacterial lifestyle transition from a motile to sessile biofilm-forming state. Since then, the ubiquity of genes encoding GGDEF proteins in bacterial genomes has established the dominance of cdiG signaling in bacteria. However, the observation that proteobacteria encode a large number of GGDEF proteins, nearing 1% of coding sequences in some cases, raises the question of why bacteria need so many GGDEF enzymes. In this study, we reveal that a subfamily of GGDEF enzymes synthesizes the asymmetric signaling molecule cyclic AMP-GMP (cAG or 3′, 3′-cGAMP). This discovery is unexpected because GGDEF enzymes function as symmetric homodimers, with each monomer binding to one substrate NTP. Detailed analysis of the enzyme from Geobacter sulfurreducens showed it is a dinucleotide cyclase capable of switching the major cyclic dinucleotide (CDN) produced based on ATP-to-GTP ratios. We then establish through bioinformatics and activity assays that hybrid CDN-producing and promiscuous substrate-binding (Hypr) GGDEF enzymes are found in other deltaproteobacteria. Finally, we validated the predictive power of our analysis by showing that cAG is present in surface-grown Myxococcus xanthus. This study reveals that GGDEF enzymes make alternative cyclic dinucleotides to cdiG and expands the role of this widely distributed enzyme family to include regulation of cAG signaling. PMID:26839412

  6. Control of Formation and Cellular Detachment from Shewanella oneidensis MR-1 Biofilms by Cyclic di-GMP

    SciTech Connect

    Thormann, Kai M.; Duttler, Stefanie; Saville, Renee; Hyodo, Mamoru; Shukla, Soni; Hayakawa, Yoshihiro; Spormann, Alfred M.

    2006-04-01

    Stability and resilience against environmental perturbations are critical properties of medical and environmental biofilms and pose important targets for their control. Biofilm stability is determined by two mutually exclusive processes: attachment of cells to and detachment from the biofilm matrix. Using Shewanella oneidensis MR-1, an environmentally versatile, Fe(III) and Mn(IV) mineral -reducing microorganism, we identified mxdABCD as a new set of genes essential for formation of a three-dimensional biofilm. Molecular analysis revealed that mxdA encodes a cyclic bis(3',5')guanylic acid (cyclic di-GMP)-forming enzyme with an unusual GGDEF motif, i.e., NVDEF, which is essential for its function. mxdB encodes a putative membrane-associated glycosyl transferase. Both genes are essential for matrix attachment. The attachment-deficient phenotype of a Delta mxdA mutant was rescued by ectopic expression of VCA0956, encoding another diguanylate cyclase. Interestingly, a rapid cellular detachment from the biofilm occurred upon induction of yhjH, a gene encoding an enzyme that has been shown to have phosphodiesterase activity. In this way, it was possible to bypass the previously identified sudden depletion of molecular oxygen as an environmental trigger to induce biofilm dissolution. We propose a model for c-di-GMP as a key intracellular regulator for controlling biofilm stability by shifting the state of a biofilm cell between attachment and detachment in a concentration-dependent manner.

  7. Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover.

    PubMed

    Orr, Mona W; Donaldson, Gregory P; Severin, Geoffrey B; Wang, Jingxin; Sintim, Herman O; Waters, Christopher M; Lee, Vincent T

    2015-09-01

    The bacterial second messenger cyclic di-GMP (c-di-GMP) controls biofilm formation and other phenotypes relevant to pathogenesis. Cyclic-di-GMP is synthesized by diguanylate cyclases (DGCs). Phosphodiesterases (PDE-As) end signaling by linearizing c-di-GMP to 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), which is then hydrolyzed to two GMP molecules by yet unidentified enzymes termed PDE-Bs. We show that pGpG inhibits a PDE-A from Pseudomonas aeruginosa. In a dual DGC and PDE-A reaction, excess pGpG extends the half-life of c-di-GMP, indicating that removal of pGpG is critical for c-di-GMP homeostasis. Thus, we sought to identify the PDE-B enzyme(s) responsible for pGpG degradation. A differential radial capillary action of ligand assay-based screen for pGpG binding proteins identified oligoribonuclease (Orn), an exoribonuclease that hydrolyzes two- to five-nucleotide-long RNAs. Purified Orn rapidly converts pGpG into GMP. To determine whether Orn is the primary enzyme responsible for degrading pGpG, we assayed cell lysates of WT and ∆orn strains of P. aeruginosa PA14 for pGpG stability. The lysates from ∆orn showed 25-fold decrease in pGpG hydrolysis. Complementation with WT, but not active site mutants, restored hydrolysis. Accumulation of pGpG in the ∆orn strain could inhibit PDE-As, increasing c-di-GMP concentration. In support, we observed increased transcription from the c-di-GMP-regulated pel promoter. Additionally, the c-di-GMP-governed auto-aggregation and biofilm phenotypes were elevated in the ∆orn strain in a pel-dependent manner. Finally, we directly detect elevated pGpG and c-di-GMP in the ∆orn strain. Thus, we identified that Orn serves as the primary PDE-B enzyme that removes pGpG, which is necessary to complete the final step in the c-di-GMP degradation pathway. PMID:26305945

  8. Cyclic GMP signaling in cardiomyocytes modulates fatty acid trafficking and prevents triglyceride accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While the balance between carbohydrates and fatty acids for energy production appears to be crucial for cardiac homeostasis, much remains to be learned about the molecular mechanisms underlying this relationship. Given the reported benefits of cGMP signaling on the myocardium, we investigated the im...

  9. Cyclic di-GMP modulates gene expression in Lyme disease spirochetes at the tick-mammal interface to promote spirochete survival during the blood meal and tick-to-mammal transmission.

    PubMed

    Caimano, Melissa J; Dunham-Ems, Star; Allard, Anna M; Cassera, Maria B; Kenedy, Melisha; Radolf, Justin D

    2015-08-01

    Borrelia burgdorferi, the Lyme disease spirochete, couples environmental sensing and gene regulation primarily via the Hk1/Rrp1 two-component system (TCS) and Rrp2/RpoN/RpoS pathways. Beginning with acquisition, we reevaluated the contribution of these pathways to spirochete survival and gene regulation throughout the enzootic cycle. Live imaging of B. burgdorferi caught in the act of being acquired revealed that the absence of RpoS and the consequent derepression of tick-phase genes impart a Stay signal required for midgut colonization. In addition to the behavioral changes brought on by the RpoS-off state, acquisition requires activation of cyclic di-GMP (c-di-GMP) synthesis by the Hk1/Rrp1 TCS; B. burgdorferi lacking either component is destroyed during the blood meal. Prior studies attributed this dramatic phenotype to a metabolic lesion stemming from reduced glycerol uptake and utilization. In a head-to-head comparison, however, the B. burgdorferi Δglp mutant had a markedly greater capacity to survive tick feeding than B. burgdorferi Δhk1 or Δrrp1 mutants, establishing unequivocally that glycerol metabolism is only one component of the protection afforded by c-di-GMP. Data presented herein suggest that the protective response mediated by c-di-GMP is multifactorial, involving chemotactic responses, utilization of alternate substrates for energy generation and intermediary metabolism, and remodeling of the cell envelope as a means of defending spirochetes against threats engendered during the blood meal. Expression profiling of c-di-GMP-regulated genes through the enzootic cycle supports our contention that the Hk1/Rrp1 TCS functions primarily, if not exclusively, in ticks. These data also raise the possibility that c-di-GMP enhances the expression of a subset of RpoS-dependent genes during nymphal transmission. PMID:25987708

  10. Cyclic di-GMP Modulates Gene Expression in Lyme Disease Spirochetes at the Tick-Mammal Interface To Promote Spirochete Survival during the Blood Meal and Tick-to-Mammal Transmission

    PubMed Central

    Dunham-Ems, Star; Allard, Anna M.; Cassera, Maria B.; Kenedy, Melisha; Radolf, Justin D.

    2015-01-01

    Borrelia burgdorferi, the Lyme disease spirochete, couples environmental sensing and gene regulation primarily via the Hk1/Rrp1 two-component system (TCS) and Rrp2/RpoN/RpoS pathways. Beginning with acquisition, we reevaluated the contribution of these pathways to spirochete survival and gene regulation throughout the enzootic cycle. Live imaging of B. burgdorferi caught in the act of being acquired revealed that the absence of RpoS and the consequent derepression of tick-phase genes impart a Stay signal required for midgut colonization. In addition to the behavioral changes brought on by the RpoS-off state, acquisition requires activation of cyclic di-GMP (c-di-GMP) synthesis by the Hk1/Rrp1 TCS; B. burgdorferi lacking either component is destroyed during the blood meal. Prior studies attributed this dramatic phenotype to a metabolic lesion stemming from reduced glycerol uptake and utilization. In a head-to-head comparison, however, the B. burgdorferi Δglp mutant had a markedly greater capacity to survive tick feeding than B. burgdorferi Δhk1 or Δrrp1 mutants, establishing unequivocally that glycerol metabolism is only one component of the protection afforded by c-di-GMP. Data presented herein suggest that the protective response mediated by c-di-GMP is multifactorial, involving chemotactic responses, utilization of alternate substrates for energy generation and intermediary metabolism, and remodeling of the cell envelope as a means of defending spirochetes against threats engendered during the blood meal. Expression profiling of c-di-GMP-regulated genes through the enzootic cycle supports our contention that the Hk1/Rrp1 TCS functions primarily, if not exclusively, in ticks. These data also raise the possibility that c-di-GMP enhances the expression of a subset of RpoS-dependent genes during nymphal transmission. PMID:25987708

  11. Systems Pharmacology and Rational Polypharmacy: Nitric Oxide−Cyclic GMP Signaling Pathway as an Illustrative Example and Derivation of the General Case

    PubMed Central

    Garmaroudi, Farshid S.; Handy, Diane E.; Liu, Yang-Yu; Loscalzo, Joseph

    2016-01-01

    Impaired nitric oxide (NO˙)-cyclic guanosine 3', 5'-monophosphate (cGMP) signaling has been observed in many cardiovascular disorders, including heart failure and pulmonary arterial hypertension. There are several enzymatic determinants of cGMP levels in this pathway, including soluble guanylyl cyclase (sGC) itself, the NO˙-activated form of sGC, and phosphodiesterase(s) (PDE). Therapies for some of these disorders with PDE inhibitors have been successful at increasing cGMP levels in both cardiac and vascular tissues. However, at the systems level, it is not clear whether perturbation of PDE alone, under oxidative stress, is the best approach for increasing cGMP levels as compared with perturbation of other potential pathway targets, either alone or in combination. Here, we develop a model-based approach to perturbing this pathway, focusing on single reactions, pairs of reactions, or trios of reactions as targets, then monitoring the theoretical effects of these interventions on cGMP levels. Single perturbations of all reaction steps within this pathway demonstrated that three reaction steps, including the oxidation of sGC, NO˙ dissociation from sGC, and cGMP degradation by PDE, exerted a dominant influence on cGMP accumulation relative to other reaction steps. Furthermore, among all possible single, paired, and triple perturbations of this pathway, the combined perturbations of these three reaction steps had the greatest impact on cGMP accumulation. These computational findings were confirmed in cell-based experiments. We conclude that a combined perturbation of the oxidatively-impaired NO˙-cGMP signaling pathway is a better approach to the restoration of cGMP levels as compared with corresponding individual perturbations. This approach may also yield improved therapeutic responses in other complex pharmacologically amenable pathways. PMID:26985825

  12. Cyclic Di-GMP Phosphodiesterases RmdA and RmdB Are Involved in Regulating Colony Morphology and Development in Streptomyces coelicolor

    PubMed Central

    Hull, Travis D.; Ryu, Min-Hyung; Sullivan, Matthew J.; Johnson, Ryan C.; Klena, Nikolai T.; Geiger, Robert M.; Gomelsky, Mark

    2012-01-01

    Cyclic dimeric GMP (c-di-GMP) regulates numerous processes in Gram-negative bacteria, yet little is known about its role in Gram-positive bacteria. Here we characterize two c-di-GMP phosphodiesterases from the filamentous high-GC Gram-positive actinobacterium Streptomyces coelicolor, involved in controlling colony morphology and development. A transposon mutation in one of the two phosphodiesterase genes, SCO0928, hereby designated rmdA (regulator of morphology and development A), resulted in decreased levels of spore-specific gray pigment and a delay in spore formation. The RmdA protein contains GGDEF-EAL domains arranged in tandem and possesses c-di-GMP phosphodiesterase activity, as is evident from in vitro enzymatic assays using the purified protein. RmdA contains a PAS9 domain and is a hemoprotein. Inactivation of another GGDEF-EAL-encoding gene, SCO5495, designated rmdB, resulted in a phenotype identical to that of the rmdA mutant. Purified soluble fragment of RmdB devoid of transmembrane domains also possesses c-di-GMP phosphodiesterase activity. The rmdA rmdB double mutant has a bald phenotype and is impaired in aerial mycelium formation. This suggests that RmdA and RmdB functions are additive and at least partially overlapping. The rmdA and rmdB mutations likely result in increased local pools of intracellular c-di-GMP, because intracellular c-di-GMP levels in the single mutants did not differ significantly from those of the wild type, whereas in the double rmdA rmdB mutant, c-di-GMP levels were 3-fold higher than those in the wild type. This study highlights the importance of c-di-GMP-dependent signaling in actinomycete colony morphology and development and identifies two c-di-GMP phosphodiesterases controlling these processes. PMID:22753061

  13. Comparative effects of vinpocetine and 8-Br-cyclic GMP on the contraction and /sup 45/Ca-fluxes in the rabbit aorta

    SciTech Connect

    Chiu, P.J.; Tetzloff, G.; Ahn, H.S.; Sybertz, E.J.

    1988-07-01

    Vinpocetine is a highly specific inhibitor of calmodulin-dependent phosphodiesterase (CaM-PDE) with an IC50 of 19 microM and produces a significant accumulation of cyclic GMP but not cyclic AMP in rabbit aorta. In isolated rabbit aortic strips, vinpocetine (0.01 and 0.1 mM) inhibited the contraction and /sup 45/Ca uptake due to both phenylephrine (1 microM) and KCl (40 mM), whereas 8-Br-cyclic GMP (0.1-1mM) selectively impaired phenylephrine-induced responses. Furthermore, the KCl-stimulated /sup 45/Ca efflux in normal Ca2+ buffer, which reflects elevated cytosolic Ca2+, was greatly diminished by vinpocetine but not by 8-Br-cyclic GMP. However, phenylephrine-induced /sup 45/Ca efflux and contraction in Ca2+-free buffer, which reflect Ca2+ release from intracellular sites, were similarly inhibited by both vinpocetine and 8-Br-cyclic GMP. The results suggest that vinpocetine may effect vasodilatation through blockade of the slow channel and selective inhibition of CaM-PDE in the vascular smooth muscle.

  14. Role of soluble guanylyl cyclase-cyclic GMP signaling in tumor cell proliferation

    PubMed Central

    Mujoo, Kalpana; Sharin, Vladislav G.; Martin, Emil; Choi, Byung-Kwon; Sloan, Courtney; Nikonoff, Lubov E.; Kots, Alexander Y; Murad, Ferid

    2010-01-01

    Our previous studies demonstrate a differential expression of nitric oxide (NO) signaling components in ES cells and our recent study demonstrated an enhanced differentiation of ES cells into myocardial cells with NO donors and soluble guanylyl cyclase (sGC) activators. Since NO-cGMP pathway exhibits a diverse role in cancer, we were interested in evaluating the role of the NO receptor sGC and other components of the pathway in regulation of the tumor cell proliferation. Our results demonstrate a differential expression of the sGC subunits, NOS-1 and PKG mRNA and protein levels in various human cancer models. In contrast to sGCα1, robust levels of sGC β1 were observed in OVCAR-3 (ovarian) and MDA-MB-468 (breast) cancer cells which correlated well with the sGC activity and a marked increase in cGMP levels upon exposure to the combination of a NO donor and a sGC activator. NOC-18 (DETA NONOate; NO donor), BAY41-2272 (3-(4-Amino-5-cyclopropylpyrimidin-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine); sGC activator), NOC-18+BAY41-2272, IBMX (3-Isobutyl-1-methylxanthine; phosphodiesterase inhibitor) and 8-bromo-cGMP (cGMP analog) caused growth inhibition and apoptosis in various cancer cell lines. To elucidate the molecular mechanisms involved in growth inhibition, we evaluated the effect of activators/inhibitors on ERK phosphorylation. Our studies indicate that BAY41-2272 or the combination NOC18+BAY41-2272 caused inhibition of the basal ERK1/2 phosphorylation in OVCAR-3 (high sGC activity), SK-OV-3 and SK-Br-3 (low sGC activity) cell lines and in some cases the inhibition was rescued by the sGC inhibitor ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one). These studies suggest that the effects of activators/inhibitors of NO-sGC-cGMP in tumor cell proliferation is mediated by both cGMP-dependent and independent mechanisms. PMID:19948239

  15. c-di-GMP Enhances Protective Innate Immunity in a Murine Model of Pertussis

    PubMed Central

    Elahi, Shokrollah; Van Kessel, Jill; Kiros, Tedele G.; Strom, Stacy; Hayakawa, Yoshihiro; Hyodo, Mamoru; Babiuk, Lorne A.; Gerdts, Volker

    2014-01-01

    Innate immunity represents the first line of defense against invading pathogens in the respiratory tract. Innate immune cells such as monocytes, macrophages, dendritic cells, NK cells, and granulocytes contain specific pathogen-recognition molecules which induce the production of cytokines and subsequently activate the adaptive immune response. c-di-GMP is a ubiquitous second messenger that stimulates innate immunity and regulates biofilm formation, motility and virulence in a diverse range of bacterial species with potent immunomodulatory properties. In the present study, c-di-GMP was used to enhance the innate immune response against pertussis, a respiratory infection mainly caused by Bordetella pertussis. Intranasal treatment with c-di-GMP resulted in the induction of robust innate immune responses to infection with B. pertussis characterized by enhanced recruitment of neutrophils, macrophages, natural killer cells and dendritic cells. The immune responses were associated with an earlier and more vigorous expression of Th1-type cytokines, as well as an increase in the induction of nitric oxide in the lungs of treated animals, resulting in significant reduction of bacterial numbers in the lungs of infected mice. These results demonstrate that c-di-GMP is a potent innate immune stimulatory molecule that can be used to enhance protection against bacterial respiratory infections. In addition, our data suggest that priming of the innate immune system by c-di-GMP could further skew the immune response towards a Th1 type phenotype during subsequent infection. Thus, our data suggest that c-di-GMP might be useful as an adjuvant for the next generation of acellular pertussis vaccine to mount a more protective Th1 phenotype immune response, and also in other systems where a Th1 type immune response is required. PMID:25333720

  16. YfiBNR Mediates Cyclic di-GMP Dependent Small Colony Variant Formation and Persistence in Pseudomonas aeruginosa

    PubMed Central

    Malone, Jacob G.; Jaeger, Tina; Spangler, Christian; Ritz, Daniel; Spang, Anne; Arrieumerlou, Cécile; Kaever, Volkhard; Landmann, Regine; Jenal, Urs

    2010-01-01

    During long-term cystic fibrosis lung infections, Pseudomonas aeruginosa undergoes genetic adaptation resulting in progressively increased persistence and the generation of adaptive colony morphotypes. This includes small colony variants (SCVs), auto-aggregative, hyper-adherent cells whose appearance correlates with poor lung function and persistence of infection. The SCV morphotype is strongly linked to elevated levels of cyclic-di-GMP, a ubiquitous bacterial second messenger that regulates the transition between motile and sessile, cooperative lifestyles. A genetic screen in PA01 for SCV-related loci identified the yfiBNR operon, encoding a tripartite signaling module that regulates c-di-GMP levels in P. aeruginosa. Subsequent analysis determined that YfiN is a membrane-integral diguanylate cyclase whose activity is tightly controlled by YfiR, a small periplasmic protein, and the OmpA/Pal-like outer-membrane lipoprotein YfiB. Exopolysaccharide synthesis was identified as the principal downstream target for YfiBNR, with increased production of Pel and Psl exopolysaccharides responsible for many characteristic SCV behaviors. An yfi-dependent SCV was isolated from the sputum of a CF patient. Consequently, the effect of the SCV morphology on persistence of infection was analyzed in vitro and in vivo using the YfiN-mediated SCV as a representative strain. The SCV strain exhibited strong, exopolysaccharide-dependent resistance to nematode scavenging and macrophage phagocytosis. Furthermore, the SCV strain effectively persisted over many weeks in mouse infection models, despite exhibiting a marked fitness disadvantage in vitro. Exposure to sub-inhibitory concentrations of antibiotics significantly decreased both the number of suppressors arising, and the relative fitness disadvantage of the SCV mutant in vitro, suggesting that the SCV persistence phenotype may play a more important role during antimicrobial chemotherapy. This study establishes YfiBNR as an important

  17. The Xanthomonas oryzae pv. oryzae PilZ Domain Proteins Function Differentially in Cyclic di-GMP Binding and Regulation of Virulence and Motility

    PubMed Central

    Yang, Fenghuan; Tian, Fang; Chen, Huamin; Hutchins, William; Yang, Ching-Hong

    2015-01-01

    The PilZ domain proteins have been demonstrated to be one of the major types of receptors mediating cyclic di-GMP (c-di-GMP) signaling pathways in several pathogenic bacteria. However, little is known about the function of PilZ domain proteins in c-di-GMP regulation of virulence in the bacterial blight pathogen of rice Xanthomonas oryzae pv. oryzae. Here, the roles of PilZ domain proteins PXO_00049 and PXO_02374 in c-di-GMP binding, regulation of virulence and motility, and subcellular localization were characterized in comparison with PXO_02715, identified previously as an interactor with the c-di-GMP receptor Filp to regulate virulence. The c-di-GMP binding motifs in the PilZ domains were conserved in PXO_00049 and PXO_02374 but were less well conserved in PXO_02715. PXO_00049 and PXO_02374 but not PXO_02715 proteins bound to c-di-GMP with high affinity in vitro, and the R141 and R10 residues in the PilZ domains of PXO_00049 and PXO_02374, respectively, were crucial for c-di-GMP binding. Gene deletion of PXO_00049 and PXO_02374 resulted in significant increases in virulence and hrp gene transcription, indicating their negative regulation of virulence via type III secretion system expression. All mutants showed significant changes in sliding motility but not exopolysaccharide production and biofilm formation. In trans expression of the full-length open reading frame (ORF) of each gene in the relevant mutants led to restoration of the phenotype to wild-type levels. Moreover, PXO_00049 and PXO_02374 displayed mainly multisite subcellular localizations, whereas PXO_02715 showed nonpolar distributions in the X. oryzae pv. oryzae cells. Therefore, this study demonstrated the different functions of the PilZ domain proteins in mediation of c-di-GMP regulation of virulence and motility in X. oryzae pv. oryzae. PMID:25911481

  18. Hyperammonemia inhibits the natriuretic peptide receptor 2 (NPR-2)-mediated cyclic GMP synthesis in the astrocytic compartment of rat cerebral cortex slices.

    PubMed

    Zielińska, Magdalena; Fresko, Inez; Konopacka, Agnieszka; Felipo, Vicente; Albrecht, Jan

    2007-11-01

    The decrease of cyclic GMP (cGMP) level in the brain, contributing to cognitive and memory deficit in hyperammonemia (HA), has been attributed to the interference of ammonia with the NMDA/nitric oxide/soluble guanylate cyclase (GC)/cGMP pathway in neurons. The present study tested the hypotheses that (a) HA also affects cGMP synthesis elicited by stimulation of the natriuretic peptide receptor 2 (NPR-2) with its natural ligand, C-type natriuretic peptide (CNP) and (b) the latter effect may involve astrocytes, the ammonia-sensitive cells. In the cerebral cortical slices of control rats, CNP stimulated cGMP synthesis in a degree comparable to the NO donor, S-nitroso-N-acetylpenicillamine (SNAP) used at an optimal concentration. Fluoroacetate (FA), a metabolic inhibitor specifically affecting astrocytic mitochondria, inhibited the CNP-dependent cGMP synthesis by about 50%. Ammonium acetate-induced HA decreased by 68% the CNP-dependent cGMP generation in slices incubated in the absence of FA. In slices incubated in the presence of FA, cGMP synthesis in slices derived from HA rats did not differ from that in control slices. The results indicate that HA inhibits CNP-dependent cGMP synthesis in the FA-vulnerable, astrocytic compartment, but not in the FA-resistant compartment(s) of the brain. HA did not affect the expression of NPR-2 mRNA in the cerebral cortex tissue as tested using real-time PCR, indicating that the effect of ammonia involves as yet unidentified events occurring posttranscriptionally. Deregulation of NPR-2 function in astrocytes by ammonia may contribute to neurophysiological symptoms of HA. PMID:17629948

  19. Rrp1, a cyclic-di-GMP-producing response regulator, is an important regulator of Borrelia burgdorferi core cellular functions

    PubMed Central

    Rogers, Elizabeth A.; Terekhova, Darya; Zhang, Hong-Ming; Hovis, Kelley M.; Schwartz, Ira; Marconi, Richard T.

    2010-01-01

    Summary Two-component systems (TCS) are universal among bacteria and play critical roles in gene regulation. Our understanding of the contributions of TCS in the biology of the Borrelia is just now beginning to develop. Borrelia burgdorferi, a causative agent of Lyme disease, harbours a TCS comprised of open reading frames (ORFs) BB0419 and BB0420. BB0419 encodes a response regulator designated Rrp1, and BB0420 encodes a hybrid histidine kinase–response regulator designated Hpk1. Rrp1, which contains a conserved GGDEF domain, undergoes phosphorylation and produces the secondary messenger, cyclic diguanylate (c-di-GMP), a critical signaling molecule in numerous organisms. However, the regulatory role of the Rrp1–Hpk1 TCS and c-di-GMP signaling in Borrelia biology are unexplored. In this study, the distribution, conservation, expression and potential global regulatory capability of Rrp1 were assessed. rrp1 was found to be universal and highly conserved among isolates, co-transcribed with hpk1, constitutively expressed during in vitro cultivation, and significantly upregulated upon tick feeding. Allelic exchange replacement and microarray analyses revealed that the Rrp1 regulon consists of a large number of genes encoded by the core Borrelia genome (linear chromosome, linear plasmid 54 and circular plasmid 26) that encode for proteins involved in central metabolic processes and virulence mechanisms including immune evasion. PMID:19210621

  20. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING

    PubMed Central

    Shi, Heping; Wu, Jiaxi; Chen, Zhijian J.; Chen, Chuo

    2015-01-01

    Cyclic GMP-AMP containing a unique combination of mixed phosphodiester linkages (2′3′-cGAMP) is an endogenous second messenger molecule that activates the type-I IFN pathway upon binding to the homodimer of the adaptor protein STING on the surface of endoplasmic reticulum membrane. However, the preferential binding of the asymmetric ligand 2′3′-cGAMP to the symmetric dimer of STING represents a physicochemical enigma. Here we show that 2′3′-cGAMP, but not its linkage isomers, adopts an organized free-ligand conformation that resembles the STING-bound conformation and pays low entropy and enthalpy costs in converting into the active conformation. Our results demonstrate that analyses of free-ligand conformations can be as important as analyses of protein conformations in understanding protein–ligand interactions. PMID:26150511

  1. Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover

    PubMed Central

    Orr, Mona W.; Donaldson, Gregory P.; Severin, Geoffrey B.; Wang, Jingxin; Sintim, Herman O.; Waters, Christopher M.; Lee, Vincent T.

    2015-01-01

    The bacterial second messenger cyclic di-GMP (c-di-GMP) controls biofilm formation and other phenotypes relevant to pathogenesis. Cyclic-di-GMP is synthesized by diguanylate cyclases (DGCs). Phosphodiesterases (PDE-As) end signaling by linearizing c-di-GMP to 5ʹ-phosphoguanylyl-(3ʹ,5ʹ)-guanosine (pGpG), which is then hydrolyzed to two GMP molecules by yet unidentified enzymes termed PDE-Bs. We show that pGpG inhibits a PDE-A from Pseudomonas aeruginosa. In a dual DGC and PDE-A reaction, excess pGpG extends the half-life of c-di-GMP, indicating that removal of pGpG is critical for c-di-GMP homeostasis. Thus, we sought to identify the PDE-B enzyme(s) responsible for pGpG degradation. A differential radial capillary action of ligand assay-based screen for pGpG binding proteins identified oligoribonuclease (Orn), an exoribonuclease that hydrolyzes two- to five-nucleotide-long RNAs. Purified Orn rapidly converts pGpG into GMP. To determine whether Orn is the primary enzyme responsible for degrading pGpG, we assayed cell lysates of WT and ∆orn strains of P. aeruginosa PA14 for pGpG stability. The lysates from ∆orn showed 25-fold decrease in pGpG hydrolysis. Complementation with WT, but not active site mutants, restored hydrolysis. Accumulation of pGpG in the ∆orn strain could inhibit PDE-As, increasing c-di-GMP concentration. In support, we observed increased transcription from the c-di-GMP–regulated pel promoter. Additionally, the c-di-GMP–governed auto-aggregation and biofilm phenotypes were elevated in the ∆orn strain in a pel-dependent manner. Finally, we directly detect elevated pGpG and c-di-GMP in the ∆orn strain. Thus, we identified that Orn serves as the primary PDE-B enzyme that removes pGpG, which is necessary to complete the final step in the c-di-GMP degradation pathway. PMID:26305945

  2. Effects of atrial and brain natriuretic peptides upon cyclic GMP levels, potassium transport, and receptor binding in rat astrocytes

    SciTech Connect

    Beaumont, K.; Tan, P.K. )

    1990-02-01

    The ability of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) to alter cyclic GMP levels and NaKCl cotransport in rat neocortical astrocytes was determined. At concentrations of 10(-9)-10(-6) M, rat ANP99-126 (rANF), rat ANP102-126 (auriculin B), and rat ANP103-126 (atriopeptin III) stimulated 6- to 100-fold increases in cyclic GMP levels. Porcine BNP (pBNP) and rat BNP (rBNP) were 20%-90% as effective as rANF over most of this concentration range, although 10(-6) M pBNP produced a greater effect than rANF. NaKCl cotransport as measured by bumetanide-sensitive 86Rb+ influx was not altered by exposure of astrocytes to 10(-6)M rANF, pBNP, or rBNP. Both pBNP and rBNP, as well as rat ANP103-123 (atriopeptin I) and des(gl18, ser19, gly20, leu21, gly22) ANF4-23-NH2 (C-ANF4-23) strongly competed for specific 125I-rANF binding sites in astrocyte membranes with affinities ranging from 0.03 to 0.4 nM, suggesting that virtually all binding sites measured at subnanomolar concentrations of 125I-rANF were of the ANP-C (ANF-R2) receptor subtype. These receptors are thought to serve a clearance function and may be linked to a guanylate cyclase activity that is chemically and pharmacologically distinct from that coupled to ANP-A (ANF-R1) receptors. ANP receptors on astrocytes may function in limiting the access of ANP and BNP to neurons involved in body fluid and cardiovascular regulation.

  3. Cyclic GMP, sodium nitroprusside and sodium azide reduce aqueous humour formation in the isolated arterially perfused pig eye

    PubMed Central

    Shahidullah, Mohammad; Yap, Maurice; To, Chi-ho

    2005-01-01

    The effect of nitric oxide (NO) on aqueous humour formation (AHF) and intraocular pressure (IOP) was studied using NO donors, sodium azide (AZ) and sodium nitroprusside (SNP). Using the porcine arterially perfused eye preparation, drug effects on AHF and IOP were measured by fluorescein dilution and manometry, respectively. Perfusion pressure of the ocular vasculature was also monitored using digital pressure transducer and pen recorder. L-Arginine (1.0 mM), a precursor of NO, but not D-arginine (1.0 mM), the inactive analogue, produced a significant reduction in AHF (28.5%) and IOP (21.1%). L-NAME (L-nitro-L-arginine) (10–100 μM), an NO synthase inhibitor, had no effect on AHF and IOP. However, L-NAME (100 μM) completely reversed L-arginine's effect. AZ and SNP reduced the AHF and IOP dose-dependently. AZ at 100 nM, 1 and 10 μM reduced AHF by 26.0, 39.7 and 51.7% and IOP by 10.8, 17.3 and 24.0%, respectively. SNP at 1, 10 and 100 μM reduced the AHF by 6.0, 24.2 and 35.4% and IOP by 3.5, 9.5 and 15.5%, respectively. 8-pCPT-cGMP (8-para-chlorophenyl-thioguanosine-3′,5′-cyclic guanosine monophosphate, 10 μM), a cGMP analogue, also reduced the AHF (34.9%) and IOP (15.9%). The effects of AZ and SNP on the AHF and IOP were blocked by a soluble guanylate cyclase inhibitor ODQ (10 μM), whereas ODQ alone or combined with 8-pCPT-cGMP had no effect on the AHF and IOP. None of the drugs had any significant effect on ocular vasculature. The reduction of the AHF and IOP in the arterially perfused pig eye by nitrovasodilators is likely to involve the NO-cGMP pathway. PMID:15711584

  4. Ammonia inhibits the C-type natriuretic peptide-dependent cyclic GMP synthesis and calcium accumulation in a rat brain endothelial cell line.

    PubMed

    Konopacka, Agnieszka; Zielińska, Magdalena; Albrecht, Jan

    2008-05-01

    Recently we reported a decrease of C-type natriuretic peptide (CNP)-dependent, natriuretic peptide receptor 2 (NPR2)-mediated cyclic GMP (cGMP) synthesis in a non-neuronal compartment of cerebral cortical slices of hyperammonemic rats [Zielińska, M., Fresko, I., Konopacka, A., Felipo, V., Albrecht, J., 2007. Hyperammonemia inhibits the natriuretic peptide receptor 2 (NPR2)-mediated cyclic GMP synthesis in the astrocytic compartment of rat cerebral cortex slices. Neurotoxicology 28, 1260-1263]. Here we accounted for the possible involvement of cerebral capillary endothelial cells in this response by measuring the effect of ammonia on the CNP-mediated cGMP formation and intracellular calcium ([Ca2+]i) accumulation in a rat cerebral endothelial cell line (RBE-4). We first established that stimulation of cGMP synthesis in RBE-4 cells was coupled to protein kinase G (PKG)-mediated Ca2+ influx from the medium which was inhibited by an L-type channel blocker nimodipine. Ammonia treatment (1h, 5mM NH4Cl) evoked a substantial decrease of CNP-stimulated cGMP synthesis which was related to a decreased binding of CNP to NPR2 receptors, and depressed the CNP-dependent [Ca2+]i accumulation in these cells. Ammonia also abolished the CNP-dependent Ca2+ accumulation in the absence of Na+. In cells incubated with ammonia in the absence of Ca2+ a slight CNP-dependent increase of [Ca2+]i was observed, most likely representing Ca2+ release from intracellular stores. Depression of CNP-dependent cGMP-mediated [Ca2+]i accumulation may contribute to cerebral vascular endothelial dysfunction associated with hyperammonemia or hepatic encephalopathy. PMID:18222015

  5. Comparison of phosphorylation of ribosomal proteins from HeLa and Krebs II ascites-tumour cells by cyclic AMP-dependent and cyclic GMP-dependent protein kinases.

    PubMed Central

    Issinger, O G; Beier, H; Speichermann, N; Flokerzi, V; Hofmann, F

    1980-01-01

    Phosphorylation of eukaryotic ribosomal proteins in vitro by essentially homogeneous preparations of cyclic AMP-dependent protein kinase catalytic subunit and cyclic GMP-dependent protein kinase was compared. Each protein kinase was added at a concentration of 30nM. Ribosomal proteins were identified by two-dimensional gel electrophoresis. Almost identical results were obtained when ribosomal subunits from HeLa or ascites-tumour cells were used. About 50-60% of the total radioactive phosphate incorporated into small-subunit ribosomal proteins by either kinase was associated with protein S6. In 90 min between 0.7 and 1.0 mol of phosphate/mol of protein S6 was incorporated by the catalytic subunit of cyclic AMP-dependent protein kinase. Of the other proteins, S3 and S7 from the small subunit and proteins L6, L18, L19 and L35 from the large subunit were predominantly phosphorylated by the cyclic AMP-dependent enzyme. Between 0.1 and 0.2 mol of phosphate was incorporated/mol of these phosphorylated proteins. With the exception of protein S7, the same proteins were also major substrates for the cyclic GMP-dependent protein kinase. Time courses of the phosphorylation of individual proteins from the small and large ribosomal subunits in the presence of either protein kinase suggested four types of phosphorylation reactions: (1) proteins S2, S10 and L5 were preferably phosphorylated by the cyclic GMP-dependent protein kinase; (2) proteins S3 and L6 were phosphorylated at very similar rates by either kinase; (3) proteins S7 and L29 were almost exclusively phosphorylated by the cyclic AMP-dependent protein kinase; (4) protein S6 and most of the other proteins were phosphorylated about two or three times faster by the cyclic AMP-dependent than by the cyclic GMP-dependent enzyme. Images Fig. 1. Fig. 2. PMID:6246882

  6. Cyclic GMP protein kinase activity is reduced in thyroxine-induced hypertrophic cardiac myocytes.

    PubMed

    Yan, Lin; Zhang, Qihang; Scholz, Peter M; Weiss, Harvey R

    2003-12-01

    1. We tested the hypothesis that the cGMP-dependent protein kinase has major negative functional effects in cardiac myocytes and that the importance of this pathway is reduced in thyroxine (T4; 0.5 mg/kg per day for 16 days) hypertrophic myocytes. 2. Using isolated ventricular myocytes from control (n = 7) and T4-treated (n = 9) rabbit hypertrophic hearts, myocyte shortening was studied with a video edge detector. Oxygen consumption was measured using O2 electrodes. Protein phosphorylation was measured autoradiographically. 3. Data were collected following treatment with: (i) 8-(4-chlorophenylthio)guanosine-3',5'-monophosphate (PCPT; 10-7 or 10-5 mol/L); (ii) 8-bromo-cAMP (10-5 mol/L) followed by PCPT; (iii) beta-phenyl-1,N2-etheno-8-bromoguanosine-3',5'-monophosphorothioate, SP-isomer (SP; 10-7 or 10-5 mol/L); or (iv) 8-bromo-cAMP (10-5 mol/L) followed by SP. 4. There were no significant differences between groups in baseline percentage shortening (Pcs; 4.9 +/- 0.2 vs 5.6 +/- 0.4% for control and T4 groups, respectively) and maximal rate of shortening (Rs; 64.8 +/- 5.9 vs 79.9 +/- 7.1 micro m/ s for control and T4 groups, respectively). Both SP and PCPT decreased Pcs (-43 vs-21% for control and T4 groups, respectively) and Rs (-36 vs-22% for control and T4 groups, respectively), but the effect was significantly reduced in T4 myocytes. 8-Bromo-cAMP similarly increased Pcs (28 vs 23% for control and T4 groups, respectively) and Rs (20 vs 19% for control and T4 groups, respectively). After 8-bromo-cAMP, SP and PCPT decreased Pcs (-34%) and Rs (-29%) less in the control group. However, the effects of these drugs were not altered in T4 myocytes (Pcs -24%; Rs -22%). Both PCPT and cAMP phosphorylated the same five protein bands. In T4 myocytes, these five bands were enhanced less. 5. We conclude that, in control ventricular myocytes, the cGMP-dependent protein kinase exerted major negative functional effects but, in T4-induced hypertrophic myocytes, the importance of

  7. Genome-Based Comparison of Cyclic Di-GMP Signaling in Pathogenic and Commensal Escherichia coli Strains

    PubMed Central

    Povolotsky, Tatyana L.

    2015-01-01

    ABSTRACT The ubiquitous bacterial second messenger cyclic di-GMP (c-di-GMP) has recently become prominent as a trigger for biofilm formation in many bacteria. It is generated by diguanylate cyclases (DGCs; with GGDEF domains) and degraded by specific phosphodiesterases (PDEs; containing either EAL or HD-GYP domains). Most bacterial species contain multiples of these proteins with some having specific functions that are based on direct molecular interactions in addition to their enzymatic activities. Escherichia coli K-12 laboratory strains feature 29 genes encoding GGDEF and/or EAL domains, resulting in a set of 12 DGCs, 13 PDEs, and four enzymatically inactive “degenerate” proteins that act by direct macromolecular interactions. We present here a comparative analysis of GGDEF/EAL domain-encoding genes in 61 genomes of pathogenic, commensal, and probiotic E. coli strains (including enteric pathogens such as enteroaggregative, enterohemorrhagic, enteropathogenic, enterotoxigenic, and adherent and invasive Escherichia coli and the 2011 German outbreak O104:H4 strain, as well as extraintestinal pathogenic E. coli, such as uropathogenic and meningitis-associated E. coli). We describe additional genes for two membrane-associated DGCs (DgcX and DgcY) and four PDEs (the membrane-associated PdeT, as well as the EAL domain-only proteins PdeW, PdeX, and PdeY), thus showing the pangenome of E. coli to contain at least 35 GGDEF/EAL domain proteins. A core set of only eight proteins is absolutely conserved in all 61 strains: DgcC (YaiC), DgcI (YliF), PdeB (YlaB), PdeH (YhjH), PdeK (YhjK), PdeN (Rtn), and the degenerate proteins CsrD and CdgI (YeaI). In all other GGDEF/EAL domain genes, diverse point and frameshift mutations, as well as small or large deletions, were discovered in various strains. IMPORTANCE Our analysis reveals interesting trends in pathogenic Escherichia coli that could reflect different host cell adherence mechanisms. These may either benefit from or be

  8. Identification of Cyclic GMP-Activated Nonselective Ca2+-Permeable Cation Channels and Associated CNGC5 and CNGC6 Genes in Arabidopsis Guard Cells1[W][OPEN

    PubMed Central

    Wang, Yong-Fei; Munemasa, Shintaro; Nishimura, Noriyuki; Ren, Hui-Min; Robert, Nadia; Han, Michelle; Puzõrjova, Irina; Kollist, Hannes; Lee, Stephen; Mori, Izumi; Schroeder, Julian I.

    2013-01-01

    Cytosolic Ca2+ in guard cells plays an important role in stomatal movement responses to environmental stimuli. These cytosolic Ca2+ increases result from Ca2+ influx through Ca2+-permeable channels in the plasma membrane and Ca2+ release from intracellular organelles in guard cells. However, the genes encoding defined plasma membrane Ca2+-permeable channel activity remain unknown in guard cells and, with some exceptions, largely unknown in higher plant cells. Here, we report the identification of two Arabidopsis (Arabidopsis thaliana) cation channel genes, CNGC5 and CNGC6, that are highly expressed in guard cells. Cytosolic application of cyclic GMP (cGMP) and extracellularly applied membrane-permeable 8-Bromoguanosine 3′,5′-cyclic monophosphate-cGMP both activated hyperpolarization-induced inward-conducting currents in wild-type guard cells using Mg2+ as the main charge carrier. The cGMP-activated currents were strongly blocked by lanthanum and gadolinium and also conducted Ba2+, Ca2+, and Na+ ions. cngc5 cngc6 double mutant guard cells exhibited dramatically impaired cGMP-activated currents. In contrast, mutations in CNGC1, CNGC2, and CNGC20 did not disrupt these cGMP-activated currents. The yellow fluorescent protein-CNGC5 and yellow fluorescent protein-CNGC6 proteins localize in the cell periphery. Cyclic AMP activated modest inward currents in both wild-type and cngc5cngc6 mutant guard cells. Moreover, cngc5 cngc6 double mutant guard cells exhibited functional abscisic acid (ABA)-activated hyperpolarization-dependent Ca2+-permeable cation channel currents, intact ABA-induced stomatal closing responses, and whole-plant stomatal conductance responses to darkness and changes in CO2 concentration. Furthermore, cGMP-activated currents remained intact in the growth controlled by abscisic acid2 and abscisic acid insensitive1 mutants. This research demonstrates that the CNGC5 and CNGC6 genes encode unique cGMP-activated nonselective Ca2+-permeable cation channels

  9. Gating Kinetics of the Cyclic-GMP-Activated Channel of Retinal Rods: Flash Photolysis and Voltage-Jump Studies

    NASA Astrophysics Data System (ADS)

    Karpen, Jeffrey W.; Zimmerman, Anita L.; Stryer, Lubert; Baylor, Denis A.

    1988-02-01

    The gating kinetics of the cGMP-activated cation channel of salamander retinal rods have been studied in excised membrane patches. Relaxations in patch current were observed after two kinds of perturbation: (i) fast jumps of cGMP concentration, generated by laser flash photolysis of a cGMP ester (``caged'' cGMP), and (ii) membrane voltage jumps, which perturb activation of the channel by cGMP. In both methods the speed of activation increased with the final cGMP concentration. The results are explained by a simple kinetic model in which activation involves three sequential cGMP binding steps with bimolecular rate constants close to the diffusion-controlled limit; fully liganded channels undergo rapid open-closed transitions. Voltage perturbs activation by changing the rate constant for channel closing, which increases with hyperpolarization. Intramolecular transitions of the fully liganded channel limit the kinetics of activation at high cGMP concentrations (>50 μ M), whereas at physiological cGMP concentrations (<5 μ M), the kinetics of activation are limited by the third cGMP binding step. The channel appears to be optimized for rapid responses to changes in cytoplasmic cGMP concentration.

  10. Regulation of Motility and Phenazine Pigment Production by FliA Is Cyclic-di-GMP Dependent in Pseudomonas aeruginosa PAO1

    PubMed Central

    Lo, Yi-Ling; Shen, Lunda; Chang, Chih-Hsuan; Bhuwan, Manish; Chiu, Cheng-Hsun; Chang, Hwan-You

    2016-01-01

    The transcription factor FliA, also called sigma 28, is a major regulator of bacterial flagellar biosynthesis genes. Growing evidence suggest that in addition to motility, FliA is involved in controlling numerous bacterial behaviors, even though the underlying regulatory mechanism remains unclear. By using a transcriptional fusion to gfp that responds to cyclic (c)-di-GMP, this study revealed a higher c-di-GMP concentration in the fliA deletion mutant of Pseudomonas aeruginosa than in its wild-type strain PAO1. A comparative analysis of transcriptome profiles of P. aeruginosa PAO1 and its fliA deletion mutant revealed an altered expression of several c-di-GMP-modulating enzyme-encoding genes in the fliA deletion mutant. Moreover, the downregulation of PA4367 (bifA), a Glu-Ala-Leu motif-containing phosphodiesterase, in the fliA deletion mutant was confirmed using the β-glucuronidase reporter gene assay. FliA also altered pyocyanin and pyorubin production by modulating the c-di-GMP concentration. Complementing the fliA mutant strain with bifA restored the motility defect and pigment overproduction of the fliA mutant. Our results indicate that in addition to regulating flagellar gene transcription, FliA can modulate the c-di-GMP concentration to regulate the swarming motility and phenazine pigment production in P. aeruginosa. PMID:27175902

  11. Luteinizing Hormone Reduces the Activity of the NPR2 Guanylyl Cyclase in Mouse Ovarian Follicles, Contributing to the Cyclic GMP Decrease that Promotes Resumption of Meiosis in Oocytes

    PubMed Central

    Robinson, Jerid W.; Zhang, Meijia; Shuhaibar, Leia C.; Norris, Rachael P.; Geerts, Andreas; Wunder, Frank; Eppig, John J.; Potter, Lincoln R.; Jaffe, Laurinda A.

    2012-01-01

    In preovulatory ovarian follicles of mice, meiotic prophase arrest in the oocyte is maintained by cyclic GMP from the surrounding granulosa cells that diffuses into the oocyte through gap junctions. The cGMP is synthesized in the granulosa cells by the transmembrane guanylyl cyclase natriuretic peptide receptor 2 (NPR2) in response to the agonist C-type natriuretic peptide (CNP). In response to luteinizing hormone (LH), cGMP in the granulosa cells decreases, and as a consequence, oocyte cGMP decreases and meiosis resumes. Here we report that within 20 minutes, LH treatment results in decreased guanylyl cyclase activity of NPR2, as determined in the presence of a maximally activating concentration of CNP. This occurs by a process that does not reduce the amount of NPR2 protein. We also show that by a slower process, first detected at 2 hours, LH decreases the amount of CNP available to bind to the receptor. Both of these LH actions contribute to decreasing cGMP in the follicle, thus signaling meiotic resumption in the oocyte. PMID:22546688

  12. NO-induced relaxation of labouring and non-labouring human myometrium is not mediated by cyclic GMP.

    PubMed

    Buxton, I L; Kaiser, R A; Malmquist, N A; Tichenor, S

    2001-09-01

    1. In myometrial strips from near-term non-labouring human uterus, addition of oxytocin (OT) evoked dose-dependent (10 - 3000 nM) phasic contractions that were antagonized by atosiban (1 microM) and relaxed by addition of the nitric oxide donor S-nitroso L-cysteine (Cys-NO). In near-term labouring myometrium, however, addition of OT was ineffective at raising additional tone. 2. In both labouring and non-labouring tissue, Cys-NO mediated relaxation of spontaneous or OT-induced contractions (IC(50)=1 microM) was unaffected by prior addition of the guanylyl cyclase (GC) inhibitors ODQ (1H-[1,2,4]oxadiazolo[4,3,-alpha]quinoxalin-1-one; 1 microM), or methylene blue (MB; 10 microM). 3. Elevation of intracellular cyclic GMP accompanying 30 microM Cys-NO addition in non-labouring tissue (7.5 fold) or in labouring tissues (2.5 fold) was completely blocked in tissues that had been pre-treated with ODQ or MB. 4. Charybdotoxin (ChTx), iberiotoxin (IbTx) and kaliotoxin (KalTx) all shifted the Cys-NO inhibition curve to the right and reduced the degree of relaxation produced by maximal Cys-NO treatment (100 microM in non-labouring tissue; in labouring tissue, KalTx prevented Cys-NO mediated relaxation in both stimulated and unstimulated tissue. 5. Addition of the NO-donor S-nitroso N-acetyl penicillamine (SNAP) produced a dose-dependent relaxation of pregnant myometrium while 3-morpholinosyndonimine (SIN-1) did not. The failure of SIN-1 to relax OT-induced contractions was not due to a failure of the donor to stimulate myometrial GC. 6. We demonstrate that despite the ability of NO to stimulate myometrial GC in pregnant uterine muscle, relaxations are independent of cyclic GMP action. Effects of K(+)-channel inhibitors suggests that NO-induced relaxation in human uterine smooth muscle may be subserved by direct or indirect activation of one or more calcium-activated K(+)-channels. PMID:11522613

  13. Taurine reduces ammonia- and N-methyl-D-aspartate-induced accumulation of cyclic GMP and hydroxyl radicals in microdialysates of the rat striatum.

    PubMed

    Hilgier, Wojciech; Anderzhanova, Elmira; Oja, Simo S; Saransaari, Pirjo; Albrecht, Jan

    2003-05-01

    Acute ammonia neurotoxicity caused by intraperitoneal administration of ammonium salts is mediated by overactivation of N-methyl-D-aspartate (NMDA) receptors, with ensuing generation of free radicals and extracellular accumulation of cyclic GMP (cGMP) arising from stimulation of nitric oxide (NO) synthesis. In this study, infusion of ammonium chloride or NMDA into the striata of rats via microdialysis probes increased the contents of cyclic GMP and hydroxyl radicals in the microdialysates. Co-infusion of taurine virtually abolished both the ammonia- and NMDA-induced accumulation of cGMP. Taurine also attenuated accumulation of hydroxyl radicals evoked by either treatment. This result is the first evidence of a potential of taurine to attenuate the effects of NMDA receptor overactivation by ammonia in vivo and points to the inhibition of the NMDA receptor-mediated NO synthesis as a possible mechanism of its neuroprotective action. Taurine or its blood-brain barrier penetrating analogues may be applicable in treatment of ammonia-induced neurological deficits. PMID:12729839

  14. Hydrogen peroxide induced relaxation in porcine pulmonary arteries in vitro is mediated by EDRF and cyclic GMP

    SciTech Connect

    Zellers, T.; McCormick, J. )

    1991-03-15

    Xanthine and xanthine oxidase induced relaxations in porcine pulmonary arteries in vitro are augmented in the presence of the endothelium and abolished by catalase, implicating hydrogen peroxide as an endothelium-dependent effector. To determine the mechanism whereby H{sub 2}O{sub 2} causes relaxations, isolated rings of fifth order porcine pulmonary artery, with (E{sup +}) and without (E{sup {minus}}) endothelium, were suspended in organ baths filled with buffer, and isometric tension was recorded. Hydrogen peroxide caused concentration-dependent, endothelium-augmented relaxations which were abolished by catalase and hydroquinone and reversed by L-nitroarginine and methylene blue. Prostacyclin (PGI{sub 2}) levels, measured after a two minute exposure to H{sub 2}O{sub 2} in rings with endothelium were comparable to controls. This concentration of PGI{sub 2} does not cause relaxations in these rings. These data suggest that H{sub 2}O{sub 2} stimulates the release of an EDRF, causing relaxations mediated by cyclic GMP, which is independent of prostacyclin.

  15. A structural basis for the regulation of an H-NOX-associated cyclic-di-GMP synthase/phosphodiesterase enzyme by nitric oxide-bound H-NOX.

    PubMed

    Lahiri, Tanaya; Luan, Bowu; Raleigh, Daniel P; Boon, Elizabeth M

    2014-04-01

    Biofilms are surface-attached communities of bacteria enclosed in a polysaccharide matrix. Bacteria in a biofilm are extremely resistant to antibiotics. Several recent reports have linked the signaling molecule nitric oxide (NO) with biofilm dispersal. We have previously reported that an H-NOX (heme-nitric oxide/oxygen binding) protein in the biofilm-dwelling bacterium Shewanella woodyi mediates NO-induced biofilm dispersal. In S. woodyi, H-NOX (SwH-NOX) is cocistronic with a gene encoding a dual-functioning diguanylate cyclase/phosphodiesterase enzyme, designated here as HaCE (H-NOX-associated cyclic-di-GMP processing enzyme). Enzymes such as these are responsible for regulating the intracellular concentrations of cyclic-di-GMP, a secondary signaling molecule essential to biofilm formation in bacteria. We have demonstrated that NO-bound SwH-NOX regulates both enzymatic activities of SwHaCE, resulting in decreased cellular cyclic-di-GMP levels and disruption of biofilm formation. Thus, H-NOX/HaCE represents a potential drug target for regulating biofilm formation. In this work, the SwH-NOX surface residues critical for the formation of a protein complex with SwHaCE are identified using nuclear magnetic resonance, fluorescence quenching, and cosedimentation. Enzyme assays confirm this protein-protein interface and its importance for H-NOX/HaCE function. PMID:24628400

  16. A Structural Basis for the Regulation of an H-NOX-Associated Cyclic-di-GMP Synthase/Phosphodiesterase Enzyme by Nitric Oxide-Bound H-NOX

    PubMed Central

    2015-01-01

    Biofilms are surface-attached communities of bacteria enclosed in a polysaccharide matrix. Bacteria in a biofilm are extremely resistant to antibiotics. Several recent reports have linked the signaling molecule nitric oxide (NO) with biofilm dispersal. We have previously reported that an H-NOX (heme-nitric oxide/oxygen binding) protein in the biofilm-dwelling bacterium Shewanella woodyi mediates NO-induced biofilm dispersal. In S. woodyi, H-NOX (SwH-NOX) is cocistronic with a gene encoding a dual-functioning diguanylate cyclase/phosphodiesterase enzyme, designated here as HaCE (H-NOX-associated cyclic-di-GMP processing enzyme). Enzymes such as these are responsible for regulating the intracellular concentrations of cyclic-di-GMP, a secondary signaling molecule essential to biofilm formation in bacteria. We have demonstrated that NO-bound SwH-NOX regulates both enzymatic activities of SwHaCE, resulting in decreased cellular cyclic-di-GMP levels and disruption of biofilm formation. Thus, H-NOX/HaCE represents a potential drug target for regulating biofilm formation. In this work, the SwH-NOX surface residues critical for the formation of a protein complex with SwHaCE are identified using nuclear magnetic resonance, fluorescence quenching, and cosedimentation. Enzyme assays confirm this protein–protein interface and its importance for H-NOX/HaCE function. PMID:24628400

  17. Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain.

    PubMed

    Wang, Yu-Chuan; Chin, Ko-Hsin; Tu, Zhi-Le; He, Jin; Jones, Christopher J; Sanchez, David Zamorano; Yildiz, Fitnat H; Galperin, Michael Y; Chou, Shan-Ho

    2016-01-01

    C-di-GMP is a bacterial second messenger regulating various cellular functions. Many bacteria contain c-di-GMP-metabolizing enzymes but lack known c-di-GMP receptors. Recently, two MshE-type ATPases associated with bacterial type II secretion system and type IV pilus formation were shown to specifically bind c-di-GMP. Here we report crystal structure of the MshE N-terminal domain (MshEN1-145) from Vibrio cholerae in complex with c-di-GMP at a 1.37 Å resolution. This structure reveals a unique c-di-GMP-binding mode, featuring a tandem array of two highly conserved binding motifs, each comprising a 24-residue sequence RLGxx(L/V/I)(L/V/I)xxG(L/V/I)(L/V/I)xxxxLxxxLxxQ that binds half of the c-di-GMP molecule, primarily through hydrophobic interactions. Mutating these highly conserved residues markedly reduces c-di-GMP binding and biofilm formation by V. cholerae. This c-di-GMP-binding motif is present in diverse bacterial proteins exhibiting binding affinities ranging from 0.5 μM to as low as 14 nM. The MshEN domain contains the longest nucleotide-binding motif reported to date. PMID:27578558

  18. Cyclic diGMP Regulates Production of Sortase Substrates of Clostridium difficile and Their Surface Exposure through ZmpI Protease-mediated Cleavage*

    PubMed Central

    Peltier, Johann; Shaw, Helen A.; Couchman, Edward C.; Dawson, Lisa F.; Yu, Lu; Choudhary, Jyoti S.; Kaever, Volkhard; Wren, Brendan W.; Fairweather, Neil F.

