Science.gov

Sample records for cyclone combustors

  1. Experimental studies on gas—Particle flows and coal combustion in new generation spouting—Cyclone combustor

    NASA Astrophysics Data System (ADS)

    Wang, D. X.; Ma, Z. H.; Wang, X. L.; Zhou, L. X.

    1996-04-01

    Based on previous studies, an improved non-slagging spouting-cyclone combustor with two-stage combustion, organized in perpendicularly vortexing flows, is developed for clean coal combustion applied in small-size industrial furnaces and domestic furnaces. The isothermal model test and the combustion test give some encouraging results. In this study, further improvement of the geometrical configuration was made, a visualization method and a LDA system were used to study the gas-particle flow behavior, and the temperature and gas composition in combustion experiments were measured by using thermocouples and a COSA-6000-CD Portable Stack Analyzer. Stronger recirculation in the spouting zone and the strongly swirling effect in the cyclone zone were obtained in the improved combustor. The combustion temperature distribution is uniform. These results indicate that the improved geometrical configuration of the combustor is favorable to the stabilization of coal flame and the intensification of coal combustion, and it provides a basis for the practical application of this technique.

  2. Combustion characteristics of paper mill sludge in a lab-scale combustor with internally cycloned circulating fluidized bed.

    PubMed

    Shin, D; Jang, S; Hwang, J

    2005-01-01

    After performing a series of batch type experiments using a lab-scale combustor, consideration was given to the use of an internally cycloned circulating fluidized bed combustor (ICCFBC) for a paper mill sludge. Operation parameters including water content, feeding mass of the sludge, and secondary air injection ratio were varied to understand their effects on combustion performance, which was examined in terms of carbon conversion rate (CCR) and the emission rates of CO, C(x)H(y) and NO(x). The combustion of paper mill sludge in the ICCFBC was compared to the reaction mechanisms of a conventional solid fuel combustion, characterized by kinetics limited reaction zone, diffusion limited reaction zone, and transition zone. The results of the parametric study showed that a 35% water content and 60 g feeding mass generated the best condition for combustion. Meanwhile, areal mass burning rate, which is an important design and operation parameter at an industrial scale plant, was estimated by a conceptual equation. The areal mass burning rate corresponding to the best combustion condition was approximately 400 kg/hm(2) for 35% water content. The secondary air injection generating swirling flow enhanced the mixing between the gas phase components as well as the solid phase components, and improved the combustion efficiency by increasing the carbon conversion rate and reducing pollutant emissions. PMID:16009301

  3. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal

    SciTech Connect

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

  4. HSCT Sector Combustor Evaluations for Demonstration Engine

    NASA Technical Reports Server (NTRS)

    Greenfield, Stuart; Heberling, Paul; Kastl, John; Matulaitis, John; Huff, Cynthia

    2004-01-01

    In LET Task 10, critical development issues of the HSCT lean-burn low emissions combustor were addressed with a range of engineering tools. Laser diagnostics and CFD analysis were applied to develop a clearer understanding of the fuel-air premixing process and premixed combustion. Subcomponent tests evaluated the emissions and operability performance of the fuel-air premixers. Sector combustor tests evaluated the performance of the integrated combustor system. A 3-cup sector was designed and procured for laser diagnostics studies at NASA Glenn. The results of these efforts supported the earlier selection of the Cyclone Swirler as the pilot stage premixer and the IMFH (Integrated Mixer Flame Holder) tube as the main stage premixer of the LPP combustor. In the combustor system preliminary design subtask, initial efforts to transform the sector combustor design into a practical subscale engine combustor met with significant challenges. Concerns about the durability of a stepped combustor dome and the need for a removable fuel injection system resulted in the invention and refinement of the MRA (Multistage Radial Axial) combustor system in 1994. The MRA combustor was selected for the HSR Phase II LPP subscale combustor testing in the CPC Program.

  5. Cyclone reactor with internal separation and axial recirculation

    DOEpatents

    Becker, F.E.; Smolensky, L.A.

    1988-07-19

    A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture is described. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combustor chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture may be tangentially withdrawn from the outlet end and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture. 10 figs.

  6. Cyclone reactor with internal separation and axial recirculation

    DOEpatents

    Becker, Frederick E.; Smolensky, Leo A.

    1989-01-01

    A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combuston chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture of flue gas and ash may be tangentially withdrawn from the outlet end of the combustor chamber and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture.

  7. Low NO(x) Combustor Development

    NASA Technical Reports Server (NTRS)

    Kastl, J. A.; Herberling, P. V.; Matulaitis, J. M.

    2005-01-01

    The goal of these efforts was the development of an ultra-low emissions, lean-burn combustor for the High Speed Civil Transport. The HSCT Mach 2.4 FLADE C1 Cycle was selected as the baseline engine cycle. A preliminary compilation of performance requirements for the HSCT combustor system was developed. The emissions goals of the program, baseline engine cycle, and standard combustor performance requirements were considered in developing the compilation of performance requirements. Seven combustor system designs were developed. The development of these system designs was facilitated by the use of spreadsheet-type models which predicted performance of the combustor systems over the entire flight envelope of the HSCT. A chemical kinetic model was developed for an LPP combustor and employed to study NO(x) formation kinetics, and CO burnout. These predictions helped to define the combustor residence time. Five fuel-air mixer concepts were analyzed for use in the combustor system designs. One of the seven system designs, one using the Swirl-Jet and Cyclone Swirler fuel-air mixers, was selected for a preliminary mechanical design study.

  8. HSCT Sector Combustor Hardware Modifications for Improved Combustor Design

    NASA Technical Reports Server (NTRS)

    Greenfield, Stuart C.; Heberling, Paul V.; Moertle, George E.

    2005-01-01

    An alternative to the stepped-dome design for the lean premixed prevaporized (LPP) combustor has been developed. The new design uses the same premixer types as the stepped-dome design: integrated mixer flameholder (IMFH) tubes and a cyclone swirler pilot. The IMFH fuel system has been taken to a new level of development. Although the IMFH fuel system design developed in this Task is not intended to be engine-like hardware, it does have certain characteristics of engine hardware, including separate fuel circuits for each of the fuel stages. The four main stage fuel circuits are integrated into a single system which can be withdrawn from the combustor as a unit. Additionally, two new types of liner cooling have been designed. The resulting lean blowout data was found to correlate well with the Lefebvre parameter. As expected, CO and unburned hydrocarbons emissions were shown to have an approximately linear relationship, even though some scatter was present in the data, and the CO versus flame temperature data showed the typical cupped shape. Finally, the NOx emissions data was shown to agree well with a previously developed correlation based on emissions data from Configuration 3 tests performed at GEAE. The design variations of the cyclone swirler pilot that were investigated in this study did not significantly change the NOx emissions from the baseline design (GEAE Configuration 3) at supersonic cruise conditions.

  9. Extratropical Cyclone

    Atmospheric Science Data Center

    2013-04-16

    ... using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate ... changes. Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for regional ...

  10. Segmented combustor

    NASA Technical Reports Server (NTRS)

    Halila, Ely E. (Inventor)

    1994-01-01

    A combustor liner segment includes a panel having four sidewalls forming a rectangular outer perimeter. A plurality of integral supporting lugs are disposed substantially perpendicularly to the panel and extend from respective ones of the four sidewalls. A plurality of integral bosses are disposed substantially perpendicularly to the panel and extend from respective ones of the four sidewalls, with the bosses being shorter than the lugs. In one embodiment, the lugs extend through supporting holes in an annular frame for mounting the liner segments thereto, with the bosses abutting the frame for maintaining a predetermined spacing therefrom.

  11. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBtu/hour oil fired boiler to pulverized coal

    SciTech Connect

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    The project objective was to demonstrate a technology which can be used to retrofit oil/gas designed boilers, and conventional pulverized coal fired boilers to direct coal firing, by using a patented sir cooled coal combustor that is attached in place of oil/gas/coal burners. A significant part of the test effort was devoted to resolving operational issues related to uniform coal feeding, efficient combustion under very fuel rich conditions, maintenance of continuous slag flow and removal from the combustor, development of proper air cooling operating procedures, and determining component materials durability. The second major focus of the test effort was on environmental control, especially control of SO{sub 2} emissions. By using staged combustion, the NO{sub x} emissions were reduced by around 3/4 to 184 ppmv, with further reductions to 160 ppmv in the stack particulate scrubber. By injection of calcium based sorbents into the combustor, stack SO{sub 2} emissions were reduced by a maximum of of 58%. (VC)

  12. Cyclonic incineration of low heating-value off-gas. Technology spotlight report

    SciTech Connect

    1995-08-01

    Institute of Gas Technology (IGT) investigated the combustion characteristics of low-Btu off-gas and the operating performance of a pilot-scale cyclonic combustor to evaluate the incineration and heat recovery potential. The successful results suggested, among other things, that the cyclonic combustion approach has good potential for developing an advanced, highly efficient afterburner design for a variety of incinerators.

  13. Cyclone Monty

    Atmospheric Science Data Center

    2013-04-16

    ... for the effects of the high winds associated with cyclone rotation. Areas where heights could not be retrieved are shown in dark gray. ... Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees ...

  14. External combustor for gas turbine engine

    DOEpatents

    Santanam, Chandran B.; Thomas, William H.; DeJulio, Emil R.

    1991-01-01

    An external combustor for a gas turbine engine has a cyclonic combustion chamber into which combustible gas with entrained solids is introduced through an inlet port in a primary spiral swirl. A metal draft sleeve for conducting a hot gas discharge stream from the cyclonic combustion chamber is mounted on a circular end wall of the latter adjacent the combustible gas inlet. The draft sleeve is mounted concentrically in a cylindrical passage and cooperates with the passage in defining an annulus around the draft sleeve which is open to the cyclonic combustion chamber and which is connected to a source of secondary air. Secondary air issues from the annulus into the cyclonic combustion chamber at a velocity of three to five times the velocity of the combustible gas at the inlet port. The secondary air defines a hollow cylindrical extension of the draft sleeve and persists in the cyclonic combustion chamber a distance of about three to five times the diameter of the draft sleeve. The hollow cylindrical extension shields the drive sleeve from the inlet port to prevent discharge of combustible gas through the draft sleeve.

  15. Combustor and combustor screech mitigation methods

    DOEpatents

    Kim, Kwanwoo; Johnson, Thomas Edward; Uhm, Jong Ho; Kraemer, Gilbert Otto

    2014-05-27

    The present application provides for a combustor for use with a gas turbine engine. The combustor may include a cap member and a number of fuel nozzles extending through the cap member. One or more of the fuel nozzles may be provided in a non-flush position with respect to the cap member.

  16. Advances in measurements and simulation of gas-particle flows and coal combustion in burners/combustors

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.

    2009-02-01

    Innovative coal combustors were developed, and measurement and simulation of gas-particle flows and coal combustion in such combustors were done in the Department of Engineering Mechanics, Tsinghua University. LDV/PDPA measurements are made to understand the behavior of turbulent gas-particle flows in coal combustors. Coal combustion test was done for the non-slagging cyclone coal combustor. The full two-fluid model developed by the present author was used to simulate turbulent gas-particle flows, coal combustion and NOx formation. It is found by measurements and simulation that the optimum design can give large-size recirculation zones for improving the combustion performance for all the combustors. The combustion test shows that the nonslagging coal combustor can burn 3-5mm coal particles with good combustion efficiency and low NO emission. Simulation in comparison with experiments indicates that the swirl number can significantly affect the NO formation in the swirl coal combustor.

  17. Gas turbine combustor transition

    DOEpatents

    Coslow, Billy Joe; Whidden, Graydon Lane

    1999-01-01

    A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

  18. Gas turbine combustor transition

    DOEpatents

    Coslow, B.J.; Whidden, G.L.

    1999-05-25

    A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

  19. Coal reburning for cyclone boiler NO sub x control demonstration

    SciTech Connect

    Haggard, R.W. Jr.

    1991-01-01

    It is the objective of the Coal Reburning for Cyclone Boiler NOx Control Project to fully establish that the coal reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NOx emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NOx emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustor operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.

  20. Coal reburning for cyclone boiler NO sub x control demonstration

    SciTech Connect

    Not Available

    1991-01-01

    It is the objective of the Coal Reburning for Cyclone Boiler NO{sub x} Control Project to fully establish that the cola reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NO{sub x} emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NO{sub x} emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustor operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.

  1. Cyclone performance and optimization

    SciTech Connect

    Leith, D.

    1990-12-15

    An empirical model for predicting pressure drop across a cyclone, developed by Dirgo (1988), is presented. The model was developed through a statistical analysis of pressure drop data for 98 cyclone designs. This model is used with the efficiency model of Iozia and Leith (1990) to develop an optimization curve which predicts the minimum pressure drop on the dimension ratios of the optimized cyclone for a given aerodynamic cut diameter, d{sub 50}. The effect of variation in cyclone height, cyclone diameter, and flow on the optimization is determined. The optimization results are used to develop a design procedure for optimized cyclones. 33 refs., 10 figs., 4 tabs.

  2. Clean catalytic combustor program

    NASA Technical Reports Server (NTRS)

    Ekstedt, E. E.; Lyon, T. F.; Sabla, P. E.; Dodds, W. J.

    1983-01-01

    A combustor program was conducted to evolve and to identify the technology needed for, and to establish the credibility of, using combustors with catalytic reactors in modern high-pressure-ratio aircraft turbine engines. Two selected catalytic combustor concepts were designed, fabricated, and evaluated. The combustors were sized for use in the NASA/General Electric Energy Efficient Engine (E3). One of the combustor designs was a basic parallel-staged double-annular combustor. The second design was also a parallel-staged combustor but employed reverse flow cannular catalytic reactors. Subcomponent tests of fuel injection systems and of catalytic reactors for use in the combustion system were also conducted. Very low-level pollutant emissions and excellent combustor performance were achieved. However, it was obvious from these tests that extensive development of fuel/air preparation systems and considerable advancement in the steady-state operating temperature capability of catalytic reactor materials will be required prior to the consideration of catalytic combustion systems for use in high-pressure-ratio aircraft turbine engines.

  3. Modular combustor dome

    NASA Technical Reports Server (NTRS)

    Glynn, Christopher Charles (Inventor); Halila, Ely Eskenazi (Inventor); Bibler, John David (Inventor); Morris, David Byron (Inventor)

    2001-01-01

    A combustor dome module includes a mixer tube having a hollow heat shield sealingly joined around the outlet end thereof. The modules may then be assembled in an array for defining the combustor dome, with each module being individually removable therefrom.

  4. Cyclone reactor

    DOEpatents

    Converse, Alvin O.; Grethlein, Hans E.; Holland, Joseph E.

    1989-04-04

    A system is provided to produce sugars from a liquid-solid mixture containing biomass, and an acid, wherein the mixture is heated to an appropriate temperature to achieve hydrolysis. The liquid-solid mixture is introduced as a stream into the circular-cylindrical chamber of a cyclone reaction vessel and steam is introduced to the vessel to provide the necessary heat for hydrolysis as well as to establish the liquid-solid mixture in a rotary flow field whereby the liquids and solids of the mixture move along spiral paths within the chamber. The liquid-solid mixture may be introduced at the periphery of the chamber to spiral down toward and be discharged at or near the center of the chamber. Because of differing mass, the solid particles in the mixture move radially inward at a different rate than the liquid and that rate is controlled to maximize the hydrolysis of the solids and to minimize the decomposition of sugars, thus formed.

  5. Gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Burd, Steven W. (Inventor); Cheung, Albert K. (Inventor); Dempsey, Dae K. (Inventor); Hoke, James B. (Inventor); Kramer, Stephen K. (Inventor); Ols, John T. (Inventor); Smith, Reid Dyer Curtis (Inventor); Sowa, William A. (Inventor)

    2011-01-01

    A gas turbine engine has a combustor module including an annular combustor having a liner assembly that defines an annular combustion chamber having a length, L. The liner assembly includes a radially inner liner, a radially outer liner that circumscribes the inner liner, and a bulkhead, having a height, H1, which extends between the respective forward ends of the inner liner and the outer liner. The combustor has an exit height, H3, at the respective aft ends of the inner liner and the outer liner interior. The annular combustor has a ratio H1/H3 having a value less than or equal to 1.7. The annular combustor may also have a ration L/H3 having a value less than or equal to 6.0.

  6. Transient catalytic combustor model

    NASA Technical Reports Server (NTRS)

    Tien, J. S.

    1981-01-01

    A quasi-steady gas phase and thermally thin substrate model is used to analyze the transient behavior of catalytic monolith combustors in fuel lean operation. The combustor response delay is due to the substrate thermal inertia. Fast response is favored by thin substrate, short catalytic bed length, high combustor inlet and final temperatures, and small gas channel diameters. The calculated gas and substrate temperature time history at different axial positions provides an understanding of how the catalytic combustor responds to an upstream condition change. The computed results also suggest that the gas residence times in the catalytic bed in the after bed space are correlatable with the nondimensional combustor response time. The model also performs steady state combustion calculations; and the computed steady state emission characteristics show agreement with available experimental data in the range of parameters covered. A catalytic combustor design for automotive gas turbine engine which has reasonably fast response ( 1 second) and can satisfy the emission goals in an acceptable total combustor length is possible.

  7. Combustor liner cooling system

    DOEpatents

    Lacy, Benjamin Paul; Berkman, Mert Enis

    2013-08-06

    A combustor liner is disclosed. The combustor liner includes an upstream portion, a downstream end portion extending from the upstream portion along a generally longitudinal axis, and a cover layer associated with an inner surface of the downstream end portion. The downstream end portion includes the inner surface and an outer surface, the inner surface defining a plurality of microchannels. The downstream end portion further defines a plurality of passages extending between the inner surface and the outer surface. The plurality of microchannels are fluidly connected to the plurality of passages, and are configured to flow a cooling medium therethrough, cooling the combustor liner.

  8. Dual-Mode Combustor

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J (Inventor); Dippold, Vance F (Inventor)

    2013-01-01

    A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.

  9. Unconventional cyclone separators

    SciTech Connect

    Schmidt, P. )

    1993-01-01

    Conventional cyclone separators are seldom suitable for dust removal from gases according to present standards. The reason is the presence of secondary currents within the cyclone body, which disturb the process of separation as predicted by elementary cyclone theory. Interference can be avoided by special design of the cyclone, including the geometry of the separation chamber, the position of openings, use of flow guides within the cyclone, the dimension and the geometry of the hopper, bleeding and bypassing of the gas, use of multicyclones, and means for dust agglomeration.

  10. Direct heating surface combustor

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Shire, L. I.; Mroz, T. S. (Inventor)

    1978-01-01

    The combustor utilizes a non-adiabatic flame to provide low-emission combustion for gas turbines. A fuel-air mixture is directed through a porous wall, the other side of which serves as a combustion surface. A radiant heat sink disposed adjacent to and spaced from the combustion surface controls the combustor flame temperature in order to prevent the formation of oxides of nitrogen. A secondary air flow cools the heat sink. Additionally, up to 100% of secondary air flow is mixed with the combustion products at the direct heating surface combustor to dilute such products thereby reducing exit temperature. However, if less than 100% secondary air is mixed to the combustor, the remainder may be added to the combustion products further downstream.

  11. Combustor diffuser interaction program

    NASA Technical Reports Server (NTRS)

    Srinivasan, Ram; Thorp, Daniel

    1986-01-01

    Advances in gas turbine engine performance are achieved by using compressor systems with high stage loading and low part count, which result in high exit Mach numbers. The diffuser and combustor systems in such engines should be optimized to reduce system pressure loss and to maximize the engine thrust-to-weight ratio and minimize length. The state-of-the-art combustor-diffuser systems do not meet these requirements. Detailed understanding of the combustor-diffuser flow field interaction is required for designing advanced gas turbine engines. An experimental study of the combustor-diffuser interaction (CDI) is being conducted to obtain data for the evaluation and improvement of analytical models applicable to a wide variety of diffuser designs. The CDI program consists of four technical phases: Literature Search; Baseline Configuration; Parametric Configurations; and Performance Configurations. Phase 2 of the program is in progress.

  12. Combustor liner durability analysis

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1981-01-01

    An 18 month combustor liner durability analysis program was conducted to evaluate the use of advanced three dimensional transient heat transfer and nonlinear stress-strain analyses for modeling the cyclic thermomechanical response of a simulated combustor liner specimen. Cyclic life prediction technology for creep/fatigue interaction is evaluated for a variety of state-of-the-art tools for crack initiation and propagation. The sensitivity of the initiation models to a change in the operating conditions is also assessed.

  13. Coal desulfurization by cyclonic whirl

    SciTech Connect

    Jianguo, Y.; Wenjun, Z.; Yuling, W.

    1999-07-01

    The crux of coal desulfurization is how to improve separation efficiency for 3--0.1mm materials. Cyclonic whirl produce centrifugal force and shearing force, heavy medium cyclone uses former, and cyclone flotation column uses both of them. A new system with heavy medium cyclone and cyclone flotation column is provided and testified to be very efficient in commercial desulfurization.

  14. Cyclone performance and optimization

    SciTech Connect

    Leith, D.

    1990-09-15

    The objectives of this project are: to characterize the gas flow pattern within cyclones, to revise the theory for cyclone performance on the basis of these findings, and to design and test cyclones whose dimensions have been optimized using revised performance theory. This work is important because its successful completion will aid in the technology for combustion of coal in pressurized, fluidized beds. This quarter, an empirical model for predicting pressure drop across a cyclone was developed through a statistical analysis of pressure drop data for 98 cyclone designs. The model is shown to perform better than the pressure drop models of First (1950), Alexander (1949), Barth (1956), Stairmand (1949), and Shepherd-Lapple (1940). This model is used with the efficiency model of Iozia and Leith (1990) to develop an optimization curve which predicts the minimum pressure drop and the dimension rations of the optimized cyclone for a given aerodynamic cut diameter, d{sub 50}. The effect of variation in cyclone height, cyclone diameter, and flow on the optimization curve is determined. The optimization results are used to develop a design procedure for optimized cyclones. 37 refs., 10 figs., 4 tabs.

  15. Cyclone performance and optimization

    SciTech Connect

    Leith, D.

    1989-03-15

    The objectives of this project are: to characterize the gas flow pattern within cyclones, to revise the theory for cyclone performance on the basis of these findings, and to design and test cyclones whose dimensions have been optimized using revised performance theory. This work is important because its successful completion will aid in the technology for combustion of coal in pressurized, fluidized beds. This quarter, we have been hampered somewhat by flow delivery of the bubble generation system and arc lighting system placed on order last fall. This equipment is necessary to map the flow field within cyclones using the techniques described in last quarter's report. Using the bubble generator, we completed this quarter a study of the natural length'' of cyclones of 18 different configurations, each configuration operated at five different gas flows. Results suggest that the equation by Alexander for natural length is incorrect; natural length as measured with the bubble generation system is always below the bottom of the cyclones regardless of the cyclone configuration or gas flow, within the limits of the experimental cyclones tested. This finding is important because natural length is a term in equations used to predict cyclone efficiency. 1 tab.

  16. Gas turbine topping combustor

    DOEpatents

    Beer, Janos; Dowdy, Thomas E.; Bachovchin, Dennis M.

    1997-01-01

    A combustor for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone.

  17. Coupled generator and combustor performance calculations for potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Dellinger, T. C.; Hnat, J. G.; Marston, C. H.

    1979-01-01

    A parametric study of the performance of the MHD generator and combustor components of potential early commercial open-cycle MHD/steam power plants is presented. Consideration is given to the effects of air heater system concept, MHD combustor type, coal type, thermal input power, oxygen enrichment of the combustion, subsonic and supersonic generator flow and magnetic field strength on coupled generator and combustor performance. The best performance is found to be attained with a 3000 F, indirectly fired air heater, no oxygen enrichment, Illinois no. 6 coal, a two-stage cyclone combustor with 85% slag rejection, a subsonic generator, and a magnetic field configuration yielding a constant transverse electric field of 4 kV/m. Results indicate that optimum net MHD generator power is generally compressor-power-limited rather than electric-stress-limited, with optimum net power a relatively weak function of operating pressure.

  18. Combustor and method for purging a combustor

    DOEpatents

    Berry, Jonathan Dwight; Hughes, Michael John

    2015-06-09

    A combustor includes an end cap. The end cap includes a first surface and a second surface downstream from the first surface, a shroud that circumferentially surrounds at least a portion of the first and second surfaces, a plate that extends radially within the shroud, a plurality of tubes that extend through the plate and the first and second surfaces, and a first purge port that extends through one or more of the plurality of tubes, wherein the purge port is axially aligned with the plate.

  19. Cyclone performance by velocity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclones are used almost exclusively in the US cotton ginning industry for emission abatement on pneumatic conveying system exhausts because of their high efficiency, and low capital and operating cost.. Cyclone performance is improved by increasing collection effectiveness or decreasing energy cons...

  20. Steam reformer with catalytic combustor

    DOEpatents

    Voecks, Gerald E.

    1990-03-20

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  1. Steam reformer with catalytic combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  2. Tropical cyclone formation

    SciTech Connect

    Montgomery, M.T.; Farrell, B.F. )

    1993-01-15

    The physics of tropical cyclone formation is not well understood, and more is known about the mature hurricane than the formative mechanisms that produce it. It is believed part of the reason for this can be traced to insufficient upper-level atmospheric data. Recent observations suggest that tropical cyclones are initiated by asymmetric interactions associated with migratory upper-level potential vorticity disturbances and low-level disturbances. Favored theories of cyclones formation, however, focus on internal processes associated with cumulus convection and/or air-sea interaction. This work focuses on external mechanisms of cyclone formation and, using both a two- and three-dimensional moist geostrophic momentum model, investigates the role of upper-level potential vorticity disturbances on the formation process. A conceptual model of tropical cyclone formation is proposed, and implications of the theory are discussed. 71 refs., 5 figs., 1 tab.

  3. Understand cyclone design

    SciTech Connect

    Coker, A.K. )

    1993-12-01

    Cyclones are widely used for the separation and recovery of industrial dusts from air or process gases. Cyclones are the principal type of gas-solids separator using centrifugal force. They are simple to construct, of low cost, and are made from a wide range of materials with an ability to operate at high temperatures and pressure. Cyclones are suitable for separating particles where agglomeration occurs. Pollution and emission regulations have compelled designers to study the efficiency of cyclones. Cyclones offer the least expensive means of dust collection. They give low efficiency for collection of particles smaller than 5 [mu]m. A high efficiency of 98% can be achieved on dusts with particle sizes of 0.1 to 0.2 [mu]m that are highly flocculated. The paper discusses the design procedure and operating parameters.

  4. Cyclone performance and optimization

    SciTech Connect

    Leith, D.

    1989-06-15

    The objectives of this project are: to characterize the gas flow pattern within cyclones, to revise the theory for cyclone performance on the basis of these findings, and to design and test cyclones whose dimensions have been optimized using revised performance theory. This work is important because its successful completion will aid in the technology for combustion of coal in pressurized, fluidized beds. We have now received all the equipment necessary for the flow visualization studies described over the last two progress reports. We have begun more detailed studies of the gas flow pattern within cyclones as detailed below. Third, we have begun studies of the effect of particle concentration on cyclone performance. This work is critical to application of our results to commercial operations. 1 fig.

  5. Combustor burner vanelets

    DOEpatents

    Lacy, Benjamin; Varatharajan, Balachandar; Kraemer, Gilbert Otto; Yilmaz, Ertan; Zuo, Baifang

    2012-02-14

    The present application provides a burner for use with a combustor of a gas turbine engine. The burner may include a center hub, a shroud, a pair of fuel vanes extending from the center hub to the shroud, and a vanelet extending from the center hub and/or the shroud and positioned between the pair of fuel vanes.

  6. Fluidized bed combustor modeling

    NASA Technical Reports Server (NTRS)

    Horio, M.; Rengarajan, P.; Krishnan, R.; Wen, C. Y.

    1977-01-01

    A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested.

  7. Tropical Cyclone Nargis: 2008

    NASA Video Gallery

    This new animation, developed with the help of NASA's Pleiades supercomputer, illustrates how tropical cyclone Nargis formed in the Indian Ocean's Bay of Bengal over several days in late April 2008...

  8. Cyclone performance and optimization

    SciTech Connect

    Leith, D.

    1990-06-15

    The objectives of this project are: to characterize the gas flow pattern within cyclones, to revise the theory for cyclone performance on the basis of these findings, and to design and test cyclones whose dimensions have been optimized using revised performance theory. This work is important because its successful completion will aid in the technology for combustion of coal in pressurized, fluidized beds. During the past quarter, we have nearly completed modeling work that employs the flow field measurements made during the past six months. In addition, we have begun final work using the results of this project to develop improved design methods for cyclones. This work involves optimization using the Iozia-Leith efficiency model and the Dirgo pressure drop model. This work will be completed this summer. 9 figs.

  9. Ceramic combustor mounting

    DOEpatents

    Hoffman, Melvin G.; Janneck, Frank W.

    1982-01-01

    A combustor for a gas turbine engine includes a metal engine block including a wall portion defining a housing for a combustor having ceramic liner components. A ceramic outlet duct is supported by a compliant seal on the metal block and a reaction chamber liner is stacked thereon and partly closed at one end by a ceramic bypass swirl plate which is spring loaded by a plurality of circumferentially spaced, spring loaded guide rods and wherein each of the guide rods has one end thereof directed exteriorly of a metal cover plate on the engine block to react against externally located biasing springs cooled by ambient air and wherein the rod spring support arrangement maintains the stacked ceramic components together so that a normal force is maintained on the seal between the outlet duct and the engine block under all operating conditions. The support arrangement also is operative to accommodate a substantial difference in thermal expansion between the ceramic liner components of the combustor and the metal material of the engine block.

  10. Gas turbine topping combustor

    DOEpatents

    Beer, J.; Dowdy, T.E.; Bachovchin, D.M.

    1997-06-10

    A combustor is described for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone. 14 figs.

  11. Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor. Quarterly technical progress report, 1996

    SciTech Connect

    Zauderer, B.

    1996-11-01

    The objective of this 24 month project is to determine the degree of sulfur retention in slag in a full scale cyclone coal combustor with sulfur capture by calcium oxide sorbent injection into the combustor. This sulfur capture process consists of two steps: Capture of sulfur with calcined calcium oxide followed by impact of the reacted sulfur-calcium particles on the liquid slag lining the combustor. The sulfur bearing slag must be removed within several minutes from the combustor to prevent re-evolution of the sulfur from the slag. To accomplish this requires slag mass flow rates in the range of several 100 lb/hr. To study this two step process in the combustor, two groups of tests are being implemented. In the first group, calcium sulfate in the form of gypsum, or plaster of Paris, was injected in the combustor to determine sulfur evolution from slag. In the second group, the entire process is tested with limestone and/or calcium hydrate injected into the combustor. This entire effort consists of a series of up to 16 parametric tests in a 20 MMtu/hr slagging, air cooled, cyclone combustor. During the present quarterly reporting period ending September 30,1996, three tests in this project were implemented, bringing the total tests to 5. In addition, a total of 10 test days were completed during this quarter on the parallel project that utilizes the same 20 MMtu/hr combustor. The results of that project, especially those related to improved slagging performance, have a direct bearing on this project in assuring proper operation at the high slag flow rates that may be necessary to achieve high sulfur retention in slag.

  12. Combustor technology for future aircraft

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.

    1990-01-01

    The continuing improvement of aircraft gas turbine engine operating efficiencies involves increases in overall engine pressure ratio increases that will result in combustor inlet pressure and temperature increases, greater combustion temperature rises, and higher combustor exit temperatures. These conditions entail the development of fuel injectors generating uniform circumferential and radial temperature patterns, as well as combustor liner configurations and materials capable of withstanding increased thermal radiation even as the amount of cooling air is reduced. Low NO(x)-emitting combustor concepts are required which will employ staged combustion. The development status of component technologies answering these requirements are presently evaluated.

  13. Grey swan tropical cyclones

    NASA Astrophysics Data System (ADS)

    Lin, Ning; Emanuel, Kerry

    2016-01-01

    We define `grey swan’ tropical cyclones as high-impact storms that would not be predicted based on history but may be foreseeable using physical knowledge together with historical data. Here we apply a climatological-hydrodynamic method to estimate grey swan tropical cyclone storm surge threat for three highly vulnerable coastal regions. We identify a potentially large risk in the Persian Gulf, where tropical cyclones have never been recorded, and larger-than-expected threats in Cairns, Australia, and Tampa, Florida. Grey swan tropical cyclones striking Tampa, Cairns and Dubai can generate storm surges of about 6 m, 5.7 m and 4 m, respectively, with estimated annual exceedance probabilities of about 1/10,000. With climate change, these probabilities can increase significantly over the twenty-first century (to 1/3,100-1/1,100 in the middle and 1/2,500-1/700 towards the end of the century for Tampa). Worse grey swan tropical cyclones, inducing surges exceeding 11 m in Tampa and 7 m in Dubai, are also revealed with non-negligible probabilities, especially towards the end of the century.

  14. HYPULSE combustor analysis

    NASA Technical Reports Server (NTRS)

    Rizkalla, O. F.

    1993-01-01

    The analysis of selected data from tests of unit fuel injectors in a generic scramjet combustor model is presented. The tests were conducted in the NASA HYPULSE expansion tube at conditions typical of flight at Mach 13.5 and 17. The analysis used a three-stream tube method, with finite-rate chemistry, in which the fuel, test gas, and mixing/combustive streams were treated independently but with the same static pressure. Performance of three candidate fuel injectors is examined based on deduced mixing and combustion efficiencies.

  15. Cyclone oil shale retorting concept. [Use it all retorting process

    SciTech Connect

    Harak, A.E.; Little, W.E.; Faulders, C.R.

    1984-04-01

    A new concept for above-ground retorting of oil shale was disclosed by A.E. Harak in US Patent No. 4,340,463, dated July 20, 1982, and assigned to the US Department of Energy. This patent titled System for Utilizing Oil Shale Fines, describes a process wherein oil shale fines of one-half inch diameter and less are pyrolyzed in an entrained-flow reactor using hot gas from a cyclone combustor. Spent shale and supplemental fuel are burned at slagging conditions in this combustor. Because of fines utilization, the designation Use It All Retorting Process (UIARP) has been adopted. A preliminary process engineering design of the UIARP, analytical tests on six samples of raw oil shale, and a preliminary technical and economic evaluation of the process were performed. The results of these investigations are summarized in this report. The patent description is included. It was concluded that such changes as deleting air preheating in the slag quench and replacing the condenser with a quench-oil scrubber are recognized as being essential. The addition of an entrained flow raw shale preheater ahead of the cyclone retort is probably required, but final acceptance is felt to be contingent on some verification that adequate reaction time cannot be obtained with only the cyclone, or possibly some other twin-cyclone configuration. Sufficient raw shale preheating could probably be done more simply in another manner, perhaps in a screw conveyor shale transporting system. Results of the technical and economic evaluations of Jacobs Engineering indicate that further investigation of the UIARP is definitely worthwhile. The projected capital and operating costs are competitive with costs of other processes as long as electric power generation and sales are part of the processing facility.

  16. Drying in cyclones -- A review

    SciTech Connect

    Nebra, S.A.; Silva, M.A.; Mujumdar, A.S.

    2000-03-01

    This paper presents an overview of the flow, heat and mass transfer characteristics of vortex (or cyclone) dryers. The focus is on the potential of the cyclone configuration for drying of particulates. A selective review is made of the literature pertains to single phase and gas-particle flow in cyclone geometries. Recent data on drying of particulates in cyclone dryers are summarized. 56 refs.

  17. High performance cyclone development

    SciTech Connect

    Giles, W.B.

    1981-01-01

    The results of cold flow experiments at atmospheric conditions of an air-shielded 18 in-dia electrocyclone with a central cusped electrode are reported using fine test dusts of both flyash and nickel powder. These results are found to confirm expectations of enhanced performance, similar to earlier work on a 12 in-dia model. An analysis of the combined inertial-electrostatic force field is also presented which identifies general design goals and scaling laws. From this, it is found that electrostatic enhancement will be particularly beneficial for fine dusts in large cyclones. Recommendations for further improvement in cyclone collection efficiency are proposed.

  18. Staged cascade fluidized bed combustor

    DOEpatents

    Cannon, Joseph N.; De Lucia, David E.; Jackson, William M.; Porter, James H.

    1984-01-01

    A fluid bed combustor comprising a plurality of fluidized bed stages interconnected by downcomers providing controlled solids transfer from stage to stage. Each stage is formed from a number of heat transfer tubes carried by a multiapertured web which passes fluidizing air to upper stages. The combustor cross section is tapered inwardly from the middle towards the top and bottom ends. Sorbent materials, as well as non-volatile solid fuels, are added to the top stages of the combustor, and volatile solid fuels are added at an intermediate stage.

  19. Fluidized bed combustor and tube construction therefor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1981-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  20. Tube construction for fluidized bed combustor

    DOEpatents

    De Feo, Angelo; Hosek, William

    1984-01-01

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  1. Assessing Tropical Cyclone Damage

    NASA Astrophysics Data System (ADS)

    Done, J.; Czajkowski, J.

    2012-12-01

    Landfalling tropical cyclones impact large coastal and inland areas causing direct damage due to winds, storm-surge flooding, tornadoes, and precipitation; as well as causing substantial indirect damage such as electrical outages and business interruption. The likely climate change impact of increased tropical cyclone intensity, combined with increases in exposure, bring the possibility of increased damage in the future. A considerable amount of research has focused on modeling economic damage due to tropical cyclones, and a series of indices have been developed to assess damages under climate change. We highlight a number of ways this research can be improved through a series of case study analyses. First, historical loss estimates are revisited to properly account for; time, impacted regions, the source of damage by type, and whether the damage was direct/indirect and insured/uninsured. Second, the drivers of loss from both the socio-economic and physical side are examined. A case is made to move beyond the use of maximum wind speed to more stable metrics and the use of other characteristics of the wind field such as direction, degree of gustiness, and duration is explored. A novel approach presented here is the potential to model losses directly as a function of climate variables such as sea surface temperature, greenhouse gases, and aerosols. This work is the first stage in the development of a tropical cyclone loss model to enable projections of losses under scenarios of both socio-economic change (such as population migration or altered policy) and physical change (such as shifts in tropical cyclone activity one from basin to another or within the same basin).

  2. Segmented annular combustor

    DOEpatents

    Reider, Samuel B.

    1979-01-01

    An industrial gas turbine engine includes an inclined annular combustor made up of a plurality of support segments each including inner and outer walls of trapezoidally configured planar configuration extents and including side flanges thereon interconnected by means of air cooled connector bolt assemblies to form a continuous annular combustion chamber therebetween and wherein an air fuel mixing chamber is formed at one end of the support segments including means for directing and mixing fuel within a plenum and a perforated header plate for directing streams of air and fuel mixture into the combustion chamber; each of the outer and inner walls of each of the support segments having a ribbed lattice with tracks slidably supporting porous laminated replaceable panels and including pores therein for distributing combustion air into the combustion chamber while cooling the inner surface of each of the panels by transpiration cooling thereof.

  3. Experimental clean combustor program, phase 1

    NASA Technical Reports Server (NTRS)

    Bahr, D. W.; Gleason, C. C.

    1975-01-01

    Full annular versions of advanced combustor designs, sized to fit within the CF6-50 engine, were defined, manufactured, and tested at high pressure conditions. Configurations were screened, and significant reductions in CO, HC, and NOx emissions levels were achieved with two of these advanced combustor design concepts. Emissions and performance data at a typical AST cruise condition were also obtained along with combustor noise data as a part of an addendum to the basic program. The two promising combustor design approaches evolved in these efforts were the Double Annular Combustor and the Radial/Axial Combustor. With versions of these two basic combustor designs, CO and HC emissions levels at or near the target levels were obtained. Although the low target NOx emissions level was not obtained with these two advanced combustor designs, significant reductions were relative to the NOx levels of current technology combustors. Smoke emission levels below the target value were obtained.

  4. Cyclone vibration effects

    SciTech Connect

    Gray, D.C.; Tillery, M.I.

    1981-09-01

    A Government Accounting Office review of coal mine dust sampling procedures recommended studies be performed to determine accuracy and precision of dust measurements taken with current equipment. The effects of vibration on the 10-mm Dorr-Oliver nylon cyclone run at a flow rate of 2 L/min were investigated. A total of 271 samples were taken during 95 tests. All tests lasted about 7 h each and were performed inside a 19 l capacity aerosol chamber. Coal dust concentrations of about 2 mg/m/SUP/3 in air and a respirable fraction of 25-30% were used. The effects of a variety of vibration frequencies and stroke lengths were tested in two modes (horizontal and vertical). At most frequencies and stroke lengths, vibration was found to have an insignificant effect on cyclone performance.

  5. DENSE MEDIA CYCLONE OPTIMIZATION

    SciTech Connect

    Gerald H. Luttrell

    2001-09-10

    The fieldwork associated with Task 1 (Baseline Assessment) was completed this quarter. Detailed cyclone inspections completed at all but one plant during maintenance shifts. Analysis of the test samples is also currently underway in Task 4 (Sample Analysis). A Draft Recommendation was prepared for the management at each test site in Task 2 (Circuit Modification). All required procurements were completed. Density tracers were manufactured and tested for quality control purposes. Special sampling tools were also purchased and/or fabricated for each plant site. The preliminary experimental data show that the partitioning performance for all seven HMC circuits was generally good. This was attributed to well-maintained cyclones and good operating practices. However, the density tracers detected that most circuits suffered from poor control of media cutpoint. These problems were attributed to poor x-ray calibration and improper manual density measurements. These conclusions will be validated after the analyses of the composite samples have been completed.

  6. Development of a retrofit coal combustor for industrial applications, (Phase 1-A)

    SciTech Connect

    Not Available

    1988-10-01

    During this past quarter, two tandem-fired pulse combustors were designed to fire at a nominal rate of 3.5 to 5.5 MMBtu/hr under continuation of Phase I work on DOE project DE-AC22-87PC79654. In prior work, MTCI demonstrated the operation of a 1--2 MMBtu/h coal-fired tandem pulse combustor that is intended for small industrial applications. These component tests emphasized verification of key design issues such as combustor coupling, slag rejection, and staged air addition. The current work, which represents an extension of the Phase I effort, focuses on integrated testing of the tandem pulse combustor with a fire-tube boiler, and the addition of a slag quench vessel. A tandem-fired pulse combustion unit designed to fire at a nominal rate of 3.5-5 MMBtu/hr was designed and fabricated. The configuration includes two combustion chambers cast in a single monolith, tailpipes cast separately with annular air preheating capability, and a cyclonic decoupler. Design analysis and evaluations were performed to optimize the system with respect to minimizing heat losses, size, and cost. Heat losses from the combustor and decoupler walls are predicted to be approximately 3 percent. The final designs for the ancillary items (slag quench, tertiary air addition, scrubber and sampling system) were completed and fabrication and installation initiated. A Cleaver-Brooks 150 hp-4 pass boiler was delivered and installed and modifications for interfacing with the retrofit pulse combustor unit completed. A below-ground slag collection pit was excavated to permit direct in-line coupling of the combustor to the boiler and to reduce head-room requirements. The pit is 30 inches deep and lined with waterproof and fireproof siding.

  7. Coal reburning for cyclone boiler NO{sub x} control demonstration. Quarterly report No. 7, October, November, and December 1991

    SciTech Connect

    Haggard, R.W. Jr.

    1991-12-31

    It is the objective of the Coal Reburning for Cyclone Boiler NOx Control Project to fully establish that the coal reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NOx emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NOx emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustor operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.

  8. Coal reburning for cyclone boiler NO{sub x} control demonstration. Quarterly report No. 6, July--September, 1991

    SciTech Connect

    Not Available

    1991-12-31

    It is the objective of the Coal Reburning for Cyclone Boiler NO{sub x} Control Project to fully establish that the cola reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NO{sub x} emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NO{sub x} emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustor operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.

  9. Tropical Cyclone Indlala

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On March 14, 2007, storm-weary Madagascar braced for its fourth land-falling tropical cyclone in as many months. Cyclone Indlala was hovering off the island's northeast coast when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite captured this photo-like image at 1:40 p.m. local time (10:40 UTC). Just over a hundred kilometers offshore, the partially cloudy eye at the heart of the storm seems like a vast drain sucking in a disk of swirling clouds. According to reports from the Joint Typhoon Warning Center issued less than three hours after MODIS captured this image, Indlala had winds of 115 knots (132 miles per hour), with gusts up to 140 knots (161 mph). Wave heights were estimated to be 36 feet. At the time of the report, the storm was predicted to intensify through the subsequent 12-hour period, to turn slightly southwest, and to strike eastern Madagascar as a Category 4 storm with sustained winds up to 125 knots (144 mph), and gusts up to 150 knots (173 mph). According to Reuters AlertNet news service, Madagascar's emergency response resources were taxed to their limit in early March 2007 as a result of extensive flooding in the North, drought and food shortages in the South, and three previous hits from cyclones in the preceding few months: Bondo in December 2006, Clovis in January 2007, and Gamede in February.

  10. Experimental clean combustor program, phase 2

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Peduzzi, A.; Vitti, G. E.

    1976-01-01

    Combustor pollution reduction technology for commercial CTOL engines was generated and this technology was demonstrated in a full-scale JT9D engine in 1976. Component rig refinement of the two best combustor concepts were tested. These concepts are the vorbix combustor, and a hybrid combustor which combines the pilot zone of the staged premix combustor and the main zone of the swirl-can combustor. Both concepts significantly reduced all pollutant emissions relative to the JT9D-7 engine combustor. However, neither concept met all program goals. The hybrid combustor met pollution goals for unburned hydrocarbons and carbon monoxide but did not achieve the oxides of nitrogen goal. This combustor had significant performance deficiencies. The Vorbix combustor met goals for unburned hydrocarbons and oxides of nitrogen but did not achieve the carbon monoxide goal. Performance of the vorbix combustor approached the engine requirements. On the basis of these results, the vorbix combustor was selected for the engine demonstration program. A control study was conducted to establish fuel control requirements imposed by the low-emission combustor concepts and to identify conceptual control system designs. Concurrent efforts were also completed on two addendums: an alternate fuels addendum and a combustion noise addendum.

  11. Two stage catalytic combustor

    NASA Technical Reports Server (NTRS)

    Alvin, Mary Anne (Inventor); Bachovchin, Dennis (Inventor); Smeltzer, Eugene E. (Inventor); Lippert, Thomas E. (Inventor); Bruck, Gerald J. (Inventor)

    2010-01-01

    A catalytic combustor (14) includes a first catalytic stage (30), a second catalytic stage (40), and an oxidation completion stage (49). The first catalytic stage receives an oxidizer (e.g., 20) and a fuel (26) and discharges a partially oxidized fuel/oxidizer mixture (36). The second catalytic stage receives the partially oxidized fuel/oxidizer mixture and further oxidizes the mixture. The second catalytic stage may include a passageway (47) for conducting a bypass portion (46) of the mixture past a catalyst (e.g., 41) disposed therein. The second catalytic stage may have an outlet temperature elevated sufficiently to complete oxidation of the mixture without using a separate ignition source. The oxidation completion stage is disposed downstream of the second catalytic stage and may recombine the bypass portion with a catalyst exposed portion (48) of the mixture and complete oxidation of the mixture. The second catalytic stage may also include a reticulated foam support (50), a honeycomb support, a tube support or a plate support.

  12. Combustor flame flashback

    NASA Technical Reports Server (NTRS)

    Proctor, M. P.; Tien, J. S.

    1985-01-01

    A stainless steel, two-dimensional (rectangular), center-dump, premixed-prevaporized combustor with quartz window sidewalls for visual access was designed, built, and used to study flashback. A parametric study revealed that the flashback equivalence ratio decreased slightly as the inlet air temperature increased. It also indicated that the average premixer velocity and premixer wall temperature were not governing parameters of flashback. The steady-state velocity balance concept as the flashback mechanism was not supported. From visual observation several stages of burning were identified. High speed photography verified upstream flame propagation with the leading edge of the flame front near the premixer wall. Combustion instabilities (spontaneous pressure oscillations) were discovered during combustion at the dump plane and during flashback. The pressure oscillation frequency ranged from 40 to 80 Hz. The peak-to-peak amplitude (up to 1.4 psi) increased as the fuel/air equivalence ratio was increased attaining a maximum value just before flashback. The amplitude suddenly decreased when the flame stabilized in the premixer. The pressure oscillations were large enough to cause a local flow reversal. A simple test using ceramic fiber tufts indicated flow reversals existed at the premixer exit during flickering. It is suspected that flashback occurs through the premixer wall boundary layer flow reversal caused by combustion instability. A theoretical analysis of periodic flow in the premixing channel has been made. The theory supports the flow reversal mechanism.

  13. Combustor and method for distributing fuel in the combustor

    DOEpatents

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; York, William David

    2016-04-26

    A combustor includes a tube bundle that extends radially across at least a portion of the combustor. The tube bundle includes an upstream surface axially separated from a downstream surface. A plurality of tubes extends from the upstream surface through the downstream surface, and each tube provides fluid communication through the tube bundle. A baffle extends axially inside the tube bundle between adjacent tubes. A method for distributing fuel in a combustor includes flowing a fuel into a fuel plenum defined at least in part by an upstream surface, a downstream surface, a shroud, and a plurality of tubes that extend from the upstream surface to the downstream surface. The method further includes impinging the fuel against a baffle that extends axially inside the fuel plenum between adjacent tubes.

  14. Radial midframe baffle for can-annular combustor arrangement having tangentially oriented combustor cans

    SciTech Connect

    Rodriguez, Jose L.

    2015-09-15

    A can-annular gas turbine engine combustion arrangement (10), including: a combustor can (12) comprising a combustor inlet (38) and a combustor outlet circumferentially and axially offset from the combustor inlet; an outer casing (24) defining a plenum (22) in which the combustor can is disposed; and baffles (70) configured to divide the plenum into radial sectors (72) and configured to inhibit circumferential motion of compressed air (16) within the plenum.

  15. Pulse combustor with controllable oscillations

    DOEpatents

    Richards, George A.; Welter, Michael J.; Morris, Gary J.

    1992-01-01

    A pulse combustor having thermally induced pulse combustion in a continuously flowing system is described. The pulse combustor is fitted with at lease one elongated ceramic body which significantly increases the heat transfer area in the combustion chamber of the combustor. The ceramic body or bodies possess sufficient mass and heat capacity to ignite the fuel-air charge once the ceramic body or bodies are heated by conventional spark plug initiated combustion so as to provide repetitive ignition and combustion of sequentially introduced fuel-air charges without the assistance of the spark plug and the rapid quenching of the flame after each ignition in a controlled manner so as to provide a selective control over the oscillation frequency and amplitude. Additional control over the heat transfer in the combustion chamber is provided by employing heat exchange mechanisms for selectively heating or cooling the elongated ceramic body or bodies and/or the walls of the combustion chamber.

  16. Pulse combustor with controllable oscillations

    SciTech Connect

    Richards, G.A.; Morris, G.J.; Welter, M.J.

    1991-12-31

    A pulse combustor having thermally induced pulse combustion in a continuously flowing system is described. The pulse combustor is fitted with at lease one elongated ceramic body which significantly increases the heat transfer area in the combustion chamber of the combustor. The ceramic body or bodies possess sufficient mass and heat capacity to ignite the fuel-air charge once the ceramic body or bodies are heated by conventional spark plug initiated combustion so as to provide repetitive ignition and combustion of sequentially introduced fuel-air charges without the assistance of the spark plug and the rapid quenching of the flame after each ignition in a controlled manner so as to provide a selective control over the oscillation frequency and amplitude. Additional control over the heat transfer in the combustion chamber is provided by employing heat exchange mechanisms for selectively heating or cooling the elongated ceramic body or bodies and/or the walls of the combustion chamber.

  17. Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor. Third quarterly technical progress report, April 1--June 30, 1996

    SciTech Connect

    Zauderer, B.

    1996-09-01

    The primary project objective is to determine the degree of sulfur retention in slag in a full scale cyclone coal combustor. This non-equilibrium process is a key step in the capture and retention of sulfur released during coal combustion by the interaction with calcium based sorbent particles. By encapsulating the sulfur bearing calcium particles in slag, the need for landfilling of this waste is eliminated. This objective will be implemented through a series of up to 20 one day tests carried out in a 20 MMBtu/hr air cooled, slagging combustor-boiler installation located in Philadelphia, PA. The project will consist of two tasks. Task 1 consists of the experiments conducted in the 20 MMBtu/hr combustor, and task 2 will consist of analysis of this data. All the operating procedures for this effort have been developed in the 7 years of operation of this combustor.

