Science.gov

Sample records for cyclic stress-strain behavior

  1. Cyclic steady state stress-strain behavior of UHMW polyethylene.

    PubMed

    Krzypow, D J; Rimnac, C M

    2000-10-01

    To increase the long-term performance of total joint replacements, finite element analyses of ultra high molecular weight polyethylene (UHMWPE) components have been conducted to predict the effect of load on the stress and strain distributions occurring on and within these components. Early models incorporated the monotonic behavior of UHMWPE without considering the unloading and cyclic loading behavior. However, UHMWPE components undergo cyclic loading during use and at least two wear damage modes (pitting and delamination) are thought to be associated with the fatigue fracture properties of UHMWPE. The objective of this study was to examine the fully reversed uniaxial tension/compression cyclic steady state stress-strain behavior of UHMWPE as a first step towards developing a cyclic constitutive relationship for UHMWPE. The hypothesis that cycling results in a permanent change in the stress-strain relationship, that is, that the cyclic steady state represents a new cyclically stabilized state, was examined. It was found that, like other ductile polymers, UHMWPE substantially cyclically softens under fully reversed uniaxial straining. More cyclic softening occurred in tension than in compression. Furthermore, cyclic steady state was attained, but not cyclic stability. It is suggested that it may be more appropriate to base a material constitutive relationship for UHMWPE for finite element analyses of components upon a cyclically modified stress-strain relationship. PMID:10966018

  2. The cyclic stress-strain behavior of PWA 1480 at 650 deg C

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Welsch, G. E.

    1986-01-01

    The monotonic plastic flow behavior of several single crystal nickel-base, superalloys has been shown to vary significantly with crystallographic orientation. In the present study, the cyclic plastic flow response of one such alloy, PWA 1480, was examined at 650 deg C in air. Single crystal specimens aligned near several crystallographic directions were tested in fully reversed, total-strain-controlled low cycle fatigue tests at a frequency of 0.1 Hz. The cyclic stress-strain response and general cyclic hardening behavior was analyzed as a function of crystallographic orientation and inelastic strain range.

  3. On the cyclic stress-strain behavior and low cycle fatigue of aerospace materials

    NASA Technical Reports Server (NTRS)

    Burbach, J.

    1972-01-01

    The elastic-plastic deformation behavior under cyclic stress of a number of different engineering materials was experimentally investigated with the aid of high-precision methods of measuring, some of which had been newly developed. Experiments made with a variety of steels, the titanium alloy Ti-A16-V4, a cobalt (tungsten) alloy, the high-temperature material Nimonic 90 and Dural (A1-Cu) are reported. The theory given in an attempt to explain these experiments is aimed at finding general formulas for the cyclic stress-strain behavior materials.

  4. The Cyclic Stress-Strain Behavior of a Single Crystal Nickel-Base Superalloy. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.

    1988-01-01

    The cyclic stress-strain response and similar deformation structures of the single crystal nickel based superalloy was described under a specific set of conditions. The isothermal low cycle fatigue response and deformation structures were described at a typical intermediate temperature and at high temperature. Specimens oriented near the (001) and (111) crystallographic orientations were tested at 1050 C, where more moderate orientation effects were expected. This enabled the description of the deformation structures at each of the 2 temperatures and their relationship to the observed cyclic stress-strain behavior. The initial yield strength of all specimens tested at 650 C was controlled by the shearing of the gamma prime precipitates by dislocation pairs. Low cycle fatigue tests at 650 C had cyclic hardening, which was associated with dislocation interactions in the gamma matrix. The initial yield strength of specimens tested at 1050 C was associated with dislocation bypassing of the gamma prime precipitates. Low cycle fatigue tests at 1050 C had cyclic softening, associated with extensive dislocation recovery at the gamma-gamma prime interfaces along with some gamma prime precipitate coarsening.

  5. Cyclic hardening in copper described in terms of combined monotonic and cyclic stress-strain curves

    SciTech Connect

    Chandler, H.D. . School of Mechanical Engineering)

    1995-01-01

    Hardening of polycrystalline copper subjected to tension-compression loading cycles in the plastic region is discussed with reference to changes in flow stress determined from equations describing dislocation glide. It is suggested that hardening is as a result of the accumulation of strain on a monotonic stress-strain curve. On initial loading, the behavior is monotonic. On stress reversal, a characteristic cyclic stress-strain curve is followed until the stress reaches a value in reverse loading corresponding to the maximum attained during the preceding half cycle. Thereafter, the monotonic path is followed until strain reversal occurs at completion of the half cycle. Repetition of the process results in cyclic hardening. Steady state cyclic behavior is reached when a stress associated with the monotonic stress-strain curve is reached which is equal to the stress associated with the cyclic stress-strain curve corresponding to the imposed strain amplitude.

  6. Stress-strain time-dependent behavior of A356.0 aluminum alloy subjected to cyclic thermal and mechanical loadings

    NASA Astrophysics Data System (ADS)

    Farrahi, G. H.; Ghodrati, M.; Azadi, M.; Rezvani Rad, M.

    2014-08-01

    This article presents the cyclic behavior of the A356.0 aluminum alloy under low-cycle fatigue (or isothermal) and thermo-mechanical fatigue loadings. Since the thermo-mechanical fatigue (TMF) test is time consuming and has high costs in comparison to low-cycle fatigue (LCF) tests, the purpose of this research is to use LCF test results to predict the TMF behavior of the material. A time-independent model, considering the combined nonlinear isotropic/kinematic hardening law, was used to predict the TMF behavior of the material. Material constants of this model were calibrated based on room-temperature and high-temperature low-cycle fatigue tests. The nonlinear isotropic/kinematic hardening law could accurately estimate the stress-strain hysteresis loop for the LCF condition; however, for the out-of-phase TMF, the condition could not predict properly the stress value due to the strain rate effect. Therefore, a two-layer visco-plastic model and also the Johnson-Cook law were applied to improve the estimation of the stress-strain hysteresis loop. Related finite element results based on the two-layer visco-plastic model demonstrated a good agreement with experimental TMF data of the A356.0 alloy.

  7. Tensile stress-strain behavior of boron/aluminum laminates

    NASA Technical Reports Server (NTRS)

    Sova, J. A.; Poe, C. C., Jr.

    1978-01-01

    The tensile stress-strain behavior of five types of boron/aluminum laminates was investigated. Longitudinal and transverse stress-strain curves were obtained for monotonic loading to failure and for three cycles of loading to successively higher load levels. The laminate strengths predicted by assuming that the zero deg plies failed first correlated well with the experimental results. The stress-strain curves for all the boron/aluminum laminates were nonlinear except at very small strains. Within the small linear regions, elastic constants calculated from laminate theory corresponded to those obtained experimentally to within 10 to 20 percent. A limited amount of cyclic loading did not affect the ultimate strength and strain for the boron/aluminum laminates. The laminates, however, exhibited a permanent strain on unloading. The Ramberg-Osgood equation was fitted to the stress-strain curves to obtain average curves for the various laminates.

  8. On the cyclic stress-strain behaviour of a Ni-base superalloy at room temperature

    NASA Technical Reports Server (NTRS)

    Singh, Vakil; Wahi, R. P.; Chen, W.; Yun, H. M.

    1988-01-01

    The cyclic stress-strain behavior of Nimonic alloy PE16 was studied at room temperature and at different aging conditions to determine whether the plateau in the cyclic stress-strain curve (CSSC) reported by Arbuthnot (1982) is typical of the room temperature behavior and/or some specific initial microstructural states. Specimen blanks were heat-treated in batches in Ar/H2 (98/2) atmosphere to produce gamma-prime precipitates of different average sizes, but with the volume fraction of gamma-prime precipitates kept constant at about 7 percent at all the heat-treatment conditions. Total axial strain controlled LCF tests were conducted under fully reversed loading (R = -1) at a constant strain rate of 0.004/s, using a servohydraulic machine. The load response in tension and compression was recorded continually, and stress-strain hysteresis loops were recorded at frequent intervals. In the present investigation, the CSSCs of the P16 alloy at room temperature did not display the plateaus reported by Arbuthnot.

  9. Cyclic stress-strain curve determination for D6AC steel by three methods

    NASA Technical Reports Server (NTRS)

    Nachtigall, A. J.

    1977-01-01

    The room temperature cyclic stress-strain was determined for D6AC low alloy steel by three different methods. The method that involves the use of a single specimen monotonic tension test after cyclic straining provided the best agreement with the accepted basic method which requires a number of companion specimen tests. The single specimen test is also the simplest to conduct.

  10. Tensile stress-strain behavior of graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Garber, D. P.

    1982-01-01

    The tensile stress-strain behavior of a variety of graphite/epoxy laminates was examined. Longitudinal and transverse specimens from eleven different layups were monotonically loaded in tension to failure. Ultimate strength, ultimate strain, and strss-strain curves wee obtained from four replicate tests in each case. Polynominal equations were fitted by the method of least squares to the stress-strain data to determine average curves. Values of Young's modulus and Poisson's ratio, derived from polynomial coefficients, were compared with laminate analysis results. While the polynomials appeared to accurately fit the stress-strain data in most cases, the use of polynomial coefficients to calculate elastic moduli appeared to be of questionable value in cases involving sharp changes in the slope of the stress-strain data or extensive scatter.

  11. Influence of temper condition on the nonlinear stress-strain behavior of boron-aluminum

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.; Herakovich, E. T.; Tenney, D. R.

    1977-01-01

    The influence of temper condition on the tensile and compressive stress-strain behavior for six boron-aluminum laminates was investigated. In addition to monotonic tension and compression tests, tension-tension, compression-compression, and tension--compression tests were conducted to study the effects of cyclic loading. Tensile strength results are a function of the laminate configuration; unidirectional laminates were affected considerably more than other laminates with some strength values increasing and others decreasing.

  12. Tensile and compressive stress-strain behavior of heat treated boron-aluminum

    NASA Technical Reports Server (NTRS)

    Kennedy, J. M.; Tenney, D. R.; Herakovich, C. T.

    1978-01-01

    An experimental study was conducted to assess the effects of heat treatment and cyclic mechanical loading on the tensile and compressive stress-strain behavior of six boron-aluminum composites having different laminate orientations and being subjected to different heat treatments. The heat treatments were as-fabricated, T6, and T6N consisting of T6 treatment followed by cryogenic quench in liquid nitrogen prior to testing. All laminates were tested in monotonic and cyclic compression, while the tensile-test data are taken from the literature for comparison purposes. It is shown that the linear elastic range of the T6- and T6N-condition specimens is larger than that of the as-fabricated specimens, and that cyclic loading in tension or compression strain hardens the specimens and extends the linear elastic range. For laminates containing 0-deg plies, the stress-strain behavior upon unloading is found to be nonlinear, whereas the other laminates exhibit a linear behavior upon unloading. Specimens in the T6 and T6N conditions show higher strain hardening than the as-fabricated specimens.

  13. Self-affine nature of the stress-strain behavior of thin fiber networks

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.; Susarrey, Orlando; Bravo, Armando

    2001-12-01

    The stress-strain behavior of toilet paper is studied. We find that the damaged parts of stress-strain curves possess a self-affine scaling invariance. Moreover, we find that the stress-strain behavior and the rupture line roughness are characterized by the same scaling (Hurst) exponent H, which is not universal: rather it changes from sample to sample. The variations on H are mainly due to fluctuations in the paper structure, which are larger than statistical errors within a sample. Furthermore, the same exponent governs the changes in the stress-strain curve as the strain rate increases. The fractal damage model is employed to explain experimental observations.

  14. Generalized phenomenological cyclic stress-strain-strength characterization of anisotropic granular media

    NASA Astrophysics Data System (ADS)

    Seereeram, D.; McVay, M. C.; Linton, P. F.

    1985-06-01

    An analytical and experimental investigation into the influences of material anisotropy and principal plane rotation on the stress-strain and strength behavior of granular soil (Reid-Bedford Sand) is conducted. The laboratory investigation entailed the performance of approximately fifteen triaxial tests under conventional compression and extension loading, and five through initial shear, followed by hydrostatic compression. The initial tests with an additional fifteen experiments were used in characterizing the influence of inherent anisotropy and principal plane rotations on material response. The latter were employed to delineate the effects of stress-induced anisotropy. A review of existing elasto-plastic theory as related to soil mechanics showed only a few models of a phenomenological nature which of the multi-surface isotropic/kinematic hardening characterizations, Prevost's pressure sensitive model, was used in the prediction of the hollow cylinder tests. Although the model reasonably reproduced the response along its calibration path, it did not quantitatively or qualitatively predict the laboratory results along other stress paths which involved principal plane and the need for improved analytical representation.

  15. Modeling the Stress Strain Behavior of Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2006-01-01

    Woven SiC fiber reinforced SiC matrix composites represent one of the most mature composite systems to date. Future components fabricated out of these woven ceramic matrix composites are expected to vary in shape, curvature, architecture, and thickness. The design of future components using woven ceramic matrix composites necessitates a modeling approach that can account for these variations which are physically controlled by local constituent contents and architecture. Research over the years supported primarily by NASA Glenn Research Center has led to the development of simple mechanistic-based models that can describe the entire stress-strain curve for composite systems fabricated with chemical vapor infiltrated matrices and melt-infiltrated matrices for a wide range of constituent content and architecture. Several examples will be presented that demonstrate the approach to modeling which incorporates a thorough understanding of the stress-dependent matrix cracking properties of the composite system.

  16. Modeling of stress/strain behavior of fiber-reinforced ceramic matrix composites including stress redistribution

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Murthy, Pappu L. N.; Chamis, Christos C.

    1994-01-01

    A computational simulation procedure is presented for nonlinear analyses which incorporates microstress redistribution due to progressive fracture in ceramic matrix composites. This procedure facilitates an accurate simulation of the stress-strain behavior of ceramic matrix composites up to failure. The nonlinearity in the material behavior is accounted for at the constituent (fiber/matrix/interphase) level. This computational procedure is a part of recent upgrades to CEMCAN (Ceramic Matrix Composite Analyzer) computer code. The fiber substructuring technique in CEMCAN is used to monitor the damage initiation and progression as the load increases. The room-temperature tensile stress-strain curves for SiC fiber reinforced reaction-bonded silicon nitride (RBSN) matrix unidirectional and angle-ply laminates are simulated and compared with experimentally observed stress-strain behavior. Comparison between the predicted stress/strain behavior and experimental stress/strain curves is good. Collectively the results demonstrate that CEMCAN computer code provides the user with an effective computational tool to simulate the behavior of ceramic matrix composites.

  17. Nonlinear stress-strain behavior of carbon nanotube fibers subject to slow sustained strain rate

    NASA Astrophysics Data System (ADS)

    Sun, Gengzhi; Wang, Dong; Pang, John H. L.; Liu, Jun; Zheng, Lianxi

    2013-09-01

    Nonlinear stress-strain behavior of carbon nanotube (CNT) fibers is studied based on the test data where fiber strength can be modeled by the Weibull distribution. CNT fibers spun from vertically aligned arrays are tensioned at slow sustained strain rate (0.00001 1/s) to study the tensile strength resulting from sliding-to-failure effects. A model is developed to estimate the Weibull modulus which characterizes the dispersion of fiber strengths in terms of the maximum sustained stress and failure strain of the fibers. The results show that the sliding indeed has great influence on the stress-strain relation of CNT fibers at low strain rate.

  18. Finite Element Method (FEM) Calculations of Stress-Strain Behavior of Alpha-Beta Ti-Mn Alloys: Part I. Stress-Strain Relations

    NASA Astrophysics Data System (ADS)

    Ankem, Sreeramamurthy; Margolin, Harold

    1982-04-01

    By use of a NASTRAN18 Computer Program, the Finite Element Method (FEM) has been employed to calculate the effect of particle size, matrix, and volume fraction on the stress-strain relations of α -β titanium alloys. It was found that for a given volume fraction, the calculated stress-strain curve was higher for a finer particle size than for a coarse particle size within the range of the strains considered, and this behavior was seen for all the different volume fraction alloys considered. For a 50:50 vol pct α -β alloy, the stress-strain curve with β, the stronger phase, as the matrix was higher than that with α, the softer phase, as the matrix. The calculated stress-strain curves for four different vol pct α alloys were compared with their corresponding experimental curves, and in general, good agreement was found. Whenever there were discrepancies, they were discussed by comparing the morphology of the mesh used in the calculations with the morphology of the actual materials.

  19. Nonlinear Stress/Strain Behavior of a Synthetic Porous Medium at Seismic Frequencies

    NASA Astrophysics Data System (ADS)

    Roberts, P. M.; Ibrahim, R. H.

    2008-12-01

    Laboratory experiments on porous core samples have shown that seismic-band (100 Hz or less) mechanical, axial stress/strain cycling of the porous matrix can influence the transport behavior of fluids and suspended particles during steady-state fluid flow through the cores. In conjunction with these stimulated transport experiments, measurements of the applied dynamic axial stress/strain were made to investigate the nonlinear mechanical response of porous media for a poorly explored range of frequencies from 1 to 40 Hz. A unique core-holder apparatus that applies low-frequency mechanical stress/strain to 2.54-cm-diameter porous samples during constant-rate fluid flow was used for these experiments. Applied stress was measured with a load cell in series with the source and porous sample, and the resulting strain was measured with an LVDT attached to the core face. A synthetic porous system consisting of packed 1-mm-diameter glass beads was used to investigate both stress/strain and stimulated mass-transport behavior under idealized conditions. The bead pack was placed in a rubber sleeve and static confining stresses of 2.4 MPa radial and 1.7 MPa axial were applied to the sample. Sinusoidal stress oscillations were applied to the sample at 1 to 40 Hz over a range of RMS stress amplitude from 37 to 275 kPa. Dynamic stress/strain was measured before and after the core was saturated with deionized water. The slope of the linear portion of each stress/strain hysteresis loop was used to estimate Young's modulus as a function of frequency and amplitude for both the dry and wet sample. The modulus was observed to increase after the dry sample was saturated. For both dry and wet cases, the modulus decreased with increasing dynamic RMS stress amplitude at a constant frequency of 23 Hz. At constant RMS stress amplitude, the modulus increased with increasing frequency for the wet sample but remained constant for the dry sample. The observed nonlinear behavior of Young's modulus

  20. Comparison of calculated and observed cyclic stress-strain relationships for Inconel Alloy 625 at 650 to 1100/sup 0/C

    SciTech Connect

    Purohit, A.; Ewing, T.F.; Thiele, U.

    1983-06-01

    It is concluded that both the bilinear stress-strain and creep laws used with the ANSYS spar element model and the stress relaxation method are able to describe and predict fatigue behavior of Inconel Alloy 625.

  1. Molecular deformation and stress-strain behavior of poly(bisphenol-A-diphenyl sulfone)

    NASA Technical Reports Server (NTRS)

    Hong, S.-D.; Chung, S. Y.; Fedors, R. F.

    1983-01-01

    The strain-birefringence response of poly(bisphenol-A-diphenyl sulfone) is found to be independent of temperature at temperatures below -100 C; at higher temperatures, the response becomes slightly dependent on temperature, with lower birefringence seen at higher temperatures. The stress-strain behavior and the stress-birefringence response both depend on temperature over the entire testing temperature range (-179 C to 150 C) studied; this dependence, however, is not pronounced. The evidence is seen as suggesting that the polymer molecules respond to deformation by undergoing conformational rearrangements; the mode of the molecular deformation remains unchanged for temperatures of -100 C or lower. At higher temperatures, the average length of the chain segments involved in the rearrangement increases. The stress-strain response is attributed mainly to chain orientation. The entropic contribution deriving from chain orientation at temperatures below -100 C is still substantial. The modest temperature dependence of the stress-strain response suggests that the energy barriers for the chain segments involved in the rearrangement are relatively low.

  2. Stress-strain behavior and shape memory effect in powder metallurgy TiNi alloys

    SciTech Connect

    Kato, H.; Koyari, T.; Miura, S. . Dept. of Engineering Science); Tokizane, M. . Dept. of Mechanical Engineering)

    1994-04-01

    The shape memory properties of the TiNi alloy produced by a powder metallurgical method have been evaluated from tensile stress-strain curves. The contamination of the powders during atomization can be suppressed by applying the Plasma Rotating Electrode Process (P-REP), so that the compact made by Hot Isostatic Pressing (HIP) is expected to exhibit the shape memory effect identical to the typical alloy grown from melt. The fracture behavior of the P/M alloy is also studied, and the improvement of fracture strength of the P/M alloy is attempted.

  3. The effect of hydrogen on the multiaxial stress-strain behavior of titanium tubing

    SciTech Connect

    Lentz, C.W.; Hecker, S.S.; Koss, D.A.; Stout, M.G.

    1983-12-01

    The influence of internal hydrogen on the multiaxial stress-strain behavior of commercially pure titanium has been studied. Thin-walled specimens containing either 20 or 1070 ppm hydrogen were tested at constant stress ratios in combined tension and internal pressure. Hydrogen lowers the yield strength but has no significant effect on strain hardening behavior at strains epsilon greater than or equal to 0.02. Thus, hydrogen embrittlement under plain strain or equibiaxial loading is not a consequence of changes of flow behavior. The yielding behavior is described well by Hill's quadratic yield criterion. As measured mechanically and pole figure analysis, the plastic anisotropy changes with deformation in a manner which depends on stress state. A strain dependent, texture-induced strengthening effect in equibiaxial tension an enhanced strain hardening rate.

  4. 3D dislocation dynamics: stress-strain behavior and hardening mechanisms in FCC and BCC metals

    SciTech Connect

    Hirth, J P; Rhee, M; Zhib, H M; de la Rubia, T D

    1999-02-19

    A dislocation dynamics (DD) model for plastic deformation, connecting the macroscopic mechanical properties to basic physical laws governing dislocation mobility and related interaction mechanisms, has been under development. In this model there is a set of critical reactions that determine the overall results of the simulations, such as the stress-strain curve. These reactions are, annihilation, formation of jogs, junctions, and dipoles, and cross-slip. In this paper we discuss these reactions and the manner in which they influence the simulated stress- strain behavior in fcc and bcc metals. In particular, we examine the formation (zipping) and strength of dipoles and junctions, and effect of jogs, using the dislocation dynamics model. We show that the strengths (unzipping) of these reactions for various configurations can be determined by direct evaluation of the elastic interactions. Next, we investigate the phenomenon of hardening in metals subjected to cascade damage dislocations. The microstructure investigated consists of small dislocation loops decorating the mobile dislocations. Preliminary results reveal that these loops act as hardening agents, trapping the dislocations and resulting in increased hardening.

  5. Cryogenic Fatigue and Stress-strain Behavior of a Fibre Metal Laminate

    NASA Astrophysics Data System (ADS)

    Camp, W. van de; Dhallé, M. M. J.; Wessel, W. A. J.; Warnet, L.; Atli-Veltin, B.; Putten, S. van der; Dam, J. A. M.; ter Brake, H. J. M.

    This paper reports on the cryogenic fatigue life of Al 2024 / Stycast 2850 FT composite sandwiches loaded under cyclic strain, as well as on the strength of their constituent materials at 77 K. These Fibre Metal Laminate (FML) specimen serve as a model for an alternative class of cryogenic structural materials that might be used e.g. in downstream LNG applications. FMLs, such as the GLARE ™, are already used in the aeronautic industry, where they provide better damage tolerance, corrosion resistance and lower specific weight. Their cryogenic performance, however, is yet to be understood. Preliminary results show that the metal/filled- epoxy combination presented here withstands repeated cool-down to 77 K. Moreover, its cryogenic fatigue life is at least 20 times longer than at room temperature. These observations are consistent with the measured stress-strain behaviour of the metal and the epoxy, as well as with the shear strength of the bond between them. The Youngs modulus, yield strength and tensile strength of the Stycast 2850 FT roughly double when cooled down to 77 K. In addition to this, the bond strength with the GLARE-type coated Al increases significantly. These preliminary experiments indicate that cryogenic FML are technically feasible.

  6. Constituent Effects on the Stress-Strain Behavior of Woven Melt-Infiltrated SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Eldridge, Jeff I.; Levine, Stanley (Technical Monitor)

    2001-01-01

    The stress-strain behavior of 2D woven SiC fiber reinforced, melt-infiltrated SiC matrix composites with BN interphases were studied for composites fabricated with different fiber tow ends per unit length, different composite thickness, and different numbers of plies. In general, the stress-strain behavior, i.e., the 'knee' in the curve and the final slope of the stress-strain curve, was controlled by the volume fraction of fibers. Some of the composites exhibited debonding and sliding in between the interphase and the matrix rather than the more common debonding and sliding interface between the fiber and the interphase. Composites that exhibited this 'outside debonding' interface, in general, had lower elastic moduli and higher ultimate strains as well as longer pull-out lengths compared to the 'inside debonding' interface composites. Stress-strain curves were modeled where matrix crack formation as a function of stress was approximated from the acoustic emission activity and the measured crack density from the failed specimens. Interfacial shear strength measurements from individual fiber push-in tests were in good agreement with the interfacial shear strength values used to model the stress-strain curves.

  7. Effect of hydrogen on the multiaxial stress-strain behavior of titanium tubing

    SciTech Connect

    Lentz, C.W.; Koss, D.A.; Stout, M.G.

    1983-12-01

    The influence of internal hydrogen on the multiaxial stress-strain behavior of commercially pure titanium has been studied. Thin-walled tubing specimens containing either 20 or 1070 ppm hydrogen have been tested at constant stress ratios in combined tension and internal pressure. The addition of hydrogen lowers the yield strength for all loading paths but has no significant effect on the strain hardening behavior at strains greater than or equal to 0.02. Thus, the hydrogen embrittlement of titanium under plain strain or equibiaxial loading is not a consequence of changes of flow behavior. The yielding behavior of this anisotropic material is described well by Hill's (1950) quadratic yield criterion. As measured mechanically and by pole figure analysis, the plastic anisotropy changes with deformation in a manner which depends on stress state. Hill's criterion and the associated flow rule do not describe the multiaxial flow behavior well because of their inability to account for changes of texture which depend on multiaxial stress path. Hence a strain dependent, texture-induced strengthening effect in equibiaxial tension is observed, this effect having the form of an enhanced strain-hardening rate. 21 references.

  8. Creep and Stress-strain Behavior After Creep from Sic Fiber Reinforced, Melt-infiltrated Sic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Pujar, Vijay

    2004-01-01

    Silicon carbide fiber (Hi-Nicalon Type S, Nippon Carbon) reinforced silicon carbide matrix composites containing melt-infiltrated Si were subjected to creep at 1315 C for a number of different stress conditions, This study is aimed at understanding the time-dependent creep behavior of CMCs for desired use-conditions, and also more importantly, how the stress-strain response changes as a result of the time-temperature-stress history of the crept material. For the specimens that did not rupture, fast fracture experiments were performed at 1315 C or at room temperature immediately following tensile creep. In many cases, the stress-strain response and the resulting matrix cracking stress of the composite change due to stress-redistribution between composite constituents during tensile creep. The paper will discuss these results and its implications on applications of these materials for turbine engine components.

  9. The Stress-strain Behavior of Polymer-Nanotube Composites from Molecular Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Harik, V. M.; Odegard, G. M.; Brenner, D. W.; Gates, T. S.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Stress-strain curves of polymer-carbon nanotube composites are derived from molecular dynamics simulations of a single-walled carbon nanotube embedded in polyethylene. A comparison is made between the response to mechanical loading of a composite with a long, continuous nanotube (replicated via periodic boundary conditions) and the response of a composite with a short, discontinuous nanotube. Both composites are mechanically loaded in the direction of and transverse to the NT axis. The long-nanotube composite shows an increase in the stiffness relative to the polymer and behaves anisotropically under the different loading conditions. The short-nanotube composite shows no enhancement relative to the polymer, most probably because of its low aspect ratio. The stress-strain curves are compared with rule-of-mixtures predictions.

  10. Constitutive modeling of rate-dependent stress-strain behavior of human liver in blunt impact loading.

    PubMed

    Sparks, Jessica L; Dupaix, Rebecca B

    2008-11-01

    An understanding of the mechanical deformation behavior of the liver under high strain rate loading conditions could aid in the development of vehicle safety measures to reduce the occurrence of blunt liver injury. The purpose of this study was to develop a constitutive model of the stress-strain behavior of the human liver in blunt impact loading. Experimental stress and strain data was obtained from impact tests of 12 unembalmed human livers using a drop tower technique. A constitutive model previously developed for finite strain behavior of amorphous polymers was adapted to model the observed liver behavior. The elements of the model include a nonlinear spring in parallel with a linear spring and nonlinear dashpot. The model captures three features of liver stress-strain behavior in impact loading: (1) relatively stiff initial modulus, (2) rate-dependent yield or rollover to viscous "flow" behavior, and (3) strain hardening at large strains. Six material properties were used to define the constitutive model. This study represents a novel application of polymer mechanics concepts to understand the rate-dependent large strain behavior of human liver tissue under high strain rate loading. Applications of this research include finite element simulations of injury-producing liver or abdominal impact events. PMID:18751900

  11. Matrix dominated stress/strain behavior in polymeric composites: Effects of hold time, nonlinearity and rate dependency

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    1992-01-01

    In order to understand matrix dominated behavior in laminated polymer matrix composites, an elastic/viscoplastic constitutive model was developed and used to predict stress strain behavior of off-axis and angle-ply symmetric laminates under in-plane, tensile axial loading. The model was validated for short duration tests at elevated temperatures. Short term stress relaxation and short term creep, strain rate sensitivity, and material nonlinearity were accounted for. The testing times were extended for longer durations, and periods of creep and stress relaxation were used to investigate the ability of the model to account for long term behavior. The model generally underestimated the total change in strain and stress for both long term creep and long term relaxation respectively.

  12. Cyclic Deformation Behavior of Aged FeNiCoAlTa Single Crystals

    NASA Astrophysics Data System (ADS)

    Krooß, P.; Niendorf, T.; Karaman, I.; Chumlyakov, Y.; Maier, H. J.

    2012-11-01

    The cyclic deformation behavior of [001] oriented Fe-28Ni-17Co-11.5Al-2.5Ta (at.%) shape memory single crystals was investigated under tension. Dog-bone shaped specimens were tested up to 100 cycles after different aging heat treatments in order to characterize the cyclic stress-strain response and functional degradation. The smaller particles formed as a consequence of short aging for 1 h at 700°C, as compared to longer aging for 7 h, resulted in significantly enhanced resistance to cyclic degradation.

  13. Experimental Study on the Anisotropic Stress-Strain Behavior of Polycrystalline Ni-Mn-Ga in Directional Solidification

    NASA Astrophysics Data System (ADS)

    Teng, Yao; Shi, Tao; Zhu, Yuping; Li, Zongbin; Deng, Tao; Bai, Guonan

    2016-03-01

    A polycrystalline Ni-Mn-Ga ferromagnetic shape memory alloy produced by directional solidification is the subject of this research paper. The compressive stress-strain curves of the material for different cutting angles to the solidification direction are tested. The martensite Young's modulus, macroscopic reorientation strain, and phase transition critical stress are analyzed experimentally. The results show that mechanical behaviors in the loading-unloading cycle of the material present nonlinear and anisotropic characteristics, which are all closely related to the material's orientation to the solidification direction. The martensite Young's modulus, macroscopic reorientation strain, and phase transition critical stress achieve maximum values in the solidification direction. A 50° orientation to the solidification direction is the cut-off direction of the mechanical properties, where the martensite Young's modulus and reorientation start critical stress reach minimum values. The present study is expected to provide sound guidance for practical applications.

  14. Stress-strain behavior under static loading in Gd123 high-temperature superconductors at 77 K

    NASA Astrophysics Data System (ADS)

    Fujimoto, Hiroyuki; Murakami, Akira; Teshima, Hidekazu; Morita, Mitsuru

    2013-10-01

    Mechanical properties of melt-growth GdBa2Cu3Ox (Gd123) superconducting samples with 10 wt.% Ag2O and 0.5 wt.% Pt were evaluated at 77 K through flexural tests for specimens cut from the samples in order to estimate the mechanical properties of the Gd123 material without metal substrates, buffer layers or stabilization layers. We discuss the mechanical properties; the Young's modulus and flexural strength with stress-strain behavior at 77 K. The results show that the flexural strength and fracture strain of Gd123 at 77 K are approximately 100 MPa and 0.1%, respectively, and that the origin of the fracture is defects such as pores, impurities and non-superconducting compounds. We also show that the Young's modulus of Gd123 is estimated to be 160-165 GPa.

  15. Analysis of stress-strain, fracture and ductility behavior of aluminum matrix composites containing discontinuous silicon carbide reinforcement

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.

    1984-01-01

    Mechanical properties and stress-strain behavior for several types of commercially fabricated aluminum matrix composites, containing up to 40 vol % discontinuous SiC whisker, nodule, or particulate reinforcement were evaluated. It was found that the elastic modulus of the composites was isotropic, to be independent of type of reinforcement, and to be controlled solely by the volume percentage of SiC reinforcement present. The yield/tensile strengths and ductility were controlled primarily by the matrix alloy and temper condition. Ductility decreased with increasing reinforcement content, however, the fracture strains observed were higher than those reported in the literature for this type of composite. This increase in fracture strain is attributed to cleaner matrix powder and increased mechanical working during fabrication. Conventional aluminum and titanium structural alloys were compared and have shown that the properties of these low cost, lightweight composites have good potential for application to aerospace structures.

  16. Local and Global Stress-Strain Behaviors of Transformation-Induced Plasticity Steel Using the Combined Nanoindentation and Finite Element Analysis Method

    NASA Astrophysics Data System (ADS)

    Jeong, Hyeok Jae; Lim, Nam Suk; Lee, Bong Ho; Park, Chan Gyung; Lee, Sunghak; Kang, Seong-Hoon; Lee, Ho Won; Kim, Hyoung Seop

    2014-12-01

    Transformation-induced plasticity (TRIP) steels have excellent strain hardening exponents and resistibility against tensile necking using the strain-induced martensite formation that occurs as a result of the plastic deformation and strain on the retained austenite phase. Detailed studies on the microstructures and local mechanical properties, as well as global mechanical properties, are necessary in order to thoroughly understand the properties of TRIP steels with multiple phases of ferrite, bainite, retained austenite, and martensite. However, methods for investigating the local properties of the various phases of the TRIP steel are limited due to the very complicated and fine microstructures present in TRIP steel. In this study, the experimental and numerical methods, i.e., the experimental nanoindenting results and the theoretical finite element analyses, were combined in order to extract the local stress-strain curves of each phase. The local stress-strain curves were in good agreement with the values presented in the literature. In particular, the global plastic stress-strain behavior of the TRIP steel was predicted using the multiple phase unit cell finite element analysis, and this demonstrated the validity of the obtained properties of each local phase. The method of extracting the local stress-strain curves from the nanoindenting curves and predicting the global stress-strain behavior assists in clarifying the smart design of multi-phase steels.

  17. Local and Global Stress-Strain Behaviors of Transformation-Induced Plasticity Steel Using the Combined Nanoindentation and Finite Element Analysis Method

    NASA Astrophysics Data System (ADS)

    Jeong, Hyeok Jae; Lim, Nam Suk; Lee, Bong Ho; Park, Chan Gyung; Lee, Sunghak; Kang, Seong-Hoon; Lee, Ho Won; Kim, Hyoung Seop

    2014-09-01

    Transformation-induced plasticity (TRIP) steels have excellent strain hardening exponents and resistibility against tensile necking using the strain-induced martensite formation that occurs as a result of the plastic deformation and strain on the retained austenite phase. Detailed studies on the microstructures and local mechanical properties, as well as global mechanical properties, are necessary in order to thoroughly understand the properties of TRIP steels with multiple phases of ferrite, bainite, retained austenite, and martensite. However, methods for investigating the local properties of the various phases of the TRIP steel are limited due to the very complicated and fine microstructures present in TRIP steel. In this study, the experimental and numerical methods, i.e., the experimental nanoindenting results and the theoretical finite element analyses, were combined in order to extract the local stress-strain curves of each phase. The local stress-strain curves were in good agreement with the values presented in the literature. In particular, the global plastic stress-strain behavior of the TRIP steel was predicted using the multiple phase unit cell finite element analysis, and this demonstrated the validity of the obtained properties of each local phase. The method of extracting the local stress-strain curves from the nanoindenting curves and predicting the global stress-strain behavior assists in clarifying the smart design of multi-phase steels.

  18. Cracking and Stress-Strain Behavior of Rock-Like Material Containing Two Flaws Under Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Zhao, Yanlin; Zhang, Lianyang; Wang, Weijun; Pu, Chengzhi; Wan, Wen; Tang, Jingzhou

    2016-07-01

    This paper investigates the cracking and stress-strain behavior, especially the local strain concentration near the flaw tips, of rock-like material containing two flaws. A series of uniaxial compression tests were carried out on rock-like specimens containing two flaws, with strain gauges mounted near the flaw tips to measure the local strain concentration under the uniaxial compressive loading. Four different types of cracks (wing cracks, anti-wing cracks, coplanar shear cracks and oblique shear cracks) and seven patterns of crack coalescences (T1 and T2; S1 and S2; and TS1, TS2 and TS3) are observed in the experiments. The type of crack coalescence is related to the geometry of the flaws. In general, the crack coalescence varies from the S-mode to the TS-mode and then to the T-mode with the increase of the rock bridge ligament angle. The stress-strain curves of the specimens containing two flaws are closely related to the crack development and coalescence process. The strain measurements indicate that the local tensile strain concentration below or above the pre-existing flaw tip causes wing or anti-wing cracks, while the local compressive strain concentration near the flaw tip is related to the shear crack. The measured local tensile strain shows a jump at the initiation of wing- and anti-wing cracks, reflecting the instant opening of the wing- and anti-wing crack propagating through the strain gauge. During the propagation of wing- and anti-wing cracks, the measured local tensile strain gradually increases with few jumps, implying that the opening deformation of wing- and anti-wing cracks occurs in a stable manner. The shear cracks initiate followed by a large and abrupt compressive strain jump and then quickly propagate in an unstable manner resulting in the failure of specimens.

  19. Rate dependent stress-strain behavior of advanced polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    1991-01-01

    The formulation of an elastic/viscoplastic constitutive model which was used to predict the measured behavior of graphite/thermoplastic and graphite/bismaleimide composite materials at elevated temperature is described. The model incorporates the concepts of overstress and effective strain/strain to provide a simple formulation which was able to account for material behavior under monotonic tension or compression loads over a temperature range of 23 to 200 C. Observed behavior such as stress relaxation and steady state creep, in off-axis tension and compression tests, were predicted by the model. Material constants required by the model were extracted from simple off-axis test data.

  20. Experimental and analytical analysis of stress-strain behavior in a (90/0 deg)2s, SiC/Ti-15-3 laminate

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Melis, Matthew E.; Tong, Mike

    1991-01-01

    The nonlinear stress strain behavior of 90 degree/0 degree sub 2s, SiC/Ti-15-3 composite laminate was numerically investigated with a finite element, unit cell approach. Tensile stress-strain curves from room temperature experiments depicted three distinct regions of deformation, and these regions were predicted by finite element analysis. The first region of behavior, which was linear elastic, occurred at low applied stresses. As applied stresses increased, fiber/matrix debonding in the 90 degree plies caused a break in the stress-strain curve and initiated a second linear region. In this second region, matrix plasticity in the 90 degree plies developed. The third region, which was typified by nonlinear, stress-strain behavior occr red at high stresses. In this region, the onset of matrix plasticity in the 0 degree plies stiffened the laminate in the direction transverse to the applied load. Metallographic sections confirmed the existence of matrix plasticity in specific areas of the structure. Finite element analysis also predicted these locations of matrix slip.

  1. Extracting Constitutive Stress-Strain Behavior of Microscopic Phases by Micropillar Compression

    SciTech Connect

    Williams, J. J.; Walters, Jennifer; Wang, Mingyue; Chawla, N.; Rohatgi, Aashish

    2013-02-01

    The manuscript describes how micropillar compression technique can be used to perform uniaxial compression tests within individual grains so as to generate local-scale constitutive behavior which, otherwise cannot be ascertained from the conventional macroscale compression test techniques. The manuscript uses steel and magnesium alloys as an example. A portion of the magnesium work was performed at PNNL.

  2. Analysis of stress-strain, fracture, and ductility behavior of aluminum maxtrix composites containing discontinuous silicon carbide reinforcement

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.

    1985-01-01

    Mechanical properties and stress-strain behavior were evaluated for several types of commercially fabricated aluminum matrix composites, containing up to 40 vol pct discontinuous SiC whisker, nodule, or particulate reinforcement. The elastic modulus of the composites was found to be isotropic, to be independent of type of reinforcement, and to be controlled solely by the volume percentage of SiC reinforcement present. The yield/tensile strengths and ductility were controlled primarily by the matrix alloy and temper condition. Type and orientation of reinforcement had some effect on the strengths of composites, but only for those in which the whisker reinforcement was highly oriented. Ductility decreased with increasing reinforcement content; however, the fracture strains observed were higher than those reported in the literature for this type of composite. This increase in fracture strain was probably attributable to cleaner matrix powder, better mixing, and increased mechanical working during fabrication. Comparison of properties with conventional aluminum and titanium structural alloys showed that the properties of the low-cost, lightweight composites demonstrated very good potential for application to aerospace structures.

  3. Experimental verification of the Neuber relation at room and elevated temperatures. M.S. Thesis; [to predict stress-strain behavior in notched specimens of hastelloy x

    NASA Technical Reports Server (NTRS)

    Lucas, L. J.

    1982-01-01

    The accuracy of the Neuber equation at room temperature and 1,200 F as experimentally determined under cyclic load conditions with hold times. All strains were measured with an interferometric technique at both the local and remote regions of notched specimens. At room temperature, strains were obtained for the initial response at one load level and for cyclically stable conditions at four load levels. Stresses in notched members were simulated by subjecting smooth specimens to he same strains as were recorded on the notched specimen. Local stress-strain response was then predicted with excellent accuracy by subjecting a smooth specimen to limits established by the Neuber equation. Data at 1,200 F were obtained with the same experimental techniques but only in the cyclically stable conditions. The Neuber prediction at this temperature gave relatively accurate results in terms of predicting stress and strain points.

  4. Effect of internal heating during hot compression testing on the stress-strain behavior and hot working characteristics of Alloy 304L

    SciTech Connect

    Mataya, M.C.; Sackschewsky, V.E.

    1993-05-01

    Temperature change from conversion of deformation to internal heat, and its effect on stress-strain behavior of alloy 304L was investigated by initially isothermal (temperature of specimen, compression dies, environment equilibrated at initiation of test) uniaxial compression. Strain rate was varied 0.01 s{sup {minus}1} to 1 s{sup {minus}1} (thermal state of specimen varied from nearly isothermal to nearly adiabatic). Specimens were deformed at 750 to 1150 to a strain of 1. Change in temperature with strain was calculated via finite element analysis from measured stress-strain data and predictions were confirmed with thermocouples to verify the model. Temperature increased nearly linearly at the highest strain rate, consistent with temperature rise being a linear function of strain (adiabatic). As strain rate was lowered, heat transfer from superheated specimen to cooler dies caused sample temperature to increase and then decrease with strain as the sample thinned and specimen-die contact area increased. As-measured stress was corrected. Resulting isothermal flow curves were compared to predictions of a simplified method suggested by Thomas and Shrinivasan and differences are discussed. Strain rate sensitivity, activation energy for deformation, and flow curve peak associated with onset of dynamic recrystallization were determined from both as-measured and isothermal stress-strain data and found to vary widely. The impact of utilizing as-measured stress-strain data, not corrected for internal heating, on results of a number of published investigations is discussed.

  5. Low Cycle Fatigue Behavior of 316LN Stainless Steel Alloyed with Varying Nitrogen Content. Part I: Cyclic Deformation Behavior

    NASA Astrophysics Data System (ADS)

    Prasad Reddy, G. V.; Sandhya, R.; Sankaran, S.; Mathew, M. D.

    2014-10-01

    In this study, the influence of cyclic strain amplitude on the evolution of cyclic stress-strain response and the associated cyclic deformation mechanisms in 316LN stainless steel with varying nitrogen content (0.07 to 0.22 wt pct) is reported in the temperature range 773 K to 873 K (500 °C to 600 °C). Two mechanisms, namely dynamic strain aging and secondary cyclic hardening, are found to strongly influence the cyclic stress response. Deformation substructures associated with both the mechanisms showed planar mode of deformation. These mechanisms are observed to be operative over certain combinations of temperature and strain amplitude. For strain amplitudes >0.6 pct, wavy or mixed mode of deformation is noticed to suppress both the mechanisms. Cyclic stress-strain curves revealed both single and dual-slope behavior depending on the test temperature. Increase in nitrogen content is found to increase the tendency toward planar mode of deformation, while increase in strain amplitude leads to transition from planar slip bands to dislocation cell/wall structure formation, irrespective of the nitrogen content in 316LN stainless steel.

  6. Cyclic Axial-Torsional Deformation Behavior of a Cobalt-Base Superalloy

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1995-01-01

    The cyclic, high-temperature deformation behavior of a wrought cobalt-base super-alloy, Haynes 188, is investigated under combined axial and torsional loads. This is accomplished through the examination of hysteresis loops generated from a biaxial fatigue test program. A high-temperature axial, torsional, and combined axial-torsional fatigue database has been generated on Haynes 188 at 760 C. Cyclic loading tests have been conducted on uniform gage section tubular specimens in a servohydraulic axial-torsional test rig. Test control and data acquisition were accomplished with a minicomputer. The fatigue behavior of Haynes 188 at 760 C under axial, torsional, and combined axial-torsional loads and the monotonic and cyclic deformation behaviors under axial and torsional loads have been previously reported. In this paper, the cyclic hardening characteristics and typical hysteresis loops in the axial stress versus axial strain, shear stress ,versus engineering shear strain, axial strain versus engineering shear strain. and axial stress versus shear stress spaces are presented for cyclic in-phase and out-of-phase axial-torsional tests. For in-phase tests, three different values of the proportionality constant lambda (the ratio of engineering shear strain amplitude to axial strain amplitude, are examined, viz. 0.86, 1.73, and 3.46. In the out-of-phase tests, three different values of the phase angle, phi (between the axial and engineering shear strain waveforms), are studied, viz., 30, 60, and 90 degrees with lambda equals 1.73. The cyclic hardening behaviors of all the tests conducted on Haynes 188 at 760 C are evaluated using the von Mises equivalent stress-strain and the maximum shear stress-maximum engineering shear strain (Tresca) curves. Comparisons are also made between the hardening behaviors of cyclic axial, torsional, and combined in-phase (lambda = 1.73 and phi = 0) and out-of-phase (lambda = 1.73 and phi = 90') axial-torsional fatigue tests. These comparisons

  7. Study of the stress-strain behavior of floodable rockfills by means of finite difference formulated numerical simulations and instrumentation records

    NASA Astrophysics Data System (ADS)

    Escuder Bueno, Ignacio

    This Thesis studies the stress-strain behavior of floodable rockfills, using data obtained from quality control of materials, control of construction and instrumentation records. As a case of study, a rockfill part of the final works for a new Madrid-Valencia motorway, located at Contreras Reservoir is used. Data were collected during construction (December 1997--August 1998) and are extended to July of 2000. After reviewing the state of art on properties of usual materials, models of behaviour, numerical tools and experiences dealing with studies based in combined analysis and field measurements, several works have been developed. Namely the synthesis of all available data, study of construction procedures, implementation of an analysis methodology and its application to the study of the stress-strain behavior during and after construction. FLAC 2D (Itasca, 1994), an explicit finite difference code, has been selected as numerical tool to perform the analysis, and results have been compared with measurements registered by total pressure and settlement cells. In order to improve the quality of analysis and to make use of all collected records to calibrate the models (taken on a weekly basis), the real constructive sequency has been simulated. Numerical calculation based in linear elastic, non linear elastic, elastoplastic and viscoelastic models have been performed. Newly developed routines have permitted to accomplish the upgrading of tangent parameters involved in non-linear hyperbolic formulation, calculation of creep deformation and settlements due to reservoir filling. As a result of the works, the stress-strain behavior of the structure has been characterized, the importance of creep deformation from first stages of construction has been identified, and capability of usually assumed models in reproducing observed behavior has been evaluated.

  8. Phase behaviors of cyclic diblock copolymers.

    PubMed

    Zhang, Guojie; Fan, Zhongyong; Yang, Yuliang; Qiu, Feng

    2011-11-01

    A spectral method of self-consistent field theory has been applied to AB cyclic block copolymers. Phase behaviors of cyclic diblock copolymers, such as order-disorder transition, order-order transition, and domain spacing size, have been studied, showing good consistency with previous experimental and theoretical results. Compared to linear diblocks, cyclic diblocks are harder to phase separate due to the topological constraint of the ring structure. A direct disorder-to-cylinder transition window is observed in the phase diagram, which is significantly different from the mean field phase diagram of linear diblock copolymers. The domain spacing size ratio between cyclic and linear diblock copolymers is typically close to 0.707, indicating in segregation that the cyclic polymer can be considered to be made up of linear diblocks with half of the original chain length. PMID:22070321

  9. Cyclic axial-torsional deformation behavior of a cobalt-base superalloy

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1992-01-01

    Multiaxial loading, especially at elevated temperature, can cause the inelastic response of a material to differ significantly from that predicted by simple flow rules, i.e., von Mises or Tresca. To quantify some of these differences, the cyclic high-temperature, deformation behavior of a wrought cobalt-based superalloy, Haynes 188, is investigated under combined axial and torsional loads. Haynes 188 is currently used in many aerospace gas turbine and rocket engine applications, e.g., the combustor liner for the T800 turboshaft engine for the RAH-66 Comanche helicopter and the liquid oxygen posts in the main injector of the space shuttle main engine. The deformation behavior of this material is assessed through the examination of hysteresis loops generated from a biaxial fatigue test program. A high-temperature axial, torsional, and combined axial-torsional fatigue data base has been generated on Haynes 188 at 760 C. Cyclic loading tests have been conducted on uniform gauge section tubular specimens in a servohydraulic axial-torsional test rig. Test control and data acquisition were accomplished with a minicomputer. In this paper, the cyclic hardening characteristics and typical hysteresis loops in the axial stress versus axial strain, shear stress versus engineering shear strain, axial strain versus engineering shear strain, and axial stress versus shear stress spaces are presented for cyclic, in-phase and out-of-phase, axial torsional tests. For in-phase tests three different values of the proportionality constant, lambda (ratio of engineering shear strain amplitude to axial strain amplitude), are examined, viz., 0.86, 1.73, and 3.46. In the out-of-phase tests, three different values of the phase angle, phi (between the axial and engineering shear strain waveforms), are studied, viz., 30, 60, and 90 deg with lambda = 1.73. The cyclic hardening behaviors of all the tests conducted on Haynes 188 at 760 C are evaluated using the von Mises equivalent stress-strain

  10. The influence of deformation-induced residual stresses on the post-forming tensile stress/strain behavior of dual-phase steels

    NASA Astrophysics Data System (ADS)

    Hance, Brandon Michael

    It was hypothesized that, in dual-phase (DP) steels, strain partitioning between ferrite (alpha) and martensite (alpha') during deformation results in a distribution of post-deformation residual stresses that, in turn, affects the subsequent strength, work hardening behavior and formability when the strain path is changed. The post-forming deformation-induced residual stress state was expected to depend upon the microstructure, the amount of strain and the prestrain path. The primary objective of this research program was to understand the influence of deformation-induced residual stresses on the post-forming tensile stress/strain behavior of DP steels. Three commercially produced sheet steels were considered in this analysis: (1) a DP steel with approximately 15 vol. % martensite, (2) a conventional high-strength, low-alloy (HSLA) steel, and (3) a conventional, ultra-low-carbon interstitial-free (IF) steel. Samples of each steel were subjected to various prestrain levels in various plane-stress forming modes, including uniaxial tension, plane strain and balanced biaxial stretching. Neutron diffraction experiments confirmed the presence of large post-forming deformation-induced residual stresses in the ferrite phase of the DP steel. The deformation-alphainduced residual stress state varied systematically with the prestrain mode, where the principal residual stress components are proportional to the principal strain components of the prestrain mode, but opposite in sign. For the first time, and by direct experimental correlation, it was shown that deformation-induced residual stresses greatly affect the post-forming tensile stress/strain behavior of DP steels. As previously reported in the literature, the formability (residual tensile ductility) of the IF steel and the HSLA steel was adversely affected by strain path changes. The DP steel presents a formability advantage over the conventional IF and HSLA steels, and is expected to be particularly well suited for

  11. Fatigue Behavior of Granite Subjected to Cyclic Loading Under Triaxial Compression Condition

    NASA Astrophysics Data System (ADS)

    Wang, Zhechao; Li, Shucai; Qiao, Liping; Zhao, Jiangang

    2013-11-01

    A series of laboratory tests were performed to examine the fatigue behavior of granite subjected to cyclic loading under triaxial compression condition. In these tests, the influences of volumetric change and residual strain on the deformation modulus of granite under triaxial cyclic compression were investigated. It is shown that the fatigue behavior of granite varies with the tendency for volumetric change in triaxial cyclic compression tests. In the stress-strain space, there are three domains for fatigue behavior of rock subjected to cyclic loading, namely the volumetric compaction, volumetric dilation with strain-hardening behavior, and volumetric dilation with strain-softening behavior domains. In the different domains, the microscopic mechanisms for rock deformation are different. It was also found that the stress level corresponding to the transition from volumetric compaction to volumetric dilation could be considered as the threshold for fatigue failure. The potential of fatigue deformation was compared with that of plastic deformation. The comparison shows that rocks exhibit higher resistances to volumetric deformation under cyclic loading than under plastic loading. The influence of residual strain on the fatigue behavior of rock was also investigated. It was found that the axial residual strain could be a better option to describe the fatigue behavior of rock than the loading cycle number. A constitutive model for the fatigue behavior of rock subjected to cyclic loading is proposed according to the test results and discussion. In the model, the axial residual strain is considered as an internal state variable. The influences of confining pressure and peak deviatoric stress on the deformation modulus are considered in a term named the equivalent stress. Comparison of test results with model predictions shows that the proposed model is capable of describing the prepeak fatigue behavior of rock subjected to cyclic loading.

  12. Microstructure, Cyclic Deformation and Corrosion Behavior of Laser Welded NiTi Shape Memory Wires

    NASA Astrophysics Data System (ADS)

    Mirshekari, G. R.; Kermanpur, A.; Saatchi, A.; Sadrnezhaad, S. K.; Soleymani, A. P.

    2015-09-01

    The present paper reports the effects of Nd:YAG laser welding on the microstructure, phase transformation, cyclic deformation behavior, and corrosion resistance of Ti-55 wt.% Ni wire. The results showed that the laser welding altered the microstructure of the weld metal which mainly composed of columnar dendrites grown epitaxially from the fusion line. DSC results indicated that the onset of the transformation temperatures of the weld metal differed from that of the base metal. Cyclic stress-strain behavior of laser-welded NiTi wire was comparable to the as-received material; while a little reduction in the pseudo-elastic property was noted. The weld metal exhibited higher corrosion potential, lower corrosion current density, higher breakdown potential and wider passive region than the base metal. The weld metal was therefore more resistant to corrosion than the base metal.

  13. Dynamic strain aging influence on the cyclic behavior of Zircaloy-4

    SciTech Connect

    Armas, A.F.; Alvarez-Armas, I.; Moscato, G.

    1996-01-15

    Dynamic strain aging is a very important factor in the plastic deformation of zirconium and zirconium alloys and its aspects in uniaxial tensile tests have been the subject of several studies. Evidence of yield points in the stress-strain curve, appearance of plateaus or peaks in the flow stress-temperature diagram, discontinuous plastic flow, abnormal strain rate sensitivity have been reported in the literature. These anomalous mechanical behaviors were observed in these metals within the temperature range 473 to 823 K. The purpose of the present study is to examine the cyclic deformation characteristics of Zircaloy-4 in the temperature range 573--873 K and to show that the abnormal cyclic hardening observed in this material can be considered as a new aspect of dynamic strain aging.

  14. Tensile behavior and cyclic creep of continuous fiber-reinforced glass matrix composites at room and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Boccaccini, A. R.; West, G.; Janczak, J.; Lewis, M. H.; Kern, H.

    1997-06-01

    In this study we investigated the stress-strain behavior at room and elevated temperatures and the tensile creep and cyclic creep response of a unidirectional SiC fiber-reinforced aluminosilicate glass matrix composite. The interfacial condition of the as-received material was measured by a push-out indentation technique. The stress-strain behavior was that expected for this kind of composite, i.e. “pseudoductile” behavior with extensive fiber “pull-out” at room temperature and brittle failure at intermediate temperatures (750 °C) due to oxidation embrittlement. The stiffness of the composite at 750°C was analyzed for different loading rates, highlighing the influence of the loading rate on apparent composite stiffness, due to matrix softening. The creep studies were conducted at temperatures above and below the softening temperature of the glass (T g, 745 °C) in air. The cyclic creep experiments showed the existence of extensive viscous strain recovery during the unloading period. The creep strain recovery was quantified using strain recovery ratios. These ratios showed a slight dependence on the temperatures investigated (700 and 750 °C). The crept composites retained their “graceful” fracture behavior only partially after testing, indicating that oxidation of the fiber/matrix interface due to oxygen diffusion through the matrix occurred in the peripheral area of the samples.

  15. Cyclic saturation behavior of tungsten monofilament-reinforced monocrystalline copper matrix composites

    SciTech Connect

    Zhang, J.; Laird, C.

    1999-10-26

    Studies on saturation behavior produced by cyclic deformation have been conducted on tungsten monofilament-reinforced monocrystalline copper composites. The effect of the fiber on strain localization has been investigated using interferometry. For a given applied strain amplitude, local strain and volume fraction of the persistent slip bands (PSBs) in the composite appeared no different from those observed in monolithic copper single crystals. However, the distribution of the PSBs was observed to be more uniform, and the total number of PSBs is substantially higher than that in monolithic crystals. The PSBs appeared mostly in the form of micro-PSBs or macro-PSBs with very limited width. Instead of expanding existing PSBs, new PSBs were more likely to nucleate at new locations during cyclic deformation. The volume fraction and width of the PSBs were observed to increase during saturation, which indicates that some of the PSBs become aged and new PSBs form in order to continue to carry the plastic strain. A rule of mixtures model was established to link the cyclic stress-strain response of the monocrystalline composites to the behavior of monolithic single crystals and fibers. The results calculated from the model show very good agreement with the experimental data.

  16. Universal Behavior of a Cyclic Oxidation Model

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2003-01-01

    A mathematical model has been generated to represent the iterative, discrete growth and spallation processes associated with cyclic oxidation. Parabolic growth kinetics (k(sub p)) over and a constant spall area (F(sub A)) were assumed, with spalling occurring interfacially at the thickest regions of the scale. Although most models require numerical techniques, the regularity and simplicity of this progression permitted an approximation by algebraic expressions. Normalization could now be performed to reflect all parametric effects, and a universal cyclic oxidation response was generated: W(sub u) = 1/2 {3J(sub u)(sup 1/2)+ J(sub u)(sup 3/2)} where W, is weight change normalized by the maximum and J(sub u) is the cycle number normalized by the number to reach maximum. Similarly, the total amount of metal consumed was represented by a single normalized curve. The factor [(S(sub c)-l)(raised dot)sqrt(F(sub A)k(sub p)DELTAt)] was identified as a general figure of merit, where S(sub c) is the mass ratio of oxide to oxygen and DELTAt is the cycle duration. A cyclic oxidation failure map was constructed, in normalized k(sub p)-F(sub A) space, as defined by the locus of points corresponding to a critical amount of metal consumption in a given time. All three constructions describe behavior for every value of growth rate, spall fraction, and cycle duration by means of single curves, but with two branches corresponding to the times before and after steady state is achieved.

  17. Stress-strain experiments on individual collagen fibrils.

    PubMed

    Shen, Zhilei L; Dodge, Mohammad Reza; Kahn, Harold; Ballarini, Roberto; Eppell, Steven J

    2008-10-01

    Collagen, a molecule consisting of three braided protein helices, is the primary building block of many biological tissues including bone, tendon, cartilage, and skin. Staggered arrays of collagen molecules form fibrils, which arrange into higher-ordered structures such as fibers and fascicles. Because collagen plays a crucial role in determining the mechanical properties of these tissues, significant theoretical research is directed toward developing models of the stiffness, strength, and toughness of collagen molecules and fibrils. Experimental data to guide the development of these models, however, are sparse and limited to small strain response. Using a microelectromechanical systems platform to test partially hydrated collagen fibrils under uniaxial tension, we obtained quantitative, reproducible mechanical measurements of the stress-strain curve of type I collagen fibrils, with diameters ranging from 150-470 nm. The fibrils showed a small strain (epsilon < 0.09) modulus of 0.86 +/- 0.45 GPa. Fibrils tested to strains as high as 100% demonstrated strain softening (sigma(yield) = 0.22 +/- 0.14 GPa; epsilon(yield) = 0.21 +/- 0.13) and strain hardening, time-dependent recoverable residual strain, dehydration-induced embrittlement, and susceptibility to cyclic fatigue. The results suggest that the stress-strain behavior of collagen fibrils is dictated by global characteristic dimensions as well as internal structure. PMID:18641067

  18. Stress-Strain Experiments on Individual Collagen Fibrils

    PubMed Central

    Shen, Zhilei L.; Dodge, Mohammad Reza; Kahn, Harold; Ballarini, Roberto; Eppell, Steven J.

    2008-01-01

    Collagen, a molecule consisting of three braided protein helices, is the primary building block of many biological tissues including bone, tendon, cartilage, and skin. Staggered arrays of collagen molecules form fibrils, which arrange into higher-ordered structures such as fibers and fascicles. Because collagen plays a crucial role in determining the mechanical properties of these tissues, significant theoretical research is directed toward developing models of the stiffness, strength, and toughness of collagen molecules and fibrils. Experimental data to guide the development of these models, however, are sparse and limited to small strain response. Using a microelectromechanical systems platform to test partially hydrated collagen fibrils under uniaxial tension, we obtained quantitative, reproducible mechanical measurements of the stress-strain curve of type I collagen fibrils, with diameters ranging from 150–470 nm. The fibrils showed a small strain (ɛ < 0.09) modulus of 0.86 ± 0.45 GPa. Fibrils tested to strains as high as 100% demonstrated strain softening (σyield = 0.22 ± 0.14 GPa; ɛyield = 0.21 ± 0.13) and strain hardening, time-dependent recoverable residual strain, dehydration-induced embrittlement, and susceptibility to cyclic fatigue. The results suggest that the stress-strain behavior of collagen fibrils is dictated by global characteristic dimensions as well as internal structure. PMID:18641067

  19. The Stress-Strain Condition Estimation of Detail in Crack Tip by Integral Strain Gauges

    NASA Astrophysics Data System (ADS)

    Syzrantsev, V.; Syzrantseva, K.

    2016-04-01

    The paper considers the task of stress-strain condition calculation of experimental sample in fatigue crack tip on weld boundary at its cyclic deforming. For this task decision authors use the information obtained by original means of cyclic strains measurement: Integral Strain Gauges. The results of carried experimental researches are compared with data of stress-strain condition estimation of detail in crack tip calculated by Finish Element Method.

  20. Development of constitutive models for cyclic plasticity and creep behavior of super alloys at high temperature

    NASA Technical Reports Server (NTRS)

    Haisler, W. E.

    1983-01-01

    An uncoupled constitutive model for predicting the transient response of thermal and rate dependent, inelastic material behavior was developed. The uncoupled model assumes that there is a temperature below which the total strain consists essentially of elastic and rate insensitive inelastic strains only. Above this temperature, the rate dependent inelastic strain (creep) dominates. The rate insensitive inelastic strain component is modelled in an incremental form with a yield function, blow rule and hardening law. Revisions to the hardening rule permit the model to predict temperature-dependent kinematic-isotropic hardening behavior, cyclic saturation, asymmetric stress-strain response upon stress reversal, and variable Bauschinger effect. The rate dependent inelastic strain component is modelled using a rate equation in terms of back stress, drag stress and exponent n as functions of temperature and strain. A sequence of hysteresis loops and relaxation tests are utilized to define the rate dependent inelastic strain rate. Evaluation of the model has been performed by comparison with experiments involving various thermal and mechanical load histories on 5086 aluminum alloy, 304 stainless steel and Hastelloy X.

  1. The role of cyclic plastic zone size on fatigue crack growth behavior in high strength steels

    NASA Astrophysics Data System (ADS)

    Korda, Akhmad A.; Miyashita, Y.; Mutoh, Y.

    2015-09-01

    The role of cyclic plastic zone in front of the crack tip was studied in high strength steels. Estimated plastic zone size would be compared with actual observation. Strain controlled fatigue tests of the steels were carried out to obtain cyclic stress-strain curves for plastic zone estimation. Observations of plastic zone were carried out using in situ SEM fatigue crack growth tests under a constant-ΔK. Hard microstructures in structural steels showed to inhibit the extent of plastic deformation around the crack tip. The rate of crack growth can be correlated with the size of plastic zone. The smaller the plastic zone size, the slower the fatigue crack growth.

  2. Nonlinear behavior of shells of revolution under cyclic loading.

    NASA Technical Reports Server (NTRS)

    Levine, H. S.; Armen, H., Jr.; Winter, R.; Pifko, A.

    1973-01-01

    A large deflection elastic-plastic analysis is presented applicable to orthotropic axisymmetric plates and shells of revolution subjected to monotonic and cyclic loading conditions. The analysis is based on the finite-element method. It employs a new higher order, fully compatible, doubly curved orthotropic shell-of-revolution element using cubic Hermitian expansions for both meridional and normal displacements. Both perfectly plastic and strain hardening behavior are considered. Strain hardening is incorporated through use of the Prager-Ziegler kinematic hardening theory, which predicts an ideal Bauschinger effect. Numerous sample problems involving monotonic and cyclic loading conditions are analyzed.

  3. Description of stress-strain curves by three parameters

    NASA Technical Reports Server (NTRS)

    Ramberg, Walter; Osgood, William R

    1943-01-01

    A simple formula is suggested for describing the stress-strain curve in terms of three parameters; namely, Young's modulus and two secant yield strengths. Dimensionless charts are derived from this formula for determining the stress-strain curve, the tangent modulus, and the reduced modulus of a material for which these three parameters are given. Comparison with the tensile and compressive data on aluminum-alloy, stainless-steel, and carbon-steel sheet in NACA Technical Note No. 840 indicates that the formula is adequate for most of these materials. The formula does not describe the behavior of alclad sheet, which shows a marked change in slope at low stress. It seems probable that more than three parameters will be necessary to represent such stress-strain curves adequately.

  4. Twinning-detwinning behavior during cyclic deformation of magnesium alloy

    SciTech Connect

    Lee, Soo Yeol; Wang, Huamiao; Gharghouri, Michael A.

    2015-05-26

    In situ neutron diffraction has been used to examine the deformation mechanisms of a precipitation-hardened and extruded Mg-8.5wt.%Al alloy subjected to (i) compression followed by reverse tension (texture T1) and (ii) tension followed by reverse compression (texture T2). Two starting textures are used: (1) as-extruded texture, T1, in which the basal pole of most grains is normal to the extrusion axis and a small portion of grains are oriented with the basal pole parallel to the extrusion axis; (2) a reoriented texture, T2, in which the basal pole of most grains is parallel to the extrusion axis. For texture T1, the onset of extension twinning corresponds well with the macroscopic elastic-plastic transition during the initial compression stage. The non-linear macroscopic stress/strain behavior during unloading after compression is more significant than during unloading after tension. For texture T2, little detwinning occurs after the initial tension stage, but almost all of the twinned volumes are detwinned during loading in reverse compression.

  5. Twinning-detwinning behavior during cyclic deformation of magnesium alloy

    DOE PAGESBeta

    Lee, Soo Yeol; Wang, Huamiao; Gharghouri, Michael A.

