Science.gov

Sample records for cycling absorption process

  1. GAX absorption cycle design process

    SciTech Connect

    Priedeman, D.K.; Christensen, R.N.

    1999-07-01

    This paper presents an absorption system design process that relies on computer simulations that are validated by experimental findings. An ammonia-water absorption heat pump cycle at 3 refrigeration tons (RT) and chillers at 3.3 RT and 5 RT (10.5 kW, 11.6 kW, and 17.6 kW) were initially modeled and then built and tested. The experimental results were used to calibrate both the cycle simulation and the component simulations, yielding computer design routines that could accurately predict component and cycle performance. Each system was a generator-absorber heat exchange (GAX) cycle, and all were sized for residential and light commercial use, where very little absorption equipment is currently used. The specific findings of the 5 RT (17.6 kW) chiller are presented. Modeling incorporated a heat loss from the gas-fired generator and pressure drops in both the evaporator and absorber. Simulation results and experimental findings agreed closely and validated the modeling method and simulation software.

  2. Modelling aging effects on a thermal cycling absorption process column

    SciTech Connect

    Laquerbe, C.; Contreras, S.; Demoment, J.

    2008-07-15

    Palladium coated on alumina is used in hydrogen separation systems operated at CEA/Valduc, and more particularly in Thermal Cycling Absorption Process columns. With such materials, tritium decay is known to induce aging effects which have direct side effects on hydrogen isotopes absorption isotherms. Furthermore in a TCAP column, aging occurs in an heterogeneous way. The possible impacts of these intrinsic material evolutions on the separation performances are investigated here through a numerical approach. (authors)

  3. Recent Advances in SRS on Hydrogen Isotope Separation Using Thermal Cycling Absorption Process

    DOE PAGESBeta

    Xiao, Xin; Sessions, Henry T.; Heung, L. Kit

    2015-02-01

    The recent Thermal Cycling Absorption Process (TCAP) advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10th of the current production system’s footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects and medical isotope production.

  4. Thermal Cycling Absorption Process (TCAP): Instrument and Simulation Development Status at Los Alamos National Laboratory

    SciTech Connect

    Arias, Angela A.; Schmierer, Eric N.; Gettemy, Donald; Howard, David W.; Wermer, Joseph R.; Tuggle, Dale G.

    2005-07-15

    The Thermal Cycling Absorption Process (TCAP) Project at Los Alamos National Laboratory has been a collaborative effort with Savannah River Site to demonstrate the Tube-in-Tube (TnT) column design and to improve TCAP science. TnT TCAP is an alternative design which uses a liquid to thermally cycle the metal hydride packed column. Inert gas displacement tests and deuterium pulse tests have been performed on the TnT TCAP column. The inert gas displacement tests are designed to measure plug flow in the column while the deuterium pulse tests determine the separation ability of the column. A residual gas analyzer measures the gases in the exit stream and the experimental results are compared with pulse test model results.

  5. Recent advances in SRS on hydrogen isotope separation using thermal cycling absorption process

    SciTech Connect

    Xiao, X.; Kit Heung, L.; Sessions, H.T.

    2015-03-15

    TCAP (Thermal Cycling Absorption Process) is a gas chromatograph in principle using palladium in the column packing, but it is unique in the fact that the carrier gas, hydrogen, is being isotopically separated and the system is operated in a semi-continuous manner. TCAP units are used to purify tritium. The recent TCAP advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10 of the current production system's footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects.

  6. Enhanced absorption cycle computer model

    NASA Astrophysics Data System (ADS)

    Grossman, G.; Wilk, M.

    1993-09-01

    Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperature boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorption systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H2O triple-effect cycles, LiCl-H2O solar-powered open absorption cycles, and NH3-H2O single-effect and generator-absorber heat exchange cycles. An appendix contains the user's manual.

  7. Advanced regenerative absorption refrigeration cycles

    DOEpatents

    Dao, Kim

    1990-01-01

    Multi-effect regenerative absorption cycles which provide a high coefficient of performance (COP) at relatively high input temperatures. An absorber-coupled double-effect regenerative cycle (ADR cycle) (10) is provided having a single-effect absorption cycle (SEA cycle) (11) as a topping subcycle and a single-effect regenerative absorption cycle (1R cycle) (12) as a bottoming subcycle. The SEA cycle (11) includes a boiler (13), a condenser (21), an expansion device (28), an evaporator (31), and an absorber (40), all operatively connected together. The 1R cycle (12) includes a multistage boiler (48), a multi-stage resorber (51), a multisection regenerator (49) and also uses the condenser (21), expansion device (28) and evaporator (31) of the SEA topping subcycle (11), all operatively connected together. External heat is applied to the SEA boiler (13) for operation up to about 500 degrees F., with most of the high pressure vapor going to the condenser (21) and evaporator (31) being generated by the regenerator (49). The substantially adiabatic and isothermal functioning of the SER subcycle (12) provides a high COP. For higher input temperatures of up to 700 degrees F., another SEA cycle (111) is used as a topping subcycle, with the absorber (140) of the topping subcycle being heat coupled to the boiler (13) of an ADR cycle (10). The 1R cycle (12) itself is an improvement in that all resorber stages (50b-f) have a portion of their output pumped to boiling conduits (71a-f) through the regenerator (49), which conduits are connected to and at the same pressure as the highest pressure stage (48a) of the 1R multistage boiler (48).

  8. Triple-effect absorption chiller cycles

    SciTech Connect

    DeVault, R.C.; Grossman, G.

    1992-06-01

    Gas-fired absorption chillers are widely used for air-conditioning buildings. Even the highest efficiency double-effect absorption chillers used more primary energy for air-conditioning buildings than the better electric chillers. Two different triple-effect absorption chiller cycles are capable of substantial performance improvement over equivalent double-effect cycles. One cycle uses two condensers and two absorbers to achieve the ``triple effect.`` A second cycle, the Double-Condenser Coupled Triple-Effect, uses three condensers as well as a third condenser subcooler (which exchanges heat with the lowest temperature first-effect generator). These triple-effect absorption cycles have the potential to be as energy efficient (on a primary fuel basis) as the best electric chillers. 19 refs.

  9. Triple-effect absorption chiller cycles

    SciTech Connect

    DeVault, R.C. ); Grossman, G. )

    1992-01-01

    Gas-fired absorption chillers are widely used for air-conditioning buildings. Even the highest efficiency double-effect absorption chillers used more primary energy for air-conditioning buildings than the better electric chillers. Two different triple-effect absorption chiller cycles are capable of substantial performance improvement over equivalent double-effect cycles. One cycle uses two condensers and two absorbers to achieve the triple effect.'' A second cycle, the Double-Condenser Coupled Triple-Effect, uses three condensers as well as a third condenser subcooler (which exchanges heat with the lowest temperature first-effect generator). These triple-effect absorption cycles have the potential to be as energy efficient (on a primary fuel basis) as the best electric chillers. 19 refs.

  10. Enhanced absorption cycle computer model. Final report

    SciTech Connect

    Grossman, G.; Wilk, M.

    1993-09-01

    Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperatures boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorptions systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system`s components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H{sub 2}O triple-effect cycles, LiCl-H{sub 2}O solar-powered open absorption cycles, and NH{sub 3}-H{sub 2}O single-effect and generator-absorber heat exchange cycles. An appendix contains the User`s Manual.

  11. Gas-absorption process

    DOEpatents

    Stephenson, Michael J.; Eby, Robert S.

    1978-01-01

    This invention is an improved gas-absorption process for the recovery of a desired component from a feed-gas mixture containing the same. In the preferred form of the invention, the process operations are conducted in a closed-loop system including a gas-liquid contacting column having upper, intermediate, and lower contacting zones. A liquid absorbent for the desired component is circulated through the loop, being passed downwardly through the column, regenerated, withdrawn from a reboiler, and then recycled to the column. A novel technique is employed to concentrate the desired component in a narrow section of the intermediate zone. This technique comprises maintaining the temperature of the liquid-phase input to the intermediate zone at a sufficiently lower value than that of the gas-phase input to the zone to effect condensation of a major part of the absorbent-vapor upflow to the section. This establishes a steep temperature gradient in the section. The stripping factors below this section are selected to ensure that virtually all of the gases in the downflowing absorbent from the section are desorbed. The stripping factors above the section are selected to ensure re-dissolution of the desired component but not the less-soluble diluent gases. As a result, a peak concentration of the desired component is established in the section, and gas rich in that component can be withdrawn therefrom. The new process provides important advantages. The chief advantage is that the process operations can be conducted in a single column in which the contacting zones operate at essentially the same pressure.

  12. Preformance Analysis of NH3-H2O Absorption Cycle

    NASA Astrophysics Data System (ADS)

    Tsujimori, Atsushi; Ozaki, Eiichi

    Different from H2O-LiBr absorption cycle, it is necessary to have rectifier between generator and condenser in NH3-H2O absorption cycle, because there mixes some steam in refrigerant vapor in the process of regenerating refrigerant from the ammonia strong aqueous solution. And in some case ex. partial load or heating, the efficiency of rectifier might decrease, if the flow rate of refrigerant vapor and ammonia aqueous solution decrease. As a result, steam flow into condenser with ammonia refrigerant vapor, which reduces cycle COPs of cooling and heating. Accordingly in order to evaluate the effect of ammonia concentration in refrigerant for the performance of NH3-H2O absorption heat pump, the simple design approach of modeling condenser and evaporator is introduced in this paper. In the model, the calculation of heat rate in condenser and evaporator was simplified considering the characteristic of NH3-H2O liquid-vapor equilibrium. Then the simulation for cycle perforance based on GAX absorption cycle was made using the efficiency of rectifier that established the ammonia concentration in refrigerant and it was derived that 3 [%] decrease of ammonia concentration in refrigerant induced 15 [%] decrcase of cooling COP and 7 [%] decrease of heating COP and that there existed the most suitable circulation ratio for each ammonia concentration in refrigerant.

  13. Helium process cycle

    DOEpatents

    Ganni, Venkatarao

    2008-08-12

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  14. Helium process cycle

    DOEpatents

    Ganni, Venkatarao

    2007-10-09

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  15. Dilution cycle control for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    A dilution cycle control system for an absorption refrigeration system is disclosed. The control system includes a time delay relay for sensing shutdown of the absorption refrigeration system and for generating a control signal only after expiration of a preselected time period measured from the sensed shutdown of the absorption refrigeration system, during which the absorption refrigeration system is not restarted. A dilution cycle for the absorption refrigeration system is initiated in response to generation of a control signal by the time delay relay. This control system is particularly suitable for use with an absorption refrigeration system which is frequently cycled on and off since the time delay provided by the control system prevents needless dilution of the absorption refrigeration system when the system is turned off for only a short period of time and then is turned back on.

  16. Fundamental Study of Absorption Cycle without Electric Solution Pump

    NASA Astrophysics Data System (ADS)

    Tsujimori, Atsushi; Sato, Kazuo; Nakao, Kazushige; Ohgushi, Tetsuro; Katsuta, Masafumi

    The absorption refrigerant cycle has been used in Japan, as energy shortage problem is more and more serious and environmental protection is of increasing importance. This type of air conditioner and chiller consume less electric power input than the electric one. However, the absorption refrigerator of large cooling capacity consumes some electric power with the required facility. Then in this research, the absorption cycle without the electric solution pump is proposed using a capillary pump and the possibility of making this cycle running using LiBr solution as a working fluid is investigated. As a result, it was found that the absorption cycle could be reached using a capillary wick in the generator to circulate the refrigerant and kept the strong and weak solution low pressure.

  17. Integrated vacuum absorption steam cycle gas separation

    SciTech Connect

    Chen, Shiaguo; Lu, Yonggi; Rostam-Abadi, Massoud

    2011-11-22

    Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

  18. Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology.

    PubMed

    Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R

    2014-07-01

    Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (<10 min) waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows. PMID:24871934

  19. Improving the performance of ammonia-water absorption cycles using salt additives and membranes

    SciTech Connect

    Ibrahim, O.M.; Barnett, S.M.; Balamuru, V.G.

    1997-12-31

    This paper proposes a new design of an ammonia-water absorption refrigeration cycle for low-temperature heat sources such as solar energy and waste heat. The proposed cycle uses a salt additive to shift the chemical equilibrium toward more effective separation of ammonia molecules from aqueous solution (i.e., salting out). Since salt additives can affect all aspects of the absorption cycle, membranes have been chosen to control the flow of ions in the cycle and limit their effects to the generation side. This paper describes an absorption cycle that uses membrane separation processes, such as reverse osmosis, dialysis, and electrodialysis. To optimize the performance of the cycle, however, the membranes and salts must be carefully chosen.

  20. Some heat pump concepts for residual heat utilization. [Absorption-cycle and open-cycle systems

    SciTech Connect

    Perez-Blanco, H.; Chen, F. C.

    1980-01-01

    Large quantities of low temperature heat in the industrial sector are rejected in the cooling water, condensate, and process water streams. While the energy rejected in these streams at temperatures between 40 and 80/sup 0/C amounts to 2.95 x 10/sup 9/ GJ/y, 2.42 x 10/sup 9/ GJ/y of process energy in the form of hot water and steam are needed in the United States. Industrial heat pumps, that recover the low temperature heat energy and upgrade it to a more usable temperature level, may improve the energy supply and demand situation. Two heat activated heat pump concepts - an absorption cycle system and an open cycle system are analyzed from the conceptual systems design and energy savings point of view. The results of the analysis and further research needs are presented.

  1. Cycle Simulation of HotWater Fired Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Esaki, Shuji; Iramina, Kazuyasu; Kobayashi, Takahiro; Ohnou, Masayuki; Kaneko, Toshiyuki; Soga, Takashi

    The design limits were examined to determine the lowest temperature for hot water that can be used as a heat source to drive a hot water fired absorption chiller. Advantage was taken of the fact that the cycle calculation method using the minimum temperature difference is quite effective. This minimum temperature difference was the lower of the two temperature differences used to get the logarithmic mean temperature difference that need to design the evaporator, absorber, condenser and generator in an absorption refrigerator. This report proposes a new solution algorithm employing this minimum temperature difference to make a cycle simulation of the hot water fired absorption chiller. It shows the lowest usable temperature for hot water and makes clear the chilled water and cooling water temperature conditions that can provide the lowest temperature.

  2. Cascade Reverse Osmosis Air Conditioning System: Cascade Reverse Osmosis and the Absorption Osmosis Cycle

    SciTech Connect

    2010-09-01

    BEETIT Project: Battelle is developing a new air conditioning system that uses a cascade reverse osmosis (RO)-based absorption cycle. Analyses show that this new cycle can be as much as 60% more efficient than vapor compression, which is used in 90% of air conditioners. Traditional vapor-compression systems use polluting liquids for a cooling effect. Absorption cycles use benign refrigerants such as water, which is absorbed in a salt solution and pumped as liquid—replacing compression of vapor. The refrigerant is subsequently separated from absorbing salt using heat for re-use in the cooling cycle. Battelle is replacing thermal separation of refrigerant with a more efficient reverse osmosis process. Research has shown that the cycle is possible, but further investment will be needed to reduce the number of cascade reverse osmosis stages and therefore cost.

  3. Waste heat driven absorption refrigeration process and system

    DOEpatents

    Wilkinson, William H.

    1982-01-01

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  4. Cycle Analysis using Exhaust Heat of SOFC and Turbine Combined Cycle by Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Takezawa, Shinya; Wakahara, Kenji; Araki, Takuto; Onda, Kazuo; Nagata, Susumu

    A power generating efficiency of solid oxide fuel cell (SOFC) and gas turbine combined cycle is fairly high. However, the exhaust gas temperature of the combined cycle is still high, about 300°C. So it should be recovered for energy saving, for example, by absorption chiller. The energy demand for refrigeration cooling is recently increasing year by year in Japan. Then, we propose here a cogeneration system by series connection of SOFC, gas turbine and LiBr absorption chiller to convert the exhaust heat to the cooling heat. As a result of cycle analysis of the combined system with 500kW class SOFC, the bottoming single-effect absorption chiller can produce the refrigerating capacity of about 120kW, and the double-effect absorption chiller can produce a little higher refrigerating capacity of about 130kW without any additional fuel. But the double-effect absorption chiller became more expensive and complex than the single-effect chiller.

  5. Gamma ray astrophysics. [emphasizing processes and absorption

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1974-01-01

    Gamma ray production processes are reviewed, including Compton scattering, synchrotron radiation, bremsstrahlung interactions, meson decay, nucleon-antinucleon annihilations, and pion production. Gamma ray absorption mechanisms through interactions with radiation and with matter are discussed, along with redshifts and gamma ray fluxes.

  6. Structural stability of 1100{degree}C heated Pd/k during absorption cycling in protium

    SciTech Connect

    Fisher, I.A.

    1993-03-12

    Pd/k is a hydride forming packing material which is used in the Thermal Cycling Absorption Process (TCAP). Palladium is supported on kieselguhr to create a packing material which will provide adequate void space to prevent excessive pressure drops and flow restrictions. The use of unsupported palladium would result in blockage of columns and clogging of filters due to the small particle size of unsupported palladium hydride powder. During pilot scale demonstrations, it was noted that the Pd/k packing material had degraded causing severe flow restrictions within the TCAP column. A solution to the problem involved the heating of Pd/k at 1,110{degree}C to strengthen the packing material, and render it more resistant to breakdown. The 1, 100{degree}C heated Pd/k has been shown to be more resistant to mechanical breakdown than the Pd/k prior to heat treatment. Two primary modes of Pd/k particle degradation have been identified: mechanical breakdown caused by particle fluidization and degradation caused by absorption/desorption cycling. Absorption/desorption cycling causes the palladium particles within the packing to expanded and contract upon formation and decomposition of the hydride, respectively. This expansion and contraction causes large localized stresses within the packing material, which if these stresses can not be accommodated within the packing will cause the material to crack and degrade. The purpose of this report is to document the results of the absorption/desorption cycling of 1,100{degree}C heated Pd/k and compare these results to the results obtained from the absorption/desorption cycling of Pd/k which had not been heated at 1, 100{degree}C.

  7. Evaluation of absorption cycle for space station environmental control system application

    NASA Technical Reports Server (NTRS)

    Sims, W. H.; Oneill, M. J.; Reid, H. C.; Bisenius, P. M.

    1972-01-01

    The study to evaluate an absorption cycle refrigeration system to provide environmental control for the space stations is reported. A zero-gravity liquid/vapor separator was designed and tested. The results were used to design a light-weight, efficient generator for the absorption refrigeration system. It is concluded that absorption cycle refrigeration is feasible for providing space station environmental control.

  8. Technology development life cycle processes.

    SciTech Connect

    Beck, David Franklin

    2013-05-01

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  9. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system

    NASA Astrophysics Data System (ADS)

    Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.

    2016-02-01

    A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.

  10. A Novel Absorption Cycle for Combined Water Heating, Dehumidification, and Evaporative Cooling

    SciTech Connect

    CHUGH, Devesh; Gluesenkamp, Kyle R; Abdelaziz, Omar; Moghaddam, Saeed

    2014-01-01

    In this study, development of a novel system for combined water heating, dehumidification, and space evaporative cooling is discussed. Ambient water vapor is used as a working fluid in an open system. First, water vapor is absorbed from an air stream into an absorbent solution. The latent heat of absorption is transferred into the process water that cools the absorber. The solution is then regenerated in the desorber, where it is heated by a heating fluid. The water vapor generated in the desorber is condensed and its heat of phase change is transferred to the process water in the condenser. The condensed water can then be used in an evaporative cooling process to cool the dehumidified air exiting the absorber, or it can be drained if primarily dehumidification is desired. Essentially, this open absorption cycle collects space heat and transfers it to process water. This technology is enabled by a membrane-based absorption/desorption process in which the absorbent is constrained by hydrophobic vapor-permeable membranes. Constraining the absorbent film has enabled fabrication of the absorber and desorber in a plate-and-frame configuration. An air stream can flow against the membrane at high speed without entraining the absorbent, which is a challenge in conventional dehumidifiers. Furthermore, the absorption and desorption rates of an absorbent constrained by a membrane are greatly enhanced. Isfahani and Moghaddam (Int. J. Heat Mass Transfer, 2013) demonstrated absorption rates of up to 0.008 kg/m2s in a membrane-based absorber and Isfahani et al. (Int. J. Multiphase Flow, 2013) have reported a desorption rate of 0.01 kg/m2s in a membrane-based desorber. The membrane-based architecture also enables economical small-scale systems, novel cycle configurations, and high efficiencies. The absorber, solution heat exchanger, and desorber are fabricated on a single metal sheet. In addition to the open arrangement and membrane-based architecture, another novel feature of the

  11. A high-efficiency power cycle in which hydrogen is compressed by absorption in metal hydrides.

    PubMed

    Powell, J R; Salzano, F J; Yu, W S; Milau, J S

    1976-07-23

    A high-efficiency power cycle is proposed in which molecular hydrogen gas is used as a working fluid in a regenerative closed Brayton cycle. The hydrogen gas is compressed by an absorption-desorption cycle on metal hydride (FeTiH(x)) beds. Low-temperature solar or geothermal heat (temperature about 100 degrees C) is used for the compression process, and high-temperature fossil fuel or nuclear heat (temperature about 700 degrees C) supplies the expansion work in the turbine. Typically, about 90 percent of the high-temperature heat input is converted to electricity, while about 3 kilowatts of low-temperature heat is required per kilowatt of electrical output. PMID:17745726

  12. Discovery of spontaneous deformation of Pd metal during hydrogen absorption/desorption cycles

    PubMed Central

    Yamazaki, Toshimitsu; Sato, Masaharu; Itoh, Satoshi

    2009-01-01

    A drastic deformation was observed in Pd metal of various shapes after hydrogen absorption and desorption cycles at 150 °C at a gas pressure of 1–5 MPa. All of the phenomena observed indicate that some strong internal force is induced spontaneously during hydrogen absorption/desorption cycles to produce a collective deformation so as to minimize the surface. PMID:19444010

  13. Energy conservation in regenerated chemical absorption processes

    SciTech Connect

    Thompson, R.E.

    1986-01-01

    Energy savings from split-flow design modifications or the installation of absorber intercoolers are quantified for solvent-based separation processes. Absorber-stripper systems that use aqueous monoethanolamine (MEA) or diethanolamine (DEA) to remove CO/sub 2/ or H/sub 2/S from natural gas streams are modeled. Use of split flow in regenerated chemical absorption processes with isothermal columns resulted in energy savings of over 50% for systems with large solute-recovery fractions. The energy savings are a linear function of the logarithm of percent unrecovered solute. Optimal values are found for the flow rate and withdrawal point of the split-flow stream. The optimal design and operating conditions for CO/sub 2/ systems with adiabatic columns are determined by the stripper column; the stripper exhibits a steam-consumption minimum with respect to the total solvent flow rate and the composition of the lean-solvent stream. In contrast, optimal conditions for H/sub 2/S systems are set by the absorber. These absorber-limited systems exhibit a steam consumption minimum for the lowest solvent flow which can achieve the specified solute recovery in the absorber. Absorber intercoolers conserve energy by reducing the solvent flow rate required for a specified solute recovery. The optimal intercooler location is near an acid-gas-to-amine ratio halfway between the same ratios for the lean and rich solvent streams. The intercooler location is near an acid-gas-to-amine ratio halfway between the same ratios for the lean and rich solvent streams. The intercooler is optically sized by equating the absorber-solvent-feed temperature, the absorber-intercooler process-outlet temperature, and the cooling-water effluent temperature.

  14. Space transportation main engine cycle assessment process

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, H. V.; Lyles, G. M.

    1991-01-01

    The Advanced Launch System (ALS) program selection process for a space transportation main engine (STME) power cycle is described in terms of the methodology employed. Low cost, robustness, and high reliability are the primary parameters for engine choice, suggesting simplicity of design and efficient fabrication methods as the crucial characteristics. An evaluation methodology is developed based on the Pugh (1981) process and the King (1989) matrices. The cycle configurations considered are the gas generator (GG), the closed expander, and the open expander. The cycle assessment team determined that the GG cycle is favored by most cycle discriminators, based on an assessment of the characteristics in terms of ALS goals. The lower development risk of the GG-cycle STME is consistent with the goals of the ALS program in terms of reliability and cost efficiency.

  15. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOEpatents

    Cassano, A.A.

    1985-07-02

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

  16. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOEpatents

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  17. Cycle simulation of the low-temperature triple-effect absorption chiller with vapor compression unit

    SciTech Connect

    Kim, J.S.; Lee, H.

    1999-07-01

    The construction of a triple-effect absorption chiller machine using the lithium bromide-water solution as a working fluid is strongly limited by corrosion problems caused by the high generator temperature. In this work, three new cycles having the additional vapor compression units were suggested in order to lower the generator temperature of a triple-effect absorption chiller. Each new cycle has one compressor located at the different position which was used to elevate the pressure of the refrigerant vapor. Computer simulations were carried out in order to examine both the basic triple-effect cycle and three new cycles. All types of triple-effect absorption chiller cycles were found to be able to lower the temperature of high-temperature generator to the more favorable operation range. The COPs of three cycles calculated by considering the additional compressor works showed a small level of decrease or increase compared with that of the basic triple-effect cycle. Consequently, a low-temperature triple-effect absorption chiller can be possibly constructed by adapting one of three new cycles. A great advantage of these new cycles over the basic one is that the conventionally used lithium bromide-water solution can be successfully used as a working fluid without the danger of corrosion.

  18. Operating data on a novel absorption refrigeration cycle. Progress report

    SciTech Connect

    McCluskey, R.J.

    1993-12-23

    This report describes the modifications and repairs made to the 200 ton absorption refrigeration pilot plant since April 1992, when Clarkson University assumed responsibility for it. Current operating problems and the performance of the plant, achieved to date, are detailed. Performance has been limited by small air leaks into the absorption section of the plant and by plugging in a heat exchanger which has limited the flow of purified glycol to the absorber. Nonetheless, the plant has been operated for periods of over eight hours with sustained cooling loads of 40 tons. Chilled water has been produced at a temperature as low as 38 degrees Fahrenheit. The principal leak sources have been pinpointed. Plans are described for achieving plant operation at designed levels.

  19. SIMULATION OF CONTINUOUS-CONTACT SEPARATION PROCESSES: MULTICOMPONENT, ADIABATIC ABSORPTION

    EPA Science Inventory

    A new algorithm has been developed for the steady-state simulation of multicomponent, adiabatic absorption in packed columns. The system of differential model equations that describe the physical absorption process is reduced to algebraic equations by using a finite difference me...

  20. Structural stability of 1100[degree]C heated Pd/k during absorption cycling in protium. [Palladium supported on kieselguhr

    SciTech Connect

    Fisher, I.A.

    1993-03-12

    Pd/k is a hydride forming packing material which is used in the Thermal Cycling Absorption Process (TCAP). Palladium is supported on kieselguhr to create a packing material which will provide adequate void space to prevent excessive pressure drops and flow restrictions. The use of unsupported palladium would result in blockage of columns and clogging of filters due to the small particle size of unsupported palladium hydride powder. During pilot scale demonstrations, it was noted that the Pd/k packing material had degraded causing severe flow restrictions within the TCAP column. A solution to the problem involved the heating of Pd/k at 1,110[degree]C to strengthen the packing material, and render it more resistant to breakdown. The 1, 100[degree]C heated Pd/k has been shown to be more resistant to mechanical breakdown than the Pd/k prior to heat treatment. Two primary modes of Pd/k particle degradation have been identified: mechanical breakdown caused by particle fluidization and degradation caused by absorption/desorption cycling. Absorption/desorption cycling causes the palladium particles within the packing to expanded and contract upon formation and decomposition of the hydride, respectively. This expansion and contraction causes large localized stresses within the packing material, which if these stresses can not be accommodated within the packing will cause the material to crack and degrade. The purpose of this report is to document the results of the absorption/desorption cycling of 1,100[degree]C heated Pd/k and compare these results to the results obtained from the absorption/desorption cycling of Pd/k which had not been heated at 1, 100[degree]C.

  1. Dry process dependency of dupic fuel cycle

    SciTech Connect

    Park, Kwangheon; Whang, Juho; Kim, Yun-goo; Kim, Heemoon

    1996-12-31

    During the Dry Process, volatile and semi-volatile elements are released from the fuel. The effects of these released radioactive nuclides on DUPIC fuel cycle are analyzed from the view-point of radiation hazard, decay beat, and hazard index. Radiation hazard of fresh and spent DUPIC fuel is sensitive to the method of Dry Process. Decay beat of the fuel is also affected. Hazard index turned out not to be dependent on Dry Process.

  2. Thermodynamic modelling of a double-effect LiBr-H2O absorption refrigeration cycle

    NASA Astrophysics Data System (ADS)

    Iranmanesh, A.; Mehrabian, M. A.

    2012-12-01

    The goal of this paper is to estimate the conductance of components required to achieve the approach temperatures, and gain insights into a double-effect absorption chiller using LiBr-H2O solution as the working fluid. An in-house computer program is developed to simulate the cycle. Conductance of all components is evaluated based on the approach temperatures assumed as input parameters. The effect of input data on the cycle performance and the exergetic efficiency are investigated.

  3. Graphical expression of thermodynamic characteristics of absorption process in ammonia-water system

    NASA Astrophysics Data System (ADS)

    Pospíšil, Jiří; Fortelný, Zdeněk

    2012-04-01

    The adiabatic sorption is very interesting phenomenon that occurs when vapor of refrigerant is in contact with unsaturated liquid absorbent-refrigerant mixture and exchange of heat is forbid between the system and an environment. This contribution introduces new auxiliary lines that enable correct position determination of the adiabatic sorption process in the p-T-x diagram of ammoniawater system. The presented auxiliary lines were obtained from common functions for fast calculation of water-ammonia system properties. Absorption cycles designers often utilize p-t-x diagrams of working mixtures for first suggestion of new absorption cycles. The p-t-x diagrams enable fast correct determination of saturate states of liquid (and gaseous) mixtures of refrigerants and absorbents. The working mixture isn't only at saturated state during a real working cycle. If we know pressure and temperature of an unsaturated mixture, exact position determination is possible in the p-t-x diagrams too.

  4. Absorption and emission by atmospheric gases - The physical processes

    NASA Astrophysics Data System (ADS)

    McCartney, E. J.

    This book has been written for those who wish to understand better the processes of absorption and emission and their manifold effects. Persons having such interests or needs are the workers in meteorology, atmospheric physics, aerospace surveillance, and air-pollution control. Introductory ideas and useful facts are presented, taking into account an overview of absorption and emission, the electromagnetic spectrum and its parameters, the quantization of energy, the molecular origins of spectra, and the laws of blackbody radiation. Gas properties are considered along with thermodynamics, molecular kinetics, quantized energy states and population, molecular internal energies, spectra of energy transitions, and parameters of line and band absorption. Attention is given to molecular dipole moments, rotational energy and transitions, vibrational energy and transitions, and absorption and emission data.

  5. Generalized Landauer equation: absorption-controlled diffusion processes.

    PubMed

    Godoy, S; García-Colín, L S; Micenmacher, V

    1999-05-01

    The exact expression of the one-dimensional Boltzmann multiple-scattering coefficients, for the passage of particles through a slab of a given material, is obtained in terms of the single-scattering cross section of the material, including absorption. The remarkable feature of the result is that for multiple scattering in a metal, free from absorption, one recovers the well-known Landauer result for conduction electrons. In the case of particles, such as neutrons, moving through a weak absorbing media, Landuer's formula is modified due to the absorption cross section. For photons, in a strong absorbing media, one recovers the Lambert-Beer equation. In this latter case one may therefore speak of absorption-controlled diffusive processes. PMID:11969603

  6. Development and proof-testing of advanced absorption refrigeration cycle concepts

    SciTech Connect

    Modahl, R.J.; Hayes, F.C. . Applied Unitary/Refrigeration Systems Div.)

    1992-03-01

    The overall objectives of this project are to evaluate, develop, and proof-test advanced absorption refrigeration cycles that are applicable to residential and commercial heat pumps for space conditioning. The heat pump system is to be direct-fired with natural gas and is to use absorption working fluids whose properties are known. Target coefficients of performance (COPs) are 1.6 at 47{degrees}F and 1.2 at 17{degrees} in the heating mode, and 0.7 at 95{degree}F in the cooling mode, including the effect of flue losses. The project is divided into three phases. Phase I entailed the analytical evaluation of advanced cycles and included the selection of preferred concepts for further development. Phase II involves the development and testing of critical components and of a complete laboratory breadboard version of the selected system. Phase III calls for the development of a prototype unit and is contingent on the successful completion of Phase II. This report covers Phase I work on the project. In Phase 1, 24 advanced absorption cycle/fluid combinations were evaluated, and computer models were developed to predict system performance. COP, theoretical pump power, and internal heat exchange were calculated for each system, and these calculations were used as indicators of operating and installed costs in order to rank the relative promise of each system. The highest ranking systems involve the cycle concept of absorber/generator heat exchange, generator heat exchanger/absorber heat exchange, regeneration, and resorption/desorption, in combination with the NH{sub 3}/H{sub 2}O/LiBr ternary absorption fluid mixture or with the NH{sub 3}/H{sub 2}O binary solution. Based upon these conclusions, the recommendation was made to proceed to Phase II, the laboratory breadboard proof-of- concept.

  7. Improvement of the COP of the LiBr-Water Double-Effect Absorption Cycles

    NASA Astrophysics Data System (ADS)

    Shitara, Atsushi

    Prevention of the global warming has called for a great necessity for energy saving. This applies to the improvement of the COP of absorption chiller-heaters. We started the development of the high efficiency gas-fired double-effect absorption chiller-heater using LiBr-H2O to achieve target performance in short or middle term. To maintain marketability, the volume of the high efficiency machine has been set below the equal to the conventional machine. The absorption cycle technology for improving the COP and the element technology for downsizing the machine is necessary in this development. In this study, the former is investigated. In this report, first of all the target performance has been set at cooling COP of 1.35(on HHV), which is 0.35 higher than the COP of 1.0 for conventional machines in the market. This COP of 1.35 is practically close to the maximum limit achievable by double-effect absorption chiller-heater. Next, the design condition of each element to achieve the target performance and the effect of each mean to improve the COP are investigated. Moreover, as a result of comparing the various flows(series, parallel, reverse)to which the each mean is applied, it has been found the optimum cycle is the parallel flow.

  8. Life cycle test of the NOXSO process

    SciTech Connect

    Ma, W.T.; Haslbeck, J.L.; Neal, L.G.

    1990-05-01

    This paper summarizes the data generated by the NOXSO Life Cycle Test Unit (LCTU). The NOXSO process is a dry flue gas treatment system that employs a reusable sorbent. The sorbent consists of sodium carbonate impregnated on a high-surface-area gamma alumina. A fluidized bed of sorbent simultaneously removes SO{sub 2} and NO{sub x} from flue gas at a temperature of 250{degrees}F. The spent sorbent is regenerated for reuse by treatment at high temperature with a reducing gas. This regeneration reduces sorbed sulfur compounds to SO{sub 2}, H{sub 2}S, and elemental sulfur. The SO{sub 2} and H{sub 2}S are then converted to elemental sulfur in a Claus-type reactor. The sulfur produced is a marketable by-product of the process. Absorbed nitrogen oxides are decomposed and evolved on heating the sorbent to regeneration temperature.

  9. Thermodynamic modeling and performance analysis of the variable-temperature heat reservoir absorption heat pump cycle

    NASA Astrophysics Data System (ADS)

    Qin, Xiaoyong; Chen, Lingen; Ge, Yanlin; Sun, Fengrui

    2015-10-01

    For practical absorption heat pump (AHP) plants, not all external heat reservoir heat capacities are infinite. External heat reservoir heat capacity should be an effect factor in modeling and performance analysis of AHP cycles. A variable-temperature heat reservoir AHP cycle is modeled, in which internal working substance is working in four temperature levels and all irreversibility factors are considered. The irreversibility includes heat transfer irreversibility, internal dissipation irreversibility and heat leakage irreversibility. The general equations among coefficient of performance (COP), heating load and some key characteristic parameters are obtained. The general and optimal characteristics are obtained by using numerical calculations. Besides, the influences of heat capacities of heat reservoirs, internal dissipation irreversibility, and heat leakage irreversibility on cycle performance are analyzed. The conclusions can offer some guidelines for design and operation of AHP plants.

  10. APPLICATION OF ABSORPTION SPECTROSCOPY TO ACTINIDE PROCESS ANALYSIS AND MONITORING

    SciTech Connect

    Lascola, R.; Sharma, V.

    2010-06-03

    The characteristic strong colors of aqueous actinide solutions form the basis of analytical techniques for actinides based on absorption spectroscopy. Colorimetric measurements of samples from processing activities have been used for at least half a century. This seemingly mature technology has been recently revitalized by developments in chemometric data analysis. Where reliable measurements could formerly only be obtained under well-defined conditions, modern methods are robust with respect to variations in acidity, concentration of complexants and spectral interferents, and temperature. This paper describes two examples of the use of process absorption spectroscopy for Pu analysis at the Savannah River Site, in Aiken, SC. In one example, custom optical filters allow accurate colorimetric measurements of Pu in a stream with rapid nitric acid variation. The second example demonstrates simultaneous measurement of Pu and U by chemometric treatment of absorption spectra. The paper concludes with a description of the use of these analyzers to supplement existing technologies in nuclear materials monitoring in processing, reprocessing, and storage facilities.

  11. Performance Analysis of the Absorption Refrigeration Cycle using TFE/NMP as a Working Fluid

    NASA Astrophysics Data System (ADS)

    Kato, Masashi; Tsujimori, Atsushi; Nakaguchi, Kentaro; Yabune, Hiroyuki; Akutsu, Toshinosuke; Nakao, Kazusige

    Performance analysis was made for the generator of the absorption refrigeration cycle using TFE/NMP as a working fluid. In this study the dynamic model was constructed. This model includes the heat and mass transfer characteristics in the generator and is able to predict the outlet concentration and the flow rate of the generated refrigerant vapor according to the change of the operating conditions of the absorption refrigeration cycle. The heat transfer in the generator was decided giving the heat transfer coefficient with temperature difference between the heat transfer wall of the generator and the solution. And the mass transfer was decided giving the over-all mass transfer coefficient between the solution bulk flow and the generated refrigerant bubbles. In this study the change of the concentration and the flow rate of the generated refrigerant vapor was mainly calculated when the strong solution flow rate, the generator wall temperature and the generation pressure were dynamically increased in incremental steps. And in starting and stopping the system, the effect of the generative heat transfer coefficient, over-all mass transfer coefficient and the strong solution flow rate were investigated.

  12. Optimization of a solar powered absorption cycle under Abu Dhabi's weather conditions

    SciTech Connect

    Al-Alili, A.; Hwang, Y.; Radermacher, R.; Kubo, I.

    2010-12-15

    In order for the solar absorption air conditioners to become a real alternative to the conventional vapour compression systems, their performance has to be improved and their total cost has to be reduced. A solar powered absorption cycle is modeled using the Transient System Simulation (TRNSYS) program and Typical Meteorological Year 2 data of Abu Dhabi. It uses evacuated tube collectors to drive a 10 kW ammonia-water absorption chiller. Firstly, the system performance and its total cost are optimized separately using single objective optimization algorithms. The design variables considered are: the collector slope, the collector mass flow rate, the collector area and the storage tank volume. The single objective optimization results show that MATLAB global optimization methods agree with the TRNSYS optimizer. Secondly, MATLAB is used to solve a multi-objective optimization problem to improve the system's performance and cost, simultaneously. The optimum designs are presented using Pareto curve and show the potential improvements of the baseline system. (author)

  13. Supercontinuum based absorption spectrometer for cycle-resolved multiparameter measurements in a rapid compression machine.

    PubMed

    Werblinski, Thomas; Kleindienst, Stefan; Engelbrecht, Rainer; Zigan, Lars; Will, Stefan

    2016-06-10

    A broadband supercontinuum (SC) based absorption spectrometer capable of cycle-resolved multiparameter measurements at internal combustion (IC) engine conditions is presented. Three parameters, temperature, pressure and water mole fraction, were extracted from broadband near-infrared H2O absorption spectra, spanning the wavelength-range from 1340 to 1405.5 nm, which exhibits a large number of specific H2O transitions. The spectrometer is based on spatial domain detection and features a near-infrared line scan camera as a detector. Measurements were performed during a compression cycle of a rapid compression machine comprising a pressure and temperature range from 2.5 to 65 bar and 300 to 900 K, respectively. With the new spectrometer, we are for the first time, based on the authors' knowledge, able to perform measurements based on SC radiation over a complete compression and expansion stroke at measurement rates up to 50 kHz. A detailed overview is provided about the best match algorithm between theory and experiments, including parameters from two different spectral databases, namely the Barber-Tennyson database (BT2) and HITRAN2012. The results indicate that spectral broadening effects are not properly described by theory, especially at pressure levels exceeding 20 bar, which culminates in a clear underestimation of the derived pressure data by SC absorption spectroscopy. Nevertheless, temperature can be determined accurately by performing a three-parameter fit based on water mole fraction, temperature, and pressure. In contrast, making use of pressure transducer data as look-up values and varying only temperature and H2O mole fraction to find the best match leads to a clear overestimation of temperature at elevated pressures. PMID:27409013

  14. Absorption process for producing oxygen and nitrogen and solution therefor

    DOEpatents

    Roman, I.C.; Baker, R.W.

    1990-09-25

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible. 1 figure

  15. Absorption process for producing oxygen and nitrogen and solution therefor

    DOEpatents

    Roman, Ian C.

    1984-01-01

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible.

  16. Absorption process for producing oxygen and nitrogen and solution therefor

    DOEpatents

    Roman, Ian C.; Baker, Richard W.

    1990-09-25

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible.

  17. Integrated reactive absorption process for synthesis of fatty esters.

    PubMed

    Kiss, Anton Alexandru; Bildea, Costin Sorin

    2011-01-01

    Reactive separations using green catalysts offer great opportunities for manufacturing fatty esters, involved in specialty chemicals and biodiesel production. Integrating reaction and separation into one unit provides key benefits such as: simplified operation, no waste, reduced capital investment and low operating costs. This work presents a novel heat-integrated reactive absorption process that eliminates all conventional catalyst related operations, efficiently uses the raw materials and equipment, and considerably reduces the energy requirements for biodiesel production--85% lower as compared to the base case. Rigorous simulations based on experimental results were carried out using Aspen Plus and Dynamics. Despite the high degree of integration, the process is well controllable using an efficient control structure proposed in this work. The main results are provided for a plant producing 10 ktpy fatty acid methyl esters from methanol and waste vegetable oil with high free fatty acids content, using sulfated zirconia as solid acid catalyst. PMID:20855198

  18. An examination of the proposition to use membrane transport in an aqueous solution absorption heat pump cycle

    NASA Astrophysics Data System (ADS)

    Yu, J. S.; Haskin, W. L.; Chang, W. S.

    1990-06-01

    A thermal transfer cycle utilizing membrane osmotic transport of water against a pressure rise is investigated from the viewpoint of the operation of a conventional absorption heat pump using an aqueous solution as the working fluid. Physical sorption, similar or equivalent to condensation, of water vapor in the membrane material is considered to be an essential step in the overall process of water transport. The thermal nature of this step during which the heat of sorption similar in amount to the heat of condensation for water vapor must evolve at the evaporator temperature or lower disqualifies the system in performance as a heat pump. Simple flow relations for the aqueous sugar solution are derived under simplifying assumptions. A set of numerical calculations is given as an illustration to show that the inferred steps are well within the limits of thermodynamics.

  19. Intermittent Solar Ammonia Absorption Cycle (ISAAC) refrigeration for lesser developed countries

    NASA Astrophysics Data System (ADS)

    Erickson, Donald C.

    1990-02-01

    The Intermittent Solar Ammonia Absorption Cycle (ISAAC) refrigerator is a solar thermal technology which provides low cost, efficient, reliable ice-making to areas without ready access to electricity. An ISAAC refrigeration system consists of a compound parabolic solar collector, two pressure vessels, a condenser, a cold box or refrigerated space, and simple connective piping -- no moving parts or electrical components. Most parts are simple construction or plumbing grade materials, locally available in many remote areas. This technology has numerous potential benefits in lesser developed countries both by providing a cheap, reliable source of ice, and, since manufacture requires only semi-skilled labor, a source of employment to the local economy. Applications include vaccine storage for health care clinics; fish, meat, and dairy product storage; and personal consumption. Importantly, this technology increases the quality of life for people in lesser developed countries without depleting fossil fuel resources or increasing the release of greenhouse gases such as CO2 and chlorofluorocarbons.

  20. 77 FR 823 - Guidance for Fuel Cycle Facility Change Processes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... Information DG-3037 was published in the Federal Register on July 14, 2011 (76 FR 41527). The public comment... COMMISSION Guidance for Fuel Cycle Facility Change Processes AGENCY: Nuclear Regulatory Commission. ACTION... issuing a new regulatory guide (RG) 3.74, ``Guidance for Fuel Cycle Facility Change Processes.''...

  1. Pion absorption processes. [32 to 74 MeV

    SciTech Connect

    Doss, K G.R.

    1980-04-01

    Proton and deuteron production from low-energy pion absorption in light nuclei leading to discrete and continuum states were measured. The LEP beam line at LAMPF was used with a stack of 8 intrinsic germanium crystals. The proton energy spectra are in general characterized by a broad bump at an energy approximately corresponding to ..pi../sup +/d ..-->.. pp reaction kinematics, suggestive of pion absorption on 2 nucleons. The energy-integrated cross-section for production of deuterons has an angular distribution similar to that for production of protons. The dependence of the total pion absorption cross-section on A is explained using a semi-classical model for pion transport in nuclei. The (..pi../sup +/,p) as well as (..pi../sup +/,d) reactions generally favor transitions involving larger angular momentum transfer to the residual nucleus when states of similar nuclear structure are considered. The low-energy excitation spectra from the (..pi../sup +/,p) reaction are similar to the spectra from (p,d) reaction on /sup 12/C and /sup 13/C. However, a calculation of the (..pi.. = ,p) cross-section using the measured (p,d) reaction with the formulation of Wilkin to relate the two reactions is in moderate disagreement with the measured (..pi../sup +/,p) cross-sections. The excitation spectra from the (..pi../sup +/,p) reaction indicte the importance of two-step processes for the reaction. The (..pi../sup +/,d) reaction leading to the ground state of -- residual nucleus has been seen for /sup 7/Li, /sup 12/C, and /sup 13/C targets. The measured cross section for the /sup 12/C(..pi../sup +/,d)/sup 10/C reaction to the 2/sup +/ state is much higher than that for the ground state. For the case of /sup 18/O, no counts were seen for excitation energy of < 10 MeV, at a sensitivity of approx. 100 nb/sr count. These features indicate a possible failure of the model of Betz and Kerman for the (..pi../sup +/,d) reaction.

  2. Combined heat and mass transfer in absorption processes

    SciTech Connect

    Grossman, G.

    1982-01-01

    The approach to theoretical analysis of the combined heat and mass transfer process taking place in absorption systems is described. The two tranfer phenomena are strongly coupled here. The purpose of the analysis is to relate, quantitatively, the heat and mass transfer coefficients to the physical properties of the working fluids and to the geometry of the system. The preferred configuration is that of a falling film of liquid on a metallic surface which serves to transfer heat from the absorbent in contact with the vapor of the absorbate. The model developed may be solved for laminar, turbulent, or transition flow regimes. The results of the solution describe the development of the thermal and concentration boundary layers and the variation of the temperatures, concentrations, and heat and mass fluxes. These quantities in their normalized, dimensionless form depend on two characteristic parameters of the system: the Lewis number Le and the dimensionless heat of absorption lambda. The length in the direction of flow is normalized with respect to the Peclet number and the film thickness. Heat and mass transfer coefficients for the system were calculated. The Sherwood number for mass transfer from the vapor-liquid interface to the bulk of the film reaches a constant value of 3.63 with fully developed boundary layers for both the adiabatic and constant temperature wall. The Nusselt number for heat transfer from the interface to the bulk reaches under the same conditions values of 3.63 and 2.67 for the adiabatic and constant temperature wall, respectively. The Nusselt number for heat tranfer from the bulk to the wall reaches 1.60.

  3. Sedimentary processes and crustal cycling on Venus

    NASA Technical Reports Server (NTRS)

    Warner, J. L.

    1983-01-01

    Sediment exists on the Venus surface. It is observed in Venera images between outcrops and boulders of sedimentary rocks. Sediment is produced by pyroclastic volcanism and chemical weathering. Chemical weathering is driven by an enhanced activity of water and an elevated surface temperature. Sediment is transported by wind action and lithified by cementration and diagenesis. Cementation may be by carbonate or silica cement; diagenesis may be products of chemical weathering acting as cement, or by compaction and recrystallization of sediment into a texture with interlocking grains. Sediment may be transported from the top of sialic continents (such as Ishtar) to the modal plains where it is deposited, lithified, and integrated into thy local crust. As new layers are added, the bottom of the crust melts and is, in part, returned to the mantle. A steady-state chemical exchange might exist by this mechanism of crustal cycling that links atmosphere, continents, modal plains, and mantle.

  4. First Cycle Processing of Gaia data

    NASA Astrophysics Data System (ADS)

    Castañeda, J.; Fabricius, C.; Torra, J.; Clotet, M.; González, J.; Garralda, N.; Portell, J.

    2015-05-01

    The data reduction is an integral and critical part of the Gaia mission to provide the unprecedented positional and velocity measurements of more than 1 billion stars of our Galaxy. After developing the Initial Data Treatment system, currently processing the raw data arriving from the satellite in near-real-time, we are now focused on the development of the Intermediate Data Updating system, which is in charge of the recalibration of the instrument response and the refinement of the image parameters and cross-match by running on the complete set of raw data, once or twice a year during the mission. Such massive re-processing needs a super-computer such as MareNostrum, where it is planned to run the system. In this paper we outline the iterative data reduction approach adopted in Gaia, describing the main systems involved and their roles in the cyclic data processing required for the first Gaia Catalogue release.

  5. Developments in absorptive glass mat separators for cycling applications and 36 V lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Toniazzo, V.; Lambert, U.

    The major markets for valve-regulated lead-acid (VRLA) batteries are undergoing a radical upheaval. In particular, the telecommunications industry requires more reliable power supplies, and the familiar 12 V electrical system in cars will probably be soon replaced by a 36/42 V system, or by other electrical systems if part of the automotive market is taken over by hybrid electrical vehicles (HEVs). In order to meet these new challenges and enable VRLA batteries to provide a satisfactory life in float and cycling applications in the telecommunication field, or in the high-rate-partial-state-of-charge service required by both 36/42 V automobiles and HEVs, the lead-acid battery industry has to improve substantially the quality of present VRLA batteries based on absorptive glass mat (AGM) technology. Therefore, manufacturing steps and cell components have to be optimized, especially AGM separators as these are key components for better production yields and battery performance. This paper shows how the optimal segregation of the coarse and fine fibres in an AGM separator structure can improve greatly the properties of the material. The superior capillarity, springiness and mechanical properties of the 100% glass Amerglass multilayer separator compared with commercial monolayer counterparts with the same specific surface-area is highlighted.

  6. Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids.

    PubMed

    Ferrebee, Courtney B; Dawson, Paul A

    2015-03-01

    The classical functions of bile acids include acting as detergents to facilitate the digestion and absorption of nutrients in the gut. In addition, bile acids also act as signaling molecules to regulate glucose homeostasis, lipid metabolism and energy expenditure. The signaling potential of bile acids in compartments such as the systemic circulation is regulated in part by an efficient enterohepatic circulation that functions to conserve and channel the pool of bile acids within the intestinal and hepatobiliary compartments. Changes in hepatobiliary and intestinal bile acid transport can alter the composition, size, and distribution of the bile acid pool. These alterations in turn can have significant effects on bile acid signaling and their downstream metabolic targets. This review discusses recent advances in our understanding of the inter-relationship between the enterohepatic cycling of bile acids and the metabolic consequences of signaling via bile acid-activated receptors, such as farnesoid X nuclear receptor (FXR) and the G-protein-coupled bile acid receptor (TGR5). PMID:26579438

  7. Course Development Cycle Time: A Framework for Continuous Process Improvement.

    ERIC Educational Resources Information Center

    Lake, Erinn

    2003-01-01

    Details Edinboro University's efforts to reduce the extended cycle time required to develop new courses and programs. Describes a collaborative process improvement framework, illustrated data findings, the team's recommendations for improvement, and the outcomes of those recommendations. (EV)

  8. Learner Performance Accounting: A Tri-Cycle Process

    ERIC Educational Resources Information Center

    Brown, Thomas C.; McCleary, Lloyd E.

    1973-01-01

    The Tri-Cycle Process described in the model permits for the first time an integrated system for designing an individualized instructional system that would permit a rational, diagnosis-prescription-evaluation system keyed to an accounting system. (Author)

  9. Life cycle costs for chemical process pumps

    SciTech Connect

    Urwin, B.; Blong, R.; Jamieson, C.; Erickson, B.

    1998-01-01

    Though construction and startup costs are always a concern, proper investment in equipment and installation will save money down the line. This is particularly important for heavily used items, such as centrifugal pumps, one of the workhouses of the chemical process industries (CPI). By properly sizing and installing a centrifugal pump, the life and efficiency of the pump can be increased. At the same time, maintenance costs can be reduced. When considering a new pump, there are several areas that require attention. The first is the baseplate design. The impeller is another area of concern. The seal chamber, the third area of importance, must be designed for proper heat dissipation and lubrication of seal faces. Lastly, the power end must be considered. Optimum bearing life, effective oil cooling and minimum shaft deflection are all vital. The paper discusses installation costs, operating cost, maintenance cost, seal environment, and extended bearing life.

  10. Development and Evaluation of a Novel Integrated Vacuum Carbonate Absorption Process

    SciTech Connect

    Lu, Yongqi; Rostam-Abadi, Massoud; Ye, Xinhuai; Zhang, Shihan; Ruhter, David; Khodayari, Arezoo; Rood, Mark

    2012-04-30

    This project was aimed at obtaining process engineering and scale-up data at a laboratory scale to investigate the technical and economic feasibility of a patented post-combustion carbon dioxide (CO{sub 2}) capture process?the Integrated Vacuum Carbonate Absorption Process (IVCAP). Unique features of the IVCAP include its ability to be fully-integrated with the power plant?s steam cycle and potential for combined sulfur dioxide (SO{sub 2}) removal and CO{sub 2} capture. Theoretical and experimental studies of this project were aimed at answering three major technical questions: 1) What additives can effectively reduce the water vapor saturation pressure and energy requirement for water vaporization in the vacuum stripper of the IVCAP? 2) What catalysts can promote CO{sub 2} absorption into the potassium carbonate (PC) solution to achieve an overall absorption rate comparable to monoethanolamine (MEA) and are the catalysts stable at the IVCAP conditions and in the flue gas environment? 3) Are any process modifications needed to combine SO{sub 2} and CO{sub 2} removal in the IVCAP? Lab-scale experiments and thermodynamic and process simulation studies performed to obtain detailed information pertinent to the above three technical questions produced the following results: 1) Two additives were identified that lower the saturation pressure of water vapor over the PC solution by about 20%. 2) The carbonic anhydrase (CA) enzyme was identified as the most effective catalyst for promoting CO{sub 2} absorption. The absorption rate into the CO{sub 2}-lean PC solution promoted with 300 mg/L CA was several times slower than the corresponding 5 M MEA solution, but absorption into the CO{sub 2}-rich PC solution was comparable to the CO{sub 2}-rich MEA solution. The tested CA enzymes demonstrated excellent resistance to major flue gas impurities. A technical-grade CA enzyme was stable at 40{degrees}C (104{degrees}F) over a six-month test period, while its half-life was about two

  11. Development and proof-testing of advanced absorption refrigeration cycle concepts. Report on Phases 1 and 1A

    SciTech Connect

    Modahl, R.J.; Hayes, F.C.

    1992-03-01

    The overall objectives of this project are to evaluate, develop, and proof-test advanced absorption refrigeration cycles that are applicable to residential and commercial heat pumps for space conditioning. The heat pump system is to be direct-fired with natural gas and is to use absorption working fluids whose properties are known. Target coefficients of performance (COPs) are 1.6 at 47{degrees}F and 1.2 at 17{degrees} in the heating mode, and 0.7 at 95{degree}F in the cooling mode, including the effect of flue losses. The project is divided into three phases. Phase I entailed the analytical evaluation of advanced cycles and included the selection of preferred concepts for further development. Phase II involves the development and testing of critical components and of a complete laboratory breadboard version of the selected system. Phase III calls for the development of a prototype unit and is contingent on the successful completion of Phase II. This report covers Phase I work on the project. In Phase 1, 24 advanced absorption cycle/fluid combinations were evaluated, and computer models were developed to predict system performance. COP, theoretical pump power, and internal heat exchange were calculated for each system, and these calculations were used as indicators of operating and installed costs in order to rank the relative promise of each system. The highest ranking systems involve the cycle concept of absorber/generator heat exchange, generator heat exchanger/absorber heat exchange, regeneration, and resorption/desorption, in combination with the NH{sub 3}/H{sub 2}O/LiBr ternary absorption fluid mixture or with the NH{sub 3}/H{sub 2}O binary solution. Based upon these conclusions, the recommendation was made to proceed to Phase II, the laboratory breadboard proof-of- concept.

  12. Economic feasibility and performance study of a solar-powered absorption cycle using some aqueous salt solutions

    SciTech Connect

    Malik, I.H.; Siddiqui, M.A.

    1997-02-01

    Economic analyses of solar collectors, for optimizing generator temperatures in the absorption cycle using aqueous solutions of LiBr, LiBr-ZnBr{sub 2}, LiBr-ZnBr{sub 2}-LiCl, and LiBr-ZnCl{sub 2}-CaBr{sub 2} salts, have been carried out for a wide range of the operating conditions. Ordinary collectors with two glass covers and evacuated-tubular collectors have been selected as the sources of energy for providing hot liquid in the generator of the absorption cycle. Of the four solutions, as the working fluids in the absorption cycles, those having better coefficients of performance are the LiBr/H{sub 2}O at the low evaporator temperatures, and the (LiBr-ZnBr{sub 2}-LiCl)/H{sub 2}O as well as the (LiBr-ZnCl{sub 2}-CaBr{sub 2})/H{sub 2}O at the high evaporator temperatures. Similarly, costs of the solar collectors are low, at low evaporation temperatures for the LiBr/H{sub 2}O and at high temperatures for the other two solutions: the (LiBr-ZnBr{sub 2})/H{sub 2}O, on the other hand, have relatively low COP and high operating costs.

  13. Method for processing seismic data to identify anomalous absorption zones

    DOEpatents

    Taner, M. Turhan

    2006-01-03

    A method is disclosed for identifying zones anomalously absorptive of seismic energy. The method includes jointly time-frequency decomposing seismic traces, low frequency bandpass filtering the decomposed traces to determine a general trend of mean frequency and bandwidth of the seismic traces, and high frequency bandpass filtering the decomposed traces to determine local variations in the mean frequency and bandwidth of the seismic traces. Anomalous zones are determined where there is difference between the general trend and the local variations.

  14. The TMIS life-cycle process document, revision A

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Technical and Management Information System (TMIS) Life-Cycle Process Document describes the processes that shall be followed in the definition, design, development, test, deployment, and operation of all TMIS products and data base applications. This document is a roll out of TMIS Standards Document (SSP 30546). The purpose of this document is to define the life cycle methodology that the developers of all products and data base applications and any subsequent modifications shall follow. Included in this methodology are descriptions of the tasks, deliverables, reviews, and approvals that are required before a product or data base application is accepted in the TMIS environment.

  15. The effect of using a heat recovery absorber on the performance and operating cost of the solar ammonia absorption cycles

    SciTech Connect

    Saghiruddin; Siddiqui, M.A.

    1997-02-01

    Economic analysis of ordinary and evacuated tubular type flat-plate collectors have been carried out for operating absorption cycles with and without heat recovery absorber. Water-ammonia, NaSCN-NH{sub 3} and LiNO{sub 3}-NH{sub 3} have been selected as the working fluids in the cycles. Use of a heat recovery absorber, in addition to the primary absorber in the conventional absorption cycles, lead to improvement in the system performances by about 20--30% in the H{sub 2}O-NH{sub 3} and 33--36% in the NaSCN-NH{sub 3} and LiNO{sub 3}-NH{sub 3} mixtures. Subsequently, there is a considerable amount of reduction in the cost of the solar collector required to operate them. For the set of operating conditions, in this theoretical study, the cost reduces to about 25% in the H{sub 2}O-NH{sub 3} and 30% in the NaSCN and LiNO{sub 3}-NH{sub 3} cycles.

  16. Reducing Design Cycle Time and Cost Through Process Resequencing

    NASA Technical Reports Server (NTRS)

    Rogers, James L.

    2004-01-01

    In today's competitive environment, companies are under enormous pressure to reduce the time and cost of their design cycle. One method for reducing both time and cost is to develop an understanding of the flow of the design processes and the effects of the iterative subcycles that are found in complex design projects. Once these aspects are understood, the design manager can make decisions that take advantage of decomposition, concurrent engineering, and parallel processing techniques to reduce the total time and the total cost of the design cycle. One software tool that can aid in this decision-making process is the Design Manager's Aid for Intelligent Decomposition (DeMAID). The DeMAID software minimizes the feedback couplings that create iterative subcycles, groups processes into iterative subcycles, and decomposes the subcycles into a hierarchical structure. The real benefits of producing the best design in the least time and at a minimum cost are obtained from sequencing the processes in the subcycles.

  17. Equatorial ionospheric absorption during half a solar cycle (1964-1970)

    NASA Technical Reports Server (NTRS)

    Gnanalingam, S.

    1972-01-01

    An extensive series of vertical incidence absorption measurements made at an equatorial station is analyzed in detail for a better understanding of the lower ionosphere. A quantitive empirical relationship is derived between absorption and 1 to 8 A solar flux for moderate levels of solar activity. It is shown that the threshold flux for D region modification, at a solar zenith angle of 10 deg, is approximately 0.0005 erg/sq/cm/sec. Attention is drawn to the incidence of days of high absorption even in the absence of solar X-ray activity. Available evidence points to variability of the order of 10 to 40% in the intensity of the solar Lyman alpha radiation as the most likely cause of these unusual, though infrequent, enhancements in absorption.

  18. Characteristics of mercury cycling in the cement production process.

    PubMed

    Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Wu, Qingru; Hao, Jiming

    2016-01-25

    The mercury cycling caused by dust shuttling significantly increases the atmospheric emissions from cement production. A comprehensive understanding of this mercury cycling can promote the development of mercury emission control technologies. In this study, the characteristics of mercury cycling in the cement production process were first investigated. Furthermore, the mercury enrichment and effects of dust treatment were evaluated based on the field tests conducted in two Chinese cement plants. The mercury cycling between the kiln system and the raw mill system was the most important aspect and contributed 57-73% to the total amount of mercury emitted from the kiln system. Mercury emitted from the kiln system with flue gas was enriched as high as 3.4-8.8 times in the two tested plants compared to the amount of mercury in the raw materials and coal due to mercury cycling. The mercury enrichment can be significantly affected by the proportion of mercury cycled back to the kiln system. The effects of dust treatment were evaluated, and dust treatment can efficiently reduce approximately 31-70% of atmospheric mercury emissions in the two plants. The reduction proportion approximately linearly decreased with the proportion of mercury removed from the collected dust. PMID:26448491

  19. 76 FR 44049 - Guidance for Fuel Cycle Facility Change Processes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... COMMISSION Guidance for Fuel Cycle Facility Change Processes AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; extension of comment period. SUMMARY: On July 14, 2011 (76 FR 41527), the U.S...: Richard.Jervey@nrc.gov . SUPPLEMENTARY INFORMATION: On July 14, 2011 (76 FR 41527), the NRC published...

  20. The absorption process for heating, cooling and energy storage - An historical survey

    NASA Astrophysics Data System (ADS)

    Bjurstrom, H.; Raldow, W.

    1981-03-01

    A historical overview of the absorption process is given and a wide range of applications, from household refrigerators and air conditioners to topping processes in power plants, are surveyed in historical perspective. The production of mechanical energy and open systems are also included. The current development of the absorption process is sketched out and special attention is given to the aspects of thermal energy storage.

  1. Photochromic cycle of 2'-hydroxyacetophenone azine studied by absorption and emission spectroscopy in different solvents

    NASA Astrophysics Data System (ADS)

    Filipczak, Katarzyna; Karolczak, Jerzy; Lipkowski, Pawel; Filarowski, Aleksander; Ziółek, Marcin

    2013-09-01

    This paper reports on the investigations of the synthesized di-(o-hydroxyaryl ketoimine) compound by the steady state absorption and emission techniques as well as picosecond time resolved emission and femtosecond transient absorption methods in different solvents. The results of the experimental observation have been supported by the theoretical DFT and TD-DFT calculations. The theoretical data have revealed the completed influence of the environmental polarity on particular conformers of studied compound. Dependencies between the activation rate constant and polarizability function as well as Kamlet-Abbond-Taft hydrogen-bonding parameter have been obtained in different solvent. The mechanism of photodynamic changes of di-(o-hydroxyaryl ketoimine) is presented.

  2. Study on High Efficient Absorption Refrigerator Using Multi-effect Cycle

    NASA Astrophysics Data System (ADS)

    Inoue, Naoyuki; Irie, Tomoyoshi; Saito, Kiyoshi; Kawai, Sunao

    Double effect chillers are commonly used as cooling machines for air condition. Great efforts have been making to improve the efficiency for a long time, and now the COP is very near to the limitation of double effect cycles. Triple effect cycles are expected for the next step beyond double effect cycles, but have some problems of high temperature and high pressure in the high stage generator. High temperature of absorbent causes corrosion problem and high vapor pressure over atmospheric pressure causes the restriction of legal regulation. This paper deals with many types of triple effect cycles. The temperature and dew point of the high stage generator are analyzed, several types are selected for low dew point, and one of them is more analyzed in detail.

  3. Characterization of the relationship of the cure cycle chemistry to cure cycle processing properties

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D. E.

    1986-01-01

    Dynamic Dielectric measurements made over a wide range of frequency provide a sensitive and convenient means for monitoring the cure process in thermosets and thermoplastics. The measurement of dielectric relaxation is one of only a few instrumental techniques available for studying molecular properties in both the liquid and solid states. Furthermore, it is probably the only convenient experimental technique for studying the polymerization process of going from a monomeric liquid of varying viscosity to a crosslinked, insoluble, high temperature solid. The objective of the research is to develop on-line dielectric instrumentation for quantitative nondestructive material evaluation and closed loop smart cure cycle control. The key is to relate the chemistry of the cure cycle process to the dielectric properties of the polymer system by correlating the time, temperature, and frequency dependent dielectric measurements with chemical characterization measurements. Measurement of the wide variation in magnitude of the complex permittivity with both frequency and state of cure, coupled with chemical characterization work, have been shown in the laboratory to have the potential to determine: resin quality, composition and age; cure cycle window boundaries; onset of flow and point of maximum flow; extent of and completion of reaction; evolution of volatiles; T sub g; and, crosslinking and molecular weight buildup.

  4. LSA silicon material task closed-cycle process development

    NASA Technical Reports Server (NTRS)

    Roques, R. A.; Wakefield, G. F.; Blocher, J. M., Jr.; Browning, M. F.; Wilson, W.

    1979-01-01

    The initial effort on feasibility of the closed cycle process was begun with the design of the two major items of untested equipment, the silicon tetrachloride by product converter and the rotary drum reactor for deposition of silicon from trichlorosilane. The design criteria of the initial laboratory equipment included consideration of the reaction chemistry, thermodynamics, and other technical factors. Design and construction of the laboratory equipment was completed. Preliminary silicon tetrachloride conversion experiments confirmed the expected high yield of trichlorosilane, up to 98 percent of theoretical conversion. A preliminary solar-grade polysilicon cost estimate, including capital costs considered extremely conservative, of $6.91/kg supports the potential of this approach to achieve the cost goal. The closed cycle process appears to have a very likely potential to achieve LSA goals.

  5. Calculation tool for transported geothermal energy using two-step absorption process

    DOE Data Explorer

    Kyle Gluesenkamp

    2016-02-01

    This spreadsheet allows the user to calculate parameters relevant to techno-economic performance of a two-step absorption process to transport low temperature geothermal heat some distance (1-20 miles) for use in building air conditioning. The parameters included are (1) energy density of aqueous LiBr and LiCl solutions, (2) transportation cost of trucking solution, and (3) equipment cost for the required chillers and cooling towers in the two-step absorption approach. More information is available in the included public report: "A Technical and Economic Analysis of an Innovative Two-Step Absorption System for Utilizing Low-Temperature Geothermal Resources to Condition Commercial Buildings"

  6. Processes linking the hydrological cycle and the atmospheric radiative budget

    NASA Astrophysics Data System (ADS)

    Fueglistaler, Stephan; Dinh, Tra

    2016-04-01

    We study the response of the strength of the global hydrological cycle to changes in carbon dioxide (CO2) using the HiRAM General Circulation Model developed at the Geophysical Fluid Dynamics Laboratory (GFDL), with the objective to better connect the well-known energetic constraints to physical processes. We find that idealized model setups using a global slab ocean and annual mean insolation give similar scalings as coupled atmosphere-ocean models with realistic land and topography. Using the surface temperatures from the slab ocean runs, we analyse the response in the atmospheric state and hydrological cycle separately for a change in CO2 (but fixed surface temperature), and for a change in surface temperature (but fixed CO2). The former perturbation is also referred to as the "fast" response, whereas the latter is commonly used to diagnose a model's climate sensitivity. As expected from the perspective of the atmospheric radiative budget, an increase in CO2 at fixed surface temperature decreases the strength of the hydrological cycle, and an increase in surface temperature increases the strength of the hydrological cycle. However, the physical processes that connect the atmospheric radiative energy budget to the sensible and latent heat fluxes at the surface remain not well understood. The responses to the two perturbations are linearly additive, and we find that the experiment with fixed surface temperature and changes in CO2 is of great relevance to understanding the total response. This result points to the importance of local radiative heating rate changes rather than just the net atmospheric radiative loss of energy. Although larger in magnitude, the response to changes in surface temperature is dominated by the temperature dependence of the water vapor pressure, but in both cases changes in near-surface relative humidity are very important.