  18. Atlantic tropical cyclones revisited

    NASA Astrophysics Data System (ADS)

    Mann, Michael E.; Emanuel, Kerry A.; Holland, Greg J.; Webster, Peter J.

    Vigorous discussions have taken place recently in Eos [e.g., Mann and Emanuel, 2006; Landsea, 2007] and elsewhere [Emanuel, 2005; Webster et al., 2005; Hoyos et al., 2006; Trenberth and Shea, 2006; Kossin et al., 2007] regarding trends in North Atlantic tropical cyclone (TC) activity and their potential connection with anthropogenic climate change. In one study, for example [Landsea, 2007], it is argued that a substantial underestimate of Atlantic tropical cyclone counts in earlier decades arising from insufficient observing systems invalidates the conclusion that trends in TC behavior may be connected to climate change. Here we argue that such connections are in fact robust with respect to uncertainties in earlier observations.Several recent studies have investigated trends in various measures of TC activity. Emanuel [2005] showed that a measure of total power dissipation by TCs (the power dissipation index, or PDI) is highly correlated with August-October sea surface temperatures (SST) over the main development region (MDR) for Atlantic TCs over at least the past half century. Some support for this conclusion was provided by Sriver and Ruber [2006]. Webster et al. [2005] demonstrated a statistically significant increase in recent decades in both the total number of the strongest category cyclones (categories 4 and 5) and the proportion of storms reaching hurricane intensity. Hoyos et al. [2006] showed that these increases were closely tied to warming trends in tropical Atlantic SST, while, for example, the modest decrease in vertical wind shear played a more secondary role. Kossin et al. [2007] called into question some trends in other basins, based on a reanalysis of past TC data, but they found the North Atlantic trends to be robust.

  19. Classifying Southern Hemisphere extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Catto, Jennifer

    2015-04-01

    There is a wide variety of flavours of extratropical cyclones in the Southern Hemisphere, with differing structures and lifecycles. Previous studies have classified these manually using upper level flow features or satellite data. In order to be able to evaluate climate models and understand how extratropical cyclones might change in the future, we need to be able to use an automated method to classify cyclones. Extratropical cyclones have been identified in the Southern Hemisphere from the ERA-Interim reanalysis dataset with a commonly used identification and tracking algorithm that employs 850hPa relative vorticity. A clustering method applied to large-scale fields from ERA-Interim at the time of cyclone genesis (when the cyclone is first identified), has been used to objectively classify these cyclones in the Southern Hemisphere. This simple method is able to separate the cyclones into classes with quite different development mechanisms and lifecycle characteristics. Some of the classes seem to coincide with previous manual classifications on shorter timescales, showing their utility for climate model evaluation and climate change studies.

  20. Conceptual Models of Frontal Cyclones.

    ERIC Educational Resources Information Center

    Eagleman, Joe R.

    1981-01-01

    This discussion of weather models uses maps to illustrate the differences among three types of frontal cyclones (long wave, short wave, and troughs). Awareness of these cyclones can provide clues to atmospheric conditions which can lead toward accurate weather forecasting. (AM)

  1. Advances in dust cyclone research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dust cyclones reduce particulate emissions but their operation consumes electrical energy. Response surface methodology was used to compare two strategies to reduce energy costs without increasing emissions. Cyclones of a standard design (1D3D) were operated singly and in series, as was an ‘Experi...

  2. DENSE MEDIA CYCLONE OPTIMIZATION

    SciTech Connect

    Gerald H. Luttrell

    2002-09-14

    All project activities are now winding down. Follow-up tracer tests were conducted at several of the industrial test sites and analysis of the experimental data is currently underway. All required field work was completed during this quarter. In addition, the heavy medium cyclone simulation and expert system programs are nearly completed and user manuals are being prepared. Administrative activities (e.g., project documents, cost-sharing accounts, etc.) are being reviewed and prepared for final submission to DOE. All project reporting requirements are up to date. All financial expenditures are within approved limits.

  3. Methanol tailgas combustor control method

    DOEpatents

    Hart-Predmore, David J.; Pettit, William H.

    2002-01-01

    A method for controlling the power and temperature and fuel source of a combustor in a fuel cell apparatus to supply heat to a fuel processor where the combustor has dual fuel inlet streams including a first fuel stream, and a second fuel stream of anode effluent from the fuel cell and reformate from the fuel processor. In all operating modes, an enthalpy balance is determined by regulating the amount of the first and/or second fuel streams and the quantity of the first air flow stream to support fuel processor power requirements.

  4. Modeling a Transient Catalytic Combustor

    NASA Technical Reports Server (NTRS)

    Tien, J. S.

    1985-01-01

    Transient model of monolith catalytic combustor presented in report done under NASA/DOE contract. Model assumes quasi-steady gas phase and thermally "thin" solid. In gas-phase treatment, several quasi-global chemical reactions assumed capable of describing CO and unburnt hydrocarbon emissions in fuel-lean operations. In steady-state computation presented, influence of selected operating and design parameters on minimum combustor length studied. When fast transient responses required, both steady and unsteady studies made to achieve meaningful compromise in design.

  5. Combustor with fuel preparation chambers

    NASA Technical Reports Server (NTRS)

    Zelina, Joseph (Inventor); Myers, Geoffrey D. (Inventor); Srinivasan, Ram (Inventor); Reynolds, Robert S. (Inventor)

    2001-01-01

    An annular combustor having fuel preparation chambers mounted in the dome of the combustor. The fuel preparation chamber comprises an annular wall extending axially from an inlet to an exit that defines a mixing chamber. Mounted to the inlet are an air swirler and a fuel atomizer. The air swirler provides swirled air to the mixing chamber while the atomizer provides a fuel spray. On the downstream side of the exit, the fuel preparation chamber has an inwardly extending conical wall that compresses the swirling mixture of fuel and air exiting the mixing chamber.

  6. Energy Efficient Engine: Combustor component performance program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.

    1986-01-01

    The results of the Combustor Component Performance analysis as developed under the Energy Efficient Engine (EEE) program are presented. This study was conducted to demonstrate the aerothermal and environmental goals established for the EEE program and to identify areas where refinements might be made to meet future combustor requirements. In this study, a full annular combustor test rig was used to establish emission levels and combustor performance for comparison with those indicated by the supporting technology program. In addition, a combustor sector test rig was employed to examine differences in emissions and liner temperatures obtained during the full annular performance and supporting technology tests.

  7. Tropical Cyclone Information System

    NASA Technical Reports Server (NTRS)

    Li, P. Peggy; Knosp, Brian W.; Vu, Quoc A.; Yi, Chao; Hristova-Veleva, Svetla M.

    2009-01-01

    The JPL Tropical Cyclone Infor ma tion System (TCIS) is a Web portal (http://tropicalcyclone.jpl.nasa.gov) that provides researchers with an extensive set of observed hurricane parameters together with large-scale and convection resolving model outputs. It provides a comprehensive set of high-resolution satellite (see figure), airborne, and in-situ observations in both image and data formats. Large-scale datasets depict the surrounding environmental parameters such as SST (Sea Surface Temperature) and aerosol loading. Model outputs and analysis tools are provided to evaluate model performance and compare observations from different platforms. The system pertains to the thermodynamic and microphysical structure of the storm, the air-sea interaction processes, and the larger-scale environment as depicted by ocean heat content and the aerosol loading of the environment. Currently, the TCIS is populated with satellite observations of all tropical cyclones observed globally during 2005. There is a plan to extend the database both forward in time till present as well as backward to 1998. The portal is powered by a MySQL database and an Apache/Tomcat Web server on a Linux system. The interactive graphic user interface is provided by Google Map.

  8. Modelling of furnaces and combustors

    SciTech Connect

    Kahil, E.E.

    1985-01-01

    This book presents an account of the art of modelling for heat transfer and fluid flows in furnaces and combustors. After describing the different types of furnace flows, the author deals with the conservation equations. The different turbulence modelling assumptions, the more complicated problem of turbulent combustion modelling, and various types of turbulent flames are also described and reviewed, with appropriate models being assigned.

  9. Premixed Prevaporized Combustor Technology Forum

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Forum was held to present the results of recent and current work intended to provide basic information required for demonstration of lean, premixed prevaporized combustors for aircraft gas turbine engine application. Papers are presented which deal with the following major topics: (1) engine interfaces; (2) fuel-air preparation; (3) autoignition; (4) lean combustion; and (5) concept design studies.

  10. Experimental clean combustor program, phase 2

    NASA Technical Reports Server (NTRS)

    Gleason, C. C.; Rogers, D. W.; Bahr, D. W.

    1976-01-01

    The primary objectives of this three-phase program are to develop technology for the design of advanced combustors with significantly lower pollutant emission levels than those of current combustors, and to demonstrate these pollutant emission reductions in CF6-50C engine tests. The purpose of the Phase 2 Program was to further develop the two most promising concepts identified in the Phase 1 Program, the double annular combustor and the radial/axial staged combustor, and to design a combustor and breadboard fuel splitter control for CF6-50 engine demonstration testing in the Phase 3 Program. Noise measurement and alternate fuels addendums to the basic program were conducted to obtain additional experimental data. Twenty-one full annular and fifty-two sector combustor configurations were evaluated. Both combustor types demonstrated the capability for significantly reducing pollutant emission levels. The most promising results were obtained with the double annular combustor. Rig test results corrected to CF-50C engine conditions produced EPA emission parameters for CO, HC, and NOX of 3.4, 0.4, and 4.5 respectively. These levels represent CO, HC, and NOX reductions of 69, 90, and 42 percent respectively from current combustor emission levels. The combustor also met smoke emission level requirements and development engine performance and installation requirements.

  11. Tropical Cyclone Bejisa Near Madagascar

    NASA Video Gallery

    NASA's TRMM satellite flew over Cyclone Bejisa on December 29, 2013 at 1507 UTC. This 3-D animation of TRMM data revealed strong thunderstorms around Bejisa's center were reaching heights above 16....

  12. Variable residence time vortex combustor

    DOEpatents

    Melconian, Jerry O.

    1987-01-01

    A variable residence time vortex combustor including a primary combustion chamber for containing a combustion vortex, and a plurality of louvres peripherally disposed about the primary combustion chamber and longitudinally distributed along its primary axis. The louvres are inclined to impel air about the primary combustion chamber to cool its interior surfaces and to impel air inwardly to assist in driving the combustion vortex in a first rotational direction and to feed combustion in the primary combustion chamber. The vortex combustor also includes a second combustion chamber having a secondary zone and a narrowed waist region in the primary combustion chamber interconnecting the output of the primary combustion chamber with the secondary zone for passing only lower density particles and trapping higher density particles in the combustion vortex in the primary combustion chamber for substantial combustion.

  13. Combustor modelling for scramjet engines

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.; Rogers, R. C.; Evans, J. S.

    1979-01-01

    A system of computer programs is being developed to analyse and predict the complex flow fields found in hydrogen-fueled scramjet combustors. Each program is designed to solve the governing equation system for the type of flow present in a particular combustor region. A two-dimensional parabolic program has been found to be valuable in the development and experimental evaluation of turbulence and chemistry models for supersonic flow, and in the development of a program to model supersonic flow downstream of the fuel injection struts by means of solutions to the three-dimensional parabolic Navier-Stokes equations and species equations. A partially elliptic code has been derived to account for local subsonic flow regions, and fully elliptic programs have been developed by the consideration of streamwise diffusion effects for the recirculating flow fields near transverse fuel injectors. The programs are currently being applied to problems of scramjet engine development.

  14. Black Swan Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Emanuel, K.; Lin, N.

    2012-12-01

    Virtually all assessments of tropical cyclone risk are based on historical records, which are limited to a few hundred years at most. Yet stronger TCs may occur in the future and at places that have not been affected historically. Such events lie outside the realm of historically based expectations and may have extreme impacts. Their occurrences are also often made explainable after the fact (e.g., Hurricane Katrina). We nickname such potential future TCs, characterized by rarity, extreme impact, and retrospective predictability, "black swans" (Nassim Nicholas Taleb, 2007). As, by definition, black swan TCs have yet to happen, statistical methods that solely rely on historical track data cannot predict their occurrence. Global climate models lack the capability to predict intense storms, even with a resolution as high as 14 km (Emanuel et al. 2010). Also, most dynamic downscaling methods (e.g., Bender et al. 2010) are still limited in horizontal resolution and are too expensive to implement to generate enough events to include rare ones. In this study, we apply a simpler statistical/deterministic hurricane model (Emanuel et al. 2006) to simulate large numbers of synthetic storms under a given (observed or projected) climate condition. The method has been shown to generate realistic extremes in various basins (Emanuel et al. 2008 and 2010). We also apply a hydrodynamic model (ADCIRC; Luettich et al. 1992) to simulate the storm surges generated by these storms. We then search for black swan TCs, in terms of the joint wind and surge damage potential, in the generated large databases. Heavy rainfall is another important TC hazard and will be considered in a future study. We focus on three areas: Tampa Bay in the U.S., the Persian Gulf, and Darwin in Australia. Tampa Bay is highly vulnerable to storm surge as it is surrounded by shallow water and low-lying lands, much of which may be inundated by a storm tide of 6 m. High surges are generated by storms with a broad

  15. Combustor with multistage internal vortices

    DOEpatents

    Shang, Jer Y.; Harrington, Richard E.

    1989-01-01

    A fluidized bed combustor is provided with a multistage arrangement of vortex generators in the freeboard area. The vortex generators are provided by nozzle means which extend into the interior of the freeboard for forming vortices within the freeboard area to enhance the combustion of particulate material entrained in product gases ascending into the freeboard from the fluidized bed. Each of the nozzles are radially inwardly spaced from the combustor walls defining the freeboard to provide for the formation of an essentially vortex-free, vertically extending annulus about the vortices whereby the particulate material centrifuged from the vortices against the inner walls of the combustor is returned through the annulus to the fluidized bed. By adjusting the vortex pattern within the freeboard, a significant portion of the full cross-sectional area of the freeboard except for the peripheral annulus can be contacted with the turbulent vortical flow for removing the particulate material from the gaseous products and also for enhancing the combustion thereof within the freeboard.

  16. Combustor with multistage internal vortices

    DOEpatents

    Shang, Jer Yu; Harrington, R.E.

    1987-05-01

    A fluidized bed combustor is provided with a multistage arrangement of vortex generators in the freeboard area. The vortex generators are provided by nozzle means which extend into the interior of the freeboard for forming vortices within the freeboard areas to enhance the combustion of particulate material entrained in product gases ascending into the freeboard from the fluidized bed. Each of the nozzles are radially inwardly spaced from the combustor walls defining the freeboard to provide for the formation of an essentially vortex-free, vertically extending annulus about the vortices whereby the particulate material centrifuged from the vortices against the inner walls of the combustor is returned through the annulus to the fluidized bed. By adjusting the vortex pattern within the freeboard, a significant portion of the full cross-sectional area of the freeboard except for the peripheral annulus can be contacted with the turbulent vortical flow for removing the particulate material from the gaseous products and also for enhancing the combustion thereof within the freeboard. 2 figs.

  17. Vertical combustor for particulate refuse

    NASA Astrophysics Data System (ADS)

    Chung, P. M.; Carlson, L.

    1981-03-01

    A one-dimensional model is constructed of a vertical combustor for refuse particle combustion in order to analyze it for waste energy recovery. The three components of the model, fuel particles, inert solid particles and the gaseous mixture are described by momentum, energy, and mass conservation equations, resulting in three different flow velocities and temperatures for the medium. The gaseous component is further divided into six chemical species that evolve in combustion at temperatures below about 1367 K. A detailed description is given of the fuel particle combustion through heating, devolatilization, and combustion of the volatile gas in the boundary layer, return of the flame sheet to the fuel surface, and char combustion. The solutions show the combustor to be viable for U.S. refuse which consists of combustibles that can be volatilized up to 85 to 95% below 1366 K. Char combustion, however, is found to be too slow to be attempted in the combustor, where the fuel residence time is of the order of 2 s.

  18. Development of a retrofit coal combustor for industrial applications, (Phase 1-A). Technical progress report, July--September 1988

    SciTech Connect

    Not Available

    1988-10-01

    During this past quarter, two tandem-fired pulse combustors were designed to fire at a nominal rate of 3.5 to 5.5 MMBtu/hr under continuation of Phase I work on DOE project DE-AC22-87PC79654. In prior work, MTCI demonstrated the operation of a 1--2 MMBtu/h coal-fired tandem pulse combustor that is intended for small industrial applications. These component tests emphasized verification of key design issues such as combustor coupling, slag rejection, and staged air addition. The current work, which represents an extension of the Phase I effort, focuses on integrated testing of the tandem pulse combustor with a fire-tube boiler, and the addition of a slag quench vessel. A tandem-fired pulse combustion unit designed to fire at a nominal rate of 3.5-5 MMBtu/hr was designed and fabricated. The configuration includes two combustion chambers cast in a single monolith, tailpipes cast separately with annular air preheating capability, and a cyclonic decoupler. Design analysis and evaluations were performed to optimize the system with respect to minimizing heat losses, size, and cost. Heat losses from the combustor and decoupler walls are predicted to be approximately 3 percent. The final designs for the ancillary items (slag quench, tertiary air addition, scrubber and sampling system) were completed and fabrication and installation initiated. A Cleaver-Brooks 150 hp-4 pass boiler was delivered and installed and modifications for interfacing with the retrofit pulse combustor unit completed. A below-ground slag collection pit was excavated to permit direct in-line coupling of the combustor to the boiler and to reduce head-room requirements. The pit is 30 inches deep and lined with waterproof and fireproof siding.

  19. Cloudsat tropical cyclone database

    NASA Astrophysics Data System (ADS)

    Tourville, Natalie D.

    CloudSat (CS), the first 94 GHz spaceborne cloud profiling radar (CPR), launched in 2006 to study the vertical distribution of clouds. Not only are CS observations revealing inner vertical cloud details of water and ice globally but CS overpasses of tropical cyclones (TC's) are providing a new and exciting opportunity to study the vertical structure of these storm systems. CS TC observations are providing first time vertical views of TC's and demonstrate a unique way to observe TC structure remotely from space. Since December 2009, CS has intersected every globally named TC (within 1000 km of storm center) for a total of 5,278 unique overpasses of tropical systems (disturbance, tropical depression, tropical storm and hurricane/typhoon/cyclone (HTC)). In conjunction with the Naval Research Laboratory (NRL), each CS TC overpass is processed into a data file containing observational data from the afternoon constellation of satellites (A-TRAIN), Navy's Operational Global Atmospheric Prediction System Model (NOGAPS), European Center for Medium range Weather Forecasting (ECMWF) model and best track storm data. This study will describe the components and statistics of the CS TC database, present case studies of CS TC overpasses with complementary A-TRAIN observations and compare average reflectivity stratifications of TC's across different atmospheric regimes (wind shear, SST, latitude, maximum wind speed and basin). Average reflectivity stratifications reveal that characteristics in each basin vary from year to year and are dependent upon eye overpasses of HTC strength storms and ENSO phase. West Pacific (WPAC) basin storms are generally larger in size (horizontally and vertically) and have greater values of reflectivity at a predefined height than all other basins. Storm structure at higher latitudes expands horizontally. Higher vertical wind shear (≥ 9.5 m/s) reduces cloud top height (CTH) and the intensity of precipitation cores, especially in HTC strength storms

  20. Alternate-Fueled Combustor-Sector Performance: Part A: Combustor Performance Part B: Combustor Emissions

    NASA Technical Reports Server (NTRS)

    Shouse, D. T.; Neuroth, C.; Henricks, R. C.; Lynch, A.; Frayne, C.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2010-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as drop-in fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of feedstock. Adherence to alternate fuels and fuel blends requires smart fueling systems or advanced fuel-flexible systems, including combustors and engines without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data for synthetic-parafinic-kerosene- (SPK-) type fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling.

  1. DENSE MEDIUM CYCLONE OPTIMIZATON

    SciTech Connect

    Gerald H. Luttrell; Chris J. Barbee; Peter J. Bethell; Chris J. Wood

    2005-06-30

    Dense medium cyclones (DMCs) are known to be efficient, high-tonnage devices suitable for upgrading particles in the 50 to 0.5 mm size range. This versatile separator, which uses centrifugal forces to enhance the separation of fine particles that cannot be upgraded in static dense medium separators, can be found in most modern coal plants and in a variety of mineral plants treating iron ore, dolomite, diamonds, potash and lead-zinc ores. Due to the high tonnage, a small increase in DMC efficiency can have a large impact on plant profitability. Unfortunately, the knowledge base required to properly design and operate DMCs has been seriously eroded during the past several decades. In an attempt to correct this problem, a set of engineering tools have been developed to allow producers to improve the efficiency of their DMC circuits. These tools include (1) low-cost density tracers that can be used by plant operators to rapidly assess DMC performance, (2) mathematical process models that can be used to predict the influence of changes in operating and design variables on DMC performance, and (3) an expert advisor system that provides plant operators with a user-friendly interface for evaluating, optimizing and trouble-shooting DMC circuits. The field data required to develop these tools was collected by conducting detailed sampling and evaluation programs at several industrial plant sites. These data were used to demonstrate the technical, economic and environmental benefits that can be realized through the application of these engineering tools.

  2. Discontinuous Cyclone Movement of Mediterranean cyclones identified through formation analysis of daughter cyclones

    NASA Astrophysics Data System (ADS)

    Ziv, Baruch; Saaroni, Hadas; Harpaz, Tzvi

    2016-04-01

    A new algorithm developed performs an automated classification methodology for daughter cyclones (DCs) formation, with respect to the thermal field of the parent cyclones (PCs). The classification has been applied to winter Mediterranean Cyclones. The algorithm assigns a DC to one of seven types, according to the following considerations: Has the cyclone formed on a front? Is that a cold, a warm or a quasi-stationary front? Is this front part of the frontal system of the PC or of a non-parental system? If none of the above applies, has the cyclone formed within the warm sector? The measures used are the temperature gradient, temperature advection and temperature Laplacian, computed at the formation location of the DC and the temperature difference between the DC and the PC, each derived from the 850-hPa wind and temperature fields. Out of 4,303 DCs analyzed, 85% were identified to belong to one of the 7 predefined types, implying that 15% cannot be related to either baroclinic or thermal factors. More than half were formed at their PCs' frontal system, third on a non-parental frontal system and only 13% within the warm sector of the PC. Most of the cyclones, formed on the PC's cold front, were found at mountain lee locations, whereas cyclones formed on the warm front were generated mostly over the Aegean and the Adriatic Sea. The new methodology exposed a unique DC formation which is actually a Discontinuous Cyclone Movement (DCM), imposed by an encounter with geographical forcing. This formation was identified in 5.9% of the DC formations and is characterized by the following features: 1) parent-daughter distance (d) <1000 Km, 2) the area enclosed by the inner isobar surrounding both the PC and the DC should be less than 2d, 3) the PC should last no more than 18 hours after the DC has been first detected. DCM events found among DCs formed on warm fronts of PCs, to their east, are suggested as a mechanism which enables the PC to cross topographic barriers

  3. Combustor with non-circular head end

    SciTech Connect

    Kim, Won -Wook; McMahan, Kevin Weston

    2015-09-29

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a head end with a non-circular configuration, a number of fuel nozzles positioned about the head end, and a transition piece extending downstream of the head end.

  4. Analytical fuel property effects--small combustors

    NASA Technical Reports Server (NTRS)

    Sutton, R. D.; Troth, D. L.; Miles, G. A.

    1984-01-01

    The consequences of using broad-property fuels in both conventional and advanced state-of-the-art small gas turbine combustors are assessed. Eight combustor concepts were selected for initial screening, of these, four final combustor concepts were chosen for further detailed analysis. These included the dual orifice injector baseline combustor (a current production 250-C30 engine combustor) two baseline airblast injected modifications, short and piloted prechamber combustors, and an advanced airblast injected, variable geometry air staged combustor. Final predictions employed the use of the STAC-I computer code. This quasi 2-D model includes real fuel properties, effects of injector type on atomization, detailed droplet dynamics, and multistep chemical kinetics. In general, fuel property effects on various combustor concepts can be classified as chemical or physical in nature. Predictions indicate that fuel chemistry has a significant effect on flame radiation, liner wall temperature, and smoke emission. Fuel physical properties that govern atomization quality and evaporation rates are predicted to affect ignition and lean-blowout limits, combustion efficiency, unburned hydrocarbon, and carbon monoxide emissions.

  5. Development of multi-size classifying cyclone

    SciTech Connect

    Zhan Hanhui; Wang Zuna

    1994-12-31

    The authors have developed a multi-size classifying cyclone, which is characterized by its distinctive structure and quasi forced vortex in a rotary flow region. The cyclone differs from a conventional cyclone in three-dimensional velocity distribution in a rotary flow region, but the former has the same pressure distribution law as the latter. Tests show that satisfactory multi-size classification can be achieved using the cyclone.

  6. TRW advanced slagging coal combustor utility demonstration

    SciTech Connect

    Not Available

    1990-01-01

    The TRW Advanced Entrained Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/oil unit to fire 2.5% sulfur coal. The slagging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Environmental Standards. The TRW-Utility Demonstration Unit (UDU) is responsible for the implementation of program policies and overall direction of the project. The following projects will be carried out: process and design development of clean coal technology CCT-1 the development and operation of the entrained coal combustor will enable the boiler to burn low and medium sulfur coal while meeting all the Federal/State emission requirements; demonstrate sulfur dioxide emissions control by pulverized limestone injection into the entrained coal combustor system.

  7. Experimental clean combustor program, phase 3

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Fiorentino, A.; Greene, W.

    1977-01-01

    A two-stage vortex burning and mixing combustor and associated fuel system components were successfully tested at steady state and transient operating conditions. The combustor exceeded the program goals for all three emissions species, with oxides of nitrogen 10 percent below the goal, carbon monoxide 26 percent below the goal, and total unburned hydrocarbons 75 percent below the goal. Relative to the JT9D-7 combustor, the oxides of nitrogen were reduced by 58 percent, carbon monoxide emissions were reduced by 69 percent, and total unburned hydrocarbons were reduced by 9 percent. The combustor efficiency and exit temperature profiles were comparable to those of production combustor. Acceleration and starting characteristics were deficient relative to the production engine.

  8. Combustor for fine particulate coal

    DOEpatents

    Carlson, L.W.

    1988-01-26

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  9. Combustor for fine particulate coal

    DOEpatents

    Carlson, Larry W.

    1988-01-01

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.

  10. Combustor for fine particulate coal

    DOEpatents

    Carlson, L.W.

    1988-11-08

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  11. USING CYCLONES EFFECTIVELY AT COTTON GINS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclones are the most common type of emissions control device used in agricultural processing operations. Cyclones are efficient, reliable, low-cost, and require little maintenance. When used properly, cyclones effectively separate particulate matter from air streams, allowing compliance with state ...

  12. The dynamical structure of intense Mediterranean cyclones

    NASA Astrophysics Data System (ADS)

    Flaounas, Emmanouil; Raveh-Rubin, Shira; Wernli, Heini; Drobinski, Philippe; Bastin, Sophie

    2015-05-01

    This paper presents and analyzes the three-dimensional dynamical structure of intense Mediterranean cyclones. The analysis is based on a composite approach of the 200 most intense cyclones during the period 1989-2008 that have been identified and tracked using the output of a coupled ocean-atmosphere regional simulation with 20 km horizontal grid spacing and 3-hourly output. It is shown that the most intense Mediterranean cyclones have a common baroclinic life cycle with a potential vorticity (PV) streamer associated with an upper-level cyclonic Rossby wave breaking, which precedes cyclogenesis in the region and triggers baroclinic instability. It is argued that this common baroclinic life cycle is due to the strongly horizontally sheared environment in the Mediterranean basin, on the poleward flank of the quasi-persistent subtropical jet. The composite life cycle of the cyclones is further analyzed considering the evolution of key atmospheric elements as potential temperature and PV, as well as the cyclones' thermodynamic profiles and rainfall. It is shown that most intense Mediterranean cyclones are associated with warm conveyor belts and dry air intrusions, similar to those of other strong extratropical cyclones, but of rather small scale. Before cyclones reach their mature stage, the streamer's role is crucial to advect moist and warm air towards the cyclones center. These dynamical characteristics, typical for very intense extratropical cyclones in the main storm track regions, are also valid for these Mediterranean cases that have features that are visually similar to tropical cyclones.

  13. The dynamical structure of intense Mediterranean cyclones

    NASA Astrophysics Data System (ADS)

    Flaounas, Emmanouil; Raveh-Rubin, Shira; Wernli, Heini; Drobinski, Philippe; Bastin, Sophie

    2014-09-01

    This paper presents and analyzes the three-dimensional dynamical structure of intense Mediterranean cyclones. The analysis is based on a composite approach of the 200 most intense cyclones during the period 1989-2008 that have been identified and tracked using the output of a coupled ocean-atmosphere regional simulation with 20 km horizontal grid spacing and 3-hourly output. It is shown that the most intense Mediterranean cyclones have a common baroclinic life cycle with a potential vorticity (PV) streamer associated with an upper-level cyclonic Rossby wave breaking, which precedes cyclogenesis in the region and triggers baroclinic instability. It is argued that this common baroclinic life cycle is due to the strongly horizontally sheared environment in the Mediterranean basin, on the poleward flank of the quasi-persistent subtropical jet. The composite life cycle of the cyclones is further analyzed considering the evolution of key atmospheric elements as potential temperature and PV, as well as the cyclones' thermodynamic profiles and rainfall. It is shown that most intense Mediterranean cyclones are associated with warm conveyor belts and dry air intrusions, similar to those of other strong extratropical cyclones, but of rather small scale. Before cyclones reach their mature stage, the streamer's role is crucial to advect moist and warm air towards the cyclones center. These dynamical characteristics, typical for very intense extratropical cyclones in the main storm track regions, are also valid for these Mediterranean cases that have features that are visually similar to tropical cyclones.

  14. Solid Fuel Ramjet Combustor Design

    NASA Astrophysics Data System (ADS)

    Krishnan, S.; George, Philmon

    1998-03-01

    Combustion aspects of solid fuel ramjet (SFRJ) are reviewed. On the point of view of the ability of an SFRJ to operate satisfactorily at all off-design conditions the areas of concern to propulsion system designer are (1) selection of a fuel type, (2) flame holding requirements that limit maximum fuel loading, (3) understanding the fuel regression rate behaviour as a function of flight speed and altitude, (4) diffusion-controlled combustion process and its efficiency enhancement, and (5) inlet/combustor matching. Considering these areas, the following aspects are reviewed from the information available in open literature: (1) different experimental set-up conditions adopted in combustor research, (2) various suitable fuel types, (3) flammability limits, (4) fuel regression rate behaviour, (5) methods of achieving high efficiency in metallized fuel, and (6) various modelling efforts. Detailed discussion is presented on two different types of regression rate mechanism in SFRJ: one that is controlled by the heat transfer processes downstream of the reattachment region and the other by that in the region itself. With a view to demonstrate the use of the information collected through this review, a preliminary design procedure is presented for an SFRJ-assisted gun launched projectile of pseudo-vacuum trajectory.

  15. Wedge edge ceramic combustor tile

    DOEpatents

    Shaffer, James E.; Holsapple, Allan C.

    1997-01-01

    A multipiece combustor has a portion thereof being made of a plurality of ceramic segments. Each of the plurality of ceramic segments have an outer surface and an inner surface. Each of the plurality of ceramic segments have a generally cylindrical configuration and including a plurality of joints. The joints define joint portions, a first portion defining a surface being skewed to the outer surface and the inner surface. The joint portions have a second portion defining a surface being skewed to the outer surface and the inner surface. The joint portions further include a shoulder formed intermediate the first portion and the second portion. The joints provide a sealing interlocking joint between corresponding ones of the plurality of ceramic segments. Thus, the multipiece combustor having the plurality of ceramic segment with the plurality of joints reduces the physical size of the individual components and the degradation of the surface of the ceramic components in a tensile stress zone is generally eliminated reducing the possibility of catastrophic failures.

  16. Wedge edge ceramic combustor tile

    DOEpatents

    Shaffer, J.E.; Holsapple, A.C.

    1997-06-10

    A multipiece combustor has a portion thereof being made of a plurality of ceramic segments. Each of the plurality of ceramic segments have an outer surface and an inner surface. Each of the plurality of ceramic segments have a generally cylindrical configuration and including a plurality of joints. The joints define joint portions, a first portion defining a surface being skewed to the outer surface and the inner surface. The joint portions have a second portion defining a surface being skewed to the outer surface and the inner surface. The joint portions further include a shoulder formed intermediate the first portion and the second portion. The joints provide a sealing interlocking joint between corresponding ones of the plurality of ceramic segments. Thus, the multipiece combustor having the plurality of ceramic segment with the plurality of joints reduces the physical size of the individual components and the degradation of the surface of the ceramic components in a tensile stress zone is generally eliminated reducing the possibility of catastrophic failures. 7 figs.

  17. Low NOx Advanced Vortex Combustor

    SciTech Connect

    Edmonds, R.G.; Williams, J.T.; Steele, R.C.; Straub, D.L.; Casleton, K.H.; Bining, Avtar

    2008-05-01

    A lean-premixed advanced vortex combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory in Morgantown, WV. All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx /CO/unburned hydrocarbon (UHC) emissions of 4/4/0 ppmv (all emissions corrected to 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated marked acoustic dynamic stability over a wide range of operating conditions, which potentially makes this approach significantly more attractive than other lean-premixed combustion approaches. In addition, the measured 1.75% pressure drop is significantly lower than conventional gas turbine combustors, which could translate into an overall gas turbine cycle efficiency improvement. The relatively high velocities and low pressure drop achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

  18. Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor. Fifth quarterly technical progress report, October 1, 1996--December 31, 1996

    SciTech Connect

    Zauderer, B.

    1997-02-04

    Calcium oxide sorbents injected in a stagging combustor react with the sulfur released during coal combustion to form sulfur bearing particles, some of which are deposited on the liquid slag layer on the combustor wall. Since the solubility of sulfur in liquid slag is low, the slag must be drained from the combustor to limit sulfur re-evolution into the gas phase. The objective of this 24 month project is to perform a series of 16 one day tests to determine the factors that control the retention of the sulfur in the slag that is drained from the combustor. In the present quarterly reporting period, 10 days of combustor tests were performed, bringing the total number of tests performed to 15. A wide range of operating conditions were tested including injection of metal oxide powders to achieve total mineral injection rates in excess of 400 lb/hr at coal mass flow rates of around 1000 lb/hr. It was determined that efficient sulfur capture requires calcium oxide particle sizes that are too small to be effectively retained in the combustor. On the other hand, injection of coarse calcium sulfate particles into the combustor sharply increased the slag viscosity, thereby reducing the slag flow rate and causing substantial revolution of the sulfur in the slag. It is tentatively concluded that conditions necessary for sulfur capture with sorbents and its retention in the slag cannot be efficiently achieved in one step in a cyclone combustor. It is further concluded that due to the increases in slag viscosity by calcium sulfate extremely high slag mass flow rates are required for sulfur retention in slag. Further tests in that direction are planned for the next quarterly reporting period.

  19. New trends in the improvement of cyclones

    SciTech Connect

    Rivkinzon, I.B.; Zyuba, B.I.

    1984-05-01

    This article examines the possibilities of reducing catalyst attrition and cyclone wall erosion through optimization of the aerodynamic conditions in the cyclone. It is assumed that the disintegration of catalyst particles and erosion of the cyclone walls take place at exactly the same points (e.g. the seats of erosion in the cyclones can serve as natural indicators in determining the zones of catalyst pulverization). In catalytic cracking units, internal cyclones are used as the primary means of cleanup of the gas for process purposes. Cyclones trap out 99.8-99.95% of the catalyst entrained from the fluidized bed by the contact gas. The retrofitting of standard cyclones with chambers for preliminary aerodynamic stabilization of the flow yielded favorable results. The results of erosion tests on type TsN cyclones with and without a stabilization chamber indicate that the proposed stabilization method can give an approximately fivefold reduction of erosion of the cylindrical part of the cyclone. An important advantage of cyclones with added stabilization is the increased efficiency of dust collection. It is concluded that supplementary aerodynamic stabilization of the dust-laded gas flow and reduction of the angle of attack can give substantial improvements in the operating characteristics of cyclones, both cylindrical and spiral-conical.

  20. Low NOx Heavy Fuel Combustor Concept Program

    NASA Technical Reports Server (NTRS)

    Novick, A. S.; Troth, D. L.

    1981-01-01

    The development of the technology required to operate an industrial gas turbine combustion system on minimally processed, heavy petroleum or residual fuels having high levels of fuel-bound nitrogen (FBN) while producing acceptable levels of exhaust emissions is discussed. Three combustor concepts were designed and fabricated. Three fuels were supplied for the combustor test demonstrations: a typical middle distillate fuel, a heavy residual fuel, and a synthetic coal-derived fuel. The primary concept was an air staged, variable-geometry combustor designed to produce low emissions from fuels having high levels of FBN. This combustor used a long residence time, fuel-rich primary combustion zone followed by a quick-quench air mixer to rapidly dilute the fuel rich products for the fuel-lean final burnout of the fuel. This combustor, called the rich quench lean (RQL) combustor, was extensively tested using each fuel over the entire power range of the model 570 K engine. Also, a series of parameteric tests was conducted to determine the combustor's sensitivity to rich-zone equivalence ratio, lean-zone equivalence ratio, rich-zone residence time, and overall system pressure drop. Minimum nitrogen oxide emissions were measured at 50 to 55 ppmv at maximum continuous power for all three fuels. Smoke was less than a 10 SAE smoke number.

  1. Fuel cell system with combustor-heated reformer

    DOEpatents

    Pettit, William Henry

    2000-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

  2. Afterburner for combustion of starved-air combustor fuel gas containing suspended solid fuel and fly ash

    SciTech Connect

    Fitch, R.E.; Tucker, G.H.

    1982-06-01

    An afterburner for use as a secondary combustion chamber in a starved-air combustor system to further combust any combustible material in the combustion gas and entrained solid particle material discharge from the combustion chamber of the starved-air combustor system. The afterburner is lined with refractory and includes a diverter plate positioned transversely to the incoming flow of combustion gases. The afterburner is divided into a plurality of reaction zones, each of which has an associated reaction air supply. The diverter plate imparts a cyclonic flow to the combustion gas which is enhanced by air injected in the combustion zones. The temperature of the gas discharged from the afterburner is monitored and the flow of reaction air controlled responsive to changes in discharge gas temperature from a predetermined temperature.

  3. APR-2 Tropical Cyclone Observations

    NASA Technical Reports Server (NTRS)

    Durden, S. L.; Tanelli, S.

    2011-01-01

    The Second Generation Airborne Precipitation Radar (APR-2) participated in the Genesis and Rapid Intensification Processes (GRIP) experiment in August and September of 2010, collecting a large volume of data in several tropical systems, including Hurricanes Earl and Karl. Additional measurements of tropical cyclone have been made by APR-2 in experiments prior to GRIP (namely, CAMEX-4, NAMMA, TC4); Table 1 lists all the APR-2 tropical cyclone observations. The APR-2 observations consist of the vertical structure of rain reflectivity at 13.4 and 35.6 GHz, and at both co-polarization and crosspolarization, as well as vertical Doppler measurements and crosswind measurements. APR-2 normally flies on the NASA DC-8 aircraft, as in GRIP, collecting data with a downward looking, cross-track scanning geometry. The scan limits are 25 degrees on either side of the aircraft, resulting in a roughly 10-km swath, depending on the aircraft altitude. Details of the APR-2 observation geometry and performance can be found in Sadowy et al. (2003).The multiparameter nature of the APR-2 measurements makes the collection of tropical cyclone measurements valuable for detailed studies of the processes, microphysics and dynamics of tropical cyclones, as well as weaker systems that are associated with tropical cyclone formation. In this paper, we give a brief overview of how the APR-2 data are processed. We also discuss use of the APR-2 cross-track winds to estimate various quantities of interest in in studies of storm intensification. Finally, we show examples of the standard products and derived information.

  4. Chaos in an imperfectly premixed model combustor.

    PubMed

    Kabiraj, Lipika; Saurabh, Aditya; Karimi, Nader; Sailor, Anna; Mastorakos, Epaminondas; Dowling, Ann P; Paschereit, Christian O

    2015-02-01

    This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration. PMID:25725637

  5. Combustor oscillating pressure stabilization and method

    DOEpatents

    Gemmen, Randall S.; Richards, George A.; Yip, Mui-Tong Joseph; Robey, Edward H.; Cully, Scott R.; Addis, Richard E.

    1998-01-01

    High dynamic pressure oscillations in hydrocarbon-fueled combustors typically occur when the transport time of the fuel to the flame front is at some fraction of the acoustic period. These oscillations are reduced to acceptably lower levels by restructuring or repositioning the flame front in the combustor to increase the transport time. A pilot flame front located upstream of the oscillating flame and pulsed at a selected frequency and duration effectively restructures and repositions the oscillating flame in the combustor to alter the oscillation-causing transport time.

  6. Chaos in an imperfectly premixed model combustor

    SciTech Connect

    Kabiraj, Lipika Saurabh, Aditya; Paschereit, Christian O.; Karimi, Nader; Sailor, Anna; Mastorakos, Epaminondas; Dowling, Ann P.

    2015-02-15

    This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.

  7. Combustor oscillating pressure stabilization and method

    DOEpatents

    Gemmen, R.S.; Richards, G.A.; Yip, M.T.J.; Robey, E.H.; Cully, S.R.; Addis, R.E.

    1998-08-11

    High dynamic pressure oscillations in hydrocarbon-fueled combustors typically occur when the transport time of the fuel to the flame front is at some fraction of the acoustic period. These oscillations are reduced to acceptably lower levels by restructuring or repositioning the flame front in the combustor to increase the transport time. A pilot flame front located upstream of the oscillating flame and pulsed at a selected frequency and duration effectively restructures and repositions the oscillating flame in the combustor to alter the oscillation-causing transport time. 7 figs.

  8. Gas turbine combustor stabilization by heat recirculation

    NASA Technical Reports Server (NTRS)

    Ganji, A.; Short, J.; Branch, M. C.; Oppenheim, A. K.

    1975-01-01

    The feasibility of heat recirculation for stabilization of lean mixtures and emission reduction has been studied in detail for a typical aircraft gas turbine combustor. Thermodynamic calculations have indicated temperature and heat recirculation rates for operation of the combustor over a range of combustion zone equivalence ratios and for varying modes of desired engine operation. Calculations indicate the feasibility of stabilizing the combustion zone at equivalence ratios as low as 0.2 with achievable heat recirculation rates. Detailed chemical kinetic calculations suggest that combustor heat release is maintained with reaction completion substantially before the NO forming reactions, even though CO is rapidly oxidized in this same region.

  9. Subpilot-scale testing of acoustically enhanced cyclone collectors. Final report, September 1988--September 1994

    SciTech Connect

    Galica, M.A.; Campbell, A.H.; Rawlins, D.C.

    1994-08-01

    Gas turbines are used to recover energy from high temperature exhaust gases in coal-fired pressurized-fluidized bed, combined-cycle power generation systems. However, prior to entering the turbine hot-section, the majority of the fly ash must be removed in order to protect the turbine components from erosion, corrosion, and deposition of the ash. The U.S. Department of Energy under the direction of the Morgantown Energy Technology Center (METC) sponsored the development of an acoustically enhanced cyclone collector which offers the potential of achieving environmental control standards under Pressurized Fluid Bed Combustors (PFBC) conditions without the need for post-turbine particulate control. Pulse combustors developed by Manufacturing and Technology Conversation International, Inc. (MTCI) produced the acoustic power necessary to agglomerate ash particles into sizes large enough to be collected in a conventional cyclone system. A hot gas cleanup system that meets both turbine protection and emissions requirements without post-turbine particulate controls would also have improved overall system economics.

  10. Combustor design and analysis using the Rocket Combustor Interactive Design (ROCCID) methodology

    NASA Technical Reports Server (NTRS)

    Klem, Mark D.; Pieper, Jerry L.; Walker, Richard E.

    1990-01-01

    The ROCket Combustor Interactive Design (ROCCID) Methodology is a newly developed, interactive computer code for the design and analysis of a liquid propellant rocket combustion chamber. The application of ROCCID to design a liquid rocket combustion chamber is illustrated. Designs for a 50,000 lbf thrust and 1250 psi chamber pressure combustor using liquid oxygen (LOX)RP-1 propellants are developed and evaluated. Tradeoffs between key design parameters affecting combustor performance and stability are examined. Predicted performance and combustion stability margin for these designs are provided as a function of the combustor operating mixture ratio and chamber pressure.

  11. Combustor design and analysis using the ROCket Combustor Interactive Design (ROCCID) Methodology

    NASA Technical Reports Server (NTRS)

    Klem, Mark D.; Pieper, Jerry L.; Walker, Richard E.

    1990-01-01

    The ROCket Combustor Interactive Design (ROCCID) Methodology is a newly developed, interactive computer code for the design and analysis of a liquid propellant rocket combustion chamber. The application of ROCCID to design a liquid rocket combustion chamber is illustrated. Designs for a 50,000 lbf thrust and 1250 psi chamber pressure combustor using liquid oxygen (LOX)RP-1 propellants are developed and evaluated. Tradeoffs between key design parameters affecting combustor performance and stability are examined. Predicted performance and combustion stability margin for these designs are provided as a function of the combustor operating mixture ratio and chamber pressure.

  12. Thermally-Choked Combustor Technology

    NASA Technical Reports Server (NTRS)

    Knuth, William H.; Gloyer, P.; Goodman, J.; Litchford, R. J.

    1993-01-01

    A program is underway to demonstrate the practical feasibility of thermally-choked combustor technology with particular emphasis on rocket propulsion applications. Rather than induce subsonic to supersonic flow transition in a geometric throat, the goal is to create a thermal throat by adding combustion heat in a diverging nozzle. Such a device would have certain advantages over conventional flow accelerators assuming that the pressure loss due to heat addition does not severely curtail propulsive efficiency. As an aid to evaluation, a generalized one-dimensional compressible flow analysis tool was constructed. Simplified calculations indicate that the process is fluid dynamically and thermodynamically feasible. Experimental work is also being carried out in an attempt to develop, assuming an array of practical issues are surmountable, a practical bench-scale demonstrator using high flame speed H2/O2 combustibles.

  13. Alternate-Fueled Combustor-Sector Performance. Parts A and B; (A) Combustor Performance; (B) Combustor Emissions

    NASA Technical Reports Server (NTRS)

    Shouse, D. T.; Hendricks, R. C.; Lynch, A.; Frayne, C. W.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2012-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as "drop-in" fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of processing and assumed to be feedstock agnostic. Adherence to alternate fuels and fuel blends requires "smart fueling systems" or advanced fuel-flexible systems, including combustors and engines, without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data. The data are for nominal inlet conditions at 225 psia and 800 F (1.551 MPa and 700 K), for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling. Assessments are made of the change in combustor efficiency, wall temperatures, emissions, and luminosity with SPK of 0%, 50%, and 100% fueling composition at 3% combustor pressure drop. The performance results (Part A) indicate no quantifiable differences in combustor efficiency, a general trend to lower liner and higher core flow temperatures with increased FT fuel blends. In general, emissions data (Part B) show little differences, but with percent increase in FT-SPK-type fueling, particulate emissions and wall temperatures are less than with baseline JP-8. High-speed photography illustrates both luminosity and combustor dynamic flame characteristics.

  14. A climatological analysis of Saharan cyclones

    NASA Astrophysics Data System (ADS)

    Ammar, K.; El-Metwally, Mossad; Almazroui, Mansour; Abdel Wahab, M. M.

    2014-07-01

    In this study, the climatology of Saharan cyclones is presented in order to understand the Saharan climate, its variability and its changes. This climatology includes an analysis of seasonal and interannual variations, the identification and classification of cyclone tracks, and a presentation of their chief characteristics. The data used are drawn from the 1980-2009, 2.5° × 2.5°, NCEP/NCAR reanalysis (NNRP I) dataset. It is found that cyclone numbers increase in September-October-November (SON) at 4.9 cyclones per decade, while they decrease in June-July-August at 12.3 cyclones per decade. The identification algorithm constructed 562 tracks, which are categorized into 12 distinct clusters. Around 75 % of the Saharan cyclones originate south of the Atlas Mountains. The percentage of tracks that move over the Sahara is around 48 %. The eastern Mediterranean receives 27 % of the Saharan tracks, while the western basin receives only 17 and 8 % of all the Saharan cyclones decay over the Arabian Peninsula. The maximum cyclonic activity occurs in April. There is a general decrease in the number of tracks in all categories between 1993 and 2009, compared with the period between 1980 and 1992. About 72 % of the Saharan cyclones do not live more than 3 days, and about 80 % of the cyclones in the tracks never reach central pressures 1,000 hPa during their lifetimes. The maximum deepening in the tracks occurs over the western Mediterranean and over northern Algeria.

  15. Introducing the VRT gas turbine combustor

    NASA Astrophysics Data System (ADS)

    Melconian, Jerry O.; Mostafa, Abdu A.; Nguyen, Hung Lee

    1990-07-01

    An innovative annular combustor configuration is being developed for aircraft and other gas turbine engines. This design has the potential of permitting higher turbine inlet temperatures by reducing the pattern factor and providing a major reduction in NO(x) emission. The design concept is based on a Variable Residence Time (VRT) technique which allows large fuel particles adequate time to completely burn in the circumferentially mixed primary zone. High durability of the combustor is achieved by dual function use of the incoming air. The feasibility of the concept was demonstrated by water analogue tests and 3-D computer modeling. The computer model predicted a 50 percent reduction in pattern factor when compared to a state of the art conventional combustor. The VRT combustor uses only half the number of fuel nozzles of the conventional configuration. The results of the chemical kinetics model require further investigation, as the NO(x) predictions did not correlate with the available experimental and analytical data base.

  16. Experimental clean combustor program, phase 2

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Peduzzi, A.; Vitti, G. E.

    1976-01-01

    The alternate fuels investigation objective was to experimentally determine the impacts, if any, on exhaust emissions, performance, and durability characteristics of the hybrid and vorbix low pollution combustor concepts when operated on test fuels which simulate composition and property changes which might result from future broadened aviation turbine fuel specifications or use of synthetically derived crude feedstocks. Results of the program indicate a significant increase in CO and small NOX increase in emissions at idle for both combustor concepts, and an increase in THC for the vorbix concept. Minimal impact was observed on gaseous emissions at high power. The vorbix concept exhibited significant increase in exhaust smoke with increasing fuel aromatic content. Altitude stability was not affected for the vorbix combustor, but was substantially reduced for the hybrid concept. Severe carbon deposition was observed in both combustors following limited endurance testing with No. 2 home heat fuel. Liner temperature levels were insensitive to variations in aromatic content over the range of conditions investigated.

  17. TRW Advanced Slagging Coal Combustor Utility Demonstration

    SciTech Connect

    Not Available

    1989-01-01

    The TRW Advanced Slagging Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/ou desip unit to fire 2.5 sulfur coal. The slogging combustor process will provide NO[sub x] and SO[sub x] emissions that meet NSPS and New York State Envirommental Standards. TRW-CBU scope of work includes the engineering, design and supply of the slogging combustors, coal and limestone feed systems and a control system for these components. During this report period, the design activities for all systems progressed to permit the release of specifications and requests for proposals. Award of contracts for long-delivery items and major equipment are being placed to meet the revised program schedule.

  18. Development of an Advanced Annular Combustor

    NASA Technical Reports Server (NTRS)

    Rusnak, J. P.; Shadowen, J. H.

    1969-01-01

    The objective of the effort described in this report was to determine the structural durability of a full-scale advanced annular turbojet combustor using ASTM A-1 type fuel and operating at conditions typical of advanced supersonic aircraft. A full-scale annular combustor of the ram-induction type was fabricated and subjected to a 325-hour cyclic endurance test at conditions representative of operation in a Mach 3.0 aircraft. The combustor exhibited extensive cracking and scoop burning at the end of the test program. But these defects had no appreciable effect on combustor performance, as performance remained at a high level throughout the endurance program. Most performance goals were achieved with pressure loss values near 6% and 8%, and temperature rise variation ratio (deltaTVR) values near 1.25 and l.22 at takeoff and cruise conditions, respectively. Combustion efficiencies approached l004 and the exit radial temperature profiles were approximately as desired.