    2015-05-26

    In situ neutron diffraction has been used to examine the deformation mechanisms of a precipitation-hardened and extruded Mg-8.5wt.%Al alloy subjected to (i) compression followed by reverse tension (texture T1) and (ii) tension followed by reverse compression (texture T2). Two starting textures are used: (1) as-extruded texture, T1, in which the basal pole of most grains is normal to the extrusion axis and a small portion of grains are oriented with the basal pole parallel to the extrusion axis; (2) a reoriented texture, T2, in which the basal pole of most grains is parallel to the extrusion axis. For texture T1,more » the onset of extension twinning corresponds well with the macroscopic elastic-plastic transition during the initial compression stage. The non-linear macroscopic stress/strain behavior during unloading after compression is more significant than during unloading after tension. For texture T2, little detwinning occurs after the initial tension stage, but almost all of the twinned volumes are detwinned during loading in reverse compression.« less

  6. Evaluation of Cyclic Behavior of Aircraft Turbine Disk Alloys

    NASA Technical Reports Server (NTRS)

    Shahani, V.; Popp, H. G.

    1978-01-01

    An evaluation of the cyclic behavior of three aircraft engine turbine disk materials was conducted to compare their relative crack initiation and crack propagation resistance. The disk alloys investigated were Inconel 718, hot isostatically pressed and forged powder metallurgy Rene '95, and as-hot-isostatically pressed Rene '95. The objective was to compare the hot isostatically pressed powder metallurgy alloy forms with conventionally processed superalloys as represented by Inconel 718. Cyclic behavior was evaluated at 650 C both under continuously cycling and a fifteen minute tensile hold time cycle to simulate engine conditions. Analysis of the test data were made to evaluate the strain range partitioning and energy exhaustion concepts for predicting hold time effects on low cycle fatigue.

  7. Analysis Of The Interface Behavior Under Cyclic Loading

    SciTech Connect

    Mortara, Giuseppe

    2008-07-08

    This paper analyses the frictional behavior between soil and structures under cyclic loading conditions. In particular, the attention is focused on the stress degradation occurring in sand-metal interface tests and on the relevant parameters playing a role in such kind of tests. Also, the paper reports the analysis of the experimental data from the constitutive point of view with a two-surface elastoplastic model.

  8. Strain gradient plasticity modeling of the cyclic behavior of laminate microstructures

    NASA Astrophysics Data System (ADS)

    Wulfinghoff, Stephan; Forest, Samuel; Böhlke, Thomas

    2015-06-01

    Two recently proposed Helmholtz free energy potentials including the full dislocation density tensor as an argument within the framework of strain gradient plasticity are used to predict the cyclic elastoplastic response of periodic laminate microstructures. First, a rank-one defect energy is considered, allowing for a size-effect on the overall yield strength of micro-heterogeneous materials. As a second candidate, a logarithmic defect energy is investigated, which is motivated by the work of Groma et al. (2003). The properties of the back-stress arising from both energies are investigated in the case of a laminate microstructure for which analytical as well as numerical solutions are derived. In this context, a new regularization technique for the numerical treatment of the rank-one potential is presented based on an incremental potential involving Lagrange multipliers. The results illustrate the effect of the two energies on the macroscopic size-dependent stress-strain response in monotonic and cyclic shear loading, as well as the arising pile-up distributions. Under cyclic loading, stress-strain hysteresis loops with inflections are predicted by both models. The logarithmic potential is shown to provide a continuum formulation of Asaro's type III kinematic hardening model. Experimental evidence in the literature of such loops with inflections in two-phased FFC alloys is provided, showing that the proposed strain gradient models reflect the occurrence of reversible plasticity phenomena under reverse loading.

  9. BILAM: a composite laminate failure-analysis code using bilinear stress-strain approximations

    SciTech Connect

    McLaughlin, P.V. Jr.; Dasgupta, A.; Chun, Y.W.

    1980-10-01

    The BILAM code which uses constant strain laminate analysis to generate in-plane load/deformation or stress/strain history of composite laminates to the point of laminate failure is described. The program uses bilinear stress-strain curves to model layer stress-strain behavior. Composite laminates are used for flywheels. The use of this computer code will help to develop data on the behavior of fiber composite materials which can be used by flywheel designers. In this program the stress-strain curves are modelled by assuming linear response in axial tension while using bilinear approximations (2 linear segments) for stress-strain response to axial compressive, transverse tensile, transverse compressive and axial shear loadings. It should be noted that the program attempts to empirically simulate the effects of the phenomena which cause nonlinear stress-strain behavior, instead of mathematically modelling the micromechanics involved. This code, therefore, performs a bilinear laminate analysis, and, in conjunction with several user-defined failure interaction criteria, is designed to provide sequential information on all layer failures up to and including the first fiber failure. The modus operandi is described. Code BILAM can be used to: predict the load-deformation/stress-strain behavior of a composite laminate subjected to a given combination of in-plane loads, and make analytical predictions of laminate strength.

  10. Silicon ribbon stress-strain activities

    NASA Technical Reports Server (NTRS)

    Wada, B. K.; Shih, C. F.; Kuo, C. P.; Phillips, W. M.

    1984-01-01

    The finite element method is used to investigate stress/strain in silicon ribbon. Failure considerations such as residual stress, buckling material non-linearity and creep are discussed. Temperature profiles are presented.

  11. Cyclic AMP Regulates Social Behavior in African Trypanosomes

    PubMed Central

    Oberholzer, Michael; Saada, Edwin A.

    2015-01-01

    ABSTRACT The protozoan parasite Trypanosoma brucei engages in surface-induced social behavior, termed social motility, characterized by single cells assembling into multicellular groups that coordinate their movements in response to extracellular signals. Social motility requires sensing and responding to extracellular signals, but the underlying mechanisms are unknown. Here we report that T. brucei social motility depends on cyclic AMP (cAMP) signaling systems in the parasite’s flagellum (synonymous with cilium). Pharmacological inhibition of cAMP-specific phosphodiesterase (PDE) completely blocks social motility without impacting the viability or motility of individual cells. Using a fluorescence resonance energy transfer (FRET)-based sensor to monitor cAMP dynamics in live cells, we demonstrate that this block in social motility correlates with an increase in intracellular cAMP levels. RNA interference (RNAi) knockdown of the flagellar PDEB1 phenocopies pharmacological PDE inhibition, demonstrating that PDEB1 is required for social motility. Using parasites expressing distinct fluorescent proteins to monitor individuals in a genetically heterogeneous community, we found that the social motility defect of PDEB1 knockdowns is complemented by wild-type parasites in trans. Therefore, PDEB1 knockdown cells are competent for social motility but appear to lack a necessary factor that can be provided by wild-type cells. The combined data demonstrate that the role of cyclic nucleotides in regulating microbial social behavior extends to African trypanosomes and provide an example of transcomplementation in parasitic protozoa. PMID:25922395

  12. Fuzzy operators and cyclic behavior in formal neuronal networks

    NASA Technical Reports Server (NTRS)

    Labos, E.; Holden, A. V.; Laczko, J.; Orzo, L.; Labos, A. S.

    1992-01-01

    Formal neuronal networks (FNN), which are comprised of threshold gates, make use of the unit step function. It is regarded as a degenerated distribution function (DDF) and will be referred to here as a non-fuzzy threshold operator (nFTO). Special networks of this kind generating long cycles of states are modified by introduction of fuzzy threshold operators (FTO), i.e., non-degenerated distribution functions (nDDF). The cyclic behavior of the new nets is compared with the original ones. The interconnection matrix and threshold values are not modified. It is concluded that the original long cycles change the fixed points and short cycles, and as the computer simulations demonstrate, the aperiodic motion that is associated with chaotic behavior appears. The emergence of the above changes depend on the steepness of the threshold operators.

  13. Coevolutionary dynamics with clustering behaviors on cyclic competition

    NASA Astrophysics Data System (ADS)

    Dong, Linrong; Yang, Guangcan

    2012-05-01

    We propose a dynamic model for describing clustering behaviors on a cyclic game, in which the same species form a cluster to compete. The rates of consuming the prey depend not only on the individual competing ability v, but also on the two interacting cluster’s sizes. The fragmentation and coagulation rates of the clusters are related to the cohesive strength among the individuals. A new parameter u is introduced to indicate the uniting degree. We find that the probability distribution of the clustering sizes is almost a power law in a large regime specified by the two parameters, which reflects the scale-free behavior in complex systems. In addition, the exponential magnitudes are mostly in the range of real social systems. Our simulation shows that clustering promotes biodiversity. At steady state, the amounts about the three species evolve tempestuously with asymmetric period; the aggregations about big size’s clusters to compete are obvious and on-off intermittence.

  14. Relationship between fatigue life in the creep-fatigue region and stress-strain response

    NASA Technical Reports Server (NTRS)

    Berkovits, A.; Nadiv, S.

    1988-01-01

    On the basis of mechanical tests and metallographic studies, strainrange partitioned lives were predicted by introducing stress-strain materials parameters into the Universal Slopes Equation. This was the result of correlating fatigue damage mechanisms and deformation mechanisms operating at elevated temperatures on the basis of observed mechanical and microstructural behavior. Correlation between high temperature fatigue and stress strain properties for nickel base superalloys and stainless steel substantiated the method. Parameters which must be evaluated for PP- and CC- life are the maximum stress achievable under entirely plastic and creep conditions respectively and corresponding inelastic strains, and the two more pairs of stress strain parameters must be ascertained.

  15. Cyclic Behavior of the Sun's Small-scale Magnetic Elements

    NASA Astrophysics Data System (ADS)

    Wang, Jingxiu; Jin, C.

    2011-05-01

    With the unique database from the Michelson Doppler Imager on board the Solar and Heliospheric Observatory in an interval embodying solar cycle 23, the cyclic behavior of solar small-scale magnetic elements is studied. More than 13 million small-scale magnetic elements are selected, and their cyclic behavior is analyzed in comparison with the changes of sunspot numbers and active region magnetic flux. From the small to large end of the flux spectrum, the variations of numbers and total flux of the network elements show no correlation, anti-correlation, and correlation with sunspots, respectively. The anti-correlated elements, covering the flux of (2.9-32.0)×1018 Mx, occupy 77.2% of the total element number and 37.4% of the quiet-Sun flux. Unlike the correlated elements, which follow the sunspot butterfly diagram, the anti-correlated elements cover very broad range of latitude and do not show clear latitude migration during the cycle. These results provide insight for understanding the anti-correlations of small-scale magnetic activity during the solar cycle. The quiet regions dominate the Sun's magnetic flux for about 8 years in the 12.25 year duration of cycle 23, their monthly average magnetic flux is 1.12 times that of the active regions in the cycle. For the 28 continuous months from July 2007 to October 2009, the six-month running average ratio of quiet region flux to that of the total Sun is larger than 90.0%, which characterizes the gram minima in cycles 23 and 24 very well.

  16. Silicon stress/strain activities at JPL

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1986-01-01

    In-house Jet Propulsion Laboratory (JPL) work is described for silicon stress/strain, including the study of fracture mechanics, and on the high-temperature test program in which the low-strain response of silicon sheet materials above 1000 C is being measured and high temperature material property data are being determined.

  17. Structures and Surface Properties of "Cyclic" Polyoxyethylene Alkyl Ethers: Unusual Behavior of Cyclic Surfactants in Water.

    PubMed

    Hirose, Yuki; Taira, Toshiaki; Sakai, Kenichi; Sakai, Hideki; Endo, Akira; Imura, Tomohiro

    2016-08-23

    The cyclization of amphiphiles has emerged as an attractive strategy for inducing remarkable properties in these materials without changing their chemical composition. In this study, we successfully synthesized three cyclic polyoxyethylene dodecyl ethers (c-POEC12's) with different ring sizes and explored the effects of their topology on their surface and self-assembly properties related to their function, comparing them with those of their linear counterparts (l-POEC12's). The surface activity of the c-POEC12's remained almost constant despite the change in their hydrophobic and hydrophilic balance (HLB) value, while that of the l-POEC12's decreased with an increase in the HLB value as general surfactants. In contrast to the normal micelles seen in the case of the l-POEC12's (3.4-9.7 nm), the cyclization of the POEC12's resulted in the formation of large spherical structures 72.8-256.8 nm in size. It also led to a dramatic decrease of 28 °C in the cloud point temperature. Furthermore, the cyclization of the POEC12's markedly suppressed the rate of protease hydrolysis caused by the surfactants. The initial rate of reduction of a detergent enzyme from Bacillus licheniformis was increased by more than 40% in the case of c-POE600C12 and c-POE1000C12, even though they exhibited surface activities almost equal to or higher than those of their linear counterparts. These results suggest that cyclization induces unusual aqueous behaviors in POEC12, making the surfactant milder with respect to detergent enzymes while ensuring it exhibits increased surface activity. PMID:27462805

  18. Cyclic behavior of turbine disk alloys at 650 C

    NASA Technical Reports Server (NTRS)

    Cowles, B. A.; Sims, D. L.; Warren, J. R.; Miner, R. V., Jr.

    1980-01-01

    Five gas turbine disk alloys representing a range of strengths and processing methods were tested for resistance to both cyclic crack initiation and propagation at 650 C using a 0.33 Hz fatigue cycle and a cycle incorporating a 900 s tensile dwell. At the low strain ranges pertinent to disks, resistance to crack initiation increased with increasing tensile yield strength among the alloys, though the advantage was somewhat smaller for the creep fatigue cycle. Cyclic crack growth resistance, however, decreased with increasing strength and very markedly so for the dwell cycle.

  19. Modeling of viscoplastic cyclic loading behavior of polymers

    NASA Astrophysics Data System (ADS)

    Spathis, G.; Kontou, E.

    2015-08-01

    A new theoretical approach, analyzed in previous works, is employed for the description of the nonlinear viscoelastic/viscoplastic response of high density polyethylene under tensile cyclic loading, experimentally studied elsewhere. The proposed analysis, developed for a 3-D problem, is applied for a uniaxial cyclic deformation, in a strain-controlled program, where tensile loading up to maximum strain is followed by unloading to zero stress. This procedure is repeated for ten cycles. The same model is also applied for the simulation of a stress-controlled program, where cyclic loading takes place between a and engineering stress. The hysteresis loops of both programs could be adequately captured, with a number of model parameters, related to both, nonlinear viscoelasticity and viscoplasticity. The simulated ratcheting strain as well as its evolution with number of cycles is a very good approximation of the experimental one. A systematic study of the values of the adjustable parameters has been performed in order to monitor the effect of every specific internal variable, responsible for either the nonlinear viscoelastic or viscoplastic path in the simulations. It was found that in the proposed analysis a rather low number of model parameters are required, compared to the works existing in the literature.

  20. Modeling of stress-strain dependences for Berea sandstone under quasistatic loading

    NASA Astrophysics Data System (ADS)

    Vakhnenko, Vyacheslav O.; Vakhnenko, Oleksiy O.; Tencate, James A.; Shankland, Thomas J.

    2007-11-01

    In this work, a phenomenological model to describe the complex stress-strain properties of a sandstone sample under slow loading is presented. We consider a combination of three methods to treat the elastic and nonlinear behavior observed in stress cycling experiments. The mechanisms to treat interior equilibration processes in sandstone are termed the standard solid relaxation mechanism, the sticky-spring mechanism, and the permanent plastic deformation mechanism. With a small number of parameters, the overall model displays both qualitatively and quantitatively the principal experimental observations of the stress-strain trajectories for Berea sandstone, in particular, the details of end-point memory under quasistatic loading.

  1. Relationship between fatigue life in the creep-fatigue region and stress-strain response

    NASA Technical Reports Server (NTRS)

    Berkovits, A.; Nadiv, S.

    1988-01-01

    On the basis of mechanical tests and metallographic studies, strainrange partitioned lives were predicted by introducing stress-strain materials parameters into the Universal Slopes Equation. This was the result of correlating fatigue damage mechanisms and deformation mechanisms operating at elevated temperatures on the basis of observed mechanical and microstructural behavior. Correlation between high temperature fatigue and stress strain properties for nickel base superalloys and stainless steel substantiated the method. Parameters which must be evaluated for PP- and CC- life are the maximum stress achievable under entirely plastic and creep conditions respectively and corresponding inelastic strains, and the elastic modulus. For plasticity/creep interaction conditions (PC and CP) two more pairs of stress strain parameters must be ascertained.

  2. Origins of asymmetric stress-strain response in phase transformations

    SciTech Connect

    Sehitoglu, H.; Gall, K.

    1997-12-31

    It has been determined that the transformation stress-strain behavior of CuZnAl and NiTi shape memory alloys is dependent on the applied stress state. The uniaxial compressive stress necessary to macroscopically trigger the transformation is approximately 34% (CuZnAl) and 26% (NiTi) larger than the required uniaxial tensile stress. For three dimensional stress states, the response of either alloy system is dependent on the directions of the dominant principal stresses along with the hydrostatic stress component of the stress state. The stress state effects are dominated by the favored growth and nucleation of more martensite plates in tension versus compression. The effect of different hydrostatic pressure levels between stress states on martensite plates volume change is considered small.

  3. Cyclic Plasticity Constitutive Model for Uniaxial Ratcheting Behavior of AZ31B Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Liu, Zheng-Hua; Chen, Xiao-Min; Long, Zhi-Li

    2015-05-01

    Investigating the ratcheting behavior of magnesium alloys is significant for the structure's reliable design. The uniaxial ratcheting behavior of AZ31B magnesium alloy is studied by the asymmetric cyclic stress-controlled experiments at room temperature. A modified kinematic hardening model is established to describe the uniaxial ratcheting behavior of the studied alloy. In the modified model, the material parameter m i is improved as an exponential function of the maximum equivalent stress. The modified model can be used to predict the ratcheting strain evolution of the studied alloy under the single-step and multi-step asymmetric stress-controlled cyclic loadings. Additionally, due to the significant effect of twinning on the plastic deformation of magnesium alloy, the relationship between the material parameter m i and the linear density of twins is discussed. It is found that there is a linear relationship between the material parameter m i and the linear density of twins induced by the cyclic loadings.

  4. Stress-strain relationship of Ca(OH)2-activated Hwangtoh concrete.

    PubMed

    Yang, Keun-Hyeok; Mun, Ju-Hyun; Hwang, Hey-Zoo

    2014-01-01

    This study examined the stress-strain behavior of 10 calcium hydroxide (Ca(OH)2)-activated Hwangtoh concrete mixes. The volumetric ratio of the coarse aggregate (V agg) and the water-to-binder (W/B) ratio were selected as the main test variables. Two W/B ratios (25% and 40%) were used and the value of V agg varied between 0% and 40.0%, and 0% and 46.5% for W/B ratios of 25% and 40%, respectively. The test results demonstrated that the slope of the ascending branch of the stress-strain curve of Ca(OH)2-activated Hwangtoh concrete was smaller, and it displayed a steeper drop in stress in the descending branch, compared with those of ordinary Portland cement (OPC) concrete with the same compressive strength. This trend was more pronounced with the increase in the W/B ratio and decrease in V agg. Based on the experimental observations, a simple and rational stress-strain model was established mathematically. Furthermore, the modulus of elasticity and strain at peak stress of the Ca(OH)2-activated Hwangtoh concrete were formulated as a function of its compressive strength and V agg. The proposed stress-strain model predicted the actual behavior accurately, whereas the previous models formulated using OPC concrete data were limited in their applicability to Ca(OH)2-activated Hwangtoh concrete. PMID:25147869

  5. Stress-Strain Relationship of Ca(OH)2-Activated Hwangtoh Concrete

    PubMed Central

    Mun, Ju-Hyun; Hwang, Hey-Zoo

    2014-01-01

    This study examined the stress-strain behavior of 10 calcium hydroxide (Ca(OH)2)-activated Hwangtoh concrete mixes. The volumetric ratio of the coarse aggregate (Vagg) and the water-to-binder (W/B) ratio were selected as the main test variables. Two W/B ratios (25% and 40%) were used and the value of Vagg varied between 0% and 40.0%, and 0% and 46.5% for W/B ratios of 25% and 40%, respectively. The test results demonstrated that the slope of the ascending branch of the stress-strain curve of Ca(OH)2-activated Hwangtoh concrete was smaller, and it displayed a steeper drop in stress in the descending branch, compared with those of ordinary Portland cement (OPC) concrete with the same compressive strength. This trend was more pronounced with the increase in the W/B ratio and decrease in Vagg. Based on the experimental observations, a simple and rational stress-strain model was established mathematically. Furthermore, the modulus of elasticity and strain at peak stress of the Ca(OH)2-activated Hwangtoh concrete were formulated as a function of its compressive strength and Vagg. The proposed stress-strain model predicted the actual behavior accurately, whereas the previous models formulated using OPC concrete data were limited in their applicability to Ca(OH)2-activated Hwangtoh concrete. PMID:25147869

  6. Mechanical behavior of adhesive joints subjected to cyclic thermal loading

    SciTech Connect

    Humfeld, G.R.; Dillard, D.A.

    1996-12-31

    Stresses induced in bimaterial systems due to changing temperature has been the subject of much study since the publication of Timoshenko`s classic paper of 1925. An adhesive bond is one example of a bimaterial system in which thermal stress can play an important role. However, adhesives are viscoelastic in nature, and their mechanical behavior is dictated by the temperature- and time-dependence of their material properties; analytical solutions for elastic materials do not adequately describe their true behavior. The effect of the adhesive`s viscoelasticity on stress in an adhesive bond subjected to changing temperature is therefore of compelling interest and importance for the adhesives industry. The objective of this research is to develop an understanding of the viscoelastic effect in an adhesive bond subjected to cycling temperature, particularly when the temperature range spans a transition temperature of the adhesive. Numerical modeling of a simplified geometry was first undertaken to isolate the influence of viscoelasticity on the stress state from any particular specimen geometry effect. Finite element modeling was then undertaken to examine the mechanical behavior of the adhesive in a layered geometry. Both solution methods predicted development of residual tensile stresses in the adhesive. For the layered geometry this was found to correspond with residual tensile peel stresses, which are thought to be the cause of interfacial debonding.

  7. Using dynamic mode decomposition to extract cyclic behavior in the stock market

    NASA Astrophysics Data System (ADS)

    Hua, Jia-Chen; Roy, Sukesh; McCauley, Joseph L.; Gunaratne, Gemunu H.

    2016-04-01

    The presence of cyclic expansions and contractions in the economy has been known for over a century. The work reported here searches for similar cyclic behavior in stock valuations. The variations are subtle and can only be extracted through analysis of price variations of a large number of stocks. Koopman mode analysis is a natural approach to establish such collective oscillatory behavior. The difficulty is that even non-cyclic and stochastic constituents of a finite data set may be interpreted as a sum of periodic motions. However, deconvolution of these irregular dynamical facets may be expected to be non-robust, i.e., to depend on specific data set. We propose an approach to differentiate robust and non-robust features in a time series; it is based on identifying robust features with reproducible Koopman modes, i.e., those that persist between distinct sub-groupings of the data. Our analysis of stock data discovered four reproducible modes, one of which has period close to the number of trading days/year. To the best of our knowledge these cycles were not reported previously. It is particularly interesting that the cyclic behaviors persisted through the great recession even though phase relationships between stocks within the modes evolved in the intervening period.

  8. Modeling and cyclic behavior of segmental bridge column connected with shape memory alloy bars

    NASA Astrophysics Data System (ADS)

    Roh, Hwasung; Reinhorn, Andrei M.; Lee, Jong Seh

    2012-09-01

    This paper examines the quasi-static cyclic behavior, lateral strength and equivalent damping capacities of a system of post-tensioned segmental bridge columns tied with large diameter martensitic Shape Memory Alloy (SMA) link-bars. Moment-curvature constitutive relationships are formulated and analysis tools are developed for the PT column, including a modified four-spring model prepared for the SMA bars. The suggested system is exemplified using a column with an aspect ratio of 7.5 and twelve 36.5 mm diameter NiTi martensitic SMA bars. A post-tensioning force of 40% to 60% of the tendon yield strength is applied in order to obtain a self re-centering system, considering the residual stress of the martensitic SMA bars. The cyclic response results show that the lateral strength remains consistently around 10% of the total vertical load and the equivalent viscous damping ratios reach 10%-12% of critical. When large diameter NiTi superelastic SMA bars are incorporated into the column system, the cyclic response varies substantially. The creep behavior of the superelastic SMA bar is accounted for since it affects the re-centering capability of the column. Two examples are presented to emphasize the modeling sensitivities for these special bars and quantify their cyclic behavior effects within the column assembly.

  9. Tensile and Microindentation Stress-Strain Curves of Al-6061

    DOE Data Explorer

    Weaver, Jordan S [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Integrated Nanotechnologies (CINT); Khosravani, Ali [Georgia Inst. of Technology, Atlanta, GA (United States); Castillo, Andrew [Georgia Inst. of Technology, Atlanta, GA (United States); Kalidind, Surya R [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-07-13

    Recent spherical microindentation stress-strain protocols were developed and validated on Al-6061 (DOI: 10.1186/s40192-016-0054-3). The scaling factor between the uniaxial yield strength and the indentation yield strength was determined to be about 1.9. The microindentation stress-strain protocols were then applied to a microstructurally graded sample in an effort to extract high throughput process-property relationships. The tensile and microindentation force-displacement and stress-strain data are presented in this data set.

  10. Cyberbullying behavior and adolescents' use of media with antisocial content: a cyclic process model.

    PubMed

    den Hamer, Anouk; Konijn, Elly A; Keijer, Micha G

    2014-02-01

    The present study examined the role of media use in adolescents' cyberbullying behavior. Following previous research, we propose a Cyclic Process Model of face-to-face victimization and cyberbullying through two mediating processes of anger/frustration and antisocial media content. This model was tested utilizing a cross-sectional design with adolescent participants (N=892). Exposure to antisocial media content was measured with a newly developed content-based scale (i.e., the C-ME), showing good psychometric qualities. Results of structural equation modeling showed that adolescents' exposure to antisocial media content was significantly associated with cyberbullying behavior, especially in adolescents who experienced anger and frustration due to face-to-face victimization. Goodness of fit indices demonstrated a good fit of the theoretical model to the data and indicated that exposure to antisocial media content acts as an amplifier in a cyclic process of victimization-related anger and cyberbullying behavior. PMID:24015985

  11. Monotonic and cyclic bond behavior of confined concrete using NiTiNb SMA wires

    NASA Astrophysics Data System (ADS)

    Choi, Eunsoo; Chung, Young-Soo; Kim, Yeon-Wook; Kim, Joo-Woo

    2011-07-01

    This study conducts bond tests of reinforced concrete confined by shape memory alloy (SMA) wires which provide active and passive confinement of concrete. This study uses NiTiNb SMA which usually shows wide temperature hysteresis; this is a good advantage for the application of shape memory effects. The aims of this study are to investigate the behavior of SMA wire under residual stress and the performance of SMA wire jackets in improving bond behavior through monotonic-loading tests. This study also conducts cyclic bond tests and analyzes cyclic bond behavior. The use of SMA wire jackets transfers the bond failure from splitting to pull-out mode and satisfactorily increases bond strength and ductile behavior. The active confinement provided by the SMA plays a major role in providing external pressure on the concrete because the developed passive confinement is much smaller than the active confinement. For cyclic behavior, slip and circumferential strain are recovered more with larger bond stress. This recovery of slip and circumferential strain are mainly due to the external pressure of the SMA wires since cracked concrete cannot provide any elastic recovery.

  12. Cyclic Deformation of Advanced High-Strength Steels: Mechanical Behavior and Microstructural Analysis

    NASA Astrophysics Data System (ADS)

    Hilditch, Timothy B.; Timokhina, Ilana B.; Robertson, Leigh T.; Pereloma, Elena V.; Hodgson, Peter D.

    2009-02-01

    The fatigue properties of multiphase steels are an important consideration in the automotive industry. The different microstructural phases present in these steels can influence the strain life and cyclic stabilized strength of the material due to the way in which these phases accommodate the applied cyclic strain. Fully reversed strain-controlled low-cycle fatigue tests have been used to determine the mechanical fatigue performance of a dual-phase (DP) 590 and transformation-induced plasticity (TRIP) 780 steel, with transmission electron microscopy (TEM) used to examine the deformed microstructures. It is shown that the higher strain life and cyclic stabilized strength of the TRIP steel can be attributed to an increased yield strength. Despite the presence of significant levels of retained austenite in the TRIP steel, both steels exhibited similar cyclic softening behavior at a range of strain amplitudes due to comparable ferrite volume fractions and yielding characteristics. Both steels formed low-energy dislocation structures in the ferrite during cyclic straining.

  13. Self-crack-healing behavior under cyclic stress of silicon nitride composite at elevated temperature

    NASA Astrophysics Data System (ADS)

    Takahashi, Koji; Yoshida, Shoko; Ando, Kotoji; Saito, Shinji

    2004-02-01

    Si3N4/SiC composite ceramics were hot-pressed to investigate the crack-healing behavior under stress. Semi-elliptical surface cracks of 0.1 mm in surface length were made on each specimen. The pre-cracked specimens were crack-healed under cyclic or constant bending stress, and the resultant bending strength and cyclic fatigue strength were studied. The threshold stress for crack-healing was investigated at healing temperatures of 1000° and 1200°C. The cyclic fatigue strengths of crack-healed specimens were also investigated at healing temperatures of 900° and 1000°C. The main conclusions are as follows: (1) The threshold cyclic and constant stresses for crack-healing, below which pre-cracked specimens recovered their bending strength, were 300 MPa which was 75% of the bending strength of the pre-cracked specimens, and (2) The crack-healed specimens exhibited quite high cyclic fatigue strength at crack-healing temperatures of 900° and 1000°C.

  14. Axial cyclic behavior of the bone-screw interface.

    PubMed

    Inceoğlu, Serkan; Ehlert, Mike; Akbay, Atilla; McLain, Robert F

    2006-11-01

    Screw fixation strength is investigated by using a pullout test. Despite many screw pullout studies, the effects of loading rate on the pullout behavior of pedicle screws are not known. The objective of this study was to assess the effects of loading rate on the pullout stiffness and strength of pedicle screws. Sixty pedicle screws were inserted in foam blocks and pulled out at four different rates: 0.1, 1, 5 and 50 mm/min. Twenty of these 60 screws were cycled non-destructively at four different rates sequentially, i.e., 0.1, 1, 5 and 50 mm/min prior to pullout. Ten additional pedicle screws were inserted in five calf lumbar vertebrae, cycled as in foam group, and pulled out at a rate of either 0.1 or 50 mm/min. The results showed that the stiffness was higher at all rates compared to 0.1 mm/min in foam model but in bone model only 1 and 5 mm/min groups were higher compared to 0.1 mm/min. The pullout strength in 50 mm/min group was higher than that in 0.1 mm/min group in both foam and bone model. The results suggested that loading rate influenced the mechanics of the bone-screw interface. Therefore, a fair comparison between the pullout studies can be achieved under same loading rate conditions. Moreover, the cycling of the pedicle screws in axial direction within a pre-yield region showed an unusual hysteresis curve. Further studies are needed for a better understanding of the mechanics of the screw-bone interface. PMID:16458568

  15. On intrinsic time measure in the modeling of cyclic behavior of a Nitinol cubic block

    NASA Astrophysics Data System (ADS)

    Chiroiu, Veturia; Florinel Ionescu, Marius; Sireteanu, Tudor; Ioan, Rodica; Munteanu, Ligia

    2015-03-01

    In this paper, the cyclic behavior of a superelastic-plastic nitinol cubic block is described by using the Bouc-Wen model coupled to an intrinsic time measure other than clock time, which governs the behavior of the materials. As a consequence, the thermodynamic admissibility of the Bouc-Wen model is provided by the endochronic theory of plasticity. The role of the intrinsic time measure is described by capturing the stiffness and strength degradation and the opposite phenomena. Such behavior is due to the permanent-strain addition of residual martensite and alterations in the properties of the texture during phase transformation.

  16. Monotonic and cyclic deformation behavior of a SiCw/6061 Al composite at elevated temperature

    SciTech Connect

    Wang, L.; Sun, Z.M.; Kobayashi, T.

    1996-10-15

    With the advent of new processing techniques, the technological interest and research activity in the development of metal-matrix composites have increased rapidly. Particularly, discontinuously reinforced composites, such as whisker and particle reinforced aluminum-based metal-matrix composites, exhibit attractive advantages, such as high specific modulus, high specific strength, good fatigue resistance and easy fabrication. They have emerged as a new class of structural materials for ambient and elevated temperature applications in aerospace and automobile industries. Therefore, great attention has been paid on their mechanical properties. However, a limited number of investigations on the cyclic deformation behavior have been reported, and little research has been done in this aspect at elevated temperature. The present study is based on a previous study at room temperature to investigate the monotonic and cyclic deformation behavior of a SiC whisker reinforced 6061 Al alloy composite and its unreinforced counterpart at elevated temperature.

  17. Long-Term Cyclic Oxidation Behavior of Wrought Commercial Alloys at High Temperatures

    SciTech Connect

    Bingtao Li

    2003-08-05

    The oxidation resistance of a high-temperature alloy is dependent upon sustaining the formation of a protective scale, which is strongly related to the alloying composition and the oxidation condition. The protective oxide scale only provides a finite period of oxidation resistance owing to its eventual breakdown, which is especially accelerated under thermal cycling conditions. This current study focuses on the long-term cyclic oxidation behavior of a number of commercial wrought alloys. The alloys studied were Fe- and Ni-based, containing different levels of minor elements, such as Si, Al, Mn, and Ti. Oxidation testing was conducted at 1000 and 1100 C in still air under both isothermal and thermal cycling conditions (1-day and 7-days). The specific aspects studied were the oxidation behavior of chromia-forming alloys that are used extensively in industry. The current study analyzed the effects of alloying elements, especially the effect of minor element Si, on cyclic oxidation resistance. The behavior of oxide scale growth, scale spallation, subsurface changes, and chromium interdiffusion in the alloy were analyzed in detail. A novel model was developed in the current study to predict the life-time during cyclic oxidation by simulating oxidation kinetics and chromium interdiffusion in the subsurface of chromia-forming alloys.

  18. A model of cyclic transcriptomic behavior in the cyanobacterium Cyanothece sp. ATCC 51142.

    PubMed

    McDermott, Jason E; Oehmen, Christopher S; McCue, Lee Ann; Hill, Eric; Choi, Daniel M; Stöckel, Jana; Liberton, Michelle; Pakrasi, Himadri B; Sherman, Louis A

    2011-08-01

    Systems biology attempts to reconcile large amounts of disparate data with existing knowledge to provide models of functioning biological systems. The cyanobacterium Cyanothece sp. ATCC 51142 is an excellent candidate for such systems biology studies because: (i) it displays tight functional regulation between photosynthesis and nitrogen fixation; (ii) it has robust cyclic patterns at the genetic, protein and metabolomic levels; and (iii) it has potential applications for bioenergy production and carbon sequestration. We have represented the transcriptomic data from Cyanothece 51142 under diurnal light/dark cycles as a high-level functional abstraction and describe development of a predictive in silico model of diurnal and circadian behavior in terms of regulatory and metabolic processes in this organism. We show that incorporating network topology into the model improves performance in terms of our ability to explain the behavior of the system under new conditions. The model presented robustly describes transcriptomic behavior of Cyanothece 51142 under different cyclic and non-cyclic growth conditions, and represents a significant advance in the understanding of gene regulation in this important organism. PMID:21698331

  19. Behavior of prestressed concrete subjected to low temperatures and cyclic loading

    SciTech Connect

    Berner, D.E.

    1984-01-01

    Concrete has exhibited excellent behavior in cryogenic containment vessels for several decades under essentially static conditions. Tests were conducted to determine the response of prestressed lightweight concrete subjected to high-intensity cyclic loading and simultaneous cryogenic thermal shock, simulating the relatively dynamic conditions encountered offshore or in seismic areas. Lightweight concrete has several attractive properties for cryogenic service including: (1) very low permeability, (2) good strain capacity, (3) relatively low thermal conductivity, and (4) a low modulus of elasticity. Experimental results indicated that the mechanical properties of plain lightweight concrete significantly increase with moisture content at low temperatures, while cyclic loading fatigue effects are reduced at low temperatures. Also, tests on uniaxially and on biaxially prestressed lightweight concrete both indicate that the test specimens performed well under severe cyclic loading and cryogenic thermal shock with only moderate reduction in flexural stiffness. Supplementary tests conducted in this study indicate that conventionally reinforced concrete degrades significantly faster than prestressed concrete when subjected to cyclic loading and thermal shock.

  20. Furnace Cyclic Oxidation Behavior of Multi-Component Low Conductivity Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Nesbitt, James A.; Barrett, Charles A.; McCue, Terry R.; Miller, Robert A.

    2004-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to further increase engine operating temperatures and reduce cooling, thus helping achieve future engine low emission, high efficiency and improved reliability goals. Advanced multi-component zirconia-based thermal barrier coatings are being developed using an oxide defect clustering design approach to achieve the required coating low thermal conductivity and high temperature stability. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of the candidate coating materials was conducted using conventional furnace cyclic oxidation tests. In this paper, furnace cyclic oxidation behavior of plasma-sprayed zirconia-based defect cluster thermal barrier coatings was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied using scanning electron microscopy (SEM) combined with X-ray diffraction (XRD) phase analysis after the furnace tests. The coating cyclic lifetime is also discussed in relation to coating processing, phase structures, dopant concentration, and other thermo-physical properties.

  1. Analysis and Test of Deep Flaws in Thin Sheets of Aluminum and Titanium. Volume 2: Crack Opening Displacement and Stress-Strain Data

    NASA Technical Reports Server (NTRS)

    Finger, R. W.

    1978-01-01

    Static fracture tests were performed on surface flawed specimens of aluminum and titanium alloys. A simulated proof overload cycle was applied prior to all of the cyclic tests. Variables included in each test series were flaw shapes and thickness. Additionally, test temperature was a variable for the aluminum test series. The crack opening displacement and stress-strain data obtained are presented.

  2. Stress-strain relationships of LixSn alloys for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Ma, Zengsheng; Jiang, Wenjuan; Zhang, Panpan; Wang, Yan; Pan, Yong; Lu, Chunsheng

    2016-04-01

    Tin with a theoretical capacity of 993 mAh g-1 is considered as a promising anode material for lithium ion batteries (LIBs). However, under the intercalated-Li+ state, large volume deformation in tin active materials may result in cracks and flakes that seriously affect the cycle stability of LIBs. In this paper, the indentation load-displacement behaviors of LixSn (0 ≤ x ≤ 4.4) alloys with various charge states are tested to determine their hardness, elastic modulus, yield strength and hardening exponent. In conjunction with finite element modeling and dimensional analysis, the stress-strain relationships of LixSn alloys are obtained by using a power-law hardening model. Furthermore, the evolution of stress-strain relationships is investigated as the change of charge states.

  3. COSP for Windows: Strategies for Rapid Analyses of Cyclic Oxidation Behavior

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Auping, Judith V.

    2002-01-01

    COSP is a publicly available computer program that models the cyclic oxidation weight gain and spallation process. Inputs to the model include the selection of an oxidation growth law and a spalling geometry, plus oxide phase, growth rate, spall constant, and cycle duration parameters. Output includes weight change, the amounts of retained and spalled oxide, the total oxygen and metal consumed, and the terminal rates of weight loss and metal consumption. The present version is Windows based and can accordingly be operated conveniently while other applications remain open for importing experimental weight change data, storing model output data, or plotting model curves. Point-and-click operating features include multiple drop-down menus for input parameters, data importing, and quick, on-screen plots showing one selection of the six output parameters for up to 10 models. A run summary text lists various characteristic parameters that are helpful in describing cyclic behavior, such as the maximum weight change, the number of cycles to reach the maximum weight gain or zero weight change, the ratio of these, and the final rate of weight loss. The program includes save and print options as well as a help file. Families of model curves readily show the sensitivity to various input parameters. The cyclic behaviors of nickel aluminide (NiAl) and a complex superalloy are shown to be properly fitted by model curves. However, caution is always advised regarding the uniqueness claimed for any specific set of input parameters,

  4. Influence of Cyclic Straining on Fatigue, Deformation, and Fracture Behavior of High-Strength Alloy Steel

    NASA Astrophysics Data System (ADS)

    Manigandan, K.; Srivatsan, T. S.; Vasudevan, V. K.; Tammana, D.; Poorganji, B.

    2016-01-01

    In this paper, the results of a study on microstructural influences on mechanical behavior of the high-strength alloy steel Tenax™ 310 are presented and discussed. Under the influence of fully reversed strain cycling, the stress response of this alloy steel revealed softening from the onset of deformation. Cyclic strain resistance exhibited a linear trend for the variation of both elastic strain amplitude with reversals-to-failure, and plastic strain amplitude with reversals-to-failure. Fracture morphology was essentially the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, this high-strength alloy steel revealed fracture to be mixed-mode with features reminiscent of "locally" ductile and brittle mechanisms. The macroscopic mechanisms governing stress response at the fine microscopic level, resultant fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  5. Cyclic Fiber Push-In Test Monitors Evolution of Interfacial Behavior in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.

    1998-01-01

    SiC fiber-reinforced ceramic matrix composites are being developed for high-temperature advanced jet engine applications. Obtaining a strong, tough composite material depends critically on optimizing the mechanical coupling between the reinforcing fibers and the surrounding matrix material. This has usually been accomplished by applying a thin C or BN coating onto the surface of the reinforcing fibers. The performance of these fiber coatings, however, may degrade under cyclic loading conditions or exposure to different environments. Degradation of the coating-controlled interfacial behavior will strongly affect the useful service lifetime of the composite material. Cyclic fiber push-in testing was applied to monitor the evolution of fiber sliding behavior in both C- and BN-coated small-diameter (15-mm) SiC-fiber-reinforced ceramic matrix composites. The cyclic fiber push-in tests were performed using a desktop fiber push-out apparatus. At the beginning of each test, the fiber to be tested was aligned underneath a 10- mm-diameter diamond punch; then, the applied load was cycled between selected maximum and minimum loads. From the measured response, the fiber sliding distance and frictional sliding stresses were determined for each cycle. Tests were performed in both room air and nitrogen. Cyclic fiber push-in tests of C-coated, SiC-fiber-reinforced SiC showed progressive increases in fiber sliding distances along with decreases in frictional sliding stresses for continued cycling in room air. This rapid degradation in interfacial response was not observed for cycling in nitrogen, indicating that moisture exposure had a large effect in immediately lowering the frictional sliding stresses of C-coated fibers. These results indicate that matrix cracks bridged by C-coated fibers will not be stable, but will rapidly grow in moisture-containing environments. In contrast, cyclic fiber push-in tests of both BN-coated, SiC-fiber-reinforced SiC and BNcoated, Si

  6. A Model of Cyclic Transcriptomic Behavior in Cyanobacterium Cyanothece sp. ATCC 51142

    SciTech Connect

    McDermott, Jason E.; Oehmen, Christopher S.; McCue, Lee Ann; Hill, Eric A.; Choi, Daniel M.; Stockel, Jana; Liberton, Michelle L.; Pakrasi, Himadri B.; Sherman, Louis A.

    2011-07-01

    Systems biology attempts to reconcile large amounts of disparate data with existing knowledge to provide models of functioning biological systems. Useful and predictive models aim to summarize complex and dynamic processes and represent the relationships between these processes. The cyanobacterial Cyanothece species Strain sp. ATCC 51142 is an excellent candidate for such systems studies because: (i) it displays tight functional regulation as it must separate the opposing processes of oxygen-generating photosynthesis and oxygen-sensitive nitrogen fixation temporally in the same cell, ; (ii) it has robust cyclic patterns at the genetic, protein and metabolomic levels, ; and (iii) and it has potential applications for bioenergy and carbon sequestration, and thus a predictive model of its function is of practical use. We have represented the transcriptomic data from Cyanothece 51142 under diurnal light/dark cycles as a high-level functional abstraction and describe development of a predictive in silico model of diurnal and circadian behavior in terms of regulatory and metabolic processes in Cyanothece 51142. Our model provides a way to integrate disparate data types into a framework that can be used to explain behavior, generate high-quality predictions for validation, and to suggest future experiments. We show that incorporating network topology into the model improves performance in terms of our ability to explain the behavior of the system under new conditions. The model presented robustly describes transcriptomic behavior of Cyanothece 51142 under different cyclic and non-cyclic growth conditions robustly, and represents a significant advance in the understanding of gene regulation in this important organism.

  7. Windows(Registered Trademark)-Based Software Models Cyclic Oxidation Behavior

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Auping, J. V.

    2004-01-01

    Oxidation of high-temperature aerospace materials is a universal issue for combustion-path components in turbine or rocket engines. In addition to the question of the consumption of material due to growth of protective scale at use temperatures, there is also the question of cyclic effects and spallation of scale on cooldown. The spallation results in the removal of part of the protective oxide in a discontinuous step and thereby opens the way for more rapid oxidation upon reheating. In experiments, cyclic oxidation behavior is most commonly characterized by measuring changes in weight during extended time intervals that include hundreds or thousands of heating and cooling cycles. Weight gains occurring during isothermal scale-growth processes have been well characterized as being parabolic or nearly parabolic functions of time because diffusion controls reaction rates. In contrast, the net weight change in cyclic oxidation is the sum of the effects of the growth and spallation of scale. Typically, the net weight gain in cyclic oxidation is determined only empirically (that is, by measurement), with no unique or straightforward mathematical connection to either the rate of growth or the amount of metal consumed. Thus, there is a need for mathematical modeling to infer spallation mechanisms. COSP is a computer program that models the growth and spallation processes of cyclic oxidation on the basis of a few elementary assumptions that were discussed in COSP: A Computer Model of Cyclic Oxidation, Oxidation of Metals, vol. 36, numbers 1 and 2, 1991, pages 81-112. Inputs to the model include the selection of an oxidation-growth law and a spalling geometry, plus oxide-phase, growth-rate, cycle-duration, and spall-constant parameters. (The spalling fraction is often shown to be a constant factor times the existing amount of scale.) The output of COSP includes the net change in weight, the amounts of retained and spalled oxide, the total amounts of oxygen and metal

  8. Synthesis, Thermal Properties, and Thermoresponsive Behaviors of Cyclic Poly(2-(dimethylamino)ethyl Methacrylate)s.

    PubMed

    An, Xiaonan; Tang, Qingquan; Zhu, Wen; Zhang, Ke; Zhao, Youliang

    2016-06-01

    This study aims at physicochemical properties of thermo- and pH/CO2 -responsive cyclic homopolymers. Three examples of cyclic poly(2-(dimethylamino)ethyl methacrylate)s (PDMAs) are synthesized by combining the reversible addition-fragmentation chain transfer process and the Diels-Alder ring-closure reaction. After cyclization, the glass transition temperature significantly increases (ΔTg = 51.8-59.7 °C) due to the different configurational entropy and end groups, and the maximum decomposition temperature to lose the pendent groups is drastically decreased from 309 to 278 °C. Effects of polymerization degree, polymer concentration, additive of NaCl, and pH/CO2 on lower critical solution temperature behaviors of PDMA aqueous solutions are investigated. The cloud points (Tc ) of ring PDMAs are usually higher than their linear precursors, and the ΔTc values obtained under a fixed condition can reach up to 20.7 °C, revealing the crucial role of the topology effect. This study paves the way for unique properties and applications of smart cyclic polymers and their derivatives. PMID:27126247

  9. Friction in unconforming grain contacts as a mechanism for tensorial stress strain hysteresis

    NASA Astrophysics Data System (ADS)

    Aleshin, V.; Van Den Abeele, K.

    2007-04-01

    Materials composed of consolidated grains and/or containing internal contacts are widespread in everyday life (e.g. rocks, geomaterials, concretes, slates, ceramics, composites, etc.). For any simulation of the elastic behavior of this class of solids, be it in seismology, in NDT, or in the modeling of building constructions, the stress-strain constitutive equations are indispensable. Since the most common loading patterns in nature considerably deviate from simple uniaxial compression, the problem of tensorial stress-strain representation arises. In simple loading cases it may be sufficient to use a phenomenological constitutive model. However, in a more general case, phenomenological approaches encounter serious difficulties due to the high number of unknown parameters and the complexity of the model itself. Simplification of the phenomenology can help only partly, since it may require artificial assumptions. For instance, is it enough just to link the volumetric stress to the volumetric strain, or do we have to include shear components as well, and if yes, in what form? We therefore propose a physical tensorial stress-strain model, based on the consideration of plane cracks with friction. To do this, we combine known relations for normal displacements of crack faces given by contact mechanics, the classical Amonton's law of dry friction for lateral displacements, and the equations of elasticity theory for a collection of non-interacting cracks with given orientation. The major advantages of this model consist in the full tensorial representation, the realistic stress-strain curves for uniaxial stress compression and quantitative comparison with experimental data, and a profound account for hysteretic memory effects.

  10. The cyclic fatigue behavior of a Nicalon/SiC composite

    SciTech Connect

    Miriyala, N.; Liaw, P.K.; McHargue, C.J.; Snead, L.L.

    1996-10-01

    Cyclic fatigue tests were performed at ambient temperature on a Nicalon/SiC composite to study the effects of fabric orientation on the mechanical behavior. Four-point bend specimens were loaded either parallel or normal to the braided fabric plies. The maximum stresses chosen during the fatigue tests were 60, 70, and 80% of the monotonic strengths, respectively, in both orientations. Specimen failure did not occur in any case even after one million loading cycles. However, it was observed that much of the decrease in the composite modulus occurred in the first few (<10) cycles, and the fabric orientation did not significantly affect the effective modulus or midspan deflection trends.

  11. Preliminary Investigation of Cyclic Behavior at SHADOZ Sites Between the Equator and 5 deg S Latitude

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.

    2009-01-01

    Investigation of cyclic behavior of temperature and ozone data from five SHADOZ sites between the Equator and 5degS Latitude (Nairobi, Ascension Island, Natal, San Crystobal, and Watukoset) reveal an amazing array of oscillations. In particular, eight years of measurements (1998-2007) reveal changes such as decreasing amounts of ozone at some pressure levels and/or sites, while other levels and/or sites experience increasing ozone. Temperature changes of 1-2 C occur that also experience irregular oscillations. This study is preliminary and only concentrates on the 250-, 200-, 100-, 70-, and 50-hPa pressure surfaces. Surfaces existing below and above the tropopause behave differently.

  12. Behavior of pile group with elevated cap subjected to cyclic lateral loads

    NASA Astrophysics Data System (ADS)

    Chen, Yun-min; Gu, Ming; Chen, Ren-peng; Kong, Ling-gang; Zhang, Zhe-hang; Bian, Xue-cheng

    2015-06-01

    The pile group with elevated cap is widely used as foundation of offshore structures such as turbines, power transmission towers and bridge piers, and understanding its behavior under cyclic lateral loads induced by waves, tide water and winds, is of great importance to designing. A large-scale model test on 3×3 pile group with elevated cap subjected to cyclic lateral loads was performed in saturated silts. The preparation and implementation of the test is presented. Steel pipes with the outer diameter of 114 mm, thickness of 4.5 mm, and length of 6 m were employed as model piles. The pile group was cyclic loaded in a multi-stage sequence with the lateral displacement controlled. In addition, a single pile test was also conducted at the same site for comparison. The displacement of the pile cap, the internal forces of individual piles, and the horizontal stiffness of the pile group are presented and discussed in detail. The results indicate that the lateral cyclic loads have a greater impact on pile group than that on a single pile, and give rise to the significant plastic strain in the soil around piles. The lateral loads carried by each row of piles within the group would be redistributed with loading cycles. The lateral stiffness of the pile group decreases gradually with cycles and broadly presents three different degradation patterns in the test. Significant axial forces were measured out in some piles within the group, owing to the strong restraint provided by the cap, and finally lead to a large settlement of the pile group. These findings can be referred for foundation designing of offshore structures.

  13. Temperature Dependent Cyclic Deformation Mechanisms in Haynes 188 Superalloy

    NASA Technical Reports Server (NTRS)

    Rao, K. Bhanu Sankara; Castelli, Michael G.; Allen, Gorden P.; Ellis, John R.

    1995-01-01

    The cyclic deformation behavior of a wrought cobalt-base superalloy, Haynes 188, has been investigated over a range of temperatures between 25 and 1000 C under isothermal and in-phase thermomechanical fatigue (TMF) conditions. Constant mechanical strain rates (epsilon-dot) of 10(exp -3)/s and 10(exp -4)/s were examined with a fully reversed strain range of 0.8%. Particular attention was given to the effects of dynamic strain aging (DSA) on the stress-strain response and low cycle fatigue life. A correlation between cyclic deformation behavior and microstructural substructure was made through detailed transmission electron microscopy. Although DSA was found to occur over a wide temperature range between approximately 300 and 750 C the microstructural characteristics and the deformation mechanisms responsible for DSA varied considerably and were dependent upon temperature. In general, the operation of DSA processes led to a maximum of the cyclic stress amplitude at 650 C and was accompanied by pronounced planar slip, relatively high dislocation density, and the generation of stacking faults. DSA was evidenced through a combination of phenomena, including serrated yielding, an inverse dependence of the maximum cyclic hardening with epsilon-dot, and an instantaneous inverse epsilon-dot sensitivity verified by specialized epsilon-dot -change tests. The TMF cyclic hardening behavior of the alloy appeared to be dictated by the substructural changes occuring at the maximum temperature in the TMF cycle.

  14. Occupational Stress, Strain, and Coping in University Faculty.

    ERIC Educational Resources Information Center

    Richard, George V.; Krieshok, Thomas S.

    1989-01-01

    Tested hypothesis that given equal amounts of stress, strain is moderated by coping. Male and female university faculty (N=83) at three occupational ranks (assistant, associate, and full professor) completed Occupational Stress Inventory. Found no significant differences between genders or occupational ranks on measures of coping and role…

  15. Cyclic Strain Resistance, Stress Response, Fatigue Life, and Fracture Behavior of High Strength Low Alloy Steel 300 M

    NASA Astrophysics Data System (ADS)

    Manigandan, K.; Srivatsan, T. S.; Tammana, Deepthi; Poorgangi, Behrang; Vasudevan, Vijay K.

    2014-05-01

    The focus of this technical manuscript is a record of the specific role of microstructure and test specimen orientation on cyclic stress response, cyclic strain resistance, and cyclic stress versus strain response, deformation and fracture behavior of alloy steel 300 M. The cyclic strain amplitude-controlled fatigue properties of this ultra-high strength alloy steel revealed a linear trend for the variation of log elastic strain amplitude with log reversals-to-failure, and log plastic strain amplitude with log reversals-to-failure for both longitudinal and transverse orientations. Test specimens of the longitudinal orientation showed only a marginal improvement over the transverse orientation at equivalent values of plastic strain amplitude. Cyclic stress response revealed a combination of initial hardening for the first few cycles followed by gradual softening for a large portion of fatigue life before culminating in rapid softening prior to catastrophic failure by fracture. Fracture characteristics of test specimens of this alloy steel were different at both the macroscopic and fine microscopic levels over the entire range of cyclic strain amplitudes examined. Both macroscopic and fine microscopic observations revealed fracture to be a combination of both brittle and ductile mechanisms. The underlying mechanisms governing stress response, deformation characteristics, fatigue life, and final fracture behavior are presented and discussed in light of the competing and mutually interactive influences of test specimen orientation, intrinsic microstructural effects, deformation characteristics of the microstructural constituents, cyclic strain amplitude, and response stress.

  16. Thermomechanical cyclic hardening behavior of Hastelloy-X. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Bartolotta, P. A.

    1985-01-01

    Experimental evidence of thermomechanical history dependence on the cyclic hardening behavior of a representative combustor liner material Hastelloy-X is presented, along with a discussion about the relevant concept of thermomechanical path dependence. Based on the experimental results, a discussion is given on the inadequacy of formulating nonisothermal constitutive equations solely on the basis of isothermal testing. Finally, the essence of a mathematical representation of thermoviscoplasticity is presented that qualitatively accounts for the observed hereditary behavior. This is achieved by formulating the scaler evolutionary equation in an established viscoplastic theory to reflect thermomechanical path dependence. Although the necessary nonisothermal tests for further quantifying the thermoviscoplastic model have been identified, such data are not yet available.

  17. Breaking the cycle: cognitive behavioral therapy and biofeedback training in a case of cyclic vomiting syndrome.

    PubMed

    Slutsker, Barak; Konichezky, Andres; Gothelf, Doron

    2010-12-01

    The present article presents a case of cognitive behavioral therapy (CBT) along with heart rate variability (HRV) biofeedback training for the treatment of a medication unresponsive 13-year-old boy with cyclic vomiting syndrome (CVS). CVS is characterized by recurring stereotypic episodes of vomiting, interspersed with asymptomatic periods. Triggers for vomiting include anticipatory anxiety related to school examinations, family conflicts, and birthday parties as well as infectious diseases, and certain foods. Current treatment design addressed two pivotal etiological factors: autonomic dysregulation and anticipatory anxiety. Treatment outcome suggests that vomiting episodes may be successfully prevented by aiding the patient to identify and manage precipitant psychological stressors, to regulate HRV patterns, and gain a renewed sense of bodily control and self-efficacy. Further research is suggested using a controlled study with pre- and post-behavioral and stress measures to evaluate the effectiveness of CBT and biofeedback training compared to pharmacotherapy and placebo. PMID:21154016

  18. Mechanical behaviors of multi-filament twist superconducting strand under tensile and cyclic loading

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Li, Yingxu; Gao, Yuanwen

    2016-01-01

    The superconducting strand, serving as the basic unit cell of the cable-in-conduit-conductors (CICCs), is a typical multi-filament twist composite which is always subjected to a cyclic loading under the operating condition. Meanwhile, the superconducting material Nb3Sn in the strand is sensitive to strain frequently relating to the performance degradation of the superconductivity. Therefore, a comprehensive study on the mechanical behavior of the strand helps understanding the superconducting performance of the strained Nb3Sn strands. To address this issue, taking the LMI (internal tin) strand as an example, a three-dimensional structural finite element model, named as the Multi-filament twist model, of the strand with the real configuration of the LMI strand is built to study the influences of the plasticity of the component materials, the twist of the filament bundle, the initial thermal residual stress and the breakage and its evolution of the filaments on the mechanical behaviors of the strand. The effective properties of superconducting filament bundle with random filament breakage and its evolution versus strain are obtained based on the damage theory of fiber-reinforced composite materials proposed by Curtin and Zhou. From the calculation results of this model, we find that the occurrence of the hysteresis loop in the cyclic loading curve is determined by the reverse yielding of the elastic-plastic materials in the strand. Both the initial thermal residual stress in the strand and the pitch length of the filaments have significant impacts on the axial and hysteretic behaviors of the strand. The damage of the filaments also affects the axial mechanical behavior of the strand remarkably at large axial strain. The critical current of the strand is calculated by the scaling law with the results of the Multi-filament twist model. The predicted results of the Multi-filament twist model show an acceptable agreement with the experiment.

  19. Final report DOE project, ''Origins of asymmetric stress-strain response in phase transformations,'' DEFG02-93ER143993

    SciTech Connect

    Sehitoglu, Huseyin

    2002-01-30

    For the first time, experiments on NiTi under pressure loadings were conducted in Ref. (1). This work showed that the stress-strain response of NiTi is highly pressure sensitive and there was an asymmetry of tension and compression results. The results were obtained based on the special rig developed in (Ref. 2) by Sehitoglu and his students. Several experiments under pressure were also conducted on CuZnAl alloys with also pressure dependent response. accounted for variant-variant interaction and texture effects in the case of NiTi alloys (Ref. 3). It was found that the polycrystalline version of these materials has a strong texture due to the cold rolling process (Figure 4). Consequently, they almost behave as single crystals oriented in the [111] direction (Figure 3). We showed that if the texture effects are not accounted for the models give the incorrect trends when compared with experiments (Figure 5). Our work also showed that the evolution of the variants in tension is much more rapid compared to the compression case (Ref. 3). In the second year of the work, our attention focused exclusively on the deformation behavior of single crystals. Several key results were achieved with single crystals. Initially, we studied the role of aging treatment on tension compression asymmetry and crystal orientation dependence. It was shown that the orientation dependence of critical resolved shear stress is significant in the case of peak aged crystals while the orientation dependence decreases with overaging. A micro-mechanical model was developed to explain these trends based on the determination of the local shear stresses due to the precipitate on the 24 possible martensite variants (Figure 6). It was found that those variants that have high resolved shear stress due to external loading experience low local stresses due to the precipitate weakening the orientation dependence (Refs. 4-6). Overall the results and the model showed that the introduction of precipitates

  20. Cyclic Deformation Behavior of a Rare-Earth Containing Extruded Magnesium Alloy: Effect of Heat Treatment

    NASA Astrophysics Data System (ADS)

    Mirza, F. A.; Chen, D. L.; Li, D. J.; Zeng, X. Q.

    2015-03-01

    The present study was aimed at evaluating strain-controlled cyclic deformation behavior of a rare-earth (RE) element containing Mg-10Gd-3Y-0.5Zr (GW103K) alloy in different states (as-extruded, peak-aged (T5), and solution-treated and peak-aged (T6)). The addition of RE elements led to an effective grain refinement and weak texture in the as-extruded alloy. While heat treatment resulted in a grain growth modestly in the T5 state and significantly in the T6 state, a high density of nano-sized and bamboo-leaf/plate-shaped β' (Mg7(Gd,Y)) precipitates was observed to distribute uniformly in the α-Mg matrix. The yield strength and ultimate tensile strength, as well as the maximum and minimum peak stresses during cyclic deformation in the T5 and T6 states were significantly higher than those in the as-extruded state. Unlike RE-free extruded Mg alloys, symmetrical hysteresis loops in tension and compression and cyclic stabilization were present in the GW103K alloy in different states. The fatigue life of this alloy in the three conditions, which could be well described by the Coffin-Manson law and Basquin's equation, was equivalent within the experimental scatter and was longer than that of RE-free extruded Mg alloys. This was predominantly attributed to the presence of the relatively weak texture and the suppression of twinning activities stemming from the fine grain sizes and especially RE-containing β' precipitates. Fatigue crack was observed to initiate from the specimen surface in all the three alloy states and the initiation site contained some cleavage-like facets after T6 heat treatment. Crack propagation was characterized mainly by the characteristic fatigue striations.

  1. A Dynamic Gene Regulatory Network Model That Recovers the Cyclic Behavior of Arabidopsis thaliana Cell Cycle

    PubMed Central

    Ortiz-Gutiérrez, Elizabeth; García-Cruz, Karla; Azpeitia, Eugenio; Castillo, Aaron; Sánchez, María de la Paz; Álvarez-Buylla, Elena R.

    2015-01-01

    Cell cycle control is fundamental in eukaryotic development. Several modeling efforts have been used to integrate the complex network of interacting molecular components involved in cell cycle dynamics. In this paper, we aimed at recovering the regulatory logic upstream of previously known components of cell cycle control, with the aim of understanding the mechanisms underlying the emergence of the cyclic behavior of such components. We focus on Arabidopsis thaliana, but given that many components of cell cycle regulation are conserved among eukaryotes, when experimental data for this system was not available, we considered experimental results from yeast and animal systems. We are proposing a Boolean gene regulatory network (GRN) that converges into only one robust limit cycle attractor that closely resembles the cyclic behavior of the key cell-cycle molecular components and other regulators considered here. We validate the model by comparing our in silico configurations with data from loss- and gain-of-function mutants, where the endocyclic behavior also was recovered. Additionally, we approximate a continuous model and recovered the temporal periodic expression profiles of the cell-cycle molecular components involved, thus suggesting that the single limit cycle attractor recovered with the Boolean model is not an artifact of its discrete and synchronous nature, but rather an emergent consequence of the inherent characteristics of the regulatory logic proposed here. This dynamical model, hence provides a novel theoretical framework to address cell cycle regulation in plants, and it can also be used to propose novel predictions regarding cell cycle regulation in other eukaryotes. PMID:26340681

  2. A Dynamic Gene Regulatory Network Model That Recovers the Cyclic Behavior of Arabidopsis thaliana Cell Cycle.

    PubMed

    Ortiz-Gutiérrez, Elizabeth; García-Cruz, Karla; Azpeitia, Eugenio; Castillo, Aaron; Sánchez, María de la Paz; Álvarez-Buylla, Elena R

    2015-09-01

    Cell cycle control is fundamental in eukaryotic development. Several modeling efforts have been used to integrate the complex network of interacting molecular components involved in cell cycle dynamics. In this paper, we aimed at recovering the regulatory logic upstream of previously known components of cell cycle control, with the aim of understanding the mechanisms underlying the emergence of the cyclic behavior of such components. We focus on Arabidopsis thaliana, but given that many components of cell cycle regulation are conserved among eukaryotes, when experimental data for this system was not available, we considered experimental results from yeast and animal systems. We are proposing a Boolean gene regulatory network (GRN) that converges into only one robust limit cycle attractor that closely resembles the cyclic behavior of the key cell-cycle molecular components and other regulators considered here. We validate the model by comparing our in silico configurations with data from loss- and gain-of-function mutants, where the endocyclic behavior also was recovered. Additionally, we approximate a continuous model and recovered the temporal periodic expression profiles of the cell-cycle molecular components involved, thus suggesting that the single limit cycle attractor recovered with the Boolean model is not an artifact of its discrete and synchronous nature, but rather an emergent consequence of the inherent characteristics of the regulatory logic proposed here. This dynamical model, hence provides a novel theoretical framework to address cell cycle regulation in plants, and it can also be used to propose novel predictions regarding cell cycle regulation in other eukaryotes. PMID:26340681

  3. Precipitation under cyclic strain in solution-treated Al4wt%Cu II: precipitation behavior

    SciTech Connect

    Farrow, Adam M; Laird, Campbell

    2008-01-01

    Solution-treated Al-4wt%Cu was strain-cycled at ambient temperature and above, and the precipitation behavior investigated by Transmission Electron Microscopy (TEM). In the temperature range 100{sup o}C to 200{sup o}C, precipitation of {Theta}' appears to have been suppressed, and precipitation of theta-prime promoted. Anomalously rapid growth of precipitates appears to have been facilitated by a vacancy super-saturation generated by cyclic strain, with a diminishing effect observed at higher temperatures due to the recovery of non-equilibrium vacancy concentrations. The {Theta}' precipitates generated under cyclic strain are considerably smaller and more finely dispersed than those typically produced via quench-aging due to their heterogeneous nucleation on disloctions, and possess a low aspect ratio and rounded edges of the broad faces, due to the introduction of ledges into the growing precipitates by dislocation cutting. Frequency effects indicate that dislocation motion, rather than extremely small precipitate size, is responsible for the reduction in aspect ratio.

  4. Cyclic behavior of sandy shoals on the ebb-tidal deltas of the Wadden Sea

    NASA Astrophysics Data System (ADS)

    Ridderinkhof, W.; Hoekstra, P.; van der Vegt, M.; de Swart, H. E.

    2016-03-01

    Ebb-tidal deltas are bulges of sand that are located seaward of tidal inlets. Many of these deltas feature shoals that cyclically form and migrate towards the coast. The average period between successive shoals that attach to the coast varies among different inlets. In this study, a quantitative assessment of the cyclic behavior of shoals on the ebb-tidal deltas of the Wadden Sea is presented. Analysis of bathymetric data and Landsat satellite images revealed that at the majority of inlets along the Wadden Sea migrating shoals occur. The average period between succeeding shoals correlates to the tidal prism and has values ranging between 4 and 130 years. A larger tidal prism favors larger periods between successive shoal attachments. However, such a relationship was not found for wide inlets with multiple channels. There is a positive relationship between the frequency with which the shoals attach to the coast and their migration velocity, and a negative relationship between the migration velocity of the shoal and the tidal prism. Finally, the data were too sparse to assess whether the longshore sediment transport has a significant effect on the period between successive shoals that attach to the coasts downdrift of the observed tidal inlets.