  7. Multistability, chains, and cycles in optical multiwave mixing processes.

    PubMed

    Cohen, M S; Julian, W H

    1990-12-10

    We exhibit the information processing capabilities of the first few terms that arise in the amplitude expansion for resonant scattering in a medium with a delay nonlinearity (generalized volume hologram). We begin by showing how the physics of intensity dependent charge transport near a two-photon resonance gives both delayed quadratic and quartic nonlinearities. After reviewing the utility for matrix associative memories exhibited by the delayed quadratic nonlinearity (the ordinary Gabor hologram), we examine the role of the quartic nonlinearity, which is a fourth rank tensor. The symmetries of this tensor determine the information processing capabilities (via multilinear correlations) of the medium in an optical computing paradigm. We find multiple basins of stability, Jordan strings, and cycles as possible dynamic behaviors for the medium. We indicate how each corresponds to an information processing task: multiple basins to multiassociative memory, Jordan strings and cycles to chain and sequence memory and to group-invariant pattern recognition. We briefly indicate how branching processes may be implemented by the fourth rank mode-coupling tensor. PMID:20577548

  8. Research on filling process of fuel and oxidant during detonation based on absorption spectrum technology

    NASA Astrophysics Data System (ADS)

    Lv, Xiao-Jing; Li, Ning; Weng, Chun-Sheng

    2014-12-01

    Research on detonation process is of great significance for the control optimization of pulse detonation engine. Based on absorption spectrum technology, the filling process of fresh fuel and oxidant during detonation is researched. As one of the most important products, H2O is selected as the target of detonation diagnosis. Fiber distributed detonation test system is designed to enable the detonation diagnosis under adverse conditions in detonation process. The test system is verified to be reliable. Laser signals at different working frequency (5Hz, 10Hz and 20Hz) are detected. Change of relative laser intensity in one detonation circle is analyzed. The duration of filling process is inferred from the change of laser intensity, which is about 100~110ms. The peak of absorption spectrum is used to present the concentration of H2O during the filling process of fresh fuel and oxidant. Absorption spectrum is calculated, and the change of absorption peak is analyzed. Duration of filling process calculated with absorption peak consisted with the result inferred from the change of relative laser intensity. The pulse detonation engine worked normally and obtained the maximum thrust at 10Hz under experiment conditions. The results are verified through H2O gas concentration monitoring during detonation.

  9. Analysis of Cryogenic Cycle with Process Modeling Tool: Aspen HYSYS

    NASA Astrophysics Data System (ADS)

    Joshi, D. M.; Patel, H. K.

    2015-10-01

    Cryogenic engineering deals with the development and improvement of low temperature techniques, processes and equipment. A process simulator such as Aspen HYSYS, for the design, analysis, and optimization of process plants, has features that accommodate the special requirements and therefore can be used to simulate most cryogenic liquefaction and refrigeration processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Cryogenic processes require special attention in terms of the integration of various components like heat exchangers, Joule-Thompson Valve, Turbo expander and Compressor. Here, Aspen HYSYS, a process modeling tool, is used to understand the behavior of the complete plant. This paper presents the analysis of an air liquefaction plant based on the Linde cryogenic cycle, performed using the Aspen HYSYS process modeling tool. It covers the technique used to find the optimum values for getting the maximum liquefaction of the plant considering different constraints of other parameters. The analysis result so obtained gives clear idea in deciding various parameter values before implementation of the actual plant in the field. It also gives an idea about the productivity and profitability of the given configuration plant which leads to the design of an efficient productive plant.

  10. SAFEGUARDS EXPERIENCE ON THE DUPIC FUEL CYCLE PROCESS

    SciTech Connect

    J. HONG; H. KIM; ET AL

    2001-02-01

    Safeguards have been applied to the R and D process for directly fabricating CANDU fuel with PWR spent fuel material. Safeguards issues to be resolved were identified in the areas such as international cooperation on handling foreign origin nuclear material, technology development of operator's measurement system of the bulk handling process of spent fuel material, and a built-in C/S system for independent verification of material flow. The fuel cycle concept (Direct Use of PWR spent fuel in CANDU, DUPIC) was developed in consideration of reutilization of over-flowing spent fuel resources at PWR sites and a reduction of generated high level wastes. All those safeguards issues have been finally resolved, and the first batch of PWR spent fuel material was successfully introduced in the DUPIC lab facility and has been in use for routine process development.

  11. Confined optical-phonon-assisted cyclotron resonance in quantum wells via two-photon absorption process

    NASA Astrophysics Data System (ADS)

    Phuc, Huynh Vinh; Hien, Nguyen Dinh; Dinh, Le; Phong, Tran Cong

    2016-06-01

    The effect of confined phonons on the phonon-assisted cyclotron resonance (PACR) via both one and two photon absorption processes in a quantum well is theoretically studied. We consider cases when electrons are scattered by confined optical phonons described by the Fuchs-Kliewer slab, Ridley's guided, and Huang-Zhu models. The analytical expression of the magneto-optical absorption coefficient (MOAC) is obtained by relating it to the transition probability for the absorption of photons. It predicts resonant peaks caused by transitions between Landau levels and electric subband accompanied by confined phonons emission in the absorption spectrum. The MOAC and the full-width at half-maximum (FWHM) for the intra- and inter-subband transitions are given as functions of the magnetic field, temperature, and quantum well width. In narrow quantum wells, the phonon confinement becomes more important and should be taken into account in studying FWHM.

  12. How automation helps steer the revenue cycle process.

    PubMed

    Colpas, Phil

    2013-06-01

    If there's one aspect of healthcare that's omnipresent - that is connected in some way to virtually every component of the medical trade - it's the revenue cycle; and vendors' solutions to manage it are as varied as the experts we queried on this topic. The revenue cycle actually touches on nearly everything related to healthcare - from the time a patient books an appointment with a healthcare facility, until the patient and insurance company provide final payments for services rendered to the healthcare provider. Over the past several decades, software programs and computers have replaced ledger books and calculators. And while the goal of revenue cycle management (RCM) remains essentially the same, healthcare reform will make this process infinitely more complex, due to reduced reimbursements and the onset of ICD-10 in October 2014. Additionally, reimbursement will be tied to quality, rather than quantity. According to an Information Week article by Ken Terry, outsourcing of billing and collections continues to grow, "because hospitals and physician groups are not very good at these non-core tasks." Think writers and math: I know a great many writers, including yours truly, who possess truly weak math skills. Granted, both skills involve opposite brain hemispheres - different parts of the brain. But what may be even more important is the fact that math is not generally an integral component of the main function of writing. A similar situation exists in healthcare facilities; just replace writing with providing care for people. A 2012 Black Book Rankings survey states 96 percent of organizations are in the process of acquiring several crucial accountable care organization (ACO) data solutions, including clinical decision support, RCM, health information exchange (HIEs), electronic health records (EHRs), e-prescribing, data center security and storage solutions, business intelligence and care coordination management. So it's clear that RCM will continue to remain a

  13. A life cycle model of continuous clinical process innovation.

    PubMed

    Savitz, L A; Kaluzny, A D; Kelly, D L

    2000-01-01

    The changing healthcare environment has created a sense of urgency for continuous innovation in clinical care processes. Managers and clinicians are investing unprecedented funds and energy in the development of various clinical process innovations (CPI) such as clinical pathways, electronic workstations, and various forms of information technology. While increasing attention has been paid to the development of such initiatives, our understanding of how best to disseminate and ensure their use is limited. In this first of two articles dealing with the dissemination and use of CPI in integrated delivery systems, we present a "life cycle" model of the dissemination process and suggest opportunities for managing CPI. The management of CPI requires more than just an understanding of the factors that may facilitate or impede its implementation and use. Managers require an understanding of the actual process so that they can assess the specific implementation stage at which the organization is presently operating, and design appropriate interventions that can affect the process. A future article will identify the factors that facilitate and inhibit the process and suggest some intervention strategies. PMID:11067423

  14. Energy Absorption in a Load-Unload Cycle of Knee Implant Using Fractal Model of Rough Surfaces

    NASA Astrophysics Data System (ADS)

    Hodaei, Mohammad; Farhang, Kambiz

    2016-05-01

    Roughness measurement of knee implant surfaces is investigated. The study of roughness measurement show that the topography of knee implant surface is multi-scale and surface spectra follows a power law behavior. A magnification of rough surface topography implies that there is no difference between original and magnified profile of implant surface. For implant surface, statistical parameters such as variance of height, curvature, and slope are found to be scale-dependent. Fractal representation of implant surface shows that the size-distribution of the multi-scale contacts spots follows a power law and is characterized by the fractal dimension of implant surface. Fractal surface description of the rough surfaces of knee implant is used to obtain force-displacement relationship of the contact force. Using an approximate function through the fusion of two piecewise functions, energy absorption of a knee implant in a single cycle of load-unload is obtained.

  15. Experimental Investigations on the Characteristics of the Ammonia-Water Absorption Refrigerator for Low Temperature Solution Cycle

    NASA Astrophysics Data System (ADS)

    Takei, Toshitaka; Kimijima, Shinji; Saito, Kiyoshi; Kawai, Sunao

    This report refers to some static characteristics of the ammonia-water absorption refrigerator for low temperature refrigerating process which needs the temperature below the freezing point. Especially, the influence of evaporating temperature and cooling water temperature is clarified by the experimental investigation. In addition to this, the validity of constructed simulation model of this absorption refrigerator is mentioned. The validity of simulation model is verified by the comparison of experimental results and calculation. To examine the characteristics, we conducted the performance test using the trial product of which the standard cooling capacity is 175kW. The performance is estimated according to cooling capacity and COP. As a result, the effects of the evaporating temperature and cooling water temperature on the cooling performance are clarified by the experimental research. Furthermore, the calculation of the static characteristics predicted by the simulation model is in good agreements with the experimental results.

  16. Stability of IRA-45 solid amine resin as a function of carbon dioxide absorption and steam desorption cycling

    NASA Technical Reports Server (NTRS)

    Wood, Peter C.; Wydeven, Theodore

    1987-01-01

    The removal of CO2 from the NASA Space Station's cabin atmosphere, which may be undertaken by a solid-amine water (steam)-desorbed system, is presently evaluated with a view to long-term amine resin stability and adsorption/desorption cycling by means of an automated laboratory flow-testing facility. While the CO2-adsorption capacity of the IRA-45 amine resin used gradually decreased over time, the rate of degradation significantly decreased after the first 10 cycles. Attention is given to the presence (and possible need for removal) of trimethylamine in the process air downstream of the resin bed.

  17. Data processing of absorption spectra from photoionized plasma experiments at Za)

    NASA Astrophysics Data System (ADS)

    Hall, I. M.; Durmaz, T.; Mancini, R. C.; Bailey, J. E.; Rochau, G. A.

    2010-10-01

    We discuss the processing of x-ray absorption spectra from photoionized plasma experiments at Z. The data was recorded with an imaging spectrometer equipped with two elliptically bent potassium acid phthalate (KAP) crystals. Both time-integrated and time-resolved data were recorded. In both cases, the goal is to obtain the transmission spectra for quantitative analysis of plasma conditions.

  18. Antecedents of Absorptive Capacity: A New Model for Developing Learning Processes

    ERIC Educational Resources Information Center

    Rezaei-Zadeh, Mohammad; Darwish, Tamer K.

    2016-01-01

    Purpose: The purpose of this paper is to provide an integrated framework to indicate which antecedents of absorptive capacity (AC) influence its learning processes, and to propose testing of this model in future work. Design/methodology/approach Relevant literature into the antecedents of AC was critically reviewed and analysed with the objective…

  19. Capillary absorption spectrometer and process for isotopic analysis of small samples

    DOEpatents

    Alexander, M. Lizabeth; Kelly, James F.; Sams, Robert L.; Moran, James J.; Newburn, Matthew K.; Blake, Thomas A.

    2016-03-29

    A capillary absorption spectrometer and process are described that provide highly sensitive and accurate stable absorption measurements of analytes in a sample gas that may include isotopologues of carbon and oxygen obtained from gas and biological samples. It further provides isotopic images of microbial communities that allow tracking of nutrients at the single cell level. It further targets naturally occurring variations in carbon and oxygen isotopes that avoids need for expensive isotopically labeled mixtures which allows study of samples taken from the field without modification. The method also permits sampling in vivo permitting real-time ambient studies of microbial communities.

  20. Mesonic and nonmesonic absorption of kaon in nuclear matter and {Lambda}(1405) doorway process

    SciTech Connect

    Sekihara, T.; Yamagata-Sekihara, J.; Jido, D.; Kanada-En'yo, Y.

    2010-12-28

    The mesonic and nonmesonic absorptions of kaon into nuclear systems are investigated from a viewpoint of {Lambda}(1405) doorway process. Using a one-meson exchange model in the calculation of the nonmesonic {Lambda}(1405)N{yields}YN transition and using the chiral unitary approach for the description of the {Lambda}(1405), we obtain the nonmesonic transition ratio {Gamma}{sub {Lambda}N}/{Gamma}{sub {Sigma}}{sup 0}{sub N{approx_equal}}1.2 which is almost independent of the nucleon density, and find the total nonmesonic decay width of the {Lambda}(1405) in uniform nuclear matter to be 22 MeV at the normal density. We also calculate the absorption for stopped K{sup -} in nuclear matter, and find that the ''formation rate'' of {Lambda}(1405) is important for the density dependence and the absolute value of the absorption potential of kaon in nuclear matter.

  1. Potential synergy: the thorium fuel cycle and rare earths processing

    SciTech Connect

    Ault, T.; Wymer, R.; Croff, A.; Krahn, S.

    2013-07-01

    The use of thorium in nuclear power programs has been evaluated on a recurring basis. A concern often raised is the lack of 'thorium infrastructure'; however, for at least a part of a potential thorium fuel cycle, this may less of a problem than previously thought. Thorium is frequently encountered in association with rare earth elements and, since the U.S. last systematically evaluated the large-scale use of thorium (the 1970's,) the use of rare earth elements has increased ten-fold to approximately 200,000 metric tons per year. Integration of thorium extraction with rare earth processing has been previously described and top-level estimates have been done on thorium resource availability; however, since ores and mining operations differ markedly, what is needed is process flowsheet analysis to determine whether a specific mining operation can feasibly produce thorium as a by-product. Also, the collocation of thorium with rare earths means that, even if a thorium product stream is not developed, its presence in mining waste streams needs to be addressed and there are previous instances where this has caused issues. This study analyzes several operational mines, estimates the mines' ability to produce a thorium by-product stream, and discusses some waste management implications of recovering thorium. (authors)

  2. Superhydrophobic and superoleophilic polydimethylsiloxane-coated cotton for oil-water separation process: An evidence of the relationship between its loading capacity and oil absorption ability.

    PubMed

    Jin, Yangxin; Jiang, Peng; Ke, Qingping; Cheng, Feihuan; Zhu, Yinshengnan; Zhang, Yixiang

    2015-12-30

    Developing functional porous materials with highly efficient oil-water separation ability are of great importance due to the global scale of severe water pollution arising from oil spillage and chemical leakage. A solution immersion process was used to fabricate polydimethylsiloxane (PDMS)-coated cotton, which exhibited superhydrophobic and superoleophilic properties. The water contact angle of ∼ 157° and mass of ∼ 1.49 g were retained after 1000 compression cycles, indicating that the PDMS was strongly attached to the cotton fibres. The PDMS-coated cotton absorbed various oils and organic solvents with high selectivity, high absorption capacity (up to 7080 wt.%), and good recyclability (exceeding 500 cycles). Notably, the loading capacity of the PDMS-coated cotton against water exhibited a similar trend to its oil absorption capacity. These findings will further the application of superhydrophobic and superoleophilic porous materials in oil/water separation. PMID:26184799

  3. Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol.

    PubMed

    Martinsson, J; Eriksson, A C; Nielsen, I Elbæk; Malmborg, V Berg; Ahlberg, E; Andersen, C; Lindgren, R; Nyström, R; Nordin, E Z; Brune, W H; Svenningsson, B; Swietlicki, E; Boman, C; Pagels, J H

    2015-12-15

    The aim was to identify relationships between combustion conditions, particle characteristics, and optical properties of fresh and photochemically processed emissions from biomass combustion. The combustion conditions included nominal and high burn rate operation and individual combustion phases from a conventional wood stove. Low temperature pyrolysis upon fuel addition resulted in "tar-ball" type particles dominated by organic aerosol with an absorption Ångström exponent (AAE) of 2.5-2.7 and estimated Brown Carbon contributions of 50-70% to absorption at the climate relevant aethalometer-wavelength (520 nm). High temperature combustion during the intermediate (flaming) phase was dominated by soot agglomerates with AAE 1.0-1.2 and 85-100% of absorption at 520 nm attributed to Black Carbon. Intense photochemical processing of high burn rate flaming combustion emissions in an oxidation flow reactor led to strong formation of Secondary Organic Aerosol, with no or weak absorption. PM1 mass emission factors (mg/kg) of fresh emissions were about an order of magnitude higher for low temperature pyrolysis compared to high temperature combustion. However, emission factors describing the absorption cross section emitted per kg of fuel consumed (m(2)/kg) were of similar magnitude at 520 nm for the diverse combustion conditions investigated in this study. These results provide a link between biomass combustion conditions, emitted particle types, and their optical properties in fresh and processed plumes which can be of value for source apportionment and balanced mitigation of biomass combustion emissions from a climate and health perspective. PMID:26561964

  4. Effects of Initial Pore Diameter on the Oil Absorption Behavior of Potato Chips during Frying Process.

    PubMed

    Li, Jinwei; Zhang, Tingting; Liu, Yuanfa; Fan, Liuping

    2016-01-01

    How initial pore diameter in materials affects oil absorption has been rarely studied up to now. Herein, we provided direct data evidence suggesting that the pore diameter prior to frying closely related to the oil absorption behavior. The pore had no significant effect on oil absorption of potato chips (p>0.05) when its diameter was 0.1 and 0.2 mm compared with the control. However, the oil absorption increased with the increasing of pore diameter when it was 0.3-1.2 mm. The oil absorption tended to be saturated at 0.9 mm pore diameter. In addition, we analyzed the moisture content, total oil (TO), surface oil (SO), penetrated surface oil (PSO) and structural oil (STO) contents of potato chips. The results when using palm oil showed that there was no significant difference in moisture, TO and STO contents of samples with pore diameter of 0.1 and 0.2 mm during the whole frying processing respectively compared with the control (p>0.05). When pore diameter was 0.3-1.2 mm, STO and TO contents significantly increased with the rising of the diameter (p<0.05). The SO content and PSO content dropped as increasing in frying time for the samples with different pore diameters. The equilibrium TO content of samples with 0.3-0.9 mm pore significantly increased with the rising of pore diameter, which was about 6.2-22.5% higher than that of the control. And there was no significant difference in the equilibrium TO contents of both samples of 1.2 mm and 0.9 mm pore (p>0.05). STO fraction gave the greatest contribution to the increment of oil absorption. PMID:27041514

  5. Towards elucidating the energy of the first excited singlet state of xanthophyll cycle pigments by X-ray absorption spectroscopy.

    PubMed

    Gruszecki, W I; Stiel, H; Niedzwiedzki, D; Beck, M; Milanowska, J; Lokstein, H; Leupold, D

    2005-06-01

    The first excited singlet state (S(1)) of carotenoids (also termed 2A(g)(-)) plays a key role in photosynthetic excitation energy transfer due to its close proximity to the S(1) (Q(y)) level of chlorophylls. The determination of carotenoid 2A(g)(-) energies by optical techniques is difficult; transitions from the ground state (S(0), 1A(g)(-)) to the 2A(g)(-) state are forbidden ("optically dark") due to parity (g <-- //--> g) as well as pseudo-parity selection rules (- <-- //--> -). Of particular interest are S(1) energies of the so-called xanthophyll-cycle pigments (violaxanthin, antheraxanthin and zeaxanthin) due to their involvement in photoprotection in plants. Previous determinations of S(1) energies of violaxanthin and zeaxanthin by different spectroscopic techniques vary considerably. Here we present an alternative approach towards elucidation of the optically dark states of xanthophylls by near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The indication of at least one pi* energy level (about 0.5 eV below the lowest 1B(u)(+) vibronic sublevel) has been found for zeaxanthin. Present limitations and future improvements of NEXAFS to study optically dark states of carotenoids are discussed. NEXAFS combined with simultaneous optical pumping will further aid the investigation of these otherwise hardly accessible states. PMID:15949988

  6. Rapid freeze-drying cycle optimization using computer programs developed based on heat and mass transfer models and facilitated by tunable diode laser absorption spectroscopy (TDLAS).

    PubMed

    Kuu, Wei Y; Nail, Steven L

    2009-09-01

    Computer programs in FORTRAN were developed to rapidly determine the optimal shelf temperature, T(f), and chamber pressure, P(c), to achieve the shortest primary drying time. The constraint for the optimization is to ensure that the product temperature profile, T(b), is below the target temperature, T(target). Five percent mannitol was chosen as the model formulation. After obtaining the optimal sets of T(f) and P(c), each cycle was assigned with a cycle rank number in terms of the length of drying time. Further optimization was achieved by dividing the drying time into a series of ramping steps for T(f), in a cascading manner (termed the cascading T(f) cycle), to further shorten the cycle time. For the purpose of demonstrating the validity of the optimized T(f) and P(c), four cycles with different predicted lengths of drying time, along with the cascading T(f) cycle, were chosen for experimental cycle runs. Tunable diode laser absorption spectroscopy (TDLAS) was used to continuously measure the sublimation rate. As predicted, maximum product temperatures were controlled slightly below the target temperature of -25 degrees C, and the cascading T(f)-ramping cycle is the most efficient cycle design. In addition, the experimental cycle rank order closely matches with that determined by modeling. PMID:19504575

  7. Biogeochemical processes driving mercury cycling in estuarine ecosystems

    NASA Astrophysics Data System (ADS)

    Schartup, A. T.

    2015-12-01

    Mercury (Hg) is a naturally occurring element that has been enriched in the environment through human activities, particularly in the coastal zone. Bioaccumulation of methylmercury (MeHg) in marine fishposes health risks for fish-consuming populations and is a worldwide health concern. A broader understanding of major environmental processes controlling Hg cycling and MeHg production and bioaccumulation in estuaries is therefore needed. Recent fieldwork and modeling show diverse sources of MeHg production in estuaries. We present geochemical modeling results for Hg and MeHg acrossmultiple estuaries with contrasting physical, chemical and biological characteristics. We report new measurements of water column and sediment mercury speciation and methylation data from the subarctic (Lake Melville, Labrador Canada) and temperate latitudes (Long Island Sound, Delaware Bay, Chesapeake Bay). We find that benthic sediment is a relatively small source of MeHg to the water column in all systems. Water column methylation drives MeHg levels in Lake Melville, whereas in more impacted shallow systems such as Chesapeake Bay and Long Island Sound, external inputs and sediment resuspension are more dominant. All systems are a net source of MeHg to the ocean through tidal exchange. In light of these inter-system differences, we will evaluate timescales of coastal ecosystem responses to changes in Hg loading that can help predict potential responses to future perturbations.

  8. A learning process of water cycle as complex system

    NASA Astrophysics Data System (ADS)

    Schertzer, D.; Deroubaix, J. F.; Tchiguirinskaia, I.; Tassin, B.; Thevenot, D.

    2009-04-01

    Water cycle is a very good example of a complex geosystem which has many societal impacts and drivers. A permanent and ubiquitous question is how to increase public awareness and understanding of its extreme behaviours, as well as of the related uncertainties. For instance, CEREVE is highly solicited to help the general public, particularly the youth, and the local politicians to get better acquainted with the new water culture in general and with flood risks in particular, in the nearby county Val-de-Marne. Since 2001, May is the month of the "Festival de l'Oh"(which sounds like "Festival de l'Eau", i.e. the water festival co-organized by the county council and city of Paris. "Oh » at the same time partly displays the chemical composition of water and is an exclamation for atonishment). This festival starts with the Scientific Days of Environment that involve researchers and students of the county, as well as collaborators of all around the world. This conference is open to the public who can be informed from the latest research developments, in particular with the help of some general synthesis and panel discussions. On the other hand, (young) researchers can present their own works to a large public. This conference is followed by a Professional Forum where students, heads of water public services or private operators can meet. In the framework of the water festival preparation, there are several water forums for the secondary schools. All along the year, there are regular pedagogical activities for secondary schools, in particular in the framework of Water Houses scattered across the county. We will discuss the importance to better evaluate the effective impact of these pedagogical events on the public awareness and understanding, and to make the learning process more adaptive and interactive, as well as to better address the underlying fundamental problems, e.g. the present limitations of current modelling and data processing.

  9. CNG process, a new approach to physical-absorption acid-gas removal

    SciTech Connect

    Hise, R.E.; Massey, L.G.; Adler, R.J.; Brosilow, C.B.; Gardner, N.C.; Brown, W.R.; Cook, W.J.; Petrik, M.

    1982-01-01

    The CNG acid gas removal process embodies three novel features: (1) scrubbing with liquid carbon dioxide to remove all sulfurous molecules and other trace contaminants; (2) triple-point crystallization of carbon dioxide to concentrate sulfurous molecules and produce pure carbon dioxide; and (3) absorption of carbon dioxide with a slurry of solid carbon dioxide in organic carrier liquid. The CNG process is discussed and contrasted with existing acid gas removal technology as represented by the Benfield, Rectisol, and Selexol acid gas removal processes.

  10. Finite element analysis and modeling of water absorption by date pits during a soaking process.

    PubMed

    Waezi-Zadeh, Motahareh; Ghazanfari, Ahmad; Noorbakhsh, Shahin

    2010-07-01

    Date pits for feed preparation or oil extraction are soaked in water to soften before milling or extrusion. Knowledge of water absorption by the date pits helps in better managing the soaking duration. In this research, the process of water absorption by date pits was modeled and analyzed using Fick's second law of diffusion, finite element approach, and Peleg model. The moisture content of the pits reached to its saturation level of 41.5% (wet basis) after 10 d. The estimated coefficient of diffusion was 9.89x10(-12) m(2)/s. The finite element model with a proposed ellipsoid geometry for a single date pit and the analytical model fitted better to the experimental data with R(2) of 0.98. The former model slightly overestimated the moisture content of the pits during the initial stages of the soaking and the latter model generally underestimated this variable through the entire stages of soaking process. PMID:20593512

  11. The solvent absorption-extractive distillation (SAED) process for ethanol recovery from gas/vapor streams

    SciTech Connect

    Dale, M.C.

    1993-12-31

    A low energy system for ethanol recovery and dehydration has been developed. This system utilizes a solvent for (1) absorption of ethanol vapors, and then the same solvent for (2) extractive distillation. The ideal solvent for this process would have a high affinity for ethanol, and no affinity for water. Heavy alcohols such as dodecanol, and tridecanol, some phosphorals, and some fatty acids have been determined to meet the desired specifications. These solvents have the effect of making water more volatile than ethanol. Thus, a water stream is taken off initially in the dehydration column, and a near anhydrous ethanol stream is recovered from the ethanol/solvent stripper column. Thus the solvent serves dual uses (1) absorption media, and (2) dehydration media. The SAED process as conceptualized would use a solvent similar to solvents used for direct extractive separation of ethanol from aqueous ethanol solutions.

  12. The imaging and modelling of the physical processes involved in digestion and absorption.

    PubMed

    Schulze, K S

    2015-02-01

    The mechanical activity of the gastro-intestinal tract serves to store, propel and digest food. Contractions disperse particles and transform solids and secretions into the two-phase slurry called chyme; movements of the intestine deliver nutrients to mucosal sites of absorption, and from the submucosa into the lymphatic and portal venous circulation. Colonic motor activity helps to extract fluid and electrolytes from chyme and to compound and compact luminal debris into faeces for elimination. We outline how dynamic imaging by ultrasound and magnetic resonance can demonstrate intestinal flow processes critical to digestion like mixing, dilution, swelling, dispersion and elution. Computational fluid mechanics enables a numerical rendition of the forces promoting digestion: pressure and flow fields, the shear stresses dispersing particles or the effectiveness of bolus mixing can be calculated. These technologies provide new insights into the mechanical processes that promote digestion and absorption. PMID:25313872

  13. Deformation Processes in Great Subduction Zone Earthquake Cycles

    NASA Astrophysics Data System (ADS)

    Hu, Yan

    seaward motion of areas farther landward including the forearc and the back arc. The postseismic and interseismic crustal deformation depends on the interplay of these three primary processes. I have used three-dimensional viscoelastic finite element models to study the contemporary crustal deformation of three margins, Sumatra, Chile, and Cascadia, that are presently at different stages of their great earthquake cycles. Model results indicate that the earthquake cycle deformation of different margins is governed by a common physical process. The afterslip of the fault must be at work immediately after the earthquake. The model of the 2004 Sumatra earthquake constrains the characteristic time of the afterslip to be 1.25 yr. With the incorporation of the transient rheology, the model well explains the near-field and far-field postseismic deformation within a few years after the 2004 Sumatra event. The steady-state viscosity of the continental upper mantle is determined to be 1019 Pa S, two orders of magnitude smaller than that of the global value obtained through global postglacial rebound models.

  14. The seasonal cycle of boreal Rossby wave breaking processes

    NASA Astrophysics Data System (ADS)

    Peters, D. H.; Schneidereit, A.; Gabriel, A.

    2010-12-01

    In a changing climate coupling processes between the atmospheric layers play an important role. For example, the changing zonally asymmetric ozone distribution of the stratosphere has an influence on the strength and position of stratospheric jet streams as well as on the upper tropospheric large-scale flow characteristics and teleconnection patterns. The radiative influence of zonally asymmetric ozone forcing on model dynamics was investigated by ensemble runs of the GCM ECHAM5. Induced by the zonally asymmetric forcing we identified a strong polar vortex shift which was connected to changes of regions of Rossby wave breaking and storm track activity. In the extratropics, Rossby waves play an important role in determining the jet streams of the polar front, especially in the upper troposphere and lower stratosphere region. It is known that events of poleward breaking Rossby waves are often observed over the North Atlantic-European or Eastern Pacific region in wintertime. In this study we investigate the seasonal influence of the observed background flow in the upper troposphere on poleward Rossby wave breaking events and the link to severe weather in a changing climate. The seasonal cycle of events of poleward breaking Rossby waves for the 1980s and 1990s has been revealed with ECMWF Reanalysis data (ERA-40). We found that the different, diffluent and confluent, large-scale flow structure determine the occurrence rate of Rossby wave breaking events. These events are differentiated into four breaking types: cyclonically (poleward or equatorward) and anticyclonically (poleward or equatorward). Especially we focused on the seasonal behavior of these four breaking types. We found a strong seasonal dependence with major poleward breaking events in winter and minor in summer time. Further, with SGCM experiments we could show that the seasonal changing zonally varying large-scale flow explains mainly the seasonal variation of poleward Rossby wave breaking events

  15. Quasi-Resonant Nonlinear Absorption for Optical Power Limiting: solgel-Processed Er(3+)-Doped Multicomponent Silica Glass.

    PubMed

    Maciel, G S; Biswas, A; Friend, C S; Prasad, P N

    2000-05-20

    We demonstrate optical power limiting by what we believe to be a new mechanism of nonlinear absorption, which involves a quasi-resonant ground-state absorption that is either phonon assisted or assisted by the presence of defect sites (tail absorption). Such a mechanism provides high transmittance at low intensity yet optical limiting under cw conditions. The sample used was a novel solgel-processed Er(3+)-doped multicomponent silica glass. In this system the nonlinear absorption process is achieved because the resonant excited-state ((4)I(13/2) ? (4)S(3/2)) absorption cross section is larger than the quasi-resonant ground-state ((4)I(15/2) ? (4)I(9/2)) absorption cross section. PMID:18345156

  16. Regeneration of an aqueous solution from an acid gas absorption process by matrix stripping

    DOEpatents

    Rochelle, Gary T.; Oyenekan, Babatunde A.

    2011-03-08

    Carbon dioxide and other acid gases are removed from gaseous streams using aqueous absorption and stripping processes. By replacing the conventional stripper used to regenerate the aqueous solvent and capture the acid gas with a matrix stripping configuration, less energy is consumed. The matrix stripping configuration uses two or more reboiled strippers at different pressures. The rich feed from the absorption equipment is split among the strippers, and partially regenerated solvent from the highest pressure stripper flows to the middle of sequentially lower pressure strippers in a "matrix" pattern. By selecting certain parameters of the matrix stripping configuration such that the total energy required by the strippers to achieve a desired percentage of acid gas removal from the gaseous stream is minimized, further energy savings can be realized.

  17. Cadmium sulfide and lead sulfide quantum dots in glass: Processing, growth, and optical absorption

    NASA Astrophysics Data System (ADS)

    Rao, Pratima Gattu Naga

    Glasses containing cadmium sulfide and lead sulfide particles were prepared, and their properties were studied. These particles exhibit quantum confinement behavior when they are smaller than their Bohr exciton radii. Quantum confinement leads to size dependence in the optical absorption of particles. This size dependence can tune the optical absorption of the material to a particular wavelength or energy and possibly enhances the nonlinear optical absorption of the particles. These properties have potential applications in photonic devices. To control the growth of these semiconductor particles in glass, the glass processing conditions were studied. CdS-doped glasses were initially prepared with CdO and ZnS. The sublimation temperature for ZnS is at 1185°C; whereas, CdO sublimes at 1559°C, and CdS at 980°C. Loss of both cadmium and sulfur was observed in open crucible melts, even when CdO and ZnS were used. Improvements in glass processing were made by use of preheat and a cover during the glass melting, resulting in better retention of both dopants. Direct CdS addition to the glasses was possible with these improvements, thus eliminating complications of zinc incorporation during the growth of the semiconductor particles. These methods were successfully applied to the synthesis of PbS-doped glasses. CdS and PbS particles were grown in alkali borosilicate glasses, and their optical absorption spectra were measured as a function of heat treatment temperature and time. The position of the absorption peak and edge shifted to longer wave-lengths, or lower energies, with longer heat treatments at a constant temperature. Both CdS and PbS particles exhibited quantum confinement. These measurements were used to calculate particle sizes from quantum confinement models. Comparisons with transmission electron microscopy (TEM) demonstrated that the 1-term effective-mass approximation was appropriate for estimating CdS particle sizes. A sophisticated four-band envelope

  18. A Life Cycle Assessment on a Fuel Production Through Distributed Biomass Gasification Process

    NASA Astrophysics Data System (ADS)

    Dowaki, Kiyoshi; Eguchi, Tsutomu; Ohkubo, Rui; Genchi, Yutaka

    In this paper, we estimated life cycle inventories (energy intensities and CO2 emissions) on the biomass gasification CGS, Bio-H2, Bio-MeOH (methanol) and Bio-DME (di-methyl ether), using the bottom-up methodology. CO2 emissions and energy intensities on material's chipping, transportation and dryer operation were estimated. Also, the uncertainties on the moisture content of biomass materials and the transportation distance to the plant were considered by the Monte Carlo simulation. The energy conversion system was built up by gasification through the BLUE Tower process, with either CGS, PSA (Pressure Swing Absorption) system or the liquefaction process. In our estimation, the biomass materials were the waste products from Japanese Cedar. The uncertainties of moisture content and transportation distance were assumed to be 20 to 50 wt.% and 5 to 50 km, respectively. The capability of the biomass gasification plant was 10 t-dry/d, that is, an annual throughput of 3,000 t-dry/yr. The production energy in each case was used as a functional unit. Finally, the energy intensities of 1.12 to 3.09 MJ/MJ and CO2 emissions of 4.79 to 88.0 g-CO2/MJ were obtained. CGS case contributes to the environmental mitigation, and Bio-H2 and/or Bio-DME cases have a potential to reduce CO2 emissions, compared to the conventional ones.

  19. A three-process quantum engine cycle consisting of a two-level system

    NASA Astrophysics Data System (ADS)

    Ou, CongJie; Huang, ZhiFu; Lin, BiHong; Chen, JinCan

    2014-07-01

    Based on the thermodynamic properties of isoenergetic, adiabatic and isothermal quantum processes, it is shown that it is possible to combine the three processes into a quantum engine cycle. The efficiency of the three-process cycle can be derived and is dependent on the highest and lowest temperatures. The efficiency in some operation regions does not demonstrate a monotonically increasing function of the temperature difference. When the highest temperature of the cycle is larger than the critical temperature, which can be determined by the characteristics of the three-process cycle, a unique region where the efficiency decreased with the increase of the temperature difference exists.

  20. [Cation exchanges during the process of Cd(2+) absorption by Alfalfa in aqueous solutions].

    PubMed

    Li, Yue-Peng; Yin, Hua; Ye, Jin-Shao; Peng, Hua; Qin, Hua-Ming; Long, Yan; He, Bao-Yan; Zhang, Na; Tong, Yao; Peng, Su-Fen

    2011-11-01

    A hydroponic experiment was conducted to investigate the cation exchanges during the process of Cd2+ absorption by Alfalfa in aqueous solution. The absorption efficiency of Alfalfa plants with 0-10 mg x L(-1) Cd2+ treatments, changes of Na+, K+, Mg2+, Ca2+ and NH4(+) concentration, and the variation of pH values at different absorption time (0, 1, 2, 4, 8, 12, 24 and 72 h) were studied separately. The multiple linear regressions between Cd2+ absorption and cation variation were analyzed. The results indicated that when Cd2+ concentrations were 0.1, 1, 5, 10 mg x L(-1), the absorption efficiencies of Cd2+ by Alfalfa after 72 h were 85.86%, 52.14%, 15.97% and 7.81%. Cation exchange was involved in the removal of Cd2+ by Alfalfa in aqueous solution. Except for NH4(+), the concentrations of cationic metals Na+, K+, Mg2+ and Ca2+ in aqueous solution increased over time, which increased 11.30% - 61.72%, 21.44% - 98.73%, 24.09% - 8.90% and 37.04% - 191.96%, respectively. Kinetic studies illuminated that the release of Na+, K+, Mg2+ and Ca2+ by Alfalfa in Cd2+ solution with initial concentrations of 0, 0. 1, 1, 5, 10 mg x L(-1) best fitted pseudo-second-order equation,while the NH4(+) release fitted this model when Cd2+ concentrations were 1, 5, 10 mg x L(-1). The gradual decrease of pH during adsorption of Cd2+ by Alfalfa was observed. As the competition ion of Cd2+, H+ might affect the capacity of Alfalfa root system to absorb Cd2+. The ternary linear equation results demonstrated that the content of Cd2+ absorption by Alfalfa strongly related with the release of Ca2+, Mg2+, Na+. And this exchange mainly occurred among Cd2+ and divalent cations. PMID:22295633

  1. Development of a carbonate absorption-based process for post-combustion CO2 capture: The role of biocatalyst to promote CO2 absorption rate

    USGS Publications Warehouse

    Lu, Y.; Ye, X.; Zhang, Z.; Khodayari, A.; Djukadi, T.

    2011-01-01

    An Integrated Vacuum Carbonate Absorption Process (IVCAP) for post-combustion carbon dioxide (CO2) capture is described. IVCAP employs potassium carbonate (PC) as a solvent, uses waste or low quality steam from the power plant for CO2 stripping, and employs a biocatalyst, carbonic anhydrase (CA) enzyme, for promoting the CO2 absorption into PC solution. A series of experiments were performed to evaluate the activity of CA enzyme mixed in PC solutions in a stirred tank reactor system under various temperatures, CA dosages, CO2 loadings, CO2 partial pressures, and the presence of major flue gas contaminants. It was demonstrated that CA enzyme is an effective biocatalyst for CO2 absorption under IVCAP conditions. ?? 2011 Published by Elsevier Ltd.

  2. DEVELOPMENT OF LIFE CYCLE INVENTORY MODULES FOR SEMICONDUCTOR PROCESSING

    EPA Science Inventory

    The primary objective of the proposed project is to develop generic, use cluster, life cycle inventory (LCI) modules for activities performed during the manufacture of integrated circuits (ICs). This research is intended to facilitate the establishment of standards, encourage ...

  3. Life Cycle Assessment Software for Product and Process Sustainability Analysis

    ERIC Educational Resources Information Center

    Vervaeke, Marina

    2012-01-01

    In recent years, life cycle assessment (LCA), a methodology for assessment of environmental impacts of products and services, has become increasingly important. This methodology is applied by decision makers in industry and policy, product developers, environmental managers, and other non-LCA specialists working on environmental issues in a wide…

  4. Introduction of Process Life Cycle Inventory in Environmental Engineering Education.

    ERIC Educational Resources Information Center

    Fernandez-Norte, Felix; And Others

    1997-01-01

    Discusses a methodology for developing an environmental load balance which can be the means for conducting a life cycle inventory. The methodology described can be taught at the same level of chemical engineering fundamentals at which basic mass and energy balances are introduced. (DDR)

  5. Fabrication process and electromagnetic wave absorption characterization of a CNT/Ni/epoxy nanocomposite.

    PubMed

    Ryu, Seongwoo; Mo, Chan Bin; Lee, Haeshin; Hong, Soon Hyung

    2013-11-01

    Since carbon nanotube (CNT) was first discovered in 1991, it has been considered as a viable type of conductive filler for electromagnetic wave absorption materials in the GHz range. In this paper, pearl-necklace-structure CNT/Ni nano-powders were fabricated by a polyol process as conductive fillers. Compared to synthesized CNT, pearl-necklace Ni-decorated CNT increased the electrical conductivity by an order of 1 due to the enhancement of the Ni-conductive network. Moreover, the decorated Ni particles prevented the agglomeration of CNTs by counterbalancing the Van der Walls interaction between the CNTs. A CNT/Ni nanocomposite showed a homogeneous dispersion in an epoxy-based matrix. This enhanced physical morphology and electrical properties lead to an increase in the loss tangent and reflection loss in the CNT/Ni/Epoxy nanocomposite compared to these characteristics of a CNT/Epoxy nanocomposite in range of 8-12 GHz. The electromagnetic wave absorption properties of CNT/Ni/epoxy nanocomposites will provide enormous opportunities for electronic applications where lightweight EMI shielding or electro-magnetic wave absorption properties are necessary. PMID:24245312

  6. Open cycle liquid desiccant dehumidifier and hybrid solar/electric absorption refrigeration system. Annual report, January 1993--December 1993. Calendar year 1993

    SciTech Connect

    Nimmo, B.G.; Thornbloom, M.D.

    1995-04-01

    This annual report presents work performed during calendar year 1993 by the Florida Solar Energy Center under contract to the US Department of Energy. Two distinctively different solar powered indoor climate control systems were analyzed: the open cycle liquid desiccant dehumidifier, and an improved efficiency absorption system which may be fired by flat plate solar collectors. Both tasks represent new directions relative to prior FSEC research in Solar Cooling and Dehumidification.

  7. Life Cycle Inventory analysis of degreasing processes in the metal-processing industry

    SciTech Connect

    Finkbeiner, M.; Hoffmann, E.; Kreisel, G.

    1995-12-31

    In 1986 degreasing processes in the German metal-processing industry contributed about 70,000 t to the emissions of chlorinated C{sub 1}-C{sub 2}-hydrocarbons (trichloroethane, trichloroethene, tetrachloroethene, dichloromethane). Due to legal requirements these emissions decreased to roughly 18,000 t in 1992. This was achieved by operating modern, closed-chamber plants and substitution of halogenated solvents by aqueous cleansing agents or non-halogenated hydrocarbons. The reduction of toxic emissions and Ozone Depletion Potential (ODP) leads to a shift of environmental impacts towards higher energy consumption, emission of waste water and VOCs with Photochemical Ozone Creation Potential (POCP). A Life Cycle Inventory Analysis was carried out to compare the integral environmental impact of the three main degreasing processes which cover about 90% of the German market. In their study the authors showed the feasibility to apply the established LCI-method for products to processes, though difficulties arise especially in the step of the goal definition, e.g. the definition of the use of the process and the functional unit is not as straightforward as for most products. Purpose, scope, system boundaries, deliberate omissions, process trees and data quality of the study are discussed. The chosen method was applied to representative examples of each process. Data of the LCI are given and a preliminary impact assessment presented.

  8. Flow pattern and mass transfer characteristics of valve tray in absorption process

    NASA Astrophysics Data System (ADS)

    Nurkhamidah, Siti; Altway, Ali; Wulansari, Ayu Savitri; Khanifah, Evi Fitriyah

    2015-12-01

    The flow pattern characteristics of valve tray in absorption process which is expressed in pressure drop and the number of equivalent tank in series (N) has an important role to know the efficiency and performance of a process. This study has been done in the absorption column by using water and air as liquid and gas phase, respectively. To observe pressure drop and flow pattern in the column, flow rate of liquid and air has been variated. Flow pattern has been determined by using pulse method and using NaCl as tracer. The experiment results show that the column pressure drop is mainly influenced by the liquid height on the tray. When the water flow rate is high, liquid height on the tray is higher so that the column pressure drops increases. Flow pattern characteristic of fluid on valve tray is affected by water and air flowrates. For high water flow rate, the residence time distribution (RTD) curve is sharper and the number of N is greater and the flow pattern tends to a plug flow. However, the number of N decreases when the air flowrate increases. The liquid-side mass transfer coefficient (kLa') is shown by the following empirical relationship kLa' = 2,607QL0,202Qv0,456.

  9. Detectivity of plasmonic enhanced photodetectors based on nondegenerate two-photon absorption process

    NASA Astrophysics Data System (ADS)

    Bonakdar, Alireza; Kohoutek, John; Mohseni, Hooman

    2012-10-01

    Mid-infrared photodetectors are the subject of many research efforts within the last two decades for enhancing their operating parameters such as temperature stability, detectivity and quantum efficiency. This is due to their wide range of applications like biosensing, night vision, and short range communication. However, mid-infrared photons have much smaller energy compared with the band gap energy of well known semiconductors including III-V and II-VI families. One way to overcome this problem is to utilizing quantum confinement effects by absorbing a photon through the intersubband transition of a conduction electron or valance hole. Fabricating devices at the nanoscale size to achieve quantum confinement is costly and imposes limitations for further device preparation. In addition, the optical properties of quantum confined devices are sensitive to nanoscale geometrical parameters which make them vulnerable to fabrication imperfections. The other approach of detecting mid-infrared light is by exploiting the non-degenerate two photon absorption process (TPA). Two photons with different energies can be absorbed simultaneously by a semiconductor with the band gap energy less than the overall energy of two photons. Thus, a mid-infrared photon as the signal can be detected by a bulk semiconductor with much larger band gap energy when a near-infrared photon as the gate assists the absorption process through TPA.

  10. The absorption and metabolism of modified amino acids in processed foods.

    PubMed

    Finot, Paul-André

    2005-01-01

    The chemical reactions involved in the modifications of amino acids in processed food proteins are described. They concern the Maillard reaction, reaction with polyphenols and tannins, formation of lysinoalanine during alkaline and heat treatments, formation of isopeptides, oxidation reaction of the sulfur amino acids, and isomerization of the L-amino acids into their D-form. Information on the digestion, absorption, and urinary excretion of the reaction products obtained by using conventional nutritional tests is given. The studies that have been made on the metabolism of these molecules by using a radioisotopic approach to follow their kinetics in the organism after ingestion are also reviewed. This approach provides unique data on the quantitation of the metabolic pathways and on the kinetics of the metabolic processes involved. PMID:16001868

  11. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  12. The carbon cycle and associated redox processes through time

    PubMed Central

    Hayes, John M; Waldbauer, Jacob R

    2006-01-01

    Earth's biogeochemical cycle of carbon delivers both limestones and organic materials to the crust. In numerous, biologically catalysed redox reactions, hydrogen, sulphur, iron, and oxygen serve prominently as electron donors and acceptors. The progress of these reactions can be reconstructed from records of variations in the abundance of 13C in sedimentary carbonate minerals and organic materials. Because the crust is always receiving new CO2 from the mantle and a portion of it is being reduced by photoautotrophs, the carbon cycle has continuously released oxidizing power. Most of it is represented by Fe3+ that has accumulated in the crust or been returned to the mantle via subduction. Less than 3% of the estimated, integrated production of oxidizing power since 3.8 Gyr ago is represented by O2 in the atmosphere and dissolved in seawater. The balance is represented by sulphate. The accumulation of oxidizing power can be estimated from budgets summarizing inputs of mantle carbon and rates of organic-carbon burial, but levels of O2 are only weakly and indirectly coupled to those phenomena and thus to carbon-isotopic records. Elevated abundances of 13C in carbonate minerals ca 2.3 Gyr old, in particular, are here interpreted as indicating the importance of methanogenic bacteria in sediments rather than increased burial of organic carbon. PMID:16754608

  13. Identification and quantification of nitrogen cycling processes in cryptogamic covers

    NASA Astrophysics Data System (ADS)

    Weber, Bettina; Wu, Dianming; Lenhart, Katharina; Tamm, Alexandra; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Elbert, Wolfgang; Burrows, Susannah; Clough, Tim; Steinkamp, Jörg; Meusel, Hannah; Behrendt, Thomas; Büdel, Burkhard; Andreae, Meinrat O.; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul; Keppler, Frank; Su, Hang; Pöschl, Ulrich

    2016-04-01

    Cryptogamic covers (CC) comprise communities of photoautotrophic cyanobacteria, lichens, algae, and bryophytes together with heterotrophic bacteria, microfungi, and archaea in varying proportions. Depending on their habitat, cryptogamic rock covers, cryptogamic plant covers, and cryptogamic soil covers are distinguished. The latter comprise biological soil crusts (biocrusts), which globally occur under dryland conditions. In a first assessment of their global role, we quantified that CC fix ˜49 Tg of nitrogen (N) per year (Elbert et al., 2013), corresponding to ˜1/2 of the maximum terrestrial biological N fixation determined in the latest IPCC report. The fixed N is used for biomass formation and partially leached into the ground, where it can be taken up by plants or transformed into N oxides, being emitted into the atmosphere. We show that biocrusts release nitric oxide (NO) and nitrous acid (HONO), which are key species in the global cycling of nitrogen and in the production of ozone and hydroxyl radicals, regulating the oxidizing power and self-cleaning capacity of the atmosphere. Based on laboratory, field and satellite measurement data, we obtained a best estimate of 1.1 Tg a‑1 of NO-N and 0.6 Tg a‑1 of HONO-N being globally emitted by biocrusts, corresponding to ˜20% of the global nitrogen oxide emissions from soils under natural vegetation (Weber et al., 2015). During full wetting and drying cycles, emissions peaked at low water contents suggesting NO- and HONO-formation under aerobic conditions during nitrification. Other measurements revealed that cryptogamic organisms release nitrous oxide (N2O), a greenhouse gas of crucial importance for climate change. The emission rates varied with temperature, humidity, and N deposition, but divided by respiratory CO2 emission they formed an almost constant ratio, which allowed upscaling on the global scale. We estimated annual N2O emissions of 0.3 - 0.6 Tg by cryptogams, accounting for 4-9% of the global N2O

  14. Screening method for solvent selection used in tar removal by the absorption process.

    PubMed

    Masurel, Eve; Authier, Olivier; Castel, Christophe; Roizard, Christine

    2015-01-01

    The aim of this paper is the study of the treatment of flue gas issued from a process of biomass gasification in fluidized bed. The flue gas contains tar which should be selectively removed from the fuel components of interest (e.g. H2, CO and light hydrocarbons) to avoid condensation and deposits in internal combustion engine. The chosen flue gas treatment is the gas-liquid absorption using solvents, which present specific physicochemical properties (e.g. solubility, viscosity, volatility and chemical and thermal stability) in order to optimize the unit on energetic, technico-economic and environmental criteria. The rational choice of the proper solvent is essential for solving the tar issue. The preselection of the solvents is made using a Hansen parameter in order to evaluate the tar solubility and the saturation vapour pressure of the solvent is obtained using Antoine law. Among the nine families of screened solvents (alcohols, amines, ketones, halogenates, ethers, esters, hydrocarbons, sulphured and chlorinates), acids methyl esters arise as solvents of interest. Methyl oleate has then been selected and studied furthermore. Experimental liquid-vapour equilibrium data using bubbling point and absorption cell measurements and theoretical results obtained by the UNIFAC-Dortmund model confirm the high potential of this solvent and the good agreement between experimental and theoretical results. PMID:25867082

  15. A Remote Absorption Process for Disposal of Evaporate and Reverse Osmosis Concentrates

    SciTech Connect

    Brunsell, D.A.

    2008-07-01

    100% scalable from a concentrate test sample as small as 50 grams to full-scale processing of 100 cubic foot containers or larger. In summary: The absorption process offers utilities a viable and less costly alternative to on-site drying or solidification of concentrates. The absorption process can be completed by site personnel or by a vendor as a turnkey service. The process is suitable for multiple types of waste, including RO and evaporator concentrates, sludges, and other difficult to process waters and wet solids. (author)

  16. Mapping absorption processes onto a Markov chain, conserving the mean first passage time

    NASA Astrophysics Data System (ADS)

    Biswas, Katja

    2013-04-01

    The dynamics of a multidimensional system is projected onto a discrete state master equation using the transition rates W(k → k‧ t, t + dt) between a set of states {k} represented by the regions {ζk} in phase or discrete state space. Depending on the dynamics Γi(t) of the original process and the choice of ζk, the discretized process can be Markovian or non-Markovian. For absorption processes, it is shown that irrespective of these properties of the projection, a master equation with time-independent transition rates \\bar{W}(k\\rightarrow k^{\\prime }) can be obtained, which conserves the total occupation time of the partitions of the phase or discrete state space of the original process. An expression for the transition probabilities \\bar{p}(k^{\\prime }|k) is derived based on either time-discrete measurements {ti} with variable time stepping Δ(i + 1)i = ti + 1 - ti or the theoretical knowledge at continuous times t. This allows computational methods of absorbing Markov chains to be used to obtain the mean first passage time (MFPT) of the system. To illustrate this approach, the procedure is applied to obtain the MFPT for the overdamped Brownian motion of particles subject to a system with dichotomous noise and the escape from an entropic barrier. The high accuracy of the simulation results confirms with the theory.

  17. A Biophysicochemical Model for NO Removal by the Chemical Absorption-Biological Reduction Integrated Process.

    PubMed

    Zhao, Jingkai; Xia, Yinfeng; Li, Meifang; Li, Sujing; Li, Wei; Zhang, Shihan

    2016-08-16

    The chemical absorption-biological reduction (CABR) integrated process is regarded as a promising technology for NOx removal from flue gas. To advance the scale-up of the CABR process, a mathematic model based on mass transfer with reaction in the gas, liquid, and biofilm was developed to simulate and predict the NOx removal by the CABR system in a biotrickling filter. The developed model was validated by the experimental results and subsequently was used to predict the system performance under different operating conditions, such as NO and O2 concentration and gas and liquid flow rate. NO distribution in the gas phase along the biotrickling filter was also modeled and predicted. On the basis of the modeling results, the liquid flow rate and total iron concentration were optimized to achieve >90% NO removal efficiency. Furthermore, sensitivity analysis of the model revealed that the performance of the CABR process was controlled by the bioreduction activity of Fe(III)EDTA. This work will provide the guideline for the design and operation of the CABR process in the industrial application. PMID:27442232

  18. Wavelet transform based on the optimal wavelet pairs for tunable diode laser absorption spectroscopy signal processing.

    PubMed

    Li, Jingsong; Yu, Benli; Fischer, Horst

    2015-04-01

    This paper presents a novel methodology-based discrete wavelet transform (DWT) and the choice of the optimal wavelet pairs to adaptively process tunable diode laser absorption spectroscopy (TDLAS) spectra for quantitative analysis, such as molecular spectroscopy and trace gas detection. The proposed methodology aims to construct an optimal calibration model for a TDLAS spectrum, regardless of its background structural characteristics, thus facilitating the application of TDLAS as a powerful tool for analytical chemistry. The performance of the proposed method is verified using analysis of both synthetic and observed signals, characterized with different noise levels and baseline drift. In terms of fitting precision and signal-to-noise ratio, both have been improved significantly using the proposed method. PMID:25741689

  19. Processing bronchial sonograms to detect respiratory cycle fragments

    NASA Astrophysics Data System (ADS)

    Bureev, A. Sh; Zhdanov, D. S.; Zemlyakov, I. Yu; Svetlik, M. V.

    2014-10-01

    This article describes the authors' results of work on the development of a method for the automated assessment of the state of the human bronchopulmonary system based on acoustic data. In particular, the article covers the method of detecting breath sounds on bronchial sonograms obtained during the auscultation process.

  20. Cycles and Oscillations in Text Processing. No. 62.

    ERIC Educational Resources Information Center

    Bierschenk, Bernhard

    Classical research operations in the cognitive sciences concern categorizations as well as classifications, and have been strongly influenced by nomological approaches. As a consequence, information processing has been explained with reference to syntactic-semantic models. Because of an absence of structural implications, personal interpretations…

  1. Design, evaluation and recommedation effort relating to the modification of a residential 3-ton absorption cycle cooling unit for operation with solar energy

    NASA Technical Reports Server (NTRS)

    Merrick, R. H.; Anderson, P. P.

    1973-01-01

    The possible use of solar energy powered absorption units to provide cooling and heating of residential buildings is studied. Both, the ammonia-water and the water-lithium bromide cycles, are considered. It is shown that the air cooled ammonia water unit does not meet the criteria for COP and pump power on the cooling cycle and the heat obtained from it acting as a heat pump is at too low a temperature. If the ammonia machine is water cooled it will meet the design criteria for cooling but can not supply the heating needs. The water cooled lithium bromide unit meets the specified performance for cooling with appreciably lower generator temperatures and without a mechanical solution pump. It is recommeded that in the demonstration project a direct expansion lithium bromide unit be used for cooling and an auxiliary duct coil using the solar heated water be employed for heating.

  2. Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture

    SciTech Connect

    Li, Shiguang; Shou, S.; Pyrzynski, Travis; Makkuni, Ajay; Meyer, Howard

    2013-12-31

    This report summarizes scientific/technical progress made for bench-scale membrane contactor technology for post-combustion CO2 capture from DOE Contract No. DE-FE-0004787. Budget Period 1 (BP1) membrane absorber, Budget Period 2 (BP2) membrane desorber and Budget Period 3 (BP3) integrated system and field testing studies have been completed successfully and met or exceeded the technical targets (≥ 90% CO2 removal and CO2 purity of 97% in one membrane stage). Significant breakthroughs are summarized below: BP1 research: The feasibility of utilizing the poly (ether ether ketone), PEEK, based hollow fiber contractor (HFC) in combination with chemical solvents to separate and capture at least 90% of the CO2 from simulated flue gases has been successfully established. Excellent progress has been made as we have achieved the BP1 goal: ≥ 1,000 membrane intrinsic CO2 permeance, ≥ 90% CO2 removal in one stage, ≤ 2 psi gas side pressure drop, and ≥ 1 (sec)-1 mass transfer coefficient. Initial test results also show that the CO2 capture performance, using activated Methyl Diethanol Amine (aMDEA) solvent, was not affected by flue gas contaminants O2 (~3%), NO2 (66 ppmv), and SO2 (145 ppmv). BP2 research: The feasibility of utilizing the PEEK HFC for CO2-loaded solvent regeneration has been successfully established High CO2 stripping flux, one order of magnitude higher than CO2 absorption flux, have been achieved. Refined economic evaluation based on BP1 membrane absorber and BP2 membrane desorber laboratory test data indicate that the CO2 capture costs are 36% lower than DOE’s benchmark amine absorption technology. BP3 research: A bench-scale system utilizing a membrane absorber and desorber was integrated into a continuous CO2 capture process using contactors containing 10 to 20 ft2 of membrane area. The integrated process operation was stable through a 100-hour laboratory test, utilizing a simulated flue gas stream. Greater than 90% CO2 capture combined with 97

  3. Cycles, randomness, and transport from chaotic dynamics to stochastic processes

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre

    2015-09-01

    An overview of advances at the frontier between dynamical systems theory and nonequilibrium statistical mechanics is given. Sensitivity to initial conditions is a mechanism at the origin of dynamical randomness—alias temporal disorder—in deterministic dynamical systems. In spatially extended systems, sustaining transport processes, such as diffusion, relationships can be established between the characteristic quantities of dynamical chaos and the transport coefficients, bringing new insight into the second law of thermodynamics. With methods from dynamical systems theory, the microscopic time-reversal symmetry can be shown to be broken at the statistical level of description in nonequilibrium systems. In this way, the thermodynamic entropy production turns out to be related to temporal disorder and its time asymmetry away from equilibrium.

  4. Cycles, randomness, and transport from chaotic dynamics to stochastic processes.

    PubMed

    Gaspard, Pierre

    2015-09-01

    An overview of advances at the frontier between dynamical systems theory and nonequilibrium statistical mechanics is given. Sensitivity to initial conditions is a mechanism at the origin of dynamical randomness-alias temporal disorder-in deterministic dynamical systems. In spatially extended systems, sustaining transport processes, such as diffusion, relationships can be established between the characteristic quantities of dynamical chaos and the transport coefficients, bringing new insight into the second law of thermodynamics. With methods from dynamical systems theory, the microscopic time-reversal symmetry can be shown to be broken at the statistical level of description in nonequilibrium systems. In this way, the thermodynamic entropy production turns out to be related to temporal disorder and its time asymmetry away from equilibrium. PMID:26428559

  5. Analyzing the dynamics of cell cycle processes from fixed samples through ergodic principles

    PubMed Central

    Wheeler, Richard John

    2015-01-01

    Tools to analyze cyclical cellular processes, particularly the cell cycle, are of broad value for cell biology. Cell cycle synchronization and live-cell time-lapse observation are widely used to analyze these processes but are not available for many systems. Simple mathematical methods built on the ergodic principle are a well-established, widely applicable, and powerful alternative analysis approach, although they are less widely used. These methods extract data about the dynamics of a cyclical process from a single time-point “snapshot” of a population of cells progressing through the cycle asynchronously. Here, I demonstrate application of these simple mathematical methods to analysis of basic cyclical processes—cycles including a division event, cell populations undergoing unicellular aging, and cell cycles with multiple fission (schizogony)—as well as recent advances that allow detailed mapping of the cell cycle from continuously changing properties of the cell such as size and DNA content. This includes examples using existing data from mammalian, yeast, and unicellular eukaryotic parasite cell biology. Through the ongoing advances in high-throughput cell analysis by light microscopy, electron microscopy, and flow cytometry, these mathematical methods are becoming ever more important and are a powerful complementary method to traditional synchronization and time-lapse cell cycle analysis methods. PMID:26543196

  6. NOx removal from flue gas by an integrated physicochemical absorption and biological denitrification process.

    PubMed

    van der Maas, Peter; van den Bosch, Pim; Klapwijk, Bram; Lens, Piet

    2005-05-20

    An integrated physicochemical and biological technique for NO(x) removal from flue gas, the so-called BioDeNO(x) process, combines the principles of wet absorption of NO in an aqueous Fe(II)EDTA(2-) solution with biological reduction of the sorbed NO in a bioreactor. The biological reduction of NO to di-nitrogen gas (N(2)) takes place under thermophilic conditions (55 degrees C). This study demonstrates the technical feasibility of this BioDeNO(x) concept in a bench-scale installation with a continuous flue gas flow of 650 l.h(-1) (70-500 ppm NO; 0.8-3.3% O(2)). Stable NO removal with an efficiency of at least 70% was obtained in case the artificial flue gas contained 300 ppm NO and 1% O(2) when the bioreactor was inoculated with a denitrifying sludge. An increase of the O(2) concentration of only 0.3% resulted in a rapid elevation of the redox potential (ORP) in the bioreactor, accompanied by a drastic decline of the NO removal efficiency. This was not due to a limitation or inhibition of the NO reduction, but to a limited biological iron reduction capacity. The latter leads to a depletion of the NO absorption capacity of the scrubber liquor, and thus to a poor NO removal efficiency. Bio-augmentation of the reactor mixed liquor with an anaerobic granular sludge with a high Fe(III) reduction capacity successfully improved the bioreactor efficiency and enabled to treat a flue gas containing at least 3.3% O(2) and 500 ppm NO with an NO removal efficiency of over 80%. The ORP in the bioreactor was found to be a proper parameter for the control of the ethanol supply, needed as electron donor for the biological regeneration process. The NO removal efficiency as well as the Fe(III)EDTA(-) reduction rate were found to decline at ORP values higher than -140 mV (pH 7.0). For stable BioDeNO(x) operation, the supply of electron donor (ethanol) can be used to control the ORP below that critical value. PMID:15812803

  7. Evidence of CuI/CuII Redox Process by X-ray Absorption and EPR Spectroscopy: Direct Synthesis of Dihydrofurans from b-Ketocarbonyl Derivatives and Olefins

    SciTech Connect

    Yi, Hong; Liao, Zhixiong; Zhang, Guanghui; Zhang, Guoting; Fan, Chao; Zhang, Xu; Bunel, Emilio E.; Pao, Chih-Wen; Lee, Jyh-Fu; Lei, Aiwen

    2015-01-01

    Abstract: The CuI/CuII and CuI/CuIII catalytic cycles have been subject to intense debate in the field of copper-catalyzed oxidative coupling reactions. A mechanistic study on the CuI/CuII redox process, by X-ray absorption (XAS) and electron paramagnetic resonance (EPR) spectroscopies, has elucidated the reduction mechanism of CuII to CuI by 1,3-diketone and detailed investigation revealed that the halide ion is important for the reduction process. The oxidative nature of the thereby-formed CuI has also been studied by XAS and EPR spectroscopy. This mechanistic information is applicable to the copper-catalyzed oxidative cyclization of b-ketocarbonyl derivatives to dihydrofurans. This protocol provides an ideal route to highly substituted dihydrofuran rings from easily available 1,3-dicarbonyls and olefins. Copper

  8. Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps

    DOEpatents

    Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.

    2012-08-21

    A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.

  9. Crystal Structure Analysis of La2Ni6CoD(x) During Deuterium Absorption Process.

    PubMed

    Iwase, Kenji; Mori, Kazuhiro; Tashiro, Suguru; Yokota, Hitoshi; Suzuki, Tetsuya

    2015-09-01

    The crystal structures of La2Ni6CoD(x) (x = 5.2 and 9.6) were determined by in situ neutron diffraction along the P-C isotherm. La2Ni6CoD(5.2) (phase I) was found to be orthorhombic with lattice parameters a = 0.500670(2) nm, b = 0.867211(4) nm, and c = 2.99569(7) nm. The 10 deuterium sites were located in the MgZn2-type and CaCu5-type cells, with deuterium contents of 0.95 D/M and 0.39 D/M, respectively. The full deuteride La2Ni6CoD(9.6) (phase II) was monoclinic with lattice parameters a = 0.516407(3) nm, b = 0.894496(6) nm, c = 3.11206(1) nm, and β = 90.15(1)°. The phase II had 11 sites for deuterium occupation. The deuterium contents of the MgZn2-type and the CaCu5-type cell were 1.63 D/M and 0.78 D/M, respectively. The sequence of phase transformation of La2Ni6Co was hexagonal, followed by orthorhombic (phase I), and then monoclinic (phase II), for the first absorption process. The phase transformation resulted in lowered symmetry and the variation of deuterium atom occupation. PMID:26267438

  10. Collisional Processing of Comet and Asteroid Surfaces: Velocity Effects on Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Lederer, S. M.; Jensen, E. A.; Wooden, D. H.; Lindsay, S. S.; Smith, D. C.; Nakamura-Messenger, K.; Keller, L. P.; Cintala, M. J.; Zolensky, M. E.

    2012-01-01

    A new paradigm has emerged where 3.9 Gyr ago, a violent reshuffling reshaped the placement of small bodies in the solar system (the Nice model). Surface properties of these objects may have been affected by collisions caused by this event, and by collisions with other small bodies since their emplacement. These impacts affect the spectrographic observations of these bodies today. Shock effects (e.g., planar dislocations) manifest in minerals allowing astronomers to better understand geophysical impact processing that has occurred on small bodies. At the Experimental Impact Laboratory at NASA Johnson Space Center, we have impacted forsterite and enstatite across a range of velocities. We find that the amount of spectral variation, absorption wavelength, and full width half maximum of the absorbance peaks vary non-linearly with the velocity of the impact. We also find that the spectral variation increases with decreasing crystal size (single solid rock versus granular). Future analyses include quantification of the spectral changes with different impactor densities, temperature, and additional impact velocities. Results on diopside, fayalite, and magnesite can be found in Lederer et al., this meeting.

  11. Real-time process control using diode-laser absorption sensors

    SciTech Connect

    Baer, D.S.; Furlong, E.R.; Hanson, R.K.

    1996-12-31

    A multiplexed diode-laser sensor system, based on absorption spectroscopy techniques and comprised of two InGaAsP diode lasers and fiber-optic components, has been developed to measure temperature and species concentration non-intrusively over a single path for closed-loop process control. The system was applied to measure and control the gas temperature in the post-flame gases 6 mm above the surface of a Hencken burner (multiple CH{sub 4}-air diffusion flames). The wavelengths of the lasers were independently current-tuned across H{sub 2}O transitions near 1343 nm (v{sub 1} + v{sub 3} band) and 1392 nm (2v{sub 1}, v{sub 1} + v{sub 3} bands). Temperature was determined from the ratio of measured peak absorbances, and H{sub 2}O concentration was determined from the measured peak absorbance of one transition set at the measured temperature. A closed-loop feedback system was demonstrated to control the mean temperature and the amplitude of temperature fluctuations at particular frequencies by appropriately modulating the fuel flow rate. The results obtained demonstrate the potential of multiplexed diode lasers for rapid, continuous, in situ measurements and control of gasdynamic parameters in high-temperature combustion flowfields and other environments with difficult optical access.