  19. Introducing the VRT gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Melconian, Jerry O.; Mostafa, Abdu A.; Nguyen, Hung Lee

    1990-01-01

    An innovative annular combustor configuration is being developed for aircraft and other gas turbine engines. This design has the potential of permitting higher turbine inlet temperatures by reducing the pattern factor and providing a major reduction in NO(x) emission. The design concept is based on a Variable Residence Time (VRT) technique which allows large fuel particles adequate time to completely burn in the circumferentially mixed primary zone. High durability of the combustor is achieved by dual function use of the incoming air. The feasibility of the concept was demonstrated by water analogue tests and 3-D computer modeling. The computer model predicted a 50 percent reduction in pattern factor when compared to a state of the art conventional combustor. The VRT combustor uses only half the number of fuel nozzles of the conventional configuration. The results of the chemical kinetics model require further investigation, as the NO(x) predictions did not correlate with the available experimental and analytical data base.

  20. Scramjet including integrated inlet and combustor

    SciTech Connect

    Kutschenreuter, P.H. Jr.; Blanton, J.C.

    1992-02-04

    This patent describes a scramjet engine. It comprises: a first surface including an aft facing step; a cowl including: a leading edge and a trailing edge; an upper surface and a lower surface extending between the leading edge and the trailing edge; the cowl upper surface being spaced from and generally parallel to the first surface to define an integrated inlet-combustor therebetween having an inlet for receiving and channeling into the inlet-combustor supersonic inlet airflow; means for injecting fuel into the inlet-combustor at the step for mixing with the supersonic inlet airflow for generating supersonic combustion gases; and further including a spaced pari of sidewalls extending between the first surface to the cowl upper surface and wherein the integrated inlet-combustor is generally rectangular and defined by the sidewall pair, the first surface and the cowl upper surface.

  1. Combustor assembly in a gas turbine engine

    DOEpatents

    Wiebe, David J; Fox, Timothy A

    2013-02-19

    A combustor assembly in a gas turbine engine. The combustor assembly includes a combustor device coupled to a main engine casing, a first fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner disposed radially inwardly from the flow sleeve. The first fuel injection system provides fuel that is ignited with the pressurized air creating first working gases. The intermediate duct is disposed between the liner and the transition duct and defines a path for the first working gases to flow from the liner to the transition duct. An intermediate duct inlet portion is associated with a liner outlet and allows movement between the intermediate duct and the liner. An intermediate duct outlet portion is associated with a transition duct inlet section and allows movement between the intermediate duct and the transition duct.

  2. Experimental clean combustor program; noise measurement addendum, Phase 2

    NASA Technical Reports Server (NTRS)

    Emmerling, J. J.; Bekofske, K. L.

    1976-01-01

    Combustor noise measurements were performed using wave guide probes. Test results from two full scale annular combustor configurations in a combustor test rig are presented. A CF6-50 combustor represented a current design, and a double annular combustor represented the advanced clean combustor configuration. The overall acoustic power levels were found to correlate with the steady state heat release rate and inlet temperature. A theoretical analysis for the attenuation of combustor noise propagating through a turbine was extended from a subsonic relative flow condition to include the case of supersonic flow at the discharge side. The predicted attenuation from this analysis was compared to both engine data and extrapolated component combustor data. The attenuation of combustor noise through the CF6-50 turbine was found to be greater than 14 dB by both the analysis and the data.

  3. Scramjet Combustor Characteristics at Hypervelocity Condition over Mach 10 Flight

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Komuro, T.; Sato, K.; Kodera, M.; Tanno, H.; Itoh, K.

    2009-01-01

    To investigate possibility of reduction of a scramjet combustor size without thrust performance loss, a two-dimensional constant-area combustor of a previous engine model was replaced with the one with 23% lower-height. With the application of the lower-height combustor, the pressure in the combustor becomes 50% higher and the combustor length for the optimal performance becomes 43% shorter than the original combustor. The combustion tests of the modified engine model were conducted using a large free-piston driven shock tunnel at flow conditions corresponding to the flight Mach number from 9 to 14. CFD was also applied to the engine internal flows. The results showed that the mixing and combustion heat release progress faster to the distance and the combustor performance similar to that of the previous engine was obtained with the modified engine. The reduction of the combustor size without the thrust performance loss is successfully achieved by applying the lower-height combustor.

  4. Small Gas Turbine Combustor Primary Zone Study

    NASA Technical Reports Server (NTRS)

    Sullivan, R. E.; Young, E. R.; Miles, G. A.; Williams, J. R.

    1983-01-01

    A development process is described which consists of design, fabrication, and preliminary test evaluations of three approaches to internal aerodynamic primary zone flow patterns: (1) conventional double vortex swirl stabilization; (2) reverse flow swirl stabilization; and (3) large single vortex flow system. Each concept incorporates special design features aimed at extending the performance capability of the small engine combustor. Since inherent geometry of these combustors result in small combustion zone height and high surface area to volume ratio, design features focus on internal aerodynamics, fuel placement, and advanced cooling. The combustors are evaluated on a full scale annular combustor rig. A correlation of the primary zone performance with the overall performance is accomplished using three intrusion type gas sampling probes located at the exit of the primary zone section. Empirical and numerical methods are used for designing and predicting the performance of the three combustor concepts and their subsequent modifications. The calibration of analytical procedures with actual test results permits an updating of the analytical design techniques applicable to small reverse flow annular combustors.

  5. Structure of Developing Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Molinari, J. E.

    2006-12-01

    Considerable progress has been made in the numerical modeling of tropical cyclones. The very high resolution now routinely used in research models allows realistic simulation of eyewall structure and breakdown, vortex Rossby waves, and numerous other processes that were beyond the capability of previous generations of models. At least one aspect of tropical cyclones, however, has not been reproduced in the current generation of models: early development (or lack of development) during tropical depression and early tropical storm stages. During such times, vertical wind shear often plays a critical role. In this presentation, details of the structure of four tropical cyclones at early stages will be given: Claudette (2003), Danny (1997), Gabrielle (2001), and Edouard (2002). The first three contained intense vortices that formed within downshear convection. Deep-layer vertical wind shear ranged from 8-15 m/s in the storms. In Claudette, a hurricane formed that lasted only 6 hours. In Danny and Gabrielle, the downshear vortices became the new storm center. One became a hurricane and one did not. In Edouard, vertical shear was even larger. Convection fluctuated between downshear of the center and over the center, with analogous intensity changes. This behavior is known to forecasters, but the causes of such fluctuations remain uncertain. The evolving structure of these four storms will be shown, with emphasis on the variation of convection, equivalent potential temperature in the lower troposphere, and azimuthal asymmetries of wind and circulation. Contrast will be made between the structure of forming tropical cyclones in nature and those seen in mesoscale numerical models. Some remarks will be given on the key physical processes that must be simulated.

  6. NOx reduction in a lignite cyclone furnace

    SciTech Connect

    Melland, C.; O`Connor, D.

    1998-12-31

    Reburning, selective catalytic reduction, and selective noncatalytic reduction techniques have demonstrated some potential for NOx reduction in cyclone boilers. These techniques are costly in terms of both capital and operating costs. Lignite cyclone combustion modeling studies indicated that modifying combustion inside the cyclone barrel could reduce cyclone NOx emissions. The modeling showed that air staging, secondary air basing, flue gas injection and variations in coal moisture content could affect NOx emissions. Short term lignite boiler tests and now longer term boiler operation have confirmed that significant NOx reductions can be accomplished merely by modifying cyclone combustion. The low NOx operation does not appear to significantly impact maintenance, reliability or capacity of the cyclone burner or furnace.

  7. Promoting the confluence of tropical cyclone research

    PubMed Central

    Marler, Thomas E

    2015-01-01

    Contributions of biologists to tropical cyclone research may improve by integrating concepts from other disciplines. Employing accumulated cyclone energy into protocols may foster greater integration of ecology and meteorology research. Considering experienced ecosystems as antifragile instead of just resilient may improve cross-referencing among ecological and social scientists. Quantifying ecosystem capital as distinct from ecosystem services may improve integration of tropical cyclone ecology research into the expansive global climate change research community. PMID:26480001

  8. Rolling contact mounting arrangement for a ceramic combustor

    DOEpatents

    Boyd, Gary L.; Shaffer, James E.

    1995-01-01

    A combustor assembly having a preestablished rate of thermal expansion is mounted within a gas turbine engine housing having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the combustor assembly. The combustor assembly is constructed of a inlet end portion, a outlet end portion and a plurality of combustor ring segments positioned between the end portions. A mounting assembly is positioned between the combustor assembly and the gas turbine engine housing to allow for the difference in the rate of thermal expansion while maintaining axially compressive force on the combustor assembly to maintain contact between the separate components.

  9. Rolling contact mounting arrangement for a ceramic combustor

    DOEpatents

    Boyd, G.L.; Shaffer, J.E.

    1995-10-17

    A combustor assembly having a preestablished rate of thermal expansion is mounted within a gas turbine engine housing having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the combustor assembly. The combustor assembly is constructed of a inlet end portion, a outlet end portion and a plurality of combustor ring segments positioned between the end portions. A mounting assembly is positioned between the combustor assembly and the gas turbine engine housing to allow for the difference in the rate of thermal expansion while maintaining axially compressive force on the combustor assembly to maintain contact between the separate components. 3 figs.

  10. EFFECTS OF CYCLONE DIAMETER ON PERFORMANCE OF 1D3D CYCLONES: COLLECTION EFFICIENCY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclones are the most commonly used air pollution abatement device for separating particulate matter (PM) from air streams in agricultural processes, such as cotton gins. Several mathematical models have been proposed to predict the performance of cyclones as cyclone diameter varies. The objective o...

  11. Effects of cyclone diameter on performance of 1D3D cyclones: Collection efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclones are the most commonly used air pollution abatement device for separating particulate matter (PM) from air streams in agricultural processes, such as cotton gins. Several mathematical models have been proposed to predict the performance of cyclones as cyclone diameter varies. The objective o...

  12. Effects of cyclone diameter on performance of 1D3D cyclones: Cut point and slope

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclones are a commonly used air pollution abatement device for separating particulate matter (PM) from air streams in industrial processes. Several mathematical models have been proposed to predict the performance of cyclones, as cyclone diameter varies. The objective of this research was to determ...

  13. Effects of cyclone diameter on performance of 1D3D cyclones: Cut point and slope

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclones are a commonly used air pollution abatement device for separating particulate matter (PM) from air streams in industrial processes. Several mathematical models have been proposed to predict the cut point of cyclones as cyclone diameter varies. The objective of this research was to determine...

  14. Objectively classifying Southern Hemisphere extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Catto, Jennifer

    2016-04-01

    There has been a long tradition in attempting to separate extratropical cyclones into different classes depending on their cloud signatures, airflows, synoptic precursors, or upper-level flow features. Depending on these features, the cyclones may have different impacts, for example in their precipitation intensity. It is important, therefore, to understand how the distribution of different cyclone classes may change in the future. Many of the previous classifications have been performed manually. In order to be able to evaluate climate models and understand how extratropical cyclones might change in the future, we need to be able to use an automated method to classify cyclones. Extratropical cyclones have been identified in the Southern Hemisphere from the ERA-Interim reanalysis dataset with a commonly used identification and tracking algorithm that employs 850 hPa relative vorticity. A clustering method applied to large-scale fields from ERA-Interim at the time of cyclone genesis (when the cyclone is first detected), has been used to objectively classify identified cyclones. The results are compared to the manual classification of Sinclair and Revell (2000) and the four objectively identified classes shown in this presentation are found to match well. The relative importance of diabatic heating in the clusters is investigated, as well as the differing precipitation characteristics. The success of the objective classification shows its utility in climate model evaluation and climate change studies.

  15. Tips for selecting highly efficient cyclones

    SciTech Connect

    Amrein, D.L.

    1995-05-01

    Cyclone dust collectors have been used--and misused--all over the world for more than 100 years. One reason for the misuse is a common perception among users that all cyclones are created equal--that is, as long as a cyclone resembles a cylinder with an attached cone, it will do its job. However, to maximize separation efficiency in a specific application requires a precise cyclone design, engineered to exact fit many possible variables. A well-designed cyclone, for instance, can achieve efficiencies as high s 99.9+% when operated properly within the envelope of its specifications. Nonetheless, cyclones are often used only as first-stage filters for performing crude separations, with final collections being carried out by more-costly baghouses and scrubbers. Compared with baghouses and scrubbers, cyclones have two important considerations in their favor. One, they are almost invariably safer--in terms of the potential for generating fires and explosions--than fabric filters. Second, cyclones have lower maintenance costs since there are no filter media to replace. The paper discusses the operation, design, and troubleshooting of cyclones.

  16. Idealised simulations of sting jet cyclones

    NASA Astrophysics Data System (ADS)

    Baker, Laura; Gray, Suzanne; Clark, Peter

    2010-05-01

    Extratropical cyclones often produce strong surface winds, mostly associated with low-level jets along the warm and cold fronts. Some severe extratropical cyclones have been found to produce an additional area of localised strong, and potentially very damaging, surface winds during a certain part of their development. These strong winds are associated with air that originates within the cloud head, exiting at the tip of the cloud head and descending rapidly from there to the surface. This rapidly descending air associated with the strong surface winds is known as a sting jet. Previous published work on sting jets has been limited to analyses of only a small number of case studies of observed sting jet cyclones, so a study of idealised sting jet cyclones, rather than specific cases, will be useful in determining the important features and mechanisms that lead to sting jets. This work focuses on an idealised simulation of a cyclone with a sting jet using a periodic channel configuration of the idealised nonhydrostatic Met Office Unified Model. The idealised cyclone simulation is based on baroclinic lifecycle simulations run at sufficiently high resolution for a sting jet to be generated. An analysis of the idealised cyclone and a comparison of the idealised cyclone with case studies of observed sting jet cyclones will be presented.

  17. Experimental Clean Combustor Program (ECCP), phase 3. [commercial aircraft turbofan engine tests with double annular combustor

    NASA Technical Reports Server (NTRS)

    Gleason, C. C.; Bahr, D. W.

    1979-01-01

    A double annular advanced technology combustor with low pollutant emission levels was evaluated in a series of CF6-50 engine tests. Engine lightoff was readily obtained and no difficulties were encountered with combustor staging. Engine acceleration and deceleration were smooth, responsive and essentially the same as those obtainable with the CF6-50 combustor. The emission reductions obtained in carbon monoxide, hydrocarbons, and nitrogen oxide levels were 55, 95, and 30 percent, respectively, at an idle power setting of 3.3 percent of takeoff power on an EPA parameter basis. Acceptable smoke levels were also obtained. The exit temperature distribution of the combustor was found to be its major performance deficiency. In all other important combustion system performance aspects, the combustor was found to be generally satisfactory.

  18. A Comparison of Combustor-Noise Models

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    The present status of combustor-noise prediction in the NASA Aircraft Noise Prediction Program (ANOPP)1 for current-generation (N) turbofan engines is summarized. Several semi-empirical models for turbofan combustor noise are discussed, including best methods for near-term updates to ANOPP. An alternate turbine-transmission factor2 will appear as a user selectable option in the combustor-noise module GECOR in the next release. The three-spectrum model proposed by Stone et al.3 for GE turbofan-engine combustor noise is discussed and compared with ANOPP predictions for several relevant cases. Based on the results presented herein and in their report,3 it is recommended that the application of this fully empirical combustor-noise prediction method be limited to situations involving only General-Electric turbofan engines. Long-term needs and challenges for the N+1 through N+3 time frame are discussed. Because the impact of other propulsion-noise sources continues to be reduced due to turbofan design trends, advances in noise-mitigation techniques, and expected aircraft configuration changes, the relative importance of core noise is expected to greatly increase in the future. The noise-source structure in the combustor, including the indirect one, and the effects of the propagation path through the engine and exhaust nozzle need to be better understood. In particular, the acoustic consequences of the expected trends toward smaller, highly efficient gas-generator cores and low-emission fuel-flexible combustors need to be fully investigated since future designs are quite likely to fall outside of the parameter space of existing (semi-empirical) prediction tools.

  19. Combustor bulkhead heat shield assembly

    SciTech Connect

    Zeisser, M.H.

    1990-06-19

    This paper describes a gas turbine engine having an annular combustion chamber defined by an annular, inner liner, a concentric outer liner, and an upstream annular combustor head, wherein the head includes a radially extending bulkhead having circumferentially distributed openings for each receiving an individual fuel nozzle therethrough. It comprises: a segmented heat shield assembly, disposed between the combustion chamber interior and the bulkhead, including generally planar, sector shaped heat shields, each shield abutting circumferentially with two next adjacent shields and extending radially from proximate the inner liner to proximate the outer liner, the plurality of shields collectively defining an annular protective barrier, and wherein each sector shaped shield further includes an opening, corresponding to one of the bulkhead nozzle openings for likewise receiving the corresponding nozzle therethrough, the shield opening further including an annular lip extending toward the bulkhead and being received within the bulkhead opening, raised ridges on the shield backside, the ridges contacting the facing bulkhead surface and defining a flow path for a flow of cooling air issuing from a sized supply opening disposed in the bulkhead, the flow path running ultimately from adjacent the annular lip to the edges of each shield segment, wherein the raised edges extend fully along the lateral, circumferentially spaced edges of each shield segment and about the adjacent shield segments wherein the raised ridges further extend circumferentially between the annular lip and the abutting edge ridges.

  20. Experimental clean combustor program, alternate fuels addendum, phase 2

    NASA Technical Reports Server (NTRS)

    Gleason, C. C.; Bahr, D. W.

    1976-01-01

    The characteristics of current and advanced low-emissions combustors when operated with special test fuels simulating broader range combustion properties of petroleum or coal derived fuels were studied. Five fuels were evaluated; conventional JP-5, conventional No. 2 Diesel, two different blends of Jet A and commercial aromatic mixtures - zylene bottoms and haphthalene charge stock, and a fuel derived from shale oil crude which was refined to Jet A specifications. Three CF6-50 engine size combustor types were evaluated; the standard production combustor, a radial/axial staged combustor, and a double annular combustor. Performance and pollutant emissons characteristics at idle and simulated takeoff conditions were evaluated in a full annular combustor rig. Altitude relight characteristics were evaluated in a 60 degree sector combustor rig. Carboning and flashback characteristics at simulated takeoff conditions were evaluated in a 12 degree sector combustor rig. For the five fuels tested, effects were moderate, but well defined.

  1. Exhaust gas measurements in a propane fueled swirl stabilized combustor

    NASA Technical Reports Server (NTRS)

    Aanad, M. S.

    1982-01-01

    Exhaust gas temperature, velocity, and composition are measured and combustor efficiencies are calculated in a lean premixed swirl stabilized laboratory combustor. The radial profiles of the data between the co- and the counter swirl cases show significant differences. Co-swirl cases show evidence of poor turbulent mixing across the combustor in comparison to the counter-swirl cases. NO sub x levels are low in the combustor but substantial amounts of CO are present. Combustion efficiencies are low and surprisingly constant with varying outer swirl in contradiction to previous results under a slightly different inner swirl condition. This difference in the efficiency trends is expected to be a result of the high sensitivity of the combustor to changes in the inner swirl. Combustor operation is found to be the same for propane and methane fuels. A mechanism is proposed to explain the combustor operation and a few important characteristics determining combustor efficiency are identified.

  2. Dish stirling solar receiver combustor test program

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Back, L. H.

    1981-01-01

    The operational and energy transfer characteristics of the Dish Stirling Solar Receiver (DSSR) combustor/heat exchanger system was evaluated. The DSSR is designed to operate with fossil fuel augmentation utilizing a swirl combustor and cross flow heat exchanger consisting of a single row of 4 closely spaced tubes that are curved into a conical shape. The performance of the combustor/heat exchanger system without a Stirling engine was studied over a range of operating conditions and output levels using water as the working fluid. Results show that the combustor may be started under cold conditions, controlled safety, and operated at a constant air/fuel ratio (10 percent excess air) over the required range of firing rates. Furthermore, nondimensional heat transfer coefficients based on total heat transfer are plotted versus Reynolds number and compared with literature data taken for single rows of closely spaced tubes perpendicular to cross flow. The data show enhanced heat transfer for the present geometry and test conditions. Analysis of the results shows that the present system meets specified thermal requirements, thus verifying the feasibility of the DSSR combustor design for final prototype fabrication.

  3. Alternate-Fueled Combustor-Sector Performance

    NASA Technical Reports Server (NTRS)

    Thomas, Anna E.; Saxena, Nikita T.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566 Annex (2011) standards, and are classified as "drop-in" fuel replacements. This report provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fischer-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 degF (533 K), 125 psia (0.86 MPa) at 625 degF (603 K), 175 psia (1.21 MPa) at 725 degF (658 K), and 225 psia (1.55 MPa) at 790 degF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3, 4, and 5 percent combustor pressure drop (DP) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade and vane lives.

  4. Alternate-Fueled Combustor-Sector Performance

    NASA Technical Reports Server (NTRS)

    Thomas, Anna E.; Saxena, Nikita T.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2012-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MILDTL- 83133F(2008) or ASTM D 7566 Annex (2011) standards, and are classified as drop-in fuel replacements. This paper provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 F (533 K), 125 psia (0.86 MPa) at 625 F (603 K), 175 psia (1.21 MPa) at 725 F (658 K), and 225 psia (1.55 MPa) at 790 F (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3%, 4%, and 5% combustor pressure drop (% delta P) for fuel: air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade/vane life.

  5. Combustor development for automotive gas turbines

    SciTech Connect

    Ross, P.T.; Anderson, D.N.; Williams, J.R.

    1983-09-01

    This paper describes the development of a combustion system for the AGT 100 automotive gas turbine engine. The AGT 100 is a 100 hp engine being developed by Detroit Diesel Allison Division of General Motors Corporation. To achieve optimum fuel economy, the AGT 100 engine operates on a regenerative cycle. A maximum turbine inlet temperature of 1288/sup 0/C (2350/sup 0/F) is reached, and air is supplied to the inlet of the combustor at temperatures as high as 1024/sup 0/C (1875/sup 0/F). To meet the low-emission and high-durability requirements at these conditions, a premix/prevaporization ceramic combustor employing variable geometry to control the temperature in the burning zone has been developed. A test section capable of handling 1024/sup 0/C (1875/sup 0/F) inlet air was designed and fabricated to evaluate this combustor. Testing of both metal (transpiration cooled) and ceramic combustors was conducted. Emissions were measured and found to be a function of burner inlet temperature. At 999/sup 0/C (1830/sup 0/F) burner inlet temperature, NO /SUB x/ emissions were two orders of magnitude below the program goals. At the same temperature but at a different variable-geometry position, the CO was 30 times below the program goal. Considerable testing was conducted to evaluate the behavior of the ceramic materials used in the combustor. No failures occurred during steady-state operation; however, some cracks developed in the dome during extended transient operation.

  6. Objective identification of cyclones in GCM simulations

    SciTech Connect

    Koenig, W.; Sielmann, F. ); Sausen, R. )

    1993-12-01

    An objective routine for identifying the individual cyclones has been developed. The procedure was designed with the aim to keep the input expenditure low. The method ensures a complete collection of cyclones and an exclusion of short time fluctuations attributed to numerical effects. The cyclones are identified as relative minima of the geopotential height field in 1000 hPa. The initial stages of the cyclones are found by locating relative maxima in the 850-hPa vorticity field. Further on the temporal development of the extrema is taken into consideration. An individual cyclone is regarded only if it exists for at least 24 h and if it attains a mature stage at least once, where a certain margin of the geopotential gradient to the surroundings is exceeded. The identification routine is applied to simulations with the Hamburg general circulation model ECHAM in T21 resolution. Also, cyclone tracks based on ECMWF analyses are evaluated, to which the model results are compared. The effect of different climate conditions, for example, global warming, on cyclone frequency and track location is investigated. It is found that a warmer SST distribution leads to a slight reduction of cyclone frequency in the Southern Hemisphere in fall (March, April, May) and winter (June, July, August); elsewhere the differences are not significant. 25 refs., 9 figs., 1 tab.

  7. Good field practice helps cyclones do job

    SciTech Connect

    White, D.L.

    1982-11-08

    This article examines use of hydrocyclones in mud equipment operations involving desilters, desanders, shale shakers and degassers for unweighted mud. Presents a diagram of ideal equipment placement, a table sizing cyclones considering mud guns, and a graph sizing cyclones to a drilling rig. Suggests checklists for troubleshooting and operation based on hydrocyclone capacity, plugging, head and flow rates, mud weight and viscosity.

  8. GPM Rain Rates in Tropical Cyclone Pam

    NASA Video Gallery

    NASA-JAXA's GPM Satellite Close-up of Cyclone Pam's Rainfall NASA-JAXA's GPM core satellite captured rain rates in Tropical Cyclone Pam at 03:51 UTC (2:51 p.m. local time) on March 14, 2015. Heavie...

  9. Experimental clean combustor program noise measurement addendum, phase 1

    NASA Technical Reports Server (NTRS)

    Emmerling, J. J.

    1975-01-01

    The test results of combustor noise measurements taken with waveguide probes are presented. Waveguide probes were shown to be a viable measurement technique for determining high sound pressure level broadband noise. A total of six full-scale annular combustors were tested and included the three advanced combustor designs: swirl-can, radial/axial, and double annular.

  10. Source of microbaroms from tropical cyclone waves

    NASA Astrophysics Data System (ADS)

    Stopa, Justin E.; Cheung, Kwok Fai; GarcéS, Milton A.; Fee, David

    2011-03-01

    Microbaroms are continuous infrasonic signals with a dominant frequency around 0.2 Hz produced by ocean surface waves. Monitoring stations around the globe routinely detect strong microbaroms in the lee of tropical cyclones. We utilize a parametric wind model and a spectral wave model to construct the tropical cyclone wave field and a theoretical acoustic source model to describe the intensity, spatial distribution, and dynamics of microbarom sources. This approach excludes ambient wave conditions and facilitates a parametric analysis to elucidate the source mechanism within the storm. A stationary tropical cyclone produces the strongest microbarom signals at the center, where the waves generated by the cyclonic winds converge. As the tropical cyclone moves forward, the converging wave field becomes less coherent and lags and expands behind the storm center. The models predict a direct relation between the storm forward speed and the location of maximum microbarom source intensity consistent with the infrasonic observations from Hurricane Felicia 2009 in the North Central Pacific.

  11. Predictability of Frontal Waves and Cyclones

    NASA Astrophysics Data System (ADS)

    Frame, Thomas; Methven, John; Roberts, Nigel; Titley, Helen

    2016-04-01

    The practical limit of predictability of the occurrence extra-tropical cyclonic features (frontal waves and cyclones) is estimated using the Brier Skill of "strike probability" from the fifteen-day Met Office Global and Regional Ensemble Prediction System (MOGREPS-15). An upper limit of 14 days is found for the prediction of the occurrence of the centres of strong cyclonic features (vorticity above the 90th percentile) within a region of about 1000km radius. However when weaker cyclonic features are considered skill is lost within 8 days. The statistics of features in the model show some systematic biases relative to the analysis climatology, in particular a reduction in the number features with increasing lead time and a sensitivity of the number of cyclonic features to the presence (or not) of stochastics physics, meaning that the actual limit of predictability is quite possibly longer than our estimate.

  12. Reconstruction and use of battery cyclones

    SciTech Connect

    Nazarov, V.D.; Zabrodnii, I.V.; Kolomoiskii, V.G.; Dodik, G.A.; Afanas'ev, O.K.; Gusarov, N.I.; Strakhov, A.B.

    1988-03-01

    The authors discuss a sinter plant where reliable and stable operation of its modernized cyclones has made it possible to improve the performance of the gas-cleaning system as a whole, while increasing the life of the exhauster rotors to one year and improving the performance indices of the sintering machines. The battery cyclones were modernized by replacing the existing elements with consolidated cyclone elements and the elements were provided with four-pipe semihelical swirlers. The elements were made of ordinary steel pipes 530 and 273 mm in diameter. During manufacture and installation of the cyclone elements, special attention was given to the coaxiality of the housings and the outlet pipes of the elements, the hermeticity and density of the welds, the dimensional accuracy of the elements, the perpendicularity of the bearing flange and outlet-pipe axis, and the finish of the inside surfaces of the cyclone elements.

  13. HOMOLOGOUS CYCLONES IN THE QUIET SUN

    SciTech Connect

    Yu, Xinting; Zhang, Jun; Li, Ting; Zhang, Yuzong; Yang, Shuhong E-mail: zjun@nao.cas.cn E-mail: yuzong@nao.cas.cn

    2014-02-20

    Through observations with the Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager, we tracked one rotating network magnetic field (RNF) near the solar equator. It lasted for more than 100 hr, from 2013 February 23 to 28. During its evolution, three cyclones were found to be rooted in this structure. Each cyclone event lasted for about 8 to 10 hr. While near the polar region, another RNF was investigated. It lasted for a shorter time (∼70 hr), from 2013 July 7 to 9. There were two cyclones rooted in the RNF and each lasted for 8 and 11 hr, respectively. For the two given examples, the cyclones have a similar dynamic evolution, and thus we put forward a new term: homologous cyclones. The detected brightening in AIA 171 Å maps indicates the release of energy, which is potentially available to heat the corona.

  14. Modelling Atlantic Basin Tropical Cyclone Storm Tracks

    NASA Astrophysics Data System (ADS)

    Hardisty, F.; Carroll, D.

    2011-12-01

    Two of the most useful data sets for understanding Atlantic Basin tropical cyclones are the HURDAT data set, provided by NOAA, and the Extended Best Track (EBT) data set, provided by Colorado State University. Each has their strengths: the HURDAT is a more complete set of cyclone tracks, while the EBT contains additional radial extent, wind speed, and pressure information for a more limited set of cyclones. We report here on methods that we developed to generate realistic synthetic cyclone tracks using the strengths of each data set. We also report on some novel visualization methods (using HTML5) and cloud computing methods we employed in the research. We hope that this research will lead to more accurate predictions of the number and severity of cyclones for a given season.

  15. LDV measurements in an annular combustor model

    NASA Astrophysics Data System (ADS)

    Barron, Dean A.

    1986-08-01

    The design and setup of a Laser Doppler Velocimeter (LDV) system used to take velocity measurements in an annular combustor model are covered. The annular combustor model is of contemporary design using 60 degree flat vane swirlers, producing a strong recirculation zone. Detailed measurements are taken of the swirler inlet air flow and of the downstream enclosed swirling flow. The laser system used is a two color, two component system set up in forward scatter. Detailed are some of the special considerations needed for LDV use in the confined turbulent flow of the combustor model. The LDV measurements in a single swirler rig indicated that the flow changes radically in the first duct height. After this, a flow profile is set up and remains constant in shape. The magnitude of the velocities gradually decays due to viscous damping.

  16. Diesel engine catalytic combustor system. [aircraft engines

    NASA Technical Reports Server (NTRS)

    Ream, L. W. (Inventor)

    1984-01-01

    A low compression turbocharged diesel engine is provided in which the turbocharger can be operated independently of the engine to power auxiliary equipment. Fuel and air are burned in a catalytic combustor to drive the turbine wheel of turbine section which is initially caused to rotate by starter motor. By opening a flapper value, compressed air from the blower section is directed to catalytic combustor when it is heated and expanded, serving to drive the turbine wheel and also to heat the catalytic element. To start, engine valve is closed, combustion is terminated in catalytic combustor, and the valve is then opened to utilize air from the blower for the air driven motor. When the engine starts, the constituents in its exhaust gas react in the catalytic element and the heat generated provides additional energy for the turbine section.

  17. Combustor development for automotive gas turbines

    NASA Technical Reports Server (NTRS)

    Ross, P. T.; Williams, J. R.; Anderson, D. N.

    1982-01-01

    The development of a combustion system for the AGT 100 automotive gas turbine engine is described. A maximum turbine inlet temperature of 1288 C is reached during the regenerative cycle, and air up to 1024 C is supplied to the combustor inlet. A premix/prevaporization ceramic combustor employing variable geometry to control burning zone temperature was developed and tested. Tests on both metal and ceramic combustors showed that emissions were a function of burner inlet temperature (BIT). At 999 C BIT, NO(x) emissions were two orders of magnitude below program goals, and at the same temperature but at a different variable geometry position, the CO was 30 times below program goal. Tests to evaluate the durability of the ceramic materials showed no failures during steady-state operation; however, some cracks developed in the dome during extended transient operation.

  18. Flow establishment in a generic scramjet combustor

    NASA Technical Reports Server (NTRS)

    Jacobs, P. A.; Rogers, R. C.; Weidner, E. H.; Bittner, R. D.

    1990-01-01

    The establishment of a quasi-steady flow in a generic scramjet combustor was studied for the case of a time varying inflow to the combustor. Such transient flow is characteristic of the reflected shock tunnel and expansion tube test facilities. Several numerical simulations of hypervelocity flow through a straight duct combustor with either a side wall step fuel injector or a centrally located strut injector are presented. Comparisons were made between impulsively started but otherwise constant flow conditions (typical of the expansion tube or tailored operations of the reflected shock tunnel) and the relaxing flow produced by the 'undertailored' operations of the reflected shock tunnel. Generally the inviscid flow features, such as the shock pattern and pressure distribution, were unaffected by the time varying inlet conditions and approached steady state in approx. the times indicated by experimental correlations. However, viscous features, such as heat transfer and skin friction, were altered by the relaxing inlet flow conditions.

  19. LDV Measurements in an Annular Combustor Model

    NASA Technical Reports Server (NTRS)

    Barron, Dean A.

    1996-01-01

    This thesis covers the design and setup of a laser doppler velocimeter (LDV) system used to take velocity measurements in an annular combustor model. The annular combustor model is of contemporary design using 60 degree flat vane swirlers, producing a strong recirculation zone. Detailed measurements are taken of the swirler inlet air flow and of the downstream enclosed swirling flow. The laser system used is a two color, two component system set up in forward scatter. Detailed are some of the special considerations needed for LDV use in the confined turbulent flow of the combustor model. LDV measurements in a single swirler rig indicated that the flow changes radically in the first duct height. After this, a flow profile is set up and remains constant in shape. The magnitude of the velocities gradually decays due to viscous damping.

  20. Optical Detection Of Flameout In A Combustor

    NASA Technical Reports Server (NTRS)

    Borg, Stephen E.; West, James W.; Harper, Samuel E.; Alderfer, David W.; Lawrence, Robert M.

    1994-01-01

    Fuel supply shut down in time to prevent explosion. Optical flameout detector designed to signal control system of facility to cut off supply of fuel into combustion chamber if flame goes out. Combustor which optical flameout detector designed burns methane in air to provide hot gases for 8-ft high-temperature test chamber. Acoustical flameout detector for same combustor described in "Acoustical Detection of Flameout in Combustor" (LAR-14900). Fiber optic probes mounted to fuel-spray bar upstream of flame. No focusing optics used, and probes aimed across flow of gases at spot on combustion chamber wall downstream from spray bar. Arrangement enables flameout detection system to respond quickly to potential loss of flame since it detects movement of flame front away from spray bar face. Overall response time of detection system under 10 milliseconds.

  1. Combustor assembly in a gas turbine engine

    DOEpatents

    Wiebe, David J; Fox, Timothy A

    2015-04-28

    A combustor assembly in a gas turbine engine includes a combustor device, a fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner surrounded by the flow sleeve. The fuel injection system provides fuel to be mixed with the pressurized air and ignited in the liner to create combustion products. The intermediate duct is disposed between the liner and the transition duct so as to define a path for the combustion products to flow from the liner to the transition duct. The intermediate duct is associated with the liner such that movement may occur therebetween, and the intermediate duct is associated with the transition duct such that movement may occur therebetween. The flow sleeve includes structure that defines an axial stop for limiting axial movement of the intermediate duct.

  2. Preliminary calibration of a generic scramjet combustor

    NASA Technical Reports Server (NTRS)

    Jacobs, P. A.; Morgan, R. G.; Rogers, R. C.; Wendt, M.; Brescianini, C.; Paull, A.; Kelly, G.

    1991-01-01

    The results of a preliminary investigation of the combustion of hydrogen fuel at hypersonic flow conditions are provided. The tests were performed in a generic, constant-area combustor model with test gas supplied by a free-piston-driven reflected-shock tunnel. Static pressure measurements along the combustor wall indicated that burning did occur for combustor inlet conditions of P(static) approximately equal to 19kPa, T(static) approximately equal to 1080 K, and U approximately equal to 3630 m/s with a fuel equivalence ratio approximately equal to 0.9. These inlet conditions were obtained by operating the tunnel with stagnation enthalpy approximately equal to 8.1 MJ/kg, stagnation pressure approximately equal to 52 MPa, and a contoured nozzle with a nominal exit Mach number of 5.5.

  3. Ground idle performance improvement of a double-annular combustor by using simulated variable combustor geometry

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1975-01-01

    A test program was undertaken to determine if variable combustor geometry could be used to reduce exhaust emissions of a low-pressure-ratio jet engine operating at ground idle conditions. Three techniques for varying combustor geometry were simulated. Other techniques evaluated were radial fuel staging and the use of preheated fuel. When simulated variable combustor geometry was employed with radial fuel staging, combustion efficiency at a fuel-air ratio of 0.01 was increased from 77 to 95 percent, and exhaust emissions of unburned hydrocarbons and carbon monoxide were significantly reduced.

  4. Experiment of rocket-ram annular combustor

    NASA Astrophysics Data System (ADS)

    Yatsuyanagi, N.; Sakamoto, H.; Sato, K.; Ono, F.; Sasaki, M.; Takahashi, M.

    In this experiment, the double-nozzle type of rocket-ram annular combustor with a total thrust of 5kN was designed and tested with varying ratios of thrust produced by rocket and ram. Thrust and pressure distribution along the common expansion nozzle, i.e., the ram combustor nozzle, were measured to investigate the effect of interaction of the two expansion gases on thrust. Enhancement of specific impulse was verified by the experiments. That is, the specific impulse gains in rocket-ram parallel operation, the ratio of rocket thrust to ram thrust being 50 to 50, were found to be 190 percent of gains in pure rocket operation.

  5. Combustion characteristics of a double swirling combustor

    NASA Astrophysics Data System (ADS)

    Jiang, Zhi; Gao, Ge; Ning, Huang

    1991-01-01

    The combustion characteristics at atmospheric pressure for a coaxial double swirler combustor have been investigated. The results show that its combustion performances can be significantly improved by increasing properly swirl number for the inner swirler, as outer and inner flows are counterrotating. The annular recirculation zone is a good source for flame stabilization, which is a important factor for extending the weak extinction limit. The temperature distribution at the exit section of the combustor can be controlled by varying fuel-air ratio of outer and inner swirling flows.

  6. Predicting and Preventing Incipient Flameout in Combustors

    NASA Technical Reports Server (NTRS)

    Puster, Richard Lee

    2003-01-01

    A method of predicting and preventing incipient flameout in a combustor has been proposed. The method should be applicable to a variety of liquid- and gas-fueled combustors in furnaces and turbine engines. Until now, there have been methods of detecting flameouts after they have occurred, but there has been no way of predicting incipient flameouts and, hence, no way of acting in time to prevent them. Prevention of flameout could not only prevent damage to equipment but, in the case of aircraft turbine engines, could also save lives.

  7. Low NO.sub.x combustor

    DOEpatents

    Taylor, Jack R.

    1987-01-01

    A combustor having an annular first stage, a generally cylindrically-shaped second stage, and an annular conduit communicably connecting the first and second stages. The conduit has a relatively small annular height and a large number of quench holes in the walls thereof such that quench air injected into the conduit through the quench holes will mix rapidly with, or quench, the combustion gases flowing through the conduit. The rapid quenching reduces the amount of NO.sub.x produced in the combustor.

  8. Micro-combustor for gas turbine engine

    DOEpatents

    Martin, Scott M.

    2010-11-30

    An improved gas turbine combustor (20) including a basket (26) and a multiplicity of micro openings (29) arrayed across an inlet wall (27) for passage of a fuel/air mixture for ignition within the combustor. The openings preferably have a diameter on the order of the quenching diameter; i.e. the port diameter for which the flame is self-extinguishing, which is a function of the fuel mixture, temperature and pressure. The basket may have a curved rectangular shape that approximates the shape of the curved rectangular shape of the intake manifolds of the turbine.

  9. Laser diagnostics on a hypersonic combustor

    SciTech Connect

    Taylor, D.J.; Oldenborg, R.C.; Tiee, J.J.; Northam, G.B.; Antcliff, R.R.; Cutler, A.D.; Jarrett, O.; Smith, M.W. NASA, Langley Research Center, Hampton, VA )

    1991-01-01

    NASA-Langley has implemented a laser-based multipoint/multiparameter diagnostics system at its hypersonic direct-connect combustor, in order to measure both temperature and majority species densities in two dimensions, using spatially-scanned CARS; in addition, line-imaged measurements of radical densities are simultaneously generated by LIF at any of several planes downstream of the fuel injector. Initial experimental trials have demonstrated successful detection of one-dimensional images of OH density, as well as CARS N2-temperature measurements, in the turbulent reaction zone of the hypersonic combustor.

  10. LCSs in tropical cyclone genesis

    NASA Astrophysics Data System (ADS)

    Rutherford, B.; Montgomery, M. T.

    2011-12-01

    The formation of tropical cyclones in the Atlantic most often occurs at the intersection of the wave trough axis of a westward propagating African easterly wave and the wave critical latitude. Viewed in a moving reference frame with the wave, a cat's eye region of cyclonic recirculation can be seen in streamlines prior to genesis. The cat's eye recirculation region has little strain deformation and its center serves as the focal point for aggregation of convectively generated vertical vorticity. Air inside the cat's eye is repeatedly moistened by convection and is protected from the lateral intrusion of dry air. Since the flow is inherently time-dependent, we contrast the time-dependent structures with Eulerian structures of the wave-relative frame. Time-dependence complicates the kinematic structure of the recirculation region as air masses from the outer environment are allowed to interact with the interior of the cat's eye. LCSs show different boundaries of the cat's eye than the streamlines in the wave-relative frame. These LCSs are particularly important for showing the pathways of air masses that interact with the developing vortex, as moist air promotes development by supporting deep convection, while interaction with dry air impedes development. We primarily use FTLEs to locate the LCSs, and show the role of LCSs in both developing and non-developing storms. In addition, we discuss how the vertical coherence of LCSs is important for resisting the effects of vertical wind shear.

  11. Cyclone Center: Using Crowdsourcing to Determine Tropical Cyclone Intensity (Invited)

    NASA Astrophysics Data System (ADS)

    Hennon, C. C.; Knapp, K. R.; Schreck, C. J.; Stevens, S. E.; Kossin, J. P.

    2013-12-01

    The strength of tropical cyclones (TCs) is traditionally determined using the sustained maximum wind speed. Because TCs develop and spend most of their lifetime over tropical oceans, it is rare to directly observe a storm well enough to determine its strength accurately. The Dvorak technique was developed in the 1970s and 1980s to address this problem. By determining a number of cloud and structural characteristics from satellite images, a forecaster could now arrive at a reasonable maximum sustained wind without direct observations. However, the Dvorak technique by nature is subjective and it has been shown that trained experts frequently disagree on storm intensities. Furthermore, the application of the rules and constraints of the process has diverged with time across different forecast centers. This has led in several cases to severe disagreements in storm intensities when two or more forecast centers track the same TC. The accumulation of these differences has caused heterogeneous trends in TC intensity to arise at decadal time scales. A global reanalysis of TC intensity is required to resolve these discrepancies, but such an undertaking is unrealistic. Cyclone Center, an Internet crowd sourcing site for TCs, was created to resolve differences in TC intensities and produce a consistent 32-year (1978-2009) record of it. By using a homogeneous satellite dataset (HURSAT) and adapting the Dvorak technique into a set of three or four simple questions, laypersons perform the actions of the expert. User responses are converted into 3-hourly storm intensities. To capitalize on the crowd sourcing approach, at least 10 different users are shown the same image; this allows critical data such as cloud pattern uncertainties and storm metadata (e.g. eye size, center location, cloud pattern) to be collected. Preliminary analyses show that our citizen scientists many times outperform computer classifications in pattern matching and exhibit low bias and mean error when

  12. System and method for controlling a combustor assembly

    DOEpatents

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Stevenson, Christian Xavier

    2013-03-05

    A system and method for controlling a combustor assembly are disclosed. The system includes a combustor assembly. The combustor assembly includes a combustor and a fuel nozzle assembly. The combustor includes a casing. The fuel nozzle assembly is positioned at least partially within the casing and includes a fuel nozzle. The fuel nozzle assembly further defines a head end. The system further includes a viewing device configured for capturing an image of at least a portion of the head end, and a processor communicatively coupled to the viewing device, the processor configured to compare the image to a standard image for the head end.

  13. Simulated Altitude Performance of Combustors for the 24C Jet Engine. 2; 24C-4 Combustor

    NASA Technical Reports Server (NTRS)

    Bernardo, Everett; Schroeter, Thomas T.; Miller, Robert C.

    1947-01-01

    The performance of a 24C-4 combustor was investigated with three different combustor baskets and five modifications of these baskets at conditions simulating static (zero-ram) operation of the 24C jet engine over ranges of altitude and engine speed to determine and improve the altitude operational limits of the 24C combustor. Information was also obtained regarding combustion characteristics, the fuel-flow characteristics of the fuel manifolds, and the combustor total-pressure drop. NACA modifications, which consisted of blocking rows of holes on the baskets, increased the minimum point on the altitude-operational-limit curve, which occurs at low engine speeds, for a narrow-upstream-end basket by 8000 feet (from 23, 000 to 31,000 ft_ and for a wide-upstream-end basket by 21,000 feet (from 12, 000 to 34,000 ft). These improvements were approximately maintained over the entire range of engine speeds investigated.

  14. Combustor for a low-emissions gas turbine engine

    DOEpatents

    Glezer, Boris; Greenwood, Stuart A.; Dutta, Partha; Moon, Hee-Koo

    2000-01-01

    Many government entities regulated emission from gas turbine engines including CO. CO production is generally reduced when CO reacts with excess oxygen at elevated temperatures to form CO2. Many manufactures use film cooling of a combustor liner adjacent to a combustion zone to increase durability of the combustion liner. Film cooling quenches reactions of CO with excess oxygen to form CO2. Cooling the combustor liner on a cold side (backside) away from the combustion zone reduces quenching. Furthermore, placing a plurality of concavities on the cold side enhances the cooling of the combustor liner. Concavities result in very little pressure reduction such that air used to cool the combustor liner may also be used in the combustion zone. An expandable combustor housing maintains a predetermined distance between the combustor housing and combustor liner.

  15. Active Control of High-Frequency Combustor Instability Demonstrated

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    To reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities-high-pressure oscillations much like sound waves that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the combustor and turbine safe operating life. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Propulsion and Power Program, the NASA Glenn Research Center in partnership with Pratt & Whitney, United Technologies Research Center, and Georgia Institute of Technology is developing technologies for the active control of combustion instabilities.

  16. Numerical Simulations of Saturn's Polar Cyclones

    NASA Astrophysics Data System (ADS)

    Brueshaber, Shawn R.; Sayanagi, Kunio M.

    2014-11-01

    Shawn R. Brueshaber, Department of Mechanical Engineering, Western Michigan UniversityKunio M. Sayanagi, Atmospheric and Planetary Sciences, Hampton UniversityCassini mission to Saturn has revealed evidences of a warm core cyclone centered on each of the poles of the planet. The morphology of the clouds in these cyclones resembles that of a terrestrial hurricane. The formation and maintenance mechanisms of these large polar cyclones are yet to be explained. Scott (2011, Astrophys. Geophys. Fluid Dyn) proposed that cyclonic vortices beta-drifting poleward can result in a polar cyclone, and demonstrated that beta-drifting cyclonic vortices can indeed cause accumulation of cyclonic vorticity at the pole using a 1-layer quasi-geostrophic model.The objectives of our project is to test Scott's hypothesis using a 1.5-layer shallow-water model and many-layer primitive equations model. We use the Explicit Planetary Isentropic Coordinate (EPIC) model (Dowling et al. 1998, 2004, Icarus) to perform direct numerical simulations of Saturn's polar atmosphere. To date, our project has focused on modifying the model to construct a polar rectangular model grid in order to avoid the problem of polar singularity associated with the conventional latitude-longitude grids employed in many general circulation models. We present our preliminary simulations, which show beta-drifting cyclones cause a poleward flux of cyclonic vorticity, which is consistent with Scott's results.Our study is partially supported by NASA Outer Planets Research Grant NNX12AR38G and NSF Astronomy and Astrophysics Grant 1212216 to KMS.

  17. Steam Reformer With Fibrous Catalytic Combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.

    1987-01-01

    Proposed steam-reforming reactor derives heat from internal combustion on fibrous catalyst. Supplies of fuel and air to combustor controlled to meet demand for heat for steam-reforming reaction. Enables use of less expensive reactor-tube material by limiting temperature to value safe for material yet not so low as to reduce reactor efficiency.

  18. Stably operating pulse combustor and method

    DOEpatents

    Zinn, Ben T.; Reiner, David

    1990-01-01

    A pulse combustor apparatus adapted to burn either a liquid fuel or a pulverized solid fuel within a preselected volume of the combustion chamber. The combustion process is substantially restricted to an optimum combustion zone in order to attain effective pulse combustion operation.

  19. Stably operating pulse combustor and method

    DOEpatents

    Zinn, B.T.; Reiner, D.

    1990-05-29

    A pulse combustor apparatus is described which is adapted to burn either a liquid fuel or a pulverized solid fuel within a preselected volume of the combustion chamber. The combustion process is substantially restricted to an optimum combustion zone in order to attain effective pulse combustion operation. 4 figs.

  20. Flashback Arrestor for LPP, Low NOx Combustors

    NASA Technical Reports Server (NTRS)

    Kraemer, Gil; Lee, Chi-Ming

    1998-01-01

    Lean premixed, prevaporized (LPP) high temperature combustor designs as explored for the Advanced Subsonic Transport (AST) and High Speed Civil Transport (HSCT) combustors can achieve low NO(x), emission levels. An enabling device is needed to arrest flashback and inhibit preignition at high power conditions and during transients (surge and rapid spool down). A novel flashback arrestor design has demonstrated the ability to arrest flashback and inhibit preignition in a 4.6 cm diameter tubular reactor at full power inlet temperatures (725 C) using Jet-A fuel at 0.4 less than or equal To phi less than or equal to 3.5. Several low pressure loss (0.2 to 0.4% at 30 m/s) flashback arrestor designs were developed which arrested flashback at all of the test conditions. Flame holding was also inhibited off the flash arrestor face or within the downstream tube even velocities (less than or equal to 3 to 6 m/s), thus protecting the flashback arrestor and combustor components. Upstream flow conditions influence the specific configuration based on using either a 45% or 76% upstream geometric blockage. Stationary, lean premixed dry low NO(x) gas turbine combustors would also benefit from this low pressure drop flashback arrestor design which can be easily integrated into new and existing designs.

  1. FEASIBILITY OF BURNING COAL IN CATALYTIC COMBUSTORS

    EPA Science Inventory

    The report gives results of a study, showing that pulverized coal can be burned in a catalytic combustor. Pulverized coal combustion in catalytic beds is markedly different from gaseous fuel combustion. Gas combustion gives uniform bed temperatures and reaction rates over the ent...

  2. Thermal Imaging Control of Furnaces and Combustors

    SciTech Connect

    David M. Rue; Serguei Zelepouga; Ishwar K. Puri

    2003-02-28

    The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

  3. Low NOx heavy fuel combustor concept program

    NASA Technical Reports Server (NTRS)

    White, D. J.; Lecren, R. T.; Batakis, A. P.

    1981-01-01

    A total of twelve low NOx combustor configurations, embodying three different combustion concepts, were designed and fabricated as modular units. These configurations were evaluated experimentally for exhaust emission levels and for mechanical integrity. Emissions data were obtained in depth on two of the configurations.

  4. Coal reburning application on a Cyclone boiler

    SciTech Connect

    Maringo, G.J.; Yagiela, A.S.; Newell, R.J.; Farzan, H.

    1994-12-31

    Cyclone reburn involves the injection of a supplemental fuel (natural gas, oil or coal) into the main furnace of a Cyclone-fired boiler to produce locally reducing conditions which convert NO{sub x}, generated in the main combustion zone, to molecular nitrogen, thereby reducing overall NO{sub x} emissions. The world`s only application of the Cyclone reburn technology using pulverized coal as the reburn fuel was installed at Wisconsin Power & Light`s Nelson Dewey Generating Station, Unit 2. The project was selected for demonstration under the US Department of Energy`s Clean Coal Technology Demonstration Program, Round II.