  5. An investigation of cyclic transient behavior and implications on fatigue life estimates

    SciTech Connect

    Jiang, Y.; Kurath, P.

    1997-04-01

    Current research focuses on proportional cyclic hardening and non-Massing behaviors. The interaction of these two hardenings can result in the traditionally observed overall softening, hardening or mixed behavior exhibited for fully reversed strain controlled fatigue tests. Proportional experiments were conducted with five materials 304 stainless steel, normalized 1070 and 1045 steels, and 7075-T6 and 6061-T6 aluminum alloys. All the materials display similar trends, but the 304 stainless steel shows the most pronounced transient behavior and will be discussed in detail. Existing algorithms for this behavior are evaluated in light of the recent experiments, and refinements to the Armstrong-Frederick class of incremental plasticity models are proposed. Modifications implemented are more extensive than the traditional variation of yield stress, and a traditional strain based memory surface is utilized to track deformation history. Implications of the deformation characteristics with regard to fatigue life estimation, especially variable amplitude loading, will be examined. The high-low step loading is utilized to illustrate the effect of transient deformation on fatigue life estimation procedures, and their relationship to the observed and modeled deformation.

  6. The effect of matrix microstructure on cyclic response and fatigue behavior of particle- reinforced 2219 aluminum: Part I. room temperature behavior

    NASA Astrophysics Data System (ADS)

    Vyletel, G. M.; Allison, J. E.; van Aken, D. C.

    1995-12-01

    The low-cycle and high-cycle fatigue behavior and cyclic response of naturally aged and overaged 2219/TiC/15p and unreinforced 2219 Al were investigated using plastic strain-controlled and stress-controlled testing. In addition, the influence of grain size on the particle-reinforced materials was examined. In both reinforced and unreinforced materials, the naturally aged conditions were cyclically unstable, exhibiting an initial hardening behavior followed by an extended region of cyclic stability and ultimately a softening region. The overaged reinforced material was cyclically stable for the plastic strains examined, while the overaged unreinforced material exhibited cyclic hardening at plastic strains greater than 2.5 × 10-4. Decreasing grain size of particle-reinforced materials modestly increased the cyclic flow stress of both naturally aged and overaged materials. Reinforced and unreinforced materials exhibited similar fatigue life behaviors; however, the reinforced and unreinforced naturally aged materials had superior fatigue lives in comparison to the overaged materials. Grain size had no effect on the fatigue life behavior of the particle-reinforced materials. The fatigue lives were strongly influenced by the presence of clusters of TiC particles and exogenous Al3Ti intermetallics.

  7. Progress Report on Alloy 617 Isochronous Stress-Strain Curves

    SciTech Connect

    Jill K. Wright; Richard N. Wright; Nancy J. Lybeck

    2014-03-01

    Isochronous stress-strain curves for Alloy 617 up to a temperature of 1000°C will be required to qualify the material for elevated temperature design in Section III, Division 1, Subsection NH of the ASME Boiler and Pressure Vessel Code. Several potential methods for developing these curves are reviewed in this report. It is shown that in general power-law creep is the rate controlling deformation mechanism for a wide range of alloy heats, test temperatures and stresses. Measurement of the strain rate sensitivity of Alloy 617 indicates that the material is highly strain rate sensitive in the tensile deformation range above about 750°C. This suggests that the concept of a hot tensile curve as a bounding case on the isochronous stress-strain diagrams is problematic. The impact of strain rate on the hot tensile curves is examined and it is concluded that incorporating such a curve is only meaningful if a single tensile strain rate (typically the ASTM standard rate of 0.5%/min) is arbitrarily defined. Current experimentally determined creep data are compared to isochronous stress-strain curves proposed previously by the German programs in the 1980s and by the 1990 draft ASME Code Case. Variability in how well the experimental data are represented by the proposed design curves that suggests further analysis is necessary prior to completing a new draft Code Case.

  8. Electrochemical Behavior of Novel Superelastic Biomedical Alloys in Simulated Physiological Media Under Cyclic Load

    NASA Astrophysics Data System (ADS)

    Zhukova, Yu. S.; Pustov, Yu. A.; Konopatsky, A. S.; Filonov, M. R.; Prokoshkin, S. D.

    2014-07-01

    The aim of the present work was to study corrosion and electrochemical behavior of Ti-22Nb-6Ta and Ti-22Nb-6Zr (at.%) superelastic alloys under conditions which imitate the performance mode of target devices (bone implants), i.e., under cyclic load in simulated physiological solutions. Open circuit potential (OCP) measurements were carried out on wire specimens in Hank's solution and artificial saliva at 37 °C with various strain values up to 1.5%. It is shown that at clinically relevant strain values (about 0.2%) the alloys exhibit OCP growth indicating their high stability and resistance to corrosion fatigue under these cycling conditions. At much higher strains (about 1%), fatigue crack initiation and propagation take place, however, the corresponding OCP variation indicates that the fracture process is significantly restrained by reversible martensitic transformation during cycling.

  9. Behavior of tunnel form buildings under quasi-static cyclic lateral loading

    USGS Publications Warehouse

    Yuksel, S.B.; Kalkan, E.

    2007-01-01

    In this paper, experimental investigations on the inelastic seismic behavior of tunnel form buildings (i.e., box-type or panel systems) are presented. Two four-story scaled building specimens were tested under quasi-static cyclic lateral loading in longitudinal and transverse directions. The experimental results and supplemental finite element simulations collectively indicate that lightly reinforced structural walls of tunnel form buildings may exhibit brittle flexural failure under seismic action. The global tension/compression couple triggers this failure mechanism by creating pure axial tension in outermost shear-walls. This type of failure takes place due to rupturing of longitudinal reinforcement without crushing of concrete, therefore is of particular interest in emphasizing the mode of failure that is not routinely considered during seismic design of shear-wall dominant structural systems.

  10. A coupled damage-plasticity model for the cyclic behavior of shear-loaded interfaces

    NASA Astrophysics Data System (ADS)

    Carrara, P.; De Lorenzis, L.

    2015-12-01

    The present work proposes a novel thermodynamically consistent model for the behavior of interfaces under shear (i.e. mode-II) cyclic loading conditions. The interface behavior is defined coupling damage and plasticity. The admissible states' domain is formulated restricting the tangential interface stress to non-negative values, which makes the model suitable e.g. for interfaces with thin adherends. Linear softening is assumed so as to reproduce, under monotonic conditions, a bilinear mode-II interface law. Two damage variables govern respectively the loss of strength and of stiffness of the interface. The proposed model needs the evaluation of only four independent parameters, i.e. three defining the monotonic mode-II interface law, and one ruling the fatigue behavior. This limited number of parameters and their clear physical meaning facilitate experimental calibration. Model predictions are compared with experimental results on fiber reinforced polymer sheets externally bonded to concrete involving different load histories, and an excellent agreement is obtained.

  11. Cyclic material properties tests supporting elastic-plastic analysis development

    SciTech Connect

    Hodge, S.C.; Minicucci, J.M.

    1996-11-01

    Correlation studies have shown that hardening models currently available in the ABAQUS finite element code (isotropic, kinematic) do not accurately capture the inelastic strain reversals that occur due to structural rebounding from a rapidly applied transient dynamic load. The purpose of the Cyclic Material properties Test program was to obtain response data for the first several cycles of inelastic strain reversal from a cyclic properties test. This data is needed to develop elastic-plastic analysis methods that can accurately predict strains and permanent sets in structures due to rapidly applied transient dynamic loading. Test specimens were cycled at inelastic strain levels typical of rapidly applied transient dynamic analyses (0.5% to 4.0%). In addition to the inelastic response data, cyclic material properties for high yield strength (80 ksi) steel were determined including a cyclic stress-strain curve for a stabilized specimen. Two test methods, the Incremental Step method and the Companion specimen Method, were sued to determine cyclic properties. The incrementally decreasing strain amplitudes in the first loading block of the Incremental Step method test is representative of the response of structures subjected to rapidly applied transient dynamic loads. The inelastic strain history data generated by this test program will be used to support development of a material model that can accurately predict inelastic material behavior including inelastic strain reversals. Additionally, this data can be used to verify material model enhancements to elastic-plastic finite element analysis codes.

  12. Investigation of fiber/matrix interfacial mechanical behavior in ceramic matrix composites by cyclic fiber push-in testing

    SciTech Connect

    Eldridge, J.I.; Bhatt, R.T.; Bansal, N.P.; Olmstead, F.A.

    1996-12-31

    Cyclic fiber push-in testing is used to examine the stability of interfacial frictional sliding stresses and fiber debond lengths with continued push-in load/unload cycles. The measured response to applying load cycling to a single fiber reveals the susceptibility of the fiber/matrix interface to degrade under cyclic loading conditions, and thus, helps evaluate the contribution of the interface to the cyclic fatigue behavior of the composite after the occurrence of matrix cracks. From cyclic push-in testing in room temperature air, decreasing interfacial sliding stresses and increasing debond lengths are observed with continued load cycling for SCS-6 SiC fiber reinforced reaction-bonded silicon nitride (SCS-6/RBSN), whereas stable interfacial sliding stresses and no increase in debond lengths are observed with continued load cycling for SCS-6 SiC fiber reinforced strontium aluminosilicate (SCS-6/SAS). These results indicate that fiber-bridged matrix cracks should be stable under cyclic fatigue loading conditions in SCS-6/SAS, but should exhibit increasing crack opening displacements and fiber pull-out with continued cycling in SCS-6/RBSN. In addition, changing the test environment from room air to nitrogen significantly affects the cyclic push-in test results for SCS-6/RBSN, but not for SCS-6/SAS. The different responses to this change in test environment are attributed to different locations of interfacial failure.

  13. Linear and nonlinear modulus surfaces in stress space, from stress-strain measurements on Berea sandstone

    NASA Astrophysics Data System (ADS)

    Boudjema, M.; Santos, I. B.; McCall, K. R.; Guyer, R. A.; Boitnott, G. N.

    The elastic response of many rocks to quasistatic stress changes is highly nonlinear and hysteretic, displaying discrete memory. Rocks also display unusual nonlinear response to dynamic stress changes. A model to describe the elastic behavior of rocks and other consolidated materials is called the Preisach-Mayergoyz (PM) space model. In contrast to the traditional analytic approach to stress-strain, the PM space picture establishes a relationship between the quasistatic data and a number density of hysteretic mesoscopic elastic elements in the rock. The number density allows us to make quantitative predictions of dynamic elastic properties. Using the PM space model, we analyze a complex suite of quasistatic stress-strain data taken on Berea sandstone. We predict a dynamic bulk modulus and a dynamic shear modulus surface as a function of mean stress and shear stress. Our predictions for the dynamic moduli compare favorably to moduli derived from time of flight measurements. We derive a set of nonlinear elastic constants and a set of constants that describe the hysteretic behavior of the sandstone.

  14. Thermal Cyclic Behavior of Thermal and Environmental Barrier Coatings Investigated Under High-Heat-Flux Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Environmental barrier coatings (EBC's) have been developed to protect silicon-carbide- (SiC) based ceramic components in gas turbine engines from high-temperature environmental attack. With continuously increasing demands for significantly higher engine operating temperature, future EBC systems must be designed for both thermal and environmental protection of the engine components in combustion gases. In particular, the thermal barrier functions of EBC's become a necessity for reducing the engine-component thermal loads and chemical reaction rates, thus maintaining the required mechanical properties and durability of these components. Advances in the development of thermal and environmental barrier coatings (TBC's and EBC's, respectively) will directly impact the successful use of ceramic components in advanced engines. To develop high-performance coating systems, researchers must establish advanced test approaches. In this study, a laser high-heat-flux technique was employed to investigate the thermal cyclic behavior of TBC's and EBC's on SiC-reinforced SiC ceramic matrix composite substrates (SiC/SiC) under high thermal gradient and thermal cycling conditions. Because the laser heat flux test approach can monitor the coating's real-time thermal conductivity variations at high temperature, the coating thermal insulation performance, sintering, and delamination can all be obtained during thermal cycling tests. Plasma-sprayed yttria-stabilized zirconia (ZrO2-8 wt% Y2O3) thermal barrier and barium strontium aluminosilicate-based environmental barrier coatings (BSAS/BSAS+mullite/Si) on SiC/SiC ceramic matrix composites were investigated in this study. These coatings were laser tested in air under thermal gradients (the surface and interface temperatures were approximately 1482 and 1300 C, respectively). Some coating specimens were also subject to alternating furnace cycling (in a 90-percent water vapor environment at 1300 C) and laser thermal gradient cycling tests

  15. First Cycle Heterogeneous Deformation Behavior and Cyclic Shakedown Phenomena of Nitinol Near A(sub f) Temperatures

    NASA Technical Reports Server (NTRS)

    Jones, H. N.

    1996-01-01

    Experimental observations on the cyclic behavior of a NiTi alloy (Nitinol) at temperatures in the neighborhood of the A(sub f) (austenite finish) temperature are presented. The strongly heterogeneous nature of the deformation behavior of this material at temperatures within this regime during the first cycle is examined with emphasis placed on the difficulties that the existence of such phenomena pose on the formulation of realistic constitutive relations. It is further demonstrated that this heterogeneity of deformation persists on subsequent cycles with the result that the hysteretic cyclic behavior of these alloys can exhibit a point to point variation in an otherwise uniform geometry. The experimental observations on the deformation behavior of this alloy show that it is strongly dependent on temperature and prior deformation history of the sample, thus resulting in an almost intractable problem with respect to capturing an adequate constitutive description from either experiment or modeling.

  16. Micromechanical Model for Deformation in Solids with Universal Predictions for Stress-Strain Curves and Slip Avalanches

    SciTech Connect

    Dahmen, Karin A.; Ben-Zion, Yehuda; Uhl, Jonathan T.

    2009-05-01

    A basic micromechanical model for deformation of solids with only one tuning parameter (weakening {epsilon}) is introduced. The model can reproduce observed stress-strain curves, acoustic emissions and related power spectra, event statistics, and geometrical properties of slip, with a continuous phase transition from brittle to ductile behavior. Exact universal predictions are extracted using mean field theory and renormalization group tools. The results agree with recent experimental observations and simulations of related models for dislocation dynamics, material damage, and earthquake statistics.

  17. Effect of dynamic monotonic and cyclic loading on fracture behavior for Japanese carbon steel pipe STS410

    SciTech Connect

    Kinoshita, Kanji; Murayama, Kouichi; Ogata, Hiroyuki

    1997-04-01

    The fracture behavior for Japanese carbon steel pipe STS410 was examined under dynamic monotonic and cyclic loading through a research program of International Piping Integrity Research Group (EPIRG-2), in order to evaluate the strength of pipe during the seismic event The tensile test and the fracture toughness test were conducted for base metal and TIG weld metal. Three base metal pipe specimens, 1,500mm in length and 6-inch diameter sch.120, were employed for a quasi-static monotonic, a dynamic monotonic and a dynamic cyclic loading pipe fracture tests. One weld joint pipe specimen was also employed for a dynamic cyclic loading test In the dynamic cyclic loading test, the displacement was controlled as applying the fully reversed load (R=-1). The pipe specimens with a circumferential through-wall crack were subjected four point bending load at 300C in air. Japanese STS410 carbon steel pipe material was found to have high toughness under dynamic loading condition through the CT fracture toughness test. As the results of pipe fracture tests, the maximum moment to pipe fracture under dynamic monotonic and cyclic loading condition, could be estimated by plastic collapse criterion and the effect of dynamic monotonic loading and cyclic loading was a little on the maximum moment to pipe fracture of the STS410 carbon steel pipe. The STS410 carbon steel pipe seemed to be less sensitive to dynamic and cyclic loading effects than the A106Gr.B carbon steel pipe evaluated in IPIRG-1 program.

  18. Stress-strain analysis of porous scaffolds made from titanium alloys synthesized via SLS method

    NASA Astrophysics Data System (ADS)

    Shishkovsky, I.

    2009-09-01

    A layer-by-layer selective laser sintering (SLS) technology seems to be greatly promising for solving the plastic surgery problems, particularly those pertaining to the facial reconstruction. Made from titanium-based alloys (titanium or nitinol, i.e. NiTi-intermetallic phase), the porous scaffolds for cranioplasty are an efficient tool for rectifying the face defects and for the dental orthopedic surgery. The progress in the oral surgery and teeth implantation is caused by the problem of an osteointegration on the one hand, and by achievements of the implant synthesis techniques, on the other hand. An important problem thereby is a profound study of the stress-strain behavior of porous implants under the masticatory load or pressure. In the present study the ways for the optimization of the porous implant structural and strength properties as the function of the laser synthesis parameters are described. The finite element approach (ANSYS) was used here for a complex dowel description and numerical simulations. In order to evaluate the processes in the porous implant under the external loading, a CAD 3D model was built for different internal and external configurations of the implant and/or initial shape of powdered particles. The stress-strain dependences were calculated that displayed the irregularity of the stress distribution by the implant volume in the bone tissue. Most of the values are concentrated in places of object contact.

  19. The overall elastoplastic stress-strain relations of dual-phase metals

    NASA Astrophysics Data System (ADS)

    Weng, G. J.

    T WO SIMPLE, albeit approximate, theories are developed to estimate the stress-strain relations of dual-phase metals of the inclusion-matrix type, where both phases are capable of undergoing plastic flow. The first one is based upon Hill's recognition of a weakening constraint power in a plastically deforming matrix, whereas the second one is based on Kröner's elastic constraint in the treatment of the single inclusion-matrix interaction. The inclusion-inclusion interaction at finite concentration is accounted for by the Mori-Tanaka method in both cases. Consistent with the known elastic behavior, the first theory discloses that the geometrical arrangement of the constituents has a significant influence on the overall elastoplastic response. When the harder phase takes the position of the matrix the composite is far Stiffer than that when it takes the position of inclusions. The strong elastic constraint associated with the second theory tends to provide an upper-bound type of estimate regardless of whether the matrix is the harder phase or the softer, and, therefore, it is suggested that this theory be used only for the class of composites whose matrix is the harder phase. Both theories are finally applied to predict the stress-strain relations of dual-phase stainless steels, and the results are found to be in satisfactory agreement with the test data.

  20. On local total strain redistribution using a simplified cyclic inelastic analysis based on an elastic solution

    NASA Technical Reports Server (NTRS)

    Hwang, S. Y.; Kaufman, A.

    1985-01-01

    Strain redistribution corrections were developed for a simplified inelastic analysis procedure to economically calculate material cyclic response at the critical location of a structure for life prediction purposes. The method was based on the assumption that the plastic region in the structure is local and the total strain history required for input can be defined from elastic finite element analyses. Cyclic stress-strain behavior was represented by a bilinear kinematic hardening model. The simplified procedure has been found to predict stress-strain response with reasonable accuracy for thermally cycled problems but needs improvement for mechanically load cycled problems. This study derived and incorporated Neuber type corrections in the simplified procedure to account for local total strain redistribution under cyclic mechanical loading. The corrected simplified method was exercised on a mechanically load cycled benchmark notched plate problem. Excellent agreement was found between the predicted material response and nonlinear finite element solutions for the problem. The simplified analysis computer program used 0.3 percent of the CPU time required for a nonlinear finite element analysis.

  1. Precipitation under cyclic strain in solution-treated Al4wt%Cu I: mechanical behavior

    SciTech Connect

    Farrow, Adam M; Laird, Campbell

    2008-01-01

    Solution-treated AL-4wt%Cu was strain-cycled at ambient temperature and above, and the precipitation and deformation behaviors investigated by TEM. Anomalously rapid growth of precipitates appears to have been facilitated by a vacancy super-saturation generated by cyclic strain and the presence of a continually refreshed dislocation density to provide heterogeneous nucleation sites. Texture effects as characterized by Orientation Imaging Microscopy appear to be responsible for latent hardening in specimens tested at room temperature, with increasing temperatures leading to a gradual hardening throughout life due to precipitation. Specimens exhibiting rapid precipitation hardening appear to show a greater effect of texture due to the increased stress required to cut precipitates in specimens machined from rolled plate at an angle corresponding to a lower average Schmid factor. The accelerated formation of grain boundary precipitates appears to be partially responsible for rapid inter-granular fatigue failure at elevated temperatures, producing fatigue striations and ductile dimples coexistent on the fracture surface.

  2. On the paradoxical behavior of a cyclic device working with a non-Boltzmannian fluid

    NASA Astrophysics Data System (ADS)

    Fanelli, D.; De Ninno, G.; Turchi, A.

    2012-11-01

    According to standard thermodynamics, the efficiency of a cyclic machine is strictly lower than one. Such a result is a straightforward consequence of the second principle of thermodynamics. Recent advances in the study of the thermodynamics of long-range interacting system report however on a rather intricate zoology of peculiar behaviors, which are occasionally in contrast with customarily accepted scenarios, dueling with intuition and common sense. In this paper, a thermodynamical cycle is assembled for an ideal device working with non-Boltzmanian long-range fluid and operating in contact with two thermal reservoirs. Assuming the microcanonical or canonical temperature to be the correct thermodynamic temperature, we obtain a paradoxical conclusion: the system is in fact analytically shown to violate the second principle of thermodynamics. This phenomenon ultimately relates to the existence of regions in the canonical ensemble where the energy decreases with the average kinetic temperature. We argue that the validity of the second principle of thermodynamics can be possibly regained, by revisiting the definition of canonical ensemble, as well as the Fourier law of heat transport, and consequently relaxing the constraint on the maximal efficiency as imposed by the Carnot theorem.

  3. Cyclic Oxidation Behavior of HVOF Bond Coatings Deposited on La- and Y-doped Superalloys

    SciTech Connect

    Pint, Bruce A; Bestor, Michael A; Haynes, James A

    2011-01-01

    One suggested strategy for improving the performance of thermal barrier coating (TBC) systems used to protect hot section components in gas turbines is the addition of low levels of dopants to the Ni-base superalloy substrate. To quantify the benefit of these dopants, the oxidation behavior of three commercial superalloys with different Y and La contents was evaluated with and without a NiCoCrAlYHfSi bond coating deposited by high velocity oxygen fuel (HVOF) spraying. Cyclic oxidation experiments were conducted in dry O{sub 2} at 1050, 1100 and 1150 C. At the highest temperature, the bare superalloy without La showed more attack due to its lower Al content but no difference in oxidation rate or scale adhesion was noted at lower temperatures. With a bond coating, the alumina scale was non-uniform in thickness and spalled at each temperature. Among the three coated superalloys, no clear difference in oxide growth rate or scale adhesion was observed. Evaluations with a YSZ top coat and a bond coating without Hf are needed to better determine the effect of superalloy dopants on high temperature oxidation performance.

  4. Different transport behaviors of NH4 (+) and NH3 in transmembrane cyclic peptide nanotubes.

    PubMed

    Zhang, Mingming; Fan, Jianfen; Xu, Jian; Weng, Peipei; Lin, Huifang

    2016-10-01

    Two water-filled transmembrane cyclic peptide nanotubes (CPNTs) of 8×cyclo-(WL)n=4,5/POPE were chosen to investigate the dependences of the transport properties of the positive NH4 (+) and neutral NH3 on the channel radius. Molecular dynamic simulations revealed that molecular charge, size, ability to form H-bonds and channel radius all significantly influence the behaviors of NH4 (+) and NH3 in a CPNT. Higher electrostatic interactions, more H-bonds, and water-bridges were found in the NH4 (+) system, resulting in NH4 (+) meeting higher energy barriers, while NH3 can enter, exit and permeate the channels effortlessly. This work sheds a first light on the differences between the mechanisms of NH4 (+) and NH3 moving in a CPNT at an atomic level. Graphical Abstract Snapshot of the simulation system of NH4 (+)_octa-CPNT with an NH4 (+) initially positioned at one mouth of the tube, PMF profiles for single NH4 (+) ion and NH3 molecule moving through water-filled transmembrane CPNTs of 8×cyclo-(WL)n=4,5/POPE and sketch graphs of the possible H-bond forms of NH3 and NH4 (+) with the neighboring water. PMID:27600817

  5. Dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes.

    PubMed

    Li, Rui; Fan, Jianfen; Li, Hui; Yan, Xiliang; Yu, Yi

    2015-07-01

    Classical molecular dynamics simulations have been performed to investigate the dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes (CPNTs) with various radii, i.e., 8×(WL¯)n=3,4,5/POPE. The results show that ethanol molecules spontaneously fill the octa- and deca-CPNTs, but not the hexa-CPNT. In the octa-CPNT, ethanol molecules are trapped at individual gaps with their carbon skeletons perpendicular to the tube axis and hydroxyl groups towards the tube wall, forming a broken single-file chain. As the channel radius increases, ethanol molecules inside the deca-CPNT tend to form a tubular layer and the hydroxyl groups mainly stretch towards the tube axis. Computations of diffusion coefficients indicate that ethanol molecules in the octa-CPNT nearly lost their diffusion abilities, while those in the deca-CPNT diffuse as 4.5 times as in a (8, 8) carbon nanotube with a similar tube diameter. The osmotic and diffusion permeabilities (pf and pd, respectively) of the octa- and deca-CPNTs transporting ethanol were deduced for the first time. The distributions of the gauche and trans conformers of ethanol molecules in two CPNTs are quite similar, both with approximately 57% gauche conformers. The non-bonded interactions of channel ethanol with a CPNT wall and surrounding ethanol were explored. The potential of mean force elucidates the mechanism underlying the transporting characteristics of channel ethanol in a transmembrane CPNT. PMID:26156492

  6. Dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Rui; Fan, Jianfen; Li, Hui; Yan, Xiliang; Yu, Yi

    2015-07-01

    Classical molecular dynamics simulations have been performed to investigate the dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes (CPNTs) with various radii, i.e., 8 × ( W L ¯ ) n = 3 , 4 , 5 / POPE . The results show that ethanol molecules spontaneously fill the octa- and deca-CPNTs, but not the hexa-CPNT. In the octa-CPNT, ethanol molecules are trapped at individual gaps with their carbon skeletons perpendicular to the tube axis and hydroxyl groups towards the tube wall, forming a broken single-file chain. As the channel radius increases, ethanol molecules inside the deca-CPNT tend to form a tubular layer and the hydroxyl groups mainly stretch towards the tube axis. Computations of diffusion coefficients indicate that ethanol molecules in the octa-CPNT nearly lost their diffusion abilities, while those in the deca-CPNT diffuse as 4.5 times as in a (8, 8) carbon nanotube with a similar tube diameter. The osmotic and diffusion permeabilities (pf and pd, respectively) of the octa- and deca-CPNTs transporting ethanol were deduced for the first time. The distributions of the gauche and trans conformers of ethanol molecules in two CPNTs are quite similar, both with approximately 57% gauche conformers. The non-bonded interactions of channel ethanol with a CPNT wall and surrounding ethanol were explored. The potential of mean force elucidates the mechanism underlying the transporting characteristics of channel ethanol in a transmembrane CPNT.

  7. Cyclic Material Properties Test to Determine Hardening/Softening Characteristics of HY-80 Steel

    SciTech Connect

    S.C. Hodge; J.M. Minicucci; T.F. Trimble

    2003-04-30

    The Cyclic Material Properties Test was structured to obtain and provide experimental data for determining cyclic hardening/softening characteristics of HY-80 steel. The inelastic strain history data generated by this test program and the resulting cyclic stress-strain curve will be used to enhance material models in the finite element codes used to perform nonlinear elastic-plastic analysis.

  8. Cyclic delamination behavior of plasma-sprayed hydroxyapatite coating on Ti-6Al-4V substrates in simulated body fluid.

    PubMed

    Otsuka, Yuichi; Kawaguchi, Hayato; Mutoh, Yoshiharu

    2016-10-01

    This study aimed to clarify the effect of a simulated body fluid (SBF) on the cyclic delamination behavior of a plasma-sprayed hydroxapatite (HAp) coating. A HAp coating is deposited on the surfaces of surgical metallic materials in order to enhance the bond between human bone and such surfaces. However, the HAp coating is susceptible to delamination by cyclic loading from the patient's gait. Although hip joints are subjected to both positive and negative moments, only the effects of tensile bending stresses on vertical crack propagation behavior have been investigated. Thus, the cyclic delamination behavior of a HAp coating was observed at the stress ratio R=-1 in order to determine the effects of tensile/compressive loading on the delamination behavior. The delamination growth rate increased with SBF immersion, which decreased the delamination life. Raman spectroscopy analysis revealed that the selective phase dissolution in the HAp coating was promoted at interfaces. Finite element analysis revealed that the energy release rate Gmax showed a positive value even in cases with compressive loading, which is a driving force for the delamination of a HAp coating. A prediction model for the delamination growth life was developed that combines a fracture mechanics parameter with the assumed stress-dependent dissolution rate. The predicted delamination life matched the experimental data well in cases of lower stress amplitudes with SBF. PMID:27287152

  9. Measurement of stress strain and vibrational properties of tendons

    NASA Astrophysics Data System (ADS)

    Revel, Gian Marco; Scalise, Alessandro; Scalise, Lorenzo

    2003-08-01

    The authors present a new non-intrusive experimental procedure based on laser techniques for the measurement of mechanical properties of tendons. The procedure is based on the measurement of the first resonance frequency of the tendon by laser Doppler vibrometry during in vitro tensile experiments, with the final aim of establishing a measurement procedure to perform the mechanical characterization of tendons by extracting parameters such as the resonance frequency, also achievable during in vivo investigation. The experimental procedure is reported, taking into account the need to simulate the physiological conditions of the Achilles tendon, and the measurement technique used for the non-invasive determination of tendon cross-sectional area during tensile vibration tests at different load levels is described. The test procedure is based on a tensile machine, which measures longitudinal tendons undergoing controlled load conditions. Cross-sectional area is measured using a new non-contact procedure for the measurement of tendon perimeter (repeatability of 99% and accuracy of 2%). For each loading condition, vibration resonance frequency and damping, cross-sectional area and tensile force are measured, allowing thus a mechanical characterization of the tendon. Tendon stress-strain curves are reported. Stress-strain curves have been correlated to the first vibration resonance frequency and damping of the tendon measured using a single-point laser Doppler vibrometer. Moreover, experimental results have been compared with a theoretical model of a vibrating cord showing discrepancies. In vitro tests are reported, demonstrating the validity of the method for the comparison of different aged rabbit tendons.

  10. Multiaxial Cyclic Thermoplasticity Analysis with Besseling's Subvolume Method

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.

    1983-01-01

    A modification was formulated to Besseling's Subvolume Method to allow it to use multilinear stress-strain curves which are temperature dependent to perform cyclic thermoplasticity analyses. This method automotically reproduces certain aspects of real material behavior important in the analysis of Aircraft Gas Turbine Engine (AGTE) components. These include the Bauschinger effect, cross-hardening, and memory. This constitutive equation was implemented in a finite element computer program called CYANIDE. Subsequently, classical time dependent plasticity (creep) was added to the program. Since its inception, this program was assessed against laboratory and component testing and engine experience. The ability of this program to simulate AGTE material response characteristics was verified by this experience and its utility in providing data for life analyses was demonstrated. In this area of life analysis, the multiaxial thermoplasticity capabilities of the method have proved a match for the actual AGTE life experience.

  11. Cyclic Graft Copolymer Unimolecular Micelles: Effects of Cyclization on Particle Morphology and Thermoresponsive Behavior

    PubMed Central

    2016-01-01

    The synthesis of cyclic amphiphilic graft copolymers with a hydrophobic polycarbonate backbone and hydrophilic poly(N-acryloylmorpholine) (PNAM) side arms via a combination of ring-opening polymerization (ROP), cyclization via copper-catalyzed azide–alkyne cycloaddition (CuAAC), and reversible addition–fragmentation chain transfer (RAFT) polymerization is reported. The ability of these cyclic graft copolymers to form unimolecular micelles in water is explored using a combination of light scattering, small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryoTEM) analyses, where particle size was found to increase with increasing PNAM arm length. Further analysis revealed differences in the solution conformations, loading capabilities, and morphologies of the cyclic graft copolymers in comparison to equivalent linear graft copolymer unimolecular micelle analogues. Furthermore, the cyclic and linear graft copolymers were found to exhibit significantly different cloud point temperatures. This study highlights how subtle changes in polymer architecture (linear graft copolymer versus cyclic graft copolymer) can dramatically influence a polymer’s nanostructure and its properties. PMID:27175037

  12. Cyclic Load Effects on Long Term Behavior of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Chamis, C. C.

    1996-01-01

    A methodology to compute the fatigue life for different ratios, r, of applied stress to the laminate strength based on first ply failure criteria combined with thermal cyclic loads has been developed and demonstrated. Degradation effects resulting from long term environmental exposure and thermo-mechanical cyclic loads are considered in the simulation process. A unified time-stress dependent multi-factor interaction equation model developed at NASA Lewis Research Center has been used to account for the degradation of material properties caused by cyclic and aging loads. Effect of variation in the thermal cyclic load amplitude on a quasi-symmetric graphite/epoxy laminate has been studied with respect to the impending failure modes. The results show that, for the laminate under consideration, the fatigue life under combined mechanical and low thermal amplitude cyclic loads is higher than that due to mechanical loads only. However, as the thermal amplitude increases, the life also decreases. The failure mode changes from tensile under mechanical loads only to the compressive and shear at high mechanical and thermal loads. Also, implementation of the developed methodology in the design process has been discussed.

  13. Behavior of nickel-base superalloy single crystals under thermal-mechanical fatigue

    NASA Astrophysics Data System (ADS)

    Fleury, E.; Rémy, L.

    1994-12-01

    The thermal-mechanical fatigue behavior of AM1 nickel-base superalloy single crystals is studied using a cycle from 600 °C to 1100 °C. It is found to be strongly dependent on crystallo-graphic orientation, which leads to different shapes of the stress-strain hysteresis loops. The cyclic stress-strain response is influenced by variation in Young’s modulus, flow stress, and cyclic hardening with temperature for every crystallographic orientation. The thermalmechanical fatigue life is mainly spent in crack growth. Two main crack-initiation mechanisms occur, depending on the mechanical strain range. Oxidation-induced cracking is the dominant damage mechanism in the lifetime of interest for turbine blades.

  14. Evaluation of the cyclic behavior of aircraft turbine disk alloys, part 2

    NASA Technical Reports Server (NTRS)

    Cowles, B. A.; Warren, J. R.

    1980-01-01

    Several nickel-base aircraft turbine disk superalloys were evaluated at 650 C for resistance to fatigue crack initiation and propagation under cyclic and cyclic/dwell conditions. Controlled strain low cycle fatigue (LCF) and controlled load crack propagation tests were performed and results utilized to provide a direct comparison among the alloys. Tests were performed on selected alloys to evaluate the effects of hold times, mean stresses, stress-dwell cycle types, inert environment, and contractor test methods. At the lower total strain ranges of interest, the alloys exhibited generally increasing initiation life with increasing tensile strength for both cyclic (0.33 Hz) and cyclic/dwell (900-sec hold per cycle) conditions. Rank order of the alloys by LCF initiation life changed substantially at higher strain ranges, approaching the rank order expected from monotonic tensile ductilities. The effect of the 900 sec (15 min) hold time fatigue life varied significantly from alloy to alloy. Generally, the higher-strength, finer-grained alloys exhibited more significant reductions in fatigue life due to the dwell. The effects of mean strain were found to be negligible and the effects of mean stress were pronounced. At high strain ranges the mean stress was near zero and did not contribute to reduction in life. At low strain ranges, however, mean stresses were large and significant reductions in LCF lives occurred.

  15. Code System to Calculate Stress-Strains from Transient Pressures.

    Energy Science and Technology Software Center (ESTSC)

    2000-04-28

    Version 00 The SPIRT (Stress-strains from Pressures Instigated by Reactor Transients) program was developed to predict the pressure generated by the rapid dispersal of molten UO2 from power-reactor-type fuel rods into the coolant water. This rapid dispersal of molten fuel results from very high-power excursions initiated by the rapid insertion of reactivity. SPIRT was used in the safety analyses of the ATR and ETR. The program can analyze the response of one-dimensional plane, cylindrical, andmore » spherical geometric configurations to pressure-generating heat sources with free-surface or fixed-surface boundary conditions. SPIRT can calculate the response of systems to the dispersal of hot fuel particles as a function of the following variables: enthalpy of fuel at time of dispersal, rate at which fuel is dispersed, size of dispersed fuel droplets, dispersal density of fuel (grams of fuel dispersed per cc of water), quality of water at time of fuel dispersal, enthalpy of water at time of fuel dispersal, system pressure at time of fuel dispersal, and the size and constituency of the medium enveloping the dispersed fuel. By holding all but one of the listed variables constant, and varying that one, the program computes the relative effect of that variable upon the response of systems to the dispersal of hot fuel. SPIRT exists as two releases one, written for UO2 fuel is called SPIRTU; the second, for uranium-aluminide fuel is identified as SPIRTA.« less

  16. Cyclic tension compression testing of AHSS flat specimens with digital image correlation system

    NASA Astrophysics Data System (ADS)

    Knoerr, Lay; Sever, Nimet; McKune, Paul; Faath, Timo

    2013-12-01

    A cyclic tension-compression testing program was conducted on flat specimens of TPN-W®780 (Three Phase Nano) and DP980 (Dual Phase) Advanced High Strength Steels (AHSS). This experimental method was enabled utilizing an anti-buckling clamping device performed in a test machine, and the surface strains along the thickness edge are measured with a three-dimensional Digital Image Correlation (DIC) system. The in-plane pre-strain and reversed strain values, at specified strain rates, are investigated to observe the potential plastic flow and the nonlinear strain hardening behavior of the materials. The validity of the test results is established with the monotonic tension tests, to substantiate the true stress-strain curves corrected for the frictional and biaxial stresses induced by the clamping device. A process method for analyzing the correction using a macro script is shown to simplify the output of the true stress-strain results for material model calibration. An in progress study to validate the forming and spring-back predictive capabilities of a calibrated TPN-W®780 complex material model to an actual stamping of an automotive component will demonstrate the usefulness of the experimental cyclic test method. Suggestions to improve the testing, strain analysis and calibration of the model parameters are proposed for augmented use of this test method.

  17. A Cyclic Mimic of HIV Tat Differentiates Similar TAR RNAs on the Basis of Distinct Dynamic Behaviors.

    PubMed

    Lu, Jia; Nguyen, Larry; Zhao, Liang; Xia, Tianbing; Qi, Xin

    2015-06-16

    Efforts toward the development of RNA-based drug leads have been challenging because of the complexity and dynamic nature of RNA structures as therapeutic targets. The transactivation response (TAR) RNA and cognate Tat protein of HIV have long been recognized as promising antiviral targets, and recent works have identified potentially potent inhibitors of the viral RNA-protein interaction. A new class of such inhibitors, conformationally constrained cyclic peptide mimetics of Tat, has been demonstrated to inhibit the HIV life cycle. We have previously probed the complexity and dynamics of TAR RNAs in their free states, as well as conformational shifting by various peptide and small molecule ligands. In this work, we have used an ultrafast dynamics approach to probe the interactions between TAR RNAs and one of the representatives of cyclic peptide inhibitors, L22. Our studies demonstrated that cyclic L22 specifically recognizes TAR RNAs with a unique single binding site compared to two binding sites for linear Tat protein. Although both Tat and L22 bind to the TAR RNAs as a β-hairpin structure, cyclization in L22 allows it to be a more efficient ligand from a population shifting perspective. This study provided unique insights into drug design with desired properties to differentiate similar structures based on distinct dynamic behaviors. PMID:26016940

  18. Long-Term Cyclic Oxidation Behavior of Uncoated and Coated Re-108 and In-939 at 980 and 870 C

    NASA Technical Reports Server (NTRS)

    Lee, K. N.; Barrett, C. A.; Smith, J.

    2000-01-01

    Very long-term cyclic oxidation behavior of Re108 and In939 with and without a protective coating was evaluated at 980 and 870 C, respectively. Re-108 and In-939 without a protective coating began to show a rapid weight loss at 3000 h due to scale spallation, indicating the need for an oxidation protective coating for longer than thousands of hours of oxidative life. NiAl-base coatings of a vapor phase aluminide (VPA), a pack aluminide (CODEP), and a slurry paint aluminide (SERMALOY J) were applied on Re-108 and In-939. The VPA and CODEP on Re-108 and all three coatings on In-939 showed excellent cyclic oxidation resistance out to 10,000 h. Coated alloys were annealed in an inert atmosphere to determine the loss of Al from the coating into the alloy substrate through diffusion. The Al loss from the coating through diffusion was twice as great as the Al loss through oxidation after 10,000 h of cyclic exposure. The oxidation life of VPA-coated Re-108 was estimated by calculating the amount of Al initially available for protective oxidation and the amount of Al lost through oxidation and diffusion.

  19. Long-Term Cyclic Oxidation Behavior of Uncoated and Coated Re-108 and In-939 at 980 and 870 C

    NASA Technical Reports Server (NTRS)

    Lee, K. N.; Barrett, C. A.; Smith, J.

    1999-01-01

    Very long-term cyclic oxidation behavior of Re-108 and ln-939 with and without a protective coating was evaluated at 980 and 870 C, respectively. Re-108 and ln-939 without a protective coating began to show rapid weight loss at 3000 h due to scale spallation, indicating the need for an oxidation protective coating for longer than thousands of hours of oxidative life. NiAl-base coatings of a vapor phase aluminide (VPA), a pack aluminide (CODEP), and a slurry paint aluminide (SERMALOY J) were applied on Re-108 and ln-939. VPA and CODEP on Re-108 and all three coatings on ln-939 showed excellent cyclic oxidation resistance out to 10000 hr. Coated alloys were annealed in an inert atmosphere to determine the loss of Al from the coating into the alloy substrate through diffusion. The Al loss from the coating through diffusion was twice as great as the Al loss through oxidation after 10000 h of cyclic exposure. Oxidation life of VPA-coated Re-108 was estimated by calculating the amount of Al initially available for protective oxidation and the amount of Al lost through oxidation and diffusion.

  20. Comparison of isothermal and cyclic oxidation behavior of twenty-five commercial sheet alloys at 1150 C

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Lowell, C. E.

    1974-01-01

    The cyclic and isothermal oxidation resistance of 25 high-temperature Ni-, Co-, and Fe-base sheet alloys after 100 hours in air at 1150 C was compared. The alloys were evaluated in terms of their oxidation, scaling, and vaporization rates and their tendency for scale spallation. These values were used to develop an oxidation rating parameter based on effective thickness change, as calculated from a mass balance. The calculated thicknesses generally agreed with the measured values, including grain boundary oxidation, to within a factor of 3. Oxidation behavior was related to composition, particularly Cr and Al content.

  1. The corrosion behavior of Alloy 52 weld metal in cyclic hydrogenated and oxygenated water chemistry in high temperature aqueous environment

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Shoji, Tetsuo

    2015-06-01

    The corrosion behavior of Alloy 52 weld metal in cyclic hydrogenated and oxygenated water chemistry in high temperature water is studied by in situ monitoring corrosion potential (Ecorr), contact electric resistance (CER) and electrochemical impedance measurements (EIS), and ex situ scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis. The Ecorr and film resistance show large change when the environment is changed from hydrogenated water to oxygenated water and changeable with changing environment while the morphology and composition only show obvious distinction in the first cycle. The main factor controlling the electric/electrochemical properties of the oxide film is Ecorr.

  2. Quasilinear Viscoelastic Behavior of Bovine Extraocular Muscle Tissue

    PubMed Central

    Yoo, Lawrence; Kim, Hansang; Gupta, Vijay; Demer, Joseph L.

    2009-01-01

    Purpose Until now, there has been no comprehensive mathematical model of the nonlinear viscoelastic stress-strain behavior of extraocular muscles (EOMs). The present study describes, with the use of a quasilinear viscoelastic (QLV) model, the nonlinear, history-dependent viscoelastic properties and elastic stress-strain relationship of EOMs. Methods Six oculorotary EOMs were obtained fresh from a local abattoir. Longitudinally oriented specimens were taken from different regions of the EOMs and subjected to uniaxial tensile, relaxation, and cyclic loading testing with the use of an automated load cell under temperature and humidity control. Twelve samples were subjected to uniaxial tensile loading with 1.7%/s strain rate until failure. Sixteen specimens were subjected to relaxation studies over 1500 seconds. Cyclic loading was performed to validate predictions of the QLV model characterized from uniaxial tensile loading and relaxation data. Results Uniform and highly repeatable stress-strain behavior was observed for 12 specimens extracted from various regions of all EOMs. Results from 16 different relaxation trials illustrated that most stress relaxation occurred during the first 30 to 60 seconds for 30% extension. Elastic and reduced relaxation functions were fit to the data, from which a QLV model was assembled and compared with cyclic loading data. Predictions of the QLV model agreed with observed peak cyclic loading stress values to within 8% for all specimens and conditions. Conclusions Close agreement between the QLV model and the relaxation and cyclic loading data validates model quantification of EOM mechanical properties and will permit the development of accurate overall models of mechanics of ocular motility and strabismus. PMID:19357357

  3. Novel behavior of the chromatographic separation of linear and cyclic polymers.

    PubMed

    Montenegro-Burke, J Rafael; Bennett, Jackson M; McLean, John A; Hercules, David M

    2016-01-01

    In various polymerization processes, the formation of a wide variety of chains, not only in length but also in chemical composition, broadly complicates comprehensive polymer characterization. In this communication, we compare different stationary and mobile phases for the analysis of complex polymer mixtures via size-exclusion chromatography-mass spectrometry (SEC-MS). To the best of our knowledge, we report novel chromatographic effects for the separation of linear and cyclic oligomers for polyesters (PE) and polyurethanes (PUR). A complete separation for the different structures was achieved for both polymer types with a single-solvent system (acetonitrile, ACN) and without extensive optimization. Additionally, cyclic species were found to show an inverse elution profile compared to their linear counterparts, suggesting distinct physical properties between species. PMID:26637218

  4. Measurement of stress-strain behaviour of human hair fibres using optical techniques.

    PubMed

    Lee, J; Kwon, H J

    2013-06-01

    Many studies have presented stress-strain relationship of human hair, but most of them have been based on an engineering stress-strain curve, which is not a true representation of stress-strain behaviour. In this study, a more accurate 'true' stress-strain curve of human hair was determined by applying optical techniques to the images of the hair deformed under tension. This was achieved by applying digital image cross-correlation (DIC) to 10× magnified images of hair fibres taken under increasing tension to estimate the strain increments. True strain was calculated by summation of the strain increments according to the theoretical definition of 'true' strain. The variation in diameter with the increase in longitudinal elongation was also measured from the 40× magnified images to estimate the Poisson's ratio and true stress. By combining the true strain and the true stress, a true stress-strain curve could be determined, which demonstrated much higher stress values than the conventional engineering stress-strain curve at the same degree of deformation. Four regions were identified in the true stress-strain relationship and empirical constitutive equations were proposed for each region. Theoretical analysis on the necking condition using the constitutive equations provided the insight into the failure mechanism of human hair. This analysis indicated that local thinning caused by necking does not occur in the hair fibres, but, rather, relatively uniform deformation takes place until final failure (fracture) eventually occurs. PMID:23237580

  5. Neutron Diffraction Study on Plastic behavior of a Nickel-Based Alloy Under the Monotonic-Tension and the Low-Cyclic-Fatigue Experiments

    SciTech Connect

    Huang, E.-W.; Barabash, R.; Clausen, B.; Wang, Y.; Yang, R.; Li, L.; Choo, H.; Liaw, P.K.

    2007-11-02

    The plastic behavior of an annealed HASTELLOY C-22HS alloy, a face-centered cubic (FCC), nickel-based superalloy, was examined by in-situ neutron-diffraction measurements at room temperature. Both monotonic-tension and low-cycle-fatigue experiments were conducted. Monotonic-tension straining and cyclic-loading deformation were studied as a function of stress. The plastic behavior during deformation is discussed in light of the relationship between the stress and dislocation-density evolution. The calculated dislocation-density evolution within the alloy reflects the strain hardening and cyclic hardening/softening. Experimentally determined lattice strains are compared to verify the hardening mechanism at selected stress levels for tension and cyclic loadings. Combined with calculations of the dislocation densities, the neutron-diffraction experiments provide direct information about the strain and cyclic hardening of the alloy.

  6. Simulation of Stress-Strain Curves of Polyester and Viscose Filaments

    NASA Astrophysics Data System (ADS)

    Ghosh, Anindya; Das, Subhasis; Saha, Bapi

    2015-10-01

    Eyring's non-linear visco-elastic model has been used to simulate stress-strain behaviours of polyester and viscose filaments. The complex mathematical equations of Eyring's model for curve fitting are handled by non-traditional optimization methods such as genetic algorithm. The findings show that Eyring's model can be used to simulate the stress-strain behaviours of the polyester and viscose filaments with reasonable degree of accuracy. It can also decipher the underlying molecular mechanism of the stress-strain behaviours.

  7. Correction of the post -- necking true stress -- strain data using instrumented nanoindentation

    NASA Astrophysics Data System (ADS)

    Romero Fonseca, Ivan Dario

    The study of large plastic deformations has been the focus of numerous studies particularly in the metal forming processes and fracture mechanics fields. A good understanding of the plastic flow properties of metallic alloys and the true stresses and true strains induced during plastic deformation is crucial to optimize the aforementioned processes, and to predict ductile failure in fracture mechanics analyzes. Knowledge of stresses and strains is extracted from the true stress-strain curve of the material from the uniaxial tensile test. In addition, stress triaxiality is manifested by the neck developed during the last stage of a tensile test performed on a ductile material. This necking phenomenon is the factor responsible for deviating from uniaxial state into a triaxial one, then, providing an inaccurate description of the material's behavior after the onset of necking. The research of this dissertation is aimed at the development of a correction method for the nonuniform plastic deformation (post-necking) portion of the true stress-strain curve. The correction proposed is based on the well-known relationship between hardness and flow (yield) stress, except that instrumented nanoindentation hardness is utilized rather than conventional macro or micro hardness. Three metals with different combinations of strain hardening behavior and crystal structure were subjected to quasi-static tensile tests: power-law strain hardening low carbon G10180 steel (BCC) and electrolytic tough pitch copper C11000 (FCC), and linear strain hardening austenitic stainless steel S30400 (FCC). Nanoindentation hardness values, measured on the broken tensile specimen, were converted into flow stress values by means of the constraint factor C from Tabor's, the representative plastic strainepsilonr and the post-test true plastic strains measured. Micro Vickers hardness testing was carried out on the sample as well. The constraint factors were 5.5, 4.5 and 4.5 and the representative plastic

  8. Behavior and design of reinforced concrete column-type lapped splices subjected to high-intensity cyclic loading

    NASA Astrophysics Data System (ADS)

    Sivakumar, B.; White, R. N.; Gergely, P.

    1982-10-01

    The behavior and design of lapped splices in reinforced concrete column type specimens under high intensity flexural cyclic loads was studied. Special attention is focused on the transverse steel requirements of specimens with more than two splices in a layer; the use of offsets in spliced bars; the effect of concrete strength on splice strength and behavior; and the strength of epoxy-repaired splices. Procedures are provided for the design of reinforced lapped splices to sustain at least twenty reversing load cycles beyond yield and a maximum rebar strain at the splice of at least 2.5 times the yield strain. The key aspect of the design is the provision of closely spaced uniformly distributed stirrup ties in the splice region. Equations are developed for the spacing of stirrups and the minimum splice length requirement.

  9. The long-term, cyclic-oxidation behavior of selected chromia-forming alloys

    SciTech Connect

    Gleeson, B.; Harper, M.A.

    1998-04-01

    Long-term, cyclic-oxidation testing in still air for about 2 years (720 days) at 982 C and 1 year (360 days) at 1093, 1149, and 1204 C has been conducted on the commercial, high-temperature chromia-forming HR-120, HR-160, and 230 alloys (all trademarks of Haynes International, Inc.). Each thermal cycle consisted of 30 days at temperature followed by about 4 hr at ambient. The results demonstrated the significant effects of alloy composition on long-term, cyclic-oxidation resistance. Each of the alloys exhibited scale spallation; however, the manner by which spallation occurred varied between the alloys. The 230 alloy, which contains 0.02 wt.% La, exhibited partial scale spallation, thus allowing for the easier formation of a protective or semiprotective Cr{sub 2}O{sub 3}-rich scale during subsequent oxidation. The HR-160 alloy exhibited complete spallation owing largely to its relatively high silicon content (2.75 wt.%). However, the silicon was also beneficial in promoting protective or semiprotective scale formation when the exposed alloy was subsequently oxidized. The HR-120 alloy showed the poorest cyclic-oxidation resistance, due in part to poor scale adhesion and the tendency of the iron in this alloy (33 wt.%) to eventually oxidize and result in the formation of a less-protective scale. All of the alloys underwent internal attack in the form of internal oxidation and void formation. In most cases, the extent of internal attack was significantly greater than that of metal loss.

  10. Design of Stress-Strain Measuring System for Bulldozing Plate Based on Virtual Instrument Technology

    NASA Astrophysics Data System (ADS)

    Xu, S. C.; Li, J. Q.; Zhang, R.

    2006-10-01

    Soil is a kind of discrete, multiphase compound that is composed of soil particles, liquid and air. When soil is disturbed by bulldozing plate, the mechanical behavior of the soil will become very complex. Based on the law of action and reaction, the dynamic mechanical behavior of disturbed soil was indirectly analyzed by measuring and studying the forces on the bulldozing plate by soil currently, so a stress-strain virtual measuring system for bulldozing plate, which was designed by the graphical programming language DASYLab, was used to measure the horizontal force Fz acting on the bulldozing plate. In addition, during the course of design, the experimental complexities and the interferential factors influencing on signal logging were analyzed when bulldozing plate worked, so the anti-jamming methods of hardware and software technology were adopted correlatively. In the end, the horizontal force Fz was analyzed with Error Theory, the result shown that the quantificational analysis of Fz were identical to the qualitative results of soil well, and the error of the whole test system is under 5 percent, so the tress-strain virtual measuring system was stable and credible.

  11. Stress-strain relations for swelling anhydritic clay rocks – A review

    NASA Astrophysics Data System (ADS)

    Breuer, Simon; Blum, Philipp; Butscher, Christoph

    2015-04-01

    The swelling of clay-sulfate rocks is a major threat in tunnel engineering, causing serious damage to tunnels and producing high additional costs during tunnel construction and operation. The swelling leads to geomechanical processes that may result in heave of the tunnel invert, destruction of the lining or uplift of the entire tunnel section. Heave-pressure-time relations are needed when predictions should be made about the mechanical behavior of swelling rock. For pure clay rocks, there is a linear relation between the swelling heave (strain) and the logarithm of pressure (Grob 1972). A generally accepted relation for clay-sulfate rocks, however, is still lacking to date. Therefore, finding appropriate and sustainable counter measures for an actual tunneling project affected by swelling remains extremely difficult. Grob (1972) proposed the linear relation between heave and the logarithm of pressure ("semi-logarithmic swelling law") not only for clay rocks, but also for clay-sulfate rocks. Pimentel (2007), however, presented laboratory experiments indicating that the semi-logarithmic swelling law may be inadequate for describing the swelling of clay-sulfate rocks. The laboratory tests revealed three different stages in the swelling process, including minimal deformation and prevented gypsum crystallization at high pressures (> 6 MPa); large deformation and gypsum crystallization at medium pressures; and only small deformation, possibly along with gypsum dissolution, at low pressures (< 4 MPa). He pointed at a "tri-linear" relation to describe the different stages. Kirschke (1995) generally doubts the existence of a fixed relation between swelling strain and (final) pressure. According to him, swelling pressures and their temporal development are controlled by water inflow into the rock, which cannot be reflected by general strain-stress relations. The present study critically reviews stress-strain relations for swelling anhydritic clay rocks proposed by various

  12. True stress-strain curves of cold worked stainless steel over a large range of strains

    NASA Astrophysics Data System (ADS)

    Kamaya, Masayuki; Kawakubo, Masahiro

    2014-08-01

    True stress-strain curves for cold worked stainless steel were obtained over a range of strains that included a large strain exceeding the strain for the tensile strength (post-necking strain). A specified testing method was used to obtain the stress-strain curves in air at room temperature. The testing method employed the digital image correlation (DIC) technique and iterative finite element analyses (FEA) and was referred to as IFD (Iteration FEA procedure based on DIC measurement) method. Although hourglass type specimens have been previously used for the IFD method, in this study, plate specimens with a parallel gage section were used to obtain accurate yield and tensile strengths together with the stress-strain curves. The stress-strain curves including the post-necking strain were successfully obtained by the IFD method, and it was shown that the stress-strain curves for different degrees of cold work collapsed onto a single curve when the offset strain was considered. It was also shown that the Swift type constitutive equation gave good regression for the true stress-strain curves including the post-necking strain regardless of the degree of cold work, although the Ramberg-Osgood type constitutive equation showed poor fit. In the regression for the Swift type constitutive equation, the constant for power law could be assumed to be nS = 0.5.

  13. Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, Sai; Karthikeyan, J.

    2009-01-01

    The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.

  14. Stresses, strains, and surface pressures in the lung caused by its weight.

    NASA Technical Reports Server (NTRS)

    West, J. B.; Matthews, F. L.

    1972-01-01

    In an effort to understand how the lung is deformed by its own weight, we have analyzed the distribution of regional expansion, stresses, and surface pressures in a theoretical elastic lung-shaped model using the technique of finite elements. In the upright position, the parenchyma was most expanded at the apex and least at the base. Stresses in both the vertical and lateral directions were maximal at the apex. As the lung was inflated from very low volumes to total lung capacity, parenchymal expansion and stress at the apex first decreased, then increased. This behavior can be explained by the increasing rigidity of the expanded lung which enabled it to resist distortion by its own weight. At functional residual capacity, the stress at the apex was near its minimum. The differences in intrapleural pressure down the lung were volume dependent, increasing at very low volumes. In the inverted lung, the regional differences in stress, strain, and surface pressures were less marked because of the shape of the chest.

  15. Instrumentation for fast-scan cyclic voltammetry combined with electrophysiology for behavioral experiments in freely moving animals

    NASA Astrophysics Data System (ADS)

    Takmakov, Pavel; McKinney, Collin J.; Carelli, Regina M.; Wightman, R. Mark

    2011-07-01

    Fast-scan cyclic voltammetry is a unique technique for sampling dopamine concentration in the brain of rodents in vivo in real time. The combination of in vivo voltammetry with single-unit electrophysiological recording from the same microelectrode has proved to be useful in studying the relationship between animal behavior, dopamine release and unit activity. The instrumentation for these experiments described here has two unique features. First, a 2-electrode arrangement implemented for voltammetric measurements with the grounded reference electrode allows compatibility with electrophysiological measurements, iontophoresis, and multielectrode measurements. Second, we use miniaturized electronic components in the design of a small headstage that can be fixed on the rat's head and used in freely moving animals.

  16. Microstructural and compositional contributions towards the mechanical behavior of aging human bone measured by cyclic and impact reference point indentation.

    PubMed

    Abraham, Adam C; Agarwalla, Avinesh; Yadavalli, Aditya; Liu, Jenny Y; Tang, Simon Y

    2016-06-01

    The assessment of fracture risk often relies primarily on measuring bone mineral density, thereby accounting for only a single pathology: the loss of bone mass. However, bone's ability to resist fracture is a result of its biphasic composition and hierarchical structure that imbue it with high strength and toughness. Reference point indentation (RPI) testing is designed to directly probe bone mechanical behavior at the microscale in situ, although it remains unclear which aspects of bone composition and structure influence the results at this scale. Therefore, our goal in this study was to investigate factors that contribute to bone mechanical behavior measured by cyclic reference point indentation, impact reference point indentation, and three-point bending. Twenty-eight female cadavers (ages 57-97) were subjected to cyclic and impact RPI in parallel at the unmodified tibia mid-diaphysis. After RPI, the middiaphyseal tibiae were removed, scanned using micro-CT to obtain cortical porosity (Ct.Po.) and tissue mineral density (TMD), then tested using three-point bending, and lastly assayed for the accumulation of advanced glycation end-products (AGEs). Both the indentation distance increase from cyclic RPI (IDI) and bone material strength index from impact RPI (BMSi) were significantly correlated with TMD (r=-0.390, p=0.006; r=0.430, p=0.002; respectively). Accumulation of AGEs was significantly correlated with IDI (r=0.281, p=0.046), creep indentation distance (CID, r=0.396, p=0.004), and BMSi (r=-0.613, p<0.001). There were no significant relationships between tissue TMD or AGEs accumulation with the quasi-static material properties. Toughness decreased with increasing tissue Ct.Po. (r=-0.621, p<0.001). Other three-point bending measures also correlated with tissue Ct.Po. including the bending modulus (r=-0.50, p<0.001) and ultimate stress (r=-0.56, p<0.001). The effects of Ct.Po. on indentation were less pronounced with IDI (r=0.290, p=0.043) and BMSi (r=-0.299, p

  17. Cyclic Regulation of Sensory Perception by a Female Hormone Alters Behavior.

    PubMed

    Dey, Sandeepa; Chamero, Pablo; Pru, James K; Chien, Ming-Shan; Ibarra-Soria, Ximena; Spencer, Kathryn R; Logan, Darren W; Matsunami, Hiroaki; Peluso, John J; Stowers, Lisa

    2015-06-01

    Females may display dramatically different behavior depending on their state of ovulation. This is thought to occur through sex-specific hormones acting on behavioral centers in the brain. Whether incoming sensory activity also differs across the ovulation cycle to alter behavior has not been investigated. Here, we show that female mouse vomeronasal sensory neurons (VSNs) are temporarily and specifically rendered "blind" to a subset of male-emitted pheromone ligands during diestrus yet fully detect and respond to the same ligands during estrus. VSN silencing occurs through the action of the female sex-steroid progesterone. Not all VSNs are targeted for silencing; those detecting cat ligands remain continuously active irrespective of the estrous state. We identify the signaling components that account for the capacity of progesterone to target specific subsets of male-pheromone responsive neurons for inactivation. These findings indicate that internal physiology can selectively and directly modulate sensory input to produce state-specific behavior. PAPERCLIP. PMID:26046438

  18. Data demonstrating the effects of build orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel.

    PubMed

    Yadollahi, Aref; Simsiriwong, Jutima; Thompson, Scott M; Shamsaei, Nima

    2016-06-01

    Axial fully-reversed strain-controlled ([Formula: see text]) fatigue experiments were performed to obtain data demonstrating the effects of building orientation (i.e. vertical versus horizontal) and heat treatment on the fatigue behavior of 17-4 PH stainless steel (SS) fabricated via Selective Laser Melting (SLM) (Yadollahi et al., submitted for publication [1]). This data article provides detailed experimental data including cyclic stress-strain responses, variations of peak stresses during cyclic deformation, and fractography of post-mortem specimens for SLM 17-4 PH SS. PMID:26955653

  19. Data demonstrating the effects of build orientation and heat treatment on fatigue behavior of selective laser melted 17–4 PH stainless steel

    PubMed Central

    Yadollahi, Aref; Simsiriwong, Jutima; Thompson, Scott M.; Shamsaei, Nima

    2016-01-01

    Axial fully-reversed strain-controlled (R=−1) fatigue experiments were performed to obtain data demonstrating the effects of building orientation (i.e. vertical versus horizontal) and heat treatment on the fatigue behavior of 17–4 PH stainless steel (SS) fabricated via Selective Laser Melting (SLM) (Yadollahi et al., submitted for publication [1]). This data article provides detailed experimental data including cyclic stress-strain responses, variations of peak stresses during cyclic deformation, and fractography of post-mortem specimens for SLM 17–4 PH SS. PMID:26955653

  20. Influence of deformation behavior, oxydation, and temperature on the long time cyclic stress behavior of high temperature steels

    NASA Technical Reports Server (NTRS)

    Maile, K.

    1982-01-01

    The influence of different parameters on the creep-fatigue behavior of several steel alloys was investigated. The higher the temperature the lower the crack initiation value. Pauses during the cycle reduce the damage. Oxidation reduces and protective gas increases the lifetime. Prior loading and prior deformation reduce the lifetime. Short annealing slightly affects the cycle stress behavior. The test results do not satisfactorily agree with methods of extrapolation and damage accumulation.

  1. Stress-strain analysis of a (0/90)sub 2 symmetric titanium matrix laminate subjected to a generic hypersonic flight profile

    SciTech Connect

    Mirdamadi, M.; Johnson, W.S.

    1992-03-01

    Cross ply laminate behavior of Ti-15V-3Cr-3Al-3Sn (Ti-15-3) matrix reinforced with continuous silicon carbide fibers (SCS-6) subjected to a generic hypersonic flight profile was evaluated experimentally and analytically. Thermomechanical fatigue test techniques were developed to conduct a simulation of a generic hypersonic flight profile. A micromechanical analysis was used. The analysis predicts the stress-strain response of the laminate and of the constituents in each ply during thermal and mechanical cycling by using only constituent properties as input. The fiber was modeled using a thermo-viscoplastic constitutive relation. The fiber transverse modulus was reduced in the analysis to simulate the fiber matrix interface failure. Excellent correlation was found between measured and predicted laminate stress-strain response due to generic hypersonic flight profile when fiber debonding was modeled.

  2. Stress-strain analysis of a (0/90)sub 2 symmetric titanium matrix laminate subjected to a generic hypersonic flight profile

    NASA Technical Reports Server (NTRS)

    Mirdamadi, Massoud; Johnson, W. Steven

    1992-01-01

    Cross ply laminate behavior of Ti-15V-3Cr-3Al-3Sn (Ti-15-3) matrix reinforced with continuous silicon carbide fibers (SCS-6) subjected to a generic hypersonic flight profile was evaluated experimentally and analytically. Thermomechanical fatigue test techniques were developed to conduct a simulation of a generic hypersonic flight profile. A micromechanical analysis was used. The analysis predicts the stress-strain response of the laminate and of the constituents in each ply during thermal and mechanical cycling by using only constituent properties as input. The fiber was modeled using a thermo-viscoplastic constitutive relation. The fiber transverse modulus was reduced in the analysis to simulate the fiber matrix interface failure. Excellent correlation was found between measured and predicted laminate stress-strain response due to generic hypersonic flight profile when fiber debonding was modeled.

  3. Cyclic oxidation behavior of beta+gamma overlay coatings on gamma and gamma+gamma-prime alloys

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Pilsner, B. H.; Carol, L. A.; Heckel, R. W.

    1984-01-01

    Detailed experimental studies of the cyclic oxidation behavior of low-pressure plasma sprayed beta+gamma coasting on gamma-phase Ni-Cr-Al alloys have shown the correlation of weight change, oxide type, and Cr and Al concentration-distance profiles as a function of oxidation time. Of special interest was the transition to breakway oxidation due to the loss of the Al flux to the oxide and the failure of the coated alloy to form an Al2O3-rich oxide scale. The experimental results on beta+gamma/gamma coating systems were used as the basis of a numerical model (ternary, semi-infinite, finite-difference analysis) which accurately predicted changes in Cr and Al concentration-distance profiles. The model was used to study parameters critical to enhancing the life of coatings which fail by a combination of Al loss in forming the oxide scale and Al loss via interdiffusion with the substrate alloy. Comparisons of beta+gamma/gamma coating behavior are made to the oxidation of coated gamma+gamma-prime substrates, both ternary Ni-Cr-Al alloys and Mar-M 247-type alloys.

  4. Apparatus for pre-stress-straining rod-type specimens in tension for in-situ passive fracture testing

    DOEpatents

    Wang, John Jy-an; Liu, Ken C.; Feng, Zhili

    2013-07-31

    A stress-strain testing apparatus imposes a stress-strain on a specimen while disposed in a controlled environment. Each end of the specimen is fastened to an end cap and a strain gage is attached to the specimen. An adjusting mechanism and a compression element are disposed between the end caps forming a frame for applying forces to the end caps and thereby stress-straining the specimen. The adjusting mechanism may be extended or retracted to increase or decrease the imposed stress-strain on the specimen, and the stress-strain is measured by the strain gage on the specimen while the apparatus is exposed to an environment such as high pressure hydrogen. Strain gages may be placed on the frame to measure stress-strains in the frame that may be caused by the environment.