  12. ENVIRONMENTAL AUDITING: The Functional Unit in the Life Cycle Inventory Analysis of Degreasing Processes in the Metal-Processing Industry

    PubMed

    Finkbeiner; Hoffmann; Kreisel

    1997-07-01

    / In 1986 degreasing processes in the German metal-processing industry contributed about 70,000 t to the emission of chlorinated C1 and C2 hydrocarbons (trichloroethane, trichloroethene, tetrachloroethene, dichloromethane). Measures aiming at the reduction of toxic emissions and ozone depletion potential (ODP) may possibly lead to a shift of environmental impacts towards higher energy consumption, emission of waste water, and volatile organic compounds (VOC) with photochemical oxidant creation potential (POCP). The present article concerns itself with a life cycle assessment of the three main degreasing processes in order to compare their integral environmental impacts with one another. This is supplemented by presenting the methodology of the life cycle inventory life cycle inventory analysis (LCI). Generally, the applicability of the established LCI method can be shown quite clearly. However, some difficulties arise, especially at the stage of the goal definition, as the use of the process and the functional unit cannot be pinned down as easily and neatly as for most other products. The definition of the use of the process and the functional unit is not as straightforward as for most products. Among the potential functional units identified are the mass of removed impurities, cleaning time, cleaning work, percentage of purity, throughput of parts, loads, mass or surface and virtual coefficients. The mass of removed impurities turned out to be the most suitable parameter for measuring the technical performance of degreasing processes. The article discusses background, purpose, scope, system boundaries, target group, process tree and representativeness of the present study.KEY WORDS: Functional unit; Life cycle assessment; Life cycle inventory analysis; Degreasing processes; Metal processing PMID:9175550

  13. Thermodynamic analysis of liquefied natural gas (LNG) production cycle in APCI process

    NASA Astrophysics Data System (ADS)

    Nezhad, Shahrooz Abbasi; Shabani, Bezhan; Soleimani, Majid

    2012-12-01

    The appropriate production of liquefied natural gas (LNG) with least consuming energy and maximum efficiency is quite important. In this paper, LNG production cycle by means of APCI Process has been studied. Energy equilibrium equations and exergy equilibrium equations of each equipment in the APCI cycle were established. The equipments are described using rigorous thermodynamics and no significant simplification is assumed. Taken some operating parameters as key parameters, influences of these parameters on coefficient of performance (COP) and exergy efficiency of the cascading cycle were analyzed. The results indicate that COP and exergy efficiency will be improved with the increasing of the inlet pressure of MR (mixed refrigerant) compressors, the decreasing of the NG and MR after precooling process, outlet pressure of turbine, inlet temperature of MR compressor and NG temperature after cooling in main cryogenic heat exchanger (MCHE). The COP and exergy efficiency of the APCI cycle will be above 2% and 40%, respectively, after optimizing the key parameters.

  14. Understanding charge carrier relaxation processes in terbium arsenide nanoparticles using transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Vanderhoef, Laura R.

    Erbium arsenide nanoparticles epitaxially grown within III-V semiconductors have been shown to improve the performance of devices for applications ranging from thermoelectrics to THz pulse generation. The small size of rare-earth nanoparticles suggests that interesting electronic properties might emerge as a result of both spatial confinement and surface states. However, ErAs nanoparticles do not exhibit any signs of quantum confinement or an emergent bandgap, and these experimental observations are understood from theory. The incorporation of other rare-earth monopnictide nanoparticles into III-V hosts is a likely path to engineering carrier excitation, relaxation and transport dynamics for optoelectronic device applications. However, the electronic structure of these other rare-earth monopnictide nanoparticles remains poorly understood. The objective of this research is to explore the electronic structure and optical properties of III-V materials containing novel rare-earth monopnictides. We use ultrafast pump-probe spectroscopy to investigate the electronic structure of TbAs nanoparticles in III-V hosts. We start with TbAs:GaAs, which was expected to be similar to ErAs:GaAs. We study the dynamics of carrier relaxation into the TbAs states using optical pump terahertz probe transient absorption spectroscopy. By analyzing how the carrier relaxation rates depend on pump fluence and sample temperature, we conclude that the TbAs states are saturable. Saturable traps suggest the existence of a bandgap for TbAs nanoparticles, in sharp contrast with previous results for ErAs. We then apply the same experimental technique to two samples of TbAs nanoparticles in InGaAs with different concentrations of TbAs. We observe similar relaxation dynamics associated with trap saturation, though the ability to resolve these processes is contingent upon a high enough TbAs concentration in the sample. We have also constructed an optical pump optical probe transient absorption

  15. Process sensitivity studies of the Westinghouse Sulfur Cycle for hydrogen generation

    NASA Technical Reports Server (NTRS)

    Carty, R.; Funk, J.; Soliman, M.; Conger, W.; Brecher, L.; Spewock, S.; Cox, K.

    1976-01-01

    The effect of variations of acid concentration, pressure, and temperature on the thermal process efficiency of the Westinghouse Sulfur Cycle was examined using the University of Kentucky's HYDRGN program. Modifications to the original program were made to duplicate the process flow sheet and take into account combined-cycle heat-to-work efficiencies for electrochemical work requirements, aqueous solutions, and heat-of-mixing effects. A total of 125 process variations were considered (acid concentration: 50-90 w/o; pressure: 15-750 psia; temperature: 922-1366 K (2000 F)). The methods of analysis, results, and conclusions are presented.

  16. Optimal cure cycle design for autoclave processing of thick composites laminates: A feasibility study

    NASA Technical Reports Server (NTRS)

    Hou, Jean W.

    1985-01-01

    The thermal analysis and the calculation of thermal sensitivity of a cure cycle in autoclave processing of thick composite laminates were studied. A finite element program for the thermal analysis and design derivatives calculation for temperature distribution and the degree of cure was developed and verified. It was found that the direct differentiation was the best approach for the thermal design sensitivity analysis. In addition, the approach of the direct differentiation provided time histories of design derivatives which are of great value to the cure cycle designers. The approach of direct differentiation is to be used for further study, i.e., the optimal cycle design.

  17. Integration of open-cycle MHD with various chemical and metallurgical processes

    SciTech Connect

    Jones, M.S. Jr.

    1981-01-01

    The use of open-cycle MHD in a cogeneration mode is examined for the electrochemical and metallurgical industries. The MHD cycle has the potential for supplying electricity, steam, and high-temperature air or high-temperature combustion products to meet process requirements. The potential energy savings which may be realized through the use of open-cycle MHD in a cogeneration mode are estimated through the use of a first-order thermodynamic MHD plant model which estimates the amount of fuel required for unit of product as the performance of various plant components are changed. Inputs to the model are the process requirements for electricity, steam, and high-temperature heat. The primary method of analysis is to assume the process requirements for the various industries and to examine how the amount of fuel required varies as the MHD generator enthalpy extraction efficiency is varied. Processes using open-cycle MHD for producing aluminum and chlorine-caustic soda are examined in some detail. Processes for the production of iron or steel, and for the production of hydrogen for ammonia are also examined. The use of open-cycle MHD to produce hydrogen for the manufacture of ammonia is also examined. The use of the high-temperature waste heat in the MHD-channel exhaust for thermochemical hydrogen production in a hybrid cycle is an attractive option. The sizes of possible open-cycle MHD installations for these industries are examined and the conditions that the processes impose on the MHD system are discussed. The suitability of the disc MHD generator for these applications is then examined.

  18. An analysis of hydrogen production via closed-cycle schemes. [thermochemical processings from water

    NASA Technical Reports Server (NTRS)

    Chao, R. E.; Cox, K. E.

    1975-01-01

    A thermodynamic analysis and state-of-the-art review of three basic schemes for production of hydrogen from water: electrolysis, thermal water-splitting, and multi-step thermochemical closed cycles is presented. Criteria for work-saving thermochemical closed-cycle processes are established, and several schemes are reviewed in light of such criteria. An economic analysis is also presented in the context of energy costs.

  19. Nitrogen cycling and water pulses in semiarid grasslands: Are microbial and plant processes temporarily asynchronous?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precipitation pulses in arid ecosystems can lead to temporal asynchrony in microbial and plant processing of nitrogen (N) during drying/wetting cycles causing increased N loss. In contrast, more consistent availability of soil moisture in mesic ecosystems can synchronize microbial and plant processe...

  20. Model reduction and physical understanding of slowly oscillating processes : the circadian cycle.

    SciTech Connect

    Goussis, Dimitris A.; Najm, Habib N.

    2006-01-01

    A differential system that models the circadian rhythm in Drosophila is analyzed with the computational singular perturbation (CSP) algorithm. Reduced nonstiff models of prespecified accuracy are constructed, the form and size of which are time-dependent. When compared with conventional asymptotic analysis, CSP exhibits superior performance in constructing reduced models, since it can algorithmically identify and apply all the required order of magnitude estimates and algebraic manipulations. A similar performance is demonstrated by CSP in generating data that allow for the acquisition of physical understanding. It is shown that the processes driving the circadian cycle are (i) mRNA translation into monomer protein, and monomer protein destruction by phosphorylation and degradation (along the largest portion of the cycle); and (ii) mRNA synthesis (along a short portion of the cycle). These are slow processes. Their action in driving the cycle is allowed by the equilibration of the fastest processes; (1) the monomer dimerization with the dimer dissociation (along the largest portion of the cycle); and (2) the net production of monomer+dimmer proteins with that of mRNA (along the short portion of the cycle). Additional results (regarding the time scales of the established equilibria, their origin, the rate limiting steps, the couplings among the variables, etc.) highlight the utility of CSP for automated identification of the important underlying dynamical features, otherwise accessible only for simple systems whose various suitable simplifications can easily be recognized.

  1. Influence of coupling of sorption and photosynthetic processes on trace element cycles in natural waters

    USGS Publications Warehouse

    Fuller, C.C.; Davis, J.A.

    1989-01-01

    Chemical and biological processes have important roles in the transport and cycling of trace elements in natural waters, but their complex interactions are often not well understood. Trace-element concentrations may, for example, be controlled by adsorption-desorption reactions at mineral surfaces, with the equilibrium strongly influenced by pH. Variations in pH due to photosynthetic activity should result in concentration fluctuations as the adsorption-desorption equilibrium shifts with pH. To investigate these interactions, we have studied the effect of diurnal cycling of pH on dissolved arsenate in a perennial stream contaminated with arsenic. As expected, a diurnal cycle in arsenate concentration was observed, but surprisingly, the arsenate cycle lags several hours behind the pH cycle. Laboratory experiments show that the lag results from a slow approach to sorption equilibrium. Our observations demonstrate that the coupling of photosynthesis and sorption processes may have an important influence on the cycling of many trace elements and emphasize the importance of understanding sorption kinetics in modelling these processes.

  2. Phase Transfer-Catalyzed Fast CO2 Absorption by MgO-Based Absorbents with High Cycling Capacity

    SciTech Connect

    Zhang, Keling; Li, Xiaohong S.; Li, Weizhen; Rohatgi, Aashish; Duan, Yuhua; Singh, Prabhakar; Li, Liyu; King, David L.

    2014-06-01

    CO2 capture from pre-combustion syngas in the temperature range of 250-400°C is highly desirable from an energy efficiency perspective. Thermodynamically, MgO is a promising material for CO2 capture, but the gas-solid reaction to produce MgCO3 is kinetically slow due to high lattice energy. We report here fast CO2 absorption over a solid MgO-molten nitrate/nitrite aggregate through phase transfer catalysis, in which the molten phase serves as both a catalyst and reaction medium. Reaction with CO2 at the gas-solid-liquid triple phase boundary results in formation of MgCO3 with significant reaction rate and a high conversion of MgO. This methodology is also applicable to other alkaline earth oxides, inspiring the design of absorbents which require activation of the bulk material.

  3. Characterization of Photon-Counting Detector Responsivity for Non-Linear Two-Photon Absorption Process

    NASA Technical Reports Server (NTRS)

    Sburlan, S. E.; Farr, W. H.

    2011-01-01

    Sub-band absorption at 1550 nm has been demonstrated and characterized on silicon Geiger mode detectors which normally would be expected to have no response at this wavelength. We compare responsivity measurements to singlephoton absorption for wavelengths slightly above the bandgap wavelength of silicon (approx. 1100 microns). One application for this low efficiency sub-band absorption is in deep space optical communication systems where it is desirable to track a 1030 nm uplink beacon on the same flight terminal detector array that monitors a 1550 nm downlink signal for pointingcontrol. The currently observed absorption at 1550 nm provides 60-70 dB of isolation compared to the response at 1064 nm, which is desirable to avoid saturation of the detector by scattered light from the downlink laser.

  4. Performance of a biogas upgrading process based on alkali absorption with regeneration using air pollution control residues.

    PubMed

    Baciocchi, Renato; Carnevale, Ennio; Costa, Giulia; Gavasci, Renato; Lombardi, Lidia; Olivieri, Tommaso; Zanchi, Laura; Zingaretti, Daniela

    2013-12-01

    This work analyzes the performance of an innovative biogas upgrading method, Alkali absorption with Regeneration (AwR) that employs industrial residues and allows to permanently store the separated CO2. This process consists in a first stage in which CO2 is removed from the biogas by means of chemical absorption with KOH or NaOH solutions followed by a second stage in which the spent absorption solution is contacted with waste incineration Air Pollution Control (APC) residues. The latter reaction leads to the regeneration of the alkali reagent in the solution and to the precipitation of calcium carbonate and hence allows to reuse the regenerated solution in the absorption process and to permanently store the separated CO2 in solid form. In addition, the final solid product is characterized by an improved environmental behavior compared to the untreated residues. In this paper the results obtained by AwR tests carried out in purposely designed demonstrative units installed in a landfill site are presented and discussed with the aim of verifying the feasibility of this process at pilot-scale and of identifying the conditions that allow to achieve all of the goals targeted by the proposed treatment. Specifically, the CO2 removal efficiency achieved in the absorption stage, the yield of alkali regeneration and CO2 uptake resulting for the regeneration stage, as well as the leaching behavior of the solid product are analyzed as a function of the type and concentration of the alkali reagent employed for the absorption reaction. PMID:24045173

  5. Enabling forbidden processes: quantum and solvation enhancement of nitrate anion UV absorption.

    PubMed

    Svoboda, Ondřej; Kubelová, Lucie; Slavíček, Petr

    2013-12-01

    We present simulated electronic absorption spectra of isolated and solvated nitrate anion in the UV region, focusing primarily on the absorption into the first absorption band around 300 nm. This weak absorption band in this spectral region is responsible for the generation of NOx in the polar areas or OH(•) radicals in the hydrosphere. The 300 nm absorption band is symmetrically strongly forbidden and coupling of at least two vibrational modes is needed to allow the transition in the isolated nitrate anion. Further symmetry breaking is provided by solvation. In this study we model the absorption spectra of nitrate-water clusters using the combined reflection principle path integral molecular dynamics (RP-PIMD) method. Condensed phase UV spectra are modeled within a cluster-continuum model. The calculated spectra are compared with experimental bulk phase measurements and reasonable agreement is found. We also provide a benchmarking of the DFT functionals to be used for a description of the electronically excited states of solvated nitrate anion. PMID:24237180

  6. Ionization yield and absorption spectra reveal superexcited Rydberg state relaxation processes in H2O and D2O

    NASA Astrophysics Data System (ADS)

    Fillion, J.-H.; Dulieu, F.; Baouche, S.; Lemaire, J.-L.; Jochims, H. W.; Leach, S.

    2003-07-01

    The absorption cross section and the ionization quantum yield of H2O have been measured using a synchrotron radiation source between 9 and 22 eV. Comparison between the two curves highlights competition between relaxation processes for Rydberg states converging to the first tilde A 2A 1 and to the second tilde B 2B 2 excited states of H2O+. Comparison with D2O absorption and ionization yields, derived from Katayama et al (1973 J. Chem. Phys. 59 4309), reveals specific energy-dependent deuteration effects on competitive predissociation and autoionization relaxation channels. Direct ionization was found to be only slightly affected by deuteration.

  7. Phytate degradation determines the effect of industrial processing and home cooking on iron absorption from cereal-based foods.

    PubMed

    Hurrell, Richard F; Hurrell, Richard F; Reddy, Manju B; Burri, Joseph; Cook, James D

    2002-08-01

    The aim of the present study was to compare Fe absorption from industrially-manufactured and home-cooked cereal foods. Fe absorption was measured using the radiolabelled Fe extrinsic tag technique in thirty-nine adult human subjects from cereal porridges manufactured by extrusion cooking or roller-drying, and from the same cereal flours after home cooking to produce pancakes, chappattis or bread. One series of cereal porridges was amylase-treated in addition before roller-drying. Fe absorption was relatively low from all products, ranging from 1.8-5.5 % for rice, 2.5-3.5 % for maize, 4.9-13.6 % for low-extraction wheat, and <1 % for high-extraction wheat foods. The phytic acid content remained high after drying of the cereal porridges being about 1.20, 1.70, 3.20, 3.30 mg/g in low-extraction wheat, rice, high-extraction wheat and maize products respectively, and could explain the low Fe absorption. There were little or no differences in Fe absorption between the extruded and roller-dried cereals, although amylase pre-treatment increased Fe absorption from the roller-dried rice cereal 3-fold. This was not due to phytate degradation but possibly because of the more liquid nature of the cereal meal as fed. There were similarly few or no differences in Fe absorption between the industrially-processed cereals and home-cooked cereals made into pancakes or chappattis. Bread-making, however, degraded phytic acid to zero in the low-extraction wheat flour and Fe absorption increased to 13.6 %, the greatest from all cereal foods tested. It is concluded that Fe absorption from extruded, roller-dried or home-cooked cereal foods is similarly low and that only those cooking procedures such as bread-making, which extensively degrades phytic acid, or amylase pre-treatment, which substantially liquifies cereal porridges, improve Fe absorption. PMID:12144715

  8. Gravitational effects of process-induced dislocations in silicon. [during thermal cycling

    NASA Technical Reports Server (NTRS)

    Porter, W. A.; Parker, D. L.

    1974-01-01

    Matters pertaining to semiconductor device fabrication were studied in terms of the influence of gravity on the production of dislocations in silicon wafers during thermal cycling in a controlled ambient where no impurities are present and oxidation is minimal. Both n-type and p-type silicon wafers having a diameter of 1.25 in to 1.5 in, with fixed orientation and resistivity values, were used. The surface dislocation densities were measured quantitatively by the Sirtl etch technique. The results show two significant features of the plastic flow phenomenon as it is related to gravitational stress: (1) the density of dislocations generated during a given thermal cycle is directly related to the duration of the cycle; and (2) the duration of the thermal cycle required to produce a given dislocation density is inversely related to the equilibrium temperature. Analysis of the results indicates that gravitational stress is instrumental in process-induced defect generation.

  9. Closed-Cycle He-Cooled Absorption Cells Designed for a Bruker IFS-125HR: First Results Between 79 K and 297K

    NASA Astrophysics Data System (ADS)

    Mantz, Arlan W.; Sung, Keeyoon; Brown, Linda R.; Crawford, Timothy J.; Smith, Mary Ann H.; Devi, V. Malathy; Benner, D. Chris

    2010-06-01

    Gas absorption cells specifically designed to achieve stable temperatures down to ˜70 K to fit inside the sample compartment of an evacuated Bruker (IFS-125HR) Fourier Transform spectrometer (FTS) have been developed at Connecticut College, and tested at the Jet Propulsion Laboratory (JPL). In operation, the temperature-controlled cooling by a closed-cycle helium refrigerator achieved a temperature stability of ±0.01 K. The unwanted absorption features initially observed from cryo-deposits formed on the outside cell windows were eliminated by adding an internal vacuum shroud box around the coolable cell to isolate it from residual gases in the evacuated FTS chambers. The effects of vibrations arising from the closed-cycle helium refrigerator upon the FTS spectra were characterized. Using this set up, high resolution spectra of several methane isotopologues (such as 12CH_4, 13CH_4 and 12CH_3D) broadened by N_2, were recorded in the 1230 to 1850 cm-1 spectral region. Such data are needed to characterize the temperature dependence of line shapes at very low temperatures for remote sensing of outer planets and their moons. Results from the initial analysis of the R(2) manifold of the ν_4 fundamental band of 13CH_4 are discussed to examine whether the N_2-broadened half width coefficients follow a simple exponential temperature-dependence over the entire 80 - 296 K temperature range. This initial test was very successful, proving that a high precision Fourier transform spectrometer can be easily configured for spectroscopic studies at very low temperatures relevant to planetary atmospheres. Research described in this paper was performed at Connecticut College, the College of William and Mary, NASA Langley Research Center and the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  10. Closed-cycle He-cooled Absorption Cells Designed For A Bruker Ifs-125hr: First Results Between 79 - 297 K

    NASA Astrophysics Data System (ADS)

    Sung, Keeyoon; Mantz, A. W.; Smith, M. A. H.; Brown, L. R.; Crawford, T. J.; Malathy Devi, V.; Benner, D. Chris

    2010-10-01

    Gas absorption cells specifically designed to achieve stable temperatures down to 66K were developed at Connecticut College to fit inside the sample compartment of an evacuated Bruker (IFS-125HR) Fourier Transform spectrometer (FTS) at the Jet Propulsion Laboratory. The temperature-controlled cooling by a closed-cycle helium refrigerator achieved a temperature stability of ±0.01 K. Such temperature control is essential to characterize the temperature dependence of line shapes at the very low temperatures found in outer planets and their moons. In operation, the effects of vibrations arising from the closed-cycle helium refrigerator upon the FTS spectra were minimized. Initial unwanted absorption features from cryo-deposits on the cell windows were eliminated by adding a separately-pumped vacuum shroud box around the coolable cell to isolate it from residual gases in the evacuated FTS chambers. Using this setup, high resolution spectra of several methane isotopologues (12CH4, 13CH4 and 12CH3D) broadened by N2, were recorded in the 1230 to 1850 cm-1 spectral region. Initial analysis of the R(2) manifold of the v4 fundamental band of 13CH4 examined whether the N2-broadened half width coefficients follow a simple power-law temperature-dependence over the entire 80 - 296 K temperature range. The results from this work were published by Sung et al. [1]. Low-temperature spectra of ethane [2-3] and carbon monoxide have also been recorded. This research is supported by NASA's Planetary Atmospheres Program. [1] K. Sung et al., J. Mol. Spectrosc. (2010) doi:10.1016/j.jms.2010.05.004. [2] V. Malathy Devi et al., JQSRT (2010) submitted. [3] L. R. Brown et al., adjacent poster.

  11. Formation of an SEI on a LiMn(2)O(4) Cathode during Room Temperature Charge-Discharge Cycling Studied by Soft X-Ray Absorption Spectroscopy at the Fluorine K-edge

    SciTech Connect

    Chung, K.Y.; Yang, X.; Yoon, W.-S.; Kim, K.-B.; Cho, B.-W.

    2011-11-01

    The solid electrolyte interface (SEI) formation on the surface of LiMn{sub 2}O{sub 4} electrodes during room temperature charge-discharge cycling was studied using soft X-ray absorption spectroscopy at the Fluorine (F) K-edge. LiMn{sub 2}O{sub 4} electrodes without any binder were prepared by electrostatic spray deposition to eliminate the signal originating from the PVDF binder in the F K-edge X-ray absorption spectra. The F K-edge absorption spectra show that the SEI layer forms at a very early stage of cycling. SEI growth takes place during discharge. In addition, LiF formation is accelerated if the discharge step follows a charge step. The F K-edge absorption spectra suggest that the major component of the SEI is LiF.

  12. Absorption of human skin and its detecting platform in the process of laser cosmetology

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Lin; Ouyang, Li; Wang, Yang

    2000-10-01

    Because of the melanin, hemoglobin and water molecules, etc. contained, light absorption of human skin tissue changes with wavelength of light. This is the principle used in laser cosmetology for treating pigment diseases and vascular lesion diseases as well as skin decoration such as body tattooing, eyebrow tattooing, etc. The parameters of treatment used in laser cosmetology principally come from the research of the skin tissue optical characteristics of whites, and it is not suitable for the Oriental. The absorption spectrum of yellow race alive skin has been researched. The detecting platform for use in the measuring of vivi-tissue absorption spectrum has been developed which using opto-electronic nondestructive testing and virtual instrument techniques. The degree of pathological changes of skin can be detected by this platform also, thus the shortcoming of dosage selection in laser clinical treatments which have been decided only by naked eye observation and past experience of doctors can be solved.

  13. sources and processes identification for Zn cycling in the Seine river, France

    NASA Astrophysics Data System (ADS)

    gelabert, A.; Jouvin, D.; Morin, G.; Louvat, P.; Guinoiseau, D.; Benedetti, M. F.

    2011-12-01

    Because the availability of global freshwater stocks is predicted to become a major problem in a near future, new directives on water policy have been established in Europe. As a result, an accurate determination of the ecological status of the Seine river watershed is required. However, important evaluation limitation still exist, partly because the metal cycling in this system is not fully understood with for instance half the Seine river Zn not having clearly identified sources. Recent developments in isotopic measurements for new stable isotopes (Zn, Cu) allow many progresses in understanding the dynamics of metals in natural systems. But this technique alone does not always provide a precise distinction between mixing of water sources and biochemical processes able to induce isotopic fractionation. Along with an isotopic approach, this study propose to use XAS (X-ray Absorption Spectroscopy) to determine precisely the speciation of Zn complexes, and thus to define the proportion of water mixing vs. processes for Zn transfer in the watershed. A geographical sampling transect has been performed downstream Paris. Significant isotopic signature variations have been observed, varying from δ66Zn = 0.04 ± 0.04 to 0.18 ± 0.04 in the particulate part, and from δ66Zn= -0.28 ± 0.04 to 0.08 ± 0.04 for the dissolved part. The XAS analysis performed on the same samples at the Zn K-edge confirmed this heterogeneity by showing different speciations with a major contribution of sulfides, iron oxides and organic ligands. Interestingly, the wastewater treatment plant in Achères constitutes an important location in the system by contributing to the enrichment of heavy Zn to the Seine River particulate material. This change in isotopic signature follows a change in Zn speciation with decrease in sulfides contribution after Achères. A second important location is the confluence between the Seine and a minor river (Epte river) with a significant decrease in the δ66Zn for

  14. The evaluation of alternative thermochemical cycles-Part II the down selection process.

    SciTech Connect

    Lewis, M. A.; Masin, J. G.; Chemical Sciences and Engineering Division

    2009-01-01

    The Nuclear Hydrogen Initiative (NHI) of the U.S. Department of Energy's Office of Nuclear Energy Science and Technology is supporting an effort to reevaluate thermochemical cycles reported in the literature as having both promising efficiencies and proof-of-concept results. Nine cycles were identified. A group of universities was tasked with the evaluation of these cycles using the NHI consistent methodology for calculating efficiency and for recommending and conducting critical research needed to help in the down-selection process. Argonne National Laboratory coordinated these activities. This paper provides an overview of the program and summarizes the results of the down-selection process. Individual papers that contain the details of the research are provided by the universities.

  15. Pressure Swing Absorption Device and Process for Separating CO{sub 2} from Shifted Syngas and its Capture for Subsequent Storage

    SciTech Connect

    Sirkar, Kamalesh; Jie, Xingming; Chau, John; Obuskovic, Gordana

    2013-03-31

    Using the ionic liquid (IL) 1-butyl-3-methylimidazolium dicyanamide ([bmim][DCA]) as the absorbent on the shell side of a membrane module containing either a porous hydrophobized ceramic tubule or porous hydrophobized polyether ether ketone (PEEK) hollow fiber membranes, studies for CO{sub 2} removal from hot simulated pre-combustion shifted syngas were carried out by a novel pressure swing membrane absorption (PSMAB) process. Helium was used as a surrogate for H{sub 2} in a simulated shifted syngas with CO{sub 2} around 40% (dry gas basis). In this cyclic separation process, the membrane module was used to achieve non-dispersive gas absorption from a high-pressure feed gas (689-1724 kPag; 100-250 psig) at temperatures between 25-1000C into a stationary absorbent liquid on the module shell side during a certain part of the cycle followed by among other cycle steps controlled desorption of the absorbed gases from the liquid in the rest of the cycle. Two product streams were obtained, one He-rich and the other CO{sub 2}-rich. Addition of polyamidoamine (PAMAM) dendrimer of generation 0 to IL [bmim][DCA] improved the system performance at higher temperatures. The solubilities of CO{sub 2} and He were determined in the ionic liquid with or without the dendrimer in solution as well as in the presence or absence of moisture; polyethylene glycol (PEG) 400 was also studied as a replacement for the IL. The solubility selectivity of the ionic liquid containing the dendrimer for CO{sub 2} over helium was considerably larger than that for the pure ionic liquid. The solubility of CO{sub 2} and CO{sub 2}-He solubility selectivity of PEG 400 and a solution of the dendrimer in PEG 400 were higher than the corresponding ones in the IL, [bmim][DCA]. A mathematical model was developed to describe the PSMAB process; a numerical solution of the governing equations described successfully the observed performance of the PSMAB process for the pure ionic liquid-based system.

  16. Aligning Web-Based Tools to the Research Process Cycle: A Resource for Collaborative Research Projects

    ERIC Educational Resources Information Center

    Price, Geoffrey P.; Wright, Vivian H.

    2012-01-01

    Using John Creswell's Research Process Cycle as a framework, this article describes various web-based collaborative technologies useful for enhancing the organization and efficiency of educational research. Visualization tools (Cacoo) assist researchers in identifying a research problem. Resource storage tools (Delicious, Mendeley, EasyBib)…

  17. Conceptual Change in Elementary School Teacher Candidate Knowledge of Rock-Cycle Processes.

    ERIC Educational Resources Information Center

    Stofflett, Rene Therese

    1994-01-01

    Investigates the knowledge of elementary school teacher candidates on rock-cycle processes. Three different instructional interventions were used to improve their knowledge: (1) conceptual-change teaching; (2) traditional didactic teaching; and (3) microteaching. The conceptual-change group showed the most growth in understanding, supporting…

  18. 78 FR 47012 - Developing Software Life Cycle Processes Used in Safety Systems of Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing a revised regulatory guide (RG), revision 1 of RG 1.173, ``Developing Software Life Cycle Processes for Digital Computer Software used in Safety Systems of Nuclear Power Plants.'' This RG endorses the Institute of Electrical and Electronic Engineers (IEEE) Standard (Std.) 1074-2006, ``IEEE Standard for Developing a Software Project Life......

  19. Characterization and Processing of Organic Nonlinear Optical Materials using Ellipsometric, Waveguiding, and Absorption Spectroscopy Techniques

    NASA Astrophysics Data System (ADS)

    Olbricht, Benjamin C.

    The first focus of this work is to describe methods for characterizing organic electro-optic materials. Teng-Man Ellipsometry and Attenuated Total Internal Reflection are reviewed. Experimental techniques for these instruments are described and the calculation of an electro-optic activity is derived. The two techniques are compared; it has been found that in Situ Teng-Man ellipsometry is useful to determine poling conditions but not for reliably evaluating electro-optic activity. Attenuated Total Internal Reflection is found to provide very reliable and precise measurements of electro-optic activity and linear optical constants. As a reference, many materials systems have been evaluated and their electro-optic activities are recorded herein. Methods for fabricating devices for test by Teng-Man ellipsometry and Attenuated Total Internal Reflection are presented. A process for inducing Pockel's response via contact-geometry electric field poling is also described, along with modifications to the simple slab dielectric device to enhance the efficacy of poling. An additional method for enhancing the efficiency of poling is presented. This technique relies on the photoisomerization of azobenzene dyes under 532nm radiation to reduce the dimensionality accessible to chromophores doped into the azobenzene matrix. This effect is known as "Laser Assisted Poling" and is shown to increase poling efficiency by more than two fold. The second purpose of this work is to present an experimental technique to measure the order parameter = 3cos 2q -12 . This method is known as Variable-Angle Polarization-Referenced Absorption Spectroscopy (VAPRAS). The experimental apparatus used for VAPRAS introduces small alterations to a UV/Vis Spectrophotometer and an order parameter is derived by exclusively using classical models for transmittance. VAPRAS provides an effective refractive index for the electro-optic material film which is used to calculate the order of absorbers in the film

  20. Belowground Carbon Cycling Processes at the Molecular Scale: An EMSL Science Theme Advisory Panel Workshop

    SciTech Connect

    Hess, Nancy J.; Brown, Gordon E.; Plata, Charity

    2014-02-21

    As part of the Belowground Carbon Cycling Processes at the Molecular Scale workshop, an EMSL Science Theme Advisory Panel meeting held in February 2013, attendees discussed critical biogeochemical processes that regulate carbon cycling in soil. The meeting attendees determined that as a national scientific user facility, EMSL can provide the tools and expertise needed to elucidate the molecular foundation that underlies mechanistic descriptions of biogeochemical processes that control carbon allocation and fluxes at the terrestrial/atmospheric interface in landscape and regional climate models. Consequently, the workshop's goal was to identify the science gaps that hinder either development of mechanistic description of critical processes or their accurate representation in climate models. In part, this report offers recommendations for future EMSL activities in this research area. The workshop was co-chaired by Dr. Nancy Hess (EMSL) and Dr. Gordon Brown (Stanford University).

  1. Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.

    2010-01-01

    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.

  2. Operando X-ray absorption and EPR evidence for a single electron redox process in copper catalysis

    SciTech Connect

    Lu, Qingquan; Zhang, Jian; Peng, Pan; Zhang, Guanghui; Huang, Zhiliang; Yi, Hong; Miller, Jeffrey T.; Lei, Aiwen

    2015-05-26

    An unprecedented single electron redox process in copper catalysis is confirmed using operando X-ray absorption and EPR spectroscopies. The oxidation state of the copper species in the interaction between Cu(II) and a sulfinic acid at room temperature, and the accurate characterization of the formed Cu(I) are clearly shown using operando X-ray absorption and EPR evidence. Further investigation of anion effects on Cu(II) discloses that bromine ions can dramatically increase the rate of the redox process. Moreover, it is proven that the sulfinic acids are converted into sulfonyl radicals, which can be trapped by 2-arylacrylic acids and various valuable β-keto sulfones are synthesized with good to excellent yields under mild conditions.

  3. Operando X-ray absorption and EPR evidence for a single electron redox process in copper catalysis

    DOE PAGESBeta

    Lu, Qingquan; Zhang, Jian; Peng, Pan; Zhang, Guanghui; Huang, Zhiliang; Yi, Hong; Miller, Jeffrey T.; Lei, Aiwen

    2015-05-26

    An unprecedented single electron redox process in copper catalysis is confirmed using operando X-ray absorption and EPR spectroscopies. The oxidation state of the copper species in the interaction between Cu(II) and a sulfinic acid at room temperature, and the accurate characterization of the formed Cu(I) are clearly shown using operando X-ray absorption and EPR evidence. Further investigation of anion effects on Cu(II) discloses that bromine ions can dramatically increase the rate of the redox process. Moreover, it is proven that the sulfinic acids are converted into sulfonyl radicals, which can be trapped by 2-arylacrylic acids and various valuable β-keto sulfonesmore » are synthesized with good to excellent yields under mild conditions.« less

  4. Retinoid Uptake, Processing, and Secretion in Human iPS-RPE Support the Visual Cycle

    PubMed Central

    Muñiz, Alberto; Greene, Whitney A.; Plamper, Mark L.; Choi, Jae Hyek; Johnson, Anthony J.; Tsin, Andrew T.; Wang, Heuy-Ching

    2014-01-01

    Purpose. Retinal pigmented epithelium derived from human induced pluripotent stem (iPS) cells (iPS-RPE) may be a source of cells for transplantation. For this reason, it is essential to determine the functional competence of iPS-RPE. One key role of the RPE is uptake and processing of retinoids via the visual cycle. The purpose of this study is to investigate the expression of visual cycle proteins and the functional ability of the visual cycle in iPS-RPE. Methods. iPS-RPE was derived from human iPS cells. Immunocytochemistry, RT-PCR, and Western blot analysis were used to detect expression of RPE genes lecithin-retinol acyl transferase (LRAT), RPE65, cellular retinaldehyde-binding protein (CRALBP), and pigment epithelium–derived factor (PEDF). All-trans retinol was delivered to cultured cells or whole cell homogenate to assess the ability of the iPS-RPE to process retinoids. Results. Cultured iPS-RPE expresses visual cycle genes LRAT, CRALBP, and RPE65. After incubation with all-trans retinol, iPS-RPE synthesized up to 2942 ± 551 pmol/mg protein all-trans retinyl esters. Inhibition of LRAT with N-ethylmaleimide (NEM) prevented retinyl ester synthesis. Significantly, after incubation with all-trans retinol, iPS-RPE released 188 ± 88 pmol/mg protein 11-cis retinaldehyde into the culture media. Conclusions. iPS-RPE develops classic RPE characteristics and maintains expression of visual cycle proteins. The results of this study confirm that iPS-RPE possesses the machinery to process retinoids for support of visual pigment regeneration. Inhibition of all-trans retinyl ester accumulation by NEM confirms LRAT is active in iPS-RPE. Finally, the detection of 11-cis retinaldehyde in the culture medium demonstrates the cells' ability to process retinoids through the visual cycle. This study demonstrates expression of key visual cycle machinery and complete visual cycle activity in iPS-RPE. PMID:24255038

  5. Chemical control of channel interference in two-photon absorption processes.

    PubMed

    Alam, Md Mehboob; Chattopadhyaya, Mausumi; Chakrabarti, Swapan; Ruud, Kenneth

    2014-05-20

    The two-photon absorption (TPA) process is the simplest and hence the most studied nonlinear optical phenomenon, and various aspects of this process have been explored in the past few decades, experimentally as well as theoretically. Previous investigations have shown that the two-photon (TP) activity of a molecular system can be tuned, and at present, performance-tailored TP active materials are easy to develop by monitoring factors such as length of conjugation, dimensionality of charge-transfer network, strength of donor-acceptor groups, polarity of solvents, self-aggregation, H-bonding, and micellar encapsulation to mention but a few. One of the most intriguing phenomena affecting the TP activity of a molecule is channel interference. The phrase "channel interference" implies that if the TP transition from one electronic state to another involves more than one optical pathway or channel, characterized by the corresponding transition dipole moment (TDM) vectors, the channels may interfere with each other depending upon the angles between the TDM vectors and hence can either increase (constructive interference) or decrease (destructive interference) the overall TP activity of a system to a significant extent. This phenomenon was first pointed out by Cronstrand, Luo, and Ågren [Chem. Phys. Lett. 2002, 352, 262-269] in two-dimensional systems (i.e., only involving two components of the transition moment vectors). For three-dimensional molecules, an extended version of this idea was required. In order to fill this gap, we developed a generalized model for describing and exploring channel interference, valid for systems of any dimensionality. We have in particular applied it to through-bond (TB) and through-space (TS) charge-transfer systems both in gas phase and in solvents with different polarities. In this Account, we will, in addition to briefly describing the concept of channel interference, discuss two key findings of our recent work: (1) how to control the

  6. Microwave absorption properties of BaGdxFe12-xO19 nanoparticles synthesized by wet milling process

    NASA Astrophysics Data System (ADS)

    Kaynar, Mehmet; Ozcan, Sadan; Shah, S.

    2013-03-01

    It is a big demand to have a wide band, easy to synthesize microwave absorption materials with a high absorption ratio according to their weight. As a solution, nanoparticles are used for the couple of years because of their tunable frequencies by just changing their particle size. Most interesting nano structures for this objective are ferrites. In this work as a microwave absorber, BaFe12O19 and BaGd2Fe10O19 nanoparticles with different particles size are synthesized by the wet milling process. Their crystal structure analyzed by XRD, mean particle sizes were calculated from XRD patterns using rietveld analysis and from TEM images. Magnetic properties are analyzed by using Quantum design VSM. Microwave absorption properties are measured by using coaxial transmission method with an Agilent E5071 VNA. With the change of the last milling time from 0 to 20-hour crystalline sizes are changed from 48 nm to 13 nm. Decrease of particle size give rise to a decrease at coercivity and saturation magnetization of the samples. Change at the hysteresis loops gives a clue to the change of the microwave absorption frequency which is directly observed from the microwave measurements. Supported by TUBITAK-BIDEB 2214-Abroad Research Scholarship program.

  7. Absorption-heat-pump system

    DOEpatents

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  8. Surface and in-depth characterization of lithium-ion battery cathodes at different cycle states using confocal micro-X-ray fluorescence-X-ray absorption near edge structure analysis

    NASA Astrophysics Data System (ADS)

    Menzel, Magnus; Schlifke, Annalena; Falk, Mareike; Janek, Jürgen; Fröba, Michael; Fittschen, Ursula Elisabeth Adriane

    2013-07-01

    The cathode material LiNi0.5Mn1.5O4 for lithium-ion batteries has been studied with confocal micro-X-ray fluorescence (CMXRF) combined with X-ray absorption near edge structure (XANES) at the Mn-K edge and the Ni-K edge. This technique allows for a non-destructive, spatially resolved (x, y and z) investigation of the oxidation states of surface areas and to some extent of deeper layers of the electrode. Until now CMXRF-XANES has been applied to a limited number of applications, mainly geo-science. Here, we introduce this technique to material science applications and show its performance to study a part of a working system. A novel mesoporous LiNi0.5Mn1.5O4 material was cycled (charged and discharged) to investigate the effects on the oxidation states at the cathode/electrolyte interface. With this approach the degradation of Mn3 + to Mn4 + only observable at the surface of the electrode could be directly shown. The spatially resolved non-destructive analysis provides knowledge helpful for further understanding of deterioration and the development of high voltage battery materials, because of its nondestructive nature it will be also suitable to monitor processes during battery cycling.

  9. On the Automatic Generation of Plans for Life Cycle Assembly Processes

    SciTech Connect

    CALTON,TERRI L.

    2000-01-01

    Designing products for easy assembly and disassembly during their entire life cycles for purposes including product assembly, product upgrade, product servicing and repair, and product disposal is a process that involves many disciplines. In addition, finding the best solution often involves considering the design as a whole and by considering its intended life cycle. Different goals and manufacturing plan selection criteria, as compared to initial assembly, require re-visiting significant fundamental assumptions and methods that underlie current assembly planning techniques. Previous work in this area has been limited to either academic studies of issues in assembly planning or to applied studies of life cycle assembly processes that give no attention to automatic planning. It is believed that merging these two areas will result in a much greater ability to design for, optimize, and analyze the cycle assembly processes. The study of assembly planning is at the very heart of manufacturing research facilities and academic engineering institutions; and, in recent years a number of significant advances in the field of assembly planning have been made. These advances have ranged from the development of automated assembly planning systems, such as Sandia's Automated Assembly Analysis System Archimedes 3.0{copyright}, to the startling revolution in microprocessors and computer-controlled production tools such as computer-aided design (CAD), computer-aided manufacturing (CAM), flexible manufacturing systems (EMS), and computer-integrated manufacturing (CIM). These results have kindled considerable interest in the study of algorithms for life cycle related assembly processes and have blossomed into a field of intense interest. The intent of this manuscript is to bring together the fundamental results in this area, so that the unifying principles and underlying concepts of algorithm design may more easily be implemented in practice.

  10. Impact absorption of four processed soft denture liners as influenced by accelerated aging.

    PubMed

    Kawano, F; Koran, A; Nuryanti, A; Inoue, S

    1997-01-01

    The cushioning effect of soft denture liners was evaluated by using a free drop test with an accelerometer. Materials tested included SuperSoft (Coe Laboratories, Chicago, IL), Kurepeet-Dough (Kreha Chemical, Tokyo), Molteno Soft (Molten, Hiroshima, Japan), and Molloplast-B (Molloplast Regneri, Karlsruhe, Germany). All materials were found to reduce the impact force when compared to acrylic denture base resin. A 2.4-mm layer of soft denture material demonstrated good impact absorption, and Molloplast-B and Molteno had excellent impact absorption. When the soft denture liner was kept in an accelerated aging chamber for 900 hours, the damping effect recorded increased for all materials tested. Aging of all materials also affected the cushioning effect. PMID:9484071

  11. JPL Carbon Dioxide Laser Absorption Spectrometer Data Processing Results for the 2010 Flight Campaign

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph C.; Spiers, Gary D.; Menzie, Robert T.; Christensen, Lance E.

    2011-01-01

    As a precursor to and validation of the core technology necessary for NASA's Active Sensing of CO2 Emissions over Nights, Days,and Seasons (ASCENDS) mission, we flew JPL's Carbon Dioxide Laser Absorption Spectrometer (CO2LAS) in a campaign of five flights onboard NASA's DC-8 Airborne Laboratory in July 2010. This is the latest in a series of annual flight campaigns that began in 2006, and our first on the DC-8 aircraft.

  12. Industrial process system assessment: bridging process engineering and life cycle assessment through multiscale modeling.

    EPA Science Inventory

    The Industrial Process System Assessment (IPSA) methodology is a multiple step allocation approach for connecting information from the production line level up to the facility level and vice versa using a multiscale model of process systems. The allocation procedure assigns inpu...

  13. Efficiency enhancement for natural gas liquefaction with CO2 capture and sequestration through cycles innovation and process optimization

    NASA Astrophysics Data System (ADS)

    Alabdulkarem, Abdullah

    Liquefied natural gas (LNG) plants are energy intensive. As a result, the power plants operating these LNG plants emit high amounts of CO2 . To mitigate global warming that is caused by the increase in atmospheric CO2, CO2 capture and sequestration (CCS) using amine absorption is proposed. However, the major challenge of implementing this CCS system is the associated power requirement, increasing power consumption by about 15--25%. Therefore, the main scope of this work is to tackle this challenge by minimizing CCS power consumption as well as that of the entire LNG plant though system integration and rigorous optimization. The power consumption of the LNG plant was reduced through improving the process of liquefaction itself. In this work, a genetic algorithm (GA) was used to optimize a propane pre-cooled mixed-refrigerant (C3-MR) LNG plant modeled using HYSYS software. An optimization platform coupling Matlab with HYSYS was developed. New refrigerant mixtures were found, with savings in power consumption as high as 13%. LNG plants optimization with variable natural gas feed compositions was addressed and the solution was proposed through applying robust optimization techniques, resulting in a robust refrigerant which can liquefy a range of natural gas feeds. The second approach for reducing the power consumption is through process integration and waste heat utilization in the integrated CCS system. Four waste heat sources and six potential uses were uncovered and evaluated using HYSYS software. The developed models were verified against experimental data from the literature with good agreement. Net available power enhancement in one of the proposed CCS configuration is 16% more than the conventional CCS configuration. To reduce the CO2 pressurization power into a well for enhanced oil recovery (EOR) applications, five CO2 pressurization methods were explored. New CO2 liquefaction cycles were developed and modeled using HYSYS software. One of the developed

  14. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts.

    PubMed

    Frank, Dorothea; Reichstein, Markus; Bahn, Michael; Thonicke, Kirsten; Frank, David; Mahecha, Miguel D; Smith, Pete; van der Velde, Marijn; Vicca, Sara; Babst, Flurin; Beer, Christian; Buchmann, Nina; Canadell, Josep G; Ciais, Philippe; Cramer, Wolfgang; Ibrom, Andreas; Miglietta, Franco; Poulter, Ben; Rammig, Anja; Seneviratne, Sonia I; Walz, Ariane; Wattenbach, Martin; Zavala, Miguel A; Zscheischler, Jakob

    2015-08-01

    Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global

  15. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts

    PubMed Central

    Frank, Dorothea; Reichstein, Markus; Bahn, Michael; Thonicke, Kirsten; Frank, David; Mahecha, Miguel D; Smith, Pete; van der Velde, Marijn; Vicca, Sara; Babst, Flurin; Beer, Christian; Buchmann, Nina; Canadell, Josep G; Ciais, Philippe; Cramer, Wolfgang; Ibrom, Andreas; Miglietta, Franco; Poulter, Ben; Rammig, Anja; Seneviratne, Sonia I; Walz, Ariane; Wattenbach, Martin; Zavala, Miguel A; Zscheischler, Jakob

    2015-01-01

    Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global

  16. The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol

    NASA Astrophysics Data System (ADS)

    Browse, J.; Carslaw, K. S.; Arnold, S. R.; Pringle, K.; Boucher, O.

    2012-08-01

    The seasonal cycle in Arctic aerosol is typified by high concentrations of large aged anthropogenic particles transported from lower latitudes in the late Arctic winter and early spring followed by a sharp transition to low concentrations of locally sourced smaller particles in the summer. However, multi-model assessments show that many models fail to simulate a realistic cycle. Here, we use a global aerosol microphysics model (GLOMAP) and surface-level aerosol observations to understand how wet scavenging processes control the seasonal variation in Arctic black carbon (BC) and sulphate aerosol. We show that the transition from high wintertime concentrations to low concentrations in the summer is controlled by the transition from ice-phase cloud scavenging to the much more efficient warm cloud scavenging in the late spring troposphere. This seasonal cycle is amplified further by the appearance of warm drizzling cloud in the late spring and summer boundary layer. Implementing these processes in GLOMAP greatly improves the agreement between the model and observations at the three Arctic ground-stations Alert, Barrow and Zeppelin Mountain on Svalbard. The SO4 model-observation correlation coefficient (R) increases from: -0.33 to 0.71 at Alert (82.5° N), from -0.16 to 0.70 at Point Barrow (71.0° N) and from -0.42 to 0.40 at Zeppelin Mountain (78° N). The BC model-observation correlation coefficient increases from -0.68 to 0.72 at Alert and from -0.42 to 0.44 at Barrow. Observations at three marginal Arctic sites (Janiskoski, Oulanka and Karasjok) indicate a far weaker aerosol seasonal cycle, which we show is consistent with the much smaller seasonal change in the frequency of ice clouds compared to higher latitude sites. Our results suggest that the seasonal cycle in Arctic aerosol is driven by temperature-dependent scavenging processes that may be susceptible to modification in a future climate.

  17. The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol

    NASA Astrophysics Data System (ADS)

    Pringle, K.; Browse, J.; Carslaw, K. S.; Arnold, S.; Boucher, O.

    2013-12-01

    The seasonal cycle in Arctic aerosol is typified by high concentrations of large aged anthropogenic particles transported from lower latitudes in the late Arctic winter and early spring followed by a sharp transition to low concentrations of locally sourced smaller particles in the summer. However, multi-model assessments show that many models fail to simulate a realistic cycle. Here, we use a global aerosol microphysics model (GLOMAP) and surface-level aerosol observations to understand how wet scavenging processes control the seasonal variation in Arctic black carbon (BC) and sulphate aerosol. We show that the transition from high wintertime concentrations to low concentrations in the summer is controlled by the transition from ice-phase cloud scavenging to the much more efficient warm cloud scavenging in the late spring troposphere. This seasonal cycle is amplified further by the appearance of warm drizzling cloud in the late spring and summer boundary layer. Implementing these processes in GLOMAP greatly improves the agreement between the model and observations at the three Arctic ground-stations Alert, Barrow and Zeppelin Mountain on Svalbard. The SO4 model-observation correlation coefficient (R) increases from: -0.33 to 0.71 at Alert (82.5N), from -0.16 to 0.70 at Point Barrow (71.0N) and from -0.42 to 0.40 at Zeppelin Mountain (78N). The BC model-observation correlation coefficient increases from -0.68 to 0.72 at Alert and from -0.42 to 0.44 at Barrow. Observations at three marginal Arctic sites (Janiskoski, Oulanka and Karasjok) indicate a far weaker aerosol seasonal cycle, which we show is consistent with the much smaller seasonal change in the frequency of ice clouds compared to higher latitude sites. Our results suggest that the seasonal cycle in Arctic aerosol is driven by temperature-dependent scavenging processes that may be susceptible to modification in a future climate.

  18. Investigation on Carbon-Deposition Behavior from Heating Cycle Gas in Oxygen Blast Furnace Process

    NASA Astrophysics Data System (ADS)

    Liu, Jinzhou; Wang, Jingsong; She, Xuefeng; Zhang, Shiyang; Xue, Qingguo

    2015-02-01

    Among the different ways to study carbon deposition in the ironmaking process, not much attention was paid to that of heating the gas mixture, especially cycle gas in an oxygen blast furnace. In this work, the carbon-deposition characteristics of heating 100 pct CO, CO-H2 gas mixture, and cycle gas in the oxygen blast furnace process were, respectively, experimentally and theoretically investigated. First, the thermodynamics on carbon-deposition reactions were calculated. Then, the impacts of discharging operation temperature, the proportion of CO/H2 in heating the CO-H2 gas mixture, and the CO2 concentration in heating the cycle gas of an oxygen blast furnace on the carbon deposition were tested and investigated. Furthermore, the carbon-deposition behaviors in heating the CO-H2 gas mixture were compared with the thermodynamic calculation results for discussing the role of H2. In addition, carbon deposition in heating cycle gas includes CO decomposition and a carbon-deposition reaction by hybrid of CO and H2; the possible roles of each were analyzed by comparing thermodynamic calculation and experimental results. The deposited carbon was characterized by scanning electron microscope (SEM) to analyze the deposited carbon microstructure.

  19. Physicochemical processes and the formulation of dosimetry models. [Transport and absorption of ozone and nitrogen dioxide in the respiratory tract

    SciTech Connect

    Overton, J.H. Jr.

    1984-01-01

    The major physical and chemical processes involved in the transport and absorption of O/sub 3/ or NO/sub 2/ in the lower respiratory tract are discussed. This included the development of respiratory tract models, flow patterns, and transport in tube networks, the mucous, surfactant, and tissue layers, and chemical reactions and transport of O/sub 3/ or NO/sub 2/ within these layers. Descriptions of the individual processes are simplified and integrated to illustrate the formulation of dosimetry models. Data from a dosimetry model, formulated from the concepts discussed, are used to illustrate the types of information obtained by modeling. 31 references.

  20. Optical beam induced current measurements based on two-photon absorption process in 4H-SiC bipolar diodes

    SciTech Connect

    Hamad, H.; Raynaud, C.; Bevilacqua, P.; Tournier, D.; Planson, D.; Vergne, B.

    2014-02-24

    Using a pulsed green laser with a wavelength of 532 nm, a duration pulse of ∼1 ns, and a mean power varying between 1 and 100 mW, induced photocurrents have been measured in 4H-SiC bipolar diodes. Considering the photon energy (2.33 eV) and the bandgap of 4H-SiC (3.2 eV), the generation of electron-hole pair by the conventional single photon absorption process should be negligible. The intensity of the measured photocurrents depends quadratically on the power beam intensity. This clearly shows that they are generated using two-photon absorption process. As in conventional OBIC (Optical Beam Induced Current), the measurements give an image of the electric field distribution in the structure under test, and the minority carrier lifetime can be extracted from the decrease of the photocurrent at the edge of the structure. The extracted minority carrier lifetime of 210 ns is consistent with results obtained in case of single photon absorption.

  1. Processing Overview: The Role of Processing in the Total Materials Cycle

    NASA Technical Reports Server (NTRS)

    Craig, Douglas F.

    1996-01-01

    This presentation starts off by overviewing the changing environment and introduces cross cutting themes in materials science. The applications to materials processing is covered before the final topic of conversation: the future.

  2. Systematic modeling versus the learning cycle: Comparative effects on integrated science process skill achievement

    NASA Astrophysics Data System (ADS)

    Rubin, Rochelle L.; Norman, John T.

    This study assessed the effectiveness of the systematic modeling teaching strategy on integrated science process skills and formal reasoning ability. Urban middle school students received a three-month process skill intervention treatment from teachers trained in either the use of systematic modeling or the learning-cycle model. A third, control group received traditional science instruction. The analysis of data revealed that (a) students receiving modeled instruction demonstrated a significant difference in their achievement of process skills when compared to either of the control groups. (b) Students taught by teachers who had received special process skill and strategy training demonstrated a significant difference in their process skill achievement when compared with the control group. (c) Students at different cognitive reasoning levels demonstrated significantly different process skill ability.

  3. Neural-Net Processed Characteristic Patterns for Measurement of Structural Integrity of Pressure Cycled Components

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    2001-01-01

    A neural-net inspection process has been combined with a bootstrap training procedure and electronic holography to detect changes or damage in a pressure-cycled International Space Station cold plate to be used for cooling instrumentation. The cold plate was excited to vibrate in a normal mode at low amplitude, and the neural net was trained by example to flag small changes in the mode shape. The NDE (nondestructive-evaluation) technique is straightforward but in its infancy; its applications are ad-hoc and uncalibrated. Nevertheless previous research has shown that the neural net can detect displacement changes to better than 1/100 the maximum displacement amplitude. Development efforts that support the NDE technique are mentioned briefly, followed by descriptions of electronic holography and neural-net processing. The bootstrap training procedure and its application to detection of damage in a pressure-cycled cold plate are discussed. Suggestions for calibrating and quantifying the NDE procedure are presented.

  4. Closed cycle construction: an integrated process for the separation and reuse of C&D waste.

    PubMed

    Mulder, Evert; de Jong, Tako P R; Feenstra, Lourens

    2007-01-01

    In The Netherlands, construction and demolition (C&D) waste is already to a large extent being reused, especially the stony fraction, which is crushed and reused as a road base material. In order to increase the percentage of reuse of the total C&D waste flow to even higher levels, a new concept has been developed. In this concept, called 'Closed Cycle Construction', the processed materials are being reused at a higher quality level and the quantity of waste that has to be disposed of is minimised. For concrete and masonry, the new concept implies that the material cycle will be completely closed, and the original constituents (clay bricks, gravel, sand, cement stone) are recovered in thermal processes. The mixed C&D waste streams are separated and decontaminated. For this purpose several dry separation techniques are being developed. The quality of the stony fraction is improved so much, that this fraction can be reused as an aggregate in concrete. The new concept has several benefits from a sustainability point of view, namely less energy consumption, less carbon dioxide emission, less waste production and less land use (for excavation and disposal sites). One of the most remarkable benefits of the new concept is that the thermal process steps are fuelled with the combustible fraction of the C&D waste itself. Economically the new process is more or less comparable with the current way of processing C&D waste. On the basis of the positive results of a feasibility study, currently a pilot and demonstration project is being carried out. The aim is to optimise the different process steps of the Closed Cycle Construction process on a laboratory scale, and then to verify them on a large scale. The results of the project are promising, so far. PMID:17532617

  5. The tropopause inversion layer in baroclinic life-cycle experiments: the role of diabatic processes

    NASA Astrophysics Data System (ADS)

    Kunkel, D.; Hoor, P.; Wirth, V.

    2016-01-01

    Recent studies on the formation of a quasi-permanent layer of enhanced static stability above the thermal tropopause revealed the contributions of dynamical and radiative processes. Dry dynamics leads to the evolution of a tropopause inversion layer (TIL), which is, however, too weak compared to observations and thus diabatic contributions are required. In this study we aim to assess the importance of diabatic processes in the understanding of TIL formation at midlatitudes. The non-hydrostatic model COSMO (COnsortium for Small-scale MOdelling) is applied in an idealized midlatitude channel configuration to simulate baroclinic life cycles. The effect of individual diabatic processes related to humidity, radiation, and turbulence is studied first to estimate the contribution of each of these processes to the TIL formation in addition to dry dynamics. In a second step these processes are stepwise included in the model to increase the complexity and finally estimate the relative importance of each process. The results suggest that including turbulence leads to a weaker TIL than in a dry reference simulation. In contrast, the TIL evolves stronger when radiation is included but the temporal evolution is still comparable to the reference. Using various cloud schemes in the model shows that latent heat release and consecutive increased vertical motions foster an earlier and stronger appearance of the TIL than in all other life cycles. Furthermore, updrafts moisten the upper troposphere and as such increase the radiative effect from water vapor. Particularly, this process becomes more relevant for maintaining the TIL during later stages of the life cycles. Increased convergence of the vertical wind induced by updrafts and by propagating inertia-gravity waves, which potentially dissipate, further contributes to the enhanced stability of the lower stratosphere. Finally, radiative feedback of ice clouds reaching up to the tropopause is identified to potentially further affect

  6. Decoupling of sulfur and nitrogen cycling due to biotic processes in a tropical rainforest

    NASA Astrophysics Data System (ADS)

    Yi-Balan, Simona A.; Amundson, Ronald; Buss, Heather L.

    2014-10-01

    We examined the terrestrial sulfur (S) cycle in the wet tropical Luquillo Experimental Forest (LEF), Puerto Rico. In two previously instrumented watersheds (Icacos and Bisley), chemical and isotopic measurements of carbon (C), nitrogen (N) and S were used to explore the inputs, in-soil processing, and losses of S through comparison to the N cycle. Additionally, the impact of soil forming factors (particularly climate, organisms, topography and parent material) on S cycling in this system was considered. Atmospheric inputs (δ34S values of 16.1 ± 2.8‰), from a mixture of marine and anthropogenic sources, delivered an estimated 2.2 g S/(m2yr) at Icacos, and 1.8 g S/(m2yr) at Bisley. Bedrock N and S inputs to soil were minimal. We estimated a hydrologic export of 1.7 ± 0.1 g S/(m2yr) at Icacos, and 2.5 ± 0.2 g S/(m2yr) at Bisley. Stream baseflow S isotope data revealed significant bedrock S in the hydrologic export at Bisley (with a distinctive δ34S values of 1.6 ± 0.7‰), but not at Icacos. Pore water data supported the co-occurrence of at least three major biological S-fractionating processes in these soils: plant uptake, oxidative degradation of organic S and bacterial sulfate reduction. The rates and relative importance of these processes varied in time and space. Vegetation litter was 3-5‰ depleted in 34S compared to the average pore water, providing evidence for fractionation during uptake and assimilation. Out of all abiotic soil forming factors, climate, especially the high rainfall, was the main driver of S biogeochemistry in the LEF by dictating the types and rates of processes. Topography appeared to impact S cycling by influencing redox conditions: C, N and S content decrease downslope at all sites, and the Bisley lower slope showed strongest evidence of bacterial sulfate reduction. Parent material type did not impact the soil S cycle significantly. To compare the fate of S and N in the soil, we used an advection model to describe the isotopic

  7. Acetylation of RNA Processing Proteins and Cell Cycle Proteins in Mitosis

    PubMed Central

    Chuang, Carol; Lin, Sue-Hwa; Huang, Feilei; Pan, Jing; Josic, Djuro; Yu-Lee, Li-yuan

    2010-01-01

    Mitosis is a highly regulated process in which errors can lead to genomic instability, a hallmark of cancer. During this phase of the cell cycle, transcription is silent and RNA translation is inhibited. Thus, mitosis is largely driven by posttranslational modification of proteins, including phosphorylation, methylation, ubiquitination and sumoylation. Here, we show that protein acetylation is prevalent during mitosis. To identify proteins that are acetylated, we synchronized HeLa cells in early prometaphase and immunoprecipitated lysine-acetylated proteins with anti-acetyl-lysine antibody. The immunoprecipitated proteins were identified by LC-ESI-MS/MS analysis. These include proteins involved in RNA translation, RNA processing, cell cycle regulation, transcription, chaperone function, DNA damage repair, metabolism, immune response and cell structure. Immunoprecipitation followed by Western blot analyses confirmed that two RNA processing proteins, eIF4G and RNA helicase A, and several cell cycle proteins, including APC1, anillin and NudC, were acetylated in mitosis. We further showed that acetylation of APC1 and NudC was enhanced by apicidin treatment, suggesting that their acetylation was regulated by histone deacetylase. Moreover, treating mitotic cells with apicidin or trichostatin A induced spindle abnormalities and cytokinesis failure. These studies suggest that protein acetylation/deacetylation is likely an important regulatory mechanism in mitosis. PMID:20812760

  8. Mechanisms of membrane transport of poorly soluble drugs: role of micelles in oral absorption processes.

    PubMed

    Yano, Koji; Masaoka, Yoshie; Kataoka, Makoto; Sakuma, Shinji; Yamashita, Shinji

    2010-03-01

    Micelles formed in the GI tract by bile acid and lecithin play an important role in oral absorption of poorly soluble drugs. In this situation, the drug molecules are present in equilibrium between the free and micellar states. In this study, the relationship between the free drug concentration and the membrane permeability of poorly soluble drugs was examined. Permeability across a Caco-2 monolayer and a dialysis membrane were measured in a side-by-side chamber system. The concentrations of sodium taurocholate (NaTC) and lecithin were varied to allow measurement of membrane permeability at different concentrations of free drugs. For troglitazone, hexylparaben, and heptylparaben, an increase in the NaTC and lecithin concentrations caused the permeability across the Caco-2 monolayer to decrease slightly, whereas the permeability across the dialysis membrane decreased markedly. In contrast, the changes in permeability of griseofulvin with an increased micelle concentration were similar for the Caco-2 monolayer and the dialysis membrane. Assuming that the permeability for the dialysis membrane reflects the free drug concentration in the medium, these results suggest that troglitazone and alkylparabens, but not griseofulvin, can partition directly from micelles to Caco-2 monolayers. This mechanism may contribute to oral absorption of drugs that are poorly soluble in water. PMID:19743502

  9. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    PubMed

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum. PMID:26601381

  10. Parametric Studies of the Ejector Process within a Turbine-Based Combined-Cycle Propulsion System

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Walker, James F.; Trefny, Charles J.

    1999-01-01

    Performance characteristics of the ejector process within a turbine-based combined-cycle (TBCC) propulsion system are investigated using the NPARC Navier-Stokes code. The TBCC concept integrates a turbine engine with a ramjet into a single propulsion system that may efficiently operate from takeoff to high Mach number cruise. At the operating point considered, corresponding to a flight Mach number of 2.0, an ejector serves to mix flow from the ramjet duct with flow from the turbine engine. The combined flow then passes through a diffuser where it is mixed with hydrogen fuel and burned. Three sets of fully turbulent Navier-Stokes calculations are compared with predictions from a cycle code developed specifically for the TBCC propulsion system. A baseline ejector system is investigated first. The Navier-Stokes calculations indicate that the flow leaving the ejector is not completely mixed, which may adversely affect the overall system performance. Two additional sets of calculations are presented; one set that investigated a longer ejector region (to enhance mixing) and a second set which also utilized the longer ejector but replaced the no-slip surfaces of the ejector with slip (inviscid) walls in order to resolve discrepancies with the cycle code. The three sets of Navier-Stokes calculations and the TBCC cycle code predictions are compared to determine the validity of each of the modeling approaches.

  11. The Sulfur-Iodine Cycle: Process Analysis and Design Using Comprehensive Phase Equilibrium Measurements and Modeling

    SciTech Connect

    Thies, Mark C.; O'Connell, J. P.; Gorensek, Maximilian B.

    2010-01-10

    Of the 100+ thermochemical hydrogen cycles that have been proposed, the Sulfur-Iodine (S-I) Cycle is a primary target of international interest for the centralized production of hydrogen from nuclear power. However, the cycle involves complex and highly nonideal phase behavior at extreme conditions that is only beginning to be understood and modeled for process simulation. The consequence is that current designs and efficiency projections have large uncertainties, as they are based on incomplete data that must be extrapolated from property models. This situation prevents reliable assessment of the potential viability of the system and, even more, a basis for efficient process design. The goal of this NERI award (05-006) was to generate phase-equilibrium data, property models, and comprehensive process simulations so that an accurate evaluation of the S-I Cycle could be made. Our focus was on Section III of the Cycle, where the hydrogen is produced by decomposition of hydroiodic acid (HI) in the presence of water and iodine (I2) in a reactive distillation (RD) column. The results of this project were to be transferred to the nuclear hydrogen community in the form of reliable flowsheet models for the S-I process. Many of the project objectives were achieved. At Clemson University, a unique, tantalum-based, phase-equilibrium apparatus incorporating a view cell was designed and constructed for measuring fluid-phase equilibria for mixtures of iodine, HI, and water (known as HIx) at temperatures to 350 °C and pressures to 100 bar. Such measurements were of particular interest for developing a working understanding of the expected operation of the RD column in Section III. The view cell allowed for the IR observation and discernment of vapor-liquid (VL), liquid-liquid, and liquid-liquid-vapor (LLVE) equilibria for HIx systems. For the I2-H2O system, liquid-liquid equilibrium (LLE) was discovered to exist at temperatures up to 310-315 °C, in contrast to the models and

  12. A two-cycle process for enhanced actinide separation from radioactive liquid wastes

    SciTech Connect

    Facchini, A.; Amato, L.; Nannicini, R.

    1996-09-01

    A two-cycle process using O{Phi}CMPO and HDEHP as extractants to achieve an alpha decontamination factor of HLLW greater than 10{sup 3} together with a reduction of the lanthanides/americium weight ratio by a factor of about 200 is considered. Experimentally measured distribution ratios have been employed as input data of a suitable computer code to define operating conditions and M/S stage numbers of a process flow-sheet able to meet the above-mentioned objectives.

  13. Revised model of absorption corrections for the p p →p p π+π- process

    NASA Astrophysics Data System (ADS)

    Lebiedowicz, Piotr; Szczurek, Antoni

    2015-09-01

    We include new additional absorption corrections into the double Pomeron/Reggeon exchange (nonresonant) model for p p →p p π+π- or p p ¯→p p ¯π+π- processes. They are related to the π N nonperturbative interaction in the final state of the reaction. We present predictions of cross sections for RHIC, Tevatron, and LHC experiments. The new absorption corrections lead to a further decrease of the cross section by about a factor of 2. The role of the absorption corrections is quantified for several differential distributions. They change the shape of some distributions (d σ /d t , d σ /d pt ,p, d σ /d ϕp p) but leave almost unchanged shape of other distributions (d σ /d Mπ π, d σ /d yπ, d σ /d pt ,π, d σ /d ϕπ π). The effect may have an important impact on the interpretation of the recent STAR and CDF data as well as the forthcoming data of the ALICE, ATLAS/ALFA, and CMS/TOTEM collaborations.

  14. Photon assisted processes: Probability amplitudes for the absorption and emission of photons and dc-photocurrents

    SciTech Connect

    Micu, C.; Racolta, D.; Papp, E.

    2014-11-24

    In this paper one deals with the derivation of probability amplitudes characterizing the photon assisted injection of electrons in a two-terminal quantum conductor. For this purpose one accounts for spatially constant but time dependent periodic voltages applied on an Ohmic contact. Resorting to the discrete Fourier transform provides the probability amplitudes for the emission and absorption of photons in terms of squared Bessel functions of the first kind and integer order. Several kinds of ac-pulses like sinusoidal and dc+sinusoidal are assumed. Mean square values concerning photon numbers have been discussed in some more detail. Time averages of squared time dependent classical currents and leading corrections to the rescaled dc-photocurrent have also been accounted for.

  15. Microscopic Modeling of Intersubband Optical Processes in Type II Semiconductor Quantum Wells: Linear Absorption

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Kolokolov, Kanstantin I.; Ning, Cun-Zheng

    2003-01-01

    Linear absorption spectra arising from intersubband transitions in semiconductor quantum well heterostructures are analyzed using quantum kinetic theory by treating correlations to the first order within Hartree-Fock approximation. The resulting intersubband semiconductor Bloch equations take into account extrinsic dephasing contributions, carrier-longitudinal optical phonon interaction and carrier-interface roughness interaction which is considered with Ando s theory. As input for resonance lineshape calculation, a spurious-states-free 8-band kp Hamiltonian is used, in conjunction with the envelop function approximation, to compute self-consistently the energy subband structure of electrons in type II InAs/AlSb single quantum well structures. We demonstrate the interplay of nonparabolicity and many-body effects in the mid-infrared frequency range for such heterostructures.

  16. Femtosecond optical absorption studies of nonequilibrium electronic processes in high T(c) superconductors

    NASA Technical Reports Server (NTRS)

    Chwalek, J. M.; Uher, C.; Whitaker, J. F.; Mourou, G. A.; Agostinelli, J.

    1990-01-01

    The results are reported of femtosecond optical transient absorption experiments performed on the superconducting compounds YBa2Cu3O(7-x) (x about 0) and Bi2Sr2Ca2Cu3O(10+delta) (delta about 0) and nonsuperconducting YBa2Cu3O(6+y) (y less than 0.4) for sample temperatures ranging from about 7 K to room temperature. Nonequilibrium heating was found to occur on a subpicosecond time scale. A distinct, dramatic increase in the relaxation time was observed for the superconducting samples as the sample temperature was lowered below the critical temperatures of the respective films. Accompanying the increase in relaxation time was an increase in the peak fractional transmissivity change. No such changes were observed for the nonsuperconducting YBCO sample.