    2015-01-01

    In Gram-positive pathogens, surface proteins may be covalently anchored to the bacterial peptidoglycan by sortase, a cysteine transpeptidase enzyme. In contrast to other Gram-positive bacteria, only one single sortase enzyme, SrtB, is conserved between strains of Clostridium difficile. Sortase-mediated peptidase activity has been reported in vitro, and seven potential substrates have been identified. Here, we demonstrate the functionality of sortase in C. difficile. We identify two sortase-anchored proteins, the putative adhesins CD2831 and CD3246, and determine the cell wall anchor structure of CD2831. The C-terminal PPKTG sorting motif of CD2831 is cleaved between the threonine and glycine residues, and the carboxyl group of threonine is amide-linked to the side chain amino group of diaminopimelic acid within the peptidoglycan peptide stem. We show that CD2831 protein levels are elevated in the presence of high intracellular cyclic diGMP (c-diGMP) concentrations, in agreement with the control of CD2831 expression by a c-diGMP-dependent type II riboswitch. Low c-diGMP levels induce the release of CD2831 and presumably CD3246 from the surface of cells. This regulation is mediated by proteolytic cleavage of CD2831 and CD3246 by the zinc metalloprotease ZmpI, whose expression is controlled by a type I c-diGMP riboswitch. These data reveal a novel regulatory mechanism for expression of two sortase substrates by the secondary messenger c-diGMP, on which surface anchoring is dependent. PMID:26283789

  19. Cyclic GMP-independent mechanisms contribute to the inhibition of platelet adhesion by nitric oxide donor: A role for α-actinin nitration

    PubMed Central

    Marcondes, Sisi; Cardoso, Marcia H. M.; Morganti, Rafael P.; Thomazzi, Sara M.; Lilla, Sergio; Murad, Ferid; De Nucci, Gilberto; Antunes, Edson

    2006-01-01

    The nitric oxide-mediated actions are mostly due to cyclic GMP (cGMP) formation, but cGMP-independent mechanisms, such as tyrosine nitration, have been suggested as potential signaling pathways modulating the NO-induced responses. However, the mechanisms that lead to tyrosine nitration in platelets are poorly studied, and the protein targets of nitration have not been identified in these cells. Therefore, we have used the model of platelet adhesion to fibrinogen-coated plates to investigate the cGMP-independent mechanisms of the NO-donor sodium nitroprusside (SNP) that leads to inhibition of platelet adhesion. SNP concentration-dependently inhibited platelet adhesion, as observed at 15-min and 60-min adhesion. Additionally, SNP markedly increased the cGMP levels, and the soluble guanylate inhibitor ODQ nearly abolished the SNP-mediated cGMP elevations in all experimental conditions used. Nevertheless, ODQ failed to affect the adhesion inhibition obtained with 1.0 mM SNP at 15 min. On the other hand, superoxide dismutase or peroxynitrite (ONOO−) scavenger epigallocatechin gallate significantly reversed the inhibition of platelet adhesion by SNP (1 mM, 15 min). Western blot analysis in SNP (1 mM, 15 min)-treated platelets showed a single tyrosine-nitrated protein with an apparent mass of ≈105 kDa. Nanospray LC-MS/MS identified the human α-actinin 1 cytoskeletal isoform (P12814) as the protein contained in the nitrated SDS gel band. Thus, tyrosine nitration of α-actinin, through ONOO− formation, may be a key modulatory mechanism to control platelet adhesion. PMID:16492779

  20. Analysis of the HD-GYP Domain Cyclic Dimeric GMP Phosphodiesterase Reveals a Role in Motility and the Enzootic Life Cycle of Borrelia burgdorferi ▿ †

    PubMed Central

    Sultan, Syed Z.; Pitzer, Joshua E.; Boquoi, Tristan; Hobbs, Gerry; Miller, Michael R.; Motaleb, M. A.

    2011-01-01

    HD-GYP domain cyclic dimeric GMP (c-di-GMP) phosphodiesterases are implicated in motility and virulence in bacteria. Borrelia burgdorferi possesses a single set of c-di-GMP-metabolizing enzymes, including a putative HD-GYP domain protein, BB0374. Recently, we characterized the EAL domain phosphodiesterase PdeA. A mutation in pdeA resulted in cells that were defective in motility and virulence. Here we demonstrate that BB0374/PdeB specifically hydrolyzed c-di-GMP with a Km of 2.9 nM, confirming that it is a functional phosphodiesterase. Furthermore, by measuring phosphodiesterase enzyme activity in extracts from cells containing the pdeA pdeB double mutant, we demonstrate that no additional phosphodiesterases are present in B. burgdorferi. pdeB single mutant cells exhibit significantly increased flexing, indicating a role for c-di-GMP in motility. Constructing and analyzing a pilZ pdeB double mutant suggests that PilZ likely interacts with chemotaxis signaling. While virulence in needle-inoculated C3H/HeN mice did not appear to be altered significantly in pdeB mutant cells, these cells exhibited a reduced ability to survive in Ixodes scapularis ticks. Consequently, those ticks were unable to transmit the infection to naïve mice. All of these phenotypes were restored when the mutant was complemented. Identification of this role of pdeB increases our understanding of the c-di-GMP signaling network in motility regulation and the life cycle of B. burgdorferi. PMID:21670168

  1. Vascular natriuretic peptide receptor-linked particulate guanylate cyclases are modulated by nitric oxide–cyclic GMP signalling

    PubMed Central

    Madhani, Melanie; Scotland, Ramona S; MacAllister, Raymond J; Hobbs, Adrian J

    2003-01-01

    The sensitivity of the particulate guanylate cyclase–cyclic guanosine-3′,5′-monophosphate (cGMP) system to atrial (ANP) and C-type (CNP) natriuretic peptides was investigated in aortae and mesenteric small arteries from wild-type (WT) and endothelial nitric oxide synthase (eNOS) knockout (KO) mice. ANP and CNP produced concentration-dependent relaxations of mouse aorta that were significantly attenuated by the natriuretic peptide receptor (NPR)-A/B antagonist HS-142-1 (10−5 M). Both ANP and CNP were more potent in aortae from eNOS KO mice compared to WT. The potency of ANP and CNP in aortae from WT animals was increased in the presence of the NOS inhibitor, NG-nitro-L-arginine (3 × 10−4 M) and the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolol[4,3,a]quinoxalin-1-one (5 × 10−6 M). In contrast, the potency of ANP and CNP in aortae from eNOS KO animals was reduced following pretreatment of tissues with supramaximal concentrations of the NO-donor, glyceryl trinitrate (3 × 10−5 M, 30 min) or ANP (10−7 M, 30 min). Responses to acetylcholine in aortae from WT mice (dependent on the release of endothelium-derived NO) were significantly reduced following pretreatment of tissues with GTN (3 × 10−5 M, 30 min) and ANP (10−7 M, 30 min). CNP and the NO-donor, spermine-NONOate caused concentration-dependent relaxations of mesenteric small arteries from WT animals that were significantly increased in eNOS KO mice compared to WT. ANP was unable to significantly relax mesenteric arteries from WT or eNOS KO animals. In conclusion, both NPR-A- and NPR-B-linked pGC pathways are modulated by NO–cGMP in murine aorta and mesenteric small arteries and crossdesensitisation occurs between NPR subtypes. The biological activity of endothelium-derived NO is also influenced by the ambient concentration of NO and natriuretic peptides. Such an autoregulatory pathway may represent an important physiological homeostatic mechanism and link the paracrine activity

  2. Differential modulation of the glutamate-nitric oxide-cyclic GMP pathway by distinct neurosteroids in cerebellum in vivo.

    PubMed

    Cauli, O; González-Usano, A; Agustí, A; Felipo, V

    2011-09-01

    The glutamate-nitric oxide (NO)-cGMP pathway mediates many responses to activation of N-methyl-d-aspartate (NMDA) receptors, including modulation of some types of learning and memory. The glutamate-NO-cGMP pathway is modulated by GABAergic neurotransmission. Activation of GABA(A) receptors reduces the function of the pathway. Several neurosteroids modulate the activity of GABA(A) and/or NMDA receptors, suggesting that they could modulate the function of the glutamate-NO-cGMP pathway. The aim of this work was to assess, by in vivo microdialysis, the effects of several neurosteroids with different effects on GABA(A) and NMDA receptors on the function of the glutamate-NO-cGMP pathway in cerebellum in vivo. To assess the effects of the neurosteroids on the glutamate-NO-cGMP pathway, they were administered through the microdialysis probe before administration of NMDA and the effects on NMDA-induced increase in extracellular cGMP were analyzed. We also assessed the effects of the neurosteroids on basal levels of extracellular cGMP. To assess the effects of neurosteroids on nitric oxide synthase (NOS) activity and on NMDA-induced activation of NOS, we also measured the effects of the neurosteroids on extracellular citrulline. Pregnanolone and tetrahydrodeoxy-corticosterone (THDOC) behave as agonists of GABA(A) receptors and completely block NMDA-induced increase in cGMP. Pregnanolone but not THDOC also reduced basal levels of extracellular cGMP. Pregnenolone did not affect extracellular cGMP or its increase by NMDA administration. Pregnenolone sulfate increased basal extracellular cGMP and potentiated NMDA-induced increase in cGMP, behaving as an enhancer of NMDA receptors activation. Allopregnanolone and dehydroepiandrosterone sulphate behave as antagonists of NMDA receptors, increasing basal cGMP and blocking completely NMDA-induced increase in cGMP. Dehydroepiandrosterone sulphate seems to do this by activating sigma receptors. These data support the concept that, at

  3. Purine 3':5'-cyclic nucleotides with the nucleobase in a syn orientation: cAMP, cGMP and cIMP.

    PubMed

    Řlepokura, Katarzyna Anna

    2016-06-01

    Purine 3':5'-cyclic nucleotides are very well known for their role as the secondary messengers in hormone action and cellular signal transduction. Nonetheless, their solid-state conformational details still require investigation. Five crystals containing purine 3':5'-cyclic nucleotides have been obtained and structurally characterized, namely adenosine 3':5'-cyclic phosphate dihydrate, C10H12N5O6P·2H2O or cAMP·2H2O, (I), adenosine 3':5'-cyclic phosphate 0.3-hydrate, C10H12N5O6P·0.3H2O or cAMP·0.3H2O, (II), guanosine 3':5'-cyclic phosphate pentahydrate, C10H12N5O7P·5H2O or cGMP·5H2O, (III), sodium guanosine 3':5'-cyclic phosphate tetrahydrate, Na(+)·C10H11N5O7P(-)·4H2O or Na(cGMP)·4H2O, (IV), and sodium inosine 3':5'-cyclic phosphate tetrahydrate, Na(+)·C10H10N4O7P(-)·4H2O or Na(cIMP)·4H2O, (V). Most of the cyclic nucleotide zwitterions/anions [two from four cAMP present in total in (I) and (II), cGMP in (III), cGMP(-) in (IV) and cIMP(-) in (V)] are syn conformers about the N-glycosidic bond, and this nucleobase arrangement is accompanied by Crib-H...Npur hydrogen bonds (rib = ribose and pur = purine). The base orientation is tuned by the ribose pucker. An analysis of data obtained from the Cambridge Structural Database made in the context of syn-anti conformational preferences has revealed that among the syn conformers of various purine nucleotides, cyclic nucleotides and dinucleotides predominate significantly. The interactions stabilizing the syn conformation have been indicated. The inter-nucleotide contacts in (I)-(V) have been systematized in terms of the chemical groups involved. All five structures display three-dimensional hydrogen-bonded networks. PMID:27256694

  4. Characterization of particulate cyclic nucleotide phosphodiesterases from bovine brain: Purification of a distinct cGMP-stimulated isoenzyme

    SciTech Connect

    Murashima, Seiko; Tanaka, Takayuki; Hockman, S.; Manganiello, V. )

    1990-06-05

    In the absence of detergent, {approx}80-85% of the total cGMP-stimulated phosphodiesterase (PDE) activity in bovine brain was associated with washed particulate fractions; {approx}85-90% of the calmodulin-sensitive PDE was soluble. Particulate cGMP-stimulated PDE was higher in cerebral cortical gray matter than in other regions. Homogenization of the brain particulate fraction in 1% Lubrol increased cGMP-stimulated activity {approx}100% and calmodulin-stimulated {approx}400-500%. Although 1% Lubrol readily solubilized these PDE activities, {approx}75% of the cAMP PDE activity (0.5 {mu}M ({sup 3}H)cAMP) that was not affected by cGMP was not solubilized. This cAMP PDE activity was very sensitive to inhibition by Rolipram but not cilostamide. Thus, three different PDE types, i.e., cGMP stimulated, calmodulin sensitive, and Rolipram inhibited, are associated in different ways with crude bovine brain particulate fractions. The brain enzyme exhibited a slightly greater subunit M{sub r} than did soluble forms from calf liver or bovine brain, as evidenced by protein staining or immunoblotting after polyacrylamide gel electrophoresis under denaturing conditions. Incubation of brain particulate and liver soluble cGMP-stimulated PDEs with V{sub 8} protease produced several peptides of similar size, as well as at least two distinct fragments of {approx}27 kDa from the brain and {approx}23 kDa from the liver enzyme. After photolabeling in the presence of ({sup 32}P)cGMP and digestion with V{sub 8} protease, ({sup 32}P)cGMP in each PDE was predominantly recovered with a peptide of {approx}14 kDa. All of these observations are consistent with the existence of at least two discrete forms (isoenzymes) of cGMP-stimulated PDE.

  5. Three antagonistic cyclic di-GMP-catabolizing enzymes promote differential Dot/Icm effector delivery and intracellular survival at the early steps of Legionella pneumophila infection.

    PubMed

    Allombert, Julie; Lazzaroni, Jean-Claude; Baïlo, Nathalie; Gilbert, Christophe; Charpentier, Xavier; Doublet, Patricia; Vianney, Anne

    2014-03-01

    Legionella pneumophila is an intracellular pathogen which replicates within protozoan cells and can accidently infect alveolar macrophages, causing an acute pneumonia in humans. The second messenger cyclic di-GMP (c-di-GMP) has been shown to play key roles in the regulation of various bacterial processes, including virulence. While investigating the function of the 22 potential c-di-GMP-metabolizing enzymes of the L. pneumophila Lens strain, we found three that directly contribute to its ability to infect both protozoan and mammalian cells. These three enzymes display diguanylate cyclase (Lpl0780), phosphodiesterase (Lpl1118), and bifunctional diguanylate cyclase/phosphodiesterase (Lpl0922) activities, which are all required for the survival and intracellular replication of L. pneumophila. Mutants with deletions of the corresponding genes are efficiently taken up by phagocytic cells but are partially defective for the escape of the Legionella-containing vacuole (LCV) from the host degradative endocytic pathway and result in lower survival. In addition, Lpl1118 is required for efficient endoplasmic reticulum recruitment to the LCV. Trafficking and biogenesis of the LCV are dependent upon the orchestrated actions of several type 4 secretion system Dot/Icm effectors proteins, which exhibit differentially altered translocation in the three mutants. While translocation of some effectors remained unchanged, others appeared over- and undertranslocated. A general translocation offset of the large repertoire of Dot/Icm effectors may be responsible for the observed defects in the trafficking and biogenesis of the LCV. Our results suggest that L. pneumophila uses cyclic di-GMP signaling to fine-tune effector delivery and ensure effective evasion of the host degradative pathways and establishment of a replicative vacuole. PMID:24379287

  6. Role of selective cyclic GMP phosphodiesterase inhibition in the myorelaxant actions of M&B 22,948, MY-5445, vinpocetine and 1-methyl-3-isobutyl-8-(methylamino)xanthine.

    PubMed Central

    Souness, J. E.; Brazdil, R.; Diocee, B. K.; Jordan, R.

    1989-01-01

    1. The mechanism by which M&B 22,948, MY-5445, vinpocetine and 1-methyl-3-isobutyl-8-(methylamino)xanthine (MIMAX), which have been described as selective cyclic GMP phosphodiesterase (PDE) inhibitors, relax rat aorta was investigated. 2. Three cyclic nucleotide PDEs were identified in the soluble fraction of rat aorta; a Ca2+-insensitive form exhibiting substrate selectivity for cyclic GMP (cGMP PDE), a Ca2+/calmodulin-stimulated form which also preferentially hydrolyzed cyclic GMP (Ca2+ PDE), and a form demonstrating substrate selectivity for cyclic AMP (cAMP PDE). 3. M&B 22,948 and MIMAX inhibited cGMP PDE (Ki = 0.16 microM and 0.43 microM, respectively) and Ca2+ PDE (Ki = 9.9 microM and 0.55 microM, respectively), but exhibited weak activity against cAMP PDE (Ki = 249 microM and 42 microM, respectively). MY-5445 selectivity inhibited cGMP PDE (Ki = 1.3 microM) and vinpocetine selectively inhibited Ca2+ PDE (Ki = 14 microM). 4. M&B 22,948 and MIMAX induced dose-dependent increases in the accumulation of cyclic GMP, but not cyclic AMP, in rat aorta pieces. These effects were greatly reduced by endothelial denudation and by methylene blue (5 microM) which blocks the actions of endothelium-derived relaxant factor. MY-5445 and vinpocetine had no effect on rat aorta cyclic GMP or cyclic AMP accumulation. 5. All four compounds caused dose-related relaxation of 5-hydroxytryptamine (10 microM) contracted, endothelium-intact rat aorta, the effects of M&B 22,948 and MIMAX being greatly reduced by methylene blue (5 microM). Methylene blue also caused 10 fold and 100 fold rightward shifts in the dose-response curves of MY-5445 and vinpocetine, respectively. 6. The results are consistent with the smooth muscle relaxant actions of M&B 22,948 and MIMAX, but not vinpocetine and MY-5445, being mediated through a mechanism involving inhibition of cyclic GMP hydrolysis. PMID:2480168

  7. Pharmacological manipulation of cyclic GMP levels in brain restores learning ability in animal models of hepatic encephalopathy: therapeutic implications

    PubMed Central

    Rodrigo, Regina; Monfort, Pilar; Cauli, Omar; Erceg, Slaven; Felipo, Vicente

    2006-01-01

    Hepatic encephalopathy (HE) is a complex neuropsychiatric syndrome present in patients with liver disease that includes impaired intellectual function. To develop therapeutic treatments to restore cognitive function, it is important to understand the molecular mechanisms that impair cognitive function in HE. This review summarizes data showing that: (a) cognitive function and learning are impaired in patients with liver disease and in animal models of chronic liver failure or hyperammonemia; (b) the glutamate–NO–cGMP pathway modulates some forms of learning; and (c) the function of this pathway is impaired in brain in vivo in rats with chronic hyperammonemia or liver failure and from patients who died from HE. Learning ability of hyperammonemic rats was restored by increasing cGMP by: (1) continuous intracerebral administration of zaprinast, an inhibitor of the cGMP-degrading phosphodiesterase; (2) chronic oral administration of sildenafil, an inhibitor of the phosphodiesterase that crosses the blood–brain barrier; and (3) continuous intracerebral administration of cGMP. The data summarized indicate that impairment of learning ability in rats with chronic liver failure or hyperammonemia is due to impairment of the glutamate–NO–cGMP pathway. Moreover, increasing extracellular cGMP by pharmacological means may be a new therapeutic approach to improve cognitive function in patients with HE. PMID:19412446

  8. Isoflurane does not vasodilate rat thoracic aortic rings by endothelium-derived relaxing factor or other cyclic GMP-mediated mechanisms.

    PubMed

    Brendel, J K; Johns, R A

    1992-07-01

    Endothelium-derived relaxing factor (EDRF) is a potent endogenous vasodilator that has been indirectly suggested to play a role in isoflurane-mediated vasodilation. To examine directly the possible role of EDRF in isoflurane-mediated vasodilation, isolated rat thoracic aortic rings were suspended for isometric tension measurements, equilibrated to a resting tension of 2 g, and constricted with a 50% maximal concentration (EC50) dose of phenylephrine or KCl. Three groups of rings were studied: endothelium-intact, endothelium-denuded, and endothelium-intact rings treated with nitro-L-arginine methyl ester (L-NAME), a specific inhibitor of EDRF synthase. Isoflurane was then added at 1, 2, and 3% in a cumulative manner, allowing 10 min for each concentration to equilibrate. Indomethacin was present in all experiments to prevent the formation of vasoactive prostanoid metabolites. Since EDRF causes vascular relaxation by stimulating soluble guanylyl cyclase and increasing cyclic GMP, the effect of isoflurane on vascular ring cyclic GMP content was determined as an additional indicator of EDRF-mediated dilation. Rings with intact and denuded endothelium were isolated as described above, constricted with phenylephrine, and challenged with methacholine (positive control) or 1, 2, or 3% isoflurane. After 8 min exposure, the rings were flash-frozen in dry-ice-cooled acetone and homogenized in 1 N HCl for subsequent analysis of cyclic GMP content by radioimmunoassay. Isoflurane caused dose-dependent vasodilation of both KCl- and phenylephrine-constricted rings. In the phenylephrine group, at 2% and 3% isoflurane, endothelium-denuded and L-NAME-treated rings relaxed to a greater extent than endothelium-intact rings (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1319121

  9. Regulation of cyclic GMP metabolism in toad photoreceptors. Definition of the metabolic events subserving photoexcited and attenuated states

    SciTech Connect

    Dawis, S.M.; Graeff, R.M.; Heyman, R.A.; Walseth, T.F.; Goldberg, N.D.

    1988-06-25

    Photoreceptor metabolism of cGMP and its regulation were characterized in isolated toad retinas by determining the intensity and time dependence of light-induced changes in the following metabolic parameters: cGMP hydrolytic flux determined by the rate of 18O incorporation from 18O-water into retinal guanine nucleotide alpha-phosphoryls; changes in the total concentrations of the guanine nucleotide metabolic intermediates; and changes in the concentration of metabolic GDP calculated from the fraction of the alpha-GDP that undergoes labeling with 18O. With narrow band 500 nm light that preferentially stimulates red rod photoreceptors, a range of intensities covering approximately 5 log units produced increases of over 10-fold in cGMP metabolic flux. However, the characteristics of the cGMP metabolic response over the first 2.5 log units of intensity are readily distinguishable from those at higher intensities which exhibit progressive attenuation by an intensity- and time-dependent process. Over the range of low intensities the metabolic response is characterized by 1) increases in cGMP hydrolytic flux of up to 8-fold as a logarithmic function of intensity of photic stimulation that are sustained for at least 200 s; 2) small increases or no change in the concentration of total cGMP; 3) large increases of up to 10-fold in the concentration of metabolically active GDP as a linear function of intensity with no significant change in the tissue concentrations of total GDP or GTP; and 4) amplification of the photosignal by the metabolism of approximately 10,000 molecules of cGMP per photoisomerization with the major site of amplification at the level of the interaction of bleached rhodopsin with G-protein.

  10. Stimulation of Aquaporin-Mediated Fluid Transport by Cyclic GMP in Human Retinal Pigment Epithelium In Vitro

    PubMed Central

    Baetz, Nicholas W.; Stamer, W. Daniel; Yool, Andrea J.

    2012-01-01

    Purpose The retinal pigment epithelium (RPE) expresses aquaporin-1 (AQP1) and components of the natriuretic peptide signaling pathway. We hypothesized that stimulation of the natriuretic signaling pathway in RPE with atrial natriuretic peptide (ANP) and with membrane-permeable analogs of cGMP would induce a net apical-to-basal transport of fluid. Methods The hypothesis was tested using human RPE cultures that retain properties seen in vivo. Confluent monolayers were treated with ANP or membrane-permeable cGMP analogs in the presence of anantin, H-8, and an AQP1 inhibitor, AqB013. Fluid movement from the apical to basal chambers was measured by weight and used to calculate net fluid transport. Results Our results demonstrated a 40% increase in net apical-to-basal fluid transport by ANP (5 μM) that was inhibited completely by the ANP receptor antagonist anantin and a 60% increase in net apical-to-basal fluid transport in response to the extracellularly applied membrane-permeable cGMP analog pCPT-cGMP (50 μM), which was not affected by the protein kinase G inhibitor H-8. The aquaporin antagonist AqB013 (20 μM) inhibited the cGMP-stimulated RPE fluid flux. Conclusions The effect of cGMP is consistent with an enhancement of the net fluid flux in RPE mediated by AQP1 channels. Pharmacologic activation of cGMP signaling and concomitant stimulation of fluid uptake from the subretinal space could offer insights into a new approach to treating or reducing the risk of retinal detachment. PMID:22427546

  11. The cyclic-di-GMP diguanylate cyclase CdgA has a role in biofilm formation and exopolysaccharide production in Azospirillum brasilense.

    PubMed

    Ramírez-Mata, Alberto; López-Lara, Lilia I; Xiqui-Vázquez, Ma Luisa; Jijón-Moreno, Saúl; Romero-Osorio, Angelica; Baca, Beatriz E

    2016-04-01

    In bacteria, proteins containing GGDEF domains are involved in production of the second messenger c-di-GMP. Here we report that the cdgA gene encoding diguanylate cyclase A (CdgA) is involved in biofilm formation and exopolysaccharide (EPS) production in Azospirillum brasilense Sp7. Biofilm quantification using crystal violet staining revealed that inactivation of cdgA decreased biofilm formation. In addition, confocal laser scanning microscopy analysis of green-fluorescent protein-labeled bacteria showed that, during static growth, the biofilms had differential levels of development: bacteria harboring a cdgA mutation exhibited biofilms with considerably reduced thickness compared with those of the wild-type Sp7 strain. Moreover, DNA-specific staining and treatment with DNase I, and epifluorescence studies demonstrated that extracellular DNA and EPS are components of the biofilm matrix in Azospirillum. After expression and purification of the CdgA protein, diguanylate cyclase activity was detected. The enzymatic activity of CdgA-producing cyclic c-di-GMP was determined using GTP as a substrate and flavin adenine dinucleotide (FAD(+)) and Mg(2)(+) as cofactors. Together, our results revealed that A. brasilense possesses a functional c-di-GMP biosynthesis pathway. PMID:26708984

  12. A cardiac pathway of cyclic GMP-independent signaling of guanylyl cyclase A, the receptor for atrial natriuretic peptide

    PubMed Central

    Klaiber, Michael; Dankworth, Beatrice; Kruse, Martin; Hartmann, Michael; Nikolaev, Viacheslav O.; Yang, Ruey-Bing; Völker, Katharina; Gaßner, Birgit; Oberwinkler, Heike; Feil, Robert; Freichel, Marc; Groschner, Klaus; Skryabin, Boris V.; Frantz, Stefan; Birnbaumer, Lutz; Pongs, Olaf; Kuhn, Michaela

    2011-01-01

    Cardiac atrial natriuretic peptide (ANP) regulates arterial blood pressure, moderates cardiomyocyte growth, and stimulates angiogenesis and metabolism. ANP binds to the transmembrane guanylyl cyclase (GC) receptor, GC-A, to exert its diverse functions. This process involves a cGMP-dependent signaling pathway preventing pathological [Ca2+]i increases in myocytes. In chronic cardiac hypertrophy, however, ANP levels are markedly increased and GC-A/cGMP responses to ANP are blunted due to receptor desensitization. Here we show that, in this situation, ANP binding to GC-A stimulates a unique cGMP-independent signaling pathway in cardiac myocytes, resulting in pathologically elevated intracellular Ca2+ levels. This pathway involves the activation of Ca2+‐permeable transient receptor potential canonical 3/6 (TRPC3/C6) cation channels by GC-A, which forms a stable complex with TRPC3/C6 channels. Our results indicate that the resulting cation influx activates voltage-dependent L-type Ca2+ channels and ultimately increases myocyte Ca2+i levels. These observations reveal a dual role of the ANP/GC-A–signaling pathway in the regulation of cardiac myocyte Ca2+i homeostasis. Under physiological conditions, activation of a cGMP-dependent pathway moderates the Ca2+i-enhancing action of hypertrophic factors such as angiotensin II. By contrast, a cGMP-independent pathway predominates under pathophysiological conditions when GC-A is desensitized by high ANP levels. The concomitant rise in [Ca2+]i might increase the propensity to cardiac hypertrophy and arrhythmias. PMID:22027011

  13. Role of cyclic GMP and calcineurin in homologous and heterologous desensitization of natriuretic peptide receptor-A.

    PubMed

    Fortin, Yann; De Léan, André

    2006-05-01

    The natriuretic peptide receptor-A (NPR-A) mediates natriuretic, hypotensive, and antihypertrophic effects of natriuretic peptides through the production of cGMP. In pathological conditions such as heart failure, these effects are attenuated by homologous and heterologous desensitization mechanisms resulting in the dephosphorylation of the cytosolic portion of the receptor. In contrast with natriuretic peptide-induced desensitization, pressor hormone-induced desensitization is dependent on protein kinase C (PKC) stimulation and (or) cytosolic calcium elevation. Mechanisms by which PKC and Ca(2+) promote NPR-A desensitization are not known. The role of cGMP and of the cytosolic Ca(2+) pathways in NPR-A desensitization were therefore studied. In contrast with the activation of NPR-A by its agonist, activation of soluble guanylyl cyclases of LLC-PK1 cells by sodium nitroprusside also leads to a production of cGMP but without altering NPR-A activation. Consequently, cGMP elevation per se does not appear to mediate homologous desensitization of NPR-A. In addition, cytosolic calcium increase is required only for the heterologous desensitization pathway since the calcium chelator BAPTA-AM blocks only PMA or ionomycin-induced desensitization. Calcineurin inhibitors block the NPR-A guanylyl cyclase heterologous desensitization induced by ionomycin, suggesting an essential role for this Ca(2+)-stimulated phosphatase in NPR-A desensitization. In summary, the present report demonstrates that neither cGMP nor Ca(2+) cytosolic elevation cause NPR-A homologous desensitization. Our results also indicate for the first time a role for calcineurin in NPR-A heterologous desensitization. PMID:16902599

  14. Cyclic unequal error protection codes constructed from cyclic codes of composite length

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1987-01-01

    The distance structure of cyclic codes of composite length was investigated. A lower bound on the minimum distance for this class of codes is derived. In many cases, the lower bound gives the true minimum distance of a code. Then the distance structure of the direct sum of two cyclic codes of composite length were investigated. It was shown that, under certain conditions, the direct-sum code provides two levels of error correcting capability, and hence is a two-level unequal error protection (UEP) code. Finally, a class of two-level UEP cyclic direct-sum codes and a decoding algorithm for a subclass of these codes are presented.

  15. An improved DNA-based test for detection of the codon 616 mutation in the alpha cyclic GMP phosphodiesterase gene that causes progressive retinal atrophy in the Cardigan Welsh Corgi.

    PubMed

    Petersen-Jones, Simon M; Entz, David D

    2002-06-01

    The aim of the study was to develop an improved test to detect the codon 616 gene mutation in the alpha cyclic GMP phosphodiesterase gene that causes progressive retinal atrophy in the Cardigan Welsh Corgi. We studied 10 control dogs of known genotype at codon 616 of the alpha cyclic GMP phosphodiesterase gene and 80 Cardigan Welsh Corgis of unknown genotype. A polymerase chain reaction (PCR) utilizing a mismatched primer was designed so that it introduced a HinfI restriction enzyme digestion site into the PCR product only if the normal gene sequence was present, the restriction site was not introduced if the codon 616 mutation was present. An additional HinfI site present in the amplified section from both normal and mutant alleles acted as a positive control for restriction enzyme digestion. The PCR reliably amplified a portion of the alpha cyclic GMP phosphodiesterase gene spanning the codon 616 mutation site. Restriction enzyme digestion with HinfI and analysis on a suitable agarose gel reliably ascertained the genotype of the control dogs and was used to identify the genotype of a further 80 test dogs. An improved DNA-based test for detection of the codon 616 mutation in the alpha cyclic GMP phosphodiesterase gene that causes progressive retinal atrophy in the Cardigan Welsh Corgi has been designed. This overcomes potential problems that could be associated with allele-specific PCR tests such as that used previously in a diagnostic test for this gene mutation. PMID:12071867

  16. Phenotype overlap in Xylella fastidiosa is controlled by the cyclic di-GMP phosphodiesterase Eal in response to antibiotic exposure and diffusible signal factor-mediated cell-cell signaling.

    PubMed

    de Souza, Alessandra A; Ionescu, Michael; Baccari, Clelia; da Silva, Aline M; Lindow, Steven E

    2013-06-01

    Eal is an EAL domain protein in Xylella fastidiosa homologous to one involved in resistance to tobramycin in Pseudomonas aeruginosa. EAL and HD-GYP domain proteins are implicated in the hydrolysis of the secondary messenger bis-(3'-5')-cyclic dimeric GMP (cyclic di-GMP). Cell density-dependent communication mediated by a Diffusible Signal Factor (DSF) also modulates cyclic di-GMP levels in X. fastidiosa, thereby controlling the expression of virulence genes and genes involved in insect transmission. The possible linkage of Eal to both extrinsic factors such as antibiotics and intrinsic factors such as quorum sensing, and whether both affect virulence, was thus addressed. Expression of eal was induced by subinhibitory concentrations of tobramycin, and an eal deletion mutant was more susceptible to this antibiotic than the wild-type strain and exhibited phenotypes similar to those of an rpfF deletion mutant blocked in DSF production, such as hypermotility, reduced biofilm formation, and hypervirulence to grape. Consistent with that, the rpfF mutant was more susceptible than the wild-type strain to tobramycin. Therefore, we propose that cell-cell communication and antibiotic stress can apparently lead to similar modulations of cyclic di-GMP in X. fastidiosa, resulting in similar phenotypes. However, the effect of cell density is dominant compared to that of antibiotic stress, since eal is suppressed by RpfF, which may prevent inappropriate behavioral changes in response to antibiotic stress when DSF accumulates. PMID:23542613

  17. Effect of changing temperature on the ionic permeation through the cyclic GMP-gated channel from vertebrate photoreceptors.

    PubMed Central

    Sesti, F; Nizzari, M; Torre, V

    1996-01-01

    Native cGMP-gated channels were studied in rod outer segments of the larval tiger salamander Ambystoma tigrinum. The alpha subunit of the cGMP-gated channel from bovine rods, here referred to as the wild type (w.t.), and mutant channels were heterologously expressed in Xenopus laevis oocytes. These channels were studied in excised membrane patches in the inside-out configuration and were activated by the addition of 100 or 500 microM cGMP. The effect of temperature on the ionic permeation was studied. The macroscopic current flowing through the native channel at +100 mV had an activation energy of 35.8, 30, 31.8, 34.5, 41.3, and 22.4 kJ mol-1 in the presence of Li+, Na+, K+, Rb+, Cs+, and NH4+, respectively. The macroscopic current flowing through the w.t. channel at +100 mV had an activation energy of 45.2, 38.2, 37.5, 47.3, 49.4, and 38.9 kJ mol-1 in the presence of Li+, Na+, K+, Rb+, Cs+, and NH4+, respectively. The activation energy of the macroscopic current flowing through the native and w.t. channels did not vary significantly when the ionic concentration of the permeant ion was changed between 2.5 and 110 mM. The activation energy of the single-channel current of the w.t. channel at +100 mV was 40.4 and 33 kJ mol-1 for Na+ and NH4+, respectively. The reversal potential of biionic solutions changed significantly with temperature. These results can be used to obtain an estimate of the enthalpic and entropic contributions to the barrier of the Gibbs free energy experienced by an ion during its permeation through the open channel. These estimates indicate that the ionic permeation and selectivity of the cGMP-gated channel are controlled both by enthalpic and entropic factors and that the selectivity of the native channel for Li+ over Na+ is primarily caused by entropic effects. PMID:8744300

  18. Soluble guanylyl cyclase-activated cyclic GMP-dependent protein kinase inhibits arterial smooth muscle cell migration independent of VASP-serine 239 phosphorylation.

    PubMed

    Holt, Andrew W; Martin, Danielle N; Shaver, Patti R; Adderley, Shaquria P; Stone, Joshua D; Joshi, Chintamani N; Francisco, Jake T; Lust, Robert M; Weidner, Douglas A; Shewchuk, Brian M; Tulis, David A

    2016-09-01

    Coronary artery disease (CAD) accounts for over half of all cardiovascular disease-related deaths. Uncontrolled arterial smooth muscle (ASM) cell migration is a major component of CAD pathogenesis and efforts aimed at attenuating its progression are clinically essential. Cyclic nucleotide signaling has long been studied for its growth-mitigating properties in the setting of CAD and other vascular disorders. Heme-containing soluble guanylyl cyclase (sGC) synthesizes cyclic guanosine monophosphate (cGMP) and maintains vascular homeostasis predominantly through cGMP-dependent protein kinase (PKG) signaling. Considering that reactive oxygen species (ROS) can interfere with appropriate sGC signaling by oxidizing the cyclase heme moiety and so are associated with several CVD pathologies, the current study was designed to test the hypothesis that heme-independent sGC activation by BAY 60-2770 (BAY60) maintains cGMP levels despite heme oxidation and inhibits ASM cell migration through phosphorylation of the PKG target and actin-binding vasodilator-stimulated phosphoprotein (VASP). First, using the heme oxidant ODQ, cGMP content was potentiated in the presence of BAY60. Using a rat model of arterial growth, BAY60 significantly reduced neointima formation and luminal narrowing compared to vehicle (VEH)-treated controls. In rat ASM cells BAY60 significantly attenuated cell migration, reduced G:F actin, and increased PKG activity and VASP Ser239 phosphorylation (pVASP·S239) compared to VEH controls. Site-directed mutagenesis was then used to generate overexpressing full-length wild type VASP (FL-VASP/WT), VASP Ser239 phosphorylation-mimetic (FL-VASP/239D) and VASP Ser239 phosphorylation-resistant (FL-VASP/239A) ASM cell mutants. Surprisingly, FL-VASP/239D negated the inhibitory effects of FL-VASP/WT and FL-VASP/239A cells on migration. Furthermore, when FL-VASP mutants were treated with BAY60, only the FL-VASP/239D group showed reduced migration compared to its VEH controls

  19. cGMP/Protein Kinase G Signaling Suppresses Inositol 1,4,5-Trisphosphate Receptor Phosphorylation and Promotes Endoplasmic Reticulum Stress in Photoreceptors of Cyclic Nucleotide-gated Channel-deficient Mice*

    PubMed Central

    Ma, Hongwei; Butler, Michael R.; Thapa, Arjun; Belcher, Josh; Yang, Fan; Baehr, Wolfgang; Biel, Martin; Michalakis, Stylianos; Ding, Xi-Qin

    2015-01-01

    Photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in phototransduction. Mutations in the cone CNG channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. We have shown endoplasmic reticulum (ER) stress-associated apoptotic cone death and increased phosphorylation of the ER Ca2+ channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in CNG channel-deficient mice. We also presented a remarkable elevation of cGMP and an increased activity of the cGMP-dependent protein kinase (protein kinase G, PKG) in CNG channel deficiency. This work investigated whether cGMP/PKG signaling regulates ER stress and IP3R1 phosphorylation in CNG channel-deficient cones. Treatment with PKG inhibitor and deletion of guanylate cyclase-1 (GC1), the enzyme producing cGMP in cones, were used to suppress cGMP/PKG signaling in cone-dominant Cnga3−/−/Nrl−/− mice. We found that treatment with PKG inhibitor or deletion of GC1 effectively reduced apoptotic cone death, increased expression levels of cone proteins, and decreased activation of Müller glial cells. Furthermore, we observed significantly increased phosphorylation of IP3R1 and reduced ER stress. Our findings demonstrate a role of cGMP/PKG signaling in ER stress and ER Ca2+ channel regulation and provide insights into the mechanism of cone degeneration in CNG channel deficiency. PMID:26124274

  20. cGMP/Protein Kinase G Signaling Suppresses Inositol 1,4,5-Trisphosphate Receptor Phosphorylation and Promotes Endoplasmic Reticulum Stress in Photoreceptors of Cyclic Nucleotide-gated Channel-deficient Mice.

    PubMed

    Ma, Hongwei; Butler, Michael R; Thapa, Arjun; Belcher, Josh; Yang, Fan; Baehr, Wolfgang; Biel, Martin; Michalakis, Stylianos; Ding, Xi-Qin

    2015-08-21

    Photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in phototransduction. Mutations in the cone CNG channel subunits CNGA3 and CNGB3 are associated with achromatopsia and cone dystrophies. We have shown endoplasmic reticulum (ER) stress-associated apoptotic cone death and increased phosphorylation of the ER Ca(2+) channel inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in CNG channel-deficient mice. We also presented a remarkable elevation of cGMP and an increased activity of the cGMP-dependent protein kinase (protein kinase G, PKG) in CNG channel deficiency. This work investigated whether cGMP/PKG signaling regulates ER stress and IP3R1 phosphorylation in CNG channel-deficient cones. Treatment with PKG inhibitor and deletion of guanylate cyclase-1 (GC1), the enzyme producing cGMP in cones, were used to suppress cGMP/PKG signaling in cone-dominant Cnga3(-/-)/Nrl(-/-) mice. We found that treatment with PKG inhibitor or deletion of GC1 effectively reduced apoptotic cone death, increased expression levels of cone proteins, and decreased activation of Müller glial cells. Furthermore, we observed significantly increased phosphorylation of IP3R1 and reduced ER stress. Our findings demonstrate a role of cGMP/PKG signaling in ER stress and ER Ca(2+) channel regulation and provide insights into the mechanism of cone degeneration in CNG channel deficiency. PMID:26124274

  1. The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in Pseudomonas aeruginosa.

    PubMed

    Frangipani, Emanuela; Visaggio, Daniela; Heeb, Stephan; Kaever, Volkhard; Cámara, Miguel; Visca, Paolo; Imperi, Francesco

    2014-03-01

    Pseudomonas aeruginosa is a versatile bacterial pathogen capable of occupying diverse ecological niches. To cope with iron limitation, P. aeruginosa secretes two siderophores, pyoverdine and pyochelin, whose ability to deliver iron to the cell is crucial for biofilm formation and pathogenicity. In this study, we describe a link between iron uptake and the Gac/Rsm system, a conserved signal transducing pathway of P. aeruginosa that controls the production of extracellular products and virulence factors, as well as the switch from planktonic to biofilm lifestyle. We have observed that pyoverdine and pyochelin production in P. aeruginosa is strongly dependent on the activation state of the Gac/Rsm pathway, which controls siderophore regulatory and biosynthetic genes at the transcriptional level, in a manner that does not involve regulation of ferric uptake regulator (Fur) expression. Gac/Rsm-mediated regulation of iron uptake genes appears to be conserved in different P. aeruginosa strains. Further experiments led to propose that the Gac/Rsm system regulates siderophore production through modulation of the intracellular levels of the second messenger c-di-GMP, indicating that the c-di-GMP and the Gac/Rsm regulatory networks essential for biofilm formation can also coordinately control iron uptake in P. aeruginosa. PMID:23796404

  2. Cyclic GMP-gated channels of bovine rod photoreceptors: affinity, density and stoichiometry of Ca(2+)-calmodulin binding sites.

    PubMed Central

    Bauer, P J

    1996-01-01

    1. Ca(2+)-loaded vesicles of bovine rod outer segment (ROS) membranes were used to examine the influence of Ca(2+)-calmodulin (Ca(2+)-CaM) on the activity of cGMP-gated channels. 2. In vesicles prepared from ROS membranes which were washed at zero free Ca2+, Ca(2+)-CaM reduced the Ca2+ flux to maximally 40%. The dose-response curve for activation of the cGMP-gated channel had a half-maximal value of 36.8 +/- 2 microM in the CaM-free state, and of 55.6 +/- 5.2 microM in the Ca(2+)-CaM-bound state. In both cases the Hill coefficients were 2.2 +/- 0.2. 3. In vesicles prepared from ROS membranes which were washed at 100 microM Ca2+, the dose-response curve was identical to the Ca(2+)-CaM-bound state. 4. Titration of the Ca(2+)-CaM-dependent decrease of the channel activity upon addition of 40 microM cGMP yielded half-maximal Ca(2+)-CaM concentrations (EC50CaM) which were linearly correlated with the concentration of membrane vesicles. Extrapolation of EC50CaM to infinite dilution of vesicles yielded a Ca(2+)-CaM affinity constant for the cGMP-gated channel of 1.01 +/- 0.20 nM. Hill analysis of the Ca(2+)-CaM titrations resulted in a Hill coefficient of 1.36 +/- 0.15. 5. From the slope of the linear regression of EC50CaM plotted vs. the rhodopsin concentration, the molar ratio of rhodopsin to externally accessible Ca(2+)-CaM binding sites of fused ROS membranes was determined to be 1439 +/- 109. Therefore, there are about 720 molecules of rhodopsin per Ca(2+)-CaM binding site present in ROS. 6. Based on these data, a density of 560 Ca(2+)-CaM binding sites micron-2 is estimated for the plasma membrane of bovine ROS, suggesting that there are two Ca(2+)-CaM binding sites per channel. 7. The Ca(2+)-CaM effect did not become noticeable until the ROS membranes were hypotonically washed at free [Ca2+] below 100 nM, suggesting that an endogenous Ca(2+)-binding protein was washed off in the absence of Ca2+. 8. If the endogenous Ca(2+)-binding protein of bovine ROS membranes

  3. Oxytocin induces penile erection when injected into the ventral tegmental area of male rats: role of nitric oxide and cyclic GMP.

    PubMed

    Succu, Salvatora; Sanna, Fabrizio; Cocco, Cristina; Melis, Tiziana; Boi, Antonio; Ferri, Gian-Luca; Argiolas, Antonio; Melis, Maria Rosaria

    2008-08-01

    Oxytocin (80 ng) injected into the caudal mesencephalic ventral tegmental area (VTA) of male rats induces penile erection. Such an effect occurs together with an increase in nitric oxide (NO) production, as measured by the augmented concentration of NO(2)(-) and NO(3)(-) found in the dialysate obtained from this brain area by means of intracerebral microdialysis. Both effects are abolished by d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin (1 microg), an oxytocin receptor antagonist, by S-methyl-l-thiocitrulline acetate (20 microg), a neuronal NO synthase inhibitor, or by omega-conotoxin GVIA (50 ng), a N-type Ca(2+) channel blocker, all injected into the VTA 15 min before oxytocin. In contrast, 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (40 microg), a guanylate cyclase inhibitor, given into the VTA 15 min before oxytocin, abolishes penile erection, but not the increase in NO production, while haemoglobin (40 microg), a NO scavenger, injected immediately before oxytocin reduces the increase in NO production, but not penile erection. 8-Bromo-cyclic guanosine monophosphate (0.5-10 microg) microinjected into the VTA induces penile erection with an inverted U-shaped dose-response curve; the maximal effective dose being 3 microg. Immunohistochemistry reveals that in the caudal VTA oxytocin-containing axons/fibres (originating from the paraventricular nucleus of the hypothalamus) contact cell bodies of mesolimbic dopaminergic (tyrosine hydroxylase-positive) neurons containing both NO synthase and guanylate cyclase. These results suggest that oxytocin injected into the VTA induces penile erection by activating NO synthase in the cell bodies of mesolimbic dopaminergic neurons. NO in turn activates guanylate cyclase present in these neurons, thereby increasing cyclic GMP concentration. PMID:18671741

  4. Type I Interferon Induction by Neisseria gonorrhoeae: Dual Requirement of Cyclic GMP-AMP Synthase and Toll-like Receptor 4.

    PubMed

    Andrade, Warrison A; Agarwal, Sarika; Mo, Shunyan; Shaffer, Scott A; Dillard, Joseph P; Schmidt, Tobias; Hornung, Veit; Fitzgerald, Katherine A; Kurt-Jones, Evelyn A; Golenbock, Douglas T

    2016-06-14

    The innate immune system is the first line of defense against Neisseria gonorrhoeae (GC). Exposure of cells to GC lipooligosaccharides induces a strong immune response, leading to type I interferon (IFN) production via TLR4/MD-2. In addition to living freely in the extracellular space, GC can invade the cytoplasm to evade detection and elimination. Double-stranded DNA introduced into the cytosol binds and activates the enzyme cyclic-GMP-AMP synthase (cGAS), which produces 2'3'-cGAMP and triggers STING/TBK-1/IRF3 activation, resulting in type I IFN expression. Here, we reveal a cytosolic response to GC DNA that also contributes to type I IFN induction. We demonstrate that complete IFN-β induction by live GC depends on both cGAS and TLR4. Type I IFN is detrimental to the host, and dysregulation of iron homeostasis genes may explain lower bacteria survival in cGAS(-/-) and TLR4(-/-) cells. Collectively, these observations reveal cooperation between TLRs and cGAS in immunity to GC infection. PMID:27264171

  5. E88, a new cyclic-di-GMP class I riboswitch aptamer from Clostridium tetani, has a similar fold to the prototypical class I riboswitch, Vc2, but differentially binds to c-di-GMP analogs.

    PubMed

    Luo, Yiling; Chen, Bin; Zhou, Jie; Sintim, Herman O; Dayie, T Kwaku

    2014-03-01

    C-di-GMP has emerged as a ubiquitous second messenger, which regulates the transition between sessile and motile lifestyles and virulence factor expression in many pathogenic bacteria using both RNA riboswitches and protein effectors. We recently showed that two additional class I c-di-GMP riboswitch aptamers (Ct-E88 and Cb-17B) bind c-di-GMP with nanomolar affinity, and that Ct-E88 RNA binds 2'-F-c-di-GMP 422 times less tightly than class I Vc2 RNA. Based on sequence comparison, it was concluded that the global folds of Ct-E88 and Vc2 RNAs were similar and that differences in ligand binding were probably due to differences in binding site architectures. Herein, we utilized EMSA, aptamer sensing spinach modules, SAXS and 1D NMR titration to study the conformational transitions of Ct-E88. We conclude that whereas the global folds of the bound states of Vc2 and Ct-E88 RNAs are similar, the unbound states are different and this could explain differences in ligand affinities between these class I c-di-GMP riboswitches. PMID:24430255

  6. Hyperammonemia alters the modulation by different neurosteroids of the glutamate-nitric oxide-cyclic GMP pathway through NMDA- GABAA - or sigma receptors in cerebellum in vivo.

    PubMed

    González-Usano, Alba; Cauli, Omar; Agustí, Ana; Felipo, Vicente

    2013-04-01

    Several neurosteroids modulate the glutamate-nitric oxide (NO)-cGMP pathway in cerebellum through modulation of NMDA- GABAA - or sigma receptors. Hyperammonemia alters the concentration of several neurosteroids and impairs the glutamate-NO-cGMP pathway, leading to impaired learning ability. This work aimed to assess whether chronic hyperammonemia alters the modulation by different neurosteroids of GABAA, NMDA, and/or sigma receptors and of the glutamate-NO-cGMP pathway in cerebellum. Neurosteroids were administered through microdialysis probes, and extracellular cGMP and citrulline were measured. Then NMDA was administered to assess the effects on the glutamate-NO-cGMP pathway activation. Hyperammonemia completely modifies the effects of pregnanolone and pregnenolone. Pregnanolone acts as a GABAA receptor agonist in controls, but as an NMDA receptor antagonist in hyperammonemic rats. Pregnenolone does not induce any effect in controls, but acts as a sigma receptor agonist in hyperammonemic rats. Hyperammonemia potentiates the actions of tetrahydrodeoxy-corticosterone (THDOC) as a GABAA receptor agonist, allopregnanolone as an NMDA receptor antagonist, and pregnenolone sulfate as an NMDA receptor activation enhancer. Neurosteroids that reduce the pathway (pregnanolone, THDOC, allopregnanolone, DHEAS) may contribute to cognitive impairment in hyperammonemia and hepatic encephalopathy. Pregnenolone would impair cognitive function in hyperammonemia. Neurosteroids that restore the pathway in hyperammonemia (pregnenolone sulfate) could restore cognitive function in hyperammonemia and encephalopathy. PMID:23227932

  7. Involvement of the NMDA receptor, NO-cyclic GMP and nuclear factor K-beta in an animal model of repeated trauma.

    PubMed

    Harvey, Brian H; Bothma, Tanya; Nel, Ané; Wegener, Gregers; Stein, Dan J

    2005-07-01

    Post-traumatic stress disorder (PTSD) may be associated with shrinkage of the hippocampus, with glutamate release causally related to these events. Recent animal studies strongly implicate activation of the nitric oxide (NO)-cascade in anxiety and stress. Using an animal model of repeated trauma, the effect of stress was investigated on the hippocampal NO-cGMP signalling pathway, specifically the release of nitrogen oxides (NOx) and its modulation by NMDA receptor-, NO-, cGMP- and nuclear factor K-beta (NFK-beta)-selective drugs. Immediately after stress, rats received the glutamate NMDA receptor antagonist, memantine (MEM; 5 mg/kg i.p./d), the NO synthase inhibitor, 7-nitroindazole sodium salt (7-NINA; 20 mg/kg i.p./d), the cGMP-specific PDE inhibitor, sildenafil (SIL; 10 mg/kg i.p./d) or the NFkappa-beta antagonist, pyrollidine dithiocarbamate (PDTC; 70 mg/kg i.p./d), for 7 days. Stress significantly increased hippocampal NOx on day 7 post-stress, which was blocked by either 7-NINA or PDTC, while MEM was without effect. SIL, however, significantly augmented stress-induced NOx accumulation. Increased cGMP therefore acts as a protagonist in driving stress-related events, while both nNOS (neuronal NOS) and iNOS (inducible/immunological NOS) may represent a therapeutic target in preventing the effects of severe stress. The value of NMDA receptor antagonism, however, appears limited in this model. PMID:15912566

  8. Spatiotemporal cGMP Dynamics in Living Mouse Rods

    PubMed Central

    Gross, Owen P.; Pugh, Edward N.; Burns, Marie E.

    2012-01-01

    Signaling of single photons in rod photoreceptors decreases the concentration of the second messenger, cyclic GMP (cGMP), causing closure of cGMP-sensitive channels located in the plasma membrane. Whether the spatiotemporal profiles of the fall in cGMP are narrow and deep, or broad and shallow, has important consequences for the amplification and the fidelity of signaling. The factors that determine the cGMP profiles include the diffusion coefficient for cGMP, the spontaneous rate of cGMP hydrolysis, and the rate of cGMP synthesis, which is powerfully regulated by calcium feedback mechanisms. Here, using suction electrodes to record light-dependent changes in cGMP-activated current in living mouse rods lacking calcium feedback, we have determined the rate constant of spontaneous cGMP hydrolysis and the longitudinal cGMP diffusion coefficient. These measurements result in a fully constrained spatiotemporal model of phototransduction, which we used to determine the effect of feedback to cGMP synthesis in spatially constricting the fall of cGMP during the single-photon response of normal rods. We find that the spatiotemporal cGMP profiles during the single-photon response are optimized for maximal amplification and preservation of signal linearity, effectively operating within an axial signaling domain of ∼2 μm. PMID:22768933

  9. Transcutaneous Electrical Stimulation Increased Nitric Oxide-Cyclic GMP Release Biocaptured Over Skin Surface of Pericardium Meridian and Acupuncture Points in Humans

    PubMed Central

    Ma, Sheng-Xing; Mayer, Emeran; Lee, Paul; Li, Xi-yan; Gao, Ellen Z.

    2015-01-01

    Objectives The purpose of this study was to consecutively capture and quantify nitric oxide (NO) and cGMP, the second messenger of NO, over the skin surface of acupuncture points (acupoints), meridian line without acupoint, and non-meridian control regions of the Pericardium meridian (PC) in humans, and investigate their response to transcutaneous electrical nerve stimulation (TENS). Design, setting, and main outcome measures Adhesive biocapture tubes were attached to the skin surface along PC regions and injected with 2-Phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl solution, an NO-scavenging compound, contacting the skin surface for 20 minutes each during 4 consecutive biocapture intervals. TENS (1.0 mA, 6 Hz, 1.0 msec duration) was applied over acupoints PC 8 and PC 3 during the 2nd biocapture for 20 min. Total nitrite and nitrate (NOx-), the stable metabolic products of NO, and cGMP in biocaptured samples were quantified using chemiluminescence and ELISA. Results NOx- levels in the 1st biocapture over PC regions are almost two fold higher compared to subsequent biocaptures and are higher over PC acupoints versus non-meridian control region. Following TENS, NOx- concentrations over PC regions were significantly increased, and cGMP is predominantly released from the skin surface of PC acupoints. Conclusions TENS induces elevations of NO-cGMP concentrations over local skin region with a high level at acupoints. The enhanced signal molecules improve local circulation, which contributes to beneficial effects of the therapy. PMID:26369251

  10. Roles of Cyclic Di-GMP and the Gac System in Transcriptional Control of the Genes Coding for the Pseudomonas putida Adhesins LapA and LapF

    PubMed Central

    Martínez-Gil, Marta; Ramos-González, María Isabel

    2014-01-01

    LapA and LapF are large extracellular proteins that play a relevant role in biofilm formation by Pseudomonas putida. Current evidence favors a sequential model in which LapA is first required for the initial adhesion of individual bacteria to a surface, while LapF participates in later stages of biofilm development. In agreement with this model, lapF transcription was previously shown to take place at late times of growth and to respond to the stationary-phase sigma factor RpoS. We have now analyzed the transcription pattern of lapA and other regulatory elements that influence expression of both genes. The lapA promoter shows a transient peak of activation early during growth, with a second increase in stationary phase that is independent of RpoS. The same pattern is observed in biofilms although expression is not uniform in the population. Both lapA and lapF are under the control of the two-component regulatory system GacS/GacA, and their transcription also responds to the intracellular levels of the second messenger cyclic diguanylate (c-di-GMP), although in surprisingly reverse ways. Whereas expression from the lapA promoter increases with high levels of c-di-GMP, the opposite is true for lapF. The transcriptional regulator FleQ is required for the modulation of lapA expression by c-di-GMP but has a minor influence on lapF. This work represents a further step in our understanding of the regulatory interactions controlling biofilm formation in P. putida. PMID:24488315

  11. Time-dependent current decline in cyclic GMP-gated bovine channels caused by point mutations in the pore region expressed in Xenopus oocytes.

    PubMed Central

    Bucossi, G; Eismann, E; Sesti, F; Nizzari, M; Seri, M; Kaupp, U B; Torre, V

    1996-01-01

    1. Amino acids with a charged or a polar residue in the putative pore region, between lysine 346 and glutamate 372 of the alpha-subunit of the cGMP-gated channel from bovine rods were mutated to a different amino acid. The mRNA encoding for the wild-type, i.e. the alpha-subunit, or mutant channels was injected in Xenopus laevis oocytes. 2. When glutamate 363 was mutated to asparagine, serine or alanine, the current activated by a steady cGMP concentration declined in mutant channels. No current decline was observed when glutamate 363 was mutated to aspartate, glutamine or glycine, when theronine 359, 360 and 364 were mutated to alanine or when other charged residues in the pore region were neutralized. 3. The amount of current decline and its time course were significantly voltage dependent. In mutant E363A the current decline developed within about 1.5 s at -100 mV, but in about 6 s at +100 mV. In the same mutant, the current declined to about 55% of its initial level at +100 mV and to about 10% at -100 mV. 4. The current decline in mutants E363A, E363S and E363N was only moderately dependent on the cGMP concentration (from 10 to 1000 microM) and was not caused by a reduced affinity of the mutant channels for cGMP. Analysis of current fluctuations at a single-channel level indicated that current decline was primarily caused by a decrease of the open probability. 5. The wild-type channel was not permeable to dimethylammonium. When glutamate 363 was replaced by a smaller residue such as serine, mutant channels became permeable to dimethylammonium. 6. The current decline observed in mutant channels is reminiscent of desensitization of ligand-gated channels and of inactivation of voltage-gated channels. These results suggest also that gating and permeation through the cGMP-gated channel from bovine rods are intrinsically coupled and that glutamate 363 is part of the molecular structure controlling both the gating and the narrowest region of the pore. PMID:8782105

  12. Phosphodiesterase 9A Controls Nitric-oxide Independent cGMP and Hypertrophic Heart Disease

    PubMed Central

    Lee, Dong I.; Zhu, Guangshuo; Sasaki, Takashi; Cho, Gun-Sik; Hamdani, Nazha; Holewinski, Ronald; Jo, Su-Hyun; Danner, Thomas; Zhang, Manling; Rainer, Peter P.; Bedja, Djahida; Kirk, Jonathan A.; Ranek, Mark J.; Dostmann, Wolfgang R.; Kwon, Chulan; Margulies, Kenneth B.; Van Eyk, Jennifer E.; Paulus, Walter J.; Takimoto, Eiki; Kass, David A.