  5. Ammonia arcjet engine behavior in a cyclic endurance test at 10 kW

    NASA Technical Reports Server (NTRS)

    Polk, J. E.; Goodfellow, K. D.; Pless, L. C.

    1992-01-01

    The behavior of a 30 kWe-class ammonia arcjet operated at 10 kWe during the 707 successful cycles of an endurance test is described. The propellant flow rate was 0.170 g/s, and the measured performance was about 630 s specific impulse at an efficiency of 0.34. Data obtained indicate that the terminal voltage increased over the first 300 cycles, and then remained approximately constant for the remainder of the test, which suggests that the cathode eroded initially and then reached a stable geometry. No major changes were observed in thruster performance. The test was terminated by a series of external arcs.

  6. Ammonia arcjet engine behavior in a cyclic endurance test at 10 kW

    NASA Astrophysics Data System (ADS)

    Polk, J. E.; Goodfellow, K. D.; Pless, L. C.

    1992-08-01

    The behavior of a 30 kWe-class ammonia arcjet operated at 10 kWe during the 707 successful cycles of an endurance test is described. The propellant flow rate was 0.170 g/s, and the measured performance was about 630 s specific impulse at an efficiency of 0.34. Data obtained indicate that the terminal voltage increased over the first 300 cycles, and then remained approximately constant for the remainder of the test, which suggests that the cathode eroded initially and then reached a stable geometry. No major changes were observed in thruster performance. The test was terminated by a series of external arcs.

  7. Crack Growth Behavior in the Threshold Region for High Cyclic Loading

    NASA Technical Reports Server (NTRS)

    Forman, R.; Figert, J.; Beek, J.; Ventura, J.; Martinez, J.; Samonski, F.

    2011-01-01

    The present studies show that fanning in the threshold regime is likely caused by other factors than a plastic wake developed during load shedding. The cause of fanning at low R-values is a result of localized roughness, mainly formation of a faceted crack surface morphology , plus crack bifurcations which alters the crack closure at low R-values. The crack growth behavior in the threshold regime involves both crack closure theory and the dislocation theory of metals. Research will continue in studying numerous other metal alloys and performing more extensive analysis, such as the variation in dislocation properties (e.g., stacking fault energy) and its effects in different materials.

  8. Enhancing the Electrochemical Behavior of Pure Copper by Cyclic Potentiodynamic Passivation: A Comparison between Coarse- and Nano-Grained Pure Copper

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, Arash; Imantalab, Omid; Attarzadeh, Farid Reza

    2016-07-01

    Electrochemical behavior of coarse- and nano-grained pure copper were modified and improved to a large extent by the application of cyclic potentiodynamic passivation. The efficacy of this method was evaluated on the basis of grain size which is of great importance in corrosion studies. In this study, the eight passes of accumulative roll bonding process at room temperature were successfully performed to produce nano-grained pure copper. Transmission electron microscopy image indicated that the average grain size reached below 100 nm after eight passes. On the basis of cyclic voltammetry and also the electrochemical tests performed after that, it was revealed that cyclic potentiodynamic passivation had a significant improving effect on the passive behavior of both coarse- and nano-grained samples. In addition, a superior behavior of nano-grained sample in comparison to coarse-grained one was distinguished by its smaller cyclic voltammogram loops, nobler free potentials, larger capacitive arcs in the Nyquist plots, and less charge carrier densities within the passive film.

  9. Combined-load stress-strain relationship for advanced fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sullivan, T. L.

    1975-01-01

    It was demonstrated experimentally that only one test specimen is required to determine the combined-load stress-strain relationships of a given fiber composite system. These relationships were determined using a thin angle-plied laminate tube and subjecting it to a number of combined-loading conditions. The measured data obtained are compared with theoretical predictions. Some important considerations associated with such a test are identified, and the significance of combined-load stress-strain relationships in certain practical designs are discussed.

  10. Wave simulation in biologic media based on the Kelvin-Voigt fractional-derivative stress-strain relation.

    PubMed

    Caputo, Michele; Carcione, José M; Cavallini, Fabio

    2011-06-01

    The acoustic behavior of biologic media can be described more realistically using a stress-strain relation based on fractional time derivatives of the strain, since the fractional exponent is an additional fitting parameter. We consider a generalization of the Kelvin-Voigt rheology to the case of rational orders of differentiation, the so-called Kelvin-Voigt fractional-derivative (KVFD) constitutive equation, and introduce a novel modeling method to solve the wave equation by means of the Grünwald-Letnikov approximation and the staggered Fourier pseudospectral method to compute the spatial derivatives. The algorithm can handle complex geometries and general material-property variability. We verify the results by comparison with the analytical solution obtained for wave propagation in homogeneous media. Moreover, we illustrate the use of the algorithm by simulation of wave propagation in normal and cancerous breast tissue. PMID:21601139

  11. Stress-strain state of mechanical rebar couplings

    NASA Astrophysics Data System (ADS)

    Klimenov, Vasilij; Ovchinnikov, Artem; Ustinov, Artem; Danilson, Artem

    2016-01-01

    Mechanical rebar couplers are preferable in the advanced building construction and structural design of anti-seismic elements. The paper presents destructive inspection techniques used to investigate stress fields (tensile and compressive) and deformation curves for mechanical rebar splicing. The properties of mechanical rebar splicing are investigated by the non-destructive testing digital radiography. The behavior of real connections (column-to-column, beam-to-column) is studied under static and dynamic loads. Investigation results allow the elaboration of recommendations on their application in the universal prefabricated anti-seismic structural system developed at Tomsk State University of Architecture and Building, Tomsk, Russia.

  12. Transmission and scanning electron microscope study on the secondary cyclic hardening behavior of interstitial-free steel

    SciTech Connect

    Shih, Chia-Chang; Ho, New-Jin; Huang, Hsing-Lu

    2009-11-15

    Strain controlled fatigue experiment was employed to evaluate automotive grade interstitial-free ferrite steel. Hundreds of grains were examined by scanning electron microscope under electron channeling contrast image technique of backscattered electron image mode for comprehensive comparison of micrographs with those taken under transmission electron microscope. The cyclic stress responses clearly revealed that rapid hardening occurs at the early stage of cycling as a result of multiplication of dislocations to develop loop patches, dipolar walls and dislocation cells at various total strain amplitudes. After primary rapid hardening, stress responses varied from being saturated to further hardening according to dislocation structure evolution at various strain amplitudes. The fatigue failure was always accompanied with further hardening including secondary hardening. The corresponding dislocation structures with the three types of hardening behaviors are discussed. Once the secondary hardening starts, dislocation cells began to develop along grain boundaries in the low strain region and then extended into grain interiors as strain amplitudes increased and cycling went on. The secondary hardening rates were found to be directly proportional to their strain amplitudes.

  13. Cellular expression of human centromere protein C demonstrates a cyclic behavior with highest abundance in the G1 phase.

    PubMed Central

    Knehr, M; Poppe, M; Schroeter, D; Eickelbaum, W; Finze, E M; Kiesewetter, U L; Enulescu, M; Arand, M; Paweletz, N

    1996-01-01

    Centromere proteins are localized within the centromere-kinetochore complex, which can be proven by means of immunofluorescence microscopy and immunoelectron microscopy. In consequence, their putative functions seem to be related exclusively to mitosis, namely to the interaction of the chromosomal kinetochores with spindle microtubules. However, electron microscopy using immune sera enriched with specific antibodies against human centromere protein C (CENP-C) showed that it occurs not only in mitosis but during the whole cell cycle. Therefore, we investigated the cell cycle-specific expression of CENP-C systematically on protein and mRNA levels applying HeLa cells synchronized in all cell cycle phases. Immunoblotting confirmed protein expression during the whole cell cycle and revealed an increase of CENP-C from the S phase through the G2 phase and mitosis to highest abundance in the G1 phase. Since this was rather surprising, we verified it by quantifying phase-specific mRNA levels of CENP-C, paralleled by the amplification of suitable internal standards, using the polymerase chain reaction. The results were in excellent agreement with abundant protein amounts and confirmed the cyclic behavior of CENP-C during the cell cycle. In consequence, we postulate that in addition to its role in mitosis, CENP-C has a further role in the G1 phase that may be related to cell cycle control. Images Fig. 1 Fig. 2 Fig. 4 PMID:8816782

  14. Cyclic voltammetry in solutions of aluminum bromide and KBr in aromatic hydrocarbons; II: the behavior of Pb and Sn

    SciTech Connect

    Elam, M.; Gileadi, E.

    1983-03-01

    The electrochemical behavior of dilute solutions of SnBr/sub 2/ and PbBr/sub 2/ in a nonpolar solvent system consisting of solutions of 1.0M Al/sub 2/Br/sub 6/ and 0.80M KBr in ethylbenzene was studied. Cyclic voltammograms show well defined peaks for the deposition and dissolution of the divalent metal. Oxidation to the tetravalent state could not be detected in the available potential region. The diffusion coefficients were 1.1 X 10/sup -6/ cm/sup 2//sec for lead and 2.7 X 10/sup -6/ cm/sup 2//sec for tin. Lead ions inhibit the electrodeposition of aluminum while tin ions seem to have little or no effect. An overpotentia associated with initial nucleation on a platinum electrode is observed for both metals and electrodeposition does not star until /eta/ reaches a value of about 30-40 mV. Formation of a thermodynamically unstable Al/Pb alloy at sufficiently cathodic potentials in solutions containing PbBr/sub 2/ is indicated.

  15. Analysis on sheet cyclic plastic deformation using mixed hardening model

    NASA Astrophysics Data System (ADS)

    Li, Qun; Jin, Miao; Yuxin, Zhu

    2013-05-01

    Treating the cyclic deformation problem of sheet flowing through drawbead as the object of the research, using HILL anisotropy yield criterion and mixed hardening model, the cyclic plastic deformation mechanism of sheet was studied, the deformation characteristics of sheet subjected to cyclic loads were revealed, and the influence of Bauschinger effect on stress-strain circulating relationship and the influence of bending neutral layer migration on the stress of sheet's intermediate integral point were analyzed as well. The effectiveness of the model was verified by experiments. The results of analysis were showed that the stress values influenced by Bauschinger effect were different at the yield point of reverse loading and the point of unloading during the cyclic deformation. The stress rate at the yield point of reverse loading and the point of unloading in different loading branches was also different. The stress-strain circulating relationship in different loading branches can be approximately treated as bilinear. The tangent modulus of each loading branch showed a significant downward trend as the times of the reverse loading increased. The tangent modulus calculated by the mixed hardening model after the second loading branch reduced to less than 21% of the first loading tangent modulus. Effected by the neutral layer migration, the stress-strain curve of integral point of sheet's intermediate layer showed alternating transition phenomenon of the tensile stress and compressive stress.

  16. Does cyclic stress and accelerated ageing influence the wear behavior of highly crosslinked polyethylene?

    PubMed

    Affatato, Saverio; De Mattia, Jonathan Salvatore; Bracco, Pierangiola; Pavoni, Eleonora; Taddei, Paola

    2016-06-01

    First-generation (irradiated and remelted or annealed) and second-generation (irradiated and vitamin E blended or doped) highly crosslinked polyethylenes were introduced in the last decade to solve the problems of wear and osteolysis. In this study, the influence of the Vitamin-E addition on crosslinked polyethylene (XLPE_VE) was evaluated by comparing the in vitro wear behavior of crosslinked polyethylene (XLPE) versus Vitamin-E blended polyethylene XLPE and conventional ultra-high molecular weight polyethylene (STD_PE) acetabular cups, after accelerated ageing according to ASTM F2003-02 (70.0±0.1°C, pure oxygen at 5bar for 14 days). The test was performed using a hip joint simulator run for two millions cycles, under bovine calf serum as lubricant. Mass loss was found to decrease along the series XLPE_VE>STD_PE>XLPE, although no statistically significant differences were found between the mass losses of the three sets of cups. Micro-Raman spectroscopy was used to investigate at a molecular level the morphology changes induced by wear. The spectroscopic analyses showed that the accelerated ageing determined different wear mechanisms and molecular rearrangements during testing with regards to the changes in both the chain orientation and the distribution of the all-trans sequences within the orthorhombic, amorphous and third phases. The results of the present study showed that the addition of vitamin E was not effective to improve the gravimetric wear of PE after accelerated ageing. However, from a molecular point of view, the XLPE_VE acetabular cups tested after accelerated ageing appeared definitely less damaged than the STD_PE ones and comparable to XLPE samples. PMID:26970299

  17. On the Specific Role of Microstructure in Governing Cyclic Fatigue, Deformation, and Fracture Behavior of a High-Strength Alloy Steel

    NASA Astrophysics Data System (ADS)

    Manigandan, K.; Srivatsan, T. S.

    2015-06-01

    In this paper, the results of an experimental study that focused on evaluating the conjoint influence of microstructure and test specimen orientation on fully reversed strain-controlled fatigue behavior of the high alloy steel X2M are presented and discussed. The cyclic stress response of this high-strength alloy steel revealed initial hardening during the first few cycles followed by gradual softening for most of fatigue life. Cyclic strain resistance exhibited a linear trend for the variation of elastic strain amplitude with reversals to failure, and plastic strain amplitude with reversals to failure. Fracture morphology was the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, the alloy steel revealed fracture to be essentially ductile with features reminiscent of predominantly "locally" ductile and isolated brittle mechanisms. The mechanisms governing stress response at the fine microscopic level, fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  18. Nondestructive and Localized Measurements of Stress-Strain Curves and Fracture Toughness of Ferritic Steels at Various Temperatures Using Innovative Stress-Strain Microprobe Technology. Final Report for Period 8/13/1996--06/16/1999

    SciTech Connect

    Fahmy M. Haggag

    1999-10-29

    The results presented in this report demonstrate the capabilities of Advanced Technology Corporation's patented Portable/In Situ Stress-Strain Microprobe (TM) (SSM) System and its Automated Ball Indentation (ABI) test techniques to nondestructively measure the yield strength, the stress-strain curve, and the fracture toughness of ferritic steel samples and components in a reliable and accurate manner.

  19. Life prediction and constitutive behavior: Overview

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1982-01-01

    The evolution of programs to investigate high temperature consititutive behavior and develop cyclic life prediction methods is reviewed. Contracts granted for developing and verifying workable engineering methods for the calculation, in advance of service, of the local stress-strain response at the critical life governing location in typical hot section components as well as the resultant cyclic crack initiation and crack growth lifetimes are listed. The Langley fatigue facility is being upgraded to include: (1) a servocontrolled testing machine for high temperature crack growth; (2) three servocontrolled tension/torsion machines for biaxial studies; (3) a HOST/satellite computer for data acquisition, processing, storage, and retrieval; and (4) HCV/LCF machines for cumulative damage studies.

  20. Boundary conditions in the research of stress-strain state by optical tomography method

    SciTech Connect

    Patrikeyev, I.; Shakhurdin, V.

    1994-12-31

    Mechanical stresses appear in the elastic body under the influence of external loading. In these conditions optical isotropic medium becomes optical anisotropic and behaves itself as a crystal. In photoelasticity on the analogy with a classification of natural crystal anisotropy three problems of the stress strain state can be distinguished. The tasks in which the stress strain state is caused by a uniform compression or expansion belong to the first problem. It is the most common case. The plane problems belong to the second group of problems. In this case stress strain state is described by the tensor of the second order with three or four components not equal to zero. All the rest problems belong to the third group. The stress strain state of the medium is described by the second order tensor with six components different from zero. The investigation of such problems required new transillumination schemes and algorithms for the treatment of experimental results which radically differ from the classical tomography schemes and methods. The role of boundary conditions for the correct formulation photoelasticity problems based on the restoration of tensor fields by means of optical tomography is presented in this article.

  1. Stress-strain state simulation of large-sized cable-stayed shell structures

    NASA Astrophysics Data System (ADS)

    Ponomarev, S.; Zhukov, A.; Belkov, A.; Ponomarev, V.; Belov, S.; Pavlov, M.

    2015-12-01

    This paper studies the opportunities for applying framed cable-stayed shell structures to generate innovative structures in civil engineering. Numerical solution methods for stress-strain state problems of these kinds of geometrically nonlinear structures were developed. Developed methods efficiency is presented by a range of large-dimensional space antenna reflectors.

  2. True stress-strain curve acquisition for irradiated stainless steel including the range exceeding necking strain

    NASA Astrophysics Data System (ADS)

    Kamaya, Masayuki; Kitsunai, Yuji; Koshiishi, Masato

    2015-10-01

    True stress-strain curves were obtained for irradiated 316L stainless steel by a tensile test and by a curve estimation procedure. In the tensile test, the digital image correlation technique together with iterative finite element analysis was applied in order to identify curves for strain larger than the necking strain. The true stress-strain curves were successfully obtained for the strain of more than 0.4 whereas the necking strain was about 0.2 in the minimum case. The obtained true stress-strain curves were approximated well with the Swift-type equation including the post-necking strain even if the exponential constant n was fixed to 0.5. Then, the true stress-strain curves were estimated by a curve estimation procedure, which was referred to as the K-fit method. Material properties required for the K-fit method were the yield and ultimate strengths or only the yield strength. Some modifications were made for the K-fit method in order to improve estimation accuracy for irradiated stainless steels.

  3. Family Members Affected by a Close Relative's Addiction: The Stress-Strain-Coping-Support Model

    ERIC Educational Resources Information Center

    Orford, Jim; Copello, Alex; Velleman, Richard; Templeton, Lorna

    2010-01-01

    This article outlines the stress-strain-coping-support (SSCS) model which underpins the whole programme of work described in this supplement. The need for such a model is explained: previous models of substance misuse and the family have attributed dysfunction or deficiency to families or family members. In contrast, the SSCS model assumes that…

  4. The effect of matrix microstructure on cyclic response and fatigue behavior of particle-reinforced 2219 aluminum: Part II. Behavior at 150 °C

    NASA Astrophysics Data System (ADS)

    Vyletel, G. M.; van Aken, D. C.; Allison, J. E.

    1995-12-01

    The 150 °C cyclic response of peak-aged and overaged 2219/TiC/15p and 2219 Al was examined using fully reversed plastic strain-controlled testing. The cyclic response of peak-aged and overaged particle-reinforced materials showed extensive cyclic softening. This softening began at the commencement of cycling and continued until failure. At a plastic strain below 5 × 103, the unreinforced materials did not show evidence of cyclic softening until approximately 30 pct of the life was consumed. In addition, the degree of cyclic softening (†σ) was significantly lower in the unreinforced microstructures. The cyclic softening in both reinforced and unreinforced materials was attributed to the decomposition of the θ' strengthening precipitates. The extent of the precipitate decomposition was much greater in the composite materials due to the increased levels of local plastic strain in the matrix caused by constrained deformation near the TiC particles.

  5. Cyclic viscoelastoplasticity of polypropylene/nanoclay composites

    NASA Astrophysics Data System (ADS)

    Drozdov, A. D.; deC. Christiansen, J.

    2012-11-01

    Observations are reported on isotactic polypropylene/organically modified nanoclay hybrids with concentrations of filler ranging from 0 to 5 wt.% in cyclic tensile tests with a stress-controlled program (oscillations between various maximum stresses and the zero minimum stress). A pronounced effect of nanofiller is demonstrated: reinforcement with 2 wt.% of clay results in strong reduction of maximum and minimum strains per cycle and growth of number of cycles to failure compared with neat polypropylene. To rationalize these findings, a constitutive model is developed in cyclic viscoelasticity and viscoplasticity of polymer nanocomposites. Adjustable parameters in the stress-strain relations are found by fitting experimental data. The model correctly describes the growth of the ratcheting strain and shows that fatigue failure is driven by a pronounced increase in plastic strain in the crystalline phase. To assess the influence of loading conditions on the changes in the material parameters, experimental data on polypropylene are studied in cyclic tests with a strain-controlled program (oscillations between fixed maximum and minimum strains) and a mixed program (oscillations between various maximum strains and the zero minimum stress). Numerical simulation confirms the ability of the model to predict the evolution of stress-strain diagrams with the number of cycles.

  6. Furnace Cyclic Behavior of Plasma-Sprayed Zirconia-Yttria and Multi-Component Rare Earth Oxide Doped Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Nesbitt, James A.; McCue, Terry R.; Barrett, Charles A.; Miller, Robert A.

    2002-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to enable further increases in engine temperatures. However, the coating performance and durability become a major concern under the increasingly harsh thermal cycling conditions. Advanced zirconia- and hafnia-based cluster oxide thermal barrier coatings with lower thermal conductivity and improved thermal stability are being developed using a high-heat-flux laser-rig based test approach. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of numerous candidate coating materials was carried out using conventional furnace cyclic tests. In this paper, furnace thermal cyclic behavior of the advanced plasma-sprayed zirconia-yttria-based thermal barrier coatings that were co-doped with multi-component rare earth oxides was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied by using scanning electron microscopy combined with X-ray diffraction phase analysis after the furnace tests. The coating cyclic lifetime will be discussed in relation to coating phase structures, total dopant concentrations, and other properties.

  7. Kinetics and fracture behavior under cycle loading of an Al-Cu-Mg-Ag alloy

    NASA Astrophysics Data System (ADS)

    Gazizov, M. R.; Kaibyshev, R. O.

    2016-07-01

    The behavior of aluminum alloy AA2139 subjected to T6 treatment, including solution treatment and artificial aging, has been studied using cyclic loading with a constant total strain amplitude. Upon low-cyclic fatigue in the range of total strain amplitudes ɛac of 0.4-1.0%, the cyclic behavior of the AA2139-T6 alloy is determined by the processes that occur under the conditions of predominance of the elastic deformation over plastic deformation. The AA2139 alloy exhibits stability to cyclic loading without significant softening. The stress-strained state of the alloy upon cyclic loading can be described by the Hollomon equation with the cyclic strength coefficient K' and the cyclic strain-hardening exponent n' equal to 641 MPa and 0.066, respectively. The dependence of the number of cycles to fracture on the loading amplitude and its components (amplitudes of the plastic and elastic deformation) is described by a Basquin-Manson-Coffin equation with the parameters σ'/ E = 0.014, b =-0.123, ɛ'f= 178.65, and c =-1.677.

  8. The effect of Zr on the low-cycle fatigue behavior of NiAl at 1000 K

    SciTech Connect

    Lerch, B.A.; Noebe, R.D.; Rao, K.B.S.

    1998-04-01

    The effect of a 0.1 at.% alloying addition of Zr on the low-cycle fatigue behavior of polycrystalline NiAl was determined at 1,000 K and compared to that of binary NiAl. Samples of binary NiAl and the Zr-doped alloy were processed by either HIP consolidation or extrusion of prealloyed intermetallic powders. The cyclic stress response, cyclic stress-strain behavior, and strain-life relationships were all significantly influenced by the microalloying addition of Zr, regardless of the processing technique. A detailed examination of the post-tested low-cycle fatigue (LCF) samples was conducted by optical and electron microscopy to determine variations in fracture and deformation modes and to characterize any microstructural changes that occurred during LCF testing. Differences in LCF behavior due to the Zr addition are attributed to the strong effect that Zr has on modifying the deformation behavior of the intermetallic.

  9. The effect of Zr on the low-cycle fatigue behavior of NiAl at 1000 K

    NASA Astrophysics Data System (ADS)

    Lerch, B. A.; Noebe, R. D.; Rao, K. B. S.

    1998-04-01

    The effect of a 0.1 at. % alloying addition of Zr on the low-cycle fatigue behavior of polycrystalline NiAl was determined at 1000 K and compared to that of binary NiAl. Samples of binary NiAl and the Zr-doped alloy were processed by either HIP consolidation or extrusion of prealloyed intermetallic powders. The cyclic stress response, cyclic stress-strain behavior, and strain-life relationships were all significantly influenced by the microalloying addition of Zr, regardless of the processing technique. A detailed examination of the post-tested low-cycle fatigue (LCF) samples was conducted by optical and electron microscopy to determine variations in fracture and deformation modes and to characterize any microstructural changes that occurred during LCF testing. Differences in LCF behavior due to the Zr addition are attributed to the strong effect that Zr has on modifying the deformation behavior of the intermetallic.

  10. Modeling of Nonlinear Mechanical Behavior for 3D Needled C/C-SiC Composites Under Tensile Load

    NASA Astrophysics Data System (ADS)

    Xie, Junbo; Fang, Guodong; Chen, Zhen; Liang, Jun

    2016-04-01

    This paper established a macroscopic constitutive model to describe the nonlinear stress-strain behavior of 3D needled C/C-SiC composites under tensile load. Extensive on- and off-axis tensile tests were performed to investigate the macroscopic mechanical behavior and damage characteristics of the composites. The nonlinear mechanical behavior of the material was mainly induced by matrix tensile cracking and fiber/matrix debonding. Permanent deformations and secant modulus degradation were observed in cyclic loading-unloading tests. The nonlinear stress-strain relationship of the material could be described macroscopically by plasticity deformation and stiffness degradation. In the proposed model, we employed a plasticity theory with associated plastic flow rule to describe the evolution of plastic strains. A novel damage variable was also introduced to characterize the stiffness degradation of the material. The damage evolution law was derived from the statistical distribution of material strength. Parameters of the proposed model can be determined from off-axis tensile tests. Stress-strain curves predicted by this model showed reasonable agreement with experimental results.

  11. Modeling of Nonlinear Mechanical Behavior for 3D Needled C/C-SiC Composites Under Tensile Load

    NASA Astrophysics Data System (ADS)

    Xie, Junbo; Fang, Guodong; Chen, Zhen; Liang, Jun

    2016-08-01

    This paper established a macroscopic constitutive model to describe the nonlinear stress-strain behavior of 3D needled C/C-SiC composites under tensile load. Extensive on- and off-axis tensile tests were performed to investigate the macroscopic mechanical behavior and damage characteristics of the composites. The nonlinear mechanical behavior of the material was mainly induced by matrix tensile cracking and fiber/matrix debonding. Permanent deformations and secant modulus degradation were observed in cyclic loading-unloading tests. The nonlinear stress-strain relationship of the material could be described macroscopically by plasticity deformation and stiffness degradation. In the proposed model, we employed a plasticity theory with associated plastic flow rule to describe the evolution of plastic strains. A novel damage variable was also introduced to characterize the stiffness degradation of the material. The damage evolution law was derived from the statistical distribution of material strength. Parameters of the proposed model can be determined from off-axis tensile tests. Stress-strain curves predicted by this model showed reasonable agreement with experimental results.

  12. Prediction of thermal and mechanical stress-strain responses of TMC's subjected to complex TMF histories

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Mirdamadi, M.

    1994-01-01

    This paper presents an experimental and analytical evaluation of cross-plied laminates of Ti-15V-3Cr-3Al-3Sn (Ti-15-3) matrix reinforced with continuous silicon-carbide fibers (SCS-6) subjected to a complex TMF loading profile. Thermomechanical fatigue test techniques were developed to conduct a simulation of a generic hypersonic flight profile. A micromechanical analysis was used. The analysis predicts the stress-strain response of the laminate and of the constituents in each ply during thermal and mechanical cycling by using only constituent properties as input. The fiber was modeled as elastic with transverse orthotropic and temperature-dependent properties. The matrix was modeled using a thermoviscoplastic constitutive relation. The fiber transverse modulus was reduced in the analysis to simulate the fiber-matrix interface failures. Excellent correlation was found between measured and predicted laminate stress-strain response due to generic hypersonic flight profile when fiber debonding was modeled.

  13. Thermal Gradient Cyclic Behavior of a Thermal/Environmental Barrier Coating System on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Thermal barrier and environmental barrier coatings (TBCs and EBCs) will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability of the ceramic matrix composite (CMC) engine components in harsh combustion environments. In order to develop high performance, robust coating systems for effective thermal and environmental protection of the engine components, appropriate test approaches for evaluating the critical coating properties must be established. In this paper, a laser high-heat-flux, thermal gradient approach for testing the coatings will be described. Thermal cyclic behavior of plasma-sprayed coating systems, consisting of ZrO2-8wt%Y2O3 thermal barrier and NASA Enabling Propulsion Materials (EPM) Program developed mullite+BSAS/Si type environmental barrier coatings on SiC/SiC ceramic matrix composites, was investigated under thermal gradients using the laser heat-flux rig in conjunction with the furnace thermal cyclic tests in water-vapor environments. The coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after the tests. The coating failure mechanisms are discussed based on the cyclic test results and are correlated to the sintering, creep, and thermal stress behavior under simulated engine temperature and heat flux conditions.

  14. Application of Non-destructive Methods of Stress-strain State at Hazardous Production Facilities

    NASA Astrophysics Data System (ADS)

    Shram, V.; Kravtsova, Ye; Selsky, A.; Bezborodov, Yu; Lysyannikova, N.; Lysyannikov, A.

    2016-06-01

    The paper deals with the sources of accidents in distillation columns, on the basis of which the most dangerous defects are detected. The analysis of the currently existing methods of non-destructive testing of the stress-strain state is performed. It is proposed to apply strain and acoustic emission techniques to continuously monitor dangerous objects, which helps prevent the possibility of accidents, as well as reduce the work.

  15. Simulation of Stress-Strain State of Shovel Rotary Support Kingpin

    NASA Astrophysics Data System (ADS)

    Khoreshok, A. A.; Buyankin, P. V.; Vorobiev, A. V.; Dronov, A. A.

    2016-04-01

    The article presents the sequence of computational simulation of stress-strain state of shovel’s rotary support. Computation results are analyzed, the kingpin is specified as the most loaded element, maximum stress zones are identified. Kingpin design modification such as enhancement of fillet curvature radius to 25 mm and displacement of eyebolt holes on the diameter of 165 mm are proposed, thus diminishing impact of stress concentrators and improving reliability of the rotary support.

  16. Effects of the foil flatness on the stress-strain characteristics of U10Mo alloy based monolithic mini-plates

    SciTech Connect

    Hakan Ozaltun; Pavel Medvedev

    2014-11-01

    The effects of the foil flatness on stress-strain behavior of monolithic fuel mini-plates during fabrication and irradiation were studied. Monolithic plate-type fuels are a new fuel form being developed for research and test reactors to achieve higher uranium densities. This concept facilitates the use of low-enriched uranium fuel in the reactor. These fuel elements are comprised of a high density, low enrichment, U–Mo alloy based fuel foil encapsulated in a cladding material made of Aluminum. To evaluate the effects of the foil flatness on the stress-strain behavior of the plates during fabrication, irradiation and shutdown stages, a representative plate from RERTR-12 experiments (Plate L1P756) was considered. Both fabrication and irradiation processes of the plate were simulated by using actual irradiation parameters. The simulations were repeated for various foil curvatures to observe the effects of the foil flatness on the peak stress and strain magnitudes of the fuel elements. Results of fabrication simulations revealed that the flatness of the foil does not have a considerable impact on the post fabrication stress-strain fields. Furthermore, the irradiation simulations indicated that any post-fabrication stresses in the foil would be relieved relatively fast in the reactor. While, the perfectly flat foil provided the slightly better mechanical performance, overall difference between the flat-foil case and curved-foil case was not significant. Even though the peak stresses are less affected, the foil curvature has several implications on the strain magnitudes in the cladding. It was observed that with an increasing foil curvature, there is a slight increase in the cladding strains.

  17. Strain Rate Dependence of Compressive Stress-Strain Loops of Several Polymers

    NASA Astrophysics Data System (ADS)

    Nakai, Kenji; Yokoyama, Takashi

    The compressive stress-strain loops of several commercial polymers at strain rates of nearly 700/s are determined in the standard split Hopkinson pressure bar. Four different polymers or typical thermoplastics: ABS, PA-6, PA-66 and PC are tested at room temperature. Cylindrical specimens with a slenderness ratio (= height l /diameter d) of 0.5 are used in the Hopkinson bar tests, and those with l/d = 1.5 as specified in the ASTM Designation E9-89a are used in the static tests. The stress-strain loops in compression at low and intermediate strain rates are measured in an Instron testing machine. The influences of strain rate on the Young's modulus, 2.5% flow stress and dissipation energy are investigated. It is demonstrated that the area within the stress-strain loop (or dissipation energy) increases with increasing strain rate as well as given strain, that is, all polymers tested exhibit intrinsic dynamic viscoelasticity and a high elastic aftereffect following complete unloading.

  18. Influence of Secondary Cyclic Hardening on the Low Cycle Fatigue Behavior of Nitrogen Alloyed 316LN Stainless Steel

    NASA Astrophysics Data System (ADS)

    Prasad Reddy, G. V.; Sandhya, R.; Mathew, M. D.; Sankaran, S.

    2013-12-01

    In this article, the occurrence of secondary cyclic hardening (SCH) and its effect on high-temperature cyclic deformation and fatigue life of 316LN Stainless steel are presented. SCH is found to result from planar slip mode of deformation and enhance the degree of hardening over and above that resulted from dynamic strain aging. The occurrence of SCH is strongly governed by the applied strain amplitude, test temperature, and the nitrogen content in the 316LN SS. Under certain test conditions, SCH is noticed to decrease the low cycle fatigue life with the increasing nitrogen content.

  19. Monotonic and cyclic fatigue properties of automotive aluminum alloys

    SciTech Connect

    Wong, W.A.

    1984-01-01

    Monotonic and strain-controlled fatigue tests were conducted on 2014-T6, 6061-T6 and 7175-T73 hand-forgings, 5052-H32 and 6061-T6 sheet, and a 1983/84 production Chevrolet Corvette upper-control-arm-pivot shaft (UCAPS) cold-forged from 5454-H12 and 6061-T4 rolled rod (the 6061 UCAPS was artificially-aged to the -T6 temper, after forging). Various monotonic and cyclic fatigue stress-strain material properties are presented. The responses of the various alloys and product-forms in terms of cyclic hardening or softening are described.

  20. Low cycle fatigue behavior of Zircaloy-2 at room temperature

    NASA Astrophysics Data System (ADS)

    Sudhakar Rao, G.; Chakravartty, J. K.; Nudurupati, Saibaba; Mahobia, G. S.; Chattopadhyay, Kausik; Santhi Srinivas, N. C.; Singh, Vakil

    2013-10-01

    Fuel cladding and pressure tubes of Zircaloy-2 in pressurized light and heavy water nuclear reactors experience plastic strain cycles due to power fluctuations in the reactor, such strain cycles cause low cycle fatigue (LCF) and could be life limiting factor for them. Factors like strain rate, strain amplitude and temperature are known to have marked influence on LCF behavior. The effect of strain rate from 10-2 to 10-4 s-1 on LCF behavior of Zircaloy-2 was studied, at different strain amplitudes between ±0.50% and ±1.25% at room temperature. Fatigue life was decreased with lowering of strain rate from 10-2 to 10-4 s-1 at all the strain amplitudes studied. While there was cyclic softening at lower strain amplitudes (Δεt/2 ⩽ ±0.60%) cyclic hardening was exhibited at higher strain amplitudes (Δεt/2 ⩾ ±1.00%) at all the strain rates. Further, there was secondary cyclic hardening during the later stage of cycling at all the strain amplitudes and the strain rates. Cyclic stress-strain hysteresis loops at the lowest strain rate of 10-4 s-1 were found to be heavily serrated, resulting from dynamic strain aging (DSA). There was significant effect of strain rate on dislocation substructure. The results are discussed in terms of high concentration of point defects generated during cyclic straining and their role in enhancing interaction between solutes and dislocations.

  1. Cyclic Deformation Behavior of Fe-18Cr-18Mn-0.63N Nickel-Free High-Nitrogen Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Shao, C. W.; Shi, F.; Li, X. W.

    2015-04-01

    Cyclic deformation and damage behavior of a Ni-free high-nitrogen austenitic stainless steel with a composition of Fe-18Cr-18Mn-0.63N (weight pct) were studied, and the internal stress and effective stress were estimated by partitioning the hysteresis loop during cyclic straining at total strain amplitudes ranging from 3.0 × 10-3 to 1.0 × 10-2. It is found that immediate cyclic softening takes place at all strain amplitudes and subsequently a saturation or quasi-saturation state develops and occupies the main part of the whole fatigue life. The internal stress increases with increasing strain amplitude, while the variation of effective stress with strain amplitude is somewhat complicated. Such a phenomenon is discussed in terms of dislocation structures and the short-range ordering caused by the interaction between nitrogen atoms and substitutional atoms. The relationship of fatigue life vs plastic strain amplitude ( N f-Δ ɛ pl/2) follows a bilinear Coffin-Manson rule, resulting from the variation in slip deformation mode with the applied strain amplitude. At the low strain amplitude, cracks initiate along slip bands, and planar slip dislocation configurations dominate the major characteristic of internal microstructures. At high strain amplitudes, intergranular (mostly along grain boundaries and few along twin boundaries) cracks are generally found, and the deformation microstructures are mainly composed of dislocation cells, stacking faults and a small amount of deformation twins, in addition to planar slip dislocation structures.

  2. Effect of cyclic outer and inner bending on the fatigue behavior of a multi-layer metal film on a polymer substrate

    NASA Astrophysics Data System (ADS)

    Kim, Byoung-Joon; Shin, Hae-A.-Seul; Lee, Ji-Hoon; Joo, Young-Chang

    2016-06-01

    The electrical reliability of a multi-layer metal film on a polymer substrate during cyclic inner bending and outer bending is investigated using a bending fatigue system. The electrical resistance of a Cu film on a polymer substrate during cyclic outer bending increases due to fatigue damage formation, such as cracks and extrusion. Cyclic inner bending also leads to fatigue damage and a similar increase in the electrical resistance. In a sample having a NiCr under-layer, however, the electrical resistance increases significantly during outer bending but not during inner bending mode. Cross-sectional observations reveal that brittle cracking in the hard under-layer results in different fatigue behaviors according to the stress mode. By applying an Al over-layer, the fatigue resistance is improved during both outer bending and inner bending by suppressing fatigue damage formation. The effects of the position, materials, and thickness of the inter-layer on the electrical reliability of a multi-layer sample are also investigated. This study can provide meaningful information for designing a multi-layer structure under various mechanical deformations including tensile and compressive stress.

  3. Long-term cyclic oxidation behavior of uncoated and coated RE108 and IN939 at 980 and 870 °C

    NASA Astrophysics Data System (ADS)

    Lee, K. N.; Barrett, C. A.; Smith, J.

    2000-03-01

    Very long-term cyclic oxidation behavior of Re108 and In939 with and without a protective coating was evaluated at 980 and 870 °C, respectively. Re108 and In939 without a protective coating began to show a rapid weight loss at 3000 h due to scale spallation, indicating the need for an oxidation protective coating for longer than thousands of hours of oxidative life. NiAl-base coatings of a vapor phase aluminide (VPA), a pack aluminide (CODEP), and a slurry paint aluminide (SERMALOY J) were applied on Re108 and In939. The VPA and CODEP on Re108 and all three coatings on In939 showed excellent cyclic oxidation resistance out to 10,000 h. Coated alloys were annealed in an inert atmosphere to determine the loss of Al from the coating into the alloy substrate through diffusion. The Al loss from the coating through diffusion was twice as great as the Al loss through oxidation after 10,000 h of cyclic exposure. The oxidation life of VPA-coated Re108 was estimated by calculating the amount of Al initially available for protective oxidation and the amount of Al lost through oxidation and diffusion.

  4. Cyclic Voltammetry Experiment.

    ERIC Educational Resources Information Center

    Van Benschoten, James J.; And Others

    1983-01-01

    Describes a three-part experiment designed to introduce cyclic voltammetry to graduate/undergraduate students. Part 1 demonstrates formal reduction potential, redox electron transfer, diffusion coefficient, and electrochemical reversibility. Part 2 investigates electrochemical behavior of acetaminophen. Part 3 examines such experimental variables…

  5. Elastic-plastic behavior of non-woven fibrous mats

    NASA Astrophysics Data System (ADS)

    Silberstein, Meredith N.; Pai, Chia-Ling; Rutledge, Gregory C.; Boyce, Mary C.

    2012-02-01

    Electrospinning is a novel method for creating non-woven polymer mats that have high surface area and high porosity. These attributes make them ideal candidates for multifunctional composites. Understanding the mechanical properties as a function of fiber properties and mat microstructure can aid in designing these composites. Further, a constitutive model which captures the membrane stress-strain behavior as a function of fiber properties and the geometry of the fibrous network would be a powerful design tool. Here, mats electrospun from amorphous polyamide are used as a model system. The elastic-plastic behavior of single fibers are obtained in tensile tests. Uniaxial monotonic and cyclic tensile tests are conducted on non-woven mats. The mat exhibits elastic-plastic stress-strain behavior. The transverse strain behavior provides important complementary data, showing a negligible initial Poisson's ratio followed by a transverse:axial strain ratio greater than -1:1 after an axial strain of 0.02. A triangulated framework has been developed to emulate the fibrous network structure of the mat. The micromechanically based model incorporates the elastic-plastic behavior of single fibers into a macroscopic membrane model of the mat. This representative volume element based model is shown to capture the uniaxial elastic-plastic response of the mat under monotonic and cyclic loading. The initial modulus and yield stress of the mat are governed by the fiber properties, the network geometry, and the network density. The transverse strain behavior is linked to discrete deformation mechanisms of the fibrous mat structure including fiber alignment, fiber bending, and network consolidation. The model is further validated in comparison to experiments under different constrained axial loading conditions and found to capture the constraint effect on stiffness, yield, post-yield hardening, and post-yield transverse strain behavior. Due to the direct connection between

  6. Subcritical crack-growth behavior of borosilicate glass under cyclic loads: Evidence of a mechanical fatigue effect

    SciTech Connect

    Dill, S.J.; Dauskardt, R.H.; Bennison, S.J.

    1997-03-01

    Amorphous glasses are generally considered immune to mechanical fatigue effects associated with cyclic loading. In this study surprising new evidence is presented for a mechanical fatigue effect in borosilicate glass, in both moist air and dry nitrogen environments. The fatigue effect occurs at near threshold subcritical crack-growth rates (da/dt < 3 {times} 10{sup {minus}8} m/s) as the crack extension per cycle approaches the dimensions of the borosilicate glass network. While subcritical crack growth under cyclic loads at higher load levels is entirely consistent with environmentally assisted crack growth, lower growth rates actually exceed those measured under monotonic loads. This suggests a mechanical fatigue effect which accelerates subcritical crack-growth rates. Likely mechanisms for the mechanical fatigue effect are presented.

  7. Stress-strain state of ice cover during aircraft takeoff and landing

    NASA Astrophysics Data System (ADS)

    Pogorelova, A. V.; Kozin, V. M.; Matyushina, A. A.

    2015-09-01

    We consider the linear unsteady motion of an IL-76TD aircraft on ice. Water is treated as an ideal incompressible liquid, and the liquid motion is considered potential. Ice cover is modeled by an initially unstressed uniform isotropic elastic plate, and the load exerted by the aircraft on the ice cover with consideration of the wing lift is modeled by regions of distributed pressure of variable intensity, arranged under the aircraft landing gear. The effect of the thickness and elastic modulus of the ice plate, takeoff and landing regimes on stress-strain state of the ice cover used as a runway.

  8. Spherical nanoindentation stress-strain curves of commercially pure titanium and Ti-6Al-4V

    DOE Data Explorer

    Weaver, Jordan S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Priddy, Matthew W. [Georgia Inst. of Technology, Atlanta, GA (United States); McDowell, David L. [Georgia Inst. of Technology, Atlanta, GA (United States); Kalidindi, Surya R. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-07-27

    Spherical nanoindentation combined with electron back-scattered diffraction was employed to characterize the grain-scale elastic and plastic anisotropy of single crystal alpha-Ti for commercially pure (CP-Ti) and alloyed (Ti-64) titanium. In addition, alpha-beta Ti (single colony) grains were characterized. The data set includes the nanoindentation force, displacement, and contact stiffness, the nanoindentation stress-strain analysis, and the alpha-Ti crystal orientations. Details of the samples and experimental protocols can be found in Weaver et al. (2016) Acta Materialia doi:10.1016/j.actamat.2016.06.053.

  9. Addendum to: Uniform Elongation and the Stress-Strain Flow Curve of Steels Calculated from Hardness Using Empirical Correlations

    NASA Astrophysics Data System (ADS)

    Pavlina, Erik J.; Van Tyne, Chester J.

    2015-11-01

    The original study by Pavlina and Van Tyne developed correlations of hardness and strength (yield and ultimate tensile strength) (Pavlina and Van Tyne in J Mater Eng Perform 17:888-893, 2008). As an extension to this original work, a later paper developed an empirical relationship between the hardness and uniform elongation of non-austenitic hypoeutectoid steels (Pavlina and Van Tyne in J Mater Eng Perform 23:2247-2254, 2014). The empirical hardness-elongation relationship was combined with the correlations in the original study to show how a single hardness test could predict a reasonable stress-strain flow curve for a steel. The current study provides tables of parameter values for four different hardening models, based on the hardness correlations that were developed in the two previous studies. The models are the two-parameter Holloman model and the three-parameter Ludwig, Swift, and Voce models. Although they are empirical, these parameters allow the flow behavior of steels to be reasonably well characterized, based on a single hardness value. These tables should only be used when limited material is available, or when insufficient data are available for the specific grade of steel needing characterization.

  10. Prediction of the Elastic-Plastic Stress/Strain Response for Injection-Molded Long-Fiber Thermoplastics

    SciTech Connect

    Nguyen, Ba N.; Kunc, Vlastimil; Phelps, Jay H; TuckerIII, Charles L.; Bapanapalli, Satish K

    2009-01-01

    This paper proposes a model to predict the elastic-plastic response of injection-molded long-fiber thermoplastics (LFTs). The model accounts for elastic fibers embedded in a thermoplastic resin that exhibits the elastic-plastic behavior obeying the Ramberg-Osgood relation and J-2 deformation theory of plasticity. It also accounts for fiber length and orientation distributions in the composite formed by the injection-molding process. Fiber orientation was predicted using an anisotropic rotary diffusion model recently developed for LFTs. An incremental procedure using Eshelby's equivalent inclusion method and the Mori-Tanaka assumption is proposed to compute the overall stress increment resulting from an overall strain increment for an aligned-fiber composite that contains the same fiber volume fraction and length distribution as the actual composite. The incremental response of the latter is then obtained from the solution for the aligned-fiber composite by averaging over all fiber orientations. Failure during incremental loading is predicted using the Van Hattum-Bernado model. The model is validated against the experimental stress-strain results obtained for long-glass-fiber/polypropylene specimens.

  11. Prediction of the Elastic-Plastic Stress/Strain Response for Injection-Molded Long-Fiber Thermoplastics

    SciTech Connect

    Nguyen, Ba Nghiep; Bapanapalli, Satish K.; Kunc, Vlastimil; Phelps, Jay; Tucker III, Charles L.

    2009-01-26

    This paper proposes a model to predict the elastic-plastic response of injection-molded long-fiber thermoplastics (LFTs). The model accounts for elastic fibers embedded in a thermoplastic resin that exhibits the elastic-plastic behavior obeying the Ramberg-Osgood relation and J-2 deformation theory of plasticity. It also accounts for fiber length and orientation distributions in the composite formed by the injection-molding process. Fiber orientation was predicted using the anisotropic rotary diffusion model recently developed by Phelps and Tucker for LFTs. An incremental procedure using the Eshelby’s equivalent inclusion method and the Mori-Tanaka model is proposed to compute the overall stress increment resulting from an overall strain increment for an aligned fiber composite that contains the same fiber volume fraction and length distribution as the actual composite. The incremental response of the later is then obtained from the solution for the aligned fiber composite that is averaged over all possible fiber orientations using the orientation averaging method. Failure during incremental loading is predicted using the Van Hattum-Bernado model. The elastic-plastic and strength prediction model for LFTs was validated against the experimental stress-strain results obtained for long glass fiber/polypropylene specimens.

  12. An experimentally verified finite element study of the stress-strain response of crack geometries experiencing large-scale yielding

    SciTech Connect

    Panontin, T.L.; Sheppard, S.D.

    1997-12-01

    Large-strain, 3-D finite element analyses with incremental plasticity were performed for a variety of crack geometries to study local crack-tip stress-strain fields and associated global fracture parameters under conditions of large-scale yielding. The geometries analyzed include thin, single-edge crack tension, single-edge crack bending, and center-crack tension fracture specimens with varying crack depth (a/W) ratios. Two materials were investigated: a high-hardening, low-strength steel and a moderate-hardening, high-strength steel. Mesh refinement studies were performed to ensure convergence of the finite element predictions. The studies examine the effects of in-plane crack-tip element size, initial crack-tip radius size, and number of through-thickness layers on predicted distributions of crack-tip stress and plastic strain and predicted values of the J-integral and CTOD. In addition, the finite element predictions of specimen behavior were verified experimentally by direct measurements, namely load displacement, load longitudinal strain, and load CTOS, made during and following testing of the fracture specimens. Representative results of the finite element analyses are presented and compared to previously published data where pertinent. Results from the mesh refinement studies and the verification testing are shown. Predicted trends among the specimens and materials in local distributions of crack-tip plastic strain, triaxiality, and opening stress as well as in global parameters, J-integral and m-factor, are discussed.

  13. Stress-strain distribution at bone-implant interface of two splinted overdenture systems using 3D finite element analysis

    PubMed Central

    2013-01-01

    PURPOSE This study was accomplished to assess the biomechanical state of different retaining methods of bar implant-overdenture. MATERIALS AND METHODS Two 3D finite element models were designed. The first model included implant overdenture retained by Hader-clip attachment, while the second model included two extracoronal resilient attachment (ERA) studs added distally to Hader splint bar. A non-linear frictional contact type was assumed between overdentures and mucosa to represent sliding and rotational movements among different attachment components. A 200 N was applied at the molar region unilaterally and perpendicular to the occlusal plane. Additionally, the mandible was restrained at their ramus ends. The maximum equivalent stress and strain (von Mises) were recorded and analyzed at the bone-implant interface level. RESULTS The values of von Mises stress and strain of the first model at bone-implant interface were higher than their counterparts of the second model. Stress concentration and high value of strain were recognized surrounding implant of the unloaded side in both models. CONCLUSION There were different patterns of stress-strain distribution at bone-implant interface between the studied attachment designs. Hader bar-clip attachment showed better biomechanical behavior than adding ERA studs distal to hader bar. PMID:24049576

  14. The effect of 0.1 atomic percent zirconium on the cyclic oxidation behavior of beta-NiAl for 300 hours at 1200 C

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1988-01-01

    The long time effect of 0.1 at percent Zr (0.2 wt percent Zr) on the cyclic oxidation behavior of hipped beta-NiAl was studied. Oxidation testing was performed in static air at 1200 C for up to 3000 one-hour exposure cycles. Specific weight change versus time data was modeled with the COSP computer program to analyze cyclic oxidation behavior. The Zr-free stoichiometric alloy oxidized and spalled randomly to bare metal between cycles at a rate high enough to deplete Al to a low enough level that oxidation breakaway took place as nonprotective NiO replaced the alpha-Al2O3/NiAl2O4 scale as the controlling oxide. The Zr minimized this severe type of spalling maintaining the protective alpha-Al2O3 scale even out to 3000 hours for the stoichiometric alloy with no significant Al depletion. A third beta-NiAl alloy containing 0.1 at percent Zr but with 10 percent less Al than the stoichiometric alloy was also tested and showed some depletion of Al, but the protective Al2O3/NiAl2O4 was still maintained to close to 2700 hours.

  15. The effect of 0.1 atomic percent zirconium on the cyclic oxidation behavior of beta-NiAl for 3000 hours at 1200 C

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1989-01-01

    The long time effect of 0.1 at percent Zr (0.2 wt percent Zr) on the cyclic oxidation behavior of hipped beta-NiAl was studied. Oxidation testing was performed in static air at 1200 C for up to 3000 one-hour exposure cycles. Specific weight change versus time data was modeled with the COSP computer program to analyze cyclic oxidation behavior. The Zr-free stoichiometric alloy oxidized and spalled randomly to bare metal between cycles at a rate high enough to deplete Al to a low enough level that oxidation breakaway took place as nonprotective NiO replaced the alpha-Al203/NiAl204 scale as the controlling oxide. The Zr minimized this severe type of spalling maintaining the protective alpha-Al203 scale even out to 3000 hours for the stoichiometric alloy with no significant Al depletion. A third beta-NiAl alloy containing 0.1 at percent Zr but with 10 percent less Al than the stoichiometric alloy was also tested and showed some depletion of Al, but the protective Al203/NiAl204 was still maintained to close to 2700 hours.

  16. Effect of Oxygen Partial Pressure on the Cyclic Oxidation Behavior of Mo76Si14B10

    NASA Astrophysics Data System (ADS)

    Roy, Barna; Khushboo; Das, Jayanta; Mitra, Rahul; Roy, Sanat Kumar

    2013-07-01

    Hot-pressed and arc-melted Mo76Si14B10 (at. pct) exhibits α-Mo solid solution, Mo3Si, and Mo5SiB2 in microstructures with varying morphologies. Cyclic oxidation tests performed at oxygen partial pressures of 0.21 and 1 atm show the mass loss of the hot-pressed alloy to be ≈1.5 and ≈4 times less, respectively, than that of the arc-melted alloy. The thickness of the protective silicate layer increases with an increase of both Moss grain size and oxygen partial pressure in the environment.

  17. Thermal Conductivity and Thermal Gradient Cyclic Behavior of Refractory Silicate Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2001-01-01

    Plasma-sprayed mullite and BSAS coatings have been developed to protect SiC/SiC ceramic matrix composites from high temperature environmental attack. In this study, thermal conductivity and thermal barrier functions of these coating systems are evaluated using a laser high-heat-flux test rig. The effects of water vapor on coating thermal conductivity and durability are studied by using alternating furnace and laser thermal gradient cyclic tests. The influence of laser high thermal-gradient cycling on coating failure modes is also investigated.

  18. Tensile Stress Strain Behavior of Polypropylene Toughened with Bi-Modal Sebs

    NASA Astrophysics Data System (ADS)

    Mae, Hiroyuki; Omiya, Masaki; Kishimoto, Kikuo

    The objective is to characterize the effect of the bimodal distribution of rubber particles and its blend ratio on the mechanical properties of the thermoplastic polypropylene blended with two different styrene-ethylene-butadiene-styrene tri-block copolymer (SEBS) at the intermediate and high strain rates. Tensile tests are conducted at the nominal strain rates from 10-1 to 102 (1/sec). Phase morphology is investigated to estimate the bi-modal rubber particle size distribution. In addition, the in-situ observation is conducted during uniaxially stretching within transmission electron microscopy (TEM) step by step to investigate the deformation events depending on the elongation of samples. The elastic modulus increased gradually as the blend ratio of large rubber particle increased. An increase in the rupture strain was found for the bimodal rubber-particle distributed blend system where the blend ratios of small rubber particle and large rubber particle were the same. This is because the smaller particles dominant blend systems show the band-like craze deformation while the localized plastic deformation is taken place in the larger particles dominated blend systems. The synergistic effect of these rubber particles gives rise to a strong increase in the ductility of these bimodal rubber-particle distributed polypropylene systems.

  19. Procedures for characterizing an alloy and predicting cyclic life with the total strain version of Strainrange Partitioning

    NASA Technical Reports Server (NTRS)

    Saltsman, James F.; Halford, Gary R.

    1989-01-01

    Procedures are presented for characterizing an alloy and predicting cyclic life for isothermal and thermomechanical fatigue conditions by using the total strain version of strainrange partitioning (TS-SRP). Numerical examples are given. Two independent alloy characteristics are deemed important: failure behavior, as reflected by the inelastic strainrange versus cyclic life relations; and flow behavior, as indicated by the cyclic stress-strain-time response (i.e., the constitutive behavior). Failure behavior is characterized by conducting creep-fatigue tests in the strain regime, wherein the testing times are reasonably short and the inelastic strains are large enough to be determined accurately. At large strainranges, stress-hold, strain-limited tests are preferred because a high rate of creep damage per cycle is inherent in this type of test. At small strainranges, strain-hold cycles are more appropriate. Flow behavior is characterized by conducting tests wherein the specimen is usually cycled far short of failure and the wave shape is appropriate for the duty cycle of interest. In characterizing an alloy pure fatigue, or PP, failure tests are conducted first. Then depending on the needs of the analyst a series of creep-fatigue tests are conducted. As many of the three generic SRP cycles are featured as are required to characterize the influence of creep on fatigue life (i.e., CP, PC, and CC cycles, respectively, for tensile creep only, compressive creep only, and both tensile and compressive creep). Any mean stress effects on life also must be determined and accounted for when determining the SRP inelastic strainrange versus life relations for cycles featuring creep. This is particularly true for small strainranges. The life relations thus are established for a theoretical zero mean stress condition.

  20. Cyclic Voltammetry.

    ERIC Educational Resources Information Center

    Evans, Dennis H.; And Others

    1983-01-01

    Cyclic voltammetry is a simple experiment that has become popular in chemical research because it can provide useful information about redox reactions in a form which is easily obtained and interpreted. Discusses principles of the method and illustrates its use in the study of four electrode reactions. (Author/JN)

  1. Modeling Stress Strain Relationships and Predicting Failure Probabilities For Graphite Core Components

    SciTech Connect

    Duffy, Stephen

    2013-09-09

    This project will implement inelastic constitutive models that will yield the requisite stress-strain information necessary for graphite component design. Accurate knowledge of stress states (both elastic and inelastic) is required to assess how close a nuclear core component is to failure. Strain states are needed to assess deformations in order to ascertain serviceability issues relating to failure, e.g., whether too much shrinkage has taken place for the core to function properly. Failure probabilities, as opposed to safety factors, are required in order to capture the bariability in failure strength in tensile regimes. The current stress state is used to predict the probability of failure. Stochastic failure models will be developed that can accommodate possible material anisotropy. This work will also model material damage (i.e., degradation of mechanical properties) due to radiation exposure. The team will design tools for components fabricated from nuclear graphite. These tools must readily interact with finite element software--in particular, COMSOL, the software algorithm currently being utilized by the Idaho National Laboratory. For the eleastic response of graphite, the team will adopt anisotropic stress-strain relationships available in COMSO. Data from the literature will be utilized to characterize the appropriate elastic material constants.

  2. Stress-Strain Relation and strain-Induced Crystallization in Rubber

    SciTech Connect

    Toki,S.

    2006-01-01

    Rubber is composed of flexible chains and network points. Theory of rubber elasticity succeeds to elucidate stress-strain relation of rubber using the inverse Langevin equation of entropy modulus. However, actual rubber is much different from ideal networks composed of ideal rubber chains. Network points may not distribute homogeneously and the molecular weight between two network points may show wide distribution. Flexible chains show strain-induced crystallization. Recent synchrotron X-ray and simultaneous stress-strain measurements reveal that strain-induced crystallization reduces the stress by increasing the length of molecules along the stretching direction. Also, strain-induced crystals are created not at the middle of the network points, but at the close location to the network points. The hybrid structure of strain-induced crystallites and network points may be stronger than network points alone. Therefore, strain induced crystallization may increase the tensile strength of rubber by two mechanisms, they are, increase of elongation at break and reinforcement of network points. Natural rubber has biotic network points in nature. After vulcanization, the biotic network may contribute the superior toughness of NR, comparing to IR. Carbon filled NR also shows strain induced crystallization. In order to acquire high tensile strength, molecules should have higher flexibility to perform strain induced crystallization by selecting a kind of carbon blacks, an accelerator and a curing condition.

  3. The isothermal fatigue behavior of a unidirectional SiC/Ti composite and the Ti alloy matrix

    NASA Technical Reports Server (NTRS)

    Gayda, John, Jr.; Gabb, Timothy P.; Freed, Alan D.

    1989-01-01

    The high temperature fatigue behavior of a metal matrix composite (MMC) consisting of Ti-15V-3Cr-3Al-3Sn (Ti-15-3) matrix reinforced by 33 vol percent of continuous unidirectional SiC fibers was experimentally and analytically evaluated. Isothermal MMC fatigue tests with constant amplitude loading parallel to the fiber direction were performed at 300 and 550 C. Comparative fatigue tests of the Ti-15-3 matrix alloy were also conducted. Composite fatigue behavior and the in-situ stress state of the fiber and matrix were analyzed with a micromechanical model, the Concentric Cylinder Model (CCM). The cyclic stress-strain response of the composite was stable at 300 C. However, an increase in cyclic mean strain foreshortened MMC fatigue life at high strain ranges at 550 C. Fatigue tests of the matrix alloy and CCM analyses indicated this response was associated with stress relaxation of the matrix in the composite.

  4. Cyclic Oxidation Behavior of Cold Sprayed CuCrAl-Coated and Uncoated GRCop-84 Substrates for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Barrett, C.; Karthikeyan, J.; Garlick, R.

    2006-01-01

    A newly developed Cu-23 (wt %) Cr-5%Al (CuCrAl) alloy shown to resist hydridation and oxidation in an as-cast form is currently being considered as a protective coating for GRCop-84, which is an advanced copper alloy containing 8 (at.%) Cr and 4 (at.%) Nb. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique. Cyclic oxidation tests conducted in air on both coated and uncoated substrates between 773 and 1073 K revealed that the coating remained intact and protected the substrate up to 1073 K. No significant weight loss of the coated specimens were observed at 773 and 873 K even after a cumulative cyclic time of 500 h. About a 10 percent weight loss observed at 973 and 1073 K was attributed to the excessive oxidation of the uncoated sides. In contrast, the uncoated substrate lost as much as 80 percent of its original weight under similar test conditions. It is concluded that the cold sprayed CuCrAl coating is suitable for protecting GRCop-84 substrates.

  5. Bladder tissue biomechanical behavior: Experimental tests and constitutive formulation.

    PubMed

    Natali, A N; Audenino, A L; Artibani, W; Fontanella, C G; Carniel, E L; Zanetti, E M

    2015-09-18

    A procedure for the constitutive analysis of bladder tissues mechanical behavior is provided, by using a coupled experimental and computational approach. The first step pertains to the design and development of mechanical tests on specimens from porcine bladders. The bladders have been harvested, and the specimens have been subjected to uniaxial cyclic tests at different strain rates along preferential directions, considering the distribution of tissue fibrous components. Experimental results showed the anisotropic, non-linear and time-dependent stress-strain behavior, due to tissue conformation with fibers distributed along preferential directions and their interaction phenomena with ground substance. In detail, experimental data showed a greater tissue stiffness along transversal direction. Viscous behavior was assessed by strain rate dependence of stress-strain curves and hysteretic phenomena. The second step pertains the development of a specific fiber-reinforced visco-hyperelastic constitutive model, in the light of bladder tissues structural conformation and experimental results. Constitutive parameters have been identified by minimizing the discrepancy between model and experimental data. The agreement between experimental and model results represent a term for evaluating the reliability of the constitutive models by means of the proposed operational procedure. PMID:26253759

  6. Structure Evolution During Cyclic Deformation of an Elastic Propylene-Based Ethylene-Propylene Copolymer

    SciTech Connect

    Toki,S.; Sics, I.; Burger, C.; Fang, D.; Liu, L.; Hsiao, B.; Datta, S.; Tsou, A.

    2006-01-01

    In-situ structural evolution during uniaxial extension and subsequent retraction of a thermoplastic elastomer (TPE) based on propylene-dominant ethylene-propylene (EP) copolymer was studied. Combined measurements of time-resolved wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) as well as stress-strain curves revealed molecular mechanism responsible for the elastic behavior. During the first cycle of deformation, a fraction of the crystals was destroyed, while the rest was reoriented. At strains larger than 1.0, strain-induced {alpha}-crystals in the lamellar form took place, resulting in the creation of a network with well-oriented lamellae having their normals parallel to the stretching direction. With the increase of strain, more crystals were induced, forming an enhanced network with strain-hardening behavior. During retraction and even after complete relaxation to zero stress, the majority of the strain-induced crystalline network remains in tact as being 'permanent set', where lamellar stacks act as the network points. This strain-induced crystalline network structure is thermally stable at room temperature and is responsible for the elastic behavior during subsequent cyclic deformation, similar to a vulcanized rubber.

  7. Cyclic oxidation behavior of some plasma-sprayed coatings in Na2SO4-60%V2O5 environment

    NASA Astrophysics Data System (ADS)

    Singh, Harpreet; Prakash, Satya; Puri, Devendra; Phase, D. M.

    2006-12-01

    Cyclic oxidation behavior of plasma-sprayed NiCrAlY, Ni-20Cr, Ni3Al, and Stellite-6 coatings was investigated in an aggressive environment of Na2SO4-60%V2O5 by thermogravimetric techniques for 50 cycles. These coatings were deposited on a Ni-base superalloy, namely Superni 600; 10Fe-15.5Cr-0.5Mn-0.2C-Bal Ni (wt.%). X-ray diffraction, scanning electron microscopy/energy dispersive x-ray (SEM/EDX), and electron probe microanalyzer (EPMA) techniques were used to analyze the oxidation products. The uncoated superalloy suffered accelerated oxidation in the form of intense spallation of its oxide scale. After deposition of the NiCrAlY coating, the superalloy showed a minimum mass gain, whereas after application of the Stellite-6 coating, a maximum mass gain was observed among the coatings studied. All of the coatings were found to be useful in reducing the spallation of the substrate superalloy. Moreover, the coatings were successful in maintaining continuous surface contact with the base superalloy during the cyclic oxidation. The phases revealed for the oxidized coatings were mainly the oxides of chromium and/or aluminum and the spinels containing nickel-chromium/cobalt-chromium/nickel-aluminum mixed oxides, which are reported to be protective against high-temperature oxidation/hot corrosion.

  8. Structural relaxation and self-repair behavior in nano-scaled Zr-Cu metallic glass under cyclic loading: Molecular-dynamics simulations

    SciTech Connect

    Lo, Y. C.; Chou, H. S.; Cheng, Y. T.; Huang, J. C.; Morris, James R; Liaw, Peter K

    2010-01-01

    Bulk metallic glasses are generally regarded as highly brittle materials at room temperature, with deformation localized within a few principal shear bands. In this simulation work, it is demonstrated that when the Zr-Cu metallic glass is in a small size-scale, it can deform under cyclic loading in a semi-homogeneous manner without the occurrence of pronounced mature shear bands. Instead, the plastic deformation in simulated samples proceeds via the network-like shear-transition zones (STZs) by the reversible and irreversible structure-relaxations during cyclic loading. Dynamic recovery and reversible/irreversible structure rearrangements occur in the current model, along with annihilation/creation of excessive free volumes. This behavior would in-turn retard the damage growth of metallic glass. Current studies can help to understand the structural relaxation mechanism in metallic glass under loading. The results also imply that the brittle bulk metallic glasses can become ductile with the sample size being reduced. The application of metallic glasses in the form of thin film or nano pieces in micro-electro-mechanical systems (MEMS) could be promising.

  9. Longitudinal residual strain and stress-strain relationship in rat small intestine

    PubMed Central

    Dou, Yanling; Fan, Yanhua; Zhao, Jingbo; Gregersen, Hans

    2006-01-01

    Background To obtain a more detailed description of the stress-free state of the intestinal wall, longitudinal residual strain measurements are needed. Furthermore, data on longitudinal stress-strain relations in visceral organs are scarce. The present study aims to investigate the longitudinal residual strain and the longitudinal stress-strain relationship in the rat small intestine. Methods The longitudinal zero-stress state was obtained by cutting tissue strips parallel to the longitudinal axis of the intestine. The longitudinal residual stress was characterized by a bending angle (unit: degrees per unit length and positive when bending outwards). Residual strain was computed from the change in dimensions between the zero-stress state and the no-load state. Longitudinal stresses and strains were computed from stretch experiments in the distal ileum at luminal pressures ranging from 0–4 cmH2O. Results Large morphometric variations were found between the duodenum and ileum with the largest wall thickness and wall area in the duodenum and the largest inner circumference and luminal area in the distal ileum (p < 0.001). The bending angle did not differ between the duodenum and ileum (p > 0.5). The longitudinal residual strain was tensile at the serosal surface and compressive at the mucosal surface. Hence, the neutral axis was approximately in the mid-wall. The longitudinal residual strain and the bending angle was not uniform around the intestinal circumference and had the highest values on the mesenteric sides (p < 0.001). The stress-strain curves fitted well to the mono-exponential function with determination coefficients above 0.96. The α constant increased with the pressure, indicating the intestinal wall became stiffer in longitudinal direction when pressurized. Conclusion Large longitudinal residual strains reside in the small intestine and showed circumferential variation. This indicates that the tissue is not uniform and cannot be treated as a homogenous

  10. Fatigue Behavior of Inconel 718 TIG Welds

    NASA Astrophysics Data System (ADS)

    Alexopoulos, Nikolaos D.; Argyriou, Nikolaos; Stergiou, Vasillis; Kourkoulis, Stavros K.