  17. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  18. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  19. Knockout of Drosophila RNase ZL impairs mitochondrial transcript processing, respiration and cell cycle progression.

    PubMed

    Xie, Xie; Dubrovsky, Edward B

    2015-12-01

    RNase Z(L) is a highly conserved tRNA 3'-end processing endoribonuclease. Similar to its mammalian counterpart, Drosophila RNase Z(L) (dRNaseZ) has a mitochondria targeting signal (MTS) flanked by two methionines at the N-terminus. Alternative translation initiation yields two protein forms: the long one is mitochondrial, and the short one may localize in the nucleus or cytosol. Here, we have generated a mitochondria specific knockout of the dRNaseZ gene. In this in vivo model, cells deprived of dRNaseZ activity display impaired mitochondrial polycistronic transcript processing, increased reactive oxygen species (ROS) and a switch to aerobic glycolysis compensating for cellular ATP. Damaged mitochondria impose a cell cycle delay at the G2 phase disrupting cell proliferation without affecting cell viability. Antioxidants attenuate genotoxic stress and rescue cell proliferation, implying a critical role for ROS. We suggest that under a low-stress condition, ROS activate tumor suppressor p53, which modulates cell cycle progression and promotes cell survival. Transcriptional profiling of p53 targets confirms upregulation of antioxidant and cycB-Cdk1 inhibitor genes without induction of apoptotic genes. This study implicates Drosophila RNase Z(L) in a novel retrograde signaling pathway initiated by the damage in mitochondria and manifested in a cell cycle delay before the mitotic entry. PMID:26553808

  20. Process analysis of CO{sub 2} capture from flue gas using carbonation/calcination cycles

    SciTech Connect

    Li, Z.S.; Cai, N.S.; Croiset, E.

    2008-07-15

    Process analysis of CO{sub 2} capture from flue gas using Ca-based carbonation/calcination cycles is presented here. A carbonation/calcination system is composed essentially of two reactors (an absorber and a regenerator) with Ca-based sorbent circulating between the two reactors (assumed here as fluidized beds). CO{sub 2} is, therefore, transferred from the absorber to the regenerator. Because of the endothermicity of the calcination reaction, a certain amount of coal is burned with pure oxygen in the regenerator. Detailed mass balance, heat balance and cost of electricity and CO{sub 2} mitigation for the carbonation/calcination cycles with three Ca-based sorbents in dual fluidized beds were calculated and analyzed to study the effect of the Ca-based sorbent activity decay on CO{sub 2} capture from flue gas. The three sorbents considered were: limestone, dolomite and CaO/Ca{sub 12}Al{sub 14}O{sub 33} (75/25 wt %) sorbent. All results, including the amount of coal and oxygen required, are presented with respect to the difference in calcium oxide conversion between the absorber and the regenerator, which is an important design parameter. Finally, costs of electricity and CO{sub 2} mitigation costs using carbonation/calcination cycles for the three sorbents were estimated. The results indicate that the economics of the carbonation/calcination process compare favorably with competing technologies for capturing CO{sub 2}.

  1. Knockout of Drosophila RNase ZL impairs mitochondrial transcript processing, respiration and cell cycle progression

    PubMed Central

    Xie, Xie; Dubrovsky, Edward B.

    2015-01-01

    RNase ZL is a highly conserved tRNA 3′-end processing endoribonuclease. Similar to its mammalian counterpart, Drosophila RNase ZL (dRNaseZ) has a mitochondria targeting signal (MTS) flanked by two methionines at the N-terminus. Alternative translation initiation yields two protein forms: the long one is mitochondrial, and the short one may localize in the nucleus or cytosol. Here, we have generated a mitochondria specific knockout of the dRNaseZ gene. In this in vivo model, cells deprived of dRNaseZ activity display impaired mitochondrial polycistronic transcript processing, increased reactive oxygen species (ROS) and a switch to aerobic glycolysis compensating for cellular ATP. Damaged mitochondria impose a cell cycle delay at the G2 phase disrupting cell proliferation without affecting cell viability. Antioxidants attenuate genotoxic stress and rescue cell proliferation, implying a critical role for ROS. We suggest that under a low-stress condition, ROS activate tumor suppressor p53, which modulates cell cycle progression and promotes cell survival. Transcriptional profiling of p53 targets confirms upregulation of antioxidant and cycB-Cdk1 inhibitor genes without induction of apoptotic genes. This study implicates Drosophila RNase ZL in a novel retrograde signaling pathway initiated by the damage in mitochondria and manifested in a cell cycle delay before the mitotic entry. PMID:26553808

  2. Large two-photon absorption cross sections of hemiporphyrazines in the excited state: the multiphoton absorption process of hemiporphyrazines with different central metals.

    PubMed

    Dini, Danilo; Calvete, Mario J F; Hanack, Michael; Amendola, Vincenzo; Meneghetti, Moreno

    2008-09-17

    A series of five hemiporphyrazines (Hps) with different coordinating central atoms (H2, GeCl2, InCl, Pt, Pb), and the acyclic derivative 1,3-bis-(6'-amino-4'-butoxy-2'-pyridylimino)-1,3-dihydroisoindoline have been synthesized and their multiphoton absorption properties examined at the second harmonic frequency of the Nd:YAG laser in the nanosecond time regime. Metal-free and platinum Hps display saturation of optical transmittance within incident fluence values of 6 J cm(-2). Comparison with other similar molecular structures like phthalocyanines and related molecules shows that Hps are strong nonlinear absorbers. The experimental curves of nonlinear transmission at 532 nm have been fitted by means of a three-level model with the occurrence of simultaneous two-photon absorption from an excited state. In the sole case of the InCl complex we found that a five-level model is needed because of the participation of triplet states. Contrary to phthalocyanines, naphthalocyanines, and porphyrins, a heavy central atom does not improve the nonlinear absorption properties since a different excited states dynamic is involved. The large nonlinear absorption of Hps combined with the very small absorption in the visible spectral range makes these molecules a very interesting class of molecules for nonlinear optical applications. PMID:18722439

  3. Unveiling Microbial Carbon Cycling Processes in Key U.S. Soils using ''Omics''

    SciTech Connect

    Myrold, David D.; Bottomely, Peter J.; Jumpponen, Ari; Rice, Charles W.; Zeglin, Lydia H.; David, Maude M.; Jansson, Janet K.; Prestat, Emmanuel; Hettich, Robert L.

    2014-09-17

    Soils process and store large amounts of C; however, considerable uncertainty still exists about the details of that influence microbial partitioning of C into soil C pools, and what are the main influential forces that control the fraction of the C input that is stabilized. The soil microbial community is genotypically and phenotypically diverse. Despite our ability to predict the kinds of regional environmental changes that will accompany global climate change, it is not clear how the microbial community will respond to climate-induced modification of precipitation and inter-precipitation intervals, and if this response will affect the fate of C deposited into soil by the local plant community. Part of this uncertainty lies with our ignorance of how the microbial community adapts genotypically and physiologically to changes in soil moisture brought about by shifts in precipitation. Our overarching goal is to harness the power of multiple meta-omics tools to gain greater understanding of the functioning of whole-soil microbial communities and their role in C cycling. We will do this by meeting the following three objectives: 1. Further develop and optimize a combination of meta-omics approaches to study how environmental factors affect microbially-mediated C cycling processes. 2. Determine the impacts of long-term changes in precipitation timing on microbial C cycling using an existing long-term field manipulation of a tallgrass prairie soil. 3. Conduct laboratory experiments that vary moisture and C inputs to confirm field observations of the linkages between microbial communities and C cycling processes. We took advantage of our state-of-the-art expertise in community “omics” to better understand the functioning soil C cycling within the Great Prairie ecosystem, including our ongoing Konza Prairie soil metagenome flagship project at JGI and the unique rainfall manipulation plots (RaMPs) established at this site more than a decade ago. We employed a systems

  4. Apparatus and process to eliminate diffusional limitations in a membrane biological reactor by pressure cycling

    DOEpatents

    Efthymiou, George S.; Shuler, Michael L.

    1989-08-29

    An improved multilayer continuous biological membrane reactor and a process to eliminate diffusional limitations in membrane reactors in achieved by causing a convective flux of nutrient to move into and out of an immobilized biocatalyst cell layer. In a pressure cycled mode, by increasing and decreasing the pressure in the respective layers, the differential pressure between the gaseous layer and the nutrient layer is alternately changed from positive to negative. The intermittent change in pressure differential accelerates the transfer of nutrient from the nutrient layers to the biocatalyst cell layer, the transfer of product from the cell layer to the nutrient layer and the transfer of byproduct gas from the cell layer to the gaseous layer. Such intermittent cycling substantially eliminates mass transfer gradients in diffusion inhibited systems and greatly increases product yield and throughput in both inhibited and noninhibited systems.

  5. SEMATECH's cycles of learning test for EUV photoresist and its applications for process improvement

    NASA Astrophysics Data System (ADS)

    Chun, Jun Sung; Jen, Shih-Hui; Petrillo, Karen; Montgomery, Cecilia; Ashworth, Dominic; Neisser, Mark; Saito, Takashi; Huli, Lior; Hetzer, David

    2014-04-01

    With current progress in exposure source power, novel resist materials, and post processing techniques, EUV is getting closer to the production environment. As reported continuously, SEMATECH established cycles of learning program. The data generated from the program has been utilized to measure current state of the art of EUV photoresist for production or pilot line use. Thanks to SEMATECH core and associate members' attention to the project, numerous EUV samples have been tested and they were based on the best performing EUV resists from associate members. This year we completed the evaluations for under-layers, lines and spaces, and contact holes. We also applied track based techniques to drive both low line edge roughness control and enlarge the process window with techniques such as FIRMTM and track based smoothing process. In this paper we will discuss about the results from cycles of learning test and show post-processing results of the three best line and space resists when combined with different FIRMTM materials.

  6. The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol

    NASA Astrophysics Data System (ADS)

    Browse, J.; Carslaw, K. S.; Arnold, S. R.; Pringle, K.; Boucher, O.

    2012-01-01

    The seasonal cycle in Arctic aerosol is typified by high concentrations of large aged anthropogenic particles transported from lower latitudes in the late Arctic winter and early spring followed by a sharp transition to low concentrations of locally sourced smaller particles in the summer. However, multi-model assessments show that many models fail to simulate a realistic cycle. Here, we use a global aerosol microphysics model and surface-level aerosol observations to understand how wet scavenging processes control the seasonal variation in Arctic black carbon (BC) and sulphate aerosol concentrations. We show that the transition from high wintertime to low summertime Arctic aerosol concentrations is caused by the change from inefficient scavenging in ice clouds to the much more efficient scavenging in warm liquid clouds. This seasonal cycle is amplified further by the appearance of warm drizzling cloud in late spring and summer at a time when aerosol transport shifts mainly to low levels. Implementing these processes in a model greatly improves the agreement between the model and observations at the three Arctic ground-stations Alert, Barrow and Zeppelin Mountain on Svalbard. The SO4 model-observation correlation coefficient (R) increases from: -0.33 to 0.71 at Alert (82.5° N), from -0.16 to 0.70 at Point Barrow (71.0° N) and from -0.42 to 0.40 at Zeppelin Mountain (78° N) while, the BC model-observation correlation coefficient increases from -0.68 to 0.72 at Alert and from -0.42 to 0.44 at Barrow. Observations at three marginal Arctic sites (Janiskoski, Oulanka and Karasjok) indicate a far weaker aerosol seasonal cycle, which we show is consistent with the much smaller seasonal changes in ice clouds compared to the higher latitude sites. Our results suggest that the seasonal cycle in Arctic aerosol is driven by temperature-dependent scavenging processes that may be susceptible to modification in a future climate.

  7. The thermodynamics of pyrochemical processes for liquid metal reactor fuel cycles

    SciTech Connect

    Johnson, I.

    1987-01-01

    The thermodynamic basis for pyrochemical processes for the recovery and purification of fuel for the liquid metal reactor fuel cycle is described. These processes involve the transport of the uranium and plutonium from one liquid alloy to another through a molten salt. The processes discussed use liquid alloys of cadmium, zinc, and magnesium and molten chloride salts. The oxidation-reduction steps are done either chemically by the use of an auxiliary redox couple or electrochemically by the use of an external electrical supply. The same basic thermodynamics apply to both the salt transport and the electrotransport processes. Large deviations from ideal solution behavior of the actinides and lanthanides in the liquid alloys have a major influence on the solubilities and the performance of both the salt transport and electrotransport processes. Separation of plutonium and uranium from each other and decontamination from the more noble fission product elements can be achieved using both transport processes. The thermodynamic analysis is used to make process design computations for different process conditions.

  8. Nanostructured Palladium-Rhodium for Hydrogen Absorption: Processing, Structure, and Properties

    NASA Astrophysics Data System (ADS)

    Yee, Joshua Keng

    Impetus to identify and implement alternatives to fossil fuels has driven research on several different energy sources. Use of hydrogen as a fuel has been of particular interest, due to its relative abundance and cleanliness as a fuel, amongst other desirable characteristics. However, one of the current challenges to using hydrogen is finding an effective and safe method to store it for later use. Metal hydrides have been proposed as possibilities for safe solid state storage of hydrogen. In the present thesis, cryomilled Pd-10%Rh was investigated as potential solid state storage material of hydrogen. Pd-10%Rh was first atomized, and then subsequently cryomilled. The cryomilled Pd-10%Rh was then examined using microstructural characterization techniques including optical microscopy, electron microscopy, and X-ray diffraction. Pd-10%Rh particles were significantly flattened, increasing the apparent surface area. Microstructural refinement was observed in the cryomilled Pd-10%Rh, generating grains at the nanometric scale through dislocation based activity. Hydrogen sorption properties were also characterized, generating both capacity as well as kinetics measurements. It was found that the microstructural refinement due to cryomilling did not play a significant role on hydrogen sorption properties until the smallest grain size (on the order of ~25 nm) was achieved. Additionally, the increased surface area and other changes in particle morphology were associated with cryomilling changed the kinetics of hydrogen absorption.

  9. [Studies on the data processing method in chlorine measurement by differential optical absorption spectroscopy technology].

    PubMed

    Ye, Cong-Lei; Xie, Pin-Hua; Qin, Min; Li, Ang; Ling, Liu-Yi; Hu, Ren-Zhi; Yang, Jing-Wen

    2012-07-01

    In this paper, based on Differential Optical Absorption Spectroscopy (DOAS) technique, experimental measurements of chlorine was carried out in the laboratory with a small self-built experimental system. In dealing with the standard cross-section of chlorine, we presented two different methods: triangle filtering and polynomial fitting. Experiments showed that the concentration of chlorine could be accurately retrieved by the latter one. Simulation results showed that the error of retrieval result by fifth-order polynomial fitting was smaller than by other orders and an actual retrieval example shows that the fitting spectrums were nearly coincident with the measured spectrums with a residual delta(peak to peak) below 5 per hundred; The results measured in different sample pools displayed a high linearity of 0.9961 by this method. The main sources of errors during the entire experiment were simply analyzed. According to the experimental result above, it is feasible to detect chlorine using DOAS technology by polynomial fitting. PMID:23016314

  10. Novel shortcut estimation method for regeneration energy of amine solvents in an absorption-based carbon capture process.

    PubMed

    Kim, Huiyong; Hwang, Sung June; Lee, Kwang Soon

    2015-02-01

    Among various CO2 capture processes, the aqueous amine-based absorption process is considered the most promising for near-term deployment. However, the performance evaluation of newly developed solvents still requires complex and time-consuming procedures, such as pilot plant tests or the development of a rigorous simulator. Absence of accurate and simple calculation methods for the energy performance at an early stage of process development has lengthened and increased expense of the development of economically feasible CO2 capture processes. In this paper, a novel but simple method to reliably calculate the regeneration energy in a standard amine-based carbon capture process is proposed. Careful examination of stripper behaviors and exploitation of energy balance equations around the stripper allowed for calculation of the regeneration energy using only vapor-liquid equilibrium and caloric data. Reliability of the proposed method was confirmed by comparing to rigorous simulations for two well-known solvents, monoethanolamine (MEA) and piperazine (PZ). The proposed method can predict the regeneration energy at various operating conditions with greater simplicity, greater speed, and higher accuracy than those proposed in previous studies. This enables faster and more precise screening of various solvents and faster optimization of process variables and can eventually accelerate the development of economically deployable CO2 capture processes. PMID:25602643

  11. Analysis of the mist lift process for mist flow open-cycle OTEC

    SciTech Connect

    Davenport, R. L.

    1980-06-01

    Preliminary results are presented of a numerical analysis to study the open-cycle mist flow process for ocean thermal energy conversion (OTEC). Emphasis in the analysis is on the mass transfer and fluid mechanics of the steady-state mist flow. The analysis is based on two one-dimensional models of the mist lift process: a single-group model describes a mist composed of a single size of drops and a multigroup model considers a spectrum of drop sizes. The single-group model predicts that the lift achieved in the mist lift process will be sensitive to the inlet parameters. Under conditions that lead to maximum lift in the model for a single drop size, the multigroup model predicts significantly reduced performance. Because the growth of drops is important, sensitivity of the predicted performance of the mist lift to variations in the collision parameters has been studied.

  12. Metaproteogenomics reveals the soil microbial communities active in nutrient cycling processes under different tree species

    NASA Astrophysics Data System (ADS)

    Keiblinger, Katharina Maria; Masse, Jacynthe; Zühlke, Daniela; Riedel, Katharina; Zechmeister-Boltenstern, Sophie; Prescott, Cindy E.; Grayston, Sue

    2016-04-01

    Tree species exert strong effects on microbial communities in litter and soil and may alter rates of soil processes fundamental to nutrient cycling and carbon fluxes (Prescott and Grayston 2013). However, the influence of tree species on decomposition processes are still contradictory and poorly understood. An understanding of the mechanisms underlying plant influences on soil processes is important for our ability to predict ecosystem response to altered global/environmental conditions. In order to link microbial community structure and function to forest-floor nutrient cycling processes, we sampled forest floors under western redcedar (Thuja plicata), Douglas-fir (Pseudotsuga menziesii) and Sitka spruce (Picea sitchensis) grown in nutrient-poor sites in common garden experiments on Vancouver island (Canada). We measured forest-floor total N, total C, initial NH4+ and NO3‑ concentrations, DOC, Cmic and Nmic. Gross rates of ammonification and NH4+ consumption were measured using the 15N pool-dilution method. Organic carbon quality was assessed through FTIR analyses. Microbial community structure was analysed by a metaproteogenomic approach using 16S and ITS amplification and sequencing with MiSeq platform. Proteins were extracted and peptides characterized via LC-MS/MS on a Velos Orbitrap to assess the active microbial community. Different microbial communities were active under the three tree species and variation in process rates were observed and will be discussed. This research provides new insights on microbial processes during organic matter decomposition. The metaproteogenomic approach enables us to investigate these changes with respect to possible effects on soil C-storage at even finer taxonomic resolution.

  13. SIMD machine using cube connected cycles network architecture for vector processing

    SciTech Connect

    Wagner, R.A.; Poirier, C.J.

    1986-11-04

    This patent describes a single instruction multiple data processor comprising: processing elements, interconnected in a Cube Connected Cycle Network design and using interprocessor communication links which carry one bit at a time in both directions simultaneously; controller means for controlling processor elements which feeds each of the processor elements identical local memory addresses, identical switching control bits, identical Boolean function selection codes, and distinct activation control bits, depending on each of the processor's position in the cube Connected Cycles Network in a prescribed fashion; and input/output devices connected to the network by switching devices wherein, each of the processing element comprises: two single-bit accumulator registors (A, B); two Boolean function generator units, each of which computes any one of 2/sup 8/ possible Boolean functions of three Boolean variables as specified by Boolean function codes sent 2 at a time by the controller to each of the processing elements; and switching circuit means controlled by the controller which select the three inputs to the logic function generators.

  14. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    SciTech Connect

    E. R. Johnson; R. E. Best

    2009-12-28

    The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the “UREX+3c fuel cycle” and the “Alternative Fuel Cycle” (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount

  15. The role of land-surface processes in modulating the Indian monsoon annual cycle

    NASA Astrophysics Data System (ADS)

    Bollasina, Massimo A.; Ming, Yi

    2013-11-01

    The annual cycle of solar radiation, together with the resulting land-ocean differential heating, is traditionally considered the dominant forcing controlling the northward progression of the Indian monsoon. This study makes use of a state-of-the-art atmospheric general circulation model in a realistic configuration to conduct “perpetual” experiments aimed at providing new insights into the role of land-atmosphere processes in modulating the annual cycle of precipitation over India. The simulations are carried out at three important stages of the monsoon cycle: March, May, and July. Insolation and SSTs are held fixed at their respective monthly mean values, thus eliminating any external seasonal forcing. In the perpetual May experiment both precipitation and circulation are able to considerably evolve only by regional internal land-atmosphere processes and the mediation of soil hydrology. A large-scale equilibrium state is reached after approximately 270 days, closely resembling mid-summer climatological conditions. As a result, despite the absence of external forcing, intense and widespread rains over India are able to develop in the May-like state. The interaction between soil moisture and circulation, modulated by surface heating over the northwestern semi-arid areas, determines a slow northwestward migration of the monsoon, a crucial feature for the existence of desert regions to the west. This also implies that the land-atmosphere system in May is far from being in equilibrium with the external forcing. The inland migration of the precipitation front comprises a succession of large-scale 35-50 day coupled oscillations between soil moisture, precipitation, and circulation. The oscillatory regime is self-sustained and entirely due to the internal dynamics of the system. In contrast to the May case, minor changes in the land-atmosphere system are found when the model is initialized in March and, more surprisingly, in July, the latter case further emphasizing

  16. Agricultural Nutrient Cycling at the Strawberry Creek Watershed: Insights Into Processes Using Stable Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Thuss, E.; English, M. C.; Spoelstra, J.

    2009-05-01

    When nitrogen availability exceeds biological demand, excess nitrogen, especially nitrate, may subsequently pollute ground and surface water. Agricultural practices in Southern Ontario typically supplement soils with organic and inorganic nutrients to aid in crop development, and employ various management techniques to limit nutrient loss. Excess nitrogen has several potential fates, which are controlled by the net effects of numerous nitrogen cycling reactions in the soil that are often difficult to measure directly. Nitrogen cycling in soils is controlled in large part by soil moisture, as it affects microbial activity and soil redox conditions. Stable isotope geochemistry is a powerful tool that provides information on nitrogen sources and processes. This study uses crop nitrogen and carbon isotope ratios to provide insights into the net effects of soil nitrogen cycling and nitrogen fate. This research was conducted at the Strawberry Creek Watershed (SCW), an agricultural research watershed located between Kitchener-Waterloo and Guelph, Ontario. The SCW exhibits elevated nitrate concentrations in groundwater, tile discharge, and the stream itself. Previous isotopic work revealed that this nitrate is largely derived from chemical fertilizer and manure applications. Field-scale hydrological processes lead to areas where the fate of applied nitrogen differs, which has an isotopic effect on the residual nitrogen that is available to plants. Results of this study indicate significant patterns in the isotopic signature of plant tissue, in both temporal and spatial scales. At the plot-scale where soil conditions are similar, there is little to no variation in foliar isotope values, but at the field-scale there appears to be a significant amount of variability related to soil moisture and nitrogen loss. This relationship can potentially provide insight into ideal conditions for nitrogen uptake efficiency. Reducing agricultural nitrogen leaching to ground and surface

  17. Charge transfer processes and ultraviolet induced absorption in Yb:YAG single crystal laser materials

    NASA Astrophysics Data System (ADS)

    Rydberg, S.; Engholm, M.

    2013-06-01

    Charge transfer (CT) transitions and UV induced color centers in Yb:YAG single crystals have been investigated. A simultaneous pair formation of a stable Yb2+ ion and a hole related (O-) color center (hole polaron) are observed through a CT-process. Slightly different types of hole related color centers are formed in Yb:YAG crystals containing small levels of iron impurities. Furthermore, excitation spectroscopy on the UV irradiated Yb:YAG samples could confirm an energy transfer process between Yb3+ and Yb2+ ions. The findings are important for an increased knowledge of the physical loss mechanisms observed in Yb-doped laser materials, such as the nonlinear decay process in Yb:YAG crystals as well as the photodarkening phenomenon in Yb-doped fiber lasers.

  18. Succession of N cycling processes in biological soil crusts on a Central European inland dune.

    PubMed

    Brankatschk, Robert; Fischer, Thomas; Veste, Maik; Zeyer, Josef

    2013-01-01

    Biological soil crusts (BSCs) are microbial assemblages that occur worldwide and facilitate ecosystem development by nitrogen (N) and carbon accumulation. N turnover within BSC ecosystems has been intensively studied in the past; however, shifts in the N cycle during BSC development have not been previously investigated. Our aim was to characterise N cycle development first by the abundance of the corresponding functional genes (in brackets) and second by potential enzyme activities; we focussed on the four processes: N fixation (nifH), mineralisation as proteolysis and chitinolysis (chiA), nitrification (amoA) and denitrification (nosZ). We sampled from four phases of BSC development and from a reference located in the rooting zone of Corynephorus canescens, on an inland dune in Germany. BSC development was associated with increasing amounts of chlorophyll, organic carbon and N. Potential activities increased and were highest in developed BSCs. Similarly, the abundance of functional genes increased. We propose and discuss three stages of N process succession. First, the heterotrophic stage (mobile sand without BSCs) is dominated by mineralisation activity. Second, during the transition stage (initial BSCs), N accumulates, and potential nitrification and denitrification activity increases. Third, the developed stage (established BSCs and reference) is characterised by the dominance of nitrification. PMID:22816620

  19. Life cycle assessment of bioethanol production from woodchips with modifications in the pretreatment process.

    PubMed

    Shadbahr, Jalil; Zhang, Yan; Khan, Faisal

    2015-01-01

    Pretreatment as a crucial step in the process of ethanol production has significant influences on the process efficiency and on the environmental performance of the bioethanol production from lignocellulosic biomass. In present life cycle analysis (LCA) study, two cases for pretreatment of woodchips were considered as the focal point of the ethanol plant. One was assumed as base scenario whereas the second is the proposed alternative by implementation of modifications on the base design. In the first stage, LCA results of pretreatment unit showed lower environmental impacts in respiratory inorganics and land use than in new scenario, while the base scenario revealed better performance in fossil fuels. The results of the second stage of LCA study demonstrated improvement in proposed design in most categories of environmental impacts such as 18.5 % in land use as well as 17 % improvement in ecosystem quality. PMID:25367284

  20. Current advances of integrated processes combining chemical absorption and biological reduction for NO x removal from flue gas.

    PubMed

    Zhang, Shihan; Chen, Han; Xia, Yinfeng; Liu, Nan; Lu, Bi-Hong; Li, Wei

    2014-10-01

    Anthropogenic nitrogen oxides (NO x ) emitted from the fossil-fuel-fired power plants cause adverse environmental issues such as acid rain, urban ozone smoke, and photochemical smog. A novel chemical absorption-biological reduction (CABR) integrated process under development is regarded as a promising alternative to the conventional selective catalytic reduction processes for NO x removal from the flue gas because it is economic and environmentally friendly. CABR process employs ferrous ethylenediaminetetraacetate [Fe(II)EDTA] as a solvent to absorb the NO x following microbial denitrification of NO x to harmless nitrogen gas. Meanwhile, the absorbent Fe(II)EDTA is biologically regenerated to sustain the adequate NO x removal. Compared with conventional denitrification process, CABR not only enhances the mass transfer of NO from gas to liquid phase but also minimize the impact of oxygen on the microorganisms. This review provides the current advances of the development of the CABR process for NO x removal from the flue gas. PMID:25149446

  1. Influence of subsolvus thermomechanical processing on the low-cycle fatigue properties of haynes 230 alloy

    NASA Astrophysics Data System (ADS)

    Vecchio, Kenneth S.; Fitzpatrick, Michael D.; Klarstrom, Dwaine

    1995-03-01

    Strain-controlled low-cycle fatigue tests have been conducted in air at elevated temperature to determine the influence of subsolvus thermomechanical processing on the low-cycle fatigue (LCF) behavior of HAYNES 230 alloy. A series of tests at various strain ranges was conducted on material experimentally processed at 1121 °C, which is below the M23C6 carbide solvus temperature, and on material fully solution annealed at 1232 °C. A comparative strain-life analysis was performed on the LCF results, and the cyclic hardening/softening characteristics were examined. At 760 °C and 871 °C, the fatigue life of the experimental 230/1121 material was improved relative to the standard 230/1232 material up to a factor of 3. The fatigue life advantage of the experimental material was related primarily to a lower plastic (inelastic) strain amplitude response for a given imposed total strain range. It appears the increase in monotonic flow stress exhibited by the finer grain size experimental material has been translated into an increase in cyclic flow stress at the 760 °C and 871 °C test temperatures. Both materials exhibited entirely transgranular fatigue crack initiation and propagation modes at these temperatures. The LCF performance of the experimental material in tests performed at 982 °C was improved relative to the standard material up to a factor as high as 2. The life advantage of the 230/1121 material occurred despite having a larger plastic strain amplitude than the standard 230/1232 material for a given total strain range. Though not fully understood at present, it is suspected that this behavior is related to the deleterious influence of grain boundaries in the fatigue crack initiations of the standard processed material relative to the experimental material, and ultimately to differences in carbide morphology as a result of thermomechanical processing.

  2. Effect of glass-ceramic-processing cycle on the metallurgical properties of candidate alloys for actuator housings

    SciTech Connect

    Weirick, L.J.

    1982-01-01

    This report summarizes the results from an investigation on the effect of a glass ceramic processing cycle on the metallurgical properties of metal candidates for actuator housings. The cycle consists of a 980/sup 0/C sealing step, a 650/sup 0/C crystallization step and a 475/sup 0/C annealing step. These temperatue excursions are within the same temperature regime as annealing and heat treating processes normally employed for metals. Therefore, the effect of the processing cycle on metallurgical properties of microstructure, strength, hardness and ductility were examined. It was found that metal candidates which are single phase or solid solution alloys (such as 21-6-9, Hastelloy C-276 and Inconel 625) were not affected whereas multiphase or precipitation hardened alloys (such as Inconel 718 and Titanium ..beta..-C) were changed by the processing cycle for the glass ceramic.

  3. Time cycle analysis and simulation of material flow in MOX process layout

    SciTech Connect

    Chakraborty, S.; Saraswat, A.; Danny, K.M.; Somayajulu, P.S.; Kumar, A.

    2013-07-01

    The (U,Pu)O{sub 2} MOX fuel is the driver fuel for the upcoming PFBR (Prototype Fast Breeder Reactor). The fuel has around 30% PuO{sub 2}. The presence of high percentages of reprocessed PuO{sub 2} necessitates the design of optimized fuel fabrication process line which will address both production need as well as meet regulatory norms regarding radiological safety criteria. The powder pellet route has highly unbalanced time cycle. This difficulty can be overcome by optimizing process layout in terms of equipment redundancy and scheduling of input powder batches. Different schemes are tested before implementing in the process line with the help of a software. This software simulates the material movement through the optimized process layout. The different material processing schemes have been devised and validity of the schemes are tested with the software. Schemes in which production batches are meeting at any glove box location are considered invalid. A valid scheme ensures adequate spacing between the production batches and at the same time it meets the production target. This software can be further improved by accurately calculating material movement time through glove box train. One important factor is considering material handling time with automation systems in place.

  4. Quantification of Nitrogen Cycling Processes in Two Great Basin Geothermal Springs (Invited)

    NASA Astrophysics Data System (ADS)

    Dodsworth, J. A.; Hungate, B. A.; Hedlund, B. P.

    2010-12-01

    Various thermophilic microorganisms catalyze the transformation of nitrogen species, such as oxidation of ammonia and reduction of nitrate, however very few studies have addressed the rates of these processes and the organisms responsible for them in natural thermal environments. To gain a better understanding of nitrogen cycling in terrestrial geothermal springs, we have measured nitrification and denitrification rates and characterized the microbial communities in two circumneutral, ~80°C spring sources in the US Great Basin. Ammonium (~30-100 μM) was present in the waters of both springs, and a high nitrous oxide flux and the presence of nitrite suggested an active nitrogen cycle. Gross nitrification rates were measured using the 15N-nitrate pool dilution technique under aerobic conditions, yielding rates from 0.5 to 50 nmol N (g sediment)-1 h-1. These rates were either not increased or only marginally enhanced by amendment with 1 mM ammonium, suggesting that nitrification was not limited by substrate. The acetylene block method was used to measure potential denitrification, yielding rates up to 100 nmol N (g sediment)-1 h-1. Amendment with 1 mM nitrate increased rates 2- to 4-fold, suggesting that denitrification was substrate limited and coupled to nitrification. Further amendment with various potential organic and inorganic electron donors suggested that heterotrophic denitrification was limited by electron donor. Both nitrification and denitrification rates were marginal or not detectable in spring water, suggesting that these processes occurred predominantly in the sediment. 15N-nitrate tracer experiments under anaerobic conditions confirmed the conversion of nitrate to nitrous oxide, but also indicated that a significant amount of nitrate was converted to ammonium, suggesting that dissimilatory nitrate reduction to ammonia (DNRA) may also be an important step in the nitrogen cycle in these systems. Pyrosequencing of PCR amplified 16S rRNA genes and

  5. A dynamic process model of a natural gas combined cycle -- Model development with startup and shutdown simulations

    SciTech Connect

    Liese, Eric; Zitney, Stephen E.

    2013-01-01

    Research in dynamic process simulation for integrated gasification combined cycles (IGCC) with carbon capture has been ongoing at the National Energy Technology Laboratory (NETL), culminating in a full operator training simulator (OTS) and immersive training simulator (ITS) for use in both operator training and research. A derivative work of the IGCC dynamic simulator has been a modification of the combined cycle section to more closely represent a typical natural gas fired combined cycle (NGCC). This paper describes the NGCC dynamic process model and highlights some of the simulator’s current capabilities through a particular startup and shutdown scenario.

  6. Development of a solid absorption process for removal of sulfur from fuel gas. Second quarterly technical report

    SciTech Connect

    Stegen, G.E.

    1980-05-01

    Progress on development of the Solid Supported Molten Salt (SSMS) Process is reported. Absorption and regeneration reaction rate data were obtained using a gravimetric technique. Durability and salt impregnation tests were also performed on a number of commercially available and custom fabricated ceramic samples. Results to date indicate that lithium aluminate, magnesium oxide, and zirconium oxide may all be suitable ceramic support materials. Gravimetric reaction rate data has been developed which gives an estimate of reaction rates expected with the solid supported molten salt sorbent. Soaking the ceramic in a bath of the molten salt has been shown to be effective in filling the pores with salt. With some materials it is necessary to draw a vacuum on the bath during soaking in order to remove trapped gases.

  7. EXTENSION OF COMPUTER-AIDED PROCESS ENGINEERING APPLICATIONS TO ENVIRONMENTAL LIFE CYCLE ASSESSMENT AND SUPPLY CHAIN MANAGEMENT

    EPA Science Inventory

    The potential of computer-aided process engineering (CAPE) tools to enable process engineers to improve the environmental performance of both their processes and across the life cycle (from cradle-to-grave) has long been proffered. However, this use of CAPE has not been fully ach...

  8. Processes controlling the annual cycle of Arctic aerosol number and size distributions

    NASA Astrophysics Data System (ADS)

    Croft, Betty; Martin, Randall V.; Leaitch, W. Richard; Tunved, Peter; Breider, Thomas J.; D'Andrea, Stephen D.; Pierce, Jeffrey R.

    2016-03-01

    Measurements at high-Arctic sites (Alert, Nunavut, and Mt. Zeppelin, Svalbard) during the years 2011 to 2013 show a strong and similar annual cycle in aerosol number and size distributions. Each year at both sites, the number of aerosols with diameters larger than 20 nm exhibits a minimum in October and two maxima, one in spring associated with a dominant accumulation mode (particles 100 to 500 nm in diameter) and a second in summer associated with a dominant Aitken mode (particles 20 to 100 nm in diameter). Seasonal-mean aerosol effective diameter from measurements ranges from about 180 in summer to 260 nm in winter. This study interprets these annual cycles with the GEOS-Chem-TOMAS global aerosol microphysics model. Important roles are documented for several processes (new-particle formation, coagulation scavenging in clouds, scavenging by precipitation, and transport) in controlling the annual cycle in Arctic aerosol number and size. Our simulations suggest that coagulation scavenging of interstitial aerosols in clouds by aerosols that have activated to form cloud droplets strongly limits the total number of particles with diameters less than 200 nm throughout the year. We find that the minimum in total particle number in October can be explained by diminishing new-particle formation within the Arctic, limited transport of pollution from lower latitudes, and efficient wet removal. Our simulations indicate that the summertime-dominant Aitken mode is associated with efficient wet removal of accumulation-mode aerosols, which limits the condensation sink for condensable vapours. This in turn promotes new-particle formation and growth. The dominant accumulation mode during spring is associated with build up of transported pollution from outside the Arctic coupled with less-efficient wet-removal processes at colder temperatures. We recommend further attention to the key processes of new-particle formation, interstitial coagulation, and wet removal and their delicate

  9. Method for improving dissolution efficiency in gas-absorption and liquid extraction processes

    DOEpatents

    Kanak, Brant E.; Stephenson, Michael J.

    1981-01-01

    This invention is a method for improving dissolution efficiency in processes in which a feed fluid is introduced to a zone where it is contacted with a liquid solvent for preferentially removing a component of the feed and where part of the solvent so contacted undergoes transfer into the feed fluid to saturate the same. It has been found that such transfer significantly impairs dissolution efficiency. In accordance with the invention, an amount of the above-mentioned solvent is added to the feed fluid being introduced to the contact zone, the solvent being added in an amount sufficient to effect reduction or elimination of the above-mentioned transfer. Preferably, the solvent is added to the feed fluid in an amount saturating or supersaturating the feed fluid under the conditions prevailing in the contact zone.

  10. Method for improving dissolution efficiency in gas-absorption and liquid extraction processes. [Patent application

    DOEpatents

    Kanak, B.E.; Stephenson, M.J.

    1980-01-11

    A method is described for improving dissolution efficiency in processes in which a feed fluid is introduced to a zone where it is contacted with a liquid solvent for preferentially removing a component of the feed and where part of the solvent so contacted undergoes transfer into the feed fluid to saturate the same. It has been found that such transfer significantly impairs dissolution efficiency. In accordance with the invention, an amount of the above-mentioned solvent is added to the feed fluid being introduced to the contact zone, the solvent being added in an amount sufficient to effect reduction or elimination of the above-mentioned transfer. Preferably, the solvent is added to the feed fluid in an amount saturating or supersaturating the feed fluid under the conditions prevailing in the contact zone.

  11. Inorganic Carbon Cycling and Biogeochemical Processes in an Arctic Inland Sea (Hudson Bay)

    NASA Astrophysics Data System (ADS)

    Burt, William; Thomas, Helmuth; Miller, Lisa; Granskog, Mats; Papakyriakou, Tim; Pengelly, Leah

    2016-04-01

    The distributions of CO2 system parameters in Hudson Bay, which not only receives nearly one third of Canada's river discharge, but is also subject to annual cycles of sea-ice formation and melt, indicate that the timing and magnitude of freshwater inputs play an important role in carbon biogeochemistry and ocean acidification in this unique Arctic ecosystem. This study uses basin-wide measurements of dissolved inorganic carbon (DIC) and total alkalinity (TA), as well as stable isotope tracers (δ18OH2O and δ13CDIC), to provide a detailed assessment of carbon cycling processes throughout the bay. Surface distributions of carbonate parameters reveal the particular importance of freshwater inputs in the southern portion of the bay. Riverine TA end-members vary significantly both regionally and with small changes in near-surface depths, highlighting the importance of careful surface water sampling in highly stratified waters. In an along-shore transect, large increases in subsurface DIC are accompanied by equivalent decreases in δ13CDIC with no discernable change in TA, indicating a respiratory DIC production on the order of 100 μmol/kg during deep water circulation around the bay. Based on TA data we surmise that the deep waters in the Hudson Bay are of Pacific origin.

  12. Selection of organic process and source indicator substances for the anthropogenically influenced water cycle.

    PubMed

    Jekel, Martin; Dott, Wolfgang; Bergmann, Axel; Dünnbier, Uwe; Gnirß, Regina; Haist-Gulde, Brigitte; Hamscher, Gerd; Letzel, Marion; Licha, Tobias; Lyko, Sven; Miehe, Ulf; Sacher, Frank; Scheurer, Marco; Schmidt, Carsten K; Reemtsma, Thorsten; Ruhl, Aki Sebastian

    2015-04-01

    An increasing number of organic micropollutants (OMP) is detected in anthropogenically influenced water cycles. Source control and effective natural and technical barriers are essential to maintain a high quality of drinking water resources under these circumstances. Based on the literature and our own research this study proposes a limited number of OMP that can serve as indicator substances for the major sources of OMP, such as wastewater treatment plants, agriculture and surface runoff. Furthermore functional indicators are proposed that allow assessment of the proper function of natural and technical barriers in the aquatic environment, namely conventional municipal wastewater treatment, advanced treatment (ozonation, activated carbon), bank filtration and soil aquifer treatment as well as self-purification in surface water. These indicator substances include the artificial sweetener acesulfame, the anti-inflammatory drug ibuprofen, the anticonvulsant carbamazepine, the corrosion inhibitor benzotriazole and the herbicide mecoprop among others. The chemical indicator substances are intended to support comparisons between watersheds and technical and natural processes independent of specific water cycles and to reduce efforts and costs of chemical analyses without losing essential information. PMID:25563167

  13. Influence of subsolvus thermomechanical processing on the low-cycle fatigue properties of HAYNES 230 alloy

    SciTech Connect

    Vecchio, K.S.; Fitzpatrick, M.D.; Klarstrom, D.

    1995-03-01

    Strain-controlled low-cycle fatigue tests have been conducted in air at elevated temperature to determine the influence of subsolvus thermomechanial processing on the low-cycle fatigue (LCF) behavior of HAYNES 230 alloy. A series of tests at various strain ranges was conducted on material experimentally processed at 1,121 C, which is below the M{sub 23}C{sub 6} carbide solvus temperature, and on material fully solution annealed at 1,232 C. A comparative strain-life analyses was performed on the LCF results, and the cyclic hardening/softening characteristics were examined. At 760 C and 871 C, the fatigue life of the experimental 230/1121 material was improved relative to the standard 230/1232 material up to a factor of 3. The fatigue life advantage of the experimental material was related primarily to a lower plastic (inelastic) strain amplitude response for a given imposed total strain range. It appears the increase in monotonic flow stress exhibited by the finer grain size experimental material has been translated into an increase in cyclic flow stress at the 760 C and 871 C test temperature. Both materials exhibited entirely transgranular fatigue crack initiation and propagation modes at these temperature. The LCF performance of the experimental material in tests performed at 982 C was improved relative to the standard material up to a factor as high as 2. The life advantage of the 230/1121 material occurred despite having a larger plastic strain amplitude than the sandbar 230/1232 material for a given total strain range.

  14. Technological and life cycle assessment of organics processing odour control technologies.

    PubMed

    Bindra, Navin; Dubey, Brajesh; Dutta, Animesh

    2015-09-15

    As more municipalities and communities across developed world look towards implementing organic waste management programmes or upgrading existing ones, composting facilities are emerging as a popular choice. However, odour from these facilities continues to be one of the most important concerns in terms of cost & effective mitigation. This paper provides a technological and life cycle assessment of some of the different odour control technologies and treatment methods that can be implemented in organics processing facilities. The technological assessment compared biofilters, packed tower wet scrubbers, fine mist wet scrubbers, activated carbon adsorption, thermal oxidization, oxidization chemicals and masking agents. The technologies/treatment methods were evaluated and compared based on a variety of operational, usage and cost parameters. Based on the technological assessment it was found that, biofilters and packed bed wet scrubbers are the most applicable odour control technologies for use in organics processing faculties. A life cycle assessment was then done to compare the environmental impacts of the packed-bed wet scrubber system, organic (wood-chip media) bio-filter and inorganic (synthetic media) bio-filter systems. Twelve impact categories were assessed; cumulative energy demand (CED), climate change, human toxicity, photochemical oxidant formation, metal depletion, fossil depletion, terrestrial acidification, freshwater eutrophication, marine eutrophication, terrestrial eco-toxicity, freshwater eco-toxicity and marine eco-toxicity. The results showed that for all impact categories the synthetic media biofilter had the highest environmental impact, followed by the wood chip media bio-filter system. The packed-bed system had the lowest environmental impact for all categories. PMID:25981938

  15. Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High Pressure Stripping for Post-Combustion CO{sub 2} Capture

    SciTech Connect

    Lu, Yongqi

    2014-02-01

    This report summarizes the methodology and preliminary results of a techno-economic analysis on a hot carbonate absorption process (Hot-CAP) with crystallization-enabled high pressure stripping for post-combustion CO{sub 2} capture (PCC). This analysis was based on the Hot-CAP that is fully integrated with a sub-critical steam cycle, pulverized coal-fired power plant adopted in Case 10 of the DOE/NETL’s Cost and Performance Baseline for Fossil Energy Plants. The techno-economic analysis addressed several important aspects of the Hot-CAP for PCC application, including process design and simulation, equipment sizing, technical risk and mitigation strategy, performance evaluation, and cost analysis. Results show that the net power produced in the subcritical power plant equipped with Hot-CAP is 611 MWe, greater than that with Econoamine (550 MWe). The total capital cost for the Hot-CAP, including CO{sub 2} compression, is $399 million, less than that for the Econoamine PCC ($493 million). O&M costs for the power plant with Hot-CAP is $175 million annually, less than that with Econoamine ($178 million). The 20-year levelized cost of electricity (LCOE) for the power plant with Hot-CAP, including CO2 transportation and storage, is 119.4 mills/kWh, a 59% increase over that for the plant without CO2 capture. The LCOE increase caused by CO{sub 2} capture for the Hot-CAP is 31% lower than that for its Econoamine counterpart.

  16. Effect of Processing Route on Strain Controlled Low Cycle Fatigue Behavior of Polycrystalline NiAl

    NASA Technical Reports Server (NTRS)

    Rao, K. Bhanu Sankara; Lerch, B. A.; Noebe, R. D.

    1995-01-01

    The present investigation examines the effects of manufacturing process on the total axial strain controlled low cycle fatigue behavior of polycrystalline NiAl at 1000 K, a temperature above the monotonic Brittle-to-Ductile Transition Temperature (BDTT). The nickel aluminide samples were produced by three different processing routes: hot isostatic pressing of pre- alloyed powders, extrusion of prealloyed powders, and extrusion of vacuum induction melted ingots. The LCF behavior of the cast plus extruded material was also determined at room temperature (below the BD77) for comparison to the high temperature data. The cyclic stress response, cyclic stress-strain behavior, and strain-life relationships were influenced by the alloy preparation technique and the testing temperature. Detailed characterization of the LCF tested samples was conducted by optical and electron microscopy to determine the variations in fracture and deformation modes and to determine any microstructural changes that occurred during LCF testing. The dependence of LCF properties on processing route was rationalized on the basis of starting microstructure, brittle-to-ductile transition temperature, deformation induced changes in the basic microstructure, deformation substructure, and synergistic interaction between the damage modes.

  17. Performance and stability of the mist-lift process for open-cycle OTEC

    SciTech Connect

    Davenport, R.L.

    1982-02-01

    In the mist flow proposal for open-cycle ocean thermal energy conversion (OTEC), the thermal energy of the warm water is converted into gravitational potential energy causing the water to flow vertically upward as a low-pressure two-phase flow of small droplets in water vapor. The gravitational energy is then converted to electrical energy using a standard hydraulic turbine. The results of SERI's analytical studies of the mist lift process are summarized. Several computer models have been developed: a single-drop-size steady-state (SDS) model; a multiple-drop-size steady-state model including drop coalescence and drop breakup (MDS-B model), and a single-drop-size transient (SDT) model. Results from the multiple-drop-size model indicate that drop growth is rapid up to a mean diameter of about 0.5 mm, and that the drop size spectrum changes little thereafter. Parametric studies performed with the SDS model showed that the range of performance of the mist lift process is large, and showed the effects of design parameters on performance. Results of the transient model suggest that the mist lift process is stable to variations in major parameters as long as the variations are confined to the steady-state operational limits of the particular mist lift tube. Listings of the computer programs used in the study are included as appendices.

  18. Light absorption processes and optimization of ZnO/CdTe core-shell nanowire arrays for nanostructured solar cells

    NASA Astrophysics Data System (ADS)

    Michallon, Jérôme; Bucci, Davide; Morand, Alain; Zanuccoli, Mauro; Consonni, Vincent; Kaminski-Cachopo, Anne

    2015-02-01

    The absorption processes of extremely thin absorber solar cells based on ZnO/CdTe core-shell nanowire (NW) arrays with square, hexagonal or triangular arrangements are investigated through systematic computations of the ideal short-circuit current density using three-dimensional rigorous coupled wave analysis. The geometrical dimensions are optimized for optically designing these solar cells: the optimal NW diameter, height and array period are of 200 ± 10 nm, 1-3 μm and 350-400 nm for the square arrangement with CdTe shell thickness of 40-60 nm. The effects of the CdTe shell thickness on the absorption of ZnO/CdTe NW arrays are revealed through the study of two optical key modes: the first one is confining the light into individual NWs, the second one is strongly interacting with the NW arrangement. It is also shown that the reflectivity of the substrate can improve Fabry-Perot resonances within the NWs: the ideal short-circuit current density is increased by 10% for the ZnO/fluorine-doped tin oxide (FTO)/ideal reflector as compared to the ZnO/FTO/glass substrate. Furthermore, the optimized square arrangement absorbs light more efficiently than both optimized hexagonal and triangular arrangements. Eventually, the enhancement factor of the ideal short-circuit current density is calculated as high as 1.72 with respect to planar layers, showing the high optical potentiality of ZnO/CdTe core-shell NW arrays.

  19. Functional genes to assess nitrogen cycling and aromatic hydrocarbon degradation: primers and processing matter

    PubMed Central

    Penton, C. Ryan; Johnson, Timothy A.; Quensen, John F.; Iwai, Shoko; Cole, James R.; Tiedje, James M.

    2013-01-01

    Targeting sequencing to genes involved in key environmental processes, i.e., ecofunctional genes, provides an opportunity to sample nature's gene guilds to greater depth and help link community structure to process-level outcomes. Vastly different approaches have been implemented for sequence processing and, ultimately, for taxonomic placement of these gene reads. The overall quality of next generation sequence analysis of functional genes is dependent on multiple steps and assumptions of unknown diversity. To illustrate current issues surrounding amplicon read processing we provide examples for three ecofunctional gene groups. A combination of in silico, environmental and cultured strain sequences was used to test new primers targeting the dioxin and dibenzofuran degrading genes dxnA1, dbfA1, and carAa. The majority of obtained environmental sequences were classified into novel sequence clusters, illustrating the discovery value of the approach. For the nitrite reductase step in denitrification, the well-known nirK primers exhibited deficiencies in reference database coverage, illustrating the need to refine primer-binding sites and/or to design multiple primers, while nirS primers exhibited bias against five phyla. Amino acid-based OTU clustering of these two N-cycle genes from soil samples yielded only 114 unique nirK and 45 unique nirS genus-level groupings, likely a reflection of constricted primer coverage. Finally, supervised and non-supervised OTU analysis methods were compared using the nifH gene of nitrogen fixation, with generally similar outcomes, but the clustering (non-supervised) method yielded higher diversity estimates and stronger site-based differences. High throughput amplicon sequencing can provide inexpensive and rapid access to nature's related sequences by circumventing the culturing barrier, but each unique gene requires individual considerations in terms of primer design and sequence processing and classification. PMID:24062736

  20. Evaluation of Boundless Biogeochemical Cycle through Development of Process-Based Eco-Hydrological and Biogeochemical Cycle Model to Incorporate Terrestrial-Aquatic Continuum

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Maksyutov, S. S.

    2014-12-01

    Inland water might act as important transport pathway for continental biogeochemical cycle although its contribution has remained uncertain yet due to a paucity of data (Battin et al. 2009). The author has developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2008a-b, 2010, 2011a-b, 2012a-c, 2013; Nakayama and Fujita, 2010; Nakayama and Hashimoto, 2011; Nakayama and Shankman, 2013a-b; Nakayama and Watanabe, 2004, 2006, 2008a-b; Nakayama et al., 2006, 2007, 2010, 2012), which incorporates surface-groundwater interactions, includes up- and down-scaling processes between local-regional-global scales, and can simulate iteratively nonlinear feedback between hydrologic-geomorphic-ecological processes. Because NICE incorporates 3-D groundwater sub-model and expands from previous 1- or 2-D or steady state, the model can simulate the lateral transport pronounced at steeper-slope or riparian/floodplain with surface-groundwater connectivity. River discharge and groundwater level simulated by NICE agreed reasonably with those in previous researches (Niu et al., 2007; Fan et al., 2013) and extended to clarify lateral subsurface also has important role on global hydrologic cycle (Nakayama, 2011b; Nakayama and Shankman, 2013b) though the resolution was coarser. NICE was further developed to incorporate biogeochemical cycle including reaction between inorganic and organic carbons in terrestrial and aquatic ecosystems. The missing role of carbon cycle simulated by NICE, for example, CO2 evasion from inland water (global total flux was estimated as about 1.0 PgC/yr), was relatively in good agreement in that estimated by empirical relation using previous pCO2 data (Aufdenkampe et al., 2011; Laruelle et al., 2013). The model would play important role in identification of greenhouse gas balance of the biosphere and spatio-temporal hot spots, and bridging gap between top-down and bottom-up approaches (Cole et al. 2007; Frei et al. 2012).

  1. Ideal thermodynamic processes of oscillatory-flow regenerative engines will go to ideal stirling cycle?

    NASA Astrophysics Data System (ADS)

    Luo, Ercang

    2012-06-01

    This paper analyzes the thermodynamic cycle of oscillating-flow regenerative machines. Unlike the classical analysis of thermodynamic textbooks, the assumptions for pistons' movement limitations are not needed and only ideal flowing and heat transfer should be maintained in our present analysis. Under such simple assumptions, the meso-scale thermodynamic cycles of each gas parcel in typical locations of a regenerator are analyzed. It is observed that the gas parcels in the regenerator undergo Lorentz cycle in different temperature levels, whereas the locus of all gas parcels inside the regenerator is the Ericson-like thermodynamic cycle. Based on this new finding, the author argued that ideal oscillating-flow machines without heat transfer and flowing losses is not the Stirling cycle. However, this new thermodynamic cycle can still achieve the same efficiency of the Carnot heat engine and can be considered a new reversible thermodynamic cycle under two constant-temperature heat sinks.

  2. Life cycle assessment of microalgae to biofuel: Thermochemical processing through hydrothermal liquefaction or pyrolysis

    NASA Astrophysics Data System (ADS)

    Bennion, Edward P.

    Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae-to-biofuel process through life cycle assessment. A system boundary of a "well to pump" (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae-to-biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO2 eq (MJ renewable diesel)-1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory-scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development, and a comparison of results to literature.

  3. The process of processing: exploring the validity of Neisser's perceptual cycle model with accounts from critical decision-making in the cockpit.

    PubMed

    Plant, Katherine L; Stanton, Neville A

    2015-01-01

    The perceptual cycle model (PCM) has been widely applied in ergonomics research in domains including road, rail and aviation. The PCM assumes that information processing occurs in a cyclical manner drawing on top-down and bottom-up influences to produce perceptual exploration and actions. However, the validity of the model has not been addressed. This paper explores the construct validity of the PCM in the context of aeronautical decision-making. The critical decision method was used to interview 20 helicopter pilots about critical decision-making. The data were qualitatively analysed using an established coding scheme, and composite PCMs for incident phases were constructed. It was found that the PCM provided a mutually exclusive and exhaustive classification of the information-processing cycles for dealing with critical incidents. However, a counter-cycle was also discovered which has been attributed to skill-based behaviour, characteristic of experts. The practical applications and future research questions are discussed. Practitioner Summary: This paper explores whether information processing, when dealing with critical incidents, occurs in the manner anticipated by the perceptual cycle model. In addition to the traditional processing cycle, a reciprocal counter-cycle was found. This research can be utilised by those who use the model as an accident analysis framework. PMID:25529547

  4. Oxygen Sensitivity of Anammox and Coupled N-Cycle Processes in Oxygen Minimum Zones

    PubMed Central

    Kalvelage, Tim; Jensen, Marlene M.; Contreras, Sergio; Revsbech, Niels Peter; Lam, Phyllis; Günter, Marcel; LaRoche, Julie; Lavik, Gaute; Kuypers, Marcel M. M.

    2011-01-01

    Nutrient measurements indicate that 30–50% of the total nitrogen (N) loss in the ocean occurs in oxygen minimum zones (OMZs). This pelagic N-removal takes place within only ∼0.1% of the ocean volume, hence moderate variations in the extent of OMZs due to global warming may have a large impact on the global N-cycle. We examined the effect of oxygen (O2) on anammox, NH3 oxidation and NO3− reduction in 15N-labeling experiments with varying O2 concentrations (0–25 µmol L−1) in the Namibian and Peruvian OMZs. Our results show that O2 is a major controlling factor for anammox activity in OMZ waters. Based on our O2 assays we estimate the upper limit for anammox to be ∼20 µmol L−1. In contrast, NH3 oxidation to NO2− and NO3− reduction to NO2− as the main NH4+ and NO2− sources for anammox were only moderately affected by changing O2 concentrations. Intriguingly, aerobic NH3 oxidation was active at non-detectable concentrations of O2, while anaerobic NO3− reduction was fully active up to at least 25 µmol L−1 O2. Hence, aerobic and anaerobic N-cycle pathways in OMZs can co-occur over a larger range of O2 concentrations than previously assumed. The zone where N-loss can occur is primarily controlled by the O2-sensitivity of anammox itself, and not by any effects of O2 on the tightly coupled pathways of aerobic NH3 oxidation and NO3− reduction. With anammox bacteria in the marine environment being active at O2 levels ∼20 times higher than those known to inhibit their cultured counterparts, the oceanic volume potentially acting as a N-sink increases tenfold. The predicted expansion of OMZs may enlarge this volume even further. Our study provides the first robust estimates of O2 sensitivities for processes directly and indirectly connected with N-loss. These are essential to assess the effects of ocean de-oxygenation on oceanic N-cycling. PMID:22216239

  5. A meta-analysis of oceanic DMS and DMSP cycling processes: Disentangling the summer paradox

    NASA Astrophysics Data System (ADS)

    Galí, Martí; Simó, Rafel

    2015-04-01

    The biogenic volatile compound dimethylsulfide (DMS) is produced in the ocean mainly from the ubiquitous phytoplankton osmolyte dimethylsulfoniopropionate (DMSP). In the upper mixed layer, DMS concentration and the daily averaged solar irradiance are roughly proportional across latitudes and seasons. This translates into a seasonal mismatch between DMS and phytoplankton biomass at low latitudes, termed the "DMS summer paradox," which remains difficult to reproduce with biogeochemical models. Here we report on a global meta-analysis of DMSP and DMS cycling processes and their relationship to environmental factors. We show that DMS seasonality reflects progressive changes in a short-term dynamic equilibrium, set by the quotient between gross DMS production rates and the sum of biotic and abiotic DMS consumption rate constants. Gross DMS production is the principal driver of DMS seasonality, due to the synergistic increases toward summer in two of its underlying factors: phytoplankton DMSP content (linked to species succession) and short-term community DMSP-to-DMS conversion yields (linked to physiological stress). We also show that particulate DMSP transformations (linked to grazing-induced phytoplankton mortality) generally contribute a larger share of gross DMS production than dissolved-phase DMSP metabolism. The summer paradox is amplified by a decrease in microbial DMS consumption rate constants toward summer. However, this effect is partially compensated by a concomitant increase in abiotic DMS loss rate constants. Besides seasonality, we identify consistent covariation between key sulfur cycling variables and trophic status. These findings should improve the modeling projections of the main natural source of climatically active atmospheric sulfur.

  6. Process based life-cycle assessment of natural gas from the Marcellus Shale.

    PubMed

    Dale, Alexander T; Khanna, Vikas; Vidic, Radisav D; Bilec, Melissa M

    2013-05-21

    The Marcellus Shale (MS) represents a large potential source of energy in the form of tightly trapped natural gas (NG). Producing this NG requires the use of energy and water, and has varying environmental impacts, including greenhouse gases. One well-established tool for quantifying these impacts is life-cycle assessment (LCA). This study collected information from current operating companies to perform a process LCA of production for MS NG in three areas--greenhouse gas (GHG) emissions, energy consumption, and water consumption--under both present (2011-2012) and past (2007-2010) operating practices. Energy return on investment (EROI) was also calculated. Information was collected from current well development operators and public databases, and combined with process LCA data to calculate per-well and per-MJ delivered impacts, and with literature data on combustion for calculation of impacts on a per-kWh basis during electricity generation. Results show that GHG emissions through combustion are similar to conventional natural gas, with an EROI of 12:1 (90% confidence interval of 4:1-13:1), lower than conventional fossil fuels but higher than unconventional oil sources. PMID:23611587

  7. Moderate cycling exercise enhances neurocognitive processing in adolescents with intellectual and developmental disabilities.

    PubMed

    Vogt, Tobias; Schneider, Stefan; Anneken, Volker; Strüder, Heiko K

    2013-09-01

    Research has shown that physical exercise enhances cognitive performance in individuals with intact cognition as well as in individuals diagnosed with intellectual and developmental disabilities. Although well identified in the field of health (for example, the transient hypofrontality theory), the underlying neurocognitive processes in intellectual and developmental disabilities remain widely unclear and thus characterize the primary aim of this research. Eleven adolescents with intellectual and developmental disabilities performed moderate cycling exercise and common relaxation. Cross-over designed, both 10-min meetings were randomly allocated at the same time of day with 24-h time lags in between. Conditions were embedded in ability-modified cognitive performance (decision-making processes). Participants' reaction times and their equivalent neurophysiological parameters were recorded using standard EEG and analyzed (spatial activity, N2). Exercise revealed a decrease in frontal electrocortical activity, most pronounced in the medial frontal gyrus (10%). To that effect, reaction time (p<0.01) was decreased and mirrored in decreased N2 latency (p<0.01) after exercise. In contrast, relaxation revealed no significant changes. Results of this research suggest exercise temporarily enhances neuronal activity in relation to cognitive performance for adolescents with intellectual and developmental disabilities; further research is needed to explore possible future effects on enhancing neurocognitive development. PMID:23770890

  8. Intense few-cycle hard-UV-pulse-induced internal conversion processes

    SciTech Connect

    Kis, Daniel; Kalman, Peter; Keszthelyi, Tamas

    2010-08-15

    The internal conversion coefficient for bound-free electron transition of originally energetically forbidden internal conversion processes induced by intense, few-cycle UV laser pulse of Gaussian shape in the case of isomers {sup 107}Ag{sup m} (K shell, E3, 25.47 keV), {sup 90}Nb{sup m} (L{sub 2} shell, M2+E3, 2.3 keV), {sup 183}W{sup m1}(M{sub 5} shell, E2, 1.79 keV), {sup 183}W{sup m2} (N{sub 1} shell, E1, 548 eV), and {sup 188}Re{sup m} (M{sub 2} shell, M3+E4, 2.63 keV), and {sup 235}U{sup m} (O{sub 4} and O{sub 5} shells, E3, 73.5 eV) is determined numerically. Experimental conditions and possibilities of the laser-induced internal conversion process of {sup 183}W{sup m2} from the N{sub 1} shell are discussed in more detail.

  9. Biogeochemical processes and nutrient cycling within an artificial reef off Southern Portugal.

    PubMed

    Falcão, M; Santos, M N; Vicente, M; Monteiro, C C

    2007-06-01

    This study (2002/2004) examines the effect of artificial reef (AR) structures off the southern coast of Portugal on biogeochemical process and nutrient cycling. Organic and inorganic carbon, nitrogen, phosphorus and chlorophyll a were determined monthly in sediment cores and settled particles for a two-year period. Ammonium, nitrates, phosphates, silicates, total organic nitrogen and phosphorus, chlorophyll a and phaeopigments were also determined monthly in water samples within AR and control sites. Results of the two-year study showed that: (i) there was a significant exponential fit between organic carbon and chlorophyll a (r2=0.91; p<0.01) in reef sediment suggesting an increase of benthic productivity; (ii) organic carbon and nitrogen content in settled particles within AR environment was about four times higher two years after reef deployment; (iii) nutrients and chlorophyll a in the water column were higher at AR than control site. Two years after AR deployment, dissolved organic and inorganic compounds in near bottom water were 30-60% higher, emphasizing benthic remineralization processes at AR's organically rich sediment. Marked chemical changes in the ecosystem were observed during the two-year study period, reinforcing the importance of these structures for sandy coastal areas rehabilitation through trophic chain pull-out. PMID:17239434

  10. REgional Carbon Cycle Assessment and Processes: Results and Data Legacy (Invited)

    NASA Astrophysics Data System (ADS)

    Canadell, J.; Ciais, P.

    2013-12-01

    The Global Carbon Project with the involvement of over 150 contributing scientists has finalized the largest and most comprehensive assessment of regional carbon budgets, land and oceans, ever undertaken: the REgional Carbon Cycle Assessment and Processes (RECCAP; http:// www.globalcarbonproject.org/reccap). The objective of RECCAP was to establish the mean carbon balance of 10 land regions (Africa, the Arctic tundra, Australia, Europe, Russia, East Asia, South Asia, Southeast Asia, Central and South America, and North America) and 4 major ocean basins (Atlantic and Arctic, Indian, Pacific, and Southern oceans) for the period 1990-2009. The fundamental tenet of RECCAP was to establish carbon budgets in each region by comparing and reconciling multiple bottom-up flux estimates with top-down estimates. Bottom-up flux approaches include estimates from ensembles of process-based land and ocean models, surface partial pressure of CO2 (pCO2), forest inventories, eddy covariance measurements, fire modeling, riverine export, and wood harvest among others, while top-down estimates relied on model ensembles of atmospheric CO2 and CH4 inversions. In this talk we'll present an overview of results of the various regions, compare with the independently developed global carbon budget, and emphasize major regional differences and data gaps. An important legacy of RECCAP are a number of updated and new databases including an ensemble of 9 Global Dynamic Vegetation Models (TRENDY), 4 Ocean biogeochemical models, and 10 atmospheric CO2 inversions for the period 1990-2009.

  11. Life cycle assessment of oriented strand boards (OSB): from process innovation to ecodesign.

    PubMed

    Benetto, Enrico; Becker, Marko; Welfring, Joëlle

    2009-08-01

    Oriented strand boards (OSBs) are wood panels that are used worldwide mainly in the packaging and the building sectors. Their market share is rapidly increasing thanks to their outstanding mechanical properties and to a renewed interest for wood based products. The OSB production process generates, nonetheless, emissions of volatile organic compounds (VOCs) during the air-drying of wood strands. This known problem in the literature leads to an odorous nuisance in the surrounding area of the production site. In order to address this problem, a novel application to wood drying of an innovative vapor drying technology is successfully operated at the production site of Kronospan Luxembourg S.A. In addition to the reduced odorous nuisance, a significant environmental added value is expected because of the other modifications induced by the vapor-drying technique on the OSB production process viz. the reduced energy and raw materials demands and the change of adhesive mixture, with the addition of phenol resin. The potential impact of this technology on the OSB market is therefore very significant. This study was aimed at assessing the environmental added value provided by the vapor-drying technique through a life cycle assessment (LCA) according to ISO 14040-44 standards. The objective was to compare the environmental performances of the former and the current OSB production processes. Considering only the pollutant emissions from the OSB production process, the reduction of climate change impact and human health damage is significant respectively, 15-20% and 50-75%. When the lifecycle processes related to the OSB production are included, the reduction of damages does not exceed 3-7%. Following an uncertainty analysis,this reduction was nevertheless proven to be statistically significant. However, it is observed that the reduction of environmental impacts and damages allowed by the vapor-drying technology is counterbalanced by the change of adhesive mixture. Indeed the

  12. CO2 Capture from Flue Gas by Phase Transitional Absorption

    SciTech Connect

    Liang Hu

    2009-06-30

    A novel absorption process called Phase Transitional Absorption was invented. What is the Phase Transitional Absorption? Phase Transitional Absorption is a two or multi phase absorption system, CO{sub 2} rich phase and CO{sub 2} lean phase. During Absorption, CO{sub 2} is accumulated in CO{sub 2} rich phase. After separating the two phases, CO{sub 2} rich phase is forward to regeneration. After regeneration, the regenerated CO{sub 2} rich phase combines CO{sub 2} lean phase to form absorbent again to complete the cycle. The advantage for Phase Transitional Absorption is obvious, significantly saving on regeneration energy. Because CO{sub 2} lean phase was separated before regeneration, only CO{sub 2} rich phase was forward to regeneration. The absorption system we developed has the features of high absorption rate, high loading and working capacity, low corrosion, low regeneration heat, no toxic to environment, etc. The process evaluation shows that our process is able to save 80% energy cost by comparing with MEA process.

  13. Integration of the AVLIS (atomic vapor laser isotopic separation) process into the nuclear fuel cycle. [Effect of AVLIS feed requirements on overall fuel cycle

    SciTech Connect

    Hargrove, R.S.; Knighton, J.B.; Eby, R.S.; Pashley, J.H.; Norman, R.E.

    1986-08-01

    AVLIS RD and D efforts are currently proceeding toward full-scale integrated enrichment demonstrations in the late 1980's and potential plant deployment in the mid 1990's. Since AVLIS requires a uranium metal feed and produces an enriched uranium metal product, some change in current uranium processing practices are necessitated. AVLIS could operate with a UF/sub 6/-in UF/sub 6/-out interface with little effect to the remainder of the fuel cycle. This path, however, does not allow electric utility customers to realize the full potential of low cost AVLIS enrichment. Several alternative processing methods have been identified and evaluated which appear to provide opportunities to make substantial cost savings in the overall fuel cycle. These alternatives involve varying levels of RD and D resources, calendar time, and technical risk to implement and provide these cost reduction opportunities. Both feed conversion contracts and fuel fabricator contracts are long-term entities. Because of these factors, it is not too early to start planning and making decisions on the most advantageous options so that AVLIS can be integrated cost effectively into the fuel cycle. This should offer economic opportunity to all parties involved including DOE, utilities, feed converters, and fuel fabricators. 10 refs., 11 figs., 2 tabs.