    2015-01-01

    Cyclic guanosine monophosphate (cGMP) is a second messenger molecule that transduces nitric oxide (NO) and natriuretic peptide (NP) coupled signaling, stimulating phosphorylation changes by protein kinase G (PKG). Enhancing cGMP synthesis or blocking its degradation by phosphodiesterase type 5A (PDE5A) protects against cardiovascular disease1,2. However, cGMP stimulation alone is limited by counter-adaptions including PDE upregulation3. Furthermore, though PDE5A regulates NO-generated cGMP4,5, NO-signaling is often depressed by heart disease6. PDEs controlling NP-coupled cGMP remain uncertain. Here we show that cGMP-selective PDE9A7,8 is expressed in mammalian heart including humans, and is upregulated by hypertrophy and cardiac failure. PDE9A regulates NP rather than NO-stimulated cGMP in heart myocytes and muscle, and its genetic or selective pharmacological inhibition protects against pathological responses to neuro-hormones, and sustained pressure-overload stress. PDE9A inhibition reverses pre-established heart disease independent of NO-synthase (NOS) activity, whereas PDE5A inhibition requires active NOS. Transcription factor activation and phospho-proteome analyses of myocytes with each PDE selectively inhibited reveals substantial differential targeting, with phosphorylation changes from PDE5A inhibition being more sensitive to NOS activation. Thus, unlike PDE5A, PDE9A can regulate cGMP signaling independent of the NO-pathway, and its role in stress-induced heart disease suggests potential as a therapeutic target. PMID:25799991

  13. Plant Cyclic Nucleotide Signalling

    PubMed Central

    Martinez-Atienza, Juliana; Van Ingelgem, Carl; Roef, Luc

    2007-01-01

    The presence of the cyclic nucleotides 3′,5′-cyclic adenyl monophosphate (cAMP) and 3′,5′-cyclic guanyl monophosphate (cGMP) in plants is now generally accepted. In addition, cAMP and cGMP have been implicated in the regulation of important plant processes such as stomatal functioning, monovalent and divalent cation fluxes, chloroplast development, gibberellic acid signalling, pathogen response and gene transcription. However, very little is known regarding the components of cyclic nucleotide signalling in plants. In this addendum, the evidence for specific mechanisms of plant cyclic nucleotide signalling is evaluated and discussed. PMID:19704553

  14. The EAL domain containing protein STM2215 (rtn) is needed during Salmonella infection and has cyclic di-GMP phosphodiesterase activity.

    PubMed

    Zheng, Yi; Sambou, Tounkang; Bogomolnaya, Lydia M; Cirillo, Jeffrey D; McClelland, Michael; Andrews-Polymenis, Helene

    2013-08-01

    Salmonella Typhimurium gene STM2215 (rtn) is conserved among many enterobacteriaceae. Mutants lacking STM2215 poorly colonized the liver and spleen in intraperitoneal infection of mice and poorly colonized the intestine and deeper tissues in oral infection. These phenotypes were complemented by a wild-type copy of STM2215 provided in trans. STM2215 deletion mutants grew normally in J774A.1 murine macrophages but were unable to invade Caco-2 colonic epithelial cells. Consistent with this finding, mutants in STM2215 produced lower levels of effectors of the TTSS-1. STM2215 is a predicted c-di-GMP phosphodiesterase, but lacks identifiable sensor domains. Biochemical analysis of STM2215 determined that it is located in the inner membrane and has c-di-GMP phosphodiesterase activity in vitro dependent on an intact EAL motif. Unlike some previously identified members of this family, STM2215 did not affect motility, was expressed on plates, and in liquid media at late exponential and early stationary phase during growth. Defined mutations in STM2215 revealed that neither the predicted periplasmic domain nor the anchoring of the protein to the inner membrane is necessary for the activity of this protein during infection. However, the EAL domain of STM2215 is required during infection, suggesting that its phosphodiesterase activity is necessary during infection. PMID:23734719

  15. Cyclic-di-GMP signalling and biofilm-related properties of the Shiga toxin-producing 2011 German outbreak Escherichia coli O104:H4

    PubMed Central

    Richter, Anja M; Povolotsky, Tatyana L; Wieler, Lothar H; Hengge, Regine

    2014-01-01

    In 2011, nearly 4,000 people in Germany were infected by Shiga toxin (Stx)-producing Escherichia coli O104:H4 with > 22% of patients developing haemolytic uraemic syndrome (HUS). Genome sequencing showed the outbreak strain to be related to enteroaggregative E. coli (EAEC), suggesting its high virulence results from EAEC-typical strong adherence and biofilm formation combined to Stx production. Here, we report that the outbreak strain contains a novel diguanylate cyclase (DgcX)—producing the biofilm-promoting second messenger c-di-GMP—that shows higher expression than any other known E. coli diguanylate cyclase. Unlike closely related E. coli, the outbreak strain expresses the c-di-GMP-controlled biofilm regulator CsgD and amyloid curli fibres at 37°C, but is cellulose-negative. Moreover, it constantly generates derivatives with further increased and deregulated production of CsgD and curli. Since curli fibres are strongly proinflammatory, with cellulose counteracting this effect, high c-di-GMP and curli production by the outbreak O104:H4 strain may enhance not only adherence but may also contribute to inflammation, thereby facilitating entry of Stx into the bloodstream and to the kidneys where Stx causes HUS. PMID:25361688

  16. Nitric oxide sustains long-term skeletal muscle regeneration by regulating fate of satellite cells via signaling pathways requiring Vangl2 and cyclic GMP.

    PubMed

    Buono, Roberta; Vantaggiato, Chiara; Pisa, Viviana; Azzoni, Emanuele; Bassi, Maria Teresa; Brunelli, Silvia; Sciorati, Clara; Clementi, Emilio

    2012-02-01

    Satellite cells are myogenic precursors that proliferate, activate, and differentiate on muscle injury to sustain the regenerative capacity of adult skeletal muscle; in this process, they self-renew through the return to quiescence of the cycling progeny. This mechanism, while efficient in physiological conditions does not prevent exhaustion of satellite cells in pathologies such as muscular dystrophy where numerous rounds of damage occur. Here, we describe a key role of nitric oxide, an important signaling molecule in adult skeletal muscle, on satellite cells maintenance, studied ex vivo on isolated myofibers and in vivo using the α-sarcoglycan null mouse model of dystrophy and a cardiotoxin-induced model of repetitive damage. Nitric oxide stimulated satellite cells proliferation in a pathway dependent on cGMP generation. Furthermore, it increased the number of Pax7(+)/Myf5(-) cells in a cGMP-independent pathway requiring enhanced expression of Vangl2, a member of the planar cell polarity pathway involved in the Wnt noncanonical pathway. The enhanced self-renewal ability of satellite cells induced by nitric oxide is sufficient to delay the reduction of the satellite cell pool during repetitive acute and chronic damages, favoring muscle regeneration; in the α-sarcoglycan null dystrophic mouse, it also slowed disease progression persistently. These results identify nitric oxide as a key messenger in satellite cells maintenance, expand the significance of the Vangl2-dependent Wnt noncanonical pathway in myogenesis, and indicate novel strategies to optimize nitric oxide-based therapies for muscular dystrophy. PMID:22084027

  17. Binding of cGMP to both allosteric sites of cGMP-binding cGMP-specific phosphodiesterase (PDE5) is required for its phosphorylation.

    PubMed Central

    Turko, I V; Francis, S H; Corbin, J D

    1998-01-01

    cGMP-binding phosphodiesterases contain two homologous allosteric cGMP-binding sites (sites a and b) that are arranged in tandem; they constitute a superfamily of mammalian cyclic nucleotide receptors distinct from the cyclic nucleotide-dependent protein kinases/cation channels family. The functional role of each of these two sites in the phosphodiesterases is not known. The cGMP-binding sites of one of these phosphodiesterases, the cGMP-binding cGMP-specific phosphodiesterase (cGB-PDE, PDE5), have been analysed by using site-directed mutagenesis. Mutations that affect cGMP binding to either one or both allosteric sites do not influence cGMP hydrolysis in the catalytic site under the conditions used. However, compared with wild-type enzyme, the D289A, D478A and D289A/D478A mutants, which are defective in cGMP binding to either site a or site b, or both allosteric sites, require much higher cGMP concentrations for the allosteric stimulation of phosphorylation by the catalytic subunit of cAMP-dependent protein kinase. The cGMP effect is on the cGB-PDE rather than on the catalytic subunit of the protein kinase because the latter enzyme does not require cGMP for activity. The D289N mutant, which has higher binding affinity for cGMP than does the wild-type enzyme, is phosphorylated at lower concentrations of cGMP than is the wild-type enzyme. It is concluded that cGMP binding to the allosteric sites of cGB-PDE does not directly affect catalysis, but binding to both of these sites regulates phosphorylation of this enzyme. PMID:9445376

  18. The Cyclic Di-GMP Phosphodiesterase Gene Rv1357c/BCG1419c Affects BCG Pellicle Production and In Vivo Maintenance.

    PubMed

    Flores-Valdez, Mario Alberto; Aceves-Sánchez, Michel de Jesús; Pedroza-Roldán, César; Vega-Domínguez, Perla Jazmín; Prado-Montes de Oca, Ernesto; Bravo-Madrigal, Jorge; Laval, Françoise; Daffé, Mamadou; Koestler, Ben; Waters, Christopher M

    2015-02-01

    Bacteria living in a surface-attached community that contains a heterogeneous population, coated with an extracellular matrix, and showing drug tolerance (biofilms) are often linked to chronic infections. In mycobacteria, the pellicle mode of growth has been equated to an in vitro biofilm and meets several of the criteria mentioned above, while tuberculosis infection presents a chronic (latent) phase of infection. As mycobacteria lack most genes required to control biofilm production by other microorganisms, we deleted or expressed from the hsp60 strong promoter the only known c-di-GMP phosphodiesterase (PDE) gene in Mycobacterium bovis BCG. We found changes in pellicle production, cellular protein profiles, lipid production, resistance to nitrosative stress and maintenance in lungs and spleens of immunocompetent BALB/mice. Our results show that pellicle production and capacity to remain within the host are linked in BCG. PMID:25865678

  19. Dual Activation of a Sex Pheromone-Dependent Ion Channel from Insect Olfactory Dendrites by Protein Kinase C Activators and Cyclic GMP

    NASA Astrophysics Data System (ADS)

    Zufall, Frank; Hatt, Hanns

    1991-10-01

    Olfactory transduction is thought to take place in the outer dendritic membrane of insect olfactory receptor neurons. Here we show that the outer dendritic plasma membrane of silkmoth olfactory receptor neurons seems to be exclusively equipped with a specific ion channel activated by low concentrations of the species-specific sex pheromone component. This so-called AC_1 channel has a conductance of 56 pS and is nonselectively permeable to cations. The AC_1 channel can be activated from the intracellular side by protein kinase C activators such as diacylglycerol and phorbolester and by cGMP but not by Ca2+, inositol 1,4,5-trisphosphate, or cAMP. Our results imply that phosphorylation of this ion channel by protein kinase C could be the crucial step in channel opening by sex pheromones.

  20. Pharmacological evidence for the participation of NO-cGMP-KATP pathway in the gastric protective effect of curcumin against indomethacin-induced gastric injury in the rat.

    PubMed

    Díaz-Triste, Nadia Estela; González-García, Martha Patricia; Jiménez-Andrade, Juan Miguel; Castañeda-Hernández, Gilberto; Chávez-Piña, Aracely Evangelina

    2014-05-01

    Curcumin, main compound obtained from rizhoma of Curcuma longa, shows antitumoral, antioxidant, anticarcinogenic and gastric protective properties. Recently, it has been demonstrated that curcumin exerts its gastric protective action due to an increase in gastric nitric oxide (NO) levels. However, it is unknown whether these increased NO levels are associated with activation of intracellular signaling pathways. Thus, the purpose of this study was to investigate the role of NO-cGMP-KATP pathway in the gastric protective effect of curcumin during indomethacin-induced gastric injury in the rat. Adult female Wistar rats were gavaged with curcumin (3-300mg/kg, p.o.) or omeprazole (30mg/kg, p.o.) 30min before indomethacin insult (30mg/kg, p.o.). Other groups of rats were administered L-NAME (70mg/kg, i.p.; inhibitor of nitric oxide synthase), ODQ (10mg/kg, i.p.; inhibitor of soluble guanylate cyclase) or glibenclamide (1mg/kg, i.p.; blocker of ATP-sensitive potassium (KATP) channels) 30min before curcumin (30mg/kg, p.o.). 3h after indomethacin administration, rats were sacrificed and gastric injury was evaluated by determining total damaged area. A sample of gastric tissue was harvested and processed to quantify organic nitrite levels. Curcumin significantly protected against indomethacin-induced gastric injury and this effect was comparable to gastroprotective effect by omeprazole. L-NAME, ODQ and glibenclamide significantly prevented the curcumin-mediated gastric protective effect in the indomethacin-induced gastric injury model. Furthermore, curcumin administration induced a significant increase in gastric nitric oxide levels as compared to vehicle administration. Our results show for the first time that curcumin activates NO/cGMP/KATP pathway during its gastro protective action. PMID:24607410

  1. Imidazopyridazine Inhibitors of Plasmodium falciparum Calcium-Dependent Protein Kinase 1 Also Target Cyclic GMP-Dependent Protein Kinase and Heat Shock Protein 90 To Kill the Parasite at Different Stages of Intracellular Development

    PubMed Central

    Moon, Robert W.; Whalley, David; Bowyer, Paul W.; Wallace, Claire; Rochani, Ankit; Nageshan, Rishi K.; Howell, Steven A.; Grainger, Munira; Jones, Hayley M.; Ansell, Keith H.; Chapman, Timothy M.; Taylor, Debra L.; Osborne, Simon A.; Baker, David A.; Tatu, Utpal

    2015-01-01

    Imidazopyridazine compounds are potent, ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1) and of Plasmodium falciparum parasite growth in vitro. Here, we show that these compounds can be divided into two classes depending on the nature of the aromatic linker between the core and the R2 substituent group. Class 1 compounds have a pyrimidine linker and inhibit parasite growth at late schizogony, whereas class 2 compounds have a nonpyrimidine linker and inhibit growth in the trophozoite stage, indicating different modes of action for the two classes. The compounds also inhibited cyclic GMP (cGMP)-dependent protein kinase (PKG), and their potency against this enzyme was greatly reduced by substitution of the enzyme's gatekeeper residue at the ATP binding site. The effectiveness of the class 1 compounds against a parasite line expressing the modified PKG was also substantially reduced, suggesting that these compounds kill the parasite primarily through inhibition of PKG rather than CDPK1. HSP90 was identified as a binding partner of class 2 compounds, and a representative compound bound to the ATP binding site in the N-terminal domain of HSP90. Reducing the size of the gatekeeper residue of CDPK1 enabled inhibition of the enzyme by bumped kinase inhibitors; however, a parasite line expressing the modified enzyme showed no change in sensitivity to these compounds. Taken together, these findings suggest that CDPK1 may not be a suitable target for further inhibitor development and that the primary mechanism through which the imidazopyridazines kill parasites is by inhibition of PKG or HSP90. PMID:26711771

  2. Imidazopyridazine Inhibitors of Plasmodium falciparum Calcium-Dependent Protein Kinase 1 Also Target Cyclic GMP-Dependent Protein Kinase and Heat Shock Protein 90 To Kill the Parasite at Different Stages of Intracellular Development.

    PubMed

    Green, Judith L; Moon, Robert W; Whalley, David; Bowyer, Paul W; Wallace, Claire; Rochani, Ankit; Nageshan, Rishi K; Howell, Steven A; Grainger, Munira; Jones, Hayley M; Ansell, Keith H; Chapman, Timothy M; Taylor, Debra L; Osborne, Simon A; Baker, David A; Tatu, Utpal; Holder, Anthony A

    2016-03-01

    Imidazopyridazine compounds are potent, ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1) and of Plasmodium falciparum parasite growth in vitro. Here, we show that these compounds can be divided into two classes depending on the nature of the aromatic linker between the core and the R2 substituent group. Class 1 compounds have a pyrimidine linker and inhibit parasite growth at late schizogony, whereas class 2 compounds have a nonpyrimidine linker and inhibit growth in the trophozoite stage, indicating different modes of action for the two classes. The compounds also inhibited cyclic GMP (cGMP)-dependent protein kinase (PKG), and their potency against this enzyme was greatly reduced by substitution of the enzyme's gatekeeper residue at the ATP binding site. The effectiveness of the class 1 compounds against a parasite line expressing the modified PKG was also substantially reduced, suggesting that these compounds kill the parasite primarily through inhibition of PKG rather than CDPK1. HSP90 was identified as a binding partner of class 2 compounds, and a representative compound bound to the ATP binding site in the N-terminal domain of HSP90. Reducing the size of the gatekeeper residue of CDPK1 enabled inhibition of the enzyme by bumped kinase inhibitors; however, a parasite line expressing the modified enzyme showed no change in sensitivity to these compounds. Taken together, these findings suggest that CDPK1 may not be a suitable target for further inhibitor development and that the primary mechanism through which the imidazopyridazines kill parasites is by inhibition of PKG or HSP90. PMID:26711771

  3. Cyclic dinucleotide (c-di-GMP, c-di-AMP, and cGAMP) signalings have come of age to be inhibited by small molecules.

    PubMed

    Opoku-Temeng, Clement; Zhou, Jie; Zheng, Yue; Su, Jianmei; Sintim, Herman O

    2016-08-01

    Bacteria utilize nucleotide-based second messengers to regulate a myriad of physiological processes. Cyclic dinucleotides have emerged as central regulators of bacterial physiology, controlling processes ranging from cell wall homeostasis to virulence production, and so far over thousands of manuscripts have provided biological insights into c-di-NMP signaling. The development of small molecule inhibitors of c-di-NMP signaling has significantly lagged behind. Recent developments in assays that allow for high-throughput screening of inhibitors suggest that the time is right for a concerted effort to identify inhibitors of these fascinating second messengers. Herein, we review c-di-NMP signaling and small molecules that have been developed to inhibit cyclic dinucleotide-related enzymes. PMID:27339003

  4. Optimization of RNA-based c-di-GMP fluorescent sensors through tuning their structural modules.

    PubMed

    Inuzuka, Saki; Matsumura, Shigeyoshi; Ikawa, Yoshiya

    2016-08-01

    Cyclic diguanylate (c-di-GMP) is a second messenger of bacteria and its detection is an important issue in basic and applied microbiology. As c-di-GMP riboswitch ligand-binding domains (aptamer domains) capture c-di-GMP with high affinity and selectivity, they are promising platforms for the development of RNA-based c-di-GMP sensors. We analyzed two previously reported c-di-GMP sensor RNAs derived from the Vc2 riboswitch. We also designed and tested their variants, some of which showed improved properties as RNA-based c-di-GMP sensors. PMID:26968125

  5. cGMP-Dependent Protein Kinases and cGMP Phosphodiesterases in Nitric Oxide and cGMP Action

    PubMed Central

    Busch, Jennifer L.; Corbin, Jackie D.

    2010-01-01

    To date, studies suggest that biological signaling by nitric oxide (NO) is primarily mediated by cGMP, which is synthesized by NO-activated guanylyl cyclases and broken down by cyclic nucleotide phosphodiesterases (PDEs). Effects of cGMP occur through three main groups of cellular targets: cGMP-dependent protein kinases (PKGs), cGMP-gated cation channels, and PDEs. cGMP binding activates PKG, which phosphorylates serines and threonines on many cellular proteins, frequently resulting in changes in activity or function, subcellular localization, or regulatory features. The proteins that are so modified by PKG commonly regulate calcium homeostasis, calcium sensitivity of cellular proteins, platelet activation and adhesion, smooth muscle contraction, cardiac function, gene expression, feedback of the NO-signaling pathway, and other processes. Current therapies that have successfully targeted the NO-signaling pathway include nitrovasodilators (nitroglycerin), PDE5 inhibitors [sildenafil (Viagra and Revatio), vardenafil (Levitra), and tadalafil (Cialis and Adcirca)] for treatment of a number of vascular diseases including angina pectoris, erectile dysfunction, and pulmonary hypertension; the PDE3 inhibitors [cilostazol (Pletal) and milrinone (Primacor)] are used for treatment of intermittent claudication and acute heart failure, respectively. Potential for use of these medications in the treatment of other maladies continues to emerge. PMID:20716671

  6. Control of bacterial exoelectrogenesis by c-AMP-GMP

    PubMed Central

    Nelson, James W.; Sudarsan, Narasimhan; Phillips, Grace E.; Stav, Shira; Lünse, Christina E.; McCown, Phillip J.; Breaker, Ronald R.

    2015-01-01

    Major changes in bacterial physiology including biofilm and spore formation involve signaling by the cyclic dinucleotides c-di-GMP and c-di-AMP. Recently, another second messenger dinucleotide, c-AMP-GMP, was found to control chemotaxis and colonization by Vibrio cholerae. We have identified a superregulon of genes controlled by c-AMP-GMP in numerous Deltaproteobacteria, including Geobacter species that use extracellular insoluble metal oxides as terminal electron acceptors. This exoelectrogenic process has been studied for its possible utility in energy production and bioremediation. Many genes involved in adhesion, pilin formation, and others that are important for exoelectrogenesis are controlled by members of a variant riboswitch class that selectively bind c-AMP-GMP. These RNAs constitute, to our knowledge, the first known specific receptors for c-AMP-GMP and reveal that this molecule is used by many bacteria to control specialized physiological processes. PMID:25848023

  7. cGMP Signaling, Phosphodiesterases and Major Depressive Disorder

    PubMed Central

    Reierson, Gillian W; Guo, Shuyu; Mastronardi, Claudio; Licinio, Julio; Wong, Ma-Li

    2011-01-01

    Deficits in neuroplasticity are hypothesized to underlie the pathophysiology of major depressive disorder (MDD): the effectiveness of antidepressants is thought to be related to the normalization of disrupted synaptic transmission and neurogenesis. The cyclic adenosine monophosphate (cAMP) signaling cascade has received considerable attention for its role in neuroplasticity and MDD. However components of a closely related pathway, the cyclic guanosine monophosphate (cGMP) have been studied with much lower intensity, even though this signaling transduction cascade is also expressed in the brain and the activity of this pathway has been implicated in learning and memory processes. Cyclic GMP acts as a second messenger; it amplifies signals received at postsynaptic receptors and activates downstream effector molecules resulting in gene expression changes and neuronal responses. Phosphodiesterase (PDE) enzymes degrade cGMP into 5’GMP and therefore they are involved in the regulation of intracellular levels of cGMP. Here we review a growing body of evidence suggesting that the cGMP signaling cascade warrants further investigation for its involvement in MDD and antidepressant action. PMID:22654729

  8. cGMP-Prkg1 signaling and Pde5 inhibition shelter cochlear hair cells and hearing function.

    PubMed

    Jaumann, Mirko; Dettling, Juliane; Gubelt, Martin; Zimmermann, Ulrike; Gerling, Andrea; Paquet-Durand, François; Feil, Susanne; Wolpert, Stephan; Franz, Christoph; Varakina, Ksenya; Xiong, Hao; Brandt, Niels; Kuhn, Stephanie; Geisler, Hyun-Soon; Rohbock, Karin; Ruth, Peter; Schlossmann, Jens; Hütter, Joachim; Sandner, Peter; Feil, Robert; Engel, Jutta; Knipper, Marlies; Rüttiger, Lukas

    2012-02-01

    Noise-induced hearing loss (NIHL) is a global health hazard with considerable pathophysiological and social consequences that has no effective treatment. In the heart, lung and other organs, cyclic guanosine monophosphate (cGMP) facilitates protective processes in response to traumatic events. We therefore analyzed NIHL in mice with a genetic deletion of the gene encoding cGMP-dependent protein kinase type I (Prkg1) and found a greater vulnerability to and markedly less recovery from NIHL in these mice as compared to mice without the deletion. Prkg1 was expressed in the sensory cells and neurons of the inner ear of wild-type mice, and its expression partly overlapped with the expression profile of cGMP-hydrolyzing phosphodiesterase 5 (Pde5). Treatment of rats and wild-type mice with the Pde5 inhibitor vardenafil almost completely prevented NIHL and caused a Prkg1-dependent upregulation of poly (ADP-ribose) in hair cells and the spiral ganglion, suggesting an endogenous protective cGMP-Prkg1 signaling pathway that culminates in the activation of poly (ADP-ribose) polymerase. These data suggest vardenafil or related drugs as possible candidates for the treatment of NIHL. PMID:22270721

  9. Icariin Inhibits Pulmonary Hypertension Induced by Monocrotaline through Enhancement of NO/cGMP Signaling Pathway in Rats

    PubMed Central

    Li, Li-sheng; Luo, Yun-mei; Liu, Juan; Zhang, Yu; Fu, Xiao-xia; Yang, Dan-li

    2016-01-01

    It has been reported that icariin (ICA) increased contents of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) by improving expression of endothelial nitric oxide synthase (eNOS) and inhibition of phosphodiesterase type 5 (PDE5). In addition, dysfunction of the NO/cGMP pathway may play a crucial role in the pathogenesis of pulmonary hypertension (PH). In this study, the potential protective effects of ICA on PH induced by monocrotaline (MCT, 50 mg/kg) singly subcutaneous injection were investigated and the possible mechanisms involved in NO/cGMP pathway were explored in male Sprague Dawley rats. The results showed that ICA (20, 40, and 80 mg/kg/d) treatment by intragastric administration could significantly ameliorate PH and upregulate the expression of eNOS gene and downregulate the expression of PDE5 gene in MCT-treated rats. Both ICA (40 mg/kg/d) and L-arginine (200 mg/kg/d), a precursor of NO as positive control, notably increased the contents of NO and cGMP in lung tissue homogenate, which were inversed by treatment with NG-nitro-L-arginine-methyl ester (L-NAME), a NOS inhibitor, and L-NAME-treatment could also inhibit the protective effects of ICA (40 mg/kg/d) on mean pulmonary artery pressure and artery remodeling and tends to inhibit right ventricle hypertrophy index. In summary, ICA is effective in protecting against MCT-induced PH in rats through enhancement of NO/cGMP signaling pathway in rats. PMID:27366192

  10. Vortices determine the dynamics of biodiversity in cyclical interactions with protection spillovers

    NASA Astrophysics Data System (ADS)

    Szolnoki, Attila; Perc, Matjaž

    2015-11-01

    If rock beats scissors and scissors beat paper, one might assume that rock beats paper too. But this is not the case for intransitive relationships that make up the famous rock-paper-scissors game. However, the sole presence of paper might prevent rock from beating scissors, simply because paper beats rock. This is the blueprint for the rock-paper-scissors game with protection spillovers, which has recently been introduced as a new paradigm for biodiversity in well-mixed microbial populations. Here we study the game in structured populations, demonstrating that protection spillovers give rise to spatial patterns that are impossible to observe in the classical rock-paper-scissors game. We show that the spatiotemporal dynamics of the system is determined by the density of stable vortices, which may ultimately transform to frozen states, to propagating waves, or to target waves with reversed propagation direction, depending further on the degree and type of randomness in the interactions among the species. If vortices are rare, the fixation to waves and complex oscillatory solutions is likelier. Moreover, annealed randomness in interactions favors the emergence of target waves, while quenched randomness favors collective synchronization. Our results demonstrate that protection spillovers may fundamentally change the dynamics of cyclic dominance in structured populations, and they outline the possibility of programming pattern formation in microbial populations.

  11. Cyclic AMP can promote APL progression and protect myeloid leukemia cells against anthracycline-induced apoptosis

    PubMed Central

    Gausdal, G; Wergeland, A; Skavland, J; Nguyen, E; Pendino, F; Rouhee, N; McCormack, E; Herfindal, L; Kleppe, R; Havemann, U; Schwede, F; Bruserud, Ø; Gjertsen, B T; Lanotte, M; Ségal-Bendirdjian, E; Døskeland, S O

    2013-01-01

    We show that cyclic AMP (cAMP) elevating agents protect blasts from patients with acute promyelocytic leukemia (APL) against death induced by first-line anti-leukemic anthracyclines like daunorubicin (DNR). The cAMP effect was reproduced in NB4 APL cells, and shown to depend on activation of the generally cytoplasmic cAMP-kinase type I (PKA-I) rather than the perinuclear PKA-II. The protection of both NB4 cells and APL blasts was associated with (inactivating) phosphorylation of PKA site Ser118 of pro-apoptotic Bad and (activating) phosphorylation of PKA site Ser133 of the AML oncogene CREB. Either event would be expected to protect broadly against cell death, and we found cAMP elevation to protect also against 2-deoxyglucose, rotenone, proteasome inhibitor and a BH3-only mimetic. The in vitro findings were mirrored by the findings in NSG mice with orthotopic NB4 cell leukemia. The mice showed more rapid disease progression when given cAMP-increasing agents (prostaglandin E2 analog and theophylline), both with and without DNR chemotherapy. The all-trans retinoic acid (ATRA)-induced terminal APL cell differentiation is a cornerstone in current APL treatment and is enhanced by cAMP. We show also that ATRA-resistant APL cells, believed to be responsible for treatment failure with current ATRA-based treatment protocols, were protected by cAMP against death. This suggests that the beneficial pro-differentiating and non-beneficial pro-survival APL cell effects of cAMP should be weighed against each other. The results suggest also general awareness toward drugs that can affect bone marrow cAMP levels in leukemia patients. PMID:23449452

  12. In vitro selection of allosteric ribozymes that sense the bacterial second messenger c-di-GMP.

    PubMed

    Furukawa, Kazuhiro; Gu, Hongzhou; Breaker, Ronald R

    2014-01-01

    Recently, a number of study have shown the ligand-dependent allosteric ribozymes can be harnessed as biosensors, high-throughput screening, and agents for the control of gene expression in vivo, called artificial riboswitches. In this chapter, we describe how in vitro selection can be used to create an allosteric ribozyme that senses bacterial second messenger cyclic-di-GMP (c-di-GMP). A hammerhead ribozyme was joined to a natural c-di-GMP class I riboswitch aptamer via communication modules. Both c-di-GMP-activating and -inhibiting ribozyme can be obtained by this approach. PMID:24549622

  13. Correlative intravital imaging of cGMP signals and vasodilation in mice

    PubMed Central

    Thunemann, Martin; Schmidt, Kjestine; de Wit, Cor; Han, Xiaoxing; Jain, Rakesh K.; Fukumura, Dai; Feil, Robert

    2014-01-01

    Cyclic guanosine monophosphate (cGMP) is an important signaling molecule and drug target in the cardiovascular system. It is well known that stimulation of the vascular nitric oxide (NO)-cGMP pathway results in vasodilation. However, the spatiotemporal dynamics of cGMP signals themselves and the cGMP concentrations within specific cardiovascular cell types in health, disease, and during pharmacotherapy with cGMP-elevating drugs are largely unknown. To facilitate the analysis of cGMP signaling in vivo, we have generated transgenic mice that express fluorescence resonance energy transfer (FRET)-based cGMP sensor proteins. Here, we describe two models of intravital FRET/cGMP imaging in the vasculature of cGMP sensor mice: (1) epifluorescence-based ratio imaging in resistance-type vessels of the cremaster muscle and (2) ratio imaging by multiphoton microscopy within the walls of subcutaneous blood vessels accessed through a dorsal skinfold chamber. Both methods allow simultaneous monitoring of NO-induced cGMP transients and vasodilation in living mice. Detailed protocols of all steps necessary to perform and evaluate intravital imaging experiments of the vasculature of anesthetized mice including surgery, imaging, and data evaluation are provided. An image segmentation approach is described to estimate FRET/cGMP changes within moving structures such as the vessel wall during vasodilation. The methods presented herein should be useful to visualize cGMP or other biochemical signals that are detectable with FRET-based biosensors, such as cyclic adenosine monophosphate or Ca2+, and to correlate them with respective vascular responses. With further refinement and combination of transgenic mouse models and intravital imaging technologies, we envision an exciting future, in which we are able to “watch” biochemistry, (patho-)physiology, and pharmacotherapy in the context of a living mammalian organism. PMID:25352809

  14. Antithrombotic activities of ferulic acid via intracellular cyclic nucleotide signaling.

    PubMed

    Hong, Qian; Ma, Zeng-Chun; Huang, Hao; Wang, Yu-Guang; Tan, Hong-Ling; Xiao, Cheng-Rong; Liang, Qian-De; Zhang, Han-Ting; Gao, Yue

    2016-04-15

    Ferulic acid (FA) produces protective effects against cardiovascular dysfunctions. However, the mechanisms of FA is still not known. Here we examined the antithrombotic effects of FA and its potential mechanisms. Anticoagulation assays and platelet aggregation was evaluated in vitro and in vivo. Thromboxane B2 (TXB2), cyclic adenosine monophosphate(cAMP), and cyclic guanosine monophosphate (cGMP) was determined using enzyme immunoassay kits. Nitric oxide (NO) production was measured using the Griess reaction. Protein expression was detected by Western blotting analysis. Oral administration of FA prevented death caused by pulmonary thrombosis and prolonged the tail bleeding and clotting time in mice,while, it did not alter the coagulation parameters, including the activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT). In addition, FA (50-200µM) dose-dependently inhibited platelet aggregation induced by various platelet agonists, including adenosine diphosphate (ADP), thrombin, collagen, arachidonic acid (AA), and U46619. Further, FA attenuated intracellular Ca(2)(+) mobilization and TXB2 production induced by the platelet agonists. FA increased the levels of cAMP and cGMP and phosphorylated vasodilator-stimulated phosphoprotein (VASP) while decreased phospho-MAPK (mitogen-activated protein kinase) and phosphodiesterase (PDE) in washed rat platelets, VASP is a substrate of cyclic nucleotide and PDE is an enzyme family responsible for hydrolysis of cAMP/cGMP. These results suggest that antithrombotic activities of FA may be regulated by inhibition of platelet aggregation, rather than through inhibiting the release of thromboplastin or formation of thrombin. The mechanism of this action may involve activation of cAMP and cGMP signaling. PMID:26948317

  15. Developmental exposure to polychlorinated biphenyls or methylmercury, but not to its combination, impairs the glutamate-nitric oxide-cyclic GMP pathway and learning in 3-month-old rats.

    PubMed

    Piedrafita, B; Erceg, S; Cauli, O; Felipo, V

    2008-07-17

    Prenatal exposure to polychlorinated biphenyls (PCBs) or methylmercury (MeHg) contaminated food may affect brain development, leading to long-term alterations in cognitive function. Both types of contaminants, PCBs and MeHg, are often found together contaminating food, especially fish in some polluted areas. Exposure to combinations of neurotoxicants may exert different effects on the developing nervous system than exposure to individual contaminants. Developmental exposure (during pregnancy and lactation) to PCB126 or PCB153 impairs learning ability when the rats are 3 months old. Impairment of learning seems to be a consequence of impairment of the function of the glutamate-nitric oxide (NO)-cGMP pathway in brain in vivo. The aims of the present work were 1) to assess whether perinatal exposure to MeHg also affects the function of the glutamate-NO-cGMP pathway in brain in vivo analyzed by in vivo brain microdialysis and/or the ability to learn the Y maze task when the rats are 3 months old, and 2) to assess whether perinatal exposure to combinations of MeHg with PCB153 or PCB126 potentiates, decreases or does not modify the effects of the individual neurotoxicants. Perinatal exposure to PCB126, PCB153 or MeHg impaired the function of the glutamate-NO-cGMP pathway in cerebellum and learning ability. However, co-exposure to PCB126+MeHg or PCB153+MeHg inhibits the impairment of the pathway or learning ability. These results support that the function of this pathway modulates learning of the Y maze task. Moreover, they show that co-exposure to these PCBs and MeHg does not exacerbate, but reduces the effects on the ability to learn this task. PMID:18556134

  16. Neutron Diffraction Reveals Hydrogen Bonds Critical for cGMP-Selective Activation: Insights for cGMP-Dependent Protein Kinase Agonist Design

    PubMed Central

    2015-01-01

    High selectivity of cyclic-nucleotide binding (CNB) domains for cAMP and cGMP are required for segregating signaling pathways; however, the mechanism of selectivity remains unclear. To investigate the mechanism of high selectivity in cGMP-dependent protein kinase (PKG), we determined a room-temperature joint X-ray/neutron (XN) structure of PKG Iβ CNB-B, a domain 200-fold selective for cGMP over cAMP, bound to cGMP (2.2 Å), and a low-temperature X-ray structure of CNB-B with cAMP (1.3 Å). The XN structure directly describes the hydrogen bonding interactions that modulate high selectivity for cGMP, while the structure with cAMP reveals that all these contacts are disrupted, explaining its low affinity for cAMP. PMID:25271401

  17. Neutron diffraction reveals hydrogen bonds critical for cGMP-selective activation: insights for cGMP-dependent protein kinase agonist design.

    PubMed

    Huang, Gilbert Y; Gerlits, Oksana O; Blakeley, Matthew P; Sankaran, Banumathi; Kovalevsky, Andrey Y; Kim, Choel

    2014-11-01

    High selectivity of cyclic-nucleotide binding (CNB) domains for cAMP and cGMP are required for segregating signaling pathways; however, the mechanism of selectivity remains unclear. To investigate the mechanism of high selectivity in cGMP-dependent protein kinase (PKG), we determined a room-temperature joint X-ray/neutron (XN) structure of PKG Iβ CNB-B, a domain 200-fold selective for cGMP over cAMP, bound to cGMP (2.2 Å), and a low-temperature X-ray structure of CNB-B with cAMP (1.3 Å). The XN structure directly describes the hydrogen bonding interactions that modulate high selectivity for cGMP, while the structure with cAMP reveals that all these contacts are disrupted, explaining its low affinity for cAMP. PMID:25271401

  18. Intracellular photoactivation of caged cGMP induces myosin II and actin responses in motile cells.

    PubMed

    Pfannes, Eva K B; Anielski, Alexander; Gerhardt, Matthias; Beta, Carsten

    2013-12-01

    Cyclic GMP (cGMP) is a ubiquitous second messenger in eukaryotic cells. It is assumed to regulate the association of myosin II with the cytoskeleton of motile cells. When cells of the social amoeba Dictyostelium discoideum are exposed to chemoattractants or to increased osmotic stress, intracellular cGMP levels rise, preceding the accumulation of myosin II in the cell cortex. To directly investigate the impact of intracellular cGMP on cytoskeletal dynamics in a living cell, we released cGMP inside the cell by laser-induced photo-cleavage of a caged precursor. With this approach, we could directly show in a live cell experiment that an increase in intracellular cGMP indeed induces myosin II to accumulate in the cortex. Unexpectedly, we observed for the first time that also the amount of filamentous actin in the cell cortex increases upon a rise in the cGMP concentration, independently of cAMP receptor activation and signaling. We discuss our results in the light of recent work on the cGMP signaling pathway and suggest possible links between cGMP signaling and the actin system. PMID:24136144

  19. Regulation of cGMP synthesis in cultured podocytes by vasoactive hormones.

    PubMed

    Lewko, B; Gołos, M; Latawiec, E; Angielski, S; Stepinski, J

    2006-12-01

    The podocytes are highly differentiated cells playing a key role in glomerular filtration. Vasoactive factors including angiotensin II (Ang II) and cyclic guanosine 5' monophosphate (cGMP) are synthesized by these cells upon stimulation as well as in the basal state. In this study we have tested whether angiotensin II affects the total synthesis of cGMP in primary culture of rat podocytes. The cells were stimulated with atrial natriuretic peptide (ANP) and/or a nitric oxide (NO) donor, S-nitroso-N-acetyl penicillamine (SNAP), in the absence or presence of Ang II. The cGMP synthesis was determined by radioimmunoassay (RIA). ANP or SNAP alone increased the cGMP synthesis in podocytes although the effects were not additive unless Ang II was present in the medium. Ang II suppressed the ANP-dependent cGMP synthesis whereas SNAP-dependent cGMP production remained unaffected. These effects were prevented by a non-specific antagonist of Ang II receptors (AT), saralasin. Adversely, PD123319, a specific inhibitor of AT2 receptors, augmented inhibition of ANP-dependent and enhanced the NO-dependent cGMP production. Probenecid, an inhibitor of cGMP extrusion from the cells, suppressed the cGMP generation by both ANP and SNAP. We conclude that cGMP synthesis in cultured podocytes is modulated by angiotensin II and that two adversely acting receptors, AT1 and AT2 are involved in this effect. Additionally, production of cGMP might be intrinsically inhibited by cGMP accumulating inside the cells. PMID:17229984

  20. Cyclic nucleotide responses and radiation-induced mitotic delay in Physarum polycephalum

    SciTech Connect

    Daniel, J.W.; Oleinick, N.L.

    1984-02-01

    The response of the plasmodial levels of cyclic AMP and cyclic GMP in Physarum polycephalum to several putative phosphodiesterase inhibitors and to ionizing radiation has been measured. Isobutylmethylxanthine (2 mM) induces a rapid transient threefold elevation of cyclic AMP alone, with maximum response in about 10 min and return to the base line in about 30 min. Theophylline (2 mM) induces a rapid, sustained twofold elevation of cyclic GMP only. Caffeine (2mM) and Ro-20-1724 (18 ..mu..M) both elicit a rapid transient rise in cyclic AMP, resembling the isobutylmethylxanthine response, and a slow transient elevation of the cyclic GMP level. Of particular interest is the rapid threefold transient elevation of the cyclic AMP, but not of the cyclic GMP, level by ..gamma.. radiation.

  1. STING ligand c-di-GMP improves cancer vaccination against metastatic breast cancer

    PubMed Central

    Chandra, Dinesh; Quispe-Tintaya, Wilber; Jahangir, Arthee; Asafu-Adjei, Denise; Ramos, Ilyssa; Sintim, Herman O.; Zhou, Jie; Hayakawa, Yoshihiro; Karaolis, David K.R.; Gravekamp, Claudia

    2014-01-01

    Cancer vaccination may be our best and most benign option for preventing or treating metastatic cancer. However, breakthroughs are hampered by immune suppression in the tumor microenvironment (TME). In this study, we analyzed whether cyclic di-guanylate (c-di-GMP), a ligand for stimulator of interferon genes (STING), could overcome immune suppression and improve vaccination against metastatic breast cancer. Mice with metastatic breast cancer (4T1 model) were therapeutically immunized with an attenuated Listeria monocytogenes (LM)-based vaccine, expressing tumor-associated antigen Mage-b (LM-Mb), followed by multiple low doses of c-di-GMP (0.01 nmol). This resulted in a striking and near elimination of all metastases. Experiments revealed that c-di-GMP targets myeloid-derived suppressor cells (MDSC) and tumor cells. Low doses of c-di-GMP significantly increased the production of IL-12 by MDSCs, in correlation with improved T-cell responses to Mage-b, while high dose of c-di-GMP (range 15–150 nmol) activated caspase-3 in the 4T1 tumor cells and killed the tumor cells directly. Based on these results we tested one administration of high dose c-di-GMP (150 nmol) followed by repeated administrations of low dose c-di-GMP (0.01 nmol) in the 4T1 model, and found equal efficacy compared to the combination of LM-Mb and c-di-GMP. This correlated with a mechanism of improved CD8 T-cell responses to tumor-associated antigens (TAA) Mage-b and Survivin, most likely through cross-presentation of these TAAs from c-di-GMP-killed 4T1 tumor cells, and through c-di-GMP-activated TAA-specific T cells. Our results demonstrate that activation of STING-dependent pathways by c-di-GMP is highly attractive for cancer immunotherapy. PMID:24913717

  2. Structural basis of ligand binding by a c-di-GMP riboswitch.

    PubMed

    Smith, Kathryn D; Lipchock, Sarah V; Ames, Tyler D; Wang, Jimin; Breaker, Ronald R; Strobel, Scott A

    2009-12-01

    The second messenger signaling molecule bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) regulates many processes in bacteria, including motility, pathogenesis and biofilm formation. c-di-GMP-binding riboswitches are important downstream targets in this signaling pathway. Here we report the crystal structure, at 2.7 A resolution, of a c-di-GMP riboswitch aptamer from Vibrio cholerae bound to c-di-GMP, showing that the ligand binds within a three-helix junction that involves base-pairing and extensive base-stacking. The symmetric c-di-GMP is recognized asymmetrically with respect to both the bases and the backbone. A mutant aptamer was engineered that preferentially binds the candidate signaling molecule c-di-AMP over c-di-GMP. Kinetic and structural data suggest that genetic regulation by the c-di-GMP riboswitch is kinetically controlled and that gene expression is modulated through the stabilization of a previously unidentified P1 helix, illustrating a direct mechanism for c-di-GMP signaling. PMID:19898477

  3. Structural Basis of Ligand Binding by a C-di-GMP Riboswitch

    SciTech Connect

    Smith, K.; Lipchock, S; Ames, T; Wang, J; Breaker, R; Strobel, S

    2009-01-01

    The second messenger signaling molecule bis-(3{prime}-5{prime})-cyclic dimeric guanosine monophosphate (c-di-GMP) regulates many processes in bacteria, including motility, pathogenesis and biofilm formation. c-di-GMP-binding riboswitches are important downstream targets in this signaling pathway. Here we report the crystal structure, at 2.7 {angstrom} resolution, of a c-di-GMP riboswitch aptamer from Vibrio cholerae bound to c-di-GMP, showing that the ligand binds within a three-helix junction that involves base-pairing and extensive base-stacking. The symmetric c-di-GMP is recognized asymmetrically with respect to both the bases and the backbone. A mutant aptamer was engineered that preferentially binds the candidate signaling molecule c-di-AMP over c-di-GMP. Kinetic and structural data suggest that genetic regulation by the c-di-GMP riboswitch is kinetically controlled and that gene expression is modulated through the stabilization of a previously unidentified P1 helix, illustrating a direct mechanism for c-di-GMP signaling.

  4. sGC-cGMP signaling: target for anticancer therapy.

    PubMed

    Bian, Ka; Murad, Ferid

    2014-01-01

    The biologic endogenous production of cGMP was reported in the 1960s and followed by the demonstration of guanylyl cyclase activity and the isoforms of soluble and membrane-bound guanylyl cyclases. During the same period, cGMP specific phosphodiesterases also was discovered. Murad's lab established link between the endothelium derived relaxation factor (EDRF) and elevated cGMP concentration in the vascular system. October 12, 1998, the Nobel Assembly awarded the Nobel Prize in Medicine or Physiology to scientists Robert Furchgott, Louis Ignarro, and Ferid Murad for their discoveries concerning nitric oxide (NO) as a signaling molecule in the cardiovascular system. In contrast with the short research history of the enzymatic synthesis of NO, the introduction of nitrate-containing compounds for medicinal purposes marked its 150th anniversary in 1997. Glyceryl trinitrate (nitroglycerin; GTN) is the first compound of this category. Alfred Nobel (the founder of the Nobel Prize) himself had suffered from angina pectoris and was prescribed nitroglycerin for his chest pain while he refused to take due to the induction of headaches. Almost a century after its first chemical use, research in the nitric oxide and 3',5'-cyclic guanosine monophosphate (NO/cGMP) pathway has dramatically expanded and the role of NO/cGMP in physiology and pathology has been extensively studied. Soluble guanylyl cyclase (sGC) is the receptor for NO. The α1β1 heterodimer is the predominant isoform of sGC that is obligatory for catalytic activity. NO binds to the ferrous (Fe(2+)) heme at histidine 105 of the β1 subunit and leads to an increase in sGC activity and cGMP production of at least 200-fold. In this chapter, we reviewed the studies of sGC-cGMP signaling in cell proliferation; introduced our work of targeting sGC-cGMP signaling for cancer therapy; and explored the role of sGC-cGMP signaling in the chromatin-microenvironment. PMID:25015797

  5. The Endothelium-Dependent Nitric Oxide-cGMP Pathway.

    PubMed

    Mónica, F Z; Bian, K; Murad, F

    2016-01-01

    Nitric oxide (NO)-cyclic 3'-5' guanosine monophosphate (cGMP) signaling plays a critical role on smooth muscle tone, platelet activity, cardiac contractility, renal function and fluid balance, and cell growth. Studies of the 1990s established endothelium dysfunction as one of the major causes of cardiovascular diseases. Therapeutic strategies that benefit NO bioavailability have been applied in clinical medicine extensively. Basic and clinical studies of cGMP regulation through activation of soluble guanylyl cyclase (sGC) or inhibition of cyclic nucleotide phosphodiesterase type 5 (PDE5) have resulted in effective therapies for pulmonary hypertension, erectile dysfunction, and more recently benign prostatic hyperplasia. This section reviews (1) how endothelial dysfunction and NO deficiency lead to cardiovascular diseases, (2) how soluble cGMP regulation leads to beneficial effects on disorders of the circulation system, and (3) the epigenetic regulation of NO-sGC pathway components in the cardiovascular system. In conclusion, the discovery of the NO-cGMP pathway revolutionized the comprehension of pathophysiological mechanisms involved in cardiovascular and other diseases. However, considering the expression "from bench to bedside" the therapeutic alternatives targeting NO-cGMP did not immediately follow the marked biochemical and pathophysiological revolution. Some therapeutic options have been effective and released on the market for pulmonary hypertension and erectile dysfunction such as inhaled NO, PDE5 inhibitors, and recently sGC stimulators. The therapeutic armamentarium for many other disorders is expected in the near future. There are currently numerous active basic and clinical research programs in universities and industries attempting to develop novel therapies for many diseases and medical applications. PMID:27451093

  6. Influence of the method of protection on the cyclic strength and character of fracture of titanium alloy weld joints

    SciTech Connect

    Mozeiko, B.Y.; Yakovleva, T.Y.

    1985-10-01

    In the argon-arc welding of titanium assemblies of complex spatial configuration done outside controlled atmosphere chambers it is often difficult to provide reliable protection of the root side of the joint with known gas protection equipment. The necessary reliability in protection is provided by a special, technologically stable two-layer coating applied to the reverse side of the edges being welded. The inner forming layer of the coating is a powder mixture of halides of alkali and alkaline-earth metals thinned to a pasty state with an ethanol-acetone solvent. The outer reinforcing layer is a solution of BMK5 acrylic resin in ethanol-acetone solvent. For a comparative evaluation of the cyclic strength of weld joints obtained with two methods of protection of the reverse side of the joint (protective coating and highest purity argon), two lots of specimens were tested in alternating-sign symmetric bending. Flat weld specimens of 2-mm-thick VT20 titanium sheet were tested.

  7. Enzymatic synthesis of 2'-ara and 2'-deoxy analogues of c-di-GMP.

    PubMed

    Shchokolova, Anastasia S; Rymko, Alexander N; Kvach, Sergey V; Shabunya, Polina S; Fatykhava, Svetlana A; Zinchenko, Anatoly I

    2015-01-01

    The substrate specificity of recombinant full-length diguanylate cyclase (DGC) of Thermotoga maritima with mutant allosteric site was investigated. It has been originally shown that the enzyme could use GTP closest analogues - 2'-deoxyguanosine-5'-triphosphate (dGTP) and 9-β-D-arabinofuranosyl-guanine-5'-triphosphate (araGTP) as the substrates. The first demonstrations of an enzymatic synthesis of bis-(3'-5')-cyclic dimeric deoxyguanosine monophosphate (c-di-dGMP) and the previously unknown bis-(3'-5')-cyclic dimeric araguanosine monophosphate (c-di-araGMP) using DGC of T. maritima in the form of inclusion bodies have been provided. PMID:25965330

  8. Modulation of cGMP in Heart Failure

    PubMed Central

    Boerrigter, Guido; Lapp, Harald; Burnett, John C.

    2009-01-01

    Heart failure (HF) is a common disease that continues to be associated with high morbidity and mortality warranting novel therapeutic strategies. Cyclic guanosine monophosphate (cGMP) is the second messenger of several important signaling pathways based on distinct guanylate cyclases (GCs) in the cardiovascular system. Both the nitric oxide/soluble GC (NO/sGC) as well as the natriuretic peptide/GC-A (NP/GC-A) systems are disordered in HF, providing a rationale for their therapeutic augmentation. Soluble GC activation with conventional nitrovasodilators has been used for more than a century but is associated with cGMP-independent actions and the development of tolerance, actions which novel NO-independent sGC activators now in clinical development lack. Activation of GC-A by administration of naturally occurring or designer natriuretic peptides is an emerging field, as is the inhibition of enzymes that degrade endogenous NPs. Finally, inhibition of cGMP-degrading phosphodiesterases, particularly phosphodiesterase 5 provides an additional strategy to augment cGMP-signaling. PMID:19089342

  9. c-di-GMP induction of Dictyostelium cell death requires the polyketide DIF-1

    PubMed Central

    Song, Yu; Luciani, Marie-Françoise; Giusti, Corinne; Golstein, Pierre

    2015-01-01

    Cell death in the model organism Dictyostelium, as studied in monolayers in vitro, can be induced by the polyketide DIF-1 or by the cyclical dinucleotide c-di-GMP. c-di-GMP, a universal bacterial second messenger, can trigger innate immunity in bacterially infected animal cells and is involved in developmental cell death in Dictyostelium. We show here that c-di-GMP was not sufficient to induce cell death in Dictyostelium cell monolayers. Unexpectedly, it also required the DIF-1 polyketide. The latter could be exogenous, as revealed by a telling synergy between c-di-GMP and DIF-1. The required DIF-1 polyketide could also be endogenous, as shown by the inability of c-di-GMP to induce cell death in Dictyostelium HMX44A cells and DH1 cells upon pharmacological or genetic inhibition of DIF-1 biosynthesis. In these cases, c-di-GMP–induced cell death was rescued by complementation with exogenous DIF-1. Taken together, these results demonstrated that c-di-GMP could trigger cell death in Dictyostelium only in the presence of the DIF-1 polyketide or its metabolites. This identified another element of control to this cell death and perhaps also to c-di-GMP effects in other situations and organisms. PMID:25518941

  10. New insights into Legionella pneumophila biofilm regulation by c-di-GMP signaling.

    PubMed

    Pécastaings, Sophie; Allombert, Julie; Lajoie, Barbora; Doublet, Patricia; Roques, Christine; Vianney, Anne

    2016-09-01

    The waterborne pathogen Legionella pneumophila grows as a biofilm, freely or inside amoebae. Cyclic-di-GMP (c-di-GMP), a bacterial second messenger frequently implicated in biofilm formation, is synthesized and degraded by diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), respectively. To characterize the c-di-GMP-metabolizing enzymes involved in L. pneumophila biofilm regulation, the consequences on biofilm formation and the c-di-GMP concentration of each corresponding gene inactivation were assessed in the Lens strain. The results showed that one DGC and two PDEs enhance different aspects of biofilm formation, while two proteins with dual activity (DGC/PDE) inhibit biofilm growth. Surprisingly, only two mutants exhibited a change in global c-di-GMP concentration. This study highlights that specific c-di-GMP pathways control L. pneumophila biofilm formation, most likely via temporary and/or local modulation of c-di-GMP concentration. Furthermore, Lpl1054 DGC is required to enable the formation a dense biofilm in response to nitric oxide, a signal for biofilm dispersion in many other species. PMID:27494738

  11. A fluorescence polarization assay for cyclic nucleotide phosphodiesterases.

    PubMed

    Huang, Wei; Zhang, Yan; Sportsman, J Richard

    2002-06-01

    Cyclic nucleotide phosphodiesterases (PDEs) catalyze the hydrolysis of the 3'-ester bond of cyclic AMP (cAMP) and cyclic GMP (cGMP), important second messengers in the transduction of a variety of extracellular signals. There is growing interest in the study of PDEs as drug targets for novel therapeutics. We describe the development of a homogeneous fluorescence polarization assay for PDEs based on the strong binding of PDE reaction products (i.e., AMP or GMP) onto modified nanoparticles through interactions with immobilized trivalent metal cations. This assay technology (IMAP) is applicable to both cAMP- and cGMP-specific PDEs. Results of the assay in 384- and 1536-well microplates are presented. PMID:12097184

  12. A calcium-permeable cGMP-activated cation conductance in hippocampal neurons

    NASA Technical Reports Server (NTRS)

    Leinders-Zufall, T.; Rosenboom, H.; Barnstable, C. J.; Shepherd, G. M.; Zufall, F.

    1995-01-01

    Whole-cell patch clamp recordings detected a previously unidentified cGMP-activated membrane conductance in cultured rat hippocampal neurons. This conductance is nonselectively permeable for cations and is completely but reversibly blocked by external Cd2+. The Ca2+ permeability of the hippocampal cGMP-activated conductance was examined in detail, indicating that the underlying ion channels display a high relative permeability for Ca2+. The results indicate that hippocampal neurons contain a cGMP-activated membrane conductance that has some properties similar to the cyclic nucleotide-gated channels previously shown in sensory receptor cells and retinal neurons. In hippocampal neurons this conductance similarly could mediate membrane depolarization and Ca2+ fluxes in response to intracellular cGMP elevation.

  13. Prediction and verification of creep behavior in metallic materials and components for the space shuttle thermal protection system. Volume 2: Phase 2 subsize panel cyclic creep predictions

    NASA Technical Reports Server (NTRS)

    Cramer, B. A.; Davis, J. W.

    1975-01-01

    A method for predicting permanent cyclic creep deflections in stiffened panel structures was developed. The resulting computer program may be applied to either the time-hardening or strain-hardening theories of creep accumulation. Iterative techniques were used to determine structural rotations, creep strains, and stresses as a function of time. Deflections were determined by numerical integration of structural rotations along the panel length. The analytical approach was developed for analyzing thin-gage entry vehicle metallic-thermal-protection system panels subjected to cyclic bending loads at high temperatures, but may be applied to any panel subjected to bending loads. Predicted panel creep deflections were compared with results from cyclic tests of subsize corrugation and rib-stiffened panels. Empirical equations were developed for each material based on correlation with tensile cyclic creep data and both the subsize panels and tensile specimens were fabricated from the same sheet material. For Vol. 1, see N75-21431.

  14. Identification and Characterization of Two Unusual cGMP-stimulated Phoshodiesterases in Dictyostelium

    PubMed Central

    Bosgraaf, Leonard; Russcher, Henk; Snippe, Helena; Bader, Sonya; Wind, Joyce; Van Haastert, Peter J.M.

