Science.gov

Sample records for cyclooxygenase-2 generates anti-inflammatory

  1. Viscum album Exerts Anti-Inflammatory Effect by Selectively Inhibiting Cytokine-Induced Expression of Cyclooxygenase-2

    PubMed Central

    Hegde, Pushpa; Maddur, Mohan S.; Friboulet, Alain; Bayry, Jagadeesh; Kaveri, Srini V.

    2011-01-01

    Viscum album (VA) preparations are extensively used as complementary therapy in cancer and are shown to exert anti-tumor activities which involve the cytotoxic properties, induction of apoptosis, inhibition of angiogenesis and several other immunomodulatory mechanisms. In addition to their application in cancer therapy, VA preparations have also been successfully utilized in the treatment of several inflammatory pathologies. Owing to the intricate association of inflammation and cancer and in view of the fact that several anti-tumor phytotherapeutics also exert a potent anti-inflammatory effect, we hypothesized that VA exerts an anti-inflammatory effect that is responsible for its therapeutic benefit. Since, inflammatory cytokine-induced cyclo-oxygenase-2 (COX-2) and prostaglandin E2 (PGE2) play a critical role in the pathogenesis of inflammatory diseases, we investigated the anti-inflammatory effect of VA on regulation of cyclo-oxygenase expression and PGE2 biosynthesis by using human lung adenocarcinoma cells (A549 cells) as a model. A549 cells were stimulated with IL-1β and treated with VA preparation (VA Qu Spez) for 18 hours. PGE2 was analysed in the culture supernatants by enzyme immunoassay. Expression of COX-2 and COX-1 proteins was analyzed by immunoblotting and the expression of COX-2 mRNA was assessed by semi-quantitative RT-PCR. We found that VA Qu Spez inhibit the secretion of IL-1β-induced PGE2 in a dose-dependent manner. Further, we also show that this inhibitory action was associated with a reduced expression of COX-2 without modulating the COX-1 expression. Together these results demonstrate a novel anti-inflammatory mechanism of action of VA preparations wherein VA exerts an anti-inflammatory effect by inhibiting cytokine-induced PGE2 via selective inhibition of COX-2. PMID:22028854

  2. Anti-inflammatory effects of essential oils from Chamaecyparis obtusa via the cyclooxygenase-2 pathway in rats.

    PubMed

    An, Beum-Soo; Kang, Ji-Houn; Yang, Hyun; Jung, Eui-Man; Kang, Hong-Seok; Choi, In-Gyu; Park, Mi-Jin; Jeung, Eui-Bae

    2013-07-01

    Essential oils are concentrated hydrophobic liquids containing volatile aromatic compounds from plants. In the present study, the essential oil of Chamaecyparis obtusa (C. obtusa), which is commercially used in soap, toothpaste and cosmetics, was extracted. Essential oil extracted from C. obtusa contains several types of terpenes, which have been shown to have anti-oxidative and anti-inflammatory effects. In the present study, we examined the anti-inflammatory effects of C. obtusa essential oil in vivo and in vitro following the induction of inflammation by lipopolysaccharides (LPS) in rats. While LPS induced an inflammatory response through the production of prostaglandin E2 (PGE2) in the blood and peripheral blood mononuclear cells (PMNCs), these levels were reduced when essential oil was pre-administered. Additionally, the mechanism of action underlying the anti-inflammatory effects of C. obtusa essential oil was investigated by measuring the mRNA expression of inflammation‑associated genes. LPS treatment significantly induced the expression of transforming growth factor α (TNFα) and cyclooxygenase-2 (COX-2) in rats, while C. obtusa essential oil inhibited this effect. Taken together, our results demonstrate that C. obtusa essential oil exerts anti‑inflammatory effects by regulating the production of PGE2 and TNFα gene expression through the COX-2 pathway. These findings suggest that C. obtusa essential oil may constitute a novel source of anti-inflammatory drugs. PMID:23652412

  3. Comparison of nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 (COX-2) inhibitors use in Australia and Nova Scotia (Canada)

    PubMed Central

    Barozzi, Nadia; Sketris, Ingrid; Cooke, Charmaine; Tett, Susan

    2009-01-01

    AIMS Cyclooxygenase-2 (COX-2) inhibitors were marketed aggressively and their rapid uptake caused safety concerns and budgetary challenges in Canada and Australia. The objectives of this study were to compare and contrast COX-2 inhibitors and nonselective nonsteroidal anti-inflammatory drug (ns-NSAID) use in Nova Scotia (Canada) and Australia and to identify lessons learned from the two jurisdictions. METHODS Ns-NSAID and COX-2 inhibitor Australian prescription data (concession beneficiaries) were downloaded from the Medicare Australia website (2001–2006). Similar Pharmacare data were obtained for Nova Scotia (seniors and those receiving Community services). Defined daily doses per 1000 beneficiaries day−1 were calculated. COX-2 inhibitors/all NSAIDs ratios were calculated for Australia and Nova Scotia. Ns-NSAIDs were divided into low, moderate and high risk for gastrointestinal side-effects and the proportions of use in each group were determined. Which drugs accounted for 90% of use was also calculated. RESULTS Overall NSAID use was different in Australia and Nova Scotia. However, ns-NSAID use was similar. COX-2 inhibitor dispensing was higher in Australia. The percentage of COX-2 inhibitor prescriptions over the total NSAID use was different in the two countries. High-risk NSAID use was much higher in Australia. Low-risk NSAID prescribing increased in Nova Scotia over time. The low-risk/high-risk ratio was constant throughout over the period in Australia and increased in Nova Scotia. CONCLUSIONS There are significant differences in Australia and Nova Scotia in use of NSAIDs, mainly due to COX-2 prescribing. Nova Scotia has a higher proportion of low-risk NSAID use. Interventions to provide physicians with information on relative benefits and risks of prescribing specific NSAIDs are needed, including determining their impact. PMID:19660008