    2014-08-01

    Mechanical behavior of reference and TIG-welded Inconel 718 specimens was examined in the present work. Tensile, constant amplitude fatigue, and fracture toughness tests were performed in ambient temperature for both, reference and welded specimens. Microstructure revealed the presence of coarse and fine-grained heat-affected zones. It has been shown that without any post-weld heat treatment, welded specimens maintained their tensile strength properties while their ductility decreased by more than 40%. It was found that the welded specimens had lower fatigue life and this decrease was a function of the applied fatigue maximum stress. A 30% fatigue life decrease was noticed in the high cycle fatigue regime for the welded specimens while this decrease exceeded 50% in the low cycle fatigue regime. Cyclic stress-strain curves showed that Inconel 718 experiences a short period of hardening followed by softening for all fatigue lives. Cyclic fatigue response of welded specimens' exhibited cyclically stable behavior. Finally, a marginal decrease was noticed in the Mode I fracture toughness of the welded specimens.

  11. A computer program for plotting stress-strain data from compression, tension, and torsion tests of materials

    NASA Technical Reports Server (NTRS)

    Greenbaum, A.; Baker, D. J.; Davis, J. G., Jr.

    1974-01-01

    A computer program for plotting stress-strain curves obtained from compression and tension tests on rectangular (flat) specimens and circular-cross-section specimens (rods and tubes) and both stress-strain and torque-twist curves obtained from torsion tests on tubes is presented in detail. The program is written in FORTRAN 4 language for the Control Data 6000 series digital computer with the SCOPE 3.0 operating system and requires approximately 110000 octal locations of core storage. The program has the capability of plotting individual strain-gage outputs and/or the average output of several strain gages and the capability of computing the slope of a straight line which provides a least-squares fit to a specified section of the plotted curve. In addition, the program can compute the slope of the stress-strain curve at any point along the curve. The computer program input and output for three sample problems are presented.

  12. 10,000-Hour Cyclic Oxidation Behavior at 982 C (1800 F) of 68 High-Temperature Co-, Fe-, and Ni-Base Alloys

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    1997-01-01

    Sixty-eight high temperature Co-, Fe-, and Ni-base alloys were tested for 10-one thousand hour cycles in static air at 982 C (1800 F). The oxidation behavior of the test samples was evaluated by specific weight change/time data, x-ray diffraction of the post-test samples, and their final appearance. The gravimetric and appearance data were combined into a single modified oxidation parameter, KB4 to rank the cyclic oxidation resistance from excellent to catastrophic. The alloys showing the 'best' resistance with no significant oxidation attack were the alumina/aluminate spinel forming Ni-base turbine alloys: U-700, NASA-VIA and B-1900; the Fe-base ferritic alloys with Al: TRW-Valve, HOS-875, NASA-18T, Thermenol and 18SR; and the Ni-base superalloy IN-702.

  13. Effects of Cyclic Loading on Mechanical Behavior of 24S-T4 and 75S-T6 Aluminum Alloys and SAE 4130 Steel

    NASA Technical Reports Server (NTRS)

    Macgregor, C W; Grossman, N

    1952-01-01

    An investigation was conducted to determine the effects of cyclic loading on the mechanical behavior of 24S-T4 and 75S-T6 aluminum alloys and SAE 4130 steel. Specimens of the three materials were subjected to various numbers of prior fatigue cycles both below and above the fatigue limits. Special slow-bend tests were employed to show the effects of prior cycles of fatigue stressing on the transition temperature to brittle fracture for SAE 4130 steel and on the energy-absorption capacity of the aluminum alloys. Micrographic studies were made to observe and measure crack formation and propagation and additional special tests were conducted to supplement the results of the slow-bend tests. These included Charpy impact tests, mirohardness surveys, tension tests, and fretting-corrosion studies.

  14. Interactive evolution concept for analyzing a rock salt cavern under cyclic thermo-mechanical loading

    NASA Astrophysics Data System (ADS)

    König, Diethard; Mahmoudi, Elham; Khaledi, Kavan; von Blumenthal, Achim; Schanz, Tom

    2016-04-01

    The excess electricity produced by renewable energy sources available during off-peak periods of consumption can be used e.g. to produce and compress hydrogen or to compress air. Afterwards the pressurized gas is stored in the rock salt cavities. During this process, thermo-mechanical cyclic loading is applied to the rock salt surrounding the cavern. Compared to the operation of conventional storage caverns in rock salt the frequencies of filling and discharging cycles and therefore the thermo-mechanical loading cycles are much higher, e.g. daily or weekly compared to seasonally or yearly. The stress strain behavior of rock salt as well as the deformation behavior and the stability of caverns in rock salt under such loading conditions are unknown. To overcome this, existing experimental studies have to be supplemented by exploring the behavior of rock salt under combined thermo-mechanical cyclic loading. Existing constitutive relations have to be extended to cover degradation of rock salt under thermo-mechanical cyclic loading. At least the complex system of a cavern in rock salt under these loading conditions has to be analyzed by numerical modeling taking into account the uncertainties due to limited access in large depth to investigate material composition and properties. An interactive evolution concept is presented to link the different components of such a study - experimental modeling, constitutive modeling and numerical modeling. A triaxial experimental setup is designed to characterize the cyclic thermo-mechanical behavior of rock salt. The imposed boundary conditions in the experimental setup are assumed to be similar to the stress state obtained from a full-scale numerical simulation. The computational model relies primarily on the governing constitutive model for predicting the behavior of rock salt cavity. Hence, a sophisticated elasto-viscoplastic creep constitutive model is developed to take into account the dilatancy and damage progress, as well as

  15. Stress-strain state in a high-pressure electromagnetic valve

    SciTech Connect

    Karmugin, B.V.; Beskov, A.N.; Kudinov, A.S.; Mendelson, D.A.

    1983-01-01

    The authors studied stress distribution in an electromagnetic valve with Dn=6 mm and pwork=36 MPa. To reduce the size and weight, the valve body was threaded to the electromagnet body and welded to the annular bulge to ensure airtightness. A qualitative analysis of the sections of the photoelastic model in the polariscope field and interference pictures on holograms showed that the pattern of stress distribution on the underside of the electromagnet body was close to axisymmetric. Finds that the combined use of the polarization-optical method and holographic interferometry together with the numerical potential method for studying stress-strain in high-pressure armatures is extremely effective for optimizing and miniaturizing complex designs.

  16. Stress-strain sensor for monitoring seismic precursors and fault activities in the sand

    NASA Astrophysics Data System (ADS)

    Du, Qiujiao; Sun, Wei; Zeng, Zuoxun

    2016-04-01

    In this paper, a sensor to monitor stress-strain signals in a granular medium is used to detect seismic precursory information. Compared with the widely used sensors of borehole stress in the rock, the sensor has more convenient operation, higher output sensitivity, compactness and farther propagation effect. The stress and strain changes before Pu'er Ms6.4 earthquake in China are recorded by Beijing and Xinmin stations, and its corresponding fault activities are analyzed. Study indicates anomalous amplitude of strain signal reaches 10 times higher than that of ordinary background, and compressive oscillation and extensional oscillation occurred constantly before the earthquake. The method and results presented in the paper provide a new way for investigating seismic precursors for shallow-source earthquakes.

  17. Ada and cyclic runtime scheduling

    NASA Technical Reports Server (NTRS)

    Hood, Philip E.

    1986-01-01

    An important issue that must be faced while introducing Ada into the real time world is efficient and prodictable runtime behavior. One of the most effective methods employed during the traditional design of a real time system is the cyclic executive. The role cyclic scheduling might play in an Ada application in terms of currently available implementations and in terms of implementations that might be developed especially to support real time system development is examined. The cyclic executive solves many of the problems faced by real time designers, resulting in a system for which it is relatively easy to achieve approporiate timing behavior. Unfortunately a cyclic executive carries with it a very high maintenance penalty over the lifetime of the software that is schedules. Additionally, these cyclic systems tend to be quite fragil when any aspect of the system changes. The findings are presented of an ongoing SofTech investigation into Ada methods for real time system development. The topics covered include a description of the costs involved in using cyclic schedulers, the sources of these costs, and measures for future systems to avoid these costs without giving up the runtime performance of a cyclic system.

  18. Cyclic Degradation of Co49Ni21Ga30 High-Temperature Shape Memory Alloy: On the Roles of Dislocation Activity and Chemical Order

    NASA Astrophysics Data System (ADS)

    Krooß, P.; Kadletz, P. M.; Somsen, C.; Gutmann, M. J.; Chumlyakov, Y. I.; Schmahl, W. W.; Maier, H. J.; Niendorf, T.

    2016-03-01

    Conventional shape memory alloys (SMAs), such as binary Ni-Ti, are typically limited to service temperatures below 100 °C. Recent studies on Co-Ni-Ga high-temperature SMAs revealed the potential that these alloys can be used up to temperatures of about 400 °C. Analysis of the cyclic functional properties showed that degradation in these alloys is mainly triggered by intensive dislocation motion. However, data on the cyclic stress-strain response and the mechanisms leading to functional degradation of Co-Ni-Ga above 300 °C were missing in open literature. Current results reveal that above 300 °C diffusion-controlled mechanisms, e.g., precipitation of secondary phases and changes in the chemical degree of order, seem to dictate cyclic instability. Detailed neutron and transmission electron microscopy analyses following superelastic cycling in a temperature range of 200-400 °C were employed to characterize the changes in degradation behavior above 300 °C.

  19. Investigation of Cyclic Deformation and Fatigue of Polycrystalline Cu under Pure Compression Cyclic Loading Conditions

    NASA Astrophysics Data System (ADS)

    Hsu, Tzu-Yin Jean

    It is commonly accepted that fatigue crack is initiated under tensile fatigue stresses. However, practical examples demonstrate that cracks may also initiate under pure compressive fluctuating loads such as the failures observed in aircraft landing gear frames. However, the mechanism of such failures is rarely investigated. Furthermore, knowledge on cyclic deformation response under pure compressive fatigue condition is also very limited or non-existent. Our recent work already verified that fatigue cracks may nucleate from stress concentration sites under pure compression fatigue, but whether or not a form of stress concentration is always needed to initiate a crack under pure compression fatigue remains uncertain. In this study, compression fatigue tests under different peak stresses were carried out on smooth bars of fully annealed OFHC Copper. The purpose of these tests is to investigate not only the cyclic deformation response but also the possibility of crack nucleation without the stress concentrator. Results showed that overall the cyclic stress-strain response and microstructural evolution of OFHC Copper under pure compression fatigue exhibits rather dissimilar behaviour compared to those under symmetrical fatigue. The specimens hardened rapidly within 10 cycles under pure compression fatigue unlike the gradual cyclic hardening behaviour in symmetrical fatigue with the same peak stress amplitude. Compressive cyclic creep behaviour was also observed under the same testing conditions. Moreover, unlike conventional tension-compression fatigue, only moderate slip activity was detectable on the surface instead of typical PSB features detected from TEM observations. The surface observations has revealed that surface slip bands did not increase in number nor did they become more pronounced in height with increasing number of cycles. In addition, surface roughening by grain boundary extrusion was detected to become more severe as the cycling progressed. Therefore

  20. Cyclic multiverses

    NASA Astrophysics Data System (ADS)

    Marosek, Konrad; Da¸browski, Mariusz P.; Balcerzak, Adam

    2016-09-01

    Using the idea of regularization of singularities due to the variability of the fundamental constants in cosmology we study the cyclic universe models. We find two models of oscillating and non-singular mass density and pressure (`non-singular' bounce) regularized by varying gravitational constant G despite the scale factor evolution is oscillating and having sharp turning points (`singular' bounce). Both violating (big-bang) and non-violating (phantom) null energy condition models appear. Then, we extend this idea on to the multiverse containing cyclic individual universes with either growing or decreasing entropy though leaving the net entropy constant. In order to get an insight into the key idea, we consider the doubleverse with the same geometrical evolution of the two `parallel' universes with their physical evolution [physical coupling constants c(t) and G(t)] being different. An interesting point is that there is a possibility to exchange the universes at the point of maximum expansion - the fact which was already noticed in quantum cosmology. Similar scenario is also possible within the framework of Brans-Dicke theory where varying G(t) is replaced by the dynamical Brans-Dicke field φ(t) though these theories are slightly different.

  1. Transport behavior of a single Ca(2+), K(+), and Na(+) in a water-filled transmembrane cyclic peptide nanotube.

    PubMed

    Yan, Xiliang; Fan, Jianfen; Yu, Yi; Xu, Jian; Zhang, Mingming

    2015-05-26

    Molecular dynamics simulations have been performed to investigate the transport properties of a single Ca(2+), K(+), and Na(+) in a water-filled transmembrane cyclic peptide nanotube (CPNT). Two transmembrane CPNTs, i.e., 8×(WL)n=4,5/POPE (with uniform lengths but various radii), were applied to clarify the dependence of ionic transport properties on the channel radius. A huge energy barrier keeps Ca(2+) out of the octa-CPNT, while Na(+) and K(+) can be trapped in two CPNTs. The dominant electrostatic interaction of a cation with water molecules leads to a high distribution of channel water around the cation and D-defects in the first and last gaps, and significantly reduces the axial diffusion of channel water. Water-bridged interactions were mostly found between the artificially introduced Ca(2+) and the framework of the octa-CPNT, and direct coordinations with the tube wall mostly occur for K(+) in the octa-CPNT. A cation may drift rapidly or behave lazily in a CPNT. K(+) behaves most actively and can visit the whole deca-CPNT quickly. The first solvation shells of Ca(2+) and Na(+) are basically saturated in two CPNTs, while the hydration of K(+) is incomplete in the octa-CPNT. The solvation structure of Ca(2+) in the octa-CPNT is most stable, while that of K(+) in the deca-CPNT is most labile. Increasing the channel radius induces numerous interchange attempts between the first-shell water molecules of a cation and the ones in the outer region, especially for the K(+) system. PMID:25894098

  2. Unified constitutive modeling for proportional and nonproportional cyclic plasticity responses

    NASA Astrophysics Data System (ADS)

    Krishna, Shree

    Several features of cyclic plasticity, e.g. cyclic hardening/softening, ratcheting, relaxation, and their dependence on strain range, nonproportionality of loading, time, and temperature determine the stress-strain responses of materials under cyclic loading. Numerous efforts have been made in the past decades to characterize and model these responses. Many of these responses can be simulated reasonably by the existing constitutive models, but the same models would fail in simulating the structural responses, local stress-strain or global deformation. One of the reasons for this deficiency is that the constitutive models are not robust enough to simulate the cyclic plasticity responses when they interact with each other. This deficiency can be understood better or resolved by developing and validating constitutive models against a broad set of experimental responses and two or more of the responses interacting with each other. This dissertation develops a unified constitutive model by studying the cyclic plasticity features in an integrated manner and validating the model by simulating a broad set of proportional and nonproportional cyclic plasticity responses. The study demonstrates the drawbacks of the existing nonlinear kinematic hardening model originally developed by Chaboche and then develop and incorporate novel ideas into the model for improving its cyclic response simulations. The Chaboche model is modified by incorporating strain-range dependent cyclic hardening/softening through the kinematic hardening rule parameters, in addition to the conventional method of using only the isotropic hardening parameters. The nonproportional loading memory parameters of Tanaka and of Benallal and Marquis are incorporated to study the influence of nonproportionality. The model is assessed by simulating hysteresis loop shape, cyclic hardening-softening, cross-effect, cyclic relaxation, subsequent cyclic softening, and finally a series of ratcheting responses under

  3. Permeability of coal to CH4 under fixed volume boundary conditions: the effect of stress-strain-sorption behaviour

    NASA Astrophysics Data System (ADS)

    Liu, Jinfeng; Fokker, Peter; Spiers, Christopher

    2016-04-01

    Permeability evolution in coal reservoirs during CO2-Enhanced Coalbed Methane (ECBM) production is strongly influenced by swelling/shrinkage effects related to sorption and desorption of CO2 and CH4, respectively. Numerous permeability models, coupling the swelling response of coal to gas sorption, have been developed to predict in-situ coal seam permeability evolution during (E)CBM. However, experimental studies, aimed at testing such models, have mainly focused on the permeability changes occurring under constant lateral stress conditions, which are inconsistent with the in-situ boundary condition of (near) zero lateral strain. We performed CH4 permeability measurements, using the steady-state method, on a cylindrical sample of high volatile bituminous coal (25mm in diameter), under (near) fixed volume versus fixed stress conditions. The sample possessed a clearly visible cleat system. To isolate the effect of sorption on permeability evolution, helium (non-sorbing gas) was used as a control fluid. The bulk sample permeability to helium, under stress control conditions, changed from 4.07×10‑17to 7.5×10‑18m2, when the effective stress increased from 19.1 to 35.2MPa. Sorption of CH4 at a constant pressure of 10MPa, under fixed volume boundary conditions, resulted in a confining pressure increase from a poroelastically supported value of 29.3MPa to a near-equilibrium value of 38.6MPa over 171 hours. This is caused by the combined effect of the sorption-induced swelling and the self-compression of the sample. The concentration of CH4 adsorbed by the sample was 0.113 mmol/gcoal. During the adsorption process, the permeability to CH4 also decreased from 2.38×10‑17 to 4.91×10‑18m2, proving a strong influence of stress-strain-sorption behavior (c.f. Hol et al., 2012) on fracture permeability evolution. The CH4 permeability subsequently measured under stress controlled conditions varied from 1.37×10‑17 to 4.33×10‑18m2, for same change in confining

  4. Cyclic stress analysis of an air-cooled turbine vane

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Gauntner, D. J.; Gauntner, J. W.

    1975-01-01

    The effects of gas pressure level, coolant temperature, and coolant flow rate on the stress-strain history and life of an air-cooled vane were analyzed using measured and calculated transient metal temperatures and a turbine blade stress analysis program. Predicted failure locations were compared to results from cyclic tests in a static cascade and engine. The results indicate that a high gas pressure was detrimental, a high coolant flow rate somewhat beneficial, and a low coolant temperature the most beneficial to vane life.

  5. 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni- Base Alloys Evaluated at 982 deg. C (1800 deg. F)

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    1999-01-01

    Power systems with operating temperatures in the range of 815 to 982 C (1500 to 1800 F) frequently require alloys that can operate for long times at these temperatures. A critical requirement is that these alloys have adequate oxidation resistance. The alloys used in these power systems require thousands of hours of operating life with intermittent shutdown to room temperature. Intermittent power plant shutdowns, however, offer the possibility that the protective scale will tend to spall (i.e., crack and flake off) upon cooling, increasing the rate of oxidative attack in subsequent heating cycles. Thus, it is critical that candidate alloys be evaluated for cyclic oxidation behavior. It was determined that exposing test alloys to ten 1000-hr cycles in static air at 982 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni-Base Alloys Evaluated at 982 C (1800 F) could give a reasonable simulation of long-time power plant operation. Iron- (Fe-), nickel- (Ni-), and cobalt- (Co-) based high-temperature alloys with sufficient chromium (Cr) and/or aluminum (Al) content can exhibit excellent oxidation resistance. The protective oxides formed by these classes of alloys are typically Cr2O3 and/or Al2O3, and are usually influenced by their Cr, or Cr and Al, content. Sixty-eight Co-, Fe-, and Ni-base high-temperature alloys, typical of those used at this temperature or higher, were used in this study. At the NASA Lewis Research Center, the alloys were tested and compared on the basis of their weight change as a function of time, x-ray diffraction of the protective scale composition, and the physical appearance of the exposed samples. Although final appearance and x-ray diffraction of the final scale products were two factors used to evaluate the oxidation resistance of each alloy, the main criterion was the oxidation kinetics inferred from the specific weight change versus time data. These data indicated a range of oxidation behavior including parabolic

  6. A Study on the Cyclic Oxidation Behavior of Detonation-Gun-Sprayed Ni-5Al Coatings on Inconel-718 at 900 °C

    NASA Astrophysics Data System (ADS)

    Saladi, Sekar; Menghani, Jyoti; Prakash, Satya

    2014-12-01

    Cyclic oxidation behavior of detonation-gun-sprayed Ni-5Al coating on Inconel-718 is discussed in the present study. Oxidation studies were carried out on both bare and coated superalloy substrates in air at 900 °C for 100 cycles. The thermogravimetric technique was used to establish kinetics of oxidation. X-ray diffraction, FESEM/EDAX, and x-ray mapping techniques were used to analyze the oxidation products of bare and coated samples. The weight gain of bare superalloy was higher than the Ni-5Al-coated superalloy. Both bare and Ni-5Al-coated superalloys followed nearly parabolic oxidation behavior. The Ni-5Al coating was able to reduce the overall weight gain by 26.2% in comparison with bare superalloy in the given environment. The better oxidation resistance of Ni-5Al coating may be due the formation of protective oxides phases such as NiO, Al2O3, and NiAl2O4 on the oxidized coating and Cr2O3 at the coating-substrate interface. The Ni-5Al coatings obtained from detonation-gun-spraying process showed very little porosity and low surface roughness values.

  7. Data related to cyclic deformation and fatigue behavior of direct laser deposited Ti–6Al–4V with and without heat treatment

    PubMed Central

    Sterling, Amanda J.; Torries, Brian; Shamsaei, Nima; Thompson, Scott M.

    2016-01-01

    Data is presented describing the strain-controlled, fully-reversed uniaxial cyclic deformation and fatigue behavior of Ti–6Al–4V specimens additively manufactured via Laser Engineered Net Shaping (LENS) – a Direct Laser Deposition (DLD) process. The data was collected by performing multiple fatigue tests on specimens with various microstructural states/conditions, i.e. in their ‘as-built’, annealed (below the beta transus temperature), or heat treated (above the beta transus temperature) condition. Such data aids in characterizing the mechanical integrity and fatigue resistance of DLD parts. Data presented herein also allows for elucidating the strong microstructure coupling of the fatigue behavior of DLD Ti–6Al–4V, as the data trends were found to vary with material condition (i.e. as-built, annealed or heat treated) [1]. This data is of interest to the additive manufacturing and fatigue scientific communities, as well as the aerospace and biomedical industries, since additively-manufactured parts cannot be reliably deployed for public use, until their mechanical properties are understood with high certainty. PMID:26949728

  8. Data related to cyclic deformation and fatigue behavior of direct laser deposited Ti-6Al-4V with and without heat treatment.

    PubMed

    Sterling, Amanda J; Torries, Brian; Shamsaei, Nima; Thompson, Scott M

    2016-03-01

    Data is presented describing the strain-controlled, fully-reversed uniaxial cyclic deformation and fatigue behavior of Ti-6Al-4V specimens additively manufactured via Laser Engineered Net Shaping (LENS) - a Direct Laser Deposition (DLD) process. The data was collected by performing multiple fatigue tests on specimens with various microstructural states/conditions, i.e. in their 'as-built', annealed (below the beta transus temperature), or heat treated (above the beta transus temperature) condition. Such data aids in characterizing the mechanical integrity and fatigue resistance of DLD parts. Data presented herein also allows for elucidating the strong microstructure coupling of the fatigue behavior of DLD Ti-6Al-4V, as the data trends were found to vary with material condition (i.e. as-built, annealed or heat treated) [1]. This data is of interest to the additive manufacturing and fatigue scientific communities, as well as the aerospace and biomedical industries, since additively-manufactured parts cannot be reliably deployed for public use, until their mechanical properties are understood with high certainty. PMID:26949728

  9. Multiaxial cyclic plasticity of ultrafine grain nickel produced by pulsed electrodeposition

    NASA Astrophysics Data System (ADS)

    Batane, Ntirelang Robert

    The desirable properties of ultrafine grain (UFG) materials have prompted significant research efforts over the past decade. These materials have proven to be suitable for many industrial applications where conventional grain sized materials have limitations. Some properties of UFG materials which make them preferred over their conventional grain sized counterparts include high strength, corrosion resistance, and high shock resistance. The understanding of mechanical behavior of UFG materials under cyclic loading still remains a challenge. Available data in the literature about UFG material subjected to cyclic loading is limited. As most engineering components experience complex stress-strain states, an understanding of multiaxial fatigue is critical in applications where reliability and optimum performance are required. The objective of this research, therefore, was to study the mechanical behavior of UFG nickel under multiaxial loading conditions. In the first part of this research, the uniaxial fatigue behavior of UFG nickel synthesized by pulsed electrodeposition in a nickel sulfamate bath was studied. Bulk nickel cylinders, 10mm in diameter and 60mm long, were electroformed. The cylinders were machined into test specimens and cycled in fully reversed tension-compression at room temperature at different plastic strain amplitudes. The second part involved multiaxial deformation of thin-walled nickel tubes. The thin-walled UFG nickel tubes were produced by the same technique as that used in electroforming the UFG nickel solid cylinders. Thin-walled tubes were subjected to axial-torsional cyclic loading. For comparison purposes, conventional grain size (CG) nickel specimens were also tested under the same loading conditions as the UFG nickel specimens. The UFG nickel shows high cyclic strength as compared to CG nickel under both uniaxial and multiaxial loading conditions. CG nickel shows higher effective saturation stress under nonproportional loading than

  10. Analysis of bonded joints. [shear stress and stress-strain diagrams

    NASA Technical Reports Server (NTRS)

    Srinivas, S.

    1975-01-01

    A refined elastic analysis of bonded joints which accounts for transverse shear deformation and transverse normal stress was developed to obtain the stresses and displacements in the adherends and in the bond. The displacements were expanded in terms of polynomials in the thicknesswise coordinate; the coefficients of these polynomials were functions of the axial coordinate. The stress distribution was obtained in terms of these coefficients by using strain-displacement and stress-strain relations. The governing differential equations were obtained by integrating the equations of equilibrium, and were solved. The boundary conditions (interface or support) were satisfied to complete the analysis. Single-lap, flush, and double-lap joints were analyzed, along with the effects of adhesive properties, plate thicknesses, material properties, and plate taper on maximum peel and shear stresses in the bond. The results obtained by using the thin-beam analysis available in the literature were compared with the results obtained by using the refined analysis. In general, thin-beam analysis yielded reasonably accurate results, but in certain cases the errors were high. Numerical investigations showed that the maximum peel and shear stresses in the bond can be reduced by (1) using a combination of flexible and stiff bonds, (2) using stiffer lap plates, and (3) tapering the plates.

  11. Regional arterial stress-strain distributions referenced to the zero-stress state in the rat.

    PubMed

    Zhao, Jingbo; Day, Judd; Yuan, Zhuang Feng; Gregersen, Hans

    2002-02-01

    Morphometric and stress-strain properties were studied in isolated segments of the thoracic aorta, abdominal aorta, left common carotid artery, left femoral artery, and the left pulmonary artery in 16 male Wistar rats. The mechanical test was performed as a distension experiment where the proximal end of the arterial segment was connected via a tube to the container used for applying pressures to the segment and the distal end was left free. Outer wall dimensions were obtained from digitized images of the arterial segments at different pressures as well as at no-load and zero-stress states. The results showed that the morphometric data, such as inner and outer circumference, wall and lumen area, wall thickness, wall thickness-to-inner radius ratio, and normalized outer diameter, as a function of the applied pressures, differed between the five arteries (P < 0.01). The opening angle was largest in the pulmonary artery and smallest in thoracic aorta (P < 0.01). The absolute value of both the inner and outer residual strain and the residual strain gradient were largest in the femoral artery and smallest in the thoracic aorta (P < 0.01). In the circumferential and longitudinal direction, the arterial wall was stiffest in the femoral artery and in the thoracic aorta, respectively, and most compliant in the pulmonary artery. These results show that the morphometric and biomechanical properties referenced to the zero-stress state differed between the five arterial segments. PMID:11788411

  12. Stress-Strain Relation of Tire Rubber Consist of Entangled Polymers, Fillers and Crosslink

    NASA Astrophysics Data System (ADS)

    Hagita, Katsumi; Bito, Y.; Minagawa, Y.; Omiya, M.; Morita, H.; Doi, M.; Takano, H.

    2009-03-01

    We presented a preliminary result of large scale coarse-grained Molecular Dynamics simulation of filled polymer melts with Sulfur-crosslink under an uni-axial deformation by using the Kremer-Grest Model. The size of simulation box under periodic boundary conditions (PBC) is set to about 66nm to consider length of entangled polymer chains, size and structure of fillers, and non-uniform distribution of crosslink. We put 640 polymer chains of 1024 particles and 32 fillers into the PBC box. Each filler consists of 1280 particles of the C1280 fullerene structure. A repulsive force from the center of the filler is applied to the particles. Here, the particles of the fillers are chosen to be the same as the particles of the polymers and the diameter of the filler is about 15nm. The distribution of the fillers used in this simulation is provided by the result of 2d pattern RMC analysis for 2D-USAXS experiments at SPring-8. Sulfur crosslink are randomly distributed in the system. It is found that stress-strain curves estimated by applying a certain uni-axial deformation to the system in simulations are in good agreement with those in experiments. It is successful to show difference on the S-S curve between existence / absence of fillers and qualitative dependence of attractive force between polymer and filler.

  13. Ultrafast Kikuchi diffraction: nanoscale stress-strain dynamics of wave-guiding structures.

    PubMed

    Yurtsever, Aycan; Schaefer, Sascha; Zewail, Ahmed H

    2012-07-11

    Complex structural dynamics at the nanoscale requires sufficiently small probes to be visualized. In conventional imaging using electron microscopy, the dimension of the probe is large enough to cause averaging over the structures present. However, by converging ultrafast electron bunches, it is possible to select a single nanoscale structure and study the dynamics, either in the image or using electron diffraction. Moreover, the span of incident wave vectors in a convergent beam enables sensitivity levels and information contents beyond those of parallel-beam illumination with a single wave vector Bragg diffraction. Here, we report the observation of propagating strain waves using ultrafast Kikuchi diffraction from nanoscale volumes within a wedge-shaped silicon single crystal. It is found that the heterogeneity of the strain in the lateral direction is only 100 nm. The transient elastic wave gives rise to a coherent oscillation with a period of 30 ps and with an envelope that has a width of 140 ps. The origin of this elastic deformation is theoretically examined using finite element analysis; it is identified as propagating shear waves. The wedge-shaped structure, unlike parallel-plate structure, is the key behind the traveling nature of the waves as its angle permits "transverse" propagation; the parallel-plate structure only exhibits the "longitudinal" motion. The studies reported suggest extension to a range of applications for nanostructures of different shapes and for exploring their ultrafast eigen-modes of stress-strain profiles. PMID:22667321

  14. Tensile creep behavior and cyclic fatigue/creep interaction of hot- isostatically pressed Si sub 3 N sub 4

    SciTech Connect

    Liu, K.C.; Pih, H.; Stevens, C.O.; Brinkman, C.R.

    1991-01-01

    Tensile creep data are reported for a high-performance grade of hot isostatically pressed Si{sub 3}N{sub 4} that is currently being investigated as a candidate material for advanced heat engine applications. Specimens were tested in pure uniaxial tension at temperatures ranging from 1200 to 1370{degree}C. Creep strain was measured with an optical strain extensometer until creep rupture occurred, in some cases for periods in excess of 2000 h. To study the effects of various preloading material histories on creep behavior, specimens were prepared and tested in several conditions, i.e., unannealed, annealed, or precycled. Test results show that either treatment by thermal annealing or by precycling at 1370{degree}C can dramatically modify the initial transient creep behavior and enhance the resistance to creep deformation and hence the creep-rupture lifetime. However, the influence of the preloading histories on creep rate was diminished by high temperature exposure after about 500 h of testing. The rupture lifetime of the precycled specimen at 1370{degree}C was significantly higher than those of the unannealed and annealed specimens. In contrast, no significant extension of the creep-rupture lifetime was observed for a precycled specimen tested at 1300{degree}C. Steady-state creep was absent in some cases under certain conditions of temperature, stress, and heat treatment. Little or no tertiary creep was usually detected before specimen fracture occurred. The steady-state creep rate of this material was found to be a function of applied stress, temperature, and possibly the level of crystallinity in the intergranular phase. 9 refs., 15 figs.

  15. Evaluation of Cyclic Oxidation and Hot Corrosion Behavior of HVOF-Sprayed WC-Co/NiCrAlY Coating

    NASA Astrophysics Data System (ADS)

    Somasundaram, B.; Kadoli, Ravikiran; Ramesh, M. R.

    2014-08-01

    Corrosion of metallic structural materials at an elevated temperature in complex multicomponent gas environments are potential problems in many fossil energy systems, especially those using coal as a feedstock. Combating these problems involves a number of approaches, one of which is the use of protective coatings. The high velocity oxy fuel (HVOF) process has been used to deposit WC-Co/NiCrAlY composite powder on two types of Fe-based alloys. Thermocyclic oxidation behavior of coated alloys was investigated in the static air as well as in molten salt (Na2SO4-60%V2O5) environment at 700 °C for 50 cycles. The thermogravimetric technique was used to approximate the kinetics of oxidation. WC-Co/NiCrAlY coatings showed a lower oxidation rate in comparison to uncoated alloys. The oxidation resistance of WC-Co/NiCrAlY coatings can be ascribed to the oxide layer of Al2O3 and Cr2O3 formed on the outermost surface. Coated alloys extend a protective oxide scale composed of oxides of Ni and Cr that are known to impart resistance to the hot corrosion in the molten salt environment.

  16. A Comparative Study of Cyclic Oxidation and Sulfates-Induced Hot Corrosion Behavior of Arc-Sprayed Ni-Cr-Ti Coatings at Moderate Temperatures

    NASA Astrophysics Data System (ADS)

    Guo, Wenmin; Wu, Yuping; Zhang, Jianfeng; Hong, Sheng; Chen, Liyan; Qin, Yujiao

    2015-06-01

    The cyclic oxidation and sulfates-induced hot corrosion behaviors of a Ni-43Cr-0.3Ti arc-sprayed coating at 550-750 °C were characterized and compared in this study. In general, all the oxidation and hot corrosion kinetic curves of the coating followed a parabolic law, i.e., the weight of the specimens showed a rapid growth initially and then reached the gradual state. However, the initial stage of the hot corrosion process was approximately two times longer than that of the oxidation process, indicating a longer preparation time required for the formation of a protective scale in the former process. At 650 °C, the parabolic rate constant for the hot corrosion was 7.2 × 10-12 g2/(cm4·s), approximately 1.7 times higher than that for the oxidation at the same temperature. The lower parabolic rate constant for the oxidation was mainly attributed to the formation of a protective oxide scale on the surface of corroded specimens, which was composed of a mixture of NiO, Cr2O3, and NiCr2O4. However, as the liquid molten salts emerged during the hot corrosion, these protective oxides would be dissolved and the coating was corrupted acceleratedly.

  17. Some Recent Developments in the Endochronic Theory with Application to Cyclic Histories

    NASA Technical Reports Server (NTRS)

    Valanis, K. C.; Lee, C. F.

    1983-01-01

    Constitutive equations with only two easily determined material constants predict the stress (strain) response of normalized mild steel to a variety of general strain (stress) histories, without a need for special unloading-reloading rules. The equations are derived from the endochronic theory of plasticity of isotropic materials with an intrinsic time scale defined in the plastic strain space. Agreement between theoretical predictions and experiments are are excellent quantitatively in cases of various uniaxial constant amplitude histories, variable uniaxial strain amplitude histories and cyclic relaxation. The cyclic ratcheting phenomenon is predicted by the present theory.

  18. Cyclic fatigue damage characteristics observed for simple loadings extended to multiaxial life prediction

    NASA Technical Reports Server (NTRS)

    Jones, David J.; Kurath, Peter

    1988-01-01

    Fully reversed uniaxial strain controlled fatigue tests were performed on smooth cylindrical specimens made of 304 stainless steel. Fatigue life data and cracking observations for uniaxial tests were compared with life data and cracking behavior observed in fully reversed torsional tests. It was determined that the product of maximum principle strain amplitude and maximum principle stress provided the best correlation of fatigue lives for these two loading conditions. Implementation of this parameter is in agreement with observed physical damage and it accounts for the variation of stress-strain response, which is unique to specific loading conditions. Biaxial fatigue tests were conducted on tubular specimens employing both in-phase and out-of-phase tension torsion cyclic strain paths. Cracking observations indicated that the physical damage which occurred in the biaxial tests was similar to the damage observed in uniaxial and torsional tests. The Smith, Watson, and Topper parameter was then extended to predict the fatigue lives resulting from the more complex loading conditions.

  19. Low cycle fatigue behavior of a ferritic reactor pressure vessel steel

    NASA Astrophysics Data System (ADS)

    Sarkar, Apu; Kumawat, Bhupendra K.; Chakravartty, J. K.

    2015-07-01

    The cyclic stress-strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain-stress relationships and the strain-life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis.

  20. Prediction of stress-strain response of SCS-6/Timetal-21S subjected to a hypersonic flight profile

    NASA Technical Reports Server (NTRS)

    Mirdamadi, Massoud; Johnson, W. Steven

    1994-01-01

    Thermomechanical response of a cross-ply SCS-6/Timetal-21S composite subjected to a generic hypersonic flight profile with the temperature ranging from -130 C to 816 C was evaluated experimentally and analytically. A two dimensional micromechanical anlaysis, VISCOPLY, was used to predict the stress-strain response of the laminate and of the constituents in each ply during thermomechanical loading conditions. In the analysis, the fiber was modeled as elastic with transverse orthotropic and temperature dependent properties and the matrix was modeled using a thermoviscoplastic constitutive relation. The fiber transverse modulus was reduced in the analysis to simulate fiber-matrix interface failure. Reasonable agreement was found between measured and predicted laminate stress-strain response when fiber-matrix debonding was modeled.

  1. Effect of heating rate on the stress-strain state in a cylindrical shell with a stiffener ring

    SciTech Connect

    Sorokina, I.V.; Babanskii, V.G.; Rachkov, V.I.

    1988-05-01

    The effect of the heating rate on the stress-strain state of chemical production systems during start-up was examined in a quasistatic formulation of the thermoelasticity problem. The temperature fields were determined for a thin-walled shell with a stiffener ring by solving the nonstationary problem of heat conductivity. The calculations incorporate heat balance equations using the thermal conductivity and specific heat of the shell and ring materials. Thermoelastic stresses were determined for the calculated temperature field as a function of time. Results show that the heating rate has a strong effect on the stress-strain state of the thin-wall structures in the zone of the edge effect and that a linear increase in heating rate increases thermal stresses almost proportionally. The method was designed for optimizing the time required for startup and shutdown of chemical plant equipment and maximizing plant efficiency.

  2. Correlating Computationally Derived Particle Surface Stress-Strain States to Mesoscale Shock Response

    NASA Astrophysics Data System (ADS)

    Scripka, David; Dwivedi, Sunil; Thadhani, Naresh

    2013-06-01

    The results of 2D and 3D FE simulations are presented, correlating the in-situ mesoscale shock response at the particle level to their surface observable stresses-strains for possible future experimental measurements. The ongoing work is an attempt to address a yet unresolved question; how a complex non-uniaxial thermomechanical shock response at the mesoscale, which may be a precursor to more complex phenomena, correlates to the average continuum uniaxial shock response. The objective of this work is to gain insight into how the complex responses at the meso/sub-mesoscale manifest to quantities that could be experimentally measured without perturbing the material. The simulations consider a 60 micron spherical sand particle mounted with a 1.8 micron thick epoxy coupon impacted by a 60 micron aluminum ball at 500 m/s. The impact is considered for the particle alone (direct impact) as well as embedded within an ensemble of 100 particles of the same size (indirect impact). Particle contact is modeled with and without friction. The spatial and temporal average stresses and strains at the particle-coupon interface are compared with the in-situ shock response of the particle. The results obtained to date indicate that in spite of the wave reflections and reverberations within the coupon, the particle-coupon interface response can be statistically correlated to the in-situ shock response. This work is supported in part by DTRA Grant HDTRA-12-1-0052 and AFOSR Grant FA 9550-12-1-0128.

  3. Yield Behavior of Solution Treated and Aged Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Ring, Andrew J.; Baker, Eric H.; Salem, Jonathan A.; Thesken, John C.

    2014-01-01

    Post yield uniaxial tension-compression tests were run on a solution treated and aged (STA), titanium 6-percent aluminum 4-percent vanadium (Ti-6Al-4V) alloy to determine the yield behavior on load reversal. The material exhibits plastic behavior almost immediately on load reversal implying a strong Bauschinger effect. The resultant stress-strain data was compared to a 1D mechanics model and a finite element model used to design a composite overwrapped pressure vessel (COPV). Although the models and experimental data compare well for the initial loading and unloading in the tensile regime, agreement is lost in the compressive regime due to the Bauschinger effect and the assumption of perfect plasticity. The test data presented here are being used to develop more accurate cyclic hardening constitutive models for future finite element design analysis of COPVs.

  4. Cyclic creep analysis from elastic finite-element solutions

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Hwang, S. Y.

    1986-01-01

    A uniaxial approach was developed for calculating cyclic creep and stress relaxation at the critical location of a structure subjected to cyclic thermomechanical loading. This approach was incorporated into a simplified analytical procedure for predicting the stress-strain history at a crack initiation site for life prediction purposes. An elastic finite-element solution for the problem was used as input for the simplified procedure. The creep analysis includes a self-adaptive time incrementing scheme. Cumulative creep is the sum of the initial creep, the recovery from the stress relaxation and the incremental creep. The simplified analysis was exercised for four cases involving a benchmark notched plate problem. Comparisons were made with elastic-plastic-creep solutions for these cases using the MARC nonlinear finite-element computer code.

  5. Modifications of system for elevated temperature tensile testing and stress-strain measurement of metal matrix composites

    SciTech Connect

    Diaz, J.O.

    1994-09-01

    Composites consisting of tungsten alloy wires in superalloy matrices are being studied because they offer the potential for increased strength compared to current materials used at temperatures up to a least 1093{degrees}C (2000{degrees}F). Previous research at the NASA Lewis Research Center and at other laboratories in the U.S., Europe, and Japan has demonstrated laboratory feasibility for fiber reinforced superalloys (FRS). The data for the mechanical and physical properties used to evaluate candidate materials is limited and a need exists for a more detailed and complete data base. The focus of this work was to develop a test procedure to provide a more complete FRS data base to quantitatively evaluate the composite`s potential for component applications. This paper will describe and discuss the equipment and procedures under development to obtain elevated temperature tensile stress-strain, strength and modulus data for the first generation of tungsten reinforced superalloy composite (TFRS) materials. Tensile stress-strain tests were conducted using a constant crosshead speed tensile testing machine and a modified load-strain measuring apparatus. Elevated temperature tensile tests were performed using a resistance wound commercial furnace capable of heating tests specimens up to 1093{degrees}C (2000{degrees}F). Tensile stress-strain data were obtained for hollow tubular stainless steel specimens serving as a prototype for future composite specimens.

  6. Modifications of system for elevated temperature tensile testing and stress-strain measurement of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Diaz, J. O.

    1985-01-01

    Composites consisting of tungsten alloy wires in superalloy matrices are being studied because they offer the potential for increased strength compared to current materials used at temperatures up to at least 1093 C (2000F). Previous research at the NASA Lewis Research Center and at other laboratories in the U.S., Europe, and Japan has demonstrated laboratory feasibility for fiber reinforced superalloys (FRS). The data for the mechanical and physical properties used to evaluate candidate materials is limited and a need exists for a more detailed and complete data base. The focus of this work is to develop a test procedure to provide a more complete FRS data base to quantitatively evaluate the composite's potential for component applications. This paper will describe and discuss the equipment and procedures under development to obtain elevated temperature tensile stress-strain, strength and modulus data for the first generation of tungsten fiber reinforced superalloy composite (TFRS) materials. Tensile stress-strain tests are conducted using a constant crosshead speed tensile testing machine and a modified load-strain measuring apparatus. Elevated temperature tensile tests are performed using a resistance wound commercial furnace capable of heating test specimens up to 1093 C (2000 F). Tensile stress-strain data are obtained for hollow tubular stainless steel specimens serving as a prototype for future composite specimens.

  7. Dynamic tensile stress-strain characteristics of carbon/epoxy laminated composites in through-thickness direction

    NASA Astrophysics Data System (ADS)

    Nakai, Kenji; Yokoyama, Takashi

    2015-09-01

    The effect of strain rate up to approximately ɛ˙ = 102/s on the tensile stress-strain properties of unidirectional and cross-ply carbon/epoxy laminated composites in the through-thickness direction is investigated. Waisted cylindrical specimens machined out of the laminated composites in the through-thickness direction are used in both static and dynamic tests. The dynamic tensile stress-strain curves up to fracture are determined using the split Hopkinson bar (SHB). The low and intermediate strain-rate tensile stress-strain relations up to fracture are measured on an Instron 5500R testing machine. It is demonstrated that the ultimate tensile strength and absorbed energy up to fracture increase significantly, while the fracture strain decreases slightly with increasing strain rate. Macro- and micro-scopic examinations reveal a marked difference in the fracture surfaces between the static and dynamic tension specimens.

  8. Quantitative ultrasound method for assessing stress-strain properties and the cross-sectional area of Achilles tendon

    NASA Astrophysics Data System (ADS)

    Du, Yi-Chun; Chen, Yung-Fu; Li, Chien-Ming; Lin, Chia-Hung; Yang, Chia-En; Wu, Jian-Xing; Chen, Tainsong

    2013-12-01

    The Achilles tendon is one of the most commonly observed tendons injured with a variety of causes, such as trauma, overuse and degeneration, in the human body. Rupture and tendinosis are relatively common for this strong tendon. Stress-strain properties and shape change are important biomechanical properties of the tendon to assess surgical repair or healing progress. Currently, there are rather limited non-invasive methods available for precisely quantifying the in vivo biomechanical properties of the tendons. The aim of this study was to apply quantitative ultrasound (QUS) methods, including ultrasonic attenuation and speed of sound (SOS), to investigate porcine tendons in different stress-strain conditions. In order to find a reliable method to evaluate the change of tendon shape, ultrasound measurement was also utilized for measuring tendon thickness and compared with the change in tendon cross-sectional area under different stress. A total of 15 porcine tendons of hind trotters were examined. The test results show that the attenuation and broadband ultrasound attenuation decreased and the SOS increased by a smaller magnitude as the uniaxial loading of the stress-strain upon tendons increased. Furthermore, the tendon thickness measured with the ultrasound method was significantly correlated with tendon cross-sectional area (Pearson coefficient = 0.86). These results also indicate that attenuation of QUS and ultrasonic thickness measurement are reliable and potential parameters for assessing biomechanical properties of tendons. Further investigations are needed to warrant the application of the proposed method in a clinical setting.

  9. Advanced defect characterization via electron microscopy and its application to cyclically deformed nickel-based superalloy R104

    NASA Astrophysics Data System (ADS)

    Phillips, Patrick J.

    of emphasis will remain the importance of understanding the deformation substructure in order to better understand the macroscopic behavior, such as cyclic stress-strain data.

  10. Low-Cycle Fatigue Behavior of Die-Cast Mg Alloys AZ91 and AM60

    NASA Astrophysics Data System (ADS)

    Rettberg, Luke H.; Jordon, J. Brian; Horstemeyer, Mark F.; Jones, J. Wayne

    2012-07-01

    The influence of microstructure and artificial aging response (T6) on the low-cycle fatigue behavior of super vacuum die-cast (SVDC) AZ91 and AM60 has been investigated. Fatigue lifetimes were determined from the total strain-controlled fatigue tests for strain amplitudes of 0.2 pct, 0.4 pct, 0.6 pct, 0.8 pct, and 1.0 pct under fully reversed loading at a frequency of 5 Hz. Cyclic stress-strain behavior was determined using an incremental step test (IST) and compared with the more traditional constant amplitude test. Two locations in a prototype casting were investigated to examine the role of microstructure and porosity on fatigue behavior. At all total strain amplitudes microstructure refinement had a negligible impact on fatigue life because of significant levels of porosity. AM60 showed an improvement in fatigue life at higher strain amplitudes when compared with AZ91 because of higher ductility. T6 heat treatment had no impact on fatigue life. Cyclic stress-strain behavior obtained via the incremental step test varied from constant amplitude test results due to load history effects. The constant amplitude test is believed to be the more accurate test method. In general, larger initiation pores led to shorter fatigue life. The fatigue life of AZ91 was more sensitive to initiation pore size and pore location than AM60 at the lowest tested strain amplitude of 0.2 pct. Fatigue crack paths did not favor any specific phase, interdentritic structure or eutectic structure. A multistage fatigue (MSF) model showed good correlation to the experimental strain-life results. The MSF model reinforced the dominant role of inclusion (pore) size on the scatter in fatigue life.

  11. Prediction and verification of creep behavior in metallic materials and components for the space shuttle thermal protection system. Volume 2: Phase 2 subsize panel cyclic creep predictions

    NASA Technical Reports Server (NTRS)

    Cramer, B. A.; Davis, J. W.

    1975-01-01

    A method for predicting permanent cyclic creep deflections in stiffened panel structures was developed. The resulting computer program may be applied to either the time-hardening or strain-hardening theories of creep accumulation. Iterative techniques were used to determine structural rotations, creep strains, and stresses as a function of time. Deflections were determined by numerical integration of structural rotations along the panel length. The analytical approach was developed for analyzing thin-gage entry vehicle metallic-thermal-protection system panels subjected to cyclic bending loads at high temperatures, but may be applied to any panel subjected to bending loads. Predicted panel creep deflections were compared with results from cyclic tests of subsize corrugation and rib-stiffened panels. Empirical equations were developed for each material based on correlation with tensile cyclic creep data and both the subsize panels and tensile specimens were fabricated from the same sheet material. For Vol. 1, see N75-21431.

  12. Experimental studies the evolution of stress-strain state in structured rock specimens under uniaxial loading

    NASA Astrophysics Data System (ADS)

    Oparin, Viktor; Tsoy, Pavel; Usoltseva, Olga; Semenov, Vladimir

    2014-05-01

    The aim of this study was to analyze distribution and development of stress-stress state in structured rock specimens subject to uniaxial loading to failure. Specific attention was paid to possible oscillating motion of structural elements of the rock specimens under constraints (pre-set stresses at the boundaries of the specimens) and the kinetic energy fractals. The detailed studies into the micro-level stress-strain state distribution and propagation over acting faces of rock specimens subject to uniaxial loading until failure, using automated digital speckle photography analyzer ALMEC-tv, have shown that: • under uniaxial stiff loading of prismatic sandstone, marble and sylvinite specimens on the Instron-8802 servohydraulic testing machine at the mobile grip displacement rate 0.02-0.2 mm/min, at a certain level of stressing, low-frequency micro-deformation processes originate in the specimens due to slow (quasi-static) force; • the amplitude of that deformation-wave processes greatly depends on the micro-loading stage: — at the elastic deformation stage, under the specimen stress lower than half ultimate strength of the specimen, there are no oscillations of microstrains; —at the nonlinearly elastic deformation stage, under stress varied from 0.5 to 1 ultimate strength of the specimens, the amplitudes of microstrains grow, including the descending stage 3; the oscillation frequency f=0.5-4 Hz; —at the residual strength stage, the amplitudes of the microstrains drop abruptly (3-5 times) as against stages 2 and 3; • in the elements of the scanned specimen surface in the region with the incipient crack, the microstrain rate amplitudes are a few times higher than in the undamged surface region of the same specimen. Sometimes, deformation rate greatly grows with increase in the load. The authors have used the energy scanning function of the deformation-wave processes in processing experimental speckle-photography data on the surface of the test specimen

  13. Direct coupling between stress, strain and adsorption reactions - A study on coal-CO2 systems

    NASA Astrophysics Data System (ADS)

    Hol, S.; Peach, C. J.; Spiers, C. J.

    2012-12-01

    Though it is well-known that adsorption reactions frequently assist deformation of porous rocks, very little understanding exists on the direct coupling with stress state and strain. One of the materials in which adsorption plays a large role is coal, as is observed in the particular case of Enhanced Coalbed Methane Production (ECBM), which involves the geological storage of CO2 and the recovery of CH4. In this case, adsorption and the associated swelling cause significant injectivity problems, which is experienced in almost all pilot field projects to date. This suggests that indeed a strong fundamental coupling exists between CO2 sorption, changes in the mechanical state of the coal matrix and changes in the transport properties of the system, and illustrates the need to understand coupled stress-strain-sorption behaviour. In this contribution, we describe several important observations made on coal-CO2 systems that can learn us about many other natural, stressed adsorbate-adsorbent systems. In our experiments, first of all, the adsorption of CO2 in the coal matrix gave rise to swelling. Although this is well-known, we found that the total volumetric strain occurring under unconfined conditions can be realistically modelled (up to at least 100 MPa) as the sum of an adsorption-related expansion term and an elastic compression term. Second, effective in situ stresses will directly reduce the sorption capacity, and associated swelling of the coal matrix significantly. Our general thermodynamic model for the effect of a 3D stress state on adsorbed CO2 concentration supports this observation, and also shows that "self-stressing", as a result of CO2 adsorption occurring under conditions of restricted or zero strain (i.e. fully constrained conditions), will more than double the expected in situ stresses. A constitutive equation was developed to describe the full coupling between stress state, total strain (i.e. combined strain of adsorption processes and poroelasticity

  14. Structural behavior of tapered inflated fabric cylinders under various loading conditions

    NASA Technical Reports Server (NTRS)

    Kovalevsky, L.; Risk, F. L.

    1971-01-01

    Method analyzes inflatable structures and considers axial loads, torsional moment, and internal pressure. Behavior depends on anistropic nature and large deflection stress-strain characteristics of fabric material. Behavior equations for pressurized cylinder loaded in torsion are developed.

  15. Numerical analysis on seismic behavior of reinforced concrete beam to concrete filled steel tubular column connections with ring-beam

    NASA Astrophysics Data System (ADS)

    Zhao, Yi.; Xu, Li. Hua.

    2016-06-01

    This paper presents numerical study of the seismic behavior of reinforced concrete beam to concrete filled steel tube column connections with ring-beam. The material stress-strain relations, element type and boundary condition are selected, which are consistent with actual situation. Then the seismic behavior of this type of joint are researched by ABAQUS, and finite element analyses are conducted under cyclic loading. Its parameters are discussed including thickness of steel tubular column wall, sectional dimension of the ring-beam and strength of the core concrete. The results show that the ultimate capacity of the connections is improved with sectional dimension of the ring-beam increased. In the meanwhile, the influence on skeleton curve of the joints is slight of which included thickness of steel tubular column wall and strength of the core concrete.

  16. Calculation of thermomechanical fatigue life based on isothermal behavior

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Saltsman, James F.

    1987-01-01

    The isothermal and thermomechanical fatigue (TMF) crack initiation response of a hypothetical material was analyzed. Expected thermomechanical behavior was evaluated numerically based on simple, isothermal, cyclic stress-strain - time characteristics and on strainrange versus cyclic life relations that have been assigned to the material. The attempt was made to establish basic minimum requirements for the development of a physically accurate TMF life-prediction model. A worthy method must be able to deal with the simplest of conditions: that is, those for which thermal cycling, per se, introduces no damage mechanisms other than those found in isothermal behavior. Under these assumed conditions, the TMF life should be obtained uniquely from known isothermal behavior. The ramifications of making more complex assumptions will be dealt with in future studies. Although analyses are only in their early stages, considerable insight has been gained in understanding the characteristics of several existing high-temperature life-prediction methods. The present work indicates that the most viable damage parameter is based on the inelastic strainrange.

  17. Prediction and verification of creep behavior in metallic materials and components, for the space shuttle thermal protection system. Volume 1, phase 1: Cyclic materials creep predictions

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Cramer, B. A.

    1974-01-01

    Cyclic creep response was investigated and design methods applicable to thermal protection system structures were developed. The steady-state (constant temperature and load) and cyclic creep response characteristics of four alloys were studied. Steady-state creep data were gathered through a literature survey to establish reference data bases. These data bases were used to develop empirical equations describing creep as a function of time, temperature, and stress and as a basis of comparison for test data. Steady-state creep tests and tensile cyclic tests were conducted. The following factors were investigated: material thickness and rolling direction; material cyclic creep response under varying loads and temperatures; constant stress and temperature cycles representing flight conditions; changing stresses present in a creeping beam as a result of stress redistribution; and complex stress and temperature profiles representative of space shuttle orbiter trajectories. A computer program was written, applying creep hardening theories and empirical equations for creep, to aid in analysis of test data. Results are considered applicable to a variety of structures which are cyclicly exposed to creep producing thermal environments.

  18. Cyclic fatigue behaviour of fibre reinforced rubber-toughened nylon composite materials

    NASA Astrophysics Data System (ADS)

    Pinot, L.; Gomina, M.; Jernot, J.-P.; Moreau, R.; Nakache, E.

    2005-03-01

    The effects of the amount of rubber, the concentration of fibres and the state of the fibre/matrix interface upon the mechanical behaviour of glass fibre/rubber-toughened nylon ternary blends are checked. First, monotonic tensile tests were carried out on different intermediate materials and then on the ternary blends to derive the stress-strain curves and document the damage mechanisms. Cyclic fatigue tests were implemented on tensile specimens and the results were analysed in terms of the reduction of the Young's modulus, the increase of the hysteresis energy rate in the stress-strain diagram and the temperature rise. These findings were correlated to fractographic observations to assess the role of the different constituents.

  19. A Microbeam Bending Method for Studying Stress-Strain Relations for Metal Thin Films on Silicon Substrates

    SciTech Connect

    Florando, J N; Nix, W D

    2004-02-12

    We have developed a microbeam bending technique for determining elastic-plastic, stress-strain relations for thin metal films on silicon substrates. The method is similar to previous microbeam bending techniques, except that triangular silicon microbeams are used in place of rectangular beams. The triangular beam has the advantage that the entire film on the top surface of the beam is subjected to a uniform state of plane strain as the beam is deflected, unlike the standard rectangular geometry where the bending is concentrated at the support. We present a method of analysis for determining two Ramberg-Osgood parameters for describing the stress-strain relation for the film. These parameters are obtained by fitting the elastic-plastic model to the measured load-displacement data, and utilizing the known elastic properties of both film and substrate. As a part of the analysis we compute the position of the neutral plane for bending, which changes as the film deforms plastically. This knowledge, in turn, allows average stress-strain relations to be determined accurately without forcing the film to closely follow the Ramberg-Osgood law. The method we have developed can be used to determine the elastic-plastic properties of thin metal films on silicon substrates up to strains of about 1%. Utilizing this technique, both yielding and strain hardening of Cu thin films on silicon substrates have been investigated. Copper films with dual crystallographic textures and different grain sizes, as well as others with strong <111> textures have been studied. Three strongly textured <111> films were studied to examine the effect of film thickness on the deformation properties of the film. These films show very high rates of work hardening, and an increase in the yield stress and work hardening rate with decreasing film thickness, consistent with current dislocation models.

  20. Ultrasonic Measurement of Transient Change in Stress-Strain Property of Radial Arterial Wall Caused by Endothelium-Dependent Vasodilation

    NASA Astrophysics Data System (ADS)

    Ikeshita, Kazuki; Hasegawa, Hideyuki; Kanai, Hiroshi

    2008-05-01

    The endothelial dysfunction is considered to be an initial step of atherosclerosis. Additionally, it was reported that the smooth muscle, which constructs the media of the artery, changes its characteristics owing to atherosclerosis. Therefore, it is essential to develop a method for assessing the regional endothelial function and mechanical property of the arterial wall. There is a conventional technique of measuring the transient change in the diameter of the brachial artery caused by flow-mediated dilation (FMD) after the release of avascularization. For more sensitive and regional evaluation, we developed a method of measuring the change in the elasticity of the radial artery due to FMD. In this study, the transient change in the mechanical property of the arterial wall was further revealed by measuring the stress-strain relationship during each heartbeat. The minute change in the thickness (strain) of the radial arterial wall during a cardiac cycle was measured by the phased tracking method, together with the waveform of blood pressure which was continuously measured with a sphygmometer at the radial artery. The transient change in stress-strain relationship during a cardiac cycle was obtained from the measured changes in wall thickness and blood pressure to show the transient change in instantaneous viscoelasticity. From the in vivo experimental results, the stress-strain relationship shows the hysteresis loop. The slope of the loop decreased owing to FMD, which shows that the elastic modulus decreased, and the increasing area of the loop depends on the ratio of the loss modulus (depends on viscosity) to the elastic modulus when the Voigt model is assumed. These results show a potential of the proposed method for the thorough analysis of the transient change in viscoelasticity due to FMD.

  1. Spatial stress-strain state of the rock mass at the junction of an extraction drift with a longwall

    SciTech Connect

    Zhdankin, A.A.; Zhdankin, N.A.

    1986-05-01

    This paper examines the treatment of deformation of roof rock in the junction as deformation of a rock plate with different support conditions along the countour. A method is used for evaluating an arbitrarily supported plate whose deformation proceeds along lines of an inverted closed envelope shape. The spatial stress-strain state is considered for an elastic isotropic stratum in the junction region of the drift with a longwall. Solution of the threedimensional problem is reduced to solution of a sequence of recurrent differential equations of the elliptical type for a two-dimensional region.

  2. Driving- stress waveform and the determination of rock internal friction by the stress-strain curve method.

    USGS Publications Warehouse

    Hsi-Ping, Liu

    1980-01-01

    Harmonic distortion in the stress-time function applied to rock specimens affects the measurement of rock internal friction in the seismic wave periods by the stress-strain hysteresis loop method. If neglected, the harmonic distortion can cause measurements of rock internal friction to be in error by 3O% in the linear range. The stress-time function therefore must be recorded and Fourier analysed for correct interpretation of the experimental data. Such a procedure would also yield a value for internal friction at the higher harmonic frequencies.-Author

  3. Thermo-mechanical fatigue behavior of the intermetallic gamma-TiAl alloy TNB-V5 with different microstructures

    NASA Astrophysics Data System (ADS)

    Roth, M.; Biermann, H.

    2010-07-01

    The cyclic deformation and fatigue behavior of the γ-TiAl alloy TNB-V5 is studied under thermo-mechanical load for the three technically important microstructures Fully-Lamellar (FL), Near-Gamma (NG) and Duplex (DP), respectively. Thus, thermo-mechanical fatigue (TMF) tests were carried out with different temperature-strain cycles, different temperature ranges from 400°C to 800°C and with two different strain ranges. Cyclic deformation curves, stress-strain hysteresis loops and fatigue lives are presented. The type of microstructure shows a surprisingly small influence on the cyclic deformation and fatigue behavior under TMF conditions. For a general life prediction the damage parameter of Smith, Watson and Topper PSWT is well suitable, if the testing and the application temperature ranges, respectively, include temperatures above the ductile-brittle transition temperature (approx. 750°C). If the maximum temperature is below that temperature, the brittle materials' behavior yields a high scatter of fatigue lives and a low slope of the fatigue life curve and therefore the damage parameter PSWT cannot be applied for the live prediction.

  4. Thermomechanical and bithermal fatigue behavior of cast B1900 + Hf and wrought Haynes 188

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Verrilli, Michael J.; Kalluri, Sreeramesh; Ritzert, Frank J.; Duckert, Rob E.; Holland, Frederic A.

    1991-01-01

    High temperature thermomechanical and bithermal fatigue behavior was investigated for two superalloys: cast nickel-base B1900+Hf and wrought cobalt-base Haynes 188. Experimental results were generated to support development of an advanced thermal fatigue life prediction method. Strain controlled thermomechanical and load-controlled, strain-limited, bithermal fatigue tests were used to determine the fatigue crack initiation and cyclic stress-strain response characteristics of superalloys. Bithermal temperatures of 483 and 871 C were used for B1900+Hf, and 316 and 760 C for Haynes 188. Thermomechanical fatigue tests were conducted by using maximum and minimum temperatures corresponding to those for the bithermal experiments. Lives cover the range from about 10 to 3000 cycles to failure. Isothermal fatigue results obtained previously are also discussed.

  5. Plant Cyclic Nucleotide Signalling

    PubMed Central

    Martinez-Atienza, Juliana; Van Ingelgem, Carl; Roef, Luc

    2007-01-01

    The presence of the cyclic nucleotides 3′,5′-cyclic adenyl monophosphate (cAMP) and 3′,5′-cyclic guanyl monophosphate (cGMP) in plants is now generally accepted. In addition, cAMP and cGMP have been implicated in the regulation of important plant processes such as stomatal functioning, monovalent and divalent cation fluxes, chloroplast development, gibberellic acid signalling, pathogen response and gene transcription. However, very little is known regarding the components of cyclic nucleotide signalling in plants. In this addendum, the evidence for specific mechanisms of plant cyclic nucleotide signalling is evaluated and discussed. PMID:19704553

  6. Stress-strain gage measurements on a Nevada Test Site (NTS) event using pairs of triple foil gages

    SciTech Connect

    Kansa, E.J.; Stout, R.B.

    1990-11-30

    A triple-material stress-strain gage containing foils of ytterbium, manganin, and constantan was tested at LLNL. This gage yields three independent piezoresistance measurements from which an independent set of principal strains and principal stresses can be inferred. We have analyzed the signals from a gage at a specific location buried at a distance from the center of energy of an event at NTS. We inverted the resistivity signals to calculate the stress and strain histories as sensed by the foils. Using the elastic material properties and the traction and displacement conditions at the various material interfaces from the foils to the host geological medium, we calculated the stress and strain histories in the host geological medium. However, because of uncertainties in the elastic properties of the layers of surrounding materials, we calculated significant variations in both the peaks and signatures of the stress and strain histories that could produce the foil stress and strain histories. We conclude that, because of the inclusion problem, accurate measurements of the stress-strain histories in the host geological medium can be adequately addressed only by minimizing, as much as possible, such uncertainties.

  7. Tensile Stress-Strain Results for 304L and 316L Stainless-Steel Plate at Temperature

    SciTech Connect

    R. K. Blandford; D. K. Morton; S. D. Snow; T. E. Rahl

    2007-07-01

    The Idaho National Laboratory (INL) is conducting moderate strain rate (10 to 200 per second) research on stainless steel materials in support of the Department of Energy’s (DOE) National Spent Nuclear Fuel Program (NSNFP). For this research, strain rate effects are characterized by comparison to quasi-static tensile test results. Considerable tensile testing has been conducted resulting in the generation of a large amount of basic material data expressed as engineering and true stress-strain curves. The purpose of this paper is to present the results of quasi-static tensile testing of 304/304L and 316/316L stainless steels in order to add to the existing data pool for these materials and make the data more readily available to other researchers, engineers, and interested parties. Standard tensile testing of round specimens in accordance with ASTM procedure A 370-03a were conducted on 304L and 316L stainless-steel plate materials at temperatures ranging from -20 °F to 600 °F. Two plate thicknesses, eight material heats, and both base and weld metal were tested. Material yield strength, Young’s modulus, ultimate strength, ultimate strain, failure strength and failure strain were determined, engineering and true stress-strain curves to failure were developed, and comparisons to ASME Code minimums were made. The procedures used during testing and the typical results obtained are described in this paper.

  8. Supersonic crack growth in a solid of upturn stress?strain relation under anti-plane shear

    NASA Astrophysics Data System (ADS)

    Guo, Gaofeng; Yang, Wei; Huang, Y.