    2002-01-01

    Recently, we recognized two genes, gbpA and gbpB, encoding putative cGMP-binding proteins with a Zn2+-hydrolase domain and two cyclic nucleotide binding domains. The Zn2+-hydrolase domains belong to the superfamily of β-lactamases, also harboring a small family of class II phosphodiesterases from bacteria and lower eukaryotes. Gene inactivation and overexpression studies demonstrate that gbpA encodes the cGMP-stimulated cGMP-phosphodiesterase that was characterized biochemically previously and was shown to be involved in chemotaxis. cAMP neither activates nor is a substrate of GbpA. The gbpB gene is expressed mainly in the multicellular stage and seems to encode a dual specificity phosphodiesterase with preference for cAMP. The enzyme hydrolyses cAMP ∼9-fold faster than cGMP and is activated by cAMP and cGMP with a KA value of ∼0.7 and 2.3 μM, respectively. Cells with a deletion of the gbpB gene have increased basal and receptor stimulated cAMP levels and are sporogeneous. We propose that GbpA and GbpB hydrolyze the substrate in the Zn2+-hydrolase domain, whereas the cyclic nucleotide binding domains mediate activation. The human cGMP-stimulated cAMP/cGMP phosphodiesterase has similar biochemical properties, but a completely different topology: hydrolysis takes place by a class I catalytic domain and GAF domains mediate cGMP activation. PMID:12429832

  15. Critical Role of Nitric Oxide-cGMP Cascade in the Formation of cAMP-Dependent Long-Term Memory

    ERIC Educational Resources Information Center

    Aonuma, Hitoshi; Mizunami, Makoto; Matsumoto, Yukihisa; Unoki, Sae

    2006-01-01

    Cyclic AMP pathway plays an essential role in formation of long-term memory (LTM). In some species, the nitric oxide (NO)-cyclic GMP pathway has been found to act in parallel and complementary to the cAMP pathway for LTM formation. Here we describe a new role of the NO-cGMP pathway, namely, stimulation of the cAMP pathway to induce LTM. We have…

  16. Differential regulation of Paramecium ciliary motility by cAMP and cGMP.

    PubMed

    Bonini, N M; Nelson, D L

    1988-05-01

    cAMP and cGMP had distinct effects on the regulation of ciliary motility in Paramecium. Using detergent-permeabilized cells reactivated to swim with MgATP, we observed effects of cyclic nucleotides and interactions with Ca2+ on the swimming speed and direction of reactivated cells. Both cAMP and cGMP increased forward swimming speed two- to threefold with similar half-maximal concentrations near 0.5 microM. The two cyclic nucleotides, however, had different effects in antagonism with the Ca2+ response of backward swimming and on the handedness of the helical swimming paths of reactivated cells. These results suggest that cAMP and cGMP differentially regulate the direction of the ciliary power stroke. PMID:2836435

  17. Synthetic Peptides as cGMP-Independent Activators of cGMP-Dependent Protein Kinase Iα.

    PubMed

    Moon, Thomas M; Tykocki, Nathan R; Sheehe, Jessica L; Osborne, Brent W; Tegge, Werner; Brayden, Joseph E; Dostmann, Wolfgang R

    2015-12-17

    PKG is a multifaceted signaling molecule and potential pharmaceutical target due to its role in smooth muscle function. A helix identified in the structure of the regulatory domain of PKG Iα suggests a novel architecture of the holoenzyme. In this study, a set of synthetic peptides (S-tides), derived from this helix, was found to bind to and activate PKG Iα in a cyclic guanosine monophosphate (cGMP)-independent manner. The most potent S-tide derivative (S1.5) increased the open probability of the potassium channel KCa1.1 to levels equivalent to saturating cGMP. Introduction of S1.5 to smooth muscle cells in isolated, endothelium-denuded cerebral arteries through a modified reversible permeabilization procedure inhibited myogenic constriction. In contrast, in endothelium-intact vessels S1.5 had no effect on myogenic tone. This suggests that PKG Iα activation by S1.5 in vascular smooth muscle would be sufficient to inhibit augmented arterial contractility that frequently occurs following endothelial damage associated with cardiovascular disease. PMID:26687482

  18. Cyclic nucleotide signalling in kidney fibrosis

    PubMed Central

    Schinner, Elisabeth; Wetzl, Veronika; Schlossmann, Jens

    2015-01-01

    Kidney fibrosis is an important factor for the progression of kidney diseases, e.g., diabetes mellitus induced kidney failure, glomerulosclerosis and nephritis resulting in chronic kidney disease or end-stage renal disease. Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) were implicated to suppress several of the above mentioned renal diseases. In this review article, identified effects and mechanisms of cGMP and cAMP regarding renal fibrosis are summarized. These mechanisms include several signalling pathways of nitric oxide/ANP/guanylyl cyclases/cGMP-dependent protein kinase and cAMP/Epac/adenylyl cyclases/cAMP-dependent protein kinase. Furthermore, diverse possible drugs activating these pathways are discussed. From these diverse mechanisms it is expected that new pharmacological treatments will evolve for the therapy or even prevention of kidney failure. PMID:25622251

  19. Synthetic multivalent ligands for cholera & cholera-like toxins: Protected cyclic neoglycopeptides.

    PubMed

    Kumar, Vajinder; Yadav, Narender; Kartha, K P Ravindranathan

    2016-08-01

    Synthesis of a set of novel glycopeptide analogues as potential cholera/cholera-like toxin inhibitors in their protected form is described. They include di-, tri-, tetra- and pentavalent scaffolds. The synthetic steps were achieved using a combination of solvent-free mechanochemical as well as the conventional solution-phase reactions. During the conventional DIC-HOBt-mediated peptide coupling followed for the preparation of certain glycopeptide analogues an interesting in situ Fmoc deprotection was observed which has been demonstrated to hold potential for synthesiszing glycopeptides/neoglycopeptides with extended polyamide chains. PMID:27309341

  20. Evidence for the involvement of cyclic electron transport in the protection of photosystem II against photoinhibition: influence of a new phenolic compound.

    PubMed

    Allakhverdiev, S I; Klimov, V V; Carpentier, R

    1997-04-01

    Organisms that perform oxygenic photosynthesis are subjected to inhibition of their photosynthetic functions when they are exposed to excessive illumination. Photoinhibition occurs mainly at the level of photosystem II, where a cyclic electron transport has often been proposed to be involved in photoprotection. However, a demonstration of direct protection by cyclic photosystem II against photoinhibitory damage has been lacking. In this report, we used the newly characterized compound 4-[methoxybis(trifluoromethyl)methyl]-2,6-dinitrophenylhydrazine methyl ketone (K-15), known to stimulate cyclic electron transport between the acceptor and donor sides of the photosystem [Klimov, V. V., Zharmukhamedov, S. K., Allakhverdiev, S. I., Kolobanova, L. P., & Baskakov, Y. A. (1993) Biol. Membr. 6, 715-732], to verify if photosystem II is significantly protected by cyclic electron transport against aerobic and anaerobic photoinhibitory damage. The photoinhibitory quenching of the maximal level of fluorescence and the decrease of the absorbance change at 685 nm related to pheophytin photoreduction observed during photoinhibitory illumination of untreated or Mn-depleted photosystem II submembrane fractions are significantly attenuated in the presence of K-15. The photodegradation of cytochrome b559 and the photobleaching of beta-carotene and chlorophyll-670 measured in Mn-depleted photosystem II preparations are also strongly retarded when K-15 is present. The detection, by photoacoustic spectroscopy, of the energy stored during the cyclic electron transport is also reported in Mn-depleted photosystem II submembrane fractions and in photosystem II reaction center complexes. This reaction is also gradually photoinhibited due to the progressive photodegradation of the required electron transport intermediates but is significantly more stable in the presence of K-15. It is deduced that cyclic electron transport around photosystem II constitutes an effective protective mechanism

  1. Gastrointestinal pain: unraveling a novel endogenous pathway through uroguanylin/guanylate cyclase-C/cGMP activation.

    PubMed

    Silos-Santiago, Inmaculada; Hannig, Gerhard; Eutamene, Helene; Ustinova, Elena E; Bernier, Sylvie G; Ge, Pei; Graul, Christopher; Jacobson, Sarah; Jin, Hong; Liong, Elaine; Kessler, Marco M; Reza, Tammi; Rivers, Samuel; Shea, Courtney; Tchernychev, Boris; Bryant, Alexander P; Kurtz, Caroline B; Bueno, Lionel; Pezzone, Michael A; Currie, Mark G

    2013-09-01

    The natural hormone uroguanylin regulates intestinal fluid homeostasis and bowel function through activation of guanylate cyclase-C (GC-C), resulting in increased intracellular cyclic guanosine-3',5'-monophosphate (cGMP). We report the effects of uroguanylin-mediated activation of the GC-C/cGMP pathway in vitro on extracellular cGMP transport and in vivo in rat models of inflammation- and stress-induced visceral hypersensitivity. In vitro exposure of intestinal Caco-2 cells to uroguanylin stimulated bidirectional, active extracellular transport of cGMP into luminal and basolateral spaces. cGMP transport was significantly and concentration dependently decreased by probenecid, an inhibitor of cGMP efflux pumps. In ex vivo Ussing chamber assays, uroguanylin stimulated cGMP secretion from the basolateral side of rat colonic epithelium into the submucosal space. In a rat model of trinitrobenzene sulfonic acid (TNBS)-induced visceral hypersensitivity, orally administered uroguanylin increased colonic thresholds required to elicit abdominal contractions in response to colorectal distension (CRD). Oral administration of cGMP mimicked the antihyperalgesic effects of uroguanylin, significantly decreasing TNBS- and restraint stress-induced visceromotor response to graded CRD in rats. The antihyperalgesic effects of cGMP were not associated with increased colonic spasmolytic activity, but were linked to significantly decreased firing rates of TNBS-sensitized colonic afferents in rats in response to mechanical stimuli. In conclusion, these data suggest that the continuous activation of the GC-C/cGMP pathway along the intestinal tract by the endogenous hormones guanylin and uroguanylin results in significant reduction of gastrointestinal pain. Extracellular cGMP produced on activation of GC-C is the primary mediator in this process via modulation of sensory afferent activity. PMID:23748116

  2. The GTP binding protein-dependent activation and deactivation of cGMP phosphodiesterase in rod photoreceptors

    SciTech Connect

    Yamazaki, Akio.

    1989-01-01

    Cyclic GMP (cGMP) has a crucial role in visual transduction. Recent electrophysiological studies clearly indicate the existence of cGMP-activated conductance in photoreceptor plasma membranes. In darkness, Na{sup +}, Ca{sup ++}, and Mg{sup ++} enter rod outer segments (ROS) through cGMP-activated channels while light closes channels by lowering cGMP concentrations through activation of cGMP phosphodiesterase (PDE). Many excellent reviews reference the mechanism of PDE activation in photoreceptors. However, recent progress in understanding the mechanisms regulating cGMP hydrolysis has raised an important question in the PDE-regulation: how does the three-dimensional movement of a subunit of transducin (retinal G protein) relate to the PDE activation Associated with that question, the mechanism of PDE regulation appears to vary at different stages of evolution, for example, frog and bovine photoreceptors. This review examines recent progress of the cGMP hydrolysis mechanism by focusing on the subunit interactions between transducin and PDE. 36 refs., 2 figs.

  3. CPT-cGMP Is A New Ligand of Epithelial Sodium Channels

    PubMed Central

    Ji, Hong-Long; Nie, Hong-Guang; Chang, Yongchang; Lian, Qizhou; Liu, Shan-Lu

    2016-01-01

    Epithelial sodium channels (ENaC) are localized at the apical membrane of the epithelium, and are responsible for salt and fluid reabsorption. Renal ENaC takes up salt, thereby controlling salt content in serum. Loss-of-function ENaC mutations lead to low blood pressure due to salt-wasting, while gain-of-function mutations cause impaired sodium excretion and subsequent hypertension as well as hypokalemia. ENaC activity is regulated by intracellular and extracellular signals, including hormones, neurotransmitters, protein kinases, and small compounds. Cyclic nucleotides are broadly involved in stimulating protein kinase A and protein kinase G signaling pathways, and, surprisingly, also appear to have a role in regulating ENaC. Increasing evidence suggests that the cGMP analog, CPT-cGMP, activates αβγ-ENaC activity reversibly through an extracellular pathway in a dose-dependent manner. Furthermore, the parachlorophenylthio moiety and ribose 2'-hydroxy group of CPT-cGMP are essential for facilitating the opening of ENaC channels by this compound. Serving as an extracellular ligand, CPT-cGMP eliminates sodium self-inhibition, which is a novel mechanism for stimulating salt reabsorption in parallel to the traditional NO/cGMP/PKG signal pathway. In conclusion, ENaC may be a druggable target for CPT-cGMP, leading to treatments for kidney malfunctions in salt reabsorption. PMID:27019621

  4. Structural Basis for c-di-GMP-Mediated Inside-Out Signaling Controlling Periplasmic Proteolysis

    PubMed Central

    Madden, Dean R.; O'Toole, George A.; Sondermann, Holger

    2011-01-01

    The bacterial second messenger bis-(3′–5′) cyclic dimeric guanosine monophosphate (c-di-GMP) has emerged as a central regulator for biofilm formation. Increased cellular c-di-GMP levels lead to stable cell attachment, which in Pseudomonas fluorescens requires the transmembrane receptor LapD. LapD exhibits a conserved and widely used modular architecture containing a HAMP domain and degenerate diguanylate cyclase and phosphodiesterase domains. c-di-GMP binding to the LapD degenerate phosphodiesterase domain is communicated via the HAMP relay to the periplasmic domain, triggering sequestration of the protease LapG, thus preventing cleavage of the surface adhesin LapA. Here, we elucidate the molecular mechanism of autoinhibition and activation of LapD based on structure–function analyses and crystal structures of the entire periplasmic domain and the intracellular signaling unit in two different states. In the absence of c-di-GMP, the intracellular module assumes an inactive conformation. Binding of c-di-GMP to the phosphodiesterase domain disrupts the inactive state, permitting the formation of a trans-subunit dimer interface between adjacent phosphodiesterase domains via interactions conserved in c-di-GMP-degrading enzymes. Efficient mechanical coupling of the conformational changes across the membrane is realized through an extensively domain-swapped, unique periplasmic fold. Our structural and functional analyses identified a conserved system for the regulation of periplasmic proteases in a wide variety of bacteria, including many free-living and pathogenic species. PMID:21304926

  5. CPT-cGMP Is A New Ligand of Epithelial Sodium Channels.

    PubMed

    Ji, Hong-Long; Nie, Hong-Guang; Chang, Yongchang; Lian, Qizhou; Liu, Shan-Lu

    2016-01-01

    Epithelial sodium channels (ENaC) are localized at the apical membrane of the epithelium, and are responsible for salt and fluid reabsorption. Renal ENaC takes up salt, thereby controlling salt content in serum. Loss-of-function ENaC mutations lead to low blood pressure due to salt-wasting, while gain-of-function mutations cause impaired sodium excretion and subsequent hypertension as well as hypokalemia. ENaC activity is regulated by intracellular and extracellular signals, including hormones, neurotransmitters, protein kinases, and small compounds. Cyclic nucleotides are broadly involved in stimulating protein kinase A and protein kinase G signaling pathways, and, surprisingly, also appear to have a role in regulating ENaC. Increasing evidence suggests that the cGMP analog, CPT-cGMP, activates αβγ-ENaC activity reversibly through an extracellular pathway in a dose-dependent manner. Furthermore, the parachlorophenylthio moiety and ribose 2'-hydroxy group of CPT-cGMP are essential for facilitating the opening of ENaC channels by this compound. Serving as an extracellular ligand, CPT-cGMP eliminates sodium self-inhibition, which is a novel mechanism for stimulating salt reabsorption in parallel to the traditional NO/cGMP/PKG signal pathway. In conclusion, ENaC may be a druggable target for CPT-cGMP, leading to treatments for kidney malfunctions in salt reabsorption. PMID:27019621

  6. Evaluation of a Salmonella Strain Lacking the Secondary Messenger C-di-GMP and RpoS as a Live Oral Vaccine.

    PubMed

    Latasa, Cristina; Echeverz, Maite; García, Begoña; Gil, Carmen; García-Ona, Enrique; Burgui, Saioa; Casares, Noelia; Hervás-Stubbs, Sandra; Lasarte, Juan José; Lasa, Iñigo; Solano, Cristina

    2016-01-01

    Salmonellosis is one of the most important bacterial zoonotic diseases transmitted through the consumption of contaminated food, with chicken and pig related products being key reservoirs of infection. Although numerous studies on animal vaccination have been performed in order to reduce Salmonella prevalence, there is still a need for an ideal vaccine. Here, with the aim of constructing a novel live attenuated Salmonella vaccine candidate, we firstly analyzed the impact of the absence of cyclic-di-GMP (c-di-GMP) in Salmonella virulence. C-di-GMP is an intracellular second messenger that controls a wide range of bacterial processes, including biofilm formation and synthesis of virulence factors, and also modulates the host innate immune response. Our results showed that a Salmonella multiple mutant in the twelve genes encoding diguanylate cyclase proteins that, as a consequence, cannot synthesize c-di-GMP, presents a moderate attenuation in a systemic murine infection model. An additional mutation of the rpoS gene resulted in a synergic attenuating effect that led to a highly attenuated strain, referred to as ΔXIII, immunogenic enough to protect mice against a lethal oral challenge of a S. Typhimurium virulent strain. ΔXIII immunogenicity relied on activation of both antibody and cell mediated immune responses characterized by the production of opsonizing antibodies and the induction of significant levels of IFN-γ, TNF-α, IL-2, IL-17 and IL-10. ΔXIII was unable to form a biofilm and did not survive under desiccation conditions, indicating that it could be easily eliminated from the environment. Moreover, ΔXIII shows DIVA features that allow differentiation of infected and vaccinated animals. Altogether, these results show ΔXIII as a safe and effective live DIVA vaccine. PMID:27537839

  7. Evaluation of a Salmonella Strain Lacking the Secondary Messenger C-di-GMP and RpoS as a Live Oral Vaccine

    PubMed Central

    García, Begoña; Gil, Carmen; García-Ona, Enrique; Burgui, Saioa; Casares, Noelia; Hervás-Stubbs, Sandra; Lasarte, Juan José; Lasa, Iñigo

    2016-01-01

    Salmonellosis is one of the most important bacterial zoonotic diseases transmitted through the consumption of contaminated food, with chicken and pig related products being key reservoirs of infection. Although numerous studies on animal vaccination have been performed in order to reduce Salmonella prevalence, there is still a need for an ideal vaccine. Here, with the aim of constructing a novel live attenuated Salmonella vaccine candidate, we firstly analyzed the impact of the absence of cyclic-di-GMP (c-di-GMP) in Salmonella virulence. C-di-GMP is an intracellular second messenger that controls a wide range of bacterial processes, including biofilm formation and synthesis of virulence factors, and also modulates the host innate immune response. Our results showed that a Salmonella multiple mutant in the twelve genes encoding diguanylate cyclase proteins that, as a consequence, cannot synthesize c-di-GMP, presents a moderate attenuation in a systemic murine infection model. An additional mutation of the rpoS gene resulted in a synergic attenuating effect that led to a highly attenuated strain, referred to as ΔXIII, immunogenic enough to protect mice against a lethal oral challenge of a S. Typhimurium virulent strain. ΔXIII immunogenicity relied on activation of both antibody and cell mediated immune responses characterized by the production of opsonizing antibodies and the induction of significant levels of IFN-γ, TNF-α, IL-2, IL-17 and IL-10. ΔXIII was unable to form a biofilm and did not survive under desiccation conditions, indicating that it could be easily eliminated from the environment. Moreover, ΔXIII shows DIVA features that allow differentiation of infected and vaccinated animals. Altogether, these results show ΔXIII as a safe and effective live DIVA vaccine. PMID:27537839

  8. Effects of cadmium on the activities of photosystems of Chlorella pyrenoidosa and the protective role of cyclic electron flow.

    PubMed

    Wang, Shuzhi; Zhang, Daoyong; Pan, Xiangliang

    2013-09-01

    Cadmium (Cd) shows high toxicity to aquatic microalgae. Many studies showed that Cd inhibited activities of photosystem II (PSII) but the effects of heavy metals on photosystem I (PSI) and cyclic electron flow (CEF) were still controversial and unclear. The effects of CdCl2 on the activities of PSI, PSII and CEF in Chlorella pyrenoidosa was measured simultaneously in the present study. In presence of 200μM of Cd, ultrastructure of some cells was strongly modified. Cd exposure led to decrease of the activities of photosynthetic oxygen evolution and respiration. PSII was more sensitive to Cd treatment than PSI. Cd treatment showed significant inhibition on the photochemical quantum yield and electron transport rate of PSII. Cd increased the quantum yield of non-light-induced non-photochemical fluorescence quenching, indicating the damage of PSII. The activity of PSI showed tolerance to Cd treatment with concentration less than 100μM in the experiment. Linear electron flow (LEF) made significant contribution to the photochemical quantum yield of PSI of the untreated cells, but decreased with increasing Cd concentration. The contribution of CEF to the yield of PSI increased with increasing Cd concentration. The activation of CEF after exposure to Cd played an essential role for the protection of PSI. PMID:23726885

  9. Activation of cGMP-Dependent Protein Kinase Stimulates Cardiac ATP-Sensitive Potassium Channels via a ROS/Calmodulin/CaMKII Signaling Cascade

    PubMed Central

    Chai, Yongping; Zhang, Dai-Min; Lin, Yu-Fung

    2011-01-01

    Background Cyclic GMP (cGMP)-dependent protein kinase (PKG) is recognized as an important signaling component in diverse cell types. PKG may influence the function of cardiac ATP-sensitive potassium (KATP) channels, an ion channel critical for stress adaptation in the heart; however, the underlying mechanism remains largely unknown. The present study was designed to address this issue. Methods and Findings Single-channel recordings of cardiac KATP channels were performed in both cell-attached and inside-out patch configurations using transfected human embryonic kidney (HEK)293 cells and rabbit ventricular cardiomyocytes. We found that Kir6.2/SUR2A (the cardiac-type KATP) channels were activated by cGMP-selective phosphodiesterase inhibitor zaprinast in a concentration-dependent manner in cell-attached patches obtained from HEK293 cells, an effect mimicked by the membrane-permeable cGMP analog 8-bromo-cGMP whereas abolished by selective PKG inhibitors. Intriguingly, direct application of PKG moderately reduced rather than augmented Kir6.2/SUR2A single-channel currents in excised, inside-out patches. Moreover, PKG stimulation of Kir6.2/SUR2A channels in intact cells was abrogated by ROS/H2O2 scavenging, antagonism of calmodulin, and blockade of calcium/calmodulin-dependent protein kinase II (CaMKII), respectively. Exogenous H2O2 also concentration-dependently stimulated Kir6.2/SUR2A channels in intact cells, and its effect was prevented by inhibition of calmodulin or CaMKII. PKG stimulation of KATP channels was confirmed in intact ventricular cardiomyocytes, which was ROS- and CaMKII-dependent. Kinetically, PKG appeared to stimulate these channels by destabilizing the longest closed state while stabilizing the long open state and facilitating opening transitions. Conclusion The present study provides novel evidence that PKG exerts dual regulation of cardiac KATP channels, including marked stimulation resulting from intracellular signaling mediated by ROS (H2O2 in

  10. cGMP in ozone and NO dependent responses

    PubMed Central

    Ederli, Luisa; Meier, Stuart; Borgogni, Andrea; Reale, Lara; Ferranti, Francesco; Gehring, Chris

    2008-01-01

    We have recently reported that ozone (O3) can inhibit mitochondrial respiration and induce activation of the alternative oxidase (AOX) pathway and in particular AOX1a in tobacco. While O3 causes mitochondrial H2O2, early leaf nitric oxide (NO) as well as transient ethylene (ET) accumulation, the levels of jasmonic acid and 12-oxo-phytodienoic acid remained unchanged. It was shown that both, NO and ET dependent pathways can induce AOX1a transcription by O3. AOX plays a role in reducing reactive oxygen species (ROS) which in turn are linked to biotic and abiotic plant stresses, much like the second messengers guanosine 3′, 5′-cyclic monophosphate (cGMP). The goal is to unravel specific cGMP signatures and induction pathways downstream from O3 and NO, including transcription of AOX1a. Here we propose that some late (>3 h) responses to NO, e.g., the accumulation of phenylalanine lyase (PAL) transcripts, are critically cGMP dependent, while the early (<2 h) responses, including AOX1a induction are not. PMID:19704720

  11. Prediction and verification of creep behavior in metallic materials and components, for the space shuttle thermal protection system. Volume 1, phase 1: Cyclic materials creep predictions

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Cramer, B. A.

    1974-01-01

    Cyclic creep response was investigated and design methods applicable to thermal protection system structures were developed. The steady-state (constant temperature and load) and cyclic creep response characteristics of four alloys were studied. Steady-state creep data were gathered through a literature survey to establish reference data bases. These data bases were used to develop empirical equations describing creep as a function of time, temperature, and stress and as a basis of comparison for test data. Steady-state creep tests and tensile cyclic tests were conducted. The following factors were investigated: material thickness and rolling direction; material cyclic creep response under varying loads and temperatures; constant stress and temperature cycles representing flight conditions; changing stresses present in a creeping beam as a result of stress redistribution; and complex stress and temperature profiles representative of space shuttle orbiter trajectories. A computer program was written, applying creep hardening theories and empirical equations for creep, to aid in analysis of test data. Results are considered applicable to a variety of structures which are cyclicly exposed to creep producing thermal environments.

  12. In vivo cGMP levels in frog photoreceptor cells as a function of light exposure.

    PubMed

    Barbehenn, E K; Klotz, K L; Noelker, D M; Nelson, R; Chader, G J; Passonneau, J V

    1986-11-01

    By employing a combination of highly sensitive radioimmunoassays and histochemical techniques, an in vivo time course of cGMP levels has been determined in the outer segment, photoreceptor cell and outer plexiform layers of frog retina. Frogs (Rana pipiens) were dark-adapted overnight and either frozen rapidly (approximately 3 sec) in liquid nitrogen or exposed to periods of light varying between 0.1 sec and 2 hr before freezing. Frozen retinal sections were cut, freeze-dried, and samples of individual layers dissected out and analysed for cGMP. In the outer plexiform layer, there was a 42% drop in cGMP concentration after 2 sec of light (250 ft candles) followed by a 34% rise after 2 min; a steep concentration gradient formed around the layer after the 2 min exposure. In both the outer-segment layer and photoreceptor-cell layer (which includes outer segments, inner segments and outer nuclear layers), cGMP levels declined from a dark value of 56 mumol kg-1 (dry) to 9 mumol kg-1 (dry) as a result of increasing exposure to several types of light source: levels appear to be primarily a function of total ft candle min. Cyclic GMP concentrations at the longest exposures (2 min with a fiber optic light source or 2 hr with fluorescent room light) reached identical minimum levels. In the outer segments, a 15% decrease in cGMP was observed after 0.1 sec of light exposure. Although the freezing time is too long to be able to say whether the 15% decrease in cGMP at the 0.1 sec exposure is involved in transduction, the low identical levels reached gradually after longer exposures appear to indicate that a light-induced biochemical adjustment in cGMP metabolism occurs over a relatively long time period separate from the msec time course of the transduction process. PMID:3026825

  13. Biophysical techniques for detection of cAMP and cGMP in living cells.

    PubMed

    Sprenger, Julia U; Nikolaev, Viacheslav O

    2013-01-01

    Cyclic nucleotides cAMP and cGMP are ubiquitous second messengers which regulate myriads of functions in virtually all eukaryotic cells. Their intracellular effects are often mediated via discrete subcellular signaling microdomains. In this review, we will discuss state-of-the-art techniques to measure cAMP and cGMP in biological samples with a particular focus on live cell imaging approaches, which allow their detection with high temporal and spatial resolution in living cells and tissues. Finally, we will describe how these techniques can be applied to the analysis of second messenger dynamics in subcellular signaling microdomains. PMID:23584022

  14. Advances in targeting cyclic nucleotide phosphodiesterases

    PubMed Central

    Maurice, Donald H.; Ke, Hengming; Ahmad, Faiyaz; Wang, Yousheng; Chung, Jay; Manganiello, Vincent C.

    2014-01-01

    Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants. PMID:24687066

  15. Advances in targeting cyclic nucleotide phosphodiesterases.

    PubMed

    Maurice, Donald H; Ke, Hengming; Ahmad, Faiyaz; Wang, Yousheng; Chung, Jay; Manganiello, Vincent C

    2014-04-01

    Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants. PMID:24687066

  16. Cyclic Diguanylate Inversely Regulates Motility and Aggregation in Clostridium difficile

    PubMed Central

    Purcell, Erin B.; McKee, Robert W.; McBride, Shonna M.; Waters, Christopher M.

    2012-01-01

    Clostridium difficile-associated disease is increasing in incidence and is costly to treat. Our understanding of how this organism senses its entry into the host and adapts for growth in the large bowel is limited. The small-molecule second messenger cyclic diguanylate (c-di-GMP) has been extensively studied in Gram-negative bacteria and has been shown to modulate motility, biofilm formation, and other processes in response to environmental signals, yet little is known about the functions of this signaling molecule in Gram-positive bacteria or in C. difficile specifically. In the current study, we investigated the function of the second messenger c-di-GMP in C. difficile. To determine the role of c-di-GMP in C. difficile, we ectopically expressed genes encoding a diguanylate cyclase enzyme, which synthesizes c-di-GMP, or a phosphodiesterase enzyme, which degrades c-di-GMP. This strategy allowed us to artificially elevate or deplete intracellular c-di-GMP, respectively, and determine that c-di-GMP represses motility in C. difficile, consistent with previous studies in Gram-negative bacteria, in which c-di-GMP has a negative effect on myriad modes of bacterial motility. Elevated c-di-GMP levels also induced clumping of C. difficile cells, which may signify that C. difficile is capable of forming biofilms in the host. In addition, we directly quantified, for the first time, c-di-GMP production in a Gram-positive bacterium. This work demonstrates the effect of c-di-GMP on the motility of a Gram-positive bacterium and on aggregation of C. difficile, which may be relevant to the function of this signaling molecule during infection. PMID:22522894

  17. Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa

    SciTech Connect

    Whitney, John C.; Robinson, Howard; Whitfield, Gregory B.; Marmont, Lindsey S.; Yip, Patrick; Neculai, A. Mirela; Lobsanov, Yuri D.; Ohman, Dennis E.; Howell, P. Lynne

    2015-05-15

    Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZ domain fold with a dimerization mode not previously observed for this family of proteins. Moreover, calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. Our results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa.

  18. Structural Analysis of the GGDEF-EAL Domain-Containing c-di-GMP Receptor FimX

    SciTech Connect

    Navarro, M.; De, N; Bae, N; Wang, Q; Sondermann, H

    2009-01-01

    Bacterial pathogenesis involves social behavior including biofilm formation and swarming, processes that are regulated by the bacterially unique second messenger cyclic di-GMP (c-di-GMP). Diguanylate cyclases containing GGDEF and phosphodiesterases containing EAL domains have been identified as the enzymes controlling cellular c-di-GMP levels, yet less is known regarding signal transmission and the targets of c-di-GMP. FimX, a protein from Pseudomonas aeruginosa that governs twitching motility, belongs to a large subfamily containing both GGDEF and EAL domains. Biochemical and structural analyses reveals its function as a high-affinity receptor for c-di-GMP. A model for full-length FimX was generated combining solution scattering data and crystal structures of the degenerate GGDEF and EAL domains. Although FimX forms a dimer in solution via the N-terminal domains, a crystallographic EAL domain dimer suggests modes for the regulation of FimX by c-di-GMP binding. The results provide the structural basis for c-di-GMP sensing via degenerate phosphodiesterases.

  19. Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa

    DOE PAGESBeta

    Whitney, John C.; Robinson, Howard; Whitfield, Gregory B.; Marmont, Lindsey S.; Yip, Patrick; Neculai, A. Mirela; Lobsanov, Yuri D.; Ohman, Dennis E.; Howell, P. Lynne

    2015-05-15

    Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZmore » domain fold with a dimerization mode not previously observed for this family of proteins. Moreover, calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. Our results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa.« less

  20. Acute stress-induced antinociception is cGMP-dependent but heme oxygenase-independent

    PubMed Central

    Carvalho-Costa, P.G.; Branco, L.G.S.; Leite-Panissi, C.R.A.

    2014-01-01

    Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3′,5′-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress. PMID:25387672

  1. Nitrite circumvents canonical cGMP signaling to enhance proliferation of myocyte precursor cells.

    PubMed

    Totzeck, Matthias; Schicho, Andreas; Stock, Pia; Kelm, Malte; Rassaf, Tienush; Hendgen-Cotta, Ulrike B

    2015-03-01

    Skeletal muscle tissue has a remarkable high regenerative capacity. The underlying cellular events are governed by complex signaling processes, and the proliferation of skeletal myoblasts is a key initial event. The role of nitric oxide (NO) in cell cycle regulation is well-appreciated. Nitrite, an NO oxidation product, is a stable source for NO-like bioactivity particularly in cases when oxygen shortage compromises NO-synthases activity. Although numerous studies suggest that nitrite effects are largely related to NO-dependent signaling, emerging evidence also implicates that nitrite itself can activate protein pathways albeit under physiological, normoxic conditions. This includes a recently demonstrated cyclic guanosine monophosphate-(cGMP)-independent enhancement of endothelial cell proliferation. Whether nitrite itself has the potential to affect myoblast proliferation and metabolism with or without activation of the canonical NO/cGMP pathway to subsequently support muscle cell regeneration is not known. Here we show that nitrite increases proliferation and metabolic activity of murine cultured myoblasts dose-dependently. This effect is not abolished by the NO scavenger 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimida-zoline-1-oxyl-3 oxide and does not affect intracellular cGMP levels, implicating a cGMP-independent mechanism. Nitrite circumvents the rapamycin induced attenuation of myoblast proliferation and enhances mTOR activity. Our results provide evidence for a novel potential physiological and therapeutic approach of nitrite in skeletal muscle regeneration processes under normoxia independent of NO and cGMP. PMID:25501648

  2. Tetrameric c-di-GMP Mediates Effective Transcription Factor Dimerization to Control Streptomyces Development

    PubMed Central

    Tschowri, Natalia; Schumacher, Maria A.; Schlimpert, Susan; Chinnam, Naga babu; Findlay, Kim C.; Brennan, Richard G.; Buttner, Mark J.

    2014-01-01

    Summary The cyclic dinucleotide c-di-GMP is a signaling molecule with diverse functions in cellular physiology. Here, we report that c-di-GMP can assemble into a tetramer that mediates the effective dimerization of a transcription factor, BldD, which controls the progression of multicellular differentiation in sporulating actinomycete bacteria. BldD represses expression of sporulation genes during vegetative growth in a manner that depends on c-di-GMP-mediated dimerization. Structural and biochemical analyses show that tetrameric c-di-GMP links two subunits of BldD through their C-terminal domains, which are otherwise separated by ∼10 Å and thus cannot effect dimerization directly. Binding of the c-di-GMP tetramer by BldD is selective and requires a bipartite RXD-X8-RXXD signature. The findings indicate a unique mechanism of protein dimerization and the ability of nucleotide signaling molecules to assume alternative oligomeric states to effect different functions. PMID:25171413

  3. A direct screen for c-di-GMP modulators reveals a Salmonella Typhimurium periplasmic ʟ-arginine-sensing pathway.

    PubMed

    Mills, Erez; Petersen, Erik; Kulasekara, Bridget R; Miller, Samuel I

    2015-06-01

    Cyclic-di-GMP (c-di-GMP) is a bacterial second messenger that transduces internal and external signals and regulates bacterial motility and biofilm formation. Some organisms encode more than 100 c-di-GMP-modulating enzymes, but only for a few has a signal been defined that modulates their activity. We developed and applied a high-throughput, real-time flow cytometry method that uses a fluorescence resonance energy transfer (FRET)-based biosensor of free c-di-GMP to screen for signals that modulate its concentration within Salmonella Typhimurium. We identified multiple compounds, including glucose, N-acetyl-d-glucosamine, salicylic acid, and ʟ-arginine, that modulated the FRET signal and therefore the free c-di-GMP concentration. By screening a library of mutants, we identified proteins required for the c-di-GMP response to each compound. Furthermore, low micromolar concentrations of ʟ-arginine induced a rapid translation-independent increase in c-di-GMP concentrations and c-di-GMP-dependent cellulose synthesis, responses that required the regulatory periplasmic domain of the diguanylate cyclase STM1987. ʟ-Arginine signaling also required the periplasmic putative ʟ-arginine-binding protein ArtI, implying that ʟ-arginine sensing occurred in the periplasm. Among the 20 commonly used amino acids, S. Typhimurium specifically responded to ʟ-arginine with an increase in c-di-GMP, suggesting that ʟ-arginine may serve as a signal during S. Typhimurium infection. Our results demonstrate that a second-messenger biosensor can be used to identify environmental signals and define pathways that alter microbial behavior. PMID:26060330

  4. A Minimal Threshold of c-di-GMP Is Essential for Fruiting Body Formation and Sporulation in Myxococcus xanthus

    PubMed Central

    Skotnicka, Dorota; Trampari, Eleftheria; Liang, Jennifer; Kaever, Volkhard; Malone, Jacob G.; Singer, Mitchell; Søgaard-Andersen, Lotte

    2016-01-01

    Generally, the second messenger bis-(3’-5’)-cyclic dimeric GMP (c-di-GMP) regulates the switch between motile and sessile lifestyles in bacteria. Here, we show that c-di-GMP is an essential regulator of multicellular development in the social bacterium Myxococcus xanthus. In response to starvation, M. xanthus initiates a developmental program that culminates in formation of spore-filled fruiting bodies. We show that c-di-GMP accumulates at elevated levels during development and that this increase is essential for completion of development whereas excess c-di-GMP does not interfere with development. MXAN3735 (renamed DmxB) is identified as a diguanylate cyclase that only functions during development and is responsible for this increased c-di-GMP accumulation. DmxB synthesis is induced in response to starvation, thereby restricting DmxB activity to development. DmxB is essential for development and functions downstream of the Dif chemosensory system to stimulate exopolysaccharide accumulation by inducing transcription of a subset of the genes encoding proteins involved in exopolysaccharide synthesis. The developmental defects in the dmxB mutant are non-cell autonomous and rescued by co-development with a strain proficient in exopolysaccharide synthesis, suggesting reduced exopolysaccharide accumulation as the causative defect in this mutant. The NtrC-like transcriptional regulator EpsI/Nla24, which is required for exopolysaccharide accumulation, is identified as a c-di-GMP receptor, and thus a putative target for DmxB generated c-di-GMP. Because DmxB can be—at least partially—functionally replaced by a heterologous diguanylate cyclase, these results altogether suggest a model in which a minimum threshold level of c-di-GMP is essential for the successful completion of multicellular development in M. xanthus. PMID:27214040

  5. A Minimal Threshold of c-di-GMP Is Essential for Fruiting Body Formation and Sporulation in Myxococcus xanthus.

    PubMed

    Skotnicka, Dorota; Smaldone, Gregory T; Petters, Tobias; Trampari, Eleftheria; Liang, Jennifer; Kaever, Volkhard; Malone, Jacob G; Singer, Mitchell; Søgaard-Andersen, Lotte

    2016-05-01

    Generally, the second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) regulates the switch between motile and sessile lifestyles in bacteria. Here, we show that c-di-GMP is an essential regulator of multicellular development in the social bacterium Myxococcus xanthus. In response to starvation, M. xanthus initiates a developmental program that culminates in formation of spore-filled fruiting bodies. We show that c-di-GMP accumulates at elevated levels during development and that this increase is essential for completion of development whereas excess c-di-GMP does not interfere with development. MXAN3735 (renamed DmxB) is identified as a diguanylate cyclase that only functions during development and is responsible for this increased c-di-GMP accumulation. DmxB synthesis is induced in response to starvation, thereby restricting DmxB activity to development. DmxB is essential for development and functions downstream of the Dif chemosensory system to stimulate exopolysaccharide accumulation by inducing transcription of a subset of the genes encoding proteins involved in exopolysaccharide synthesis. The developmental defects in the dmxB mutant are non-cell autonomous and rescued by co-development with a strain proficient in exopolysaccharide synthesis, suggesting reduced exopolysaccharide accumulation as the causative defect in this mutant. The NtrC-like transcriptional regulator EpsI/Nla24, which is required for exopolysaccharide accumulation, is identified as a c-di-GMP receptor, and thus a putative target for DmxB generated c-di-GMP. Because DmxB can be-at least partially-functionally replaced by a heterologous diguanylate cyclase, these results altogether suggest a model in which a minimum threshold level of c-di-GMP is essential for the successful completion of multicellular development in M. xanthus. PMID:27214040

  6. Regulation by guanosine 3':5'-cyclic monophosphate of phospholipid methylation during chemotaxis in Dictyostelium discoideum.

    PubMed Central

    Alemany, S; García Gil, M; Mato, J M

    1980-01-01

    In Dictyostelium discoideum, the chemoattractant cyclic AMP activates the enzyme guanylate cyclase, giving a brief up to 10-fold increase in the intracellular cyclic GMP content. The addition of physiological cyclic GMP concentrations to a homogenate of D. discoideum cells markedly increased the incorporation of the 3H-labeled methyl group from S-adenosyl-L-[methyl-3H]methionine into mono- and dimethylated phosphatidylethanolamine and phosphatidylcholine. Lipid methylation was inhibited by S-adenosyl-L-homocysteine, which inhibits transmethylation. When whole cells prelabeled with L-[methyl-3H]methionine were exposed to cyclic AMP, a rapid transient increase in the amount of [methyl-3H]phosphatidylcholine was observed. The time course of [methyl-3H]phosphatidylcholine formation agrees with its being mediated by the intracellular increase in cyclic GMP originating during chemotactic stimulation. Addition of the 8-Br derivative of cyclic GMP to whole cells also increased the levels of labeled phosphatidylcholine. It is therefore likely that cyclic GMP contributes to chemotaxis by regulating membrane function via phospholipid methylation. PMID:6261233

  7. Cyclic diguanylate regulation of Bacillus cereus group biofilm formation.

    PubMed

    Fagerlund, Annette; Smith, Veronika; Røhr, Åsmund K; Lindbäck, Toril; Parmer, Marthe P; Andersson, K Kristoffer; Reubsaet, Leon; Økstad, Ole Andreas

    2016-08-01

    Biofilm formation can be considered a bacterial virulence mechanism. In a range of Gram-negatives, increased levels of the second messenger cyclic diguanylate (c-di-GMP) promotes biofilm formation and reduces motility. Other bacterial processes known to be regulated by c-di-GMP include cell division, differentiation and virulence. Among Gram-positive bacteria, where the function of c-di-GMP signalling is less well characterized, c-di-GMP was reported to regulate swarming motility in Bacillus subtilis while having very limited or no effect on biofilm formation. In contrast, we show that in the Bacillus cereus group c-di-GMP signalling is linked to biofilm formation, and to several other phenotypes important to the lifestyle of these bacteria. The Bacillus thuringiensis 407 genome encodes eleven predicted proteins containing domains (GGDEF/EAL) related to c-di-GMP synthesis or breakdown, ten of which are conserved through the majority of clades of the B. cereus group, including Bacillus anthracis. Several of the genes were shown to affect biofilm formation, motility, enterotoxin synthesis and/or sporulation. Among these, cdgF appeared to encode a master diguanylate cyclase essential for biofilm formation in an oxygenated environment. Only two cdg genes (cdgA, cdgJ) had orthologs in B. subtilis, highlighting differences in c-di-GMP signalling between B. subtilis and B. cereus group bacteria. PMID:27116468

  8. C-di-GMP regulates Pseudomonas aeruginosa stress response to tellurite during both planktonic and biofilm modes of growth

    PubMed Central

    Chua, Song Lin; Sivakumar, Krishnakumar; Rybtke, Morten; Yuan, Mingjun; Andersen, Jens Bo; Nielsen, Thomas E.; Givskov, Michael; Tolker-Nielsen, Tim; Cao, Bin; Kjelleberg, Staffan; Yang, Liang

    2015-01-01

    Stress response plays an important role on microbial adaptation under hostile environmental conditions. It is generally unclear how the signaling transduction pathway mediates a stress response in planktonic and biofilm modes of microbial communities simultaneously. Here, we showed that metalloid tellurite (TeO32–) exposure induced the intracellular content of the secondary messenger cyclic di-GMP (c-di-GMP) of Pseudomonas aeruginosa. Two diguanylate cyclases (DGCs), SadC and SiaD, were responsible for the increased intracellular content of c-di-GMP. Enhanced c-di-GMP levels by TeO32– further increased P. aeruginosa biofilm formation and resistance to TeO32–. P. aeruginosa ΔsadCΔsiaD and PAO1/plac-yhjH mutants with low intracellular c-di-GMP content were more sensitive to TeO32– exposure and had low relative fitness compared to the wild-type PAO1 planktonic and biofilm cultures exposed to TeO32–. Our study provided evidence that c-di-GMP level can play an important role in mediating stress response in microbial communities during both planktonic and biofilm modes of growth. PMID:25992876

  9. May Cyclic Nucleotides Be a Source for Abiotic RNA Synthesis?

    NASA Astrophysics Data System (ADS)

    Costanzo, Giovanna; Pino, Samanta; Botta, Giorgia; Saladino, Raffaele; di Mauro, Ernesto

    2011-12-01

    Nucleic bases are obtained by heating formamide in the presence of various catalysts. Formamide chemistry also allows the formation of acyclonucleosides and the phosphorylation of nucleosides in every possible position, also affording 2',3' and 3',5' cyclic forms. We have reported that 3',5' cyclic GMP and 3',5' cyclic AMP polymerize in abiotic conditions yielding short oligonucleotides. The characterization of this reaction is being pursued, several of its parameters have been determined and experimental caveats are reported. The yield of non-enzymatic polymerization of cyclic purine nucleotides is very low. Polymerization is strongly enhanced by the presence of base-complementary RNA sequences.

  10. Receptors and cGMP signalling mechanism for E. coli enterotoxin in opossum kidney

    SciTech Connect

    Forte, L.R.; Krause, W.J.; Freeman, R.H. Harry S. Truman Memorial Veterans Medical Center, Columbia, MO )

    1988-11-01

    Receptors for the heat-stable enterotoxin produced by Escherichia coli were found in the kidney and intestine of the North American opossum and in cultured renal cell lines. The enterotoxin markedly increased guanosine 3{prime},5{prime}-cyclic monophosphate (cGMP) production in slices of kidney cortex and medulla, in suspensions of intestinal mucosa, and in the opossum kidney (OK) and rat kangaroo kidney (PtK-2) cell lines. In contrast, atrial natriuretic factor elicited much smaller increases in cGMP levels of kidney, intestine, or cultured kidney cell lines. The enterotoxin receptors in OK cells had a molecular mass of approximately 120 kDa when measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of receptors crosslinked with {sup 125}I-enterotoxin. The occurrence of receptors for the E. coli peptide in OK implies that these receptors may be involved in the regulation of renal tubular function in the opossum. E. coli enterotoxin caused a much larger increase in urine cGMP excretion than did atrial natriuretic factor when these peptides were injected intravenously into opossums. However, atrial natriuretic factor elicited a marked diuresis, natriuresis, and increased urinary excretion of calcium, phosphate, potassium, and magnesium. In contrast, the enterotoxin did not acutely influence OK fluid and electrolyte excretion. Thus the substantial increase in cGMP synthesis produced by the bacterial peptide in OK cortex and medulla in vitro and the increased renal excretion of cGMP in vivo were not associated with changes in electrolyte or water excretion. Whether cGMP represents a second messenger molecule in the kidney is an interesting question that was raised but not answered in this series of experiments.

  11. Pro-survival effects of 17β-estradiol on osteocytes are mediated by nitric oxide/cGMP via differential actions of cGMP-dependent protein kinases I and II.

    PubMed

    Marathe, Nisha; Rangaswami, Hema; Zhuang, Shunhui; Boss, Gerry R; Pilz, Renate B

    2012-01-01

    Estrogens promote bone health in part by increasing osteocyte survival, an effect that requires activation of the protein kinases Akt and ERK1/2, but the molecular mechanisms involved are only partly understood. Because estrogens increase nitric oxide (NO) synthesis and NO can have anti-apoptotic effects, we examined the role of NO/cGMP signaling in estrogen regulation of osteocyte survival. Etoposide-induced death of MLO-Y4 osteocyte-like cells, assessed by trypan blue staining, caspase-3 cleavage, and TUNEL assays, was completely prevented when cells were pre-treated with 17β-estradiol. This protective effect was mimicked when cells were pre-treated with a membrane-permeable cGMP analog and blocked by pharmacological inhibitors of NO synthase, soluble guanylate cyclase, or cGMP-dependent protein kinases (PKGs), supporting a requirement for NO/cGMP/PKG signaling downstream of 17β-estradiol. siRNA-mediated knockdown and viral reconstitution of individual PKG isoforms demonstrated that the anti-apoptotic effects of estradiol and cGMP were mediated by PKG Iα and PKG II. Akt and ERK1/2 activation by 17β-estradiol required PKG II, and cGMP mimicked the effects of estradiol on Akt and ERK, including induction of ERK nuclear translocation. cGMP induced BAD phosphorylation on several sites, and experiments with phosphorylation-deficient BAD mutants demonstrated that the anti-apoptotic effects of cGMP and 17β-estradiol required BAD phosphorylation on Ser(136) and Ser(155); these sites were targeted by Akt and PKG I, respectively, and regulate BAD interaction with Bcl-2. In conclusion, 17β-estradiol protects osteocytes against apoptosis by activating the NO/cGMP/PKG cascade; PKG II is required for estradiol-induced activation of ERK and Akt, and PKG Iα contributes to pro-survival signaling by directly phosphorylating BAD. PMID:22117068

  12. Modulation of cGMP by human HO-1 retrovirus gene transfer in pulmonary microvessel endothelial cells.

    PubMed

    Abraham, Nader G; Quan, Shuo; Mieyal, Paul A; Yang, Liming; Burke-Wolin, Theresa; Mingone, Christopher J; Goodman, Alvin I; Nasjletti, Alberto; Wolin, Michael S

    2002-11-01

    Carbon monoxide (CO) stimulates guanylate cyclase (GC) and increases guanosine 3',5'-cyclic monophosphate (cGMP) levels. We transfected rat-lung pulmonary endothelial cells with a retrovirus-mediated human heme oxygenase (hHO)-1 gene. Pulmonary cells that expressed hHO-1 exhibited a fourfold increase in HO activity associated with decreases in the steady-state levels of heme and cGMP without changes in soluble GC (sGC) and endothelial nitric oxide synthase (NOS) proteins or basal nitrite production. Heme elicited significant increases in CO production and intracellular cGMP levels in both pulmonary endothelial and pulmonary hHO-1-expressing cells. N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOS, significantly decreased cGMP levels in heme-treated pulmonary endothelial cells but not heme-treated hHO-1-expressing cells. In the presence of exogenous heme, CO and cGMP levels in hHO-1-expressing cells exceeded the corresponding levels in pulmonary endothelial cells. Acute exposure of endothelial cells to SnCl2, which is an inducer of HO-1, increased cGMP levels, whereas chronic exposure decreased heme and cGMP levels. These results indicate that prolonged overexpression of HO-1 ultimately decreases sGC activity by limiting the availability of cellular heme. Heme activates sGC and enhances cGMP levels via a mechanism that is largely insensitive to NOS inhibition. PMID:12376366

  13. Cyclic nucleotide regulation of cardiac sympatho-vagal responsiveness.

    PubMed

    Li, Dan; Paterson, David J

    2016-07-15

    Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) are now recognized as important intracellular signalling molecules that modulate cardiac sympatho-vagal balance in the progression of heart disease. Recent studies have identified that a significant component of autonomic dysfunction associated with several cardiovascular pathologies resides at the end organ, and is coupled to impairment of cyclic nucleotide targeted pathways linked to abnormal intracellular calcium handling and cardiac neurotransmission. Emerging evidence also suggests that cyclic nucleotide coupled phosphodiesterases (PDEs) play a key role limiting the hydrolysis of cAMP and cGMP in disease, and as a consequence this influences the action of the nucleotide on its downstream biological target. In this review, we illustrate the action of nitric oxide-CAPON signalling and brain natriuretic peptide on cGMP and cAMP regulation of cardiac sympatho-vagal transmission in hypertension and ischaemic heart disease. Moreover, we address how PDE2A is now emerging as a major target that affects the efficacy of soluble/particulate guanylate cyclase coupling to cGMP in cardiac dysautonomia. PMID:26915722

  14. Cyclic diguanylate monophosphate directly binds to human siderocalin and inhibits its antibacterial activity

    PubMed Central

    Li, Weihui; Cui, Tao; Hu, Lihua; Wang, Ziqing; Li, Zongqiang; He, Zheng-Guo

    2015-01-01

    Cyclic diguanylate monophosphate (c-di-GMP) is a well-conserved second messenger in bacteria. During infection, the innate immune system can also sense c-di-GMP; however, whether bacterial pathogens utilize c-di-GMP as a weapon to fight against host defense for survival and possible mechanisms underlying this process remain poorly understood. Siderocalin (LCN2) is a key antibacterial component of the innate immune system and sequesters bacterial siderophores to prevent acquisition of iron. Here we show that c-di-GMP can directly target the human LCN2 protein to inhibit its antibacterial activity. We demonstrate that c-di-GMP specifically binds to LCN2. In addition, c-di-GMP can compete with bacterial ferric siderophores to bind LCN2. Furthermore, c-di-GMP can significantly reduce LCN2-mediated inhibition on the in vitro growth of Escherichia coli. Thus, LCN2 acts as a c-di-GMP receptor. Our findings provide insight into the mechanism by which bacteria utilize c-di-GMP to interfere with the innate immune system for survival. PMID:26390966

  15. 3'-5' cyclic-guanosine monophosphate increase in rat brain hippocampus after gamma-hydroxybutyrate administration. Prevention by valproate and naloxone

    SciTech Connect

    Vayer, P.; Gobaille, S.; Mandel, P.; Maitre, M.

    1987-08-03

    An increase (123%) of cyclic GMP (cGMP) was observed in the hippocampus of the rat killed by microwave irradiation 45 min after administration of 500 mg/kg el-hydroxybutyrate (GHB) IP. This increase is time and dose dependent. No modification in cyclic nucleotide content was observed in striatum and in cerebellum. As the role of GHB has been implicated in neurotransmission, the fact that this compound increases cyclic GMP accumulation in hippocampus in vivo may represent a mechanism by which the actions of GHB are mediated at the cellular level. Valproate (400 mg/kg) or naloxone (10 mg/kg) pretreatment completely abolish the cGMP increase due to GHB. A GABAergic and/or opiate phenomenon may be involved in the mechanism of GHB induced increase of cGMP. 34 references, 4 figures.

  16. Ecklonia cava Polyphenol Has a Protective Effect against Ethanol-Induced Liver Injury in a Cyclic AMP-Dependent Manner

    PubMed Central

    Yamashita, Haruka; Goto, Mayu; Matsui-Yuasa, Isao; Kojima-Yuasa, Akiko

    2015-01-01

    Previously, we showed that Ecklonia cava polyphenol (ECP) treatment suppressed ethanol-induced increases in hepatocyte death by scavenging intracellular reactive oxygen species (ROS) and maintaining intracellular glutathione levels. Here, we examined the effects of ECP on the activities of alcohol-metabolizing enzymes and their regulating mechanisms in ethanol-treated hepatocytes. Isolated hepatocytes were incubated with or without 100 mM ethanol. ECP was dissolved in dimethylsulfoxide. ECP was added to cultured cells that had been incubated with or without ethanol. The cells were incubated for 0–24 h. In cultured hepatocytes, the ECP treatment with ethanol inhibited cytochrome P450 2E1 (CYP2E1) expression and activity, which is related to the production of ROS when large quantities of ethanol are oxidized. On the other hand, ECP treatment with ethanol increased the activity of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase. These changes in activities of CYP2E1 and ADH were suppressed by treatment with H89, an inhibitor of protein kinase A. ECP treatment with ethanol enhanced cyclic AMP concentrations compared with those of control cells. ECP may be a candidate for preventing ethanol-induced liver injury via regulating alcohol metabolic enzymes in a cyclic AMP-dependent manner. PMID:26096275

  17. Ecklonia cava Polyphenol Has a Protective Effect against Ethanol-Induced Liver Injury in a Cyclic AMP-Dependent Manner.

    PubMed

    Yamashita, Haruka; Goto, Mayu; Matsui-Yuasa, Isao; Kojima-Yuasa, Akiko

    2015-06-01

    Previously, we showed that Ecklonia cava polyphenol (ECP) treatment suppressed ethanol-induced increases in hepatocyte death by scavenging intracellular reactive oxygen species (ROS) and maintaining intracellular glutathione levels. Here, we examined the effects of ECP on the activities of alcohol-metabolizing enzymes and their regulating mechanisms in ethanol-treated hepatocytes. Isolated hepatocytes were incubated with or without 100 mM ethanol. ECP was dissolved in dimethylsulfoxide. ECP was added to cultured cells that had been incubated with or without ethanol. The cells were incubated for 0-24 h. In cultured hepatocytes, the ECP treatment with ethanol inhibited cytochrome P450 2E1 (CYP2E1) expression and activity, which is related to the production of ROS when large quantities of ethanol are oxidized. On the other hand, ECP treatment with ethanol increased the activity of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase. These changes in activities of CYP2E1 and ADH were suppressed by treatment with H89, an inhibitor of protein kinase A. ECP treatment with ethanol enhanced cyclic AMP concentrations compared with those of control cells. ECP may be a candidate for preventing ethanol-induced liver injury via regulating alcohol metabolic enzymes in a cyclic AMP-dependent manner. PMID:26096275

  18. A Short History of cGMP, Guanylyl Cyclases, and cGMP-Dependent Protein Kinases

    PubMed Central

    Kots, Alexander Y.; Martin, Emil; Sharina, Iraida G.

    2014-01-01

    Here, we review the early studies on cGMP, guanylyl cyclases, and cGMP-dependent protein kinases to facilitate understanding of development of this exciting but complex field of research encompassing pharmacology, biochemistry, physiology, and molecular biology of these important regulatory molecules. PMID:19089322

  19. ENaC is regulated by natriuretic peptide receptor-dependent cGMP signaling

    PubMed Central

    Guo, Lai-Jing; Alli, Abdel A.; Eaton, Douglas C.