  5. Human influence on tropical cyclone intensity.

    PubMed

    Sobel, Adam H; Camargo, Suzana J; Hall, Timothy M; Lee, Chia-Ying; Tippett, Michael K; Wing, Allison A

    2016-07-15

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity. We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities. PMID:27418502

  6. Human Influence on Tropical Cyclone Intensity

    NASA Technical Reports Server (NTRS)

    Sobel, Adam H.; Camargo, Suzana J.; Hall, Timothy M.; Lee, Chia-Ying; Tippett, Michael K.; Wing, Allison A.

    2016-01-01

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity.We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  7. Tropical Cyclone Jack in Satellite 3-D

    NASA Video Gallery

    This 3-D flyby from NASA's TRMM satellite of Tropical Cyclone Jack on April 21 shows that some of the thunderstorms were shown by TRMM PR were still reaching height of at least 17 km (10.5 miles). ...

  8. TRMM Flyby of Tropical Cyclone Narelle

    NASA Video Gallery

    This animated, 3-D flyby of Major Cyclone Narelle was created using data on Jan. 11, from NASA's TRMM satellite. Narelle's wind speeds were near 132 mph. A few thunderstorm towers in Narelle's eye ...

  9. Human influence on tropical cyclone intensity

    NASA Astrophysics Data System (ADS)

    Sobel, Adam H.; Camargo, Suzana J.; Hall, Timothy M.; Lee, Chia-Ying; Tippett, Michael K.; Wing, Allison A.

    2016-07-01

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity. We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas–driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  10. GPM Flyby of Tropical Cyclone Uriah

    NASA Video Gallery

    On Feb. 15, GPM saw rain was falling at a rate of over 127 mm (5 inches) per hour in a band of intense storms south of Tropical Cyclone Uriah's center. Thunderstorms moving around the southwestern ...

  11. Performance analyses for a cyclone type filter

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung-June; Takei, Masahiro; Lee, Hyun Jin; Lee, Yeon Won; Choi, Yoon Hwan; Doh, Deog-Hee

    2015-06-01

    Flow characteristics inside a cyclone filter were investigated by the use of computational fluid dynamics (CFD). For computations, SST model was adopted. Parametric study was carried out considering the filtering performance. Revolution speeds were changed from 100 to 550 with 50 increments. A skirt is the driving source for cyclone operation. The influence of several design factors, such as the skirt length, the skirt gap and the return length to filtering performance was investigated under the particle diameter 100μm of debris material (Al, s.g.=2.7). The filtering performance was also investigated with the skirt length 28mm changing the debris diameters from 1μm to 50μm. The flow rate of the working fluid was maintained at 0.55kg/s. It has been verified that the most influential factors to the filtering efficiencies was the skirt gap between the cyclone generator and the cyclone vessel.

  12. Interactions between climate and tropical cyclones

    NASA Astrophysics Data System (ADS)

    Webster, P. J.

    2007-05-01

    For the last 50 years, there have been two major thrusts in tropical cyclone research: determining the state of the atmosphere and ocean that is suitable for the formation of tropical storms (the genesis criteria) and short-term forecasting of the track and intensity of storms. Efforts to forecast seasonal storm activity, especially in the North Atlantic Ocean, have been undertaken through empirical means and, more recently, using low-resolution climate models. Climate model results have been exceptionally encouraging suggesting that the tropical cyclogenesis factors are predictable and are part of the large scale tropical circulation. During the last few years, a spate of papers has noted the relationship between changes in sea-surface temperature (SST) and tropical cyclone intensity and frequency. A critical issue is determining to what degree the frequency of hurricanes, as well as their intensity distribution, will change in a warming world. We discuss recent research regarding the interactions of the climate system with tropical cyclones, including the role of climate in determining the genesis of tropical cyclones and the role of tropical cyclones in the heat balance of the planet. Specifically: (i) We re-examine the genesis criteria of tropical cyclones and add two new criteria based on the behavior of waves in a flow varying in longitude and the inertial instability of equatorial flow in a cross-equatorial pressure gradient environment. Tropical cyclones are seen to form where the stretching deformation is negative and where large-scale waves transform into tight smaller and highly energetic scale vortices. We also discuss the tendency for storms to develop and intensify where the near-equatorial flow is inertially unstable. (ii) Tropical cyclones act to cool the tropical oceans by > 1K/year by evaporation of ocean surface water and by entrainment mixing with cooler water from below the mixed layer. We suggest that tropical cyclones are important part of

  13. Tropical cyclone Pam field survey in Vanuatu

    NASA Astrophysics Data System (ADS)

    Fritz, Hermann M.; Pilarczyk, Jessica E.; Kosciuch, Thomas; Hong, Isabel; Rarai, Allan; Harrison, Morris J.; Jockley, Fred R.; Horton, Benjamin P.

    2016-04-01

    Severe tropical cyclone Pam (Cat. 5, SSHS) crossed the Vanuatu archipelago with sustained winds of 270 km/h on March 13 and 14, 2015 and made landfall on Erromango. Pam is the most intense tropical cyclone to make landfall on Vanuatu since the advent of satellite imagery based intensity estimates in the 1970s. Pam caused one of the worst natural disaster in Vanuatu's recorded history. Eleven fatalities were directly attributed to cyclone Pam and mostly due to lack of shelter from airborne debris. On March 6 Pam formed east of the Santa Cruz Islands causing coastal inundation on Tuvalu's Vaitupu Island located some 1100 km east of the cyclone center. Pam intensified while tracking southward along Vanuatu severely affecting the Shefa and Tafea Provinces. An international storm surge reconnaissance team was deployed to Vanuatu from June 3 to 17, 2015 to complement earlier local surveys. Cyclone Pam struck a remote island archipelago particularly vulnerable to the combined cyclonic multi-hazards encompassing extreme wind gusts, massive rainfall and coastal flooding due to a combination of storm surge and storm wave impacts. The team surveyed coastal villages on Epi, the Shepherd Islands (Tongoa and Mataso), Efate (including Lelepa), Erromango, and Tanna. The survey spanned 320 km parallel to the cyclone track between Epi and Tanna encompassing more than 45 sites including the hardest hit settlements. Coastal flooding profiles were surveyed from the shoreline to the limit of inundation. Maximum coastal flood elevations and overland flow depths were measured based on water marks on buildings, scars on trees, rafted debris and corroborated with eyewitness accounts. We surveyed 91 high water marks with characteristic coastal flood levels in the 3 to 7 m range and composed of storm surge with superimposed storm waves. Inundation distances were mostly limited to a few hundred meters but reached 800 m on Epi Island. Wrack lines containing pumice perfectly delineated the

  14. Raindrop Size Distribution Measurements in Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Tokay, Ali; Bashor, Paul G.; Habib, Emad; Kasparis, Takis

    2008-01-01

    Characteristics of the raindrop size distribution in seven tropical cyclones have been studied through impact-type disdrometer measurements at three different sites during the 2004-06 Atlantic hurricane seasons. One of the cyclones has been observed at two different sites. High concentrations of small and/or midsize drops were observed in the presence or absence of large drops. Even in the presence of large drops, the maximum drop diameter rarely exceeded 4 mm. These characteristics of raindrop size distribution were observed in all stages of tropical cyclones, unless the storm was in the extratropical stage where the tropical cyclone and a midlatitude frontal system had merged. The presence of relatively high concentrations of large drops in extratropical cyclones resembled the size distribution in continental thunderstorms. The integral rain parameters of drop concentration, liquid water content, and rain rate at fixed reflectivity were therefore lower in extratropical cyclones than in tropical cyclones. In tropical cyclones, at a disdrometercalculated reflectivity of 40 dBZ, the number concentration was 700 plus or minus 100 drops m(sup -3), while the liquid water content and rain rate were 0.90 plus or minus 0.05 g m(sup -3) and 18.5 plus or minus 0.5 mm h(sup -1), respectively. The mean mass diameter, on the other hand, was 1.67 plus or minus 0.3 mm. The comparison of raindrop size distributions between Atlantic tropical cyclones and storms that occurred in the central tropical Pacific island of Roi-Namur revealed that the number density is slightly shifted toward smaller drops, resulting in higher-integral rain parameters and lower mean mass and maximum drop diameters at the latter site. Considering parameterization of the raindrop size distribution in tropical cyclones, characteristics of the normalized gamma distribution parameters were examined with respect to reflectivity. The mean mass diameter increased rapidly with reflectivity, while the normalized

  15. Idealized simulations of sting jet cyclones

    NASA Astrophysics Data System (ADS)

    Baker, L. H.; Gray, S. L.; Clark, P. A.

    2012-04-01

    An idealized modeling study of sting-jet cyclones is presented. Sting jets are descending mesoscale jets that occur in some extratropical cyclones and produce localized regions of strong low-level winds in the frontal fracture region. Moist baroclinic lifecycle (LC1) simulations are performed with modifications to produce cyclones resembling observed sting-jet cyclones. Two jets exist in the control idealized cyclone that descend into the frontal fracture region and result in strong winds near to the top of the boundary layer; one of these satisfies the criteria for a sting jet, the other is associated with the warm front. Sensitivity experiments show that both these jets are robust features. The sting jet strength (measured by maximum low-level wind speed or descent rate) increases with the cyclone growth rate; growth rate increases with increasing basic-state zonal jet maximum or decreasing basic-state tropospheric static stability. The two cyclones with the weakest basic-state static stability have by far the strongest sting jets, with descent rates comparable to those observed. Evaporative cooling contributes up to 20% of the descent rate in these sting jets compared with up to 4% in the other sting jets. Conditional symmetric instability (CSI) release in the cloud head also contributes to the sting jet, although there is less extensive CSI than in observed cases. The robustness of the sting jets suggests that they could occur frequently in cyclones with frontal fracture; however, they are unlikely to be identified unless momentum transport through the boundary layer leads to strong surface wind gusts.

  16. Advanced Low NOx Combustors for Aircraft Gas Turbines

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; White, D. J.; Shekleton, J. R.; Butze, H. F.

    1976-01-01

    A test rig program was conducted with the objective of evaluating and minimizing the exhaust emissions, in particular NOx, of two advanced aircraft combustor concepts at a simulated high-altitude cruise condition. The two pre-mixed, lean-reaction designs are known as the Jet Induced Circulation (JIC) combustor and the Vortex Air Blast (VAB) combustor and were rig tested in the form of reverse flow can combustors in the 0.13 ni (5.0 in. ) size range. Various configuration modifications were applied to the JIC and VAB combustor designs in an effort to reduce the emissions levels. The VAB combustor demonstrated a NOx level of 1.11 gm NO2/kg fuel with essentially 100 percent combustion efficiency at the simulated cruise combustor condition of 507 kPa (5 atm), 833 K (1500 R), inlet pressure and temperature respectively, and 1778 K (3200 R) outlet temperature on Jet-Al fuel. These configuration screening tests were carried out on essentially reaction zones only, in order to simplify the construction and modification of the combustors and to uncouple any possible effects on the emissions produced by the dilution flow. Tests were also conducted however at typical engine idle conditions on both combustors equipped with dilution ports in order to better define the problem areas involved in the operation of such concepts over a complete engine operational envelope. Versions of variable-geometry, JIC and VAB annular combustors are proposed.

  17. Refraction of the Cyclonic Microbarom Signal by the Cyclonic Winds

    NASA Astrophysics Data System (ADS)

    Blom, P.; Waxler, R.; Frazier, W. G.; Talmadge, C. L.; Hetzer, C. H.

    2011-12-01

    Non-linear interaction of the ocean surface and atmosphere is known to produce narrow-band, low frequency, continuous acoustic and seismic radiation termed microbaroms and microseisms respectively. The microbarom signal typically has an amplitude up to a few tenths of a Pascal and a peak at 0.2 Hz. The microbaroms are generated by the collision of counter-propagating surface waves of equal period. The largest microbarom source location associated with a hurricane is believed to be due to the interaction of the waves produced by the cyclonic winds with the background ocean wave field and is generally located several hundred kilometers away from the eye of the storm, along a perpendicular to the direction of the ambient winds. Following up on a suggestion of Young and Bedard, propagation of the microbarom signal through the storm wind field has been investigated using geometric acoustics. Strong refraction of the signal is predicted. To observe this refraction we deployed infrasound arrays along the US eastern seaboard. Predicted and measured back azimuths for propagation through the wind field are being compared to data recorded during the 2010 and 2011 Atlantic hurricane seasons.

  18. The Morphology of Cyclonic Windstorms

    NASA Astrophysics Data System (ADS)

    Hewson, Tim

    2015-04-01

    The aim of this study is to help facilitate the correct interpretation and use of model analyses and predictions of windstorms in the extra-tropics, and to show that 'storm detection' does not just depend on the efficacy of the identification/tracking algorithm. Under the auspices of the IMILAST (Intercomparison of MId-LAtitude STorm diagnostics) project, 29 damaging European cyclonic windstorms have been studied in detail, using observational evidence as the main tool. Accordingly a conceptual model of windstorm evolution has been constructed. This usefully has its roots in the evolution one sees on standard synoptic charts, and highlights that three types of damage footprint can be associated. Building on previous work these are referred to as the warm jet, the sting jet and the cold jet footprints. The jet phenomena themselves each relate to the proximity of fronts on the synoptic charts, and accordingly occur in airmasses with different stability characteristics. These characteristics seem to play a large role in determining the magnitude of surface gusts, and how those gusts vary between coastal and inland sites. These aspects will be discussed with examples, showing that one cannot simply characterise or rank cyclones using wind strength on a lower tropospheric level such as 850hPa. A key finding that sets the sting jet apart, and that makes it a particularly dangerous phenomena, is that gust magnitude is relatively unaffected by passage inland, and this seems to relate to the atmosphere in its environment being destabilised from above. For sting jets wind strength may be greatest below 850hPa. Unfortunately neither current generation global re-analyses, nor global climate models seem to be able to simulate sting jets. This is for various reasons, though their low resolution is key. This limitation has been recognised previously, and the standard way to address this has been to use a re-calibration technique. The potential pitfalls of this approach will be

  19. Systems Characterization of Combustor Instabilities With Controls Design Emphasis

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2004-01-01

    This effort performed test data analysis in order to characterize the general behavior of combustor instabilities with emphasis on controls design. The analysis is performed on data obtained from two configurations of a laboratory combustor rig and from a developmental aero-engine combustor. The study has characterized several dynamic behaviors associated with combustor instabilities. These are: frequency and phase randomness, amplitude modulations, net random phase walks, random noise, exponential growth and intra-harmonic couplings. Finally, the very cause of combustor instabilities was explored and it could be attributed to a more general source-load type impedance interaction that includes the thermo-acoustic coupling. Performing these characterizations on different combustors allows for more accurate identification of the cause of these phenomena and their effect on instability.

  20. Energy efficient engine combustor test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Zeisser, M. H.; Greene, W.; Dubiel, D. J.

    1982-01-01

    The combustor for the Energy Efficient Engine is an annular, two-zone component. As designed, it either meets or exceeds all program goals for performance, safety, durability, and emissions, with the exception of oxides of nitrogen. When compared to the configuration investigated under the NASA-sponsored Experimental Clean Combustor Program, which was used as a basis for design, the Energy Efficient Engine combustor component has several technology advancements. The prediffuser section is designed with short, strutless, curved-walls to provide a uniform inlet airflow profile. Emissions control is achieved by a two-zone combustor that utilizes two types of fuel injectors to improve fuel atomization for more complete combustion. The combustor liners are a segmented configuration to meet the durability requirements at the high combustor operating pressures and temperatures. Liner cooling is accomplished with a counter-parallel FINWALL technique, which provides more effective heat transfer with less coolant.

  1. Pollution measurements of a swirl-can combustor

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, R. W.; Jones, R. E.

    1972-01-01

    Pollutant levels of oxides of nitrogen, unburned hydrocarbons, and carbon monoxide were measured for an experimental, annular, swirl can combustor. The combustor was 42 inches in diameter, incorporated 120 modules, and was specifically designed for elevated exit temperature performance. Test conditions included combustor inlet temperatures of 600, 900 and 1050 F, inlet pressures of 5 to 6 atmospheres, reference velocities of 69 to 120 feet per second and fuel-air ratios of 0.014 to 0.0695. Tests were also conducted at a simulated engine idle condition. Results demonstrated that swirl can combustors produce oxides of nitrogen levels substantially lower than conventional combustor designs. These reductions are attributed to reduced dwell times resulting from short combustor length, quick mixing of combustion gases with diluent air, and to uniform fuel distributions resulting from the swirl can approach. Radial staging of fuel at idle conditions resulted in increases in combustion efficiencies and corresponding reductions in pollutant levels.

  2. Predictive models for circulating fluidized bed combustors

    SciTech Connect

    Gidaspow, D.

    1989-11-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. The purpose of these models is to help American industry, such as Combustion Engineering, design and scale-up CFB combustors that are capable of burning US Eastern high sulfur coals with low SO{sub x} and NO{sub x} emissions. In this report, presented as a technical paper, solids distributions and velocities were computed for a PYROFLOW circulating fluidized bed system. To illustrate the capability of the computer code an example of coal-pyrite separation is included, which was done earlier for a State of Illinois project. 24 refs., 20 figs., 2 tabs.

  3. Ring connection for porous combustor wall panels

    NASA Technical Reports Server (NTRS)

    Verdouw, Albert J. (Inventor)

    1980-01-01

    A gas turbine engine combustor assembly of unique configuration has an outer wall made up of a plurality of axially extending multi-layered porous metal panels joined together at butt joints therebetween by a reinforcing and heat dissipation ring and a unique weld configuration to prevent thermal erosion of the ends of the porous metal panels at the butt joints; the combustor further including a unique inner wall made up of a plurality of like axially extending multi-layered porous metal panels joined at butt joints by a reinforcing and heat dissipation ring on the inner surface of the inner wall panels and an improved butt weld joint that prevents thermal erosion of the ends of the porous metal inner wall panels.

  4. Experimental development of a two-stage fluidized-bed/cyclonic agglomerating incinerator

    SciTech Connect

    Mensinger, M.C.; Rehmat, A.; Bryan, B.G.; Lau, F.S. ); Shearer, T.L. ); Duggan, P.A. )

    1991-01-01

    The Institute of Gas Technology (IGT) is conducting an experimental program to develop and test through pilot-plant scale of operation, IGT's two-stage fluidized-bed/cyclonic agglomerating incinerator (TSI). The TSI is based on combining the fluidized-bed agglomeration/gasification technology and the cyclonic combustion/incineration technology, which have been developed at IGT over many years. The TSI is a unique and extremely flexible combustor that can operate over a wide range of conditions in the fluidized-bed first stage from low temperature (desorption) to high temperature (agglomeration) including gasification of high-Btu wastes. The TSI can easily and efficiently destroy solid, liquid and gaseous organic wastes, while containing solid inorganic contaminants within an essentially non-leachable glassy matrix, suitable for disposal in an ordinary landfill. This paper presents the results of tests conducted in a batch, fluidized-bed bench-scale unit (BSU) with commercially available clean'' top soil and the same soil spiked with lead and chromium compounds. The objectives of these tests were to determine the operating conditions necessary to achieve soil agglomeration and to evaluate the leaching characteristics of the soil agglomerates formed. 7 refs., 7 figs., 6 tabs.

  5. Advanced composite combustor structural concepts program

    NASA Technical Reports Server (NTRS)

    Sattar, M. A.; Lohmann, R. P.

    1984-01-01

    An analytical study was conducted to assess the feasibility of and benefits derived from the use of high temperature composite materials in aircraft turbine engine combustor liners. The study included a survey and screening of the properties of three candidate composite materials including tungsten reinforced superalloys, carbon-carbon and silicon carbide (SiC) fibers reinforcing a ceramic matrix of lithium aluminosilicate (LAS). The SiC-LAS material was selected as offering the greatest near term potential primarily on the basis of high temperature capability. A limited experimental investigation was conducted to quantify some of the more critical mechanical properties of the SiC-LAS composite having a multidirection 0/45/-45/90 deg fiber orientation favored for the combustor linear application. Rigorous cyclic thermal tests demonstrated that SiC-LAS was extremely resistant to the thermal fatigue mechanisms that usually limit the life of metallic combustor liners. A thermal design study led to the definition of a composite liner concept that incorporated film cooled SiC-LAS shingles mounted on a Hastelloy X shell. With coolant fluxes consistent with the most advanced metallic liner technology, the calculated hot surface temperatures of the shingles were within the apparent near term capability of the material. Structural analyses indicated that the stresses in the composite panels were low, primarily because of the low coefficient of expansion of the material and it was concluded that the dominant failure mode of the liner would be an as yet unidentified deterioration of the composite from prolonged exposure to high temperature. An economic study, based on a medium thrust size commercial aircraft engine, indicated that the SiC-LAS combustor liner would weigh 22.8N (11.27 lb) less and cost less to manufacture than advanced metallic liner concepts intended for use in the late 1980's.

  6. Fuel property effects in stirred combustors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Soot formation in strongly backmixed combustion was investigated using the jet-stirred combustor (JSC). This device provided a combustion volume in which temperature and combustion were uniform. It simulated the recirculating characteristics of the gas turbine primary zone; it was in this zone where mixture conditions were sufficiently rich to produce soot. Results indicate that the JSC allows study of soot formation in an aerodynamic situation revelant to gas turbines.

  7. Pulsed atmospheric fluidized bed combustor apparatus

    DOEpatents

    Mansour, Momtaz N.

    1993-10-26

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

  8. A Comparison of Combustor-Noise Models

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart, S.

    2012-01-01

    The current status of combustor-noise prediction in the NASA Aircraft Noise Prediction Program (ANOPP) for current-generation (N) turbofan engines is summarized. Best methods for near-term updates are reviewed. Long-term needs and challenges for the N+1 through N+3 timeframe are discussed. This work was carried out under the NASA Fundamental Aeronautics Program, Subsonic Fixed Wing Project, Quiet Aircraft Subproject.

  9. 40 CFR 60.53b - Standards for municipal waste combustor operating practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Modular excess air 50 4 Refuse-derived fuel stoker 150 24 Bubbling fluidized bed combustor 100 4 Circulating fluidized bed combustor 100 4 Pulverized coal/refuse-derived fuel mixed fuel-fired combustor 150...

  10. 40 CFR 60.53b - Standards for municipal waste combustor operating practices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Modular excess air 50 4 Refuse-derived fuel stoker 150 24 Bubbling fluidized bed combustor 100 4 Circulating fluidized bed combustor 100 4 Pulverized coal/refuse-derived fuel mixed fuel-fired combustor 150...

  11. 40 CFR 60.53b - Standards for municipal waste combustor operating practices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Modular excess air 50 4 Refuse-derived fuel stoker 150 24 Bubbling fluidized bed combustor 100 4 Circulating fluidized bed combustor 100 4 Pulverized coal/refuse-derived fuel mixed fuel-fired combustor 150...

  12. 40 CFR 60.53b - Standards for municipal waste combustor operating practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Modular excess air 50 4 Refuse-derived fuel stoker 150 24 Bubbling fluidized bed combustor 100 4 Circulating fluidized bed combustor 100 4 Pulverized coal/refuse-derived fuel mixed fuel-fired combustor 150...

  13. Advanced In-Furnace NOx Control for Wall and Cyclone-Fired Boilers

    SciTech Connect

    Hamid Sarv

    2009-02-28

    A NO{sub x} minimization strategy for coal-burning wall-fired and cyclone boilers was developed that included deep air staging, innovative oxygen use, reburning, and advanced combustion control enhancements. Computational fluid dynamics modeling was applied to refine and select the best arrangements. Pilot-scale tests were conducted by firing an eastern high-volatile bituminous Pittsburgh No.8 coal at 5 million Btu/hr in a facility that was set up with two-level overfire air (OFA) ports. In the wall-fired mode, pulverized coal was burned in a geometrically scaled down version of the B and W DRB-4Z{reg_sign} low-NO{sub x} burner. At a fixed overall excess air level of 17%, NO{sub x} emissions with single-level OFA ports were around 0.32 lb/million Btu at 0.80 burner stoichiometry. Two-level OFA operation lowered the NO{sub x} levels to 0.25 lb/million Btu. Oxygen enrichment in the staged burner reduced the NO{sub x} values to 0.21 lb/million Btu. Oxygen enrichment plus reburning and 2-level OFA operation further curbed the NO{sub x} emissions to 0.19 lb/million Btu or by 41% from conventional air-staged operation with single-level OFA ports. In the cyclone firing arrangement, oxygen enrichment of the cyclone combustor enabled high-temperature and deeply staged operation while maintaining good slag tapping. Firing the Pittsburgh No.8 coal in the optimum arrangement generated 112 ppmv NO{sub x} (0.15 lb/million Btu) and 59 ppmv CO. The optimum emissions results represent 88% NO{sub x} reduction from the uncontrolled operation. Levelized costs for additional NO{sub x} removal by various in-furnace control methods in reference wall-fired or cyclone-fired units already equipped with single-level OFA ports were estimated and compared with figures for SCR systems achieving 0.1 lb NO{sub x}/10{sup 6} Btu. Two-level OFA ports could offer the most economical approach for moderate NO{sub x} control, especially for smaller units. O{sub 2} enrichment in combination with 2-level

  14. Low NOx Fuel Flexible Combustor Integration Project Overview

    NASA Technical Reports Server (NTRS)

    Walton, Joanne C.; Chang, Clarence T.; Lee, Chi-Ming; Kramer, Stephen

    2015-01-01

    The Integrated Technology Demonstration (ITD) 40A Low NOx Fuel Flexible Combustor Integration development is being conducted as part of the NASA Environmentally Responsible Aviation (ERA) Project. Phase 2 of this effort began in 2012 and will end in 2015. This document describes the ERA goals, how the fuel flexible combustor integration development fulfills the ERA combustor goals, and outlines the work to be conducted during project execution.

  15. High-temperature durability considerations for HSCT combustor

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1992-01-01

    The novel combustor designs for the High Speed Civil Transport will require high temperature materials with long term environmental stability. Higher liner temperatures than in conventional combustors and the need for reduced weight necessitates the use of advanced ceramic matrix composites. The combustor environment is defined at the current state of design, the major degradation routes are discussed for each candidate ceramic material, and where possible, the maximum use temperatures are defined for these candidate ceramics.

  16. Advanced liner-cooling techniques for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1985-01-01

    Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy).

  17. Rapid-quench axially staged combustor

    DOEpatents

    Feitelberg, Alan S.; Schmidt, Mark Christopher; Goebel, Steven George

    1999-01-01

    A combustor cooperating with a compressor in driving a gas turbine includes a cylindrical outer combustor casing. A combustion liner, having an upstream rich section, a quench section and a downstream lean section, is disposed within the outer combustor casing defining a combustion chamber having at least a core quench region and an outer quench region. A first plurality of quench holes are disposed within the liner at the quench section having a first diameter to provide cooling jet penetration to the core region of the quench section of the combustion chamber. A second plurality of quench holes are disposed within the liner at the quench section having a second diameter to provide cooling jet penetration to the outer region of the quench section of the combustion chamber. In an alternative embodiment, the combustion chamber quench section further includes at least one middle region and at least a third plurality of quench holes disposed within the liner at the quench section having a third diameter to provide cooling jet penetration to at least one middle region of the quench section of the combustion chamber.

  18. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    W. R. Laster; E. Anoshkina

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  19. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    Laster, W. R.; Anoshkina, E.

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  20. Low Emissions RQL Flametube Combustor Test Results

    NASA Technical Reports Server (NTRS)

    Chang, Clarence T.; Holdeman, James D.

    2001-01-01

    The overall objective of this test program was to demonstrate and evaluate the capability of the Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept for HSR applications. This test program was in support of the Pratt & Whitney and GE Aircraft Engines HSR low-NOx Combustor Program. Collaborative programs with Parker Hannifin Corporation and Textron Fuel Systems resulted in the development and testing of the high-flow low-NOx rich-burn zone fuel-to-air ratio research fuel nozzles used in this test program. Based on the results obtained in this test program, several conclusions can be made: (1) The RQL tests gave low NOx and CO emissions results at conditions corresponding to HSR cruise. (2) The Textron fuel nozzle design with optimal multiple partitioning of fuel and air circuits shows potential of providing an acceptable uniform local fuel-rich region in the rich burner. (3) For the parameters studied in this test series, the tests have shown T3 is the dominant factor in the NOx formation for RQL combustors. As T3 increases from 600 to 1100 F, EI(NOx) increases approximately three fold. (4) Factors which appear to have secondary influence on NOx formation are P4, T4, infinity(sub rb), V(sub ref,ov). (5) Low smoke numbers were measured for infinity(sub rb) of 2.0 at P4 of 120 psia.

  1. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect

    W. R. Laster; E. Anoshkina; P. Szedlacsek

    2006-03-31

    Under the sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse is conducting a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1-Implementation Plan, Phase 2-Validation Testing and Phase 3-Field Testing. The Phase 1 program has been completed. Phase II was initiated in October 2004. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCL{trademark}) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to react part of the fuel, increasing the fuel/air mixture temperature. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the catalytic concept will be demonstrated through subscale testing. Phase III will consist of full-scale combustor basket testing on natural gas and syngas.

  2. Experience with different cyclones in CFBs

    SciTech Connect

    Alliston, M.G.; Brink, K.E.; Kokko, A.

    1998-07-01

    Kvaerner Pulping has been designing, manufacturing and delivering different kinds of CFB boilers since the beginning of the 1980s. This paper gives a historical overview of these first generation CFBs and especially operational experience with them. Due to some specific problems in these first generation CFBs, described in this paper, Kvaerner Pulping was among the pioneers in CFB construction development and was probably the first company to deliver a totally water-cooled CFB construction that also included the cyclone. The goal in construction development has been to improve the reliability of the CFB boiler and at the same time minimizing the required service time. Kvaerner's continuous CFB development has created several constructions with different appearances for different applications. The basic development work has been done on the conventional cyclone type and this it is still the most common cyclone type used in all sizes of applications. CYMIC boiler, and especially its cyclone, is one of the new designs. It is also a totally water-cooled construction and it has some additional benefits which are mainly correlated with the space requirements of boiler placement and simple cyclone construction. CYMIC is very suitable for industrial applications and for cases where utilizes existing boiler houses or parts of them are being utilized. For the increased CFB boiler sizes Kvaerner has developed the ICCL (Integral Cylindrical Cyclone and Loop-seal). Again the installation is totally water-cooled and additional benefits are related to the straight cyclone construction, water-cooled vortex finder the ability to locate a significant proportion of heat surfaces in the loopseal. All the constructional features mentioned above are described in detail in this paper. This present paper gives some idea of how these installations have coped in practice and what aspects need to be developed further.

  3. Low pollution combustor designs for CTOL engines - Results of the Experimental Clean Combustor Program

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Peduzzi, A.; Niedzwiecki, R. W.

    1976-01-01

    The NASA/Pratt & Whitney Aircraft Experimental Clean Combustor Program is a multi-year, major contract effort. Primary program objectives are the generation of combustor technology for development of advanced commercial CTOL engines with lower exhaust emissions than current aircraft and demonstration of this technology in a full-scale JT9D engine in 1976. This paper describes the pollution and performance goals, Phase I and II test results, and the Phase III combustor hardware, pollution sampling techniques, and test plans. Best results were obtained with the Vorbix concept which employs multiple burning zones and improved fuel preparation and distribution. Substantial reductions were achieved in all pollutant categories, meeting the 1979 EPA standards for NOx, THC, and smoke when extrapolated to JT9D cycle conditions. The Vorbix concept additionally demonstrated the capability for acceptable altitude relight and did not appear to have unsolvable durability or exit temperature distribution problems.

  4. Numerical analysis of the flows in annular slinger combustors

    NASA Astrophysics Data System (ADS)

    Huebner, S.; Exley, T.

    1990-07-01

    Improved gas-turbine combustor design techniques are developed through the application of CFD flow predictions. The conservation equations of mass, momentum, and energy are solved using the finite-volume approach of Spalding. The geometry is a three-dimensional region of cyclic symmetry for a selected annular slinger combustor of reasonable performance. The flow is assumed nonreacting, isothermal, and turbulent. Mixing of the dilution jet stream with the bulk combustor flow is simulated by assuming different inlet temperatures for the two mass sources and noting the temperature profile at the combustor exit plane. A flow visualization experiment is performed on cold flow conditions and reasonably corroborates the CFD predictions.

  5. Apparatus and method for cooling a combustor cap

    DOEpatents

    Zuo, Baifang; Washam, Roy Marshall; Wu, Chunyang

    2014-04-29

    A combustor includes an end cap having a perforated downstream plate and a combustion chamber downstream of the downstream plate. A plenum is in fluid communication with the downstream plate and supplies a cooling medium to the combustion chamber through the perforations in the downstream plate. A method for cooling a combustor includes flowing a cooling medium into a combustor end cap and impinging the cooling medium on a downstream plate in the combustor end cap. The method further includes flowing the cooling medium into a combustion chamber through perforations in the downstream plate.

  6. Controlled pilot oxidizer for a gas turbine combustor

    DOEpatents

    Laster, Walter R.; Bandaru, Ramarao V.

    2010-07-13

    A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.

  7. Predicting Noise From Aircraft Turbine-Engine Combustors

    NASA Technical Reports Server (NTRS)

    Gliebe, P.; Mani, R.; Salamah, S.; Coffin, R.; Mehta, Jayesh

    2005-01-01

    COMBUSTOR and CNOISE are computer codes that predict far-field noise that originates in the combustors of modern aircraft turbine engines -- especially modern, low-gaseous-emission engines, the combustors of which sometimes generate several decibels more noise than do the combustors of older turbine engines. COMBUSTOR implements an empirical model of combustor noise derived from correlations between engine-noise data and operational and geometric parameters, and was developed from databases of measurements of acoustic emissions of engines. CNOISE implements an analytical and computational model of the propagation of combustor temperature fluctuations (hot spots) through downstream turbine stages. Such hot spots are known to give rise to far-field noise. CNOISE is expected to be helpful in determining why low-emission combustors are sometimes noisier than older ones, to provide guidance for refining the empirical correlation model embodied in the COMBUSTOR code, and to provide insight on how to vary downstream turbinestage geometry to reduce the contribution of hot spots to far-field noise.

  8. Citizen scientists analyzing tropical cyclone intensities

    NASA Astrophysics Data System (ADS)

    Hennon, Christopher C.

    2012-10-01

    A new crowd sourcing project called CycloneCenter enables the public to analyze historical global tropical cyclone (TC) intensities. The primary goal of CycloneCenter, which launched in mid-September, is to resolve discrepancies in the recent global TC record arising principally from inconsistent development of tropical cyclone intensity data. The historical TC record is composed of data sets called "best tracks," which contain a forecast agency's best assessment of TC tracks and intensities. Best track data have improved in quality since the beginning of the geostationary satellite era in the 1960s (because TCs could no longer disappear from sight). However, a global compilation of best track data (International Best Track Archive for Climate Stewardship (IBTrACS)) has brought to light large interagency differences between some TC best track intensities, even in the recent past [Knapp et al., 2010Knapp et al., 2010]. For example, maximum wind speed estimates for Tropical Cyclone Gay (1989) differed by as much as 70 knots as it was tracked by three different agencies.

  9. Cyclone reduction of taconite. Final report

    SciTech Connect

    Taylor, P.R.; Bartlett, R.W.; Abdel-latif, M.A.; Hou, X.; Kumar, P.

    1995-05-01

    A cyclone reactor system for the partial reduction and melting of taconite concentrate fines has been engineered, designed and operated. A non-transferred arc plasma torch was employed as a heat source. Taconite fines, carbon monoxide, and carbon dioxide were fed axially into the reactor, while the plasma gas was introduced tangentially into the cyclone. The average reactor temperature was maintained at above 1400{degrees}C, and reduction experiments were performed under various conditions. The influence of the following parameters on the reduction of taconite was investigated experimentally; carbon monoxide to carbon dioxide inlet feed ratio, carbon monoxide inlet partial pressure, and average reactor temperature. The interactions of the graphite lining with carbon dioxide and taconite were also studied. An attempt was made to characterize the flow behavior of the molten product within the cyclone. The results suggest that the system may approach a plug flow reactor, with little back mixing. Finally, a fundamental mathematical model was developed. The model describes the flow dynamics of gases and solid particles in a cyclone reactor, energy exchange, mass transfer, and the chemical kinetics associated with cyclone smelting of taconite concentrate fines. The influence of the various parameters on the reduction and melting of taconite particles was evaluated theoretically.

  10. Dust cyclone technology for gins – A literature review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dust cyclone research leading to more efficient designs has helped the cotton ginning industry to comply with increasingly stringent air quality regulations governing fine particulate emissions. Future changes in regulations may require additional improvements in dust cyclone efficacy. This inter-...

  11. A revised accumulated cyclone energy index

    NASA Astrophysics Data System (ADS)

    Yu, Jia-Yuh; Chou, Chia; Chiu, Ping-Gin

    2009-07-01

    A new estimate of the wind energy associated with a tropical cyclone (TC), along with the revised accumulated cyclone energy (RACE) index, is introduced in this paper. In contrast to the conventional means employed in computing the ACE index, in which the wind energy is measured at the radius of maximum wind, the new estimate considers the mean wind energy averaged over a circular area based on the modified Rankine vortex structure. An examination of the seasonal TC activity using the JTWC best-track records over the western North Pacific suggests that, as long as there is a strong variability in TC activity (characterized by a substantial year-to-year variability in the RACE/ACE time series), employing a more precise estimate of the cyclone wind energy is not just physically reasonable, it can also be practically useful.

  12. Potential Vorticity Analysis of Tropical Cyclone Intensification.

    NASA Astrophysics Data System (ADS)

    Molinari, John; Skubis, Steven; Vollaro, David; Alsheimer, Frank; Willoughby, Hugh E.

    1998-08-01

    The interaction of marginal Tropical Storm Danny (1985) with an upper-tropospheric positive potential vorticity anomaly was examined. The intensification mechanism proposed earlier for mature Hurricane Elena appears to be valid for Danny as well, despite significant differences in the synoptic-scale environment and in the stage of the tropical cyclone prior to the interaction. Both storms experienced rapid pressure falls as a relatively small-scale positive upper potential vorticity anomaly began to superpose with the low-level tropical cyclone center.The interaction is described in terms of a complex interplay between vertical wind shear, diabatic heating, and mutual advection among vortices at and below the level of the outflow anticyclone. Despite this complexity, the superposition principle appears to be conceptually useful to describe the intensification of tropical cyclones during such interactions.

  13. Explosive cyclones in CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Seiler, C.; Zwiers, F. W.

    2014-12-01

    Explosive cyclones are rapidly intensifying low pressure systems with severe wind speeds and precipitation, affecting livelihoods and infrastructure primarily in coastal and marine environments. A better understanding of the potential impacts of climate change on these so called meteorological bombs is therefore of great societal relevance. This study evaluates how well CMIP5 climate models reproduce explosive cyclones in the extratropics of the northern hemisphere, and how these bombs respond to global warming. For this purpose an objective-feature tracking algorithm was used to identify and track extratropical cyclones from 25 CMIP5 models and 3 reanalysis products for the periods 1980 to 2005 and 2070 to 2099. Cyclones were identified as the maxima of T42 vorticity of 6h wind speed at 850 hPa. Explosive and non-explosive cyclones were separated based on the corresponding deepening rates of mean sea level pressure. Most models accurately reproduced the spatial distribution of bombs when compared to results from reanalysis data (R2 = 0.84, p-value = 0.00), with high frequencies along the Kuroshio Current and the Gulf Stream, as well as the exit regions of the polar jet streaks. Most models however significantly underestimated bomb frequencies by a third on average, and by 74% in the most extreme case. This negative frequency bias coincided with significant underestimations of either meridional sea surface temperature (SST) gradients, or wind speeds of the polar jet streaks. Bomb frequency biases were significantly correlated with the number vertical model levels (R2= 0.36, p-value = 0.001), suggesting that the vertical atmospheric model resolution is crucial for simulating bomb frequencies accurately. The impacts of climate change on the location, frequency, and intensity of explosive cyclones were then explored for the Representative Concentration Pathway 8.5. Projections were related to model bias, resolution, projected changes of SST gradients, and wind speeds

  14. Design of Stairmand-type sampling cyclones

    SciTech Connect

    Moore, M.E.; McFarland, A.R. )

    1990-03-01

    An empirical, nondimensional correlation of cut-point Stokes number (Stk0.5) and flow Reynolds number (Re) has been established for small Stairmand-type sampling cyclones. Four cyclones with body diameters of 38, 57, 89, and 140 mm were constructed and tested with monodisperse aerosols over a range of flow rates. The flow rates were chosen to provide preselected increments of particle Froude numbers. These flow rates for the four cyclones spanned the range of 9.4 to 1080 L/min and provided Froude numbers of 1.5, 2.0, 2.5, and 6.0. The resulting Reynolds numbers (based upon cyclone body diameter and inlet flow rate) covered the range of 2.1 x 10(3) to 6.4 x 10(4). Sizes of monodisperse aerosols used in this study were from 3.0- to 17.4-microns aerodynamic diameter. The graphical correlation between cut-point Stokes number and Reynolds number showed there to be no effect of Froude number (for the range of Froude numbers tested). The data have been fit by a least squares procedure to a quadratic logarithmic function. In addition to development of the empirical correlation, the results of this study also provide data pertinent to the regional deposition of liquid particles within the cyclone and to the transmission of solid particles through the cyclone. The carryover of solid, 19-microns diameter particles is only 0.5% greater than that of liquid particles of the same size.

  15. Cyclone contribution to the Mediterranean Sea water budget

    NASA Astrophysics Data System (ADS)

    Flaounas, E.; Di Luca, A.; Drobinski, P.; Mailler, S.; Arsouze, T.; Bastin, S.; Beranger, K.; Lebeaupin Brossier, C.

    2016-02-01

    This paper analyzes the impact of cyclones to the atmospheric components on the Mediterranean Sea Water Budget, namely the cyclones contribution to precipitation and evaporation over the Mediterranean Sea. Three regional simulations were performed with the WRF model for the period 1989-2008. The model was run (1) as a standalone model, (2) coupled with the oceanic model NEMO-MED12 and (3) forced by the smoothed Sea Surface Temperature (SST) fields from the second simulation. Cyclones were tracked in all simulations, and their contribution to the total rainfall and evaporation was quantified. Results show that cyclones are mainly associated with extreme precipitation, representing more than 50 % of the annual rainfall over the Mediterranean Sea. On the other hand, we found that cyclone-induced evaporation represents only a small fraction of the annual total, except in winter, when the most intense Mediterranean cyclones take place. Despite the significant contribution of cyclones to rainfall, our results show that there is a balance between cyclone-induced rainfall and evaporation, suggesting a weak net impact of cyclones on the Mediterranean Sea water budget. The sensitivity of our results with respect to rapid SST changes during the development of cyclones was also investigated. Both rainfall and evaporation are affected in correlation with the SST response to the atmosphere. In fact, air feedbacks to the Mediterranean Sea during the cyclones occurrence were shown to cool down the SST and consequently to reduce rainfall and evaporation at the proximity of cyclone centers.

  16. Model finds bigger, stronger tropical cyclones with warming seas

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2014-03-01

    In the wake of powerful tropical cyclones such as Hurricanes Sandy and Katrina and Typhoon Haiyan, questions about the likely effect of climate change on tropical cyclone activity are on the public's mind. The interactions between global warming and cyclone activity, however, are complex, with rising sea surface temperatures, changing energy distributions, and altered atmospheric dynamics all having some effect.

  17. Combustor nozzle for a fuel-flexible combustion system

    DOEpatents

    Haynes, Joel Meier; Mosbacher, David Matthew; Janssen, Jonathan Sebastian; Iyer, Venkatraman Ananthakrishnan

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  18. Noise addendum experimental clean combustor program, phase 1

    NASA Technical Reports Server (NTRS)

    Sofrin, T. G.; Ross, D. A.

    1975-01-01

    The development of advanced CTOL aircraft engines with reduced exhaust emissions is discussed. Combustor noise information provided during the basic emissions program and used to advantage in securing reduced levels of combustion noise is included. Results are presented of internal pressure transducer measurements made during the scheduled emissions test program on ten configurations involving variations of three basic combustor designs.

  19. Combustor technology for future small gas turbine aircraft

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Niedzwiecki, Richard W.

    1994-01-01

    To enhance fuel efficiency, future advanced small gas turbine engines will utilize engine cycles calling for overall engine pressure ratios, leading to higher combustor inlet pressures and temperatures. Further, the temperature rise through the combustor and the corresponding exit temperature are also expected to increase. This report describes future combustor technology needs for small gas turbine engines. New fuel injectors with large turndown ratios which produce uniform circumferential and radial temperature patterns will be required. Uniform burning will be of greater importance because hot gas temperatures will approach turbine material limits. The higher combustion temperatures and increased radiation at high pressures will put a greater heat load on the combustor liners. At the same time, less cooling air will be available as more of the air will be used for combustion. Thus, improved cooling concepts and/or materials requiring little or no direct cooling will be required. Although presently there are no requirements for emissions levels from small gas turbine engines, regulation is anticipated in the near future. This will require the development of low emission combustors. In particular, nitrogen oxides will increase substantially if new technologies limiting their formation are not evolved and implemented. For example, staged combustion employing lean, premixed/prevaporized, lean direct injection, or rich burn-quick quench-lean burn concepts could replace conventional single stage combustors. Due to combustor size considerations, staged combustion is more easily accommodated in large engines. The inclusion of staged combustion in small engines will pose greater combustor design challenges.

  20. Preliminary Investigation of Combustion of Diborane in a Turbojet Combustor

    NASA Technical Reports Server (NTRS)

    Kaufman, Warner B; Gibbs, James B; Branstetter, J Robert

    1957-01-01

    Boron and its hydrides offer increased flight range relative to conventional fuels for turbojet engines. Preliminary evaluation has been made of the combustion characteristics and deposition problems resulting from burning diborone in a single, modified J33 combustor. A combustor relatively free of deposits for the limited test conditions has been developed. Three possible methods of alleviating deposits on the turbine blades are reported.

  1. Serial cooling of a combustor for a gas turbine engine

    DOEpatents

    Abreu, Mario E.; Kielczyk, Janusz J.

    2001-01-01

    A combustor for a gas turbine engine uses compressed air to cool a combustor liner and uses at least a portion of the same compressed air for combustion air. A flow diverting mechanism regulates compressed air flow entering a combustion air plenum feeding combustion air to a plurality of fuel nozzles. The flow diverting mechanism adjusts combustion air according to engine loading.

  2. Critical Propulsion Components. Volume 2; Combustor

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Several studies have concluded that a supersonic aircraft, if environmentally acceptable and economically viable, could successfully compete in the 21st century marketplace. However, before industry can commit to what is estimated as a 15 to 20 billion dollar investment, several barrier issues must be resolved. In an effort to address these barrier issues, NASA and Industry teamed to form the High-Speed Research (HSR) program. As part of this program, the Critical Propulsion Components (CPC) element was created and assigned the task of developing those propulsion component technologies necessary to: (1) reduce cruise emissions by a factor of 10 and (2) meet the ever-increasing airport noise restrictions with an economically viable propulsion system. The CPC-identified critical components were ultra-low emission combustors, low-noise/high-performance exhaust nozzles, low-noise fans, and stable/high-performance inlets. Propulsion cycle studies (coordinated with NASA Langley Research Center sponsored airplane studies) were conducted throughout this CPC program to help evaluate candidate components and select the best concepts for the more complex and larger scale research efforts. The propulsion cycle and components ultimately selected were a mixed-flow turbofan (MFTF) engine employing a lean, premixed, prevaporized (LPP) combustor coupled to a two-dimensional mixed compression inlet and a two-dimensional mixer/ejector nozzle. Due to the large amount of material presented in this report, it was prepared in four volumes; Volume 1: Summary, Introduction, and Team. Propulsion System Studies, Volume 2: Combustor, Volume 3: Exhaust Nozzle, and Volume 4: Inlet and Fan/Inlet Acoustic Team.

  3. Pulse Combustor Design, A DOE Assessment

    SciTech Connect

    National Energy Technology Laboratory

    2003-07-31

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Pulse Combustor Design Qualification Test, as described in a Report to Congress (U.S. Department of Energy 1992). Pulse combustion is a method intended to increase the heat-transfer rate in a fired heater. The desire to demonstrate the use of pulse combustion as a source of heat for the gasification of coal, thus avoiding the need for an oxygen plant, prompted ThermoChem, Inc. (TCI), to submit a proposal for this project. In October 1992, TCI entered into a cooperative agreement with DOE to conduct this project. In 1998, the project was restructured and scaled down, and in September 1998, a new cooperative agreement was signed. The site of the revised project was TCI's facilities in Baltimore, Maryland. The original purpose of this CCT project was to demonstrate a unit that would employ ten identical 253-resonance tube combustors in a coal gasification unit. The objective of the scaled-down project was to test a single 253-resonance-tube combustor in a fluidized sand bed, with gasification being studied in a process development unit (PDU). DOE provided 50 percent of the total project funding of $8.6 million. The design for the demonstration unit was completed in February 1999, and construction was completed in November 2000. Operations were conducted in March 2001.

  4. COMPUTATIONAL FLUID DYNAMICS MODELING ANALYSIS OF COMBUSTORS

    SciTech Connect

    Mathur, M.P.; Freeman, Mark; Gera, Dinesh

    2001-11-06

    In the current fiscal year FY01, several CFD simulations were conducted to investigate the effects of moisture in biomass/coal, particle injection locations, and flow parameters on carbon burnout and NO{sub x} inside a 150 MW GEEZER industrial boiler. Various simulations were designed to predict the suitability of biomass cofiring in coal combustors, and to explore the possibility of using biomass as a reburning fuel to reduce NO{sub x}. Some additional CFD simulations were also conducted on CERF combustor to examine the combustion characteristics of pulverized coal in enriched O{sub 2}/CO{sub 2} environments. Most of the CFD models available in the literature treat particles to be point masses with uniform temperature inside the particles. This isothermal condition may not be suitable for larger biomass particles. To this end, a stand alone program was developed from the first principles to account for heat conduction from the surface of the particle to its center. It is envisaged that the recently developed non-isothermal stand alone module will be integrated with the Fluent solver during next fiscal year to accurately predict the carbon burnout from larger biomass particles. Anisotropy in heat transfer in radial and axial will be explored using different conductivities in radial and axial directions. The above models will be validated/tested on various fullscale industrial boilers. The current NO{sub x} modules will be modified to account for local CH, CH{sub 2}, and CH{sub 3} radicals chemistry, currently it is based on global chemistry. It may also be worth exploring the effect of enriched O{sub 2}/CO{sub 2} environment on carbon burnout and NO{sub x} concentration. The research objective of this study is to develop a 3-Dimensional Combustor Model for Biomass Co-firing and reburning applications using the Fluent Computational Fluid Dynamics Code.

  5. Coal desulfurization in a rotary kiln combustor

    SciTech Connect

    Cobb, J.T. Jr.

    1992-09-11

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  6. Active Control of Combustor Instability Shown to Help Lower Emissions

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Chang, Clarence T.

    2002-01-01

    In a quest to reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities, or high-pressure oscillations much like sound waves, that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Aerospace Propulsion and Power Base Research and Technology Program, the NASA Glenn Research Center, in partnership with Pratt & Whitney and United Technologies Research Center, is developing technologies for the active control of combustion instabilities. With active combustion control, the fuel is pulsed to put pressure oscillations into the system. This cancels out the pressure oscillations being produced by the instabilities. Thus, the engine can have lower pollutant emissions and long life.The use of active combustion instability control to reduce thermo-acoustic-driven combustor pressure oscillations was demonstrated on a single-nozzle combustor rig at United Technologies. This rig has many of the complexities of a real engine combustor (i.e., an actual fuel nozzle and swirler, dilution cooling, etc.). Control was demonstrated through modeling, developing, and testing a fuel-delivery system able to the 280-Hz instability frequency. The preceding figure shows the capability of this system to provide high-frequency fuel modulations. Because of the high-shear contrarotating airflow in the fuel injector, there was some concern that the fuel pulses would be attenuated to the point where they would

  7. Numerical investigation of recirculation in the UTSI MHD combustor

    SciTech Connect

    Schulz, R.J.; Lee, J.J.; Giel, T.V. Jr.

    1983-09-01

    Numerical studies were carried out to investigate the gross structure of flow in cylindrical combustors. The combustor configurations studied are variations of a working design used at the University of Tennessee Space Institute to burn pulverized coal at temperatures in excess of 3000K for generation of a plasma feeding a magnetohydrodynamic channel. The numerical studies were conducted for an isothermal fluid; the main objective of the calculations was to study the effect of the oxidant injection pattern on the gross structure of recirculating flows within the combustor. The calculations illustrate the basic features of the flow in combustors of this type and suggest implications for the injection of coal and oxidizer in this type of combustor.