  14. Reduction process of Pd-containing La-Fe perovskite-type oxides by in-situ Dispersive X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Uchiyama, T.; Kamitani, K.; Kato, K.; Nishibori, M.

    2016-05-01

    Reduction process of Pd-containing La-Fe perovskites was investigated by in-situ Pd K-edge dispersive X-ray absorption fine structure as well as mass spectroscopy. The prepared perovskite was characterized by a conventional X-ray absorption spectra to confirm the incorporation of cationic Pd into perovskite matrix. Under the reductive atmosphere (5 vol%H2/He), we found the presence of three reduction processes of Pd cations in perovskite structure. The segregation of Pd metal particles was observed from 200-400 oC although the cationic Pd species remained at 700 oC due to the strong metal-support interaction.

  15. Complex surface analytical investigations on hydrogen absorption and desorption processes of a TiMn2-based alloy.

    PubMed

    Schülke, Mark; Kiss, Gábor; Paulus, Hubert; Lammers, Martin; Ramachandran, Vaidyanath; Sankaran, Kannan; Müller, Karl-Heinz

    2009-04-01

    Metal hydrides are one of the most promising technologies in the field of hydrogen storage due to their high volumetric storage density. Important reaction steps take place at the very surface of the solid during hydrogen absorption. Since these reaction steps are drastically influenced by the properties and potential contamination of the solid, it is very important to understand the characteristics of the surface, and a variety of analytical methods are required to achieve this. In this work, a TiMn(2)-type metal hydride alloy is investigated by means of high-pressure activation measurements, X-ray photoelectron spectroscopy (XPS), secondary neutral mass spectrometry (SNMS) and thermal desorption mass spectrometry (TDMS). In particular, TDMS is an analytical tool that, in contrast to SIMS or SNMS, allows the hydrogen content in a metal to be quantified. Furthermore, it allows the activation energy for desorption to be determined from TDMS profiles; the method used to achieve this is presented here in detail. In the results section, it is shown that the oxide layer formed during manufacture and long-term storage prevents any hydrogen from being absorbed, and so an activation process is required. XPS measurements show the oxide states of the main alloy elements, and a layer 18 nm thick is determined via SNMS. Furthermore, defined oxide layers are produced and characterized in UHV using XPS. The influence of these thin oxide layers on the hydrogen sorption process is examined using TDMS. Finally, the activation energy of desorption is determined for the investigated alloy using the method presented here, and values of 46 kJ/mol for hydrogen sorbed in UHV and 103 kJ/mol for hydrogen originating from the manufacturing process are obtained. PMID:19294368

  16. Purge needs in absorption chillers

    SciTech Connect

    Murray, J.G. )

    1993-10-01

    Absorption chillers are regaining a significant share of large tonnage chiller sales, such as they had 20 years ago. Gas-fired chillers are now available that have a base energy (ultimate fuel usage) consumption rate per ton comparable to that in electric units. Effective purging in an absorption chiller is an absolute necessity to achieve the low chilled water temperature needed for dehumidification and to fully benefit from the energy savings offered by double-effect cycles. Although the purge system is usually not shown on the typical cycle schematic, its proper functioning is a key requirement for satisfactory machine operation. This article discusses the effect of noncondensible (N/C) gases on the absorption cooling process and the basics of purge systems. In addition, the article discusses the rationale for the important design step of selecting the location of the N/C probe, and discusses purge systems applicable to the direct-fired, double-effect machines now entering the marketplace.

  17. Incorporating redox processes improves prediction of carbon and nutrient cycling and greenhouse gas emission

    NASA Astrophysics Data System (ADS)

    Tang, Guoping; Zheng, Jianqiu; Yang, Ziming; Graham, David; Gu, Baohua; Mayes, Melanie; Painter, Scott; Thornton, Peter

    2016-04-01

    Among the coupled thermal, hydrological, geochemical, and biological processes, redox processes play major roles in carbon and nutrient cycling and greenhouse gas (GHG) emission. Increasingly, mechanistic representation of redox processes is acknowledged as necessary for accurate prediction of GHG emission in the assessment of land-atmosphere interactions. Simple organic substrates, Fe reduction, microbial reactions, and the Windermere Humic Aqueous Model (WHAM) were added to a reaction network used in the land component of an Earth system model. In conjunction with this amended reaction network, various temperature response functions used in ecosystem models were assessed for their ability to describe experimental observations from incubation tests with arctic soils. Incorporation of Fe reduction reactions improves the prediction of the lag time between CO2 and CH4 accumulation. The inclusion of the WHAM model enables us to approximately simulate the initial pH drop due to organic acid accumulation and then a pH increase due to Fe reduction without parameter adjustment. The CLM4.0, CENTURY, and Ratkowsky temperature response functions better described the observations than the Q10 method, Arrhenius equation, and ROTH-C. As electron acceptors between O2 and CO2 (e.g., Fe(III), SO42‑) are often involved, our results support inclusion of these redox reactions for accurate prediction of CH4 production and consumption. Ongoing work includes improving the parameterization of organic matter decomposition to produce simple organic substrates, examining the influence of redox potential on methanogenesis under thermodynamically favorable conditions, and refining temperature response representation near the freezing point by additional model-experiment iterations. We will use the model to describe observed GHG emission at arctic and tropical sites.

  18. The effect of gold mining and processing on biogeochemical cycles in Muteh area, Isfahan province, Iran

    NASA Astrophysics Data System (ADS)

    Keshavarzi, B.; Moore, F.

    2009-04-01

    The environmental impacts of gold mining and processing on geochemical and biogeochemical cycles in Muteh region located northwest of Esfahan province and northeast of Golpaygan city is investigated. For this purpose systematic sampling was carried out in, rock, soil, water, and sediment environments along with plant, livestocks and human hair samples. Mineralogical and Petrological studies show that ore mineral such as pyrite and arsenopyrite along with fluorine-bearing minerals like tremolite, actinolite, biotite and muscovite occur in green schist, amphibolite and lucogranitic rocks in the area. The hydrochemistry of the analysed water samples indicate that As and F display the highest concentrations among the analysed elements. Indeed arsenic has the highest concentration in both topsoil and subsoil samples when compared with other potentially toxic elements. Anthropogenic activity also have it s greatest effect on increasing arsenic concentration among the analysed samples. The concentration of the majority of the analysed elements in the shoots and leaves of two local plants of the region i.e Artemesia and Penagum is higher than their concentration in the roots. Generally speaking, Artemesia has a greater tendency for bioaccumulating heavy metals. The results of cyanide analysis in soil samples show that cyanide concentration in the soils near the newly built tailing dam is much higher than that in the vicinity of the old tailing dam. The high concentration of fluorine in the drinking water of the Muteh village is the main reason of the observed dental fluorosis symptoms seen in the inhabitants. One of the two drinking water wells which is located near the metamorphic complex and supplies part of the tap water in the village, probably has the greatest impact in this regard. A decreasing trend in fluorine concentration is illustrated with increasing distance from the metamorphic complex. Measurements of As concentration in human hair specimens indicate that As

  19. [Removal of CO2 from simulated flue gas of power plants by membrane-based gas absorption processes].

    PubMed

    Yang, Ming-Fen; Fang, Meng-Xiang; Zhang, Wei-Feng; Wang, Shu-Yuan; Xu, Zhi-Kang; Luo, Zhong-Yang; Cen, Ke-Fa

    2005-07-01

    Three typical absorbents such as aqueous of aminoacetic acid potassium (AAAP), monoethanolamine (MEA) and methyldiethanolamine(MDEA) are selected to investigate the performance of CO2 separation from flue gas via membrane contactors made of hydrophobic hollow fiber polypropylene porous membrane. Impacts of absorbents, concentrations and flow rates of feeding gas and absorbent solution, cyclic loading of CO2 on the removal rate and the mass transfer velocity of CO2 are discussed. The results demonstrate that the mass transfer velocity was 7.1 mol x (m2 x s)(-1) for 1 mol x L(-1) MEA with flow rate of 0.1 m x s(-1) and flue gas with that of 0.211 m x s(-1). For 1 mol L(-1) AAAP with flow rate of 0.05 m x s(-1) and flue gas of 0.211 m x s(-1), CO2 removal rate (eta) was 93.2 % and eta was 98% for 4 mol x L(-1) AAAP under the same conditions. AAAP being absorbent, eta was higher than 90% in a wider range of concentrations of CO2. It indicates that membrane-based absorption process is a widely-applied and promising way of CO2 removal from flue gas of power plants, which not only appropriates for CO2 removal of flue gas of widely-used PF and NGCC, but also for that of flue gas of IGCC can be utilized widely in future. PMID:16212162

  20. Decomposition Process of Alane and Gallane Compounds in Metal-Organic Chemical Vapor Deposition Studied by Surface Photo-Absorption

    NASA Astrophysics Data System (ADS)

    Yamauchi, Yoshiharu; Kobayashi, Naoki

    1992-09-01

    We used surface photo-absorption (SPA) to study trimethylamine alane (TMAA) and dimethylamine gallane (DMAG) decomposition processes on a substrate surface in metal-organic chemical vapor deposition. The decomposition onset temperatures of these group III hydride sources correspond to the substrate temperature at which the SPA reflectivity starts to increase during the supply of the group III source onto a group V stabilized surface. It was found that TMAA and DMAG start to decompose at about 150°C on an As-stabilized surface, which is much lower than the decomposition onsets of trialkyl Al and Ga compounds. Low temperature photoluminescence spectra exhibit dominant excitionic emissions for GaAs layers grown by DMAG at substrate temperatures above 400°C, indicating that carbon incorporation and the crystal quality deterioration due to incomplete decomposition on surface is much suppressed by using DMAG. A comparison of AlGaAs photoluminescence between layers by TMAA/triethylgallium and triethylaluminum/triethylgallium shows that the band-to-carbon acceptor transition is greatly reduced by using TMAA. TMAA and DMAG were verified to be promising group III sources for low-temperature and high-purity growth with low-carbon incorporation.

  1. Processes, dynamics and modelling of radiocaesium cycling in a chronosequence of Chernobyl-contaminated Scots pine (Pinus sylvestris L.) plantations.

    PubMed

    Goor, François; Thiry, Yves

    2004-06-01

    In a large forested area affected by the Chernobyl radioactive fallout, especially in CIS, the lasting recycling of radiocaesium (137Cs) by the trees is a source of long-term contamination of woody products. The quantitative description of the 137Cs dynamics in contaminated forest is a prerequisite to predictive modelling and further management of such territories. Three even-aged mono-specific Scots pine stands (17, 37 and 57 years old) were selected in a contaminated woodland in southeastern Belarus to constitute an adequate chronosequence. We determined the potassium and radiocaesium annual fluxes involved in the biological cycling in each stand using a well-documented calculation methodology. Qualitatively, 137Cs was shown to be rapidly recycled in trees through the same pathways as K and to redistribute similarly between the tree components. Compared to K, a higher fraction of 137Cs, corresponding to about the half of the annual uptake, is immobilised in perennial organs. With tree development, trunk wood and bark become prevailing sinks for 137Cs since they represent an increasing pool of biomass. In the pine chronosequence, the current root absorption, respectively, mobilizes 0.53, 0.32 and 0.31% year(-1) of the total 137Cs pool in soil. Variations in the 137Cs uptake do not reflect differences in the 137Cs balance between stands. In the two older stands, 51 and 71% of the current tree contamination are related to earlier accumulation subsequent to the initial fallout interception and recycling. The soil is the dominant source of long-term tree contamination. A simple modelling based on the measured 137Cs fluxes indicates that, for young stands, radioactive decay-corrected contamination would stabilize after reaching a maximum of 25 years after the 137Cs deposition. Stemwood presents a maximum of 15 years after the deposition and decrease afterwards mainly through radioactive decay. In the older stands, the decontamination is constant without local maximum

  2. Solar cycles or random processes? Evaluating solar variability in Holocene climate records.

    PubMed

    Turner, T Edward; Swindles, Graeme T; Charman, Dan J; Langdon, Peter G; Morris, Paul J; Booth, Robert K; Parry, Lauren E; Nichols, Jonathan E

    2016-01-01

    Many studies have reported evidence for solar-forcing of Holocene climate change across a range of archives. These studies have compared proxy-climate data with records of solar variability (e.g. (14)C or (10)Be), or have used time series analysis to test for the presence of solar-type cycles. This has led to some climate sceptics misrepresenting this literature to argue strongly that solar variability drove the rapid global temperature increase of the twentieth century. As proxy records underpin our understanding of the long-term processes governing climate, they need to be evaluated thoroughly. The peatland archive has become a prominent line of evidence for solar forcing of climate. Here we examine high-resolution peatland proxy climate data to determine whether solar signals are present. We find a wide range of significant periodicities similar to those in records of solar variability: periods between 40-100 years, and 120-140 years are particularly common. However, periodicities similar to those in the data are commonly found in random-walk simulations. Our results demonstrate that solar-type signals can be the product of random variations alone, and that a more critical approach is required for their robust interpretation. PMID:27045989

  3. Transition from intelligence cycle to intelligence process: the network-centric intelligence in narrow seas

    NASA Astrophysics Data System (ADS)

    Büker, Engin

    2015-05-01

    The defence technologies which have been developing and changing rapidly, today make it difficult to be able to foresee the next environment and spectrum of warfare. When said change and development is looked in specific to the naval operations, it can be said that the possible battlefield and scenarios to be developed in the near and middle terms (5-20 years) are more clarified with compare to other force components. Network Centric Naval Warfare Concept that was developed for the floating, diving and flying fleet platforms which serves away from its own mainland for miles, will keep its significance in the future. Accordingly, Network Centric Intelligence structure completely integrating with the command and control systems will have relatively more importance. This study will firstly try to figure out the transition from the traditional intelligence cycle that is still used in conventional war to Network Centric Intelligence Production Process. In the last part, the use of this new approach on the base of UAV that is alternative to satellite based command control and data transfer systems in the joint operations in narrow seas will be examined, a model suggestion for the use of operative and strategic UAVs which are assured within the scope of the NATO AGS2 for this aim will be brought.

  4. Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor

    SciTech Connect

    Liu, Yu-Hsin; Yan, Lujiang; Zhang, Alex Ce; Hall, David; Niaz, Iftikhar Ahmad; Zhou, Yuchun; Sham, L. J.; Lo, Yu-Hwa

    2015-08-03

    Signal amplification, performed by transistor amplifiers with its merit rated by the efficiency and noise characteristics, is ubiquitous in all electronic systems. Because of transistor thermal noise, an intrinsic signal amplification mechanism, impact ionization was sought after to complement the limits of transistor amplifiers. However, due to the high operation voltage (30-200 V typically), low power efficiency, limited scalability, and, above all, rapidly increasing excess noise with amplification factor, impact ionization has been out of favor for most electronic systems except for a few applications such as avalanche photodetectors and single-photon Geiger detectors. Here, we report an internal signal amplification mechanism based on the principle of the phonon-assisted cycling excitation process (CEP). Si devices using this concept show ultrahigh gain, low operation voltage, CMOS compatibility, and, above all, quantum limit noise performance that is 30 times lower than devices using impact ionization. Established on a unique physical effect of attractive properties, CEP-based devices can potentially revolutionize the fields of semiconductor electronics.

  5. Cycling excitation process: An ultra efficient and quiet signal amplification mechanism in semiconductor

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Hsin; Yan, Lujiang; Zhang, Alex Ce; Hall, David; Niaz, Iftikhar Ahmad; Zhou, Yuchun; Sham, L. J.; Lo, Yu-Hwa

    2015-08-01

    Signal amplification, performed by transistor amplifiers with its merit rated by the efficiency and noise characteristics, is ubiquitous in all electronic systems. Because of transistor thermal noise, an intrinsic signal amplification mechanism, impact ionization was sought after to complement the limits of transistor amplifiers. However, due to the high operation voltage (30-200 V typically), low power efficiency, limited scalability, and, above all, rapidly increasing excess noise with amplification factor, impact ionization has been out of favor for most electronic systems except for a few applications such as avalanche photodetectors and single-photon Geiger detectors. Here, we report an internal signal amplification mechanism based on the principle of the phonon-assisted cycling excitation process (CEP). Si devices using this concept show ultrahigh gain, low operation voltage, CMOS compatibility, and, above all, quantum limit noise performance that is 30 times lower than devices using impact ionization. Established on a unique physical effect of attractive properties, CEP-based devices can potentially revolutionize the fields of semiconductor electronics.

  6. Comparison of Overall Resource Consumption of Biosolids Management System Processes Using Exergetic Life Cycle Assessment.

    PubMed

    Alanya, Sevda; Dewulf, Jo; Duran, Metin

    2015-08-18

    This study focused on the evaluation of biosolids management systems (BMS) from a natural resource consumption point of view. Additionally, the environmental impact of the facilities was benchmarked using Life Cycle Assessment (LCA) to provide a comprehensive assessment. This is the first study to apply a Cumulative Exergy Extraction from the Natural Environment (CEENE) method for an in-depth resource use assessment of BMS where two full-scale BMS and seven system variations were analyzed. CEENE allows better system evaluation and understanding of how much benefit is achievable from the products generated by BMS, which have valorization potential. LCA results showed that environmental burden is mostly from the intense electricity consumption. The CEENE analysis further revealed that the environmental burden is due to the high consumption of fossil and nuclear-based natural resources. Using Cumulative Degree of Perfection, higher resource-use efficiency, 53%, was observed in the PTA-2 where alkaline stabilization rather than anaerobic digestion is employed. However, an anaerobic digestion process is favorable over alkaline stabilization, with 35% lower overall natural resource use. The most significant reduction of the resource footprint occurred when the output biogas was valorized in a combined heat and power system. PMID:26218291

  7. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles.

    PubMed

    Finzi, Adrien C; Abramoff, Rose Z; Spiller, Kimberly S; Brzostek, Edward R; Darby, Bridget A; Kramer, Mark A; Phillips, Richard P

    2015-05-01

    While there is an emerging view that roots and their associated microbes actively alter resource availability and soil organic matter (SOM) decomposition, the ecosystem consequences of such rhizosphere effects have rarely been quantified. Using a meta-analysis, we show that multiple indices of microbially mediated C and nitrogen (N) cycling, including SOM decomposition, are significantly enhanced in the rhizospheres of diverse vegetation types. Then, using a numerical model that combines rhizosphere effect sizes with fine root morphology and depth distributions, we show that root-accelerated mineralization and priming can account for up to one-third of the total C and N mineralized in temperate forest soils. Finally, using a stoichiometrically constrained microbial decomposition model, we show that these effects can be induced by relatively modest fluxes of root-derived C, on the order of 4% and 6% of gross and net primary production, respectively. Collectively, our results indicate that rhizosphere processes are a widespread, quantitatively important driver of SOM decomposition and nutrient release at the ecosystem scale, with potential consequences for global C stocks and vegetation feedbacks to climate. PMID:25421798

  8. A Mechanistic Treatment of the Dominant Soil Nitrogen Cycling Processes: Model Development, Testing, and Application

    SciTech Connect

    Riley, William; Maggi, F.; Gu, C.; Riley, W.J.; Hornberger, G.M.; Venterea, R.T.; Xu, T.; Spycher, N.; Steefel, C.; Miller, N.L.; Oldenburg, C.M.

    2008-05-01

    The development and initial application of a mechanistic model (TOUGHREACT-N) designed to characterize soil nitrogen (N) cycling and losses are described. The model couples advective and diffusive nutrient transport, multiple microbial biomass dynamics, and equilibrium and kinetic chemical reactions. TOUGHREACT-N was calibrated and tested against field measurements to assess pathways of N loss as either gas emission or solute leachate following fertilization and irrigation in a Central Valley, California, agricultural field as functions of fertilizer application rate and depth, and irrigation water volume. Our results, relative to the period before plants emerge, show that an increase in fertilizer rate produced a nonlinear response in terms of N losses. An increase of irrigation volume produced NO{sub 2}{sup -} and NO{sub 3}{sup -} leaching, whereas an increase in fertilization depth mainly increased leaching of all N solutes. In addition, nitrifying bacteria largely increased in mass with increasing fertilizer rate. Increases in water application caused nitrifiers and denitrifiers to decrease and increase their mass, respectively, while nitrifiers and denitrifiers reversed their spatial stratification when fertilizer was applied below 15 cm depth. Coupling aqueous advection and diffusion, and gaseous diffusion with biological processes, closely captured actual conditions and, in the system explored here, significantly clarified interpretation of field measurements.

  9. Solar cycles or random processes? Evaluating solar variability in Holocene climate records

    PubMed Central

    Turner, T. Edward; Swindles, Graeme T.; Charman, Dan J.; Langdon, Peter G.; Morris, Paul J.; Booth, Robert K.; Parry, Lauren E.; Nichols, Jonathan E.

    2016-01-01

    Many studies have reported evidence for solar-forcing of Holocene climate change across a range of archives. These studies have compared proxy-climate data with records of solar variability (e.g. 14C or 10Be), or have used time series analysis to test for the presence of solar-type cycles. This has led to some climate sceptics misrepresenting this literature to argue strongly that solar variability drove the rapid global temperature increase of the twentieth century. As proxy records underpin our understanding of the long-term processes governing climate, they need to be evaluated thoroughly. The peatland archive has become a prominent line of evidence for solar forcing of climate. Here we examine high-resolution peatland proxy climate data to determine whether solar signals are present. We find a wide range of significant periodicities similar to those in records of solar variability: periods between 40–100 years, and 120–140 years are particularly common. However, periodicities similar to those in the data are commonly found in random-walk simulations. Our results demonstrate that solar-type signals can be the product of random variations alone, and that a more critical approach is required for their robust interpretation. PMID:27045989

  10. A mechanistic treatment of the dominant soil nitrogen cycling processes: Model development, testing, and application

    NASA Astrophysics Data System (ADS)

    Maggi, F.; Gu, C.; Riley, W. J.; Hornberger, G. M.; Venterea, R. T.; Xu, T.; Spycher, N.; Steefel, C.; Miller, N. L.; Oldenburg, C. M.

    2008-06-01

    The development and initial application of a mechanistic model (TOUGHREACT-N) designed to characterize soil nitrogen (N) cycling and losses are described. The model couples advective and diffusive nutrient transport, multiple microbial biomass dynamics, and equilibrium and kinetic chemical reactions. TOUGHREACT-N was calibrated and tested against field measurements to assess pathways of N loss as either gas emission or solute leachate following fertilization and irrigation in a Central Valley, California, agricultural field as functions of fertilizer application rate and depth, and irrigation water volume. Our results, relative to the period before plants emerge, show that an increase in fertilizer rate produced a nonlinear response in terms of N losses. An increase of irrigation volume produced NO2- and NO3- leaching, whereas an increase in fertilization depth mainly increased leaching of all N solutes. In addition, nitrifying bacteria largely increased in mass with increasing fertilizer rate. Increases in water application caused nitrifiers and denitrifiers to decrease and increase their mass, respectively, while nitrifiers and denitrifiers reversed their spatial stratification when fertilizer was applied below 15 cm depth. Coupling aqueous advection and diffusion, and gaseous diffusion with biological processes, closely captured actual conditions and, in the system explored here, significantly clarified interpretation of field measurements.

  11. Trickling filter for urea and bio-waste processing - dynamic modelling of nitrogen cycle

    NASA Astrophysics Data System (ADS)

    Zhukov, Anton; Hauslage, Jens; Tertilt, Gerin; Bornemann, Gerhild

    Mankind’s exploration of the solar system requires reliable Life Support Systems (LSS) enabling long duration manned space missions. In the absence of frequent resupply missions, closure of the LSS will play a very important role and its maximisation will to a large extent drive the selection of appropriate LSS architectures. One of the significant issues on the way to full closure is to effectively utilise biological wastes such as urine, inedible biomass etc. A very promising concept of biological waste reprocessing is the use of trickling filters which are currently being developed and investigated by DLR, Cologne, Germany. The concept is called Combined Regenerative Organic-Food Production (C.R.O.P.) and is based on the microbiological treatment of biological wastes and reprocessing them into aqueous fertilizer which can directly be used in a greenhouse for food production. Numerous experiments have been and are being conducted by DLR in order to fully understand and characterize the process. The human space exploration group of the Technical University of Munich (TUM) in cooperation with DLR has started to establish a dynamic model of the trickling filter system to be able to assess its performance on the LSS level. In the first development stage the model covers the nitrogen cycle enabling to simulate urine processing. This paper describes briefly the C.R.O.P. concept and the status of the trickling filter model development. The model is based on enzyme-catalyzed reaction kinetics for the fundamental microbiological reaction chain and is created in MATLAB. Verification and correlation of the developed model with experiment results has been performed. Several predictive studies for batch sequencing behavior have been performed, demonstrating a good capability of C.R.O.P. concept to be used in closed LSS. Achieved results are critically discussed and way forward is presented.

  12. Cell output, cell cycle duration and neuronal specification: a model of integrated mechanisms of the neocortical proliferative process

    NASA Technical Reports Server (NTRS)

    Caviness, V. S. Jr; Goto, T.; Tarui, T.; Takahashi, T.; Bhide, P. G.; Nowakowski, R. S.

    2003-01-01

    The neurons of the neocortex are generated over a 6 day neuronogenetic interval that comprises 11 cell cycles. During these 11 cell cycles, the length of cell cycle increases and the proportion of cells that exits (Q) versus re-enters (P) the cell cycle changes systematically. At the same time, the fate of the neurons produced at each of the 11 cell cycles appears to be specified at least in terms of their laminar destination. As a first step towards determining the causal interrelationships of the proliferative process with the process of laminar specification, we present a two-pronged approach. This consists of (i) a mathematical model that integrates the output of the proliferative process with the laminar fate of the output and predicts the effects of induced changes in Q and P during the neuronogenetic interval on the developing and mature cortex and (ii) an experimental system that allows the manipulation of Q and P in vivo. Here we show that the predictions of the model and the results of the experiments agree. The results indicate that events affecting the output of the proliferative population affect both the number of neurons produced and their specification with regard to their laminar fate.

  13. Renovation of CPF (Chemical Processing Facility) for Development of Advanced Fast Reactor Fuel Cycle System

    SciTech Connect

    Shinichi Aose; Takafumi Kitajima; Kouji Ogasawara; Kazunori Nomura; Shigehiko Miyachi; Yoshiaki Ichige; Tadahiro Shinozaki; Shinichi Ohuchi

    2008-01-15

    CPF (Chemical Processing Facility) was constructed at Nuclear Fuel Cycle Engineering Laboratories of JAEA (Japan Atomic Energy Agency) in 1980 as a basic research field where spent fuel pins from fast reactor (FR) and high level liquid waste can be dealt with. The renovation consists of remodeling of the CA-3 cell and the laboratory A, installation of globe boxes, hoods and analytical equipments to the laboratory C and the analytical laboratory. Also maintenance equipments in the CA-5 cell which had been out of order were repaired. The CA-3 cell is the main cell in which important equipments such as a dissolver, a clarifier and extractors are installed for carrying out the hot test using the irradiated FR fuel. Since the CPF had specialized originally in the research function for the Purex process, it was desired to execute the research and development of such new, various reprocessing processes. Formerly, equipments were arranged in wide space and connected with not only each other but also with utility supply system mainly by fixed stainless steel pipes. It caused shortage of operation space in flexibility for basic experimental study. Old equipments in the CA-3 cell including vessels and pipes were removed after successful decontamination, and new equipments were installed conformably to the new design. For the purpose of easy installation and rearranging the experimental equipments, equipments are basically connected by flexible pipes. Since dissolver is able to be easily replaced, various dissolution experiments is conducted. Insoluble residue generated by dissolution of spent fuel is clarified by centrifugal. This small apparatus is effective to space-saving. Mini mixer settlers or centrifugal contactors are put on to the prescribed limited space in front of the backside wall. Fresh reagents such as solvent, scrubbing and stripping solution are continuously fed from the laboratory A to the extractor by the reagent supply system with semi-automatic observation

  14. Nebular UV Absorption Lines in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Dinerstein, Harriet

    We propose to continue our Cycle 1 program of studying the Lyman and Werner bands of H_2, seen in absorption against the UV continua of planetary nebula central stars, which arise within neutral-molecular envelopes surrounding the ionized gas. These are the pump lines for a fluorescent cascade of near-infrared emission lines which are observed in many planetary nebulae. By observing the UV lines we can probe the chemical and thermal structure of the envelopes, as well as measure molecular column densities and clarify the excitation processes for the infrared lines. In Cycle 1 we were granted time for three targets, one of which was successfully observed shortly before submission of this proposal. Although the data were not yet available for examination, similar target observed by the project team revealed a rich set of H_2 circumstellar absorption features, demonstrating the feasibility of our program. FUSE spectra also include absorption features from atomic species such as O I and C II, which give rise to important far-infrared fine-structure cooling lines that likewise have been observed from planetary nebulae. In Cycle 2, we add as a secondary goal a search for nebular components of the O VI 032, 1038 AA absorption lines, which trace the presence of hot shocked gas, in nebulae with anomalously strong optical recombination lines of ions of oxygen and nitrogen. This will test a plausible hypothesis for the origin of this anomaly.

  15. The development of a new technical platform to measure soil organic nitrogen cycling processes by microbes

    NASA Astrophysics Data System (ADS)

    Hu, Yuntao; Richter, Andreas; Wanek, Wolfgang

    2016-04-01

    Soil organic matter (SOM) decomposition is one of the most important processes of the global nitrogen cycle, having strong implications on soil N availability, terrestrial carbon cycling and soil carbon sequestration. During SOM decomposition low-molecular weight organic nitrogen (LMWON) is released which can be taken up by microbes (and plants). The breakdown of high-molecular weight organic nitrogen (HMWON, e.g. proteins, peptidoglycan, chitin, nucleic acids) represents the bottleneck of soil HMWON decomposition and is performed by extracellular enzymes released mainly by soil microorganisms. Despite that, the current understanding of the controls of these processes is incomplete. The only way to measure gross decomposition rates of these polymers is to use isotope pool dilution (IPD) techniques. In IPD approaches the product pool is isotopically enriched (by e.g. 15N) and the isotope dilution of this pool is measured over time. We have pioneered an IPD for protein and cellulose depolymerization, but IPD approaches for other polymers, specifically for important microbial necromass components such as chitin (fungi) and peptidoglycan (bacteria), or nucleic acids have not yet been developed. Here we present a workflow based on a universally applicable technical platform that allows to estimate the gross depolymerization rate of SOM (HMWON) at the molecular level, using ultra high performance liquid chromatography/high resolution Orbitrap mass spectrometry (UPLC/HRMS) combined with IPD techniques. The necessary isotopically labeled organic polymers (chitin, peptidoglycan and others) are extracted from laboratory bacterial and fungal cultures grown in fully isotopically labeled nutrient media (15N, 13C or both). A purification scheme for the different polymers is currently established. Labeled potential decomposition products (e.g. amino sugars and muropeptides from peptidoglycan, amino sugars and chitooligosaccharides from chitin, nucleotides and nucleosides from

  16. 77 FR 50724 - Developing Software Life Cycle Processes for Digital Computer Software Used in Safety Systems of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing for public comment draft regulatory guide (DG), DG-1210, ``Developing Software Life Cycle Processes for Digital Computer Software used in Safety Systems of Nuclear Power Plants.'' The DG-1210 is proposed Revision 1 of RG 1.173, dated September 1997. This revision endorses, with clarifications, the enhanced consensus......

  17. How does complex terrain influence responses of carbon and water cycle processes to climate variability and climate change?

    EPA Science Inventory

    We are pursuing the ambitious goal of understanding how complex terrain influences the responses of carbon and water cycle processes to climate variability and climate change. Our studies take place in H.J. Andrews Experimental Forest, an LTER (Long Term Ecological Research) site...

  18. The environmental footprint of a membrane bioreactor treatment process through Life Cycle Analysis.

    PubMed

    Ioannou-Ttofa, L; Foteinis, S; Chatzisymeon, E; Fatta-Kassinos, D

    2016-10-15

    This study includes an environmental analysis of a membrane bioreactor (MBR), the objective being to quantitatively define the inventory of the resources consumed and estimate the emissions produced during its construction, operation and end-of-life deconstruction. The environmental analysis was done by the life cycle assessment (LCA) methodology, in order to establish with a broad perspective and in a rigorous and objective way the environmental footprint and the main environmental hotspots of the examined technology. Raw materials, equipment, transportation, energy use, as well as air- and waterborne emissions were quantified using as a functional unit, 1m(3) of urban wastewater. SimaPro 8.0.3.14 was used as the LCA analysis tool, and two impact assessment methods, i.e. IPCC 2013 version 1.00 and ReCiPe version 1.10, were employed. The main environmental hotspots of the MBR pilot unit were identified to be the following: (i) the energy demand, which is by far the most crucial parameter that affects the sustainability of the whole process, and (ii) the material of the membrane units. Overall, the MBR technology was found to be a sustainable solution for urban wastewater treatment, with the construction phase having a minimal environmental impact, compared to the operational phase. Moreover, several alternative scenarios and areas of potential improvement, such as the diversification of the electricity mix and the material of the membrane units, were examined, in order to minimize as much as possible the overall environmental footprint of this MBR system. It was shown that the energy mix can significantly affect the overall sustainability of the MBR pilot unit (i.e. up to 95% reduction of the total greenhouse gas emissions was achieved with the use of an environmentally friendly energy mix), and the contribution of the construction and operational phase to the overall environmental footprint of the system. PMID:27300564

  19. ENVIRONMENTAL COMPARISON METRICS FOR LIFE CYCLE IMPACT ASSESSMENT AND PROCESS DESIGN

    EPA Science Inventory

    Metrics (potentials, potency factors, equivalency factors or characterization factors) are available to support the environmental comparison of alternatives in application domains like proces design and product life-cycle assessment (LCA). These metrics typically provide relative...

  20. Effect of reprocessing cycles on the degradation of polypropylene copolymer filled with talc or montmorillonite during injection molding process

    SciTech Connect

    Demori, R.; Mauler, R. S.; Ashton, E.; Weschenfelder, V. F.; Cândido, L. H. A.; Kindlein, W.

    2015-05-22

    Mechanical recycling of polymeric materials is a favorable technique resulting in economic and environmental benefits, especially in the case of polymers with a high production volume as the polypropylene copolymer (PP). However, recycling by reprocessing techniques can lead to thermal, mechanical or thermo-oxidative degradation that can affect the structure of the polymer and subsequently the material properties. PP filled with montmorillonite (MMT) or talc are widely produced and studied, however, its degradation reactions by reprocessing cycles are poorly studied so far. In this study, the effects of reprocessing cycles in the structure and in the properties of the PP/MMT and PP/Talc were evaluated. The samples were mixed with 5% talc or MMT Cloisite C15A in a twin-screw extrusion. After extrusion, this filled material was submitted to five reprocessing cycles through an injection molding process. In order to evaluate the changes induced by reprocessing techniques, the samples were characterized by DSC, FT-IR, Izod impact and tensile strength tests. The study showed that Young modulus, elongation at brake and Izod impact were not affected by reprocessing cycles, except when using talc. In this case, the elongation at brake reduced until the fourth cycle, showing rigidity increase. The DSC results showed that melting and crystallization temperature were not affected. A comparison of FT-IR spectra of the reprocessed indicated that in both samples, between the first and the fifth cycle, no noticeable change has occurred. Thus, there is no evidence of thermo oxidative degradation. In general, these results suggest that PP reprocessing cycles using MMT or talc does not change the material properties until the fifth cycle.

  1. Design studies of the sulfur trioxide decomposition reactor for the sulfur-cycle hydrogen-production process

    SciTech Connect

    Lin, S.S.; Flaherty, R.

    1982-01-01

    The Sulfur Cycle is a two-step hybrid electrochemical/thermochemical process for decomposing water into hydrogen and oxygen. Integration of a complex chemical process with a solar heat source poses unique challenges with regard to process and equipment design. The conceptual design for a developmental test unit demonstrating the sulfur cycle was prepared in 1980. The test unit design is compatible with the power level of a large parabolic solar collector. One of the key components in the process is the sulfur trioxide decomposition reactor. The design studies of the sulfur trioxide decomposition reactor encompassing the thermodynamics, reaction kinetics, heat transfer, and mechanical considerations, are described along with a brief description of the test unit.

  2. Lotus leaf extract and L-carnitine influence different processes during the adipocyte life cycle

    PubMed Central

    2010-01-01

    by a decrease in the ADD1/SREBP-1c signal. Importantly, our results demonstrated that a combination of lotus leaf extract solution and L-carnitine reduced triglyceride accumulation to a greater extent compared to incubation with either substance alone. Conclusions Overall, our data demonstrate that a combination of lotus leaf extract and L-carnitine reduced triglyceride accumulation in human (pre)adipocytes by affecting different processes during the adipocyte life cycle. For this reason, this combination might represent a treatment option for obesity-related diseases. PMID:20687953

  3. Nitrogen cycling processes and microbial community composition in bed sediments in the Yukon River at Pilot Station

    NASA Astrophysics Data System (ADS)

    Repert, Deborah A.; Underwood, Jennifer C.; Smith, Richard L.; Song, Bongkeun

    2014-12-01

    Information on the contribution of nitrogen (N)-cycling processes in bed sediments to river nutrient fluxes in large northern latitude river systems is limited. This study examined the relationship between N-cycling processes in bed sediments and N speciation and loading in the Yukon River near its mouth at the Bering Sea. We conducted laboratory bioassays to measure N-cycling processes in sediment samples collected over distinct water cycle seasons. In conjunction, the microbial community composition in the bed sediments using genes involved in N-cycling (narG, napA, nosZ, and amoA) and 16S rRNA gene pyrosequences was examined. Temporal variation was observed in net N mineralization, nitrate uptake, and denitrification rate potentials and correlated strongly with sediment carbon (C) and extractable N content and microbial community composition rather than with river water nutrient concentrations. The C content of the bed sediment was notably impacted by the spring flood, ranging from 1.1% in the midst of an ice-jam to 0.1% immediately after ice-out, suggesting a buildup of organic material (OM) prior to scouring of the bed sediments during ice break up. The dominant members of the microbial community that explained differences in N-processing rates belonged to the genera Crenothrix, Flavobacterium, and the family of Comamonadaceae. Our results suggest that biogeochemical processing rates in the bed sediments appear to be more coupled to hydrology, nutrient availability in the sediments, and microbial community composition rather than river nutrient concentrations at Pilot Station.

  4. Nitrogen cycling processes and microbial community composition in bed sediments in the Yukon River at Pilot Station

    USGS Publications Warehouse

    Repert, Deborah A.; Underwood, Jennifer C.; Smith, Richard L.; Song, Bongkeun

    2014-01-01

    Information on the contribution of nitrogen (N)-cycling processes in bed sediments to river nutrient fluxes in large northern latitude river systems is limited. This study examined the relationship between N-cycling processes in bed sediments and N speciation and loading in the Yukon River near its mouth at the Bering Sea. We conducted laboratory bioassays to measure N-cycling processes in sediment samples collected over distinct water cycle seasons. In conjunction, the microbial community composition in the bed sediments using genes involved in N-cycling (narG, napA, nosZ, and amoA) and 16S rRNA gene pyrosequences was examined. Temporal variation was observed in net N mineralization, nitrate uptake, and denitrification rate potentials and correlated strongly with sediment carbon (C) and extractable N content and microbial community composition rather than with river water nutrient concentrations. The C content of the bed sediment was notably impacted by the spring flood, ranging from 1.1% in the midst of an ice-jam to 0.1% immediately after ice-out, suggesting a buildup of organic material (OM) prior to scouring of the bed sediments during ice break up. The dominant members of the microbial community that explained differences in N-processing rates belonged to the genera Crenothrix,Flavobacterium, and the family of Comamonadaceae. Our results suggest that biogeochemical processing rates in the bed sediments appear to be more coupled to hydrology, nutrient availability in the sediments, and microbial community composition rather than river nutrient concentrations at Pilot Station.

  5. [Discussion on Quality Evaluation Method of Medical Device During Life-Cycle in Operation Based on the Analytic Hierarchy Process].

    PubMed

    Zheng, Caixian; Zheng, Kun; Shen, Yunming; Wu, Yunyun

    2016-01-01

    The content related to the quality during life-cycle in operation of medical device includes daily use, repair volume, preventive maintenance, quality control and adverse event monitoring. In view of this, the article aims at discussion on the quality evaluation method of medical devices during their life cycle in operation based on the Analytic Hierarchy Process (AHP). The presented method is proved to be effective by evaluating patient monitors as example. The method presented in can promote and guide the device quality control work, and it can provide valuable inputs to decisions about purchase of new device. PMID:27197489

  6. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  7. Tunable Signal Processing through a Kinase Control Cycle: the IKK Signaling Node

    PubMed Central

    Behar, Marcelo; Hoffmann, Alexander

    2013-01-01

    The transcription factor NFκB, a key component of the immune system, shows intricate stimulus-specific temporal dynamics. Those dynamics are thought to play a role in controlling the physiological response to cytokines and pathogens. Biochemical evidence suggests that the NFκB inducing kinase, IKK, a signaling hub onto which many signaling pathways converge, is regulated via a regulatory cycle comprising a poised, an active, and an inactive state. We hypothesize that it operates as a modulator of signal dynamics, actively reshaping the signals generated at the receptor proximal level. Here we show that a regulatory cycle can function in at least three dynamical regimes, tunable by regulating a single kinetic parameter. In particular, the simplest three-state regulatory cycle can generate signals with two well-defined phases, each with distinct coding capabilities in terms of the information they can carry about the stimulus. We also demonstrate that such a kinase cycle can function as a signal categorizer classifying diverse incoming signals into outputs with a limited set of temporal activity profiles. Finally, we discuss the extension of the results to other regulatory motifs that could be understood in terms of the regimes of the three-state cycle. PMID:23823243

  8. Corrosion/Fragmentation of Layered Composite Cathode and Related Capacity/Voltage Fading during Cycling Process

    SciTech Connect

    Zheng, Jianming; Gu, Meng; Xiao, Jie; Zuo, Pengjian; Wang, Chong M.; Zhang, Jiguang

    2013-06-26

    Pristine and cycled layered structure cathode of Li[Li0.2Ni0.2M0.6]O2 samples are characterized by aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy. These analyses provide new insights on capacity/voltage fading mechanism of Li[Li0.2Ni0.2M0.6]O2. Sponge-like structure and fragment pieces were found on the surface of cathode after cycling. Mn2+ species and reduced Li content in the fragments caused significant capacity loss. These results also reveal the functional mechanism of surface coatings, e.g. AlF3, which can protect the electrode from etching by acidic species in the electrolyte, suppress cathode degradation and improve long-term cycling stability.

  9. Improving the Current Understanding of the Evolution and Vertical Processes of Tropospheric Ozone Using a Ground Based Differential Absorption Lidar

    NASA Astrophysics Data System (ADS)

    Sullivan, John T.

    Although characterizing the interactions of ozone throughout the entire troposphere are important for health and climate processes, there is a lack of routine measurements of vertical profiles within the United States. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) has been developed and validated within the Tropospheric Ozone Lidar Network (TOLNet). Two scientifically interesting ozone episodes are presented that were observed during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER AQ) campaign at Ft. Collins, Colorado. The GSFC TROPOZ DIAL measurements are analyzed alongside aircraft spirals over the lidar site, co-located ozonesonde launches, aerosol lidar profiles and other TOLNet ozone lidar profiles. In both case studies, back trajectories, meteorological maps, and comparisons to air quality models are presented to better explain the sources and evolution of ozone. The first case study, occurring between 22-23 July 2014, indicates enhanced concentrations of ozone at Ft. Collins during nighttime hours, which was due to the complex recirculation of ozone within the foothills of the Rocky Mountain region. Although quantifying the ozone increase aloft during recirculation episodes has been historically difficult, results indicate that an increase of 20 - 30 ppbv of ozone at the Ft. Collins site has been attributed to this recirculation. The second case, occurring between Aug 4-8th 2014, characterizes a dynamical exchange of ozone between the stratosphere and the troposphere. This case, along with seasonal model parameters from previous years, is used to estimate

  10. Life cycle energy and greenhouse gas emissions for an ethanol production process based on blue-green algae.

    PubMed

    Luo, Dexin; Hu, Zushou; Choi, Dong Gu; Thomas, Valerie M; Realff, Matthew J; Chance, Ronald R

    2010-11-15

    Ethanol can be produced via an intracellular photosynthetic process in cyanobacteria (blue-green algae), excreted through the cell walls, collected from closed photobioreactors as a dilute ethanol-in-water solution, and purified to fuel grade ethanol. This sequence forms the basis for a biofuel production process that is currently being examined for its commercial potential. In this paper, we calculate the life cycle energy and greenhouse gas emissions for three different system scenarios for this proposed ethanol production process, using process simulations and thermodynamic calculations. The energy required for ethanol separation increases rapidly for low initial concentrations of ethanol, and, unlike other biofuel systems, there is little waste biomass available to provide process heat and electricity to offset those energy requirements. The ethanol purification process is a major consumer of energy and a significant contributor to the carbon footprint. With a lead scenario based on a natural-gas-fueled combined heat and power system to provide process electricity and extra heat and conservative assumptions around the ethanol separation process, the net life cycle energy consumption, excluding photosynthesis, ranges from 0.55 MJ/MJ(EtOH) down to 0.20 MJ/ MJ(EtOH), and the net life cycle greenhouse gas emissions range from 29.8 g CO₂e/MJ(EtOH) down to 12.3 g CO₂e/MJ(EtOH) for initial ethanol concentrations from 0.5 wt % to 5 wt %. In comparison to gasoline, these predicted values represent 67% and 87% reductions in the carbon footprint for this ethanol fuel on a energy equivalent basis. Energy consumption and greenhouse gas emissions can be further reduced via employment of higher efficiency heat exchangers in ethanol purification and/ or with use of solar thermal for some of the process heat. PMID:20968295

  11. Gasifier/combined-cycle plant minimizes environmental impacts. [California, coal water process

    SciTech Connect

    Not Available

    1985-04-01

    The successful operation of the Cool Water integrated gasification/ combined cycle power plant is reported. As the only coal-fired power station in California it has easily met the Federal new-source performance standards for emissions and the State's strict pollution-control laws. Details are given of plant performance and air-polluting emissions.

  12. A mechanistic treatment of the dominant soil nitrogen cycling processes: Model development, testing, and application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development and initial application of a mechanistic model (TOUGHREACT-N) designed to characterize soil nitrogen (N) cycling and losses are described. The model couples advective and diffusive nutrient transport, multiple microbial biomass dynamics, and equilibrium and kinetic chemical reactions...

  13. Is the Critical Review Process Keeping Pace with the Growing Number of Life Cycle Assessments?

    EPA Science Inventory

    Environmental managers and government policy makers are becoming increasingly aware of the need to follow the holistic approach of Life Cycle Assessment (LCA) to move us in the right strategic direction to best achieve environmental sustainability. Along with this increasing real...

  14. Teacher-directed versus learning cycles methods: Effects on science process skills mastery and teacher efficacy among elementary education students

    NASA Astrophysics Data System (ADS)

    Ewers, Timothy Gorman

    There were two primary purposes in this study. The first purpose was to compare the effectiveness of two teaching methods (teacher-directed instruction vs. learning cycles) for promoting mastery of the science process skills. The second purpose of this study was to examine the effects of the learning cycles experience on science teaching self-efficacy and outcome expectancy. The participants in this study were junior and senior level elementary education majors enrolled in a science methods class at the University of Idaho. Two sections of the semester-long course were used as the study cohorts. The treatment in this study was the approach used to teach the science process skills in the laboratory portion of the course. One cohort was taught using a teacher-directed approach. The other cohort was taught using a learning cycles approach. Pretreatment assessments revealed that the cohorts were similar in terms of mean logical thinking abilities, preference toward classroom environment, and beliefs in science teaching self-efficacy and outcome expectations. However, the two groups significantly differed initially with respect to student age and proficiency in science process skills. Post-assessments revealed significant gains in science skill proficiency and teacher efficacy within each cohort. Analysis of Covariance of the posttest scores, using the pretests as covariates, showed no significant differences between the cohorts indicating that the teaching methods were equivalent in producing gains in science process skill proficiency.

  15. An experimental set-up to apply polarization modulation to infrared reflection absorption spectroscopy for improved in situ studies of atmospheric corrosion processes

    SciTech Connect

    Wiesinger, R.; Schade, U.; Kleber, Ch.; Schreiner, M.

    2014-06-15

    A new set-up for improved monitoring of atmospheric corrosion processes in situ and in real-time is presented. To characterize chemical structures of thin films on metal surfaces surface sensitive analytical techniques are required. One possible technique is Infrared Reflection Absorption Spectroscopy (IRRAS) which has become an established method to investigate surface corrosion films of thicknesses less than 200 nm. However, there are limitations related to the sensitivity of these measurements, in case of investigating ultrathin films or absorption bands of interest, surface species are superimposed by atmospheric background absorption, which changes during in situ measurements in ambient atmospheres. These difficulties of in situ surface reflection measurements can be eliminated by availing the polarization selectivity of adsorbed surface species. At grazing angles of incidence the absorption of p-polarized infrared radiation by thin surface films on metals is enhanced, while the absorption of s-polarized light by this film is nearly zero. This different behavior of the polarization properties leads to strong selection rules at the surface and can therefore be used to identify molecules adsorbed on metal surfaces. Polarization Modulation (PM) of the infrared (IR) light takes advantage of this disparity of polarization on sample surfaces and in combination with IRRAS yielding a very sensitive and surface-selective method for obtaining IR spectra of ultra-thin films on metal surfaces. An already existing in situ IRRAS/Quartz Crystal Microbalance weathering cell was combined with PM and evaluated according to its applicability to study in situ atmospheric corrosion processes. First real-time measurements on silver samples exposed to different atmospheres were performed showing the advantage of PM-IRRAS compared to conventional IRRAS for such investigations.

  16. An experimental set-up to apply polarization modulation to infrared reflection absorption spectroscopy for improved in situ studies of atmospheric corrosion processes.

    PubMed

    Wiesinger, R; Schade, U; Kleber, Ch; Schreiner, M

    2014-06-01

    A new set-up for improved monitoring of atmospheric corrosion processes in situ and in real-time is presented. To characterize chemical structures of thin films on metal surfaces surface sensitive analytical techniques are required. One possible technique is Infrared Reflection Absorption Spectroscopy (IRRAS) which has become an established method to investigate surface corrosion films of thicknesses less than 200 nm. However, there are limitations related to the sensitivity of these measurements, in case of investigating ultrathin films or absorption bands of interest, surface species are superimposed by atmospheric background absorption, which changes during in situ measurements in ambient atmospheres. These difficulties of in situ surface reflection measurements can be eliminated by availing the polarization selectivity of adsorbed surface species. At grazing angles of incidence the absorption of p-polarized infrared radiation by thin surface films on metals is enhanced, while the absorption of s-polarized light by this film is nearly zero. This different behavior of the polarization properties leads to strong selection rules at the surface and can therefore be used to identify molecules adsorbed on metal surfaces. Polarization Modulation (PM) of the infrared (IR) light takes advantage of this disparity of polarization on sample surfaces and in combination with IRRAS yielding a very sensitive and surface-selective method for obtaining IR spectra of ultra-thin films on metal surfaces. An already existing in situ IRRAS/Quartz Crystal Microbalance weathering cell was combined with PM and evaluated according to its applicability to study in situ atmospheric corrosion processes. First real-time measurements on silver samples exposed to different atmospheres were performed showing the advantage of PM-IRRAS compared to conventional IRRAS for such investigations. PMID:24985826

  17. An experimental set-up to apply polarization modulation to infrared reflection absorption spectroscopy for improved in situ studies of atmospheric corrosion processes

    NASA Astrophysics Data System (ADS)

    Wiesinger, R.; Schade, U.; Kleber, Ch.; Schreiner, M.

    2014-06-01

    A new set-up for improved monitoring of atmospheric corrosion processes in situ and in real-time is presented. To characterize chemical structures of thin films on metal surfaces surface sensitive analytical techniques are required. One possible technique is Infrared Reflection Absorption Spectroscopy (IRRAS) which has become an established method to investigate surface corrosion films of thicknesses less than 200 nm. However, there are limitations related to the sensitivity of these measurements, in case of investigating ultrathin films or absorption bands of interest, surface species are superimposed by atmospheric background absorption, which changes during in situ measurements in ambient atmospheres. These difficulties of in situ surface reflection measurements can be eliminated by availing the polarization selectivity of adsorbed surface species. At grazing angles of incidence the absorption of p-polarized infrared radiation by thin surface films on metals is enhanced, while the absorption of s-polarized light by this film is nearly zero. This different behavior of the polarization properties leads to strong selection rules at the surface and can therefore be used to identify molecules adsorbed on metal surfaces. Polarization Modulation (PM) of the infrared (IR) light takes advantage of this disparity of polarization on sample surfaces and in combination with IRRAS yielding a very sensitive and surface-selective method for obtaining IR spectra of ultra-thin films on metal surfaces. An already existing in situ IRRAS/Quartz Crystal Microbalance weathering cell was combined with PM and evaluated according to its applicability to study in situ atmospheric corrosion processes. First real-time measurements on silver samples exposed to different atmospheres were performed showing the advantage of PM-IRRAS compared to conventional IRRAS for such investigations.

  18. Acoustic power absorption and enhancement generated by slow and fast MHD waves. Evidence of solar cycle velocity/intensity amplitude changes consistent with the mode conversion theory

    NASA Astrophysics Data System (ADS)

    Simoniello, R.; Finsterle, W.; García, R. A.; Salabert, D.; Jiménez, A.; Elsworth, Y.; Schunker, H.

    2010-06-01

    We used long duration, high quality, unresolved (Sun-as-a star) observations collected by the ground based network BiSON and by the instruments GOLF and VIRGO on board the ESA/NASA SOHO satellite to search for solar-cycle-related changes in mode characteristics in velocity and continuum intensity for the frequency range between 2.5 mHz <ν< 6.8 mHz. Over the ascending phase of solar cycle 23 we found a suppression in the p-mode amplitudes both in the velocity and intensity data between 2.5 mHz <ν< 4.5 mHz with a maximum suppression for frequencies in the range between 2.5 mHz <ν< 3.5 mHz. The size of the amplitude suppression is 13 ± 2 per cent for the velocity and 9 ± 2 per cent for the intensity observations. Over the range of 4.5 mHz <ν< 5.5 mHz the findings hint within the errors to a null change both in the velocity and intensity amplitudes. At still higher frequencies, in the so called High-frequency Interference Peaks (HIPs) between 5.8 mHz <ν< 6.8 mHz, we found an enhancement in the velocity amplitudes with the maximum 36 ± 7 per cent occurring for 6.3 mHz <ν< 6.8 mHz. However, in intensity observations we found a rather smaller enhancement of about 5 ± 2 per cent in the same interval. There is evidence that the frequency dependence of solar-cycle velocity amplitude changes is consistent with the theory behind the mode conversion of acoustic waves in a non-vertical magnetic field, but there are some problems with the intensity data, which may be due to the height in the solar atmosphere at which the VIRGO data are taken.

  19. MSG-7: Molecular absorption processes related to the penetration of ultraviolet solar radiation into the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Frederick, J. E.; Blake, A. J.; Freeman, D. E.; Nicholls, R. W.; Ogawa, T.; Simon, P. C.

    1983-01-01

    The information presently available on the absorption cross sections of O2 and O3 with attention to the application of these data in middle atmospheric science is reviewed. The cross sections values reported by different groups are intercompared in tabular form where feasible, and specific values are recommended when there is a basis for preferring a particular set of results over other available data. When no such basis exists, the differences among published cross sections then serve to indicate a range of uncertainty. In these cases the need for additional work is indicated. Specific topics addressed are the absorption of molecular oxygen at Lyman alpha, in the Schumann-Runge continuum, in the Schumann-Runge bands, and in the Herzberg continuum. For ozone, the Hartley and Huggins bands are considered.

  20. Field experiments and numerical simulations of confined aquifer response to multi-cycle recharge-recovery process through a well

    NASA Astrophysics Data System (ADS)

    Wang, Jianxiu; Wu, Yuanbin; Zhang, Xingsheng; Liu, Yan; Yang, Tianliang; Feng, Bo

    2012-09-01

    SummaryShanghai is one of the cities suffering from land subsidence in China. Land subsidence has caused serious financial losses. Thus, artificial recharge measures have been adopted to compensate the drawdown in shallow, confined aquifers and thereby control land subsidence. In this study, a multi-cycle recharge-recovery field experiment was performed to investigate the response of a shallow, confined aquifer to artificial recharge through a well. In the experiment, a series of recharge-recovery cycles with different recharge volumes and durations, with and without artificial pressure, were performed. The water levels monitored in the recharge and observation wells indicated the response of the aquifer to the multi-cycle recharge-recovery process. Meanwhile, a finite-difference method (FDM) numerical model was established, and its parameters were obtained via a reversed numerical analysis on the experimental data. The responses of the shallow, confined aquifer to the multi-cycle recharge-recovery process were simulated in detail using the model. The calculation results showed that the water level dropped significantly when the recharge ended. Moreover, the efficiency of a multi-cycle recharge was found to be higher than that of a concentrated one under the same recharge volume and time. The relationship between recharge frequency and efficiency, expressed as H = 0.29498 f0.40163 and R2 = 0.97264, respectively, was obtained through the FDM numerical simulation. In the recharge intervals, the optimal recharge efficiency was achieved when the water level rose to 40% of the peak.

  1. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process.

    PubMed

    Wu, Di; Ekama, George A; Wang, Hai-Guang; Wei, Li; Lu, Hui; Chui, Ho-Kwong; Liu, Wen-Tso; Brdjanovic, Damir; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2014-02-01

    Hong Kong has practiced seawater toilet flushing since 1958, saving 750,000 m(3) of freshwater every day. A high sulfate-to-COD ratio (>1.25 mg SO4(2-)/mg COD) in the saline sewage resulting from this practice has enabled us to develop the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process with minimal sludge production and oxygen demand. Recently, the SANI(®) process has been expanded to include Enhanced Biological Phosphorus Removal (EBPR) in an alternating anaerobic/limited-oxygen (LOS-EBPR) aerobic sequencing batch reactor (SBR). This paper presents further development - an anaerobic/anoxic denitrifying sulfur cycle-associated EBPR, named as DS-EBPR, bioprocess in an alternating anaerobic/anoxic SBR for simultaneous removal of organics, nitrogen and phosphorus. The 211 day SBR operation confirmed the sulfur cycle-associated biological phosphorus uptake utilizing nitrate as electron acceptor. This new bioprocess cannot only reduce operation time but also enhance volumetric loading of SBR compared with the LOS-EBPR. The DS-EBPR process performed well at high temperatures of 30 °C and a high salinity of 20% seawater. A synergistic relationship may exist between sulfur cycle and biological phosphorus removal as the optimal ratio of P-release to SO4(2-)-reduction is close to 1.0 mg P/mg S. There were no conventional PAOs in the sludge. PMID:24342048

  2. Chapter 1 - The Impacts of X-Ray Absorption Spectroscopy on Understanding Soil Processes and Reaction Mechanisms

    SciTech Connect

    Ginder-Vogel, Matthew; Sparks, Donald L.

    2011-11-17

    During the last two decades, X-ray absorption spectroscopy (XAS) has developed into a mature technique for obtaining the speciation (e.g., oxidation state) and short-range structure of elements present in soils and sediments. XAS encompasses both X-ray absorption near-edge structure (XANES) spectroscopy and extended X-ray absorption fine structure (EXAFS) spectroscopy. XAS has a number of advantageous qualities for studying soils and sediments, which include elemental specificity, sensitivity to the local chemical and structural state of an element, and the ability to analyze materials in situ. This information allows accurate determination of oxidation state, type of nearest neighbors, coordination number, bond distance, and orbital symmetries of the X-ray absorbing element. In this review, we examine the application of a wide variety of synchrotron X-ray techniques to fundamental issues in environmental soil chemistry. Additionally, we examine the application of microfocused and time-resolved XAS to determine speciation (e.g., oxidation state and/or local coordination environment) and transformation kinetics of contaminants in heterogeneous environmental systems. During the last three decades, XAS has a played a critical role in furthering our understanding of a myriad of environmental systems and will continue to do so into the foreseeable future.

  3. A comparative life cycle assessment of hybrid osmotic dilution desalination and established seawater desalination and wastewater reclamation processes.

    PubMed

    Hancock, Nathan T; Black, Nathan D; Cath, Tzahi Y

    2012-03-15

    The purpose of this study was to determine the comparative environmental impacts of coupled seawater desalination and water reclamation using a novel hybrid system that consist of an osmotically driven membrane process and established membrane desalination technologies. A comparative life cycle assessment methodology was used to differentiate between a novel hybrid process consisting of forward osmosis (FO) operated in osmotic dilution (ODN) mode and seawater reverse osmosis (SWRO), and two other processes: a stand alone conventional SWRO desalination system, and a combined SWRO and dual barrier impaired water purification system consisting of nanofiltration followed by reverse osmosis. Each process was evaluated using ten baseline impact categories. It was demonstrated that from a life cycle perspective two hurdles exist to further development of the ODN-SWRO process: module design of FO membranes and cleaning intensity of the FO membranes. System optimization analysis revealed that doubling FO membrane packing density, tripling FO membrane permeability, and optimizing system operation, all of which are technically feasible at the time of this publication, could reduce the environmental impact of the hybrid ODN-SWRO process compared to SWRO by more than 25%; yet, novel hybrid nanofiltration-RO treatment of seawater and wastewater can achieve almost similar levels of environmental impact. PMID:22209275

  4. Comparative Study of the Effects of Long and Short Term Biological Processes on the Cycling of Colloidal Trace Metals

    NASA Astrophysics Data System (ADS)

    Pinedo, P.; Sanudo-Wilhelmy, S. A.; West, A.

    2013-05-01

    Nanoparticle (or colloids), with sizes operationally defined as ranging from 1nm to 1000nm diameter, are thought to play an important role in metal cycling in the ocean due to their high surface area to volume ratio and abundance in marine systems. In coastal waters, the bulk of marine nanoparticles are organic, so short and long term biological processes are expected to influence the dynamics of these types of particles in marine environments. This is, in turn, expected to influence metal concentrations. Here we selected two different environments to study the influence of long-term biological events (phytoplankton blooms) and short-term biological events (diel cycles of photosynthesis and respiration) on the cycling of colloidal trace metals. We focus on Cu and Fe, both biogeochemically important metals but with differing colloidal behavior. Long term processes (West Neck Bay): A bay (West Neck Bay, Long Island) with predictable natural phytoplankton blooms, but with limited inputs of freshwater, nutrients and metals, was selected to study the partitioning of Cu and Fe between colloidal and soluble pools over the course of a bloom. During the bloom, there was a significant build-up of Cu associated with DOM accumulation and a removal of Fe via particle stripping. Fraction-specific metal concentrations, and metal accumulation and removal rates, were found to be significantly correlated with chlorophyll-a concentration and with dissolved organic matter (DOM). Short term processes (Catalina Island): To identify the cyclical variation in metal speciation during diel (24-hour) cycles of photosynthesis and respiration, we conducted a study off Catalina Island, a pristine environment where trace metal cycling is solely controlled by biological processes and changes in the phytoplankton community are well characterized. The speciation of Fe between soluble and colloidal pools showed that Fe has a high affinity for colloidal material and that the distribution between

  5. Global redox cycle of biospheric carbon: Interaction of photosynthesis and earth crust processes.

    PubMed

    Ivlev, Alexander A

    2015-11-01

    A model of the natural global redox cycle of biospheric carbon is introduced. According to this model, carbon transfer between biosphere and geospheres is accompanied by a conversion of the oxidative forms, presented by CO2, bicarbonate and carbonate ions, into the reduced forms, produced in photosynthesis. The mechanism of carbon transfer is associated with two phases of movement of lithospheric plates. In the short-term orogenic phase, CO2 from the subduction (plates' collisions) zones fills the "atmosphere-hydrosphere" system, resulting in climate warming. In the long-term quiet (geosynclynal) phase, weathering and photosynthesis become dominant depleting the oxidative forms of carbon. The above asymmetric periodicity exerts an impact on climate, biodiversity, distribution of organic matter in sedimentary deposits, etc. Along with photosynthesis expansion, the redox carbon cycle undergoes its development until it reaches the ecological compensation point, at which CO2 is depleted to the level critical to support the growth and reproduction of plants. This occurred in the Permo-Carboniferous time and in the Neogene. Shorter-term perturbations of the global carbon cycle in the form of glacial-interglacial oscillations appear near the ecological compensation point. PMID:26477601

  6. Changes in the carbon cycle of northern Eurasia simulated by process models

    NASA Astrophysics Data System (ADS)

    Rawlins, M. A.

    2013-12-01

    Pronounced warming across the northern high latitudes is impacting water and carbon cycles and raising concern over possible feedbacks to global climate. Recent model studied point toward a weakening of the terrestrial land carbon sink across the northern high latitudes, one notable manifestation of a warming Arctic. We explore links between regional climate and the carbon cycle using data from models participating in the Vulnerability of Permafrost Carbon Research Coordination Network (RCN). The domain of interest is the drainage basin within the Northern Eurasia Earth Science Partnership Initiative (NEESPI) region. Model outputs examined include gross primary production (GPP), heterotrophic respiration (RH), net ecosystem exchange (NEE), and total soil carbon storage. Mean flux budgets and their changes over the period 1960-2009 are calculated from the model estimates for the entire NEESPI region and for each major land cover category within the region. Use of an independent model, which captures well the spatial pattern in soil freeze/thaw dynamics, indicates that the reduction in permafrost extent over the NEESPI basin was 4-6% over recent decades. Modeled influences of permafrost thaw on the region's water and carbon cycles are evaluated in the context of recent measurements. Estimates of the flux of CO2 due to fire are also examined in order to better understand how these disturbances are altering regional carbon sink/source dynamics.

  7. Process contributions of Australian ecosystems to interannual variations in the carbon cycle

    NASA Astrophysics Data System (ADS)

    Haverd, Vanessa; Smith, Benjamin; Trudinger, Cathy

    2016-05-01

    New evidence is emerging that semi-arid ecosystems dominate interannual variability (IAV) of the global carbon cycle, largely via fluctuating water availability associated with El Niño/Southern Oscillation. Recent evidence from global terrestrial biosphere modelling and satellite-based inversion of atmospheric CO2 point to a large role of Australian ecosystems in global carbon cycle variability, including a large contribution from Australia to the record land sink of 2011. However the specific mechanisms governing this variability, and their bioclimatic distribution within Australia, have not been identified. Here we provide a regional assessment, based on best available observational data, of IAV in the Australian terrestrial carbon cycle and the role of Australia in the record land sink anomaly of 2011. We find that IAV in Australian net carbon uptake is dominated by semi-arid ecosystems in the east of the continent, whereas the 2011 anomaly was more uniformly spread across most of the continent. Further, and in contrast to global modelling results suggesting that IAV in Australian net carbon uptake is amplified by lags between production and decomposition, we find that, at continental scale, annual variations in production are dampened by annual variations in decomposition, with both fluxes responding positively to precipitation anomalies.

  8. Thermochemical water-splitting cycle, bench-scale investigations, and process engineering. Final report, February 1977-December 31, 1981

    SciTech Connect

    Norman, J.H.; Besenbruch, G.E.; Brown, L.C.; O'Keefe, D.R.; Allen, C.L.

    1982-05-01

    The sulfur-iodine water-splitting cycle is characterized by the following three reactions: 2H/sub 2/O + SO/sub 2/ + I/sub 2/ ..-->.. H/sub 2/SO/sub 4/ + 2HI; H/sub 2/SO/sub 4/ ..-->.. H/sub 2/O + SO/sub 2/ + 1/2 O/sub 2/; and 2HI ..-->.. H/sub 2/ + I/sub 2/. This cycle was developed at General Atomic after several critical features in the above reactions were discovered. These involved phase separations, catalytic reactions, etc. Estimates of the energy efficiency of this economically reasonable advanced state-of-the-art processing unit produced sufficiently high values (to approx.47%) to warrant cycle development effort. The DOE contract was largely directed toward the engineering development of this cycle, including a small demonstration unit (CLCD), a bench-scale unit, engineering design, and costing. The work has resulted in a design that is projected to produce H/sub 2/ at prices not yet generally competitive with fossil-fuel-produced H/sub 2/ but are projected to be favorably competitive with respect to H/sub 2/ from fossil fuels in the future.

  9. Cholesterol absorption.

    PubMed

    Ostlund, Richard E

    2002-03-01

    Cholesterol absorption is a key regulatory point in human lipid metabolism because it determines the amount of endogenous biliary as well as dietary cholesterol that is retained, thereby influencing whole body cholesterol balance. Plant sterols (phytosterols) and the drug ezetimibe reduce cholesterol absorption and low-density lipoprotein cholesterol in clinical trials, complementing the statin drugs, which inhibit cholesterol biosynthesis. The mechanism of cholesterol absorption is not completely known but involves the genes ABC1, ABCG5, and ABCG8, which are members of the ATP-binding cassette protein family and appear to remove unwanted cholesterol and phytosterols from the enterocyte. ABC1 is upregulated by the liver X (LXR) and retinoid X (RXR) nuclear receptors. Acylcholesterol acytransferase-2 is an intestinal enzyme that esterifies absorbed cholesterol and increases cholesterol absorption when dietary intake is high. New clinical treatments based on better understanding of absorption physiology are likely to substantially improve clinical cholesterol management in the future. PMID:17033296

  10. Design, construction, and operation of a life-cycle test system for the evaluation of flue gas cleanup processes

    SciTech Connect

    Pennline, H.W.; Yeh, James T.; Hoffman, J.S.; Longton, E.J.; Vore, P.A.; Resnik, K.P.; Gromicko, F.N.

    1995-12-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has designed, constructed, and operated a Life-Cycle Test Systems (LCTS) that will be used primarily for the investigation of dry, regenerable sorbent flue gas cleanup processes. Sorbent continuously cycles from an absorber reactor where the pollutants are removed from the flue gas, to a regenerator reactor where the activity of the spent sorbent is restored and a usable by-product stream of gas is produced. The LCTS will initially be used to evaluate the Moving-Bed Copper Oxide Process by determining the effects of various process parameters on SO{sub 2} and NO{sub x} removals. The purpose of this paper is to document the design rationale and details, the reactor/component/instrument installation, and the initial performance of the system. Although the Moving-Bed Copper Oxide Process will be investigated initially, the design of the LCTS evolved to make the system a multipurpose, versatile research facility. Thus, the unit can be used to investigate various other processes for pollution abatement of SO{sub 2}, NO{sub x}, particulates, air toxics, and/or other pollutants.