    2013-01-01

    Epithelial sodium channels (ENaCs) located at the apical membrane of polarized epithelial cells are regulated by the second messenger guanosine 3′,5′-cyclic monophosphate (cGMP). The mechanism for this regulation has not been completely characterized. Guanylyl cyclases synthesize cGMP in response to various intracellular and extracellular signals. We investigated the regulation of ENaC activity by natriuretic peptide-dependent activation of guanylyl cyclases in Xenopus 2F3 cells. Confocal microscopy studies show natriuretic peptide receptors (NPRs), including those coupled to guanylyl cyclases, are expressed at the apical membrane of 2F3 cells. Single-channel patch-clamp studies using 2F3 cells revealed that atrial natriuretic peptide (ANP) or 8-(4-chlorophenylthio)-cGMP, but not C-type natriuretic peptide or cANP, decreased the open probability of ENaC. This suggests that NPR-A, but not NPR-B or NPR-C, is involved in the natriuretic peptide-mediated regulation of ENaC activity. Also, it is likely that a signaling pathway involving cGMP and nitric oxide (NO) are involved in this mechanism, since inhibitors of soluble guanylyl cyclase, protein kinase G, inducible NO synthase, or an NO scavenger blocked or reduced the effect of ANP on ENaC activity. PMID:23324181

  20. A sperm-activating peptide controls a cGMP-signaling pathway in starfish sperm.

    PubMed

    Matsumoto, Midori; Solzin, Johannes; Helbig, Annika; Hagen, Volker; Ueno, Sei-ichi; Kawase, Osamu; Maruyama, Yoshinori; Ogiso, Manabu; Godde, Matthias; Minakata, Hiroyuki; Kaupp, U Benjamin; Hoshi, Motonori; Weyand, Ingo

    2003-08-15

    Peptides released from eggs of marine invertebrates play a central role in fertilization. About 80 different peptides from various phyla have been isolated, however, with one exception, their respective receptors on the sperm surface have not been unequivocally identified and the pertinent signaling pathways remain ill defined. Using rapid mixing techniques and novel membrane-permeable caged compounds of cyclic nucleotides, we show that the sperm-activating peptide asterosap evokes a fast and transient increase of the cGMP concentration in sperm of the starfish Asterias amurensis, followed by a transient cGMP-stimulated increase in the Ca(2+) concentration. In contrast, cAMP levels did not change significantly and the Ca(2+) response evoked by photolysis of caged cAMP was significantly smaller than that using caged cGMP. By cloning of cDNA and chemical crosslinking, we identified a receptor-type guanylyl cyclase in the sperm flagellum as the asterosap-binding protein. Sperm respond exquisitely sensitive to picomolar concentrations of asterosap, suggesting that the peptide serves a chemosensory function like resact, a peptide involved in chemotaxis of sperm of the sea urchin Arbacia punctulata. A unifying principle emerges that chemosensory transduction in sperm of marine invertebrates uses cGMP as the primary messenger, although there may be variations in the detail. PMID:12921734

  1. Nitric oxide and cyclic guanosine monophosphate signaling in the eye.

    PubMed

    Murad, Ferid

    2008-06-01

    This brief review describes the components and pathways utilized in nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) signaling. Since the discovery of the effects of NO and cGMP on smooth muscle relaxation about 30 years ago, the field has expanded in many directions such that many, but not all, biochemical and biological effects seem to be regulated by these unique signaling molecules. While many of the effects of NO are due to activation of soluble guanylyl cyclase (sGC) that can be considered the receptor for NO, cGMP, in turn, can activate a cGMP-dependent protein kinase (PKG) to phosphorylate an array of proteins. Some of the effects of cGMP can be independent of PKG and are due to effects on ion channels or cyclic nucleotide phosphodiesterases. Also, some of the effects of NO can be independent of sGC activation. The isoenzymes and macromolecules that participate in these signaling pathways can serve as molecular targets to identify compounds that increase or decrease their activation and thus serve as chemical leads for discovering novel drugs for a variety of diseases. Some examples are given. However, with about 90,000 publications in the field since our first reports in 1977, this brief review can only give the readers a sample of the excitement and opportunities we have found in this cell signaling system. PMID:18443613

  2. The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling.

    PubMed

    Scheib, Ulrike; Stehfest, Katja; Gee, Christine E; Körschen, Heinz G; Fudim, Roman; Oertner, Thomas G; Hegemann, Peter

    2015-08-11

    Blastocladiomycota fungi form motile zoospores that are guided by sensory photoreceptors to areas of optimal light conditions. We showed that the microbial rhodopsin of Blastocladiella emersonii is a rhodopsin-guanylyl cyclase (RhGC), a member of a previously uncharacterized rhodopsin class of light-activated enzymes that generate the second messenger cyclic guanosine monophosphate (cGMP). Upon application of a short light flash, recombinant RhGC converted within 8 ms into a signaling state with blue-shifted absorption from which the dark state recovered within 100 ms. When expressed in Xenopus oocytes, Chinese hamster ovary cells, or mammalian neurons, RhGC generated cGMP in response to green light in a light dose-dependent manner on a subsecond time scale. Thus, we propose RhGC as a versatile tool for the optogenetic analysis of cGMP-dependent signaling processes in cell biology and the neurosciences. PMID:26268609

  3. Cyclic diguanylate signaling in Gram-positive bacteria.

    PubMed

    Purcell, Erin B; Tamayo, Rita

    2016-09-01

    The nucleotide second messenger 3'-5' cyclic diguanylate monophosphate (c-di-GMP) is a central regulator of the transition between motile and non-motile lifestyles in bacteria, favoring sessility. Most research investigating the functions of c-di-GMP has focused on Gram-negative species, especially pathogens. Recent work in Gram-positive species has revealed that c-di-GMP plays similar roles in Gram-positives, though the precise targets and mechanisms of regulation may differ. The majority of bacterial life exists in a surface-associated state, with motility allowing bacteria to disseminate and colonize new environments. c-di-GMP signaling regulates flagellum biosynthesis and production of adherence factors and appears to be a primary mechanism by which bacteria sense and respond to surfaces. Ultimately, c-di-GMP influences the ability of a bacterium to alter its transcriptional program, physiology and behavior upon surface contact. This review discusses how bacteria are able to sense a surface via flagella and type IV pili, and the role of c-di-GMP in regulating the response to surfaces, with emphasis on studies of Gram-positive bacteria. PMID:27354347

  4. Documentation and Records: Harmonized GMP Requirements

    PubMed Central

    Patel, KT; Chotai, NP

    2011-01-01

    ‘If it’s not written down, then it didn’t happen!’ The basic rules in any good manufacturing practice (GMP) regulations specify that the pharmaceutical manufacturer must maintain proper documentation and records. Documentation helps to build up a detailed picture of what a manufacturing function has done in the past and what it is doing now and, thus, it provides a basis for planning what it is going to do in the future. Regulatory inspectors, during their inspections of manufacturing sites, often spend much time examining a company’s documents and records. Effective documentation enhances the visibility of the quality assurance system. In light of above facts, we have made an attempt to harmonize different GMP requirements and prepare comprehensive GMP requirements related to ‘documentation and records,’ followed by a meticulous review of the most influential and frequently referred regulations. PMID:21731360

  5. Cyclic Dinucleotide-Controlled Regulatory Pathways in Streptomyces Species

    PubMed Central

    2015-01-01

    The cyclic dinucleotides cyclic 3′,5′-diguanylate (c-di-GMP) and cyclic 3′,5′-diadenylate (c-di-AMP) have emerged as key components of bacterial signal transduction networks. These closely related second messengers follow the classical general principles of nucleotide signaling by integrating diverse signals into regulatory pathways that control cellular responses to changing environments. They impact distinct cellular processes, with c-di-GMP having an established role in promoting bacterial adhesion and inhibiting motility and c-di-AMP being involved in cell wall metabolism, potassium homeostasis, and DNA repair. The involvement of c-dinucleotides in the physiology of the filamentous, nonmotile streptomycetes remained obscure until recent discoveries showed that c-di-GMP controls the activity of the developmental master regulator BldD and that c-di-AMP determines the level of the resuscitation-promoting factor A(RpfA) cell wall-remodelling enzyme. Here, I summarize our current knowledge of c-dinucleotide signaling in Streptomyces species and highlight the important roles of c-di-GMP and c-di-AMP in the biology of these antibiotic-producing, multicellular bacteria. PMID:26216850

  6. The vasodilatory effect of sulfur dioxide via SGC/cGMP/PKG pathway in association with sulfhydryl-dependent dimerization.

    PubMed

    Yao, Qiuyu; Huang, Yaqian; Liu, Angie Dong; Zhu, Mingzhu; Liu, Jia; Yan, Hui; Zhang, Qingyou; Geng, Bin; Gao, Yuansheng; Du, Shuxu; Huang, Pan; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-06-01

    The present study was designed to explore the role of soluble guanylate cyclase (sGC)/cyclic guanosine monophosphate (cGMP)/PKG pathway in sulfur dioxide (SO2)-induced vasodilation. We showed that SO2 induced a concentration-dependent relaxation of phenylephrine (PE)-precontracted rat aortic rings in association with an increase in cGMP concentration, whereas l-aspartic acid β-hydroxamate (HDX), an inhibitor of SO2 synthase, contracted rings in a dose-dependent manner. Pretreatment of aortic rings with the sGC inhibitor ODQ (30 μM) attenuated the vasodilatory effects of SO2, suggesting the involvement of cGMP pathway in SO2-induced vasodilation. Mechanistically, SO2 upregulated the protein levels of sGC and PKG dimers, while HDX inhibited it, indicating SO2 could promote cGMP synthesis through sGC activation. Furthermore, the dimerization of sGC and PKG and vasodilation induced by SO2 in precontracted rings were significantly prevented by thiol reductants dithiothreitol (DTT). In addition, SO2 reduced the activity of phosphodiesterase type 5 (PDE5), a cGMP-specific hydrolytic enzyme, implying that SO2 elevated cGMP concentration by inhibiting its hydrolysis. Hence, SO2 exerted its vasodilatory effects at least partly by promoting disulfide-dependent dimerization of sGC and PKG, resulting in an activated sGC/cGMP/PKG pathway in blood vessels. These findings revealed a new mode of action and mechanisms by which SO2 regulated the vascular tone. PMID:27009048

  7. Differential Regulation of c-di-GMP Metabolic Enzymes by Environmental Signals Modulates Biofilm Formation in Yersinia pestis

    PubMed Central

    Ren, Gai-Xian; Fan, Sai; Guo, Xiao-Peng; Chen, Shiyun; Sun, Yi-Cheng

    2016-01-01

    Cyclic diguanylate (c-di-GMP) is essential for Yersinia pestis biofilm formation, which is important for flea-borne blockage-dependent plague transmission. Two diguanylate cyclases (DGCs), HmsT and HmsD and one phosphodiesterase (PDE), HmsP are responsible for the synthesis and degradation of c-di-GMP in Y. pestis. Here, we systematically analyzed the effect of various environmental signals on regulation of the biofilm phenotype, the c-di-GMP levels, and expression of HmsT, HmsD, and HmsP in Y. pestis. Biofilm formation was higher in the presence of non-lethal high concentration of CaCl2, MgCl2, CuSO4, sucrose, sodium dodecyl sulfate, or dithiothreitol, and was lower in the presence of FeCl2 or NaCl. In addition, we found that HmsD plays a major role in biofilm formation in acidic or redox environments. These environmental signals differentially regulated expression of HmsT, HmsP and HmsD, resulting in changes in the intracellular levels of c-di-GMP in Y. pestis. Our results suggest that bacteria can sense various environmental signals, and differentially regulate activity of DGCs and PDEs to coordinately regulate and adapt metabolism of c-di-GMP and biofilm formation to changing environments. PMID:27375563

  8. Differential Regulation of c-di-GMP Metabolic Enzymes by Environmental Signals Modulates Biofilm Formation in Yersinia pestis.

    PubMed

    Ren, Gai-Xian; Fan, Sai; Guo, Xiao-Peng; Chen, Shiyun; Sun, Yi-Cheng

    2016-01-01

    Cyclic diguanylate (c-di-GMP) is essential for Yersinia pestis biofilm formation, which is important for flea-borne blockage-dependent plague transmission. Two diguanylate cyclases (DGCs), HmsT and HmsD and one phosphodiesterase (PDE), HmsP are responsible for the synthesis and degradation of c-di-GMP in Y. pestis. Here, we systematically analyzed the effect of various environmental signals on regulation of the biofilm phenotype, the c-di-GMP levels, and expression of HmsT, HmsD, and HmsP in Y. pestis. Biofilm formation was higher in the presence of non-lethal high concentration of CaCl2, MgCl2, CuSO4, sucrose, sodium dodecyl sulfate, or dithiothreitol, and was lower in the presence of FeCl2 or NaCl. In addition, we found that HmsD plays a major role in biofilm formation in acidic or redox environments. These environmental signals differentially regulated expression of HmsT, HmsP and HmsD, resulting in changes in the intracellular levels of c-di-GMP in Y. pestis. Our results suggest that bacteria can sense various environmental signals, and differentially regulate activity of DGCs and PDEs to coordinately regulate and adapt metabolism of c-di-GMP and biofilm formation to changing environments. PMID:27375563

  9. Activation of NO-cGMP Signaling Rescues Age-Related Memory Impairment in Crickets

    PubMed Central

    Matsumoto, Yukihisa; Matsumoto, Chihiro S.; Takahashi, Toshihumi; Mizunami, Makoto

    2016-01-01

    Age-related memory impairment (AMI) is a common feature and a debilitating phenotype of brain aging in many animals. However, the molecular mechanisms underlying AMI are still largely unknown. The cricket Gryllus bimaculatus is a useful experimental animal for studying age-related changes in learning and memory capability; because the cricket has relatively short life-cycle and a high capability of olfactory learning and memory. Moreover, the molecular mechanisms underlying memory formation in crickets have been examined in detail. In the present study, we trained male crickets of different ages by multiple-trial olfactory conditioning to determine whether AMI occurs in crickets. Crickets 3 weeks after the final molt (3-week-old crickets) exhibited levels of retention similar to those of 1-week-old crickets at 30 min or 2 h after training; however they showed significantly decreased levels of 1-day retention, indicating AMI in long-term memory (LTM) but not in anesthesia-resistant memory (ARM) in olfactory learning of crickets. Furthermore, 3-week-old crickets injected with a nitric oxide (NO) donor, a cyclic GMP (cGMP) analog or a cyclic AMP (cAMP) analog into the hemolymph before conditioning exhibited a normal level of LTM, the same level as that in 1-week-old crickets. The rescue effect by NO donor or cGMP analog injection was absent when the crickets were injected after the conditioning. For the first time, an NO donor and a cGMP analog were found to antagonize the age-related impairment of LTM formation, suggesting that deterioration of NO synthase (NOS) or molecules upstream of NOS activation is involved in brain-aging processes. PMID:27616985

  10. Activation of NO-cGMP Signaling Rescues Age-Related Memory Impairment in Crickets.

    PubMed

    Matsumoto, Yukihisa; Matsumoto, Chihiro S; Takahashi, Toshihumi; Mizunami, Makoto

    2016-01-01

    Age-related memory impairment (AMI) is a common feature and a debilitating phenotype of brain aging in many animals. However, the molecular mechanisms underlying AMI are still largely unknown. The cricket Gryllus bimaculatus is a useful experimental animal for studying age-related changes in learning and memory capability; because the cricket has relatively short life-cycle and a high capability of olfactory learning and memory. Moreover, the molecular mechanisms underlying memory formation in crickets have been examined in detail. In the present study, we trained male crickets of different ages by multiple-trial olfactory conditioning to determine whether AMI occurs in crickets. Crickets 3 weeks after the final molt (3-week-old crickets) exhibited levels of retention similar to those of 1-week-old crickets at 30 min or 2 h after training; however they showed significantly decreased levels of 1-day retention, indicating AMI in long-term memory (LTM) but not in anesthesia-resistant memory (ARM) in olfactory learning of crickets. Furthermore, 3-week-old crickets injected with a nitric oxide (NO) donor, a cyclic GMP (cGMP) analog or a cyclic AMP (cAMP) analog into the hemolymph before conditioning exhibited a normal level of LTM, the same level as that in 1-week-old crickets. The rescue effect by NO donor or cGMP analog injection was absent when the crickets were injected after the conditioning. For the first time, an NO donor and a cGMP analog were found to antagonize the age-related impairment of LTM formation, suggesting that deterioration of NO synthase (NOS) or molecules upstream of NOS activation is involved in brain-aging processes. PMID:27616985

  11. Stimulation of soluble guanylyl cyclase protects against obesity by recruiting brown adipose tissue.

    PubMed

    Hoffmann, Linda S; Etzrodt, Jennifer; Willkomm, Lena; Sanyal, Abhishek; Scheja, Ludger; Fischer, Alexander W C; Stasch, Johannes-Peter; Bloch, Wilhelm; Friebe, Andreas; Heeren, Joerg; Pfeifer, Alexander

    2015-01-01

    Obesity is characterized by a positive energy balance and expansion of white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) combusts energy to produce heat. Here we show that a small molecule stimulator (BAY 41-8543) of soluble guanylyl cyclase (sGC), which produces the second messenger cyclic GMP (cGMP), protects against diet-induced weight gain, induces weight loss in established obesity, and also improves the diabetic phenotype. Mechanistically, the haeme-dependent sGC stimulator BAY 41-8543 enhances lipid uptake into BAT and increases whole-body energy expenditure, whereas ablation of the haeme-containing β1-subunit of sGC severely impairs BAT function. Notably, the sGC stimulator enhances differentiation of human brown adipocytes as well as induces 'browning' of primary white adipocytes. Taken together, our data suggest that sGC is a potential pharmacological target for the treatment of obesity and its comorbidities. PMID:26011238

  12. In Search of Enzymes with a Role in 3′, 5′-Cyclic Guanosine Monophosphate Metabolism in Plants

    PubMed Central

    Gross, Inonge; Durner, Jörg

    2016-01-01

    In plants, nitric oxide (NO)-mediated 3′, 5′-cyclic guanosine monophosphate (cGMP) synthesis plays an important role during pathogenic stress response, stomata closure upon osmotic stress, the development of adventitious roots and transcript regulation. The NO-cGMP dependent pathway is well characterized in mammals. The binding of NO to soluble guanylate cyclase enzymes (GCs) initiates the synthesis of cGMP from guanosine triphosphate. The produced cGMP alters various cellular responses, such as the function of protein kinase activity, cyclic nucleotide gated ion channels and cGMP-regulated phosphodiesterases. The signal generated by the second messenger is terminated by 3′, 5′-cyclic nucleotide phosphodiesterase (PDEs) enzymes that hydrolyze cGMP to a non-cyclic 5′-guanosine monophosphate. To date, no homologues of mammalian cGMP-synthesizing and degrading enzymes have been found in higher plants. In the last decade, six receptor proteins from Arabidopsis thaliana have been reported to have guanylate cyclase activity in vitro. Of the six receptors, one was shown to be a NO dependent guanylate cyclase enzyme (NOGC1). However, the role of these proteins in planta remains to be elucidated. Enzymes involved in the degradation of cGMP remain elusive, albeit, PDE activity has been detected in crude protein extracts from various plants. Additionally, several research groups have partially purified and characterized PDE enzymatic activity from crude protein extracts. In this review, we focus on presenting advances toward the identification of enzymes involved in the cGMP metabolism pathway in higher plants. PMID:27200049

  13. cGMP modulates stem cells differentiation to neurons in brain in vivo.

    PubMed

    Gómez-Pinedo, U; Rodrigo, R; Cauli, O; Herraiz, S; Garcia-Verdugo, J-M; Pellicer, B; Pellicer, A; Felipo, V

    2010-02-17

    During brain development neural stem cells may differentiate to neurons or to other cell types. The aim of this work was to assess the role of cGMP (cyclic GMP) in the modulation of differentiation of neural stem cells to neurons or non-neuronal cells. cGMP in brain of fetuses was reduced to 46% of controls by treating pregnant rats with nitroarginine-methylester (L-NAME) and was restored by co-treatment with sildenafil.Reducing cGMP during brain development leads to reduced differentiation of stem cells to neurons and increased differentiation to non-neuronal cells. The number of neurons in the prefrontal cortex originated from stem cells proliferating on gestational day 14 was 715+/-14/mm(2) in control rats and was reduced to 440+/-29/mm(2) (61% of control) in rats treated with L-NAME. In rats exposed to L-NAME plus sildenafil, differentiation to neurons was completely normalized, reaching 683+/-11 neurons/mm(2). In rats exposed to sildenafil alone the number of cells labelled with bromodeoxyuridine (BrdU) and NeuN was 841+/-16/mm(2). In prefrontal cortex of control rats 48% of the neural stem cells proliferating in gestational day 14 differentiate to neurons, but only 24% in rats exposed to L-NAME. This was corrected by sildenafil, 40% of cells differentiate to neurons. Similar results were obtained for neurons proliferating during all developmental period. Treatment with L-NAME did not reduce the total number of cells labelled with BrdU, further supporting that L-NAME reduces selectively the differentiation of stem cells to neurons. Similar results were obtained in hippocampus. Treatment with L-NAME reduced the differentiation of neural stem cells to neurons, although the effect was milder than in prefrontal cortex. These results support that cGMP modulates the fate of neural stem cells in brain in vivo and suggest that high cGMP levels promote its differentiation to neurons while reduced cGMP levels promote differentiation to non-neuronal cells. PMID:19958812

  14. Analysis of nitric oxide-cyclic guanosine monophosphate signaling during metamorphosis of the nudibranch Phestilla sibogae Bergh (Gastropoda: Opisthobranchia).

    PubMed

    Bishop, Cory D; Pires, Anthony; Norby, Shong-Wan; Boudko, Dmitri; Moroz, Leonid L; Hadfield, Michael G

    2008-01-01

    The gas nitric oxide (NO), and in some cases its downstream second messenger, cyclic guanosine monophosphate (cGMP) function in different taxa to regulate the timing of life-history transitions. Increased taxonomic sampling is required to foster conclusions about the evolution and function of NO/cGMP signaling during life-history transitions. We report on the function and localization of NO and cGMP signaling during metamorphosis of the nudibranch Phestilla sibogae. Pharmacological manipulation of NO or cGMP production in larvae modulated responses to a natural settlement cue from the coral Porites compressa in a manner that suggest inhibitory function for NO/cGMP signaling. However, these treatments were not sufficient to induce metamorphosis in the absence of cue, a result unique to this animal. We show that induction of metamorphosis in response to the settlement cue is associated with a reduction in NO production. We documented the expression of putative NO synthase (NOS) and the production of cGMP during larval development and observed no larval cells in which NOS and cGMP were both detected. The production of cGMP in a bilaterally symmetrical group of cells fated to occupy the distal tip of rhinophores is correlated with competence to respond to the coral settlement cue. These results suggest that endogenous NO and cGMP are involved in modulating responses of P. sibogae to a natural settlement cue. We discuss these results with respect to habitat selection and larval ecology. PMID:18460091

  15. Targeting Cyclic Nucleotide Phosphodiesterase in the Heart: Therapeutic Implications

    PubMed Central

    Miller, Clint L.

    2010-01-01

    The second messengers, cAMP and cGMP, regulate a number of physiological processes in the myocardium, from acute contraction/relaxation to chronic gene expression and cardiac structural remodeling. Emerging evidence suggests that multiple spatiotemporally distinct pools of cyclic nucleotides can discriminate specific cellular functions from a given cyclic nucleotide-mediated signal. Cyclic nucleotide phosphodiesterases (PDEs), by hydrolyzing intracellular cyclic AMP and/or cyclic GMP, control the amplitude, duration, and compartmentation of cyclic nucleotide signaling. To date, more than 60 different isoforms have been described and grouped into 11 broad families (PDE1–PDE11) based on differences in their structure, kinetic and regulatory properties, as well as sensitivity to chemical inhibitors. In the heart, PDE isozymes from at least six families have been investigated. Studies using selective PDE inhibitors and/or genetically manipulated animals have demonstrated that individual PDE isozymes play distinct roles in the heart by regulating unique cyclic nucleotide signaling microdomains. Alterations of PDE activity and/or expression have also been observed in various cardiac disease models, which may contribute to disease progression. Several family-selective PDE inhibitors have been used clinically or pre-clinically for the treatment of cardiac or vascular-related diseases. In this review, we will highlight both recent advances and discrepancies relevant to cardiovascular PDE expression, pathophysiological function, and regulation. In particular, we will emphasize how these properties influence current and future development of PDE inhibitors for the treatment of pathological cardiac remodeling and dysfunction. PMID:20632220

  16. Defining Specificity Determinants of cGMP Mediated Gustatory Sensory Transduction in Caenorhabditis elegans

    PubMed Central

    Smith, Heidi K.; Luo, Linjiao; O’Halloran, Damien; Guo, Dagang; Huang, Xin-Yun; Samuel, Aravinthan D. T.; Hobert, Oliver

    2013-01-01

    Cyclic guanosine monophosphate (cGMP) is a key secondary messenger used in signal transduction in various types of sensory neurons. The importance of cGMP in the ASE gustatory receptor neurons of the nematode Caenorhabditis elegans was deduced by the observation that multiple receptor-type guanylyl cyclases (rGCs), encoded by the gcy genes, and two presently known cyclic nucleotide-gated ion channel subunits, encoded by the tax-2 and tax-4 genes, are essential for ASE-mediated gustatory behavior. We describe here specific mechanistic features of cGMP-mediated signal transduction in the ASE neurons. First, we assess the specificity of the sensory functions of individual rGC proteins. We have previously shown that multiple rGC proteins are expressed in a left/right asymmetric manner in the functionally lateralized ASE neurons and are required to sense distinct salt cues. Through domain swap experiments among three different rGC proteins, we show here that the specificity of individual rGC proteins lies in their extracellular domains and not in their intracellular, signal-transducing domains. Furthermore, we find that rGC proteins are also sufficient to confer salt sensory responses to other neurons. Both findings support the hypothesis that rGC proteins are salt receptor proteins. Second, we identify a novel, likely downstream effector of the rGC proteins in gustatory signal transduction, a previously uncharacterized cyclic nucleotide-gated (CNG) ion channel, encoded by the che-6 locus. che-6 mutants show defects in gustatory sensory transduction that are similar to defects observed in animals lacking the tax-2 and tax-4 CNG channels. In contrast, thermosensory signal transduction, which also requires tax-2 and tax-4, does not require che-6, but requires another CNG, cng-3. We propose that CHE-6 may form together with two other CNG subunits, TAX-2 and TAX-4, a gustatory neuron-specific heteromeric CNG channel complex. PMID:23695300

  17. Quercetin protects against high glucose-induced damage in bone marrow-derived endothelial progenitor cells.

    PubMed

    Zhao, Li-Rong; Du, Yu-Jun; Chen, Lei; Liu, Zhi-Gang; Pan, Yue-Hai; Liu, Jian-Feng; Liu, Bin

    2014-10-01

    Endothelial progenitor cells (EPCs), a group of bone marrow-derived pro-angiogenic cells, contribute to vascular repair after damage. EPC dysfunction exists in diabetes and results in poor wound healing in diabetic patients with trauma or surgery. The aim of the present study was to determine the effect of quercetin, a natural flavonoid on high glucose‑induced damage in EPCs. Treatment with high glucose (40 mM) decreased cell viability and migration, and increased oxidant stress, as was evidenced by the elevated levels of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase in bone marrow-derived EPCs. Moreover, high glucose reduced the levels of endothelial nitric oxide synthase (eNOS) phosphorylation, nitric oxide (NO) production and intracellular cyclic guanosine monophosphate (cGMP). Quercetin supplement protected against high glucose‑induced impairment in cell viability, migration, oxidant stress, eNOS phosphorylation, NO production and cGMP levels. Quercetin also increased Sirt1 expression in EPCs. Inhibition of Sirt1 by a chemical antagonist sirtinol abolished the protective effect of quercetin on eNOS phosphorylation, NO production and cGMP levels following high glucose stress. To the best of our knowledge, the results provide the first evidence that quercetin protects against high glucose‑induced damage by inducing Sirt1-dependent eNOS upregulation in EPCs, and suggest that quercetin is a promising therapeutic agent for diabetic patients undergoing surgery or other invasive procedures. PMID:25197782

  18. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp

    PubMed Central

    Gao, Shiqiang; Nagpal, Jatin; Schneider, Martin W.; Kozjak-Pavlovic, Vera; Nagel, Georg; Gottschalk, Alexander

    2015-01-01

    Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ∼17 cGMP s−1). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O2/CO2 sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals. PMID:26345128

  19. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp.

    PubMed

    Gao, Shiqiang; Nagpal, Jatin; Schneider, Martin W; Kozjak-Pavlovic, Vera; Nagel, Georg; Gottschalk, Alexander

    2015-01-01

    Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ∼17 cGMP s(-1)). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O2/CO2 sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals. PMID:26345128

  20. Release of prostaglandins from the isolated frog ventricle and associated changes in endogenous cyclic nucleotide levels.

    PubMed Central

    Flitney, F W; Singh, J

    1980-01-01

    1. A study has been made of the decline in contractility and some associated metabolic changes which occur in the isolated frog ventricle during the development of hypodynamic depression. 2. The release of two identified prostaglandins (PG), E1 and E2, together with several as yet unknown prostaglandin-related substances (PRS), accompanies the development of hypodynamic depression. There is a close correlation between the extent to which the isometric twitch is depressed and the quantity of prostaglandin released into the superfusate. 3. Fractionation of extracts of 'used' superfusates, using preparative-scale thin-layer chromatography, revealed the presence of six major components, four of which (PGE1 and PGE2 and two unidentified components) were found to be cardioactive and potentiated contraction when tested subsequently on hypodynamic preparations. 4. Two agents which influence prostaglandin biosynthesis, arachidonic acid and indomethacin, are found to affect both the rate at which the hypodynamic state develops and the extent to which the 'steady-state' twitch tension is depressed, in a dose-dependent manner. Indomethacin, a PG-synthetase inhibitor, accelerates the decay and depresses the final 'steady-state' tension attained, whereas arachidonic acid, the principal precursor for prostaglandin biosynthesis, has the converse effects. 5. Measurements of endogenous 3'5'-cyclic nucleotide levels reveal a time-dependent decrease in intracellular adenosine 3'5'-cyclic monophosphate (3'5'-cyclic AMP) and a concomitant increase in guanosine 3'5' cyclic monophosphate (3'5'-cyclic GMP). The decline in isometric twitch tension is paralleled almost exactly by an equivalent reduction in the ratio 3'5'-cyclic AMP: 3'5'-cyclic GMP. 6. Superfusion of isolated ventricles with Ringer solution containing exogenous, lipid-soluble derivatives of 3'5'-cyclic AMP and 3'5'-cyclic GMP affects both the rate of decline of the isometric twitch and the steady-state tension ultimately

  1. A c-di-GMP Effector System Controls Cell Adhesion by Inside-Out Signaling and Surface Protein Cleavage

    PubMed Central

    Newell, Peter D.; Boyd, Chelsea D.; Sondermann, Holger; O'Toole, George A.

    2011-01-01

    In Pseudomonas fluorescens Pf0-1 the availability of inorganic phosphate (Pi) is an environmental signal that controls biofilm formation through a cyclic dimeric GMP (c-di-GMP) signaling pathway. In low Pi conditions, a c-di-GMP phosphodiesterase (PDE) RapA is expressed, depleting cellular c-di-GMP and causing the loss of a critical outer-membrane adhesin LapA from the cell surface. This response involves an inner membrane protein LapD, which binds c-di-GMP in the cytoplasm and exerts a periplasmic output promoting LapA maintenance on the cell surface. Here we report how LapD differentially controls maintenance and release of LapA: c-di-GMP binding to LapD promotes interaction with and inhibition of the periplasmic protease LapG, which targets the N-terminus of LapA. We identify conserved amino acids in LapA required for cleavage by LapG. Mutating these residues in chromosomal lapA inhibits LapG activity in vivo, leading to retention of the adhesin on the cell surface. Mutations with defined effects on LapD's ability to control LapA localization in vivo show concomitant effects on c-di-GMP-dependent LapG inhibition in vitro. To establish the physiological importance of the LapD-LapG effector system, we track cell attachment and LapA protein localization during Pi starvation. Under this condition, the LapA adhesin is released from the surface of cells and biofilms detach from the substratum. This response requires c-di-GMP depletion by RapA, signaling through LapD, and proteolytic cleavage of LapA by LapG. These data, in combination with the companion study by Navarro et al. presenting a structural analysis of LapD's signaling mechanism, give a detailed description of a complete c-di-GMP control circuit—from environmental signal to molecular output. They describe a novel paradigm in bacterial signal transduction: regulation of a periplasmic enzyme by an inner membrane signaling protein that binds a cytoplasmic second messenger. PMID:21304920

  2. Differences in responsiveness of intrapulmonary artery and vein to arachidonic acid: mechanism of arterial relaxation involves cyclic guanosine 3':5'-monophosphate and cyclic adenosine 3':5'-monophosphate

    SciTech Connect

    Ignarro, L.J.; Harbison, R.G.; Wood, K.S.; Wolin, M.S.; McNamara, D.B.; Hyman, A.L.; Kadowitz, P.J.

    1985-06-01

    The objective of this study was to examine the relationship between responses of bovine intrapulmonary artery and vein to arachidonic acid and cyclic nucleotide levels in order to better understand the mechanism of relaxation elicited by arachidonic acid and acetylcholine. Arachidonic acid relaxed phenylephrine-precontracted arterial rings and elevated both cyclic GMP and cyclic AMP levels in arteries with intact endothelium. In contrast, endothelium-damaged arterial rings contracted to arachidonic acid without demonstrating significant changes in cyclic nucleotide levels. Indomethacin partially inhibited endothelium-dependent relaxation and abolished cyclic AMP accumulation whereas methylene blue, a guanylate cyclase inhibitor, partially inhibited relaxation and abolished cyclic GMP accumulation in response to arachidonic acid. All vessel responses were blocked by a combination of the two inhibitors. Prostaglandin (PG) I2 relaxed arterial rings and elevated cyclic AMP levels whereas PGE2 and PGF2 alpha caused contraction, suggesting that the indomethacin-sensitive component of arachidonic acid-elicited relaxation is due to PGI2 formation and cyclic AMP accumulation. The methylene blue-sensitive component is attributed to an endothelium-dependent but cyclooxygenase-independent generation of a substance causing cyclic GMP accumulation. Intrapulmonary veins contracted to arachidonic acid with no changes in cyclic nucleotide levels and PGI2 was without effect. Homogenates of intrapulmonary artery and vein formed 6-keto-PGF1 alpha, PGF2 alpha and PGE2 from (/sup 14/C)arachidonic acid, which was inhibited by indomethacin. Thus, bovine intrapulmonary vein may not possess receptors for PGI2.

  3. Intracellular and Extracellular Cyclic Nucleotides in Wild-Type and White Collar Mutant Strains of Neurospora crassa

    PubMed Central

    Shaw, Nicholas M.; Harding, Roy W.

    1987-01-01

    Cyclic AMP and cyclic GMP were released into the growth medium of mycelia of Neurospora crassa wild-type strains St.L.74A and Em5297a and by white collar-1 and white collar-2 mutant strains. After growth for 6 days at 18°C, there were 2.19 (St.L.74A), 5.83 (Em5297a), 1.38 (white collar-1), and 1.10 (white collar-2) nanomoles of cyclic AMP per gram dry weight of mycelia in the growth medium. These values corresponded to concentrations of cyclic AMP of between approximately 10 and 50 nanomolar. The corresponding values for extracellular cyclic GMP were typically less than 6% of the values for cyclic AMP. Following transfer to fresh medium, cyclic AMP efflux was demonstrated for each of the strains, and the amount of cyclic AMP exported into the fresh medium was greater at 25°C than 6°C. Intracellular cyclic AMP and cyclic GMP were also measured in each of the strains. The values for cyclic AMP were in the same range as those in the literature (approximately 0.5 to 1.5 nanomoles per gram dry weight of mycelia). However, the corresponding intracellular cyclic GMP values were less than 1% of the cyclic AMP values, i.e. more than 50 times lower than the value previously reported for the St.L.74A wild-type. Transfer of mycelia after 6 days at 18°C to fresh media and incubation for 2 hours at 25°C or 6°C did not consistently affect the intracellular level of cyclic AMP or cyclic GMP in the strains examined. We could detect no change in intracellular cyclic AMP when mycelia of the St.L.74A wild-type strain were irradiated with blue light for periods of up to 3.0 hours at 18°C, or in cyclic AMP and cyclic GMP for irradiation times of up to 1 minute at 6°C. We propose that the plasma membrane of Neurospora crassa is permeable to cyclic nucleotides, and the export of cyclic nucleotides into the growth medium may be a means of regulating intracellular levels. We conclude that three factors that affect carotenogenesis in Neurospora crassa (blue light, temperature, and

  4. An Overgrowth Disorder Associated with Excessive Production of cGMP Due to a Gain-of-Function Mutation of the Natriuretic Peptide Receptor 2 Gene

    PubMed Central

    Miura, Kohji; Namba, Noriyuki; Fujiwara, Makoto; Ohata, Yasuhisa; Ishida, Hidekazu; Kitaoka, Taichi; Kubota, Takuo; Hirai, Haruhiko; Higuchi, Chikahisa; Tsumaki, Noriyuki; Yoshikawa, Hideki; Sakai, Norio; Michigami, Toshimi; Ozono, Keiichi

    2012-01-01

    We describe a three-generation family with tall stature, scoliosis and macrodactyly of the great toes and a heterozygous p.Val883Met mutation in Npr2, the gene that encodes the CNP receptor NPR2 (natriuretic peptide receptor 2). When expressed in HEK293A cells, the mutant Npr2 cDNA generated intracellular cGMP (cyclic guanosine monophosphate) in the absence of CNP ligand. In the presence of CNP, cGMP production was greater in cells that had been transfected with the mutant Npr2 cDNA compared to wild-type cDNA. Transgenic mice in which the mutant Npr2 was expressed in chondrocytes driven by the promoter and intronic enhancer of the Col11a2 gene exhibited an enhanced production of cGMP in cartilage, leading to a similar phenotype to that observed in the patients. In addition, blood cGMP concentrations were elevated in the patients. These results indicate that p.Val883Met is a constitutive active gain-of-function mutation and elevated levels of cGMP in growth plates lead to the elongation of long bones. Our findings reveal a critical role for NPR2 in skeletal growth in both humans and mice, and may provide a potential target for prevention and treatment of diseases caused by impaired production of cGMP. PMID:22870295

  5. Cyclic Voltammetry.

    ERIC Educational Resources Information Center

    Evans, Dennis H.; And Others

    1983-01-01

    Cyclic voltammetry is a simple experiment that has become popular in chemical research because it can provide useful information about redox reactions in a form which is easily obtained and interpreted. Discusses principles of the method and illustrates its use in the study of four electrode reactions. (Author/JN)

  6. Effects of tetrandrine on cAMP and cGMP levels in rabbit corpus cavernosum in vitro.

    PubMed

    Chen, Jun; Liu, Jihong; Wang, Tao; Xiao, Hengjun; Yin, Chunping

    2010-07-01

    The aim of this study was to further investigate the relaxation mechanism of tetrandrine (Tet), a bis-benzylisoquinoline alkaloid isolated from the Chinese medicinal herb-root of Stephania tetrandra S Moore, on rabbit corpus cavernosum tissue in vitro. The effects of Tet on the concentrations of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) in isolated and incubated rabbit corpus cavernosum tissue were recorded by means of (125)I radioimmunoassay. The basal concentration of cAMP in corpus cavernosum tissue was 5.67 +/- 0.97 pmol mg(-1). Tet increased the cAMP concentration in a dose-dependent manner (p < 0.05), but this effect was not inhibited by an adenylate cyclase inhibitor (cis-N-(2-phenylcyclopentyl)azacyclotridec-1-en-2-amine, MDL-12, 330A) (p > 0.05). The accumulation of cAMP induced by prostaglandin E(1) (PGE(1), a stimulator of cAMP production) was also augmented by Tet in a dose-dependent manner (p < 0.05). The basal concentration of cGMP in corpus cavernosum tissue is 0.44 +/- 0.09 pmol mg(-1). Tet did not affect this concentration of cGMP, neither in the presence nor the absence of a guanyl cyclase inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, ODQ) (p > 0.05). Further, sodium nitroprusside (SNP, a stimulator of cGMP production)-induced cGMP production was not enhanced by Tet (p > 0.05). Tet, with its relaxation mechanism, can enhance the concentration of cAMP in rabbit corpus cavernosum tissue, probably by inhibiting PDEs activity. PMID:20582806

  7. Attenuated vasodilatation in lambs with endogenous and exogenous activation of cGMP signaling: Role of protein kinase G nitration

    PubMed Central

    Aggarwal, Saurabh; Gross, Christine M.; Kumar, Sanjiv; Datar, Sanjeev; Oishi, Peter; Kalka, Gokhan; Schreiber, Christian; Fratz, Sohrab; Fineman, Jeffrey R.; Black, Stephen M.

    2012-01-01

    Pulmonary vasodilation is mediated through the activation of protein kinase G (PKG) via a signaling pathway involving nitric oxide (NO), natriuretic peptides (NP), and cyclic guanosine monophosphate (cGMP). In pulmonary hypertension secondary to congenital heart disease, this pathway is endogenously activated by an early vascular upregulation of NO and increased myocardial B-type NP expression and release. In the treatment of pulmonary hypertension, this pathway is exogenously activated using inhaled NO or other pharmacological agents. Despite this activation of cGMP, vascular dysfunction is present, suggesting that NO-cGMP independent mechanisms are involved and were the focus of this study. Exposure of pulmonary artery endothelial or smooth muscle cells to the NO donor, Spermine NONOate (SpNONOate), increased peroxynitrite (ONOO−) generation and PKG-1α nitration, while PKG-1α activity was decreased. These changes were prevented by superoxide dismutase (SOD) or manganese(III)tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP) and mimicked by the ONOO− donor, 3-morpholinosydnonimine N-ethylcarbamide (SIN-1). Peripheral lung extracts from 4-week old lambs with increased pulmonary blood flow and pulmonary hypertension (Shunt lambs with endogenous activation of cGMP) or juvenile lambs treated with inhaled NO for 24h (with exogenous activation of cGMP) revealed increased ONOO− levels, elevated PKG-1α nitration, and decreased kinase activity without changes in PKG-1α protein levels. However, in Shunt lambs treated with L-arginine or lambs administered polyethylene glycol conjugated-SOD (PEG-SOD) during inhaled NO exposure, ONOO− and PKG-1α nitration were diminished and kinase activity was preserved. Together our data reveal that vascular dysfunction can occur, despite elevated levels of cGMP, due to PKG-1α nitration and subsequent attenuation of activity. PMID:21351102

  8. Angiotensin II increases phosphodiesterase 5A expression in vascular smooth muscle cells: A mechanism by which angiotensin II antagonizes cGMP signaling

    PubMed Central

    Kim, Dongsoo; Aizawa, Toru; Wei, Heng; Pi, Xinchun; Rybalkin, Sergei D.; Berk, Bradford C.; Yan, Chen

    2014-01-01

    Angiotensin II (Ang II) and nitric oxide (NO)/natriuretic peptide (NP) signaling pathways mutually regulate each other. Imbalance of Ang II and NO/NP has been implicated in the pathophysiology of many vascular diseases. cGMP functions as a key mediator in the interaction between Ang II and NO/NP. Cyclic nucleotide phosphodiesterase 5A (PDE5A) is important in modulating cGMP signaling by hydrolyzing cGMP in vascular smooth muscle cells (VSMC). Therefore, we examined whether Ang II negatively modulates intracellular cGMP signaling in VSMC by regulating PDE5A. Ang II rapidly and transiently increased PDE5A mRNA levels in rat aortic VSMC. Upregulation of PDE5A mRNA was associated with a time-dependent increase of both PDE5 protein expression and activity. Increased PDE5A mRNA level was transcription-dependent and mediated by the Ang II type 1 receptor. Ang II-mediated activation of extracellular signal-regulated kinases 1/2 (ERK1/2) was essential for Ang II-induced PDE5A upregulation. Pretreatment of VSMC with Ang II inhibited C-type NP (CNP) stimulated cGMP signaling, such as cGMP dependent protein kinase (PKG)-mediated phosphorylation of vasodilator-stimulated-phosphoprotein (VASP). Ang II-mediated inhibition of PKG was blocked when PDE5 activity was decreased by selective PDE5 inhibitors, suggesting that upregulation of PDE5A expression is an important mechanism for Ang II to attenuate cGMP signaling. PDE5A may also play a critical role in the growth promoting effects of Ang II because inhibition of PDE5A activity significantly decreased Ang II-stimulated VSMC growth. These observations establish a new mechanism by which Ang II antagonizes cGMP signaling and stimulates VSMC growth. PMID:15623434

  9. The cGMP/PKG pathway as a common mediator of cardioprotection: translatability and mechanism

    PubMed Central

    Inserte, Javier; Garcia-Dorado, David

    2015-01-01

    Cardiomyocyte cell death occurring during myocardial reperfusion (reperfusion injury) contributes to final infarct size after transient coronary occlusion. Different interrelated mechanisms of reperfusion injury have been identified, including alterations in cytosolic Ca2+ handling, sarcoplasmic reticulum-mediated Ca2+ oscillations and hypercontracture, proteolysis secondary to calpain activation and mitochondrial permeability transition. All these mechanisms occur during the initial minutes of reperfusion and are inhibited by intracellular acidosis. The cGMP/PKG pathway modulates the rate of recovery of intracellular pH, but has also direct effect on Ca2+ oscillations and mitochondrial permeability transition. The cGMP/PKG pathway is depressed in cardiomyocytes by ischaemia/reperfusion and preserved by ischaemic postconditioning, which importantly contributes to postconditioning protection. The present article reviews the mechanisms and consequences of the effect of ischaemic postconditioning on the cGMP/PKG pathway, the different pharmacological strategies aimed to stimulate it during myocardial reperfusion and the evidence, limitations and promise of translation of these strategies to the clinical practice. Overall, the preclinical and clinical evidence suggests that modulation of the cGMP/PKG pathway may be a therapeutic target in the context of myocardial infarction. PMID:25297462

  10. Deletion Mutant Library for Investigation of Functional Outputs of Cyclic Diguanylate Metabolism in Pseudomonas aeruginosa PA14

    PubMed Central

    Ha, Dae-Gon; Richman, Megan E.

    2014-01-01

    We constructed a library of in-frame deletion mutants targeting each gene in Pseudomonas aeruginosa PA14 predicted to participate in cyclic di-GMP (c-di-GMP) metabolism (biosynthesis or degradation) to provide a toolkit to assist investigators studying c-di-GMP-mediated regulation by this microbe. We present phenotypic assessments of each mutant, including biofilm formation, exopolysaccharide (EPS) production, swimming motility, swarming motility, and twitch motility, as a means to initially characterize these mutants and to demonstrate the potential utility of this library. PMID:24657857

  11. cGMP/cGMP-dependent protein kinase pathway modulates nicotine-induced currents through the activation of α-bungarotoxin-insensitive nicotinic acetylcholine receptors from insect neurosecretory cells.

    PubMed

    Mannai, Safa; Bitri, Lofti; Thany, Steeve H

    2016-06-01

    Insect neurosecretory cells, called dorsal unpaired median neurons, are known to express two α-bungarotoxin-insensitive nicotinic acetylcholine receptor (nAChR) subtypes, nAChR1 and nAChR2. It was demonstrated that nAChR1 was sensitive to cAMP/cAMP-dependent protein kinase (PKA) regulation, resulting in a modulation of nicotine currents. In this study, we show that cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase (PKG) pathway modulates nicotine-induced currents, as increased cGMP affects the second compound of the biphasic current-voltage curve, corresponding to the nAChR2 receptors. Indeed, maintaining the guanosine triphosphate level with 100 μM guanosine triphosphate-γ-S increased nicotine currents through nAChR2. We also demonstrated that inhibition of PKG activity with 0.2 μM (8R,9S,11S)-(-)-9-methoxy-carbamyl-8-methyl-2,3,9,10-tetrahydro-8,11-epoxy-1H,8H,11H-2,7b,11a-trizadibenzo-(a,g)-cycloocta-(c,d,e)-trinden-1-one (KT5823), a PKG specific inhibitor, reduced nicotine-induced current amplitudes. KT5823 effect on nicotine currents is associated with calcium (Ca(2+) ) activity because inhibition of Ca(2+) concentration with cadmium chloride (CdCl2 ) abolished KT5823-induced inhibition mediated by nAChR2. However, specific inhibition of nitric oxide-guanylyl cyclase (GC) complex by 10 μM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) significantly increased nicotine-induced current amplitudes on both nAChR1 and nAChR2. These results suggest that nicotine-induced currents mediated by both α-bungarotoxin-insensitive nAChR1 and nAChR2 are coupled to the cGMP/PKG pathway. We propose that nicotinic acetylcholine receptor activation induces an increase in intracellular calcium (Ca(2+) ) concentration. Elevation of intracellular Ca(2+) results in the formation of Ca(2+) -calmodulin (CaM) complex, which activates guanylyl cyclase (GC) and/or adenylyl cyclase (AC). Ca(2+) -CaM complex could activate Ca(2+) calmodulin kinase II which

  12. The plant natriuretic peptide receptor is a guanylyl cyclase and enables cGMP-dependent signaling.

    PubMed

    Turek, Ilona; Gehring, Chris

    2016-06-01

    The functional homologues of vertebrate natriuretic peptides (NPs), the plant natriuretic peptides (PNPs), are a novel class of peptidic hormones that signal via guanosine 3',5'-cyclic monophosphate (cGMP) and systemically affect plant salt and water balance and responses to biotrophic plant pathogens. Although there is increasing understanding of the complex roles of PNPs in plant responses at the systems level, little is known about the underlying signaling mechanisms. Here we report isolation and identification of a novel Leucine-Rich Repeat (LRR) protein that directly interacts with A. thaliana PNP, AtPNP-A. In vitro binding studies revealed that the Arabidopsis AtPNP-A binds specifically to the LRR protein, termed AtPNP-R1, and the active region of AtPNP-A is sufficient for the interaction to occur. Importantly, the cytosolic part of the AtPNP-R1, much like in some vertebrate NP receptors, harbors a catalytic center diagnostic for guanylyl cyclases and the recombinant AtPNP-R1 is capable of catalyzing the conversion of guanosine triphosphate to cGMP. In addition, we show that AtPNP-A causes rapid increases of cGMP levels in wild type (WT) leaf tissue while this response is significantly reduced in the atpnp-r1 mutants. AtPNP-A also causes cGMP-dependent net water uptake into WT protoplasts, and hence volume increases, whereas responses of the protoplasts from the receptor mutant are impaired. Taken together, our results suggest that the identified LRR protein is an AtPNP-A receptor essential for the PNP-dependent regulation of ion and water homeostasis in plants and that PNP- and vertebrate NP-receptors and their signaling mechanisms share surprising similarities. PMID:26945740

  13. Cyclic nucleotides in tissues during long-term hypokinesia

    NASA Technical Reports Server (NTRS)

    Makeyeva, V. F.; Komolova, G. S.; Yegorov, I. A.; Serova, L. V.; Chelnaya, N. A.

    1981-01-01

    Male Wistar rates were kept hypokinetic by placing them in small containers for 22 days. Blood plasma cAMP content was subsequently found increased, and cGMP content decreased, in the experimental animals. Liver and thymus cAMP content was similar in the control and experimental animals. There was a 20 and 38% decrease of cAMP content in the kidneys and spleen, respectively. Hypokinesia's reduction of cyclic nucleotides seems to inhibit RNA and protein synthesis.

  14. The hmsT 3' untranslated region mediates c-di-GMP metabolism and biofilm formation in Yersinia pestis.

    PubMed

    Zhu, Hui; Mao, Xu-Jian; Guo, Xiao-Peng; Sun, Yi-Cheng

    2016-03-01

    Yersinia pestis, the cause of plague, forms a biofilm in the proventriculus of its flea vector to enhance transmission. Biofilm formation in Y. pestis is regulated by the intracellular levels of cyclic diguanylate (c-di-GMP). In this study, we investigated the role of the 3' untranslated region (3'UTR) in hmsT mRNA, a transcript that encodes a diguanylate cyclase that stimulates biofilm formation in Y. pestis by synthesizing the second messenger c-di-GMP. Deletion of the 3'UTR increased the half-life of hmsT mRNA, thereby upregulating c-di-GMP levels and biofilm formation. Our findings indicate that multiple regulatory sequences might be present in the hmsT 3'UTR that function together to mediate mRNA turnover. We also found that polynucleotide phosphorylase is partially responsible for hmsT 3'UTR-mediated mRNA decay. In addition, the hmsT 3'UTR strongly repressed gene expression at 37°C and 26°C, but affected gene expression only slightly at 21°C. Our findings suggest that the 3'UTR might be involved in precise and rapid regulation of hmsT expression, allowing Y. pestis to fine-tune c-di-GMP synthesis and consequently regulate biofilm production to adapt to the changing host environment. PMID:26711808

  15. Evidence that cyclic nucleotides are not mediators of fever in rabbits.

    PubMed Central

    Dascombe, M. J.

    1984-01-01

    The N6-2'-O-dibutyryl derivative of adenosine 3',5'-monophosphate (db cyclic AMP) and related compounds have been micro-injected into the preoptic/anterior hypothalamic nuclei (PO/AH) of the unanaesthetized, restrained rabbit and the effects on deep body temperature observed. Db cyclic AMP (100-400 micrograms) produced hypothermia of rapid onset in rabbits at an ambient temperature of 20-23 degrees C. Hypothermia was also produced by N2-2'-O-dibutyryl guanosine 3',5'-monophosphate (db cyclic GMP), but not by saline, sodium n-butyrate, adenosine 3',5'-monophosphate (cyclic AMP), guanosine 3',5'-monophosphate, adenosine 5'-mono-, di- or triphosphate. The initial hypothermic response to db cyclic AMP and db cyclic GMP was followed by a sustained rise in temperature. However, all compounds injected into the PO/AH produced a similar hyperthermia which was attenuated by paracetamol. Development of this tissue-damage fever abolished the hypothermic response to db cyclic AMP in some rabbits. The effects of db cyclic AMP on body temperature and behaviour were not reproduced by the adenylate cyclase activators, cholera toxin (0.125-5 micrograms) and guanyl imidodiphosphate (5-400 micrograms). It is concluded that hypothermia is the principal effect of db cyclic AMP on body temperature when injected into the PO/AH in rabbits. These data do not support the proposal that endogenous cyclic AMP in the rabbit brain mediates pyrexia. PMID:6326920

  16. Cyclic AMP-elevating agents prolong or inhibit eosinophil survival depending on prior exposure to GM-CSF.

    PubMed Central

    Hallsworth, M. P.; Giembycz, M. A.; Barnes, P. J.; Lee, T. H.

    1996-01-01

    1. Purified human eosinophils survived for up to 7 days when cultured in vitro in the presence of 1 ng ml-1 granulocyte-macrophage colony stimulating factor (GM-CSF) with a viability of 73%. In the absence of GM-CSF, eosinophil viability decreased after one day in culture, and only 4% of cells were viable by day 4. 2. Culture of eosinophils with cholera toxin produced a concentration-dependent decrease in GM-CSF-induced survival at 7 days (IC50 = 7 ng ml-1) which was associated with a 6 fold increase in the intracellular cyclic AMP concentration. This inhibition of cell survival could be prevented by the addition of the protein kinase A inhibitor, H89 (10(-6)M). 3. When eosinophils were cultured with dibutyryl cyclic AMP, there was a concentration-dependent inhibition of GM-CSF-induced survival at 7 days with an IC50 of 200 microM. The related cyclic nucleotide analogue, dibutyryl cyclic GMP did not inhibit GM-CSF-induced eosinophil survival over the same concentration range. 4. Culture of eosinophils with forskolin, or with the phosphodiesterase inhibitors, rolipram and SK&F94120, had no effect on GM-CSF-induced eosinophil survival at any concentration examined. 5. After 7 days' culture in the absence of GM-CSF, fractionation of eosinophil DNA on agarose gels demonstrated a 'ladder' pattern characteristic of apoptosis. GM-CSF prevented DNA fragmentation and this protection could be overcome by both cholera toxin and dibutyryl cyclic AMP. 6. GM-CSF did not affect intracellular cyclic AMP concentrations in unstimulated eosinophils or in cells stimulated by cholera toxin. Thus, GM-CSF does not apparently increase eosinophil survival by affecting cyclic AMP levels. 7. In the absence of GM-CSF both cholera toxin and dibutyryl cyclic AMP decreased the rate of eosinophil death, when compared to cells cultured with medium alone. The t1/2 values for cell death were 1.63 +/- 0.3, 2.46 +/- 0.3 and 4.62 +/- 1.0 days for cells cultured in the presence of medium, cholera toxin

  17. Cavernosum smooth muscle relaxation induced by Schisandrol A via the NO-cGMP signaling pathway.

    PubMed

    Liu, W; Choi, B R; Bak, Y O; Zhang, L T; Zhou, L X; Huang, Y R; Zhao, C; Park, J K

    2016-01-01

    To evaluate the effect of Schisandrol A on rabbit corpus cavernosum smooth muscle and elucidate the potential mechanism. Penises were obtained from healthy male New Zealand White rabbits (2.5-3.0 kg). The pre-contracted penis with phenylephrine (Phe, 10 µM) was treated with accumulative concentrations of Schisandrol A (10-7, 10-6, 10-5 and 10-4 M). The change in intracavernosum pressure (ICP) and tension was recorded, cyclic nucleotides in the cavernosum tissue were measured by radioimmunoassay, mRNA level and expression of endothelial nitric oxide synthase (eNOS) and neuronal NOS (nNOS) were measured by real time PCR and western blot respectively. The corpus cavernosum smooth muscle relaxation induced by Schisandrol A was in a dose-dependent manner. Pre-treatment with NOS inhibitor (Nω nitro-L-arginine-methyl ester, L-NAME) or guanylyl cyclase inhibitor (1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one, ODQ) significantly diminished the relaxation. The cyclic guanosine monophosphate (cGMP) level was significantly increased in the cavernosum tissue. Real time PCR and western blot showed the mRNA level and expression of eNOS and nNOS was also upregulated. Schisandrol A relaxes the cavernosum smooth muscle by activating NO-cGMP signaling pathway. It may be a new promising treatment for erectile dysfunction and cardiovascular disease. PMID:27064883

  18. Visualization of cyclic nucleotide dynamics in neurons

    PubMed Central

    Gorshkov, Kirill; Zhang, Jin

    2014-01-01

    The second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) transduce many neuromodulatory signals from hormones and neurotransmitters into specific functional outputs. Their production, degradation and signaling are spatiotemporally regulated to achieve high specificity in signal transduction. The development of genetically encodable fluorescent biosensors has provided researchers with useful tools to study these versatile second messengers and their downstream effectors with unparalleled spatial and temporal resolution in cultured cells and living animals. In this review, we introduce the general design of these fluorescent biosensors and describe several of them in more detail. Then we discuss a few examples of using cyclic nucleotide fluorescent biosensors to study regulation of neuronal function and finish with a discussion of advances in the field. Although there has been significant progress made in understanding how the specific signaling of cyclic nucleotide second messengers is achieved, the mechanistic details in complex cell types like neurons are only just beginning to surface. Current and future fluorescent protein reporters will be essential to elucidate the role of cyclic nucleotide signaling dynamics in the functions of individual neurons and their networks. PMID:25538560

  19. Cyclic multiverses

    NASA Astrophysics Data System (ADS)

    Marosek, Konrad; Da¸browski, Mariusz P.; Balcerzak, Adam

    2016-09-01

    Using the idea of regularization of singularities due to the variability of the fundamental constants in cosmology we study the cyclic universe models. We find two models of oscillating and non-singular mass density and pressure (`non-singular' bounce) regularized by varying gravitational constant G despite the scale factor evolution is oscillating and having sharp turning points (`singular' bounce). Both violating (big-bang) and non-violating (phantom) null energy condition models appear. Then, we extend this idea on to the multiverse containing cyclic individual universes with either growing or decreasing entropy though leaving the net entropy constant. In order to get an insight into the key idea, we consider the doubleverse with the same geometrical evolution of the two `parallel' universes with their physical evolution [physical coupling constants c(t) and G(t)] being different. An interesting point is that there is a possibility to exchange the universes at the point of maximum expansion - the fact which was already noticed in quantum cosmology. Similar scenario is also possible within the framework of Brans-Dicke theory where varying G(t) is replaced by the dynamical Brans-Dicke field φ(t) though these theories are slightly different.

  20. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression

    SciTech Connect

    Nygaard, Gyrid; Herfindal, Lars; Kopperud, Reidun; Aragay, Anna M.; Holmsen, Holm; Døskeland, Stein Ove; Kleppe, Rune; Selheim, Frode

    2014-07-04

    Highlights: • We investigated the impact of cyclic nucleotide analogues on platelet activation. • Different time dependence were found for inhibition of platelet activation. • Additive effect was found using PKA- and PKG-activating analogues. • Our results may explain some of the discrepancies reported for cNMP signalling. - Abstract: In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigated whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.

  1. Rapid purification of iodinated ligands for cyclic nucleotide radioimmunoassays

    SciTech Connect

    Wilson, S.P.

    1988-01-01

    The tyrosine methyl esters of succinyl cyclic AMP and succinyl cyclic GMP were iodinated by the chloramine T method and individually applied to C18 cartridges. A solution of 1-propanol/0.1 M sodium acetate pH 4.75 (17.5:82.5) was then pumped onto each cartridge and the eluate collected. A large peak of radioactivity, containing primarily the monoiodo and diiodo derivatives, was eluted. Radioactivity in peak fractions was greater than or equal to 95% the monoiodo derivative and represented 20 to 25% of the starting radioactivity. Contamination by the native cyclic nucleotide analogs was less than 5%. These peak fractions containing primarily monoiodinated products worked well in cyclic nucleotide radioimmunoassays. This fractionation required less than 30 min.