  8. Experimental evaluation of combustor concepts for burning broad property fuels

    NASA Technical Reports Server (NTRS)

    Kasper, J. M.; Ekstedt, E. E.; Dodds, W. J.; Shayeson, M. W.

    1980-01-01

    A baseline CF6-50 combustor and three advanced combustor designs were evaluated to determine the effects of combustor design on operational characteristics using broad property fuels. Three fuels were used in each test: Jet A, a broad property 13% hydrogen fuel, and a 12% hydrogen fuel blend. Testing was performed in a sector rig at true cruise and simulated takeoff conditions for the CF6-50 engine cycle. The advanced combustors (all double annular, lean dome designs) generally exhibited lower metal temperatures, exhaust emissions, and carbon buildup than the baseline CF6-50 combustor. The sensitivities of emissions and metal temperatures to fuel hydrogen content were also generally lower for the advanced designs. The most promising advanced design used premixing tubes in the main stage. This design was chosen for additional testing in which fuel/air ratio, reference velocity, and fuel flow split were varied.

  9. Parameters controlling nitric oxide emissions from gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Mikus, T.

    1973-01-01

    Nitric oxide forms in the primary zone of gas turbine combustors where the burnt gas composition is close to stoichiometric and gas temperatures are highest. It was found that combustor air inlet conditions, mean primary zone fuel-air ratio, residence time, and the uniformity of the primary zone are the most important variables affecting nitric oxide emissions. Relatively simple models of the flow in a gas turbine combustor, coupled with a rate equation for nitric oxide formation via the Zeldovich mechanism are shown to correlate the variation in measured NOx emissions. Data from a number of different combustor concepts are analyzed and shown to be in reasonable agreement with predictions. The NOx formation model is used to assess the extent to which an advanced combustor concept, the NASA swirl can, has produced a lean well-mixed primary zone generally believed to be the best low NOx emissions burner type.

  10. Thermal and emission characteristics of a CAN combustor

    NASA Astrophysics Data System (ADS)

    Shah, Rupesh D.; Banerjee, Jyotirmay

    2016-03-01

    Experimental investigations are carried out to establish the thermal and emission characteristics of a CAN combustor. Temperature and emission levels at the combustor exit are measured for different swirler vane angles and air fuel ratios (AFR). Swirler vane angle is varied from 15° to 60° in steps of 15°. AFR is varied in the range of 41-51. Experimental analysis is carried out using methane as fuel. Measured temperature variation at combustor outlet indicates that the hot product of combustor flows near the liner wall. Gradient of temperature near the wall decreases as the swirler vane angle (and corresponding swirl number) is increased. The peak temperature reduces at higher value of AFR. Emission level of carbon monoxide decreases with increase in AFR and swirler vane orientation. A higher level of NOX emission is observed for AFR of 45. This is due to change in shape and strength of the recirculation region in the primary zone of the combustor.

  11. Combustor air flow control method for fuel cell apparatus

    DOEpatents

    Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.

    2001-01-01

    A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

  12. Energy efficient engine sector combustor rig test program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.; Greene, W.; Sundt, C. V.; Tanrikut, S.; Zeisser, M. H.

    1981-01-01

    Under the NASA-sponsored Energy Efficient Engine program, Pratt & Whitney Aircraft has successfully completed a comprehensive combustor rig test using a 90-degree sector of an advanced two-stage combustor with a segmented liner. Initial testing utilized a combustor with a conventional louvered liner and demonstrated that the Energy Efficient Engine two-stage combustor configuration is a viable system for controlling exhaust emissions, with the capability to meet all aerothermal performance goals. Goals for both carbon monoxide and unburned hydrocarbons were surpassed and the goal for oxides of nitrogen was closely approached. In another series of tests, an advanced segmented liner configuration with a unique counter-parallel FINWALL cooling system was evaluated at engine sea level takeoff pressure and temperature levels. These tests verified the structural integrity of this liner design. Overall, the results from the program have provided a high level of confidence to proceed with the scheduled Combustor Component Rig Test Program.

  13. Parametric test results of a swirl-can combustor

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, R. W.; Jones, R. E.

    1973-01-01

    Pollutant levels of oxides of nitrogen, unburned hydrocarbons, and carbon monoxide were measured for three models of an experimental, annular swirl can combustor. The combustor was 1.067 meters in outer diameter, incorporated 120 modules, and was specifically designed for elevated exit temperature performance. Test conditions included combustor inlet temperatures of 589, 756 and 839 K, inlet pressures of 3 to 6.4 atmospheres, reference velocities of 21 to 38 meters per second and combustor equivalence ratios, based on total combustor flows of 0.206 to 1.028. Maximum oxides of nitrogen emission index values occurred at an equivalence ratio of 0.7 with lower values measured for both higher and lower equivalence ratios. Oxides of nitrogen concentrations, to the 0.7 level with 756 K inlet air, were correlated for the three models by a combined parameter consisting of measured flow and geometric parameters. Effects of the individual parameters comprising the correlation are also presented.

  14. Radial inlet guide vanes for a combustor

    SciTech Connect

    Zuo, Baifang; Simons, Derrick; York, William; Ziminsky, Willy S

    2013-02-12

    A combustor may include an interior flow path therethrough, a number of fuel nozzles in communication with the interior flow path, and an inlet guide vane system positioned about the interior flow path to create a swirled flow therein. The inlet guide vane system may include a number of windows positioned circumferentially around the fuel nozzles. The inlet guide vane system may also include a number of inlet guide vanes positioned circumferentially around the fuel nozzles and adjacent to the windows to create a swirled flow within the interior flow path.

  15. Lean stability augmentation for premixing, prevaporizing combustors

    NASA Technical Reports Server (NTRS)

    Mcvey, J. B.; Kennedy, J. B.

    1979-01-01

    An experimental program was conducted to investigate techniques for improving the lean combustion limits of premixing, prevaporizing combustors applicable to gas turbine engine main burners. Augmented flameholders employing recessed perforated plates, catalyzed tube bundles, and configurations in which pilot fuel was injected into the wakes of V-gutters or perforated plates were designed and tested. Stable operation of the piloted designs was achieved at equivalence ratios as low as 0.25; NOx emissions of less than 1.0 g/kg at simulated turbine engine cruise conditions were obtained. A piloted perforated plate employing four percent pilot fuel flow produced the best performance while meeting severe NOx constraints.

  16. Testing and Characterization of CMC Combustor Liners

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig; Verrilli, Michael J.

    2003-01-01

    Multiple combustor liner applications, both segmented and fully annular designs, have been configured for exposure in NASA's High Pressure Burner Rig (HPBR). The segmented liners were attached to the rig structure with SiC/SiC fasteners and exposed to simulated gas turbine conditions for nearly 200 hours. Test conditions included pressures of 6 atm., gas velocity of 42 m/s, and gas temperatures near 1450 C. The temperatures of both the cooled and combustion flow sides of the liners were measured using optical and contact measurement techniques. Minor weight loss was observed, but the liners remained structural sound, although damage was noted in some fasteners.

  17. Active Suppression of Instabilities in Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2004-01-01

    A method of feedback control has been proposed as a means of suppressing thermo-acoustic instabilities in a liquid- fueled combustor of a type used in an aircraft engine. The basic principle of the method is one of (1) sensing combustor pressure oscillations associated with instabilities and (2) modulating the rate of flow of fuel to the combustor with a control phase that is chosen adaptively so that the pressure oscillations caused by the modulation oppose the sensed pressure oscillations. The need for this method arises because of the planned introduction of advanced, lean-burning aircraft gas turbine engines, which promise to operate with higher efficiencies and to emit smaller quantities of nitrogen oxides, relative to those of present aircraft engines. Unfortunately, the advanced engines are more susceptible to thermoacoustic instabilities. These instabilities are hard to control because they include large dead-time phase shifts, wide-band noise characterized by amplitudes that are large relative to those of the instabilities, exponential growth of the instabilities, random net phase walks, and amplitude fluctuations. In this method (see figure), the output of a combustion-pressure sensor would be wide-band-pass filtered and then further processed to generate a control signal that would be applied to a fast-actuation valve to modulate the flow of fuel. Initially, the controller would rapidly take large phase steps in order to home in, within a fraction of a second, to a favorable phase region within which the instability would be reduced. Then the controller would restrict itself to operate within this phase region and would further restrict itself to operate within a region of stability, as long as the power in the instability signal was decreasing. In the phase-shifting scheme of this method, the phase of the control vector would be made to continuously bounce back and forth from one boundary of an effective stability region to the other. Computationally

  18. Cyclone hazard proneness of districts of India

    NASA Astrophysics Data System (ADS)

    Mohapatra, M.

    2015-04-01

    Hazards associated with tropical cyclones (TCs) are long-duration rotatory high velocity winds, very heavy rain, and storm tide. India has a coastline of about 7516 km of which 5400 km is along the mainland. The entire coast is affected by cyclones with varying frequency and intensity. Thus classification of TC hazard proneness of the coastal districts is very essential for planning and preparedness aspects of management of TCs. So, an attempt has been made to classify TC hazard proneness of districts by adopting a hazard criteria based on frequency and intensity of cyclone, wind strength, probable maximum precipitation, and probable maximum storm surge. Ninety-six districts including 72 districts touching the coast and 24 districts not touching the coast, but lying within 100 km from the coast have been classified based on their proneness. Out of 96 districts, 12 are very highly prone, 41 are highly prone, 30 are moderately prone, and the remaining 13 districts are less prone. This classification of coastal districts based on hazard may be considered for all the required purposes including coastal zone management and planning. However, the vulnerability of the place has not been taken into consideration. Therefore, composite cyclone risk of a district, which is the product of hazard and vulnerability, needs to be assessed separately through a detailed study.

  19. A Simplified Model of Tropical Cyclone Intensification

    NASA Astrophysics Data System (ADS)

    Schubert, W. H.

    2015-12-01

    An axisymmetric model of tropical cyclone intensification is presented. The model is based on Salmon's wave-vortex approximation, which can describe flows with high Rossby number and low Froude number. After introducing an additional approximation designed to filter propagating inertia-gravity waves, the problem is reduced to the prediction of potential vorticity (PV) and the inversion of this PV to obtain the balanced wind and mass fields. This PV prediction/inversion problem is solved analytically for two types of forcing: a two-region model in which there is nonzero forcing in the cyclone core and zero forcing in the far-field; a three-region model in which there is non-zero forcing in both the cyclone core and the eyewall, with zero forcing in the far-field. The solutions of the two-region model provide insight into why tropical cyclones can have long incubation times before rapid intensification and how the size of the mature vortex can be influenced by the size of the initial vortex. The solutions of the three-region model provide insight into the formation of hollow PV structures and the inward movement of angular momentum surfaces across the radius of maximum wind.

  20. Nuclear power plant risk from tropical cyclones

    SciTech Connect

    Gilmore, T.F. )

    1991-01-01

    Tropical cyclones are considered to have a potential for contributing to the overall core-melt frequency at Turkey Point. A tropical cyclone is known to have the four main hazards associated with it: wind, tidal surge, wind-generated missiles, and precipitation. To understand the contribution to overall core-melt risk at Turkey Point, it is essential to understand the mechanisms of these hazards and their relative importance. The results are bounded by the hurricane surge scenario, where the frequency of core melt is equal to the frequency of the surge reaching 19 ft NGVD (National Geographic Vertical Datum). This could be mitigated by potential recovery actions for the tropical cyclone scenario. The probability of the storm surge reaching 19 ft NVGD is estimated to be 1 x 10{sup {minus}4}. The data associated with the tropical cyclones as discussed in detail in the body of this paper are lacking in quantity and quality. By taking the conservative approach in creating the wind/frequency, wind/surge, and surge/frequency relationships, the conclusion that the results are worst case is reasonable. With this in mind, it is logical to conclude that the value of further hazard analysis to narrow down the built-in conservative margin using the existing data and technology is doubtful. Thus, a recovery approach to driving the risk level down is the most pragmatic step to be taken.

  1. Cyclone separator having boundary layer turbulence control

    DOEpatents

    Krishna, Coimbatore R.; Milau, Julius S.

    1985-01-01

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.

  2. Cyclone Hudah As Seen By MODIS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Tropical Cyclone Hudah was one of most powerful storms ever seen in the Indian Ocean. This image from the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard Terra was taken on March 29, 2000. The structure of the eye of the storm is brought out by MODIS' 250-meter resolution. Image by Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

  3. Relation between tropical cyclone heat potential and cyclone intensity in the North Indian Ocean

    NASA Astrophysics Data System (ADS)

    Jangir, B.; Swain, D.; Udaya Bhaskar, T. V. S.

    2016-05-01

    Ocean Heat Content (OHC) plays a significant role in modulating the intensity of Tropical Cyclones (TC) in terms of the oceanic energy available to TCs. TC Heat Potential (TCHP), an estimate of OHC, is thus known to be a useful indicator of TC genesis and intensification. In the present study, we analyze the role of TCHP in intensification of TCs in the North Indian Ocean (NIO) through statistical comparisons between TCHP and Cyclone Intensities (CI). A total of 27 TCs (20 in the Bay of Bengal, and 7 in the Arabian Sea) during the period 2005-2012 have been analyzed using TCHP data from Global Ocean Data Assimilation System (GODAS) model of Indian National Center for Ocean Information Services and cyclone best track data from India Meteorological Department. Out of the 27 cyclones analyzed, 58% (86%) in the Bay (Arabian Sea) have negative correlation and 42% (14%) cyclones have positive correlation between CI and TCHP. On the whole, more than 60% cyclones in the NIO show negative correlations between CI and TCHP. The negative percentage further increases for TCHP leading CI by 24 and 48 hours. Similar trend is also seen with satellite derived TCHP data obtained from National Remote Sensing Center and TC best track data from Joint Typhoon Warming Centre. Hence, it is postulated that TCHP alone need not be the only significant oceanographic parameter, apart from sea surface temperature, responsible for intensification and propagation of TCs in the NIO.

  4. Experiment of rocket-ram annular combustor

    NASA Astrophysics Data System (ADS)

    Yatsuyanagi, Nobuyuki; Sakamoto, Hiroshi; Sato, Kazuo; Sasaki, Masaki; Ono, Fumiei

    Superiority in specific impulse of the double-nozzle type of rocket-ram combined engine over the ducted type of combined engine was shown by performance calculations. Then, a double-nozzle type of rocket-ram annular combustor with a total thrust of 5 kN was designed and experimentally tested with varying ratios of thrust produced by rocket and ram. With the combustor having different diverging half-angles, namely 10 deg 18 arcmin, and 6 deg 40 arcmin, thrust and pressure distribution along the common expansion nozzle were measured to investigate the effect of interaction of the two expansion gases on thrust. Enhancement of specific impulse was experimentally verified. That is, the specific impulse gained in rocket-ram parallel operations, the ratio of rocket thrust to ram thrust being 50 to 50, were found to be 190 percent of those in pure rocket operations. However, in the downstream region of the common nozzle, the flow might separate due to the generation of shock waves in either type of nozzle configuration.

  5. Combustor Computations for CO2-Neutral Aviation

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Brankovic, Andreja; Ryder, Robert C.; Huber, Marcia

    2011-01-01

    Knowing the pure component C(sub p)(sup 0) or mixture C(sub p) (sup 0) as computed by a flexible code such as NIST-STRAPP or McBride-Gordon, one can, within reasonable accuracy, determine the thermophysical properties necessary to predict the combustion characteristics when there are no tabulated or computed data for those fluid mixtures 3or limited results for lower temperatures. (Note: C(sub p) (sup 0) is molar heat capacity at constant pressure.) The method can be used in the determination of synthetic and biological fuels and blends using the NIST code to compute the C(sub p) (sup 0) of the mixture. In this work, the values of the heat capacity were set at zero pressure, which provided the basis for integration to determine the required combustor properties from the injector to the combustor exit plane. The McBride-Gordon code was used to determine the heat capacity at zero pressure over a wide range of temperatures (room to 6,000 K). The selected fluids were Jet-A, 224TMP (octane), and C12. It was found that each heat capacity loci were form-similar. It was then determined that the results [near 400 to 3,000 K] could be represented to within acceptable engineering accuracy with the simplified equation C(sub p) (sup 0) = A/T + B, where A and B are fluid-dependent constants and T is temperature (K).

  6. Error Reduction Program. [combustor performance evaluation codes

    NASA Technical Reports Server (NTRS)

    Syed, S. A.; Chiappetta, L. M.; Gosman, A. D.

    1985-01-01

    The details of a study to select, incorporate and evaluate the best available finite difference scheme to reduce numerical error in combustor performance evaluation codes are described. The combustor performance computer programs chosen were the two dimensional and three dimensional versions of Pratt & Whitney's TEACH code. The criteria used to select schemes required that the difference equations mirror the properties of the governing differential equation, be more accurate than the current hybrid difference scheme, be stable and economical, be compatible with TEACH codes, use only modest amounts of additional storage, and be relatively simple. The methods of assessment used in the selection process consisted of examination of the difference equation, evaluation of the properties of the coefficient matrix, Taylor series analysis, and performance on model problems. Five schemes from the literature and three schemes developed during the course of the study were evaluated. This effort resulted in the incorporation of a scheme in 3D-TEACH which is usuallly more accurate than the hybrid differencing method and never less accurate.

  7. Coal desulfurization in a rotary kiln combustor

    SciTech Connect

    Cobb, J.T. Jr.

    1990-08-15

    BCR National Laboratory (BCRNL) has initiated a project aimed at evaluating the technical and economic feasibility of using a rotary kiln, suitably modified, to burn Pennsylvania anthracite wastes, co-fired with high-sulfur bituminous coal. Limestone will be injected into the kiln for sulfur control, to determine whether high sulfur capture levels can be achieved with high sorbent utilization. The principal objectives of this work are: (1) to prove the feasibility of burning anthracite refuse, with co-firing of high-sulfur bituminous coal and with limestone injection for sulfur emissions control, in a rotary kiln fitted with a Universal Energy International (UEI) air injector system; (2) to determine the emissions levels of SO{sub x} and NO{sub x} and specifically to identify the Ca/S ratios that are required to meet New Source Performance Standards; (3) to evaluate the technical and economic merits of a commercial rotary kiln combustor in comparison to fluidized bed combustors; and, (4) to ascertain the need for further work, including additional combustion tests, prior to commercial application, and to recommend accordingly a detailed program towards this end.

  8. Azimuthally forced flames in an annular combustor

    NASA Astrophysics Data System (ADS)

    Worth, Nicholas; Dawson, James; Mastorakos, Epaminondas

    2015-11-01

    Thermoacoustic instabilities are more likely to occur in lean burn combustion systems, making their adoption both difficult and costly. At present, our knowledge of such phenomena is insufficient to produce an inherently stable combustor by design, and therefore an improved understanding of these instabilities has become the focus of a significant research effort. Recent experimental and numerical studies have demonstrated that the symmetry of annular chambers permit a range of self-excited azimuthal modes to be generated in annular geometry, which can make the study of isolated modes difficult. While acoustic forcing is common in single flame experiments, no equivalent for forced azimuthal modes in an annular chamber have been demonstrated. The present investigation focuses on the novel application of acoustic forcing to a laboratory scale annular combustor, in order to generate azimuthal standing wave modes at a prescribed frequency and amplitude. The results focus on the ability of the method to isolate the mode of oscillation using experimental pressure and high speed OH* measurements. The successful excitation of azimuthal modes demonstrated represents an important step towards improving our fundamental understanding of this phenomena in practically relevant geometry.

  9. Multi-fuel pre combustor unit

    SciTech Connect

    Paul, M.A.; Paul, A.

    1993-07-06

    A pre combustor unit is described for installation in a thermal engine having means for generating compressed air for mixing with a fuel for combustion in a main combustion chamber in the engine, the pre combustor unit comprising: a housing having means for installing the precombustion unit in the engine, the housing having an internal precombustion chamber with a discharge passage that communicates with the main combustion chamber of the engine when the unit is installed in the engine; a displaceable valve head in the housing, where the housing includes a valve seat at the discharge passage and the valve head is seatable on the valve seat to block discharge passage from communicating with the precombustion chamber; actuating means connected to the valve head for selectively displacing the valve head into seating engagement with the valve seat, wherein the discharge passage is closed, and for retracting the valve head from a seating engagement, wherein the discharge passage is open; a compressed air passage communicating with the precombustion chamber and having means for selectively communicating with the means of the thermal engine for generating compressed air, wherein compressed air from the engine is delivered to the precombustion chamber; and a fuel supply means communicating with the compressed air passage for supplying fuel to the compressed air passage wherein a fuel-air mixture is delivered to the precombustion chamber.

  10. Low NO.sub.x multistage combustor

    DOEpatents

    Becker, Frederick E.; Breault, Ronald W.; Litka, Anthony F.; McClaine, Andrew W.; Shukla, Kailash

    2000-01-01

    A high efficiency, Vortex Inertial Staged Air (VIStA) combustor provides ultra-low NO.sub.X production of about 20 ppmvd or less with CO emissions of less than 50 ppmvd, both at 3% O.sub.2. Prompt NO.sub.X production is reduced by partially reforming the fuel in a first combustion stage to CO and H.sub.2. This is achieved in the first stage by operating with a fuel rich mixture, and by recirculating partially oxidized combustion products, with control over stoichiometry, recirculation rate and residence time. Thermal NO.sub.X production is reduced in the first stage by reducing the occurrence of high temperature combustion gas regions. This is achieved by providing the first stage burner with a thoroughly pre-mixed fuel/oxidant composition, and by recirculating part of the combustion products to further mix the gases and provide a more uniform temperature in the first stage. In a second stage combustor thermal NO.sub.X production is controlled by inducing a large flow of flue gas recirculation in the second stage combustion zone to minimize the ultimate temperature of the flame. One or both of the first and second stage burners can be cooled to further reduce the combustion temperature and to improve the recirculation efficiency. Both of these factors tend to reduce production of NO.sub.X.

  11. Analytical fuel property effects: Small combustors

    NASA Technical Reports Server (NTRS)

    Cohen, J. D.

    1984-01-01

    The study performed in Phase 1 of this program applies only to a T700/CT7 engine family type combustor functioning in the engine as defined and does not necessarily apply to other cycles or combustors of differing stoichiometry. The study was not extended to any of the fuel delivery accessories such as pumps or control systems, nor was there any investigation of potential systems problems which might arise as a consequence of abnormal properties such as density which might affect delivery schedules or aromatics content which might affect fuel system seals. The T700/CT7 engine is a front drive turboshaft or turboprop engine in the 1500-1800 shp (1120-1340 kW) class as currently configured with highpower core flows of about 10 lb/sec (4.5 kg/sec). It employs a straight-through annular combustion system less than 5 in. (12.5 cm) in length utilizing a machined ring film cooled construction and twelve low-pressure air blast fuel injectors. Commercial and Naval versions employ two 0.5 Joule capacitive discharge surface gap ignitors.

  12. Ultra-Low NOx Advanced Vortex Combustor

    SciTech Connect

    Edmonds, R.G.; Steele, R.C.; Williams, J.T.; Straub, D.L.; Casleton, K.H.; Bining, Avtar

    2006-05-01

    An ultra lean-premixed Advanced Vortex Combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory (USDOE NETL) test facility in Morgantown (WV). All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx/CO/UHC emissions of 4/4/0 ppmv (all emissions are at 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated tremendous acoustic dynamic stability over a wide range of operating conditions which potentially makes this approach significantly more attractive than other lean premixed combustion approaches. In addition, a pressure drop of 1.75% was measured which is significantly lower than conventional gas turbine combustors. Potentially, this lower pressure drop characteristic of the AVC concept translates into overall gas turbine cycle efficiency improvements of up to one full percentage point. The relatively high velocities and low pressure drops achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

  13. Extratropical Cyclone in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These images from the Multi-angle Imaging SpectroRadiometer portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia.

    Parts of the Yorke Peninsula and a portion of the Murray-Darling River basin are visible between the clouds near the top of the left-hand image, a true-color view from MISR's nadir(vertical-viewing) camera. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes.

    Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for region allow-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation.

    These views were acquired on October 11, 2001 during Terra orbit 9650, and represent an area of about 380 kilometers x 1900 kilometers.

  14. Extratropical Cyclone in the Southern Ocean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images from the Multi-angle Imaging SpectroRadiometer (MISR) portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia. The left-hand image, a true-color view from MISR's nadir (vertical-viewing) camera, shows clouds just south of the Yorke Peninsula and the Murray-Darling river basin in Australia. Retrieved cloud-tracked wind velocities are indicated by the superimposed arrows. The image on the right displays cloud-top heights. Areas where cloud heights could not be retrieved are shown in black. Both the wind vectors and the cloud heights were derived using data from multiple MISR cameras within automated computer processing algorithms. The stereoscopic algorithms used to generate these results are still being refined, and future versions of these products may show modest changes. Extratropical cyclones are the dominant weather system at midlatitudes, and the term is used generically for regional low-pressure systems in the mid- to high-latitudes. In the southern hemisphere, cyclonic rotation is clockwise. These storms obtain their energy from temperature differences between air masses on either side of warm and cold fronts, and their characteristic pattern is of warm and cold fronts radiating out from a migrating low pressure center which forms, deepens, and dissipates as the fronts fold and collapse on each other. The center of this cyclone has started to decay, with the band of cloud to the south most likely representing the main front that was originally connected with the cyclonic circulation. These views were acquired on October 11, 2001, and the large view represents an area of about 380 kilometers x 1900 kilometers. Image courtesy NASA/GSFC/LaRC/JPL, MISR Team.

  15. Mediterranean cyclone characteristics related to precipitation occurrence in Crete, Greece

    NASA Astrophysics Data System (ADS)

    Iordanidou, V.; Koutroulis, A. G.; Tsanis, I. K.

    2015-08-01

    The characteristics of the cyclone tracks that caused precipitation events of variable intensity for the period 1979-2011 over the island of Crete are presented. The data set used for cyclone identification is the 0.5° × 0.5°, 30 years European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim mean sea-level pressure. Cyclone characteristics are calculated with the aid of the Melbourne University algorithm (MS scheme). Daily precipitation data from a dense gauging network over the island of Crete are also used for the classification of the precipitation events in terms of rain accumulation (intensity). Daily precipitation is classified in three categories and the associated cyclones are chosen according to their distance from Crete island. The seasonal and annual cycle of the physical characteristics of the cyclone tracks are investigated with respect to the cyclones' relative position to the island of Crete. It was found that cyclones affecting Crete most frequently approach from the western side of the island and the actual cyclone centers associated with precipitation events are usually located northwest and southeast of the Crete domain. Cyclone-induced rainfall increases in function to cyclones' depth, radius and propagation velocity increase as well as cyclones' pressure decrease. Spring cyclones that affect Crete with rainfall present lower pressures and higher cyclone propagation velocity in contrast to the ones associated with winter and autumn precipitation events. The examination of the relation between cyclone characteristics and precipitation occurrence provides valuable information related to forecasting potential and management of the water resources and the rainfall extremes.

  16. Combustor technology for future small gas turbine aircraft

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Niedzwiecki, Richard W.

    1993-01-01

    Future engine cycles proposed for advanced small gas turbine engines will increase the severity of the operating conditions of the combustor. These cycles call for increased overall engine pressure ratios which increase combustor inlet pressure and temperature. Further, the temperature rise through the combustor and the corresponding exit temperature also increase. Future combustor technology needs for small gas turbine engines is described. New fuel injectors with large turndown ratios which produce uniform circumferential and radial temperature patterns will be required. Uniform burning will be of greater importance because hot gas temperatures will approach turbine material limits. The higher combustion temperatures and increased radiation at high pressures will put a greater heat load on the combustor liners. At the same time, less cooling air will be available as more of the air will be used for combustion. Thus, improved cooling concepts and/or materials requiring little or no direct cooling will be required. Although presently there are no requirements for emissions levels from small gas turbine engines, regulation is expected in the near future. This will require the development of low emission combustors. In particular, nitrogen oxides will increase substantially if new technologies limiting their formation are not evolved and implemented. For example, staged combustion employing lean, premixed/prevaporized, lean direct injection, or rich burn-quick quench-lean burn concepts could replace conventional single stage combustors.

  17. Multiple jet mixing flowfields in an isothermal model combustor

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Schulz, R. J.; Giel, T. V., Jr.

    1986-01-01

    The purpose of the present experimental investigation of confined, multiple turbulent jet-mixing with recirculation, in an axisymmetric duct that simulated a combustor, was the examination of flow fields that employ injector plates for the mixing of fuels and oxidizers. Quantitative descriptions of the velocity and turbulence fields were obtained with a vectorized, two-component laser Doppler velocimeter. The results obtained indicate that the annular slit injector jet generates a two-dimensional combustor flow that is in accord with theoretical studies, although rings of discrete injector jets create very complex, fully three-dimensional combustor flow fields.

  18. YF 102 in-duct combustor noise measurement, volume 1

    NASA Technical Reports Server (NTRS)

    Wilson, C. A.

    1977-01-01

    The combustion chamber from a YF 102 gas turbine engine was instrumented with semi-infinite acoustic wave guide probes and installed in a test rig to complement the combustor noise test. These combustor rig tests are described and the recorded data are listed. Internal dynamic pressure level measurements were made at the same locations and at the same operating conditions of the NASA YF 102 test. In addition, the combustor was operated at various off-designed points where one parameter at a time was varied. Background noise recordings were made to determine the magnitude of facility or test rig noise present.

  19. Multifuel evaluation of rich/quench/lean combustor

    NASA Technical Reports Server (NTRS)

    Notardonato, J. J.; Novick, A. S.; Troth, D. L.

    1982-01-01

    The fuel flexible combustor technology was developed for application to the Model 570-K industrial gas turbine engine. The technology, to achieve emission goals, emphasizes dry NOx reduction methods. Due to the high levels of fuel-bound nitrogen (FBN), control of NOx can be effected through a staged combustor with a rich initial combustion zone. A rich/quench/lean variable geometry combustor utilizes the technology presented to achieve low NOx from alternate fuels containing FBN. The results focus on emissions and durability for multifuel operation.

  20. Small gas-turbine combustor study: Fuel injector evaluation

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1981-01-01

    As part of a continuing effort at the Lewis Research Center to improve performance, emissions, and reliability of turbine machinery, an investigation of fuel injection technique and effect of fuel type on small gas turbine combustors was undertaken. Performance and pollutant emission levels are documented over a range of simulated flight conditions for a reverse flow combustor configuration using simplex pressure-atomizing, spill-flow return, and splash cone airblast injectors. A parametric evaluation of the effect of increased combustor loading with each of the fuel injector types was obtained. Jet A and an experimental referee broad specification fuel were used to determine the effect of fuel type.

  1. Exhaust emissions of a double annular combustor: Parametric study

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1974-01-01

    A full scale double-annular ram-induction combustor designed for Mach 3.0 cruise operation was tested. Emissions of oxides of nitrogen, carbon monoxide, unburned hydrocarbons, and smoke were measured over a range of combustor operating variables including reference velocity, inlet air temperature and pressure, and exit average temperature. ASTM Jet-A fuel was used for these tests. An equation is provided relating oxides of nitrogen emissions as a function of the combustor, operating variables. A small effect of radial fuel staging on reducing exhaust emissions (which were originally quite low) is demonstrated.

  2. Design study of a gas turbine combustor with heat recirculation

    NASA Technical Reports Server (NTRS)

    Ganji, A.; Branch, M. C.; Oppenheim, A. K.

    1976-01-01

    A means of avoiding stoichiometric combustion, reducing emissions, and yet providing stable burning for lean mixtures is based on the use of heat recirculation rather than flow recirculation. This paper is concerned with the calculations of the design parameters of a gas turbine combustor with heat exchanger to produce the desired preheat temperature. The combustor inlet temperature, maximum temperature, equivalence ratio and recirculated heat are determined by thermodynamic analysis. The heat transfer analysis then provides the dimensions of the system to produce the predetermined boundary conditions. It is indicated that practical combustor design may be feasible for reactant mixtures as low as equivalence ratio 0.2.

  3. Achieving improved cycle efficiency via pressure gain combustors

    SciTech Connect

    Gemmen, R.S.; Janus, M.C.; Richards, G.A.; Norton, T.S.; Rogers, W.A.

    1995-04-01

    As part of the Department of Energy`s Advanced Gas Turbine Systems Program, an investigation is being performed to evaluate ``pressure gain`` combustion systems for gas turbine applications. This paper presents experimental pressure gain and pollutant emission data from such combustion systems. Numerical predictions for certain combustor geometries are also presented. It is reported that for suitable aerovalved pulse combustor geometries studied experimentally, an overall combustor pressure gain of nearly 1 percent can be achieved. It is also shown that for one combustion system operating under typical gas turbine conditions, NO{sub x} and CO emmissions, are about 30 ppmv and 8 ppmv, respectively.

  4. Systems and methods for detection of blowout precursors in combustors

    DOEpatents

    Lieuwen, Tim C.; Nair, Suraj

    2006-08-15

    The present invention comprises systems and methods for detecting flame blowout precursors in combustors. The blowout precursor detection system comprises a combustor, a pressure measuring device, and blowout precursor detection unit. A combustion controller may also be used to control combustor parameters. The methods of the present invention comprise receiving pressure data measured by an acoustic pressure measuring device, performing one or a combination of spectral analysis, statistical analysis, and wavelet analysis on received pressure data, and determining the existence of a blowout precursor based on such analyses. The spectral analysis, statistical analysis, and wavelet analysis further comprise their respective sub-methods to determine the existence of blowout precursors.

  5. Induction time effects in pulse combustors

    SciTech Connect

    Bell, J B; Marcus, D L; Pember, R B

    1999-04-09

    Combustion systems that take advantage of a periodic combustion process have many advantages over conventional systems. Their rate of heat transfer is greatly enhanced and their pollutant emissions are lower. They draw in their own supply of fuel and air and they are self-venting. They have few moving parts. The most common type of pulse combustor is based on a Helmholtz resonator - a burning cycle drives a resonant pressure wave, which in turn enhances the rate of combustion, resulting in a self-sustaining, large-scale oscillation. Although the basic physical mechanisms controlling such a process were explained by Rayleigh over a century ago, a full understanding of the operation of a pulse combustor still does not exist. The dominant processes in such a system--combustion, turbulent fluid dynamics, acoustics--are highly coupled and interact nonlinearly, which has reduced the design process to a costly and inefficient trial-and-error procedure. Several recent numerical and experimental studies, however, have been focused towards a better understanding of the basic underlying physics. Barr et al. [l] have elucidated the relative roles of the time scales governing the energy release, the turbulent mixing, and the acoustics. Keller et al. [5] have demonstrated the importance of the phase relation between the resonant pressure field in the tailpipe and the periodic energy release. Marcus et al. [6] have developed the capability for a fully three-dimensional simulation of the reacting flow in a pulse combustor. This paper is an application of that methodology to a detailed investigation of the frequency response of the model to changes in the chemical kinetics. The methodology consists of a fully conservative second-order Godunov algorithm for the inviscid, reacting gas dynamics equations coupled to an adaptive mesh refinement procedure[2]. The axisymmetric and three-dimensional simulations allow us to explore in detail the interaction between the transient fluid

  6. Advanced Low Emissions Subsonic Combustor Study

    NASA Technical Reports Server (NTRS)

    Smith, Reid

    1998-01-01

    Recent advances in commercial and military aircraft gas turbines have yielded significant improvements in fuel efficiency and thrust-to-weight ratio, due in large part to increased combustor operating pressures and temperatures. However, the higher operating conditions have increased the emission of oxides of nitrogen (NOx), which is a pollutant with adverse impact on the atmosphere and environment. Since commercial and military aircraft are the only important direct source of NOx emissions at high altitudes, there is a growing consensus that considerably more stringent limits on NOx emissions will be required in the future for all aircraft. In fact, the regulatory communities have recently agreed to reduce NOx limits by 20 percent from current requirements effective in 1996. Further reductions at low altitude, together with introduction of limits on NOx at altitude, are virtual certainties. In addition, the U.S. Government recently conducted hearings on the introduction of federal fees on the local emission of pollutants from all sources, including aircraft. While no action was taken regarding aircraft in this instance, the threat of future action clearly remains. In these times of intense and growing international competition, the U.S. le-ad in aerospace can only be maintained through a clear technological dominance that leads to a product line of maximum value to the global airline customer. Development of a very low NOx combustor will be essential to meet the future needs of both the commercial and military transport markets, if additional economic burdens and/or operational restrictions are to be avoided. In this report, Pratt & Whitney (P&W) presents the study results with the following specific objectives: Development of low-emissions combustor technologies for advances engines that will enter into service circa 2005, while producing a goal of 70 percent lower NOx emissions, compared to 1996 regulatory levels. Identification of solution approaches to

  7. Analysis of the effect on combustor noise measurements of acoustic waves reflected by the turbine and combustor inlet

    NASA Technical Reports Server (NTRS)

    Huff, R. G.

    1984-01-01

    Spectral analyses of static pressure fluctuations measured in turbine engine combustors at low engine speed show good agreement with theory. At idle speed the high pressure turbine is unchoked. Above idle speed the turbine chokes and a significant change in the shape of the measured combustor pressure spectrum is observed. A simplified theoretical model of the acoustic pressure generated in the combustor due to the turbulence-flame front interaction did not account for acoustic waves reflected from the turbine. By retaining this simplified combustion noise source model and adding a partial reflecting plane at the turbine and combustor inlet, a simple theoretical model was developed that reproduces the undulations in the combustor fluctuating pressure spectra. Plots of the theoretical combustor fluctuating pressure spectra are compared to the measured pressure spectra obtained from the CF6-50 turbofan engine over a range of engine operating speeds. The simplified combustion noise theory when modified by a simple turbine reflecting plane adequately accounts for the changes in measured combustor pressure spectra. It is further concluded that the shape of the pressure spectra downstream of the turbine, neglecting noise generated by the turbine itself, will be the combustion noise spectra unchanged except for the level reduction due to the energy blocked by the turbine.

  8. Analysis of the effect on combustor noise measurements of acoustic waves reflected by the turbine and combustor inlet

    NASA Astrophysics Data System (ADS)

    Huff, R. G.

    Spectral analyses of static pressure fluctuations measured in turbine engine combustors at low engine speed show good agreement with theory. At idle speed the high pressure turbine is unchoked. Above idle speed the turbine chokes and a significant change in the shape of the measured combustor pressure spectrum is observed. A simplified theoretical model of the acoustic pressure generated in the combustor due to the turbulence-flame front interaction did not account for acoustic waves reflected from the turbine. By retaining this simplified combustion noise source model and adding a partial reflecting plane at the turbine and combustor inlet, a simple theoretical model was developed that reproduces the undulations in the combustor fluctuating pressure spectra. Plots of the theoretical combustor fluctuating pressure spectra are compared to the measured pressure spectra obtained from the CF6-50 turbofan engine over a range of engine operating speeds. The simplified combustion noise theory when modified by a simple turbine reflecting plane adequately accounts for the changes in measured combustor pressure spectra. It is further concluded that the shape of the pressure spectra downstream of the turbine, neglecting noise generated by the turbine itself, will be the combustion noise spectra unchanged except for the level reduction due to the energy blocked by the turbine.

  9. Analysis of the effect on combustor noise measurements of acoustic waves reflected by the turbine and combustor inlet

    NASA Astrophysics Data System (ADS)

    Huff, R. G.

    1984-10-01

    Spectral analyses of static pressure fluctuations measured in turbine engine combustors at low engine speed show good agreement with theory. At idle speed the high pressure turbine is unchoked. Above idle speed the turbine chokes and a significant change in the shape of the measured combustor pressure spectrum is observed. A simplified theoretical model of the acoustic pressure generated in the combustor due to the turbulence-flame front interaction did not account for acoustic waves reflected from the turbine. By retaining this simplified combustion noise source model and adding a partial reflecting plane at the turbine and combustor inlet, a simple theoretical model was developed that reproduces the undulations in the combustor fluctuating pressure spectra. Plots of the theoretical combustor fluctuating pressure spectra are compared to the measured pressure spectra obtained from the CF6-50 turbofan engine over a range of engine operating speeds. The simplified combustion noise theory when modified by a simple turbine reflecting plane adequately accounts for the changes in measured combustor pressure spectra. It is further concluded that the shape of the pressure spectra downstream of the turbine, neglecting noise generated by the turbine itself, will be the combustion noise spectra unchanged except for the level reduction due to the energy blocked by the turbine.

  10. Can climate models represent the precipitation associated with extratropical cyclones?

    NASA Astrophysics Data System (ADS)

    Hawcroft, Matthew K.; Shaffrey, Len C.; Hodges, Kevin I.; Dacre, Helen F.

    2016-08-01

    Extratropical cyclones produce the majority of precipitation in many regions of the extratropics. This study evaluates the ability of a climate model, HiGEM, to reproduce the precipitation associated with extratropical cyclones. The model is evaluated using the ERA-Interim reanalysis and GPCP dataset. The analysis employs a cyclone centred compositing technique, evaluates composites across a range of geographical areas and cyclone intensities and also investigates the ability of the model to reproduce the climatological distribution of cyclone associated precipitation across the Northern Hemisphere. Using this phenomena centred approach provides an ability to identify the processes which are responsible for climatological biases in the model. Composite precipitation intensities are found to be comparable when all cyclones across the Northern Hemisphere are included. When the cyclones are filtered by region or intensity, differences are found, in particular, HiGEM produces too much precipitation in its most intense cyclones relative to ERA-Interim and GPCP. Biases in the climatological distribution of cyclone associated precipitation are also found, with biases around the storm track regions associated with both the number of cyclones in HiGEM and also their average precipitation intensity. These results have implications for the reliability of future projections of extratropical precipitation from the model.

  11. Investigation of Hydrodynamic Behavior in Cyclone Separators

    NASA Astrophysics Data System (ADS)

    Chan, Wen-Hsin

    This work concerns the investigation of hydrodynamic instability and instability induced wave formation in a cyclone. The existence of instability and the nature of the wave motion have been studied by a combined use of various experimental methods--such as flow visualization, pressure drop measurement, and flow spectral analysis- -over a range of Reynolds number. The flow visualization revealed a radial oscillatory vortex along the circular fluid motion with wave numbers of 4 at Re equal to 500. The pressure drop data across a cyclone measured by a pressure transducer shows two distinctive characteristics which correspond to two different flow patterns. The transition regime of these two patterns showed the dual pressure drop state with random alternation. The flow spectral analysis, by using hot-wire anemometry and FFT analyzer, confirmed that these two states correspond to the wave motion (periodic in time domain) and transition to turbulence (non-periodic with broad band spectrum), respectively. Experimental results indicate that the cyclone flow experiences four flow regimes, namely: stationary flow (0 < Re < 200), periodic motion with specific frequencies (200 < 1000), dual pressure drop state (1000 < Re < 2000), and non-periodic pre-turbulence flow (Re > 2000). The theoretical analysis of the onset of instability induced wave motion is studied by linear theory. The criterion of destabilization of the flow involves the pressure profile, angular velocity profile in a cyclone, and Reynolds number as well. This theory has a good agreement with the experimental observations. The effect of the wave components on the particle collection in a cyclone is then evaluated by a numerical method. For particles with 8 micron in diameter, the collection efficiency can be improved up to 30% in the wave motion compared with that of pure circular motion. The mechanism of the dual state, which is the transition from the wave motion to non-periodic motion, is similar to that of

  12. Tropical Cyclone Interactions Within Central American Gyres

    NASA Astrophysics Data System (ADS)

    Papin, P. P.; Bosart, L. F.; Torn, R. D.

    2014-12-01

    Central American gyres (CAGs) are broad (~1000 km diameter) low-level cyclonic circulations that organize over Central America during the tropical cyclone (TC) season. While CAGs have rarely been studied, prior work on similar circulations has been conducted on monsoon depressions (MDs) and monsoon gyres (MGs), which possess spatial scales of 1000 - 2500 km in the west Pacific basin. A key difference between MDs and MGs is related to the organization of vorticity around the low-level circulation. MDs possess a symmetrical vorticity pattern where vorticity accumulates near the circulation center over time, occasionally developing into a large TC. In contrast, MGs possess asymmetrical vorticity, organized in mesovorticies, which rotate cyclonically along the periphery of the MG circulation. Small tropical cyclones (TCs) occasionally develop from these mesovorticies. Interaction and development of TCs within CAGs are also common, as noted by a CAG identified during the 2010 PREDICT field project, which involved the interaction of TC Matthew and the development of TC Nicole within the larger CAG. This project is motivated by the lack of prior research on CAGs, as well as the complex scale interactions that occasionally occur between TCs and CAGs. This presentation focuses on the mutual interaction of vortices embedded in the larger-scale cyclonic flow comprising the CAG circulation. Case studies will be presented using a circulation framework to illustrate the relationship between different scale vorticity elements within the CAG. Some of these case studies resemble a MD-like evolution, where a large TC develops through the accumulation of symmetrical vorticity around the CAG (e.g. TC Opal 1995, TC Frances 1998). Other instances resemble a MG-like evolution, where smaller mesovorticies rotate around a common circulation center (e.g. TC Florence 1988). The circulation analysis framework aids in the diagnosis of interaction between different scale cyclonic vortices, and

  13. Remote, real-time monitoring of cyclones with microseisms

    NASA Astrophysics Data System (ADS)

    Jo, B. G.; Lee, W. D.; Schwab, F. A.

    2014-12-01

    Giving proper care to selecting microseisms from well isolated cyclones, these great oceanic storms can be monitored in real time by seismic recordings at stations 1200-4100 km distant from the cyclone's center. We treat ocean depths of 3.4-5.5 km. For the theoretically-computed microseism, which our procedure compares with the experimental data, we use a Green's-function approach in the frequency domain. Relating recorded displacement F and theoretical Green's function G, We have F(ω,r)=S(ω)G(ω,r) in which our only unknown is the generalized source function S(ω) and r is the distance to the center at any specific time. The basic result of this report is that the form of this function is A SN(ω), where A is a real constant increasing with the strength of the cyclone and SN(ω), is a positive real function of frequency, independent of cyclone-receiver separation and of cyclone strength. That is, for a given ocean basin, and a given receiver-region geology, at our current level of accuracy SN(ω) is the same for all cyclone strengths and cyclone-receiver separations. Using the multimode approach, we've developed the numerical method for computing the Green's function for multilayered oceanic structures. For each of the 4 selected cyclones, the source functions for all locations along the path show a consistency which demonstrates that the recorded microseisms are radiated from the cyclone. The extracted source function exhibits spectra that are characteristic of ocean waves generated by cyclonic winds. With knowledge of distance between the source and receiver, cyclone A is therefore trivial to monitor in real time from remote recordings. At the current time, the cyclone's strength—generalized source function—must be related empirically to the cyclone's maximum wind speed, areal extent, and lateral velocity.

  14. Liquid rocket combustor computer code development

    NASA Technical Reports Server (NTRS)

    Liang, P. Y.

    1985-01-01

    The Advanced Rocket Injector/Combustor Code (ARICC) that has been developed to model the complete chemical/fluid/thermal processes occurring inside rocket combustion chambers are highlighted. The code, derived from the CONCHAS-SPRAY code originally developed at Los Alamos National Laboratory incorporates powerful features such as the ability to model complex injector combustion chamber geometries, Lagrangian tracking of droplets, full chemical equilibrium and kinetic reactions for multiple species, a fractional volume of fluid (VOF) description of liquid jet injection in addition to the gaseous phase fluid dynamics, and turbulent mass, energy, and momentum transport. Atomization and droplet dynamic models from earlier generation codes are transplated into the present code. Currently, ARICC is specialized for liquid oxygen/hydrogen propellants, although other fuel/oxidizer pairs can be easily substituted.

  15. Low NOx heavy fuel combustor concept program

    NASA Technical Reports Server (NTRS)

    White, D. J.; Kubasco, A. J.

    1982-01-01

    Three simulated coal gas fuels based on hydrogen and carbon monoxide were tested during an experimental evaluation with a rich lean can combustor: these were a simulated Winkler gas, Lurgi gas and Blue Water gas. All three were simulated by mixing together the necessary pure component species, to levels typical of fuel gases produced from coal. The Lurgi gas was also evaluated with ammonia addition. Fuel burning in a rich lean mode was emphasized. Only the Blue Water gas, however, could be operated in such fashion. This showed that the expected NOx signature form could be obtained, although the absolute values of NOx were above the 75 ppm goals for most operating conditions. Lean combustion produced very low NOx well below 75 ppm with the Winkler and Lurgi gases. In addition, these low levels were not significantly impacted by changes in operating conditions.

  16. Numerical Analysis of the SCHOLAR Supersonic Combustor

    NASA Technical Reports Server (NTRS)

    Rodriguez, Carlos G.; Cutler, Andrew D.

    2003-01-01

    The SCHOLAR scramjet experiment is the subject of an ongoing numerical investigation. The facility nozzle and combustor were solved separate and sequentially, with the exit conditions of the former used as inlet conditions for the latter. A baseline configuration for the numerical model was compared with the available experimental data. It was found that ignition-delay was underpredicted and fuel-plume penetration overpredicted, while the pressure rise was close to experimental values. In addition, grid-convergence by means of grid-sequencing could not be established. The effects of the different turbulence parameters were quantified. It was found that it was not possible to simultaneously predict the three main parameters of this flow: pressure-rise, ignition-delay, and fuel-plume penetration.

  17. Mercury emissions from municipal solid waste combustors

    SciTech Connect

    Not Available

    1993-05-01

    This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

  18. Microseism and infrasound generation by cyclones.

    PubMed

    Bowen, Samuel P; Richard, Jacques C; Mancini, Jay D; Fessatidis, Vassilios; Crooker, Benjamin

    2003-05-01

    A two-dimensional cylindrical shear-flow wave theory for the generation of microseisms and infrasound by hurricanes and cyclones is developed as a linearized theory paralleling the seminal work by Longuet-Higgins which was limited to one-dimensional plane waves. Both theories are based on Bernoulli's principle. A little appreciated consequence of the Bernoulli principle is that surface gravity waves induce a time dependent pressure on the sea floor through a vertical column of water. A significant difference exists between microseisms detected at the bottom of each column and seismic signals radiated into the crust through coherence over a region of the sea floor. The dominant measured frequency of radiated microseisms is matched by this new theory for seismic data gathered at the Fordham Seismic Station both for a hurricane and a mid-latitude cyclone in 1998. Implications for Bernoulli's principle and this cylindrical stress flow theory on observations in the literature are also discussed. PMID:12765375

  19. Space options for tropical cyclone hazard mitigation

    NASA Astrophysics Data System (ADS)

    Dicaire, Isabelle; Nakamura, Ryoko; Arikawa, Yoshihisa; Okada, Kazuyuki; Itahashi, Takamasa; Summerer, Leopold

    2015-02-01

    This paper investigates potential space options for mitigating the impact of tropical cyclones on cities and civilians. Ground-based techniques combined with space-based remote sensing instrumentation are presented together with space-borne concepts employing space solar power technology. Two space-borne mitigation options are considered: atmospheric warming based on microwave irradiation and laser-induced cloud seeding based on laser power transfer. Finally technology roadmaps dedicated to the space-borne options are presented, including a detailed discussion on the technological viability and technology readiness level of our proposed systems. Based on these assessments, the space-borne cyclone mitigation options presented in this paper may be established in a quarter of a century.

  20. Low NO sub x heavy fuel combustor concept program

    NASA Technical Reports Server (NTRS)

    Russell, P.; Beal, G.; Hinton, B.

    1981-01-01

    A gas turbine technology program to improve and optimize the staged rich lean low NOx combustor concept is described. Subscale combustor tests to develop the design information for optimization of the fuel preparation, rich burn, quick air quench, and lean burn steps of the combustion process were run. The program provides information for the design of high pressure full scale gas turbine combustors capable of providing environmentally clean combustion of minimally of minimally processed and synthetic fuels. It is concluded that liquid fuel atomization and mixing, rich zone stoichiometry, rich zone liner cooling, rich zone residence time, and quench zone stoichiometry are important considerations in the design and scale up of the rich lean combustor.

  1. Method for operating a combustor in a fuel cell system

    DOEpatents

    Chalfant, Robert W.; Clingerman, Bruce J.