  4. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells.

    PubMed

    Taleb, Hajer; Morris, R Keith; Withycombe, Cathryn E; Maddocks, Sarah E; Kanekanian, Ara D

    2016-07-01

    Bioactive components such as polyphenols, present in many plants, are purported to have anti-inflammatory and antiangiogenic properties. Date syrup, produced from date fruit of the date palm tree, has traditionally been used to treat a wide range of diseases with etiologies involving angiogenesis and inflammation. It was hypothesized that polyphenols in date syrup reduce angiogenic responses such as cell migration, tube formation, and matrix metalloproteinase activity in an inflammatory model by exhibiting anti-inflammatory activity mediated by vascular endothelial growth factor (VEGF) and the prostaglandin enzyme cyclooxygenase-2 (COX-2) in endothelial cells. Date syrup polyphenols at 60 and 600μg/mL reduced inflammation and suppressed several stages of angiogenesis, including endothelial cell migration, invasion, matrix metalloproteinase activity, and tube formation, without evidence of cytotoxicity. VEGF and COX-2 expression induced by tumor necrosis factor-alpha at both gene expression and protein level was significantly reduced by date syrup polyphenols in comparison to untreated cells. In conclusion, polyphenols in date syrup attenuated angiogenic responses and exhibited anti-inflammatory activity mediated by VEGF and COX-2 expression in endothelial cells. PMID:27333954

  5. Rational Design of Small Peptides for Optimal Inhibition of Cyclooxygenase-2: Development of a Highly Effective Anti-Inflammatory Agent.

    PubMed

    Singh, Palwinder; Kaur, Sukhmeet; Kaur, Jagroop; Singh, Gurjit; Bhatti, Rajbir

    2016-04-28

    Among the small peptides 2-31, (H)Gly-Gly-Phe-Leu(OMe) (30) reduced prostaglandin production of COX-2 with an IC50 of 60 nM relative to 6000 nM for COX-1. The 5 mg kg(-1) dose of compound 30 rescued albino mice by 80% from capsaicin-induced paw licking and recovered it by 60% from carrageenan-induced inflammation. The mode of action of compound 30 for targeting COX-2, iNOS, and VGSC was investigated by using substance P, l-arginine, and veratrine, respectively, as biomarkers. The interactions of 30 with COX-2 were supported by isothermal calorimetry experiments showing a Ka of 6.10 ± 1.10 × 10(4) M(-1) and ΔG of -100.3 kJ mol(-1) in comparison to a Ka 0.41 × 10(3) ± 0.09 M(-1) and ΔG of -19.2 ± 0.06 kJ mol(-1) for COX-1. Moreover, compound 30 did not show toxicity up to a 2000 mg kg(-1) dose. Hence, we suggest peptide 30 as a highly potent and promising candidate for further development into an anti-inflammatory drug. PMID:27019010

  6. Cyclooxygenase-1 and cyclooxygenase-2 selectivity of non-steroidal anti-inflammatory drugs: investigation using human peripheral monocytes.

    PubMed

    Kato, M; Nishida, S; Kitasato, H; Sakata, N; Kawai, S

    2001-12-01

    Since the pharmacological profiles of various non-steroidal anti-inflammatory drugs (NSAIDs) might depend on their differing selectivity for cyclooxygenase 1 (COX-1) and 2 (COX-2), we developed a new screening method using human peripheral monocytes. Monocytes from healthy volunteers were separated, and the cells were incubated with or without lipopolysaccharide (LPS). Monocytes without LPS stimulation exclusively expressed COX-1 on Western blotting analysis, whereas LPS stimulation induced COX-2 expression. Unstimulated monocytes (COX-1) and LPS-stimulated monocytes (COX-2) were then used to determinethe COX selectivity of various NSAIDs. The respective mean IC50 values for COX-1 and COX-2 IC50 (microM), and the COX-1/COX-2 ratio of each NSAID were as follows: celecoxib, 82, 6.8, 12; diclofenac, 0.076, 0.026, 2.9; etodolac, > 100, 53, > 1.9; ibuprofen, 12, 80, 0.15; indometacin, 0.0090, 0.31, 0.029; meloxicam, 37, 6.1, 6.1; 6-MNA (the active metabolite of nabumetone), 149, 230, 0.65; NS-398, 125, 5.6, 22; piroxicam, 47, 25, 1.9; rofecoxib, > 100, 25, > 4.0; S-2474, > 100, 8.9, > 11; SC-560, 0.0048, 1.4, 0.0034. The percentage inhibition of COX-1 activity at the IC50 of COX-2 also showed a wide variation among these NSAIDs. The bioassay system using human monocytes to assess the inhibitory effects of various NSAIDs on COX-1 and COX-2 may become a clinically useful screening method. PMID:11804398

  7. Activation of macrophage peroxisome proliferator-activated receptor-gamma by diclofenac results in the induction of cyclooxygenase-2 protein and the synthesis of anti-inflammatory cytokines.