  11. The thermodynamic efficiency of the condensing process circuits of binary combined-cycle plants with gas-assisted heating of cycle air

    NASA Astrophysics Data System (ADS)

    Kovalevskii, V. P.

    2011-09-01

    The thermal efficiencies of condensing-type circuits of binary combined-cycle plants containing one, two, and three loops with different pressure levels and equipped with a GTE-160 (V94.2) gas turbine unit, and with preheating of cycle air are analyzed by way of comparison in a wide range of initial steam pressures. The variation of the combined-cycle plant efficiency, stream wetness, conditional overall heating surface of the heat-recovery boiler, and other parameters is presented.

  12. Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes

    PubMed Central

    Soltani, Mohammad; Vargas-Garcia, Cesar A.; Antunes, Duarte; Singh, Abhyudai

    2016-01-01

    Inside individual cells, expression of genes is inherently stochastic and manifests as cell-to-cell variability or noise in protein copy numbers. Since proteins half-lives can be comparable to the cell-cycle length, randomness in cell-division times generates additional intercellular variability in protein levels. Moreover, as many mRNA/protein species are expressed at low-copy numbers, errors incurred in partitioning of molecules between two daughter cells are significant. We derive analytical formulas for the total noise in protein levels when the cell-cycle duration follows a general class of probability distributions. Using a novel hybrid approach the total noise is decomposed into components arising from i) stochastic expression; ii) partitioning errors at the time of cell division and iii) random cell-division events. These formulas reveal that random cell-division times not only generate additional extrinsic noise, but also critically affect the mean protein copy numbers and intrinsic noise components. Counter intuitively, in some parameter regimes, noise in protein levels can decrease as cell-division times become more stochastic. Computations are extended to consider genome duplication, where transcription rate is increased at a random point in the cell cycle. We systematically investigate how the timing of genome duplication influences different protein noise components. Intriguingly, results show that noise contribution from stochastic expression is minimized at an optimal genome-duplication time. Our theoretical results motivate new experimental methods for decomposing protein noise levels from synchronized and asynchronized single-cell expression data. Characterizing the contributions of individual noise mechanisms will lead to precise estimates of gene expression parameters and techniques for altering stochasticity to change phenotype of individual cells. PMID:27536771

  13. Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes.

    PubMed

    Soltani, Mohammad; Vargas-Garcia, Cesar A; Antunes, Duarte; Singh, Abhyudai

    2016-08-01

    Inside individual cells, expression of genes is inherently stochastic and manifests as cell-to-cell variability or noise in protein copy numbers. Since proteins half-lives can be comparable to the cell-cycle length, randomness in cell-division times generates additional intercellular variability in protein levels. Moreover, as many mRNA/protein species are expressed at low-copy numbers, errors incurred in partitioning of molecules between two daughter cells are significant. We derive analytical formulas for the total noise in protein levels when the cell-cycle duration follows a general class of probability distributions. Using a novel hybrid approach the total noise is decomposed into components arising from i) stochastic expression; ii) partitioning errors at the time of cell division and iii) random cell-division events. These formulas reveal that random cell-division times not only generate additional extrinsic noise, but also critically affect the mean protein copy numbers and intrinsic noise components. Counter intuitively, in some parameter regimes, noise in protein levels can decrease as cell-division times become more stochastic. Computations are extended to consider genome duplication, where transcription rate is increased at a random point in the cell cycle. We systematically investigate how the timing of genome duplication influences different protein noise components. Intriguingly, results show that noise contribution from stochastic expression is minimized at an optimal genome-duplication time. Our theoretical results motivate new experimental methods for decomposing protein noise levels from synchronized and asynchronized single-cell expression data. Characterizing the contributions of individual noise mechanisms will lead to precise estimates of gene expression parameters and techniques for altering stochasticity to change phenotype of individual cells. PMID:27536771

  14. [A Medical Devices Management Information System Supporting Full Life-Cycle Process Management].

    PubMed

    Tang, Guoping; Hu, Liang

    2015-07-01

    Medical equipments are essential supplies to carry out medical work. How to ensure the safety and reliability of the medical equipments in diagnosis, and reduce procurement and maintenance costs is a topic of concern to everyone. In this paper, product lifecycle management (PLM) and enterprise resource planning (ERP) are cited to establish a lifecycle management information system. Through integrative and analysis of the various stages of the relevant data in life-cycle, it can ensure safety and reliability of medical equipments in the operation and provide the convincing data for meticulous management. PMID:26665958

  15. Mitigation of prion infectivity and conversion capacity by a simulated natural process--repeated cycles of drying and wetting.

    PubMed

    Yuan, Qi; Eckland, Thomas; Telling, Glenn; Bartz, Jason; Bartelt-Hunt, Shannon

    2015-02-01

    Prions enter the environment from infected hosts, bind to a wide range of soil and soil minerals, and remain highly infectious. Environmental sources of prions almost certainly contribute to the transmission of chronic wasting disease in cervids and scrapie in sheep and goats. While much is known about the introduction of prions into the environment and their interaction with soil, relatively little is known about prion degradation and inactivation by natural environmental processes. In this study, we examined the effect of repeated cycles of drying and wetting on prion fitness and determined that 10 cycles of repeated drying and wetting could reduce PrP(Sc) abundance, PMCA amplification efficiency and extend the incubation period of disease. Importantly, prions bound to soil were more susceptible to inactivation by repeated cycles of drying and wetting compared to unbound prions, a result which may be due to conformational changes in soil-bound PrP(Sc) or consolidation of the bonding between PrP(Sc) and soil. This novel finding demonstrates that naturally-occurring environmental process can degrade prions. PMID:25665187

  16. Role of the particle's stepping cycle in an asymmetric exclusion process: A model of mRNA translation

    NASA Astrophysics Data System (ADS)

    Ciandrini, L.; Stansfield, I.; Romano, M. C.

    2010-05-01

    Messenger RNA translation is often studied by means of statistical-mechanical models based on the asymmetric simple exclusion process (ASEP), which considers hopping particles (the ribosomes) on a lattice (the polynucleotide chain). In this work we extend this class of models and consider the two fundamental steps of the ribosome’s biochemical cycle following a coarse-grained perspective. In order to achieve a better understanding of the underlying biological processes and compare the theoretical predictions with experimental results, we provide a description lying between the minimal ASEP-like models and the more detailed models, which are analytically hard to treat. We use a mean-field approach to study the dynamics of particles associated with an internal stepping cycle. In this framework it is possible to characterize analytically different phases of the system (high density, low density or maximal current phase). Crucially, we show that the transitions between these different phases occur at different parameter values than the equivalent transitions in a standard ASEP, indicating the importance of including the two fundamental steps of the ribosome’s biochemical cycle into the model.

  17. Role of the particle's stepping cycle in an asymmetric exclusion process: a model of mRNA translation.

    PubMed

    Ciandrini, L; Stansfield, I; Romano, M C

    2010-05-01

    Messenger RNA translation is often studied by means of statistical-mechanical models based on the asymmetric simple exclusion process (ASEP), which considers hopping particles (the ribosomes) on a lattice (the polynucleotide chain). In this work we extend this class of models and consider the two fundamental steps of the ribosome's biochemical cycle following a coarse-grained perspective. In order to achieve a better understanding of the underlying biological processes and compare the theoretical predictions with experimental results, we provide a description lying between the minimal ASEP-like models and the more detailed models, which are analytically hard to treat. We use a mean-field approach to study the dynamics of particles associated with an internal stepping cycle. In this framework it is possible to characterize analytically different phases of the system (high density, low density or maximal current phase). Crucially, we show that the transitions between these different phases occur at different parameter values than the equivalent transitions in a standard ASEP, indicating the importance of including the two fundamental steps of the ribosome's biochemical cycle into the model. PMID:20866258

  18. Role of Protein Phosphorylation in the Regulation of Cell Cycle and DNA-Related Processes in Bacteria

    PubMed Central

    Garcia-Garcia, Transito; Poncet, Sandrine; Derouiche, Abderahmane; Shi, Lei; Mijakovic, Ivan; Noirot-Gros, Marie-Françoise

    2016-01-01

    In all living organisms, the phosphorylation of proteins modulates various aspects of their functionalities. In eukaryotes, protein phosphorylation plays a key role in cell signaling, gene expression, and differentiation. Protein phosphorylation is also involved in the global control of DNA replication during the cell cycle, as well as in the mechanisms that cope with stress-induced replication blocks. Similar to eukaryotes, bacteria use Hanks-type kinases and phosphatases for signal transduction, and protein phosphorylation is involved in numerous cellular processes. However, it remains unclear whether protein phosphorylation in bacteria can also regulate the activity of proteins involved in DNA-mediated processes such as DNA replication or repair. Accumulating evidence supported by functional and biochemical studies suggests that phospho-regulatory mechanisms also take place during the bacterial cell cycle. Recent phosphoproteomics and interactomics studies identified numerous phosphoproteins involved in various aspect of DNA metabolism strongly supporting the existence of such level of regulation in bacteria. Similar to eukaryotes, bacterial scaffolding-like proteins emerged as platforms for kinase activation and signaling. This review reports the current knowledge on the phosphorylation of proteins involved in the maintenance of genome integrity and the regulation of cell cycle in bacteria that reveals surprising similarities to eukaryotes. PMID:26909079

  19. Evaluating new processes and concepts for energy and resource recovery from municipal wastewater with life cycle assessment.

    PubMed

    Remy, C; Boulestreau, M; Warneke, J; Jossa, P; Kabbe, C; Lesjean, B

    2016-01-01

    Energy and resource recovery from municipal wastewater is a pre-requisite for an efficient and sustainable water management in cities of the future. However, a sound evaluation of available processes and pathways is required to identify opportunities and short-comings of the different options and reveal synergies and potentials for optimization. For evaluating environmental impacts in a holistic view, the tool of life cycle assessment (LCA, ISO 14040/44) is suitable to characterize and quantify the direct and indirect effects of new processes and concepts. This paper gives an overview of four new processes and concepts for upgrading existing wastewater treatment plants towards energy positive and resource efficient wastewater treatment, based upon an evaluation of their environmental impacts with LCA using data from pilot and full-scale assessments of the considered processes. PMID:26942529

  20. Reduction of absorption loss in silica-on-silicon channel waveguides fabricated by low-temperature PECVD process

    NASA Astrophysics Data System (ADS)

    Sahu, Jayanta K.; Wosinski, Lech; Fernando, Harendra

    1999-12-01

    This study is focused on the low temperature plasma enhanced chemical vapor deposition technique used for fabrication of silica based optical waveguides on silicon, utilizing nitrous oxide as an oxidant for both silane and dopant. Fabricated channel waveguide shows total insertion loss of 1.2 dB at 1.55 micrometers , and no absorption peaks associated with N-H and Si-H bonds around 1.5 micrometers have been observed in the as deposited material. This fabrication technology adds flexibility to the monolithic integration of electronic and optical components. Using this technology, a n umber of different couplers based on multimode interference technique have been investigated.

  1. Substrate having high absorptance and emitance black electroless nicel coating and a process for producing the same

    SciTech Connect

    Greeson, R.; Geikas, G. I.

    1985-04-16

    A substrate having high absorptance and emittance is produced by roughening the surface of the substrate, immersing the substrate in a first electroless plating bath having a low phosphorus to nickel concentration, then immersing the substrate in a second electroless plating bath having a phosphorus to nickel concentration higher than that of said first electroless plating bath. Thereafter, the resulting electroless nickel-phosphorus alloy coated substrate is immersed in an aqueous acidic etchant bath containing sulfuric acid, nitric acid and divalent nickel to develop a highly blackened surface on said substrate.

  2. Bench-Scale Development of a Hybrid Membrane-Absorption CO{sub 2} Capture Process: Preliminary Cost Assessment

    SciTech Connect

    Freeman, Brice; Kniep, Jay; Pingjiao, Hao; Baker, Richard; Rochelle, Gary; Chen, Eric; Frailie, Peter; Ding, Junyuan; Zhang, Yue

    2014-03-31

    This report describes a study of capture costs for a hybrid membrane-absorption capture system based on Membrane Technology and Research, Inc. (MTR)’s low-pressure membrane contactors and the University of Texas at Austin’s 5 m piperazine (PZ) Advanced Flash Stripper (AFS; 5 m PZ AFS) based CO2 capture system. The report is submitted for NETL review, and may be superseded by a final topical report on this topic that will be submitted to satisfy the Task 2 report requirement of the current project (DE-FE0013118).

  3. Laser materials processing of complex components. From reverse engineering via automated beam path generation to short process development cycles.

    NASA Astrophysics Data System (ADS)

    Görgl, R.; Brandstätter, E.

    2016-03-01

    The article presents an overview of what is possible nowadays in the field of laser materials processing. The state of the art in the complete process chain is shown, starting with the generation of a specific components CAD data and continuing with the automated motion path generation for the laser head carried by a CNC or robot system. Application examples from laser welding, laser cladding and additive laser manufacturing are given.

  4. A spatiotemporal structure: common to subatomic systems, biological processes, and economic cycles

    NASA Astrophysics Data System (ADS)

    Naitoh, Ken

    2012-03-01

    A theoretical model derived based on a quasi-stability concept applied to momentum conservation (Naitoh, JJIAM, 2001, Artificial Life Robotics, 2008, 2010) has revealed the spatial structure of various systems. This model explains the reason why particles such as biological cells, nitrogenous bases, and liquid droplets have bimodal size ratios of about 2:3 and 1:1. This paper shows that the same theory holds true for several levels of parcels from baryons to stars in the cosmos: specifically, at the levels of nuclear force, van der Waals force, surface tension, and the force of gravity. A higher order of analysis clarifies other asymmetric ratios related to the halo structure seen in atoms and amino acids. We will also show that our minimum hypercycle theory for explaining the morphogenetic cycle (Naitoh, Artificial Life Robotics, 2008) reveals other temporal cycles such as those of economic systems and the circadian clock as well as the fundamental neural network pattern (topological pattern). Finally, a universal equation describing the spatiotemporal structure of several systems will be derived, which also leads to a general concept of quasi-stability.

  5. Life cycle assessment of cellulose nanofibrils production by mechanical treatment and two different pretreatment processes.

    PubMed

    Arvidsson, Rickard; Nguyen, Duong; Svanström, Magdalena

    2015-06-01

    Nanocellulose is a bionanomaterial with many promising applications, but high energy use in production has been described as a potential obstacle for future use. In fact, life cycle assessment studies have indicated high life cycle energy use for nanocellulose. In this study, we assess the cradle-to-gate environmental impacts of three production routes for a particular type of nanocellulose called cellulose nanofibrils (CNF) made from wood pulp. The three production routes are (1) the enzymatic production route, which includes an enzymatic pretreatment, (2) the carboxymethylation route, which includes a carboxymethylation pretreatment, and (3) one route without pretreatment, here called the no pretreatment route. The results show that CNF produced via the carboxymethylation route clearly has the highest environmental impacts due to large use of solvents made from crude oil. The enzymatic and no pretreatment routes both have lower environmental impacts, of similar magnitude. A sensitivity analysis showed that the no pretreatment route was sensitive to the electricity mix, and the carboxymethylation route to solvent recovery. When comparing the results to those of other carbon nanomaterials, it was shown that in particular CNF produced via the enzymatic and no pretreatment routes had comparatively low environmental impacts. PMID:25938258

  6. Development of pyro-processing technology at CRIEPI for carving out the future of nuclear fuel cycle

    SciTech Connect

    Iizuka, M.; Koyama, T.; Sakamura, Y.; Uozumi, K.; Fujihata, K.; Kato, T.; Murakami, T.; Tsukada, T.; Glatz, J.P.

    2013-07-01

    Pyro-processing has been attracting increasing attention as a promising candidate as an advanced nuclear fuel cycle technology. It provides economic advantage as well as reduction in proliferation risk and burden of long live radioactive waste, especially when it is combined with advanced fuels such as metallic or nitride fuel which gives excellent burning efficiency of minor actinides (MA). CRIEPI has been developing pyro-processing technology since late eighties with both domestic and international collaborations. In the early stage, electrochemical and thermodynamic properties in LiCl-KCl eutectic melt, and fundamental feasibility of core technology like electrorefining were chiefly investigated. Currently, stress in the process chemistry development is also placed on supporting technologies, such as treatment of anode residue and high temperature distillation for cathode product from electrorefining, and so on. Waste treatment process development, such as studies on adsorption behavior of various FP elements into zeolite and conditions for the fabrication of glass-bonded sodalite waste form, are steadily improved as well. In parallel, dedicated pyro-processing equipment such as zeolite column for treatment of spent electro-refiner salt is currently in progress. Recently, an integrated engineering-scale fuel cycle tests were performed funded by Japanese government (MEXT) as an important step before proceeding to large scale hot demonstration of pyro-processing. Oxide fuels can be readily introduced into the pyro-processing by reducing them to metals by adoption of electrochemical reduction technique. Making use of this advantage, the pyro-processing is currently under preliminary evaluation for its applicability to the treatment of the corium, mainly consisting of (U,Zr)O{sub 2}, formed in different composition during the accident of the Fukushima Daiichi nuclear power plant. (authors)

  7. Kinetic-quantum chemical model for catalytic cycles: the Haber-Bosch process and the effect of reagent concentration.

    PubMed

    Kozuch, Sebastian; Shaik, Sason

    2008-07-01

    A combined kinetic-quantum chemical model is developed with the goal of estimating in a straightforward way the turnover frequency (TOF) of catalytic cycles, based on the state energies obtained by quantum chemical calculations. We describe how the apparent activation energy of the whole cycle, so-called energetic span (delta E), is influenced by the energy levels of two species: the TOF determining transition state (TDTS) and the TOF determining intermediate (TDI). Because these key species need not be adjoining states, we conclude that for catalysis there are no rate-determining steps, only rate determining states. In addition, we add here the influence of reactants concentrations. And, finally, the model is applied to the Haber-Bosch process of ammonia synthesis, for which we show how to calculate which catalyst will be the most effective under specific reagents conditions. PMID:18537227

  8. Selecting the process arrangement for preparing the gas turbine working fluid for an integrated gasification combined-cycle power plant

    NASA Astrophysics Data System (ADS)

    Ryzhkov, A. F.; Gordeev, S. I.; Bogatova, T. F.

    2015-11-01

    Introduction of a combined-cycle technology based on fuel gasification integrated in the process cycle (commonly known as integrated gasification combined cycle technology) is among avenues of development activities aimed at achieving more efficient operation of coal-fired power units at thermal power plants. The introduction of this technology is presently facing the following difficulties: IGCC installations are characterized by high capital intensity, low energy efficiency, and insufficient reliability and availability indicators. It was revealed from an analysis of literature sources that these drawbacks are typical for the gas turbine working fluid preparation system, the main component of which is a gasification plant. Different methods for improving the gasification plant chemical efficiency were compared, including blast air high-temperature heating, use of industrial oxygen, and a combination of these two methods implying limited use of oxygen and moderate heating of blast air. Calculated investigations aimed at estimating the influence of methods for achieving more efficient air gasification are carried out taking as an example the gasifier produced by the Mitsubishi Heavy Industries (MHI) with a thermal capacity of 500 MW. The investigation procedure was verified against the known experimental data. Modes have been determined in which the use of high-temperature heating of blast air for gasification and cycle air upstream of the gas turbine combustion chamber makes it possible to increase the working fluid preparation system efficiency to a level exceeding the efficiency of the oxygen process performed according to the Shell technology. For the gasification plant's configuration and the GTU working fluid preparation system be selected on a well-grounded basis, this work should be supplemented with technical-economic calculations.

  9. System and process for producing fuel with a methane thermochemical cycle

    SciTech Connect

    Diver, Richard B.

    2015-12-15

    A thermochemical process and system for producing fuel are provided. The thermochemical process includes reducing an oxygenated-hydrocarbon to form an alkane and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. Another thermochemical process includes reducing a metal oxide to form a reduced metal oxide, reducing an oxygenated-hydrocarbon with the reduced metal oxide to form an alkane, and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. The system includes a reformer configured to perform a thermochemical process.

  10. Impact of subgrid-scale processes on eyewall replacement cycle of tropical cyclones in HWRF system

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Zhu, Zhenduo; Gopalakrishnan, Sundararaman; Black, Robert; Marks, Frank D.; Tallapragada, Vijay; Zhang, Jun A.; Zhang, Xuejin; Gao, Cen

    2015-11-01

    Two idealized simulations by the Hurricane Weather Research and Forecast (HWRF) model are presented to examine the impact of model physics on the simulated eyewall replacement cycle (ERC). While no ERC is produced in the control simulation that uses the operational HWRF physics, the sensitivity experiment with different model physics generates an ERC that possesses key features of observed ERCs in real tropical cyclones. Likely reasons for the control simulation not producing ERC include lack of outer rainband convection at the far radii from the eyewall, excessive ice hydrometeors in the eyewall, and enhanced moat shallow convection, which all tend to prevent the formation of a persistent moat between the eyewall and outer rainband. Less evaporative cooling from precipitation in the outer rainband region in the control simulation produces a more stable and dryer environment that inhibits the development of systematic convection at the far radii from the eyewall.

  11. Organic-Rankine-cycle systems for waste-heat recovery in refineries and chemical process plants

    SciTech Connect

    Meacher, J.S.

    1981-09-01

    The use of organic Rankine cycles (ORC) for the recovery and conversion of low-temperature waste heat has received considerable attention during recent years. The number of demonstration systems developed and put into service is small, and only a fraction of the possible energy-conserving benefits of the concept have been realized to date. This situation is due partly to the fact that energy costs have only recently risen to the point where such units provide acceptable return on investment. A second contributing factor may be that the design of ORC equipment has not yet responded to the special needs of the dominant market for ORC systems. 2 references, 12 figures, 5 tables.

  12. Brd4 Is Involved in Multiple Processes of the Bovine Papillomavirus Type 1 Life Cycle

    PubMed Central

    Ilves, Ivar; Mäemets, Kristina; Silla, Toomas; Janikson, Kadri; Ustav, Mart

    2006-01-01

    Brd4 protein has been proposed to act as a cellular receptor for the bovine papillomavirus type 1 (BPV1) E2 protein in the E2-mediated chromosome attachment and mitotic segregation of viral genomes. Here, we provide data that show the involvement of Brd4 in multiple early functions of the BPV1 life cycle, suggest a Brd4-dependent mechanism for E2-dependent transcription activation, and indicate the role of Brd4 in papillomavirus and polyomavirus replication as well as cell-specific utilization of Brd4-linked features in BPV1 DNA replication. Our data also show the potential therapeutic value of the disruption of the E2-Brd4 interaction for the development of antiviral drugs. PMID:16537635

  13. MTCI/ThermoChem steam reforming process for solid fuels for combined cycle power generation

    SciTech Connect

    Mansour, M.N.; Voelker, G.; Dural-Swamy, K.

    1995-12-31

    Manufacturing and Technology Conversion International, Inc. (MTCI) has developed a novel technology to convert solid fuels including biomass, coal, municipal solid waste (MSW) and wastewater sludges into usable syngas by steam reforming in an indirectly heated, fluid-bed reactor. MTCI has licensed and patented the technology to ThermoChem, Inc. Both MTCI and ThermoChem have built two modular commercial-scale demonstration units: one for recycle paper mill rejects (similar to refuse-derived fuel [RDF]), and another for chemical recovery of black liquor. ThermoChem has entered into an agreement with Ajinkyatara Cooperative Sugar Factory, India, for building a 10 MW combined cycle power generation facility based on bagasse and agro-residue gasification.

  14. Life cycle assessment of flexibly fed biogas processes for an improved demand-oriented biogas supply.

    PubMed

    Ertem, Funda Cansu; Martínez-Blanco, Julia; Finkbeiner, Matthias; Neubauer, Peter; Junne, Stefan

    2016-11-01

    This paper analyses concepts to facilitate a demand oriented biogas supply at an agricultural biogas plant of a capacity of 500kWhel, operated with the co-digestion of maize, grass, rye silage and chicken manure. In contrast to previous studies, environmental impacts of flexible and the traditional baseload operation are compared. Life Cycle Assessment (LCA) was performed to detect the environmental impacts of: (i) variety of feedstock co-digestion scenarios by substitution of maize and (ii) loading rate scenarios with a focus on flexible feedstock utilization. Demand-driven biogas production is critical for an overall balanced power supply to the electrical grid. It results in lower amounts of emissions; feedstock loading rate scenarios resulted in 48%, 20%, 11% lower global warming (GWP), acidification (AP) and eutrophication potentials, and a 16% higher cumulative energy demand. Substitution of maize with biogenic-waste regarding to feedstock substitution scenarios could create 10% lower GWP and AP. PMID:27522120

  15. Design of a Multisensory Probe for Measuring Carbon Cycle Processes in Aqueous Subterranean Environments

    SciTech Connect

    McIntyre, Timothy J; Kisner, Roger; Woodworth, Ken; Lenarduzzi, Roberto; Frank, Steven Shane; McKnight, Timothy E

    2015-01-01

    The global carbon cycle describes the exchange of carbon between the atmosphere, terrestrial vegetation, oceans, and soil. Mechanisms involving carbon in sub-terrestrial ecosystems and their impact on climate are not well understood. This lack of understanding limits current climate models and prevents accurate soil-carbon storage predications for future climate conditions. To address the lack of instrumentation for conducting high fidelity measurements of appropriate parameters in the field, a multi-sensory probe using a mix of optical, fiber optic, and electronic technologies to measure CO2, temperature, dissolved oxygen, redox potential, and water level in subsurface environments has been developed. Details of the design, fabrication and laboratory performance verification are presented. Use cases and the anticipated impacts of such measurements on climate models are discussed.

  16. Development of the DIPRES process for the fast breeder reactor fuel cycle

    SciTech Connect

    Collins, E D; Jackson, M D; Griffin, C W; Rasmussen, D E; Norman, R E

    1984-01-01

    In 1979 the Consolidated Fuel Reprocessing Program (CFRP) at ORNL initiated a program for the development of advanced conversion processes with potential for simplifying and improving the conversion/pellet fabrication flowsheet for recycle plutonium. An evaluation of advanced conversion processes led to the selection of DIPRES (DIrect PREss Spheriodized) for development because it has the largest potential for process and product improvements. DIPRES utilizes a gel sphere conversion process and product to provide a spherical feed material for pellet fabrication. The free-flowing nature of the spherical conversion product allows it to be fed directly to pellet presses (i.e., direct press feed) in place of conventional, mechanically blended powder feed. This is advantageous for remote fabrication. The DIPRES feed is prepared by an internal gelation process.

  17. Cycling in the nucleus: regulation of RNA 3' processing and nuclear organization of replication-dependent histone genes.

    PubMed

    Romeo, Valentina; Schümperli, Daniel

    2016-06-01

    The histones which pack new DNA during the S phase of animal cells are made from mRNAs that are cleaved at their 3' end but not polyadenylated. Some of the factors used in this reaction are unique to it while others are shared with the polyadenylation process that generates all other mRNAs. Recent work has begun to shed light on how the cell manages the assignment of these common components to the two 3' processing systems, and how it achieves their cell cycle-regulation and recruitment to the histone pre-mRNA. Moreover, recent and older findings reveal multiple connections between the nuclear organization of histone genes, their transcription and 3' end processing as well as the control of cell proliferation. PMID:26895140

  18. The effect of pathological processes on absorption and scattering spectra of samples of bile and pancreatic juice

    NASA Astrophysics Data System (ADS)

    Giraev, K. M.; Ashurbekov, N. A.; Magomedov, M. A.; Murtazaeva, A. A.; Medzhidov, R. T.

    2015-07-01

    Spectra of optical transmission coefficients and optical reflectance for bile and pancreatic juice samples were measured experimentally for different forms of pathologies of the pancreas within the range of 250-2500 nm. The absorption and scattering spectra, as well as the spectrum of the anisotropy factor of scattering, were determined based on the results obtained using the reverse Monte Carlo method. The surface morphology for the corresponding samples of the biological media was studied employing electron microscopy. The dynamics of the optical properties of the biological media was determined depending on the stage of the pathology. It has been demonstrated that the results of the study presented are in a good agreement with pathophysiological data and could supplement and broaden the results of conventional methods for diagnostics of the pancreas.

  19. The Exchange of Soil Nitrite and Atmospheric HONO: a Missing Process in the Nitrogen Cycle and Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Cheng, Yafang; Su, Hang; Oswald, Robert; Behrendt, Thomas; Trebs, Ivonne; Meixner, Franz X.; Andreae, Meinrat O.; Pöschl, Ulrich

    2013-04-01

    Hydroxyl radicals (OH) are a key species in atmospheric photochemistry. In the lower atmosphere, up to ~30% of the primary OH radical production is attributed to the photolysis of nitrous acid (HONO), and field observations suggest a large missing source of HONO. The dominant sources of N(III) in soil, however, are biological nitrification and denitrification processes, which produce nitrite ions from ammonium (by nitrifying microbes) as well as from nitrate (by denitrifying microbes). We show that soil nitrite can release HONO and explain the reported strength and diurnal variation of the missing source. We also show that the soil-atmosphere exchange of N(III), though not considered in the N cycle, might result in significant amount of reactive nitrogen emission (comparable to soil NO emissions). Fertilized soils with low pH appear to be particularly strong sources of HONO and OH. Thus, agricultural activities and land-use changes may strongly influence the oxidizing capacity of the atmosphere. Because of the widespread occurrence of nitrite-producing microbes and increasing N and acid deposition, the release of HONO from soil may also be important in natural environments, including forests and boreal regions. In view of the potentially large impact on atmospheric chemistry and global environmental change, we recommend further studies of HONO release from soil nitrite and related processes in the biogeochemical cycling of N in both agricultural and natural environments. Reference: Su, H., Cheng, Y., et al., Soil Nitrite as a Source of Atmospheric HONO and OH Radicals, Science, 333, 1616-1618, 10.1126/science.1207687, 2011. Su, H., et al., The Exchange of Soil Nitrite and Atmospheric HONO: A Missing Process in the Nitrogen Cycle and Atmospheric Chemistry, NATO Science for Peace and Security Series C: Environmental Security, Springer Netherlands, 93-99, 2013.

  20. Quantification of rapid environmental redox processes with quick-scanning x-ray absorption spectroscopy (Q-XAS).

    PubMed

    Ginder-Vogel, Matthew; Landrot, Gautier; Fischel, Jason S; Sparks, Donald L

    2009-09-22

    Quantification of the initial rates of environmental reactions at the mineral/water interface is a fundamental prerequisite to determining reaction mechanisms and contaminant transport modeling and predicting environmental risk. Until recently, experimental techniques with adequate time resolution and elemental sensitivity to measure initial rates of the wide variety of environmental reactions were quite limited. Techniques such as electron paramagnetic resonance and Fourier transform infrared spectroscopies suffer from limited elemental specificity and poor sensitivity to inorganic elements, respectively. Ex situ analysis of batch and stirred-flow systems provides high elemental sensitivity; however, their time resolution is inadequate to characterize rapid environmental reactions. Here we apply quick-scanning x-ray absorption spectroscopy (Q-XAS), at sub-second time-scales, to measure the initial oxidation rate of As(III) to As(V) by hydrous manganese(IV) oxide. Using Q-XAS, As(III) and As(V) concentrations were determined every 0.98 s in batch reactions. The initial apparent As(III) depletion rate constants (t < 30 s) measured with Q-XAS are nearly twice as large as rate constants measured with traditional analytical techniques. Our results demonstrate the importance of developing analytical techniques capable of analyzing environmental reactions on the same time scale as they occur. Given the high sensitivity, elemental specificity, and time resolution of Q-XAS, it has many potential applications. They could include measuring not only redox reactions but also dissolution/precipitation reactions, such as the formation and/or reductive dissolution of Fe(III) (hydr)oxides, solid-phase transformations (i.e., formation of layered-double hydroxide minerals), or almost any other reaction occurring in aqueous media that can be measured using x-ray absorption spectroscopy. PMID:19805269

  1. GRBs Radiative Processes: Synchrotron and Synchrotron Self-Absorption From a Power Law Electrons Distribution with Finite Energy Range

    SciTech Connect

    Fouka, M.; Ouichaoui, S.

    2010-10-31

    Synchrotron emission behind relativistic magnetic internal-external shocks in gamma-ray bursts cosmological explosions is assumed to be the basic emission mechanism for prompt and afterglow emissions. Inverse Compton from relativistic electrons can also have appreciable effects by upscattering initial synchrotron or blackbody photons or other photons fields up to GeV-TeV energies. For extreme physical conditions such as high magnetic fields (e.g., B>10{sup 5} Gauss) self-absorption is not negligible and can hardly affect spectra at least for the low energy range. In this paper we present calculations of the synchrotron power, P{sub {nu}}, and their asymptotic forms, generated by a power law relativistic electron distribution of type N{sub e}({gamma}) = C{gamma}{sup -p} with {gamma}{sub 1}<{gamma}<{gamma}{sub 2}, especially for finite values of the higher limit {gamma}{sub 2}. For this aim we defined the dimensionless parametric function Z{sub p}(x,{eta}) with x = {nu}/{nu}{sub 1} and {eta} = {gamma}{sub 2}/{gamma}{sub 1} so that P{sub {nu}{proportional_to}Zp}({nu}/{nu}{sub 1},{eta}), with {nu}{sub 1} = (3/4{pi}){gamma}{sub 1}{sup 2}qBsin{theta}/mc({theta} being the pitch angle). Asymptotic forms of this later are derived for three different frequency ranges, i.e., x<<1, 1<>{eta}{sup 2}. These results are then used to calculate the absorption coefficient, {alpha}{sub {nu}}, and the source function, S{sub {nu}}, together with their asymptotic forms through the dimensionless parametric functions H{sub p}(x,{eta}) and Y{sub p}(x,{eta}), respectively. Further calculation details are also presented and discussed.

  2. Facial protection conferred by cycle safety helmets: use of digitized image processing to develop a new nondestructive test.

    PubMed

    Harrison, M; Shepherd, J P

    1997-07-01

    Cycle safety helmets are designed to prevent head injury. Although most commercially available helmets conform to one of several national and international standards, individual designs differ widely, particularly in relation to face coverage. A method was developed to assess the potential for the differing designs to protect the face from injury. A nonimpact test was assessed, using digitized image-processing software (Digithurst Ltd.) to measure the shadow cast by a helmet rim under a collimated plane light source onto the face of a mannequin headform. Twelve helmet designs available internationally were tested and ranked with respect to the direct protection conferred (area of the face directly covered by the helmet) and indirect protection (area of the face shaded). The three highest-ranking helmets for direct protection (Rosebank Stackhat, Asphalt Warrior, and Lazer Voyager) also ranked the highest for indirect protection. These helmets were more inferiorly extended and were of a more bulky construction. It was concluded that the dimensions of cycle helmets in relation to face coverage are crucial in influencing the extent to which facial protection is conferred. International test standards need urgent revision to ensure that face coverage is optimized. Lower-face protection could be achieved through incorporation of a lower-face bar to cycle helmets. PMID:9253912

  3. Process and apparatus for compression release engine retarding producing two compression release events per cylinder per engine cycle

    SciTech Connect

    Sickler, K.H.

    1986-02-25

    A process is described for compression release retarding of a cycling multi-cylinder four cycle internal combustion engine having a crankshaft and an engine piston operatively connected to the crankshaft for each cylinder thereof and having intake and exhaust valves for each cylinder thereof. An engine retarding system of a gas compression release type is also described comprising a multi-cylinder four cycle internal combustion engine having a crankshaft and a camshaft driven in synchronism with the crankshaft, engine piston means associated with the crankshaft, exhaust valve means and intake valve means associated with each cylinder of the engine. It also includes first and second pushtube means driven from the camshaft, hydraulic fluid supply means, hydraulically actuated first piston means associated with the exhaust valve means to open the exhaust valve means. Second piston means are actuated by the first pushtube means and hydraulically interconnected with the first piston means and the hydraulic fluid supply means to open the exhaust valve means during an upstroke of the engine piston associated with the exhaust valve means corresponding to its compression stroke during normal operation of the engine to produce a first compression release event.

  4. Auxiliary steam supply and process steam extraction at the combined-cycle unit Moerdijk/The Netherlands

    SciTech Connect

    Toebes, J.A.; Beker, M.J.W.; Puts, J.J.

    1998-07-01

    The first combined-cycle plant to be operated in combination with a waste-to-energy (WTE) plant has been built by the Dutch electric power utility N.V. Electriciteits-Produktiemaatschappij Zuid-Nederland (N.V. EPZ). Steam generated by the combustion of municipal waste is supplied to the heat recovery steam generators of the combined cycle unit. In addition to generating electric power for the public grid, the plant also supplies process steam to a neighboring chemical plant. The combination results in nearly 70% utilization of the energy contained in the natural gas fuel. The plant has a maximum electrical output of 339 MW and reduces annual natural gas consumption by approximately 40 million cubic meters which corresponds to a CO{sub 2} emission reduction of nearly 100,000 metric tons per year. The combined-cycle plant started operation in mid 1996 and during the first two years of operation showed heat consumption and emission levels in conformity with requirements. This paper presents the integrated concept and the main operating results.

  5. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  6. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  7. Percutaneous absorption of drugs.

    PubMed

    Wester, R C; Maibach, H I

    1992-10-01

    The skin is an evolutionary masterpiece of living tissue which is the final control unit for determining the local and systemic availability of any drug which must pass into and through it. In vivo in humans, many factors will affect the absorption of drugs. These include individual biological variation and may be influenced by race. The skin site of the body will also influence percutaneous absorption. Generally, those body parts exposed to the open environment (and to cosmetics, drugs and hazardous toxic substances) are most affected. Treating patients may involve single daily drug treatment or multiple daily administration. Finally, the body will be washed (normal daily process or when there is concern about skin decontamination) and this will influence percutaneous absorption. The vehicle of a drug will affect release of drug to skin. On skin, the interrelationships of this form of administration involve drug concentration, surface area exposed, frequency and time of exposure. These interrelationships determine percutaneous absorption. Accounting for all the drug administered is desirable in controlled studies. The bioavailability of the drug then is assessed in relationship to its efficacy and toxicity in drug development. There are methods, both quantitative and qualitative, in vitro and in vivo, for studying percutaneous absorption of drugs. Animal models are substituted for humans to determine percutaneous absorption. Each of these methods thus becomes a factor in determining percutaneous absorption because they predict absorption in humans. The relevance of these predictions to humans in vivo is of intense research interest. The most relevant determination of percutaneous absorption of a drug in humans is when the drug in its approved formulation is applied in vivo to humans in the intended clinical situation. Deviation from this scenario involves the introduction of variables which may alter percutaneous absorption. PMID:1296607

  8. Carbon cycle. Sunlight controls water column processing of carbon in arctic fresh waters.

    PubMed

    Cory, Rose M; Ward, Collin P; Crump, Byron C; Kling, George W

    2014-08-22

    Carbon in thawing permafrost soils may have global impacts on climate change; however, the factors that control its processing and fate are poorly understood. The dominant fate of dissolved organic carbon (DOC) released from soils to inland waters is either complete oxidation to CO2 or partial oxidation and river export to oceans. Although both processes are most often attributed to bacterial respiration, we found that photochemical oxidation exceeds rates of respiration and accounts for 70 to 95% of total DOC processed in the water column of arctic lakes and rivers. At the basin scale, photochemical processing of DOC is about one-third of the total CO2 released from surface waters and is thus an important component of the arctic carbon budget. PMID:25146289

  9. Renovation of Chemical Processing Facility for Development of Advanced Fast Reactor Fuel Cycle System in JNC

    SciTech Connect

    Atsushi Aoshima; Shigehiko Miyachi; Takashi Suganuma; Shinichi Nemoto

    2002-07-01

    The CPF had 4 laboratories (operation room A, laboratory A, laboratory C and analysis laboratory) in connection with reprocessing technology. The main laboratory, operation room A, has 5 hot cells. Since equipment in the main cell had been designed for small-scale verification of existing reprocessing steps, it was hardly able to respond flexibly to experimental studies on advanced technology. It was decided to remodel the cell according to the design that was newly laid out in order to ensure the function and space to conduct various basic tests. The other laboratories had no glove boxes for conducting basic experiments of important elements in the advanced reprocessing, such as actinides except U and Pu, lanthanides and so on. In order to meet various requirements of innovative technologies on advanced fuel cycle development, one laboratory is established more for study on dry reprocessing, and glove boxes, hoods and analytical equipment such as NMR, FT-IR, TI-MS are newly installed in the other laboratories in this renovation. After the renovation, hot tests in the CPF will be resumed from April 2002. (authors)

  10. The Primary and Secondary Production of Germanium: A Life-Cycle Assessment of Different Process Alternatives

    NASA Astrophysics Data System (ADS)

    Robertz, Benedicte; Verhelle, Jensen; Schurmans, Maarten

    2015-02-01

    Germanium is a semiconducting metalloid element used in optical fibers, catalysis, infrared optics, solar cells, and light-emitting diodes. The need for Ge in these markets is considered to increase by a steady ~1% on a yearly basis. Its economic importance, coupled with the identified supply risks, has led to the classification of germanium as a critical raw material within Europe. Since the early 1950s, Umicore Electro-Optic Materials has supplied germanium-based materials solutions to its markets around the world. Umicore extracts germanium from a wide range of refining and recycling feeds. The main objectives of this study were to quantify the potential environmental impacts of the production of germanium from production scraps from the photovoltaic industry and to compare them with the potential impacts of the primary production of germanium from coal. The data related to the secondary production are Umicore-specific data. Environmental impact scores have been calculated for the impact categories recommended by the International reference life cycle data system. The comparison of the primary and secondary production highlights the benefit linked to the recycling of metals.

  11. Perspectives on Applying Metabolomics to Understand Carbon Cycling and Process Rates in Deep-Sea Microorganisms

    NASA Astrophysics Data System (ADS)

    Vidoudez, C.; Saghatelian, A.; Girguis, P. R.

    2014-12-01

    The metabolisms of deep-sea microorganisms are still poorly characterized. So far, transcriptomics has been the most comprehensive proxy for the whole metabolisms of these organisms, but this approach is limited because it only represents the physiological poise of the cells, and is not linearly correlated to the rates and activity of the metabolic pathways. Using thermodynamics calculations and isotopic analyses can provide constraints on activity, but there are often discrepancies between available energy and calculated active biomass. A further understanding of metabolism both at the species and community level is necessary and metabolomics provides a means of capturing a "snapshot" of cell's metabolite pools, or of following labelled substrates as they move through metabolic pathways. We present our method development and initial results from our studies of the model organism Photobacterium profundum, and the benefits and challenges in meaningfully applying these methods to natural communities. These methods open the way to better understanding deep-sea metabolism on a more comprehensive level, including reserves compounds, alternate and secondary metabolism and potentially new metabolic pathways, and moreover the response of metabolism to changes in experimental conditions and carbon source can be readily followed. These will allow a better understanding of the carbon cycling pathways and their rate in natural communities.

  12. FINGERPRINTING INORGANIC ARSENIC AND ORGANOARSENIC COMPOUNDS IN IN SITU OIL SHALE RETORT AND PROCESS VOTERS USING A LIQUID CHROMATOGRAPH COUPLED WITH AN ATOMIC ABSORPTION SPECTROMETER AS A DETECTOR

    SciTech Connect

    Fish, Richard H.; Brinckman, Frederick E.; Jewett, Kenneth L.

    1981-07-01

    Inorganic arsenic and organoarsenic compounds were speciated in seven oil shale retort and process waters, including samples from simulated, true and modified in situ processes, using a high performance liquid chromatograph automatically coupled to a graphite furnace atomic absorption detector. The molecular forms of arsenic at ppm levels (({micro}g/mL) in these waters are identified for the first time, and shown to include arsenate, methylarsonic acid and phenylarsonic acid. An arsenic-specific fingerprint chromatogram of each retort or process water studied has significant impliestions regarding those arsenical species found and those marginally detected, such as dimethylarsinic acid and the suspected carcinogen arsenite. The method demonstrated suggests future means for quantifying environmental impacts of bioactive organometal species involved in oil shale retorting technology.

  13. A network model shows the importance of coupled processes in the microbial N cycle in the Cape Fear River Estuary

    NASA Astrophysics Data System (ADS)

    Hines, David E.; Lisa, Jessica A.; Song, Bongkeun; Tobias, Craig R.; Borrett, Stuart R.

    2012-06-01

    Estuaries serve important ecological and economic functions including habitat provision and the removal of nutrients. Eutrophication can overwhelm the nutrient removal capacity of estuaries and poses a widely recognized threat to the health and function of these ecosystems. Denitrification and anaerobic ammonium oxidation (anammox) are microbial processes responsible for the removal of fixed nitrogen and diminish the effects of eutrophication. Both of these microbial removal processes can be influenced by direct inputs of dissolved inorganic nitrogen substrates or supported by microbial interactions with other nitrogen transforming pathways such as nitrification and dissimilatory nitrate reduction to ammonium (DNRA). The coupling of nitrogen removal pathways to other transformation pathways facilitates the removal of some forms of inorganic nitrogen; however, differentiating between direct and coupled nitrogen removal is difficult. Network modeling provides a tool to examine interactions among microbial nitrogen cycling processes and to determine the within-system history of nitrogen involved in denitrification and anammox. To examine the coupling of nitrogen cycling processes, we built a nitrogen budget mass balance network model in two adjacent 1 cm3 sections of bottom water and sediment in the oligohaline portion of the Cape Fear River Estuary, NC, USA. Pathway, flow, and environ ecological network analyses were conducted to characterize the organization of nitrogen flow in the estuary and to estimate the coupling of nitrification to denitrification and of nitrification and DNRA to anammox. Centrality analysis indicated NH4+ is the most important form of nitrogen involved in removal processes. The model analysis further suggested that direct denitrification and coupled nitrification-denitrification had similar contributions to nitrogen removal while direct anammox was dominant to coupled forms of anammox. Finally, results also indicated that partial

  14. Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping for Post-Combustion CO{sub 2} Capture

    SciTech Connect

    Lu, Yongqi; DeVries, Nicholas; Ruhter, David; Manoranjan, Sahu; Ye, Qing; Ye, Xinhuai; Zhang, Shihan; Chen, Scott; Li, Zhiwei; O'Brien, Kevin

    2014-03-31

    A novel Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping (Hot-CAP) has been developed by the University of Illinois at Urbana-Champaign and Carbon Capture Scientific, LLC in this three-year, bench-scale project. The Hot-CAP features a concentrated carbonate solution (e.g., K{sub 2}CO{sub 3}) for CO{sub 2} absorption and a bicarbonate slurry (e.g., KHCO{sub 3}) for high-pressure CO{sub 2} stripping to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysis (TEA) to demonstrate its energy use and cost competitiveness over MEA. To meet project goals and objectives, a combination of experimental, modeling, process simulation, and economic analysis studies were applied. Carefully designed and intensive experiments were conducted to measure thermodynamic and reaction engineering data relevant to four major unit operations in the Hot-CAP (i.e., CO{sub 2} absorption, CO{sub 2} stripping, bicarbonate crystallization, and sulfate reclamation). The rate promoters that could accelerate the CO{sub 2} absorption rate into the potassium carbonate/bicarbonate (PCB) solution to a level greater than that into the 5 M MEA solution were identified, and the superior performance of CO{sub 2} absorption into PCB was demonstrated in a bench-scale packed-bed column. Kinetic data on bicarbonate crystallization were developed and applied for crystallizer design and sizing. Parametric testing of high-pressure CO{sub 2} stripping with concentrated bicarbonate-dominant slurries at high temperatures ({>=}140{degrees}C) in a bench-scale stripping column demonstrated lower heat use than with MEA. The feasibility of a modified process for combining SO{sub 2} removal with CO{sub 2} capture was preliminarily

  15. Simulating the Impacts of Disturbances on Forest Carbon Cycling in North America: Processes, Data, Models, and Challenges

    SciTech Connect

    Liu, Shuguang; Bond-Lamberty, Benjamin; Hicke, J.; Vargas, Rodrigo; Zhao, Shuqing; Chen, Jing Ming; Edburg, Steve; Hu, Yueming; Liu, Jinxun; McGuire, A. David; Xiao, Jingfeng; Keane, Robert; Yuan, Wenping; Tang, Jianwu; Luo, Yiqi; Potter, Christopher; Oeding, Jennifer

    2011-11-08

    Disturbances disrupt the forest structures and alter forest resources, substrate availability, or the physical environment. Understanding disturbances and their impacts is critical for a better quantification of North American carbon dynamics. We reviewed the status and major challenges in simulating the impacts of disturbances on forest carbon cycling in North America from the perspectives of process understanding, disturbance characterization, and modeling, and found some major issues. First, we do not have adequate continentally-consistent disturbance databases to support the NACP missions. Community effort, in collaborating with the modeling community, should be designated to systematically define international standards for disturbance databases with explicit inclusion of uncertainty measurements, adequate spatial and temporal resolutions, and explicit and quantifiable linkages with model simulations. Second, there is a need to develop effective and comprehensive process-based procedures or algorithms that can be used to quantify the immediate and long-term impacts of disturbances on forest succession, soils, microclimate, and cycles of carbon, water, and nutrients. These algorithms should be evaluated not only on the carbon cycle but also on the simulations of vegetation succession, alterations of soil and microclimate, and water and nutrients dynamics because adequate simulations of carbon dynamics rely on the correct quantification of the changes of soil and vegetation conditions. Third, the scaling challenges have rarely been addressed at the continental scale. We do not understand which processes and properties at a given temporal or spatial scales are critical while others can be simplified when we try to balance the North American carbon budget. Previous and current model simulations at the continental scale did not incorporate a full suite of disturbances information (because they do not exist as described above), and therefore provided little insight

  16. Redox cycle stability of mixed oxides used for hydrogen generation in the cyclic water gas shift process

    SciTech Connect

    Datta, Pradyot

    2013-10-15

    Graphical abstract: - Highlights: • Fe{sub 2}O{sub 3} modified with CaO, SiO{sub 2} and Al{sub 2}O{sub 3} was studied in cyclic water gas shift reactor. • For the first time stability of such oxides were tested for 100 redox cycles. • Optimally added oxides significantly improved the activity and the stability of Fe{sub 2}O{sub 3}. • Increased stability was attributed to the impediment of neck formation. - Abstract: Repeated cycles of the reduction of Fe{sub 3}O{sub 4} with reductive gas, e.g. hydrogen and subsequent oxidation of the reduced iron material with water vapor can be harnessed as a process for the production of pure hydrogen. The redox behavior of iron oxide modified with various amounts of SiO{sub 2}, CaO and Al{sub 2}O{sub 3} was investigated in the present study. The total amount of the additional metal oxides was always below 15 wt%. The samples were prepared by co-precipitation using urea hydrolysis method. The influence of various metal oxides on the hydrogen production capacity and the material stability was studied in detail in terms of temperature-programmed reduction (TPR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and BET analysis. Furthermore, the activity and the stability of the samples were tested in repeated reduction with diluted H{sub 2} and re-oxidation cycles with H{sub 2}O. The results indicate that combination of several oxides as promoter increases the stability of the iron oxide material by mitigating the sintering process. The positive influence of the oxides in stabilizing the iron oxide material is attributed to the impediment of neck formation responsible for sintering.

  17. Reducing the cycle time of cementing processes for high quality doublets

    NASA Astrophysics Data System (ADS)

    Wilde, C.; Hahne, F.; Langehanenberg, P.; Heinisch, J.

    2015-09-01

    For the manufacturing of high performance optical systems, centered alignment of the optical surfaces within the assembly is becoming increasingly important. In this contribution, we will present a system for the automated alignment of optical surfaces for the high-throughput manufacturing of cemented doublets (and triplets) with optimized imaging performance. First of all, different concepts for the alignment of doublets etc. are discussed. Standard methods for cementing evaluate mechanical features, such as the outer barrel of one element as reference axis. Using this procedure the optical performance of the assembly that can be achieved is limited by imperfections in the collinearity of the element's barrel axis and its optical axis. Instead, using the optical axis of the bottom element as target axis opens up perspectives for the production of multiplets with perfect symmetric imaging performance. For this concept, all three center of curvature positions of the optical surfaces are measured. Then, the top surface is aligned to the bottom element's optical axis using high-precision actuators. In order to increase the throughput of this procedure, the system is equipped with a novel measurement head that acquires autocollimation images of all three surfaces of a doublet at the same time. Thus, the positions of all surfaces are measured simultaneously during just a single rotation, avoiding both additional rotations and focus movements. Using this approach, cycle times can significantly be reduced from an average of 1 min to less than 10 seconds (w/o curing time). The system is reconfigurable in order to support a wide range of sample designs and enables cementing of high quality optics with centering errors below 2 μm.

  18. Development of a Two-Stage Microalgae Dewatering Process - A Life Cycle Assessment Approach.

    PubMed

    Soomro, Rizwan R; Ndikubwimana, Theoneste; Zeng, Xianhai; Lu, Yinghua; Lin, Lu; Danquah, Michael K

    2016-01-01

    Even though microalgal biomass is leading the third generation biofuel research, significant effort is required to establish an economically viable commercial-scale microalgal biofuel production system. Whilst a significant amount of work has been reported on large-scale cultivation of microalgae using photo-bioreactors and pond systems, research focus on establishing high performance downstream dewatering operations for large-scale processing under optimal economy is limited. The enormous amount of energy and associated cost required for dewatering large-volume microalgal cultures has been the primary hindrance to the development of the needed biomass quantity for industrial-scale microalgal biofuels production. The extremely dilute nature of large-volume microalgal suspension and the small size of microalgae cells in suspension create a significant processing cost during dewatering and this has raised major concerns towards the economic success of commercial-scale microalgal biofuel production as an alternative to conventional petroleum fuels. This article reports an effective framework to assess the performance of different dewatering technologies as the basis to establish an effective two-stage dewatering system. Bioflocculation coupled with tangential flow filtration (TFF) emerged a promising technique with total energy input of 0.041 kWh, 0.05 kg CO2 emissions and a cost of $ 0.0043 for producing 1 kg of microalgae biomass. A streamlined process for operational analysis of two-stage microalgae dewatering technique, encompassing energy input, carbon dioxide emission, and process cost, is presented. PMID:26904075

  19. Training Process Cycles for Special Education Teachers and University Supervisors: A Turkish Context

    ERIC Educational Resources Information Center

    Vuran, Sezgin; Ergenekon, Yasemin

    2014-01-01

    In special education teacher training programs, the teaching practicum's role is both wide and extensive. Since, during this process, providing qualitative and satisfactory consulting services to supervisors is crucial, it is very important that university supervisors be experienced and have obtained proficiency in the field of consultation.…

  20. Development of a Two-Stage Microalgae Dewatering Process – A Life Cycle Assessment Approach

    PubMed Central

    Soomro, Rizwan R.; Zeng, Xianhai; Lu, Yinghua; Lin, Lu; Danquah, Michael K.

    2016-01-01

    Even though microalgal biomass is leading the third generation biofuel research, significant effort is required to establish an economically viable commercial-scale microalgal biofuel production system. Whilst a significant amount of work has been reported on large-scale cultivation of microalgae using photo-bioreactors and pond systems, research focus on establishing high performance downstream dewatering operations for large-scale processing under optimal economy is limited. The enormous amount of energy and associated cost required for dewatering large-volume microalgal cultures has been the primary hindrance to the development of the needed biomass quantity for industrial-scale microalgal biofuels production. The extremely dilute nature of large-volume microalgal suspension and the small size of microalgae cells in suspension create a significant processing cost during dewatering and this has raised major concerns towards the economic success of commercial-scale microalgal biofuel production as an alternative to conventional petroleum fuels. This article reports an effective framework to assess the performance of different dewatering technologies as the basis to establish an effective two-stage dewatering system. Bioflocculation coupled with tangential flow filtration (TFF) emerged a promising technique with total energy input of 0.041 kWh, 0.05 kg CO2 emissions and a cost of $ 0.0043 for producing 1 kg of microalgae biomass. A streamlined process for operational analysis of two-stage microalgae dewatering technique, encompassing energy input, carbon dioxide emission, and process cost, is presented. PMID:26904075

  1. Seasonal ERT monitoring of subsurface processes connected to freezing, thawing, snow accumulation and melt cycles

    NASA Astrophysics Data System (ADS)

    Krzeminska, Dominika; Starkloff, Torsten; Bloem, Esther; Stolte, Jannes

    2016-04-01

    For a better understanding of processes that influence snowmelt infiltration and runoff, and their consequences on soil erosion during spring periods, we established a long-term winter-spring ERT transect in the Gryteland catchment (Norway). The ERT transect is 71 m long, with 1 m spacing between the electrodes. It covers a depression with a north and south facing slope. The readings are collected once a week and, if needed, after a sudden change in weather conditions. Additionally, the soil transect is equipped with six TDR profiles, which register soil moisture and soil temperature every thirty minutes, at five depths (5, 10, 20, 30, 40 cm), for quantifying the ERT readings. The measurements performed during winter 2014/2015 gave promising results and showed the potential of ERT monitoring for understanding the soil thermal and hydraulic processes occurring during a winter and early spring. Moreover, there are visible differences in temporal trends and spatial variations in observed ERT patterns on the opposite facing slopes, which are of special interest. With the on-going experiment, we are aiming to understand the reoccurrence of the observed processes as well as to quantify soil moisture patterns. Herein, we would like to present the preliminary result of two ERT experiments (2014/2015 and 2015/2016) and discuss the advantages and limitations of our experiments. Moreover, we would like to stimulate the discussion about the potential of ERT for spatial and temporal monitoring of soil hydraulic and thermal processes and indirect measurements of soil water content.

  2. Using Mars's Sulfur Cycle to Constrain the Duration and Timing of Fluvial Processes

    NASA Technical Reports Server (NTRS)

    Blaney, D. L.

    2002-01-01

    Sulfur exists in high abundances at diverse locations on Mars. This work uses knowledge of the Martian sulfate system to discriminate between leading hypotheses and discusses the implications for duration and timing of fluvial processes. Additional information is contained in the original extended abstract.

  3. Investigation of absorptance and emissivity of thermal control coatings on Mg–Li alloys and OES analysis during PEO process

    PubMed Central

    Yao, Zhongping; Xia, Qixing; Ju, Pengfei; Wang, Jiankang; Su, Peibo; Li, Dongqi; Jiang, Zhaohua

    2016-01-01

    Thermal control ceramic coatings on Mg–Li alloys have been successfully prepared in silicate electrolyte system by plasma electrolytic oxidation (PEO) method. The PEO coatings are mainly composed of crystallized Mg2SiO4 and MgO, which have typical porous structure with some bulges on the surface; OES analysis shows that the plasma temperature, which is influenced by the technique parameters, determines the formation of the coatings with different crystalline phases and morphologies, combined with “quick cooling effect” by the electrolyte; and the electron concentration is constant, which is related to the electric spark breakdown, determined by the nature of the coating and the interface of coating/electrolyte. Technique parameters influence the coating thickness, roughness and surface morphology, but do not change the coating composition in the specific PEO regime, and therefore the absorptance (αS) and emissivity (ε) of the coatings can be adjusted by the technique parameters through changing thickness and roughness in a certain degree. The coating prepared at 10 A/dm2, 50 Hz, 30 min and 14 g/L Na2SiO3 has the minimum value of αS (0.35) and the maximum value of ε (0.82), with the balance temperature of 320 K. PMID:27383569

  4. Investigation of absorptance and emissivity of thermal control coatings on Mg–Li alloys and OES analysis during PEO process

    NASA Astrophysics Data System (ADS)

    Yao, Zhongping; Xia, Qixing; Ju, Pengfei; Wang, Jiankang; Su, Peibo; Li, Dongqi; Jiang, Zhaohua

    2016-07-01

    Thermal control ceramic coatings on Mg–Li alloys have been successfully prepared in silicate electrolyte system by plasma electrolytic oxidation (PEO) method. The PEO coatings are mainly composed of crystallized Mg2SiO4 and MgO, which have typical porous structure with some bulges on the surface; OES analysis shows that the plasma temperature, which is influenced by the technique parameters, determines the formation of the coatings with different crystalline phases and morphologies, combined with “quick cooling effect” by the electrolyte; and the electron concentration is constant, which is related to the electric spark breakdown, determined by the nature of the coating and the interface of coating/electrolyte. Technique parameters influence the coating thickness, roughness and surface morphology, but do not change the coating composition in the specific PEO regime, and therefore the absorptance (αS) and emissivity (ε) of the coatings can be adjusted by the technique parameters through changing thickness and roughness in a certain degree. The coating prepared at 10 A/dm2, 50 Hz, 30 min and 14 g/L Na2SiO3 has the minimum value of αS (0.35) and the maximum value of ε (0.82), with the balance temperature of 320 K.

  5. Investigation of absorptance and emissivity of thermal control coatings on Mg-Li alloys and OES analysis during PEO process.

    PubMed

    Yao, Zhongping; Xia, Qixing; Ju, Pengfei; Wang, Jiankang; Su, Peibo; Li, Dongqi; Jiang, Zhaohua

    2016-01-01

    Thermal control ceramic coatings on Mg-Li alloys have been successfully prepared in silicate electrolyte system by plasma electrolytic oxidation (PEO) method. The PEO coatings are mainly composed of crystallized Mg2SiO4 and MgO, which have typical porous structure with some bulges on the surface; OES analysis shows that the plasma temperature, which is influenced by the technique parameters, determines the formation of the coatings with different crystalline phases and morphologies, combined with "quick cooling effect" by the electrolyte; and the electron concentration is constant, which is related to the electric spark breakdown, determined by the nature of the coating and the interface of coating/electrolyte. Technique parameters influence the coating thickness, roughness and surface morphology, but do not change the coating composition in the specific PEO regime, and therefore the absorptance (αS) and emissivity (ε) of the coatings can be adjusted by the technique parameters through changing thickness and roughness in a certain degree. The coating prepared at 10 A/dm(2), 50 Hz, 30 min and 14 g/L Na2SiO3 has the minimum value of αS (0.35) and the maximum value of ε (0.82), with the balance temperature of 320 K. PMID:27383569

  6. Effects of the Fabrication Process and Thermal Cycling on the Oxidation of Zirconium-Niobium Pressure Tubes

    NASA Astrophysics Data System (ADS)

    Nam, Cheol

    2009-12-01

    Pressure tubes made of Zr-2.5%Nb alloy are used to contain fuels and coolant in CANDU nuclear power reactors The pressure tube oxidizes during reactor operation and hydrogen ingress through the oxide grown on the tube limits its lifetime. Little attention was paid to the intermediate tube manufacturing processes in enhancing the oxidation resistance. In addition, the oxide grown on the tube experiences various thermal cycles depending on the reactor shutdown and startup cycles. To address these two aspects and to better understand the oxidation process of the Zr-2.5Nb tube, research was conducted in two parts: (i) effects of tube fabrication on oxidation behavior, and (ii) thermal cycling behaviors of oxides grown on a pressure tube. In the first part, the optimum manufacturing process was pursued to improve the corrosion resistance of Zr-2.5Nb tubes. Experimental micro-tubes were fabricated with various manufacturing routes in the stages of billet preparation, hot extrusion and cold drawing. These were oxidized in air at 400°C and 500°C, and in an autoclave at 360°C lithiated water. Microstructure and texture of the tubes and oxides were characterized with X-ray diffraction, scanning electron microscope and optical microscope. Special emphasis was given to examinations of the metal/oxide interface structures. A correlation between the manufacturing process and oxidation resistance was investigated in terms of tube microstructure and the metal/oxide interface structure. As a result, it was consistently observed that uniform interface structures were formed on the tubes which had a fine distribution of secondary phases. These microstructures were found to be beneficial in enhancing the oxidation resistance as opposed to the tubes that had coarse and continuous beta-Zr phases. Based on these observations, a schematic model of the oxidation process was proposed with respect to the oxidation resistance under oxidizing temperatures of 360°C, 400°C and 500°C. In

  7. Mixing and reaction processes in rocket based combined cycle and conventional rocket engines

    NASA Astrophysics Data System (ADS)

    Lehman, Matthew Kurt

    Raman spectroscopy was used to make species measurements in two rocket engines. An airbreathing rocket, the rocket based combined cycle (RBCC) engine, and a conventional rocket were investigated. A supersonic rocket plume mixing with subsonic coflowing air characterizes the ejector mode of the RBCC engine. The mixing length required for the air and plume to become homogenous is a critical dimension. For the conventional rocket experiments, a gaseous oxygen/gaseous hydrogen single-element shear coaxial injector was used. Three chamber Mach number conditions, 0.1, 0.2 and 0.3, were chosen to assess the effect of Mach number on mixing. The flow within the chamber was entirely subsonic. For the RBCC experiments, vertical Raman line measurements were made at multiple axial locations downstream from the rocket nozzle plane. Species profiles assessed the mixing progress between the supersonic plume and subsonic air. For the conventional rocket, Raman line measurements were made downstream from the injector face. The goal was to evaluate the effect of increased chamber Mach number on injector mixing/reaction. For both engines, quantitative and qualitative information was collected for computational fluid dynamics (CFD development. The RBCC experiments were conducted for three distinct geometries. The primary flow path was a diffuse and afterburner design with a direct-connect air supply. A sea-level static (SLS) version and a thermally choked variant were also tested. The experimental results show that mixing length increases with additional coflow air in the DAB geometry. Operation of variable rocket mixture ratios at identical air flow rates did not significantly affect the mixing length. The thermally choked variant had a longer mixing length compared to the DAB geometry, and the SLS modification had a shorter mixing length due to a reduced air flow. The conventional rocket studies focused on the effect of chamber Mach number on primary injector mixing. Chamber Mach

  8. Insights into deep-time terrestrial carbon cycle processes from modern plant isotope ecology

    NASA Astrophysics Data System (ADS)

    Sheldon, N. D.; Smith, S. Y.

    2012-12-01

    While the terrestrial biosphere and soils contain much of the readily exchangeable carbon on Earth, how those reservoirs function on long time scales and at times of higher atmospheric CO2 and higher temperatures is poorly understood, which limits our ability to make accurate future predictions of their response to anthropogenic change. Recent data compilation efforts have outlined the response of plant carbon isotope compositions to a variety of environmental factors including precipitation amount and timing, elevation, and latitude. The compilations involve numerous types of plants, typically only found at a limited number of climatic conditions. Here, we expand on those efforts by examining the isotopic response of specific plant groups found both globally and across environmental gradients including: 1) ginkgo, 2) conifers, and 3) C4 grasses. Ginkgo is presently widely distributed as a cultivated plant and the ginkgoalean fossil record spans from the Permian to the present, making it an ideal model organism to understand climatic influence on carbon cycling both in modern and ancient settings. Ginkgo leaves have been obtained from a range of precipitation conditions (400-2200 mm yr-1), including dense sampling from individuals and populations in both Mediterranean and temperate climate areas and samples of different organs and developmental stages. Ginkgo carbon isotope results plot on the global C3 plant array, are consistent among trees at single sites, among plant organs, and among development stages, making ginkgo a robust recorder of both climatic conditions and atmospheric δ13C. In contrast, a climate-carbon isotope transect in Arizona highlights that conifers (specifically, pine and juniper) record large variability between organs and have a very different δ13C slope as a function of climate than the global C3 plant array, while C4 plants have a slope with the opposite sign as a function of climate. This has a number of implications for paleo

  9. Mineralization of integrated gasification combined-cycle power-station wastewater effluent by a photo-Fenton process.

    PubMed

    Durán, A; Monteagudo, J M; San Martín, I; Aguirre, M

    2010-09-01

    The aim of this work was to study the mineralization of wastewater effluent from an integrated-gasification combined-cycle (IGCC) power station sited in Spain to meet the requirements of future environmental legislation. This study was done in a pilot plant using a homogeneous photo-Fenton oxidation process with continuous addition of H(2)O(2) and air to the system. The mineralization process was found to follow pseudo-first-order kinetics. Experimental kinetic constants were fitted using neural networks (NNs). The NNs model reproduced the experimental data to within a 90% confidence level and allowed the simulation of the process for any values of the parameters within the experimental range studied. At the optimum conditions (H(2)O(2) flow rate=120 mL/h, [Fe(II)]=7.6 mg/L, pH=3.75 and air flow rate=1 m(3)/h), a 90% mineralization was achieved in 150 min. Determination of the hydrogen peroxide consumed and remaining in the water revealed that 1.2 mol of H(2)O(2) was consumed per each mol of total organic carbon removed from solution. This result confirmed that an excess of dissolved H(2)O(2) was needed to achieve high mineralization rates, so continuous addition of peroxide is recommended for industrial application of this process. Air flow slightly improved the mineralization rate due to the formation of peroxo-organic radicals which enhanced the oxidation process. PMID:20510498

  10. [Microbial processes of the carbon and sulfur cycles in the Chukchi Sea].

    PubMed

    Savvichev, A S; Rusanov, I I; Pimenov, N V; Zakharova, E E; Veslopolova, E F; Lein, A Iu; Crane, K; Ivanov, M V

    2007-01-01

    The research performed in August 2004 within the framework of the Russian-American Long-term Census of the Arctic (RUSALCA) resulted in the first data concerning the rates of the key microbial processes in the water column and bottom sediments of the Bering strait and the Chukchi Sea. The total bacterial counts in the water column varied from 30 x 10(3) cells ml(-1) in the northern and eastern parts to 245 x 10(3) cells ml(-1) in the southern part. The methane content in the water column of the Chukchi sea varied from 8 nmol CH4 l(-1) in the eastern part of the sea to 31 nmol CH4 l(-1) in the northern part of the Herald Canyon. Active microbial processes occurred in the upper 0-3 cm of the bottom sediments; the methane formation rate varied from 0.25 to 16 nmol CH4 dm(-3) day(-1). The rates of methane oxidation varied from 1.61 to 14.7 nmol CH4 dm(-3) day(-1). The rates of sulfate reduction varied from 1.35 to 16.2 micromol SO4(2-) dm(-3) day(-1). The rate of methane formation in the sediments increased with depth, while sulfate reduction rates decreased (less than 1 micromol SO4(2-) dm(-3) day(-1)). These high concentrations of biogenic elements and high rates of microbial processes in the upper sediment layers suggest a specific type of trophic chain in the Chukchi Sea. The approximate calculated balance of methane emission from the water column into the atmosphere is from 5.4 to 57.3 micromol CH4 m(-2) day(-1). PMID:18069330

  11. Biogeochemical and hydrologic processes controlling mercury cycling in Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Naftz, D.; Kenney, T.; Angeroth, C.; Waddell, B.; Darnall, N.; Perschon, C.; Johnson, W. P.