    2002-01-01

    A method of operating a combustor to heat a fuel processor in a fuel cell system, in which the fuel processor generates a hydrogen-rich stream a portion of which is consumed in a fuel cell stack and a portion of which is discharged from the fuel cell stack and supplied to the combustor, and wherein first and second streams are supplied to the combustor, the first stream being a hydrocarbon fuel stream and the second stream consisting of said hydrogen-rich stream, the method comprising the steps of monitoring the temperature of the fuel processor; regulating the quantity of the first stream to the combustor according to the temperature of the fuel processor; and comparing said quantity of said first stream to a predetermined value or range of predetermined values.

  2. SLUDGE COMBUSTOR USING SWIRL AND ACTIVE COMBUSTION CONTROL

    EPA Science Inventory

    A research program directed at developing technology for compact shipboard incinerators for sludges is described. The concept utilizes previously developed Vortex Containment Combustor (VCC) as a primary unit with an active combustion control afterburner (AB). The overall power s...

  3. Investigation of a low NOx full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    1982-01-01

    An atmospheric test program was conducted to evaluate a low NOx annular combustor concept suitable for a supersonic, high-altitude aircraft application. The lean premixed combustor, known as the vortex air blast (VAB) concept, was tested as a 22.0-cm diameter model in the early development phases to arrive at basic design and performance criteria. Final demonstration testing was carried out on a full scale combustor of 0.66-m diameter. Variable geometry dilution ports were incorporated to allow operation of the combustor across the range of conditions between idle (T(in) = 422 K, T(out) = 917 K) and cruise (T(in) = 833 K, T(out) - 1778 K). Test results show that the design could meet the program NOx goal of 1.0 g NO2/kg fuel at a one-atmospheric simulated cruise condition.

  4. Mathematical modelling of coal fired fluidized bed combustors

    SciTech Connect

    Selcuk, N.; Siddall, R.G.; Sivrioglu, U.

    1980-12-01

    A system model of continuous fluidized bed combustors burning coal of wide size distribution has been derived, and applied to the investigation of the effect of excess air and recycle on bed concentration and temperature profiles and combustion efficiency of a pilot scale coal fired fluidized combustor. To demonstrate the effect of recycling, the behaviour of the fluidized combustor has been predicted for two extreme cases of recycle: complete and no recycle of elutriated char particles, the former was chosen to determine the behaviour of the model in the absence of elutriation, and the latter corresponds to the actual operating conditions of the fluidized combustor. Expected trends for concentration and temperature profiles and combustion efficiency are predicted correctly for both cases. The predictive ability and the flexibility of the model for incorporation of refinements such as a correlation for bubble growth and a detailed combustion mechanism, makes the model a promising one for the evaluation of performance of the fluid bed industrial boilers.

  5. A variable geometry combustor for broadened properties fuels

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Fear, J. S.

    1987-01-01

    A program was conducted to design and develop a variable geometry combustor, sized for the cycle and envelope of a large commercial turbofan engine. The combustor uses a variable area swirl cup to control stoichiometry in the primary combustion zone. Potential advantages of this design include improved capability to burn non-standard fuels, short system length, and increased operating temperature range for advanced high performance engine cycles. After considerable development, key program emissons and performance goals were met with the variable geometry combustor. Primary development efforts were to evolve improved variable swirl cup configurations. In particular, air leakage through the variable area swirl cup had a strong effect on low power emissions and performance, while smoke level at high power was affected by features for improved mixing of the fuel and swirler air flow. Additional design and development is still needed to evolve a practical variable geometry combustor.

  6. Composite Matrix Cooling Scheme for Small Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Paskin, Marc D.; Ross, Phillip T.; Mongia, Hukam C.; Acosta, Waldo A.

    1990-01-01

    The design, manufacture, and testing of a compliant metal/ceramic (CMC) wall cooling concept-implementing combustor for small gas turbine engines has been undertaken by a joint U.S. Army/NASA technology development program. CMC in principle promises greater wall cooling effectiveness than conventional designs and materials, thereby facilitating a substantial reduction in combustor cooling air requirements and furnishing greater airflow for the control of burner outlet temperature patterns as well as improving thermodynamic efficiency and reducing pollutant emissions and smoke levels. Rig test results have confirmed the projected benefits of the CMC concept at combustor outlet temperatures of the order of 2460 F, at which approximately 80 percent less cooling air than conventionally required was being employed by the CMC combustor.

  7. Exhaust gas emissions of a vortex breakdown stabilized combustor

    NASA Technical Reports Server (NTRS)

    Yetter, R. A.; Gouldin, F. C.

    1976-01-01

    Exhaust gas emission data are described for a swirl stabilized continuous combustor. The combustor consists of confined concentric jets with premixed fuel and air in the inner jet and air in the outer jet. Swirl may be induced in both inner and outer jets with the sense of rotation in the same or opposite directions (co-swirl and counter-swirl). The combustor limits NO emissions by lean operation without sacrificing CO and unburned hydrocarbon emission performance, when commercial-grade methane and air fired at one atmosphere without preheat are used. Relative swirl direction and magnitude are found to have significant effects on exhaust gas concentrations, exit temperatures, and combustor efficiencies. Counter-swirl gives a large recirculation zone, a short luminous combustion zone, and large slip velocities in the interjet shear layer. For maximum counter-swirl conditions, the efficiency is low.

  8. A Conundrum of Tropical Cyclone Formation

    NASA Astrophysics Data System (ADS)

    Davis, C. A.

    2014-12-01

    This paper will address a conundrum that has emerged from recent research on tropical cyclone formation. Composite analyses and case studies suggest that prior to genesis, the atmosphere presents a mid-tropospheric vortex that is strong compared to the cyclonic circulation in the boundary layer. Accompanying this vortex is near saturation from the boundary layer through at least 5 km, sometimes more, and a nearly balanced weak negative temperature anomaly below the vortex and stronger positive temperature anomaly above. This thermodynamic state is one of high moisture but low buoyancy for lifted parcels (i.e. low convective available potential energy). However, observations also suggest that widespread deep convection accompanies genesis, with cloud top temperatures becoming colder near the time of genesis. This is seemingly at odds with in situ observations of thermodynamic characteristics prior to genesis. Progress toward understanding the apparent contradiction can be made by realizing that the existence of a moist, relatively stable vortex, and deep convective clouds are not necessarily coincident in space and time. This is demonstrated by a detailed analysis of the two days leading up to the formation of Atlantic tropical cyclone Karl on 14 September. Karl featured a relatively long gestation period characterized initially by a marked misalignment of mid-tropospheric and surface cyclonic circulations. The mid-tropospheric vortex strengthened due to a pulse of convection earlier on 13 September. Meanwhile, the near-surface vortex underwent a precession around the mid-tropospheric vortex as the separation between the two decreased. The eruption of convection around midnight on 14 September, 18 hours prior to declaration on a TC, occurred in the center of the nearly-aligned vortex, contained a mixture of shallow and deep convection and resulted in spin-up over a deep layer, but particularly at the surface. Prior to genesis, the most intense deep convection was

  9. Emergency Department Presentations following Tropical Cyclone Yasi

    PubMed Central

    Aitken, Peter; Franklin, Richard Charles; Lawlor, Jenine; Mitchell, Rob; Watt, Kerrianne; Furyk, Jeremy; Small, Niall; Lovegrove, Leone; Leggat, Peter

    2015-01-01

    Introduction Emergency departments see an increase in cases during cyclones. The aim of this study is to describe patient presentations to the Emergency Department (ED) of a tertiary level hospital (Townsville) following a tropical cyclone (Yasi). Specific areas of focus include changes in: patient demographics (age and gender), triage categories, and classification of diseases. Methods Data were extracted from the Townsville Hospitals ED information system (EDIS) for three periods in 2009, 2010 and 2011 to coincide with formation of Cyclone Yasi (31 January 2011) to six days after Yasi crossed the coast line (8 February 2012). The analysis explored the changes in ICD10-AM 4-character classification and presented at the Chapter level. Results There was a marked increase in the number of patients attending the ED during Yasi, particularly those aged over 65 years with a maximum daily attendance of 372 patients on 4 Feb 2011. The most marked increases were in: Triage categories - 4 and 5; and ICD categories - diseases of the skin and subcutaneous tissue (L00-L99), and factors influencing health care status (Z00-Z99). The most common diagnostic presentation across all years was injury (S00-T98). Discussion There was an increase in presentations to the ED of TTH, which peaked in the first 24 – 48 hours following the cyclone and returned to normal over a five-day period. The changes in presentations were mostly an amplification of normal attendance patterns with some altered areas of activity. Injury patterns are similar to overseas experience. PMID:26111010

  10. Tropical cyclone rainfall area controlled by relative sea surface temperature

    PubMed Central

    Lin, Yanluan; Zhao, Ming; Zhang, Minghua

    2015-01-01

    Tropical cyclone rainfall rates have been projected to increase in a warmer climate. The area coverage of tropical cyclones influences their impact on human lives, yet little is known about how tropical cyclone rainfall area will change in the future. Here, using satellite data and global atmospheric model simulations, we show that tropical cyclone rainfall area is controlled primarily by its environmental sea surface temperature (SST) relative to the tropical mean SST (that is, the relative SST), while rainfall rate increases with increasing absolute SST. Our result is consistent with previous numerical simulations that indicated tight relationships between tropical cyclone size and mid-tropospheric relative humidity. Global statistics of tropical cyclone rainfall area are not expected to change markedly under a warmer climate provided that SST change is relatively uniform, implying that increases in total rainfall will be confined to similar size domains with higher rainfall rates. PMID:25761457

  11. Les cyclones tropicaux et le changement climatique

    NASA Astrophysics Data System (ADS)

    André, Jean-Claude; Royer, Jean-François; Chauvin, Fabrice

    2008-09-01

    Results from observations and modelling studies, a number of which having been used to support the conclusions of the IPCC fourth assessment report, are presented. For the past and present-day (since 1970) periods, the increase of strong cyclonic activity over the North Atlantic Ocean appears to be in good correlation with increasing temperature of the ocean surface. For regions where observational data are of lesser quality, the increasing trend is less clear. In fact, assessing long-term changes is made difficult due to both the multi-decennial natural variability and the lesser coverage of observations before satellites were made available. Indirect observational data, such as those derived from quantitative estimations of damage caused by tropical cyclones, suffer from many artefacts and do not allow the resolving of the issue either. For the future, only numerical three-dimensional climate models can be used. They nevertheless run presently with too-large grid-sizes, so that their results are still not converging. Various simulations lead indeed to different results, and it is very often difficult to find the physical reasons for these differences. One concludes by indicating some ways through which numerical simulations could be improved, leading to a decrease of uncertainties affecting the prediction of cyclonic activity over the next decades.

  12. Cyclone Nargis in Myanmar: lessons for public health preparedness for cyclones.

    PubMed

    Guha-Sapir, Debarati; Vogt, Florian

    2009-01-01

    Recent natural disasters such as the 2004 tsunami, 2008 Sichuan earthquake, and the 2008 Myanmar cyclone have killed more than 100,000 people each. Mortality and morbidity associated with natural disasters are a growing concern, especially because extreme climate events are likely to get increasingly frequent. The authors comment on Cyclone Nargis, claiming an extraordinarily high death toll during its devastating track through the Irrawaddy delta in Myanmar on May 2, 2008 and analyze how and why its mortality pattern differs from other typical postdisaster situations. Underlying factors and preconditions are described and the specificity of the Myanmese context is presented. This leads to lessons how excess mortality can be reduced in future high-ranked cyclones, whose recurrence in this region will only be a matter of time. PMID:20014544

  13. Diabatic processes and the evolution of two contrasting extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Martinez-Alvarado, Oscar; Gray, Suzanne; Methven, John

    2016-04-01

    Two contrasting extratropical cyclones were observed over the United Kingdom during the summer 2012 field campaign of the DIAMET (DIAbatic influences on Mesoscale structures in ExtraTropical storms) project. The first cyclone, observed in July, was a shallow system typical of summer over west Europe while the second cyclone, observed in August, was a much deeper system which developed a potential vorticity (PV) tower. The evolution of these two cyclones was analysed and compared in terms of diabatic effects with respect to two aspects. The first aspect is the amount and distribution of heat produced during the development of each cyclone, measured by the cross-isentropic motion around the cyclone centre. The second aspect is the modification to the circulation around the cyclones' centres, measured by area-averaged isentropic vorticity. The contributions from individual diabatic processes, such as convection, cloud microphysics and radiation, to these two aspects is also considered. The cyclones were analysed via hindcast simulations with a research version of the Met Office Unified Model, enhanced with on-line tracers of diabatic changes of potential temperature and PV. A new methodology for the interpretation of these tracers was also implemented and used. The hindcast simulations were compared with the available dropsonde observations from the field campaign as well as operational analyses and radar rainfall rates. It is shown that, while boundary layer and turbulent mixing processes and cloud microphysics processes contributed to the development of both cyclones, the main differences between the cyclones in terms of diabatic effects could be attributed to differences in convective activity. It is also shown that the contribution from all these diabatic processes to changes in the circulation was modulated by the characteristics of advection around each cyclone in a highly nonlinear fashion. This research establishes a new framework for a systematic comparison

  14. DETAIL OF CYCLONE CLASSIFIER, WITH MARCY NO. 86 BALL MILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF CYCLONE CLASSIFIER, WITH MARCY NO. 86 BALL MILL BELOW AND BEHIND IT. STRAIGHT HORIZONTAL PIPE IS SLIME FEED FROM ROD MILL. PIPE OUT TOP OF CYCLONE AND CURVING AT LOWER RIGHT CARRIED FINELY GROUND SLIME TO FLOTATION CONDITIONER TANK. PIPE NOT VISIBLE OUT BOTTOM OF CYCLONE CONVEYED COARSER SLIME TO BALL MILL. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  15. Precipitation of suspended particles in wet-film cyclones

    SciTech Connect

    Val'dberg, A.Y.; Kirsanova, N.S.

    1986-07-01

    The fact that wet and dry mechanical centrifugal dust collectors operate on the same principle allowed the authors to make the calculations for wet cyclones with an equation similar to one used previously. A figure shows that the efficiency of wet cyclones is much higher (20% higher on the average) than that of dry cyclones under the same operating conditions. This improvement is due to a decrease in the secondary discharge of dust particles from the wet wall of the device.

  16. Pollution technology program, can-annular combustor engines

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Fiorentino, A. J.; Greene, W.

    1976-01-01

    A Pollution Reduction Technology Program to develop and demonstrate the combustor technology necessary to reduce exhaust emissions for aircraft engines using can-annular combustors is described. The program consisted of design, fabrication, experimental rig testing and assessment of results and was conducted in three program elements. The combustor configurations of each program element represented increasing potential for meeting the 1979 Environmental Protection Agency (EPA) emission standards, while also representing increasing complexity and difficulty of development and adaptation to an operational engine. Experimental test rig results indicate that significant reductions were made to the emission levels of the baseline JT8D-17 combustor by concepts in all three program elements. One of the Element I single-stage combustors reduced carbon monoxide to a level near, and total unburned hydrocarbons (THC) and smoke to levels below the 1979 EPA standards with little or no improvement in oxides of nitrogen. The Element II two-stage advanced Vorbix (vortex burning and mixing) concept met the standard for THC and achieved significant reductions in CO and NOx relative to the baseline. Although the Element III prevaporized-premixed concept reduced high power NOx below the Element II results, there was no improvement to the integrated EPA parameter relative to the Vorbix combustor.

  17. The Numerical Investigation of a Dual-Mode Scramjet Combustor

    NASA Technical Reports Server (NTRS)

    Riggins, David

    1998-01-01

    A numerical investigation of a multiple-jet array dual-mode scramjet combustor has been performed utilizing a three-dimensional Navier-Stokes code with finite-rate chemistry. Results indicate substantial upstream interaction in the form of an oblique shock/expansion train upstream of the combustor, culminating in completely subsonic flow in the vicinity of fuel injectors. The flow returns to supersonic velocities in the downstream (diverging) portion of the combustor. Mixing and combustion are rapid in this flow and predicted combustion efficiency closely matches experimental data. However, comparisons of wall pressure between the simulation and the experiment show i) substantial underprediction of the upstream interaction distance and ii) moderate overprediction of peak pressure in the vicinity of the entrance of the combustor. This can be at least partially explained by examination of available experimental data; this data shows a very significant movement of the entering vitiated airflow to the sides of the combustor (around the injector array and the upstream interaction front as a whole). This important effect is currently being examined by an extension of the modeling to include the entire half-duct of the same combustor geometry.

  18. CFD Analysis of Emissions for a Candidate N+3 Combustor

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud

    2015-01-01

    An effort was undertaken to analyze the performance of a model Lean-Direct Injection (LDI) combustor designed to meet emissions and performance goals for NASA's N+3 program. Computational predictions of Emissions Index (EINOx) and combustor exit temperature were obtained for operation at typical power conditions expected of a small-core, high pressure-ratio (greater than 50), high T3 inlet temperature (greater than 950K) N+3 combustor. Reacting-flow computations were performed with the National Combustion Code (NCC) for a model N+3 LDI combustor, which consisted of a nine-element LDI flame-tube derived from a previous generation (N+2) thirteen-element LDI design. A consistent approach to mesh-optimization, spray-modeling and kinetics-modeling was used, in order to leverage the lessons learned from previous N+2 flame-tube analysis with the NCC. The NCC predictions for the current, non-optimized N+3 combustor operating indicated a 74% increase in NOx emissions as compared to that of the emissions-optimized, parent N+2 LDI combustor.

  19. CFD Analysis of Emissions for a Candidate N+3 Combustor

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud

    2015-01-01

    An effort was undertaken to analyze the performance of a model Lean-Direct Injection (LDI) combustor designed to meet emissions and performance goals for NASA's N+3 program. Computational predictions of Emissions Index (EINOx) and combustor exit temperature were obtained for operation at typical power conditions expected of a small-core, high pressure-ratio (greater than 50), high T3 inlet temperature (greater than 950K) N+3 combustor. Reacting-flow computations were performed with the National Combustion Code (NCC) for a model N+3 LDI combustor, which consisted of a nine-element LDI flame-tube derived from a previous generation (N+2) thirteen-element LDI design. A consistent approach to mesh-optimization, spraymodeling and kinetics-modeling was used, in order to leverage the lessons learned from previous N+2 flame-tube analysis with the NCC. The NCC predictions for the current, non-optimized N+3 combustor operating indicated a 74% increase in NOx emissions as compared to that of the emissions-optimized, parent N+2 LDI combustor.

  20. Hypersonic Combustor Model Inlet CFD Simulations and Experimental Comparisons

    NASA Technical Reports Server (NTRS)

    Venkatapathy, E.; TokarcikPolsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Numerous two-and three-dimensional computational simulations were performed for the inlet associated with the combustor model for the hypersonic propulsion experiment in the NASA Ames 16-Inch Shock Tunnel. The inlet was designed to produce a combustor-inlet flow that is nearly two-dimensional and of sufficient mass flow rate for large scale combustor testing. The three-dimensional simulations demonstrated that the inlet design met all the design objectives and that the inlet produced a very nearly two-dimensional combustor inflow profile. Numerous two-dimensional simulations were performed with various levels of approximations such as in the choice of chemical and physical models, as well as numerical approximations. Parametric studies were conducted to better understand and to characterize the inlet flow. Results from the two-and three-dimensional simulations were used to predict the mass flux entering the combustor and a mass flux correlation as a function of facility stagnation pressure was developed. Surface heat flux and pressure measurements were compared with the computed results and good agreement was found. The computational simulations helped determine the inlet low characteristics in the high enthalpy environment, the important parameters that affect the combustor-inlet flow, and the sensitivity of the inlet flow to various modeling assumptions.

  1. Particle-jet interactions in an MHD second stage combustor

    SciTech Connect

    Lottes, S.A.; Chang, S.L.

    1992-07-01

    An Argonne two-phase combustion flow computer code is used to simulate reacting flows to aid in the development of an advanced combustor for magnetohydrodynamic power generation. The combustion code is a general hydrodynamics computer code for two-phase, two- dimensional, steady state, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for multiple gas species and particles. The combustion code includes turbulence, integral combustion, and particle evaporation submodels. A recently developed integral combustion submodel makes calculations more efficient and more stable while still preserving the major physical effects of the complex combustion processes. The combustor under investigation is a magnetohydrodynamic second stage combustor in which opposed jets of oxidizer are injected into a confined cross-stream of hot coal gas flow following a first stage swirl combustor. The simulation is intended to enhance the understanding the of seed particle evaporation in the combustor and evaluate the effects of combustor operating conditions on seed particle evaporation and vapor dispersion, which directly affect overall magnetohydrodynamic power generation. Computation results show that oxidizer jet angle and particle size may greatly affect particle evaporation and vapor dispersion. At a jet angle about 130 degrees, particle evaporation rate is the highest because of the highest average gas temperature. As particle size increases beyond 10 microns in diameter, the effects of particle size on wall deposition rate, evaporation delay, and downstream seed vapor dispersion become more pronounced. 16 refs., 10 figs.

  2. Low NOx, Lean Direct Wall Injection Combustor Concept Developed

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.; Wey, Changlie; Choi, Kyung J.

    2003-01-01

    The low-emissions combustor development at the NASA Glenn Research Center is directed toward advanced high-pressure aircraft gas turbine applications. The emphasis of this research is to reduce nitrogen oxides (NOx) at high-power conditions and to maintain carbon monoxide and unburned hydrocarbons at their current low levels at low-power conditions. Low-NOx combustors can be classified into rich burn and lean burn concepts. Lean burn combustors can be further classified into lean-premixed-prevaporized (LPP) and lean direct injection (LDI) combustors. In both concepts, all the combustor air, except for liner cooling flow, enters through the combustor dome so that the combustion occurs at the lowest possible flame temperature. The LPP concept has been shown to have the lowest NOx emissions, but for advanced high-pressure-ratio engines, the possibly of autoignition or flashback precludes its use. LDI differs from LPP in that the fuel is injected directly into the flame zone and, thus, does not have the potential for autoignition or flashback and should have greater stability. However, since it is not premixed and prevaporized, the key is good atomization and mixing of the fuel quickly and uniformly so that flame temperatures are low and NOx formation levels are comparable to those of LPP.

  3. Simulations of Small-Scale Liquid Film Combustors

    NASA Astrophysics Data System (ADS)

    Popov, Pavel; Sirignano, William

    2015-11-01

    Recent technological advances have generated need for small-scale combustor designs. The reduction of scale, however, leads to a higher area to volume ratio and thus greater relative heat loss. Liquid film combustors are one proposed design which aims to overcome this obstacle. In them, the fuel is injected as a liquid film on the combustor wall, and heat transfer is reduced due to evaporative cooling of the liquid film leading to reduced temperature gradients at the combustor walls. In this work, we present simulation results for a cylindrical small scale liquid film combustor, in which the reactants are liquid heptane and gaseous air. A computational procedure has been developed to simulate this two-phase combustion problem, using detailed chemical mechanisms. A cubic equation of state is applied for the simulation of the gaseous phase at high pressures. The present study examines the structure of the triple flame inside this combustor design, which has been analyzed in previous experimental work. Comparison between simulation and experimental work is made, with particular emphasis on the influence of the chemical mechanism, high-pressure equation of state, and the effect of swirl amplitudes in the liquid and gas phases on the structure of the flame. Supported by AFOSR grant FA9550-12-1-0156, AFOSR scientific manager: Dr. Mitat Birkan.

  4. Animation of Flood Potential from Two Australian Tropical Cyclones

    NASA Video Gallery

    Merged precipitation data from NASA-JAXA's Tropical Rainfall Measuring Mission (TRMM) and other satellites was used to calculate flood potential withrainfall from Tropical Cyclone Lam and Tropical ...

  5. Post Cyclone (PoC): An innovative way to reduce the emission of fines from industrial cyclones

    SciTech Connect

    Ray, M.B.; Luning, P.E.; Hoffmann, A.C.; Plomp, A.; Beumer, M.I.L.

    1997-07-01

    A novel approach for reducing the emission of industrial-scale cyclones of particles smaller than 10 {micro}m is presented. Utilizing the strong swirl already present in the vortex finder of a conventional cyclone, the escaped dust from the cyclone is collected in a so-called Post Cyclone (PoC), which is a cylindrical annular shell located on top of the vortex finder. Experiments were conducted in a cyclone larger than the usual laboratory range (diameter = 0.4 m) with different configurations of the PoC and spanning a range of operating conditions. Flow patterns and collection efficiencies for the cyclone and the PoC, both individually and in combination, were calculated and compared with experimental data. Both the experiments and simulations indicate a decrease in emission of particles of 1--3 {micro}m by around 30%, rising with particle size to around 50% for 5 {micro}m particles.

  6. Simulated Altitude Performance of Combustors for the Westinghouse 24C Jet Engine I-24C-2 Combustor

    NASA Technical Reports Server (NTRS)

    Manganiello, Eugene J.; Bernardo, Everett; Schroeter, Thomas T.

    1948-01-01

    A Westinghouse 24C-2 combustor was investigated at conditions simulating operation of the 24C Jet engine at zero ram over ranges of altitude and engine speed. The investigation was conducted to determine the altitude operational limits, that is, the maximum altitude for various engine speeds at which an average combustor-outlet gas temperature sufficient for operation of the jet engine could be obtained. Information was also obtained regarding the character of the flames, the combustion efficiency, the combustor-outlet gas temperature and velocity distributions, the extent of afterburning, the flow characteristics of the fuel manifolds, the combustor inlet-to-outlet total-pressure drop, and the durability of the combustor basket. The results of the investigation indicated that the altitude operational limits for zero ram decreased from 12,000 feet at an engine speed of 4000 rpm to a minimum of 9000 feet at 6000 rpm, and thence increased to 49,000 feet at 12,000 rpm.. At altitudes below the operational limits, flames were essentially steady, but, at altitudes above the operational limits, flames were often cycling and either blew out or caused violent explosions and vibrations. At conditions on the altitude operational limits the type of combustion varied from steady to cycling with increasing fuel-air ratio and the reverse occurred with decreasing fuel-air ratio. In the region of operation investigated, the combustion efficiency ranged from 75 to 95 percent at altitudes below the operational limits and dropped to 55 percent or less at some altitudes above the operational limits. The deviations in the local combustor-outlet gas temperatures were within +20 to -30 percent of the mean combustor temperature rise for inlet-air temperatures at the low end of the range investigated, but became more uneven (up to +/-100 percent) with increasing inlet-air temperatures. The distribution of the combustor-outlet gas velocity followed a similar trend. Practically no

  7. Tropical Cyclones and the Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Zimmerman, N. L.; Emanuel, K.

    2010-12-01

    The relationship between tropical cyclones and the carbon cycle poses an interesting question: tropical surface waters are generally quite warm and poor in nutrients, but the mixing in tropical cyclones entrains potentially large amounts of cold, nutrient-rich water. As the cold anomaly warms, there is a tendency toward over-saturation of carbon dioxide, and thus a net outgassing from the ocean to the atmosphere, but because nutrients are mixed into the photic zone, there is a simultaneous phytoplankton bloom which removes carbon from the mixed layer. The amount of carbon taken up into biota by the induced biological activity can in some cases create a net undersaturation of carbon dioxide in spite of the warming of entrained cold water, and therefore cause a net ingassing of carbon in the wake of a tropical cyclone. This is, however, only a short-term effect. Phytoplankton have a short life cycle, and the detritus they leave behind sinks and remineralizes; that which remineralizes below the climatological mixed layer represents a long-term sink of carbon from the atmosphere to the mixed layer, but the remainder will quickly return to the atmosphere. Both the warming of the mixed layer and the induced phytoplankton bloom are easily observable, but neither the sign nor the magnitude of the net effect is intuitive. To illuminate the question, a simple one-dimensional model is formulated which simulates the behavior of the upper few hundred meters of the ocean in response to tropical cyclone-induced mixing. Phytoplankton (and its remains), Nitrate, and Dissolved Inorganic Carbon are tracked, and the model is both initialized and forced with the best possible approximation to real chemical concentrations, winds, and heat fluxes, and the effect of the storm is estimated by comparing model behavior with the storm included and with the storm removed from observations. It is shown that the model performs acceptably well compared to such observations as exist. The model is

  8. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor.

    PubMed

    Cao, Yan; Zhou, Hongcang; Fan, Junjie; Zhao, Houyin; Zhou, Tuo; Hack, Pauline; Chan, Chia-Chun; Liou, Jian-Chang; Pan, Wei-Ping

    2008-12-15

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150 degrees C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. This was also true when limestone was added while cofiring coal and chicken waste because the gaseous chlorine was reduced in the freeboard of the fluidized bed combustor, where the temperature was generally below 650 degrees C without addition of the secondary air. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650 degrees C in the upper part of the fluidized bed combustor seemed to be

  9. Flow conditioner for fuel injector for combustor and method for low-NO.sub.x combustor

    DOEpatents

    Dutta, Partha; Smith, Kenneth O.; Ritz, Frank J.

    2013-09-10

    An injector for a gas turbine combustor including a catalyst coated surface forming a passage for feed gas flow and a channel for oxidant gas flow establishing an axial gas flow through a flow conditioner disposed at least partially within an inner wall of the injector. The flow conditioner includes a length with an interior passage opening into upstream and downstream ends for passage of the axial gas flow. An interior diameter of the interior passage smoothly reduces and then increases from upstream to downstream ends.

  10. Improved water-cooled cyclone constructions in CFBs

    SciTech Connect

    Alliston, M.G.; Luomaharju, T.; Kokko, A.

    1999-07-01

    The construction of CFB boilers has advanced in comparison with early designs. One improvement has been the use of water or steam cooled cyclones, which allows the use of thin refractories and minimizes maintenance needs. Cooled cyclones are also tolerant of wide load variations when the main fuel is biologically based, and coal or some other fuel is used as a back-up. With uncooled cyclones, load changes with high volatile fuels can mean significant temperature transients in the refractory, due to post-combustion phenomena in the cyclone. Kvaerner's development of water-cooled cyclones for CFBs began in the early 1980s. The first boiler with this design was delivered in 1985 in Sweden. Since then, Kvaerner Pulping has delivered over twenty units with cooled cyclones, in capacity ranging from small units up to 400 MW{sub th}. Among these units, Kvaerner has developed unconventional solutions for CFBs, in order to simplify the constructions and to increase the reliability for different applications. The first of them was CYMIC{reg{underscore}sign}, which has its water-cooled cyclone built inside the boiler furnace. There are two commercial CYMIC boilers in operation and one in project stages. The largest CYMIC in operation is a 185 MW{sub th} industrial boiler burning various fuels. For even larger scale units Kvaerner developed the Integrated Cylindrical Cyclone and Loopseal (ICCL) assembly. One of these installations is in operation in USA, having steaming capacity of over 500 t/h. The design bases of these new solutions are quite different in comparison with conventional cyclones. Therefore, an important part of the development has been cold model testing and mathematical modeling of the cyclones. This paper reviews the state-of-the-art in water-cooled cyclone construction. The new solutions, their full-scale experience, and a comparison of the actual experience with the preliminary modeling work are introduced.

  11. Core Noise: Overview of Upcoming LDI Combustor Test

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Fixed Wing Project. The presentation covers: the emerging importance of core noise due to turbofan design trends and its relevance to the NASA N+3 noise-reduction goal; the core noise components and the rationale for the current emphasis on combustor noise; and the current and planned research activities in the combustor-noise area. Two NASA-sponsored research programs, with particular emphasis on indirect combustor noise, "Acoustic Database for Core Noise Sources", Honeywell Aerospace (NNC11TA40T) and "Measurement and Modeling of Entropic Noise Sources in a Single-Stage Low-Pressure Turbine", U. Illinois/U. Notre Dame (NNX11AI74A) are briefly described. Recent progress in the development of CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is outlined. Combustor-design trends and the potential impacts on combustor acoustics are discussed. A NASA GRC developed nine-point lean-direct-injection (LDI) fuel injector is briefly described. The modification of an upcoming thermo-acoustic instability evaluation of the GRC injector in a combustor rig to also provide acoustic information relevant to community noise is presented. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Quiet Performance Research Theme of the Fixed Wing Project aims to develop concepts and technologies to dramatically reduce the perceived community noise attributable to aircraft with minimal impact on weight and performance.

  12. CFD simulation of hydrodynamic characteristics on pulse combustor

    NASA Astrophysics Data System (ADS)

    Rahmatika, Annie Mufyda; Salihat, Efaning; Tikasari, Rachma; Widiyastuti, W.; Winardi, Sugeng

    2016-02-01

    The purpose of this research is to study the simulation of the combustion characteristics and performances in pulse combustor using different excess air composition and different pulse combustor geometry using CFD (Computational Fluid Dynamics) software Ansys FLUENT 15.0. The distribution of temperature, pressure, and fluid velocity using 2D axisymmetric with k-ɛ turbulence models. Two kind geometries of pulse combustors were selected and compared their performance. The first combustor, called geometry A has expanded tail-pipe with diameter 10 mm expanded to 20 mm with length 86 mm. The second combustor, called geometry B has cylinder tailpipe which 10 mm in diameter and 200 mm in length. Air and propane were selected as oxidizer and fuel, respectively, at temperature 27°C and pressure 1 atm with varied excess air of 0%, 23%, 200%, and 500%. The simulation result shows that the average temperature of outflow gas combustion decreased with increasing the excess air. On the other hand, the pressure amplitude increased with increasing the excess air. Amplitude of presure for excess air of 0%, 23%, 200% and 500% were 14,976.03 Pa; 26,100.19 Pa; 41,529.02 Pa; and 85,019.01 Pa, respectively. The geometry of pulse combustor affected the performance of gas combustion produced. Geometry A showed that the energy produced in the combustion cycle amounts to 538,639 to 958,639 J/kg. On the other hand, geometry B showed that the generated energy was in the range 864,502 to 1,280,814 J/kg. Combustor with geometry B provided more effective combustion performance rather than B caused by its larger heat transfer area sectional area.

  13. Impacts of tropical cyclones on Fiji and Samoa

    NASA Astrophysics Data System (ADS)

    Kuleshov, Yuriy; Prakash, Bipendra; Atalifo, Terry; Waqaicelua, Alipate; Seuseu, Sunny; Ausetalia Titimaea, Mulipola

    2013-04-01

    Weather and climate hazards have significant impacts on Pacific Island Countries. Costs of hazards such as tropical cyclones can be astronomical making enormous negative economic impacts on developing countries. We highlight examples of extreme weather events which have occurred in Fiji and Samoa in the last few decades and have caused major economic and social disruption in the countries. Destructive winds and torrential rain associated with tropical cyclones can bring the most damaging weather conditions to the region causing economic and social hardship, affecting agricultural productivity, infrastructure and economic development which can persist for many years after the initial impact. Analysing historical data, we describe the impacts of tropical cyclones Bebe and Kina on Fiji. Cyclone Bebe (October 1972) affected the whole Fiji especially the Yasawa Islands, Viti Levu and Kadavu where hurricane force winds have been recorded. Nineteen deaths were reported and damage costs caused by cyclone Bebe were estimated as exceeding F20 million (F 1972). Tropical cyclone Kina passed between Fiji's two main islands of Viti Levu and Vanua Levu, and directly over Levuka on the night of 2 January 1993 with hurricane force winds causing extensive damage. Twenty three deaths have been reported making Kina one of the deadliest hurricanes in Fiji's recent history. Severe flooding on Viti Levu, combined with high tide and heavy seas led to destruction of the Sigatoka and Ba bridges, as well as almost complete loss of crops in Sigatoka and Navua deltas. Overall, damage caused by cyclone Kina was estimated as F170 million. In Samoa, we describe devastation to the country caused by tropical cyclones Ofa (February 1990) and Val (December 1991) which were considered to be the worst cyclones to affect the Samoan islands since the 1889 Apia cyclone. In Samoa, seven people were killed due to cyclone Ofa, thousands of people were left homeless and entire villages were destroyed. Damage

  14. Low NO.sub.x combustor

    NASA Technical Reports Server (NTRS)

    Halila, Ely E. (Inventor)

    1994-01-01

    A combustor includes a dome assembly having radially outer and inner liners joined thereto and defining therebetween a combustion zone. The dome assembly includes at least one annular dome having a pair of axially extending first flanges between which are disposed a plurality of circumferentially spaced apart carburetors for discharging a fuel/air mixture into the combustion zone for generating combustion gases. An annular heat shield includes a pair of axially extending legs integrally joined to a radially extending face in a generally U-shaped configuration, with the face including a plurality of circumferentially spaced apart ports disposed concentrically with perspective ones of the carburetors for allowing the fuel/air mixture to be discharged therefrom through the heat shield. At least one of the heat shield legs includes a plurality of circumferentially spaced apart mounting holes disposed adjacent to a respective one of the dome flanges, and a plurality of mounting pins are fixedly joined to the dome flange and extend radially through respective ones of the mounting holes without interference therewith for allowing unrestrained thermal movement between the heat shield and the dome while supporting the heat shield against axial pressure loads thereon. In a preferred embodiment, the dome assembly includes three domes having respective ones of the heat shield, and respective baffles are spaced from the heat shields for providing impingement cooling thereof.

  15. Alternate-Fueled Combustor-Sector Emissions

    NASA Technical Reports Server (NTRS)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This report analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP-8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0, 50, and 100 percent. The data show that SPK fuel (an FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  16. Analysis of Regen Cooling in Rocket Combustors

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Merkle, C. L.; Li, D.; Sankaran, V.

    2004-01-01

    The use of detailed CFD modeling for the description of cooling in rocket chambers is discussed. The overall analysis includes a complete three-dimensional analysis of the flow in the regenerative cooling passages, conjugate heat transfer in the combustor walls, and the effects of film cooling on the inside chamber. The results in the present paper omit the effects of film cooling and include only regen cooling and the companion conjugate heat transfer. The hot combustion gases are replaced by a constant temperature wall boundary condition. Load balancing for parallel cluster computations is ensured by using single-block unstructured grids for both fluids and solids, and by using a 'multiple physical zones' to account for differences in the number of equations. Validation of the method is achieved by comparing simple two-dimensional solutions with analytical results. Representative results for cooling passages are presents showing the effects of heat conduction in the copper walls with tube aspect ratios of 1.5:l.

  17. Heat transfer in circulating fluidized bed combustor

    SciTech Connect

    Bucak, O.; Dogan, O.M.; Uysal, B.Z.

    1999-07-01

    The importance of fluidized bed combustion in utilizing the energy of especially low quality coals is widely accepted. Among various fluidized bed combustion technologies, circulating fluidized beds are preferred as a result of the efforts to get higher combustion efficiencies. The aim of the present research was to investigate the applicability of this technology to Turkish lignites. To achieve this object a 6.5 m tall pilot circulating fluidized bed combustor with 155 mm diameter and all the auxiliary equipment were designed, constructed and tested using Seyitomer lignite of 0.9--2.38 mm in size. Heat transfer from the bed to the water cooling jackets was examined to recover the combustion energy. The inside heat transfer coefficient was determined to be around 121 W/m{sup 2} K for the suspension density of 20--55 kg/m{sup 3}. The agreement of the experimental findings with theoretical estimations was also checked. Furthermore, the thermal efficiency of the system for the heat recovered was found to be 63%.

  18. Tropical Cyclone Monty Strikes Western Australia

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) acquired these natural color images and cloud top height measurements for Monty before and after the storm made landfall over the remote Pilbara region of Western Australia, on February 29 and March 2, 2004 (shown as the left and right-hand image sets, respectively). On February 29, Monty was upgraded to category 4 cyclone status. After traveling inland about 300 kilometers to the south, the cyclonic circulation had decayed considerably, although category 3 force winds were reported on the ground. Some parts of the drought-affected Pilbara region received more than 300 millimeters of rainfall, and serious and extensive flooding has occurred.

    The natural color images cover much of the same area, although the right-hand panels are offset slightly to the east. Automated stereoscopic processing of data from multiple MISR cameras was utilized to produce the cloud-top height fields. The distinctive spatial patterns of the clouds provide the necessary contrast to enable automated feature matching between images acquired at different view angles. The height retrievals are at this stage uncorrected for the effects of the high winds associated with cyclone rotation. Areas where heights could not be retrieved are shown in dark gray.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbits 22335 and 22364. The panels cover an area of about 380 kilometers x 985 kilometers, and utilize data from blocks 105 to 111 within World Reference System-2 paths 115 and 113.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the

  19. Lessons learnt from tropical cyclone losses

    NASA Astrophysics Data System (ADS)

    Honegger, Caspar; Wüest, Marc; Zimmerli, Peter; Schoeck, Konrad

    2016-04-01

    Swiss Re has a long history in developing natural catastrophe loss models. The tropical cyclone USA and China model are examples for event-based models in their second generation. Both are based on basin-wide probabilistic track sets and calculate explicitly the losses from the sub-perils wind and storm surge in an insurance portfolio. Based on these models, we present two cases studies. China: a view on recent typhoon loss history Over the last 20 years only very few major tropical cyclones have caused severe insurance losses in the Pearl River Delta region and Shanghai, the two main exposure clusters along China's southeast coast. Several storms have made landfall in China every year but most struck areas with relatively low insured values. With this study, we make the point that typhoon landfalls in China have a strong hit-or-miss character and available insured loss experience is too short to form a representative view of risk. Historical storm tracks and a simple loss model applied to a market portfolio - all from publicly available data - are sufficient to illustrate this. An event-based probabilistic model is necessary for a reliable judgement of the typhoon risk in China. New York: current and future tropical cyclone risk In the aftermath of hurricane Sandy 2012, Swiss Re supported the City of New York in identifying ways to significantly improve the resilience to severe weather and climate change. Swiss Re provided a quantitative assessment of potential climate related risks facing the city as well as measures that could reduce those impacts.

  20. Tropical cyclone genesis products at ECMWF

    NASA Astrophysics Data System (ADS)

    Prates, F.; Vitart, Frederic

    2009-09-01

    The operational ECMWF forecast system is nowadays able not only to analyse the current location of a tropical cyclone (TC) and predict its subsequent evolution, but also to predict the genesis of tropical cyclones, often several days before they occur. The advent of 4D-Var and assimilation of massive amounts of satellite data, combined with better model physics and an increase of horizontal/vertical resolution are among the numerous important changes made in the past with positive impact in TC forecast skill. Recent changes to the forecast system that have substantially improved the TC predictions are the increase in horizontal resolution in 2006, from T511 (40 km) to T799 (25 km) (T255 to T399 in the EPS), and improved model physics introduced in 2007. ECMWF generates a number of specific products for tropical cyclone forecasts. For each TC observed at initial time, a tracking algorithm is used to identify the successive positions of the TC throughout the forecast range. The tracker is applied to the deterministic T799 model and to each member of the EPS. The EPS tracks are used to generate strike probability maps. The tracking algorithm has recently been extended to identify and track new TCs that are predicted to appear during the forecast. Strike probability products for TC genesis have been developed and some cases will be selected to illustrate this product. Results from the objective verification package, upgraded to include the verification of TC genesis, will be presented and discussed, emphasising the impact on TC performance from recent changes in the forecast system.

  1. Novel cyclone empirical pressure drop and emissions with heterogeneous particulate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New cyclone designs equally effective at controlling emissions that have smaller pressure losses would reduce both the financial and the environmental cost of procuring electricity. Tests were conducted with novel and industry standard 30.5 cm diameter cyclones at inlet velocities from 8 to 18 m s-...

  2. Partial reduction of particulate iron ores and cyclone reactor

    SciTech Connect

    Taylor, P.R.; Bartlett, R.W.; Abdel-Latif, M.

    1993-07-20

    An apparatus for iron or ferro-alloy smelting is described, comprising: bath smelter means for containing a smelting bath for reductive bath smelting of iron or ferro-alloy ore by coal/oxygen injection through use of endothermic nozzles directed into a smelting bath to form liquid iron or steel; a closed cyclone reactor having an upper end including an inlet end, said closed cyclone including an open lower exit positioned above the smelting bath within the bath smelter means; feed means for directing a continuous stream of fine ore particles into the cyclone reactor; and gas supply means for tangentially directing streams of oxygen, with or without air, and a fuel gas selected from the group consisting of producer gas, natural gas and methane for burning within the cyclone reactor to maintain the interior and contents of the cyclone reactor at an elevated temperature; the equilibrium partial pressure ratio of carbon monoxide to carbon dioxide exiting the cyclone reactor being maintained at a value sufficient to cause the melted ore at the elevated temperatures within the cyclone reactor to be partially reduced during the particulate residence time within the cyclone reactor.

  3. PARTICLE COLLECTION IN CYCLONES AT HIGH TEMPERATURE AND HIGH PRESSURE

    EPA Science Inventory

    The paper gives results of an experimental study of cyclone efficiency and pressure drop at temperatures up to 700C and pressures up to 25 atm. The cyclone efficiency was found to decrease at high temperature and increase at high pressure for a constant inlet velocity. Available ...

  4. A FIVE-STAGE CYCLONE SYSTEM FOR IN SITU SAMPLING

    EPA Science Inventory

    The paper describes the development and calibration of a five-stage cyclone system for in situ sampling of process streams. Cyclones may be used to advantage for collecting large samples and in sampling aerosols of high particulate concentration. At 25C, 28.3 L/min, and for a par...

  5. Ocean Barrier Layers’ Effect on Tropical Cyclone Intensification

    SciTech Connect

    Balaguru, Karthik; Chang, P.; Saravanan, R.; Leung, Lai-Yung R.; Xu, Zhao; Li, M.; Hsieh, J.

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are 'quasi-permanent' features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.

  6. Cyclone disaster vulnerability and response experiences in coastal Bangladesh.

    PubMed

    Alam, Edris; Collins, Andrew E

    2010-10-01

    For generations, cyclones and tidal surges have frequently devastated lives and property in coastal and island Bangladesh. This study explores vulnerability to cyclone hazards using first-hand coping recollections from prior to, during and after these events. Qualitative field data suggest that, beyond extreme cyclone forces, localised vulnerability is defined in terms of response processes, infrastructure, socially uneven exposure, settlement development patterns, and livelihoods. Prior to cyclones, religious activities increase and people try to save food and valuable possessions. Those in dispersed settlements who fail to reach cyclone shelters take refuge in thatched-roof houses and big-branch trees. However, women and children are affected more despite the modification of traditional hierarchies during cyclone periods. Instinctive survival strategies and intra-community cooperation improve coping post cyclone. This study recommends that disaster reduction programmes encourage cyclone mitigation while being aware of localised realities, endogenous risk analyses, and coping and adaptation of affected communities (as active survivors rather than helpless victims). PMID:20561338

  7. Novel cyclone pressure drop and emissions with heterogeneous particulate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New cyclone designs equally effective at controlling emissions that have smaller pressure losses would reduce both the financial and the environmental cost of procuring electricity. Tests were conducted with novel and industry standard 30.5 cm diameter cyclones at inlet velocities from 8 to 18 m s-...

  8. Ocean-Atmosphere Interactions During Cyclone Nargis

    NASA Astrophysics Data System (ADS)

    McPhaden, Michael J.; Foltz, Gregory R.; Lee, Tony; Murty, V. S. N.; Ravichandran, M.; Vecchi, Gabriel A.; Vialard, Jerome; Wiggert, Jerry D.; Yu, Lisan

    2009-02-01

    Cyclone Nargis (Figure 1a) made landfall in Myanmar (formerly Burma) on 2 May 2008 with sustained winds of approximately 210 kilometers per hour, equivalent to a category 3-4 hurricane. In addition, Nargis brought approximately 600 millimeters of rain and a storm surge of 3-4 meters to the low-lying and densely populated Irrawaddy River delta. In its wake, the storm left an estimated 130,000 dead or missing and more than $10 billion in economic losses. It was the worst natural disaster to strike the Indian Ocean region since the 26 December 2004 tsunami and the worst recorded natural disaster ever to affect Myanmar.

  9. Investigation on the flame dynamics of meso-combustors

    NASA Astrophysics Data System (ADS)

    Ahmed, Mahbub

    Miniature heat engines burning hydrogen and hydrocarbon fuels have significantly higher energy densities compared to conventional lithium batteries and thus will play an essential role in the portable production of power for future electronics, remote sensors, and micro aerial vehicles. Additionally, miniature heat engines will tremendously benefit next generation of environmental technologies such as steam reforming, ammonia decomposition and fuel cells. Successful miniaturization of heat engine components demand a more complete and broader understanding of micro-fluid dynamics and micro-combustion phenomena associated with the combustor design. This dissertation is aimed at investigating the details of the micro-mixing dynamics and the combustion behavior of the meso-combustor and to create fundamental understanding of physics based design methodology. The primary goals of the project are (i) to develop an understanding of fuel-air mixing inside a meso-combustor, (ii) to develop an understanding of the flame stability (flame quenching and velocity blowout) criteria of a meso-combustor, (iii) to understand the thermal behavior of the meso-combustor, and (iv) to correlate these with combustor operating conditions such as the Reynolds number, equivalent ratio, and thermal power etc. The present study shows that adequate mixing of fuel and air is achievable in millimeter scale combustors. Both computed results and experimental measurements of iso-thermal (non-burning) flows at different mixing configurations indicate that the laminar burning velocity remains higher than the local flow velocities in most of the combustor locations to support stable flame propagations. Stable flames of hydrogen are achieved for all mixing and flow configurations. The combustion of methane with air as oxidizer in the combustors is unreliable. However, highly stable combustion of methane at various mixing and flow conditions is achieved when pure oxygen is used as an oxidizer. The

  10. A Classification of Mediterranean Cyclones Based on Global Analyses

    NASA Technical Reports Server (NTRS)

    Reale, Oreste; Atlas, Robert

    2003-01-01

    The Mediterranean Sea region is dominated by baroclinic and orographic cyclogenesis. However, previous work has demonstrated the existence of rare but intense subsynoptic-scale cyclones displaying remarkable similarities to tropical cyclones and polar lows, including, but not limited to, an eye-like feature in the satellite imagery. The terms polar low and tropical cyclone have been often used interchangeably when referring to small-scale, convective Mediterranean vortices and no definitive statement has been made so far on their nature, be it sub-tropical or polar. Moreover, most of the classifications of Mediterranean cyclones have neglected the small-scale convective vortices, focusing only on the larger-scale and far more common baroclinic cyclones. A classification of all Mediterranean cyclones based on operational global analyses is proposed The classification is based on normalized horizontal shear, vertical shear, scale, low versus mid-level vorticity, low-level temperature gradients, and sea surface temperatures. In the classification system there is a continuum of possible events, according to the increasing role of barotropic instability and decreasing role of baroclinic instability. One of the main results is that the Mediterranean tropical cyclone-like vortices and the Mediterranean polar lows appear to be different types of events, in spite of the apparent similarity of their satellite imagery. A consistent terminology is adopted, stating that tropical cyclone- like vortices are the less baroclinic of all, followed by polar lows, cold small-scale cyclones and finally baroclinic lee cyclones. This classification is based on all the cyclones which occurred in a four-year period (between 1996 and 1999). Four cyclones, selected among all the ones which developed during this time-frame, are analyzed. Particularly, the classification allows to discriminate between two cyclones (occurred in October 1996 and in March 1999) which both display a very well

  11. Sensitivity of tropical cyclone intensity to sea surface temperature

    SciTech Connect

    Evans, J.L. )

    1993-06-01

    Increased occurrence of more intense tropical storms intruding further poleward has been foreshadowed as one of the potential consequences of global warming. This scenario is based almost entirely on the general circulation model predictions of warmer sea surface temperature (SST) with increasing levels of atmospheric CO[sub 2] and some theories of tropical cyclone intensification that support the notion of more intense systems with warmer SST. Whether storms are able to achieve this theoretically determined more intense state depends on whether the temperature of the underlying water is the dominant factor in tropical cyclone intensification. An examination of the historical data record in a number of ocean basins is used to identify the relative importance of SST in the tropical cyclone intensification process. The results reveal that SST alone is an inadequate predictor of tropical cyclone intensity. Other factors known to affect tropical cyclone frequency and intensity are discussed. 16 refs., 6 figs., 3 tabs.

  12. Cyclone performance estimates for pressurized fluidized-bed combustion

    SciTech Connect

    Henry, R.F.; Podolski, W.F.

    1981-07-01

    Hot pressurized flue gas from pressurized fluidized-bed combustion must be cleaned up prior to its expansion in a gas turbine as part of the combined-cycle electric power generation concept. The performance of conventional cyclones in experimental tests has been compared with theory, with reasonable agreement. Prediction of the performance of a larger cyclone system shows that three stages should provide the cleanup required on the basis of current estimates of turbine tolerance of particulate matter. Advances in hot gas cleanup - optimized cyclones, augmented cyclones, and alternative devices - should provide future improvement in cycle efficiencies and costs, but simple cyclones are planned for first-generation PFB/CC pilot and demonstration plants.