    2003-11-01

    This paper examines, from the prospect of continuum analysis, the possibility for a supersonic crack growth in a solid with an upturn stress-strain relation. The stress has a linear-upturn power-law relation with the strain, resulting in an elastic modulus, and consequently a wave speed, that increase with the strain. Though appearing to be "supersonic", the local wave speed in the crack tip vicinity of the solid with a sufficient upturn stress-strain relation exceeds the crack extension speed. A pre-request for such a supersonic crack growth is the storage of sufficient deformation energy within the solid to nurse the energy flux drawn to the crack tip that extends at an "apparent supersonic" speed. The idea is demonstrated for the simplest case, the anti-plane shear. We examine the steady-state supersonic crack growth in a hyperelastic material. The governing equation is elliptical in the crack tip vicinity but hyperbolic elsewhere. The boundary between two regions is determined with a certain extent. An asymptotic solution is constructed within the super-hardening zone. The solution connects to the hyperbolic radiation strips by weak discontinuity boundaries and to the pre-stressed frontal field by a strong discontinuity boundary.

  9. Simplified cyclic structural analyses of SSME turbine blades

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Manderscheid, J. M.

    1986-01-01

    Anisotropic high-temperature alloys are used to meet the safety and durability requirements of turbine blades for high-pressure turbopumps in reusable space propulsion systems. The applicability to anisotropic components of a simplified inelastic structural analysis procedure developed at the NASA Lewis Research Center is assessed. The procedure uses as input the history of the total strain at the critical crack initiation location computed from elastic finite-element analyses. Cyclic heat transfer and structural analyses are performed for the first stage high-pressure fuel turbopump blade of the space shuttle main engine. The blade alloy is directionally solidified MAR-M 246 (nickel base). The analyses are based on a typical test stand engine cycle. Stress-strain histories for the airfoil critical location are computed using both the MARC nonlinear finite-element computer code and the simplified procedure. Additional cases are analyzed in which the material yield strength is arbitrarily reduced to increase the plastic strains and, therefore, the severity of the problem. Good agreement is shown between the predicted stress-strain solutions from the two methods. The simplified analysis uses about 0.02 percent (5 percent with the required elastic finite-element analyses) of the CPU time used by the nonlinear finite element analysis.

  10. Investigation of Cyclic Deformation and Fatigue of Polycrystalline Cu under Pure Compression Cyclic Loading Conditions

    NASA Astrophysics Data System (ADS)

    Hsu, Tzu-Yin Jean

    It is commonly accepted that fatigue crack is initiated under tensile fatigue stresses. However, practical examples demonstrate that cracks may initiate under pure compressive fluctuating loads, e.g. the failures observed in aircraft landing gear frames. As the mechanism of such failures is rarely investigated, there is very limited or non-existent knowledge pool on cyclic deformation response under pure compressive fatigue condition. Our recent work verified that fatigue cracks may nucleate from stress concentration sites under pure compression fatigue, but whether or not a form of stress concentration is always needed to initiate a crack remains uncertain. In this study, compression fatigue tests under different peak stresses were carried out on smooth bars of fully annealed OFHC Copper. The purpose of these tests is to investigate not only the cyclic deformation response but also the possibility of crack nucleation without the stress concentrator. Results showed that overall the cyclic stress-strain response and microstructural evolution of OFHC Copper under pure compression fatigue exhibits rather dissimilar behaviour compared to those under symmetrical fatigue. The specimens hardened rapidly within 10 cycles under pure compression fatigue unlike the gradual cyclic hardening behaviour in symmetrical fatigue with the same peak stress amplitude. Compressive cyclic creep behaviour was also observed. Moreover, TEM observation showed that only moderate slip activity was detectable on the surface instead of typical PSB features. The surface observations revealed that surface slip bands did not increase in number nor height as cycling progressed. In addition, surface roughening by grain boundary extrusion was detected to become more severe with further cycling. Therefore, the plastic strain accommodated within the samples was not mainly related to dislocation activities. Instead, the mechanism of cyclic creep response for pure compression fatigue was correlated and

  11. Cyclic phosphonium ionic liquids

    PubMed Central

    Mukhlall, Joshua A; Romeo, Alicia R; Gohdo, Masao; Ramati, Sharon; Berman, Marc; Suarez, Sophia N

    2014-01-01

    Summary Ionic liquids (ILs) incorporating cyclic phosphonium cations are a novel category of materials. We report here on the synthesis and characterization of four new cyclic phosphonium bis(trifluoromethylsulfonyl)amide ILs with aliphatic and aromatic pendant groups. In addition to the syntheses of these novel materials, we report on a comparison of their properties with their ammonium congeners. These exemplars are slightly less conductive and have slightly smaller self-diffusion coefficients than their cyclic ammonium congeners. PMID:24605146

  12. Pore space characteristics vs. stress-strain markers: two contrasting approaches on how to predict durability of porous natural stone

    NASA Astrophysics Data System (ADS)

    Prikryl, Richard; Weishauptova, Zuzana; Lokajicek, Tomas

    2016-04-01

    Pore space characteristics, specifically its textural properties derived from mercury porosimetry present useful data that are often employed as one of the proxies for the evaluation of the durability of porous construction materials, specifically of natural stone or bricks. Interconnected pore spaces present pathways for migration of moisture, water, or water-soluble salts in porous materials, but do not provide direct evidence on mechanical properties including resistance to brittle damage caused by various physical weathering processes. On contrary, experimentally derived rock mechanical properties are used very rarely for the estimation of the durability of natural stone. This concerns not only basic rock mechanical properties (strength) but also deformation (stress-strain behaviour) and energetic parameters derived from it. In the recent study, we are discussing both these approaches and looking for possible correlation or for mutual use of data from both types of tests.

  13. Application of a PVDF-based stress gauge in determining dynamic stress-strain curves of concrete under impact testing

    NASA Astrophysics Data System (ADS)

    Meng, Yi; Yi, Weijian

    2011-06-01

    Polyvinylidene fluoride (PVDF) piezoelectric material has been successfully applied in many engineering fields and scientific research. However, it has rarely been used for direct measurement of concrete stresses under impact loading. In this paper, a new PVDF-based stress gauge was developed to measure concrete stresses under impact loading. Calibrated on a split Hopkinson pressure bar (SHPB) with a simple measurement circuit of resistance strain gauges, the PVDF gauge was then used to establish dynamic stress-strain curves of concrete cylinders from a series of axial impact testing on a drop-hammer test facility. Test results show that the stress curves measured by the PVDF-based stress gauges are more stable and cleaner than that of the stress curves calculated with the impact force measured from a load cell.

  14. Features of the stress-strain state of Si/SiO{sub 2}/Ge heterostructures with germanium nanoislands of a limited density

    SciTech Connect

    Kuryliuk, V. V. Korotchenkov, O. A.

    2013-08-15

    Within the elastic continuum model, with the use of the finite-element method, the stress-strain state of silicon-germanium heterostructures with semispherical germanium islands grown on an oxidized silicon surface is calculated. It is shown that as the density of islands is increased to limiting values, in the SiGe structure with open quantum dots the value and spatial distribution of the elastic-strain fields significantly change. The results of theoretical calculation allow the heterostructure portions with the maximum variation in the stress-strain state to be determined. The position of such a portions can be controlled by changing the density of islands.

  15. Assessment of Stress-Strain State of Seismically Active Region of Armenia According to the Results of Hydrogeodynamic Monitoring

    NASA Astrophysics Data System (ADS)

    Munkhsaikhan, A.; Avetyan, R.; Pashayan, R.

    2015-12-01

    Results of hydrogeodynamic monitoring, data of the chemical analysis of water were compared with seismic regime of the region aiming to study and evaluate stress-strain state of earth crust of Central Armenia during 2010-2014. Methodolgy of processing water level data came down to allocating tectonic-seismic stress taking into account the following factors: atmosphere pressure, precipitations, size of snow cover and tidal variations. The overall picture of the stress-strain state of the territory yearly was defined by calculated value of deformations around each hydrogeodynamic borehole taking into account the number of seismic events which occurred during that period. Maps of the isolines of equal values of deformations were drawn which reflect space-time regularity of the modern geodynamics of Armenia. The resluts of the correlation between parametres of hydrogeochemical effects and charaectreristics of earthquakes have shown that statistically significant connection between effect parametres (effect time, extremum time) and characteristics of seismic events (energetic class, epicentral distance ) was determined for the changes of parameters of the chemical composition of underground water. Histogram of changes of values of geochemical components of waters of mineral springs in space was drawn for the period of monitoring observations. The analysis of data allowed allocating more informative parameters of chemical composition of mineral water: gas component-carbon dioxide (CO2). Magnesium -Mg2+, chloride -Cl- where allocated from the macrocomponenet composition. According to the catalogue of seismic data there was drawn diagram of the frequency of earthquakes, reflecting the distribution of the earthquake number according to magnitude M (according to rule LgN=a-bM) in logarithmic scale. Coefficient of seismic activity was calculated - a, by which variations seismic activity of the region is evaluated. Thus, modern tectonic movements of earth crust of Armenia are

  16. Analyzing The Effect of Skin Postbuckling on General Stresses, Strains and Stability of Composite Structures

    NASA Technical Reports Server (NTRS)

    Zamula, G. N.; Ierusalimsky, K. M.; Kalmykova, G. S.; Fomin, V. P.

    1998-01-01

    The present paper is a final technical report within the NCCW-1-233 research program (dated June 1, 1997) accomplished as a part of co-operation between United States' NASA and Russia's Goskomoboronprom in aeronautics, and continues similar NCCW-73 and NCC-1-233 programs accomplished in 1996 and 1997, respectively. The report concludes studies in two domains, "Analyzing the effect of skin postbuckling on general stresses and strains in a composite structure" and "Evaluating the effect of skin postbuckling behavior on general stability of a composite structure"; the work was fulfilled in compliance with NCC-1-233 requirements (as of June 1, 1997). Also, the present studies may be regarded as a partial generalization of efforts in [1, 2] conducted within the above programs in what concerns postbuckling behavior of composite structures.

  17. Coronary stent strut size dependent stress-strain response investigated using micromechanical finite element models.

    PubMed

    Savage, P; O'Donnell, B P; McHugh, P E; Murphy, B P; Quinn, D F

    2004-02-01

    Cardiovascular stents are metal scaffolds that are used in the treatment of atherosclerosis. These devices are typically composed of very thin struts (< or = 100 microm thickness, for coronary applications). At this size-scale the question arises as to the suitability of using bulk material properties in stent design. This paper investigates the use of finite element analysis to predict the mechanical failure of stent struts, typical of the strut size used in coronary stents. 316 L stainless steel in uniaxial loading was considered. To accurately represent the constitutive behavior of the material at this size-scale, a computational micromechanics approach was taken involving an explicit representation of the grain structure in the steel struts, and the use of crystal plasticity theory to represent the constitutive behavior of the individual grains. The development of the finite element models is discussed and results are presented for the predictions of tensile mechanical behavior as a function of strut thickness. The results showed that using this modelling approach, a size effect, already seen experimentally, is produced. This has significant implications for stent design, especially in the context of the desire to produce smaller stents for small bore neurovascular and peripheral artery applications. PMID:15008368

  18. Effect of Processing Route on Strain Controlled Low Cycle Fatigue Behavior of Polycrystalline NiAl

    NASA Technical Reports Server (NTRS)

    Rao, K. Bhanu Sankara; Lerch, B. A.; Noebe, R. D.

    1995-01-01

    The present investigation examines the effects of manufacturing process on the total axial strain controlled low cycle fatigue behavior of polycrystalline NiAl at 1000 K, a temperature above the monotonic Brittle-to-Ductile Transition Temperature (BDTT). The nickel aluminide samples were produced by three different processing routes: hot isostatic pressing of pre- alloyed powders, extrusion of prealloyed powders, and extrusion of vacuum induction melted ingots. The LCF behavior of the cast plus extruded material was also determined at room temperature (below the BD77) for comparison to the high temperature data. The cyclic stress response, cyclic stress-strain behavior, and strain-life relationships were influenced by the alloy preparation technique and the testing temperature. Detailed characterization of the LCF tested samples was conducted by optical and electron microscopy to determine the variations in fracture and deformation modes and to determine any microstructural changes that occurred during LCF testing. The dependence of LCF properties on processing route was rationalized on the basis of starting microstructure, brittle-to-ductile transition temperature, deformation induced changes in the basic microstructure, deformation substructure, and synergistic interaction between the damage modes.

  19. Extensional faulting in the Taupo Volcanic Zone, New Zealand: stress/strain cycling and deformation partitioning from numerical models

    NASA Astrophysics Data System (ADS)

    Dempsey, D. E.; Ellis, S. M.; Archer, R.; Rowland, J. V.

    2010-12-01

    The Taupo Volcanic Zone of New Zealand’s Central North Island is characterized by widespread normal faulting that accommodates a high proportion of the region’s 7-15 mm yr-1 tectonic extension. Abundant volcanism and geothermal activity are accompanied by seismicity to depths of ~6-8 km. This suggests a shallow brittle-ductile transition (BDT) consistent with the high heat flow (700-800 mW m-1) observed in the region. Fault structures vary from arrays of short strands with lengths of 0.1-1 km to extensive, solitary strands several 10’s of km in length. Fault dip at the surface is estimated to be 55-70o but may shallow near seismogenic depths. Using the finite element software package Abaqus a model is developed to describe movements on a single normal fault under extensional boundary conditions. A visco-elasto-plastic rheology describes crustal deformation and accounts for a transition from brittle to ductile behavior at ~7 km depth. Faults are modeled as internal contact surfaces extending from the surface to depth and whose slip behavior is prescribed by varying the surface coefficient of friction. Fault rupture is cyclical and occurs every 300-1000 years. Over several cycles dip-slip fault displacement is observed to partition into three zones. In the upper crust (~0-7 km) slip is predominantly rigid body and corresponds to minimal elastic straining. Below this, within a ~3 km deep mid-crustal region corresponding to the BDT, dip-slip gradually reduces to zero, accommodated by the development of elastic strain. In the lower crust dip-slip and elastic strain are nearly zero and thus fault behavior is absent. During the period of quiescence following a seismic episode a region of increased visco-elastic creep develops in the lower crust, driven in part by the stress stored elastically in the accommodation zone directly above. Localization of elastic strain in the mid-crust may have implications for hydrothermal fluid flow hosted therein. Pore fluid pressure

  20. Are Math Grades Cyclical?

    ERIC Educational Resources Information Center

    Adams, Gerald J.; Dial, Micah

    1998-01-01

    The cyclical nature of mathematics grades was studied for a cohort of elementary school students from a large metropolitan school district in Texas over six years (average cohort size of 8495). The study used an autoregressive integrated moving average (ARIMA) model. Results indicate that grades do exhibit a significant cyclical pattern. (SLD)

  1. Affordable Cyclic Voltammetry

    ERIC Educational Resources Information Center

    Stewart, Greg; Kuntzleman, Thomas S.; Amend, John R.; Collins, Michael J.

    2009-01-01

    Cyclic voltammetry is an important component of the undergraduate chemical curriculum. Unfortunately, undergraduate students rarely have the opportunity to conduct experiments in cyclic voltammetry owing to the high cost of potentiostats, which are required to control these experiments. By using MicroLab data acquisition interfaces in conjunction…

  2. Viscoelastic behavior of discrete human collagen fibrils.

    PubMed

    Svensson, René B; Hassenkam, Tue; Hansen, Philip; Peter Magnusson, S

    2010-01-01

    Whole tendon and fibril bundles display viscoelastic behavior, but to the best of our knowledge this property has not been directly measured in single human tendon fibrils. In the present work an atomic force microscopy (AFM) approach was used for tensile testing of two human patellar tendon fibrils. Fibrils were obtained from intact human fascicles, without any pre-treatment besides frozen storage. In the dry state a single isolated fibril was anchored to a substrate using epoxy glue, and the end of the fibril was glued on to an AFM cantilever for tensile testing. In phosphate buffered saline, cyclic testing was performed in the pre-yield region at different strain rates, and the elastic response was determined by a stepwise stress relaxation test. The elastic stress-strain response corresponded to a second-order polynomial fit, while the viscous response showed a linear dependence on the strain. The slope of the viscous response showed a strain rate dependence corresponding to a power function of powers 0.242 and 0.168 for the two patellar tendon fibrils, respectively. In conclusion, the present work provides direct evidence of viscoelastic behavior at the single fibril level, which has not been previously measured. PMID:19878908

  3. Studies on Stress-Strain Relationships of Polymeric Materials Used in Space Applications

    NASA Technical Reports Server (NTRS)

    Jana, Sadhan C.; Freed, Alan

    2002-01-01

    A two-year research plan was undertaken in association with Polymers Branch, NASA Glenn Research Center, to carry out experimental and modeling work relating stress and strain behavior of polymeric materials, especially elastomers and vulcanized rubber. An experimental system based on MTS (Mechanical Testing and Simulation) A/T-4 test facility environment has been developed for a broader range of polymeric materials in addition to a design of laser compatible temperature control chamber for online measurements of various strains. Necessary material processing has been accomplished including rubber compounding and thermoplastic elastomer processing via injection molding. A broad suite of testing methodologies has been identified to reveal the complex non-linear mechanical behaviors of rubbery materials when subjected to complex modes of deformation. This suite of tests required the conceptualization, design and development of new specimen geometries, test fixtures, and test systems including development of a new laser based technique to measure large multi-axial deformations. Test data has been generated for some of these new fixtures and has revealed some complex coupling effects generated during multi-axial deformations. In addition, fundamental research has been conducted concerning the foundation principles of rubber thermodynamics and resulting theories of rubber elasticity. Studies have been completed on morphological properties of several thermoplastic elastomers. Finally, a series of steps have been identified to further advance the goals of NASA's ongoing effort.

  4. A study on a rigid body boundary layer interface force model for stress calculation and stress strain behaviour of nanoscale uniaxial tension

    NASA Astrophysics Data System (ADS)

    Lin, Zone-Ching; Huang, Jen-Ching

    2004-11-01

    A rigid body boundary layer interface force (RIF) model for stress calculation on the nanoscale is proposed in this paper for calculating stress based on molecular dynamics. The RIF model is used to study the stress-stain behaviour when nanoscale single crystal copper is under uniaxial tension, and is used for 15 tensile simulations each with different strain rate. The stress-strain curve established from simulation was first converted into a true stress-strain curve; a regression analysis was then applied in order to find the flow curve. From simulation results, it is found that the strain rate has large influence on both K and n values of the flow curve. At low strain rate (less than 1 × 1012 s-1), both K and n values decrease with the increase of strain rate. When the strain rate exceeds 1 × 1012 s-1, the strain rate against the K and n values of the flow curve approaches a constant. Flow curve equations considering the influence of strain rate are derived; both complete and simplified forms of flow curve equations are also derived. It is observed that the lower the strain rates, the higher the fluctuations of the stress-strain curve. Furthermore, the increase of strain rate resulting in a smoother stress-strain curve is also found.

  5. The analysis of the stress-strain state of a plate, induced by the ricochet of a rigid indenter, using Moire method

    NASA Astrophysics Data System (ADS)

    Aptukov, V. N.; Kashirin, V. F.; Murzakaev, R. T.

    1994-06-01

    A technique elaborated by the authors is used to study the penetration process on the basis of the experimental data obtained by the Moire method. The stress-strain state of 1911 aluminum alloy plate in the vicinity of the crater is analyzed in terms of plane strain approximation for a rigid cylindrical indenter with spherical head under impact and ricochet conditions.

  6. Genetics Home Reference: cyclic neutropenia

    MedlinePlus

    ... Understand Genetics Home Health Conditions cyclic neutropenia cyclic neutropenia Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Cyclic neutropenia is a disorder that causes frequent infections and ...

  7. On the Microstructural Stability of Ultrafine-Grained Interstitial-Free Steel under Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Niendorf, T.; Canadinc, D.; Maier, H. J.; Karaman, I.

    2007-09-01

    The microstructural stability of ultrafine-grained (UFG) interstitial-free (IF) steel under cyclic loading was investigated. The samples were extracted from material processed along two different equal channel angular extrusion (ECAE) routes (4C and 4E) at room temperature. Low-cycle fatigue tests were carried out in addition to electron and optical microscopy in order to characterize the microstructural evolution induced by cyclic deformation. The results revealed substantial differences in microstructure resulting from different processing routes. Specifically, the volume fraction of high-angle grain boundaries (HAGBs) and low-angle grain boundaries (LAGBs) varied significantly depending on the processing route. The different microstructural characteristics stemming from different ECAE routes expressively influence the fatigue response. Route-4C-processed material displays cyclic softening, while processing along route 4E leads to microstructural stability under cyclic loading. This highly route-dependent trend in the cyclic stress-strain response is attributed to the instability of the LAGBs and stability of HAGBs during cyclic deformation, which is further supported by electron backscattering diffraction results.

  8. Effect of Al-Si Pack Cementation Diffusion Coating on High-Temperature Low-Cycle Fatigue Behavior of Inconel 713LC

    NASA Astrophysics Data System (ADS)

    Mansuri, Mohammadreza; Hadavi, Seyed Mohammad Mehdi; Zare, Esmail

    2016-01-01

    In this research, an Al-Si protective coating was applied on the surface of an IN713LC specimen using pack cementation method. Surface-treated and untreated specimens were exposed to low-cycle fatigue by tension-tension loading under total strain control at 1173 K (900 °C) in air. Based on the obtained results, the hardening/softening, cyclic stress-strain, and fatigue life curves were plotted and analyzed. The results showed that both the single-stage and two-stage coatings improved the fatigue life of the substrate. However, owing to more silicon content of single-stage coating compared to that of two-stage coating, the effect of single-stage coating was superior. The stress response of the treated material was lower compared with the untreated one. Observations of the specimen section and fracture surface examinations were used to analyze fatigue behavior of both coated and uncoated materials.

  9. The 1200 C cyclic oxidation behavior of two nickel-aluminum alloys (Ni3AL and NiAl) with additions of chromium, silicon, and titanium

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Santoro, G. J.

    1972-01-01

    The alloys Ni3Al and NiAl with and without 1 and 3 atomic percent chromium, silicon, and titanium replacing the aluminum were cyclically oxidized at 1200 C for times to 200 hours, and the results were compared with those obtained with the alloy B-1900 subjected to the same oxidation process. The evaluation was based on metal recession, specific weight change, metallography, electron microprobe analysis, and X-ray diffraction. The oxidation resistance of Ni3Al was improved by Si, unaffected by Ti, and degraded by Cr. The oxidation resistance of NiAl was slightly improved by Ti, unaffected by Si, and degraded by Cr. The oxidation resistance of Ni3Al with 1 atomic percent Si was nearly equal to that of NiAl. Alloy B-1900 exhibited oxidation resistance comparable to that of Ni3Al + Cr compositions.

  10. Impact of weightlessness on cardiac shape and left ventricular stress/strain distributions.

    PubMed

    Iskovitz, Ilana; Kassemi, Mohammad; Thomas, James D

    2013-12-01

    In this paper, a finite element model of the heart is developed to investigate the impact of different gravitational loadings of Earth, Mars, Moon, and microgravity on the cardiac shape and strain/stress distributions in the left ventricle. The finite element model is based on realistic 3D heart geometry, detailed fiber/sheet micro-architecture, and a validated orthotropic cardiac tissue model and constitutive relationship that capture the passive behavior of the heart at end-diastole. The model predicts the trend and magnitude of cardiac shape change at different gravitational levels with great fidelity in comparison to recent cardiac sphericity measurements performed during simulated reduced-gravity parabolic flight experiments. Moreover, the numerical predictions indicate that although the left ventricular strain distributions remain relatively unaltered across the gravitational fields and the strain extrema values occur at the same relative locations, their values change noticeably with decreasing gravity. As for the stress, however, both the magnitude and location of the extrema change with a decrease in the gravitational field. Consequently, tension regions of the heart on Earth can change into compression regions in space. PMID:24048335

  11. Cyclic and isothermal oxidation behavior at 1100 and 1200 C of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.

    1973-01-01

    Alloys of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr were cyclically oxidized at 1100 and 1200 C for up to 100 hours. Oxidation behavior was judged by sample thickness and weight change, metallography, diffraction, and microprobe analysis. The least attacked were Ni-40Cr and Ni-20Cr-3Si. The alloy Ni-20Cr-3Mn was much less attacked than Ni-20Cr, but more than the other alloys. The formation of Cr2O3 accounted for the increased resistance of Ni-Cr and Ni-20Cr-3Si, and the formation of MnCr2O4 accounts for the improvement in Ni-20Cr-3mn over Ni-20Cr.

  12. Cyclic control stick

    DOEpatents

    Whitaker, Charles N.; Zimmermann, Richard E.

    1989-01-01

    A cyclic control stick of the type used in helicopters for reducing the safety hazards associated with such a mechanism in the event of a crewman being thrown violently into contact with the cyclic control stick resulting from a crash or the like. The cyclic control stick is configured to break away upon the exertion of an impact force which exceeds a predetermined value and/or is exerted for more than a momentary time duration. The cyclic control stick is also configured to be adjustable so as to locate the grip thereof as far away from the crewman as possible for safety reasons without comprising the comfort of the crewman or the use of the control stick, and a crushable pad is provided on the top of the grip for impact energy absorbing purposes.

  13. Cyclic steps on ice

    NASA Astrophysics Data System (ADS)

    Yokokawa, M.; Izumi, N.; Naito, K.; Parker, G.; Yamada, T.; Greve, R.

    2016-05-01

    Boundary waves often form at the interface between ice and fluid flowing adjacent to it, such as ripples under river ice covers, and steps on the bed of supraglacial meltwater channels. They may also be formed by wind, such as the megadunes on the Antarctic ice sheet. Spiral troughs on the polar ice caps of Mars have been interpreted to be cyclic steps formed by katabatic wind blowing over ice. Cyclic steps are relatives of upstream-migrating antidunes. Cyclic step formation on ice is not only a mechanical but also a thermodynamic process. There have been very few studies on the formation of either cyclic steps or upstream-migrating antidunes on ice. In this study, we performed flume experiments to reproduce cyclic steps on ice by flowing water, and found that trains of steps form when the Froude number is larger than unity. The features of those steps allow them to be identified as ice-bed analogs of cyclic steps in alluvial and bedrock rivers. We performed a linear stability analysis and obtained a physical explanation of the formation of upstream-migrating antidunes, i.e., precursors of cyclic steps. We compared the results of experiments with the predictions of the analysis and found the observed steps fall in the range where the analysis predicts interfacial instability. We also found that short antidune-like undulations formed as a precursor to the appearance of well-defined steps. This fact suggests that such antidune-like undulations correspond to the instability predicted by the analysis and are precursors of cyclic steps.

  14. Cyclic polymers from alkynes.

    PubMed

    Roland, Christopher D; Li, Hong; Abboud, Khalil A; Wagener, Kenneth B; Veige, Adam S

    2016-08-01

    Cyclic polymers have dramatically different physical properties compared with those of their equivalent linear counterparts. However, the exploration of cyclic polymers is limited because of the inherent challenges associated with their synthesis. Conjugated linear polyacetylenes are important materials for electrical conductivity, paramagnetic susceptibility, optical nonlinearity, photoconductivity, gas permeability, liquid crystallinity and chain helicity. However, their cyclic analogues are unknown, and therefore the ability to examine how a cyclic topology influences their properties is currently not possible. We have solved this challenge and now report a tungsten catalyst supported by a tetraanionic pincer ligand that can rapidly polymerize alkynes to form conjugated macrocycles in high yield. The catalyst works by tethering the ends of the polymer to the metal centre to overcome the inherent entropic penalty of cyclization. Gel-permeation chromatography, dynamic and static light scattering, viscometry and chemical tests are all consistent with theoretical predictions and provide unambiguous confirmation of a cyclic topology. Access to a wide variety of new cyclic polymers is now possible by simply choosing the appropriate alkyne monomer. PMID:27442285

  15. Cyclic polymers from alkynes

    NASA Astrophysics Data System (ADS)

    Roland, Christopher D.; Li, Hong; Abboud, Khalil A.; Wagener, Kenneth B.; Veige, Adam S.

    2016-08-01

    Cyclic polymers have dramatically different physical properties compared with those of their equivalent linear counterparts. However, the exploration of cyclic polymers is limited because of the inherent challenges associated with their synthesis. Conjugated linear polyacetylenes are important materials for electrical conductivity, paramagnetic susceptibility, optical nonlinearity, photoconductivity, gas permeability, liquid crystallinity and chain helicity. However, their cyclic analogues are unknown, and therefore the ability to examine how a cyclic topology influences their properties is currently not possible. We have solved this challenge and now report a tungsten catalyst supported by a tetraanionic pincer ligand that can rapidly polymerize alkynes to form conjugated macrocycles in high yield. The catalyst works by tethering the ends of the polymer to the metal centre to overcome the inherent entropic penalty of cyclization. Gel-permeation chromatography, dynamic and static light scattering, viscometry and chemical tests are all consistent with theoretical predictions and provide unambiguous confirmation of a cyclic topology. Access to a wide variety of new cyclic polymers is now possible by simply choosing the appropriate alkyne monomer.

  16. An Expanding Plug Test Method for Determining Hoop Stress-Strain Curves of Irradiated Nuclear Fuel Cladding

    SciTech Connect

    Ott, Larry J; Spellman, Donald J; Merkle, John Graham; Sham, Sam; Bevard, Bruce Balkcom

    2009-01-01

    A method, referred to as the expanding plug test method, for determining the roomtemperature hoop stress-strain curves of irradiated nuclear fuel cladding has been developed and applied to evaluate tensile strength and ductility in the hoop direction of clad material irradiated to high neutron fluences. The test utilizes an incompressible plug fitted within a tubular cladding specimen. A cylindrical punch is used to compress the plug axially, which generates a radial displacement that acts upon the inner diameter of the specimen. Position sensors track the radial displacement of the specimen outer diameter as the compression proceeds. An auxiliary compression test of the plug alone is also performed. Using these two sets of data, a procedure was developed to determine the hoop stress in the clad specimen. The development of this simple, cost-effective, highly reproducible test method to determine stressstrain curves in the hoop direction of irradiated clad specimens represents a significant advancement in the mechanical characterization of irradiated cladding. This paper will present an overview of the expanding plug testing technique and will discuss tests performed on irradiated clad specimens to date.

  17. In Situ Deformation of Olivine in the Transmission Electron Microscope: from Dislocation Velocity Measurements to Stress-Strain Curves

    NASA Astrophysics Data System (ADS)

    Bollinger, C.; Idrissi, H.; Boioli, F.; Cordier, P.

    2015-12-01

    There is a growing consensus to recognize that rheological law established for olivine at high-temperature (ca. >1000°C) fail when extrapolated to low temperatures relevant for the lithospheric mantle. Hence it appears necessary to fit rheological laws against data at low temperatures where olivine tends to become more and more brittle. The usual approach consists in applying confining pressure to inhibit brittleness. Here we propose an innovative approach based on the use of very small samples and numerical modelling. New commercial in situ TEM nanotensile testing equipment recently developed by Hysitron.Inc is combined with weak-beam dark-field TEM diffraction contrast imaging in order to obtain information on the elementary mechanisms controlling the plasticity of olivine: namely glide of [001] screw dislocations. The olivine tensile beams dedicated for in situ TEM nanomechanical testing were produced using microfabrication techniques based on MEMS-type procedures. The testing geometry was designed as to induce maximum resolved shear stresses on the [001](110) slip system. Under tensile loads between 2 and 3 GPa, ductile behaviour was reached with the development and propagation of dislocation loops across the sample allowing to measure the velocity of screw and non-screw dislocations as a function of stress. This information is introduced into a numerical model involving Dislocation Dynamics in order to obtain the stress-strain curves describing the mechanical response of olivine single crystals deformed in tension at room temperature.

  18. The effects of cyclic and dynamic loading on the fracture resistance of nuclear piping steels. Technical report, October 1992--April 1996

    SciTech Connect

    Rudland, D.L.; Brust, F.; Wilkowski, G.M.

    1996-12-01

    This report presents the results of the material property evaluation efforts performed within Task 3 of the IPIRG-2 Program. Several related investigations were conducted. (1) Quasi-static, cyclic-load compact tension specimen experiments were conducted using parameters similar to those used in IPIRG-1 experiments on 6-inch nominal diameter through-wall-cracked pipes. These experiments were conducted on a TP304 base metal, an A106 Grade B base metal, and their respective submerged-arc welds. The results showed that when using a constant cyclic displacement increment, the compact tension experiments could predict the through-wall-cracked pipe crack initiation toughness, but a different control procedure is needed to reproduce the pipe cyclic crack growth in the compact tension tests. (2) Analyses conducted showed that for 6-inch diameter pipe, the quasi-static, monotonic J-R curve can be used in making cyclic pipe moment predictions; however, sensitivity analyses suggest that the maximum moments decrease slightly from cyclic toughness degradation as the pipe diameter increases. (3) Dynamic stress-strain and compact tension tests were conducted to expand on the existing dynamic database. Results from dynamic moment predictions suggest that the dynamic compact tension J-R and the quasi-static stress-strain curves are the appropriate material properties to use in making dynamic pipe moment predictions.

  19. Cyclic structural analyses of anisotropic turbine blades for reusable space propulsion systems. [ssme fuel turbopump

    NASA Technical Reports Server (NTRS)

    Manderscheid, J. M.; Kaufman, A.

    1985-01-01

    Turbine blades for reusable space propulsion systems are subject to severe thermomechanical loading cycles that result in large inelastic strains and very short lives. These components require the use of anisotropic high-temperature alloys to meet the safety and durability requirements of such systems. To assess the effects on blade life of material anisotropy, cyclic structural analyses are being performed for the first stage high-pressure fuel turbopump blade of the space shuttle main engine. The blade alloy is directionally solidified MAR-M 246 alloy. The analyses are based on a typical test stand engine cycle. Stress-strain histories at the airfoil critical location are computed using the MARC nonlinear finite-element computer code. The MARC solutions are compared to cyclic response predictions from a simplified structural analysis procedure developed at the NASA Lewis Research Center.

  20. Antidepressant- and anxiolytic-like effects of the phosphodiesterase-4 (PDE4) inhibitor rolipram on behavior depend on cyclic AMP-response element binding protein (CREB)-mediated neurogenesis in the hippocampus

    PubMed Central

    Li, Yun-Feng; Huang, Ying; Amsdell, Simon L.; Xiao, Lan; O'Donnell, James M.; Zhang, Han-Ting

    2009-01-01

    Inhibition of phosphodiesterase-4 (PDE4), an enzyme that catalyzes the hydrolysis of cyclic AMP (cAMP), increases phosphorylation of cAMP-response element binding protein (pCREB) and hippocampal neurogenesis, and produces antidepressant-like effects on behavior; however, causal links among these have not been established. In the present study, chronic administration of rolipram produced antidepressant- and anxiolytic-like effects on behavior in mice. It also increased cAMP and pCREB levels in the hippocampus and prefrontal cortex, but increased Sox2, a marker for mitotic progenitor cells, only in the hippocampus. Chronic rolipram treatment also increased hippocampal neurogenesis, as evidenced by increased bromodeoxyuridine (BrdU)-positive cells in the hippocampal dentate gyrus. Methylazoxymethanol (MAM), which is toxic to proliferating cells, reversed rolipram-induced increases in BrdU-positive cells and pCREB in the hippocampus and partially blocked its behavioral effects. Approximately 84% of BrdU-positive cells became newborn neurons, 93% of which co-expressed pCREB; these proportions were not altered by rolipram or MAM, either alone or in combination. Finally, three weeks following the end of MAM treatment, when neurogenesis was no longer inhibited, rolipram again increased hippocampal pCREB, with its antidepressant- and anxiolytic-like effects resumed. Overall, the present results suggest that rolipram produces its effects on behavior in a manner that at least partially depends on its neurogenic action in the hippocampus, targeting mitotic progenitor cells rather than newborn or mature neurons; cAMP/CREB signaling in hippocampal newborn neurons is critical for neurogenesis and contributes to the behavioral effects of rolipram. PMID:19516250

  1. [Cyclic enteral nutrition].

    PubMed

    Hébuterne, X; Rampal, P

    1996-02-10

    Cyclic enteral nutrition consists in continuous infusion of nutrients with a pump over a 12 to 14 hour period at night. Different reports have demonstrated that cyclic enteral nutrition is well tolerated in malnourished ambulatory patients. The incidence of pneumonia by inhalation in this type of patients is less than 2%. Excepting patients with major amputation of the small intestine and important functional consequences, the increased infusion rate required by cyclic enteral nutrition does not diminish digestive tract absorption making the technique as effective as continuous 24-hour infusion. The main advantages of the cyclic infusion are the preservation of physiological balance between fasting and feeding, improved physical activity during the day with its beneficial effect on protein-energy metabolism, compatibility with oral nutrition during the day in nutrition reeducation programs, and the psychological impact in patients who are free to move about, further improving tolerance. Finally, cyclic enteral nutrition is adapted to enteral nutrition programs conducted in the patient's homes. PMID:8729381

  2. 3D Stress-Strain Analysis of a Failed Limestone Wedge Influenced by an Intact Rock Bridge

    NASA Astrophysics Data System (ADS)

    Paronuzzi, Paolo; Bolla, Alberto; Rigo, Elia

    2016-08-01

    This paper presents a back-analysis of a rock wedge failure (volume = 25-30 m3) that involved a limestone scarp in the Rosandra valley (Trieste karst, NE Italy). Thanks to the mechanical survey of the detachment surface, a single rock bridge having a size of about 15 cm × 30 cm has been ascertained. A 3D stress-strain analysis has been performed to examine the influence of the rock bridge on the block stability (initial unweathered condition: strength reduction factor SRF equal to 1.14). The shear strength provided by the basal and lateral joints represents the main contributing factor for the wedge stability (about 60-75 % of the whole resisting system). However, the equilibrium of the wedge was temporarily attained thanks to the strength contribution provided by the rock bridge (25-40 %) until the acting forces locally exceeded the resisting forces, thus determining the bridge rupture and, as a consequence, the wedge collapse. The mean shear stress acting on the rock bridge at failure ranges from about 3.5 to 5 MPa. Calculated block displacements up to failure vary from 0.6 to 1.5 mm, depending on the different elastic modulus assumed for the wedge ( E = 30, 10, and 4 GPa). Pre-collapse block displacements increase as a result of the shear strength decrease that was initially caused by the weathering of the delimiting rock joints and, further, by the progressive failure of the rock bridge. The cohesion at failure of the rock bridge ranges from 2.1 to 2.6 MPa (friction angle of intact rock φ = 40°).

  3. Staged Moduli: A Quantitative Method to Analyze the Complete Compressive Stress-Strain Response for Thermally Damaged Rock

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Xu, Jinyu; Liu, Shi

    2015-07-01

    The ultrasonic method and destructive test were combined to examine sandstone specimens taken from underground construction field in the Mount Taibai of Qinling Mountains, middle part of China. Staged moduli of the four stages during the uniaxial compression of sandstone after temperature varying from 25 to 1,000 °C were defined, through which the complete stress-strain curves of sandstone were studied quantitatively. Thermal damage of sandstone after different high temperatures was analyzed based on the thermal damage factor (TDF) defined by the modulus of compact stage. The temperature-sensitivity coefficient (TSC) was proposed to describe the sensitivity of TDF to temperature as temperature level varied. Research suggests that the compression process of thermally damaged sandstone is of prominent staged characteristic. The strain of compact stage increases significantly in a near-linear style as temperature rises up. For temperature above 400 °C, the ratio of compaction strain to peak strain increases to more than 50 percent. Changing rules of the four-staged moduli with temperature differs widely, among which the modulus of compact stage has a strong relativity with longitudinal wave velocity. The TDF defined by wave velocity loses sight of the change in density and Poisson's ratio, avoiding the defect of which, the defining method based on modulus of compact stage is of greater veracity. Within the range of 25-200 °C, the TSC is largest and the thermal damage of sandstone is more sensitive to temperature. The results of this article have some guiding significance to rock engineering in high-temperature environment.

  4. Effect of Temperature Reversion on Hot Ductility and Flow Stress-Strain Curves of C-Mn Continuously Cast Steels

    NASA Astrophysics Data System (ADS)

    Dong, Zhihua; Li, Wei; Long, Mujun; Gui, Lintao; Chen, Dengfu; Huang, Yunwei; Vitos, Levente

    2015-08-01

    The influence of temperature reversion in secondary cooling and its reversion rate on hot ductility and flow stress-strain curve of C-Mn steel has been investigated. Tensile specimens were cooled at various regimes. One cooling regime involved cooling at a constant rate of 100 °C min-1 to the test temperature, while the others involved temperature reversion processes at three different reversion rates before deformation. After hot tensile test, the evolution of mechanical properties of steel was analyzed at various scales by means of microstructure observation, ab initio prediction, and thermodynamic calculation. Results indicated that the temperature reversion in secondary cooling led to hot ductility trough occurring at higher temperature with greater depth. With increasing temperature reversion rate, the low temperature end of ductility trough extended toward lower temperature, leading to wider hot ductility trough with slightly reducing depth. Microstructure examinations indicated that the intergranular fracture related to the thin film-like ferrite and (Fe,Mn)S particles did not changed with varying cooling regimes; however, the Widmanstatten ferrite surrounding austenite grains resulted from the temperature reversion process seriously deteriorated the ductility. In addition, after the temperature reversion in secondary cooling, the peak stress on the flow curve slightly declined and the peak of strain to peak stress occurred at higher temperature. With increasing temperature reversion rate, the strain to peak stress slightly increased, while the peak stress showed little variation. The evolution of plastic modulus and strain to peak stress of austenite with varying temperature was in line with the theoretical prediction on Fe.

  5. Development of a fracture mechanics/threshold behavior model to assess the effects of competing mechanisms induced by shot peening on cyclic life of a nickel-base superalloy, Rene 88DT

    NASA Astrophysics Data System (ADS)

    Tufft, Marsha Klopmeier

    This research establishes an improved lower-bound predictive method for the cyclic life of shot peened specimens made from a nickel-base superalloy, Rene 88DT. Based on previous work, shot peening is noted to induce the equivalent of fatigue damage, in addition to the beneficial compressive residual stresses. The ability to quantify the relative effects of various shot peening treatments on cyclic life capability provides a basis for more economic use of shot peening, and selection of shot peening parameters to meet design and life requirements, while minimizing production costs. The predictive method developed consists of two major elements: (1) a Fracture Mechanics Model, which accounts for changes in microstructure, residual stress and topography induced by shot peening, and (2) a Threshold Behavior Map which identifies both crack nucleation and crack propagation thresholds. When both thresholds are crossed, life capability can be evaluated using the Fracture Mechanics model developed. When the crack propagation threshold is exceeded but the crack nucleation threshold is not, the FM method produces a conservative lower-bound estimate of life capability. A unique contribution is the characterization of damage induced by peening by an initial flaw size from microstructural observations of slip depth. Observations of crack formation along slip band in a model disk provide reinforcement for defining a flaw size from slip measurements. Supporting research includes: (1) metallurgical and microstructural evaluation of single impact dimples and production peened coupons, (2) instrumented Single Particle Impact Tests, characterizing changes in material response due to variations in impact conditions (particle size, incidence angle, velocity), (3) duplication of 16 peening conditions used in a designed experiment, characterizing slip depth, residual stress profiles, surface roughness and velocity measurements taken during production peening conditions.

  6. Cyclic membrane separation process

    DOEpatents

    Bowser, John

    2004-04-13

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In one of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the other part, the membrane is inoperative while gas pressure rises in the ullage. Ambient air is charged to the membrane separation unit during the latter part of the cycle.

  7. Flow in cyclic cosmology

    SciTech Connect

    Kinney, William H.; Dizgah, Azadeh Moradinezhad

    2010-10-15

    In this paper, we use a known duality between expanding and contracting cosmologies to construct a dual of the inflationary flow hierarchy applicable to contracting cosmologies such as ekpyrotic and cyclic models. We show that the inflationary flow equations are invariant under the duality and therefore apply equally well to inflation or to cyclic cosmology. We construct a self-consistent small-parameter approximation dual to the slow-roll approximation in inflation, and calculate the power spectrum of perturbations in this limit. We also recover the matter-dominated contracting solution of Wands, and the recently proposed adiabatic ekpyrosis solution.

  8. Cyclic membrane separation process

    DOEpatents

    Nemser, Stuart M.

    2005-05-03

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In the first part of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the second part, the membrane is inoperative while gas pressure rises in the ullage. In one aspect of this invention, a vacuum is drawn in the membrane separation unit thus reducing overall VOC emissions.

  9. Mechanical flexible and electric fatigue resistant behavior of relaxor ferroelectric terpolymer

    NASA Astrophysics Data System (ADS)

    Fang, Fei; Yang, Wei; Yang, Wen

    2009-08-01

    Uniaxial tension and polarization evolution under cyclic electric field are investigated for poly(vinylidene fluoride-trifluorethylene-chlorofluoroethylene) terpolymer films prepared by different annealing conditions. The stress-strain behavior of the terpolymer film exhibits that of polymeric elastomers, with its fracture strain reaching 680%. Structure analysis demonstrates that the polymer chains undergo reorientation, and conformational change from nonpolar to polar phase takes place during uniaxial tension. Under cyclic electric field, the terpolymer film exhibits a narrow polarization loop typical of a ferroelectric relaxor. Conformational change from nonpolar to polar phase also occurs upon the electric field, and it reverses to the nonpolar phase when the field is removed. As the cycle number accumulates, the terpolymer film demonstrates excellent resistance to electric fatigue. Compared to the film annealed at 115 °C, the terpolymer film annealed at 100 °C has a larger volume fraction of crystallite/amorphous interfaces and shows better mechanical flexibility as well as electric fatigue resistance. The mechanical flexible and electric fatigue resistant terpolymer films hold promises for many applications, ranging from embedded sensors and actuators to flexible memory devices.

  10. A Shearing-Stretching Device That Can Apply Physiological Fluid Shear Stress and Cyclic Stretch Concurrently to Endothelial Cells.

    PubMed

    Meza, Daphne; Abejar, Louie; Rubenstein, David A; Yin, Wei

    2016-03-01

    Endothelial cell (EC) morphology and functions can be highly impacted by the mechanical stresses that the cells experience in vivo. In most areas in the vasculature, ECs are continuously exposed to unsteady blood flow-induced shear stress and vasodilation-contraction-induced tensile stress/strain simultaneously. Investigations on how ECs respond to combined shear stress and tensile strain will help us to better understand how an altered mechanical environment affects EC mechanotransduction, dysfunction, and associated cardiovascular disease development. In the present study, a programmable shearing and stretching device that can apply dynamic fluid shear stress and cyclic tensile strain simultaneously to cultured ECs was developed. Flow and stress/strain conditions in the device were simulated using a fluid structure interaction (FSI) model. To characterize the performance of this device and the effect of combined shear stress-tensile strain on EC morphology, human coronary artery ECs (HCAECs) were exposed to concurrent shear stress and cyclic tensile strain in the device. Changes in EC morphology were evaluated through cell elongation, cell alignment, and cell junctional actin accumulation. Results obtained from the numerical simulation indicated that in the "in-plane" area of the device, both fluid shear stress and biaxial tensile strain were uniform. Results obtained from the in vitro experiments demonstrated that shear stress, alone or combined with cyclic tensile strain, induced significant cell elongation. While biaxial tensile strain alone did not induce any appreciable change in EC elongation. Fluid shear stress and cyclic tensile strain had different effects on EC actin filament alignment and accumulation. By combining various fluid shear stress and cyclic tensile strain conditions, this device can provide a physiologically relevant mechanical environment to study EC responses to physiological and pathological mechanical stimulation. PMID:26810848

  11. Scaling of viscous shear zones with depth-dependent viscosity and power-law stress-strain-rate dependence

    NASA Astrophysics Data System (ADS)

    Moore, James D. P.; Parsons, Barry

    2015-07-01

    One of the unresolved questions concerning fault deformation is the degree and cause of localization of shear at depth beneath a fault. Geologic observations of exhumed shear zones indicate that while the motion is no longer planar, it can still be localized near the down-dip extension of the fault; however, the degree of localization is uncertain. We employ simple analytic and numerical models to investigate the structural form of distributed shear beneath a strike-slip fault, and the relative importance of the physical mechanisms that have the potential to localize a shear zone. For a purely depth dependent viscosity, η = η0 exp (-z/z0), we find that a shear zone develops with a half-width δ _w˜ √{z_0} for small z0 at the base of the layer, where lengths are non-dimensionalized by the layer thickness (d km). Including a non-linear stress-strain-rate relation (dot{ɛ }∝ σ ^n) scales δw by 1/√{n}, comparable to deformation length scales in thin viscous sheet calculations. We find that the primary control on the shear-zone width is the depth dependence of viscosity that arises from the temperature dependence of viscosity and the increase in temperature with depth. As this relationship is exponential, scaling relations give a dimensional half-width that scales approximately as tilde{δ}_w≈ T_{1/2}√{Rd/nQβ } km, where T_{1/2} (K) is the temperature at the midpoint of the layer, R (J mol-1 K-1) the gas constant, Q (J mol-1) the activation energy and β (K km-1) the geothermal gradient. This relation predicts the numerical results for the parameter range consistent with continental rheologies to within 2-5 per cent and shear-zone half-widths from 2 to 6 km. The inclusion of shear-stress heating reduces δw by only an additional 5-25 per cent, depending on the initial width of the shear zone. While the width of the shear zone may not decrease significantly, local temperature increases from shear-stress heating range from 50 to 300 °C resulting in a

  12. Minocycline upregulates cyclic AMP response element binding protein and brain-derived neurotrophic factor in the hippocampus of cerebral ischemia rats and improves behavioral deficits

    PubMed Central

    Zhao, Yu; Xiao, Ming; He, Wenbo; Cai, Zhiyou

    2015-01-01

    Background and purpose The cAMP response element binding protein (CREB) plays an important role in the mechanism of cognitive impairment and is also pivotal in the switch from short-term to long-term memory. Brain-derived neurotrophic factor (BDNF) seems a promising avenue in the treatment of cerebral ischemia injury since this neurotrophin could stimulate structural plasticity and repair cognitive impairment. Several findings have displayed that the dysregulation of the CREB–BDNF cascade has been involved in cognitive impairment. The aim of this study was to investigate the effect of cerebral ischemia on learning and memory as well as on the levels of CREB, phosphorylated CREB (pCREB), and BDNF, and to determine the effect of minocycline on CREB, pCREB, BDNF, and behavioral functional recovery after cerebral ischemia. Methods The animal model was established by permanent bilateral occlusion of both common carotid arteries. Behavior was evaluated 5 days before decapitation with Morris water maze and open-field task. Four days after permanent bilateral occlusion of both common carotid arteries, minocycline was administered by douche via the stomach for 4 weeks. CREB and pCREB were examined by Western blotting, reverse transcription polymerase chain reaction, and immunohistochemistry. BDNF was measured by immunohistochemistry and Western blotting. Results The model rats after minocycline treatment swam shorter distances than control rats before finding the platform (P=0.0007). The number of times the platform position was crossed for sham-operation rats was more than that of the model groups in the corresponding platform location (P=0.0021). The number of times the platform position was crossed for minocycline treatment animals was significantly increased compared to the model groups in the corresponding platform position (P=0.0016). CREB, pCREB, and BDNF were downregulated after permanent bilateral occlusion of both common carotid arteries in the model group

  13. Effect of CeO2 on Cyclic Hot-Corrosion Behavior of Detonation-Gun Sprayed Cr3C2-NiCr Coatings on Ni-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Saladi, Sekar; Menghani, Jyoti; Prakash, Satya

    2015-03-01

    The hot-corrosion behavior of detonation-gun sprayed Cr3C2-NiCr coatings with and without 0.4 wt.% CeO2 additive on Ni-based superalloy inconel-718 is comparatively discussed in the present study. Hot-corrosion studies were carried out at 900 °C for 100 cycles in Na2SO4-60%V2O5 molten salt environment under cyclic heating and cooling conditions on bare and coated superalloys. The thermo-gravimetric technique was used to establish kinetics of hot-corrosion. XRD, FESEM/EDAX, and EDX mapping techniques were used to analyze the corrosion products of bare and coated samples. The results indicate that Cr3C2-NiCr-CeO2-coated superalloy showed better hot-corrosion resistance as compared to bare and Cr3C2-NiCr-coated superalloys. The addition of CeO2 has improved micro-hardness, porosity, and surface roughness values of Cr3C2-NiCr-CeO2 coating. The overall weight gain and parabolic rate constant of Cr3C2-NiCr-CeO2-coated superalloy were found to be lowest in the present study signifying that the addition of CeO2 in Cr3C2-NiCr powder has contributed to the development of adherent and dense oxide scale on the coating at elevated temperature.

  14. Thermo-mechanical behavior of epoxy shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    Di Prima, M. A.; Lesniewski, M.; Gall, K.; McDowell, D. L.; Sanderson, T.; Campbell, D.

    2007-12-01

    Shape memory polymer foams have significant potential in biomedical and aerospace applications, but their thermo-mechanical behavior under relevant deformation conditions is not well understood. In this paper we examine the thermo-mechanical behavior of epoxy shape memory polymer foams with an average relative density of nearly 20%. These foams are deformed under conditions of varying stress, strain, and temperature. The glass transition temperature of the foam was measured to be approximately 90 °C and compression and tensile tests were performed at temperatures ranging from 25 to 125 °C. Various shape recovery tests were used to measure recovery properties under different thermo-mechanical conditions. Tensile strain to failure was measured as a function of temperature to probe the maximum recovery limits of the foam in both temperature and strain space. Compression tests were performed to examine compressibility of the material as a function of temperature; these foams can be compacted as much as 80% and still experience full strain recovery over multiple cycles. Furthermore, both tensile strain to failure tests and cyclic compression recovery tests revealed that deforming at a temperature of 80 °C maximizes macroscopic strain recovery. Deformation temperatures above or below this optimal value lead to lower failure strains in tension and the accumulation of non-recoverable strains in cyclic compression. Micro-computed tomography (micro-CT) scans of the foam at various compressed states were used to understand foam deformation mechanisms. The micro-CT studies revealed the bending, buckling, and collapse of cells with increasing compression, consistent with results from published numerical simulations.

  15. One-Way Coupling of an Advanced CFD Multi-Physics Model to FEA for Predicting Stress-Strain in the Solidifying Shell during Continuous Casting of Steel

    NASA Astrophysics Data System (ADS)

    Svensson, Johan; Ramírez López, Pavel E.; Jalali, Pooria N.; Cervantes, Michel

    2015-06-01

    One of the main targets for Continuous Casting (CC) modelling is the actual prediction of defects during transient events. However, the majority of CC models are based on a statistical approach towards flow and powder performance, which is unable to capture the subtleties of small variations in casting conditions during real industrial operation or the combined effects of such changes leading eventually to defects. An advanced Computational Fluid Dynamics (CFD) model; which accounts for transient changes on lubrication during casting due to turbulent flow dynamics and mould oscillation has been presented on MCWASP XIV (Austria) to address these issues. The model has been successfully applied to the industrial environment to tackle typical problems such as lack of lubrication or unstable flows. However, a direct application to cracking had proven elusive. The present paper describes how results from this advanced CFD-CC model have been successfully coupled to structural Finite Element Analysis (FEA) for prediction of stress-strains as a function of irregular lubrication conditions in the mould. The main challenge for coupling was the extraction of the solidified shell from CFD calculations (carried out with a hybrid structured mesh) and creating a geometry by using iso-surfaces, re-meshing and mapping loads (e.g. temperature, pressure and external body forces), which served as input to mechanical stress-strain calculations. Preliminary results for CC of slabs show that the temperature distribution within the shell causes shrinkage and thermal deformation; which are in turn, the main source of stress. Results also show reasonable stress levels of 10-20 MPa in regions, where the shell is thin and exposed to large temperature gradients. Finally, predictions are in good agreement with prior works where stresses indicate compression at the slab surface, while tension is observed at the interior; generating a characteristic stress-strain state during solidification in CC.

  16. Scaling of Viscous Shear Zones with Depth Dependent Viscosity and Power Law Stress-strain Rate Dependence

    NASA Astrophysics Data System (ADS)

    Moore, J. D. P.; Parsons, B.

    2014-12-01

    One of the unresolved questions concerning fault deformation is the degree and cause of localisation of shear at depth beneath a fault. Geologic observations of exhumed shear zones indicate that whilst the motion is no longer planar, it can still be localised near the down-dip extension of the fault; however, the degree of localisation is uncertain. We employ simple analytic and numerical models to investigate the structural form of distributed shear beneath a strike-slip fault, and the relative importance of the physical mechanisms that have the potential to localise a shear zone. As we are concerned with long-term structure the model is time-averaged across the earthquake cycle, consisting of an idealised strike-slip fault within a rigid lid over a viscous layer. For a depth dependent viscosity, η = η0 exp (-z/z0), we find a shear zone develops with a half-width δw √z0 for small z0, where lengths are non-dimensionalised by the layer thickness (d km). Including a non-linear stress-strain rate relation (ɛ ˙ ∝ σn) scales δw by 1/√n, comparable to deformation length scales in thin viscous sheet calculations. We find that the primary control on δw is the depth dependence of viscosity arising from the increase in temperature with depth. As this relationship is exponential, scaling relations give a half-width that scales approximately as δw≈T(z=1/2)RdnQβ-----√km,delta_wapprox T(z=1/2){sqrtfrac{Rd}{nQbeta}} km, with T (K), gas constant R (J/mol K), activation energy Q (J/mol), and geotherm β (K/km). Figure illustrates shear zones for a dry olivine composition. For n = 1 the shear zone half-width is δw = 4 km, which reduces to δw = 2.3 km when n = 3; other parameter choices consistent with laboratory-derived rheological properties give δwfrom 2-6 km. The inclusion of shear-stress heating only reduces δw by an additional 5-25%, depending on the initial width of the shear zone; in the case of dry olivine with n = 3 we get δw = 1.8 km. This

  17. How soft is a single protein? The stress-strain curve of antibody pentamers with 5 pN and 50 pm resolutions

    NASA Astrophysics Data System (ADS)

    Perrino, Alma P.; Garcia, Ricardo

    2016-04-01

    Understanding the mechanical functionalities of complex biological systems requires the measurement of the mechanical compliance of their smallest components. Here, we develop a force microscopy method to quantify the softness of a single antibody pentamer by measuring the stress-strain curve with force and deformation resolutions, respectively, of 5 pN and 50 pm. The curve shows three distinctive regions. For ultrasmall compressive forces (5-75 pN), the protein's central region shows that the strain and stress are proportional (elastic regime). This region has an average Young's modulus of 2.5 MPa. For forces between 80 and 220 pN, the stress is roughly proportional to the strain with a Young's modulus of 9 MPa. Higher forces lead to irreversible deformations (plastic regime). Full elastic recovery could reach deformations amounting to 40% of the protein height. The existence of two different elastic regions is explained in terms of the structure of the antibody central region. The stress-strain curve explains the capability of the antibody to sustain multiple collisions without any loss of biological functionality.Understanding the mechanical functionalities of complex biological systems requires the measurement of the mechanical compliance of their smallest components. Here, we develop a force microscopy method to quantify the softness of a single antibody pentamer by measuring the stress-strain curve with force and deformation resolutions, respectively, of 5 pN and 50 pm. The curve shows three distinctive regions. For ultrasmall compressive forces (5-75 pN), the protein's central region shows that the strain and stress are proportional (elastic regime). This region has an average Young's modulus of 2.5 MPa. For forces between 80 and 220 pN, the stress is roughly proportional to the strain with a Young's modulus of 9 MPa. Higher forces lead to irreversible deformations (plastic regime). Full elastic recovery could reach deformations amounting to 40% of the

  18. An Early Cyclic Universe

    NASA Astrophysics Data System (ADS)

    Duhe, William; Biswas, Tirthibir

    2014-03-01

    We provide a comprehensive numerical study of the Emergent Cyclic Inflation scenario. This is a scenario where instead of traditional monotonic slow roll inflation, the universe expands over numerous short asymmetric cycles due to the production of entropy via interactions among different species. This is one of the very few scenarios of inflation which provides a nonsingular geodesically complete space-time and does not require any ``reheating'' mechanism. A special thanks to Loyola University for an excellent community to help this project grow.

  19. A computer program for cyclic plasticity and structural fatigue analysis

    NASA Technical Reports Server (NTRS)

    Kalev, I.

    1980-01-01

    A computerized tool for the analysis of time independent cyclic plasticity structural response, life to crack initiation prediction, and crack growth rate prediction for metallic materials is described. Three analytical items are combined: the finite element method with its associated numerical techniques for idealization of the structural component, cyclic plasticity models for idealization of the material behavior, and damage accumulation criteria for the fatigue failure.

  20. How soft is a single protein? The stress-strain curve of antibody pentamers with 5 pN and 50 pm resolutions.

    PubMed

    Perrino, Alma P; Garcia, Ricardo

    2016-04-28

    Understanding the mechanical functionalities of complex biological systems requires the measurement of the mechanical compliance of their smallest components. Here, we develop a force microscopy method to quantify the softness of a single antibody pentamer by measuring the stress-strain curve with force and deformation resolutions, respectively, of 5 pN and 50 pm. The curve shows three distinctive regions. For ultrasmall compressive forces (5-75 pN), the protein's central region shows that the strain and stress are proportional (elastic regime). This region has an average Young's modulus of 2.5 MPa. For forces between 80 and 220 pN, the stress is roughly proportional to the strain with a Young's modulus of 9 MPa. Higher forces lead to irreversible deformations (plastic regime). Full elastic recovery could reach deformations amounting to 40% of the protein height. The existence of two different elastic regions is explained in terms of the structure of the antibody central region. The stress-strain curve explains the capability of the antibody to sustain multiple collisions without any loss of biological functionality. PMID:26732032

  1. Measurement of true stress-strain curves and evolution of plastic zone of low carbon steel under uniaxial tension using digital image correlation

    NASA Astrophysics Data System (ADS)

    Zhu, Feipeng; Bai, Pengxiang; Zhang, Jingbin; Lei, Dong; He, Xiaoyuan

    2015-02-01

    Three-dimensional digital image correlation has been utilized widely in many fields due to its advantages of non-contact, full-field measurement and simplicity. Based on 3D-DIC measurement system and electronic universal testing machine, two uniaxial tension tests for low carbon steel specimen were performed to acquire the true stress-strain curves. An assumption was made that specimen's cross section keeps as a circle in tension test whose diameter could be determined by calculation of the curvature of surface shape. Therefore, true stress of specific cross section was acquired and hence the true stress-strain curves were obtained. In addition, the evolution of plastic zone of specimen under uniaxial tension was studied as well. And experimental results indicate that at certain time instant of expanding process of plastic zone, region that has already entered the plastic zone and that has not entered such zone yet is keeping in a constant deformed state, while region that is entering the plastic zone provides axial plastic deformation, which is almost equal to crosshead movement of testing machine.

  2. Simplified analytical procedures for representing material cyclic response. [for high temperature gas turbine engine analysis

    NASA Technical Reports Server (NTRS)

    Moreno, V.; Kaufman, A.

    1984-01-01

    Requirements for increased durability of gas turbine hot section structural components have made it necessary to place greater emphasis on accurate structural analysis and life prediction. Linear finite-element analysis is generally sufficient for structural analysis applications. However, for structures in the hot part of the engine, nonlinear structural analysis may be required under certain conditions for the accurate prediction of the local stress-strain response. Nonlinear finite element analysis represents a costly effort which is generally incompatible with the iterative nature of the design process. The present investigation is, therefore, concerned with two simplified procedures for estimating the local hysteretic response produced by cyclic thermal loading. These procedures reduce the need for nonlinear finite-element analysis.

  3. Constitutive modeling of cyclic plasticity and creep, using an internal time concept

    NASA Technical Reports Server (NTRS)

    Watanabe, O.; Atluri, S. N.

    1986-01-01

    Using the concept of an internal time as related to plastic strains, a differential stress-strain relation for elastoplasticity is rederived, such that (1) the concept of a yield-surface is retained; (2) the definitions of elastic and plastic processes are analogous to those in classical plasticity theory; and (3) its computational implementation, via a 'tangent-stiffness' finite element method and a 'generalized-midpoint-radial-return' stress-integration algorithm, is simple and efficient. Also, using the concept of an internal time, as related to both the inelastic strains as well as the Newtonian time, a constitutive model for creep-plasticity interaction, is discussed. The problem of modeling experimental data for plasticity and creep, by the present analytical relations, as accurately as desired, is discussed. Numerical examples which illustrate the validity of the present relations are presented for the cases of cyclic plasticity and creep.

  4. Cyclic debonding of adhesively bonded composites

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.; Everett, R. A., Jr.

    1982-01-01

    The fatigue behavior of a simple composite to composite bonded joint was analyzed. The cracked lap shear specimen subjected to constant amplitude cyclic loading was studied. Two specimen geometries were tested for each bonded system: (1) a strap adherend of 16 plies bonded to a lap adherend of 8 plies; and (2) a strap adherend of 8 plies bonded to a lap adherend of 16 plies. In all specimens the fatigue failure was in the form of cyclic debonding with some 0 deg fiber pull off from the strap adherend. The debond always grew in the region of adhesive that had the highest mode (peel) loading and that region was close to the adhesive strap interface.

  5. Microstructural Evolution and Flow Behavior of Twin-Roll Cast AZ41 Magnesium Alloy during Hot Compression

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyi; Chen, Xu; Hou, Yanhui; Kang, Sukbong

    2012-12-01

    Microstructural evolution and flow behavior of twin-roll cast AZ41 magnesium alloy during hot compression were characterized by employing deformation temperature of 300°C, 350°C and 400°C, and strain rate ranging from 10-3 to 10-2s-1. When compressed at different temperature (300°C, 350°C and 400°C) and strain rate (10-3 and 10-2s-1) all stress strain curves showed a flow softening behavior before strained to 0.51 due to dynamic recrystallization, even though concurrent twinning was quite active. Twinning contributed to the flow hardening behavior appeared during the end of hot compression (ɛ > 0.51) at a strain rate of 10-2s-1 and elevated temperature (300°C, 350°C and 400°C) in spite of the softening effect of concurrently occurred dynamic recrystallization. TEM image showed that discontinuous recrystallization occurred when deformed at elevated temperature as high as 400°C and the strain rate ranging from 10-2 to 10-3s-1. It is suggested that dislocation slip, twinning and recrystallization develop in a cyclic mode from initial stage to the end of hot compression.

  6. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires

    PubMed Central

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-01-01

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19′ martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19′ martensitic transformation, and (V) plastic deformation of the specimen. PMID:27049025

  7. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires.

    PubMed

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-01-01

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19' martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19' martensitic transformation, and (V) plastic deformation of the specimen. PMID:27049025

  8. METCAN updates for high temperature composite behavior: Simulation/verification

    NASA Technical Reports Server (NTRS)

    Lee, H.-J.; Murthy, P. L. N.; Chamis, Christos C.

    1991-01-01

    The continued verification (comparisons with experimental data) of the METCAN (Metal Matrix Composite Analyzer) computer code is updated. Verification includes comparisons at room and high temperatures for two composites, SiC/Ti-15-3 and SiC/Ti-6-4. Specifically, verification of the SiC/Ti-15-3 composite includes comparisons of strength, modulus, and Poisson's ratio as well as stress-strain curves for four laminates at room temperature. High temperature verification includes comparisons of strength and stress-strain curves for two laminates. Verification of SiC/Ti-6-4 is for a transverse room temperature stress-strain curve and comparisons for transverse strength at three temperatures. Results of the verification indicates that METCAN can be used with confidence to simulate the high temperature nonlinear behavior of metal matrix composites.

  9. Computer program for predicting creep behavior of bodies of revolution

    NASA Technical Reports Server (NTRS)

    Adams, R.; Greenbaum, G.