  2. Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes

    PubMed Central

    Castro, Liliana R.V.; Verde, Ignacio; Cooper, Dermot M.; Fischmeister, Rodolphe

    2006-01-01

    Background Cyclic GMP is the common second messenger for the cardiovascular effects of nitric oxide (NO) and natriuretic peptides, such as ANP or BNP, which activate, respectively, the soluble and particulate form of guanylyl cyclase. Yet, natriuretic peptides and NO-donors exert different effects on cardiac and vascular smooth muscle function. We therefore tested whether these differences are due to an intracellular compartmentation of cGMP, and evaluated the role of phosphodiesterase (PDE) subtypes in this process. Methods and Results Subsarcolemmal cGMP signals were monitored in adult rat cardiomyocytes by expression of the rat olfactory CNG channel α subunit and recording of the associated cGMP-gated current (ICNG). ANP (10 nM) or BNP (10 nM) induced a clear activation of ICNG while NO-donors (SNAP, SNP, DEANO, SIN-1, spermine NO, all at 100 μM) had little effect. The ICNG current was strongly potentiated by non-selective PDE inhibition with IBMX (100 μM) and by the PDE2 inhibitors EHNA (10 μM) and Bay 60–7550 (50 nM). Surprisingly, sildenafil, a PDE5 inhibitor, produced a dose-dependent increase of ICNG activated by NO-donors but had no effect (at 100 nM) on the current elicited by ANP. Conclusions These results indicate that, in rat cardiomyocytes: i) the ‘particulate’ cGMP pool is readily accessible at the plasma membrane, while the ‘soluble’ pool is not; ii) PDE5 controls the ‘soluble’ but not the ‘particulate’ pool, whereas the latter is under the exclusive control of PDE2. Differential spatiotemporal distributions of cGMP may therefore contribute to the specific effects of natriuretic peptides and NO-donors on cardiac function. PMID:16651469

  3. Role of cyclic AMP in promoting the thromboresistance of human endothelial cells by enhancing thrombomodulin and decreasing tissue factor activities.

    PubMed Central

    Archipoff, G.; Beretz, A.; Bartha, K.; Brisson, C.; de la Salle, C.; Froget-Léon, C.; Klein-Soyer, C.; Cazenave, J. P.

    1993-01-01

    1. The effects of forskolin, prostaglandin E1 (PGE1), dibutyryl cyclic AMP (db cyclic AMP), dibutyryl cyclic GMP (db cyclic GMP) and 3-isobutyl-l-methyl-xanthine (IBMX) were investigated on the expression of tissue factor and thrombomodulin activities on the surface of human saphenous vein endothelial cells (HSVEC) in culture. 2. Forskolin (10(-6) to 10(-4) M), PGE1 (10(-7) to 10(-5) M) and db cyclic AMP (10(-4) to 10(-3) M) caused a concentration-dependent decrease of cytokine-induced tissue factor activity. 3. Similar concentrations of forskolin, PGE1 and db cyclic AMP enhanced significantly constitutive thrombomodulin activity and reversed the decrease of this activity caused by interleukin-1 (IL-1). 4. IBMX (10(-4) M) decreased tissue factor activity and enhanced the effect of forskolin on tissue factor and thrombomodulin activities. 5. Forskolin (10(-4) M) decreased the IL-1-induced tissue factor mRNA and increased the thrombomodulin mRNA level. IL-1 did not change the thrombomodulin mRNA level after 2 h of incubation with HSVEC in culture. 6. Dibutyryl cyclic GMP (10(-4) M to 10(-3) M) did not influence tissue factor or thrombomodulin activity. 7. Our data suggest that elevation of intracellular cyclic AMP levels may participate in the regulation of tissue factor and thrombomodulin expression, thus contributing to promote or restore antithrombotic properties of the endothelium. Images Figure 5 Figure 6 PMID:7684300

  4. Human monocyte killing of Staphylococcus aureus: modulation by agonists of cyclic adenosine 3',5'-monophosphate and cyclic guanosine 3',5'-monophosphate.

    PubMed Central

    O'Dorisio, M S; Vandenbark, G R; LoBuglio, A F

    1979-01-01

    This study was designed to test whether cyclic nucleotides play a role in the regulation of bacterial killing by human monocytes. Agents were tested for their ability to activate monocyte adenylate or guanylate cyclase in cell-free preparations, to increase cyclic adenosine 3',5'-monophosphate (cAMP) or cyclic guanosine 3',5'-monophosphate (cGMP) in intact human monocytes, and to modulate monocyte-induced killing of Staphylococcus aureus in vitro. Prostaglandin E1 and cholera toxin activated monocyte adenylate cyclase and inhibited monocyte killing of S. aureus. An adenylate cyclase inhibitor, RMI 12330A, reversed the prostaglandin E1-mediated inhibition of bacterial killing, thus implicating cAMP as the intracellular mediator of this inhibition. In contrast, monocyte cGMP levels were increased 5- and 17-fold by 5-hydroxytryptamine and N-methyl-N' -nitro-N-nitrosoguanidine, respectively, but neither agent was effective in modulating monocyte bactericidal activity. Thus, modulation of bactericidal activity in human monocytes did not conform to the yin/yang theory of opposing actions by cAMP and cGMP, for although monocyte-mediated killing of S. aureus was inhibited by cAMP agonists, it was not enhanced by cGMP agonists. PMID:44704

  5. C-di-GMP Regulates Motile to Sessile Transition by Modulating MshA Pili Biogenesis and Near-Surface Motility Behavior in Vibrio cholerae

    PubMed Central

    Jones, Christopher J.; Utada, Andrew; Davis, Kimberly R.; Thongsomboon, Wiriya; Zamorano Sanchez, David; Banakar, Vinita; Cegelski, Lynette; Wong, Gerard C. L.; Yildiz, Fitnat H.

    2015-01-01

    In many bacteria, including Vibrio cholerae, cyclic dimeric guanosine monophosphate (c-di-GMP) controls the motile to biofilm life style switch. Yet, little is known about how this occurs. In this study, we report that changes in c-di-GMP concentration impact the biosynthesis of the MshA pili, resulting in altered motility and biofilm phenotypes in V. cholerae. Previously, we reported that cdgJ encodes a c-di-GMP phosphodiesterase and a ΔcdgJ mutant has reduced motility and enhanced biofilm formation. Here we show that loss of the genes required for the mannose-sensitive hemagglutinin (MshA) pilus biogenesis restores motility in the ΔcdgJ mutant. Mutations of the predicted ATPase proteins mshE or pilT, responsible for polymerizing and depolymerizing MshA pili, impair near surface motility behavior and initial surface attachment dynamics. A ΔcdgJ mutant has enhanced surface attachment, while the ΔcdgJmshA mutant phenocopies the high motility and low attachment phenotypes observed in a ΔmshA strain. Elevated concentrations of c-di-GMP enhance surface MshA pilus production. MshE, but not PilT binds c-di-GMP directly, establishing a mechanism for c-di-GMP signaling input in MshA pilus production. Collectively, our results suggest that the dynamic nature of the MshA pilus established by the assembly and disassembly of pilin subunits is essential for transition from the motile to sessile lifestyle and that c-di-GMP affects MshA pilus assembly and function through direct interactions with the MshE ATPase. PMID:26505896

  6. C-di-GMP Regulates Motile to Sessile Transition by Modulating MshA Pili Biogenesis and Near-Surface Motility Behavior in Vibrio cholerae.

    PubMed

    Jones, Christopher J; Utada, Andrew; Davis, Kimberly R; Thongsomboon, Wiriya; Zamorano Sanchez, David; Banakar, Vinita; Cegelski, Lynette; Wong, Gerard C L; Yildiz, Fitnat H

    2015-10-01

    In many bacteria, including Vibrio cholerae, cyclic dimeric guanosine monophosphate (c-di-GMP) controls the motile to biofilm life style switch. Yet, little is known about how this occurs. In this study, we report that changes in c-di-GMP concentration impact the biosynthesis of the MshA pili, resulting in altered motility and biofilm phenotypes in V. cholerae. Previously, we reported that cdgJ encodes a c-di-GMP phosphodiesterase and a ΔcdgJ mutant has reduced motility and enhanced biofilm formation. Here we show that loss of the genes required for the mannose-sensitive hemagglutinin (MshA) pilus biogenesis restores motility in the ΔcdgJ mutant. Mutations of the predicted ATPase proteins mshE or pilT, responsible for polymerizing and depolymerizing MshA pili, impair near surface motility behavior and initial surface attachment dynamics. A ΔcdgJ mutant has enhanced surface attachment, while the ΔcdgJmshA mutant phenocopies the high motility and low attachment phenotypes observed in a ΔmshA strain. Elevated concentrations of c-di-GMP enhance surface MshA pilus production. MshE, but not PilT binds c-di-GMP directly, establishing a mechanism for c-di-GMP signaling input in MshA pilus production. Collectively, our results suggest that the dynamic nature of the MshA pilus established by the assembly and disassembly of pilin subunits is essential for transition from the motile to sessile lifestyle and that c-di-GMP affects MshA pilus assembly and function through direct interactions with the MshE ATPase. PMID:26505896

  7. Nitric oxide augments single Ca(2+) channel currents via cGMP-dependent protein kinase in Kenyon cells isolated from the mushroom body of the cricket brain.

    PubMed

    Kosakai, Kumiko; Tsujiuchi, Yuuki; Yoshino, Masami

    2015-07-01

    Behavioral and pharmacological studies in insects have suggested that the nitric oxide (NO)/cyclic GMP (cGMP) signaling pathway is involved in the formation of long-term memory (LTM) associated with olfactory learning. However, the target molecules of NO and the downstream signaling pathway are still not known. In this study, we investigated the action of NO on single voltage-dependent Ca(2+) channels in the intrinsic neurons known as Kenyon cells within the mushroom body of the cricket brain, using the cell-attached configuration of the patch-clamp technique. Application of the NO donor S-nitrosoglutathione (GSNO) increased the open probability (NPO) of single Ca(2+) channel currents. This GSNO-induced increase was blocked by ODQ, a soluble guanylate cyclase (sGC) inhibitor, suggesting that the NO generated by GSNO acts via sGC to raise cGMP levels. The membrane-permeable cGMP analog 8-Bro-cGMP also increased the NPO of single Ca(2+) channel currents. Pretreatment of cells with KT5823, a protein kinase G blocker, abolished the excitatory effect of GSNO. These results suggest that NO augments the activity of single Ca(2+) channels via the cGMP/PKG signaling pathway. To gain insight into the physiological role of NO, we examined the effect of GSNO on action potentials of Kenyon cells under current-clamp conditions. Application of GSNO increased the frequency of action potentials elicited by depolarizing current injections, indicating that NO acts as a modulator resulting in a stimulatory signal in Kenyon cells. We discuss the increased Ca(2+) influx through these Ca(2+) channels via the NO/cGMP signaling cascade in relation to the formation of olfactory LTM. PMID:25934217

  8. Sterile devices: A GMP (Good Manufacturing Practices) workshop manual

    NASA Astrophysics Data System (ADS)

    Derision, R.; Lower, A.; Bimonte, R.

    1983-05-01

    The manual, which covers GMPs for sterilization processes, presents model procedures and forms as well as a variety of articles and reprints. It is a compilation of GMP materials that small device firms may find useful in understanding how some manufacturers have successfully compiled with the GMP requirements as they apply to the manufacture of sterile devices.

  9. Genetic Dissection of the Regulatory Network Associated with High c-di-GMP Levels in Pseudomonas putida KT2440

    PubMed Central

    Ramos-González, María Isabel; Travieso, María L.; Soriano, María I.; Matilla, Miguel A.; Huertas-Rosales, Óscar; Barrientos-Moreno, Laura; Tagua, Víctor G.; Espinosa-Urgel, Manuel

    2016-01-01

    Most bacteria grow in nature forming multicellular structures named biofilms. The bacterial second messenger cyclic diguanosine monophosphate (c-di-GMP) is a key player in the regulation of the transition from planktonic to sessile lifestyles and this regulation is crucial in the development of biofilms. In Pseudomonas putida KT2440, Rup4959, a multidomain response regulator with diguanylate cyclase activity, when overexpressed causes an increment in the intracellular levels of c-di-GMP that gives rise to a pleiotropic phenotype consisting of increased biofilm formation and crinkly colony morphology. In a broad genomic screen we have isolated mutant derivatives that lose the crinkly morphology, designed as cfc (crinkle free colony). A total of 19 different genes have been identified as being related with the emergence of the cfc phenotype either because the expression or functionality of Rup4959 is compromised, or due to a lack of transduction of the c-di-GMP signal to downstream elements involved in the acquisition of the phenotype. Discernment between these possibilities was investigated by using a c-di-GMP biosensor and by HPLC-MS quantification of the second messenger. Interestingly five of the identified genes encode proteins with AAA+ ATPase domain. Among the bacterial determinants found in this screen are the global transcriptional regulators GacA, AlgU and FleQ and two enzymes involved in the arginine biosynthesis pathway. We present evidences that this pathway seems to be an important element to both the availability of the free pool of the second messenger c-di-GMP and to its further transduction as a signal for biosynthesis of biopolimers. In addition we have identified an uncharacterized hybrid sensor histidine kinase whose phosphoaceptor conserved histidine residue has been shown in this work to be required for in vivo activation of the orphan response regulator Rup4959, which suggests these two elements constitute a two-component phosphorelay system

  10. Genetic Dissection of the Regulatory Network Associated with High c-di-GMP Levels in Pseudomonas putida KT2440.

    PubMed

    Ramos-González, María Isabel; Travieso, María L; Soriano, María I; Matilla, Miguel A; Huertas-Rosales, Óscar; Barrientos-Moreno, Laura; Tagua, Víctor G; Espinosa-Urgel, Manuel

    2016-01-01

    Most bacteria grow in nature forming multicellular structures named biofilms. The bacterial second messenger cyclic diguanosine monophosphate (c-di-GMP) is a key player in the regulation of the transition from planktonic to sessile lifestyles and this regulation is crucial in the development of biofilms. In Pseudomonas putida KT2440, Rup4959, a multidomain response regulator with diguanylate cyclase activity, when overexpressed causes an increment in the intracellular levels of c-di-GMP that gives rise to a pleiotropic phenotype consisting of increased biofilm formation and crinkly colony morphology. In a broad genomic screen we have isolated mutant derivatives that lose the crinkly morphology, designed as cfc (crinkle free colony). A total of 19 different genes have been identified as being related with the emergence of the cfc phenotype either because the expression or functionality of Rup4959 is compromised, or due to a lack of transduction of the c-di-GMP signal to downstream elements involved in the acquisition of the phenotype. Discernment between these possibilities was investigated by using a c-di-GMP biosensor and by HPLC-MS quantification of the second messenger. Interestingly five of the identified genes encode proteins with AAA+ ATPase domain. Among the bacterial determinants found in this screen are the global transcriptional regulators GacA, AlgU and FleQ and two enzymes involved in the arginine biosynthesis pathway. We present evidences that this pathway seems to be an important element to both the availability of the free pool of the second messenger c-di-GMP and to its further transduction as a signal for biosynthesis of biopolimers. In addition we have identified an uncharacterized hybrid sensor histidine kinase whose phosphoaceptor conserved histidine residue has been shown in this work to be required for in vivo activation of the orphan response regulator Rup4959, which suggests these two elements constitute a two-component phosphorelay system

  11. Cyclic nucleotide phosphodiesterases in heart and vessels: A therapeutic perspective.

    PubMed

    Bobin, Pierre; Belacel-Ouari, Milia; Bedioune, Ibrahim; Zhang, Liang; Leroy, Jérôme; Leblais, Véronique; Fischmeister, Rodolphe; Vandecasteele, Grégoire

    2016-01-01

    Cyclic nucleotide phosphodiesterases (PDEs) degrade the second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), thereby regulating multiple aspects of cardiac and vascular muscle functions. This highly diverse class of enzymes encoded by 21 genes encompasses 11 families that are not only responsible for the termination of cyclic nucleotide signalling, but are also involved in the generation of dynamic microdomains of cAMP and cGMP, controlling specific cell functions in response to various neurohormonal stimuli. In the myocardium and vascular smooth muscle, the PDE3 and PDE4 families predominate, degrading cAMP and thereby regulating cardiac excitation-contraction coupling and smooth muscle contractile tone. PDE3 inhibitors are positive inotropes and vasodilators in humans, but their use is limited to acute heart failure and intermittent claudication. PDE5 is particularly important for the degradation of cGMP in vascular smooth muscle, and PDE5 inhibitors are used to treat erectile dysfunction and pulmonary hypertension. There is experimental evidence that these PDEs, as well as other PDE families, including PDE1, PDE2 and PDE9, may play important roles in cardiac diseases, such as hypertrophy and heart failure, as well as several vascular diseases. After a brief presentation of the cyclic nucleotide pathways in cardiac and vascular cells, and the major characteristics of the PDE superfamily, this review will focus on the current use of PDE inhibitors in cardiovascular diseases, and the recent research developments that could lead to better exploitation of the therapeutic potential of these enzymes in the future. PMID:27184830

  12. A synthetic cGMP-sensitive gene switch providing Viagra(®)-controlled gene expression in mammalian cells and mice.

    PubMed

    Kim, Taeuk; Folcher, Marc; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2015-05-01

    Cyclic guanosine monophosphate (cGMP) is a universal second messenger that is synthesized from guanosine triphosphate (GTP) by guanylyl cyclases (GCs) and hydrolyzed into guanosine monophosphate (GMP) by phosphodiesterases (PDEs). Small-molecule drugs that induce high cGMP levels in specialized tissues by boosting GC activity or inhibiting PDE activity have become the predominant treatment strategy for a wide range of medical conditions, including congestive heart failure, pulmonary hypertension, atherosclerosis-based claudication and erectile dysfunction. By fusing the cGMP receptor protein (CRP) of Rhodospirillum centenum to the Herpes simplex-derived transactivation domain VP16, we created a novel synthetic mammalian cGMP-sensing transcription factor (GTA) that activates synthetic promoters (PGTA) containing newly identified GTA-specific operator sites in a concentration-dependent manner. In cell lines expressing endogenous natriuretic peptide receptor A (NPR-A) (HeLa), GTA/PGTA-driven transgene expression was induced by B-type natriuretic peptide (BNP; Nesiritide(®)) in a concentration-dependent manner, which activated NPR-A׳s intracellular GC domain and triggered a corresponding cGMP surge. Ectopic expression of NPR-A in NPR-A-negative cell lines (HEK-293T) produced high cGMP levels and mediated maximum GTA/PGTA-driven transgene expression, which was suppressed by co-expression of PDEs (PDE-3A, PDE-5A and PDE-9A) and was re-triggered by the corresponding PDE inhibitor drugs (Pletal(®), Perfan(®), Primacor(®) (PDE-3A), Viagra(®), Levitra(®), Cialis(®) (PDE-5A) and BAY73-6691 (PDE-9A)). Mice implanted with microencapsulated designer cells co-expressing the GTA/PGTA device with NPR-A and PDE-5A showed control of blood SEAP levels through administration of sildenafil (Viagra(®)). Designer cells engineered for PDE inhibitor-modulated transgene expression may provide a cell-based PDE-targeting drug discovery platform and enable drug-adjusted gene- and cell

  13. The Structural Basis of Cyclic Diguanylate Signal Transduction by PilZ Domains

    SciTech Connect

    Benach,J.; Swaminathan, S.; Tamayo, R.; Handelman, S.; Folta-Stogniew, E.; Ramos, J.; Forouhar, F.; Neely, H.; Seetharaman, J.; et al

    2007-01-01

    The second messenger cyclic diguanylate (c-di-GMP) controls the transition between motile and sessile growth in eubacteria, but little is known about the proteins that sense its concentration. Bioinformatics analyses suggested that PilZ domains bind c-di-GMP and allosterically modulate effector pathways. We have determined a 1.9 Angstroms crystal structure of c-di-GMP bound to VCA0042/PlzD, a PilZ domain-containing protein from Vibrio cholerae. Either this protein or another specific PilZ domain-containing protein is required for V. cholerae to efficiently infect mice. VCA0042/PlzD comprises a C-terminal PilZ domain plus an N-terminal domain with a similar beta-barrel fold. C-di-GMP contacts seven of the nine strongly conserved residues in the PilZ domain, including three in a seven-residue long N-terminal loop that undergoes a conformational switch as it wraps around c-di-GMP. This switch brings the PilZ domain into close apposition with the N-terminal domain, forming a new allosteric interaction surface that spans these domains and the c-di-GMP at their interface. The very small size of the N-terminal conformational switch is likely to explain the facile evolutionary diversification of the PilZ domain.

  14. [Cyclic Guanosine Monophosphate as a Mediator in Processes of Stress Signaling Transduction in Higher Plants].

    PubMed

    Dubovskaya, L V; Bakakina, Y S; Volotovski, I D

    2015-01-01

    Currently, biophysical mechanisms of stress signaling transduction became an object of consideration of researchers in connection with the urgent necessity to develop new techniques to enhance the sustainability and productivity of agricultural crops. The development of sensitive methods for the determination of cyclic guanosine monophosphate (cGMP) and comparative analysis of cGMP-dependent events in biological systems has contributed to progress in the understanding of the functioning of cGMP in plant cells. Currently, it is shown that cGMP as a secondary mediator is involved in such vital processes of growth and development of plants as seed germination, cell division, development of chloroplasts, flowering and regulation of stomatal movements. This review summarizes the available data in the literature about the role of cGMP in the responses of plant organisms to the action of stress factors of abiotic and biotic nature and its interaction with other intracellular mediators. With the use of existing ideas about the biophysical mechanisms of stress in plants, the basic elements of cGMP-dependent signal transduction system in a plant cell are considered. PMID:26394467

  15. Heme oxygenase-1 is involved in nitric oxide- and cGMP-induced α-Amy2/54 gene expression in GA-treated wheat aleurone layers.

    PubMed

    Wu, Mingzhu; Wang, Fangquan; Zhang, Chen; Xie, Yanjie; Han, Bin; Huang, Jingjing; Shen, Wenbiao

    2013-01-01

    Here, α-Amy2/54 gene expression was used as a molecular probe to investigate the interrelationship among nitric oxide (NO), cyclic GMP (cGMP), and heme oxygenase-1 (HO-1) in GA-treated wheat aleurone layers. The inducible expressions of α-Amy2/54 and α-amylase activity were respectively amplified by two NO-releasing compounds, sodium nitroprusside (SNP) and spermine NONOate, in a GA-dependent fashion. Similar responses were observed when an inducer of HO-1, hemin-or one of its catalytic products, carbon monoxide (CO) in aqueous solution-was respectively added. The SNP-induced responses, mimicked by 8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP), a cGMP derivative, were NO-dependent. This conclusion was supported by the fact that endogenous NO overproduction was rapidly induced by SNP, and thereafter induction of α-Amy2/54 gene expression and increased α-amylase activity were sensitive to the NO scavenger. We further observed that the above induction triggered by SNP and 8-Br-cGMP was partially prevented by zinc protoporphyrin IX (ZnPPIX), an inhibitor of HO-1. These blocking effects were clearly reversed by CO, confirming that the above response was HO-1-specific. Further analyses showed that both SNP and 8-Br-cGMP rapidly up-regulated HO-1 gene expression and increased HO activity, and SNP responses were sensitive to cPTIO and the guanylate cyclase inhibitor 6-anilino-5,8-quinolinedione (LY83583). Molecular evidence confirmed that GA-induced GAMYB and ABA-triggered PKABA1 transcripts were up-regulated or down-regulated by SNP, 8-Br-cGMP or CO cotreated with GA. Contrasting changes were observed when cPTIO, LY83583, or ZnPPIX was added. Together, our results suggested that HO-1 is involved in NO- and cGMP-induced α-Amy2/54 gene expression in GA-treated aleurone layers. PMID:23090695

  16. PDE2-mediated cAMP hydrolysis accelerates cardiac fibroblast to myofibroblast conversion and is antagonized by exogenous activation of cGMP signaling pathways.

    PubMed

    Vettel, C; Lämmle, S; Ewens, S; Cervirgen, C; Emons, J; Ongherth, A; Dewenter, M; Lindner, D; Westermann, D; Nikolaev, V O; Lutz, S; Zimmermann, W H; El-Armouche, A

    2014-04-15

    Recent studies suggest that the signal molecules cAMP and cGMP have antifibrotic effects by negatively regulating pathways associated with fibroblast to myofibroblast (MyoCF) conversion. The phosphodiesterase 2 (PDE2) has the unique property to be stimulated by cGMP, which leads to a remarkable increase in cAMP hydrolysis and thus mediates a negative cross-talk between both pathways. PDE2 has been recently investigated in cardiomyocytes; here we specifically addressed its role in fibroblast conversion and cardiac fibrosis. PDE2 is abundantly expressed in both neonatal rat cardiac fibroblasts (CFs) and cardiomyocytes. The overexpression of PDE2 in CFs strongly reduced basal and isoprenaline-induced cAMP synthesis, and this decrease was sufficient to induce MyoCF conversion even in the absence of exogenous profibrotic stimuli. Functional stress-strain experiments with fibroblast-derived engineered connective tissue (ECT) demonstrated higher stiffness in ECTs overexpressing PDE2. In regard to cGMP, neither basal nor atrial natriuretic peptide-induced cGMP levels were affected by PDE2, whereas the response to nitric oxide donor sodium nitroprusside was slightly but significantly reduced. Interestingly, despite persistently depressed cAMP levels, both cGMP-elevating stimuli were able to completely prevent the PDE2-induced MyoCF phenotype, arguing for a double-tracked mechanism. In conclusion, PDE2 accelerates CF to MyoCF conversion, which leads to greater stiffness in ECTs. Atrial natriuretic peptide- and sodium nitroprusside-mediated cGMP synthesis completely reverses PDE2-induced fibroblast conversion. Thus PDE2 may augment cardiac remodeling, but this effect can also be overcome by enhanced cGMP. The redundant role of cAMP and cGMP as antifibrotic meditators may be viewed as a protective mechanism in heart failure. PMID:24531807

  17. Structural Basis of Differential Ligand Recognition by Two Classes of bis-(3-5)-cyclic Dimeric Guanosine Monophosphate-binding Riboswitches

    SciTech Connect

    K Smith; C Shanahan; E Moore; A Simon; S Strobel

    2011-12-31

    The bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) signaling pathway regulates biofilm formation, virulence, and other processes in many bacterial species and is critical for their survival. Two classes of c-di-GMP-binding riboswitches have been discovered that bind this second messenger with high affinity and regulate diverse downstream genes, underscoring the importance of RNA receptors in this pathway. We have solved the structure of a c-di-GMP-II riboswitch, which reveals that the ligand is bound as part of a triplex formed with a pseudoknot. The structure also shows that the guanine bases of c-di-GMP are recognized through noncanonical pairings and that the phosphodiester backbone is not contacted by the RNA. Recognition is quite different from that observed in the c-di-GMP-I riboswitch, demonstrating that at least two independent solutions for RNA second messenger binding have evolved. We exploited these differences to design a c-di-GMP analog that selectively binds the c-di-GMP-II aptamer over the c-di-GMP-I RNA. There are several bacterial species that contain both types of riboswitches, and this approach holds promise as an important tool for targeting one riboswitch, and thus one gene, over another in a selective fashion.

  18. Facilitation of corticostriatal transmission following pharmacological inhibition of striatal phosphodiesterase 10A: role of nitric oxide-soluble guanylyl cyclase-cGMP signaling pathways.

    PubMed

    Padovan-Neto, Fernando E; Sammut, Stephen; Chakroborty, Shreaya; Dec, Alexander M; Threlfell, Sarah; Campbell, Peter W; Mudrakola, Vishnu; Harms, John F; Schmidt, Christopher J; West, Anthony R

    2015-04-01

    The striatum contains a rich variety of cyclic nucleotide phosphodiesterases (PDEs), which play a critical role in the regulation of cAMP and cGMP signaling. The dual-substrate enzyme PDE10A is the most highly expressed PDE in striatal medium-sized spiny neurons (MSNs) with low micromolar affinity for both cyclic nucleotides. Previously, we have shown that systemic and local administration of the selective PDE10A inhibitor TP-10 potently increased the responsiveness of MSNs to cortical stimulation. However, the signaling mechanisms underlying PDE10A inhibitor-induced changes in corticostriatal transmission are only partially understood. The current studies assessed the respective roles of cAMP and cGMP in the above effects using soluble guanylyl cyclase (sGC) or adenylate cyclase (AC) specific inhibitors. Cortically evoked spike activity was monitored in urethane-anesthetized rats using in vivo extracellular recordings performed proximal to a microdialysis probe during local infusion of vehicle, the selective sGC inhibitor ODQ, or the selective AC inhibitor SQ 22536. Systemic administration of TP-10 (3.2 mg/kg) robustly increased cortically evoked spike activity in a manner that was blocked following intrastriatal infusion of ODQ (50 μm). The effects of TP-10 on evoked activity were due to accumulation of cGMP, rather than cAMP, as the AC inhibitor SQ was without effect. Consistent with these observations, studies in neuronal NO synthase (nNOS) knock-out (KO) mice confirmed that PDE10A operates downstream of nNOS to limit cGMP production and excitatory corticostriatal transmission. Thus, stimulation of PDE10A acts to attenuate corticostriatal transmission in a manner largely dependent on effects directed at the NO-sGC-cGMP signaling cascade. PMID:25855188

  19. Homologs of the LapD-LapG c-di-GMP Effector System Control Biofilm Formation by Bordetella bronchiseptica

    PubMed Central

    Ambrosis, Nicolás; Boyd, Chelsea D.; O´Toole, George A.; Fernández, Julieta; Sisti, Federico

    2016-01-01

    Biofilm formation is important for infection by many pathogens. Bordetella bronchiseptica causes respiratory tract infections in mammals and forms biofilm structures in nasal epithelium of infected mice. We previously demonstrated that cyclic di-GMP is involved in biofilm formation in B. bronchiseptica. In the present work, based on their previously reported function in Pseudomonas fluorescens, we identified three genes in the B. bronchiseptica genome likely involved in c-di-GMP-dependent biofilm formation: brtA, lapD and lapG. Genetic analysis confirmed a role for BrtA, LapD and LapG in biofilm formation using microtiter plate assays, as well as scanning electron and fluorescent microscopy to analyze the phenotypes of mutants lacking these proteins. In vitro and in vivo studies showed that the protease LapG of B. bronchiseptica cleaves the N-terminal domain of BrtA, as well as the LapA protein of P. fluorescens, indicating functional conservation between these species. Furthermore, while BrtA and LapG appear to have little or no impact on colonization in a mouse model of infection, a B. bronchiseptica strain lacking the LapG protease has a significantly higher rate of inducing a severe disease outcome compared to the wild type. These findings support a role for c-di-GMP acting through BrtA/LapD/LapG to modulate biofilm formation, as well as impact pathogenesis, by B. bronchiseptica PMID:27380521

  20. Procyanidin C1 Causes Vasorelaxation Through Activation of the Endothelial NO/cGMP Pathway in Thoracic Aortic Rings

    PubMed Central

    Byun, Eui-Baek; Sung, Nak-Yun; Yang, Mi-So; Song, Du-Sup; Byun, Eui-Hong; Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Lee, Ju-Woon; Park, Sang-Hyun; Byun, Myung-Woo

    2014-01-01

    Abstract The aim of this study was to clarify the efficacy of procyanidin C1 (Pro C1) for modulating vascular tone. Pro C1 induced a potent vasorelaxant effect on phenylephrine-constricted endothelium-intact thoracic aortic rings, but had no effect on denuded thoracic aortic rings. Moreover, Pro C1 caused a significant increase in nitric oxide (NO) production in endothelial cells. Pro C1-induced vasorelaxation and Pro C1-induced NO production were significantly decreased in the presence of a nonspecific potassium channel blocker (tetraethylammonium chloride [TEA]), an endothelial NO synthase inhibitor (NG-monomethyl-L-arginine [L-NMMA]), and a store-operated calcium entry inhibitor (2-aminoethyl diphenylborinate [2-APB]). Pro C1-induced vasorelaxation was also completely abolished by an inhibitor of soluble guanyl cyclase, which suggests that the Pro C1 effects observed involved cyclic guanosine monophosphate (cGMP) production. Interestingly, Pro C1 significantly enhanced basal cGMP levels. Taken together, these results indicate that Pro C1-induced vasorelaxation is associated with the activation of the calcium-dependent NO/cGMP pathway, involving potassium channel activation. Thus, Pro C1 may represent a novel and potentially therapeutically relevant compound for the treatment of cardiovascular diseases. PMID:24971771

  1. Procyanidin C1 causes vasorelaxation through activation of the endothelial NO/cGMP pathway in thoracic aortic rings.

    PubMed

    Byun, Eui-Baek; Sung, Nak-Yun; Yang, Mi-So; Song, Du-Sup; Byun, Eui-Hong; Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Lee, Ju-Woon; Park, Sang-Hyun; Byun, Myung-Woo; Kim, Jae-Hun

    2014-07-01

    The aim of this study was to clarify the efficacy of procyanidin C1 (Pro C1) for modulating vascular tone. Pro C1 induced a potent vasorelaxant effect on phenylephrine-constricted endothelium-intact thoracic aortic rings, but had no effect on denuded thoracic aortic rings. Moreover, Pro C1 caused a significant increase in nitric oxide (NO) production in endothelial cells. Pro C1-induced vasorelaxation and Pro C1-induced NO production were significantly decreased in the presence of a nonspecific potassium channel blocker (tetraethylammonium chloride [TEA]), an endothelial NO synthase inhibitor (N(G)-monomethyl-L-arginine [L-NMMA]), and a store-operated calcium entry inhibitor (2-aminoethyl diphenylborinate [2-APB]). Pro C1-induced vasorelaxation was also completely abolished by an inhibitor of soluble guanyl cyclase, which suggests that the Pro C1 effects observed involved cyclic guanosine monophosphate (cGMP) production. Interestingly, Pro C1 significantly enhanced basal cGMP levels. Taken together, these results indicate that Pro C1-induced vasorelaxation is associated with the activation of the calcium-dependent NO/cGMP pathway, involving potassium channel activation. Thus, Pro C1 may represent a novel and potentially therapeutically relevant compound for the treatment of cardiovascular diseases. PMID:24971771

  2. Nitric oxide attenuates matrix metalloproteinase-9 production by endothelial cells independent of cGMP- or NFκB-mediated mechanisms.

    PubMed

    Meschiari, Cesar A; Izidoro-Toledo, Tatiane; Gerlach, Raquel F; Tanus-Santos, Jose E

    2013-06-01

    Cardiovascular diseases involve critical mechanisms including impaired nitric oxide (NO) levels and abnormal matrix metalloproteinase (MMP) activity. While NO downregulates MMP expression in some cell types, no previous study has examined whether NO downregulates MMP levels in endothelial cells. We hypothesized that NO donors could attenuate MMP-9 production by human umbilical vein endothelial cells (HUVECs) as a result of less NFκB activation or cyclic GMP (cGMP)-mediated mechanisms. We studied the effects of DetaNONOate (10-400 μM) or SNAP (50-400 μM) on phorbol 12-myristate 13-acetate (PMA; 10 nM)-induced increases in MMP-9 activity (by gel zymography) or concentrations (by ELISA) as well as on a tissue inhibitor of MMPs' (TIMP)-1 concentrations (by ELISA) in the conditioned medium of HUVECs incubated for 24 h with these drugs. We also examined whether the irreversible inhibitor of soluble guanylyl cyclase ODQ modified the effects of SNAP or whether 8-bromo-cGMP (a cell-permeable analog of cGMP) influenced PMA-induced effects on MMP-9 expression. Total and phospho-NFκB p65 concentrations were measured in HUVEC lysates to assess NFκB activation. Both NO donors attenuated PMA-induced increases in MMP-9 activity and concentrations without significantly affecting TIMP-1 concentrations. This effect was not modified by ODQ, and 8-bromo-cGMP did not affect MMP-9 concentrations. While PMA increased phospho-NFκB p65 concentrations, SNAP had no influence on this effect. In conclusion, this study shows that NO donors may attenuate imbalanced MMP expression and activity in endothelial cells independent of cGMP- or NFκB-mediated mechanisms. Our results may offer an important pharmacological strategy to approach cardiovascular diseases. PMID:23456480

  3. Analysis of nitric oxide-cyclic guanosine monophosphate signaling during metamorphosis of the nudibranch Phestilla sibogae Bergh (Gastropoda: Opisthobranchia)

    PubMed Central

    Bishop, Cory D.; Pires, Anthony; Norby, Shong-Wan; Boudko, Dmitri; Moroz, Leonid L.; Hadfield, Michael G.

    2014-01-01

    SUMMARY The gas nitric oxide (NO), and in some cases its downstream second messenger, cyclic guanosine monophosphate (cGMP) function in different taxa to regulate the timing of life-history transitions. Increased taxonomic sampling is required to foster conclusions about the evolution and function of NO/cGMP signaling during life-history transitions. We report on the function and localization of NO and cGMP signaling during metamorphosis of the nudibranch Phestilla sibogae. Pharmacological manipulation of NO or cGMP production in larvae modulated responses to a natural settlement cue from the coral Porites compressa in a manner that suggest inhibitory function for NO/cGMP signaling. However, these treatments were not sufficient to induce metamorphosis in the absence of cue, a result unique to this animal. We show that induction of metamorphosis in response to the settlement cue is associated with a reduction in NO production. We documented the expression of putative NO synthase (NOS) and the production of cGMP during larval development and observed no larval cells in which NOS and cGMP were both detected. The production of cGMP in a bilaterally symmetrical group of cells fated to occupy the distal tip of rhinophores is correlated with competence to respond to the coral settlement cue. These results suggest that endogenous NO and cGMP are involved in modulating responses of P. sibogae to a natural settlement cue. We discuss these results with respect to habitat selection and larval ecology. PMID:18460091

  4. Hydrolysis of N-methyl-D-aspartate receptor-stimulated cAMP and cGMP by PDE4 and PDE2 phosphodiesterases in primary neuronal cultures of rat cerebral cortex and hippocampus.

    PubMed

    Suvarna, Neesha U; O'Donnell, James M

    2002-07-01

    Stimulation of N-methyl-D-aspartate (NMDA) receptors on neurons activates both cAMP and cGMP signaling pathways. Experiments were carried out to determine which phosphodiesterase (PDE) families are involved in the hydrolysis of the cyclic nucleotides formed via this mechanism, using primary neuronal cultures prepared from rat cerebral cortex and hippocampus. The nonselective PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX) potentiated the ability of NMDA to increase cAMP and cGMP. However, among the family-selective inhibitors, only the PDE4 inhibitor rolipram enhanced the ability of NMDA to increase cAMP in the neurons. In contrast, only the PDE2 inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA) enhanced the ability of NMDA to increase cGMP. Neither adenosine nor an adenosine deaminase inhibitor mimicked the effect of EHNA; this suggests that EHNA's inhibition of PDE2, not its effects on adenosine metabolism, mediates its effects on NMDA-stimulated cGMP concentrations. The PDE inhibitor-augmented effects of NMDA on cAMP and cGMP formation were antagonized by 5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine maleate (MK-801), verifying NMDA receptor mediation. In contrast, only NMDA-mediated cGMP formation was affected by altering either nitric oxide signaling or guanylyl cyclase; this suggests that NMDA-induced changes in cAMP are not secondary to altered cGMP concentrations. Overall, the present findings indicate that cAMP and cGMP formed in neurons as a result of NMDA receptor stimulation are hydrolyzed by PDE4 and PDE2, respectively. Selective inhibitors of the two PDE families will differentially affect the functional consequences of activation of these two signaling pathways by NMDA receptor stimulation. PMID:12065724

  5. Differential effects of chronic hyperammonemia on modulation of the glutamate-nitric oxide-cGMP pathway by metabotropic glutamate receptor 5 and low and high affinity AMPA receptors in cerebellum in vivo.

    PubMed

    Cabrera-Pastor, Andrea; Llansola, Marta; Reznikov, Vitaliy; Boix, Jordi; Felipo, Vicente

    2012-07-01

    Previous studies show that chronic hyperammonemia impairs learning ability of rats by impairing the glutamate-nitric oxide (NO)-cyclic guanosine mono-phosphate (cGMP) pathway in cerebellum. Three types of glutamate receptors cooperate in modulating the NO-cGMP pathway: metabotropic glutamate receptor 5 (mGluR5), (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartic acid (NMDA) receptors. The aim of this work was to assess whether hyperammonemia alters the modulation of this pathway by mGluR5 and AMPA receptors in cerebellum in vivo. The results support that in control rats: (1) low AMPA concentrations (0.1mM) activate nearly completely Ca(2+)-permeable (glutamate receptor subunit 2 (GluR2)-lacking) AMPA receptors and the NO-cGMP pathway; (2) higher AMPA concentrations (0.3 mM) also activate Ca(2+)-impermeable (GluR2-containing) AMPA receptors, leading to activation of NMDA receptors and of NO-cGMP pathway. Moreover, the data support that chronic hyperammonemia: (1) reduces glutamate release and activation of the glutamate-NO-cGMP pathway by activation of mGluR5; (2) strongly reduces the direct activation by AMPA receptors of the NO-cGMP pathway, likely due to reduced entry of Ca(2+) through GluR2-lacking, high affinity AMPA receptors; (3) strongly increases the indirect activation of the NO-cGMP pathway by high affinity AMPA receptors, likely due to increased entry of Na(+) through GluR2-lacking AMPA receptors and NMDA receptors activation; (4) reduces the indirect activation of the NO-cGMP pathway by low affinity AMPA receptors, likely due to reduced activation of NMDA receptors. PMID:22521775

  6. 40 CFR 721.3440 - Haloalkyl substituted cyclic ethers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Haloalkyl substituted cyclic ethers... Substances § 721.3440 Haloalkyl substituted cyclic ethers. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances haloalkyl substituted cyclic ethers (PMN P-85-368 and...

  7. 40 CFR 721.3440 - Haloalkyl substituted cyclic ethers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Haloalkyl substituted cyclic ethers... Substances § 721.3440 Haloalkyl substituted cyclic ethers. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances haloalkyl substituted cyclic ethers (PMN P-85-368 and...

  8. Single Nucleotide Polymorphisms of Human STING Can Affect Innate Immune Response to Cyclic Dinucleotides

    PubMed Central

    Yi, Guanghui; Brendel, Volker P.; Shu, Chang; Li, Pingwei; Palanathan, Satheesh; Cheng Kao, C.

    2013-01-01

    The STING (stimulator of interferon genes) protein can bind cyclic dinucleotides to activate the production of type I interferons and inflammatory cytokines. The cyclic dinucleotides can be bacterial second messengers c-di-GMP and c-di-AMP, 3’5’-3’5’ cyclic GMP-AMP (3’3’ cGAMP) produced by Vibrio cholerae and metazoan second messenger 2’5’-3’5’ Cyclic GMP-AMP (2’3’ cGAMP). Analysis of single nucleotide polymorphism (SNP) data from the 1000 Genome Project revealed that R71H-G230A-R293Q (HAQ) occurs in 20.4%, R232H in 13.7%, G230A-R293Q (AQ) in 5.2%, and R293Q in 1.5% of human population. In the absence of exogenous ligands, the R232H, R293Q and AQ SNPs had only modest effect on the stimulation of IFN-β and NF-κB promoter activities in HEK293T cells, while HAQ had significantly lower intrinsic activity. The decrease was primarily due to the R71H substitution. The SNPs also affected the response to the cyclic dinucleotides. In the presence of c-di-GMP, the R232H variant partially decreased the ability to activate IFN-βsignaling, while it was defective for the response to c-di-AMP and 3’3’ cGAMP. The R293Q dramatically decreased the stimulatory response to all bacterial ligands. Surprisingly, the AQ and HAQ variants maintained partial abilities to activate the IFN-β signaling in the presence of ligands due primarily to the G230A substitution. Biochemical analysis revealed that the recombinant G230A protein could affect the conformation of the C-terminal domain of STING and the binding to c-di-GMP. Comparison of G230A structure with that of WT revealed that the conformation of the lid region that clamps onto the c-di-GMP was significantly altered. These results suggest that hSTING variation can affect innate immune signaling and that the common HAQ haplotype expresses a STING protein with reduced intrinsic signaling activity but retained the ability to response to bacterial cyclic dinucleotides. PMID:24204993

  9. High levels of cyclic‐di‐GMP in plant‐associated P seudomonas correlate with evasion of plant immunity

    PubMed Central

    Pfeilmeier, Sebastian; Saur, Isabel Marie‐Luise; Rathjen, John Paul; Zipfel, Cyril

    2015-01-01

    Summary The plant innate immune system employs plasma membrane‐localized receptors that specifically perceive pathogen/microbe‐associated molecular patterns (PAMPs/MAMPs). This induces a defence response called pattern‐triggered immunity (PTI) to fend off pathogen attack. Commensal bacteria are also exposed to potential immune recognition and must employ strategies to evade and/or suppress PTI to successfully colonize the plant. During plant infection, the flagellum has an ambiguous role, acting as both a virulence factor and also as a potent immunogen as a result of the recognition of its main building block, flagellin, by the plant pattern recognition receptors (PRRs), including FLAGELLIN SENSING2 (FLS2). Therefore, strict control of flagella synthesis is especially important for plant‐associated bacteria. Here, we show that cyclic‐di‐GMP [bis‐(3′‐5′)‐cyclic di‐guanosine monophosphate], a central regulator of bacterial lifestyle, is involved in the evasion of PTI. Elevated cyclic‐di‐GMP levels in the pathogen P seudomonas syringae pv. tomato (P to) DC3000, the opportunist P . aeruginosa  PAO1 and the commensal P . protegens  Pf‐5 inhibit flagellin synthesis and help the bacteria to evade FLS2‐mediated signalling in N icotiana benthamiana and A rabidopsis thaliana. Despite this, high cellular cyclic‐di‐GMP concentrations were shown to drastically reduce the virulence of P to  DC3000 during plant infection. We propose that this is a result of reduced flagellar motility and/or additional pleiotropic effects of cyclic‐di‐GMP signalling on bacterial behaviour. PMID:26202381

  10. Phosphodiesterase 9A regulates central cGMP and modulates responses to cholinergic and monoaminergic perturbation in vivo.

    PubMed

    Kleiman, Robin J; Chapin, Douglas S; Christoffersen, Curt; Freeman, Jody; Fonseca, Kari R; Geoghegan, Kieran F; Grimwood, Sarah; Guanowsky, Victor; Hajós, Mihály; Harms, John F; Helal, Christopher J; Hoffmann, William E; Kocan, Geralyn P; Majchrzak, Mark J; McGinnis, Dina; McLean, Stafford; Menniti, Frank S; Nelson, Fredrick; Roof, Robin; Schmidt, Anne W; Seymour, Patricia A; Stephenson, Diane T; Tingley, Francis David; Vanase-Frawley, Michelle; Verhoest, Patrick R; Schmidt, Christopher J

    2012-05-01

    Cyclic nucleotides are critical regulators of synaptic plasticity and participate in requisite signaling cascades implicated across multiple neurotransmitter systems. Phosphodiesterase 9A (PDE9A) is a high-affinity, cGMP-specific enzyme widely expressed in the rodent central nervous system. In the current study, we observed neuronal staining with antibodies raised against PDE9A protein in human cortex, cerebellum, and subiculum. We have also developed several potent, selective, and brain-penetrant PDE9A inhibitors and used them to probe the function of PDE9A in vivo. Administration of these compounds to animals led to dose-dependent accumulation of cGMP in brain tissue and cerebrospinal fluid, producing a range of biological effects that implied functional significance for PDE9A-regulated cGMP in dopaminergic, cholinergic, and serotonergic neurotransmission and were consistent with the widespread distribution of PDE9A. In vivo effects of PDE9A inhibition included reversal of the respective disruptions of working memory by ketamine, episodic and spatial memory by scopolamine, and auditory gating by amphetamine, as well as potentiation of risperidone-induced improvements in sensorimotor gating and reversal of the stereotypic scratching response to the hallucinogenic 5-hydroxytryptamine 2A agonist mescaline. The results suggested a role for PDE9A in the regulation of monoaminergic circuitry associated with sensory processing and memory. Thus, PDE9A activity regulates neuronal cGMP signaling downstream of multiple neurotransmitter systems, and inhibition of PDE9A may provide therapeutic benefits in psychiatric and neurodegenerative diseases promoted by the dysfunction of these diverse neurotransmitter systems. PMID:22328573

  11. Protein substrates for cGMP-dependent protein phosphorylation in cilia of wild type and atalanta mutants of Paramecium.

    PubMed

    Ann, K S; Nelson, D L

    1995-01-01

    In the ciliated protozoan Paramecium, swimming direction is regulated by voltage-gated Ca2+ channels in the ciliary membrane. In response to depolarizing stimuli, intraciliary Ca2+ rises, triggering reversal of the ciliary power stroke and backward swimming. One class of Ca(2+)-unresponsive behavioral mutants of Paramecium, atalanta mutants, cannot swim backward even though they have functional Ca2+ channels in their ciliary membrane. Several atalanta mutants were characterized with regard to several Ca(2+)-dependent activities, but no significant difference between wild type and the mutants was detected. However, one allelic group, atalanta A (initially characterized by Hinrichsen and Kung [1984: Genet. Res. Camb. 43:11-20]), showed a helical swimming path of opposite handedness from that of wild-type cells when detergent-permeabilized cells ("models") were reactivated with MgATP. When cGMP-dependent protein kinase purified from wild-type cells was added to atalanta A models, the handedness of the swimming path was reversed. Cyclic GMP stimulated in vitro phosphorylation of several proteins in isolated cilia, and the pattern of phosphoproteins was very similar for wild type and atalanta mutants, with one exception: a protein of 59 kDa was phosphorylated much less in the mutant ata A. When ciliary proteins were separated by gel electrophoresis and then phosphorylated "on blot" by purified cGMP-dependent protein kinase, phosphoprotein patterns were similar in wild type and ata mutants except that a 48 kDa protein (p48) from ata A3 was more heavily phosphorylated. This difference in p48 phosphorylation was also observed with cGMP-dependent protein kinase purified from ata A3 mutant cells.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7796456

  12. New GMP Models for Caucasus Region

    NASA Astrophysics Data System (ADS)

    Jorjiashvili, N.; Godoladze, T.; Tvaradze, N.; Tumanova, N.

    2014-12-01

    The Caucasus is a region of numerous natural hazards and ensuing disasters. Analysis of the losses due to past disasters indicates those most catastrophic in the region have historically been due to strong earthquakes. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration because this parameter gives useful information for Seismic Hazard Assessment. Thus, many peak ground acceleration attenuation relations have been developed by different authors. However, a few attenuation relations were developed for Caucasus region: Ambraseys et al. (1996,2005) which were based on entire European region and they were not focused locally on Caucasus Region, Smit et.al.(2000) that was based on a small amount of acceleration data that really is not enough. Since 2003 construction of Georgian Digital Seismic Network has started with the help of number of International organizations, Projects and Private companies. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models is obtained by classical, statistical way, regression analysis. Also site ground conditions are considered because the same earthquake recorded at the same distance may cause different damage according to ground conditions. Thus, this parameter is emphasized in the present study. Here it must be mentioned that in previous model which only one was done for Caucasus Region (Smit et. al., 2000) local conditions were not considered. Thus, it is an advantage of models from this study.

  13. Rapid regulation of PDE-2 and PDE-4 cyclic AMP phosphodiesterase activity following ligation of the T cell antigen receptor on thymocytes: analysis using the selective inhibitors erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA) and rolipram.

    PubMed

    Michie, A M; Lobban, M; Müller, T; Harnett, M M; Houslay, M D

    1996-02-01

    The PDE2, cyclic GMP-stimulated, and the PDE4, cyclic AMP-specific enzymes provide the major, detectable cyclic AMP phosphodiesterase activities in murine thymocytes. In the absence of the cyclic GMP, PDE4 activity predominated (approximately 80% total) but in the presence of low (10 microM) cyclic GMP concentrations, PDE2 activity constituted the major PDE activity in thymocytes (approximately 80% total). The PDE4 selective inhibitor rolipram dose-dependently inhibited thymocyte PDE4 activity (IC50 approximately 65 nM). PDE2 was dose-dependently activated (EC50 approximately 1 microM) by cyclic GMP and inhibited by erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA) (IC50 approximately 4 microM). EHNA was shown to serve as a selective inhibitor of PDE-2 activity as assessed from studies using separated PDE1, PDE2, PDE3 and PDE4 species from hepatocytes as well as human PDE2 and PDE4 enzymes. EHNA completely ablated the ability of cyclic GMP to activate PDE2 activity, whilst having a much smaller inhibitory effect on the unstimulated PDE2 activity. EHNA exhibited normal Michaelian kinetics of inhibition for the cyclic GMP-stimulated PDE2 activity with Hill plots near unity. Apparent negative co-operative effect were seen in the absence of cyclic GMP with Hill coefficients of approximately 0.3 for inhibition of PDE2 activity. Within 5 min of challenge of thymocytes with the lectin phytohaemagglutinin (PHA) there was a transient decrease (approximately 83%) in PDE-4 activity and in PDE2 activity (approximately 40%). Both anti-TCR antibodies also caused an initial reduction in the PDE4 activity which was followed by a sustained and profound increase in activity. In contrast to that observed with PHA, anti-TCR/CD3 antisera had little effect on PDE2 activity. It is suggested that, dependent upon the intracellular concentrations of cyclic GMP, thymocyte cyclic AMP metabolism can be expected to switch from being under the predominant control of PDE4 activity to that determined

  14. Effects of Kaempferia parviflora Wall. Ex. Baker and sildenafil citrate on cGMP level, cardiac function, and intracellular Ca2+ regulation in rat hearts.

    PubMed

    Weerateerangkul, Punate; Palee, Siripong; Chinda, Kroekkiat; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2012-09-01

    Although Kaempferia parviflora extract (KPE) and its flavonoids have positive effects on the nitric oxide (NO) signaling pathway, its mechanisms on the heart are still unclear. Because our previous studies demonstrated that KPE decreased defibrillation efficacy in swine similar to that of sildenafil citrate, the phosphodiesterase-5 inhibitor, it is possible that KPE may affect the cardiac NO signaling pathway. In the present study, the effects of KPE and sildenafil citrate on cyclic guanosine monophosphate (cGMP) level, modulation of cardiac function, and Ca transients in ventricular myocytes were investigated. In a rat model, cardiac cGMP level, cardiac function, and Ca transients were measured before and after treatment with KPE and sildenafil citrate. KPE significantly increased the cGMP level and decreased cardiac function and Ca transient. These effects were similar to those found in the sildenafil citrate-treated group. Furthermore, the nonspecific NOS inhibitor could abolish the effects of KPE and sildenafil citrate on Ca transient. KPE has positive effect on NO signaling in the heart, resulting in an increased cGMP level, similar to that of sildenafil citrate. This effect was found to influence the physiology of normal heart via the attenuation of cardiac function and the reduction of Ca transient in ventricular myocytes. PMID:22691878

  15. Cyclic nucleotide-activated channels in carp olfactory receptor cells.

    PubMed

    Kolesnikov, S S; Kosolapov, A V

    1993-07-25

    When applied from the cytoplasmic side, cyclic 3',5'-adenosine and guanosine monophosphates reversibly increased the ion permeability of inside-out patches of carp olfactory neuron plasma membrane. The cAMP (cGMP)-induced permeability via cAMP (cGMP) concentration was fitted by Hill's equation with the exponents of 1.07 +/- 0.15 (1.12 +/- 0.05) and EC50 = 1.3 +/- 0.6 microM (0.9 +/- 0.3 microM). Substitution of NaCl in the bathing solution by chlorides of other alkali metals resulted in a slight shift of reversal potential of the cyclic nucleotide-dependent (CN) current, which indicates a weak selectivity of the channels. Permeability coefficients calculated by Goldman-Hodgkin-Katz's equation corresponded to the following relation: PNa/PK/PLi/PRb/PCs = 1:0.98:0.94:0.70:0.61. Ca2+ and Mg2+ in physiological concentrations blocked the channels activated by cyclic nucleotides (CN-channels). In the absence of divalent cations the conductance of single CN-channels was equal to 51 +/- 9 pS in 100 mM NaCl solution. Channel density did not exceed 1 micron-2. The maximal open state probability of the channel (Po) tended towards 1.0 at a high concentration of cAMP or cGMP. Dichlorobenzamil decreased Po without changing the single CN-channel' conductance. CN-channels exhibited burst activity. Mean open and closed times as well as the burst duration depended on agonist concentration. A kinetic model with four states (an inactivated, a closed and two open ones) is suggested to explain the regularities of CN-channel gating and dose-response relations. PMID:8334139

  16. Renal Integrin-Linked Kinase Depletion Induces Kidney cGMP-Axis Upregulation: Consequences on Basal and Acutely Damaged Renal Function

    PubMed Central

    Cano-Peñalver, José Luis; Griera, Mercedes; García-Jerez, Andrea; Hatem-Vaquero, Marco; Ruiz-Torres, María Piedad; Rodríguez-Puyol, Diego; de Frutos, Sergio; Rodríguez-Puyol, Manuel

    2015-01-01

    Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and produces cGMP, which activates cGMP-dependent protein kinases (PKG) and is hydrolyzed by specific phosphodiesterases (PDE). The vasodilatory and cytoprotective capacity of cGMP-axis activation results in a therapeutic strategy for several pathologies. Integrin-linked kinase (ILK), a major scaffold protein between the extracellular matrix and intracellular signaling pathways, may modulate the expression and functionality of the cGMP-axis–related proteins. We introduce ILK as a novel modulator in renal homeostasis as well as a potential target for cisplatin (CIS)-induced acute kidney injury (AKI) improvement. We used an adult mice model of depletion of ILK (cKD-ILK), which showed basal increase of sGC and PKG expressions and activities in renal cortex when compared with wildtype (WT) littermates. Twenty-four h activation of sGC activation with NO enhanced the filtration rate in cKD-ILK. During AKI, cKD-ILK maintained the cGMP-axis upregulation with consequent filtration rates enhancement and ameliorated CIS-dependent tubular epithelial-to-mesenchymal transition and inflammation and markers. To emphasize the role of cGMP-axis upregulation due to ILK depletion, we modulated the cGMP axis under AKI in vivo and in renal cultured cells. A suboptimal dose of the PDE inhibitor ZAP enhanced the beneficial effects of the ILK depletion in AKI mice. On the other hand, CIS increased contractility-related events in cultured glomerular mesangial cells and necrosis rates in cultured tubular cells; ILK depletion protected the cells while sGC blockade with ODQ fully recovered the damage. PMID:26562149

  17. Evidence for a cyclic diguanylic acid-dependent cellulose synthase in plants.

    PubMed Central

    Amor, Y; Mayer, R; Benziman, M; Delmer, D

    1991-01-01

    Because numerous attempts to detect an activity for a cellulose synthase in plants have failed, we have taken a different approach toward detecting polypeptides involved in this process. The uniqueness of the structure and function of cyclic diguanylic acid (c-di-GMP) as an activator of the cellulose synthase of the bacterium Acetobacter xylinum makes it an attractive probe to use in a search for a c-di-GMP receptor that might be involved in the process in plants. Direct photolabeling with 32P-c-di-GMP has been used, therefore, to identify in plants two membrane polypeptides of 83 and 48 kD derived from cotton fibers that possess properties consistent with their being components of a c-di-GMP-dependent cellulose synthase. Based upon several criteria, the 48-kD species is proposed to be derived by proteolytic cleavage of the 83-kD polypeptide. Both polypeptides bind c-di-GMP with high affinity and specificity and show antigenic relatedness to the bacterial cellulose synthase, and the N-terminal sequence of the 48-kD polypeptide also indicates relatedness to the bacterial synthase. Ability to detect both cotton fiber polypeptides by photolabeling increases markedly in extracts derived from fibers entering the active phase of secondary wall cellulose synthesis. These results provide a basis for future work aimed at identifying and characterizing genes involved in cellulose synthesis in plants. PMID:1668373

  18. cAMP-responsive element binding protein mediates a cGMP/protein kinase G-dependent anti-apoptotic signal induced by nitric oxide in retinal neuro-glial progenitor cells.