  13. Supplementing Oscat winds with Saral Altika observations for cyclone studies

    NASA Astrophysics Data System (ADS)

    Niharika, K.; Usha Sundari, H. S. V.; Prasad, A. V. V.; Kumari, E. V. S. Sita; Dadhwal, V. K.; Ali, M. M.

    2014-11-01

    Accurate prediction of life cycle of cyclone is very critical to the disaster management practices. Since the cyclones originate over the oceans where in situ observations are limited, we have to resort to the remote sensing techniques. Both optical and microwave sensors help studying the cyclones. While scatterometer provide wind vectors, altimeters can give only wind speed. In this paper we present how altimeter measurements can supplement the scatterometer observations in determining the radius of maximum winds (RMW). Sustained maximum winds, indicator for the intensity of the cyclone, are within the eye wall of a cyclone at a distance of RMW. This parameter is also useful in predicting right time of the storm surge. In this paper we used the wind speed estimations from AltiKa, an altimeter operating at Ka band.

  14. Extreme Arctic cyclones in CMIP5 historical simulations

    NASA Astrophysics Data System (ADS)

    Vavrus, Stephen J.

    2013-12-01

    attention is being paid to extreme weather, including recent high-profile events involving very destructive cyclones. In summer 2012, a historically powerful cyclone traversed the Arctic, a region experiencing rapid warming and dramatic loss of ice and snow cover. This study addresses whether such powerful storms are an emerging expression of anthropogenic climate change by investigating simulated extreme Arctic cyclones during the historical period (1850-2005) among global climate models in the Coupled Model Intercomparison Project 5 (CMIP5) archive. These general circulation models are able to simulate extreme pressures associated with strong polar storms without a significant dependence on model resolution. The models display realism by generating extreme Arctic storms primarily around subpolar cyclone regions (Aleutian and Icelandic) and preferentially during winter. Simulated secular trends in Arctic mean sea level pressure and extreme cyclones are equivocal; both indicate increasing storminess in some regions, but the magnitude of changes to date are modest compared with future projections.

  15. Tropical cyclone intensity change. A quantitative forecasting scheme

    NASA Technical Reports Server (NTRS)

    Dropco, K. M.; Gray, W. M.

    1981-01-01

    One to two day future tropical cyclone intensity change from both a composite and an individual case point-of-view are discussed. Tropical cyclones occurring in the Gulf of Mexico during the period 1957-1977 form the primary data source. Weather charts of the NW Atlantic were initially examined, but few differences were found between intensifying and non-intensifying cyclones. A rawinsonde composite analysis detected composite differences in the 200 mb height fields, the 850 mb temperature fields, the 200 mb zonal wind and the vertical shears of the zonal wind. The individual cyclones which make up the composite study were then separately examined using this composite case knowledge. Similar parameter differences were found in a majority of individual cases. A cyclone intensity change forecast scheme was tested against independent storm cases. Correct predictions of intensification or non-intensification could be made approximately 75% of the time.

  16. Ceramic composite liner material for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Ercegovic, D. B.; Walker, C. L.; Norgren, C. T.

    1984-01-01

    Advanced commercial and military gas turbine engines may operate at combustor outlet temperatures in excess of 1920 K (3000 F). At these temperatures combustors liners experience extreme convective and radiative heat fluxes. The ability of a plasma sprayed ceramic coating to reduce liner metal temperature has been recognized. However, the brittleness of the ceramic layer and the difference in thermal expansion with the metal substrate has caused cracking, spalling and some separation of the ceramic coating. Research directed at turbine tip seals (or shrouds) has shown the advantage of applying the ceramic to a compliant metal pad. This paper discusses recent studies of applying ceramics to combustor liners in which yttria stabilized zirconia plasma sprayed on compliant metal substrates which were exposed to near stoichiometric combustion, presents performance and durability results, and describes a conceptual design for an advanced, small gas turbine combustor. Test specimens were convectively cooled or convective-transpiration cooled and were evaluated in a 10 cm square flame tube combustor at inlet air temperatures of 533 K (500 F) and at a pressure of 0.5 MPa (75 psia). The ceramics were exposed to flame temperatures in excess of 2000 K (3320 F). Results appear very promising with all 30 specimens surviving a screening test and one of two specimens surviving a cyclic durability test.

  17. Testing of felt-ceramic materials for combustor applications

    NASA Technical Reports Server (NTRS)

    Venkat, R. S.; Roffe, G.

    1983-01-01

    The feasibility of using composite felt ceramic materials as combustor liners was experimentally studied. The material consists of a porous felt pad sandwiched between a layer of ceramic and one of solid metal. Flat, rectangular test panels, which encompassed several design variations of the basic composite material, were tested, two at a time, in a premixed gas turbine combustor as sections of the combustor wall. Tests were conducted at combustor inlet conditions of 0.5 MPa and 533 K with a reference velocity of 25 m/s. The panels were subjected to a hot gas temperature of 2170 K with 1% of the total airflow used to film cool the ceramic surface of the test panel. In general, thin ceramic layers yield low ceramic stress levels with high felt ceramic interface temperatures. On the other hand, thick ceramic layers result in low felt ceramic interface temperatures but high ceramic stress levels. Extensive thermal cycling appears to cause material degradation, but for a limited number of cycles, the survivability of felt ceramic materials, even under extremely severe combustor operating conditions, was conclusively demonstrated.

  18. Flame structures in the pressurized methane-air combustor

    SciTech Connect

    Yamamoto, Tsuyoshi; Miyazaki, Tomonaga, Furuhata, Tomohiko; Arai, Norio

    1998-07-01

    This study has been carried out in order to investigate the applicability of a pressurized and fuel-rich burner at a first stage combustor for a newly proposed chemical gas turbine system. The flammability limits, exhaust gas composition and the NO{sub x} emission characteristics under the pressurized conditions of 1.1--4.1 MPa have been investigated in a model combustor. This paper focuses on the influence of pressure and F/A equivalence ratio on flame structures of pressurized combustion with methane and air to obtain detailed data for designing of fuel-rich combustor for gas turbine application. The flame under fuel-rich condition and pressure of 1 MPa showed underventilated structure like other atmospheric fuel-rich flames while the flame under pressure over 1.5 MPa had shapes as fuel-lean flame. The flame becomes longer as the pressure was increased under the fuel-lean conditions, which under fuel-rich condition the influence of pressure on flame length was smaller in comparison with the flame under fuel-lean conditions. These results give an opportunity for developing smaller combustor under fuel-rich and pressurized condition compared to fuel-lean one. Numerical simulation has been done for defining the temperature profile in the model combustor using the k-{var{underscore}epsilon} turbulence model and three-step reaction model. The comparison between theoretical results and experimental data showed fair agreements.

  19. Experimental studies on methane-fuel laboratory scale ram combustor

    SciTech Connect

    Kinoshita, Y.; Kitajima, J.; Seki, Y.; Tatara, A.

    1995-07-01

    The laboratory scale ram combustor test program has been investigating fundamental combustion characteristics of a ram combustor, which operates from Mach 2.5 to 5 for the super/hypersonic transport propulsion system. In the previous study, combustion efficiency had been found poor, less than 70 percent, due to a low inlet air temperature and a high velocity at Mach 3 condition. To improve the low combustion efficiency, a fuel zoning combustion concept was investigated by using a subscale combustor model first. Combustion efficiency more than 90 percent was achieved and the concept was found very effective. Then a laboratory scale ram combustor was fabricated and combustion tests were carried out mainly at the simulated condition of Mach 5. A vitiation technique wa used to simulate a high temperature of 1,263 K. The test results indicate that ignition, flame stability, and combustion efficiency were not significant, but the NO{sub x} emissions are a critical problem for the ram combustor at Mach 5 condition.

  20. Computational Simulation of Acoustic Modes in Rocket Combustors

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Merkle, C. L.; Sankaran, V.; Ellis, M.

    2004-01-01

    A combination of computational fluid dynamic analysis and analytical solutions is being used to characterize the dominant modes in liquid rocket engines in conjunction with laboratory experiments. The analytical solutions are based on simplified geometries and flow conditions and are used for careful validation of the numerical formulation. The validated computational model is then extended to realistic geometries and flow conditions to test the effects of various parameters on chamber modes, to guide and interpret companion laboratory experiments in simplified combustors, and to scale the measurements to engine operating conditions. In turn, the experiments are used to validate and improve the model. The present paper gives an overview of the numerical and analytical techniques along with comparisons illustrating the accuracy of the computations as a function of grid resolution. A representative parametric study of the effect of combustor mean flow Mach number and combustor aspect ratio on the chamber modes is then presented for both transverse and longitudinal modes. The results show that higher mean flow Mach numbers drive the modes to lower frequencies. Estimates of transverse wave mechanics in a high aspect ratio combustor are then contrasted with longitudinal modes in a long and narrow combustor to provide understanding of potential experimental simulations.

  1. Analysis of Tropical Cyclone Tracks in the North Indian Ocean

    NASA Astrophysics Data System (ADS)

    Patwardhan, A.; Paliwal, M.; Mohapatra, M.

    2011-12-01

    Cyclones are regarded as one of the most dangerous meteorological phenomena of the tropical region. The probability of landfall of a tropical cyclone depends on its movement (trajectory). Analysis of trajectories of tropical cyclones could be useful for identifying potentially predictable characteristics. There is long history of analysis of tropical cyclones tracks. A common approach is using different clustering techniques to group the cyclone tracks on the basis of certain characteristics. Various clustering method have been used to study the tropical cyclones in different ocean basins like western North Pacific ocean (Elsner and Liu, 2003; Camargo et al., 2007), North Atlantic Ocean (Elsner, 2003; Gaffney et al. 2007; Nakamura et al., 2009). In this study, tropical cyclone tracks in the North Indian Ocean basin, for the period 1961-2010 have been analyzed and grouped into clusters based on their spatial characteristics. A tropical cyclone trajectory is approximated as an open curve and described by its first two moments. The resulting clusters have different centroid locations and also differently shaped variance ellipses. These track characteristics are then used in the standard clustering algorithms which allow the whole track shape, length, and location to be incorporated into the clustering methodology. The resulting clusters have different genesis locations and trajectory shapes. We have also examined characteristics such as life span, maximum sustained wind speed, landfall, seasonality, many of which are significantly different across the identified clusters. The clustering approach groups cyclones with higher maximum wind speed and longest life span in to one cluster. Another cluster includes short duration cyclonic events that are mostly deep depressions and significant for rainfall over Eastern and Central India. The clustering approach is likely to prove useful for analysis of events of significance with regard to impacts.

  2. Stratified coastal ocean interactions with tropical cyclones.

    PubMed

    Glenn, S M; Miles, T N; Seroka, G N; Xu, Y; Forney, R K; Yu, F; Roarty, H; Schofield, O; Kohut, J

    2016-01-01

    Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963

  3. Characterization of Rice Husk for Cyclone Gasifier

    NASA Astrophysics Data System (ADS)

    Mohamad Yusof, I.; Farid, N. A.; Zainal, Z. A.; Azman, M.

    The characterization of rice husk from local rice mills has been studied and evaluated to determine its potential utilization as a biomass fuel for a cyclone gasifier. The raw rice husk was pre-treated throughout a grinding process into smaller sizes of particles which is within a range of 0.4 to 1 mm and the sample of ground rice husk was analyzed for its fuel characteristics. The result of proximate analysis shows that the ground rice husk with size distribution within 0.4 to 1 mm contains 13.4% of fixed carbon, 62.95% of volatile matter and 18.5% of ash on dry basis. The moisture content of the sample was measured and determined as 10.4% (wet basis) and the calorific value was found to be approximately 14.8 MJ kg-1 with bulk density of 91.46 kg m-3. The result of ultimate analysis validates both ash and moisture content which are found to be 18.15 and 10.4%, respectively. Other elemental compositions determined by the ultimate analysis are carbon (37.9%), hydrogen (5.2%), nitrogen (0.14%), sulfur (0.61%) and oxygen (27.7% by difference). The study has identified that the fuel characteristics of the ground rice husk is comparable with other types of biomass and thus, making it another potential source of fuel for the cyclone gasification system.

  4. Stratified coastal ocean interactions with tropical cyclones

    NASA Astrophysics Data System (ADS)

    Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.

    2016-03-01

    Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward.

  5. Entropy Convective Flux for Tropical Cyclone Haiyan

    NASA Astrophysics Data System (ADS)

    Pegahfar, Nafiseh; Gharaylou, Maryam; Ghafarian, Parvin

    2016-07-01

    It is well-known that the environmental factors control tropical cyclones (TCs). one of the most considered thermodynamical parameters is entropy that its significant role on tropical cyclogenesis and TC intensification has been professionally focused in some recent research studies. In the current work, two data sets including satellite data and NCEP-GFS data have been used to investigate the entropy parameter and its convective flux, during tropical cyclone Haiyan (TCH) occurred on 3-11 November 2013 and nominated as the strongest TC over Pacific Ocean before 2014. This purpose has been proceeded for three domain areas with different size. These domains cover inner, eyewall and rainbands, and environmental regions of TCH at various pressure levels. Also three terms of entropy vertical flux including dissipative heating, surface entropy flux and difference between entropy values over inner and outer regions have been analyzed. Our obtained results showed relatively similar behavior of averaged entropy over all selected domain, but with a delay and decrease in maximum values for the smaller domains. In addition our findings revealed different considerable contributions for three terms of entropy vertical flux.

  6. Stratified coastal ocean interactions with tropical cyclones

    PubMed Central

    Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.

    2016-01-01

    Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963

  7. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor

    SciTech Connect

    Yan Cao; Hongcang Zhou; Junjie Fan; Houyin Zhao; Tuo Zhou; Pauline Hack; Chia-Chun Chan; Jian-Chang Liou; Wei-ping Pan

    2008-12-15

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.

  8. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for municipal waste combustor... for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) (c) On...

  9. 40 CFR 60.56a - Standards for municipal waste combustor operating practices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for municipal waste combustor... Performance for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before September 20, 1994 § 60.56a Standards for municipal waste combustor operating practices....

  10. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for municipal waste combustor... for Municipal Waste Combustors for Which Construction Is Commenced After December 20, 1989 and On or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) (c) On...

  11. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for municipal waste combustor... for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) (c) On...

  12. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for municipal waste combustor... for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) (c) On...

  13. 40 CFR 60.54b - Standards for municipal waste combustor operator training and certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for municipal waste combustor... Standards of Performance for Large Municipal Waste Combustors for Which Construction is Commenced After... Standards for municipal waste combustor operator training and certification. (a) No later than the date...

  14. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for municipal waste combustor... for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) (c) On...

  15. 40 CFR 60.56a - Standards for municipal waste combustor operating practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for municipal waste combustor... Performance for Municipal Waste Combustors for Which Construction Is Commenced After December 20, 1989 and On or Before September 20, 1994 § 60.56a Standards for municipal waste combustor operating practices....

  16. 40 CFR 60.36b - Emission guidelines for municipal waste combustor fugitive ash emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustor fugitive ash emissions. 60.36b Section 60.36b Protection of Environment ENVIRONMENTAL PROTECTION... September 20, 1994 § 60.36b Emission guidelines for municipal waste combustor fugitive ash emissions. For approval, a State plan shall include requirements for municipal waste combustor fugitive ash emissions...

  17. 40 CFR Table 3 to Subpart Fff of... - Municipal Waste Combustor Operating Requirements

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Operating Requirements Municipal waste combustor technology Carbon monoxide emissions level (parts per... combustor 200 24 a Measured at the combustor outlet in conjunction with a measurement of oxygen concentration, corrected to 7 percent oxygen, dry basis. Calculated as an arithmetic average. b Averaging...

  18. Advanced Low NO Sub X Combustors for Supersonic High-Altitude Aircraft Gas Turbines

    NASA Technical Reports Server (NTRS)

    Roberts, P. B.; White, D. J.; Shekleton, J. R.

    1975-01-01

    A test rig program was conducted with the objective of evaluating and minimizing the exhaust emissions, in particular NO sub x, of three advanced aircraft combustor concepts at a simulated, high altitude cruise condition. The three combustor designs, all members of the lean reaction, premixed family, are the Jet Induced Circulation (JIC) combustor, the Vortex Air Blast (VAB) combustor, and a catalytic combustor. They were rig tested in the form of reverse flow can combustors in the 0.127 m. (5.0 in.) size range. Various configuration modifications were applied to each of the initial JIC and VAB combustor model designs in an effort to reduce the emissions levels. The VAB combustor demonstrated a NO sub x level of 1.1 gm NO2/kg fuel with essentially 100% combustion efficiency at the simulated cruise combustor condition of 50.7 N/sq cm (5 atm), 833 K (1500 R) inlet pressure and temperature respectively and 1778 K (3200 R) outlet temperature on Jet-A1 fuel. Early tests on the catalytic combustor were unsuccessful due to a catalyst deposition problem and were discontinued in favor of the JIC and VAB tests. In addition emissions data were obtained on the JIC and VAB combustors at low combustor inlet pressure and temperatures that indicate the potential performance at engine off-design conditions.

  19. Combustor with two stage primary fuel assembly

    DOEpatents

    Sharifi, Mehran; Zolyomi, Wendel; Whidden, Graydon Lane

    2000-01-01

    A combustor for a gas turbine having first and second passages for pre-mixing primary fuel and air supplied to a primary combustion zone. The flow of fuel to the first and second pre-mixing passages is separately regulated using a single annular fuel distribution ring having first and second row of fuel discharge ports. The interior portion of the fuel distribution ring is divided by a baffle into first and second fuel distribution manifolds and is located upstream of the inlets to the two pre-mixing passages. The annular fuel distribution ring is supplied with fuel by an annular fuel supply manifold, the interior portion of which is divided by a baffle into first and second fuel supply manifolds. A first flow of fuel is regulated by a first control valve and directed to the first fuel supply manifold, from which the fuel is distributed to first fuel supply tubes that direct it to the first fuel distribution manifold. From the first fuel distribution manifold, the first flow of fuel is distributed to the first row of fuel discharge ports, which direct it into the first pre-mixing passage. A second flow of fuel is regulated by a second control valve and directed to the second fuel supply manifold, from which the fuel is distributed to second fuel supply tubes that direct it to the second fuel distribution manifold. From the second fuel distribution manifold, the second flow of fuel is distributed to the second row of fuel discharge ports, which direct it into the second pre-mixing passage.

  20. Development of pressurized coal partial combustor

    SciTech Connect

    Yoshida, K.; Ino, T.; Yamamoto, T.; Kimura, N.

    1995-12-31

    The integrated gasification combined cycle (IGCC), an environment-friendly power generation system of high thermal efficiency, is being developed via various approaches around the world. The oxygen-blown entrained flow gasification process is a relatively simple method of producing medium calorie coal gas suitable for application to gas turbines. Various systems for this process have been developed to a demonstration level in Europe and America. Japan has actively been developing the air-blown process. However, taking stable molten slag discharge into consideration, coal must be supplied at two stages to raise the combustor temperature in ash molten part. Only two reports have been presented regarding two-stage coal supply. One is the report on an experiment with the Hycol gasifier, in which air feed ratio is varied, with coal feed fixed. The other is report on a simulation study with various gasifier coal feed ratios, conducted at Central Research Institute of Electric Power Industry. It seems that the appropriate feed ratio has not yet been established. Through this activity, a unique furnace construction has been established, and these influences of stoichiometric air ratio, of oxygen enrichment, of char recycling and of coal types on performance have been clarified. The purpose of the present study is to apply this developed CPC techniques to a Pressurized CPC (PCPC), thereby improving the IGCC technology. For the present study, we conducted systematic experiments on the air-blown process with a two stage dry feed system, using a 7 t/d-coal bench scale PCPC test facility, operated at the pressure of 0.4 MPa, and clarified the influence of coal feed ratio on coal gasification performance. This report describes the above-mentioned bench scale test procedures and results, and also some informations about a plan of a 25 t/d-coal pilot test system.

  1. Computational fluid dynamic analysis of hybrid rocket combustor flowfields

    NASA Technical Reports Server (NTRS)

    Venkateswaran, S.; Merkle, C. L.

    1995-01-01

    Computational fluid dynamic analyses of the Navier-Stokes equations coupled with solid-phase pyrolysis, gas-phase combustion, turbulence and radiation are performed to study hybrid rocket combustor flowfields. The computational study is closely co-ordinated with a companion experimental program using a planar slab burner configuration with HTPB as fuel and gaseous oxygen. Computational predictions agree reasonably well with measurement data of fuel regression rates and surface temperatures. Additionally, most of the parametric trends predicted by the model are in general agreement with experimental trends. The computational model is applied to extend the results from the lab-scale to a full-scale axisymmetric configuration. The numerical predictions indicate that the full-scale configuration burns at a slower rate than the lab-scale combustor under identical specific flow rate conditions. The results demonstrate that detailed CFD analyses can play a useful role in the design of hybrid combustors.

  2. Advanced low emissions catalytic combustor program at General Electric

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.

    1979-01-01

    The Advanced Low Emissions Catalytic Combustors Program (ALECC) is being undertaken to evaluate the feasibility of employing catalytic combustion technology in aircraft gas turbine engines as a means to control emission of oxides of nitrogen during subsonic stratospheric cruise operation. The ALECC Program is being conducted in three phases. The first phase, which was completed in November, 1978, consisted of a design study to identify catalytic combustor designs having the greatest potential to meet the emissions and performance goals specified. The primary emissions goal of this program was to obtain cruise NO emissions of less than 1g/kg (compared with levels of 15 to 20 g/x obtained with current designs)/ However, good overall performance and feasibility for engine development were heavily weighted in the evaluation of combustor designs.

  3. Gas turbine engine combustor can with trapped vortex cavity

    DOEpatents

    Burrus, David Louis; Joshi, Narendra Digamber; Haynes, Joel Meier; Feitelberg, Alan S.

    2005-10-04

    A gas turbine engine combustor can downstream of a pre-mixer has a pre-mixer flowpath therein and circumferentially spaced apart swirling vanes disposed across the pre-mixer flowpath. A primary fuel injector is positioned for injecting fuel into the pre-mixer flowpath. A combustion chamber surrounded by an annular combustor liner disposed in supply flow communication with the pre-mixer. An annular trapped dual vortex cavity located at an upstream end of the combustor liner is defined between an annular aft wall, an annular forward wall, and a circular radially outer wall formed therebetween. A cavity opening at a radially inner end of the cavity is spaced apart from the radially outer wall. Air injection first holes are disposed through the forward wall and air injection second holes are disposed through the aft wall. Fuel injection holes are disposed through at least one of the forward and aft walls.

  4. Low NO(x) heavy fuel combustor program

    NASA Technical Reports Server (NTRS)

    Lister, E.; Niedzwiecki, R. W.; Nichols, L.

    1979-01-01

    The 'low nitrogen oxides heavy fuel combustor' program is described. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen, improved combustor durability, and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.

  5. National Combustion Code: A Multidisciplinary Combustor Design System

    NASA Technical Reports Server (NTRS)

    Stubbs, Robert M.; Liu, Nan-Suey

    1997-01-01

    The Internal Fluid Mechanics Division conducts both basic research and technology, and system technology research for aerospace propulsion systems components. The research within the division, which is both computational and experimental, is aimed at improving fundamental understanding of flow physics in inlets, ducts, nozzles, turbomachinery, and combustors. This article and the following three articles highlight some of the work accomplished in 1996. A multidisciplinary combustor design system is critical for optimizing the combustor design process. Such a system should include sophisticated computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. The goal of the present effort is to develop some of the enabling technologies and to demonstrate their overall performance in an integrated system called the National Combustion Code.

  6. Numerical Simulation of Dual-Mode Scramjet Combustors

    NASA Technical Reports Server (NTRS)

    Rodriguez, C. G.; Riggins, D. W.; Bittner, R. D.

    2000-01-01

    Results of a numerical investigation of a three-dimensional dual-mode scramjet isolator-combustor flow-field are presented. Specifically, the effect of wall cooling on upstream interaction and flow-structure is examined for a case assuming jet-to-jet symmetry within the combustor. Comparisons are made with available experimental wall pressures. The full half-duct for the isolator-combustor is then modeled in order to study the influence of side-walls. Large scale three-dimensionality is observed in the flow with massive separation forward on the side-walls of the duct. A brief review of convergence-acceleration techniques useful in dual-mode simulations is presented, followed by recommendations regarding the development of a reliable and unambiguous experimental data base for guiding CFD code assessments in this area.

  7. Analytical fuel property effects: Small combustors, phase 2

    NASA Technical Reports Server (NTRS)

    Hill, T. G.; Monty, J. D.; Morton, H. L.

    1985-01-01

    The effects of non-standard aviation fuels on a typical small gas turbine combustor were studied and the effectiveness of design changes intended to counter the effects of these fuels was evaluated. The T700/CT7 turboprop engine family was chosen as being representative of the class of aircraft power plants desired for this study. Fuel properties, as specified by NASA, are characterized by low hydrogen content and high aromatics levels. No. 2 diesel fuel was also evaluated in this program. Results demonstrated the anticipated higher than normal smoke output and flame radiation intensity with resulting increased metal temperatures on the baseline T700 combustor. Three new designs were evaluated using the non standard fuels. The three designs incorporated enhanced cooling features and smoke reduction features. All three designs, when burning the broad specification fuels, exhibited metal temperatures at or below the baseline combustor temperatures on JP-5. Smoke levels were acceptable but higher than predicted.

  8. Energy efficient engine diffuser/combustor model technology

    NASA Technical Reports Server (NTRS)

    Gardner, W.

    1980-01-01

    A full scale, full annular diffuser/combustor model test rig was tested to investigate how configurational changes affect pressure loss and flow separation characteristics. The rig was characterized by five major modules: inlet; prediffuser; strut; simulated combustor; and full combustor. The prediffuser featured a short, curved wall dump design. Performance goals included: (1) a separation-free prediffuser flow field; (2) total pressure loss limited to 3.0 percent in the prediffuser and shrouds; and (3) an overall section pressure loss of 5.5 percent P sub T3 at the design airflow distribution. The results indicated that the prediffuser configurations operate well within the program goals for pressure loss and demonstrate separation free operation over a wide range of inlet conditions.

  9. Laser velocimetry measurements in a gas turbine research combustor

    NASA Technical Reports Server (NTRS)

    Driscoll, J. F.; Pelaccio, D. G.

    1979-01-01

    The effects of turbulence on the production of pollutant species in a gas-turbine research combustor are studied using laser diffraction velocimetry (LDV) techniques. Measurements that were made in the primary combustion zone include mean velocity, rms velocity fluctuations, velocity probability distributions, and autocorrelation functions. A unique combustor design provides relatively uniform flow conditions and independent control of drop size, equivalence ratio, inlet temperature, and combustor pressure. Parameters which characterize the nature of the spray combustion (i.e., whether single droplet or group combustion occurs), were determined from the LDV data. Turbulent diffusivity (eddy viscosity) reaches a value of 2930 sq cm/sec, corresponding to a convective integral length scale of 1.8 cm. The group combustion number, based on turbulent diffusivity, is measured to be 6.2

  10. Scaling of Performance in Liquid Propellant Rocket Engine Combustors

    NASA Technical Reports Server (NTRS)

    Hulka, James R.

    2007-01-01

    This paper discusses scaling of combustion and combustion performance in liquid propellant rocket engine combustion devices. In development of new combustors, comparisons are often made between predicted performance in a new combustor and measured performance in another combustor with different geometric and thermodynamic characteristics. Without careful interpretation of some key features, the comparison can be misinterpreted and erroneous information used in the design of the new device. This paper provides a review of this performance comparison, including a brief review of the initial liquid rocket scaling research conducted during the 1950s and 1960s, a review of the typical performance losses encountered and how they scale, a description of the typical scaling procedures used in development programs today, and finally a review of several historical development programs to see what insight they can bring to the questions at hand.

  11. Low NO/x/ heavy fuel combustor program

    NASA Technical Reports Server (NTRS)

    Lister, E.; Niedzwiecki, R. W.; Nichols, L.

    1980-01-01

    The paper deals with the 'Low NO/x/ Heavy Fuel Combustor Program'. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen (NO/x/), improved combustor durability and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.

  12. Combustor flow computations in general coordinates with a multigrid method

    NASA Astrophysics Data System (ADS)

    Shyy, Wei; Braaten, Mark E.

    The computational approach presented for single-phase combusting turbulent flowfields balances the requirements of complex physical and chemical flow interactions with those of resolving the three-dimensional geometrical constraints of the combustor contours, film cooling slots, and circular dilution holes. Attention is given to the three-dimensional grid-generation algorithm, the two-dimensional adaptive grid method applied to recirculating turbulent reacting flows, and theory/data assessments for three-dimensional combusting flows in an annular gas turbine combustor.

  13. Preliminary studies of combustor sensitivity to alternative fuels

    NASA Technical Reports Server (NTRS)

    Humenik, F. M.

    1980-01-01

    Combustion problems associated with using alternative fuels ground power and aeropropulsion applications were studied. Rectangular sections designed to simulate large annular combustor test conditions were examined. The effects of using alternative fuels with reduced hydrogen content, increased aromatic content, and a broad variation in fuel property characteristics were also studied. Data of special interest were collected which include: flame radiation characteristics in the various combustor zones; the correponding increase in liner temperature from increased radiant heat flux; the effect of fuel bound nitrogen on oxides of nitrogen (NO sub x) emissions; and the overall total effect of fuel variations on exhaust emissions.

  14. Combustion-acoustic stability analysis for premixed gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Radhakrishnan, Krishnan; Oyediran, Ayo; Cowan, Lizabeth

    1995-01-01

    Lean, prevaporized, premixed combustors are susceptible to combustion-acoustic instabilities. A model was developed to predict eigenvalues of axial modes for combustion-acoustic interactions in a premixed combustor. This work extends previous work by including variable area and detailed chemical kinetics mechanisms, using the code LSENS. Thus the acoustic equations could be integrated through the flame zone. Linear perturbations were made of the continuity, momentum, energy, chemical species, and state equations. The qualitative accuracy of our approach was checked by examining its predictions for various unsteady heat release rate models. Perturbations in fuel flow rate are currently being added to the model.

  15. Variable volume combustor with center hub fuel staging

    DOEpatents

    Ostebee, Heath Michael; McConnaughhay, Johnie Franklin; Stewart, Jason Thurman; Keener, Christopher Paul

    2016-08-23

    The present application and the resultant patent provide a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a center hub for providing the flow of fuel therethrough. The center hub may include a first supply circuit for a first micro-mixer fuel nozzle and a second supply circuit for a second micro-mixer fuel nozzle.

  16. Method for operating a combustor in a fuel cell system

    DOEpatents

    Clingerman, Bruce J.; Mowery, Kenneth D.

    2002-01-01

    In one aspect, the invention provides a method of operating a combustor to heat a fuel processor to a desired temperature in a fuel cell system, wherein the fuel processor generates hydrogen (H.sub.2) from a hydrocarbon for reaction within a fuel cell to generate electricity. More particularly, the invention provides a method and select system design features which cooperate to provide a start up mode of operation and a smooth transition from start-up of the combustor and fuel processor to a running mode.

  17. Large-eddy simulations of flows in a ramjet combustor

    NASA Astrophysics Data System (ADS)

    Jou, Wen-Huei; Menon, Suresh

    The oscillatory cold flow in a ramjet combustor configuration is presently addressed by a numerical simulation method which gives attention to the interaction between the flowfield's vorticity and acoustic components, when the reduced frequency of the flow, based on the speed of sound, is of the order of unity. The numerical model has indicated that the combustor's interior must be isolated from the external region region by a choked nozzle. The numerical simulations thus obtained are able to exclude the effects of artificially imposed outflow-boundary conditions. The unsteady flow fields near the shear layer separation point in the nozzle region are investigated.

  18. Adaptive Instability Suppression Controls in a Liquid-fueled Combustor

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.

    2002-01-01

    An adaptive control algorithm has been developed for the suppression of combustion thermo-acoustic instabilities. This technique involves modulating the fuel flow in the combustor with a control phase that continuously slides within the stable phase region, in a back and forth motion. The control method is referred to as Adaptive Sliding Phasor Averaged Control (ASPAC). The control method is evaluated against a simplified simulation of the combustion instability. Plans are to validate the control approach against a more physics-based model and an actual experimental combustor rig.

  19. Numerical Simulations of Static Tested Ramjet Dump Combustor

    NASA Astrophysics Data System (ADS)

    Javed, Afroz; Chakraborty, Debasis

    2016-06-01

    The flow field of a Liquid Fuel Ram Jet engine side dump combustor with kerosene fuel is numerically simulated using commercial CFD code CFX-11. Reynolds Averaged 3-D Navier-Stokes equations are solved alongwith SST turbulence model. Single step infinitely fast reaction is assumed for kerosene combustion. The combustion efficiency is evaluated in terms of the unburnt kerosene vapour leaving the combustor. The comparison of measured pressures with computed values show that the computation underpredicts (~5 %) pressures for non reacting cases but overpredicts (9-7 %) for reacting cases.

  20. Stagnation point reverse flow combustor for a combustion system

    NASA Technical Reports Server (NTRS)

    Zinn, Ben T. (Inventor); Neumeier, Yedidia (Inventor); Seitzman, Jerry M. (Inventor); Jagoda, Jechiel (Inventor); Hashmonay, Ben-Ami (Inventor)

    2007-01-01

    A combustor assembly includes a combustor vessel having a wall, a proximate end defining an opening and a closed distal end opposite said proximate end. A manifold is carried by the proximate end. The manifold defines a combustion products exit. The combustion products exit being axially aligned with a portion of the closed distal end. A plurality of combustible reactant ports is carried by the manifold for directing combustible reactants into the combustion vessel from the region of the proximate end towards the closed distal end.

  1. Low NO/x/ and fuel flexible gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Lew, H. G.; Decorso, S. M.; Vermes, G.; Carl, D.; Havener, W. J.; Schwab, J.; Notardonato, J.

    1981-01-01

    The feasibility of various low NO(x) emission gas turbine combustor configurations was evaluated. The configurations selected for fabrication and testing at full pressure and temperature involved rich-lean staged combustion utilizing diffusion flames, rich-lean prevaporized/premix flames, and staged catalytic combustion. The test rig consisted of a rich burner module, a quench module, and a lean combustion module. Test results are obtained for the combustor while burning petroleum distillate fuel, a coal derived liquid, and a petroleum residual fuel. The results indicate that rich-lean diffusion flames with low fuel-bound nitrogen conversion are achievable with very high combustion efficiencies.

  2. Nonlinear structural and life analyses of a combustor liner

    NASA Technical Reports Server (NTRS)

    Moreno, V.; Meyers, G. J.; Kaufman, A.; Halford, G. R.

    1982-01-01

    Three dimensional, nonlinear finite element structural analyses were performed for a simulated combustor liner specimen to assess the capability of nonlinear analyses using classical inelastic material models to represent the thermoplastic creep response of the one half scale component. Results indicate continued cyclic hardening and ratcheting while experimental data suggested a stable stress strain response after only a few loading cycles. The computed stress strain history at the critical location was put into two life prediction methods, strainrange partitioning and a Pratt and Whitney combustor life prediction method to evaluate their ability to predict cyclic crack initiation. It is found that the life prediction analyses over predicted the observed cyclic crack initiation life.

  3. Temporal clustering of tropical cyclones and its ecosystem impacts

    PubMed Central

    Mumby, Peter J.; Vitolo, Renato; Stephenson, David B.

    2011-01-01

    Tropical cyclones have massive economic, social, and ecological impacts, and models of their occurrence influence many planning activities from setting insurance premiums to conservation planning. Most impact models allow for geographically varying cyclone rates but assume that individual storm events occur randomly with constant rate in time. This study analyzes the statistical properties of Atlantic tropical cyclones and shows that local cyclone counts vary in time, with periods of elevated activity followed by relative quiescence. Such temporal clustering is particularly strong in the Caribbean Sea, along the coasts of Belize, Honduras, Costa Rica, Jamaica, the southwest of Haiti, and in the main hurricane development region in the North Atlantic between Africa and the Caribbean. Failing to recognize this natural nonstationarity in cyclone rates can give inaccurate impact predictions. We demonstrate this by exploring cyclone impacts on coral reefs. For a given cyclone rate, we find that clustered events have a less detrimental impact than independent random events. Predictions using a standard random hurricane model were overly pessimistic, predicting reef degradation more than a decade earlier than that expected under clustered disturbance. The presence of clustering allows coral reefs more time to recover to healthier states, but the impacts of clustering will vary from one ecosystem to another. PMID:22006300

  4. The increasing intensity of the strongest tropical cyclones.

    PubMed

    Elsner, James B; Kossin, James P; Jagger, Thomas H

    2008-09-01

    Atlantic tropical cyclones are getting stronger on average, with a 30-year trend that has been related to an increase in ocean temperatures over the Atlantic Ocean and elsewhere. Over the rest of the tropics, however, possible trends in tropical cyclone intensity are less obvious, owing to the unreliability and incompleteness of the observational record and to a restricted focus, in previous trend analyses, on changes in average intensity. Here we overcome these two limitations by examining trends in the upper quantiles of per-cyclone maximum wind speeds (that is, the maximum intensities that cyclones achieve during their lifetimes), estimated from homogeneous data derived from an archive of satellite records. We find significant upward trends for wind speed quantiles above the 70th percentile, with trends as high as 0.3 +/- 0.09 m s(-1) yr(-1) (s.e.) for the strongest cyclones. We note separate upward trends in the estimated lifetime-maximum wind speeds of the very strongest tropical cyclones (99th percentile) over each ocean basin, with the largest increase at this quantile occurring over the North Atlantic, although not all basins show statistically significant increases. Our results are qualitatively consistent with the hypothesis that as the seas warm, the ocean has more energy to convert to tropical cyclone wind. PMID:18769438

  5. Closed cyclone FCC catalyst separation method and apparatus

    SciTech Connect

    Haddad, J.H.; Owen, H.; Schatz, W.

    1991-08-13

    This patent describes a method of fluid catalytic cracking of a hydrocarbon feed. It comprises passing a mixture of the hydrocarbon feed and a catalyst as a suspension, through a riser conversion zone and cracking the hydrocarbon feed in the riser conversion zone; passing the mixture from the riser conversion zone through a first enclosed conduit to a riser cyclone separator; separating at least a portion of the catalyst from the mixture in the riser cyclone separator; passing gaseous effluent from the riser cyclone separator through a second conduit to a primary cyclone separator; passing cracked hydrocarbons, as an effluent from the primary cyclone separator, to a downstream fractionation apparatus; contacting the separated catalyst from the riser cyclone separator and from the primary cyclone separator in a stripping zone with a stripping gas to strip hydrocarbons from the separated catalyst; and removing stripping gas and stripped hydrocarbons removed from the catalyst by the stripping gas from the reactor vessel, and passing the separated catalyst from the stripping zone to a regeneration vessel.

  6. Scaling parameters for PFBC cyclone separator system analysis

    SciTech Connect

    Gil, A.; Romeo, L.M.; Cortes, C.

    1999-07-01

    Laboratory-scale cold flow models have been used extensively to study the behavior of many installations. In particular, fluidized bed cold flow models have allowed developing the knowledge of fluidized bed hydrodynamics. In order for the results of the research to be relevant to commercial power plants, cold flow models must be properly scaled. Many efforts have been made to understand the performance of fluidized beds, but up to now no attention has been paid in developing the knowledge of cyclone separator systems. CIRCE has worked on the development of scaling parameters to enable laboratory-scale equipment operating at room temperature to simulate the performance of cyclone separator systems. This paper presents the simplified scaling parameters and experimental comparison of a cyclone separator system and a cold flow model constructed and based on those parameters. The cold flow model has been used to establish the validity of the scaling laws for cyclone separator systems and permits detailed room temperature studies (determining the filtration effects of varying operating parameters and cyclone design) to be performed in a rapid and cost effective manner. This valuable and reliable design tool will contribute to a more rapid and concise understanding of hot gas filtration systems based on cyclones. The study of the behavior of the cold flow model, including observation and measurements of flow patterns in cyclones and diplegs will allow characterizing the performance of the full-scale ash removal system, establishing safe limits of operation and testing design improvements.

  7. Arabian Sea cyclone: Structure analysis using satellite data

    NASA Astrophysics Data System (ADS)

    Rafiq, Lubna; Blaschke, Thomas; Tajbar, Sapna

    2015-11-01

    Advances in earth observation technology over the last two decades have resulted in improved forecasting of various hydrometeorological-related disasters. In this study the severe tropical cyclone Gonu (2-7 June, 2007) was investigated using multi-sensor satellite data sets (i.e. AIRS, METEOSAT, MODIS and QSCAT data) to monitor its overall structure, position, intensity, and motion. A high sea surface temperature and warm core anomalies (at 200 hPa and above) with respect to the pressure minima in the central core were found to have influenced the pattern of development of the tropical cyclone. High relative humidity in the middle troposphere was aligned with temperature minima at 850 hPa and 700 hPa; high winds (above 120 knots) and closed pressure contours were observed during the intensification stage. A contour analysis of outgoing longwave radiation (OLR) provided an explanation for the direction of movement of the cyclone. The translational movement and velocities (ground speed) of the tropical cyclone were calculated using the surface pressure of the cyclone's central core. Statistical analyses revealed a strong correlation between the maximum wind speeds within the cyclone and various atmospheric parameters. We conclude with a discussion of the significance of these findings with regard to cyclone forecasting within the framework of early warning and disaster management.

  8. Multiple Satellite Observations of Cloud Cover in Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Booth, James F.; Posselt, Derek J.; van den Heever, Susan C.

    2013-01-01

    Using cloud observations from NASA Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, and CloudSat-CALIPSO, composites of cloud fraction in southern and northern hemisphere extratropical cyclones are obtained for cold and warm seasons between 2006 and 2010, to assess differences between these three data sets, and between summer and winter cyclones. In both hemispheres and seasons, over the open ocean, the cyclone-centered cloud fraction composites agree within 5% across the three data sets, but behind the cold fronts, or over sea ice and land, the differences are much larger. To supplement the data set comparison and learn more about the cyclones, we also examine the differences in cloud fraction between cold and warm season for each data set. The difference in cloud fraction between cold and warm season southern hemisphere cyclones is small for all three data sets, but of the same order of magnitude as the differences between the data sets. The cold-warm season contrast in northern hemisphere cyclone cloud fractions is similar for all three data sets: in the warm sector, the cold season cloud fractions are lower close to the low, but larger on the equator edge than their warm season counterparts. This seasonal contrast in cloud fraction within the cyclones warm sector seems to be related to the seasonal differences in moisture flux within the cyclones. Our analysis suggests that the three different data sets can all be used confidently when studying the warm sector and warm frontal zone of extratropical cyclones but caution should be exerted when studying clouds in the cold sector.

  9. Sea ice trends and cyclone activity in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Coggins, Jack; McDonald, Adrian; Rack, Wolfgang; Dale, Ethan

    2015-04-01

    Significant trends in the extent of Southern Hemisphere sea ice have been noted over the course of the satellite record, with highly variable trends between different seasons and regions. In this presentation, we describe efforts to assess the impact of cyclones on these trends. Employing a maximum cross-correlation method, we derive Southern Ocean ice-motion vectors from daily gridded SSMI 85.5 GHz brightness temperatures. We then derive a sea ice budget from the NASA-Team 25 km square daily sea ice concentrations. The budget quantifies the total daily change in sea ice area, and includes terms representing the effects of ice advection and divergence. A residual term represents the processes of rafting, ridging, freezing and thawing. We employ a cyclone tracking algorithm developed at the University of Canterbury to determine the timing, location, size and strength of Southern Hemisphere cyclones from mean sea-level pressure fields of the ERA-Interim reanalysis. We then form composites of the of sea ice budget below the location of cyclones. Unsurprisingly, we find that clockwise atmospheric flow around Southern Hemisphere cyclones exerts a strong influence on the movement of sea ice, an effect which is visible in the advection and divergence terms. Further, we assess the climatological importance of cyclones by comparing seasons of sea ice advance for periods with varying numbers of cyclones. This analysis is performed independently for each sea ice concentration pixel, thus affording us insight into the geographical importance of storm systems. We find that Southern Hemisphere sea ice extent is highly sensitive to the presence of cyclones in the periphery of the pack in the advance season. Notably, the sensitivity is particularly high in the northern Ross Sea, an area with a marked positive trend in sea ice extent. We discuss whether trends in cyclone activity in the Southern Ocean may have contributed to sea ice extent trends in this region.

  10. The contribution of tropical cyclones to rainfall in Mexico

    NASA Astrophysics Data System (ADS)

    Agustín Breña-Naranjo, J.; Pedrozo-Acuña, Adrián; Pozos-Estrada, Oscar; Jiménez-López, Salma A.; López-López, Marco R.

    Investigating the contribution of tropical cyclones to the terrestrial water cycle can help quantify the benefits and hazards caused by the rainfall generated from this type of hydro-meteorological event. Rainfall induced by tropical cyclones can enhance both flood risk and groundwater recharge, and it is therefore important to characterise its minimum, mean and maximum contributions to a region or country's water balance. This work evaluates the rainfall contribution of tropical depressions, storms and hurricanes across Mexico from 1998 to 2013 using the satellite-derived precipitation dataset TMPA 3B42. Additionally, the sensitivity of rainfall to other datasets was assessed: the national rain gauge observation network, real-time satellite rainfall and a merged product that combines rain gauges with non-calibrated space-borne rainfall measurements. The lower Baja California peninsula had the highest contribution from cyclonic rainfall in relative terms (∼40% of its total annual rainfall), whereas the contributions in the rest of the country showed a low-to-medium dependence on tropical cyclones, with mean values ranging from 0% to 20%. In quantitative terms, southern regions of Mexico can receive more than 2400 mm of cyclonic rainfall during years with significant TC activity. Moreover, (a) the number of tropical cyclones impacting Mexico has been significantly increasing since 1998, but cyclonic contributions in relative and quantitative terms have not been increasing, and (b) wind speed and rainfall intensity during cyclones are not highly correlated. Future work should evaluate the impacts of such contributions on surface and groundwater hydrological processes and connect the knowledge gaps between the magnitude of tropical cyclones, flood hazards, and economic losses.

  11. Tropical Cyclone Signatures in Atmospheric Convective Available Potential Energy

    NASA Astrophysics Data System (ADS)

    Studholme, Joshua; Gulev, Sergey

    2016-04-01

    Tropical cyclones play an important role in the climate system providing transports of energy and water vapor, forcing the ocean, and also affecting mid-latitude circulation phenomena. Tropical cyclone tracks experience strong interannual variability and in addition, longer term trend-like changes in all ocean basins. Analysis of recent historical data reveal a poleward shift in the locations of tropical cyclone tracks in both the Northern and Southern Hemispheres (Kossin et al. 2014, Nature, 509, 349-352). The physical consequences of these alterations are largely unconstrained. For example, the increasing encroachment of tropical cyclone activity into the extra-tropical environment presents a novel and still poorly understood paradigm for tropical-extratropical interactions. In this respect, the role that the atmospheric convective available potential energy (CAPE) plays in the dynamics of tropical cyclones is highly interesting. The two characteristic global-scale spatial patterns in CAPE are identified using EOF analysis. The first pattern shows an abundance of CAPE in the centre of the Pacific and corresponds to the El Nino Southern Oscillation. The second one is capturing positive CAPE anomalies in the oceanic tropics and negative anomalies over equatorial Africa. Associated with these buoyancy patterns, alterations in tropical cyclone activity occur in all basins forming both zonal and meridional patterns. Atmospheric buoyancy is the trigger for deep convection, and subsequently cyclone genesis. This is the mechanism of impact upon location at the start of cyclone tracks. It is found to have less impact upon where cyclones subsequently move, whether or not they undergo extratropical transition and when and where they experience lysis. It is shown that CAPE plays a critical role in the general circulation in the tropics which in turn is the larger steering context for embedded systems within the Walker and Hadley cells. So this lack of `latter life' impact

  12. Australian Tropical Cyclone Activity: Interannual Prediction and Climate Change

    NASA Astrophysics Data System (ADS)

    Nicholls, N.

    2014-12-01

    It is 35 years since it was first demonstrated that interannual variations in seasonal Australian region tropical cyclone (TC) activity could be predicted using simple indices of the El Niño - Southern Oscillation (ENSO). That demonstration (Nicholls, 1979), which was surprising and unexpected at the time, relied on only 25 years of data (1950-1975), but its later confirmation eventually led to the introduction of operational seasonal tropical cyclone activity. It is worth examining how well the ENSO-TC relationship has performed, over the period since 1975. Changes in observational technology, and even how a tropical cyclone is defined, have affected the empirical relationships between ENSO and seasonal activity, and ways to overcome this in forecasting seasonal activity will be discussed. Such changes also complicate the investigation of long-term trends in cyclone activity. The early work linked cyclone activity to local sea surface temperature thereby leading to the expectation that global warming would result in an increase in cyclone activity. But studies in the 1990s (eg., Nicholls et al., 1998) suggested that such an increase in activity was not occurring, neither in the Australian region nor elsewhere. Trends in Australian tropical cyclone activity will be discussed, and the confounding influence of factors such as changes in observational technologies will be examined. Nicholls, N. 1979. A possible method for predicting seasonal tropical cyclone activity in the Australian region. Mon. Weath. Rev., 107, 1221-1224 Nicholls, N., Landsea, C., and Gill, J., 1998. Recent trends in Australian region tropical cyclone activity. Meteorology and Atmospheric Physics, 65, 197-205.

  13. Emission spectroscopy for coal-fired cyclone furnace diagnostics.

    PubMed

    Wehrmeyer, Joseph A; Boll, David E; Smith, Richard

    2003-08-01

    Using a spectrograph and charge-coupled device (CCD) camera, ultraviolet and visible light emission spectra were obtained from a coal-burning electric utility's cyclone furnaces operating at either fuel-rich or fuel-lean conditions. The aim of this effort is to identify light emission signals that can be related to a cyclone furnace's operating condition in order to adjust its air/fuel ratio to minimize pollutant production. Emission spectra at the burner and outlet ends of cyclone furnaces were obtained. Spectra from all cyclone burners show emission lines for the trace elements Li, Na, K, and Rb, as well as the molecular species OH and CaOH. The Ca emission line is detected at the burner end of both the fuel-rich and fuel-lean cyclone furnaces but is not detected at the outlet ends of either furnace type. Along with the disappearance of Ca is a concomitant increase in the CaOH signal at the outlet end of both types of furnaces. The OH signal strength is in general stronger when viewing at the burner end rather than the exhaust end of both the fuel-rich and fuel-lean cyclone furnaces, probably due to high, non-equilibrium amounts of OH present inside the furnace. Only one molecular species was detected that could be used as a measure of air/fuel ratio: MgOH. It was detected at the burner end of fuel-rich cyclone furnaces but not detected in fuel-lean cyclone furnaces. More direct markers of air/fuel ratio, such as CO and O2 emission, were not detected, probably due to the generally weak nature of molecular emission relative to ambient blackbody emission present in the cyclone furnaces, even at ultraviolet wavelengths. PMID:14661846

  14. Turbine combustor with fuel nozzles having inner and outer fuel circuits

    DOEpatents

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2013-12-24

    A combustor cap assembly for a turbine engine includes a combustor cap and a plurality of fuel nozzles mounted on the combustor cap. One or more of the fuel nozzles would include two separate fuel circuits which are individually controllable. The combustor cap assembly would be controlled so that individual fuel circuits of the fuel nozzles are operated or deliberately shut off to provide for physical separation between the flow of fuel delivered by adjacent fuel nozzles and/or so that adjacent fuel nozzles operate at different pressure differentials. Operating a combustor cap assembly in this fashion helps to reduce or eliminate the generation of undesirable and potentially harmful noise.

  15. Small gas turbine combustor experimental study: Compliant metal/ceramic liner and performance evaluation

    NASA Technical Reports Server (NTRS)

    Acosta, W. A.; Norgren, C. T.

    1986-01-01

    Combustor research relating to the development of fuel efficient small gas turbine engines capable of meeting future commercial and military aviation needs is currently underway at NASA Lewis. As part of this combustor research, a basic reverse-flow combustor has been used to investigate advanced liner wall cooling techniques. Liner temperature, performance, and exhaust emissions of the experimental combustor utilizing compliant metal/ceramic liners were determined and compared with three previously reported combustors that featured: (1) splash film-cooled liner walls; (2) transpiration cooled liner walls; and (3) counter-flow film cooled panels.

  16. NASA/Pratt and Whitney experimental clean combustor program: Engine test results

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Fiorentino, A. J.; Greene, W.