    2006-12-01

    Great Salt Lake (GSL), in the Western United States, is a terminal lake with a highly variable surface area that can exceed 5,100 km2. The open water and adjacent wetlands of the GSL ecosystem support millions of migratory waterfowl and shorebirds from throughout the Western Hemisphere, as well as a brine shrimp industry with annual revenues exceeding 70 million dollars. Despite the ecologic and economic significance of GSL, little is known about the biogeochemical cycling of mercury (Hg) and no water-quality standards currently exist for this system. Whole water samples collected since 2000 were determined to contain elevated concentrations of total Hg (100 ng/L) and methyl Hg (33 ng/L). The elevated levels of methyl Hg are likely the result of high rates of SO4 reduction and associated Hg methylation in persistently anoxic areas of the lake at depths greater than 6.5 m below the water surface. Hydroacoustic equipment deployed in this anoxic layer indicates a "conveyor belt" flow system that can distribute methyl Hg in a predominantly southerly direction throughout the southern half of GSL (fig. 1, URL: http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs- AUG06.pdf). Periodic and sustained wind events on GSL may result in transport of the methyl Hg-rich anoxic water and bottom sediments into the oxic and biologically active regions. Sediment traps positioned above the anoxic brine interface have captured up to 6 mm of bottom sediment during cumulative wind-driven resuspension events (fig. 2, URL:http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs-AUG06.pdf). Vertical velocity data collected with hydroacoustic equipment indicates upward flow > 1.5 cm/sec during transient wind events (fig. 3, URL:http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs-AUG06.pdf). Transport of methyl Hg into the oxic regions of GSL is supported by biota samples. The median Hg concentration (wet weight) in brine shrimp increased seasonally from the spring to fall time period and is likely a

  12. Clean combined-cycle SOFC power plant — cell modelling and process analysis

    NASA Astrophysics Data System (ADS)

    Riensche, E.; Achenbach, E.; Froning, D.; Haines, M. R.; Heidug, W. K.; Lokurlu, A.; von Andrian, S.

    The design principle of a specially adapted solid-oxide fuel cell power plant for the production of electricity from hydrocarbons without the emission of greenhouse gases is described. To achieve CO 2 separation in the exhaust stream, it is necessary to burn the unused fuel without directly mixing it with air, which would introduce nitrogen. Therefore, the spent fuel is passed over a bank of oxygen ion conducting tubes very similar in configuration to the electrochemical tubes in the main stack of the fuel cell. In such an SOFC system, pure CO 2 is produced without the need for a special CO 2 separation process. After liquefaction, CO 2 can be re-injected into an underground reservoir. A plant simulation model consists of four main parts, that is, turbo-expansion of natural gas, fuel cell stack, periphery of the stack, and CO 2 recompression. A tubular SOFC concept is preferred. The spent fuel leaving the cell tube bundle is burned with pure oxygen instead of air. The oxygen is separated from the air in an additional small tube bundle of oxygen separation tubes. In this process, mixing of CO 2 and N 2 is avoided, so that liquefaction of CO 2 becomes feasible. As a design tool, a computer model for tubular cells with an air feed tube has been developed based on an existing planar model. Plant simulation indicates the main contributors to power production (tubular SOFC, exhaust air expander) and power consumption (air compressor, oxygen separation).

  13. Inactivation of Microcystis aeruginosa by continuous electrochemical cycling process in tube using Ti/RuO2 electrodes.

    PubMed

    Liang, Wenyan; Qu, Jiuhui; Chen, Libin; Liu, Huijuan; Lei, Pengju

    2005-06-15

    Algae in waters often bring about influence in drinking water supplies. In this study, an electrochemical tube employing titanium coated with RuO2 as anode was constructed for inactivation of cyanobacteria (often called bluegreen algae) Microcystis aeruginosa. Suspensions containing M. aeruginosa (2-4 x 10(9) L(-1)) were exposed to current densities ranging from 1 to 10 mA cm(-2) in a detention time of 52 min. The variations of cell density, chlorophyll-a, optical density, pH, and conductivity were examined during the treatment. After 3.5 min the population of M. aeruginosa dropped rapidly and was reduced from 3 x 10(9) to 0.6 x 10(9) L(-1) after 52 min at current densities from 5 to 10 mA cm(-2). The cell density and optical density of M. aeruginosa decreased proportionally to the current density and the detention time. Scanning electron microscopy investigation of algae revealed surface damage and apparent leakage of intracellular contents after electrochemical cycling process. Due to the damage of cells, the chlorophyll-a released from the cells was degraded by electrochemical oxidation. The removal rate of chlorophyll-a could reach 96% at the current density of 10 mA cm(-2). Electrochemical treatment caused minor variation of pH values and conductivity of the suspensions. After electrochemical cycling processes, the optical density at 680 nm of algal cell suspensions remained below 0.1 after 6 days, and it showed that cells had no potential to survive and grow. The results implicated that the inactivation of M. aeruginosa was successfully performed by the electrochemical treatment, and it made the algal cells lose ability to survive, demonstrating the potential of such an alternative process for efficient water purification. PMID:16047803

  14. Development of a solid absorption process for removal of sulfur from fuel gas. First quarterly technical report

    SciTech Connect

    Stegen, G.E.; Olson, K.M.

    1980-05-01

    Battelle Pacific Northwest Laboratories has begun to develop a project for removing sulfur compounds from fuel gases at elevated temperature (> 700/sup 0/C) based on the use of molten mixtures of alkali metal carbonates and calcium carbonate as the active reactants. The sulfur removal capacity of the molten salt mixture may be regenerated by stripping with CO/sub 2/ and steam, usually at a reduced temperature. In this process, the molten salt mixture is contained within the pores of a porous ceramic substrate material which may be used in a packed bed, moving bed, or fluidized bed absorber. The process would be used most advantageously in applications where it is desirable to reduce or eliminate any cooling of the fuel gas between the gasifier outlet and the gas user. Examples of such applications include gas turbines, high temperature fuel cells, boilers, and furnaces which operate in relatively close proximity to a coal gasifier. In these applications, reduction or elimination of the gas cooling requirements will generally improve thermal efficiency by retaining the sensible heat in the gas and may result in simplification of the process by elimination of gas cooling (and in some cases reheating) equipment and by elimination of process condensates and the equipment required for their handling and treatment. The objectives of the program are to obtain process and materials data sufficient to demonstrate feasibility of the process at bench scale and to allow preliminary economic analysis. Process data to be obtained include sorbent sulfur capacity, reaction kinetics, and other operating characteristics. Various candidate materials will be purchased or fabricated and tested for suitability as porous ceramic substrate materials.

  15. Asymmetric processing of a substrate protein in sequential allosteric cycles of AAA+ nanomachines

    NASA Astrophysics Data System (ADS)

    Kravats, Andrea N.; Tonddast-Navaei, Sam; Bucher, Ryan J.; Stan, George

    2013-09-01

    Essential protein quality control includes mechanisms of substrate protein (SP) unfolding and translocation performed by powerful ring-shaped AAA+ (ATPases associated with various cellular activities) nanomachines. These SP remodeling actions are effected by mechanical forces imparted by AAA+ loops that protrude into the central channel. Sequential intra-ring allosteric motions, which underlie repetitive SP-loop interactions, have been proposed to comprise clockwise (CW), counterclockwise (CCW), or random (R) conformational transitions of individual AAA+ subunits. To probe the effect of these allosteric mechanisms on unfoldase and translocase functions, we perform Langevin dynamics simulations of a coarse-grained model of an all-alpha SP processed by the single-ring ClpY ATPase or by the double-ring p97 ATPase. We find that, in all three allosteric mechanisms, the SP undergoes conformational transitions along a common set of pathways, which reveals that the active work provided by the ClpY machine involves single loop-SP interactions. Nevertheless, the rates and yields of SP unfolding and translocation are controlled by mechanism-dependent loop-SP binding events, as illustrated by faster timescales of SP processing in CW allostery compared with CCW and R allostery. The distinct efficacy of allosteric mechanisms is due to the asymmetric collaboration of adjacent subunits, which involves CW-biased structural motions of AAA+ loops and results in CW-compatible torque applied onto the SP. Additional simulations of mutant ClpY rings, which render a subset of subunits catalytically-defective or reduce their SP binding affinity, reveal that subunit-based conformational transitions play the major role in SP remodeling. Based on these results we predict that the minimally functional AAA+ ring includes three active subunits, only two of which are adjacent.

  16. The numerical simulation study of the dynamic evolutionary processes in an earthquake cycle on the Longmen Shan Fault

    NASA Astrophysics Data System (ADS)

    Tao, Wei; Shen, Zheng-Kang; Zhang, Yong

    2016-04-01

    The Longmen Shan, located in the conjunction of the eastern margin the Tibet plateau and Sichuan basin, is a typical area for studying the deformation pattern of the Tibet plateau. Following the 2008 Mw 7.9 Wenchuan earthquake (WE) rupturing the Longmen Shan Fault (LSF), a great deal of observations and studies on geology, geophysics, and geodesy have been carried out for this region, with results published successively in recent years. Using the 2D viscoelastic finite element model, introducing the rate-state friction law to the fault, this thesis makes modeling of the earthquake recurrence process and the dynamic evolutionary processes in an earthquake cycle of 10 thousand years. By analyzing the displacement, velocity, stresses, strain energy and strain energy increment fields, this work obtains the following conclusions: (1) The maximum coseismic displacement on the fault is on the surface, and the damage on the hanging wall is much more serious than that on the foot wall of the fault. If the detachment layer is absent, the coseismic displacement would be smaller and the relative displacement between the hanging wall and foot wall would also be smaller. (2) In every stage of the earthquake cycle, the velocities (especially the vertical velocities) on the hanging wall of the fault are larger than that on the food wall, and the values and the distribution patterns of the velocity fields are similar. While in the locking stage prior to the earthquake, the velocities in crust and the relative velocities between hanging wall and foot wall decrease. For the model without the detachment layer, the velocities in crust in the post-seismic stage is much larger than those in other stages. (3) The maximum principle stress and the maximum shear stress concentrate around the joint of the fault and detachment layer, therefore the earthquake would nucleate and start here. (4) The strain density distribution patterns in stages of the earthquake cycle are similar. There are two

  17. Superior cycle stability of graphene nanosheets prepared by freeze-drying process as anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Cai, Dandan; Wang, Suqing; Ding, Liangxin; Lian, Peichao; Zhang, Shanqing; Peng, Feng; Wang, Haihui

    2014-05-01

    Graphene nanosheets are synthesized by a novel facile method involving freeze-drying technology and thermal reduction. The microstructure and morphologies are characterized by X-ray diffraction, Brunauer-Emmett-Teller measurements, Fourier transform infrared spectroscopy, and high resolution transmission electron microscope. The results indicate that graphene nanosheets with high specific surface area (358.3 m2 g-1) and increased interlayer distance (0.385 nm) are successfully obtained through the freeze-drying process. The electrochemical performances are evaluated by using coin-type cells versus lithium. A high initial reversible capacity of 1132.9 mAh g-1 is obtained at a current density of 100 mA g-1. More importantly, even after 300 cycles at a high current density of 1000 mA g-1, a stable specific capacity of 556.9 mAh g-1 can be achieved, suggesting the graphene nanosheets exhibit superior cycle stability. The fascinating electrochemical performance could be ascribed to the high specific surface area and the increased layer distance between the graphene nanosheets.

  18. Human Factors Throughout the Life Cycle: Lessons Learned from the Shuttle Program. [Human Factors in Ground Processing

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.

    2011-01-01

    With the ending of the Space Shuttle Program, it is critical that we not forget the Human Factors lessons we have learned over the years. At every phase of the life cycle, from manufacturing, processing and integrating vehicle and payload, to launch, flight operations, mission control and landing, hundreds of teams have worked together to achieve mission success in one of the most complex, high-risk socio-technical enterprises ever designed. Just as there was great diversity in the types of operations performed at every stage, there was a myriad of human factors that could further complicate these human systems. A single mishap or close call could point to issues at the individual level (perceptual or workload limitations, training, fatigue, human error susceptibilities), the task level (design of tools, procedures and aspects of the workplace), as well as the organizational level (appropriate resources, safety policies, information access and communication channels). While we have often had to learn through human mistakes and technological failures, we have also begun to understand how to design human systems in which individuals can excel, where tasks and procedures are not only safe but efficient, and how organizations can foster a proactive approach to managing risk and supporting human enterprises. Panelists will talk about their experiences as they relate human factors to a particular phase of the shuttle life cycle. They will conclude with a framework for tying together human factors lessons-learned into system-level risk management strategies.

  19. A Process-Based Model of TCA Cycle Functioning to Analyze Citrate Accumulation in Pre- and Post-Harvest Fruits

    PubMed Central

    Etienne, Audrey; Génard, Michel; Bugaud, Christophe

    2015-01-01

    Citrate is one of the most important organic acids in many fruits and its concentration plays a critical role in organoleptic properties. The regulation of citrate accumulation throughout fruit development, and the origins of the phenotypic variability of the citrate concentration within fruit species remain to be clarified. In the present study, we developed a process-based model of citrate accumulation based on a simplified representation of the TCA cycle to predict citrate concentration in fruit pulp during the pre- and post-harvest stages. Banana fruit was taken as a reference because it has the particularity of having post-harvest ripening, during which citrate concentration undergoes substantial changes. The model was calibrated and validated on the two stages, using data sets from three contrasting cultivars in terms of citrate accumulation, and incorporated different fruit load, potassium supply, and harvest dates. The model predicted the pre and post-harvest dynamics of citrate concentration with fairly good accuracy for the three cultivars. The model suggested major differences in TCA cycle functioning among cultivars during post-harvest ripening of banana, and pointed to a potential role for NAD-malic enzyme and mitochondrial malate carriers in the genotypic variability of citrate concentration. The sensitivity of citrate accumulation to growth parameters and temperature differed among cultivars during post-harvest ripening. Finally, the model can be used as a conceptual basis to study citrate accumulation in fleshy fruits and may be a powerful tool to improve our understanding of fruit acidity. PMID:26042830

  20. A Process-Based Model of TCA Cycle Functioning to Analyze Citrate Accumulation in Pre- and Post-Harvest Fruits.

    PubMed

    Etienne, Audrey; Génard, Michel; Bugaud, Christophe

    2015-01-01

    Citrate is one of the most important organic acids in many fruits and its concentration plays a critical role in organoleptic properties. The regulation of citrate accumulation throughout fruit development, and the origins of the phenotypic variability of the citrate concentration within fruit species remain to be clarified. In the present study, we developed a process-based model of citrate accumulation based on a simplified representation of the TCA cycle to predict citrate concentration in fruit pulp during the pre- and post-harvest stages. Banana fruit was taken as a reference because it has the particularity of having post-harvest ripening, during which citrate concentration undergoes substantial changes. The model was calibrated and validated on the two stages, using data sets from three contrasting cultivars in terms of citrate accumulation, and incorporated different fruit load, potassium supply, and harvest dates. The model predicted the pre and post-harvest dynamics of citrate concentration with fairly good accuracy for the three cultivars. The model suggested major differences in TCA cycle functioning among cultivars during post-harvest ripening of banana, and pointed to a potential role for NAD-malic enzyme and mitochondrial malate carriers in the genotypic variability of citrate concentration. The sensitivity of citrate accumulation to growth parameters and temperature differed among cultivars during post-harvest ripening. Finally, the model can be used as a conceptual basis to study citrate accumulation in fleshy fruits and may be a powerful tool to improve our understanding of fruit acidity. PMID:26042830

  1. The Saccharomyces cerevisiae RNase mitochondrial RNA processing is critical for cell cycle progression at the end of mitosis.

    PubMed Central

    Cai, Ti; Aulds, Jason; Gill, Tina; Cerio, Michael; Schmitt, Mark E

    2002-01-01

    We have identified a cell cycle delay in Saccharomyces cerevisiae RNase MRP mutants. Mutants delay with large budded cells, dumbbell-shaped nuclei, and extended spindles characteristic of "exit from mitosis" mutants. In accord with this, a RNase MRP mutation can be suppressed by overexpressing the polo-like kinase CDC5 or by deleting the B-type cyclin CLB1, without restoring the MRP-dependent rRNA-processing step. In addition, we identified a series of genetic interactions between RNase MRP mutations and mutations in CDC5, CDC14, CDC15, CLB2, and CLB5. As in most "exit from mitosis" mutants, levels of the Clb2 cyclin were increased. The buildup of Clb2 protein is not the result of a defect in the release of the Cdc14 phosphatase from the nucleolus, but rather the result of an increase in CLB2 mRNA levels. These results indicate a clear role of RNase MRP in cell cycle progression at the end of mitosis. Conservation of this function in humans may explain many of the pleiotropic phenotypes of cartilage hair hypoplasia. PMID:12136008

  2. [Microbiological processes of the carbon and sulfur cycle in cold methane seeps in the North Atlantic].

    PubMed

    Pimenov, N V; Savvichev, A S; Rusanov, I I; Lein, A Iu; Ivanov, M V

    2000-01-01

    Functioning of microbial communities in surface sediments of the Haakon Mosby underwater mud volcano (lat. 72 degrees N) and in gas seepage fields of the Vestnesa Ridge was investigated using Mir-1 and Mir-2 deep-sea submersibles during the 40th expedition of the research vessel Academician Mstislav Keldysh. Large areas of sedimentary deposits of the Haakon Mosby mud volcano (HMMV) and pockmarks of the Vestnesa Ridge (VR) are covered with bacterial mats 0.1 to 0.5 cm thick. The microbial community making up bacterial mats of the HMMV was predominated by large filamentous bacteria with filaments measuring up to 100 microns in length and 2 to 8 microns in width. The occurrence of rosettes allowed the observed filamentous bacteria to be referred to the morphologically similar genera Leucothrix or Thiothrix. Three morphological types of filamentous bacteria were identified in bacterial mats covering VR pockmarks. Filaments of type one are morphologically similar with representatives of the genera Thioploca or Desmanthos. Type two filaments had numerous inclusions of sulfur and resembled representatives of the genus Thiothrix. The third morphological type was constituted by single filaments made up of tightly connected disk-like cells and can, apparently, be assigned to the genus Beggiatoa. The rates of methane oxidation (up to 1570 microliters C/(dm3 day)) and sulfate reduction (up to 17 mg S/(dm3 day)) measured in surface sediments of HMMV and VR were close to the maximum rates of these processes observed in badly polluted regions of the northwestern shelf of the Black Sea. High rates of microbiological processes correlated with the high number of bacteria. The rate of methane production in sediments studied was notably lower and ranged from 0.1 to 3.5 microliters CH4/(dm3 day). Large areas of the HMMV caldera were populated by pogonophoras, represented by the two species, Sclerolinum sp. and Oligobrachia sp. The mass development of Sclerolinum sp. in the HMMV caldera

  3. [Investigation of effect and process of nitric oxide removal in rotating drum biofilter coupled with absorption by Fe(II) (EDTA)].

    PubMed

    Chen, Jun; Yang, Xuan; Yu, Jian-Ming; Jiang, Yi-Feng; Chen, Jian-Meng

    2012-02-01

    In order to accelerate the NO removal efficiency, a novel and effective system was developed for the complete treatment of NO from flue gases. The system features NO absorption by Fe(II) (EDTA) and biological denitrification in a rotating drum biofilter (RDB) so as to promote biological reduction. The experimental results show that a moderate amount of Fe(II) (EDTA) was added to the nutrient solution to improve the mass transfer efficiency of NO from gas to liquid, with the concomitant formation of nitrosyl complex Fe(II) (EDTA)-NO. Under the experimental conditions of rotational speed was at 0.5 r x min(-1), EBRT of 57.7 s, temperature was at 30 degrees C, pH was 7-8, with the increasing concentration of Fe(II) (EDTA) was from 0 mg x L(-1) to 500 mg x L(-1), the NO removal efficiency was improved from 61.1% to 97.6%, and the elimination capacity was from 16.2 g (m3 x h)(-1) to 26.7 g (m3 x h)(-1). In order to simulate the denitrifying process of waste gas containing NO by using RDB coupled with Fe(II) (EDTA) absorption, a tie-in equation of NO removal and the Fe(II) (EDTA) concentration added in RDB was established. The experimental NO removal efficiency change tendency agrees fairly with that predicted by the proposed equation. PMID:22509594

  4. Development of advanced process-based model towards evaluation of boundless biogeochemical cycles in terrestrial-aquatic continuum

    NASA Astrophysics Data System (ADS)

    Nakayama, Tadanobu; Maksyutov, Shamil

    2014-05-01

    Recent research shows inland water may play some role in continental biogeochemical cycling though its contribution has remained uncertain due to a paucity of data (Battin et al. 2009). The author has developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2008a-b, 2010, 2011a-b, 2012a-c, 2013; Nakayama and Fujita, 2010; Nakayama and Hashimoto, 2011; Nakayama and Shankman, 2013a-b; Nakayama and Watanabe, 2004, 2006, 2008a-b; Nakayama et al., 2006, 2007, 2010, 2012), which incorporates surface-groundwater interactions, includes up- and down-scaling processes between local, regional and global scales, and can simulate iteratively nonlinear feedback between hydrologic, geomorphic, and ecological processes. In this study, NICE was extended to evaluate global hydrologic cycle by using various global datasets. The simulated result agreed reasonably with that in the previous research (Fan et al., 2013) and extended to clarify further eco-hydrological process in global scale. Then, NICE was further developed to incorporate the biogeochemical cycle including the reaction between inorganic and organic carbons (DOC, POC, DIC, pCO2, etc.) in the biosphere (terrestrial and aquatic ecosystems including surface water and groundwater). The model simulated the carbon cycle, for example, CO2 evasion from inland water in global scale, which is relatively in good agreement in that estimated by empirical relation using the previous pCO2 data (Aufdenkampe et al., 2011; Global River Chemistry Database, 2013). This simulation system would play important role in identification of full greenhouse gas balance of the biosphere and spatio-temporal hot spots in boundless biogeochemical cycle (Cole et al. 2007; Frei et al. 2012). References; Aufdenkampe, A.K., et al., Front. Ecol. Environ., doi:10.1890/100014, 2011. Battin, T.J., et al., Nat. Geosci., 2, 598-600, 2009. Cole, J.J. et al., Ecosystems, doi:10.1007/s10021-006-9013-8, 2007. Fan, Y. et al

  5. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, Vinod K.

    1990-01-01

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al.sub.x N.sub.y O.sub.z layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al.sub.x N.sub.y O.sub.z layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  6. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, V.K.

    1990-08-21

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications is disclosed. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al[sub x]N[sub y]O[sub z] layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al[sub x]N[sub y]O[sub z] layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  7. The revenue engine that could: "think you can" by refining the revenue cycle with the right people, processes, and tools.

    PubMed

    Pollock, Kim

    2013-01-01

    Many physicians continue to wrestle with an economy-in-recovery and declining reimbursements. In this business climate, practices can't afford reimbursement process mistakes and inefficiencies; they're simply too expensive. Just a few denied surgical claims can cost a practice thousands of dollars. That's the cost of the annual electronic health records license or the T1 line. Uncovering any and all opportunities to improve the speed and efficiency of getting paid can positively contribute to the bottom line. This article reiterates the basics and "best" practices for efficient revenue cycle operations. The goal is to have the right tasks performed by the right number of people at the right time and with the right tools to optimize revenue. PMID:23866660

  8. Biogeochemical cycles of Chernobyl-born radionuclides in the contaminated forest ecosystems: long-term dynamics of the migration processes

    NASA Astrophysics Data System (ADS)

    Shcheglov, Alexey; Tsvetnova, Ol'ga; Klyashtorin, Alexey

    2013-04-01

    Biogeochemical migration is a dominant factor of the radionuclide transport through the biosphere. In the early XX century, V.I. Vernadskii, a Russian scientist known, noted about a special role living things play in transport and accumulation of natural radionuclide in various environments. The role of biogeochemical processes in migration and redistribution of technogenic radionuclides is not less important. In Russia, V. M. Klechkovskii and N.V. Timofeev-Ressovskii showed some important biogeochemical aspects of radionuclide migration by the example of global fallout and Kyshtym accident. Their followers, R.M. Alexakhin, M.A. Naryshkin, N.V. Kulikov, F.A. Tikhomirov, E.B. Tyuryukanova, and others also contributed a lot to biogeochemistry of radionuclides. In the post-Chernobyl period, this area of knowledge received a lot of data that allowed building the radioactive element balance and flux estimation in various biogeochemical cycles [Shcheglov et al., 1999]. Regrettably, many of recent radioecological studies are only focused on specific radionuclide fluxes or pursue some applied tasks, missing the holistic approach. Most of the studies consider biogeochemical fluxes of radioactive isotopes in terms of either dose estimation or radionuclide migration rates in various food chains. However, to get a comprehensive picture and develop a reliable forecast of environmental, ecological, and social consequences of radioactive pollution in a vast contaminated area, it is necessary to investigate all the radionuclide fluxes associated with the biogeochemical cycles in affected ecosystems. We believe such an integrated approach would be useful to study long-term environmental consequences of the Fukushima accident as well. In our long-term research, we tried to characterize the flux dynamics of the Chernobyl-born radionuclides in the contaminated forest ecosystems and landscapes as a part of the integrated biogeochemical process. Our field studies were started in June of

  9. Role of exciton-phonon interactions and disordering processes in the formation of the absorption edge in Cu6P(S1- x Sex)5Br crystals

    NASA Astrophysics Data System (ADS)

    Studenyak, I. P.; Kranjcec, M.; Suslikov, L. M.; Kovacs, D. Sh.; Pan'ko, V. V.

    2002-04-01

    The absorption edge in Cu6P(S1- x Sex)5Br crystals has been studied for strong absorption in the temperature range of 77 330 K. The parameters of the Urbach absorption edge and exciton-phonon interactions in Cu6P(S1- x Sex)5Br crystals are determined and their effect on the composition disorder is studied.

  10. Absorption, electrodialysis and additional regeneration in two flue gas SO/sub 2//NO/sub x/ cleanup processes

    SciTech Connect

    Walker, R.J.; Pennline, H.W.

    1987-01-01

    Eleven potential adsorbents for use in the two processes were tested in a laboratory-scale bubble column. Best absorbent performance was obtained with iron EDTA in an ammonium sulfite/sulfate solution. Removals of greater than 95% were observed for SO/sub 2/, NO, and NO/sub 2/ from a simulated flue gas containing N/sub 2/, O/sub 2/, CO/sub 2/, SO/sub 2/, NO, and NO/sub 2/. Laboratory-scale electrodialysis tests of fresh scrubbing liquor revealed that iron EDTA tended to permeate through anion-selective membranes and thus deleteriously affected process performance. Screening tests with twelve types of anion-selective membranes showed that three had EDTA permeation rates that were acceptable for process operation. Two methods of regeneration with respect to the NO/sub x/-removal component were investigated. Thermal stripping did not appear successful for producing nitrogen oxides in the off-gas from the stripper. A thermal treatment of the spent liquor at 50/sup 0/C successfully regenerated iron EDTA. The mechanism is being investigated.

  11. Statistically meaningful data on the chemical state of ironprecipitates in processed multicrystalline silicon usingsynchrotron-based X-ray absorption spectroscopy

    SciTech Connect

    Buonassisi, T.; Heuer, M.; Istratov, A.A.; Weber, E.R.; Cai, Z.; Lai, B.; Marcus, M.; Lu, J.; Rozgonyi, G.; Schindler, R.; Jonczyk, R.; Rand, J.

    2004-11-08

    X-ray fluorescence microscopy (mu-XRF), x-ray beam induced current (XBIC), and x-ray absorption spectromicroscopy (mu-XAS) were performed on fully-processed Bay Six cast multicrystalline silicon and aluminum-gettered AstroPower Silicon-Film(TM) sheet material. Over ten iron precipitates--predominantly of iron silicide--were identified at low lifetime regions in both materials, both at grain boundaries and intragranular defects identified by XBIC. In addition, large (micron-sized) particles containing oxidized iron and other impurities (Ca, Cr, Mn) were found in BaySix material. The smaller iron silicide precipitates were more numerous and spatially distributed than their larger oxidized iron counterparts, and thus deemed more detrimental to minority carrier diffusion length.

  12. Lipids: Absorption and transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the hydrophobic nature of lipids, dietary fat is handled differently than protein or carbohydrate with respect with digestion and absorption. Dietary fats are broken down throughout the gastrointestinal system. A unique group of enzymes and cofactors allows this process to proceed in an eff...

  13. Absorption driven focus shift

    NASA Astrophysics Data System (ADS)

    Harrop, N.; Wolf, S.; Maerten, O.; Dudek, K.; Ballach, S.; Kramer, R.

    2016-03-01

    Modern high brilliance near infrared lasers have seen a tremendous growth in applications throughout the world. Increased productivity has been achieved by higher laser power and increased brilliance of lasers. Positive impacts on the performance and costs of parts are opposed to threats on process stability and quality, namely shift of focus position over time. A high initial process quality will be reduced by contamination of optics, eventually leading to a focus shift or even destruction of the optics. Focus analysis at full power of multi-kilowatt high brilliance lasers is a very demanding task because of high power densities in the spot and the high power load on optical elements. With the newly developed high power projection optics, the High-Power Micro-Spot Monitor High Brilliance (HP-MSM-HB) is able to measure focus diameter as low as 20 μm at power levels up to 10 kW at very low internal focus shift. A main driving factor behind thermally induced focus shift is the absorption level of the optical element. A newly developed measuring system is designed to determine the relative absorption level in reference to a gold standard. Test results presented show a direct correlation between absorption levels and focus shift. The ability to determine the absorption level of optical elements as well as their performance at full processing power before they are put to use, enables a high level of quality assurance for optics manufacturers and processing head manufacturers alike.

  14. Probing the many energy-transfer processes in the photosynthetic light-harvesting complex II at 77 K using energy-selective sub-picosecond transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Visser, H. M.; Kleima, F. J.; van Stokkum, I. H. M.; van Grondelle, R.; van Amerongen, H.

    1996-10-01

    The dynamics of energy equilibration in the main plant light-harvesting complex, LHCII, at a temperature of 77 K was probed using sub-picosecond excitation pulses at 649, 661, 672 and 682 nm and detection of the resulting difference absorption spectra from 630 to 700 nm. We find three distinct chlorophyll b to chlorophyll a (Chl a) transfer times, of < 0.3, 0.6 and 4-9 ps, respectively. From a comparison of the amplitudes of the bleaching signal, a plausible scheme for the Chl b to Chl a transfer in the LHCII complex is proposed. Two Chl b molecules transfer energy to Chl a in less than 0.3 ps, two Chl b molecules transfer with 0.6 ps and one Chl b has a transfer time of 4-9 ps. In the Chl a absorption region, a 2.4 ps energy-transfer process from a pigment absorbing around 661 nm, and a 0.4 ps process from a pigment absorbing around 672 nm is found. Furthermore, evidence is found for slow, 10-20 ps energy-transfer processes between some of the Chl a molecules. The data are compared to model calculations using the 3.4 Å LHCII monomer structure (containing 5 Chl b and 7 Chl a molecules) and Förster energy transfer. We conclude that the observed energy-transfer rates are consistent with both the preliminary assignment of the Chl identities ( a or b) of Kühlbrandt et al. and a recent proposal for the arrangement of some of the transition dipole moments (Gülen et al.). Singlet-singlet and singlet-triplet annihilation processes are observed in two different experiments, and both these processes occur with time constants of 2-3 and 12-20 ps, suggesting that both annihilation pathways are at least partly limited by slow energy transfer. The wide range of observed time constants in the equilibration, from < 0.3 to ˜ 20 ps, most likely reflects the irregular arrangement of the pigments in the complex, which shows much less symmetry than the recently obtained structure of the peripheral antenna complex of purple bacteria, LH-II (McDermott et al.).

  15. The Dimethylsulfide Cycle in the Eutrophied Southern North Sea: A Model Study Integrating Phytoplankton and Bacterial Processes

    PubMed Central

    Gypens, Nathalie; Borges, Alberto V.; Speeckaert, Gaelle; Lancelot, Christiane

    2014-01-01

    We developed a module describing the dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) dynamics, including biological transformations by phytoplankton and bacteria, and physico-chemical processes (including DMS air-sea exchange). This module was integrated in the MIRO ecological model and applied in a 0D frame in the Southern North Sea (SNS). The DMS(P) module is built on parameterizations derived from available knowledge on DMS(P) sources, transformations and sinks, and provides an explicit representation of bacterial activity in contrast to most of existing models that only include phytoplankton process (and abiotic transformations). The model is tested in a highly productive coastal ecosystem (the Belgian coastal zone, BCZ) dominated by diatoms and the Haptophyceae Phaeocystis, respectively low and high DMSP producers. On an annual basis, the particulate DMSP (DMSPp) production simulated in 1989 is mainly related to Phaeocystis colonies (78%) rather than diatoms (13%) and nanoflagellates (9%). Accordingly, sensitivity analysis shows that the model responds more to changes in the sulfur:carbon (S:C) quota and lyase yield of Phaeocystis. DMS originates equally from phytoplankton and bacterial DMSP-lyase activity and only 3% of the DMS is emitted to the atmosphere. Model analysis demonstrates the sensitivity of DMS emission towards the atmosphere to the description and parameterization of biological processes emphasizing the need of adequately representing in models both phytoplankton and bacterial processes affecting DMS(P) dynamics. This is particularly important in eutrophied coastal environments such as the SNS dominated by high non-diatom blooms and where empirical models developed from data-sets biased towards open ocean conditions do not satisfactorily predict the timing and amplitude of the DMS seasonal cycle. In order to predict future feedbacks of DMS emissions on climate, it is needed to account for hotspots of DMS emissions from coastal

  16. Fast and slow ion diffusion processes in lithium ion pouch cells during cycling observed with fiber optic strain sensors

    NASA Astrophysics Data System (ADS)

    Sommer, Lars Wilko; Kiesel, Peter; Ganguli, Anurag; Lochbaum, Alexander; Saha, Bhaskar; Schwartz, Julian; Bae, Chang-Jun; Alamgir, Mohamed; Raghavan, Ajay

    2015-11-01

    Cell monitoring for safe capacity utilization while maximizing pack life and performance is a key requirement for effective battery management and encouraging their adoption for clean-energy technologies. A key cell failure mode is the build-up of residual electrode strain over time, which affects both cell performance and life. Our team has been exploring the use of fiber optic (FO) sensors as a new alternative for cell state monitoring. In this present study, various charge-cycling experiments were performed on Lithium-ion pouch cells with a particular class of FO sensors, fiber Bragg gratings (FBGs), that were externally attached to the cells. An overshooting of the volume change at high SOC that recovers during rest can be observed. This phenomenon originates from the interplay between a fast and a slow Li ion diffusion process, which leads to non-homogeneous intercalation of Li ions. This paper focuses on the strain relaxation processes that occur after switching from charge to no-load phases. The correlation of the excess volume and subsequent relaxation to SOC as well as temperature is discussed. The implications of being able to monitor this phenomenon to control battery utilization for long life are also discussed.

  17. Technical Report: Investigation of Carbon Cycle Processes within a Managed Landscape: An Ecosystem Manipulation and Isotope Tracer Approach

    SciTech Connect

    Griffis, Timothy J; Baker, John M; Billmark, Kaycie

    2009-06-01

    The goal of this research is to provide a better scientific understanding of carbon cycle processes within an agricultural landscape characteristic of the Upper Midwest. This project recognizes the need to study processes at multiple spatial and temporal scales to reduce uncertainty in ecosystem and landscape-scale carbon budgets to provide a sound basis for shaping future policy related to carbon management. Specifically, this project has attempted to answer the following questions: 1. Would the use of cover crops result in a shift from carbon neutral to significant carbon gain in corn-soybean rotation ecosystems of the Upper Midwest? 2. Can stable carbon isotope analyses be used to partition ecosystem respiration into its autotrophic and heterotrophic components? 3. Can this partitioning be used to better understand the fate of crop residues to project changes in the soil carbon reservoir? 4. Are agricultural ecosystems of the Upper Midwest carbon neutral, sinks, or sources? Can the proposed measurement and modeling framework help address landscape-scale carbon budget uncertainties and help guide future carbon management policy?

  18. Geothermal Systems in Yellowstone National Park are Excellent Model Environments for Linking Microbial Processes and Geochemical Cycling

    NASA Astrophysics Data System (ADS)

    Inskeep, W. P.; Jay, Z.

    2008-12-01

    Geothermal systems in Yellowstone National Park (YNP) are geochemically diverse, span pH values from approximately 2 to 10, and generally contain a plethora of reduced constituents that may serve as electron donors for chemotrophic microorganisms. One of our long-term goals has been to determine linkages between geochemical processes and the distribution of microbial populations in high-temperature environments, where geochemical conditions often constrain microbial community diversity. Although geochemical characteristics vary greatly across the world's largest geothermal basin, there exist key geochemical attributes that are likely most important for defining patterns in microbial distribution. For example, excellent model systems exist in YNP, where the predominant geochemical and microbial processes are focused on either S species and or Fe-oxidation-reduction. In such cases, we hypothesize that genetic diversity and functional gene content will link directly with habitat parameters. Several cases studies will be presented where pilot metagenomic data (random shotgun sequencing of environmental DNA) was used to identify key functional attributes and confirm that specific patterns of microbial distribution are indeed reflected in other gene loci besides the 16S rRNA gene. These model systems are excellent candidates for elucidating definitive linkages between S, As, and or Fe cycling, genomics and microbial regulation.

  19. HTGR-process steam/cogeneration and HTGR-steam cycle program. Semiannual report, October 1, 1979-March 31, 1980

    SciTech Connect

    Not Available

    1980-09-01

    Progress in the design of an 1170-MW(t) High-Temperature Gas-Cooled Reactor (HTGR) Nuclear Steam Supply (NSS) is described. This NSS can integrate favorably into present petrochemical and primary metal process industries, heavy oil recovery operations, and future shale oil recovery and synfuel processes. The economics appear especially attractive in comparison with alternative coal-fired steam generation. Cost estimates for central station power-generating 2240- and 3360-MW(t) HTGR-Steam Cycle (HTGR-SC) plants are updated. The 2240-MW(t) HTGR-SC is treated to a probabilistic risk evaluation. Compared with the earlier 3000-MW(t) design, the results predict a slightly increased risk of core heatup, owing to the result of eliminating the capability of the boiler feed pump to operate at atmospheric backpressure. The differences in risk, however, are within the calculational uncertainties. Preliminary results of the ranking of safety enhancement features for the 1170-MW(t) HTGR indicate that the following modifications offer the most promise: (1) capability for main loop rundown, (2) natural circulation core auxiliary cooling, and (3) PCRV blowdown capability through the helium purification system to minimize activity release during some core heatups.

  20. [Neutrophilic lithotrophic iron-oxidizing prokaryotes and their role in the biogeochemical processes of the iron cycle].

    PubMed

    Dubinina, G A; Sorokina, A Iu

    2014-01-01

    Biology of lithotrophic neutrophilic iron-oxidizing prokaryotes and their role in the processes of the biogeochemical cycle of iron are discussed. This group of microorganisms is phylogenetically, taxonomically, and physiologically heterogeneous, comprising three metabolically different groups: aerobes, nitrate-dependent anaerobes, and phototrophs; the latter two groups have been revealed relatively recently. Their taxonomy and metabolism are described. Materials on the structure and functioning of the electron transport chain in the course of Fe(II) oxidation by members of various physiological groups are discussed. Occurrence of iron oxidizers in freshwater and marine ecosystems, thermal springs, areas of hydrothermal activity, and underwater volcanic areas are considered. Molecular genetic techniques were used to determine the structure of iron-oxidizing microbial communities in various natural ecosystems. Analysis of stable isotope fractioning of 56/54Fe in pure cultures and model experiments revealed predominance of biological oxidation over abiotic ones in shallow aquatic habitats and mineral springs, which was especially pronounced under microaerobic conditions at the redox zone boundary. Discovery of anaerobic bacterial Fe(II) oxidation resulted in development of new hypotheses concerning the possible role of microorganisms and the mechanisms of formation of the major iron ore deposits in Precambrian and early Proterozoic epoch. Paleobiological data are presented on the microfossils and specific biomarkers retrieved from ancient ore samples and confirming involvement of anaerobic biogenic processes in their formation. PMID:25423717

  1. [Neutrophilic lithotrophic iron-oxidizing prokaryotes and their role in the biogeochemical processes of the iron cycle].

    PubMed

    2014-01-01

    Biology of lithotrophic neutrophilic iron-oxidizing prokaryotes and their role in the processes of the biogeochemical cycle of iron are discussed. This group of microorganisms is phylogenetically, taxonomically, and physiologically heterogeneous, comprising three metabolically different groups: aerobes, nitrate-dependent anaerobes, and phototrophs; the latter two groups have been revealed relatively recently. Their taxonomy and metabolism are described. Materials on the structure and functioning of the electron transport chain in the course of Fe(II) oxidation by members of various physiological groups are discussed. Occurrence of iron oxidizers in freshwater and marine ecosystems, thermal springs, areas of hydrothermal activity, and underwater volcanic areas are considered. Molecular genetic techniques were used to determine the structure of iron-oxidizing microbial communities in various natural ecosystems. Analysis of stable isotope fractioning of 56/54Fe in pure cultures and model experiments revealed predominance of biological oxidation over abiotic ones in shallow aquatic habitats and mineral springs, which was especially pronounced under microaerobic conditions at the redox zone boundary. Discovery of anaerobic bacterial Fe(II) oxidation resulted in development of new hypotheses concerning the possible role of microorganisms and the mechanisms of formation of the major iron ore deposits in Precambrian and early Proterozoic epoch. Paleobiological data are presented on the microfossils and specific biomarkers retrieved from ancient ore samples and confirming involvement of anaerobic biogenic processes in their formation. PMID:25507440

  2. Life cycle assessment of hydrogen production from S-I thermochemical process coupled to a high temperature gas reactor

    SciTech Connect

    Giraldi, M. R.; Francois, J. L.; Castro-Uriegas, D.

    2012-07-01

    The purpose of this paper is to quantify the greenhouse gas (GHG) emissions associated to the hydrogen produced by the sulfur-iodine thermochemical process, coupled to a high temperature nuclear reactor, and to compare the results with other life cycle analysis (LCA) studies on hydrogen production technologies, both conventional and emerging. The LCA tool was used to quantify the impacts associated with climate change. The product system was defined by the following steps: (i) extraction and manufacturing of raw materials (upstream flows), (U) external energy supplied to the system, (iii) nuclear power plant, and (iv) hydrogen production plant. Particular attention was focused to those processes where there was limited information from literature about inventory data, as the TRISO fuel manufacture, and the production of iodine. The results show that the electric power, supplied to the hydrogen plant, is a sensitive parameter for GHG emissions. When the nuclear power plant supplied the electrical power, low GHG emissions were obtained. These results improve those reported by conventional hydrogen production methods, such as steam reforming. (authors)

  3. Developmental Processes in Peer Problems of Children with ADHD in the MTA Study1: Developmental Cascades and Vicious Cycles

    PubMed Central

    Murray-Close, Dianna; Hoza, Betsy; Hinshaw, Stephen P.; Arnold, L Eugene; Swanson, James; Jensen, Peter S.; Hechtman, Lily; Wells, Karen

    2010-01-01

    We examined the developmental processes involved in peer problems among children (M age = 10.41 years) previously diagnosed with ADHD at study entry (N = 536) and a comparison group (N = 284). Participants were followed over a 6-year period ranging from middle childhood to adolescence. At four assessment periods, measures of aggression, social skills, positive illusory biases (in the social and behavioral domains), and peer rejection were assessed. Results indicated that children from the ADHD group exhibited difficulties in each of these areas at the first assessment. Moreover, there were vicious cycles among problems over time. For example, peer rejection was related to impaired social skills, which in turn predicted later peer rejection. Problems also tended to “spill over” into other areas, which in turn compromised functioning in additional areas across development, leading to cascading effects over time. The findings held even when controlling for age and were similar for males and females, the ADHD and comparison groups, and among ADHD treatment groups. The results suggest that the peer problems among children with and without ADHD may reflect similar processes; however, children with ADHD exhibit greater difficulties negotiating important developmental tasks. Implications for interventions are discussed. PMID:20883582

  4. Evaluation of process- and input-output-based life cycle inventory data with regard to truncation and aggregation issues.

    PubMed

    Majeau-Bettez, Guillaume; Strømman, Anders Hammer; Hertwich, Edgar G

    2011-12-01

    Life cycle assessments (LCA) and environmentally extended input-output (EEIO) analyses both strive to account for direct and indirect environmental impacts of goods and services. Different methods have been developed to hybridize these two techniques and minimize the impact of their respective shortcomings on final assessments. These weaknesses, however, have not been extensively studied in a quantitative manner, especially not for complete LCA and EEIO databases. To this end, we jointly analyzed process-based and input-output-based data sets. We first evaluated their complementarity. Though the LCA data was more detailed overall, some sectors of the economy were more precisely represented in the EEIO database. We then contrasted the representation of the different economic sectors in the LCA database with the economic, environmental, and structural importance of these sectors. The weakness of the correlation results led us to conclude that process-inventory efforts have not been systematically directed at the most important sectors of the economy. The LCA data was also used to evaluate the sensitivity of EEIO data to aggregation uncertainty. This sensitivity proved highly inhomogeneous. We conclude the presence of important research inefficiencies stemming from the lack of hybrid perspective in the compilation of LCA and EEIO data. PMID:22060273

  5. The study of potable water treatment process in Algeria (boudouaou station) -by the application of life cycle assessment (LCA)

    PubMed Central

    2013-01-01

    Environmental impact assessment will soon become a compulsory phase in future potable water production projects, in algeria, especially, when alternative treatment processes such sedimentation ,coagulation sand filtration and Desinfection are considered. An impact assessment tool is therefore developed for the environmental evaluation of potable water production. in our study The evaluation method used is the life cycle assessment (LCA) for the determination and evaluation of potential impact of a drink water station ,near algiers (SEAL-Boudouaoua). LCA requires both the identification and quantification of materials and energy used in all stages of the product’s life, when the inventory information is acquired, it will then be interpreted into the form of potential impact “ eco-indicators 99” towards study areas covered by LCA, using the simapro6 soft ware for water treatment process is necessary to discover the weaknesses in the water treatment process in order for it to be further improved ensuring quality life. The main source shown that for the studied water treatment process, the highest environmental burdens are coagulant preparation (30% for all impacts), mineral resource and ozone layer depletion the repartition of the impacts among the different processes varies in comparison with the other impacts. Mineral resources are mainly consumed during alumine sulfate solution preparation; Ozone layer depletion originates mostly from tetrachloromethane emissions during alumine sulfate production. It should also be noted that, despite the small doses needed, ozone and active Carbone treatment generate significant impacts with a contribution of 10% for most of the impacts. Moreover impacts of energy are used in producing pumps (20-25 GHC) for plant operation and the unitary processes (coagulation, sand filtration decantation) and the most important impacts are localized in the same equipment (40-75 GHC) and we can conclude that: – Pre-treatment, pumping and

  6. The study of potable water treatment process in Algeria (boudouaou station) -by the application of life cycle assessment (LCA).

    PubMed

    Mohamed-Zine, Messaoud-Boureghda; Hamouche, Aksas; Krim, Louhab

    2013-01-01

    Environmental impact assessment will soon become a compulsory phase in future potable water production projects, in algeria, especially, when alternative treatment processes such sedimentation ,coagulation sand filtration and Desinfection are considered. An impact assessment tool is therefore developed for the environmental evaluation of potable water production. in our study The evaluation method used is the life cycle assessment (LCA) for the determination and evaluation of potential impact of a drink water station ,near algiers (SEAL-Boudouaoua).LCA requires both the identification and quantification of materials and energy used in all stages of the product's life, when the inventory information is acquired, it will then be interpreted into the form of potential impact " eco-indicators 99" towards study areas covered by LCA, using the simapro6 soft ware for water treatment process is necessary to discover the weaknesses in the water treatment process in order for it to be further improved ensuring quality life. The main source shown that for the studied water treatment process, the highest environmental burdens are coagulant preparation (30% for all impacts), mineral resource and ozone layer depletion the repartition of the impacts among the different processes varies in comparison with the other impacts. Mineral resources are mainly consumed during alumine sulfate solution preparation; Ozone layer depletion originates mostly from tetrachloromethane emissions during alumine sulfate production. It should also be noted that, despite the small doses needed, ozone and active Carbone treatment generate significant impacts with a contribution of 10% for most of the impacts.Moreover impacts of energy are used in producing pumps (20-25 GHC) for plant operation and the unitary processes (coagulation, sand filtration decantation) and the most important impacts are localized in the same equipment (40-75 GHC) and we can conclude that:- Pre-treatment, pumping and EDR (EDR: 0

  7. Application of nonlinear absorption properties and light adaptation process in the polymer films based on bacteriorhodopsin for the low-power optical signal processing

    NASA Astrophysics Data System (ADS)

    Korchemskaya, Elena Y.; Soskin, Marat S.

    1994-01-01

    Experimental and theoretical investigations were made of the characteristics of nonlinear transmission and light adaptation processes of polymer films based on bacteriorhodopsin (BR). It was found that media containing BR can be used to enhance the contrast of low-power signals for realization of the connection structure of the neural network.

  8. The nitrogen cycle: Atmosphere interactions

    NASA Technical Reports Server (NTRS)

    Levine, J. S.

    1984-01-01

    Atmospheric interactions involving the nitrogen species are varied and complex. These interactions include photochemical reactions, initiated by the absorption of solar photons and chemical kinetic reactions, which involve both homogeneous (gas-to-gas reactions) and heterogeneous (gas-to-particle) reactions. Another important atmospheric interaction is the production of nitrogen oxides by atmospheric lightning. The nitrogen cycle strongly couples the biosphere and atmosphere. Many nitrogen species are produced by biogenic processes. Once in the atmosphere nitrogen oxides are photochemically and chemically transformed to nitrates, which are returned to the biosphere via precipitation, dry deposition and aerosols to close the biosphere-atmosphere nitrogen cycle. The sources, sinks and photochemistry/chemistry of the nitrogen species; atmospheric nitrogen species; souces and sinks of nitrous oxide; sources; sinks and photochemistry/chemistry of ammonia; seasonal variation of the vertical distribution of ammonia in the troposphere; surface and atmospheric sources of the nitrogen species, and seasonal variation of ground level ammonia are summarized.

  9. Theory of strong-field attosecond transient absorption

    NASA Astrophysics Data System (ADS)

    Wu, Mengxi; Chen, Shaohao; Camp, Seth; Schafer, Kenneth J.; Gaarde, Mette B.

    2016-03-01

    Attosecond transient absorption is one of the promising new techniques being developed to exploit the availability of sub-femtosecond extreme ultraviolet (XUV) pulses to study the dynamics of the electron on its natural time scale. The temporal resolution in a transient absorption setup comes from the control of the relative delay and coherence between pump and probe pulses, while the spectral resolution comes from the characteristic width of the features that are being probed. In this review we focus on transient absorption scenarios where an attosecond pulse of XUV radiation creates a broadband excitation that is subsequently probed by a few cycle infrared (IR) laser. Because the attosecond XUV pulses are locked to the IR field cycle, the exchange of energy in the laser-matter interaction can be studied with unprecedented precision. We focus on the transient absorption by helium atoms of XUV radiation around the first ionization threshold, where we can simultaneoulsy solve the time-dependent Schrödinger equation for the single atom response and the Maxwell wave equation for the collective response of the nonlinear medium. We use a time-domain method that allows us to treat on an equal footing all the different linear and nonlinear processes by which the medium can exchange energy with the fields. We present several simple models, based on a few-level system interacting with a strong IR field, to explain many of the novel features found in attosecond transient absorption spectrograms. These include the presence of light-induced states, which demonstrate the ability to probe the dressed states of the atom. We also present a time-domain interpretation of the resonant pulse propagation features that appear in absorption spectra in dense, macroscopic media. We close by reviewing several recent experimental results that can be explained in terms of the models we discuss. Our aim is to present a road map for understanding future attosecond transient absorption

  10. Absorption Spectroscopy, Emissive Properties, and Ultrafast Intersystem Crossing Processes in Transition Metal Complexes: TD-DFT and Spin-Orbit Coupling.

    PubMed

    Daniel, Chantal

    2016-01-01

    Absorption spectroscopy, emissive properties, and ultrafast intersystem crossing processes in transition metal complexes are discussed in the light of recent developments in time-dependent density functional theory (TD-DFT), spin-orbit coupling (SOC) effects, and non-adiabatic excited states dynamics. Methodological highlights focus on spin-orbit and vibronic couplings and on the recent strategies available for simulating ultra-fast intersystem crossings (ISC).The role of SOC in the absorption spectroscopy of third-row transition metal complexes is illustrated by two cases studies, namely Ir(III) phenyl pyridine and Re(I) carbonyl bipyridine complexes.The problem of luminescence decay in third-row transition metal complexes handled by TD-DFT linear and quadratic response theories including SOC is exemplified by three studies: (1) the phosphorescence of Ir(III) complexes from the lowest triplet state; (2) the emissive properties of square planar Pt(II) complexes with bidentate and terdentate ligands characterized by low-lying metal-to-ligand-charge-transfer (MLCT) and metal-centered (MC) states; and (3) the ultra-fast luminescence decay of Re(I) carbonyl bipyridine halides via low-lying singlet and triplet charge transfer states delocalized over the bipyridine and the halide ligands.Ultrafast ISC occurring in spin crossover [Fe (bpy)3]2+, in [Ru (bpy)3]2+, and [Re (Br)(CO)3(bpy] complexes are deciphered thanks to recent developments based on various approaches, namely non-radiative rate theory within the Condon approximation, non-adiabatic surface hopping molecular dynamics, and quantum wave packet dynamics propagation. PMID:26129697

  11. The economics of solar powered absorption cooling

    NASA Technical Reports Server (NTRS)

    Bartlett, J. C.

    1978-01-01

    Analytic procedure evaluates cost of combining absorption-cycle chiller with solar-energy system in residential or commercial application. Procedure assumes that solar-energy system already exists to heat building and that cooling system must be added. Decision is whether to cool building with conventional vapor-compression-cycle chiller or to use solar-energy system to provide heat input to absorption chiller.

  12. Performance improvement of GaN-based metal-semiconductor-metal photodiodes grown on Si(111) substrate by thermal cycle annealing process

    NASA Astrophysics Data System (ADS)

    Lin, Jyun-Hao; Huang, Shyh-Jer; Su, Yan-Kuin

    2014-01-01

    A simple thermal cycle annealing (TCA) process was used to improve the quality of GaN grown on a Si substrate. The X-ray diffraction (XRD) and etch pit density (EPD) results revealed that using more process cycles, the defect density cannot be further reduced. However, the performance of GaN-based metal-semiconductor-metal (MSM) photodiodes (PDs) prepared on Si substrates showed significant improvement. With a two-cycle TCA process, it is found that the dark current of the device was only 1.46 × 10-11 A, and the photo-to-dark-current contrast ratio was about 1.33 × 105 at 5 V. Also, the UV/visible rejection ratios can reach as high as 1077.

  13. Multivariate curve resolution applied to in situ X-ray absorption spectroscopy data: an efficient tool for data processing and analysis.

    PubMed

    Voronov, Alexey; Urakawa, Atsushi; van Beek, Wouter; Tsakoumis, Nikolaos E; Emerich, Hermann; Rønning, Magnus

    2014-08-20

    Large datasets containing many spectra commonly associated with in situ or operando experiments call for new data treatment strategies as conventional scan by scan data analysis methods have become a time-consuming bottleneck. Several convenient automated data processing procedures like least square fitting of reference spectra exist but are based on assumptions. Here we present the application of multivariate curve resolution (MCR) as a blind-source separation method to efficiently process a large data set of an in situ X-ray absorption spectroscopy experiment where the sample undergoes a periodic concentration perturbation. MCR was applied to data from a reversible reduction-oxidation reaction of a rhenium promoted cobalt Fischer-Tropsch synthesis catalyst. The MCR algorithm was capable of extracting in a highly automated manner the component spectra with a different kinetic evolution together with their respective concentration profiles without the use of reference spectra. The modulative nature of our experiments allows for averaging of a number of identical periods and hence an increase in the signal to noise ratio (S/N) which is efficiently exploited by MCR. The practical and added value of the approach in extracting information from large and complex datasets, typical for in situ and operando studies, is highlighted. PMID:25086889

  14. Pathway of FeEDTA transformation and its impact on performance of NOx removal in a chemical absorption-biological reduction integrated process

    PubMed Central

    Li, Wei; Zhao, Jingkai; Zhang, Lei; Xia, Yinfeng; Liu, Nan; Li, Sujing; Zhang, Shihan

    2016-01-01

    A novel chemical absorption-biological reduction (CABR) integrated process, employing ferrous ethylenediaminetetraacetate (Fe(II)EDTA) as a solvent, is deemed as a potential option for NOx removal from the flue gas. Previous work showed that the Fe(II)EDTA concentration was critical for the NOx removal in the CABR process. In this work, the pathway of FeEDTA (Fe(III)/Fe(II)-EDTA) transformation was investigated to assess its impact on the NOx removal in a biofilter. Experimental results revealed that the FeEDTA transformation involved iron precipitation and EDTA degradation. X-ray photoelectron spectroscopy analysis confirmed the iron was precipitated in the form of Fe(OH)3. The iron mass balance analysis showed 44.2% of the added iron was precipitated. The EDTA degradation facilitated the iron precipitation. Besides chemical oxidation, EDTA biodegradation occurred in the biofilter. The addition of extra EDTA helped recover the iron from the precipitation. The transformation of FeEDTA did not retard the NO removal. In addition, EDTA rather than the iron concentration determined the NO removal efficiency. PMID:26743930

  15. Thermochemical cycles

    NASA Technical Reports Server (NTRS)

    Funk, J. E.; Soliman, M. A.; Carty, R. H.; Conger, W. L.; Cox, K. E.; Lawson, D.

    1975-01-01

    The thermochemical production of hydrogen is described along with the HYDRGN computer program which attempts to rate the various thermochemical cycles. Specific thermochemical cycles discussed include: iron sulfur cycle; iron chloride cycle; and hybrid sulfuric acid cycle.

  16. An Analysis of the Impact of the Federal Budgetary Cycle Upon the NASA Manned Spacecraft Center Research and Development Budget Formulation Process

    NASA Technical Reports Server (NTRS)

    Peterson, Ronald Keith

    1966-01-01

    The subsequent dissertation represents an analysis of the impact of the Federal Budgetary Cycle upon the National Aeronautics and Space Administration (NASA) Manned Spacecraft Center (MSC) Research and Development (R&D) budget formulation process. The author's objectives may therefore be seen as the following: (1) to analyze the Federal Budgetary Cycle; (2) to analyze MSC R&D estimates and growth trends in relation to their implications on the Federal Cycle; (3) to identify relevant problems; and, (4) to-recommend solutions which display promise and feasibility. Any research involving the Federal Budgetary Cycle can well be characterized as of almost infinite scope and enormous complexity. For such reasons one must meticulously delineate all operational parameters and there-afore maintain their integrity. To do otherwise is to invite intellectual dilution and hazard a paltry effort.

  17. The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts

    NASA Astrophysics Data System (ADS)

    Vihma, Timo; Screen, James; Tjernström, Michael; Newton, Brandi; Zhang, Xiangdong; Popova, Valeria; Deser, Clara; Holland, Marika; Prowse, Terry

    2016-03-01

    Atmospheric humidity, clouds, precipitation, and evapotranspiration are essential components of the Arctic climate system. During recent decades, specific humidity and precipitation have generally increased in the Arctic, but changes in evapotranspiration are poorly known. Trends in clouds vary depending on the region and season. Climate model experiments suggest that increases in precipitation are related to global warming. In turn, feedbacks associated with the increase in atmospheric moisture and decrease in sea ice and snow cover have contributed to the Arctic amplification of global warming. Climate models have captured the overall wetting trend but have limited success in reproducing regional details. For the rest of the 21st century, climate models project strong warming and increasing precipitation, but different models yield different results for changes in cloud cover. The model differences are largest in months of minimum sea ice cover. Evapotranspiration is projected to increase in winter but in summer to decrease over the oceans and increase over land. Increasing net precipitation increases river discharge to the Arctic Ocean. Over sea ice in summer, projected increase in rain and decrease in snowfall decrease the surface albedo and, hence, further amplify snow/ice surface melt. With reducing sea ice, wind forcing on the Arctic Ocean increases with impacts on ocean currents and freshwater transport out of the Arctic. Improvements in observations, process understanding, and modeling capabilities are needed to better quantify the atmospheric role in the Arctic water cycle and its changes.

  18. Influence of physical and biological processes on the seasonal cycle of biogenic flux in the equatorial Indian Ocean

    NASA Astrophysics Data System (ADS)

    Vidya, P. J.; Prasanna Kumar, S.; Gauns, M.; Verenkar, A.; Unger, D.; Ramaswamy, V.

    2013-11-01

    Seasonal cycle of biogenic fluxes obtained from sediment trap at two locations 5°24' N, 86°46' E (southern Bay of Bengal trap; SBBT) and 3°34' N, 77°46' E (equatorial Indian Ocean trap; EIOT) within the equatorial Indian Ocean (EIO) were examined to understand the factors that control them. The sediment trap data at SBBT was collected for ten years from November 1987 while that at EIOT was for a one year period from January 1996. The characteristic of biogenic flux at SBBT was the strong seasonality with peak flux in August, while lack of seasonality characterised the flux at EIOT. The high chlorophyll biomass at the SBBT during the summer monsoon was supported by a combination of processes such as wind-mixing and advection, both of which supplied new nitrogen to the upper ocean. In contrast, the elevated chlorophyll at EIOT during summer monsoon was supported only by wind mixing. High cell counts of phytoplankton (> 5 μm) at SBBT dominated by diatoms suggest the operation of classical food web and high carbon export. On the contrary, dominance of pico-phytoplankton and one-and-a-half time higher magnitude of micro-zooplankton biomass along with 2-fold lesser meso-zooplankton at EIOT indicated the importance of microbial loop. The substantial decrease in the carbon export at EIOT indicated faster remineralization of photosynthetically produced organic matter.

  19. Hydrologic controls on nitrogen cycling processes and functional gene abundance in sediments of a groundwater flow-through lake

    USGS Publications Warehouse

    Stoliker, Deborah L.; Repert, Deborah A.; Smith, Richard L.; Song, Bongkeun; LeBlanc, Denis R.; McCobb, Timothy D.; Conaway, Christopher; Hyun, Sung Pil; Koh, Dong-Chan; Moon, Hee Sun; Kent, Douglas B.

    2016-01-01

    The fate and transport of inorganic nitrogen (N) is a critically important issue for human and aquatic ecosystem health because discharging N-contaminated groundwater can foul drinking water and cause algal blooms. Factors controlling N-processing were examined in sediments at three sites with contrasting hydrologic regimes at a lake on Cape Cod, MA. These factors included water chemistry, seepage rates and direction of groundwater flow, and the abundance and potential rates of activity of N-cycling microbial communities. Genes coding for denitrification, anaerobic ammonium oxidation (anammox), and nitrification were identified at all sites regardless of flow direction or groundwater dissolved oxygen concentrations. Flow direction was, however, a controlling factor in the potential for N-attenuation via denitrification in the sediments. Potential rates of denitrification varied from 6 to 4500 pmol N/g/h from the inflow to the outflow side of the lake, owing to fundamental differences in the supply of labile organic matter. The results of laboratory incubations suggested that when anoxia and limiting labile organic matter prevailed, the potential existed for concomitant anammox and denitrification. Where oxic lake water was downwelling, potential rates of nitrification at shallow depths were substantial (1640 pmol N/g/h). Rates of anammox, denitrification, and nitrification may be linked to rates of organic N-mineralization, serving to increase N-mobility and transport downgradient.

  20. Life cycle assessment of the transesterification double step process for biodiesel production from refined soybean oil in Brazil.

    PubMed

    Carvalho, Monica; da Silva, Elson Santos; Andersen, Silvia L F; Abrahão, Raphael

    2016-06-01

    Biodiesel has been attracting considerable attention as being a renewable, biodegradable, and nontoxic fuel that can contribute to the solution of some energy issues as it presents potential to help mitigate climate change. The Life Cycle Assessment of biodiesel from soybean oil (transesterification double step process) was carried out herein. A pilot plant was considered, designed to produce 72 L of biodiesel in daily continuous flow, throughout a lifetime of 15 years (8000 annual hours). The materials and equipment utilized in the construction of the plant were considered as well as the energy and substances required for the production of biodiesel. Environmental impact assessment method IPCC 2013 GWP 100a was utilized within the SimaPro software to express the final result in kg CO2-equivalent. The results quantified the CO2 emissions associated with biodiesel production throughout the lifetime of the production plant (15 years), resulting in a total value of 1,441,426.05 kg CO2-eq. (96,095.07 kg CO2-eq. per year), which was equivalent to 4.01 kg CO2-eq. per liter of biodiesel produced. Decrease of environmental loads associated with the production of biodiesel could include improvements on the handling of biomass agriculture and on the technology production of biodiesel. PMID:26903132

  1. Hydrologic Controls on Nitrogen Cycling Processes and Functional Gene Abundance in Sediments of a Groundwater Flow-Through Lake.

    PubMed

    Stoliker, Deborah L; Repert, Deborah A; Smith, Richard L; Song, Bongkeun; LeBlanc, Denis R; McCobb, Timothy D; Conaway, Christopher H; Hyun, Sung Pil; Koh, Dong-Chan; Moon, Hee Sun; Kent, Douglas B

    2016-04-01

    The fate and transport of inorganic nitrogen (N) is a critically important issue for human and aquatic ecosystem health because discharging N-contaminated groundwater can foul drinking water and cause algal blooms. Factors controlling N-processing were examined in sediments at three sites with contrasting hydrologic regimes at a lake on Cape Cod, MA. These factors included water chemistry, seepage rates and direction of groundwater flow, and the abundance and potential rates of activity of N-cycling microbial communities. Genes coding for denitrification, anaerobic ammonium oxidation (anammox), and nitrification were identified at all sites regardless of flow direction or groundwater dissolved oxygen concentrations. Flow direction was, however, a controlling factor in the potential for N-attenuation via denitrification in the sediments. Potential rates of denitrification varied from 6 to 4500 pmol N/g/h from the inflow to the outflow side of the lake, owing to fundamental differences in the supply of labile organic matter. The results of laboratory incubations suggested that when anoxia and limiting labile organic matter prevailed, the potential existed for concomitant anammox and denitrification. Where oxic lake water was downwelling, potential rates of nitrification at shallow depths were substantial (1640 pmol N/g/h). Rates of anammox, denitrification, and nitrification may be linked to rates of organic N-mineralization, serving to increase N-mobility and transport downgradient. PMID:26967929

  2. Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds: Implications for oceanic isotope cycles and the sedimentary record

    NASA Astrophysics Data System (ADS)

    Aller, Robert C.; Madrid, Vanessa; Chistoserdov, Andrei; Aller, Josephine Y.; Heilbrun, Christina

    2010-08-01

    Sedimentary S cycling is usually conceptualized and interpreted within the context of steadily accreting (1-D) transport-reaction regimes. Unsteady processes, however, are common in many sedimentary systems and can result in dramatically different S reaction balances and diagenetic products than steady conditions. Globally important common examples include tropical deltaic topset and inner shelf muds such as those extending from the Amazon River ˜1600 km along the Guianas coast of South America. These deposits are characterized by episodic reworking of the surface seabed over vertical depths of ˜0.1-3 m. Reworked surface sediments act as unsteady, suboxic batch reactors, unconformably overlying relict anoxic, often methanic deposits, and have diagenetic properties largely decoupled from net accumulation of sediment. Despite well-oxygenated water and an abundant reactive organic matter supply, physical disturbance inhibits macrofauna, and benthic communities are dominated by microbial biomass across immense areas. In the surficial suboxic layer, molecular biological analyses, tracer experiments, sediment C/S/Fe compositions, and δ 34S, δ 18O of pore water SO42- indicate close coupling of anaerobic C, S, and Fe cycles. δ 18O- SO42- can increase by 2-3‰ during anaerobic recycling without net change in δ 34S- SO42-, demonstrating SO42- reduction coupled to complete anaerobic reoxidation to SO42- and a δ 18O- SO42- reduction + reoxidation fractionation factor⩾12‰ (summed magnitudes). S reoxidation must be coupled to Fe-oxide reduction, contributing to high dissolved Fe 2+ (˜1 mM) and Fe mobilization-export. The reworking of Amazon-Guianas shelf muds alone may isotopically alter δ 18O- SO42- equivalent in mass to⩾25% of the annual riverine delivery of SO42- to the global ocean. Unsteady conditions result in preservation of unusually heavy δ 34S isotopic compositions of residual Cr reducible S, ranging from 0‰ to >30‰ in physically reworked deposits

  3. Solvent induced channel interference in the two-photon absorption process--a theoretical study with a generalized few-state-model in three dimensions.

    PubMed

    Alam, Md Mehboob; Chattopadhyaya, Mausumi; Chakrabarti, Swapan

    2012-01-21

    For the first time, we report the effect of interference between different optical channels on the two-photon absorption (TPA) process in three dimensions. We have employed response theory as well as a sum-over-states (SOS) approach involving few intermediate states to calculate the TPA parameters like transition probabilities (δ(TP)) and TPA tensor elements. In order to use the limited SOS approach, we have derived a new formula for a generalized few-state-model (GFSM) in three dimensions. Due to the presence of additional terms related to the angle between different transition moment vectors, the channel interference associated with the TPA process in 3D is significantly different and much more complicated than that in 1D and 2D cases. The entire study has been carried out on the two simplest Reichardt's dyes, namely 2- and 4-(pyridinium-1-yl)-phenolate (ortho- and para-betain) in gas phase, THF, CH(3)CN and water solvents. We have meticulously inspected the effect of the additional angle related terms on the overall TPA transition probabilities of the two 3D isomeric molecules studied and found that the interfering terms involved in the δ(TP) expression contribute both constructively and destructively as well to the overall δ(TP) value. Moreover, the interfering term has a more conspicuous role in determining the net δ(TP) associated with charge transfer transition in comparison to that of π-π* transition of the studied systems. Interestingly, our model calculations suggest that, for o- and p-betain, the quenching of destructive interference associated with a particular two-photon process can be done with high polarity solvents while the enhancement of constructive interference will be achieved in solvents having relatively small polarity. All the one- and two-photon parameters are evaluated using a range separated CAMB3LYP functional. PMID:22127437

  4. Rotary absorption heat pump sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Bamberger, J. A.; Zalondek, F. R.

    1990-03-01

    Conserve Resources, Incorporated is currently developing an innovative, patented absorption heat pump. The heat pump uses rotation and thin film technology to enhance the absorption process and to provide a more efficient, compact system. The results are presented of a sensitivity analysis of the rotary absorption heat pump (RAHP) performance conducted to further the development of a 1-ton RAHP. The objective of the uncertainty analysis was to determine the sensitivity of RAHP steady state performance to uncertainties in design parameters. Prior to conducting the uncertainty analysis, a computer model was developed to describe the performance of the RAHP thermodynamic cycle. The RAHP performance is based on many interrelating factors, not all of which could be investigated during the sensitivity analysis. Confirmatory measurements of LiBr/H2O properties during absorber/generator operation will provide experimental verification that the system is operating as it was designed to operate. Quantities to be measured include: flow rate in the absorber and generator, film thickness, recirculation rate, and the effects of rotational speed on these parameters.