    1971-01-01

    Computer program, CRAB, uses finite-element method to calculate creep behavior and predict steady-state stresses in an arbitrary body of revolution subjected to a time-dependent axisymmetric load. Creep strains follow a time hardening law and a Prandtl-Reuss stress-strain relationship.

  10. Correlation between cyclic fatigue and the bending properties of nickel titanium endodontic instruments.

    PubMed

    Piao, Jindan; Miyara, Kana; Ebihara, Arata; Nomura, Naoyuki; Hanawa, Takao; Suda, Hideaki

    2014-01-01

    The effects of cyclic fatigue on bending properties of NiTi endodontic instruments were investigated. Sixteen Profiles(®) were divided into two groups (A, and B). The sequence of cantilever bending test and cyclic fatigue test was alternated repeatedly until file separation occurred. In the cyclic fatigue test, the instrument curvature was 19° in group A and 38° in group B. Fractographic examination was performed to determine fracture patterns. In group A, there were significant differences between the bending load values measured before the cyclic fatigue test and the last cantilever bending test before instrument fracture at each deflection (p<0.05). Fractographic examination showed the specific patterns of cyclic fatigue fracture. The stress required to induce martensitic transformation might be reduced due to the softening behavior caused by the cyclic fatigue under the relaxation condition of the superelasticity range (group A). The SEM images were able to display specific patterns indicating cyclic fatigue fracture. PMID:25087661

  11. Analysis of the effects of non-supine sleeping positions on the stress, strain, deformation and intraocular pressure of the human eye

    NASA Astrophysics Data System (ADS)

    Volpe, Peter A.

    This thesis presents analytical models, finite element models and experimental data to investigate the response of the human eye to loads that can be experienced when in a non-supine sleeping position. The hypothesis being investigated is that non-supine sleeping positions can lead to stress, strain and deformation of the eye as well as changes in intraocular pressure (IOP) that may exacerbate vision loss in individuals who have glaucoma. To investigate the quasi-static changes in stress and internal pressure, a Fluid-Structure Interaction simulation was performed on an axisymmetrical model of an eye. Common Aerospace Engineering methods for analyzing pressure vessels and hyperelastic structural walls are applied to developing a suitable model. The quasi-static pressure increase was used in an iterative code to analyze changes in IOP over time.

  12. Self-assembly of cyclic rod-coil diblock copolymers.

    PubMed

    He, Linli; Chen, Zenglei; Zhang, Ruifen; Zhang, Linxi; Jiang, Zhouting

    2013-03-01

    The phase behavior of cyclic rod-coil diblock copolymer melts is investigated by the dissipative particle dynamics simulation. In order to understand the effect of chain topological architecture better, we also study the linear rod-coil system. The comparison of the calculated phase diagrams between the two rod-coil copolymers reveals that the order-disorder transition point (χN)ODT for cyclic rod-coil diblock copolymers is always higher than that of equivalent linear rod-coil diblocks. In addition, the phase diagram for cyclic system is more "symmetrical," due to the topological constraint. Moreover, there are significant differences in the self-assembled overall morphologies and the local molecular arrangements. For example, frod = 0.5, both lamellar structures are formed while rod packing is different greatly in cyclic and linear cases. The lamellae with rods arranged coplanarly into bilayers occurs in cyclic rod-coil diblocks, while the lamellar structure with rods arranged end by end into interdigitated bilayers appears in linear counterpart. In both the lamellar phases, the domain size ratio of cyclic to linear diblocks is ranged from 0.63 to 0.70. This is attributed to that the cyclic architecture with the additional junction increases the contacts between incompatible blocks and prevents the coil chains from expanding as much as the linear cases. As frod = 0.7, the hexagonally packed cylinder is observed for cyclic rod-coil diblocks, while liquid-crystalline smectic A lamellar phase is formed in linear system. As a result, the cyclization of a linear rod-coil block copolymer can induce remarkable differences in the self-assembly behavior and also diversify its physical properties and applications greatly. PMID:23485326

  13. Imaging Mass Spectrometry by Matrix-Assisted Laser Desorption/Ionization and Stress-Strain Measurements in Iontophoresis Transepithelial Corneal Collagen Cross-Linking

    PubMed Central

    Mencucci, Rita; Camesasca, Fabrizio I.; Favuzza, Eleonora

    2014-01-01

    Purpose. To compare biomechanical effect, riboflavin penetration and distribution in transepithelial corneal collagen cross-linking with iontophoresis (I-CXL), with standard cross linking (S-CXL) and current transepithelial protocol (TE-CXL). Materials and Methods. The study was divided into two different sections, considering, respectively, rabbit and human cadaver corneas. In both sections corneas were divided according to imbibition protocols and irradiation power. Imaging mass spectrometry by matrix-assisted laser desorption/ionization (MALDI-IMS) and stress-strain measurements were used. Forty-eight rabbit and twelve human cadaver corneas were evaluated. Results. MALDI-IMS showed a deep riboflavin penetration throughout the corneal layers with I-CXL, with a roughly lower concentration in the deepest layers when compared to S-CXL, whereas with TE-CXL penetration was considerably less. In rabbits, there was a significant increase (by 71.9% and P = 0.05) in corneal rigidity after I-CXL, when compared to controls. In humans, corneal rigidity increase was not significantly different among the subgroups. Conclusions. In rabbits, I-CXL induced a significant increase in corneal stiffness as well as better riboflavin penetration when compared to controls and TE-CXL but not to S-CXL. Stress-strain in human corneas did not show significant differences among techniques, possibly because of the small sample size of groups. In conclusion, I-CXL could be a valid alternative to S-CXL for riboflavin delivery in CXL, preserving the epithelium. PMID:25276786

  14. Cosmic perturbations through the cyclic ages

    SciTech Connect

    Erickson, Joel K.; Gratton, Steven; Steinhardt, Paul J.; Turok, Neil

    2007-06-15

    We analyze the evolution of cosmological perturbations in the cyclic model, paying particular attention to their behavior and interplay over multiple cycles. Our key results are: (1) galaxies and large scale structure present in one cycle are generated by the quantum fluctuations in the preceding cycle without interference from perturbations or structure generated in earlier cycles and without interfering with structure generated in later cycles; (2) the ekpyrotic phase, an epoch of gentle contraction with equation of state w>>1 preceding the hot big bang, makes the universe homogeneous, isotropic and flat within any given observer's horizon; and (3) although the universe is uniform within each observer's horizon, the structure of the cyclic universe on very large scales is more complex, owing to the effects of superhorizon length perturbations, and cannot be described globally as a Friedmann-Robertson-Walker cosmology. In particular, we show that the ekpyrotic contraction phase is so effective in smoothing, flattening and isotropizing the universe within the horizon that this phase alone suffices to solve the horizon and flatness problems even without an extended period of dark energy domination (a kind of low energy inflation). Instead, the cyclic model rests on a genuinely novel, noninflationary mechanism (ekpyrotic contraction) for resolving the classic cosmological conundrums.

  15. Cyclic AMP in prokaryotes.

    PubMed Central

    Botsford, J L; Harman, J G

    1992-01-01

    Cyclic AMP (cAMP) is found in a variety of prokaryotes including both eubacteria and archaebacteria. cAMP plays a role in regulating gene expression, not only for the classic inducible catabolic operons, but also for other categories. In the enteric coliforms, the effects of cAMP on gene expression are mediated through its interaction with and allosteric modification of a cAMP-binding protein (CRP). The CRP-cAMP complex subsequently binds specific DNA sequences and either activates or inhibits transcription depending upon the positioning of the complex relative to the promoter. Enteric coliforms have provided a model to explore the mechanisms involved in controlling adenylate cyclase activity, in regulating adenylate cyclase synthesis, and in performing detailed examinations of CRP-cAMP complex-regulated gene expression. This review summarizes recent work focused on elucidating the molecular mechanisms of CRP-cAMP complex-mediated processes. For other bacteria, less detail is known. cAMP has been implicated in regulating antibiotic production, phototrophic growth, and pathogenesis. A role for cAMP has been suggested in nitrogen fixation. Often the only data that support cAMP involvement in these processes includes cAMP measurement, detection of the enzymes involved in cAMP metabolism, or observed effects of high concentrations of the nucleotide on cell growth. PMID:1315922

  16. Cyclic Vomiting Syndrome

    PubMed Central

    2009-01-01

    Initially described in children, cyclic vomiting syndrome (CVS) is an idiopathic disorder that affects patients of all ages and is characterized by recurrent episodes of vomiting separated by symptom-free intervals or baseline health. Frequent misdiagnoses and delays in diagnosis often lead to years of recurrent vomiting. Similarities in the clinical features and symptoms of children and adults with CVS are often linked to migraines. Association with mitochondrial disorders and neuroendocrine dysfunction have been described in the pediatric CVS literature, whereas migraines, anxiety, and panic are common in adults with CVS. Various psychological, infectious, and physical stressors commonly precipitate episodes of CVS. Treatment is mostly empiric, with few controlled therapeutic studies conducted thus far. Associations with migraines have aided in developing pharmacologic treatment strategies for prophylaxis as well as abortive therapy during episodes, including the use of trip-tans. Most children outgrow CVS with time, though some children transition to migraine headaches or continue to have CVS as adults. Improved recognition of CVS in adults, along with the emergence of data in the use of anticonvulsants and antiemetics, may help further delineate pathophysiologic connections and therapeutic options for this debilitating disorder.

  17. Polycrystal orientation effects on microslip and mixed-mode behavior of microstructural small cracks

    SciTech Connect

    Bennett, V.; McDowell, D.L.

    1999-07-01

    There are two sources of mode mixity--on a macro level (combined loading situation), and on the micro level--that affect the propagation of small crystallographic cracks. This work explores mode mixity on the micro level by utilizing a computational model to simulate microstructural influences on driving forces for the formation and growth of small cracks. Two-dimensional computational cyclic crystal plasticity calculations are conducted to study the distribution of cyclic slip and critical plane-type fatigue parameters in a material with nominal stress-strain characteristics of 4340 steel. Cases of applied cyclic tension-compression and cyclic shear are analyzed at strain amplitudes below macroscopic yielding. Emphasis is placed on stress state and amplitude dependence of the distribution of these parameters among grains. The role of anisotropic plasticity is isolated by assuming the elastic behavior of grains to obey homogeneous, isotropic linear elasticity. All grains are of equal dimension and are assigned a random orientation distribution. It is found that the distribution of the Fatemi-Socie critical plane fatigue parameter among grains is Weibull-distributed, and it is argued that it forms an improved linkage to cyclic crack tip displacement for microstructurally small cracks. The authors also present computed crack tip opening and sliding displacements as a function of maximum applied tensile strain (from well below to just above nominal yielding) for small cracks within surface grains surrounded by a nearly random orientation distribution of grains. Multiple realizations of the local microstructure are examined for each crack length for sub-grain size cracks, with results normalized to the ratio of crack length to grain size. Key results include a very strong role of the free surface on crack tip displacement, with opening displacement being much greater than the sliding for suitably small crystallographic cracks in the surface grains. There is also a

  18. Cyclic Oxidation Modeling Program Rewritten for MS Windows

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Auping, Judith V.

    2002-01-01

    Turbine superalloy components are subject to high-temperature oxidation during operation. Protection is often conferred by coatings designed to form slow-growing, adherent oxide scales. Degradation by oxidation is exacerbated by the thermal cycling encountered during normal aircraft operations. Cooling has been identified as the major contributor to stresses in the oxidation scales, and it may often cause some oxide scale spallation with a proportional loss of protective behavior. Overall oxidation resistance is, thus, studied by the weight change behavior of alloy coupons during high-temperature cyclic oxidation in furnace or burner rig tests. The various characteristics of this behavior are crucial in understanding the performance of alloys at high temperatures. This new modeling effort helps in the understanding of the major factors involved in the cyclic oxidation process. Weight change behavior in cyclic oxidation is typified by an initial parabolic weight gain response curve that eventually exhibits a maximum, then transitions into a linear rate of weight loss due to spalling. The overall shape and magnitude of the curve are determined by the parabolic growth rate, kp, the cycle duration, the type of oxide scale, and the regular, repetitive spalling process. This entire process was modeled by a computer program called the Cyclic Oxidation Spalling Program (COSP) previously developed at the NASA Glenn Research Center. Thus, by supplying appropriate oxidation input parameters, one can determine the best fit to the actual data. These parameters describe real behavior and can be used to compare alloys and project cyclic oxidation behavior for longer times or under different cycle frequencies.

  19. Comparative fatigue behavior and toughness of remelted and annealed highly crosslinked polyethylenes.

    PubMed

    Medel, Francisco J; Peña, P; Cegoñino, José; Gómez-Barrena, E; Puértolas, J A

    2007-11-01

    Highly cross-linked polyethylenes (HXLPEs) have been incorporated into the hip replacement armamentarium based on their improved wear resistance. However, two different methods of thermal treatment separate the orthopedic community as strategies to control potential long-term oxidation, and controversy remains with problems in the long-term use of acetabular liners (long-term oxidation, rim fracture after impingement, etc.). Meanwhile, the mechanical properties of HXLPEs that may alleviate these problems are still unclear. On the other hand, HXLPEs are scarcely used in knee replacements, as there exists concern about the probably reduced fatigue and fracture performances of these materials. Thus, our aim was to compare the effects of both thermal treatment regimes on mechanical properties and to associate these findings with the material microstructure. The fatigue behavior of annealed and remelted HXLPEs was characterized using short-term cyclic stress-strain, long-term fatigue, and fatigue crack propagation tests. On the other hand, impact tests, tensile experiments, and the J-integral multispecimen method allowed us to assess toughness. Microstructure features such as crosslink density, crystallinity percentage, and lamellar thickness were investigated by swelling measurements, differential scanning calorimetry, and transmission electron microscopy, respectively. This study confirms that annealing preserves mechanical properties better than remelting from both fatigue and fracture resistance points of view, and it remarks that a suitable selection of irradiation and stabilization conditions is needed to achieve optimal mechanical performances of ultra high molecular weight polyethylenes for each specific total joint replacement. PMID:17680670

  20. Skill Retention and Relearning--A Proposed Cyclical Model.

    ERIC Educational Resources Information Center

    Ginzburg, S.; Dar-El, E. M.

    2000-01-01

    The relationship between relearning and retention was examined during refresher training for 53 Israeli soldiers operating an electronic system. The longer the training interval, the lower the operator's performance level. Partial simulation was suitable for retraining in complex tasks. A cyclical behavior model of learning, forgetting, and…

  1. Correlation of Electrical Resistance to CMC Stress-Strain and Fracture Behavior Under High Heat-Flux Thermal and Stress Gradients

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Morscher, Gregory; Zhu, Dongming

    2015-01-01

    Because SiCSiC ceramic matrix composites (CMCs) are under consideration for use as turbine engine hot-section components in extreme environments, it becomes necessary to investigate their performance and damage morphologies under complex loading and environmental conditions. Monitoring of electrical resistance (ER) has been shown as an effective tool for detecting damage accumulation of woven melt-infiltrated SiCSiC CMCs. However, ER change under complicated thermo-mechanical loading is not well understood. In this study a systematic approach is taken to determine the capabilities of ER as a relevant non-destructive evaluation technique for high heat-flux testing, including thermal gradients and localized stress concentrations. Room temperature and high temperature, laser-based tensile tests were conducted in which stress-dependent damage locations were determined using modal acoustic emission (AE) monitoring and compared to full-field strain mapping using digital image correlation (DIC). This information is then compared with the results of in-situ ER monitoring, post-test ER inspection and fractography in order to correlate ER response to convoluted loading conditions and damage evolution.

  2. Comparative finite element analysis of the stress-strain states in three different bonded solid oxide fuel cell seal designs

    NASA Astrophysics Data System (ADS)

    Weil, K. S.; Koeppel, B. J.

    One of the critical issues in designing and fabricating a high performance planar solid oxide fuel cell (pSOFC) stack is the development of the appropriate materials and techniques for hermetically sealing the metal and ceramic components. A second critical issue is ensuring that the brittle ceramic cell constituents, i.e. the electrodes and electrolyte, exhibit high mechanical reliability by mitigating potential sources of thermal-mechanically induced stresses that can lead to fracture during operation and/or shutdown. A foil-based sealing approach is currently being developed that appears to offer good hermeticity and mechanical integrity, while minimizing the generation of high stresses in either of the joint's substrate materials. Based on the concept's viability, demonstrated in prior experimental work, numerical analyses were conducted to evaluate the behavior and benefits of the seal in a configuration prototypic of current pSOFC stack designs. This paper presents recent results from finite element (FE) simulations of a planar cell using the foil-based seal, along with companion analyses of the more conventionally employed glass-ceramic and brazed joints. The stresses and deformations of the components were evaluated at isothermal operating and shutdown temperatures. The results indicate that the foil seal is able to accommodate a significant degree of thermal mismatch strain between the metallic support structure and the ceramic cell via elastic deformations of the foil and plasticity in the foil-to-cell braze layer. Consequently the cell stresses in this type of seal are predicted to be much lower than those in the glass-ceramic and brazed designs, which is expected to lead to improved stack reliability. This ability to accommodate large thermal strain mismatches allows the design requirement of thermal expansion matching between ceramic and metal stack components to be relaxed and expands the list of candidate materials that can be considered for the

  3. Phase Structure and Cyclic Deformation in Eutectic Tin-Lead Alloy: A Numerical Analysis

    SciTech Connect

    FANG,HUEI ELIOT; Li,W; SHEN,Y.-L

    1999-09-09

    This study is devoted to providing a mechanistic rationale of coarsening induced failure in solder alloys during thermomechanical fatigue. Micromechanical modeling of cyclic deformation of eutectic tin-lead alloy was undertaken using the finite element method. The models consist of regularly arranged tin-rich and lead-rich phases, simulating the lamellar array and colony structure in a typical eutectic system. A fine structure and a coarse structure, bearing the same phase fraction but different in the aspect ratio of each lead-rich layer and in the number of lead-rich layers in each colony, are utilized for representing the microstructure before and after coarsening, respectively. Both phases are treated as elastic-plastic solids with their respective properties. For simplicity the creep effect is ignored without compromising the main objective of this study. Cyclic loading under pure shear and uniaxial conditions is modeled. It is found that both the fine and coarse structures exhibit essentially the same macroscopic stress-strain response. The coarse structure, however, shows a greater maximum effective plastic strain on a local scale throughout the deformation. The numerical result implies that, in a solder joint, a locally coarsened region may not be mechanically weaker than its surrounding, but it is subject to early damage initiation due to accumulated plasticity. Other implications regarding solder alloy failure and micromechanical modeling of two-phase materials are discussed.

  4. Inelastic column behavior

    NASA Technical Reports Server (NTRS)

    Duberg, John E; Wilder, Thomas W , III

    1952-01-01

    The significant findings of a theoretical study of column behavior in the plastic stress range are presented. When the behavior of a straight column is regarded as the limiting behavior of an imperfect column as the initial imperfection (lack of straightness) approaches zero, the departure from the straight configuration occurs at the tangent-modulus load. Without such a concept of the behavior of a straight column, one is led to the unrealistic conclusion that lateral deflection of the column can begin at any load between the tangent-modulus value and the Euler load, based on the original elastic modulus. A family of curves showing load against lateral deflection is presented for idealized h-section columns of various lengths and of various materials that have a systematic variation of their stress-strain curves.

  5. A Modified Johnson-Cook Model to Predict Stress-strain Curves of Boron Steel Sheets at Elevated and Cooling Temperatures

    NASA Astrophysics Data System (ADS)

    Duc-Toan, Nguyen; Tien-Long, Banh; Dong-Won, Jung; Seung-Han, Yang; Young-Suk, Kim

    2012-02-01

    In order to predict correctly stress-strain curve for tensile tests at elevated and cooling temperatures, a modification of a Johnson-Cook (J-C) model and a new method to determine (J-C) material parameters are proposed. A MATLAB tool is used to determine material parameters by fitting a curve to follow Ludwick and Voce's hardening law at various elevated temperatures. Those hardening law parameters are then utilized to determine modified (J-C) model material parameters. The modified (J-C) model shows the better prediction compared to the conventional one. An FEM tensile test simulation based on the isotropic hardening model for metal sheet at elevated temperatures was carried out via a user-material subroutine, using an explicit finite element code. The simulation results at elevated temperatures were firstly presented and then compared with the measurements. The temperature decrease of all elements due to the air cooling process was then calculated when considering the modified (J-C) model and coded to VUMAT subroutine for tensile test simulation. The modified (J-C) model showed the good comparability between the simulation results and the corresponding experiments.

  6. A Modified Johnson-Cook Model for Sheet Metal Forming at Elevated Temperatures and Its Application for Cooled Stress-Strain Curve and Spring-Back Prediction

    NASA Astrophysics Data System (ADS)

    Duc-Toan, Nguyen; Tien-Long, Banh; Young-Suk, Kim; Dong-Won, Jung

    2011-08-01

    In this study, a modified Johnson-Cook (J-C) model and an innovated method to determine (J-C) material parameters are proposed to predict more correctly stress-strain curve for tensile tests in elevated temperatures. A MATLAB tool is used to determine material parameters by fitting a curve to follow Ludwick's hardening law at various elevated temperatures. Those hardening law parameters are then utilized to determine modified (J-C) model material parameters. The modified (J-C) model shows the better prediction compared to the conventional one. As the first verification, an FEM tensile test simulation based on the isotropic hardening model for boron sheet steel at elevated temperatures was carried out via a user-material subroutine, using an explicit finite element code, and compared with the measurements. The temperature decrease of all elements due to the air cooling process was then calculated when considering the modified (J-C) model and coded to VUMAT subroutine for tensile test simulation of cooling process. The modified (J-C) model showed the good agreement between the simulation results and the corresponding experiments. The second investigation was applied for V-bending spring-back prediction of magnesium alloy sheets at elevated temperatures. Here, the combination of proposed J-C model with modified hardening law considering the unusual plastic behaviour for magnesium alloy sheet was adopted for FEM simulation of V-bending spring-back prediction and shown the good comparability with corresponding experiments.

  7. Modeling of the Stress-Strain-Resistance Behaviour of Ni-Ti and Ni-Ti-Cu Shape Memory Alloys for use in Sensorless Actuator Position Control

    NASA Astrophysics Data System (ADS)

    Lynch, Brian

    Shape memory alloys have become increasingly popular for use in many engineering fields, including aerospace, robotics, and biomechanics. A major research focus is the application of Nitinol shape memory alloy wire as an actuator. While position and force control of shape memory alloy actuator wires has been successfully demonstrated in the past, most control algorithms have been developed using position feedback. Recently, it has been shown that there exists a significant correlation between the electrical resistance and strain of the material. This correlation has been used to model the strain as a function of the electrical resistance for use in predicting the actuator position for control purposes. However, the influence of applied stress as well as the presence of a third microstructure phase (R-phase) make modeling of the resistance-strain correlation difficult since hysteretic effects become more substantial. This thesis presents new models of the resistance-stress-strain behaviour of shape memory alloy for use in actuator position control. Characterization of the material behaviour was performed through experimental analysis, and used to develop the models based on empirical curve fitting. The models were then validated through simulation as well as application in a simple PID position control algorithm. Furthermore, two different alloys were investigated: a Ni-Ti alloy called Flexinol which exhibits significant hysteresis due to the presence of R-phase, as well as a Ni-Ti-Cu alloy which shows negligible hysteresis.

  8. Contrast in stress-strain history during exhumation between high- and ultrahigh-pressure metamorphic units in the Western Alps: Microboudinage analysis of piemontite in metacherts

    NASA Astrophysics Data System (ADS)

    Omori, Yasutomo; Barresi, Antonello; Kimura, Nozomi; Okamoto, Atsushi; Masuda, Toshiaki

    2016-08-01

    Our analyses of microboudinage structures of piemontite grains embedded within six samples of metachert, one collected from an ultrahigh-pressure (UHP) metamorphic unit at Lago di Cignana in Italy of the Western Alps, and the other five from surrounding high-pressure (HP) metamorphic units in Italy and France, have revealed that the structures are all symmetrical in type, and were presumably produced in coaxial strain fields. Stress-strain analyses of the microboudinaged grains revealed significant contrasts in the stress and strain histories of the UHP and HP metamorphic units, with the differential stress recorded by the UHP sample being unequivocally lower than that recorded by the five HP samples. In addition, our analyses showed that the UHP sample underwent stress-relaxation during microboudinage, whereas the five HP samples did not. On the basis of these observations and analyses we discuss the mechanical decoupling of the UHP and HP units that led to different histories in differential stress between the units during exhumation of the Western Alps.

  9. Stress-Strain Predictions of Semisolid Al-Mg-Mn Alloys During Direct Chill Casting: Effects of Microstructure and Process Variables

    NASA Astrophysics Data System (ADS)

    Jamaly, Nasim; Phillion, A. B.; Drezet, J.-M.

    2013-10-01

    The occurrence of hot tearing during the industrial direct chill (DC) casting process results in significant quality issues and a reduction in productivity. In order to investigate their occurrence, a new semisolid constitutive law (Phillion et al.) for AA5182 that takes into account cooling rate, grain size, and porosity has been incorporated within a DC casting finite element process model for round billets. A hot tearing index was calculated from the semisolid strain predictions from the model. This hot tearing index, along with semisolid stress-strain predictions from the model, was used to perform a sensitivity analysis on the relative effects of microstructural features ( e.g., grain size, coalescence temperature) as well as process parameters ( e.g., casting speed) on hot tearing. It was found that grain refinement plays an important role in the formation of hot cracks. In addition, the combination of slow casting speeds and a low temperature for mechanical coalescence was found to improve hot tearing resistance.

  10. A Modified Johnson-Cook Model for Sheet Metal Forming at Elevated Temperatures and Its Application for Cooled Stress-Strain Curve and Spring-Back Prediction

    SciTech Connect

    Duc-Toan, Nguyen; Tien-Long, Banh; Young-Suk, Kim; Dong-Won, Jung

    2011-08-22

    In this study, a modified Johnson-Cook (J-C) model and an innovated method to determine (J-C) material parameters are proposed to predict more correctly stress-strain curve for tensile tests in elevated temperatures. A MATLAB tool is used to determine material parameters by fitting a curve to follow Ludwick's hardening law at various elevated temperatures. Those hardening law parameters are then utilized to determine modified (J-C) model material parameters. The modified (J-C) model shows the better prediction compared to the conventional one. As the first verification, an FEM tensile test simulation based on the isotropic hardening model for boron sheet steel at elevated temperatures was carried out via a user-material subroutine, using an explicit finite element code, and compared with the measurements. The temperature decrease of all elements due to the air cooling process was then calculated when considering the modified (J-C) model and coded to VUMAT subroutine for tensile test simulation of cooling process. The modified (J-C) model showed the good agreement between the simulation results and the corresponding experiments. The second investigation was applied for V-bending spring-back prediction of magnesium alloy sheets at elevated temperatures. Here, the combination of proposed J-C model with modified hardening law considering the unusual plastic behaviour for magnesium alloy sheet was adopted for FEM simulation of V-bending spring-back prediction and shown the good comparability with corresponding experiments.

  11. On Improvements of Cyclic MUSIC

    NASA Astrophysics Data System (ADS)

    Yan, Huiqin; Fan, H. Howard

    2005-12-01

    Many man-made signals encountered in communications exhibit cyclostationarity. By exploiting cyclostationarity, cyclic MUSIC has been shown to be able to separate signals with different cycle frequencies, thus, to be able to perform signal selective direction of-arrival (DOA) estimation. However, as will be shown in this paper, the DOA estimation of cyclic MUSIC is actually biased. We show in this paper that by properly choosing the frequency for evaluating the steering vector, the bias of DOA estimation can be substantially reduced and the performance can be improved. Furthermore, we propose another algorithm exploiting cyclic conjugate correlation to further improve the performance of DOA estimation. Simulation results show the effectiveness of both of our methods.

  12. Cyclic Oxidation Testing and Modelling: A NASA Lewis Perspective

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Nesbitt, J. A.; Barrett, C. A.; Lowell, C. E.

    2000-01-01

    The Materials Division of the NASA Lewis Research Center has been heavily involved in the cyclic oxidation of high temperature materials for 30 years. Cyclic furnace and burner rig apparati have been developed, refined, and replicated to provide a large scale facility capable of evaluating many materials by a standard technique. Material behavior is characterized by weight change data obtained throughout the test, which has been modelled in a step-wise process of scale growth and spallation. This model and a coupled diffusion model have successfully described cyclic behavior for a number of systems and have provided insights regarding life prediction and variations in the spalling process. Performance ranking and mechanistic studies are discussed primarily for superalloys and coating alloys. Similar cyclic oxidation studies have been performed on steels, intermetallic compounds, thermal barrier coatings, ceramics, and ceramic composites. The most common oxidation test was performed in air at temperatures ranging from 800 deg. to 1600 C, for times up to 10000 h, and for cycle durations of 0.1 to 1000 h. Less controlled, but important, test parameters are the cooling temperature and humidity level. Heating and cooling rates are not likely to affect scale spallation. Broad experience has usually allowed for considerable focus and simplification of these test parameters, while still revealing the principal aspects of material behavior and performance. Extensive testing has been performed to statistically model the compositional effects of experimental alloys and to construct a comprehensive database of complex commercial alloys.

  13. Behaviorism

    ERIC Educational Resources Information Center

    Moore, J.

    2011-01-01

    Early forms of psychology assumed that mental life was the appropriate subject matter for psychology, and introspection was an appropriate method to engage that subject matter. In 1913, John B. Watson proposed an alternative: classical S-R behaviorism. According to Watson, behavior was a subject matter in its own right, to be studied by the…

  14. Development of a viscoelastic continuum damage model for cyclic loading

    NASA Astrophysics Data System (ADS)

    Sullivan, R. W.

    2008-12-01

    A previously developed spectrum model for linear viscoelastic behavior of solids is used to describe the rate-dependent damage growth of a time dependent material under cyclic loading. Through the use of the iterative solution of a special Volterra integral equation, the cyclic strain history is described. The spectrum-based model is generalized for any strain rate and any uniaxial load history to formulate the damage function. Damage evolution in the body is described through the use of a rate-type evolution law which uses a pseudo strain to express the viscoelastic constitutive equation with damage. The resulting damage function is used to formulate a residual strength model. The methodology presented is demonstrated by comparing the peak values of the computed cyclic strain history as well as the residual strength model predictions to the experimental data of a polymer matrix composite.

  15. High Strain-Rate Compressive Behavior of Bulk Structural Adhesives: Epoxy and Methacrylate Adhesives

    NASA Astrophysics Data System (ADS)

    Yokoyama, Takashi; Nakai, Kenji; Yatim, Norfazrina Hayati Mohd

    The present paper describes the determination of high strain-rate compressive stress-strain loops for bulk specimens of two different epoxy and methacrylate structural adhesives on the standard split Hopkinson pressure bar with a tapered striker bar. The full compressive stress-strain data including unloading process are obtained over a wide range of strain rates from 10-3 to 103/s at room temperature. The effects of strain rate on the initial (secant) modulus, flow stress, dissipation energy and hysteresis loss ratio are studied. The experimental results show that both bulk structural adhesives exhibit highly strain-rate dependent viscoelastic behavior like polymeric materials.

  16. Thermomechanical behavior of SBR reinforced with nanotubes functionalized with polyvinylpyridine

    NASA Astrophysics Data System (ADS)

    De Falco, A.; Lamanna, M.; Goyanes, S.; D'Accorso, N. B.; Fascio, M. L.

    2012-08-01

    The mechanical and thermal behavior of composites consisting on a styrene-butadiene rubber (SBR) matrix with a sulphur/accelerator system and multiwalled carbon nanotubes functionalized with poly-4-vinylpyridine (MWCNT-PVP) as reinforcement, were studied. The materials were tested with stress-strain tensile tests, DMTA and DSC for thermal properties. A strong increase in the plastic behavior with slight decrease of its elastic Modulus and Tg led to unexpected results.

  17. Cyclical magnetic field flow fractionation

    NASA Astrophysics Data System (ADS)

    Tasci, T. O.; Johnson, W. P.; Gale, B. K.

    2012-04-01

    In this study, a new magnetic field flow fractionation (FFF) system was designed and modeled by using finite element simulations. Other than current magnetic FFF systems, which use static magnetic fields, our system uses cyclical magnetic fields. Results of the simulations show that our cyclical magnetic FFF system can be used effectively for the separation of magnetic nanoparticles. Cyclical magnetic FFF system is composed of a microfluidic channel (length = 5 cm, height = 30 μm) and 2 coils. Square wave currents of 1 Hz (with 90 deg of phase difference) were applied to the coils. By using Comsol Multiphysics 3.5a, magnetic field profile and corresponding magnetic force exerted on the magnetite nanoparticles were calculated. The magnetic force data were exported from Comsol to Matlab. In Matlab, a parabolic flow profile with maximum flow speed of 0.4 mL/h was defined. Particle trajectories were obtained by the calculation of the particle speeds resulted from both magnetic and hydrodynamic forces. Particle trajectories of the particles with sizes ranging from 10 to 50 nm were simulated and elution times of the particles were calculated. Results show that there is a significant difference between the elution times of the particles so that baseline separation of the particles can be obtained. In this work, it is shown that by the application of cyclical magnetic fields, the separation of magnetic nanoparticles can be done efficiently.

  18. Buffering in cyclic gene networks

    NASA Astrophysics Data System (ADS)

    Glyzin, S. D.; Kolesov, A. Yu.; Rozov, N. Kh.

    2016-06-01

    We consider cyclic chains of unidirectionally coupled delay differential-difference equations that are mathematical models of artificial oscillating gene networks. We establish that the buffering phenomenon is realized in these system for an appropriate choice of the parameters: any given finite number of stable periodic motions of a special type, the so-called traveling waves, coexist.

  19. Color visualization of cyclic magnitudes

    NASA Astrophysics Data System (ADS)

    Restrepo, Alfredo; Estupiñán, Viviana

    2014-02-01

    We exploit the perceptual, circular ordering of the hues in a technique for the visualization of cyclic variables. The hue is thus meaningfully used for the indication of variables such as the azimuth and the units of the measurement of time. The cyclic (or circular) variables may be both of the continuous type or the discrete type; among the first there is azimuth and among the last you find the musical notes and the days of the week. A correspondence between the values of a cyclic variable and the chromatic hues, where the natural circular ordering of the variable is respected, is called a color code for the variable. We base such a choice of hues on an assignment of of the unique hues red, yellow, green and blue, or one of the 8 even permutations of this ordered list, to 4 cardinal values of the cyclic variable, suitably ordered; color codes based on only 3 cardinal points are also possible. Color codes, being intuitive, are easy to remember. A possible low accuracy when reading instruments that use this technique is compensated by fast, ludic and intuitive readings; also, the use of a referential frame makes readings precise. An achromatic version of the technique, that can be used by dichromatic people, is proposed.

  20. The Experiences of Behavior Interventionists Who Work with Children with Autism in Families' Homes

    ERIC Educational Resources Information Center

    Elfert, Miriam; Mirenda, Pat

    2006-01-01

    This study examined the experiences of 65 behavior interventionists (BIs) who provide 1:1 home-based instruction to children with autism in two Canadian provinces. Dependent variables included occupational stress; the relationships among stress, strain, and coping; the relationship between stress and the characteristics of both challenging…

  1. Processing, Microstructure and Mechanical Behavior of Ultrasonic Assisted Cast Magnesium 1wt% Silicon Carbide Nano-Composites

    NASA Astrophysics Data System (ADS)

    Erman, Ari

    The goal of this dissertation is to establish an understanding of processing -- microstructure -- mechanical behavior relationship in Mg-1wt% SiC metal matrix nano-composites fabricated via an ultrasonic assisted casting process, with the emphasis on the effect of the distribution of nanoparticles on this relationship. Ultrasonic assisted casting has been proved as an effective technique to distribute nanoparticles in Mg metal matrix nano-composites (MMNCs). Mg MMNCs reinforced with 1 wt% SiC nanoparticles, were cast by ultrasonic cavitation-based dispersion methods. Microstructural analyses of as cast specimens were conducted to characterize the grain size, shape and distribution, SiC nanoparticle size and distribution, and nanoparticle-matrix interface. Average grain size for the ultrasonic assisted cast composite specimens was 72 mum compared to 181 mum for pure Mg samples prepared by the same method. The average measured SiC nanoparticle size was 66 nm. TEM studies showed good local dispersion of SiC nanoparticles, with only a few small, widely spaced clusters. HRTEM showed a clean interface between SiC nanoparticles and the Mg matrix, with no evidence of secondary phases. The yield strength of Mg-1 wt% SiC nanocomposites was 67 MPa, which showed improvement from 47 MPa for the pure Mg samples. This extra strengthening is due to Orowan and Hall-Petch effects. Fatigue experiments were conducted to characterize the cyclic stress-strain response of pure Mg and Mg-1wt% SiC samples at 0.2%, 0.4% and 0.6% plastic strain amplitudes. The analyses of the cyclic stress response curves and hysteresis loops, combined with post failure TEM analyses provided an understanding of the role of twinning, and twin-particle interactions on the cyclic deformation behavior of Mg MMNCs. Tensile twinning and basal slip are the main forms of deformation mechanisms under compression, followed by detwinning and basal slip in subsequent tension. Fatigue lives of Mg MMNCs are comparable to

  2. Fabric Evolution in Granular Materials Subject to Drained, Strain Controlled Cyclic Loading

    NASA Astrophysics Data System (ADS)

    O'Sullivan, C.; Cui, L.

    2009-06-01

    While there have been many discrete element method (DEM) publications considering the micromechanics of granular materials subject to monotonic loading, studies of the particle-scale material response to cyclic or repeated loading have been comparatively rare. From a geotechnical perspective soil is subjected to repeated loading in a variety of situations. Examples include foundations to railways and roads, foundations to wind turbines, soil adjacent to integral bridges, etc. The work described in this paper extends an earlier study by O'Sullivan et al.. [1]. In this earlier study, DEM simulations of strain controlled cyclic triaxial tests were coupled with laboratory experiments to validate a DEM model. The simulations were performed using the axi-symmetric DEM formulation proposed by [2] and a stress controlled membrane algorithm was used to apply forces to balls along the outer vertical boundaries to model the latex membrane used in the laboratory tests. Specimens of uniform spheres and mixtures of sphere sizes were considered in the validation stage of this research. The earlier study considered strain amplitudes of 1%, 0.5% and 0.1%. In the current study the response is extended to consider the smaller strain amplitude of 0.01%. All of the simulations were carried out in a quasi-static mode and in all cases the maximum stress level mobilized was significantly lower than the peak stress measured in equivalent monotonic physical tests and DEM simulations [2]. In examining the response of the material to the smaller strain amplitude, the macro scale analyses considered the stress strain response and specimen stiffness. At the particle scale, the variation in coordination number and deviator fabric are considered as well as the distribution of the contact forces orientations. The findings may provide insight to the development of continuum constitutive models for cyclic soil response that include fabric parameters [3].

  3. COSP - A computer model of cyclic oxidation

    NASA Technical Reports Server (NTRS)

    Lowell, Carl E.; Barrett, Charles A.; Palmer, Raymond W.; Auping, Judith V.; Probst, Hubert B.

    1991-01-01

    A computer model useful in predicting the cyclic oxidation behavior of alloys is presented. The model considers the oxygen uptake due to scale formation during the heating cycle and the loss of oxide due to spalling during the cooling cycle. The balance between scale formation and scale loss is modeled and used to predict weight change and metal loss kinetics. A simple uniform spalling model is compared to a more complex random spall site model. In nearly all cases, the simpler uniform spall model gave predictions as accurate as the more complex model. The model has been applied to several nickel-base alloys which, depending upon composition, form Al2O3 or Cr2O3 during oxidation. The model has been validated by several experimental approaches. Versions of the model that run on a personal computer are available.

  4. Statistical cyclicity of the supercontinent cycle

    NASA Astrophysics Data System (ADS)

    Rolf, T.; Coltice, N.; Tackley, P. J.

    2014-04-01

    Supercontinents like Pangea impose a first-order control on Earth's evolution as they modulate global heat loss, sea level, climate, and biodiversity. In a traditional view, supercontinents form and break up in a regular, perhaps periodic, manner in a cycle lasting several 100 Myr as reflected in the assembly times of Earth's major continental aggregations: Columbia, Rodinia, and Pangea. However, modern views of the supercontinent cycle propose a more irregular evolution on the basis of an improved understanding of the Precambrian geologic record. Here we use fully dynamic spherical mantle convection models featuring plate-like behavior and continental drift to investigate supercontinent formation and breakup. We further dismiss the concept of regularity but suggest a statistical cyclicity in which the supercontinent cycle may have a characteristic period imposed by mantle and lithosphere properties, but this is hidden in immense fluctuations between different cycles that arise from the chaotic nature of mantle flow.

  5. Modulators of cyclic AMP systems.

    PubMed

    Hess, S M; Chasin, M; Free, C A; Harris, D N

    1975-01-01

    On the basis of the data reported here, one may conclude that although many agents that act in the central nervous system are modulators of the action of cyclic AMP, it is difficult to establish a direct connection between the pharmacologic activity and the levels of cyclic AMP in the brain. This lack of interrelation applies to the benzodiazepines as well as to the pyrazolopyridines. The data for members of the latter group are somewhat frustrating in this regard, since an excellent correlation has been shown to exist between the potency of inhibition of PDE and activity in the antianxiety test. In measurements of steroidogenesis in the isolated adrenal cell, the correlation between activity in vito and the conflict assay is even better. The data presented here and reported elsewhere (Shimizu et al., 1974; Kelly et al., 1974; Mayer and King, 1974; King and Mayer, 1974) provide evidence that agents that act as inhibitors of PDE in cell-free systems exert their influence on cyclic AMP in tissue slices of the brain of guinea pigs by mechanisms that seem not to be related to an effect on PDE. Papaverine, and possibly chlordiazepoxide, may act by releasing agonists that, in turn, stimulate the accumulation of cyclic AMP. This activity is blocked bo other inhibitors of PDE, such as theophyline. Results obtained by the use of platelets are refreshingly clear. Inhibition of aggregation has been shown to occur when the level of cyclic AMP is raised, and a suggestive exists that the most potent inhibitors of platelet PDE are the best potentiators of the action of PGE1 in blocking aggregation. The study utilizing drugs collected from a large number of therapeutic classes makes clear that it is difficult to attribute the mechanism of action for any of the classes studied to modulation of cyclic AMP. An unexpected finding of this study, however, was the fact that pharmacologic agents include an unusually large number of inhibitors of PDE as compared with agents chosen at

  6. Cyclic Game Dynamics Driven by Iterated Reasoning

    PubMed Central

    Frey, Seth; Goldstone, Robert L.

    2013-01-01

    Recent theories from complexity science argue that complex dynamics are ubiquitous in social and economic systems. These claims emerge from the analysis of individually simple agents whose collective behavior is surprisingly complicated. However, economists have argued that iterated reasoning–what you think I think you think–will suppress complex dynamics by stabilizing or accelerating convergence to Nash equilibrium. We report stable and efficient periodic behavior in human groups playing the Mod Game, a multi-player game similar to Rock-Paper-Scissors. The game rewards subjects for thinking exactly one step ahead of others in their group. Groups that play this game exhibit cycles that are inconsistent with any fixed-point solution concept. These cycles are driven by a “hopping” behavior that is consistent with other accounts of iterated reasoning: agents are constrained to about two steps of iterated reasoning and learn an additional one-half step with each session. If higher-order reasoning can be complicit in complex emergent dynamics, then cyclic and chaotic patterns may be endogenous features of real-world social and economic systems. PMID:23441191

  7. Life prediction and constitutive behavior

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1983-01-01

    One of the primary drivers that prompted the initiation of the hot section technology (HOST) program was the recognized need for improved cyclic durability of costly hot section components. All too frequently, fatigue in one form or another was directly responsible for the less than desired durability, and prospects for the future weren't going to improve unless a significant effort was mounted to increase our knowledge and understanding of the elements governing cyclic crack initiation and propagation lifetime. Certainly one of the important factors is the ability to perform accurate structural stress-strain analyses on a routine basis to determine the magnitudes of the localized stresses and strains since it is these localized conditions that govern the initiation and crack growth processes. Developing the ability to more accurately predict crack initiation lifetimes and cyclic crack growth rates for the complex loading conditions found in turbine engine hot sections is of course the ultimate goal of the life prediction research efforts. It has been found convenient to divide the research efforts into those dealing with nominally isotropic and anisotropic alloys; the latter for application to directionally solidified and single crystal turbine blades.

  8. Supramolecular nesting of cyclic polymers

    NASA Astrophysics Data System (ADS)

    Kondratuk, Dmitry V.; Perdigão, Luís M. A.; Esmail, Ayad M. S.; O'Shea, James N.; Beton, Peter H.; Anderson, Harry L.

    2015-04-01

    Advances in template-directed synthesis make it possible to create artificial molecules with protein-like dimensions, directly from simple components. These synthetic macromolecules have a proclivity for self-organization that is reminiscent of biopolymers. Here, we report the synthesis of monodisperse cyclic porphyrin polymers, with diameters of up to 21 nm (750 C-C bonds). The ratio of the intrinsic viscosities for cyclic and linear topologies is 0.72, indicating that these polymers behave as almost ideal flexible chains in solution. When deposited on gold surfaces, the cyclic polymers display a new mode of two-dimensional supramolecular organization, combining encapsulation and nesting; one nanoring adopts a near-circular conformation, thus allowing a second nanoring to be captured within its perimeter, in a tightly folded conformation. Scanning tunnelling microscopy reveals that nesting occurs in combination with stacking when nanorings are deposited under vacuum, whereas when they are deposited directly from solution under ambient conditions there is stacking or nesting, but not a combination of both.

  9. Theory of chromatography of partially cyclic polymers: Tadpole-type and manacle-type macromolecules.

    PubMed

    Vakhrushev, Andrey V; Gorbunov, Alexei A

    2016-02-12

    A theory of chromatography is developed for partially cyclic polymers of tadpole- and manacle-shaped topological structures. We present exact equations for the distribution coefficient K at different adsorption interactions; simpler approximate formulae are also derived, relevant to the conditions of size-exclusion, adsorption, and critical chromatography. Theoretical chromatograms of heterogeneous partially cyclic polymers are simulated, and conditions for good separation by topology are predicted. According to the theory, an effective SEC-radius of tadpoles and manacles is mostly determined by the molar mass M, and by the linear-cyclic composition. In the interactive chromatography, the effect of molecular topology on the retention becomes significant. At the critical interaction point, partial dependences K(Mlin) and K(Mring) are qualitatively different: while being almost independent of Mlin, K increases with Mring. This behavior could be realized in critical chromatography-for separation of partially cyclic polymers by the number and molar mass of cyclic elements. PMID:26803439

  10. Cyclic CO{sub 2} chemisorption–desorption behavior of Na{sub 2}ZrO{sub 3}: Structural, microstructural and kinetic variations produced as a function of temperature

    SciTech Connect

    Martínez-dlCruz, Lorena; Pfeiffer, Heriberto

    2013-08-15

    A structural, microstructural and kinetic analysis of the Na{sub 2}ZrO{sub 3}–CO{sub 2} system was performed over 20 chemisorption–desorption cycles. Different cyclic experiments were performed between 500 and 800 °C. Although the best results were obtained in Na{sub 2}ZrO{sub 3} sample treated at 550 °C, all the samples treated between 500 and 700 °C presented good CO{sub 2} chemisorption efficiencies and stabilities. On the contrary, Na{sub 2}ZrO{sub 3} sample treated at 800 °C presented a continuous decrement of the CO{sub 2} chemisorption. After 20 cycles all the samples presented a partial Na{sub 2}ZrO{sub 3} decomposition, determined by the ZrO{sub 2} formation, which was associated to sodium sublimation. Additionally, the Na{sub 2}ZrO{sub 3} microstructural analysis showed a systematic morphological evolution. It was microscopically observed that Na{sub 2}ZrO{sub 3} particles tend to fracture due to the Na{sub 2}CO{sub 3} formation. Later, after several cycles these tiny fractured particles sinter producing new polyhedral and dense Na{sub 2}ZrO{sub 3}–ZrO{sub 2} particles. Finally, an exhaustive kinetic analysis showed a high CO{sub 2} chemisorption–desorption stability at different temperatures. - Graphical abstract: A CO{sub 2} chemisorption–desorption analysis was performed in the Na{sub 2}ZrO{sub 3}–CO{sub 2} system. Different cyclic experiments were performed between 500 and 800 °C and the results showed high CO{sub 2} chemisorption efficiencies. Nevertheless the Na{sub 2}ZrO{sub 3} composition and microstructure evolved during the cycles. Highlights: • Different CO{sub 2} chemisorption–desorption cycles were performed in the Na{sub 2}ZrO{sub 3} phase. • Na{sub 2}ZrO{sub 3} presents interesting microstructural changes depending on temperature. • At T≤550 °C, Na{sub 2}ZrO{sub 3} presents the best cyclability due to microstructural factors. • At T≥600 °C, Na{sub 2}ZrO{sub 3} presents a partial decomposition after 20 cycles

  11. Identifying factors related to Achilles tendon stress, strain, and stiffness before and after 6 months of growth in youth 10-14 years of age.

    PubMed

    Neugebauer, Jennifer M; Hawkins, David A

    2012-09-21

    The purposes of this study were (1) determine if youth peak Achilles tendon (AT) strain, peak AT stress, and AT stiffness, measured during an isometric plantar flexion, differed after six months (mos) of growth, and (2) determine if sex, physical activity level (Physical Activity Questionnaire (PAQ-C)), and/or growth rate (GR) were related to these properties. AT stress, strain, and stiffness were quantified in 20 boys (13.47±0.81 years) and 22 girls (11.18±0.82 years) at 2 times (0 and 6 mos). GR (change in height in 6 mos) was not significantly different between boys and girls (3.5±1.4 and 3.4±1.1cm/6 mos respectively). Peak AT strain and stiffness (mean 3.8±0.4% and 128.9±153.6N/mm, respectively) did not differ between testing sessions or sex. Peak AT stress (22.1±2.4 and 24.0±2.1MPa at 0 and 6 mos, respectively) did not differ between sex and increased significantly at 6 mos due to a significant decrease in AT cross-sectional area (40.6±1.3 and 38.1±1.6mm(2) at 0 and 6 mos, respectively) with no significant difference in peak AT force (882.3±93.9 and 900.3± 65.5N at 0 and 6 mos, respectively). Peak AT stress was significantly greater in subjects with greater PAQ-C scores (9.1% increase with 1 unit increase in PAQ-C score) and smaller in subjects with faster GRs (13.8% decrease with 1cm/6 mos increase in GR). These results indicate that of the AT mechanical properties quantified, none differed between sex, and only peak AT stress significantly differed after 6 months and was related to GR and physical activity. PMID:22877892

  12. The effects of Cr, Co, Al, Mo and Ta on the cyclic oxidation behavior of a prototype cast Ni-base superalloy based on a 2(5) composite statistically designed experiment

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1984-01-01

    A series of cast Ni-base superalloys were systematically varied at selected levels of Co, Cr, Mo, Ta, and Al. The elemental levels varied were Mo, 0 to 4 percent; Cr, 6 to 18 percent; Co, 0 to 20 percent, Ta, 0 to 8 percent; and Al, 3.25 to 6.25 percent. The cyclic oxidation resistance was determined from specific weight change data as a function of time for 1 hr cycles in static air at 1100 C. The significant terms in decreasing order of their importance were Al, Ta, Cr2, Al-Cr, Cr-Co, Co2, Al-Mo, Cr-Mo, Al-Al, and Mo-Ta. The Al term alone accounted for close to 82 percent of the explained variability. The estimating equation showed that the Al level was the most important and should be at its 6.25 wt % maximum value. The Mo and Ta levels should also be at their maximum 4 and 8 wt % respectively. The cobalt composition should be as low as possible, i.e., 0 wt%. The Cr level optimum varies depending on the other 4 levels. The X-ray diffaction results indicate the most protective scales are alumina/aluminate spinel stabilizized with a tri-rutile oxide high in Ta and Mo.

  13. The use of a constant load to generate equivalent viscoelastic strain in finite element analysis of cemented prosthetic joints subjected to cyclic loading.

    PubMed

    Lu, Z; McKellop, H A

    2011-08-01

    Polymers such as polymethyl-methacrylate (PMMA) surgical cement undergo elastic and viscoelastic deformation (creep) in response to physiological cyclic loading. Theoretically, the effect of gradual creep deformation on the stresses, strains, and displacements of a prosthetic joint can be evaluated by running a finite element analysis (FEA) model through a large number of loading cycles. However, with complex (i.e. realistic) models, this approach may require extensive computational time, and may accumulate unacceptably large numerical errors over the many iterations of the model. The present study utilized a Fourier series to represent a periodic stress and incorporated it in the linear viscoelastic constitutive equation. It was demonstrated that, for a linear viscoelastic material, the time average (i.e. the constant in the Fourier series) of the cyclic stress determined the accumulated creep strain and the sinusoidal components of the stress produced the periodic creep strain with a zero average and negligible amplitude. For a geometrically linear FEA model, the solution based on a cyclic stress can be readily applied to an external cyclic load, that is, the creep strain is determined by the time average of the cyclic load. While femoral component models were considered as geometrically non-linear, an FEA model of a femur implanted with an Exeter hip prosthesis showed that there was only a minor difference between the profile of the applied sinusoidal load and that of the resulting displacement. In such cases, applying the time average of a cyclic load to calculate the resulting creep strain with a given duration of loading should expect to provide acceptable accuracy, with a marked reduction in the computational time. PMID:21922957

  14. Diffusional transport during the cyclic oxidation of gamma + beta, Ni-Cr-Al(Y, Zr) alloys

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1988-01-01

    The cyclic oxidation behavior of several cast gamma + beta, Ni-Cr-Al(Y, Zr) alloys and one low-pressure plasma spraying gamma + beta, Ni-Co-Cr-Al(Y) alloy was studied. Cyclic oxidation was found to result in a decreasing Al concentration at the oxide-metal interface due to a high rate of Al consumption coupled with oxide scale cracking and spalling. Diffusion paths plotted on the ternary phase diagram showed higher Ni concentrations with increasing cyclic oxidation exposures. The alloy with the highest rate of Al consumption and the highest Al content underwent breakaway oxidation following 500 1-hr cycles at 1200 C.

  15. Cyclic GMP and Cilia Motility

    PubMed Central

    Wyatt, Todd A.

    2015-01-01

    Motile cilia of the lungs respond to environmental challenges by increasing their ciliary beat frequency in order to enhance mucociliary clearance as a fundamental tenant of innate defense. One important second messenger in transducing the regulable nature of motile cilia is cyclic guanosine 3′,5′-monophosphate (cGMP). In this review, the history of cGMP action is presented and a survey of the existing data addressing cGMP action in ciliary motility is presented. Nitric oxide (NO)-mediated regulation of cGMP in ciliated cells is presented in the context of alcohol-induced cilia function and dysfunction. PMID:26264028

  16. Fitting curves to cyclic data

    USGS Publications Warehouse

    Langbein, W.B.

    1955-01-01

    A common problem in hydrology is to fit a smooth curve to cyclic or periodic data, either to define the most probable values of the data or to test some principle that one wishes to demonstrate.  This study treats of those problems where the length or period of the cycle is know beforehand - as a day, year, or meander length for example.  Curve-fitting can be made by free-hand drawing, and where the data are closely aligned this method offers the simplest and most direct course.  However, there are many problems where the best fit is far from obvious, and analytical methods may be necessary.

  17. Time-independent Anisotropic Plastic Behavior by Mechanical Subelement Models

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1983-01-01

    The paper describes a procedure for modelling the anisotropic elastic-plastic behavior of metals in plane stress state by the mechanical sub-layer model. In this model the stress-strain curves along the longitudinal and transverse directions are represented by short smooth segments which are considered as piecewise linear for simplicity. The model is incorporated in a finite element analysis program which is based on the assumed stress hybrid element and the iscoplasticity-theory.

  18. Insights into How Cyclic Peptides Switch Conformations.

    PubMed

    McHugh, Sean M; Rogers, Julia R; Yu, Hongtao; Lin, Yu-Shan

    2016-05-10

    Cyclic peptides have recently emerged as promising modulators of protein-protein interactions. However, it is currently highly difficult to predict the structures of cyclic peptides owing to their rugged conformational free energy landscape, which prevents sampling of all thermodynamically relevant conformations. In this article, we first investigate how a relatively flexible cyclic hexapeptide switches conformations. It is found that, although the circular geometry of small cyclic peptides of size 6-8 may require rare, coherent dihedral changes to sample a new conformation, the changes are rather local, involving simultaneous changes of ϕi and ψi or ψi and ϕi+1. The understanding of how these cyclic peptides switch conformations enables the use of metadynamics simulations with reaction coordinates specifically targeting such coupled two-dihedral changes to effectively sample cyclic peptide conformational space. PMID:27031286

  19. Advances in targeting cyclic nucleotide phosphodiesterases

    PubMed Central

    Maurice, Donald H.; Ke, Hengming; Ahmad, Faiyaz; Wang, Yousheng; Chung, Jay; Manganiello, Vincent C.

    2014-01-01

    Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants. PMID:24687066

  20. Advances in targeting cyclic nucleotide phosphodiesterases.

    PubMed

    Maurice, Donald H; Ke, Hengming; Ahmad, Faiyaz; Wang, Yousheng; Chung, Jay; Manganiello, Vincent C

    2014-04-01

    Cyclic nucleotide phosphodiesterases (PDEs) catalyse the hydrolysis of cyclic AMP and cyclic GMP, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signalling pathways and, consequently, myriad biological responses in health and disease. Currently, a small number of PDE inhibitors are used clinically for treating the pathophysiological dysregulation of cyclic nucleotide signalling in several disorders, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication and chronic obstructive pulmonary disease. However, pharmaceutical interest in PDEs has been reignited by the increasing understanding of the roles of individual PDEs in regulating the subcellular compartmentalization of specific cyclic nucleotide signalling pathways, by the structure-based design of novel specific inhibitors and by the development of more sophisticated strategies to target individual PDE variants. PMID:24687066

  1. Mechanics and mechanisms of cyclic fatigue-crack propagation in transformation-toughened zirconia ceramics

    SciTech Connect

    Hoffman, M.J. Sydney Univ., NSW . Dept. of Mechanical Engineering); Dauskardt, R.H.; Ritchie, R.O. ); Mai, Y.W. . Dept. of Mechanical Engineering)

    1992-05-01

    Damage and cyclic fatigue failure under alternating loading in transformation-toughened zirconia ceramics is reviewed and compared to corresponding behavior under quasi-static loading (static fatigue). Current understanding of the role of transformation toughening in influencing cyclic fatigue-crack propagation behavior is examined based on studies which altered the extent of the tetragonal-to-monoclinic phase transformation in MG-PSZ through subeutectoid aging. These studies suggest that near-tip computations of the crack-driving force (in terms of the local stress intensity) can be used to predict crack-growth behavior under constant amplitude and variable-amplitude (spectrum) loading, using spatially resolved Raman spectroscopy to measure the extent of the transformation zones. In addition, results are reviewed which rationalize distinctions between the crack-growth behavior of preexisting, long'' (> 2 mm), through-thickness cracks and naturally-occurring, small'' (1 to 100 [mu]m), surface cracks in terms of variations in crack-tip shielding with crack size. In the present study, the effect of grain size variations on crack-growth behavior under both monotonic (R-curve) and cyclic fatigue loading are examined. Such observations are used to speculate on the mechanisms associated with cyclic crack advance, involving such processes as alternating shear via transformation-band formation, cyclic modification of the degree of transformation toughening, and uncracked-ligament (or grain) bridging.

  2. Mechanics and mechanisms of cyclic fatigue-crack propagation in transformation-toughened zirconia ceramics

    SciTech Connect

    Hoffman, M.J. |; Dauskardt, R.H.; Ritchie, R.O.; Mai, Y.W.

    1992-05-01

    Damage and cyclic fatigue failure under alternating loading in transformation-toughened zirconia ceramics is reviewed and compared to corresponding behavior under quasi-static loading (static fatigue). Current understanding of the role of transformation toughening in influencing cyclic fatigue-crack propagation behavior is examined based on studies which altered the extent of the tetragonal-to-monoclinic phase transformation in MG-PSZ through subeutectoid aging. These studies suggest that near-tip computations of the crack-driving force (in terms of the local stress intensity) can be used to predict crack-growth behavior under constant amplitude and variable-amplitude (spectrum) loading, using spatially resolved Raman spectroscopy to measure the extent of the transformation zones. In addition, results are reviewed which rationalize distinctions between the crack-growth behavior of preexisting, ``long`` (> 2 mm), through-thickness cracks and naturally-occurring, ``small`` (1 to 100 {mu}m), surface cracks in terms of variations in crack-tip shielding with crack size. In the present study, the effect of grain size variations on crack-growth behavior under both monotonic (R-curve) and cyclic fatigue loading are examined. Such observations are used to speculate on the mechanisms associated with cyclic crack advance, involving such processes as alternating shear via transformation-band formation, cyclic modification of the degree of transformation toughening, and uncracked-ligament (or grain) bridging.

  3. Cyclic Imide Dioxime: Formation and Hydrolytic Stability

    SciTech Connect

    Kang, S.O.; Vukovic, Sinisa; Custelcean, Radu; Hay, Benjamin

    2012-01-01

    Poly(acrylamidoximes) play an important role in the uranium extraction from seawater. The present work reports solution studies of simple analogs to address the formation and stability of two binding sites present in these polymers, open-chain amidoximes and cyclic imide dioximes, including: 1) conditions that maximize the formation of the cyclic form, 2) existence of a base-induced conversion from open-chain to cyclic form, and 3) degradation under acid and base conditions.

  4. New insight into the relationships between stress, strain and mass change at Mt. Etna during the period between the 1993-94 and 2001 eruptions

    NASA Astrophysics Data System (ADS)

    Carbone, Daniele; Aloisi, Marco; Vinciguerra, Sergio; Puglisi, Giuseppe

    2014-05-01

    During the time interval between the 1991-93 and 2001 main flank eruptions of Mt. Etna, volcanic activity was confined to the summit vents. Ground deformation and tomography studies suggest that this activity was fed by a magma body located beneath the north-west flank of the volcano, at a depth of around 7 km b.s.l.. Conversely, gravity studies indicate that the most important mass redistributions during the same period took place within an elongated volume centered below the southeastern sector of the volcano, at depths of 2-4 km b.s.l.. The phases of gravity decrease during the 1994-2001 period coincide with phases of higher strain release rate. The coupling between gravity and seismic data could reflect changes in the rate of micro-fracturing along the NNW-SSE weakness zone that cuts the SE slope of the volcano. This interpretation allows to explain why the main pressure and mass sources active at Etna during the 1994-2001 period do not coincide. The extensional dynamics of the southeastern flank of Etna may represent a second-order effect, triggered by the pressure source below the western flank and accommodated along the NNW-SSE weakness zone. In order to gain quantitative insight into the relationship between stress, strain and mass changes at Etna during the 1994-2001 period, we use a finite element modeling approach. Relying on recent studies involving stress- and temperature-induced degradation of the mechanical properties of rocks, we hypothesize that the inferred NNW-SSE weakness zone is characterized by an anomalously low Young's modulus (E). Results of our analysis are summarized in the following two points. (i) The presence of the weakness zone creates a distortion of the displacements field induced by the deeper pressure source, locally resulting in a weak extensional regime. This finding supports the hypothesis of a cause-effect relation between deeper pressurization beneath the western flank and shallower extension across the fracture zone beneath

  5. Cyclic stress effect on stress corrosion cracking of duplex stainless steel in chloride and caustic solutions

    NASA Astrophysics Data System (ADS)

    Yang, Di

    Duplex stainless steel (DSS) is a dual-phase material with approximately equal volume amount of austenite and ferrite. It has both great mechanical properties (good ductility and high tensile/fatigue strength) and excellent corrosion resistance due to the mixture of the two phases. Cyclic loadings with high stress level and low frequency are experienced by many structures. However, the existing study on corrosion fatigue (CF) study of various metallic materials has mainly concentrated on relatively high frequency range. No systematic study has been done to understand the ultra-low frequency (˜10-5 Hz) cyclic loading effect on stress corrosion cracking (SCC) of DSSs. In this study, the ultra-low frequency cyclic loading effect on SCC of DSS 2205 was studied in acidified sodium chloride and caustic white liquor (WL) solutions. The research work focused on the environmental effect on SCC of DSS 2205, the cyclic stress effect on strain accumulation behavior of DSS 2205, and the combined environmental and cyclic stress effect on the stress corrosion crack initiation of DSS 2205 in the above environments. Potentiodynamic polarization tests were performed to investigate the electrochemical behavior of DSS 2205 in acidic NaCl solution. Series of slow strain rate tests (SSRTs) at different applied potential values were conducted to reveal the optimum applied potential value for SCC to happen. Room temperature static and cyclic creep tests were performed in air to illustrate the strain accumulation effect of cyclic stresses. Test results showed that cyclic loading could enhance strain accumulation in DSS 2205 compared to static loading. Moreover, the strain accumulation behavior of DSS 2205 was found to be controlled by the two phases of DSS 2205 with different crystal structures. The B.C.C. ferrite phase enhanced strain accumulation due to extensive cross-slips of the dislocations, whereas the F.C.C. austenite phase resisted strain accumulation due to cyclic strain

  6. Engine cyclic durability by analysis and material testing

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Halford, G. R.

    1983-01-01

    The problem of calculating turbine engine component durability is addressed. Nonlinear, finite-element structural analyses, cyclic constitutive behavior models, and an advanced creep-fatigue life prediction method called strainrange partitioning were assessed for their applicability to the solution of durability problems in hot-section components of gas turbine engines. Three different component or subcomponent geometries are examined: a stress concentration in a turbine disk; a louver lip of a half-scale combustor liner; and a squealer tip of a first-stage high-pressure turbine blade. Cyclic structural analyses were performed for all three problems. The computed strain-temperature histories at the critical locations of the combustor linear and turbine blade components were imposed on smooth specimens in uniaxial, strain-controlled, thermomechanical fatigue tests of evaluate the structural and life analysis methods.

  7. On the modeling of nonproportional cyclic plasticity of Waspaloy

    SciTech Connect

    Abdul-Latif, A.; Clavel, M.; Ferney, V.; Saanouni, K. )

    1994-01-01

    The isotropic hardening is known to play an effective role in the overhardening of materials under nonproportional cyclic loading. However, the behavior of the two states of Waspaloy (namely overaged and underaged states) under these loading conditions, shows that the kinematic hardening has also a considerable role in the overhardening. Experimental tests were carried out on these two states under various proportional and nonproportional cyclic loading conditions at room temperature. The effect of loading paths on micro-mechanisms of deformation was studied. From a microstructural point of view, it was shown that the deformation modes (quantitatively and qualitatively) depends on the loading path and the heat treatment. A constitutive model is proposed to describe the effect of overhardening, under the nonproportional loading conditions, on the kinematic hardening. The predicted response are in good agreement with experimental results.

  8. Nonlinear, nonbinary cyclic group codes

    NASA Technical Reports Server (NTRS)

    Solomon, G.

    1992-01-01

    New cyclic group codes of length 2(exp m) - 1 over (m - j)-bit symbols are introduced. These codes can be systematically encoded and decoded algebraically. The code rates are very close to Reed-Solomon (RS) codes and are much better than Bose-Chaudhuri-Hocquenghem (BCH) codes (a former alternative). The binary (m - j)-tuples are identified with a subgroup of the binary m-tuples which represents the field GF(2 exp m). Encoding is systematic and involves a two-stage procedure consisting of the usual linear feedback register (using the division or check polynomial) and a small table lookup. For low rates, a second shift-register encoding operation may be invoked. Decoding uses the RS error-correcting procedures for the m-tuple codes for m = 4, 5, and 6.