    1977-01-01

    A two-stage vorbix (vortex burning and mixing) combustor and associated fuel system components were successfully tested in an experimental JT9D engine at steady-state and transient operating conditions, using ASTM Jet-A fuel. Full-scale JT9D experimental engine tests were conducted in a phase three aircraft experimental clean combustor program. The low-pollution combustor, fuel system, and fuel control concepts were derived from phase one and phase two programs in which several combustor concepts were evaluated, refined, and optimized in a component test rig. Significant pollution reductions were achieved with the combustor which meets the performance, operating, and installation requirements of the engine.

  17. Computations of soot and and NO sub x emissions from gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Srivatsa, S. K.

    1982-01-01

    An analytical program was conducted to compute the soot and NOx emissions from a combustor and the radiation heat transfer to the combustor walls. The program involved the formulation of an emission and radiation model and the incorporation of this model into the Garrett 3-D Combustor Perfomance Computer Program. Computations were performed for the idle, cruise, and take-off conditions of a JT8D can combustor. The predicted soot and NOx emissions and the radiation heat transfer to the combustor walls agree reasonably well with the limited experimental data available.

  18. Projecting global tropical cyclone economic damages with validation of tropical cyclone economic damage model

    NASA Astrophysics Data System (ADS)

    Iseri, Y.; Iwasaki, A.; Miyazaki, C.; Kanae, S.

    2014-12-01

    Tropical cyclones (TCs) sometimes cause serious damages to human society and thus possible changes of TC properties in the future have been concerned. In fact, the Fifth Assessment Report (AR5) by IPCC (Intergovernmental Panel on Climate Change) mentions likely increasing in intensity and rain rate of TCs. In addition, future change of socioeconomic condition (e.g. population growth) might worsen TC impacts in the future. Thereby, in this study, we developed regression models to estimate economic damages by TCs (hereafter TC damage model), and employed those models to project TC economic damages under several future climate and socioeconomic scenarios. We developed the TC damage models for each of 4 regions; western North Pacific, North American, North Indian, and Southern Hemisphere. The inputs for TC damage model are tropical cyclone central pressure, populations in the area exposed by tropical cyclone wind, and GDP (Gross Domestic Product) per capita. The TC damage models we firstly developed tended to overestimate very low damages and also underestimate very high damages. Thereby we modified structure of TC damage models to improve model performance, and then executed extensive validation of the model. The modified model presented better performance in estimating very low and high TC damages. After the modification and validation of the model, we determined the structure of TC damage models and projected TC economic damages. The result indicated increase in TC economic damage in global scale, while TC economic damage against world GDP would decrease in the future, which result is consistent with previous study.

  19. Coastal flooding by tropical cyclones and sea-level rise.

    PubMed

    Woodruff, Jonathan D; Irish, Jennifer L; Camargo, Suzana J

    2013-12-01

    The future impacts of climate change on landfalling tropical cyclones are unclear. Regardless of this uncertainty, flooding by tropical cyclones will increase as a result of accelerated sea-level rise. Under similar rates of rapid sea-level rise during the early Holocene epoch most low-lying sedimentary coastlines were generally much less resilient to storm impacts. Society must learn to live with a rapidly evolving shoreline that is increasingly prone to flooding from tropical cyclones. These impacts can be mitigated partly with adaptive strategies, which include careful stewardship of sediments and reductions in human-induced land subsidence. PMID:24305147

  20. Cyclone: A close air support aircraft for tomorrow

    NASA Technical Reports Server (NTRS)

    Cox, George; Croulet, Donald; Dunn, James; Graham, Michael; Ip, Phillip; Low, Scott; Vance, Gregg; Volckaert, Eric

    1991-01-01

    To meet the threat of the battlefield of the future, the U.S. ground forces will require reliable air support. To provide this support, future aircrews demand a versatile close air support aircraft capable of delivering ordinance during the day, night, or in adverse weather with pin-point accuracy. The Cyclone aircraft meets these requirements, packing the 'punch' necessary to clear the way for effective ground operations. Possessing anti-armor, missile, and precision bombing capability, the Cyclone will counter the threat into the 21st Century. Here, it is shown that the Cyclone is a realistic, economical answer to the demand for a capable close air support aircraft.

  1. Compact cyclone filter train for radiological and hazardous environments

    DOEpatents

    Bench, T.R.

    1998-04-28

    A compact cyclone filter train is disclosed for the removal of hazardous and radiological particles from a gaseous fluid medium. This filter train permits a small cyclone separator to be used in a very small space envelope due to the arrangement of the filter housing adjacent to the separator with the cyclone separator and the filters mounted on a plate. The entire unit will have a hoist connection at the center of gravity so that the entire unit including the separator, the filters, and the base can be lifted and repositioned as desired. 3 figs.

  2. Compact cyclone filter train for radiological and hazardous environments

    SciTech Connect

    Bench, T.R.

    1996-12-31

    A compact cyclone filter train is described for the removal of hazardous and radiological particles from a gaseous fluid medium which permits a small cyclone separator to be used in a very small space envelope due to the arrangement of the filter housing adjacent to the separator with the cyclone separators and the filters mounted on a plate. The entire unit will have a hoist connection at the center of gravity so that the entire unit including the separator, the filters, and the base can be lifted and repositioned as desired.

  3. Study of a novel rotary cyclone gas-solid separator

    NASA Astrophysics Data System (ADS)

    Ling, Zhiguang; Deng, Xingyong

    2003-08-01

    Based on the analytical study of the characteristics of fine particle motion in swirling flow, a new design idea on flow organization and construction aimed at increasing the positive radial flow in the separation chamber of the rotary cyclone separator (PRV type) was proposed. Experimental verification including the test of variation of separation efficiency and pressure loss with the first and secondary flow ratio show that this new type separator has higher and more stable separation efficiency in broad flow ratio range while the pressure loss is far below the conventional rotary cyclone separator and even comparable with that of simple cyclone separator

  4. Tropical Cyclone Kesiny northeast of Madagascar, Indian Ocean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Tropical Cyclone Kesiny can be seen over the Indian Ocean in this true color image taken on May 6, 2002, at 6:45 UTC by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. When this image was taken, the cyclone was several hundred miles east of northern Madagascar and packing winds of up to 120 kilometers (75 miles) per hour. As the cyclone continues its approach southwest into Madagascar, it is forecast to increase in intensity and generate sustained winds of up to 139 kilometers (86 miles) per hour. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  5. Compact cyclone filter train for radiological and hazardous environments

    DOEpatents

    Bench, Thomas R.

    1998-01-01

    A compact cyclone filter train for the removal of hazardous and radiologi particles from a gaseous fluid medium which permits a small cyclone separator to be used in a very small space envelope due to the arrangement of the filter housing adjacent to the separator with the cyclone separator and the filters mounted on a plate. The entire unit will have a hoist connection at the center of gravity so that the entire unit including the separator, the filters, and the base can be lifted and repositioned as desired.

  6. Tropical cyclone intensities from satellite microwave data

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Kidder, S. Q.

    1980-01-01

    Radial profiles of mean 1000 mb to 250 mb temperature from the Nimbus 6 scanning microwave spectrometer (SCAMS) were constructed around eight intensifying tropical storms in the western Pacific. Seven storms showed distinct inward temperature gradients required for intensification; the eighth displayed no inward gradient and was decaying 24 hours later. The possibility that satellite data might be used to forecast tropical cyclone turning motion was investigated using estimates obtained from Nimbus 6 SCAMS data tapes of the mean 1000 mb to 250 mb temperature field around eleven tropical storms in 1975. Analysis of these data show that for turning storms, in all but one case, the turn was signaled 24 hours in advance by a significant temperature gradient perpendicular to the storm's path, at a distance of 9 deg to 13 deg in front of the storm. A thresholding technique was applied to the North Central U.S. during the summer to estimate precipitation frequency. except

  7. Diurnal variations of tropical cyclone precipitationin

    NASA Astrophysics Data System (ADS)

    Wu, Q.

    2015-12-01

    Using 15 years of satellite-measured precipitation data and tropical cyclone (TC) information, this study estimates the diurnal variations of TC precipitation in its inner core and outer rainbands. It is found that for both weak (tropical storms to category 1 TCs) and strong (categories 2-5 TCs) storms over all six TC basins, the TC precipitation reaches its daily maximum in the morning, but the mean rain rate and diurnal variations are larger in the inner core than in the outer rainbands. With increasing radial distance from the TC center, the diurnal amplitude of precipitation decreases, and the peak time appears progressively later. The outward propagation of diurnal signals from the TC center dominates as an internal structure of the TC convective systems. For all basins examined, the diurnal precipitation maximum within the inner core of a strong storm occurs earlier than the maximum observed in non-TC precipitation; the same result is not found for the outer rainbands.

  8. An analysis of consensus and disagreement among different cyclone tracking methods on the climatology of cyclones in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Lionello, Piero; Trigo, Isabel F.; Gil, Victoria; Liberato, Margarida M. L.; Nissen, Katrin M.; Pinto, Joaquim G.; Raible, Christof C.; Reale, Marco; Tanzarella, Annalisa; Trigo, Ricardo M.; Ulbrich, Sven; Ulbrich, Uwe

    2016-04-01

    Small but intense features and frequent cyclogenesis characterize the Mediterranean storm track (a well-defined branch of the North Hemisphere storm track) and pose a challenge for cyclone detection and tracking methods. Because of this, the analysis of the climatology of cyclones in the Mediterranean region is an ideal case study for investigating consensus and disagreement among methods. To identify robust features and sources of disagreement is important for giving the correct weight to the results of several studies that considered trends and future change of cyclone number and intensity in the Mediterranean region. In this study a set of 14 cyclone detection and tracking methods has been used and applied to the ERA-Interim dataset for the period 1979-2008. Results show large differences in actual cyclone numbers among different methods, but a substantial consensus on location, annual cycle and trends of cyclone tracks. In general, methods agree on cyclogenesis areas, such as the north-western Mediterranean, North Africa, north shore of the Levantine basin, as well as the seasonality of their maxima. Disagreement among methods is largest when counting weak and slow cyclones. It is substantially reduced if cyclone numbers are transformed to a dimensionless index, which helps to focus on sign and significance of trends by separating information on time behaviours and spatial structures from the differences of mean values and interannual variances. Results show significant negative trends in spring and positive trends in summer, which compensate each other at annual scale, so that there is no significant long-term trend in total cyclone numbers in the Mediterranean basin in the 1979-2008 period.

  9. Hypersonic research engine project. Phase 2: Some combustor test results of NASA aerothermodynamic integration model

    NASA Technical Reports Server (NTRS)

    Sun, Y. H.; Gaede, A. E.; Sainio, W. C.

    1975-01-01

    Combustor test results of the NASA Aerothermodynamic Integration Model are presented of a ramjet engine developed for operation between Mach 3 and 8. Ground-based and flight experiments which provide the data required to advance the technology of hypersonic air-breathing propulsion systems as well as to evaluate facility and testing techniques are described. The engine was tested with synthetic air at Mach 5, 6, and 7. The hydrogen fuel was heated to 1500 R prior to injection to simulate a regeneratively cooled system. Combustor efficiencies up to 95 percent at Mach 6 were achieved. Combustor process in terms of effectiveness, pressure integral factor, total pressure recovery and Crocco's pressure-area relationship are presented and discussed. Interactions between inlet-combustor, combustor stages, combustor-nozzle, and the effects of altitude, combustor step, and struts are observed and analyzed.

  10. Non-reacting flow visualization of supersonic combustor based on cavity and cavity-strut flameholder

    NASA Astrophysics Data System (ADS)

    Zhao, Yanhui; Liang, Jianhan; Zhao, Yuxin

    2016-04-01

    Nano-particle planer laser scattering and particle image velocimetry technology are employed to observe the flow field of scramjet combustors based on cavity and cavity-strut flameholder. Density field and velocity distribution inside combustors are obtained. Mainstream fluid enters into cavity nearby side wall in experimental observation because side wall shock waves interact with bottom wall boundary layer. Cavity fluid is entrained into mainstream in the middle of combustor meanwhile. Flow past cavity displays obvious three dimensional characteristics in both combustors. But cavity-strut combustor displays asymmetrical flow field because of strut configuration. Mass exchange between mainstream and cavity fluid is evaluated by statistic mass flow rate into cavity. Mass flow rate near side wall is raised to 6.62 times of the value in the middle of cavity combustor while it is 5.1 times in cavity-strut combustor. Further study is needed to injection strategies and realistic flow characteristics on condition of combustion.

  11. MUNICIPAL SOLID WASTE (MSW) COMBUSTOR ASH DEMONSTRATION PROGRAM - "THE BOATHOUSE"

    EPA Science Inventory

    The report presents the results of a research program designed to examine the engineering and environmental acceptability of using municipal solid waste (MSW) combustor ash as an aggregate substitute in the manufacture of construction quality cement blocks. 50 tons of MSW combust...

  12. DEVELOPMENT OF A VORTEX CONTAINMENT COMBUSTOR FOR COAL COMBUSTION SYTEMS

    EPA Science Inventory

    The report describes the development of a vortex containment combustor (VCC) for coal combustion systems, designed to solve major problems facing the conversion of oil- and gas-fired boilers to coal (e.g., derating, inorganic impurities in coal, and excessive formation of NOx and...

  13. NASA Lewis Research Center's Preheated Combustor and Materials Test Facility

    NASA Technical Reports Server (NTRS)

    Nemets, Steve A.; Ehlers, Robert C.; Parrott, Edith

    1995-01-01

    The Preheated Combustor and Materials Test Facility (PCMTF) in the Engine Research Building (ERB) at the NASA Lewis Research Center is one of two unique combustor facilities that provide a nonvitiated air supply to two test stands, where the air can be used for research combustor testing and high-temperature materials testing. Stand A is used as a research combustor stand, whereas stand B is used for cyclic and survivability tests of aerospace materials at high temperatures. Both stands can accommodate in-house and private industry research programs. The PCMTF is capable of providing up to 30 lb/s (pps) of nonvitiated, 450 psig combustion air at temperatures ranging from 850 to 1150 g F. A 5000 gal tank located outdoors adjacent to the test facility can provide jet fuel at a pressure of 900 psig and a flow rate of 11 gal/min (gpm). Gaseous hydrogen from a 70,000 cu ft (CF) tuber is also available as a fuel. Approximately 500 gpm of cooling water cools the research hardware and exhaust gases. Such cooling is necessary because the air stream reaches temperatures as high as 3000 deg F. The PCMTF provides industry and Government with a facility for studying the combustion process and for obtaining valuable test information on advanced materials. This report describes the facility's support systems and unique capabilities.

  14. Acoustic modal analysis of a full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.

    1982-01-01

    An acoustic modal decomposition of the measured pressure field in a full scale annular combustor installed in a ducted test rig is described. The modal analysis, utilizing a least squares optimization routine, is facilitated by the assumption of randomly occurring pressure disturbances which generate equal amplitude clockwise and counter-clockwise pressure waves, and the assumption of statistical independence between modes. These assumptions are fully justified by the measured cross spectral phases between the various measurement points. The resultant modal decomposition indicates that higher order modes compose the dominant portion of the combustor pressure spectrum in the range of frequencies of interest in core noise studies. A second major finding is that, over the frequency range of interest, each individual mode which is present exists in virtual isolation over significant portions of the spectrum. Finally, a comparison between the present results and a limited amount of data obtained in an operating turbofan engine with the same combustor is made. The comparison is sufficiently favorable to warrant the conclusion that the structure of the combustor pressure field is preserved between the component facility and the engine.

  15. EFFECT OF SOOT AND COPPER COMBUSTOR DEPOSITS ON DIOXIN EMISSIONS

    EPA Science Inventory

    An experimental study was conducted to investigate the effects of residual soot and copper combustor deposits on the formation of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) during the combustion of a chlorinated waste. In a bench-scale set...

  16. DEVELOPMENT OF GOOD COMBUSTION PRACTICE FOR MUNICIPAL WASTE COMBUSTORS

    EPA Science Inventory

    The paper summarizes the rationale for EPA's good combustion practice (GCP) strategy. OTE: The EPA is developing new air pollution rules for all new and existing municipal waste combustors (MWCs), rules requiring all MWCs to use GCP. The goals of GCP are to maximize furnace destr...

  17. Using the NASA GRC Sectored-One-Dimensional Combustor Simulation

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Mehta, Vishal R.

    2014-01-01

    The document is a user manual for the NASA GRC Sectored-One-Dimensional (S-1-D) Combustor Simulation. It consists of three sections. The first is a very brief outline of the mathematical and numerical background of the code along with a description of the non-dimensional variables on which it operates. The second section describes how to run the code and includes an explanation of the input file. The input file contains the parameters necessary to establish an operating point as well as the associated boundary conditions (i.e. how it is fed and terminated) of a geometrically configured combustor. It also describes the code output. The third section describes the configuration process and utilizes a specific example combustor to do so. Configuration consists of geometrically describing the combustor (section lengths, axial locations, and cross sectional areas) and locating the fuel injection point and flame region. Configuration requires modifying the source code and recompiling. As such, an executable utility is included with the code which will guide the requisite modifications and insure that they are done correctly.

  18. Performance characteristics of a slagging gasifier for MHD combustor systems

    NASA Technical Reports Server (NTRS)

    Smith, K. O.

    1979-01-01

    The performance of a two stage, coal combustor concept for magnetohydrodynamic (MHD) systems was investigated analytically. The two stage MHD combustor is comprised of an entrained flow, slagging gasifier as the first stage, and a gas phase reactor as the second stage. The first stage was modeled by assuming instantaneous coal devolatilization, and volatiles combustion and char gasification by CO2 and H2O in plug flow. The second stage combustor was modeled assuming adiabatic instantaneous gas phase reactions. Of primary interest was the dependence of char gasification efficiency on first stage particle residence time. The influence of first stage stoichiometry, heat loss, coal moisture, coal size distribution, and degree of coal devolatilization on gasifier performance and second stage exhaust temperature was determined. Performance predictions indicate that particle residence times on the order of 500 msec would be required to achieve gasification efficiencies in the range of 90 to 95 percent. The use of a finer coal size distribution significantly reduces the required gasifier residence time for acceptable levels of fuel use efficiency. Residence time requirements are also decreased by increased levels of coal devolatilization. Combustor design efforts should maximize devolatilization by minimizing mixing times associated with coal injection.

  19. Assessment, development and application of combustor aerothermal models

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Mongia, H. C.; Mularz, E. J.

    1988-01-01

    The gas turbine combustion system design and development effort is an engineering exercise to obtain an acceptable solution to the conflicting design trade-offs between combustion efficiency, gaseous emissions, smoke, ignition, restart, lean blowout, burner exit temperature quality, structural durability, and life cycle cost. For many years, these combustor design trade-offs have been carried out with the help of fundamental reasoning and extensive component and bench testing, backed by empirical and experience correlations. Recent advances in the capability of computational fluid dynamics codes have led to their application to complex 3-D flows such as those in the gas turbine combustor. A number of U.S. Government and industry sponsored programs have made significant contributions to the formulation, development, and verification of an analytical combustor design methodology which will better define the aerothermal loads in a combustor, and be a valuable tool for design of future combustion systems. The contributions made by NASA Hot Section Technology (HOST) sponsored Aerothermal Modeling and supporting programs are described.

  20. Advanced catalytic combustors for low pollutant emissions, phase 1

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.

    1979-01-01

    The feasibility of employing the known attractive and distinguishing features of catalytic combustion technology to reduce nitric oxide emissions from gas turbine engines during subsonic, stratospheric cruise operation was investigated. Six conceptual combustor designs employing catalytic combustion were defined and evaluated for their potential to meet specific emissions and performance goals. Based on these evaluations, two parallel-staged, fixed-geometry designs were identified as the most promising concepts. Additional design studies were conducted to produce detailed preliminary designs of these two combustors. Results indicate that cruise nitric oxide emissions can be reduced by an order of magnitude relative to current technology levels by the use of catalytic combustion. Also, these combustors have the potential for operating over the EPA landing-takeoff cycle and at cruise with a low pressure drop, high combustion efficiency and with a very low overall level of emission pollutants. The use of catalytic combustion, however, requires advanced technology generation in order to obtain the time-temperature catalytic reactor performance and durability required for practical aircraft engine combustors.

  1. LEVEL 2 CHEMICAL ANALYSIS OF FLUIDIZED-BED COMBUSTOR SAMPLES

    EPA Science Inventory

    The report gives results of a Level 1 data evaluation and prioritization and the Level 2 environmental assessment (EA) chemical data acquired on a set of fluidized-bed combustor (FBC) particulate samples. The Level 2 analysis followed the approach described in 'Approach to Level ...

  2. Acoustic modal analysis of a full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.

    1983-01-01

    An acoustic modal decomposition of the measured pressure field in a full scale annular combustor installed in a ducted test rig is described. The modal analysis, utilizing a least squares optimization routine, is facilitated by the assumption of randomly occurring pressure disturbances which generate equal amplitude clockwise and counter-clockwise pressure waves, and the assumption of statistical independence between modes. These assumptions are fully justified by the measured cross spectral phases between the various measurement points. The resultant modal decomposition indicates that higher order modes compose the dominant portion of the combustor pressure spectrum in the range of frequencies of interest in core noise studies. A second major finding is that, over the frequency range of interest, each individual mode which is present exists in virtual isolation over significant portions of the spectrum. Finally, a comparison between the present results and a limited amount of data obtained in an operating turbofan engine with the same combustor is made. The comparison is sufficiently favorable to warrant the conclusion that the structure of the combustor pressure field is preserved between the component facility and the engine. Previously announced in STAR as N83-21896

  3. Catalytic combustor for integrated gasification combined cycle power plant

    DOEpatents

    Bachovchin, Dennis M.; Lippert, Thomas E.

    2008-12-16

    A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

  4. CFD analysis of jet mixing in low NOx flametube combustors

    NASA Technical Reports Server (NTRS)

    Talpallikar, M. V.; Smith, C. E.; Lai, M. C.; Holdeman, J. D.

    1991-01-01

    The Rich-burn/Quick-mix/Lean-burn (RQL) combustor was identified as a potential gas turbine combustor concept to reduce NO(x) emissions in High Speed Civil Transport (HSCT) aircraft. To demonstrate reduced NO(x) levels, cylindrical flametube versions of RQL combustors are being tested at NASA Lewis Research Center. A critical technology needed for the RQL combustor is a method of quickly mixing by-pass combustion air with rich-burn gases. Jet mixing in a cylindrical quick-mix section was numerically analyzed. The quick-mix configuration was five inches in diameter and employed twelve radial-inflow slots. The numerical analyses were performed with an advanced, validated 3-D Computational Fluid Dynamics (CFD) code named REFLEQS. Parametric variation of jet-to-mainstream momentum flux ratio (J) and slot aspect ratio was investigated. Both non-reacting and reacting analyses were performed. Results showed mixing and NO(x) emissions to be highly sensitive to J and slot aspect ratio. Lowest NO(x) emissions occurred when the dilution jet penetrated to approximately mid-radius. The viability of using 3-D CFD analyses for optimizing jet mixing was demonstrated.

  5. PERFORMANCE OF EMISSIONS CONTROL SYSTEMS ON MUNICIPAL WASTE COMBUSTORS

    EPA Science Inventory

    The paper reports results of several EPA-supported field evaluations of data on gaseous pollutant emissions from modern municipal waste combustors/incinerators and emissions control by flue gas cleaning systems. The results are presented in terms of acid gas (HCl and SO2), trace ...

  6. DEVELOPMENT OF A VORTEX CONTAINMENT COMBUSTOR FOR COAL COMBUSTION SYSTEMS

    EPA Science Inventory

    The report describes the development of a vortex containment combustor (VCC) for coal combustion systems, designed to solve major problems facing the conversion of oil- and gas-fired boilers to coal (e.g., derating, inorganic impurities in coal, and excessive formation of NOx and...

  7. Coanda injection system for axially staged low emission combustors

    DOEpatents

    Evulet, Andrei Tristan; Varatharajan, Balachandar; Kraemer, Gilbert Otto; ElKady, Ahmed Mostafa; Lacy, Benjamin Paul

    2012-05-15

    The low emission combustor includes a combustor housing defining a combustion chamber having a plurality of combustion zones. A liner sleeve is disposed in the combustion housing with a gap formed between the liner sleeve and the combustor housing. A secondary nozzle is disposed along a centerline of the combustion chamber and configured to inject a first fluid comprising air, at least one diluent, fuel, or combinations thereof to a downstream side of a first combustion zone among the plurality of combustion zones. A plurality of primary fuel nozzles is disposed proximate to an upstream side of the combustion chamber and located around the secondary nozzle and configured to inject a second fluid comprising air and fuel to an upstream side of the first combustion zone. The combustor also includes a plurality of tertiary coanda nozzles. Each tertiary coanda nozzle is coupled to a respective dilution hole. The tertiary coanda nozzles are configured to inject a third fluid comprising air, at least one other diluent, fuel, or combinations thereof to one or more remaining combustion zones among the plurality of combustion zones.

  8. COMBUSTION CONTROL OF ORGANIC EMISSIONS FROM MUNICIPAL WASTE COMBUSTORS

    EPA Science Inventory

    More than two decades ago, researchers identified benzo(a)pyrene and other organic species in the emissions from incineration of solid waste. Chlorinated dibenzo-p-dioxins and-furans (CDD/CDF) were first detected in municipal waste combustor (MWC) emissions in 1977. Since then, C...

  9. Rectangular capture area to circular combustor scramjet engine

    NASA Technical Reports Server (NTRS)

    Pinckney, S. Z.

    1978-01-01

    A new concept for a scramjet engine design was presented. The inlet transformed a rectangular shaped capture stream into a cross section which was almost circular in shape at the inlet throat or combustor entrance. The inlet inner surface was designed by the method of streamline tracing. The high pressure and temperature regions of the combustor were almost circular in shape and thus the benefits of hoop stresses in relation to structural weight could be utilized to reduce combustor and engine weights. The engine had a center body consisting of a 20 deg included angle cone, followed by a constant diameter cylinder. Fuel injection struts were arranged in a radial array and were swept 54 deg from the center body to the inlet inner surface and had values of length to maximum average thickness between 5.6and 6.6 which were felt to be structurally reasonable. Combustor wetted areas were shown to be less than those of the present fully rectangular engine concept.

  10. MUNICIPAL SOLID WASTE COMBUSTOR ASH DEMONSTRATION PROGRAM - "THE BOATHOUSE"

    EPA Science Inventory

    The report presents the results of a research program designed to examine the engineering and environmental acceptability of using municipal solid waste (MSW) combustor ash as an aggregate substitute in the manufacture of construction quality cement blocks. 50 tons of MSW combust...

  11. Fluidized bed combustor and coal gun-tube assembly therefor

    DOEpatents

    Hosek, William S.; Garruto, Edward J.

    1984-01-01

    A coal supply gun assembly for a fluidized bed combustor which includes heat exchange elements extending above the bed's distributor plate assembly and in which the gun's nozzles are disposed relative to the heat exchange elements to only discharge granular coal material between adjacent heat exchange elements and in a path which is substantially equidistant from adjacent heat exchange elements.

  12. Transient/structural analysis of a combustor under explosive loads

    NASA Technical Reports Server (NTRS)

    Gregory, Peyton B.; Holland, Anne D.

    1992-01-01

    The 8-Foot High Temperature Tunnel (HTT) at NASA Langley Research Center is a combustion-driven blow-down wind tunnel. A major potential failure mode that was considered during the combustor redesign was the possibility of a deflagration and/or detonation in the combustor. If a main burner flame-out were to occur, then unburned fuel gases could accumulate and, if reignited, an explosion could occur. An analysis has been performed to determine the safe operating limits of the combustor under transient explosive loads. The failure criteria was defined and the failure mechanisms were determined for both peak pressures and differential pressure loadings. An overview of the gas dynamics analysis was given. A finite element model was constructed to evaluate 13 transient load cases. The sensitivity of the structure to the frequency content of the transient loading was assessed. In addition, two closed form dynamic analyses were conducted to verify the finite element analysis. It was determined that the differential pressure load or thrust load was the critical load mechanism and that the nozzle is the weak link in the combustor system.

  13. Hydrogen Fuel Capability Added to Combustor Flametube Rig

    NASA Technical Reports Server (NTRS)

    Frankenfield, Bruce J.

    2003-01-01

    Facility capabilities have been expanded at Test Cell 23, Research Combustor Lab (RCL23) at the NASA Glenn Research Center, with a new gaseous hydrogen fuel system. The purpose of this facility is to test a variety of fuel nozzle and flameholder hardware configurations for use in aircraft combustors. Previously, this facility only had jet fuel available to perform these various combustor flametube tests. The new hydrogen fuel system will support the testing and development of aircraft combustors with zero carbon dioxide (CO2) emissions. Research information generated from this test rig includes combustor emissions and performance data via gas sampling probes and emissions measuring equipment. The new gaseous hydrogen system is being supplied from a 70 000-standard-ft3 tube trailer at flow rates up to 0.05 lb/s (maximum). The hydrogen supply pressure is regulated, and the flow is controlled with a -in. remotely operated globe valve. Both a calibrated subsonic venturi and a coriolis mass flowmeter are used to measure flow. Safety concerns required the placement of all hydrogen connections within purge boxes, each of which contains a small nitrogen flow that is vented past a hydrogen detector. If any hydrogen leaks occur, the hydrogen detectors alert the operators and automatically safe the facility. Facility upgrades and modifications were also performed on other fluids systems, including the nitrogen gas, cooling water, and air systems. RCL23 can provide nonvitiated heated air to the research combustor, up to 350 psig at 1200 F and 3.0 lb/s. Significant modernization of the facility control systems and the data acquisition systems was completed. A flexible control architecture was installed that allows quick changes of research configurations. The labor-intensive hardware interface has been removed and changed to a software-based system. In addition, the operation of this facility has been greatly enhanced with new software programming and graphic operator interface

  14. Parameters of flow in cyclonic elements of separator battery

    NASA Astrophysics Data System (ADS)

    Vasilevskiy, Mihail; Zyatikov, Pavel; Roslyak, Alecsander; Shishmina, Ludmila

    2014-08-01

    Peculiarities of separation processes in cyclone battery separators have been considered on liquid and solid disperse phases. The difference in efficiency between individual and battery liquid separators is slight .Concentration of disperse liquid phase in refined gases is 0.1-0.3 kg/kg. In operating on dry gases with abundance of dust the separation condition changes due to peculiarities of disperse phase behavior from solid particles .Flow parameter assessments in cyclones by different correlation of flow areas at the input and output have been conducted. Differences of flow parameters in conical and cylindrical cyclones have been explored. The analysis and causes of unsatisfied work of industrial battery separator with cyclone elements have been carried out.

  15. Tropical cyclone motion and recurvature in TCM-90. Master's thesis

    SciTech Connect

    Fitzpatrick, M.E.

    1992-01-01

    Rawinsonde and satellite data collected during the Tropical Cyclone Motion (TCM90) experiment, which was conducted during the summer of 1990 in the Western North pacific, is used to examine tropical cyclone steering motion and recurvature. TCM-90 composite results are compared with those found in a composite study using twenty-one years (1957-77) of Western North Pacific rawinsonde data during the same August-September period and also for all months during this same 21-year period. Both data sets indicate that the composite deep-layer-mean (850-300 mb) winds 5-7 deg from the cyclone center provide an important component of the steering flow for tropical cyclones. However, despite the rawinsonde data enhancements of the TCM-90 experiment, data limitations prevented an accurate observation of steering flow conditions at individual time periods or for the average of only 5-10 time periods when composited together.

  16. NASA Sees Heavy Rainfall, Hot Towers in Tropical Cyclone Nathan

    NASA Video Gallery

    NASA-JAXA's Tropical Rainfall Measuring Mission or TRMM satellite showed that the heaviest rainfall occurring in Tropical Cyclone Nathan on March 18 at 0758 UTC (3:58 a.m. EDT) was falling at a rat...

  17. Virtual cyclone: A device for nonimpact particle separation

    SciTech Connect

    Torczynski, J.R.; Rader, D.J.

    1997-06-01

    The virtual cyclone, a geometrically uncomplicated device that separates particles from a flow stream by nonimpact particle separation, is discussed. In contradistinction to a cyclone, the particle-laden flow is deflected from its original direction by a wall that curves away from the original flow direction, rather than into it. The computational fluid dynamics code FIDAP (Fluid Dynamics International) is used to perform two-dimensional fluid-flow and particle-motion calculations for a representative device geometry. Flow patterns are found to be insensitive to Reynolds number for values above 100 regardless of whether the flow is laminar or turbulent. Particle-motion calculations for laminar-flow cases indicate that the virtual cyclone geometry examined accomplishes nonimpact particle separation. An approximate analytical relation describing virtual cyclone nonimpact particle separation is developed and found to be in agreement with the numerical simulations. 26 refs., 6 figs., 3 tabs.

  18. Trends in Northern Hemisphere surface cyclone frequency and intensity

    USGS Publications Warehouse

    McCabe, G.J.; Clark, M.P.; Serreze, M.C.

    2001-01-01

    One of the hypothesized effects of global warming from increasing concentrations of greenhouse gases is a change in the frequency and/or intensity of extratropical cyclones. In this study, winter frequencies and intensities of extratropical cyclones in the Northern Hemisphere for the period 1959-97 are examined to determine if identifiable trends are occurring. Results indicate a statistically significant decrease in midlatitude cyclone frequency and a significant increase in high-latitude cyclone frequency. In addition, storm intensity has increased in both the high and midlatitudes. The changes in storm frequency correlate with changes in winter Northern Hemisphere temperature and support hypotheses that global warming may result in a northward shift of storm tracks in the Northern Hemisphere.

  19. NASA Sees Heavy Rain in Arabian Sea Tropical Cyclone

    NASA Video Gallery

    On June 29, GPM showed Tropical Cyclone 02A had a few powerful convective thunderstorms southwest of the center of circulation were dropping rain at the extreme rate of over 209 mm (8.2 inches) per...

  20. TRMM Sees Rainfall Totals from Tropical Cyclone Guito

    NASA Video Gallery

    This animation of rainfall gathered from February 11-19, 2014 by NASA's TRMM satellite revealed that Tropical Cyclone Guito produced as much as 16.9 inches/430 mm of rainfall in the center of the M...

  1. Rainfall Totals from the Tropical Cyclones Passing Over Philippines

    NASA Video Gallery

    Rainfall totals from the TRMM satellite of all tropical cyclones that passed through the Philippines from January through November 11, 2013. Red indicated areas where rainfall totals were greater t...

  2. Tropical Cyclone Mahasen Rain Moving Into Bay Of Bengal

    NASA Video Gallery

    This animated TRMM Multisatellite Precipitation Analysis shows the rainfall that occurred with Tropical Cyclone Mahasen during the week of May 6 through 13, 2013 as it moved through the Bay of Beng...

  3. Low Emissions RQL Flametube Combustor Component Test Results

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.; Chang, Clarence T.

    2001-01-01

    This report describes and summarizes elements of the High Speed Research (HSR) Low Emissions Rich burn/Quick mix/Lean burn (RQL) flame tube combustor test program. This test program was performed at NASA Glenn Research Center circa 1992. The overall objective of this test program was to demonstrate and evaluate the capability of the RQL combustor concept for High Speed Civil Transport (HSCT) applications with the goal of achieving NOx emission index levels of 5 g/kg-fuel at representative HSCT supersonic cruise conditions. The specific objectives of the tests reported herein were to investigate component performance of the RQL combustor concept for use in the evolution of ultra-low NOx combustor design tools. Test results indicated that the RQL combustor emissions and performance at simulated supersonic cruise conditions were predominantly sensitive to the quick mixer subcomponent performance and not sensitive to fuel injector performance. Test results also indicated the mixing section configuration employing a single row of circular holes was the lowest NOx mixer tested probably due to the initial fast mixing characteristics of this mixing section. However, other quick mix orifice configurations such as the slanted slot mixer produced substantially lower levels of carbon monoxide emissions most likely due to the enhanced circumferential dispersion of the air addition. Test results also suggested that an optimum momentum-flux ratio exists for a given quick mix configuration. This would cause undesirable jet under- or over-penetration for test conditions with momentum-flux ratios below or above the optimum value. Tests conducted to assess the effect of quick mix flow area indicated that reduction in the quick mix flow area produced lower NOx emissions at reduced residence time, but this had no effect on NOx emissions measured at similar residence time for the configurations tested.

  4. Extratropical cyclone classification and its use in climate studies

    NASA Astrophysics Data System (ADS)

    Catto, J. L.

    2016-06-01

    Extratropical cyclones have long been known to be important for midlatitude weather. It is therefore important that our current state-of-the-art climate models are able to realistically represent these features, in order that we can have confidence in how they are projected to change in a warming climate. Despite the observation that these cyclones are extremely variable in their structure and features, there have, over the years, been numerous attempts to classify or group them. Such classifications can provide insight into the different cloud structures, airflows, and dynamical forcing mechanisms within the different cyclone types. This review collects and details as many classification techniques as possible, and may therefore act as a reference guide to classifications. These classifications offer the opportunity to improve the way extratropical cyclone evaluation in climate models is currently done by giving more insight into the dynamical and physical processes that occur in climate models (rather than just evaluating the mean state over a broad region as is often done). Examples of where these ideas have been used, or could be used, are reviewed. Finally, the potential impacts of future climate changes on extratropical cyclones are detailed. The ways in which the classification techniques could improve our understanding of future changes in extratropical cyclones and their impacts are given.

  5. Waves off Gopalpur, northern Bay of Bengal during Cyclone Phailin

    NASA Astrophysics Data System (ADS)

    Amrutha, M. M.; Sanil Kumar, V.; Anoop, T. R.; Balakrishnan Nair, T. M.; Nherakkol, A.; Jeyakumar, C.

    2014-09-01

    The wave statistical parameters during Cyclone Phailin which crossed the northern Bay of Bengal are described based on the Directional Waverider buoy-measured wave data from 8 to 13 October 2013. On 12 October 2013, the cyclone passed within 70 km of the Waverider buoy location with a wind speed of 59.2 m s-1 (115 knots), and during this period, a maximum significant wave height of 7.3 m and a maximum wave height of 13.5 m were measured at 50 m water depth. Eight freak wave events are observed during the study period. The ratio of the maximum wave height to significant wave height recorded is found to be higher than the theoretical value and the ratio of the crest height to wave height during the cyclone was 0.6 to 0.7. The characteristics of the wave spectra before and after the cyclone is studied and found that the high-frequency face of the wave spectrum is proportional to f-3 before the cyclone and is between f-4 and f-5 during the cyclone period.

  6. Characterization of flash floods induced by tropical cyclones in Mexico

    NASA Astrophysics Data System (ADS)

    Real-Rangel, R. A.; Pedrozo-Acuña, A.

    2015-12-01

    This study investigates the role of tropical cyclones (hurricanes, tropical storms and depressions) in the generation of flash floods in Mexico. For this, a severity assessment during several cyclonic events for selected catchments was estimated through the evaluation of a flash flood index recently proposed by Kim and Kim (2014). This classification is revised, considering the forcing and areal extent of torrential rainfall generated by the incidence of tropical cyclones on the studied catchments, enabling the further study of the flood regime in catchments located in tropical regions. The analysis incorporates characteristics of the flood hydrographs such as the hydrograph shape (rising curve gradient, magnitude of the peak discharge and flood response time) in order to identify flash-flood prone areas. Results show the Qp-A scaling relationship in catchments that were impacted by tropical cyclones, enabling their comparison against floods generated by other meteorological events (e.g. convective and orographic storms). Results will inform on how peak flows relationships are modified by cyclonic events and highlighting the contribution of cyclonic precipitation to flash-flooding susceptibility.

  7. Low emissions combustor development for an industrial gas turbine to utilize LCV fuel gas

    SciTech Connect

    Kelsall, G.J.; Smith, M.A. . Coal Research Establishment); Cannon, M.F. . Aero and Technology Products)

    1994-07-01

    Advanced coal-based power generation systems such as the British Coal Topping Cycle offer the potential for high-efficiency electricity generation with minimum environmental impact. An important component of the Topping cycle program is the gas turbine, for which development of a combustion system to burn low calorific value coal derived fuel gas, at a turbine inlet temperature of 1,260 C (2,300 F), with minimum pollutant emissions, is a key R and D issue. A phased combustor development program is underway burning low calorific value fuel gas (3.6--4.1 MJ/m[sup 3]) with low emissions, particularly NO[sub x] derived from fuel-bound nitrogen. The first phase of the combustor development program has now been completed using a generic tubo-annular, prototype combustor design. Tests were carried out at combustor loading and Mach numbers considerably greater than the initial design values. Combustor performance at these conditions was encouraging. The second phase of the program is currently in progress. This will assess, initially, an improved variant of the prototype combustor operating at conditions selected to represent a particular medium sized industrial gas turbine. This combustor will also be capable of operating using natural gas as an auxiliary fuel, to suite the start-up procedure for the Topping Cycle. The paper presents the Phase 1 test program results for the prototype combustor. Design of the modified combustor for Phase 2 of the development program is discussed, together with preliminary combustor performance results.

  8. Adaptive Controls Method Demonstrated for the Active Suppression of Instabilities in Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2004-01-01

    An adaptive feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even the downstream turbine blades. This can significantly decrease the safe operating lives of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors under NASA's Propulsion and Power Program. This control methodology has been developed and tested in a partnership of the NASA Glenn Research Center, Pratt & Whitney, United Technologies Research Center, and the Georgia Institute of Technology. Initial combustor rig testing of the controls algorithm was completed during 2002. Subsequently, the test results were analyzed and improvements to the method were incorporated in 2003, which culminated in the final status of this controls algorithm. This control methodology is based on adaptive phase shifting. The combustor pressure oscillations are sensed and phase shifted, and a high-frequency fuel valve is actuated to put pressure oscillations into the combustor to cancel pressure oscillations produced by the instability.

  9. The Intensification of Sheared Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Nguyen, Leon Trungduong

    Environmental vertical wind shear has been shown to have a generally detrimental impact on tropical cyclone (TC) intensity change. However, many cases of rapidly intensifying (RI) sheared TCs have been observed, and TCs in moderate (5-10 m s-1) shear often have the largest intensity forecast errors. Thus, advancing the understanding of TC-shear interactions is vital to improving TC intensity forecasts, which have not seen much improvement over the past few decades. This dissertation employs both observational and high-resolution numerical modeling approaches to investigate how some TCs are able to resist shear and intensify. The rapid intensification of Hurricane Irene (1999) was studied using observations, while the short-term RI of Tropical Storm Gabrielle (2001) was simulated using the Weather Research and Forecast (WRF) model run at 1-km horizontal resolution. Both storms exhibited a downshear-left vortex tilt and a marked azimuthal wavenumber-1 convective asymmetry. However, the azimuthally averaged diabatic heating also increased, suggesting that TC intensity may be more sensitive to the azimuthally averaged component of diabatic heating rather than the asymmetric component. Furthermore, this increase occurred within the radius of maximum winds (RMW), a region theorized to favor rapid spinup of the vortex. A key difference between the Irene and Gabrielle cases was that the latter underwent a downshear reformation. The circulation associated with an intense mesovortex and other localized cyclonic vorticity anomalies comprised a developing "inner vortex" on the downshear-left (downtilt) periphery of the broader parent vortex. This inner vortex was nearly upright within a parent vortex that was tilted significantly with height. The inner vortex became the dominant vortex of the system, advecting and absorbing the broad, tilted parent vortex. A method was developed for diagnosing vortex tilt in the simulation. The reduction of TC vortex tilt from 65 km to 20 km

  10. Jupiter's closed cyclones and anticyclones vorticity

    NASA Astrophysics Data System (ADS)

    Legarreta, J.; Sánchez-Lavega, A.

    2003-05-01

    We have measured the motions and derived de velocity field tracking the cloud elements present in Jovian large-scale cyclones and anticyclones. We have used very high spatial resolution images obtained by the Voyager 1 and 2 (in 1979) and the Galileo (1997-1999) spacecrafts. In total we measured motions in 13 vortices covering a range of latitudes from -59 deg to + 41 deg. The tangential component of the velocity as a function of the distance to the vortex centre and position angle is used to retrieve the vorticity field. Then, we compare each vortex mean vorticity with the ambient and planetary vorticities (i. e. with latitude). For most cases studied (11), the vortex vorticity is greater than the ambient vorticity, although two types of vortices showed the same vorticity than the ambient, suggesting that their periphery motions can be entrained by the ambient shear. We present an analysis of the correlations between the mean vorticity and mean zonal motion of each vortex, and the relationship between the ambient to intrinsic vorticity versus the zonal to meridional size ratio. This is used to demonstrate that most vortices do not follow the Kida type vortex relationship. Acknowledgements: This work was supported by the Spanish MCYT PNAYA 2000-0932 and Grupos-UPV/EHU. We acknowledge the access to the Voyager and Galileo images through the NASA - PDS Atmospheric node at NMSU.

  11. Observed strong currents under global tropical cyclones

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Chia; Tseng, Ruo-Shan; Chu, Peter C.; Chen, Jau-Ming; Centurioni, Luca R.

    2016-07-01

    Global data from drifters of the Surface Velocity Program (Niiler, 2001) and tropical cyclones (TCs) from the Joint Typhoon Warning Center and National Hurricane Center were analyzed to demonstrate strong ocean currents and their characteristics under various storm intensities in the Northern Hemisphere (NH) and in the Southern Hemisphere (SH). Mean TC's translation speed (Uh) is faster in the NH (~ 4.7 m s- 1) than in the SH (~ 4.0 m s- 1), owing to the fact that TCs are more intense in the NH than in the SH. The rightward (leftward) bias of ocean mixed-layer (OML) velocity occurs in the NH (SH). As a result of this slower Uh and thus a smaller Froude number in the SH, the flow patterns in the SH under the same intensity levels of TCs are more symmetric relative to the TC center and the OML velocities are stronger. This study provides the first characterization of the near-surface OML velocity response to all recorded TCs in the SH from direct velocity measurements.

  12. Inducing Tropical Cyclones to Undergo Brownian Motion

    NASA Astrophysics Data System (ADS)

    Hodyss, D.; McLay, J.; Moskaitis, J.; Serra, E.

    2014-12-01

    Stochastic parameterization has become commonplace in numerical weather prediction (NWP) models used for probabilistic prediction. Here, a specific stochastic parameterization will be related to the theory of stochastic differential equations and shown to be affected strongly by the choice of stochastic calculus. From an NWP perspective our focus will be on ameliorating a common trait of the ensemble distributions of tropical cyclone (TC) tracks (or position), namely that they generally contain a bias and an underestimate of the variance. With this trait in mind we present a stochastic track variance inflation parameterization. This parameterization makes use of a properly constructed stochastic advection term that follows a TC and induces its position to undergo Brownian motion. A central characteristic of Brownian motion is that its variance increases with time, which allows for an effective inflation of an ensemble's TC track variance. Using this stochastic parameterization we present a comparison of the behavior of TCs from the perspective of the stochastic calculi of Itô and Stratonovich within an operational NWP model. The central difference between these two perspectives as pertains to TCs is shown to be properly predicted by the stochastic calculus and the Itô correction. In the cases presented here these differences will manifest as overly intense TCs, which, depending on the strength of the forcing, could lead to problems with numerical stability and physical realism.

  13. Impact of cyclone Nilam on tropical lower atmospheric dynamics

    NASA Astrophysics Data System (ADS)

    Vinay Kumar, P.; Dutta, Gopa; Ratnam, M. V.; Krishna, E.; Bapiraju, B.; Rao, B. Venkateswara; Mohammad, Salauddin

    2016-08-01

    A deep depression formed over the Bay of Bengal on 28 October 2012, and developed into a cyclonic storm. After landfall near the south coast of Chennai, cyclone Nilam moved north-northwestwards. Coordinated experiments were conducted from the Indian stations of Gadanki (13.5°N, 79.2°E) and Hyderabad (17.4°N, 78.5°E) to study the modification of gravity-wave activity and turbulence by cyclone Nilam, using GPS radiosonde and mesosphere-stratosphere-troposphere radar data. The horizontal velocities underwent large changes during the closest approach of the storm to the experimental sites. Hodograph analysis revealed that inertia gravity waves (IGWs) associated with the cyclone changed their directions from northeast (control time) to northwest following the path of the cyclone. The momentum flux of IGWs and short-period gravity waves (1-8 h) enhanced prior to, and during, the passage of the storm (±0.05 m2 s-2 and ±0.3 m2 s-2, respectively), compared to the flux after its passage. The corresponding body forces underwent similar changes, with values ranging between ±2-4 m s-1 d-1 and ±12-15 m s-1 d-1. The turbulence refractivity structure constant ( C n 2 ) showed large values below 10 km before the passage of the cyclone when humidity in the region was very high. Turbulence and humidity reduced during the passage of the storm when a turbulent layer at ~17 km became more intense. Turbulence in the lower troposphere and near the tropopause became weak after the passage of the cyclone.

  14. Computational Analysis of Dynamic SPK(S8)-JP8 Fueled Combustor-Sector Performance

    NASA Technical Reports Server (NTRS)

    Ryder, R.; Hendricks, Roberts C.; Huber, M. L.; Shouse, D. T.

    2010-01-01

    Civil and military flight tests using blends of synthetic and biomass fueling with jet fuel up to 50:50 are currently considered as "drop-in" fuels. They are fully compatible with aircraft performance, emissions and fueling systems, yet the design and operations of such fueling systems and combustors must be capable of running fuels from a range of feedstock sources. This paper provides Smart Combustor or Fuel Flexible Combustor designers with computational tools, preliminary performance, emissions and particulates combustor sector data. The baseline fuel is kerosene-JP-8+100 (military) or Jet A (civil). Results for synthetic paraffinic kerosene (SPK) fuel blends show little change with respect to baseline performance, yet do show lower emissions. The evolution of a validated combustor design procedure is fundamental to the development of dynamic fueling of combustor systems for gas turbine engines that comply with multiple feedstock sources satisfying both new and legacy systems.

  15. Effects of operating pressure on flame oscillation and emission characteristics in a partially premixed swirl combustor

    SciTech Connect

    Kim, Jong-Ryul; Choi, Gyung-Min; Kim, Duck-Jool

    2011-01-15

    The influence of varying combustor pressure on flame oscillation and emission characteristics in the partially premixed turbulent flame were investigated. In order to investigate combustion characteristics in the partially premixed turbulent flame, the combustor pressure was controlled in the range of -30 to 30 kPa for each equivalence ratio ({phi} = 0.8-1.2). The r.m.s. of the pressure fluctuations increased with decreasing combustor pressure for the lean condition. The combustor pressure had a sizeable influence on combustion oscillation, whose dominant frequency varied with the combustor pressure. Combustion instabilities could be controlled by increasing the turbulent intensity of the unburned mixture under the lean condition. An unstable flame was caused by incomplete combustion; hence, EICO greatly increased. Furthermore, EINO{sub x} simply reduced with decreasing combustor pressure at a rate of 0.035 g/10 kPa. The possibility of combustion control on the combusting mode and exhaust gas emission was demonstrated. (author)

  16. Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel

    DOEpatents

    Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

    2012-11-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  17. Vortex combustor for low NOx emissions when burning lean premixed high hydrogen content fuel

    DOEpatents

    Steele, Robert C.; Edmonds, Ryan G.; Williams, Joseph T.; Baldwin, Stephen P.

    2009-10-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  18. An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; DeLaat, John C.; Chang, Clarence T.

    2008-01-01

    An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.

  19. Innovative Adaptive Control Method Demonstrated for Active Suppression of Instabilities in Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2005-01-01

    This year, an improved adaptive-feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for meeting the low-emission goals of the NASA Ultra-Efficient Engine Technology (UEET) Project.

  20. Energy efficient engine pin fin and ceramic composite segmented liner combustor sector rig test report

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.; Lohmann, R. P.; Tanrikut, S.; Morris, P. M.

    1986-01-01

    Under the NASA-sponsored Energy Efficient Engine program, Pratt and Whitney has successfully completed a comprehensive test program using a 90-degree sector combustor rig that featured an advanced two-stage combustor with a succession of advanced segmented liners. Building on the successful characteristics of the first generation counter-parallel Finwall cooled segmented liner, design features of an improved performance metallic segmented liner were substantiated through representative high pressure and temperature testing in a combustor atmosphere. This second generation liner was substantially lighter and lower in cost than the predecessor configuration. The final test in this series provided an evaluation of ceramic composite liner segments in a representative combustor environment. It was demonstrated that the unique properties of ceramic composites, low density, high fracture toughness, and thermal fatigue resistance can be advantageously exploited in high temperature components. Overall, this Combustor Section Rig Test program has provided a firm basis for the design of advanced combustor liners.