    PubMed

    Nagai-Kusuhara, Azusa; Nakamura, Makoto; Mukuno, Hirokazu; Kanamori, Akiyasu; Negi, Akira; Seigel, Gail M

    2007-01-01

    Nitric oxide (NO) is cytoprotective to certain types of neuronal cells. The neuroprotective ability of NO in the retina was reportedly mediated by the cyclic GMP (cGMP) to protein kinase G (PKG) pathway. Cyclic AMP-responsive element binding protein (CREB) plays an essential role in the NO/cGMP/PKG-mediated survival of rat cerebellar granule cells. We tested whether CREB transduces the NO/cGMP/PKG anti-apoptotic cascade in R28 neuro-glial progenitor cells. Apoptosis was induced in R28 cells by serum deprivation for 24 h. Varying concentrations of two NO donors, sodium nitroprusside (SNP) and nipradilol, were added to medium with or without an NO scavenger, a soluble guanylyl cyclase inhibitor, or a PKG inhibitor. The cells were immunostained against activated caspase-3 and counterstained with Hoechst 33258. Apoptosis was quantified by counting activated caspase-3 positive or pyknotic cells. SNP and nipradilol rescued R28 cells from apoptosis in a dose-dependent manner, at an optimal concentration of 1.0 microM and 10 microM, respectively. Higher concentrations were cytotoxic. The NO scavenger and the inhibitors decreased the anti-apoptotic effect of the NO donors. Intracellular cGMP levels were increased after exposure to SNP and nipradilol. Western blotting showed that both NO donors increased CREB phosphorylation, which was blocked when pre-exposed to the inhibitors. Transfection with a dominant negative CREB construct defective of phosphorylation at Ser-133 interfered with the anti-apoptotic activity of SNP. These results indicate that CREB at least in part mediates the cGMP/PKG-dependent anti-apoptotic signal induced by NO in R28 cells. PMID:17081519

  19. A homogeneous immunoassay for cyclic nucleotides based on chemiluminescence energy transfer.

    PubMed Central

    Campbell, A K; Patel, A

    1983-01-01

    A chemiluminescent derivative of cyclic AMP, aminobutylethylisoluminol succinyl cyclic AMP (ABEI-scAMP), was synthesized in order to develop a homogeneous immunoassay based on non-radiative energy transfer. ABEI-scAMP was chemiluminescent (5.1 X 10(18) luminescent counts X mol-1 at pH 13), pure (greater than 95%) stable and immunologically active. A conventional immunoassay was established using ABEI-scAMP and a solid-phase anti-(cyclic AMP) immunoglobulin G which could detect cyclic AMP at least down to 25fmol. A homogeneous immunoassay for cyclic AMP was established by measuring the shift in wavelength from 460 to 525nm which occurred when ABEI-scAMP was bound to fluorescein-labelled anti-(cyclic AMP) immunoglobulin G. The assay was at least as sensitive as the conventional radioimmunoassay using cyclic [3H]AMP and could measure cyclic AMP over the range 1-1000nM. The homogeneous chemiluminescent energy transfer assay was also able to quantify the association and dissociation of antibody-antigen complexes. Chemiluminescence energy transfer occurred between fluorescein-labelled antibodies and several other ABEI-labelled antigens (Mr values 314-150000) including progesterone, cyclic GMP, complement component C9 and immunoglobulin G. The results provide a homogeneous immunoassay capable of measuring free cyclic AMP under conditions likely to exist inside cells. PMID:6316935

  20. Selective inhibition of two soluble adenosine cyclic 3',5'-phosphate phosphodiesterases partially purified from calf liver.

    PubMed

    Yamamoto, T; Lieberman, F; Osborne, J C; Manganiello, V C; Vaughan, M; Hidaka, H

    1984-02-14

    "Low Km" cAMP phosphodiesterase and cGMP-stimulated cyclic nucleotide phosphodiesterase activities were partially purified from calf liver supernatant by chromatography on DEAE-cellulose and DEAE-Sepharose and ammonium sulfate precipitation. The low Km phosphodiesterase was not retained on N6-H2N(CH2)2-cAMP-agarose and could be separated from the cGMP-stimulated phosphodiesterase which was absorbed by this matrix. From the proteins that did not bind, two distinct low Km cAMP phosphodiesterases were separated on Ultrogel AcA 34. One form (fraction C) hydrolyzed cAMP with an apparent Km of approximately 0.5 microM and was very sensitive to inhibition by cGMP. Lineweaver-Burk plots of cAMP hydrolysis by a second form (fraction B) were nonlinear, with an apparent low Km component of approximately 2 microM. This form was rather insensitive to inhibition by cGMP. With both fractions, hydrolysis of cAMP relative to cGMP was much greater at low (approximately 1 microM) than at high (approximately 100 microM) substrate concentrations. Maximal velocities for cAMP and cGMP were similar. From sedimentation equilibrium, the apparent weight-average molecular weight of fraction B was estimated as 174000, and that of fraction C was 85000. Another fraction (A) of cAMP phosphodiesterase eluted at the void volume of the AcA 34 column. On the basis of the relative affinities for cAMP and cGMP and inhibition by cGMP, fraction A is most likely an aggregated form of fraction B. No apparent interconversion of fractions A, B, or C was observed on high-performance liquid chromatography.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6324851

  1. The RNA Domain Vc1 Regulates Downstream Gene Expression in Response to Cyclic Diguanylate in Vibrio cholerae

    PubMed Central

    Kariisa, Ankunda T.; Weeks, Kevin; Tamayo, Rita

    2016-01-01

    In many bacterial species, including the aquatic bacterium and human pathogen Vibrio cholerae, the second messenger cyclic diguanylate (c-di-GMP) modulates processes such as biofilm formation, motility, and virulence factor production. By interacting with various effectors, c-di-GMP regulates gene expression or protein function. One type of c-di-GMP receptor is the class I riboswitch, representatives of which have been shown to bind c-di-GMP in vitro. Herein, we examined the in vitro and in vivo function of the putative class I riboswitch in Vibrio cholerae, Vc1, which lies upstream of the gene encoding GbpA, a colonization factor that contributes to attachment of V. cholerae to environmental and host surfaces containing N-acetylglucosamine moieties. We provide evidence that Vc1 RNA interacts directly with c-di-GMP in vitro, and that nucleotides conserved among this class of riboswitch are important for binding. Yet the mutation of these conserved residues individually in the V. cholerae chromosome inconsistently affects the expression of gbpA and production of the GbpA protein. By isolating the regulatory function of Vc1, we show that the Vc1 element positively regulates downstream gene expression in response to c-di-GMP. Together these data suggest that the Vc1 element responds to c-di-GMP in vivo. Positive regulation of gbpA expression by c-di-GMP via Vc1 may influence the ability of V. cholerae to associate with chitin in the aquatic environment and the host intestinal environment. PMID:26849223

  2. Crystallization studies of the murine c-di-GMP sensor protein STING

    PubMed Central

    Su, Yi-Che; Tu, Zhi-Le; Yang, Chao-Yu; Chin, Ko-Hsin; Chuah, Mary Lay-Cheng; Liang, Zhao-Xun; Chou, Shan-Ho

    2012-01-01

    The innate immune response is the first defence system against pathogenic microorganisms, and cytosolic detection of pathogen-derived DNA is believed to be one of the major mechanisms of interferon production. Recently, the mammalian ER membrane protein STING (stimulator of IFN genes; also known as MITA, ERIS, MPYS and TMEM173) has been found to be the master regulator linking the detection of cytosolic DNA to TANK-binding kinase 1 (TBK1) and its downstream transcription factor IFN regulatory factor 3 (IRF3). In addition, STING itself was soon discovered to be a direct sensor of bacterial cyclic dinucleotides such as c-di-GMP or c-di-AMP. However, structural studies of apo STING and its complexes with these cyclic dinucleotides and with other cognate binding proteins are essential in order to fully understand the roles played by STING in these crucial signalling pathways. In this manuscript, the successful crystallization of the C-terminal domain of murine STING (STING-CTD; residues 138–344) is reported. Native and SeMet-labelled crystals were obtained and diffracted to moderate resolutions of 2.39 and 2.2 Å, respectively. PMID:22869119

  3. The search for mutations in the gene for the beta subunit of the cGMP phosphodiesterase (PDEB) in patients with autosomal recessive retinitis pigmentosa

    SciTech Connect

    Riess, O.; Weber, B.; Hayden, M.R. ); Noerremoelle, A. ); Musarella, M.A. )

    1992-10-01

    The finding of a mutation in the beta subunit of the cyclic GMP (cGMP) phosphodiesterase gene causing retinal degeneration in mice (the Pdeb gene) prompted a search for disease-causing mutations in the human phosphodiesterase gene (PDEB gene) in patients with retinitis pigmentosa. All 22 exons including 196 bp of the 5[prime] region of the PDEB gene have been assessed for mutations by using single-strand conformational polymorphism analysis in 14 patients from 13 unrelated families with autosomal recessive retinitis pigmentosa (ARRP). No disease-causing mutations were found in this group of affected individuals of seven different ancestries. However, a frequent intronic and two exonic polymorphisms (Leu[sup 489][yields]Gln and Gly[sup 842][yields]Gly) were identified. Segregation analysis using these polymorphic sites excludes linkage of ARRP to the PDEB gene in a family with two affected children. 43 refs., 3 figs., 2 tabs.

  4. Changes in cGMP levels on meiosis reinitiation of starfish oocytes.

    PubMed

    Nemoto, S; Ishida, K

    1983-04-15

    An intracellular level of cGMP (but not cAMP) transiently decreased the reinitiation of oocyte maturation in the starfish, Asterias amurensis. Exogenously applied cGMP inhibited hormone-induced maturation. Methylxanthines inhibited oocyte maturation by suppressing the decrease in cGMP levels. These results suggest that a decrease in cGMP levels is a prerequisite for meiosis reinitiation of starfish oocytes. PMID:6303819

  5. Angiotensin-converting enzyme inhibition prevents myocardial infarction-induced increase in renal cortical cGMP and cAMP phosphodiesterase activities.

    PubMed

    Clauss, François; Charloux, Anne; Piquard, François; Doutreleau, Stéphane; Talha, Samy; Zoll, Joffrey; Lugnier, Claire; Geny, Bernard

    2015-08-01

    We investigated whether myocardial infarction (MI) enhances renal phosphodiesterases (PDE) activities, investigating particularly the relative contribution of PDE1-5 isozymes in total PDE activity involved in both cGMP and cAMP pathways, and whether angiotensin-converting enzyme inhibition (ACEi) decreases such renal PDE hyperactivities. We also investigated whether ACEi might thereby improve atrial natriuretic peptide (ANP) efficiency. We studied renal cortical PDE1-5 isozyme activities in sham (SH)-operated, MI rats and in MI rats treated with perindopril (ACEi) 1 month after coronary artery ligation. Circulating atrial natriuretic peptide (ANP), its second intracellular messenger cyclic guanosine monophosphate (cGMP) and cGMP/ANP ratio were also determined. Cortical cGMP-PDE2 (80.3 vs. 65.1 pmol/min/mg) and cGMP-PDE1 (50.7 vs. 30.1 pmol/min/mg), and cAMP-PDE2 (161 vs. 104.1 pmol/min/mg) and cAMP-PDE4 (307.5 vs. 197.2 pmol/min/mg) activities were higher in MI than in SH rats. Despite increased ANP plasma level, ANP efficiency tended to be decreased in MI compared to SH rats. Perindopril restored PDE activities and tended to improve ANP efficiency in MI rats. One month after coronary ligation, perindopril treatment of MI rats prevents the increase in renal cortical PDE activities. This may contribute to increase renal ANP efficiency in MI rats. PMID:25939307

  6. Endogenous expression of type II cGMP-dependent protein kinase mRNA and protein in rat intestine. Implications for cystic fibrosis transmembrane conductance regulator.

    PubMed Central

    Markert, T; Vaandrager, A B; Gambaryan, S; Pöhler, D; Häusler, C; Walter, U; De Jonge, H R; Jarchau, T; Lohmann, S M

    1995-01-01

    Certain pathogenic bacteria produce a family of heat stable enterotoxins (STa) which activate intestinal guanylyl cyclases, increase cGMP, and elicit life-threatening secretory diarrhea. The intracellular effector of cGMP actions has not been clarified. Recently we cloned the cDNA for a rat intestinal type II cGMP dependent protein kinase (cGK II) which is highly enriched in intestinal mucosa. Here we show that cGK II mRNA and protein are restricted to the intestinal segments from the duodenum to the proximal colon, with the highest amounts of cGK II protein in duodenum and jejunum. cGK II mRNA and protein decreased along the villus to crypt axis in the small intestine, whereas substantial amounts of both were found in the crypts of cecum. In intestinal epithelia, cGK II was specifically localized in the apical membrane, a major site of ion transport regulation. In contrast to cGK II, cGK I was localized in smooth muscle cells of the villus lamina propria. Short circuit current (ISC), a measure of Cl- secretion, was increased to a similar extent by STa and by 8-Br-cGMP, a selective activator of cGK, except in distal colon and in monolayers of T84 human colon carcinoma cells in which cGK II was not detected. In human and mouse intestine, the cyclic nucleotide-regulated Cl- conductance can be exclusively accounted for by the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. Viewed collectively, the data suggest that cGK II is the mediator of STa and cGMP effects on Cl- transport in intestinal-epithelia. Images PMID:7543493

  7. Heterogeneity of pulmonary endothelial cyclic nucleotide response to Pseudomonas aeruginosa ExoY infection.

    PubMed

    Morrow, K A; Seifert, R; Kaever, V; Britain, A L; Sayner, S L; Ochoa, C D; Cioffi, E A; Frank, D W; Rich, T C; Stevens, T

    2015-11-15

    Here, we tested the hypothesis that a promiscuous bacterial cyclase synthesizes purine and pyrimidine cyclic nucleotides in the pulmonary endothelium. To test this hypothesis, pulmonary endothelial cells were infected with a strain of the Gram-negative bacterium Pseudomonas aeruginosa that introduces only exoenzyme Y (PA103 ΔexoUexoT::Tc pUCPexoY; ExoY(+)) via a type III secretion system. Purine and pyrimidine cyclic nucleotides were simultaneously detected using mass spectrometry. Pulmonary artery (PAECs) and pulmonary microvascular (PMVECs) endothelial cells both possess basal levels of four different cyclic nucleotides in the following rank order: cAMP > cUMP ≈ cGMP ≈ cCMP. Endothelial gap formation was induced in a time-dependent manner following ExoY(+) intoxication. In PAECs, intercellular gaps formed within 2 h and progressively increased in size up to 6 h, when the experiment was terminated. cGMP concentrations increased within 1 h postinfection, whereas cAMP and cUMP concentrations increased within 3 h, and cCMP concentrations increased within 4 h postinfection. In PMVECs, intercellular gaps did not form until 4 h postinfection. Only cGMP and cUMP concentrations increased at 3 and 6 h postinfection, respectively. PAECs generated higher cyclic nucleotide levels than PMVECs, and the cyclic nucleotide levels increased earlier in response to ExoY(+) intoxication. Heterogeneity of the cyclic nucleotide signature in response to P. aeruginosa infection exists between PAECs and PMVECs, suggesting the intracellular milieu in PAECs is more conducive to cNMP generation. PMID:26386118

  8. Control of the ciliary beat by cyclic nucleotides in intact cortical sheets from Paramecium.

    PubMed

    Noguchi, Munenori; Kurahashi, Shotaro; Kamachi, Hiroyuki; Inoue, Hiroshi

    2004-12-01

    The locomotor behavior of Paramecium depends on the ciliary beat direction and beat frequency. Changes in the ciliary beat are controlled by a signal transduction mechanism that follows changes in the membrane potential. These events take place in cilia covered with a ciliary membrane. To determine the effects of second messengers in the cilia, cortical sheets were used with intact ciliary membrane as a half-closed system in which each cilium is covered with a ciliary membrane with an opening to the cell body. Cyclic nucleotides and their derivatives applied from an opening to the cell body affected the ciliary beat. cAMP and 8-Br-cAMP increased the beat frequency and the efficiency of propulsion and acted antagonistically to the action of Ca(2+). cGMP and 8-Br-cGMP increased the efficiency of propulsion accompanying clear metachronal waves but decreased the beat frequency. These results indicate that the cyclic nucleotides affect target proteins in the ciliary axonemes surrounded by the ciliary membrane without a membrane potential and increase the efficiency of propulsion of the ciliary beat. In vitro phosphorylation of isolated ciliary axonemes in the presence of cyclic nucleotides and their derivatives revealed that the action of cAMP was correlated with the phosphorylation of 29-kDa and 65-kDa proteins and that the action of cGMP was correlated with the phosphorylation of a 42-kDa protein. PMID:15613797

  9. 76 FR 51395 - Draft Environmental Impact Statement for the General Management Plan (DEIS/GMP), Canaveral...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... National Park Service Draft Environmental Impact Statement for the General Management Plan (DEIS/GMP... Draft Environmental Impact Statement for the General Management Plan (DEIS/GMP), Canaveral National... 1969 the NPS announces the availability of a DEIS/GMP for Canaveral National Seashore, Florida....

  10. Novel mixed-linkage β-glucan activated by c-di-GMP in Sinorhizobium meliloti

    PubMed Central

    Pérez-Mendoza, Daniel; Rodríguez-Carvajal, Miguel Ángel; Romero-Jiménez, Lorena; Farias, Gabriela de Araujo; Lloret, Javier; Gallegos, María Trinidad; Sanjuán, Juan

    2015-01-01

    An artificial increase of cyclic diguanylate (c-di-GMP) levels in Sinorhizobium meliloti 8530, a bacterium that does not carry known cellulose synthesis genes, leads to overproduction of a substance that binds the dyes Congo red and calcofluor. Sugar composition and methylation analyses and NMR studies identified this compound as a linear mixed-linkage (1→3)(1→4)-β-d-glucan (ML β-glucan), not previously described in bacteria but resembling ML β-glucans found in plants and lichens. This unique polymer is hydrolyzed by the specific endoglucanase lichenase, but, unlike lichenan and barley glucan, it generates a disaccharidic →4)-β-d-Glcp-(1→3)-β-d-Glcp-(1→ repeating unit. A two-gene operon bgsBA required for production of this ML β-glucan is conserved among several genera within the order Rhizobiales, where bgsA encodes a glycosyl transferase with domain resemblance and phylogenetic relationship to curdlan synthases and to bacterial cellulose synthases. ML β-glucan synthesis is subjected to both transcriptional and posttranslational regulation. bgsBA transcription is dependent on the exopolysaccharide/quorum sensing ExpR/SinI regulatory system, and posttranslational regulation seems to involve allosteric activation of the ML β-glucan synthase BgsA by c-di-GMP binding to its C-terminal domain. To our knowledge, this is the first report on a linear mixed-linkage (1→3)(1→4)-β-glucan produced by a bacterium. The S. meliloti ML β-glucan participates in bacterial aggregation and biofilm formation and is required for efficient attachment to the roots of a host plant, resembling the biological role of cellulose in other bacteria. PMID:25650430

  11. Novel mixed-linkage β-glucan activated by c-di-GMP in Sinorhizobium meliloti.

    PubMed

    Pérez-Mendoza, Daniel; Rodríguez-Carvajal, Miguel Ángel; Romero-Jiménez, Lorena; Farias, Gabriela de Araujo; Lloret, Javier; Gallegos, María Trinidad; Sanjuán, Juan

    2015-02-17

    An artificial increase of cyclic diguanylate (c-di-GMP) levels in Sinorhizobium meliloti 8530, a bacterium that does not carry known cellulose synthesis genes, leads to overproduction of a substance that binds the dyes Congo red and calcofluor. Sugar composition and methylation analyses and NMR studies identified this compound as a linear mixed-linkage (1 → 3)(1 → 4)-β-D-glucan (ML β-glucan), not previously described in bacteria but resembling ML β-glucans found in plants and lichens. This unique polymer is hydrolyzed by the specific endoglucanase lichenase, but, unlike lichenan and barley glucan, it generates a disaccharidic → 4)-β-D-Glcp-(1 → 3)-β-D-Glcp-(1 → repeating unit. A two-gene operon bgsBA required for production of this ML β-glucan is conserved among several genera within the order Rhizobiales, where bgsA encodes a glycosyl transferase with domain resemblance and phylogenetic relationship to curdlan synthases and to bacterial cellulose synthases. ML β-glucan synthesis is subjected to both transcriptional and posttranslational regulation. bgsBA transcription is dependent on the exopolysaccharide/quorum sensing ExpR/SinI regulatory system, and posttranslational regulation seems to involve allosteric activation of the ML β-glucan synthase BgsA by c-di-GMP binding to its C-terminal domain. To our knowledge, this is the first report on a linear mixed-linkage (1 → 3)(1 → 4)-β-glucan produced by a bacterium. The S. meliloti ML β-glucan participates in bacterial aggregation and biofilm formation and is required for efficient attachment to the roots of a host plant, resembling the biological role of cellulose in other bacteria. PMID:25650430

  12. Cyclic phosphonium ionic liquids

    PubMed Central

    Mukhlall, Joshua A; Romeo, Alicia R; Gohdo, Masao; Ramati, Sharon; Berman, Marc; Suarez, Sophia N

    2014-01-01

    Summary Ionic liquids (ILs) incorporating cyclic phosphonium cations are a novel category of materials. We report here on the synthesis and characterization of four new cyclic phosphonium bis(trifluoromethylsulfonyl)amide ILs with aliphatic and aromatic pendant groups. In addition to the syntheses of these novel materials, we report on a comparison of their properties with their ammonium congeners. These exemplars are slightly less conductive and have slightly smaller self-diffusion coefficients than their cyclic ammonium congeners. PMID:24605146

  13. A Cyclic Guanosine Monophosphate–Dependent Pathway Can Regulate Net Hepatic Glucose Uptake in Vivo

    PubMed Central

    An, Zhibo; Winnick, Jason J.; Moore, Mary C.; Farmer, Ben; Smith, Marta; Irimia, Jose M.; Roach, Peter J.; Cherrington, Alan D.

    2012-01-01

    We previously showed that hepatic nitric oxide regulates net hepatic glucose uptake (NHGU), an effect that can be eliminated by inhibiting hepatic soluble guanylate cyclase (sGC), suggesting that the sGC pathway is involved in the regulation of NHGU. The aim of the current study was to determine whether hepatic cyclic guanosine monophosphate (cGMP) reduces NHGU. Studies were performed on conscious dogs with transhepatic catheters. A hyperglycemic-hyperinsulinemic clamp was established in the presence of portal vein glucose infusion. 8-Br-cGMP (50 µg/kg/min) was delivered intraportally, and either the glucose load to the liver (CGMP/GLC; n = 5) or the glucose concentration entering the liver (CGMP/GCC; n = 5) was clamped at 2× basal. In the control group, saline was given intraportally (SAL; n = 10), and the hepatic glucose concentration and load were doubled. 8-Br-cGMP increased portal blood flow, necessitating the two approaches to glucose clamping in the cGMP groups. NHGU (mg/kg/min) was 5.8 ± 0.5, 2.7 ± 0.5, and 4.8 ± 0.3, whereas the fractional extraction of glucose was 11.0 ± 1, 5.5 ± 1, and 8.5 ± 1% during the last hour of the study in SAL, CGMP/GLC, and CGMP/GCC, respectively. The reduction of NHGU in response to 8-Br-cGMP was associated with increased AMP-activated protein kinase phosphorylation. These data indicate that changes in liver cGMP can regulate NHGU under postprandial conditions. PMID:22688328

  14. Cyclic Di-AMP Impairs Potassium Uptake Mediated by a Cyclic Di-AMP Binding Protein in Streptococcus pneumoniae

    PubMed Central

    Bai, Yinlan; Yang, Jun; Zarrella, Tiffany M.; Zhang, Yang; Metzger, Dennis W.

    2014-01-01

    Cyclic di-AMP (c-di-AMP) has been shown to play important roles as a second messenger in bacterial physiology and infections. However, understanding of how the signal is transduced is still limited. Previously, we have characterized a diadenylate cyclase and two c-di-AMP phosphodiesterases in Streptococcus pneumoniae, a Gram-positive pathogen. In this study, we identified a c-di-AMP binding protein (CabP) in S. pneumoniae using c-di-AMP affinity chromatography. We demonstrated that CabP specifically bound c-di-AMP and that this interaction could not be interrupted by competition with other nucleotides, including ATP, cAMP, AMP, phosphoadenylyl adenosine (pApA), and cyclic di-GMP (c-di-GMP). By using a bacterial two-hybrid system and genetic mutagenesis, we showed that CabP directly interacted with a potassium transporter (SPD_0076) and that both proteins were required for pneumococcal growth in media with low concentrations of potassium. Interestingly, the interaction between CabP and SPD_0076 and the efficiency of potassium uptake were impaired by elevated c-di-AMP in pneumococci. These results establish a direct c-di-AMP-mediated signaling pathway that regulates pneumococcal potassium uptake. PMID:24272783

  15. Cyclic di-AMP impairs potassium uptake mediated by a cyclic di-AMP binding protein in Streptococcus pneumoniae.

    PubMed

    Bai, Yinlan; Yang, Jun; Zarrella, Tiffany M; Zhang, Yang; Metzger, Dennis W; Bai, Guangchun

    2014-02-01

    Cyclic di-AMP (c-di-AMP) has been shown to play important roles as a second messenger in bacterial physiology and infections. However, understanding of how the signal is transduced is still limited. Previously, we have characterized a diadenylate cyclase and two c-di-AMP phosphodiesterases in Streptococcus pneumoniae, a Gram-positive pathogen. In this study, we identified a c-di-AMP binding protein (CabP) in S. pneumoniae using c-di-AMP affinity chromatography. We demonstrated that CabP specifically bound c-di-AMP and that this interaction could not be interrupted by competition with other nucleotides, including ATP, cAMP, AMP, phosphoadenylyl adenosine (pApA), and cyclic di-GMP (c-di-GMP). By using a bacterial two-hybrid system and genetic mutagenesis, we showed that CabP directly interacted with a potassium transporter (SPD_0076) and that both proteins were required for pneumococcal growth in media with low concentrations of potassium. Interestingly, the interaction between CabP and SPD_0076 and the efficiency of potassium uptake were impaired by elevated c-di-AMP in pneumococci. These results establish a direct c-di-AMP-mediated signaling pathway that regulates pneumococcal potassium uptake. PMID:24272783

  16. Listeria monocytogenes exopolysaccharide: origin, structure, biosynthetic machinery and c-di-GMP-dependent regulation.

    PubMed

    Köseoğlu, Volkan K; Heiss, Christian; Azadi, Parastoo; Topchiy, Elena; Güvener, Zehra T; Lehmann, Teresa E; Miller, Kurt W; Gomelsky, Mark

    2015-05-01

    Elevated levels of the second messenger c-di-GMP activate biosynthesis of an unknown exopolysaccharide (EPS) in the food-borne pathogen Listeria monocytogenes. This EPS strongly protects cells against disinfectants and desiccation, indicating its potential significance for listerial persistence in the environment and for food safety. We analyzed the potential phylogenetic origin of this EPS, determined its complete structure, characterized genes involved in its biosynthesis and hydrolysis and identified diguanylate cyclases activating its synthesis. Phylogenetic analysis of EPS biosynthesis proteins suggests that they have evolved within monoderms. Scanning electron microscopy revealed that L. monocytogenes EPS is cell surface-bound. Secreted carbohydrates represent exclusively cell-wall debris. Based on carbohydrate composition, linkage and NMR analysis, the structure of the purified EPS is identified as a β-1,4-linked N-acetylmannosamine chain decorated with terminal α-1,6-linked galactose. All genes of the pssA-E operon are required for EPS production and so is a separately located pssZ gene. We show that PssZ has an EPS-specific glycosylhydrolase activity. Exogenously added PssZ prevents EPS-mediated cell aggregation and disperses preformed aggregates, whereas an E72Q mutant in the presumed catalytic residue is much less active. The diguanylate cyclases DgcA and DgcB, whose genes are located next to pssZ, are primarily responsible for c-di-GMP-dependent EPS production. PMID:25662512

  17. Are Math Grades Cyclical?

    ERIC Educational Resources Information Center

    Adams, Gerald J.; Dial, Micah

    1998-01-01

    The cyclical nature of mathematics grades was studied for a cohort of elementary school students from a large metropolitan school district in Texas over six years (average cohort size of 8495). The study used an autoregressive integrated moving average (ARIMA) model. Results indicate that grades do exhibit a significant cyclical pattern. (SLD)

  18. Affordable Cyclic Voltammetry

    ERIC Educational Resources Information Center

    Stewart, Greg; Kuntzleman, Thomas S.; Amend, John R.; Collins, Michael J.

    2009-01-01

    Cyclic voltammetry is an important component of the undergraduate chemical curriculum. Unfortunately, undergraduate students rarely have the opportunity to conduct experiments in cyclic voltammetry owing to the high cost of potentiostats, which are required to control these experiments. By using MicroLab data acquisition interfaces in conjunction…

  19. Cardioprotection by H2S engages a cGMP-dependent protein kinase G/phospholamban pathway

    PubMed Central

    Bibli, Sofia-Iris; Andreadou, Ioanna; Chatzianastasiou, Athanasia; Tzimas, Christos; Sanoudou, Despina; Kranias, Evangelia; Brouckaert, Peter; Coletta, Ciro; Szabo, Csaba; Kremastinos, Dimitrios Th.; Iliodromitis, Efstathios K.; Papapetropoulos, Andreas

    2015-01-01

    Aims H2S is known to confer cardioprotection; however, the pathways mediating its effects in vivo remain incompletely understood. The purpose of the present study is to evaluate the contribution of cGMP-regulated pathways in the infarct-limiting effect of H2S in vivo. Methods and results Anaesthetized rabbits were subjected to myocardial ischaemia (I)/reperfusion (R), and infarct size was determined in control or H2S-exposed groups. The H2S donor sodium hydrosulfide (NaHS, an agent that generates H2S) increased cardiac cGMP and reduced the infarct size. The cGMP-dependent protein kinase (PKG)-I inhibitor DT2 abrogated the protective effect of NaHS, whereas the control peptide TAT or l-nitroarginine methyl ester (l-NAME) did not alter the effect of NaHS. Moreover, the KATP channel inhibitor, glibenclamide, partially reversed the effects of NaHS, whereas inhibition of mitochondrial KATP did not modify the NaHS response. NaHS enhanced phosphorylation of phospholamban (PLN), in a PKG-dependent manner. To further investigate the role of PLN in H2S-mediated cardioprotection, wild-type and PLN KO mice underwent I/R. NaHS did not exert cardioprotection in PLN KO mice. Unlike what was observed in rabbits, genetic or pharmacological inhibition of eNOS abolished the infarct-limiting effect of NaHS in mice. Conclusions Our findings demonstrate (i) that administration of NaHS induces cardioprotection via a cGMP/PKG/PLN pathway and (ii) contribution of nitric oxide to the H2S response is species-specific. PMID:25870184

  20. Multi-drug Resistance Protein 4 (MRP4)-mediated Regulation of Fibroblast Cell Migration Reflects a Dichotomous Role of Intracellular Cyclic Nucleotides*

    PubMed Central

    Sinha, Chandrima; Ren, Aixia; Arora, Kavisha; Moon, Chang-Suk; Yarlagadda, Sunitha; Zhang, Weiqiang; Cheepala, Satish B.; Schuetz, John D.; Naren, Anjaparavanda P.

    2013-01-01

    It has long been known that cyclic nucleotides and cyclic nucleotide-dependent signaling molecules control cell migration. However, the concept that it is not just the absence or presence of cyclic nucleotides, but a highly coordinated balance between these molecules that regulates cell migration, is new and revolutionary. In this study, we used multidrug resistance protein 4 (MRP4)-expressing cell lines and MRP4 knock-out mice as model systems and wound healing assays as the experimental system to explore this unique and emerging concept. MRP4, a member of a large family of ATP binding cassette transporter proteins, localizes to the plasma membrane and functions as a nucleotide efflux transporter and thus plays a role in the regulation of intracellular cyclic nucleotide levels. Here, we demonstrate that mouse embryonic fibroblasts (MEFs) isolated from Mrp4−/− mice have higher intracellular cyclic nucleotide levels and migrate faster compared with MEFs from Mrp4+/+ mice. Using FRET-based cAMP and cGMP sensors, we show that inhibition of MRP4 with MK571 increases both cAMP and cGMP levels, which results in increased migration. In contrast to these moderate increases in cAMP and cGMP levels seen in the absence of MRP4, a robust increase in cAMP levels was observed following treatment with forskolin and isobutylmethylxanthine, which decreases fibroblast migration. In response to externally added cell-permeant cyclic nucleotides (cpt-cAMP and cpt-cGMP), MEF migration appears to be biphasic. Altogether, our studies provide the first experimental evidence supporting the novel concept that balance between cyclic nucleotides is critical for cell migration. PMID:23264633

  1. Role of the nitric oxide-cGMP system in the regulation of ductus arteriosus patency in fetal rats.

    PubMed

    Takizawa, T; Horikoshi, E; Kamata, A

    1999-12-01

    The purpose of this study was to examine the role of the nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) system in the regulation of the ductus arteriosus (DA) patency in fetal rats. Pregnant rats were administered N(G)-nitro-L-arginine methyl ester (L-NAME, 50 mg/kg, ip), an NO synthase (NOS) inhibitor; methylene blue (30, 50 and 100 mg/kg, ip), a soluble guanylate cyclase inhibitor; or indomethacin (3 mg/kg, po), a cyclooxygenase inhibitor, at various times before cesarean section. Dams were decapitated to obtain the fetuses by cesarean section, and fetuses were rapidly frozen in an acetone-dry ice mixture. Using rapid freezing and shaving methods, the calibers of the DA, pulmonary artery (PA) and descending aorta (Ao) were measured to evaluate the effects of treatment. L-NAME reduced the DA calibers to 86% of the initial values, but recovery to the control levels occurred 6 hr after the injection. Indomethacin decreased the DA calibers to 34% of the control values and sustained the DA constriction until 24 hr after the treatment. Methylene blue caused DA constriction to almost the same degree as indomethacin, but the levels normalized within 24 hr after the treatment. We conclude that L-NAME caused a slight constriction of the DA, whereas methylene blue and indomethacin caused marked constriction of the vessels, suggesting that the NO-cGMP system as well as prostaglandins contribute to the DA patency. PMID:10651046

  2. Improved Long-Term Memory via Enhancing cGMP-PKG Signaling Requires cAMP-PKA Signaling

    PubMed Central

    Bollen, Eva; Puzzo, Daniela; Rutten, Kris; Privitera, Lucia; De Vry, Jochen; Vanmierlo, Tim; Kenis, Gunter; Palmeri, Agostino; D'Hooge, Rudi; Balschun, Detlef; Steinbusch, Harry MW; Blokland, Arjan; Prickaerts, Jos

    2014-01-01

    Memory consolidation is defined by the stabilization of a memory trace after acquisition, and consists of numerous molecular cascades that mediate synaptic plasticity. Commonly, a distinction is made between an early and a late consolidation phase, in which early refers to the first hours in which labile synaptic changes occur, whereas late consolidation relates to stable and long-lasting synaptic changes induced by de novo protein synthesis. How these phases are linked at a molecular level is not yet clear. Here we studied the interaction of the cyclic nucleotide-mediated pathways during the different phases of memory consolidation in rodents. In addition, the same pathways were studied in a model of neuronal plasticity, long-term potentiation (LTP). We demonstrated that cGMP/protein kinase G (PKG) signaling mediates early memory consolidation as well as early-phase LTP, whereas cAMP/protein kinase A (PKA) signaling mediates late consolidation and late-phase-like LTP. In addition, we show for the first time that early-phase cGMP/PKG signaling requires late-phase cAMP/PKA-signaling in both LTP and long-term memory formation. PMID:24813825

  3. Synthesis of cyclic oligonucleotides by a modified phosphotriester approach.

    PubMed Central

    de Vroom, E; Broxterman, H J; Sliedregt, L A; van der Marel, G A; van Boom, J H

    1988-01-01

    Evidence will be presented to show that the allyl group is suitable for the protection of a 3'-terminal phosphodiester function. The latter will be demonstrated by the synthesis, via a phosphotriester approach, of two cyclic tetraribonucleotides [r(AAAA) and r(UAMe2UAMe2)], two cyclic hexadeoxyribonucleotides [d(CGCGCG) and d(TAAAAA)] and a cyclic octadeoxyribonucleotide [d(CGTGCGTG)]. PMID:3380690

  4. Cyclic nucleotide binding and structural changes in the isolated GAF domain of Anabaena adenylyl cyclase, CyaB2

    PubMed Central

    Badireddy, Suguna; Rajendran, Abinaya; Anand, Ganesh Srinivasan

    2015-01-01

    GAF domains are a large family of regulatory domains, and a subset are found associated with enzymes involved in cyclic nucleotide (cNMP) metabolism such as adenylyl cyclases and phosphodiesterases. CyaB2, an adenylyl cyclase from Anabaena, contains two GAF domains in tandem at the N-terminus and an adenylyl cyclase domain at the C-terminus. Cyclic AMP, but not cGMP, binding to the GAF domains of CyaB2 increases the activity of the cyclase domain leading to enhanced synthesis of cAMP. Here we show that the isolated GAFb domain of CyaB2 can bind both cAMP and cGMP, and enhanced specificity for cAMP is observed only when both the GAFa and the GAFb domains are present in tandem (GAFab domain). In silico docking and mutational analysis identified distinct residues important for interaction with either cAMP or cGMP in the GAFb domain. Structural changes associated with ligand binding to the GAF domains could not be detected by bioluminescence resonance energy transfer (BRET) experiments. However, amide hydrogen-deuterium exchange mass spectrometry (HDXMS) experiments provided insights into the structural basis for cAMP-induced allosteric regulation of the GAF domains, and differences in the changes induced by cAMP and cGMP binding to the GAF domain. Thus, our findings could allow the development of molecules that modulate the allosteric regulation by GAF domains present in pharmacologically relevant proteins. PMID:25922789

  5. Effect of radioprotectant WR 2721 on cyclic nucleotides, prostaglandins, and lysosomes

    SciTech Connect

    Trocha, P.J.; Catravas, G.N.

    1983-05-01

    Within 1 hr after ip injection of the radioprotectant WR 2721 into rats, splenic cGMP levels dropped and remained suppressed for 6 hr before returning to normal. However, if rats were exposed to ionizing radiation 30-40 min after WR 2721 treatment, they had higher cGMP levels at 3 hr postirradiation than the nonirradiUted, drug-treated controls, but the cGMP content was still found to be lower than that of the irradiated nondrug-treated controls. Radiation exposure of animals pretreated with WR 2721 also resulted in higher liver and spleen levels of cAMP and additional elevations in spleen prostaglandin content, compared with irradiated controls at 3-6 hr after radiation treatment. The secondary fluctuations of lysosomal enzyme activities, prostaglandin content, and cyclic nucleotide levels were also altered in irradiated rats pretreated with WR 2721 when compared with irradiated controls. Liver and spleen lysosomal ..beta..-glucuronidase activities, spleen cAMP and cGMP levels, and spleen prostaglandin concentrations were closer to physiological levels at 3 days postirradiation in rats given WR 2721 before the radiation treatment.

  6. Dual specificity and novel structural folding of yeast phosphodiesterase-1 for hydrolysis of second messengers cyclic adenosine and guanosine 3',5'-Monophosphate

    DOE PAGESBeta

    Tian, Yuanyuan; Cui, Wenjun; Huang, Manna; Robinson, Howard; Wan, Yiqian; Wang, Yousheng; Ke, Hengming

    2014-08-05

    Cyclic nucleotide phosphodiesterases (PDEs) decompose second messengers cAMP and cGMP that play critical roles in many physiological processes. PDE1 of Saccharomyces cerevisiae has been subcloned and expressed in Escherichia coli. Recombinant yPDE1 has a KM of 110 μM and a kcat of 16.9 s⁻¹ for cAMP and a KM of 105 μM and a kcat of 11.8 s₅⁻¹ for cGMP. Thus, the specificity constant (kcat/KMcAMP)/(kcat/KMcGMP) of 1.4 indicates a dual specificity of yPDE1 for hydrolysis of both cAMP and cGMP. The crystal structures of unliganded yPDE1 and its complex with GMP at 1.31 Å resolution reveal a new structural foldingmore » that is different from those of human PDEs but is partially similar to that of some other metalloenzymes such as metallo-β-lactamase. In spite of their different structures and divalent metals, yPDE1 and human PDEs may share a common mechanism for hydrolysis of cAMP and cGMP.« less

  7. Genetics Home Reference: cyclic neutropenia

    MedlinePlus

    ... Understand Genetics Home Health Conditions cyclic neutropenia cyclic neutropenia Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Cyclic neutropenia is a disorder that causes frequent infections and ...

  8. The exopolysaccharide gene cluster Bcam1330–Bcam1341 is involved in Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349

    PubMed Central

    Fazli, Mustafa; McCarthy, Yvonne; Givskov, Michael; Ryan, Robert P; Tolker-Nielsen, Tim

    2013-01-01

    In Burkholderia cenocepacia, the second messenger cyclic diguanosine monophosphate (c-di-GMP) has previously been shown to positively regulate biofilm formation and the expression of cellulose and type-I fimbriae genes through binding to the transcriptional regulator Bcam1349. Here, we provide evidence that cellulose and type-I fimbriae are not involved in B. cenocepacia biofilm formation in flow chambers, and we identify a novel Bcam1349/c-di-GMP-regulated exopolysaccharide gene cluster which is essential for B. cenocepacia biofilm formation. Overproduction of Bcam1349 in trans promotes wrinkly colony morphology, pellicle, and biofilm formation in B. cenocepacia. A screen for transposon mutants unable to respond to the overproduction of Bcam1349 led to the identification of a 12-gene cluster, Bcam1330–Bcam1341, the products of which appear to be involved in the production of a putative biofilm matrix exopolysaccharide and to be essential for flow-chamber biofilm formation. We demonstrate that Bcam1349 binds to the promoter region of genes in the Bcam1330–Bcam1341 cluster and that this binding is enhanced by the presence of c-di-GMP. Furthermore, we demonstrate that overproduction of both c-di-GMP and Bcam1349 leads to increased transcription of these genes, indicating that c-di-GMP and Bcam1349 functions together in regulating exopolysaccharide production from the Bcam1330–Bcam1341 gene cluster. Our results suggest that the product encoded by the Bcam1330–Bcam1341 gene cluster is a major exopolysaccharide that provides structural stability to the biofilms formed by B. cenocepacia, and that its production is regulated by c-di-GMP through binding to and promotion of the activity of the transcriptional regulator Bcam1349. PMID:23281338

  9. Protective Effects of KH-204 in the Bladder of Androgen-Deprived Rats

    PubMed Central

    Bae, Woong Jin; Ha, U Syn; Choi, Jin Bong; Kim, Kang Sup; Kim, Su Jin; Cho, Hyuk Jin; Hong, Sung Hoo; Lee, Ji Youl; Wang, Zhiping; Hwang, Sung Yeoun

    2015-01-01

    Purpose We investigated the protective effects of the herbal formulation KH-204 in the bladder of androgen-deprived rats. Materials and Methods Male rats aged eight weeks were randomly divided into four groups, containing eight rats each: sham operation only (normal control group), androgen-deprived only (androgen-deprived control group), and androgen-deprived followed by treatment with 200 mg/kg or 400 mg/kg of KH-204. After 0.5 mg/kg of leuprorelin was subcutaneously injected in the androgen-deprived groups, the oral administration of either distilled water in the two control groups or KH-204 in the treatment group was continued for four weeks. Serum testosterone levels, RhoGEF levels, nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-related parameters, oxidative stress, and histologic changes were evaluated after treatment. Results Treatment with the herbal formulation KH-204 (1) increased serum testosterone levels; (2) restored the expression of RhoGEFs, endothelial NO synthase, and neuronal NO synthase; (3) increased the expression of superoxide dismutase; and (4) decreased bladder fibrosis. Conclusions Our results suggest that the positive effects of KH-204 on the urinary bladder may be attributed to its antioxidant effects or to an elevation in NO-cGMP activity. PMID:26331123

  10. Stimulation of soluble guanylyl cyclase protects against obesity by recruiting brown adipose tissue

    PubMed Central

    Hoffmann, Linda S.; Etzrodt, Jennifer; Willkomm, Lena; Sanyal, Abhishek; Scheja, Ludger; Fischer, Alexander W.C.; Stasch, Johannes-Peter; Bloch, Wilhelm; Friebe, Andreas; Heeren, Joerg; Pfeifer, Alexander

    2015-01-01

    Obesity is characterized by a positive energy balance and expansion of white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) combusts energy to produce heat. Here we show that a small molecule stimulator (BAY 41-8543) of soluble guanylyl cyclase (sGC), which produces the second messenger cyclic GMP (cGMP), protects against diet-induced weight gain, induces weight loss in established obesity, and also improves the diabetic phenotype. Mechanistically, the haeme-dependent sGC stimulator BAY 41–8543 enhances lipid uptake into BAT and increases whole-body energy expenditure, whereas ablation of the haeme-containing β1-subunit of sGC severely impairs BAT function. Notably, the sGC stimulator enhances differentiation of human brown adipocytes as well as induces ‘browning' of primary white adipocytes. Taken together, our data suggest that sGC is a potential pharmacological target for the treatment of obesity and its comorbidities. PMID:26011238

  11. Goettingen Minipigs (GMP): Comparison of Two Different Models for Inducing Diabetes

    PubMed Central

    2012-01-01

    Purpose Preclinical experiments on large animals are indispensable for evaluating the effectiveness of diabetes therapies. Miniature swine are well suited for such studies due to their physiological and pathophysiological responses. Methods We compare two methods for inducing diabetes in Goettingen minipigs (GMP), in five with the beta cell toxin streptozotocin (STZ) and in five other GMP by total pancreatectomy (PE). Glucose homeostasis was assessed with the intravenous glucose-tolerance test (IVGTT) and continual monitoring of interstitial glucose levels. At conclusion of the observation period, the pancreata were examined histologically. Three non-diabetic GMP served as control group. Results The IVGTT revealed markedly diabetic profiles in both GMP groups. STZ-GMP were found to harbor residual C-peptides and scattered insulin-positive cells in the pancreas. PE-GMP survived the total pancreatectomy only with intensive postoperative care. Conclusions Although both methods reliably induced diabetes in GMP, the PE-GMP clearly had more health problems and required a greater expenditure of time and resources. The PE-GMP model, however, was better at eliminating endogenous insulin and C-peptide than the STZ-GMP model. PMID:22390349

  12. c-di-GMP and its Effects on Biofilm Formation and Dispersion: a Pseudomonas Aeruginosa Review.

    PubMed

    Ha, Dae-Gon; O'Toole, George A

    2015-04-01

    Since its initial discovery as an allosteric factor regulating cellulose biosynthesis in Gluconacetobacter xylinus, the list of functional outputs regulated by c-di-GMP has grown. We have focused this article on one of these c-di-GMP-regulated processes, namely, biofilm formation in the organism Pseudomonas aeruginosa. The majority of diguanylate cyclases and phosphodiesterases encoded in the P. aeruginosa genome still remain uncharacterized; thus, there is still a great deal to be learned about the link between c-di-GMP and biofilm formation in this microbe. In particular, while a number of c-di-GMP metabolizing enzymes have been identified that participate in reversible and irreversible attachment and biofilm maturation, there is a still a significant knowledge gap regarding the c-di-GMP output systems in this organism. Even for the well-characterized Pel system, where c-di-GMP-mediated transcriptional regulation is now well documented, how binding of c-di-GMP by PelD stimulates Pel production is not understood in any detail. Similarly, c-di-GMP-mediated control of swimming, swarming and twitching also remains to be elucidated. Thus, despite terrific advances in our understanding of P. aeruginosa biofilm formation and the role of c-di-GMP in this process since the last version of this book (indeed there was no chapter on c-di-GMP!) there is still much to learn. PMID:26104694

  13. Phosphodiesterase-2 inhibitor reverses corticosterone-induced neurotoxicity and related behavioural changes via cGMP/PKG dependent pathway.

    PubMed

    Xu, Ying; Pan, Jianchun; Chen, Ling; Zhang, Chong; Sun, Jiao; Li, Jianxin; Nguyen, Linda; Nair, Neetu; Zhang, Hanting; O'Donnell, James M

    2013-05-01

    Phosphodiesterase 2 (PDE2) is an enzyme responsible for hydrolysis of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) to restrict intracellular signalling of these second messenger molecules. This study investigated how PDE2 inhibitor Bay 60-7550 affects the dysregulated glucocorticoid signalling in neuronal cells and regulates depressive behaviours after chronic stress in mice. We found that exposure of hippocampal neurons to corticosterone resulted in time- and concentration-dependent increases in PDE2 expression. These intriguing findings were confirmed in the hippocampal cell line HT-22. After corticosterone exposure for 24 h, HT-22 cells showed a concentration-dependent increase in mRNA levels for PDE2 subtypes, PDE2A1 and 2A3, as well as for the total PDE2A protein expression. Bay 60-7550 was found to reverse the cell lesion induced by corticosterone (50 μm). This neuroprotective effect was blocked by pretreatment with protein kinase G inhibitor KT5823, but not protein kinase A inhibitor H89, suggesting the involvement of cGMP-dependent signalling. Although Bay 60-7550 treatment for 24 h did not change the levels of phosphorylated mitogen-activated protein kinases ERK1/2 (pERK) and phosphorylated cAMP response element-binding protein (pCREB), it down-regulated pERK at 2 h and up-regulated a CREB co-activator, CREB-binding protein, at 24 h. Both of these effects were blocked by KT 5823. Furthermore, Bay 60-7550 reversed corticosterone-induced down-regulation of brain-derived neurotrophic factor protein levels 24 h after corticosterone exposure. In behavioural testing, Bay 60-7550 produced antidepressant-like effects and reduced corticosterone levels in stressed mice, further supporting the involvement of a PDE2-dependent pathway in mediating Bay 60-7550's effect during stress hormone insults. PMID:22850435

  14. Vendor qualification for pharmaceutical excipients--GMP requirements and approach.

    PubMed

    Patel, K T; Chotal, N P

    2010-11-01

    Excipients are, in the large majority of cases, not made specifically for pharmaceutical use. Most pharmaceutical excipient manufacturers supply less than 10% of the total production of that particular material for pharmaceutical use. Excipient product portfolio consists of hundreds of products differing in chemistry, origin and functionality and they are used in many different applications. The days of treating excipients like commodities and buying them without fully qualifying the source and the entire distribution chain have gone by as GMP regulations demands to ensure quality of other materials used in the manufacturing process. The paradigm that exists in some pharmaceutical companies today where excipients are sourced from distributors without knowing the actual manufacturer, manufacturing site and full distribution lifecycle chain to be changed. The present contribution gives an overview about the current moves on GMP requirements for pharmaceutical excipient and approach for qualification of pharmaceutical excipient manufacturers. PMID:21155382

  15. Variation in cyclic nucleotide levels and lysosomal enzyme activities in the irradiated rat

    SciTech Connect

    Trocha, P.J.; Catravas, G.N.

    1980-09-01

    Whole-body irradiation of rats causes not only a release of hydrolases from the lysosomes but also fluctuations in the cyclic nucleotide levels in spleen and liver tissues. Significant increases in lysosomal enzyme activities were further observed in spleen following radiation treatment. At 3 to 6 hr after rats were exposed to ..gamma.. radiation, transient increases in both cGMP and cAMP levels were accompanied with the release of ..beta..-glucuronidase and acid phosphatase enzymes from lysosomes in liver and spleen tissues. A second transitory release and activation of lysosomal hydrolases and an increase in cAMP levels occurred between 2 and 5 days after irradiation in spleen but not in liver. On Days 7 and 8, there was a third release of lysosomal hydrolases and a slight increase in the spleen cAMP concentration before they returned to near-control values. Cyclic GMP levels in the spleen decreased on the third day after irradiation, remained suppressed until Day 9, and then increased to levels higher than normal physiological values. The liver cGMP concentration remained unchanged between 9 hr and 11 days after irradiation.

  16. Cyclic control stick

    DOEpatents

    Whitaker, Charles N.; Zimmermann, Richard E.

    1989-01-01

    A cyclic control stick of the type used in helicopters for reducing the safety hazards associated with such a mechanism in the event of a crewman being thrown violently into contact with the cyclic control stick resulting from a crash or the like. The cyclic control stick is configured to break away upon the exertion of an impact force which exceeds a predetermined value and/or is exerted for more than a momentary time duration. The cyclic control stick is also configured to be adjustable so as to locate the grip thereof as far away from the crewman as possible for safety reasons without comprising the comfort of the crewman or the use of the control stick, and a crushable pad is provided on the top of the grip for impact energy absorbing purposes.

  17. CNG-modulin: a novel Ca-dependent modulator of ligand sensitivity in cone photoreceptor cGMP-gated ion channels.

    PubMed

    Rebrik, Tatiana I; Botchkina, Inna; Arshavsky, Vadim Y; Craft, Cheryl M; Korenbrot, Juan I

    2012-02-29

    The transduction current in several different types of sensory neurons arises from the activity of cyclic nucleotide-gated (CNG) ion channels. The channels in these sensory neurons vary in structure and function, yet each one demonstrates calcium-dependent modulation of ligand sensitivity mediated by the interaction of the channel with a soluble modulator protein. In cone photoreceptors, the molecular identity of the modulator protein was previously unknown. We report the discovery and characterization of CNG-modulin, a novel 301 aa protein that interacts with the N terminus of the β subunit of the cGMP-gated channel and modulates the cGMP sensitivity of the channels in cone photoreceptors of striped bass (Morone saxatilis). Immunohistochemistry and single-cell PCR demonstrate that CNG-modulin is expressed in cone but not rod photoreceptors. Adding purified recombinant CNG-modulin to cone membrane patches containing the native CNG channels shifts the midpoint of cGMP dependence from ∼91 μM in the absence of Ca(2+) to ∼332 μM in the presence of 20 μM Ca(2+). At a fixed cGMP concentration, the midpoint of the Ca(2+) dependence is ∼857 nM Ca(2+). These restored physiological features are statistically indistinguishable from the effects of the endogenous modulator. CNG-modulin binds Ca(2+) with a concentration dependence that matches the calcium dependence of channel modulation. We conclude that CNG-modulin is the authentic Ca(2+)-dependent modulator of cone CNG channel ligand sensitivity. CNG-modulin is expressed in other tissues, such as brain, olfactory epithelium, and the inner ear, and may modulate the function of ion channels in those tissues as well. PMID:22378887

  18. Nitric oxide synthetic pathway and cGMP levels are altered in red blood cells from end-stage renal disease patients.

    PubMed

    Di Pietro, Natalia; Giardinelli, Annalisa; Sirolli, Vittorio; Riganti, Chiara; Di Tomo, Pamela; Gazzano, Elena; Di Silvestre, Sara; Panknin, Christina; Cortese-Krott, Miriam M; Csonka, Csaba; Kelm, Malte; Ferdinandy, Péter; Bonomini, Mario; Pandolfi, Assunta

    2016-06-01

    Red blood cells (RBCs) enzymatically produce nitric oxide (NO) by a functional RBC-nitric oxide synthase (RBC-NOS). NO is a vascular key regulatory molecule. In RBCs its generation is complex and influenced by several factors, including insulin, acetylcholine, and calcium. NO availability is reduced in end-stage renal disease (ESRD) and associated with endothelial dysfunction. We previously demonstrated that, through increased phosphatidylserine membrane exposure, ESRD-RBCs augmented their adhesion to human cultured endothelium, in which NO bioavailability decreased. Since RBC-NOS-dependent NO production in ESRD is unknown, this study aimed to investigate RBC-NOS levels/activation, NO production/bioavailability in RBCs from healthy control subjects (C, N = 18) and ESRD patients (N = 27). Although RBC-NOS expression was lower in ESRD-RBCs, NO, cyclic guanosine monophosphate (cGMP), RBC-NOS Serine1177 phosphorylation level and eNOS/Calmodulin (CaM)/Heat Shock Protein-90 (HSP90) interaction levels were higher in ESRD-RBCs, indicating increased enzyme activation. Conversely, following RBCs stimulation with insulin or ionomycin, NO and cGMP levels were significantly lower in ESRD- than in C-RBCs, suggesting that uremia might reduce the RBC-NOS response to further stimuli. Additionally, the activity of multidrug-resistance-associated protein-4 (MRP4; cGMP-membrane transporter) was significantly lower in ESRD-RBCs, suggesting a possible compromised efflux of cGMP across the ESRD-RBCs membrane. This study for the first time showed highest basal RBC-NOS activation in ESRD-RBCs, possibly to reduce the negative impact of decreased NOS expression. It is further conceivable that high NO production only partially affects cell function of ESRD-RBCs maybe because in vivo they are unable to respond to physiologic stimuli, such as calcium and/or insulin. PMID:27206740

  19. Icariin, a phosphodiesterase-5 inhibitor, improves learning and memory in APP/PS1 transgenic mice by stimulation of NO/cGMP signalling.

    PubMed

    Jin, Feng; Gong, Qi-Hai; Xu, Ya-Sha; Wang, Li-Na; Jin, Hai; Li, Fei; Li, Li-Sheng; Ma, Yue-Ming; Shi, Jing-Shan

    2014-06-01

    Phosphodiesterase-5 (PDE5) inhibitors are predominantly used in the treatment of erectile dysfunction, and have been recently shown to have a potential therapeutic effect for the treatment of Alzheimer's disease (AD) through stimulation of nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signalling by elevating cGMP, which is a secondary messenger involved in processes of neuroplasticity. In the present study, the effects of a PDE5 inhibitor, icarrin (ICA), on learning and memory as well as the pathological features in APP/PS1 transgenic AD mice were investigated. Ten-month-old APP/PS1 transgenic mice overexpressing human amyloid precursor protein (APP695swe) and presenilin 1 (PS1-dE9) were given ICA (30 and 60 mg/kg) or sildenafil (SIL) (2 mg/kg), age-matched wild-type (WT) mice were given ICA (60 mg/kg), and APP/PS1 and WT control groups were given an isovolumic vehicle orally twice a day for four months. Results demonstrated that ICA treatments significantly improved learning and memory of APP/PS1 transgenic mice in Y-maze tasks. The amyloid precursor protein (APP), amyloid-beta (Aβ1-40/42) and PDE5 mRNA and/or protein levels were increased in the hippocampus and cortex of APP/PS1 mice, and ICA treatments decreased these physiopathological changes. Furthermore, ICA-treated mice showed an increased expression of three nitric oxide synthase (NOS) isoforms at both mRNA and protein levels, together with increased NO and cGMP levels in the hippocampus and cortex of mice. These findings demonstrate that ICA improves learning and memory functions in APP/PS1 transgenic mice possibly through the stimulation of NO/cGMP signalling and co-ordinated induction of NOS isoforms. PMID:24513083

  20. Type II cGMP-dependent protein kinase directly inhibits HER2 activation of gastric cancer cells.

    PubMed

    Zhu, Miaolin; Yao, Xiaoyuan; Wu, Min; Qian, Hai; Wu, Yan; Chen, Yongchang

    2016-02-01

    Our previous study demonstrated that type II cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG II) inhibited epidermal growth factor (EGF)-induced phosphorylation/activation of epidermal growth factor receptor (EGFR). Since human epidermal growth factor receptor 2 (HER2) has a similar molecular structure to EGFR, the present study was designed to investigate whether PKG II also inhibits HER2 activation. The human gastric cancer cell line HGC‑27 was infected with an adenoviral construct encoding cDNA of PKG II (Ad‑PKG II) to increase the expression of PKG II and treated with 8‑(4‑chlorophenylthio)guanosine‑3',5'‑cyclic monophosphate (8‑pCPT‑cGMP) to activate the kinase. Western blotting was performed to detect the tyrosine and serine/threonine phosphorylation of HER2. Co‑immunoprecipitation was performed in order to determine the binding between PKG II and HER2. In addition, a QuikChange Lightning Site‑Directed Mutagenesis kit was used to mutate threonine 686 of HER2 to glutamic acid or alanine. The results demonstrated that EGF treatment increased the tyrosine phosphorylation (activation) of HER2. Increasing the PKG II activity of HGC‑27 cells through infection with Ad‑PKG II and stimulation with 8‑pCPT‑cGMP inhibited the EGF‑induced tyrosine phosphorylation/activation of HER2. PKG II bound directly with HER2 and caused phosphorylation of threonine 686. When threonine 686 of HER2 was mutated to alanine, which could not be phosphorylated by PKG II, the inhibitory effect of PKG II on the activation of HER2 was eradicated. When threonine 686 of HER2 was mutated to glutamic acid, which mimicked the phosphorylation of this site, treatment with EGF had no stimulating effect on tyrosine phosphorylation/activation of the mutant HER2. The results suggested that PKG II inhibits EGF‑induced activation of HER2 through binding with and causing threonine 686 phosphorylation of this oncogenic protein. PMID:26676300

  1. Cyclic steps on ice

    NASA Astrophysics Data System (ADS)

    Yokokawa, M.; Izumi, N.; Naito, K.; Parker, G.; Yamada, T.; Greve, R.