  9. Cyclic strength of hard metals

    SciTech Connect

    Sereda, N.N.; Gerikhanov, A.K.; Koval'chenko, M.S.; Pedanov, L.G.; Tsyban', V.A.

    1986-02-01

    The authors study the strength of hard-metal specimens and structural elements under conditions of cyclic loading since many elements of processing plants, equipment, and machines are made of hard metals. Fatigue tests were conducted on KTS-1N, KTSL-1, and KTNKh-70 materials, which are titanium carbide hard metals cemented with nickel-molybdenum, nickelcobalt-chromium, and nickel-chromium alloys, respectively. As a basis of comparison, the standard VK-15 (WC+15% Co) alloy was used. Some key physicomechanical characteristics of the materials investigated are presented. On time bases not exceeding 10/sup 6/ cycles, titanium carbide hard metals are comparable in fatigue resistance to the standard tungstencontaining hard metals.

  10. Cell reorientation under cyclic stretching.

    PubMed

    Livne, Ariel; Bouchbinder, Eran; Geiger, Benjamin

    2014-01-01

    Mechanical cues from the extracellular microenvironment play a central role in regulating the structure, function and fate of living cells. Nevertheless, the precise nature of the mechanisms and processes underlying this crucial cellular mechanosensitivity remains a fundamental open problem. Here we provide a novel framework for addressing cellular sensitivity and response to external forces by experimentally and theoretically studying one of its most striking manifestations--cell reorientation to a uniform angle in response to cyclic stretching of the underlying substrate. We first show that existing approaches are incompatible with our extensive measurements of cell reorientation. We then propose a fundamentally new theory that shows that dissipative relaxation of the cell's passively-stored, two-dimensional, elastic energy to its minimum actively drives the reorientation process. Our theory is in excellent quantitative agreement with the complete temporal reorientation dynamics of individual cells measured over a wide range of experimental conditions, thus elucidating a basic aspect of mechanosensitivity. PMID:24875391

  11. Cell reorientation under cyclic stretching

    NASA Astrophysics Data System (ADS)

    Livne, Ariel; Bouchbinder, Eran; Geiger, Benjamin

    2014-05-01

    Mechanical cues from the extracellular microenvironment play a central role in regulating the structure, function and fate of living cells. Nevertheless, the precise nature of the mechanisms and processes underlying this crucial cellular mechanosensitivity remains a fundamental open problem. Here we provide a novel framework for addressing cellular sensitivity and response to external forces by experimentally and theoretically studying one of its most striking manifestations—cell reorientation to a uniform angle in response to cyclic stretching of the underlying substrate. We first show that existing approaches are incompatible with our extensive measurements of cell reorientation. We then propose a fundamentally new theory that shows that dissipative relaxation of the cell’s passively-stored, two-dimensional, elastic energy to its minimum actively drives the reorientation process. Our theory is in excellent quantitative agreement with the complete temporal reorientation dynamics of individual cells measured over a wide range of experimental conditions, thus elucidating a basic aspect of mechanosensitivity.

  12. Mechanical behavior of open cell aluminum foams

    NASA Astrophysics Data System (ADS)

    Zhou, Jikou

    significantly affect the strut microstructure, the stress-strain behavior, the foam strength, and the macro-scale deformation of the foams under monotonic compression. The macro-scale deformation is studied using a combination of in situ imaging and surface strain mapping technique. This reveals the importance of localization in the propagation across the foam structure.

  13. The effect of cyclic loading during ductile tearing on the fracture resistance of nuclear pipe steels

    SciTech Connect

    Rudland, D.L.; Brust, F.

    1997-12-01

    As part of the First International Piping and Integrity Research Group (IPIRG-1) program, a series of 152.4-mm (6-in.)-diameter Schedule 120, A106 Grade B carbon steel and TP304 stainless steel cyclic through-wall crack (TWC) pipe tests were conducted at 288 C (550 F). The conclusion reached from these experiments was that fully reversed loading decreases the ductile tearing resistance of nuclear pipe steels. As part of the Second International Piping and Integrity Research Group (IPIRG-2) program, a series of cyclically loaded compact tension [C(T)] tests were conducted to determine if this effect is present in laboratory specimens and whether these small-scale results can be used to predict larger through-wall crack pipe behavior. The specimens wee run in displacement control using several cyclic displacement increments and stress ratios. It was found that as the stress ratio was decreased, i.e., the amount of compressive plasticity is increased, the ductile tearing resistance of the material decreased. Fractographic analysis was performed on several C(T) specimens to determine the cyclic degradation mechanism. It was found that crack tip sharpening and void flattening were observed and could be the mechanisms that contributed to the cyclic degradation. In addition to the laboratory tests, finite element analyses were performed on a cyclic C(T) specimen to verify the ASTM E 1152 procedure used and to calculate the cyclic J-R curves.

  14. Cyclic Linearization and Island Repair in Sluicing

    ERIC Educational Resources Information Center

    Qiu, Chunan

    2009-01-01

    Cyclic Linearization is adopted to account for the island repair of Sluicing in English. The extraction of wh-phrase out of certain islands undergoes non-successive-cyclic movement, which yields conflicting ordering statements. The derivation can be rescued by deleting all ordering statements in IP, including those conflicting ones. Two arguments…

  15. Twisted Cyclic Cohomology and Modular Fredholm Modules

    NASA Astrophysics Data System (ADS)

    Rennie, Adam; Sitarz, Andrzej; Yamashita, Makoto

    2013-07-01

    Connes and Cuntz showed in [Comm. Math. Phys. 114 (1988), 515-526] that suitable cyclic cocycles can be represented as Chern characters of finitely summable semifinite Fredholm modules. We show an analogous result in twisted cyclic cohomology using Chern characters of modular Fredholm modules. We present examples of modular Fredholm modules arising from Podleś spheres and from SUq(2).

  16. The dependence of Escherichia coli asparaginase II formation on cyclic AMP and cyclic AMP receptor protein.

    PubMed

    Russell, L; Yamazaki, H

    1978-05-01

    The amount of asparaginase II in an Escherichia coli wild-type strain (cya+, crp+) markedly increased upon a shift from aerobic to anaerobic growth. However, no such increase occurred in a mutant (cya) lacking cyclic AMP synthesis unless supplemented with exogenous cyclic AMP. Since a mutant (crp) deficient in cyclic AMP receptor protein also did not support the anaerobic formation of this enzyme, it is concluded that the formation of E. coli asparaginase II depends on both cyclic AMP and cyclic AMP receptor protein. PMID:207402

  17. The Effect of Heat Treatment on the Fatigue Behavior of Alloy 10

    NASA Technical Reports Server (NTRS)

    Gayda, John; Kantzos, Pete; Telesman, Jack

    2003-01-01

    The results of the fatigue evaluation on Alloy 10, run under NASA's Ultrasafe Project, are the subject of this report. Crack growth evaluation will be examined in a separate report. The eight heat treatments studied were designed to evaluate the effect of solution temperature, cooling rate, and stabilization on key mechanical properties of Alloy 10, including fatigue life. Two temperatures were studied, 750 and 1300 F, which represent projected application temperatures for the bore and rim locations in a disk. In addition to fatigue life, the cyclic stress-strain response and failure modes of the fatigue specimens are also reviewed in this report.

  18. A Computationally Efficient Modeling Approach for Predicting Mechanical Behavior of Cellular Lattice Structures

    NASA Astrophysics Data System (ADS)

    Karamooz Ravari, M. R.; Kadkhodaei, M.

    2015-01-01

    As the fabrication and characterization of cellular lattice structures are time consuming and expensive, development of simple models is vital. In this paper, a new approach is presented to model the mechanical stress-strain curve of cellular lattices with low computational efforts. To do so, first, a single strut of the lattice is modeled with its imperfections and defects. The stress-strain of a specimen fabricated with the same processing parameters as those used for the lattice is used as the base material. Then, this strut is simulated in simple tension, and its stress-strain curve is obtained. After that, a unit cell of the lattice is simulated without any imperfections, and the material parameters of the single strut are attributed to the bulk material. Using this method, the stress-strain behavior of the lattice is obtained and shown to be in a good agreement with the experimental result. Accordingly, this paper presents a computationally efficient method for modeling the mechanical properties of cellular lattices with a reasonable accuracy using the material parameters of simple tension tests. The effects of the single strut's length and its micropores on its mechanical properties are also assessed.

  19. Effects of deindividuation, removal of responsibility, and coaction on impulsive and cyclical aggression.

    PubMed

    Paloutzian, R F

    1975-07-01

    The influence of two deindividuating variables, altered responsibility and coaction in groups, on one's tendency to deliver noxious or helpful stimulation impulsively and in a cyclical pattern to a target person was investigated in a laboratory experiment with use of 96 male and female junior college students. Analysis of variance revealed that, as hypothesized, Ss who coacted in groups of three and who had the responsibility for their behavior removed delivered noxious (but not helpful) stimuli more impulsively than Ss who worked alone and were made to feel responsible (p less than .01). Ss responded in a more cyclical pattern which delivering aversive tones than when delivering facilitating tones (p less than .005). A marginally significant finding was that Ss in groups responded in a more cyclical pattern than Ss alone only when the response was seen as aversive. It was concluded that the probability of impulsive and cyclical aggression may be increased by altered responsibility and coaction. PMID:1195142

  20. Investigation on the tensile behavior of fiber metal laminates based on self-reinforced polypropylene

    NASA Astrophysics Data System (ADS)

    Lee, Byoung-Eon; Park, Tom; Kim, Jeong; Kang, Beom-Soo; Song, Woo-Jin

    2013-12-01

    Mechanical tests have been carried out to accurately evaluate the tensile properties of fiber metal laminates (FMLs). The FMLs in this paper comprised of a layer of self-reinforced polypropylene (SRPP) sandwiched between two layers of aluminum alloy 5052-H34. In this study, nonlinear tensile and fracture behavior of FMLs under the in-plane loading conditions has been investigated with numerical simulations and theoretical analysis. The numerical simulation based on finite element modeling using the ABAQUS/Explicit and the theoretical constitutive model based on a volume fraction approach and a modified classical lamination theory, which incorporates the elastic-plastic behavior of the aluminum alloy are used to predict the mechanical properties such as stress-strain response and deformation behavior of FMLs. In addition, through comparing the numerical simulations and the theoretical analysis with experimental results, it was concluded that a numerical simulation model adopted describes with sufficient accuracy the overall tensile stress-strain curve.

  1. Application of cyclic J-integral to low cycle fatigue crack growth of Japanese carbon steel pipe

    SciTech Connect

    Miura, N.; Fujioka, T.; Kashima, K.

    1997-04-01

    Piping for LWR power plants is required to satisfy the LBB concept for postulated (not actual) defects. With this in mind, research has so far been conducted on the fatigue crack growth under cyclic loading, and on the ductile crack growth under excessive loading. It is important, however, for the evaluation of the piping structural integrity under seismic loading condition, to understand the fracture behavior under dynamic and cyclic loading conditions, that accompanies large-scale yielding. CRIEPI together with Hitachi have started a collaborative research program on dynamic and/or cyclic fracture of Japanese carbon steel (STS410) pipes in 1991. Fundamental tensile property tests were conducted to examine the effect of strain rate on tensile properties. Cracked pipe fracture tests under some loading conditions were also performed to investigate the effect of dynamic and/or cyclic loading on fracture behavior. Based on the analytical considerations for the above tests, the method to evaluate the failure life for a cracked pipe under cyclic loading was developed and verified. Cyclic J-integral was introduced to predict cyclic crack growth up to failure. This report presents the results of tensile property tests, cracked pipe fracture tests, and failure life analysis. The proposed method was applied to the cracked pipe fracture tests. The effect of dynamic and/or cyclic loading on pipe fracture was also investigated.

  2. Confinement Effects on Molten Thin Cyclic Polystyrene Films

    NASA Astrophysics Data System (ADS)

    He, Qiming; Narayanan, Suresh; Wu, David; Foster, Mark

    2014-03-01

    The surface fluctuations of melt film of 6k cyclic polystyrene (CPS) and its linear analog were measured using X-ray photon correlation spectroscopy (XPCS) for films of various thicknesses. The surface fluctuations of the 6k linear PS melt films 17 nm and thicker and the 6k cyclic melt films 28 nm and thicker can be described using a hydrodynamic continuum theory (HCT) that assumes the film is characterized only by the bulk viscosity. When a film of CPS is 24 nm or thinner, the behavior can no longer be captured using the HCT with bulk viscosity. The surface fluctuations behave as though the film has an effective viscosity higher than the bulk value. There is no evidence of an effective modulus in the very thin films of cyclic chains. The thickness at which confinement effects are seen for the 6k CPS chains is larger than that for the linear analogs. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the DOE's Office of Science under Contract DE-AC02-06-CH11357. This work was supported by NSF Grants No CBET-0730692 and CBET-0731319.

  3. Mixed Strategies in cyclic competition

    NASA Astrophysics Data System (ADS)

    Intoy, Ben; Pleimling, Michel

    2015-03-01

    Physicists have been using evolutionary game theory to model and simulate cyclically competing species, with applications to lizard mating strategies and competing bacterial strains. However these models assume that each agent plays the same strategy, which is called a pure strategy in game theory, until they are beaten by a better strategy which they immediately adopt. We relax this constraint of an agent playing a single strategy by instead letting the agent pick its strategy randomly from a probability distribution, which is called a mixed strategy in game theory. This scheme is very similar to multiple occupancy models seen in the literature, the major difference being that interactions happen between sites rather than within them. Choosing strategies out of a distribution also has applications to economic/social systems such as the public goods game. We simulate a model of mixed strategy and cylic competition on a one-dimensional lattice with three and four strategies and find interesting spatial and stability properties depending on how discretized the choice of strategy is for the agents. This work is supported by the US National Science Foundation through Grant DMR-1205309.

  4. Modeling Cyclic Deformation of HSLA Steels Using Crystal Plasticity

    NASA Astrophysics Data System (ADS)

    Ghosh, Somnath; Xie, Chunlei

    2004-06-01

    In this paper, we propose a multi-time scale modeling technique for analyzing cyclic plastic deformation in crystalline solids subject to periodic loading. An asymptotic expansion of the variables in the time domain, together with homogenization forms the basis of multi-time scaling. In the macroscopic scale analysis, the oscillatory behavior of the load is averaged out and neglected, and the rate of averaged material behavior is quite slow in cyclic deformation. Implicitly, this means that the periodicity of some variables may be assumed for the oscillatory potion of the material behavior may be approximated. In this formulation, the governing equations are divided into two initial-boundary value problems with two different time scale: one is long time scale problem for describing the smooth averaged solution (global problem) and the other is for the remaining oscillatory potion (local problem). For the global problem, long time increments, which are longer than one cycle period, can be used and this multi-time scaling becomes an effective integrator.

  5. Modeling of Anisotropic Rock Joints Under Cyclic Loading (Invited)

    NASA Astrophysics Data System (ADS)

    White, J. A.

    2013-12-01

    This work describes a constitutive framework for modeling the behavior of rough joints under cyclic loading. Particular attention is paid to the intrinsic links between dilatancy, surface degradation, and mobilized shear strength. The framework also accounts for the important effect of shear-induced anisotropy. Both the governing formulation and an algorithm for implicit numerical integration are presented. While the proposed methods are general, we also postulate a specific model that is compared with experimental data. It employs relatively few free parameters, but shows good agreement with laboratory tests.

  6. Asymmetric cyclic evolution in polymerised cosmology

    SciTech Connect

    Hrycyna, Orest; Mielczarek, Jakub; Szydłowski, Marek E-mail: jakub.mielczarek@uj.edu.pl

    2009-12-01

    The dynamical systems methods are used to study evolution of the polymerised scalar field cosmologies with the cosmological constant. We have found all evolutional paths admissible for all initial conditions on the two-dimensional phase space. We have shown that the cyclic solutions are generic. The exact solution for polymerised cosmology is also obtained. Two basic cases are investigated, the polymerised scalar field and the polymerised gravitational and scalar field part. In the former the division on the cyclic and non-cyclic behaviour is established following the sign of the cosmological constant. The value of the cosmological constant is upper bounded purely from the dynamical setting.

  7. Processable Cyclic Peptide Nanotubes with Tunable Interiors

    SciTech Connect

    Hourani, Rami; Zhang, Chen; van der Weegen, Rob; Ruiz, Luis; Li, Changyi; Keten, Sinan; Helms, Brett A.; Xu, Ting

    2011-09-06

    A facile route to generate cyclic peptide nanotubes with tunable interiors is presented. By incorporating 3-amino-2-methylbenzoic acid in the d,l-alternating primary sequence of a cyclic peptide, a functional group can be presented in the interior of the nanotubes without compromising the formation of high aspect ratio nanotubes. The new design of such a cyclic peptide also enables one to modulate the nanotube growth process to be compatible with the polymer processing window without compromising the formation of high aspect ratio nanotubes, thus opening a viable approach toward molecularly defined porous membranes.

  8. A simple laminate theory using the orthotropic viscoplasticity theory based on overstress. I - In-plane stress-strain relationships for metal matrix composites

    NASA Technical Reports Server (NTRS)

    Krempl, Erhard; Hong, Bor Zen

    1989-01-01

    A macromechanics analysis is presented for the in-plane, anisotropic time-dependent behavior of metal matrix laminates. The small deformation, orthotropic viscoplasticity theory based on overstress represents lamina behavior in a modified simple laminate theory. Material functions and constants can be identified in principle from experiments with laminae. Orthotropic invariants can be repositories for tension-compression asymmetry and for linear elasticity in one direction while the other directions behave in a viscoplastic manner. Computer programs are generated and tested for either unidirectional or symmetric laminates under in-plane loading. Correlations with the experimental results on metal matrix composites are presented.

  9. Cyclic-stress analysis of notches for supersonic transport conditions. [using finite element method

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The feasibility of using the finite element method to account for the effects of cyclic load and temperature on local stresses and strains at a notch was demonstrated. The behavior of a notched titanium panel was studied under variable loads and temperatures representative of flight conditions for the lower wing surface of a Supersonic Transport (SST). The analysis was performed with the use of the BOPACE finite-element computer program which provides capability to determine high temperature and large viscoplastic effects caused by cyclic thermal and mechanical loads. The analysis involves the development of the finite-element model as well as determination of the structural behavior of the notched panel. Results are presented for twelve SST flights comprised of five different load-temperature cycles. The results show the approach is feasible, but material response to cyclic loads, temperatures, and hold times requires improved understanding to allow proper modeling of the material.

  10. Synchronization in chaotic oscillators by cyclic coupling

    NASA Astrophysics Data System (ADS)

    Olusola, O. I.; Njah, A. N.; Dana, S. K.

    2013-07-01

    We introduce a type of cyclic coupling to investigate synchronization of chaotic oscillators. We derive analytical solutions of the critical coupling for stable synchronization under the cyclic coupling for the Rössler system and the Lorenz oscillator as paradigmatic illustration. Based on the master stability function (MSF) approach, the analytical results on critical coupling are verified numerically. An enhancing effect in terms of lowering the critical coupling or enlarging the synchronization window in a critical coupling space is noticed. The cyclic coupling is also applied in other models, Hindmarsh-Rose model, Sprott system, Chen system and forced Duffing system to confirm the enhancing effect. The cyclic coupling allows tuning of two coupling constants in reverse directions when an optimal control of synchronization is feasible.

  11. Inelastic behavior of structural components

    NASA Technical Reports Server (NTRS)

    Hussain, N.; Khozeimeh, K.; Toridis, T. G.

    1980-01-01

    A more accurate procedure was developed for the determination of the inelastic behavior of structural components. The actual stress-strain curve for the mathematical of the structure was utilized to generate the force-deformation relationships for the structural elements, rather than using simplified models such as elastic-plastic, bilinear and trilinear approximations. relationships were generated for beam elements with various types of cross sections. In the generational of these curves, stress or load reversals, kinematic hardening and hysteretic behavior were taken into account. Intersections between loading and unloading branches were determined through an iterative process. Using the inelastic properties obtained, the plastic static response of some simple structural systems composed of beam elements was computed. Results were compared with known solutions, indicating a considerable improvement over response predictions obtained by means of simplified approximations used in previous investigations.

  12. Antimicrobial Cyclic Peptides for Plant Disease Control

    PubMed Central

    Lee, Dong Wan; Kim, Beom Seok

    2015-01-01

    Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources. PMID:25774105

  13. Cyclic Loading Effects on the Creep and Dilation of Salt Rock

    NASA Astrophysics Data System (ADS)

    Roberts, Lance A.; Buchholz, Stuart A.; Mellegard, Kirby D.; Düsterloh, Uwe

    2015-11-01

    The Solution Mining Research Institute (SMRI) has embarked on inquiries into the effect cyclic loading might have on salt. This interest stems from the concept of using salt caverns as a storage medium for renewable energy projects such as compressed air energy storage where daily pressure cycles in the cavern are conceivable as opposed to the seasonal cycles that are typical for natural gas storage projects. RESPEC and the Institut für Aufbereitung und Deponietechnik at Clausthal University of Technology jointly executed a rock mechanics laboratory study using both facilities for performing triaxial cyclic loading creep tests on rock salt recovered from the Avery Island Mine in Louisiana, USA. The cyclic triaxial creep tests were performed under various load paths including compression, extension, and compression/extension. The tests were performed under both dilative and nondilative stress regimes. The cyclic compression creep data were compared to static creep tests performed under similar conditions to assess the effect of cycling of the applied stress. Furthermore, the cyclic compression tests were compared to a numerically simulated static creep test at the same stress and temperature conditions to determine if the creep behavior was similar under cyclic loading.

  14. Mechanical behavior, properties and reliability of tin-modified lead zirconate titanate.

    SciTech Connect

    Watson, Chad Samuel

    2003-08-01

    The influences of temperature and processing conditions (unpoled or poled-depoled) on strength, fracture toughness and the stress-strain behavior of tin-modified lead zirconate titanate (PSZT) were evaluated in four-point bending. PSZT exhibits temperature-dependent non-linear and non-symmetric stress-strain behavior. A consequence of temperature dependent non-linearity is an apparent reduction in the flexural strength of PSZT as temperature increases. At room temperature the average stress in the outer-fiber of bend bars was 84 MPa, whereas, for specimens tested at 120 C the average failure stress was only 64 MPa. The load-carrying capacity, however, does not change with temperature, but the degree of deformation tolerated by PSZT prior to failure increased with temperature.

  15. Numerical modeling and experiments of creep crack growth under cyclic loading

    SciTech Connect

    Brust, F.W.

    1995-12-31

    This paper presents a summary of some recent studies of creep crack growth under history dependent load conditions. The effect of a proper constitutive law is illustrated. Moreover, the asymptotic fields are reconsidered under cyclic creep conditions. In addition, several experiments are modeled and the behavior of integral parameters is discussed.

  16. Unraveling cyclic deformation mechanisms of a rolled magnesium alloy using in situ neutron diffraction

    SciTech Connect

    Wu, Wei; An, Ke; Liaw, Peter K.

    2014-12-23

    In the current study, the deformation mechanisms of a rolled magnesium alloy were investigated under cyclic loading using real-time in situ neutron diffraction under a continuous-loading condition. The relationship between the macroscopic cyclic deformation behavior and the microscopic response at the grain level was established. The neutron diffraction results indicate that more and more grains are involved in the twinning and detwinning deformation process with the increase of fatigue cycles. The residual twins appear in the early fatigue life, which is responsible for the cyclic hardening behavior. The asymmetric shape of the hysteresis loop is attributed to the early exhaustion of the detwinning process during compression, which leads to the activation of dislocation slips and rapid strain-hardening. The critical resolved shear stress for the activation of tensile twinning closely depends on the residual strain developed during cyclic loading. In the cycle before the sample fractured, the dislocation slips became active in tension, although the sample was not fully twinned. The increased dislocation density leads to the rise of the stress concentration at weak spots, which is believed to be the main reason for the fatigue failure. Furthermore, the deformation history greatly influences the deformation mechanisms of hexagonal-close-packed-structured magnesium alloy during cyclic loading.

  17. Unraveling cyclic deformation mechanisms of a rolled magnesium alloy using in situ neutron diffraction

    DOE PAGESBeta

    Wu, Wei; An, Ke; Liaw, Peter K.

    2014-12-23

    In the current study, the deformation mechanisms of a rolled magnesium alloy were investigated under cyclic loading using real-time in situ neutron diffraction under a continuous-loading condition. The relationship between the macroscopic cyclic deformation behavior and the microscopic response at the grain level was established. The neutron diffraction results indicate that more and more grains are involved in the twinning and detwinning deformation process with the increase of fatigue cycles. The residual twins appear in the early fatigue life, which is responsible for the cyclic hardening behavior. The asymmetric shape of the hysteresis loop is attributed to the early exhaustionmore » of the detwinning process during compression, which leads to the activation of dislocation slips and rapid strain-hardening. The critical resolved shear stress for the activation of tensile twinning closely depends on the residual strain developed during cyclic loading. In the cycle before the sample fractured, the dislocation slips became active in tension, although the sample was not fully twinned. The increased dislocation density leads to the rise of the stress concentration at weak spots, which is believed to be the main reason for the fatigue failure. Furthermore, the deformation history greatly influences the deformation mechanisms of hexagonal-close-packed-structured magnesium alloy during cyclic loading.« less

  18. Degradation and buckling of metal tubes under cyclic bending and external pressure

    NASA Astrophysics Data System (ADS)

    Corona, Edmundo

    The response and stability of long tubular components under bending and external pressure were investigated. The behavior of the structure under monotonic as well as cyclic bending was examined through combined experimental and analytical efforts. The experiments involved metal seamless tubes with diameter-to-thickness ratios in the range of 17 to 35. Long specimens were tested under combined bending and pressure in a specially developed test facility. Bending-pressure interaction collapse envelopes were first generated for monotonically increasing loading histories. The two loads were found to interact strongly through the ovalization of the cross section and the collapse envelopes to depend on the loading history followed. Cyclic bending under various curvature controlled and moment controlled histories was considered. The factors influencing the rate of accumulation of ovalization and the resulting instabilities were studied parametrically. Buckling under cyclic loads occurred when the ovalization of the tubes reached a critical value approximately equal to the critical value developed under the corresponding monotonically applied loads. The problem was analyzed numerically using kinematics which capture the ovalization of the cross section. The predicted response was found to be very sensitive to the elastic-plastic constitutive models used. This sensitivity was carefully analyzed using state-of-the-art models. In the case of cyclic loading histories, the hardening rules used in such models were found to play a pivotal role in the accuracy of the predictions. The reasons for this sensitivity were studied through a parallel investigation of the behavior of the material under cyclic loads.

  19. Stable Cyclic Carbenes and Related Species beyond Diaminocarbenes

    PubMed Central

    Melaimi, Mohand; Soleilhavoup, Michèle

    2011-01-01

    The success of homogeneous catalysis can be attributed largely to the development of a diverse range of ligand frameworks that have been used to tune the behavior of various systems. Spectacular results in this area have been achieved using cyclic diaminocarbenes (NHCs) as a result of their strong σ-donor properties. Although it is possible to cursorily tune the structure of NHCs, any diversity is still far from matching their phosphorus-based counterparts, which is one of the great strengths of the latter. A variety of stable acyclic carbenes are known, but they are either reluctant to bind metals or they give rise to fragile metal complexes. During the last five years, new types of stable cyclic carbenes, as well as related carbon-based ligands (which are not NHCs), and which feature even stronger σ-donor properties have been developed. Their synthesis and characterization as well as the stability, electronic properties, coordination behavior, and catalytic activity of the ensuing complexes are discussed, and comparisons with their NHC cousins are made. PMID:20836099

  20. Cyclic voltammetry of aquocobalamin on clay-modified electrodes

    SciTech Connect

    Borek, V.; Morra, M.J.

    1998-07-15

    Halogenated synthetic compounds are widespread contaminants of the environment. Although corrinoids reductively dehalogenate synthetic contaminants in solution, the redox behavior of sorbed tetrapyrroles has received limited attention. Colloidal clay suspensions were prepared as Ca{sup 2+} forms of hectorite (SHCa-1), montmorillonite (SWy-1, Syn-1, and SAz-1), and vermiculite (VTx-1) and spin coated on platinum electrodes. Cyclic voltammetry was performed with the clay-modified electrodes immersed in buffered solutions containing 1.0 mM aquocobalamin. Aquocobalamin in the presence of vermiculite-coated electrodes displayed the same cathodic and anodic peak potentials as unmodified electrodes immersed in aquocobalamin solutions. All other clay-modified electrodes shifted cathodic peaks to more negative values, while anodic peak shifts varied with the clay. Hectorite caused the largest shift in formal redox potential as compared to aquocobalamin in solution. The redox behavior of aquocobalamin as modified by sorption to clay minerals potentially affects dehalogenation rates of synthetic organic compounds in the environment. Clays lowering the formal redox potential of the tetrapyrrole create a potentially more efficient catalyst for pollutant degradation. However, thermodynamic data as obtained using cyclic voltammetry cannot be used to make definitive predictions about the kinetics of contaminant dehalogenation. Reductive dehalogenation will be a function of altered electrochemical properties of the tetrapyrrole as well as rates of contaminant diffusion to the site of tetrapyrrole sorption.

  1. Measuring Cyclic Error in Laser Heterodyne Interferometers

    NASA Technical Reports Server (NTRS)

    Ryan, Daniel; Abramovici, Alexander; Zhao, Feng; Dekens, Frank; An, Xin; Azizi, Alireza; Chapsky, Jacob; Halverson, Peter

    2010-01-01

    An improved method and apparatus have been devised for measuring cyclic errors in the readouts of laser heterodyne interferometers that are configured and operated as displacement gauges. The cyclic errors arise as a consequence of mixing of spurious optical and electrical signals in beam launchers that are subsystems of such interferometers. The conventional approach to measurement of cyclic error involves phase measurements and yields values precise to within about 10 pm over air optical paths at laser wavelengths in the visible and near infrared. The present approach, which involves amplitude measurements instead of phase measurements, yields values precise to about .0.1 microns . about 100 times the precision of the conventional approach. In a displacement gauge of the type of interest here, the laser heterodyne interferometer is used to measure any change in distance along an optical axis between two corner-cube retroreflectors. One of the corner-cube retroreflectors is mounted on a piezoelectric transducer (see figure), which is used to introduce a low-frequency periodic displacement that can be measured by the gauges. The transducer is excited at a frequency of 9 Hz by a triangular waveform to generate a 9-Hz triangular-wave displacement having an amplitude of 25 microns. The displacement gives rise to both amplitude and phase modulation of the heterodyne signals in the gauges. The modulation includes cyclic error components, and the magnitude of the cyclic-error component of the phase modulation is what one needs to measure in order to determine the magnitude of the cyclic displacement error. The precision attainable in the conventional (phase measurement) approach to measuring cyclic error is limited because the phase measurements are af-

  2. Cyclic fatigue mechanisms in partially stabilized zirconia

    SciTech Connect

    Hoffman, M.J.; Wakayama, Shuichi; Kawahara, Masanori; Mai, Y.W.; Kishi, Teruo

    1995-12-31

    Cyclic fatigue crack growth rate and crack resistance curve testing were undertaken on 6 different grades of Mg-PSZ. The width of the transformation zone at the flanks of the cracks was determined using Raman spectroscopy and, combined with R-curve toughening values, used to ascertain the level of crack-tip shielding during cyclic fatigue crack growth and hence the crack-tip stress intensity factor amplitude. By normalizing the crack-tip stress intensity factor amplitude with the intrinsic toughness of the material, it was found that the cyclic fatigue threshold stress intensity factor was independent of the extent of crack-tip shielding and a function of the stress intensity factor at the crack tip. In situ SEM observations of cyclic fatigue revealed crack bridging by uncracked ligaments and the precipitate phase. Under cyclic loading the precipitate bridges were postulated to undergo frictional degradation at the precipitate/matrix interface with the degree of degradation determined by the cyclic amplitude. Acoustic emission testing revealed acoustic emissions at three distinct levels during the loading cycle: firstly, near the maximum applied stress intensity factor caused by crack propagation; secondly, at the mid-range of the applied stress intensity factor attributed to crack closure near the crack tip, presumably as a result of transformation induced dilation; and thirdly, intermittently near the base of the loading cycle as a result of fracture surface contact due to surface roughness at a significant distance behind the crack tip. Crack closure near the crack tip due to dilation is proposed to significantly reduce the crack tip stress intensity factor amplitude and hence the degree of cyclic fatigue.

  3. Interparticle movement and the mechanical behavior of extruded powder aluminum at elevated temperature

    SciTech Connect

    Peacock, H.B.

    1996-09-01

    This paper proposes a model and mechanism, based on relative motion of the extruded aluminum particles, to explain these effects. Quantitative stereology is used to support the concept. Stress-strain relations are derived for the uniaxial and biaxial behavior of powder aluminum and they are seen to fit the data from a number of uniaxial and tension-torsion test specimens. Implications of the model for forming of extruded powder metal products are discussed

  4. A parameter study on the biaxial behavior of flexible fabric composites

    SciTech Connect

    Mitra, A.; Luo, S.Y.

    1994-12-31

    The nonlinear behavior of flexible fabric composite under large bi-axial deformation is attributed by many factors, including the ratio of biaxial loads, the crimps of the yarns, the thickness of the composite, and the properties of the yarn and the matrix. A parameter study has been conducted to evaluate the significance of these factors on the stress-strain relations of flexible fabric composites.

  5. Evaluation of the cyclic behavior of aircraft turbine disk alloys

    NASA Technical Reports Server (NTRS)

    Cowles, B. A.; Sims, D. L.; Warren, J. R.

    1978-01-01

    Five aircraft turbine disk alloys representing various strength and processing histories were evaluated at 650 C to determine if recent strength advances in powder metallurgy have resulted in corresponding increases in low cycle fatigue (LCF) capability. Controlled strain LCF tests and controlled load crack propagation tests were performed. Results were used for direct material comparisons and in the analysis of an advanced aircraft turbine disk, having a fixed design and operating cycle. Crack initiation lives were found to increase with increasing tensile yield strength, while resistance to fatigue crack propagation generally decreased with increasing strength.

  6. A comparative study of wide plate behavior of a range of structural steels using the failure assessment diagram

    SciTech Connect

    Bannister, A.C.; Harrison, P.L.

    1995-12-31

    In the field of structural integrity assessments, attention is currently focused on the ability of such methods to conservatively predict the deformation and fracture behavior of structural steels and their weldments. In the current paper, the results of a series of wide plate tests on a range of structural steels are presented and the results assessed in terms of CTOD-strain relationships, BS PD 6493 Levels 2 and 3, and the crack driving force approach. The behavior of the large scale tests and the results of the various analyses are assessed with regard to the stress-strain characteristics of the individual steels. In a second step, the approach is extended to the assessment of a number of wide plate tests comprising welded joints with mismatched strength levels. Over, under and even-matched welded plates are compared with the behavior of normalized and Quenched and Tempered parent plates. The study demonstrates that the behavior of parent material wide plate tests can vary widely depending on the stress-strain characteristics of the material. The different behavior is a result of the consecutive effects of different steel processing conditions, microstructure, yield to tensile strength ratio and strain hardening exponent. These features are also manifested, to a lesser or greater extent, in the results of wide plate tests on welded plates of mismatched strength. Studies on mismatch effects should therefore include equal attention to the stress-strain characteristics of the parent materials as this may, in some circumstances, dominate any effects of weld strength mismatch.

  7. Novel pH-Sensitive Cyclic Peptides

    PubMed Central

    Weerakkody, Dhammika; Moshnikova, Anna; El-Sayed, Naglaa Salem; Adochite, Ramona-Cosmina; Slaybaugh, Gregory; Golijanin, Jovana; Tiwari, Rakesh K.; Andreev, Oleg A.; Parang, Keykavous; Reshetnyak, Yana K.

    2016-01-01

    A series of cyclic peptides containing a number of tryptophan (W) and glutamic acid (E) residues were synthesized and evaluated as pH-sensitive agents for targeting of acidic tissue and pH-dependent cytoplasmic delivery of molecules. Biophysical studies revealed the molecular mechanism of peptides action and localization within the lipid bilayer of the membrane at high and low pHs. The symmetric, c[(WE)4WC], and asymmetric, c[E4W5C], cyclic peptides translocated amanitin, a polar cargo molecule of similar size, across the lipid bilayer and induced cell death in a pH- and concentration-dependent manner. Fluorescently-labelled peptides were evaluated for targeting of acidic 4T1 mammary tumors in mice. The highest tumor to muscle ratio (5.6) was established for asymmetric cyclic peptide, c[E4W5C], at 24 hours after intravenous administration. pH-insensitive cyclic peptide c[R4W5C], where glutamic acid residues (E) were replaced by positively charged arginine residues (R), did not exhibit tumor targeting. We have introduced a novel class of cyclic peptides, which can be utilized as a new pH-sensitive tool in investigation or targeting of acidic tissue. PMID:27515582

  8. Cyclic depsipeptides as potential cancer therapeutics.

    PubMed

    Kitagaki, Jirouta; Shi, Genbin; Miyauchi, Shizuka; Murakami, Shinya; Yang, Yili

    2015-03-01

    Cyclic depsipeptides are polypeptides in which one or more amino acid is replaced by a hydroxy acid, resulting in the formation of at least one ester bond in the core ring structure. Many natural cyclic depsipeptides possessing intriguing structural and biological properties, including antitumor, antifungal, antiviral, antibacterial, anthelmintic, and anti-inflammatory activities, have been identified from fungi, plants, and marine organisms. In particular, the potent effects of cyclic depsipeptides on tumor cells have led to a number of clinical trials evaluating their potential as chemotherapeutic agents. Although many of the trials have not achieved the desired results, romidepsin (FK228), a bicyclic depsipeptide that inhibits histone deacetylase, has been shown to have clinical efficacy in patients with refractory cutaneous T-cell lymphoma and has received Food and Drug Administration approval for use in treatment. In this review, we discuss antitumor cyclic depsipeptides that have undergone clinical trials and focus on their structural features, mechanisms, potential applications in chemotherapy, and pharmacokinetic and toxicity data. The results of this study indicate that cyclic depsipeptides could be a rich source of new cancer therapeutics. PMID:25419631

  9. Cyclic transformation of orbital angular momentum modes

    NASA Astrophysics Data System (ADS)

    Schlederer, Florian; Krenn, Mario; Fickler, Robert; Malik, Mehul; Zeilinger, Anton

    2016-04-01

    The spatial modes of photons are one realization of a QuDit, a quantum system that is described in a D-dimensional Hilbert space. In order to perform quantum information tasks with QuDits, a general class of D-dimensional unitary transformations is needed. Among these, cyclic transformations are an important special case required in many high-dimensional quantum communication protocols. In this paper, we experimentally demonstrate a cyclic transformation in the high-dimensional space of photonic orbital angular momentum (OAM). Using simple linear optical components, we show a successful four-fold cyclic transformation of OAM modes. Interestingly, our experimental setup was found by a computer algorithm. In addition to the four-cyclic transformation, the algorithm also found extensions to higher-dimensional cycles in a hybrid space of OAM and polarization. Besides being useful for quantum cryptography with QuDits, cyclic transformations are key for the experimental production of high-dimensional maximally entangled Bell-states.

  10. Novel pH-Sensitive Cyclic Peptides.

    PubMed

    Weerakkody, Dhammika; Moshnikova, Anna; El-Sayed, Naglaa Salem; Adochite, Ramona-Cosmina; Slaybaugh, Gregory; Golijanin, Jovana; Tiwari, Rakesh K; Andreev, Oleg A; Parang, Keykavous; Reshetnyak, Yana K

    2016-01-01

    A series of cyclic peptides containing a number of tryptophan (W) and glutamic acid (E) residues were synthesized and evaluated as pH-sensitive agents for targeting of acidic tissue and pH-dependent cytoplasmic delivery of molecules. Biophysical studies revealed the molecular mechanism of peptides action and localization within the lipid bilayer of the membrane at high and low pHs. The symmetric, c[(WE)4WC], and asymmetric, c[E4W5C], cyclic peptides translocated amanitin, a polar cargo molecule of similar size, across the lipid bilayer and induced cell death in a pH- and concentration-dependent manner. Fluorescently-labelled peptides were evaluated for targeting of acidic 4T1 mammary tumors in mice. The highest tumor to muscle ratio (5.6) was established for asymmetric cyclic peptide, c[E4W5C], at 24 hours after intravenous administration. pH-insensitive cyclic peptide c[R4W5C], where glutamic acid residues (E) were replaced by positively charged arginine residues (R), did not exhibit tumor targeting. We have introduced a novel class of cyclic peptides, which can be utilized as a new pH-sensitive tool in investigation or targeting of acidic tissue. PMID:27515582

  11. Visualization of cyclic nucleotide dynamics in neurons

    PubMed Central

    Gorshkov, Kirill; Zhang, Jin

    2014-01-01

    The second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) transduce many neuromodulatory signals from hormones and neurotransmitters into specific functional outputs. Their production, degradation and signaling are spatiotemporally regulated to achieve high specificity in signal transduction. The development of genetically encodable fluorescent biosensors has provided researchers with useful tools to study these versatile second messengers and their downstream effectors with unparalleled spatial and temporal resolution in cultured cells and living animals. In this review, we introduce the general design of these fluorescent biosensors and describe several of them in more detail. Then we discuss a few examples of using cyclic nucleotide fluorescent biosensors to study regulation of neuronal function and finish with a discussion of advances in the field. Although there has been significant progress made in understanding how the specific signaling of cyclic nucleotide second messengers is achieved, the mechanistic details in complex cell types like neurons are only just beginning to surface. Current and future fluorescent protein reporters will be essential to elucidate the role of cyclic nucleotide signaling dynamics in the functions of individual neurons and their networks. PMID:25538560

  12. Further studies on cyclic erythropoiesis in mice

    SciTech Connect

    Gibson, C.M.; Gurney, C.W.; Simmons, E.L.; Gaston, E.O.

    1985-10-01

    When young adult female W/Wv mice are given 0.5 micro+Ci /sup 89/Sr/g body weight intravenously, their hematocrit values oscillate from nadirs of 26% to zeniths of 42% with a periodicity of 16 days. The response of the W/Wv mouse to an assortment of radioactive and hematologic stresses have been examined in an effort to understand better the pathophysiology of cyclic erythropoiesis. When the dose of /sup 89/Sr is increased, the amplitude of cycling increases as nadirs are lowered, but periodicity is unchanged. When the dose of /sup 89/Sr is lowered to 0.3 microCi or less, cyclic erythropoiesis of substantial amplitude is observed only after five or six microoscillations. A single hematopoietic insult of 80 rad x-irradiation coupled with phlebotomy produces a transient form of cyclic erythropoiesis, namely, a series of dampened oscillations prior to recovery. Finally, we report that Wv/Wv mice exhibit a form of cyclic erythropoiesis in response to 0.5 microCi /sup 89/Sr/g body weight, in which the hematocrit values of successive nadirs gradually increase, and stabilize at about 100 days. /sup 89/Sr does not induce cyclic erythropoiesis in the +/+, W/+, or W/v/+ mice, the Hertwig strain of anemic mice, or in normal BDF1 mice.

  13. A Novel Mogi Type True Triaxial Testing Apparatus and Its Use to Obtain Complete Stress-Strain Curves of Hard Rocks

    NASA Astrophysics Data System (ADS)

    Feng, Xia-Ting; Zhang, Xiwei; Kong, R.; Wang, G.

    2016-05-01

    A true triaxial apparatus (TTA) was designed and fabricated at Northeastern University, Shenyang, China, by modifying the original Mogi type testing apparatus to emulate three-dimensional stress paths in deep mining and tunneling excavations. Such an apparatus can be used to investigate deformation and brittle failure behaviors of hard rocks as well as the cause of rockbursts. The novel TTA can capture the post-peak behavior of a 50 × 50 × 100 mm3 specimen. Technical improvements such as a considerable increase of the stiffness of the loading frames were implemented to deal with difficulties in TTA testing. The accuracy of the volume change measurement was improved and a combined pneumatic and hydraulic technique was applied to create a "floating" vertical loading frame. The end friction effect and the loading gap effect were evaluated using a series of tests. Repeatability tests, brittle failure tests in a loading stress path and an unloading stress path (unloading of σ 3) were carried out on granite specimens to verify the performance of the TTA. The test results show that the apparatus achieves its original design goal.

  14. Transition in Failure Mechanism Under Cyclic Creep in 316LN Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Nagesha, A.; Parameswaran, P.; Sandhya, R.; Mathew, M. D.

    2014-06-01

    Cyclic creep behavior of a type 316LN austenitic stainless steel was investigated in the temperature range from 823 K to 923 K (550 °C to 650 °C). A transition from fatigue-dominated to creep-dominated failure mode was observed with an increase in the mean stress. The threshold value of mean stress for the transition was seen to be a strong function of the test temperature. Occurrence of dynamic strain aging proved beneficial owing to a substantial reduction in the strain accumulation during cyclic loading.

  15. Enlarging the ring by incorporating a phosphonate coligand: from the cyclic hexanuclear to octanuclear dysprosium clusters.

    PubMed

    Tian, Haiquan; Bao, Song-Song; Zheng, Li-Min

    2015-08-28

    Solvothermal reaction of a double pyrazinyl hydrazone ligand EDDC(2-) with Dy(OAc)3 results in a cyclic hexanuclear cluster [Dy6(EDDC)2(OAc)14(H2O)2]·MeOH·2H2O (). The addition of 1-naphthylphosphonate to the reaction mixture expands the ring size with the formation of a cyclic octanuclear cluster [Dy8(EDDC)4(O3PC10H7)4(OAc)8(H2O)4]·12H2O (). The latter shows slow magnetization relaxation below 12 K, characteristic of single molecule magnet behavior. PMID:26207786

  16. Cyclic capacity of tubular beam-columns with local buckling: Numerical and experimental studies

    SciTech Connect

    Skallerud, B.; Amdahl, J.; Johansen, A.; Eide, O.I.

    1996-12-31

    The present investigation addresses the cyclic capacity of tubular members subjected to both local and global buckling during cyclic loading. Diameter to thickness ratios of 45 and 60 are studied. The performance of FE models, both a beam model and shell model, is compared to test results in terms of load versus displacement behavior and energy accumulation. Some problems regarding the prediction of local strain histories in the local buckle zone are pointed out. Damage accumulation models in terms of energy per cycle are discussed, aiming at possible member detachment criteria.

  17. Development of a simplified procedure for cyclic structural analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1984-01-01

    Development was extended of a simplified inelastic analysis computer program (ANSYMP) for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects can be calculated on the basis of stress relaxation at constant strain, creep at constant stress, or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials, and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite-element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite-element analysis.

  18. Cyclic and low temperature effects on microcircuits

    NASA Technical Reports Server (NTRS)

    Weissflug, V. A.; Sisul, E. V.

    1977-01-01

    Cyclic temperature and low temperature operating life tests, and pre-/post-life device evaluations were used to determine the degrading effects of thermal environments on microcircuit reliability. Low power transistor-transistor-logic gates and linear devices were included in each test group. Device metallization systems included aluminum metallization/aluminum wire, aluminum metallization/gold wire, and gold metallization/gold wire. Fewer than 2% electrical failures were observed during the cyclic and low temperature life tests and the post-life evaluations revealed approximately 2% bond pull failures. Reconstruction of aluminum die metallization was observed in all devices and the severity of the reconstruction appeared to be directly related to the magnitude of the temperature excursion. All types of bonds except the gold/gold bonds were weakened by exposure to repeated cyclic temperature stress.

  19. Asymmetric catalytic aziridination of cyclic enones.

    PubMed

    De Vincentiis, Francesco; Bencivenni, Giorgio; Pesciaioli, Fabio; Mazzanti, Andrea; Bartoli, Giuseppe; Galzerano, Patrizia; Melchiorre, Paolo

    2010-07-01

    The first catalytic method for the asymmetric aziridination of cyclic enones is described. The presented organocatalytic strategy is based on the use of an easily available organocatalyst that is able to convert a wide range of cyclic enones into the desired aziridines with very high enantiomeric purity and good chemical yield. Such a method may very well open up new opportunities to stereoselectively prepare complex chiral molecules that possess an indane moiety, a framework that is found in a large number of bioactive and pharmaceutically important molecules. PMID:20512797

  20. Perturbations in bouncing and cyclic models

    NASA Astrophysics Data System (ADS)

    Biswas, Tirthabir; Mayes, Riley; Lattyak, Colleen

    2016-03-01

    Being able to reliably track perturbations across bounces and turnarounds in cyclic and bouncing cosmology lies at the heart of being able to compare the predictions of these models with the cosmic microwave background observations. This has been a challenging task due to the unknown nature of the physics involved during the bounce as well as the technical challenge of matching perturbations precisely between the expansion and contraction phases. In this paper, we present some general techniques (analytical and numerical) that can be applied to understand the physics of the fluctuations, especially those with "long" wavelengths, and apply our techniques to nonsingular cosmological models such as the bounce inflation and cyclic inflation.

  1. Vasopressin treatment for cyclic antidepressant overdose.

    PubMed

    Barry, James David; Durkovich, David W; Williams, Saralyn R

    2006-07-01

    Due to neurotransmitter reuptake inhibition, peripheral alpha receptor blocking effects, and sodium channel blockade, severe cyclic antidepressant poisoning may lead to intractable hypotension. We report a case of severe amitriptyline toxicity, with hypotension unresponsive to direct alpha receptor agonists after pH manipulation, but improved with intravenous vasopressin. Vasopressin use in the setting of cyclic antidepressant toxicity has not been previously reported. Vasopressin may be a beneficial agent in the treatment of recalcitrant hypotension associated with poisoning or overdose. The anecdotal nature of this report must be emphasized and the use of vasopressin requires further research to define efficacy, dose, and potential side effects. PMID:16798158

  2. Generalized Coefficients for Hopf Cyclic Cohomology

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Mohammad; Kucerovsky, Dan; Rangipour, Bahram

    2014-09-01

    A category of coefficients for Hopf cyclic cohomology is defined. It is shown that this category has two proper subcategories of which the smallest one is the known category of stable anti Yetter-Drinfeld modules. The middle subcategory is comprised of those coefficients which satisfy a generalized SAYD condition depending on both the Hopf algebra and the (co)algebra in question. Some examples are introduced to show that these three categories are different. It is shown that all components of Hopf cyclic cohomology work well with the new coefficients we have defined.

  3. Cyclical rectal bleeding in colorectal endometriosis.

    PubMed

    Levitt, M D; Hodby, K J; van Merwyk, A J; Glancy, R J

    1989-12-01

    Three case reports of cyclical rectal bleeding in endometriosis affecting rectum and sigmoid colon emphasize the close relationship between such cyclical bleeding and intestinal endometriosis. The cause of bleeding, however, is still unclear. The predilection of endometriotic deposits for the outer layers of the bowel wall suggests that mucosal involvement is not a prerequisite for rectal bleeding. The frequent absence of identifiable intramural haemorrhage casts doubt on the premise that intestinal endometriotic deposits 'menstruate'. The cause may simply be a transient tear in normal mucosa due to swelling of an underlying endometriotic deposit at the time of menstruation. PMID:2597100

  4. Microtensile testing and cyclic deformation of freestanding aluminum thin films

    NASA Astrophysics Data System (ADS)

    Barbosa, Nicholas, III

    2005-07-01

    Although the fatigue properties of bulk materials are well characterized for most materials, the implications of reducing the size scale of cyclically strained members to thicknesses on the order of single grains are not well defined. In this work, the cyclic deformation properties of 1 mum Al thin films are investigated. The fatigue test structures, the uniaxial load frame, the associated electronics, and the data acquisition and control software were all custom designed and fabricated in order to evaluate the monotonic and cyclic properties of thin metallic films. Test structures are 600 mum long x 100 mum wide x 1 mum thick. Monotonic tests were performed at a displacement rate of 5 mum/s and samples were pulled to failure. A value for the Young's modulus of the Al beams was determined to be 63.0 GPa +/- 5.1 GPa. The 0.2% yield stress was found to be 314.3 MPa +/- 45.2 MPa, the ultimate tensile strength was found to be 347.1 MPa +/- 56.3 MPa, and the average elongation was found to be 1.3% +/- 0.5%. Monotonic failures occurred through an oblique fracture. Fatigue tests were performed on the test structures under total strain amplitude control. Samples were fatigue under tension-tension conditions with strain amplitudes from 0.08% to 0.34%. The Al thin films were found to follow a Coffin-Manson relationship with a fatigue ductility coefficient of 0.022 and a fatigue ductility exponent of -0.278. Film fatigue fracture surfaces were similar in nature to bulk tension-tension fatigue, with the presence of slip offsets. The behavior of the 1 mum Al freestanding films, both in the monotonic and fatigue testing, was very similar to the fatigue properties of bulk materials when the significantly smaller sample grain size was considered.

  5. Chromatography under critical conditions: An analogy between functionalized and partially cyclic polymers.

    PubMed

    Gorbunov, Alexei A; Vakhrushev, Andrey V

    2016-07-22

    An analogy is established between functionalized polymers and partially cyclic macromolecules (PCMs) in the liquid chromatography at critical conditions (LCCC). Application of the functionalized chain analogy (FCA) for prediction of the behavior of complex multi-cyclic PCMs in the LCCC mode is demonstrated. By using FCA, we discuss possibilities of LCCC to separate multi-cyclic PCMs by the number of cycles, and with respect to molecular topology. FCA is also extended to describe PCMs with specifically adsorbing groups; this results in a simplified theory of LCCC of functionalized PCMs. By simulating chromatograms of heterogeneous functionalized PCMs at the conditions of LCCC, we show possible dramatic effects of functional groups on the topological separation of PCMs: even the retention order of components may change to opposite. PMID:27324625

  6. The high temperature deformation in cyclic loading of a single crystal nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Welsch, G.

    1989-01-01

    The high temperature cyclic stress softening response of the single crystal nickel-base superalloy PWA 1480 was investigated. Specimens oriented near the 001- and 111-lines were tested at 1050 C in low-cycle fatigue and then microstructurally evaluated. The 001- and 111-line specimens had dissimilar flow behavior in monotonic tensile tests, but comparable softening in low-cycle fatigue. This softening was accompanied by rapid generation of dislocation networks at the gamma-gamma-prime interfaces and by a slower time-dependent coarsening of gamma-prime precipitates. Due to the rapid formation of a dislocation substructure at the gamma-gamma-prime interfaces, the cyclic stress softening could be modeled with an existing theory which related cyclic stress to the evolving microstructure and dislocation structure.

  7. Ratcheting induced cyclic softening behaviour of 42CrMo4 steel

    NASA Astrophysics Data System (ADS)

    Kreethi, R.; Mondal, A. K.; Dutta, K.

    2015-02-01

    Ratcheting is an important field of fatigue deformation which happens under stress controlled cyclic loading of materials. The aim of this investigation is to study the uniaxial ratcheting behavior of 42CrMo4 steel in annealed condition, under various applied stresses. In view of this, stress controlled fatigue tests were carried out at room temperature up to 200 cycles using a servo-hydraulic universal testing machine. The results indicate that accumulation of ratcheting strain increases monotonically with increasing maximum applied stress however; the rate of strain accumulation attains a saturation plateau after few cycles. The investigated steel shows cyclic softening behaviour under the applied stress conditions. The nature of strain accumulation and cyclic softening has been discussed in terms of dislocation distribution and plastic damage incurred in the material.

  8. Regulation of ciliary motility by membrane potential in Paramecium: a role for cyclic AMP.

    PubMed

    Bonini, N M; Gustin, M C; Nelson, D L

    1986-01-01

    The membrane potential of Paramecium controls the frequency and direction of the ciliary beat, thus determining the cell's swimming behavior. Stimuli that hyperpolarize the membrane potential increase the ciliary beat frequency and therefore increase forward swimming speed. We have observed that 1) drugs that elevate intracellular cyclic AMP increased swimming speed 2-3-fold, 2) hyperpolarizing the membrane potential by manipulation of extracellular cations (e.g., K+) induced both a transient increase in, and a higher sustained level of cyclic AMP compared to the control, and 3) the swimming speed of detergent-permeabilized cells in MgATP was stimulated 2-fold by the addition of cyclic AMP. Our results suggest that the membrane potential can regulate intracellular cAMP in Paramecium and that control of swimming speed by membrane potential may in part be mediated by cAMP. PMID:2427226

  9. Finite-element analysis of crack growth under monotonic and cyclic loading

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1977-01-01

    An elastic-plastic (incremental) finite-element analysis, in conjunction with a crack-growth criterion, was used to study crack-growth behavior under monotonic and cyclic loading. The crack-growth criterion was based on crack-tip strain. Whenever the crack-tip strain equals or exceeds a critical strain value, the crack grows. The effects of element-mesh size, critical strain, strain hardening, and specimen type (tension or bending) on crack growth under monotonic loading were investigated. Crack growth under cyclic loading (constant amplitude and simple variable amplitude) were also studied. A combined hardening theory, which incorporates features of both isotropic and kinematic hardening under cyclic loading, was also developed for smooth yield surfaces and was used in the analysis.

  10. Modeling of combined high-temperature creep and cyclic plasticity in components using continuum damage mechanics

    NASA Astrophysics Data System (ADS)

    Dunne, F. P. E.; Hayhurst, D. R.

    1992-06-01

    A computer-based finite-element viscoplastic damage solver is presented to analyze structural components subject to combined cyclic thermal and mechanical loading. The solver is capable of predicting the combined evolution of creep and cyclic plasticity damage by solution of the combined boundary-initial value problem. The solver has been used to predict the high-temperature behavior of a slag tap component subjected to cyclic thermal loading generated by infrared heaters and water cooling ducts. It is found that the initiation of damage and microcracking occur early in the lifetime at about 3000 cycles adjacent to the cooling duct. The propagation of failure zones stabilizes at 60,000 cycles after which no further damage evolution occurs.

  11. A nonlinear CDM model for ductile failure analysis of steel bridge columns under cyclic loading

    NASA Astrophysics Data System (ADS)

    Nguyen Van Do, Vuong; Lee, Chin-Hyung; Chang, Kyong-Ho

    2014-06-01

    A nonlinear cyclic plasticity damage model for ductile metals, which is able to take large deformation effects into consideration, has been developed using a new damage dissipation potential formulation in order to predict the cyclic inelastic behavior of steel bridge piers. The cyclic constitutive equations that employ the combined isotropic-kinematic hardening rule for plastic deformation is incorporated into the damage mechanics in conjunction with the large strain formulation. The damage growth law is based on the experimental observations that the evolution of microvoids results in nonlinear damage accumulation with plastic deformation. The damage model parameters and the procedure for their identification are presented. The proposed model has been validated and successfully applied to thin-walled steel bridge tubular columns subjected to alternating lateral displacements to evaluate the seismic performance.

  12. Nonlinear Inelastic Mechanical Behavior Of Epoxy Resin Polymeric Materials

    NASA Astrophysics Data System (ADS)

    Yekani Fard, Masoud

    Polymer and polymer matrix composites (PMCs) materials are being used extensively in different civil and mechanical engineering applications. The behavior of the epoxy resin polymers under different types of loading conditions has to be understood before the mechanical behavior of Polymer Matrix Composites (PMCs) can be accurately predicted. In many structural applications, PMC structures are subjected to large flexural loadings, examples include repair of structures against earthquake and engine fan cases. Therefore it is important to characterize and model the flexural mechanical behavior of epoxy resin materials. In this thesis, a comprehensive research effort was undertaken combining experiments and theoretical modeling to investigate the mechanical behavior of epoxy resins subject to different loading conditions. Epoxy resin E 863 was tested at different strain rates. Samples with dog-bone geometry were used in the tension tests. Small sized cubic, prismatic, and cylindrical samples were used in compression tests. Flexural tests were conducted on samples with different sizes and loading conditions. Strains were measured using the digital image correlation (DIC) technique, extensometers, strain gauges, and actuators. Effects of triaxiality state of stress were studied. Cubic, prismatic, and cylindrical compression samples undergo stress drop at yield, but it was found that only cubic samples experience strain hardening before failure. Characteristic points of tensile and compressive stress strain relation and load deflection curve in flexure were measured and their variations with strain rate studied. Two different stress strain models were used to investigate the effect of out-of-plane loading on the uniaxial stress strain response of the epoxy resin material. The first model is a strain softening with plastic flow for tension and compression. The influence of softening localization on material behavior was investigated using the DIC system. It was found that

  13. Modeling and numerical simulation of the pseudoelastic behavior of shape memory alloy circular rods under tension torsion combined loading

    NASA Astrophysics Data System (ADS)

    Chung, Jong-Ha; Heo, Jin-Seok; Lee, Jung-Ju

    2006-12-01

    Most research on the behavior of shape memory alloys (SMAs) under tension-torsion combined loading has focused on tubular materials. In contrast to tubular SMAs, SMA rods have unique characteristics. When an SMA rod is twisted, the central region remains elastic while the outer layer undergoes a martensite transformation. The nonlinear stress distribution of an SMA rod through the radial direction gives the SMA rod peculiarities, and this is the primary factor that makes analysis of the stress-strain behavior difficult. The authors suggest a material model that can represent the stress-strain behavior of an SMA rod under tension-torsion combined loading. The proposed model is based on Brinson's phase transformation kinetics and the plastic flow rules. Furthermore, the yield is assumed to be in accordance with the Von Mises criterion and the effect of thermal expansion is not considered. The authors also present some numerical solutions of the proposed model in the context of isothermal strain and stress processes (proportional and nonproportional loading) in the pseudoelastic region. According to simulation results, the stress-strain behavior of an SMA solid rod under biaxial loading differs from that of a thin-walled tube or a rod under one-dimensional loading.

  14. Compartmentalization of cyclic nucleotide signaling: A question of when, where, and why?

    PubMed Central

    Arora, Kavisha; Sinha, Chandrima; Zhang, Weiqiang; Ren, Aixia; Moon, Chang Suk; Yarlagadda, Sunitha; Naren, Anjaparavanda P.

    2013-01-01

    Preciseness of cellular behavior depends upon how an extracellular cue mobilizes a correct orchestra of cellular messengers and effector proteins spatially and temporally. This concept, termed compartmentalization of cellular signaling, is now known to form the molecular basis of many aspects of cellular behavior in health and disease. The cyclic nucleotides cAMP and cGMP are ubiquitous cellular messengers that can be compartmentalized in three ways: first, by their physical containment; second, by formation of multiple protein signaling complexes; and third, by their selective depletion. Compartmentalized cyclic nucleotide signaling is a very prevalent response among all cell types. In order to understand how it becomes relevant to cellular behavior, it is important to know how it is executed in cells to regulate physiological responses and, also, how its execution or dysregulation can lead to a pathophysiological condition, which forms the current scope of the presented review. PMID:23604972

  15. Cyclic unequal error protection codes constructed from cyclic codes of composite length

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1987-01-01

    The distance structure of cyclic codes of composite length was investigated. A lower bound on the minimum distance for this class of codes is derived. In many cases, the lower bound gives the true minimum distance of a code. Then the distance structure of the direct sum of two cyclic codes of composite length were investigated. It was shown that, under certain conditions, the direct-sum code provides two levels of error correcting capability, and hence is a two-level unequal error protection (UEP) code. Finally, a class of two-level UEP cyclic direct-sum codes and a decoding algorithm for a subclass of these codes are presented.

  16. Multiaxial cyclic ratcheting in coiled tubing -- Part 1: Theoretical modeling

    SciTech Connect

    Rolovic, R.; Tipton, S.M.

    2000-04-01

    Coiled tubing is a long, continuous string of steel tubing that is used in the oil well drilling and servicing industry. Bending strains imposed on coiled tubing as it is deployed and retrieved from a well are considerably into the plastic regime and can be as high as 3%. Progressive growth of tubing diameter occurs when tubing is cyclically bent-straightened under constant internal pressure, regardless of the fact that the hoop stress imposed by typical pressure levels is well below the material's yield strength. A new incremental plasticity model is proposed in this study that can predict multiaxial cyclic ratcheting in coiled tubing more accurately than the conventional plasticity models. A new hardening rule is presented based on published experimental observations. The model also implements a new plastic modulus function. The predictions based on the new theory correlate well with experimental results presented in Part 2 of this paper. Some previously unexpected trends in coiled tubing deformation behavior were observed and correctly predicted using the proposed model.

  17. Analysis of hardening behavior of sheet metals by a new simple shear test method taking into account the Bauschinger effect

    NASA Astrophysics Data System (ADS)

    Bang, Sungsik; Rickhey, Felix; Kim, Minsoo; Lee, Hyungyil; Kim, Naksoo

    2013-12-01

    In this study we establish a process to predict hardening behavior considering the Bauschinger effect for zircaloy-4 sheets. When a metal is compressed after tension in forming, the yield strength decreases. For this reason, the Bauschinger effect should be considered in FE simulations of spring-back. We suggested a suitable specimen size and a method for determining the optimum tightening torque for simple shear tests. Shear stress-strain curves are obtained for five materials. We developed a method to convert the shear load-displacement curve to the effective stress-strain curve with FEA. We simulated the simple shear forward/reverse test using the combined isotropic/kinematic hardening model. We also investigated the change of the load-displacement curve by varying the hardening coefficients. We determined the hardening coefficients so that they follow the hardening behavior of zircaloy-4 in experiments.

  18. Growth of Stressed Strains of Four Non-O157 Shiga Toxin-Producing Escherichia coli Serogroups in Five Enrichment Broths.

    PubMed

    Verhaegen, Bavo; De Reu, Koen; Heyndrickx, Marc; Van Damme, Inge; De Zutter, Lieven

    2015-11-01

    The purpose of this study was to evaluate (i) the behavior of several strains of non-O157 Shiga toxin-producing Escherichia coli (STEC) serogroups (O26, O103, O111, and O145) exposed to different stress conditions and (ii) the growth dynamics of stressed and nonstressed non-O157 STEC cells in five enrichment media. STEC strains were exposed to acid, cold, and freeze stresses. Lethal and sublethal injuries were determined by plating in parallel on selective and nonselective agar media. Freeze stress (8 days, 20°C) caused the most lethal (95.3% ± 2.5%) injury, as well as the most sublethal (89.1% ± 8.8%) injury in the surviving population. Growth of stressed and nonstressed pure cultures of non-O157 STEC on modified tryptic soy broth, buffered peptone water (BPW), BPW with sodium pyruvate, Brila, and STEC enrichment broth (SEB) was determined using total viable counts. To compare growth capacities, growth after 7 and 24 h of enrichment was measured; lag phases and maximum growth rates were also calculated. In general, growth on BPW resulted in a short lag phase followed by a high maximum growth rate during the enrichment of all tested strains when using all three stress types. Furthermore, BPW ensured the highest STEC count after 7 h of growth. Supplementing the medium with sodium pyruvate did not improve the growth dynamics. The two selective media, Brila and SEB, were less efficient than BPW, but Brila's enrichment performance was remarkably better than that of SEB. This study shows that irrespective of the effect of background flora, BPW is still recommended for resuscitation of non-O157 STEC. PMID:26555518

  19. An Experimental Test of Phonemic Cyclicity.

    ERIC Educational Resources Information Center

    Gierut, Judith A.

    1996-01-01

    Evaluates the principle of laryngeal-supralaryngeal cyclicity by manipulating the domain cycle and phase relationship of the cycle as independent variables and by monitoring longitudinally the order of emergent phonemic distinctions in the sound systems of seven children with phonological delays as the dependent variable. Findings are discussed.…

  20. One pot solution synthesis of cyclic oligodeoxyribonucleotides.

    PubMed Central

    Capobianco, M L; Carcuro, A; Tondelli, L; Garbesi, A; Bonora, G M

    1990-01-01

    Several cyclic oligodeoxynucleotides with different base composition and size have been prepared from 5',3'-unprotected linear precursors, using a bifunctional phosphorylating reagent. The final deprotected oligomers have been characterized by 1H- and 31P-NMR. The present procedure is particularly useful for millimolar scale syntheses. PMID:2339055