  5. Energy Landscape Reveals That the Budding Yeast Cell Cycle Is a Robust and Adaptive Multi-stage Process

    PubMed Central

    Lv, Cheng; Li, Xiaoguang; Li, Fangting; Li, Tiejun

    2015-01-01

    Quantitatively understanding the robustness, adaptivity and efficiency of cell cycle dynamics under the influence of noise is a fundamental but difficult question to answer for most eukaryotic organisms. Using a simplified budding yeast cell cycle model perturbed by intrinsic noise, we systematically explore these issues from an energy landscape point of view by constructing an energy landscape for the considered system based on large deviation theory. Analysis shows that the cell cycle trajectory is sharply confined by the ambient energy barrier, and the landscape along this trajectory exhibits a generally flat shape. We explain the evolution of the system on this flat path by incorporating its non-gradient nature. Furthermore, we illustrate how this global landscape changes in response to external signals, observing a nice transformation of the landscapes as the excitable system approaches a limit cycle system when nutrients are sufficient, as well as the formation of additional energy wells when the DNA replication checkpoint is activated. By taking into account the finite volume effect, we find additional pits along the flat cycle path in the landscape associated with the checkpoint mechanism of the cell cycle. The difference between the landscapes induced by intrinsic and extrinsic noise is also discussed. In our opinion, this meticulous structure of the energy landscape for our simplified model is of general interest to other cell cycle dynamics, and the proposed methods can be applied to study similar biological systems. PMID:25794282

  6. Understanding the impacts of allocation approaches during process-based life cycle assessment of water treatment chemicals.

    PubMed

    Alvarez-Gaitan, Juan P; Peters, Gregory M; Short, Michael D; Schulz, Matthias; Moore, Stephen

    2014-01-01

    Chemicals are an important component of advanced water treatment operations not only in terms of economics but also from an environmental standpoint. Tools such as life cycle assessment (LCA) are useful for estimating the environmental impacts of water treatment operations. At the same time, LCA analysts must manage several fundamental and as yet unresolved methodological challenges, one of which is the question of how best to "allocate" environmental burdens in multifunctional processes. Using water treatment chemicals as a case study example, this article aims to quantify the variability in greenhouse gas emissions estimates stemming from methodological choices made in respect of allocation during LCA. The chemicals investigated and reported here are those most important to coagulation and disinfection processes, and the outcomes are illustrated on the basis of treating 1000 ML of noncoagulated and nondisinfected water. Recent process and economic data for the production of these chemicals is used and methodological alternatives for solving the multifunctionality problem, including system expansion and mass, exergy, and economic allocation, are applied to data from chlor-alkali plants. In addition, Monte Carlo simulation is included to provide a comprehensive picture of the robustness of economic allocation results to changes in the market price of these industrial commodities. For disinfection, results demonstrate that chlorine gas has a lower global warming potential (GWP) than sodium hypochlorite regardless of the technique used to solve allocation issues. For coagulation, when mass or economic allocation is used to solve the multifunctionality problem in the chlor-alkali facility, ferric chloride was found to have a higher GWP than aluminum sulfate and a slightly lower burden where system expansion or exergy allocation are applied instead. Monte Carlo results demonstrate that when economic allocation is used, GWP results were relatively robust and resilient

  7. Effect of Biogeochemical Redox Processes on the Fate and Transport of As and U at an Abandoned Uranium Mine Site: an X-ray Absorption Spectroscopy Study

    SciTech Connect

    Troyer, Lyndsay D.; Stone, James J.; Borch, Thomas

    2014-01-28

    Although As can occur in U ore at concentrations up to 10 wt-%, the fate and transport of both U and As at U mine tailings have not been previously investigated at a watershed scale. The major objective of this study was to determine primary chemical and physical processes contributing to transport of both U and As to a down gradient watershed at an abandoned U mine site in South Dakota. Uranium is primarily transported by erosion at the site, based on decreasing concentrations in sediment with distance from the tailings. equential extractions and U X-ray absorption near-edge fine structure (XANES) fitting indicate that U is immobilised in a near-source sedimentation pond both by prevention of sediment transport and by reduction of UVI to UIV. In contrast to U, subsequent release of As to the watershed takes place from the pond partially due to reductive dissolution of Fe oxy(hydr)oxides. However, As is immobilised by adsorption to clays and Fe oxy(hydr)oxides in oxic zones and by formation of As–sulfide mineral phases in anoxic zones down gradient, indicated by sequential extractions and As XANES fitting. This study indicates that As should be considered during restoration of uranium mine sites in order to prevent transport.

  8. Nitrate-nitrogen and oxygen isotope ratios for identification of nitrate sources and dominant nitrogen cycle processes in a tile-drained dryland agricultural field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural systems are a leading source of reactive nitrogen to aquatic and atmospheric ecosystems. Natural d15Nnitrate and d18Onitrate are used to identify the dominant nitrogen cycle processes and sources of NO3- leached from a tile-drained, dryland agricultural field. Tile-drain water discharge...

  9. The Importance of Uncertainty and Sensitivity Analyses in Process-Based Models of Carbon and Nitrogen Cycling in Terrestrial Ecosystems with Particular Emphasis on Forest Ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many process-based models of carbon (C) and nitrogen (N) cycles have been developed for terrestrial ecosystems, including forest ecosystems. Existing models are sufficiently well advanced to help decision makers develop sustainable management policies and planning of terrestrial ecosystems, as they ...

  10. Influence of physical and biological processes on the seasonal cycle of biogenic flux in the equatorial Indian Ocean

    NASA Astrophysics Data System (ADS)

    Vidya, P. J.; Prasanna Kumar, S.; Gauns, M.; Verenkar, A.; Unger, D.; Ramaswamy, V.

    2013-02-01

    Seasonal cycle of biogenic fluxes obtained from sediment trap at two locations 5° 24' N, 86° 46' E (SBBT) and 3° 34' N, 77° 46' E (EIOT) within the equatorial Indian Ocean (EIO) were examined to understand the factors that control them. The sediment trap data at SBBT were collected for ten years from November 1987 while that at EIOT was for one year period from January 1996. The characteristic of biogenic flux at SBBT was the strong seasonality with peak flux in August, while lack of seasonality characterized the flux at EIOT. At the SBBT and EIOT, the higher chlorophyll biomass during summer monsoon was supported by wind-mixing, which supplied new nitrogen to the upper ocean. The stronger winds at SBBT compared to EIOT resulted in greater entrainment of nutrients to the euphotic zone, which supported higher chlorophyll biomass. High cell counts of phytoplankton (> 5 μm) at SBBT dominated by diatoms suggest the operation of classical food web and high carbon export. On the contrary, one-and-half time higher magnitude of micro-zooplankton biomass dominated by picophytoplankton along with 2-fold lesser meso-zooplankton at EIOT indicated the importance of microbial loop. The substantial decrease in the carbon export at EIOT indicated faster remineralization of photosynthetically produced organic matter. We see a striking similarity between the biological process that operates in the SBBT with that of the equatorial Atlantic and EIOT with that of the equatorial Pacific, though the physical forcing in these three regions, namely EIO, the equatorial Atlantic and the equatorial Pacific, are very different.

  11. Quantifying Surface Processes and Stratigraphic Characteristics Resulting from Large Magnitude High Frequency and Small Magnitude Low Frequency Relative Sea Level Cycles: An Experimental Study

    NASA Astrophysics Data System (ADS)

    Yu, L.; Li, Q.; Esposito, C. R.; Straub, K. M.

    2015-12-01

    Relative Sea-Level (RSL) change, which is a primary control on sequence stratigraphic architecture, has a close relationship with climate change. In order to explore the influence of RSL change on the stratigraphic record, we conducted three physical experiments which shared identical boundary conditions but differed in their RSL characteristics. Specifically, the three experiments differed with respect to two non-dimensional numbers that compare the magnitude and periodicity of RSL cycles to the spatial and temporal scales of autogenic processes, respectively. The magnitude of RSL change is quantified with H*, defined as the peak to trough difference in RSL during a cycle divided by a system's maximum autogenic channel depth. The periodicity of RSL change is quantified with T*, defined as the period of RSL cycles divided by the time required to deposit one channel depth of sediment, on average, everywhere in the basin. Experiments performed included: 1) a control experiment lacking RSL cycles, used to define a system's autogenics, 2) a high magnitude, high frequency RSL cycles experiment, and 3) a low magnitude, low frequency cycles experiment. We observe that the high magnitude, high frequency experiment resulted in the thickest channel bodies with the lowest width-to-depth ratios, while the low magnitude, long period experiment preserves a record of gradual shoreline transgression and regression producing facies that are the most continuous in space. We plan to integrate our experimental results with Delft3D numerical experiments models that sample similar non-dimensional characteristics of RSL cycles. Quantifying the influence of RSL change, normalized as a function of the spatial and temporal scales of autogenic processes will strengthen our ability to predict stratigraphic architecture and invert stratigraphy for paleo-environmental conditions.

  12. Cholesterol Absorption and Metabolism.

    PubMed

    Howles, Philip N

    2016-01-01

    Inhibitors of cholesterol absorption have been sought for decades as a means to treat and prevent cardiovascular diseases (CVDs) associated with hypercholesterolemia. Ezetimibe is the one clear success story in this regard, and other compounds with similar efficacy continue to be sought. In the last decade, the laboratory mouse, with all its genetic power, has become the premier experimental model for discovering the mechanisms underlying cholesterol absorption and has become a critical tool for preclinical testing of potential pharmaceutical entities. This chapter briefly reviews the history of cholesterol absorption research and the various gene candidates that have come under consideration as drug targets. The most common and versatile method of measuring cholesterol absorption is described in detail along with important considerations when interpreting results, and an alternative method is also presented. In recent years, reverse cholesterol transport (RCT) has become an area of intense new interest for drug discovery since this process is now considered another key to reducing CVD risk. The ultimate measure of RCT is sterol excretion and a detailed description is given for measuring neutral and acidic fecal sterols and interpreting the results. PMID:27150091

  13. Effect of Process Temperature and Reaction Cycle Number on Atomic Layer Deposition of TiO2 Thin Films Using TiCl4 and H2O Precursors: Correlation Between Material Properties and Process Environment

    NASA Astrophysics Data System (ADS)

    Chiappim, W.; Testoni, G. E.; de Lima, J. S. B.; Medeiros, H. S.; Pessoa, Rodrigo Sávio; Grigorov, K. G.; Vieira, L.; Maciel, H. S.

    2016-02-01

    The effect of process temperature and reaction cycle number on atomic layer-deposited TiO2 thin films onto Si(100) using TiCl4 and H2O precursors was investigated in order to discuss the correlation between the growth per cycle (GPC), film structure (crystallinity), and surface roughness as well as the dependence of some of these properties with gas phase environment such as HCl by-product. In this work, these correlations were studied for two conditions: (i) process temperatures in the range of 100-500 °C during 1000 reaction cycles and (ii) number of cycles in the range of 100-2000 for a fixed temperature of 250 °C. To investigate the material properties, Rutherford backscattering spectrometry (RBS), grazing incidence X-ray diffraction (GIXRD), and atomic force microscopy (AFM) techniques were used. Mass spectrometry technique was used to investigate the time evolution of gas phase species HCl and H2O during ALD process. Results indicate that the GPC does not correlate well with film crystallinity and surface roughness for the evaluated process parameters. Basically, the film crystallinity relies solely on grain growth kinetics of the material. This occurs due to higher HCl by-product content during each purge step. Furthermore, for films deposited at variable cycle number, the evolution of film thickness and elemental composition is altered from an initial amorphous structure to a near stoichiometric TiO2-x and, subsequently, becomes fully stoichiometric TiO2 at 400 cycles or above. At this cycle value, the GIXRD spectrum indicates the formation of (101) anatase orientation.

  14. A genomic multi-process survey of the machineries that control and link cell shape, microtubule organisation and cell cycle progression

    PubMed Central

    Geymonat, Marco; Bortfeld-Miller, Miriam; Walter, Thomas; Wagstaff, Laura; Piddini, Eugenia; Carazo Salas, Rafael E.

    2015-01-01

    SUMMARY Understanding cells as integrated systems requires that we systematically decipher how single genes affect multiple biological processes and how processes are functionally linked. Here, we used multi-process phenotypic profiling, combining high-resolution 3D confocal microscopy and multi-parametric image analysis, to simultaneously survey the fission yeast genome with respect to three key cellular processes: cell shape, microtubule organisation and cell cycle progression. We identify, validate and functionally annotate 262 genes controlling specific aspects of those processes. Of these 62% had not been linked to these processes before and 35% are implicated in multiple processes. Importantly, we identify a conserved role for DNA-damage responses in controlling microtubule stability. In addition, we investigate how the processes are functionally linked. We show unexpectedly that disruption of cell cycle progression does not necessarily impact on cell size control and that distinct aspects of cell shape regulate microtubules and vice-versa, identifying important systems-level links across these processes. PMID:25373780

  15. Analyzing Water's Optical Absorption

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  16. Carbon Dioxide Absorption Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  17. Lithium bromide absorption chiller passes gas conditioning field test

    SciTech Connect

    Lane, M.J.; Huey, M.A.

    1995-07-31

    A lithium bromide absorption chiller has been successfully used to provide refrigeration for field conditioning of natural gas. The intent of the study was to identify a process that could provide a moderate level of refrigeration necessary to meet the quality restrictions required by natural-gas transmission companies, minimize the initial investment risk, and reduce operating expenses. The technology in the test proved comparatively less expensive to operate than a propane refrigeration plant. Volatile product prices and changes in natural-gas transmission requirements have created the need for an alternative to conventional methods of natural-gas processing. The paper describes the problems with the accumulation of condensed liquids in pipelines, gas conditioning, the lithium bromide absorption cycle, economics, performance, and operating and maintenance costs.

  18. Climate change impairs processes of soil and plant N cycling in European beech forests on marginal soil

    NASA Astrophysics Data System (ADS)

    Tejedor, Javier; Gasche, Rainer; Gschwendtner, Silvia; Leberecht, Martin; Bimüller, Carolin; Kögel-Knabner, Ingrid; Pole, Andrea; Schloter, Michael; Rennenberg, Heinz; Simon, Judy; Hanewinkel, Marc; Baltensweiler, Andri; Bilela, Silvija; Dannenmann, Michael

    2014-05-01

    Beech forests of Central Europe are covering large areas with marginal calcareous soils, but provide important ecological services and represent a significant economical value. The vulnerability of these ecosystems to projected climate conditions (higher temperatures, increase of extreme drought and precipitation events) is currently unclear. Here we present comprehensive data on the influence of climate change conditions on ecosystem performance, considering soil nitrogen biogeochemistry, soil microbiology, mycorrhiza ecology and plant physiology. We simultaneously quantified major plant and soil gross N turnover processes by homogenous triple 15N isotope labeling of intact beech natural regeneration-soil-microbe systems. This isotope approach was combined with a space for time climate change experiment, i.e. we transferred intact beech seedling-soil-microbe mesocosms from a slope with N-exposure (representing present day climate conditions) to a slope with S exposure (serving as a warmer and drier model climate for future conditions). Transfers within N slope served as controls. After an equilibration period of 1 year, three isotope labeling/harvest cycles were performed. Reduced soil water content resulted in a persistent decline of ammonia oxidizing bacteria in soil (AOB). Consequently, we found a massive five-fold reduction of gross nitrification in the climate change treatment and a subsequent strong decline in soil nitrate concentrations as well as nitrate uptake by microorganisms and beech. Because nitrate was the major nutrient for beech in this forest type with little importance of ammonium and amino acids, this resulted in a strongly reduced performance of beech natural regeneration with reduced N content, N metabolite concentrations and plant biomass. These findings provided an explanation for a large-scale decline of distribution of beech forests on calcareous soils in Europe by almost 80% until 2080 predicted by statistical modeling. Hence, we

  19. Processes driving sea ice variability in the Bering Sea in an eddying ocean/sea ice model: Mean seasonal cycle

    NASA Astrophysics Data System (ADS)

    Li, Linghan; McClean, Julie L.; Miller, Arthur J.; Eisenman, Ian; Hendershott, Myrl C.; Papadopoulos, Caroline A.

    2014-12-01

    The seasonal cycle of sea ice variability in the Bering Sea, together with the thermodynamic and dynamic processes that control it, are examined in a fine resolution (1/10°) global coupled ocean/sea-ice model configured in the Community Earth System Model (CESM) framework. The ocean/sea-ice model consists of the Los Alamos National Laboratory Parallel Ocean Program (POP) and the Los Alamos Sea Ice Model (CICE). The model was forced with time-varying reanalysis atmospheric forcing for the time period 1970-1989. This study focuses on the time period 1980-1989. The simulated seasonal-mean fields of sea ice concentration strongly resemble satellite-derived observations, as quantified by root-mean-square errors and pattern correlation coefficients. The sea ice energy budget reveals that the seasonal thermodynamic ice volume changes are dominated by the surface energy flux between the atmosphere and the ice in the northern region and by heat flux from the ocean to the ice along the southern ice edge, especially on the western side. The sea ice force balance analysis shows that sea ice motion is largely associated with wind stress. The force due to divergence of the internal ice stress tensor is large near the land boundaries in the north, and it is small in the central and southern ice-covered region. During winter, which dominates the annual mean, it is found that the simulated sea ice was mainly formed in the northern Bering Sea, with the maximum ice growth rate occurring along the coast due to cold air from northerly winds and ice motion away from the coast. South of St Lawrence Island, winds drive the model sea ice southwestward from the north to the southwestern part of the ice-covered region. Along the ice edge in the western Bering Sea, model sea ice is melted by warm ocean water, which is carried by the simulated Bering Slope Current flowing to the northwest, resulting in the S-shaped asymmetric ice edge. In spring and fall, similar thermodynamic and dynamic

  20. Self-Healing Efficiency of Cementitious Materials Containing Microcapsules Filled with Healing Adhesive: Mechanical Restoration and Healing Process Monitored by Water Absorption

    PubMed Central

    Li, Wenting; Jiang, Zhengwu; Yang, Zhenghong; Zhao, Nan; Yuan, Weizhong

    2013-01-01

    Autonomous crack healing of cementitious composite, a construction material that is susceptible to cracking, is of great significance to improve the serviceability and to prolong the longevity of concrete structures. In this study, the St-DVB microcapsules enclosing epoxy resins as the adhesive agent were embedded in cement paste to achieve self-healing capability. The self-healing efficiency was firstly assessed by mechanical restoration of the damaging specimens after being matured. The flexural and compressive configurations were both used to stimulate the localized and distributed cracks respectively. The effects of some factors, including the content of microcapsules, the curing conditions and the degree of damage on the healing efficiency were investigated. Water absorption was innovatively proposed to monitor and characterize the evolution of crack networks during the healing process. The healing cracks were observed by SEM-EDS following. The results demonstrated that the capsule-containing cement paste can achieve the various mechanical restorations depending on the curing condition and the degree of damage. But the voids generated by the surfactants compromised the strength. Though no noticeable improved stiffness obtained, the increasing fracture energy was seen particularly for the specimen acquiring 60% pre-damage. The sorptivity and amount of water decreased with cracks healing by the adhesive, which contributed to cut off and block ingress of water. The micrographs by SEM-EDS also validated that the cracks were bridged by the hardened epoxy as the dominated elements of C and O accounted for 95% by mass in the nearby cracks. PMID:24312328

  1. Self-healing efficiency of cementitious materials containing microcapsules filled with healing adhesive: mechanical restoration and healing process monitored by water absorption.

    PubMed

    Li, Wenting; Jiang, Zhengwu; Yang, Zhenghong; Zhao, Nan; Yuan, Weizhong

    2013-01-01

    Autonomous crack healing of cementitious composite, a construction material that is susceptible to cracking, is of great significance to improve the serviceability and to prolong the longevity of concrete structures. In this study, the St-DVB microcapsules enclosing epoxy resins as the adhesive agent were embedded in cement paste to achieve self-healing capability. The self-healing efficiency was firstly assessed by mechanical restoration of the damaging specimens after being matured. The flexural and compressive configurations were both used to stimulate the localized and distributed cracks respectively. The effects of some factors, including the content of microcapsules, the curing conditions and the degree of damage on the healing efficiency were investigated. Water absorption was innovatively proposed to monitor and characterize the evolution of crack networks during the healing process. The healing cracks were observed by SEM-EDS following. The results demonstrated that the capsule-containing cement paste can achieve the various mechanical restorations depending on the curing condition and the degree of damage. But the voids generated by the surfactants compromised the strength. Though no noticeable improved stiffness obtained, the increasing fracture energy was seen particularly for the specimen acquiring 60% pre-damage. The sorptivity and amount of water decreased with cracks healing by the adhesive, which contributed to cut off and block ingress of water. The micrographs by SEM-EDS also validated that the cracks were bridged by the hardened epoxy as the dominated elements of C and O accounted for 95% by mass in the nearby cracks. PMID:24312328

  2. Influence of redox processes and organic carbon on mercury and methylmercury cycling in East Fork Poplar Creek, Tennessee, USA

    NASA Astrophysics Data System (ADS)

    Miller, C.; Brooks, S. C.; Kocman, D.; Yin, X.; Bogle, M.

    2011-12-01

    Mercury use at the Oak Ridge Y-12 National Security Complex (Y-12 NSC) between 1950- 1963 resulted in contamination of the East Fork Poplar Creek (EFPC) ecosystems. Hg continues to be released into EFPC creek from point sources and diffuse contaminated soil and groundwater sources within the Y-12 NSC and outside the facility boundary. In general, methylmercury (MeHg) concentrations in water and in fish have not declined in response to improvements in water quality and exhibit trends of increasing concentration in some cases. Therefore, our study focuses on ecosystem processes, such as redox driven elemental cycles, sediment characteristics and organic matter quality that favor the production, as well as degradation, of MeHg in the EFPC. Detailed geochemical characterization of the surface water, interstitial pore water, and creek sediments were performed during quarterly sampling campaigns in 2010 and 2011 at two locations in EFPC to examine temporal changes in Hg and MeHg concentrations. A longitudinal study of a 20 km portion of the creek and adjacent floodplain was also conducted to examine relationships between Hg, MeHg and dissolved organic matter (DOM). In general, the concentration of Hg decreases downstream as you move away from a know point source of Hg in the system while MeHg concentrations increase in this same reach. Changes in total Hg, both filtered (0.2 μm) and unfiltered, are not correlated with the concentration or composition of DOM in the system. Significant correlations are observed between dissolved MeHg and absorbent light measurements which reflect the quality of the DOM. The two intensively studied sites in EFPC were located 3.7 km (NOAA) and 20 km (NH) downstream of the headwaters. Vertical profiles of interstitial water collected from fine-grained deposits at the creek margin showed decreases in nitrate, sulfate, and oxidation-reduction potential (ORP) with depth as well as increases in dissolved manganese, iron, and sulfide. The results

  3. Dynamic Absorption Model for Off-Gas Separation

    SciTech Connect

    Veronica J. Rutledge

    2011-07-01

    Modeling and simulations will aid in the future design of U.S. advanced reprocessing plants for the recovery and recycle of actinides in used nuclear fuel. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, a rate based, dynamic absorption model is being developed in gPROMS software. Inputs include liquid and gas stream constituents, column properties, liquid and gas phase reactions, number of stages, and inlet conditions. It simulates multiple component absorption with countercurrent flow and accounts for absorption by mass transfer and chemical reaction. The assumption of each stage being a discrete well-mixed entity was made. Therefore, the model is solved stagewise. The simulation outputs component concentrations in both phases as a function of time from which the rate of absorption is determined. Temperature of both phases is output as a function of time also. The model will be used able to be used as a standalone model in addition to in series with other off-gas separation unit operations. The current model is being generated based on NOx absorption; however, a future goal is to develop a CO2 specific model. The model will have the capability to be modified for additional absorption systems. The off-gas models, both adsorption and absorption, will be made available via the server or web for evaluation by customers.

  4. Real time tracing of the kinetic process of NO3, N2O5 and NO2 with VOCs by long optical pathlength absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    YI, Hongming; Wu, Tao; Lauraguais, Amélie; Semenov, Vladimir; Coeur-Tourneur, Cecile; Fertein, Eric; Gao, Xiaoming; Chen, Weidong

    2014-05-01

    Nitrate radical (NO3) and dinitrogen pentoxide (N2O5, formed through the reaction of NO3 with NO2 and is a large reservoir for NO3) are two key intermediates components in atmospheric nitrogen chemistry [1]. They affect directly the oxidation capacity of the atmosphere through reaction of NO3 with volatile organic compounds (VOCs). It's highly desirable to be able to perform in-situ, simultaneous and continuous monitoring of NO3 and N2O5 concentrations with high selectivity and fast response time. N2O5 is usually indirectly measured via optical measurement of NO3 after thermal dissociation of N2O5 to NO3 [2]. In this paper, we report on the recent development and application of optical method for in situ direct concentration measurements of NO3 and N2O5 in smog chamber. NO3 (as well as NO2) were simultaneously measured by open-path incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) [3] based on a light emitted diode operating in the range of 635-675 nm, and N2O5 was monitored by means of open-path multi-pass absorption spectroscopy of an external cavity quantum cascade laser tunable from 1223 to 1263 cm-1 (~8 µm). Reaction of NO3 with VOCs (such as isoprene, formaldehyde, 2-methoxyphenal) as well as the equilibrium between NO3 and N2O5 during the VOCs oxidation by NO3 radical have been on-line traced with high temporal resolution: 1 s for NO3-NO2 and 25 s for N2O5. Experimental detail and preliminary results will be presented. Our present work demonstrated that modern photonic technologies can provide a direct and highly selective means for chemical kinetic study, for instance, bringing insight into reactive uptake for NO3 and N2O5 on the organic particles [4], which remain still unexplored with few exceptions. References [1] Paul S. Monks, "Gas-phase radical chemistry in the troposphere", Chem. Soc. Rev. 34 (2005) 376-395. [2] R.M. Varma, S.M. Ball, T. Brauers, H.-P. Dorn, U. Heitmann, R.L. Jones, U. Platt, D. Pöhler, A.A. Ruth, A

  5. Regeneration of 2-amino-2-methyl-1-propanol used for carbon dioxide absorption.

    PubMed

    Zhang, Pei; Shi, Yao; Wei, Jianwen; Zhao, Wei; Ye, Qing

    2008-01-01

    To improve the efficiency of the carbon dioxide cycling process and to reduce the regeneration energy consumption, a sterically hindered amine of 2-amino-2-methyl-1-propranol (AMP) was investigated to determine its regeneration behavior as a CO2 absorbent. The CO2 absorption and amine regeneration characteristics were experimentally examined under various operating conditions. The regeneration efficiency increased from 86.2% to 98.3% during the temperature range of 358 to 403 K. The most suitable regeneration temperature for AMP was 383 K, in this experiment condition, and the regeneration efficiency of absorption/regenerationruns descended from 98.3% to 94.0%. A number of heat-stable salts (HSS) could cause a reduction in CO2 absorption capacity and regeneration efficiency. The results indicated that aqueous AMP was easier to regenerate with less loss of absorption capacity than other amines, such as, monoethanolamine (MEA), diethanolamine (DEA), diethylenetriamine (DETA), and N-methyldiethanolamine (MDEA). PMID:18572520

  6. Single-molecule spectroscopy and femtosecond transient absorption studies on the excitation energy transfer process in ApcE(1-240) dimers.

    PubMed

    Long, Saran; Zhou, Meng; Tang, Kun; Zeng, Xiao-Li; Niu, Yingli; Guo, Qianjin; Zhao, Kai-Hong; Xia, Andong

    2015-05-28

    ApcE(1-240) dimers with one intrinsic phycocyanobilin (PCB) chromophore in each monomer that is truncated from the core-membrane linker (ApcE) of phycobilisomes (PBS) in Nostoc sp. PCC 7120 show a sharp and significantly red-shifted absorption. Two explanations either conformation-dependent Förster resonance energy transfer (FRET) or the strong exciton coupling limit have been proposed for red-shifted absorption. This is a classic example of the special pair in the photosynthetic light harvesting proteins, but the mechanism of this interaction is still a matter of intense debate. We report the studies using single-molecule and transient absorption spectra on the interaction in the special pair of ApcE dimers. Our results demonstrate the presence of conformation-dependent FRET between the two PCB chromophores in ApcE dimers. The broad distributions of fluorescence intensities, lifetimes and polarization difference from single-molecule measurements reveal the heterogeneity of local protein-pigment environments in ApcE dimers, where the same molecular structures but different protein environments are the main reason for the two PCB chromophores with different spectral properties. The excitation energy transfer rate between the donor and the acceptor about (110 ps)(-1) is determined from transient absorption measurements. The red-shifted absorption in ApcE dimers could result from more extending conformation, which shows another type of absorption redshift that does not depend on strong exciton coupling. The results here stress the importance of conformation-controlled spectral properties of the chemically identical chromophores, which could be a general feature to control energy/electron transfer, widely existing in the light harvesting complexes. PMID:25925197

  7. Resonance vibrations in intake and exhaust pipes of in-line engines III : the inlet process of a four-stroke-cycle engine

    NASA Technical Reports Server (NTRS)

    Lutz, O

    1940-01-01

    Using a previously developed method, the boundary process of four-stroke-cycle engines are set up. The results deviate considerably from those obtained under the assumption that the velocity fluctuation is proportional to the cylinder piston motion. The deviation is less at the position of resonance frequencies. By the method developed, the effect of the resonance vibrations on the volumetric efficiency can be demonstrated.

  8. Mineralogical Controls of Fault Healing in Natural and Simulated Gouges with Implications for Fault Zone Processes and the Seismic Cycle

    NASA Astrophysics Data System (ADS)

    Carpenter, B. M.; Ikari, M.; Marone, C.

    2011-12-01

    The frictional strength and stability of tectonic faults is determined by asperity contact processes, granular deformation, and fault zone fabric development. The evolution of grain-scale contact area during the seismic cycle likely exhibits significant control on overall fault stability by influencing frictional restrengthening, or healing, during the interseismic period, and the rate-dependence of sliding friction, which controls earthquake nucleation and the mode of fault slip. We report on laboratory experiments designed to explore the affect of mineralogy on fault healing. We conducted frictional shear experiments in a double-direct shear configuration at room temperature, 100% relative humidity, and a normal stress of 20 MPa. We used samples from a wide range of natural faults, including outcrop samples and core recovered during scientific drilling. Faults include: Alpine (New Zealand), Zuccale (Italy), Rocchetta (Italy), San Gregorio (California), Calaveras (California), Kodiak (Alaska), Nankai (Japan), Middle America Trench (Costa Rica), and San Andreas (California). To isolate the role of mineralogy, we also tested simulated fault gouges composed of talc, montmorillonite, biotite, illite, kaolinite, quartz, andesine, and granite. Frictional healing was measured at an accumulated shear strain of ~15 within the gouge layers. We conducted slide-hold-slide tests ranging from 3 to 3000 seconds. The main suite of experiments used a background shearing rate of 10 μm/s; these were augmented with sub-suites at 1 and 100 μm/s. We find that phyllosilicate-rich gouges (e.g. talc, montmorillonite, San Andreas Fault) show little to no healing over all hold times. We find the highest healing rates (β ≈ 0.01, Δμ per decade in time, s) in gouges from the Alpine and Rocchetta faults, with the rest of our samples falling into an intermediate range of healing rates. Nearly all gouges exhibit log-linear healing rates with the exceptions of San Andreas Fault gouge and

  9. Pathways of iron absorption.

    PubMed

    Conrad, Marcel E; Umbreit, Jay N

    2002-01-01

    Iron is vital for all living organisms but excess iron can be lethal because it facilitates free radical formation. Thus iron absorption is carefully regulated to maintain an equilibrium between absorption and body loss of iron. In countries where meat is a significant part of the diet, most body iron is derived from dietary heme because heme binds few of the dietary chelators that bind inorganic iron. Uptake of heme into enterocytes occurs as a metalloporphyrin in an endosomal process. Intracellular iron is released from heme by heme oxygenase to enter plasma as inorganic iron. Ferric iron is absorbed via a beta(3) integrin and mobilferrin pathway (IMP) which is unshared with other nutritional metals. Ferrous iron uptake is facilitated by a DMT-1 pathway which is shared with manganese. In the iron deficient gut, large quantities of both mobilferrin and DMT-1 are found in goblet cells and intraluminal mucins suggesting that they are secreted with mucin into the intestinal lumen to bind iron to facilitate uptake by the cells. In the cytoplasm, IMP and DMT associate in a large protein complex called paraferritin which serves as a ferrireductase. Paraferritin solublizes iron binding proteins and reduces iron to make iron available for production of iron containing proteins such as heme. Iron uptake by intestinal absorptive cells is regulated by the iron concentration within the cell. Except in hemochromatosis it remains in equilibrium with total body stores via transferrin receptors on the basolateral membrane of absorptive cells. Increased intracellular iron either up-regulates or satiates iron binding proteins on regulatory proteins to alter their location in the intestinal mucosa. PMID:12547224

  10. Life cycle energy and greenhouse gas profile of a process for the production of ammonium sulfate from nitrogen-fixing photosynthetic cyanobacteria.

    PubMed

    Razon, Luis F

    2012-03-01

    In this paper, an alternative means for nitrogen fixation that may consume less energy and release less greenhouse gases than the Haber-Bosch process is explored. A life-cycle assessment was conducted on a process to: culture the cyanobacterium, Anabaena sp. ATCC 33047, in open ponds; harvest the biomass and exopolysaccharides and convert these to biogas; strip and convert the ammonia from the biogas residue to ammonium sulfate; dry the ammonium sulfate solution to ammonium sulfate crystals and transport the finished product. The results suggest that substantial reductions in non-renewable energy use and greenhouse gas emissions may be realized. The study opens the possibility that Haber-Bosch ammonia may be replaced with ammonia from a biomass process which simultaneously generates renewable energy. The process is intrinsically safer than the Haber-Bosch process. However, there are trade-offs in terms of land use and possibly, water. PMID:22226591

  11. Up-scaling of process-based eco-hydrology model to global scale for identification of hot spots in boundless biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Maksyutov, S. S.

    2013-12-01

    Recent research shows inland water may play some role in continental biogeochemical cycling though its contribution has remained uncertain due to a paucity of data (Battin et al. 2009). The author has developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2008a-b, 2010, 2011a-b, 2012a-c, 2013; Nakayama and Fujita, 2010; Nakayama and Hashimoto, 2011; Nakayama and Shankman, 2013a-b; Nakayama and Watanabe, 2004, 2006, 2008a-b; Nakayama et al., 2006, 2007, 2010, 2012), which includes surface-groundwater interactions and down-scaling process from regional to local simulation with finer resolution, and can simulate iteratively nonlinear feedback between hydrologic, geomorphic, and ecological processes in east Asia. In this study, NICE was further extended to implement map factor and non-uniform grid through up-scaling process of coordinate transformation from rectangular to longitude-latitude system applicable to global scale. This improved model was applied to several basins in Eurasia to evaluate the impact of coordinate transformation on eco-hydrological changes. Simulated eco-hydrological process after up-scaling corresponded reasonably to that in the original there after evaluating the effect of different latitude. Then, the model was expanded to evaluate global hydrologic cycle by using various global datasets. The simulated result agreed reasonably with that in the previous research (Fan et al., 2013) and extended to clarify further eco-hydrological process in global scale. This simulation system would play important role in identification of spatio-temporal hot spots in boundless biogeochemical cycle along terrestrial-aquatic continuum for global environmental change (Cole et al. 2007; Battin et al. 2009; Frei et al. 2012).

  12. Dual nitrate isotopes clarify the role of biological processing and hydrologic flow paths on nitrogen cycling in subtropical low-gradient watersheds

    NASA Astrophysics Data System (ADS)

    Griffiths, Natalie A.; Jackson, C. Rhett; McDonnell, Jeffrey J.; Klaus, Julian; Du, Enhao; Bitew, Menberu M.

    2016-02-01

    Nitrogen (N) is an important nutrient as it often limits productivity but in excess can impair water quality. Most studies on watershed N cycling have occurred in upland forested catchments where snowmelt dominates N export; fewer studies have focused on low-relief watersheds that lack snow. We examined watershed N cycling in three adjacent, low-relief watersheds in the Upper Coastal Plain of the southeastern United States to better understand the role of hydrological flow paths and biological transformations of N at the watershed scale. Groundwater was the dominant source of nitrified N to stream water in two of the three watersheds, while atmospheric deposition comprised 28% of stream water nitrate in one watershed. The greater atmospheric contribution may have been due to the larger stream channel area relative to total watershed area or the dominance of shallow subsurface flow paths contributing to stream flow in this watershed. There was a positive relationship between temperature and stream water ammonium concentrations and a negative relationship between temperature and stream water nitrate concentrations in each watershed suggesting that N cycling processes (i.e., nitrification and denitrification) varied seasonally. However, there were no clear patterns in the importance of denitrification in different water pools possibly because a variety of factors (i.e., assimilatory uptake, dissimilatory uptake, and mixing) affected nitrate concentrations. Together, these results highlight the hydrological and biological controls on N cycling in low-gradient watersheds and variability in N delivery flow paths among adjacent watersheds with similar physical characteristics.

  13. Capacitive carbon and electrochemical lead electrode systems at the negative plates of lead-acid batteries and elementary processes on cycling

    NASA Astrophysics Data System (ADS)

    Pavlov, D.; Nikolov, P.

    2013-11-01

    Batteries in hybrid electric vehicles operate in High-Rate Partial-State-of-Charge (HRPSoC) cycling duty. To make lead-acid batteries suitable for this duty, carbon is added to the negative active material. As a result of this technological change, two electrical systems form at the negative plates: (a) a capacitive carbon system comprising high-rate charging and discharging of the electric double layer; low Ah capacity, and (b) a lead electrochemical system, comprising oxidation of Pb to PbSO4 during discharge and vice versa during charge; this system is slow to accept charge, but has high Ah capacity. Through cycling lead-acid cells under HRPSoC conditions with short current pulses of various durations we have established that the processes involved in the capacitive system proceed highly reversibly and complete hundreds of thousands HRPSoC cycles. The number of cycles achieved by the electrochemical system is limited to tens of thousands and lead to progressive sulfation. Carbon added to the negative active material changes the latter's structure. The specific surface of NAM increases and the median pore radius decreases. Some carbon additives may reduce the radius of the pores in NAM to membrane sizes, which may change the chemistry of the electrochemical system.

  14. Quantifying the environmental impact of an integrated human/industrial-natural system using life cycle assessment; a case study on a forest and wood processing chain.

    PubMed

    Schaubroeck, Thomas; Alvarenga, Rodrigo A F; Verheyen, Kris; Muys, Bart; Dewulf, Jo

    2013-01-01

    Life Cycle Assessment (LCA) is a tool to assess the environmental sustainability of a product; it quantifies the environmental impact of a product's life cycle. In conventional LCAs, the boundaries of a product's life cycle are limited to the human/industrial system, the technosphere. Ecosystems, which provide resources to and take up emissions from the technosphere, are not included in those boundaries. However, similar to the technosphere, ecosystems also have an impact on their (surrounding) environment through their resource usage (e.g., nutrients) and emissions (e.g., CH4). We therefore propose a LCA framework to assess the impact of integrated Techno-Ecological Systems (TES), comprising relevant ecosystems and the technosphere. In our framework, ecosystems are accounted for in the same manner as technosphere compartments. Also, the remediating effect of uptake of pollutants, an ecosystem service, is considered. A case study was performed on a TES of sawn timber production encompassing wood growth in an intensively managed forest ecosystem and further industrial processing. Results show that the managed forest accounted for almost all resource usage and biodiversity loss through land occupation but also for a remediating effect on human health, mostly via capture of airborne fine particles. These findings illustrate the potential relevance of including ecosystems in the product's life cycle of a LCA, though further research is needed to better quantify the environmental impact of TES. PMID:24195778

  15. Rate my data: a hierarchical approach to quantifying the relative value of ecological data for the development of process-based models of the terrestrial carbon cycle

    NASA Astrophysics Data System (ADS)

    Keenan, T. F.; Richardson, A. D.; Davidson, E. A.; Munger, J. W.

    2011-12-01

    The proliferation of ecological observation networks over the past two decades has led to the accumulation of large amounts of data at different spatial and temporal scales. Process-based models of the terrestrial carbon cycle have been adopted as the most effective way of scaling this point based information through space and time. Given the large amounts of data available, model developers have begun to update the statistical and analytical tools they use, relying more heavily on techniques such as data mining and model-data fusion. Such techniques are useful in that they can synchronously use all measurements available to give a more complete integration of models with data, shedding light on model weaknesses and highlighting model aspects in need of further development. Although modelers and organizers of measurement campaigns are focused on similar questions of terrestrial carbon cycling, cooperative efforts between the two are rare. Modelers generally use a limited set of measurements, with large assumptions as to what measurements are most effective in reducing uncertainty in model projections. On the other hand, those involved in field work are often motivated by hypothesis driven science, and commonly do not have information as to what measurements would be most useful for modelers. The lack of information flow between the two communities is clearly sub-optimal. Here we address this problem by providing a hierarchical rating of the value of different data sources for reducing uncertainty in model estimates of terrestrial carbon cycling. We do so using a model-data fusion framework to iteratively integrate different data streams (both real data from Harvard forest, MA, USA, and synthetic data) with a process-based model of terrestrial carbon cycling. At each stage, the data source that leads to the greatest reduction in uncertainty in model projections is retained, and the additional benefit of each other data stream is tested independently. This process is

  16. Initial effects of the mount st. Helens eruption on nitrogen cycle and related chemical processes in ryan lake.

    PubMed

    Dahm, C N; Baross, J A; Ward, A K; Lilley, M D; Sedell, J R

    1983-05-01

    Ryan Lake, a 1.6-hectare basin lake near the periphery of the tree blowdown area in the blast zone 19 km north of Mount St. Helens, was studied from August to October 1980 to determine the microbial and chemical response of the lake to the eruption. Nutrient enrichment through the addition of fresh volcanic material and the organic debris from the surrounding conifer forest stimulated intense microbial activity. Concentrations of such nutrients as phosphorus, sulfur, manganese, iron, and dissolved organic carbon were markedly elevated. Nitrogen cycle activity was especially important to the lake ecosystem in regulating biogeochemical cycling owing to the limiting abundance of nitrogen compounds. Nitrogen fixation, both aerobic and anaerobic, was active from aerobic benthic and planktonic cyanobacteria with rates up to 210 nmol of N(2) cm h and 667 nmol of N(2) liter h, respectively, and from anaerobic bacteria with rates reaching 220 nmol of N(2) liter h. Nitrification was limited to the aerobic epilimnion and littoral zones where rates were 43 and 261 nmol of NO(2) liter day, respectively. Potential denitrification rates were as high as 30 mumol of N(2)O liter day in the anaerobic hypolimnion. Total bacterial numbers ranged from 1 x 10 to 3 x 10 ml with the number of viable sulfur-metal-oxidizing bacteria reaching 2 x 10 ml in the hypolimnion. A general scenario for the microbial cycling of nitrogen, carbon, sulfur, and metals is presented for volcanically impacted lakes. The important role of nitrogen as these lakes recover from the cataclysmic eruption and proceed back towards their prior status as oligotrophic alpine lakes is emphasized. PMID:16346298

  17. Absorption and adsorption chillers applied to air conditioning systems

    NASA Astrophysics Data System (ADS)

    Kuczyńska, Agnieszka; Szaflik, Władysław

    2010-07-01

    This work presents an application possibility of sorption refrigerators driven by low temperature fluid for air conditioning of buildings. Thermodynamic models were formulated and absorption LiBr-water chiller with 10 kW cooling power as well as adsorption chiller with silica gel bed were investigated. Both of them are using water for desorption process with temperature Tdes = 80 °C. Coefficient of performance (COP) for both cooling cycles was analyzed in the same conditions of the driving heat source, cooling water Tc = 25 °C and temperature in evaporator Tevap = 5 °C. In this study, the computer software EES was used to investigate the performance of absorption heat pump system and its behaviour in configuration with geothermal heat source.

  18. The photochemical cycle of bacteriorhodopsin

    NASA Technical Reports Server (NTRS)

    Lozier, R. H.; Niederberger, W.

    1977-01-01

    The reaction cycle of bacteriorhodopsin in the purple membrane isolated from Halobacterium halobium has been studied by optical absorption spectroscopy using low-temperature and flash kinetic techniques. After absorption of light, bacteriorhodopsin passes through at least five distinct intermediates. The temperature and pH dependence of the absorbance changes suggests that branch points and/or reversible steps exist in this cycle. Flash spectroscopy in the presence of a pH-indicating dye shows that the transient release of a proton accompanies the photoreaction cycle. The proton release occurs from the exterior and the uptake is on the cytoplasmic side of the membrane, as required by the function of bacteriorhodopsin as a light-driven proton pump. Proton translocating steps connecting release and uptake are indicated by deuterium isotope effects on the kinetics of the cycle. The rapid decay of a light-induced linear dichroism shows that a chromophore orientation change occurs during the reaction cycle.

  19. The watershed-scale optimized and rearranged landscape design (WORLD) model and local biomass processing depots for sustainable biofuel production: Integrated life cycle assessments

    SciTech Connect

    Eranki, Pragnya L.; Manowitz, David H.; Bals, Bryan D.; Izaurralde, Roberto C.; Kim, Seungdo; Dale, Bruce E.

    2013-07-23

    An array of feedstock is being evaluated as potential raw material for cellulosic biofuel production. Thorough assessments are required in regional landscape settings before these feedstocks can be cultivated and sustainable management practices can be implemented. On the processing side, a potential solution to the logistical challenges of large biorefi neries is provided by a network of distributed processing facilities called local biomass processing depots. A large-scale cellulosic ethanol industry is likely to emerge soon in the United States. We have the opportunity to influence the sustainability of this emerging industry. The watershed-scale optimized and rearranged landscape design (WORLD) model estimates land allocations for different cellulosic feedstocks at biorefinery scale without displacing current animal nutrition requirements. This model also incorporates a network of the aforementioned depots. An integrated life cycle assessment is then conducted over the unified system of optimized feedstock production, processing, and associated transport operations to evaluate net energy yields (NEYs) and environmental impacts.

  20. Simulating a 4-effect absorption chiller

    SciTech Connect

    Grossman, G.; Zaltash, A.; Adcock, P.W.; DeVault, R.C.

    1995-06-01

    Absorption chillers are heat-operated refrigeration machines that operate on one of the earliest known principles of refrigeration. Current absorption chillers typically use either steam or a gas-fired burner as the energy source. All current gas-fired absorption cooling systems are based on the well known single-effect or double-effect cycles. To further improve utilization of the high temperature heat available from natural gas, a variety of triple-effect cycles have been proposed and are being developed that are capable of substantial performance improvement over equivalent double-effect cycles. This article describes a study that investigated the possibility of even further improving utilization of the high temperature heat available from natural gas combustion. During the study, performance simulation was conducted for a 4-effect lithium bromide/water cycle. From an environmental perspective, absorption chillers provide several benefits. They use absorption pairs (such as lithium bromide/water) as the working fluids, rather than chlorofluorocarbons or hydrochlorofluorocarbons, which contribute to ozone depletion and global warming.

  1. Delving into sensible measures to enhance the environmental performance of biohydrogen: A quantitative approach based on process simulation, life cycle assessment and data envelopment analysis.

    PubMed

    Martín-Gamboa, Mario; Iribarren, Diego; Susmozas, Ana; Dufour, Javier

    2016-08-01

    A novel approach is developed to evaluate quantitatively the influence of operational inefficiency in biomass production on the life-cycle performance of hydrogen from biomass gasification. Vine-growers and process simulation are used as key sources of inventory data. The life cycle assessment of biohydrogen according to current agricultural practices for biomass production is performed, as well as that of target biohydrogen according to agricultural practices optimised through data envelopment analysis. Only 20% of the vineyards assessed operate efficiently, and the benchmarked reduction percentages of operational inputs range from 45% to 73% in the average vineyard. The fulfilment of operational benchmarks avoiding irregular agricultural practices is concluded to improve significantly the environmental profile of biohydrogen (e.g., impact reductions above 40% for eco-toxicity and global warming). Finally, it is shown that this type of bioenergy system can be an excellent replacement for conventional hydrogen in terms of global warming and non-renewable energy demand. PMID:27155266

  2. HST Observations of Heliospheric and Astrospheric Lyα Absorption Toward the α Cen System

    NASA Astrophysics Data System (ADS)

    Wood, B. E.; Linsky, J. L.; Valenti, J. A.

    Charge exchange processes create a population of heated neutral hydrogen gas throughout the heliosphere. This material produces a detectable absorption signature in the Lyα lines of nearby stars with low interstellar column densities. Such spectra have therefore been used to study the properties of neutral hydrogen in the outer heliosphere, and also to detect analogous astrospheric hydrogen surrounding other stars. The first detection of heliospheric Lyα absorption was from observations of α Cen A and B made in 1995 with the GHRS instrument on board the Hubble Space Telescope. The heliospheric material produces excess absorption on the red side of the interstellar absorption. Excess absorption also exists on the blue side, which is believed to be due to astrospheric material around the two stars. On 1999 February 12, α Cen A was observed again by the STIS instrument, which replaced GHRS in 1997; and on 2000 May 8, α Cen's distant companion star Proxima Cen was also observed by STIS. We compare the GHRS and STIS data in order to search for variations in the heliospheric absorption that would indicate structural changes in the heliosphere, possibly induced by solar wind variability associated with the Sun's activity cycle. We also search for analogous changes in α Cen's astrosphere, and we compare the astrospheric absorption of α Cen with that of Proxima Cen as a way of comparing the stellar wind properties of these very different stars.

  3. The Anthropogenic Influence on Atmospheric Carbonyl Sulfide: Implications for Inverse Analysis of Process-Level Carbon Cycle Fluxes

    NASA Astrophysics Data System (ADS)

    Zumkehr, A. L.; Hilton, T. W.; Whelan, M.; Smith, S. J.; Campbell, J. E.

    2014-12-01

    Carbonyl sulfide (COS) is the most abundant sulfur containing gas in the troposphere and a significant precursor to stratospheric aerosol. Recent insights on the plant uptake of atmospheric COS suggest that plant uptake is the largest component of the global COS budget and that COS may provide a powerful new tool for partitioning sources and sinks of atmospheric CO2 at regional to global scales. However, alternative sources and sinks of COS must also be accounted for to minimize the uncertainty of this carbon cycle tracer approach. Here we focus on direct and indirect sources of atmospheric COS from anthropogenic activities. We construct bottom-up gridded inventories of anthropogenic COS sources and compare these to previous estimates that were based on relatively sparse emissions data. Furthermore, we simulate COS concentrations with an regional atmospheric chemistry model to show the influence of these alternative source estimates in relation to plant uptake at a range of surface and airborne monitoring sites.

  4. Thermally activated delayed fluorescence as a cycling process between excited singlet and triplet states: Application to the fullerenes

    NASA Astrophysics Data System (ADS)

    Baleizão, Carlos; Berberan-Santos, Mário N.

    2007-05-01

    In efficient thermally activated delayed fluorescence (TADF) the excited chromophore alternates randomly between the singlet and triplet manifolds a large number of times before emission occurs. In this work, the average number of cycles n¯ is obtained and is shown to have a simple experimental meaning: n¯+1 is the intensification factor of the prompt fluorescence intensity, owing to the occurrence of TADF. A new method of data analysis for the determination of the quantum yield of triplet formation, combining steady-state and time-resolved data in a single plot, is also presented. Application of the theoretical results to the TADF of [70]fullerenes shows a general good agreement between different methods of fluorescence analysis and allows the determination of several photophysical parameters.

  5. Fragile cycles

    NASA Astrophysics Data System (ADS)

    Bonatti, Ch.; Díaz, L. J.

    We study diffeomorphisms f with heterodimensional cycles, that is, heteroclinic cycles associated to saddles p and q with different indices. Such a cycle is called fragile if there is no diffeomorphism close to f with a robust cycle associated to hyperbolic sets containing the continuations of p and q. We construct a codimension one submanifold of Diff(S×S) that consists of diffeomorphisms with fragile heterodimensional cycles. Our construction holds for any manifold of dimension ⩾4.

  6. Hollow Fiber Membrane Bioreactor Systems for Wastewater Processing: Effects of Environmental Stresses Including Dormancy Cycling and Antibiotic Dosing

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Hummerick, Mary E.; Lunn, Griffin M.; Larson, Brian D.; Spencer, LaShelle E.; Kosiba, Michael L.; Khodadad, Christina L.; Catechis, John A.; Birmele, Michele N.; Wheeler, Raymond M.

    2016-01-01

    Membrane-aerated biofilm reactors (MABRs) have been studied for a number of years as an alternate approach for treating wastewater streams during space exploration. While the technology provides a promising pre-treatment for lowering organic carbon and nitrogen content without the need for harsh stabilization chemicals, several challenges must be addressed before adoption of the technology in future missions. One challenge is the transportation of bioreactors containing intact, active biofilms as a means for rapid start-up on the International Space Station or beyond. Similarly, there could be a need for placing these biological systems into a dormant state for extended periods when the system is not in use, along with the ability for rapid restart. Previous studies indicated that there was little influence of storage condition (4 or 25 C, with or without bulk fluid) on recovery of bioreactors with immature biofilms (48 days old), but that an extensive recovery time was required (20+ days). Bioreactors with fully established biofilms (13 months) were able to recover from a 7-month dormancy within 4 days (approximately 1 residence). Further dormancy and recovery testing is presented here that examines the role of biofilm age on recovery requirements, repeated dormancy cycle capabilities, and effects of long-duration dormancy cycles (8-9 months) on HFMB systems. Another challenge that must be addressed is the possibility of antibiotics entering the wastewater stream. Currently, for most laboratory tests of biological water processors, donors providing urine may not contribute to the study when taking antibiotics because the effects on the system are yet uncharacterized. A simulated urinary tract infection event, where an opportunistic, pathogenic organism, E. coli, was introduced to the HFMBs followed by dosing with an antibiotic, ciprofloxacin, was completed to study the effect of the antibiotic on reactor performance and to also examine the development of

  7. Effects of Prior Knowledge and Piagetian Cognitive Development on the Process Skill of Prediction in the Learning Cycle.

    ERIC Educational Resources Information Center

    Lavoie, Derrick R.

    This study examined the science process skill of prediction problem solving using naturalistic research methodology and information-processing theory. The think-aloud interview led to the identification of several specific program exploration and prediction behaviors. A total of 14 high school biology students made predictions concerning the…

  8. MVC: A user-based on-line optimal control system for small gas processing and treating plants. Development and results for lean oil absorption/desorption modules. Topical report, January-November 1991

    SciTech Connect

    Berkowitz, P.N.; Papadopoulos, M.N.; Klein, R.A.

    1992-01-01

    The two phase project involved the development and field validation of an optimal process control system for lean oil absorption/desorption gas processing plants. Phase 1 consisted of a field survey and software module development activity for the control modules. Phase 2 consisted of the field validation of the total package. The software package (called MVC) is a modular, on-line, advanced control system designed for gas processing and treating facilities. MVC is 386/486 PC-based and relatively inexpensive. Software modules (standarized self-contained process software packages for specific process units) were developed for Refrigerated Lean Oil Absorption and Lean Oil Recovery (Desorption) and were installed for field performance validation at ARCO's Denver City, Texas gas processing plant. Each module consists of process simulations, feedforward control equations, feedback trim equations and adaptive control features including re-linearization (for simulation equation coefficients) and drift factor equations (to correct for the normal drifting of on-line analyzers). The process optimization uses an economic module containing prices and operating costs which forms the basis of the profit maximization. The project duration was 10 1/2 months and was completed in December, 1991. Current process control optimization is expensive and generally infeasible for small and mid-sized gas plants. MVC is designed to gain more than 90% of the benefits of optimized advanced control while running for over 90% of the available service time. MVC utilizes standardized software algorithms with coefficients tailored to specific process units. MVC will give producers the economic incentive to process more gas and thus increase the availability to consumers of both natural gas and natural gas liquids at lower prices.

  9. Enhanced squeezing by absorption

    NASA Astrophysics Data System (ADS)

    Grünwald, P.; Vogel, W.

    2016-04-01

    Absorption is usually expected to be detrimental to quantum coherence effects. However, there have been few studies into the situation for complex absorption spectra. We consider the resonance fluorescence of excitons in a semiconductor quantum well. The creation of excitons requires absorption of the incoming pump-laser light. Thus, the absorption spectrum of the medium acts as a spectral filter for the emitted light. Surprisingly, absorption can even improve quantum effects, as is demonstrated for the squeezing of the resonance fluorescence of the quantum-well system. This effect can be explained by an improved phase matching due to absorption.

  10. CstF64: Cell Cycle Regulation and Functional Role in 3′ End Processing of Replication-Dependent Histone mRNAs

    PubMed Central

    Romeo, Valentina; Griesbach, Esther

    2014-01-01

    The 3′ end processing of animal replication-dependent histone mRNAs is activated during G1/S-phase transition. The processing site is recognized by stem-loop binding protein and the U7 snRNP, but cleavage additionally requires a heat-labile factor (HLF), composed of cleavage/polyadenylation specificity factor, symplekin, and cleavage stimulation factor 64 (CstF64). Although HLF has been shown to be cell cycle regulated, the mechanism of this regulation is unknown. Here we show that levels of CstF64 increase toward the S phase and its depletion affects histone RNA processing, S-phase progression, and cell proliferation. Moreover, analyses of the interactions between CstF64, symplekin, and the U7 snRNP-associated proteins FLASH and Lsm11 indicate that CstF64 is important for recruiting HLF to histone precursor mRNA (pre-mRNA)-resident proteins. Thus, CstF64 is central to the function of HLF and appears to be at least partly responsible for its cell cycle regulation. Additionally, we show that misprocessed histone transcripts generated upon CstF64 depletion mainly accumulate in the nucleus, where they are targets of the exosome machinery, while a small cytoplasmic fraction is partly associated with polysomes. PMID:25266659

  11. A role for dZIP89B in Drosophila dietary zinc uptake reveals additional complexity in the zinc absorption process.

    PubMed

    Richards, Christopher D; Warr, Coral G; Burke, Richard

    2015-12-01

    Dietary zinc is the principal source of zinc in eukaryotes, with its uptake and distribution controlled by a complex network of numerous membrane-spanning transport proteins. Dietary absorption is achieved by members of the SLC39A (ZIP) gene family, which encode proteins that are generally responsible for the movement of zinc into the cytosol. ZIP4 is thought to be the primary mammalian zinc uptake gene in the small intestine, with mutations in this gene causing the zinc deficiency disease Acrodermatitis enteropathica. In Drosophila, dual knockdown of the major dietary zinc uptake genes dZIP42C.1 (dZIP1) and dZIP42C.2 (dZIP2) results in a severe sensitivity to zinc-deficient media. However, the symptoms associated with ZIP4 loss can be reversed by zinc supplementation and dZIP42C.1 and 2 knockdown has minimal effect under normal dietary conditions, suggesting that additional pathways for zinc absorption exist in both mammals and flies. This study provides evidence that dZIP89B is an ideal candidate for this role in Drosophila, encoding a low-affinity zinc uptake transporter active in the posterior midgut. Flies lacking dZIP89B, while viable and apparently healthy, show indications of low midgut zinc levels, including reduced metallothionein B expression and compensatory up-regulation of dZIP42C.1 and 2. Furthermore dZIP89B mutants display a dramatic resistance to toxic dietary zinc levels which is abrogated by midgut-specific restoration of dZIP89B activity. We postulate that dZIP89B works in concert with the closely related dZIP42C.1 and 2 to ensure optimal zinc absorption under a range of dietary conditions. PMID:26545796

  12. Dual nitrate isotopes clarify the role of biological processing and hydrologic flow paths on nitrogen cycling in subtropical low-gradient watersheds

    DOE PAGESBeta

    Griffiths, Natalie A.; Jackson, C. Rhett; McDonnell, Jeffrey J.; Klaus, Julian; Du, Enhao; Bitew, Menberu M.

    2016-02-08

    Nitrogen (N) is an important nutrient as it often limits productivity but in excess can impair water quality. Most studies on watershed N cycling have occurred in upland forested catchments where snowmelt dominates N export; fewer studies have focused on low-relief watersheds that lack snow. We examined watershed N cycling in three adjacent, low-relief watersheds in the Upper Coastal Plain of the southeastern United States to better understand the role of hydrological flow paths and biological transformations of N at the watershed scale. Groundwater was the dominant source of nitrified N to stream water in two of the three watersheds,more » while atmospheric deposition comprised 28% of stream water nitrate in one watershed. The greater atmospheric contribution may have been due to the larger stream channel area relative to total watershed area or the dominance of shallow subsurface flow paths contributing to stream flow in this watershed. There was a positive relationship between temperature and stream water ammonium concentrations and a negative relationship between temperature and stream water nitrate concentrations in each watershed suggesting that N cycling processes (i.e., nitrification and denitrification) varied seasonally. However, there were no clear patterns in the importance of denitrification in different water pools possibly because a variety of factors (i.e., assimilatory uptake, dissimilatory uptake, and mixing) affected nitrate concentrations. In conclusion, together, these results highlight the hydrological and biological controls on N cycling in low-gradient watersheds and variability in N delivery flow paths among adjacent watersheds with similar physical characteristics.« less

  13. Reproducibility of Carbon and Water Cycle by an Ecosystem Process Based Model Using a Weather Generator and Effect of Temporal Concentration of Precipitation on Model Outputs

    NASA Astrophysics Data System (ADS)

    Miyauchi, T.; Machimura, T.

    2014-12-01

    GCM is generally used to produce input weather data for the simulation of carbon and water cycle by ecosystem process based models under climate change however its temporal resolution is sometimes incompatible to requirement. A weather generator (WG) is used for temporal downscaling of input weather data for models, where the effect of WG algorithms on reproducibility of ecosystem model outputs must be assessed. In this study simulated carbon and water cycle by Biome-BGC model using weather data measured and generated by CLIMGEN weather generator were compared. The measured weather data (daily precipitation, maximum, minimum air temperature) at a few sites for 30 years was collected from NNDC Online weather data. The generated weather data was produced by CLIMGEN parameterized using the measured weather data. NPP, heterotrophic respiration (HR), NEE and water outflow were simulated by Biome-BGC using measured and generated weather data. In the case of deciduous broad leaf forest in Lushi, Henan Province, China, 30 years average monthly NPP by WG was 10% larger than that by measured weather in the growing season. HR by WG was larger than that by measured weather in all months by 15% in average. NEE by WG was more negative in winter and was close to that by measured weather in summer. These differences in carbon cycle were because the soil water content by WG was larger than that by measured weather. The difference between monthly water outflow by WG and by measured weather was large and variable, and annual outflow by WG was 50% of that by measured weather. The inconsistency in carbon and water cycle by WG and measured weather was suggested be affected by the difference in temporal concentration of precipitation, which was assessed.

  14. D-xylose absorption

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003606.htm D-xylose absorption To use the sharing features on this page, please enable JavaScript. D-xylose absorption is a laboratory test to determine ...

  15. The Intermodal Bike: multi-modal integration of cycling mobility through product and process innovations in bicycle design.

    PubMed

    Tosi, Francesca; Belli, Alessandro; Rinaldi, Alessandra; Tucci, Grazia

    2012-01-01

    The paper presents the early results of the UE-FP7 project "The Intermodal Bike". The research aim is to provide a super-compactable, super-lightweight folding bicycle as a realistic solution to graft the cycling mode onto the root of the public or private transportation systems. The folding bikes now on the international market reach weighs between 12-15 kg, with a variable footprint but occupying -when compacted- an average volume of about 100 liters. To encourage the use of this vehicle and to extend it to a larger number of users with different characteristics, the research project has set its goal in increasing as possible compactness and light weight, creating a bicycle with a volume when compacted of 20 liters (reduction factor =5), with a shape of 48 × 36 × 12 cm and a weight of 5 kg. max., ensuring stability and improving vehicle usability and efficiency, during the ride and in the phase of bike folding. To achieve this goal ergonomic and usability tests have been carried out. The tests allowed to find a posture that would ensure efficiency and comfort in the ride to as many users as possible. Parallel tests were made on the vehicle usability in the urban transport system and intermodal. The need for light weight has required special studies on the optimization of the vehicle's architecture and research on super-lightweight materials. PMID:22316928

  16. Migrant labor absorption in Malaysia.

    PubMed

    Nayagam, J

    1992-01-01

    The use of migrant workers to ease labor shortages caused by rapid industrialization in Malaysia during the twentieth century is examined. "This paper will focus on: (1) the extent, composition and distribution of migrant workers; (2) the labor shortage and absorption of migrant workers; and (3) the role of migrant workers in the government's economic restructuring process." PMID:12285766

  17. Effects of heat transfer and energy absorption in the ablation of biological tissues by pulsetrain-burst (>100 MHz) ultrafast laser processing

    NASA Astrophysics Data System (ADS)

    Forrester, Paul; Bol, Kieran; Lilge, Lothar; Marjoribanks, Robin

    2006-09-01

    Energy absorption and heat transfer are important factors for regulating the effects of ablation of biological tissues. Heat transfer to surrounding material may be desirable when ablating hard tissue, such as teeth or bone, since melting can produce helpful material modifications. However, when ablating soft tissue it is important to minimize heat transfer to avoid damage to healthy tissue - for example, in eye refractive surgery (e.g., Lasik), nanosecond pulses produce gross absorption and heating in tissue, leading to shockwaves, which kill and thin the non-replicating epithelial cells on the inside of the cornea; ultrafast pulses are recognized to reduce this effect. Using a laser system that delivers 1ps pulses in 10μs pulsetrains at 133MHz we have studied a range of heat- and energy-transfer effects on hard and soft tissue. We describe the ablation of tooth dentin and enamel under various conditions to determine the ablation rate and chemical changes that occur. Furthermore, we characterize the impact of pulsetrain-burst treatment of collagen-based tissue to determine more efficient methods of energy transfer to soft tissues. By studying the optical science of laser tissue interaction we hope to be able to make qualitative improvements to medical treatments using lasers.

  18. The demonstration of a novel sulfur cycle-based wastewater treatment process: sulfate reduction, autotrophic denitrification, and nitrification integrated (SANI®) biological nitrogen removal process.

    PubMed

    Lu, Hui; Wu, Di; Jiang, Feng; Ekama, George A; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2012-11-01

    Saline water supply has been successfully practiced for toilet flushing in Hong Kong since 1950s, which saves 22% of freshwater in Hong Kong. In order to extend the benefits of saline water supply into saline sewage management, we have recently developed a novel biological organics and nitrogen removal process: the Sulfate reduction, Autotrophic denitrification, and Nitrification Integrated (SANI®) process. The key features of this novel process include elimination of oxygen demand in organic matter removal and production of minimal sludge. Following the success of a 500-day lab-scale trial, this study reports a pilot scale evaluation of this novel process treating 10 m(3) /day of 6-mm screened saline sewage in Hong Kong. The SANI® pilot plant consisted of a sulfate reduction up-flow sludge bed (SRUSB) reactor, an anoxic bioreactor for autotrophic denitrification and an aerobic bioreactor for nitrification. The plant was operated at a steady state for 225 days, during which the average removal efficiencies of both chemical oxygen demand (COD) and total suspended solids (TSS) at 87% and no excess sludge was purposefully withdrawn. Furthermore, a tracer test revealed 5% short circuit flow and a 34.6% dead zone in the SRUSB, indicating a good possibility to further optimize the treatment capacity of the process for full-scale application. Compared with conventional biological nitrogen removal processes, the SANI® process reduces 90% of waste sludge, which saves 35% of the energy and reduces 36% of fossil CO(2) emission. The SANI® process not only eliminates the major odor sources originating from primary treatment and subsequent sludge treatment and disposal during secondary saline sewage treatment, but also promotes saline water supply as an economic and sustainable solution for water scarcity and sewage treatment in water-scarce coastal areas. PMID:22549429

  19. First Ground-Based Infrared Solar Absorption Measurements of Free Tropospheric Methanol (CH3OH): Multidecade Infrared Time Series from Kitt Peak (31.9 deg N 111.6 deg W): Trend, Seasonal Cycle, and Comparison with Previous Measurements

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Mahieu, Emmanuel; Chiou, Linda; Herbin, Herve

    2009-01-01

    Atmospheric CH3OH (methanol) free tropospheric (2.09-14-km altitude) time series spanning 22 years has been analyzed on the basis of high-spectral resolution infrared solar absorption spectra of the strong vs band recorded from the U.S. National Solar Observatory on Kitt Peak (latitude 31.9degN, 111.6degW, 2.09-km altitude) with a 1-m Fourier transform spectrometer (FTS). The measurements span October 1981 to December 2003 and are the first long time series of CH3OH measurements obtained from the ground. The results were analyzed with SFIT2 version 3.93 and show a factor of three variations with season, a maximum at the beginning of July, a winter minimum, and no statistically significant long-term trend over the measurement time span.

  20. First Ground-Based Infrared Solar Absorption Measurements of Free Tropospheric Methanol (CH3OH): Multidecade Infrared Time Series from Kitt Peak (31.9 deg N 111.6 deg W): Trend, Seasonal Cycle, and Comparison with Previous Measurements

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Mahieu, Emmanuel; Chiou, Linda; Herbin, Herve

    2009-01-01

    Atmospheric CH3OH (methanol) free tropospheric (2.09-14-km altitude) time series spanning 22 years has been analyzed on the basis of high-spectral resolution infrared solar absorption spectra of the strong n8 band recorded from the U.S. National Solar Observatory on Kitt Peak (latitude 31.9degN, 111.6degW, 2.09-km altitude) with a 1-m Fourier transform spectrometer (FTS). The measurements span October 1981 to December 2003 and are the first long time series of CH3OH measurements obtained from the ground. The results were analyzed with SFIT2 version 3.93 and show a factor of three variations with season, a maximum at the beginning of July, a winter minimum, and no statistically significant long-term trend over the measurement time span.