    2016-05-01

    Boundary waves often form at the interface between ice and fluid flowing adjacent to it, such as ripples under river ice covers, and steps on the bed of supraglacial meltwater channels. They may also be formed by wind, such as the megadunes on the Antarctic ice sheet. Spiral troughs on the polar ice caps of Mars have been interpreted to be cyclic steps formed by katabatic wind blowing over ice. Cyclic steps are relatives of upstream-migrating antidunes. Cyclic step formation on ice is not only a mechanical but also a thermodynamic process. There have been very few studies on the formation of either cyclic steps or upstream-migrating antidunes on ice. In this study, we performed flume experiments to reproduce cyclic steps on ice by flowing water, and found that trains of steps form when the Froude number is larger than unity. The features of those steps allow them to be identified as ice-bed analogs of cyclic steps in alluvial and bedrock rivers. We performed a linear stability analysis and obtained a physical explanation of the formation of upstream-migrating antidunes, i.e., precursors of cyclic steps. We compared the results of experiments with the predictions of the analysis and found the observed steps fall in the range where the analysis predicts interfacial instability. We also found that short antidune-like undulations formed as a precursor to the appearance of well-defined steps. This fact suggests that such antidune-like undulations correspond to the instability predicted by the analysis and are precursors of cyclic steps.

  2. Cyclic polymers from alkynes.

    PubMed

    Roland, Christopher D; Li, Hong; Abboud, Khalil A; Wagener, Kenneth B; Veige, Adam S

    2016-08-01

    Cyclic polymers have dramatically different physical properties compared with those of their equivalent linear counterparts. However, the exploration of cyclic polymers is limited because of the inherent challenges associated with their synthesis. Conjugated linear polyacetylenes are important materials for electrical conductivity, paramagnetic susceptibility, optical nonlinearity, photoconductivity, gas permeability, liquid crystallinity and chain helicity. However, their cyclic analogues are unknown, and therefore the ability to examine how a cyclic topology influences their properties is currently not possible. We have solved this challenge and now report a tungsten catalyst supported by a tetraanionic pincer ligand that can rapidly polymerize alkynes to form conjugated macrocycles in high yield. The catalyst works by tethering the ends of the polymer to the metal centre to overcome the inherent entropic penalty of cyclization. Gel-permeation chromatography, dynamic and static light scattering, viscometry and chemical tests are all consistent with theoretical predictions and provide unambiguous confirmation of a cyclic topology. Access to a wide variety of new cyclic polymers is now possible by simply choosing the appropriate alkyne monomer. PMID:27442285

  3. Cyclic polymers from alkynes

    NASA Astrophysics Data System (ADS)

    Roland, Christopher D.; Li, Hong; Abboud, Khalil A.; Wagener, Kenneth B.; Veige, Adam S.

    2016-08-01

    Cyclic polymers have dramatically different physical properties compared with those of their equivalent linear counterparts. However, the exploration of cyclic polymers is limited because of the inherent challenges associated with their synthesis. Conjugated linear polyacetylenes are important materials for electrical conductivity, paramagnetic susceptibility, optical nonlinearity, photoconductivity, gas permeability, liquid crystallinity and chain helicity. However, their cyclic analogues are unknown, and therefore the ability to examine how a cyclic topology influences their properties is currently not possible. We have solved this challenge and now report a tungsten catalyst supported by a tetraanionic pincer ligand that can rapidly polymerize alkynes to form conjugated macrocycles in high yield. The catalyst works by tethering the ends of the polymer to the metal centre to overcome the inherent entropic penalty of cyclization. Gel-permeation chromatography, dynamic and static light scattering, viscometry and chemical tests are all consistent with theoretical predictions and provide unambiguous confirmation of a cyclic topology. Access to a wide variety of new cyclic polymers is now possible by simply choosing the appropriate alkyne monomer.

  4. Structure and Energetics of Allosteric Regulation of HCN2 Ion Channels by Cyclic Nucleotides*

    PubMed Central

    DeBerg, Hannah A.; Brzovic, Peter S.; Flynn, Galen E.; Zagotta, William N.; Stoll, Stefan

    2016-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels play an important role in regulating electrical activity in the heart and brain. They are gated by the binding of cyclic nucleotides to a conserved, intracellular cyclic nucleotide-binding domain (CNBD), which is connected to the channel pore by a C-linker region. Binding of cyclic nucleotides increases the rate and extent of channel activation and shifts it to less hyperpolarized voltages. We probed the allosteric mechanism of different cyclic nucleotides on the CNBD and on channel gating. Electrophysiology experiments showed that cAMP, cGMP, and cCMP were effective agonists of the channel and produced similar increases in the extent of channel activation. In contrast, electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) on the isolated CNBD indicated that the induced conformational changes and the degrees of stabilization of the active conformation differed for the three cyclic nucleotides. We explain these results with a model where different allosteric mechanisms in the CNBD all converge to have the same effect on the C-linker and render all three cyclic nucleotides similarly potent activators of the channel. PMID:26559974

  5. Structure and Energetics of Allosteric Regulation of HCN2 Ion Channels by Cyclic Nucleotides.

    PubMed

    DeBerg, Hannah A; Brzovic, Peter S; Flynn, Galen E; Zagotta, William N; Stoll, Stefan

    2016-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels play an important role in regulating electrical activity in the heart and brain. They are gated by the binding of cyclic nucleotides to a conserved, intracellular cyclic nucleotide-binding domain (CNBD), which is connected to the channel pore by a C-linker region. Binding of cyclic nucleotides increases the rate and extent of channel activation and shifts it to less hyperpolarized voltages. We probed the allosteric mechanism of different cyclic nucleotides on the CNBD and on channel gating. Electrophysiology experiments showed that cAMP, cGMP, and cCMP were effective agonists of the channel and produced similar increases in the extent of channel activation. In contrast, electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) on the isolated CNBD indicated that the induced conformational changes and the degrees of stabilization of the active conformation differed for the three cyclic nucleotides. We explain these results with a model where different allosteric mechanisms in the CNBD all converge to have the same effect on the C-linker and render all three cyclic nucleotides similarly potent activators of the channel. PMID:26559974

  6. Nitrite-mediated renal vasodilatation is increased during ischemic conditions via cGMP-independent signaling.

    PubMed

    Liu, Ming; Zollbrecht, Christa; Peleli, Maria; Lundberg, Jon O; Weitzberg, Eddie; Carlström, Mattias

    2015-07-01

    The kidney is vulnerable to hypoxia, and substantial efforts have been made to ameliorate renal ischemic injury secondary to pathological conditions. Stimulation of the nitrate-nitrite-nitric oxide pathway is associated with renal and cardiovascular protection in disease models, but less is known about the vascular effects during renal ischemia. This study was aimed at investigating the vascular effects of nitrite in the kidney during normoxic and ischemic conditions. Using a multiwire myograph system, we assessed nitrite-mediated relaxation (10(-9)-10(-4)mol/L) in isolated and preconstricted renal interlobar arteries from C57BL/6 mice under normal conditions (pO2 13kPa; pH 7.4) and with low oxygen tension and low pH to mimic ischemia (pO2 3kPa; pH 6.6). Xanthine oxidoreductase expression was analyzed by quantitative PCR, and production of reactive nitrogen species was measured by DAF-FM DA fluorescence. During normoxia significant vasodilatation (15±3%) was observed only at the highest concentration of nitrite, which was dependent on NO-sGC-cGMP signaling. The vasodilatory responses to nitrite were greatly sensitized and enhanced during hypoxia with low pH, demonstrating significant dilatation (11±1%) already in the physiological range (10(-8)mol/L), with a maximum response of 27±2% at 10(-4) mol/L. In contrast to normoxia, and to that observed with a classical NO donor (DEA NONOate), this sensitization was independent of sGC-cGMP signaling. Moreover, inhibition of various enzymatic systems reported to reduce nitrite in other vascular beds, i.e., aldehyde oxidase (raloxifene), aldehyde dehydrogenase (cyanamide), and NO synthase (L-NAME), had no effect on the nitrite response. However, inhibition of xanthine oxidoreductase (XOR; febuxostat or allopurinol) abolished the sensitized response to nitrite during hypoxia and acidosis. In conclusion, in contrast to normoxia, nitrite exerted potent vasorelaxation during ischemic conditions already at physiological

  7. Involvement of Cyclic Guanosine Monophosphate-Dependent Protein Kinase I in Renal Antifibrotic Effects of Serelaxin

    PubMed Central

    Wetzl, Veronika; Schinner, Elisabeth; Kees, Frieder; Hofmann, Franz; Faerber, Lothar; Schlossmann, Jens

    2016-01-01

    Introduction: Kidney fibrosis has shown to be ameliorated through the involvement of cyclic guanosine monophosphate (cGMP) and its dependent protein kinase I (cGKI). Serelaxin, the recombinant form of human relaxin-II, increases cGMP levels and has shown beneficial effects on kidney function in acute heart failure patients. Antifibrotic properties of serelaxin are supposed to be mediated via relaxin family peptide receptor 1 and subsequently enhanced nitric oxide/cGMP to inhibit transforming growth factor-β (TGF-β) signaling. This study examines the involvement of cGKI in the antifibrotic signaling of serelaxin. Methods and Results: Kidney fibrosis was induced by unilateral ureteral obstruction in wildtype (WT) and cGKI knock-out (KO) mice. After 7 days, renal antifibrotic effects of serelaxin were assessed. Serelaxin treatment for 7 days significantly increased cGMP in the kidney of WT and cGKI-KO. In WT, renal fibrosis was reduced through decreased accumulation of collagen1A1, total collagen, and fibronectin. The profibrotic connective tissue growth factor as well as myofibroblast differentiation were reduced and matrix metalloproteinases-2 and -9 were positively modulated after treatment. Moreover, Smad2 as well as extracellular signal-regulated kinase 1 (ERK1) phosphorylation were decreased, whereas phosphodiesterase (PDE) 5a phosphorylation was increased. However, these effects were not observed in cGKI-KO. Conclusion: Antifibrotic renal effects of serelaxin are mediated via cGMP/cGKI to inhibit Smad2- and ERK1-dependent TGF-β signaling and increased PDE5a phosphorylation. PMID:27462268

  8. [Cyclic enteral nutrition].

    PubMed

    Hébuterne, X; Rampal, P

    1996-02-10

    Cyclic enteral nutrition consists in continuous infusion of nutrients with a pump over a 12 to 14 hour period at night. Different reports have demonstrated that cyclic enteral nutrition is well tolerated in malnourished ambulatory patients. The incidence of pneumonia by inhalation in this type of patients is less than 2%. Excepting patients with major amputation of the small intestine and important functional consequences, the increased infusion rate required by cyclic enteral nutrition does not diminish digestive tract absorption making the technique as effective as continuous 24-hour infusion. The main advantages of the cyclic infusion are the preservation of physiological balance between fasting and feeding, improved physical activity during the day with its beneficial effect on protein-energy metabolism, compatibility with oral nutrition during the day in nutrition reeducation programs, and the psychological impact in patients who are free to move about, further improving tolerance. Finally, cyclic enteral nutrition is adapted to enteral nutrition programs conducted in the patient's homes. PMID:8729381

  9. 40 CFR 721.10570 - Cyclic amine reaction product with acetophenone and formaldehyde acid salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10570 Cyclic amine reaction product... subject to reporting. (1) The chemical substance identified generically as cyclic amine reaction product... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cyclic amine reaction product...

  10. 40 CFR 721.10570 - Cyclic amine reaction product with acetophenone and formaldehyde acid salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10570 Cyclic amine reaction product... subject to reporting. (1) The chemical substance identified generically as cyclic amine reaction product... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cyclic amine reaction product...

  11. Modulation of cGMP accumulation by adenosine A1 receptors at the hippocampus: influence of cGMP levels and gender.

    PubMed

    Serpa, André; Sebastião, Ana M; Cascalheira, José F

    2014-12-01

    Adenosine A1 receptor is highly expressed in hippocampus where it inhibits neurotransmitter release and has neuroprotective activity. Similar actions are obtained by increasing cGMP concentration, but a clear link between adenosine A1 receptor and cGMP levels remains to be established. The present work aims to investigate if cGMP formation is modulated by adenosine A1 receptors at the hippocampus and if this effect is gender dependent. cGMP accumulation, induced by phosphodiesterases inhibitors Zaprinast (100 μM) and Bay 60-7550 (10 μM), and cAMP accumulation, induced by Forskolin (20 μM) and Rolipram (50 μM), were quantified in rat hippocampal slices using specific enzymatic immunoassays. N6-cyclopentyladenosine (CPA, 100 nM) alone failed to modify basal cGMP accumulation. However, the presence of adenosine deaminase (ADA, 2 U/ml) unmasked a CPA (0.03-300 nM) stimulatory effect on basal cGMP accumulation (EC50: 4.2±1.4 nM; Emax: 17±0.9%). ADA influence on CPA activity was specific for cGMP, since inhibition of cAMP accumulation by CPA was not affected by the presence of ADA, though ADA inhibited cAMP accumulation in the absence of CPA. Increasing cGMP accumulation, by about four-fold, with sodium nitroprusside (SNP, 100 μM) abolished the CPA (100 nM) effect on cGMP accumulation in males but did not modify the effect of CPA in female rats. This effect was reversed by 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX, 100 nM), indicating an adenosine A1 receptor mediated effect on cGMP accumulation. In conclusion, adenosine A1 receptors increase intracellular cGMP formation at hippocampus both in males and females under basal conditions, but only in females when cGMP levels are increased by SNP. PMID:25300679

  12. Cyclic Nucleotide Phosphodiesterases: important signaling modulators and therapeutic targets

    PubMed Central

    Ahmad, Faiyaz; Murata, Taku; Simizu, Kasumi; Degerman, Eva; Maurice, Donald; Manganiello, Vincent

    2014-01-01

    By catalyzing hydrolysis of cAMP and cGMP, cyclic nucleotide phosphodiesterases are critical regulators of their intracellular concentrations and their biological effects. Since these intracellular second messengers control many cellular homeostatic processes, dysregulation of their signals and signaling pathways initiate or modulate pathophysiological pathways related to various disease states, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication, chronic obstructive pulmonary disease, and psoriasis. Alterations in expression of PDEs and PDE-gene mutations (especially mutations in PDE6, PDE8B, PDE11A and PDE4) have been implicated in various diseases and cancer pathologies. PDEs also play important role in formation and function of multi-molecular signaling/regulatory complexes called signalosomes. At specific intracellular locations, individual PDEs, together with pathway-specific signaling molecules, regulators, and effectors, are incorporated into specific signalosomes, where they facilitate and regulate compartmentalization of cyclic nucleotide signaling pathways and specific cellular functions. Currently, only a limited number of PDE inhibitors (PDE3, PDE4, PDE5 inhibitors) are used in clinical practice. Future paths to novel drug discovery include the crystal structure-based design approach, which has resulted in generation of more effective family-selective inhibitors, as well as burgeoning development of strategies to alter compartmentalized cyclic nucleotide signaling pathways by selectively targeting individual PDEs and their signalosome partners. PMID:25056711

  13. Atrial natriuretic peptide and oxytocin induce natriuresis by release of cGMP

    PubMed Central

    Soares, T. J.; Coimbra, T. M.; Martins, A. R.; Pereira, A. G. F.; Carnio, E. C.; Branco, L. G. S.; Albuquerque-Araujo, W. I. C.; de Nucci, G.; Favaretto, A. L. V.; Gutkowska, J.; McCann, S. M.; Antunes-Rodrigues, J.

    1999-01-01

    Our hypothesis is that oxytocin (OT) causes natriuresis by activation of renal NO synthase that releases NO followed by cGMP that mediates the natriuresis. To test this hypothesis, an inhibitor of NO synthase, l-nitroarginine methyl ester (NAME), was injected into male rats. Blockade of NO release by NAME had no effect on natriuresis induced by atrial natriuretic peptide (ANP). This natriuresis presumably is caused by cGMP because ANP also activates guanylyl cyclase, which synthesizes cGMP from GTP. The 18-fold increase in sodium (Na+) excretion induced by OT (1 μg) was accompanied by an increase in urinary cGMP and preceded by 20 min a 20-fold increase in NO3− excretion. NAME almost completely inhibited OT-induced natriuresis and increased NO3− excretion; however, when the dose of OT was increased 10-fold, a dose that markedly increases plasma ANP concentrations, NAME only partly inhibited the natriuresis. We conclude that the natriuretic action of OT is caused by a dual action: generation of NO leading to increased cGMP and at higher doses release of ANP that also releases cGMP. OT-induced natriuresis is caused mainly by decreased tubular Na+ reabsorption mediated by cGMP. In contrast to ANP that releases cGMP in the renal vessels and the tubules, OT acts on its receptors on NOergic cells demonstrated in the macula densa and proximal tubules to release cGMP that closes Na+ channels. Both ANP- and OT-induced kaliuresis also appear to be mediated by cGMP. We conclude that cGMP mediates natriuresis and kaliuresis induced by both ANP and OT. PMID:9874809

  14. cGMP Binding Sites on Photoreceptor Phosphodiesterase: Role in Feedback Regulation of Visual Transduction

    NASA Astrophysics Data System (ADS)

    Cote, Rick H.; Deric Bownds, M.; Arshavsky, Vadim Y.

    1994-05-01

    A central step in vertebrate visual transduction is the rapid drop in cGMP levels that causes cGMP-gated ion channels in the photoreceptor cell membrane to close. It has long been a puzzle that the cGMP phosphodiesterase (PDE) whose activation causes this decrease contains not only catalytic sites for cGMP hydrolysis but also noncatalytic cGMP binding sites. Recent work has shown that occupancy of these noncatalytic sites slows the rate of PDE inactivation. We report here that PDE activation induced by activated transducin lowers the cGMP binding affinity for noncatalytic sites on PDE and accelerates the dissociation of cGMP from these sites. These sites can exist in three states: high affinity (K_d = 60 nM) for the nonactivated PDE, intermediate affinity (K_d ≈ 180 nM) when the enzyme is activated in a complex with transducin, and low affinity (K_d > 1 μM) when transducin physically removes the inhibitory subunits of PDE from the PDE catalytic subunits. Activation of PDE by transducin causes a 10-fold increase in the rate of cGMP dissociation from one of the two noncatalytic sites; physical removal of the inhibitory subunits from the PDE catalytic subunits further accelerates the cGMP dissociation rate from both sites >50-fold. Because PDE molecules lacking bound cGMP inactivate more rapidly, this suggests that a prolonged cGMP decrease may act as a negative feedback regulator to generate the faster, smaller photoresponses characteristic of light-adapted photoreceptors.

  15. Oligoribonuclease is a central feature of cyclic diguanylate signaling in Pseudomonas aeruginosa

    PubMed Central

    Cohen, Dorit; Mechold, Undine; Nevenzal, Hadas; Yarmiyhu, Yafit; Randall, Trevor E.; Bay, Denice C.; Rich, Jacquelyn D.; Parsek, Matthew R.; Kaever, Volkhard; Harrison, Joe J.; Banin, Ehud

    2015-01-01

    The second messenger cyclic diguanylate (c-di-GMP) controls diverse cellular processes among bacteria. Diguanylate cyclases synthesize c-di-GMP, whereas it is degraded by c-di-GMP–specific phosphodiesterases (PDEs). Nearly 80% of these PDEs are predicted to depend on the catalytic function of glutamate-alanine-leucine (EAL) domains, which hydrolyze a single phosphodiester group in c-di-GMP to produce 5ʹ-phosphoguanylyl-(3ʹ,5ʹ)-guanosine (pGpG). However, to degrade pGpG and prevent its accumulation, bacterial cells require an additional nuclease, the identity of which remains unknown. Here we identify oligoribonuclease (Orn)—a 3ʹ→5ʹ exonuclease highly conserved among Actinobacteria, Beta-, Delta- and Gammaproteobacteria—as the primary enzyme responsible for pGpG degradation in Pseudomonas aeruginosa cells. We found that a P. aeruginosa Δorn mutant had high intracellular c-di-GMP levels, causing this strain to overexpress extracellular polymers and overproduce biofilm. Although recombinant Orn degraded small RNAs in vitro, this enzyme had a proclivity for degrading RNA oligomers comprised of two to five nucleotides (nanoRNAs), including pGpG. Corresponding with this activity, Δorn cells possessed highly elevated pGpG levels. We found that pGpG reduced the rate of c-di-GMP degradation in cell lysates and inhibited the activity of EAL-dependent PDEs (PA2133, PvrR, and purified recombinant RocR) from P. aeruginosa. This pGpG-dependent inhibition was alleviated by the addition of Orn. These data suggest that elevated levels of pGpG exert product inhibition on EAL-dependent PDEs, thereby increasing intracellular c-di-GMP in Δorn cells. Thus, we propose that Orn provides homeostatic control of intracellular pGpG under native physiological conditions and that this activity is fundamental to c-di-GMP signal transduction. PMID:26305928

  16. Natriuretic peptides modify Pseudomonas fluorescens cytotoxicity by regulating cyclic nucleotides and modifying LPS structure

    PubMed Central

    Veron, Wilfried; Orange, Nicole; Feuilloley, Marc GJ; Lesouhaitier, Olivier

    2008-01-01

    Background Nervous tissues express various communication molecules including natriuretic peptides, i.e. Brain Natriuretic Peptide (BNP) and C-type Natriuretic Peptide (CNP). These molecules share structural similarities with cyclic antibacterial peptides. CNP and to a lesser extent BNP can modify the cytotoxicity of the opportunistic pathogen Pseudomonas aeruginosa. The psychrotrophic environmental species Pseudomonas fluorescens also binds to and kills neurons and glial cells, cell types that both produce natriuretic peptides. In the present study, we investigated the sensitivity of Pseudomonas fluorescens to natriuretic peptides and evaluated the distribution and variability of putative natriuretic peptide-dependent sensor systems in the Pseudomonas genus. Results Neither BNP nor CNP modified P. fluorescens MF37 growth or cultivability. However, pre-treatment of P. fluorescens MF37 with BNP or CNP provoked a decrease of the apoptotic effect of the bacterium on glial cells and an increase of its necrotic activity. By homology with eukaryotes, where natriuretic peptides act through receptors coupled to cyclases, we observed that cell-permeable stable analogues of cyclic AMP (dbcAMP) and cyclic GMP (8BcGMP) mimicked the effect of BNP and CNP on bacteria. Intra-bacterial concentrations of cAMP and cGMP were measured to study the involvement of bacterial cyclases in the regulation of P. fluorescens cytotoxicity by BNP or CNP. BNP provoked an increase (+49%) of the cAMP concentration in P. fluorescens, and CNP increased the intra-bacterial concentrations of cGMP (+136%). The effect of BNP and CNP on the virulence of P. fluorescens was independent of the potential of the bacteria to bind to glial cells. Conversely, LPS extracted from MF37 pre-treated with dbcAMP showed a higher necrotic activity than the LPS from untreated or 8BcGMP-pre-treated bacteria. Capillary electrophoresis analysis suggests that these different effects of the LPS may be due, at least in part, to

  17. Methods and materials relating to IMPDH and GMP production

    SciTech Connect

    Collart, Frank R.; Huberman, Eliezer

    1997-01-01

    Disclosed are purified and isolated DNA sequences encoding eukaryotic proteins possessing biological properties of inosine 5'-monophosphate dehydrogenase ("IMPDH"). Illustratively, mammalian (e.g., human) IMPDH-encoding DNA sequences are useful in transformation or transfection of host cells for the large scale recombinant production of the enzymatically active expression products and/or products (e.g., GMP) resulting from IMPDH catalyzed synthesis in cells. Vectors including IMPDH-encoding DNA sequences are useful in gene amplification procedures. Recombinant proteins and synthetic peptides provided by the invention are useful as immunological reagents and in the preparation of antibodies (including polyclonal and monoclonal antibodies) for quantitative detection of IMPDH.

  18. Cyclic membrane separation process

    DOEpatents

    Bowser, John

    2004-04-13

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In one of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the other part, the membrane is inoperative while gas pressure rises in the ullage. Ambient air is charged to the membrane separation unit during the latter part of the cycle.

  19. Flow in cyclic cosmology

    SciTech Connect

    Kinney, William H.; Dizgah, Azadeh Moradinezhad

    2010-10-15

    In this paper, we use a known duality between expanding and contracting cosmologies to construct a dual of the inflationary flow hierarchy applicable to contracting cosmologies such as ekpyrotic and cyclic models. We show that the inflationary flow equations are invariant under the duality and therefore apply equally well to inflation or to cyclic cosmology. We construct a self-consistent small-parameter approximation dual to the slow-roll approximation in inflation, and calculate the power spectrum of perturbations in this limit. We also recover the matter-dominated contracting solution of Wands, and the recently proposed adiabatic ekpyrosis solution.

  20. Cyclic membrane separation process

    DOEpatents

    Nemser, Stuart M.

    2005-05-03

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In the first part of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the second part, the membrane is inoperative while gas pressure rises in the ullage. In one aspect of this invention, a vacuum is drawn in the membrane separation unit thus reducing overall VOC emissions.

  1. Elevated intracranial dopamine impairs the glutamate-nitric oxide-cyclic guanosine monophosphate pathway in cortical astrocytes in rats with minimal hepatic encephalopathy

    PubMed Central

    DING, SAIDAN; HUANG, WEILONG; YE, YIRU; YANG, JIANJING; HU, JIANGNAN; WANG, XIAOBIN; LIU, LEPING; LU, QIN; LIN, YUANSHAO

    2014-01-01

    In a previous study by our group memory impairment in rats with minimal hepatic encephalopathy (MHE) was associated with the inhibition of the glutamate-nitric oxide-cyclic guanosine monophosphate (Glu-NO-cGMP) pathway due to elevated dopamine (DA). However, the effects of DA on the Glu-NO-cGMP pathway localized in primary cortical astrocytes (PCAs) had not been elucidated in rats with MHE. In the present study, it was identified that when the levels of DA in the cerebral cortex of rats with MHE and high-dose DA (3 mg/kg)-treated rats were increased, the co-localization of N-methyl-d-aspartate receptors subunit 1 (NMDAR1), calmodulin (CaM), nitric oxide synthase (nNOS), soluble guanylyl cyclase (sGC) and cyclic guanine monophosphate (cGMP) with the glial fibrillary acidic protein (GFAP), a marker protein of astrocytes, all significantly decreased, in both the MHE and high-dose DA-treated rats (P<0.01). Furthermore, NMDA-induced augmentation of the expression of NMDAR1, CaM, nNOS, sGC and cGMP localized in PCAs was decreased in MHE and DA-treated rats, as compared with the controls. Chronic exposure of cultured cerebral cortex PCAs to DA treatment induced a dose-dependent decrease in the concentration of intracellular calcium, nitrites and nitrates, the formation of cGMP and the expression of NMDAR1, CaM, nNOS and sGC/cGMP. High doses of DA (50 μM) significantly reduced NMDA-induced augmentation of the formation of cGMP and the contents of NMDAR1, CaM, nNOS, sGC and cGMP (P<0.01). These results suggest that the suppression of DA on the Glu-NO-cGMP pathway localized in PCAs contributes to memory impairment in rats with MHE. PMID:25059564

  2. Elevated intracranial dopamine impairs the glutamate‑nitric oxide‑cyclic guanosine monophosphate pathway in cortical astrocytes in rats with minimal hepatic encephalopathy.

    PubMed

    Ding, Saidan; Huang, Weilong; Ye, Yiru; Yang, Jianjing; Hu, Jiangnan; Wang, Xiaobin; Liu, Leping; Lu, Qin; Lin, Yuanshao

    2014-09-01

    In a previous study by our group memory impairment in rats with minimal hepatic encephalopathy (MHE) was associated with the inhibition of the glutamate‑nitric oxide‑cyclic guanosine monophosphate (Glu‑NO‑cGMP) pathway due to elevated dopamine (DA). However, the effects of DA on the Glu‑NO‑cGMP pathway localized in primary cortical astrocytes (PCAs) had not been elucidated in rats with MHE. In the present study, it was identified that when the levels of DA in the cerebral cortex of rats with MHE and high‑dose DA (3 mg/kg)‑treated rats were increased, the co‑localization of N‑methyl‑d‑aspartate receptors subunit 1 (NMDAR1), calmodulin (CaM), nitric oxide synthase (nNOS), soluble guanylyl cyclase (sGC) and cyclic guanine monophosphate (cGMP) with the glial fibrillary acidic protein (GFAP), a marker protein of astrocytes, all significantly decreased, in both the MHE and high‑dose DA‑treated rats (P<0.01). Furthermore, NMDA‑induced augmentation of the expression of NMDAR1, CaM, nNOS, sGC and cGMP localized in PCAs was decreased in MHE and DA‑treated rats, as compared with the controls. Chronic exposure of cultured cerebral cortex PCAs to DA treatment induced a dose‑dependent decrease in the concentration of intracellular calcium, nitrites and nitrates, the formation of cGMP and the expression of NMDAR1, CaM, nNOS and sGC/cGMP. High doses of DA (50 µM) significantly reduced NMDA‑induced augmentation of the formation of cGMP and the contents of NMDAR1, CaM, nNOS, sGC and cGMP (P<0.01). These results suggest that the suppression of DA on the Glu‑NO‑cGMP pathway localized in PCAs contributes to memory impairment in rats with MHE. PMID:25059564

  3. Sildenafil Potentiates a cGMP-Dependent Pathway to Promote Melanoma Growth.

    PubMed

    Dhayade, Sandeep; Kaesler, Susanne; Sinnberg, Tobias; Dobrowinski, Hyazinth; Peters, Stefanie; Naumann, Ulrike; Liu, He; Hunger, Robert E; Thunemann, Martin; Biedermann, Tilo; Schittek, Birgit; Simon, Hans-Uwe; Feil, Susanne; Feil, Robert

    2016-03-22

    Sildenafil, an inhibitor of the cGMP-degrading phosphodiesterase 5 that is used to treat erectile dysfunction, has been linked to an increased risk of melanoma. Here, we have examined the potential connection between cGMP-dependent signaling cascades and melanoma growth. Using a combination of biochemical assays and real-time monitoring of melanoma cells, we report a cGMP-dependent growth-promoting pathway in murine and human melanoma cells. We document that C-type natriuretic peptide (CNP), a ligand of the membrane-bound guanylate cyclase B, enhances the activity of cGMP-dependent protein kinase I (cGKI) in melanoma cells by increasing the intracellular levels of cGMP. Activation of this cGMP pathway promotes melanoma cell growth and migration in a p44/42 MAPK-dependent manner. Sildenafil treatment further increases intracellular cGMP concentrations, potentiating activation of this pathway. Collectively, our data identify this cGMP-cGKI pathway as the link between sildenafil usage and increased melanoma risk. PMID:26971999

  4. cGMP Is Required for Gibberellic Acid-Induced Gene Expression in Barley Aleurone.

    PubMed Central

    Penson, S. P.; Schuurink, R. C.; Fath, A.; Gubler, F.; Jacobsen, J. V.; Jones, R. L.

    1996-01-01

    The occurrence and roles of cGMP were investigated in aleurone layers and protoplasts isolated from barley (cv Himalaya) grain. Levels of cGMP in freshly isolated barley aleurone layers ranged from 0.065 to 0.08 pmol/g fresh weight of tissue, and cGMP levels increased transiently after incubation in gibberellic acid (GA). Abscisic acid (ABA) did not increase cGMP levels in aleurone layers. LY 83583 (LY), an inhibitor of guanylyl cyclase, prevented the GA-induced increase in cGMP and inhibited GA-induced [alpha]-amylase synthesis and secretion. The inhibitory effects of LY could be overcome by membrane-permeant analogs of cGMP. LY also prevented GA-induced accumulation of [alpha]-amylase and GAMYB mRNAs. cGMP alone was not sufficient to induce the accumulation of [alpha]-amylase or GAMYB mRNA. LY had a less dramatic effect on the accumulation of mRNAs encoding the ABA-responsive gene Rab21. We conclude that cGMP plays an important role in GA, but not ABA, signaling in the barley aleurone cell. PMID:12239379

  5. Cyclic Voltammetry Experiment.

    ERIC Educational Resources Information Center

    Van Benschoten, James J.; And Others

    1983-01-01

    Describes a three-part experiment designed to introduce cyclic voltammetry to graduate/undergraduate students. Part 1 demonstrates formal reduction potential, redox electron transfer, diffusion coefficient, and electrochemical reversibility. Part 2 investigates electrochemical behavior of acetaminophen. Part 3 examines such experimental variables…

  6. Nitric oxide inhibits neuroendocrine CaV1 L-channel gating via cGMP-dependent protein kinase in cell-attached patches of bovine chromaffin cells

    PubMed Central

    Carabelli, Valentina; D'Ascenzo, Marcello; Carbone, Emilio; Grassi, Claudio

    2002-01-01

    Nitric oxide (NO) regulates the release of catecholamines from the adrenal medulla but the molecular targets of its action are not yet well identified. Here we show that the NO donor sodium nitroprusside (SNP, 200 μM) causes a marked depression of the single CaV1 L-channel activity in cell-attached patches of bovine chromaffin cells. SNP action was complete within 3-5 min of cell superfusion. In multichannel patches the open probability (NPo) decreased by ∼60 % between 0 and +20 mV. Averaged currents over a number of traces were proportionally reduced and showed no drastic changes to their time course. In single-channel patches the open probability (Po) at +10 mV decreased by the same amount as that of multichannel patches (∼61 %). Such a reduction was mainly associated with an increased probability of null sweeps and a prolongation of mean shut times, while first latency, mean open time and single-channel conductance were not significantly affected. Addition of the NO scavenger carboxy-PTIO or cell treatment with the guanylate cyclase inhibitor ODQ prevented the SNP-induced inhibition. 8-Bromo-cyclicGMP (8-Br-cGMP; 400 μM) mimicked the action of the NO donor and the protein kinase G blocker KT-5823 prevented this effect. The depressive action of SNP was preserved after blocking the cAMP-dependent up-regulatory pathway with the protein kinase A inhibitor H89. Similarly, the inhibitory action of 8-Br-cGMP proceeded regardless of the elevation of cAMP levels, suggesting that cGMP/PKG and cAMP/PKA act independently on L-channel gating. The inhibitory action of 8-Br-cGMP was also independent of the G protein-induced inhibition of L-channels mediated by purinergic and opiodergic autoreceptors. Since Ca2+ channels contribute critically to both the local production of NO and catecholamine release, the NO/PKG-mediated inhibition of neuroendocrine L-channels described here may represent an important autocrine signalling mechanism for controlling the rate of

  7. Nitric oxide inhibits neuroendocrine Ca(V)1 L-channel gating via cGMP-dependent protein kinase in cell-attached patches of bovine chromaffin cells.

    PubMed

    Carabelli, Valentina; D'Ascenzo, Marcello; Carbone, Emilio; Grassi, Claudio

    2002-06-01

    Nitric oxide (NO) regulates the release of catecholamines from the adrenal medulla but the molecular targets of its action are not yet well identified. Here we show that the NO donor sodium nitroprusside (SNP, 200 microM) causes a marked depression of the single Ca(V)1 L-channel activity in cell-attached patches of bovine chromaffin cells. SNP action was complete within 3-5 min of cell superfusion. In multichannel patches the open probability (NP(o)) decreased by approximately 60 % between 0 and +20 mV. Averaged currents over a number of traces were proportionally reduced and showed no drastic changes to their time course. In single-channel patches the open probability (P(o)) at +10 mV decreased by the same amount as that of multichannel patches (approximately 61 %). Such a reduction was mainly associated with an increased probability of null sweeps and a prolongation of mean shut times, while first latency, mean open time and single-channel conductance were not significantly affected. Addition of the NO scavenger carboxy-PTIO or cell treatment with the guanylate cyclase inhibitor ODQ prevented the SNP-induced inhibition. 8-Bromo-cyclicGMP (8-Br-cGMP; 400 microM) mimicked the action of the NO donor and the protein kinase G blocker KT-5823 prevented this effect. The depressive action of SNP was preserved after blocking the cAMP-dependent up-regulatory pathway with the protein kinase A inhibitor H89. Similarly, the inhibitory action of 8-Br-cGMP proceeded regardless of the elevation of cAMP levels, suggesting that cGMP/PKG and cAMP/PKA act independently on L-channel gating. The inhibitory action of 8-Br-cGMP was also independent of the G protein-induced inhibition of L-channels mediated by purinergic and opiodergic autoreceptors. Since Ca(2+) channels contribute critically to both the local production of NO and catecholamine release, the NO/PKG-mediated inhibition of neuroendocrine L-channels described here may represent an important autocrine signalling mechanism

  8. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum

    SciTech Connect

    Bredt, D.S.; Snyder, S.H. )

    1989-11-01

    Nitric oxide, which mediates influences of numerous neurotransmitters and modulators on vascular smooth muscle and leukocytes, can be formed in the brain from arginine by an enzymatic activity that stoichiometrically generates citrulline. The authors show that glutamate and related amino acids, such as N-methyl-D-aspartate, markedly stimulate arginine-citrulline transformation in cerebellar slices stoichiometrically with enhancement of cGMP levels. N{sup {omega}}-monomethyl-L-arginine blocks the augmentation both of citrulline and cGMP with identical potencies. Arginine competitively reverses both effects of N{sup {omega}}-monomethyl-L-arginine with the same potencies. Hemoglobin, which complexes nitric oxide, prevents the stimulation by N-methyl-D-aspartate of cGMP levels, and superoxide dismutase, which elevates nitric oxide levels, increases cGMP formation. These data establish that nitric oxide mediates the stimulation by glutamate of cGMP formation.

  9. cGMP in mouse rods: the spatiotemporal dynamics underlying single photon responses

    PubMed Central

    Pugh Jr., Edward N.; Burns, Marie E.

    2015-01-01

    Vertebrate vision begins when retinal photoreceptors transduce photons into electrical signals that are then relayed to other neurons in the eye, and ultimately to the brain. In rod photoreceptors, transduction of single photons is achieved by a well-understood G-protein cascade that modulates cGMP levels, and in turn, cGMP-sensitive inward current. The spatial extent and depth of the decline in cGMP during the single photon response (SPR) have been major issues in phototransduction research since the discovery that single photons elicit substantial and reproducible changes in membrane current. The spatial profile of cGMP decline during the SPR affects signal gain, and thus may contribute to reduction of trial-to-trial fluctuations in the SPR. Here we summarize the general principles of rod phototransduction, emphasizing recent advances in resolving the spatiotemporal dynamics of cGMP during the SPR. PMID:25788876

  10. Nitric Oxide Mediates Glutamate-Linked Enhancement of cGMP Levels in the Cerebellum

    NASA Astrophysics Data System (ADS)

    Bredt, David S.; Snyder, Solomon H.

    1989-11-01

    Nitric oxide, which mediates influences of numerous neurotransmitters and modulators on vascular smooth muscle and leukocytes, can be formed in the brain from arginine by an enzymatic activity that stoichiometrically generates citrulline. We show that glutamate and related amino acids, such as N-methyl-D-aspartate, markedly stimulate arginine-citrulline transformation in cerebellar slices stoichiometrically with enhancement of cGMP levels. Nω-monomethyl-L-arginine blocks the augmentation both of citrulline and cGMP with identical potencies. Arginine competitively reverses both effects of Nω-monomethyl-L-arginine with the same potencies. Hemoglobin, which complexes nitric oxide, prevents the stimulation by N-methyl-D-aspartate of cGMP levels, and superoxide dismutase, which elevates nitric oxide levels, increases cGMP formation. These data establish that nitric oxide mediates the stimulation by glutamate of cGMP formation.

  11. Speed, adaptation, and stability of the response to light in cone photoreceptors: The functional role of Ca-dependent modulation of ligand sensitivity in cGMP-gated ion channels

    PubMed Central

    2012-01-01

    The response of cone photoreceptors to light is stable and reproducible because of the exceptional regulation of the cascade of enzymatic reactions that link visual pigment (VP) excitation to the gating of cyclic GMP (cGMP)-gated ion channels (cyclic nucleotide–gated [CNG]) in the outer segment plasma membrane. Regulation is achieved in part through negative feedback control of some of these reactions by cytoplasmic free Ca2+. As part of the control process, Ca2+ regulates the phosphorylation of excited VP, the activity of guanylate cyclase, and the ligand sensitivity of the CNG ion channels. We measured photocurrents elicited by stimuli in the form of flashes, steps, and flashes superimposed on steps in voltage-clamped single bass cones isolated from striped bass retina. We also developed a computational model that comprises all the known molecular events of cone phototransduction, including all Ca-dependent controls. Constrained by available experimental data in bass cones and cone transduction biochemistry, we achieved an excellent match between experimental photocurrents and those simulated by the model. We used the model to explore the physiological role of CNG ion channel modulation. Control of CNG channel activity by both cGMP and Ca2+ causes the time course of the light-dependent currents to be faster than if only cGMP controlled their activity. Channel modulation also plays a critical role in the regulation of the light sensitivity and light adaptation of the cone photoresponse. In the absence of ion channel modulation, cone photocurrents would be unstable, oscillating during and at the offset of light stimuli. PMID:22200947

  12. Indolyl-3-butyric acid-induced Arabidopsis stomatal opening mediated by 3',5'-cyclic guanosine-monophosphate.

    PubMed

    Cousson, A

    2010-12-01

    It has been pharmacologically suggested that 3',5'-cyclic guanosine-monophosphate (cGMP) mediates indolyl-3-butyric acid (IBA)-induced stomatal opening. In Arabidopsis thaliana (L.) Heynh., such investigations compared the wild type (Columbia and Ws ecotypes) to mutants knockout for either GTP-binding protein (G protein) α subunit 1 (gpa1-4), putative G protein-coupled receptor 1 (gcr1-5), calcineurin B-like isoform 1 (cbl1) or 9 (cbl9), or the NADPH oxidases AtrbohD and AtrbohF (atrbohD/F). Stomatal opening to IBA or the permeant cGMP analogue, 8-bromo-cGMP (8-Br-cGMP) was abolished in the atrbohD/F mutant. The IBA response was fully or partially suppressed, respectively, in the gcr1-5 mutant, or the gpa1-4 and cbl1 mutants. In the cbl9 mutant, the response to IBA or 8-Br-cGMP, respectively, was partially or fully suppressed. Phenylarsine oxide (PAO) affected the IBA response, which the cbl1 mutant overlapped or the gpa1-4 and cbl9 mutants increased up to 100% inhibition. 6-anilino-5,8-quinolinedione, mas17, the (Rp)-diastereomer of 8-bromo-3',5'-cyclic guanosine monophosphorothioate (Rp-8-Br-cGMPS), nicotinamide, ruthenium red (RRed), 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), cyclosporine A (CsA) and FK506 converged to affect the IBA response, which the gpa1-4 and cbl9 mutants overlapped or the cbl1 mutant and PAO increased up to 100% inhibition. Rp-8-Br-cGMPS, nicotinamide, RRed, BAPTA, CsA or FK506 paralled the cbl9 and atrbohD/F mutants to abolish the 8-Br-cGMP response. Based on so far revealed features of these mutants and pharmacological compounds, these results confirmed cGMP as a Ca(2+)-mobilizing second messenger for apoplastic auxin whose perception and transduction would implicate a seven-transmembrane receptor - G protein - guanylyl cyclase unit at the guard cell plasma membrane. PMID:20951600

  13. Selective blockade of phosphodiesterase types 2, 5 and 9 results in cyclic 3′5′ guanosine monophosphate accumulation in retinal pigment epithelium cells

    PubMed Central

    Diederen, R M H; Heij, E C La; Ittersum, M Markerink‐van; Kijlstra, A; Hendrikse, F; de Vente, J

    2007-01-01

    Aim To investigate which phosphodiesterase (PDE) is involved in regulating cyclic 3′5′ guanosine monophosphate breakdown in retinal pigment epithelium (RPE) cells. Methods cGMP content in the cultured RPE cells (D407 cell line) was evaluated by immunocytochemistry in the presence of non‐selective or isoform‐selective PDE inhibitors in combination with the particulate guanylyl cyclase stimulator atrial natriuretic peptide (ANP) or the soluble guanylyl cyclase stimulator sodium nitroprusside (SNP). mRNA expression of PDE2, PDE5 and PDE9 was studied in cultured human RPE cells and rat RPE cell layers using non‐radioactive in situ hybridisation. Results In the absence of PDE inhibitors, cGMP levels in cultured RPE cells are very low. cGMP accumulation was readily detected in cultured human RPE cells after incubation with Bay60–7550 as a selective PDE2 inhibitor, sildenafil as a selective PDE5 inhibitor or Sch51866 as a selective PDE9 inhibitor. In the presence of PDE inhibition, cGMP content increased markedly after stimulation of the particulate guanylyl cyclase. mRNA of PDE2,PDE5 and PDE9 was detected in all cultured human RPE cells and also in rat RPE cell layers. Conclusions PDE2, PDE5 and PDE9 have a role in cGMP metabolism in RPE cells. PMID:16943225

  14. Suppression of spreading depression-like events in locusts by inhibition of the NO/cGMP/PKG pathway.

    PubMed

    Armstrong, Gary A B; Rodgers, Corinne I; Money, Tomas G A; Robertson, R Meldrum

    2009-06-24

    Despite considerable research attention focused on mechanisms underlying neural spreading depression (SD), because of its association with important human CNS pathologies, such as stroke and migraine, little attention has been given to explaining its occurrence and regulation in invertebrates. In the locust metathoracic ganglion (MTG), an SD-like event occurs during heat and anoxia stress, which results in cessation of neuronal output for the duration of the applied stress. SD-like events were characterized by an abrupt rise in extracellular potassium ion concentration ([K(+)](o)) from a baseline concentration of approximately 8 to >30 mm, which returned to near baseline concentrations after removal of the applied stress. After return to baseline [K(+)](o), neuronal output (ventilatory motor pattern activity) from the MTG recovered. Unlike mammalian neurons, which depolarize almost completely during SD, locust neurons only partially depolarized. SD-like events in the locust CNS were suppressed by pharmacological inhibition of the nitric oxide/cyclic guanosine monophosphate/protein kinase G (NO/cGMP/PKG) pathway and were exacerbated by its activation. Also, environmental stressors such as heat and anoxia increased production of nitric oxide in the locust CNS. Finally, for the intact animal, manipulation of the pathway affected the speed of recovery from suffocation by immersion under water. We propose that SD-like events in locusts provide an adaptive mechanism for surviving extreme environmental conditions. The highly conserved nature of the NO/cGMP/PKG signaling pathway suggests that it may be involved in modulating SD in other organisms, including mammals. PMID:19553462

  15. Redox signaling regulated by an electrophilic cyclic nucleotide and reactive cysteine persulfides.

    PubMed

    Fujii, Shigemoto; Sawa, Tomohiro; Nishida, Motohiro; Ihara, Hideshi; Ida, Tomoaki; Motohashi, Hozumi; Akaike, Takaaki

    2016-04-01

    Reactive oxygen (oxidant) and free radical species are known to cause nonspecific damage of various biological molecules. The oxidant toxicology is developing an emerging concept of the physiological functions of reactive oxygen species in cell signaling regulation. Redox signaling is precisely modulated by endogenous electrophilic substances that are generated from reactive oxygen species during cellular oxidative stress responses. Among diverse electrophilic molecular species that are endogenously generated, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) is a unique second messenger whose formation, signaling, and metabolism in cells was recently clarified. Most important, our current studies revealed that reactive cysteine persulfides that are formed abundantly in cells are critically involved in the metabolism of 8-nitro-cGMP. Modern redox biology involves frontiers of cell research and stem cell research; medical and clinical investigations of infections, cancer, metabolic syndrome, aging, and neurodegenerative diseases; and other fields. 8-Nitro-cGMP-mediated signaling and metabolism in cells may therefore be potential targets for drug development, which may lead to discovery of new therapeutic agents for many diseases. PMID:27095231

  16. MRP4 Modulation of the Guanylate Cyclase-C/cGMP Pathway: Effects on Linaclotide-Induced Electrolyte Secretion and cGMP Efflux.

    PubMed

    Tchernychev, Boris; Ge, Pei; Kessler, Marco M; Solinga, Robert M; Wachtel, Derek; Tobin, Jenny V; Thomas, Sara R; Lunte, Craig E; Fretzen, Angelika; Hannig, Gerhard; Bryant, Alexander P; Kurtz, Caroline B; Currie, Mark G; Silos-Santiago, Inmaculada

    2015-10-01

    MRP4 mediates the efflux of cGMP and cAMP and acts as an important regulator of these secondary messengers, thereby affecting signaling events mediated by cGMP and cAMP. Immunofluorescence staining showed high MRP4 expression localized predominantly in the apical membrane of rat colonic epithelium. In vitro studies were performed using a rat colonic mucosal layer mounted in an Ussing chamber. Linaclotide activation of the guanylate cyclase-C (GC-C)/cGMP pathway induced a concentration-dependent increase in transepithelial ion current [short-circuit current (Isc)] across rat colonic mucosa (EC50: 9.2 nM). Pretreatment of colonic mucosa with the specific MRP4 inhibitor MK571 potentiated linaclotide-induced electrolyte secretion and augmented linaclotide-stimulated intracellular cGMP accumulation. Notably, pretreatment with the phosphodiesterase 5 inhibitor sildenafil increased basal Isc, but had no amplifying effect on linaclotide-induced Isc. MRP4 inhibition selectively affected the activation phase, but not the deactivation phase, of linaclotide. In contrast, incubation with a GC-C/Fc chimera binding to linaclotide abrogated linaclotide-induced Isc, returning to baseline. Furthermore, linaclotide activation of GC-C induced cGMP secretion from the apical and basolateral membranes of colonic epithelium. MRP4 inhibition blocked cGMP efflux from the apical membrane, but not the basolateral membrane. These data reveal a novel, previously unrecognized mechanism that functionally couples GC-C-induced luminal electrolyte transport and cGMP secretion to spatially restricted, compartmentalized regulation by MRP4 at the apical membrane of intestinal epithelium. These findings have important implications for gastrointestinal disorders with symptoms associated with dysregulated fluid homeostasis, such as irritable bowel syndrome with constipation, chronic idiopathic constipation, and secretory diarrhea. PMID:26216942

  17. Inotropic responses of the frog ventricle to adenosine triphosphate and related changes in endogenous cyclic nucleotides.

    PubMed Central

    Flitney, F W; Singh, J

    1980-01-01

    1. A study has been made of a well documented but poorly understood response of the isolated frog ventricle to treatment with exogenous adenosine 5' triphosphate (ATP). Measurements of membrane potential, isometric twitch tension and levels of endogenous 3',5'-cyclic nucleotides have been made at various times during the ATP-induced response. 2. ATP elicits a characteristic triphasic response, which comprises an initial, abrupt increase in contractility, rising to a maximum within a few beats (first phase); followed by a period when the twitch amplitude falls, sometimes to below the control level (second phase); and superceded by a more slowly developing and longer-lasting increase in contractile force (third phase). The response is unaffected by atropine, propranolol or phentolamine. However, the prostaglandin synthetase inhibitor indomethacin depresses the first phase and entirely suppresses the third phase. 3. The inotropic effects of ATP are accompanied by changes in the shape of the action potential. These effects are dose-related. The duration of the action potential (D-30mV) and its positive overshoot (O) are increased during all phases of the response, for [ATP]o's up to 10(-5) M. However, at higher [ATP]o's, D-30mV and O ar both reduced during the second phase (but not the first or third phase), when isometric twitch tension is also depressed. The relationship between action potential duration and twitch tension (P) for different [ATP]o's is linear for all three phases of the response, but the slopes of the curves (delta P/delta D) are markedly different, indicating that the sensitivity of the contractile system to membrane depolarization is not constant, but varies continuously throughout the response. 4. ATP has a potent stimulatory effect on the metabolism of endogenous 3',5'-cyclic nucleotides. The time courses of the changes in adenosine 3','5-cyclic monophosphate (3',5'-cyclic AMP) and guanosine 3',5'-cyclic monophosphate (3',5'-cyclic GMP) are

  18. Integration of the Second Messenger c-di-GMP into the Chemotactic Signaling Pathway

    PubMed Central

    Russell, Matthew H.; Bible, Amber N.; Fang, Xin; Gooding, Jessica R.; Campagna, Shawn R.; Gomelsky, Mark; Alexandre, Gladys

    2013-01-01

    ABSTRACT Elevated intracellular levels of the bacterial second messenger c-di-GMP are known to suppress motility and promote sessility. Bacterial chemotaxis guides motile cells in gradients of attractants and repellents over broad concentration ranges, thus allowing bacteria to quickly adapt to changes in their surroundings. Here, we describe a chemotaxis receptor that enhances, as opposed to suppresses, motility in response to temporary increases in intracellular c-di-GMP. Azospirillum brasilense’s preferred metabolism is adapted to microaerophily, and these motile cells quickly navigate to zones of low oxygen concentration by aerotaxis. We observed that changes in oxygen concentration result in rapid changes in intracellular c-di-GMP levels. The aerotaxis and chemotaxis receptor, Tlp1, binds c-di-GMP via its C-terminal PilZ domain and promotes persistent motility by increasing swimming velocity and decreasing swimming reversal frequency, which helps A. brasilense reach low-oxygen zones. If c-di-GMP levels remain high for extended periods, A. brasilense forms nonmotile clumps or biofilms on abiotic surfaces. These results suggest that association of increased c-di-GMP levels with sessility is correct on a long-term scale, while in the short-term c-di-GMP may actually promote, as opposed to suppress, motility. Our data suggest that sensing c-di-GMP by Tlp1 functions similar to methylation-based adaptation. Numerous chemotaxis receptors contain C-terminal PilZ domains or other sensory domains, suggesting that intracellular c-di-GMP as well as additional stimuli can be used to modulate adaptation of bacterial chemotaxis receptors. PMID:23512960

  19. The regulatory role of the NO/cGMP signal transduction cascade during larval attachment and metamorphosis of the barnacle Balanus (=Amphibalanus) amphitrite.

    PubMed

    Zhang, Yu; He, Li-Sheng; Zhang, Gen; Xu, Ying; Lee, On-On; Matsumura, Kiyotaka; Qian, Pei-Yuan

    2012-11-01

    The barnacle Balanus amphitrite is among the most dominant fouling species on intertidal rocky shores in tropical and subtropical areas and is thus a target organism in antifouling research. After being released from adults, the swimming nauplius undertakes six molting cycles and then transforms into a cyprid. Using paired antennules, a competent cyprid actively explores and selects a suitable substratum for attachment and metamorphosis (collectively known as settlement). This selection process involves the reception of exogenous signals and subsequent endogenous signal transduction. To investigate the involvement of nitric oxide (NO) and cyclic GMP (cGMP) during larval settlement of B. amphitrite, we examined the effects of an NO donor and an NO scavenger, two nitric oxide synthase (NOS) inhibitors and a soluble guanylyl cyclase (sGC) inhibitor on settling cyprids. We found that the NO donor sodium nitroprusside (SNP) inhibited larval settlement in a dose-dependent manner. In contrast, both the NO scavenger carboxy-PTIO and the NOS inhibitors aminoguanidine hemisulfate (AGH) and S-methylisothiourea sulfate (SMIS) significantly accelerated larval settlement. Suppression of the downstream guanylyl cyclase (GC) activity using a GC-selective inhibitor ODQ could also significantly accelerate larval settlement. Interestingly, the settlement inhibition effects of SNP could be attenuated by ODQ at all concentrations tested. In the developmental expression profiling of NOS and sGC, the lowest expression of both genes was detected in the cyprid stage, a crucial stage for the larval decision to attach and metamorphose. In summary, we concluded that NO regulates larval settlement via mediating downstream cGMP signaling. PMID:22855617

  20. Oxidized LDL activates blood platelets through CD36/NOX2–mediated inhibition of the cGMP/protein kinase G signaling cascade

    PubMed Central

    Magwenzi, Simbarashe; Woodward, Casey; Wraith, Katie S.; Aburima, Ahmed; Raslan, Zaher; Jones, Huw; McNeil, Catriona; Wheatcroft, Stephen; Yuldasheva, Nadira; Febbriao, Maria; Kearney, Mark

    2015-01-01

    Oxidized low-density lipoprotein (oxLDL) promotes unregulated platelet activation in dyslipidemic disorders. Although oxLDL stimulates activatory signaling, it is unclear how these events drive accelerated thrombosis. Here, we describe a mechanism for oxLDL-mediated platelet hyperactivity that requires generation of reactive oxygen species (ROS). Under arterial flow, oxLDL triggered sustained generation of platelet intracellular ROS, which was blocked by CD36 inhibitors, mimicked by CD36-specific oxidized phospholipids, and ablated in CD36−/− murine platelets. oxLDL-induced ROS generation was blocked by the reduced NAD phosphate oxidase 2 (NOX2) inhibitor, gp91ds-tat, and absent in NOX2−/− mice. The synthesis of ROS by oxLDL/CD36 required Src-family kinases and protein kinase C (PKC)-dependent phosphorylation and activation of NOX2. In functional assays, oxLDL abolished guanosine 3′,5′-cyclic monophosphate (cGMP)-mediated signaling and inhibited platelet aggregation and arrest under flow. This was prevented by either pharmacologic inhibition of NOX2 in human platelets or genetic ablation of NOX2 in murine platelets. Platelets from hyperlipidemic mice were also found to have a diminished sensitivity to cGMP when tested ex vivo, a phenotype that was corrected by infusion of gp91ds-tat into the mice. This study demonstrates that oxLDL and hyperlipidemia stimulate the generation of NOX2-derived ROS through a CD36-PKC pathway and may promote platelet hyperactivity through modulation of cGMP signaling. PMID:25710879