    PubMed

    Ayoub, Samir S; Botting, Regina M; Joshi, Amrish N; Seed, Michael P; Colville-Nash, Paul R

    2009-07-01

    Cyclooxygenase-2 (COX-2) is an inducible isoform of the COX family of enzymes central to the synthesis of pro-inflammatory prostaglandins. Induction of COX-2 is mediated by many endogenous and exogenous molecules that include pro-inflammatory cytokines and bacterial lipopolysaccharide (LPS). It has been demonstrated that COX-2 can also be induced by diclofenac in cultured J774.2 macrophages. This induction was delayed compared to COX-2 induced by LPS and paracetamol selectively inhibited activity of this protein. The aim of the present study was to determine the transcription factor involved in the production of COX-2 after treatment of J774.2 cells with 500 microM diclofenac. Pre-treatment of cells with the peroxisome proliferator-activated receptor-gamma (PPAR-gamma) antagonists GW9662 (0.1-1 microM) or biphenol A Diglycidyl Ether (100-200 microM) resulted in reduction of the induction of COX-2 by diclofenac, but not by LPS. Induction of COX-2 by the PPAR-gamma agonist 15deoxyDelta(12,14)prostaglandin J(2) was also reduced when the cells were pre-treated with the PPAR-gamma antagonists BADGE or GW9662. On the other hand, pre-treatment of cells with the nuclear factor-kappa-B (NF-kappaB) Super-repressor IkappaBalpha (150-600 nM) reduced the induction of COX-2 by LPS, but not by diclofenac. We, therefore, have identified that PPAR-gamma activation is a requirement for COX-2 induction after diclofenac stimulation of J774.2 cells. These results along with the finding that treatment of J774.2 macrophages with diclofenac resulted in the release of the anti-inflammatory cytokines, interleukin-10 and transforming growth factor-beta suggest that the diclofenac-induced COX-2 protein may possess anti-inflammatory actions. PMID:19219624

  8. Non-steroidal anti-inflammatory drugs, Cyclooxygenase-2 inhibitors and paracetamol use in Queensland and in the whole of Australia

    PubMed Central

    Barozzi, Nadia; Tett, Susan E

    2008-01-01

    Background Cross national drug utilization studies can provide information about different influences on physician prescribing. This is important for medicines with issues around safety and quality of use, like non selective non-steroidal anti-inflammatory drugs (ns-NSAIDs) and cyclo-oxygenase-2 (COX-2) inhibitors. To enable comparison of prescription medicine use across different jurisdictions with a range of population sizes, data first need to be compared within Australia to understand whether use in a smaller sub-population may be considered as representative of the total use within Australia. The aim of this study was to compare the utilization of non selective NSAID, COX-2 inhibitors and paracetamol between Queensland and Australia. Method Dispensing data were obtained for concession beneficiaries for Australia for ns-NSAIDs, COX-2 inhibitors and paracetamol subsidized by the PBS over the period 1997–2003. The same data were purchased for Queensland. Data were converted to Defined Daily Dose (DDD)/1000 beneficiaries/day (World Health Organization anatomical therapeutic chemical classification, 2005). Results Total NSAID and paracetamol consumption were similar in Australia and Queensland. Ns-NSAID use decreased sharply with the introduction of COX-2 inhibitors (from approximately 80 to 40 DDD/1000 beneficiaries/day). Paracetamol was constant (approximately 45 DDD/1000 beneficiaries/day). COX-2 inhibitors consumption was initially higher in Queensland than in the whole of Australia. Conclusion Despite initial divergence in celecoxib use between Queensland and Australia, the use of ns-NSAIDs, COX-2 inhibitors and paracetamol overall, in concession beneficiaries, was comparable in Australia and Queensland. PMID:18816393

  9. Cyclooxygenase-2 and 15-lipoxygenase inhibition, synthesis, anti-inflammatory activity and ulcer liability of new celecoxib analogues: Determination of region-specific pyrazole ring formation by NOESY.

    PubMed

    Abdelall, Eman K A; Lamie, Phoebe F; Ali, Waleed A M

    2016-06-15

    Two new series of 1,5-diaryl pyrazoline (3a-f) and 1,5-diaryl pyrazole (5a and 5b) were designed as both COX-2 and 15-LOX inhibitors. All the prepared compounds were fully characterized by all spectral and element analysis. Their anti-inflammatory activity and ulcer index were included. Pyrazoline 3f is the most effective with IC50=1.14 and 4.7μM against COX-2 and 15-LOX respectively, and more potent than celecoxib and meclofenamate references. In addition 3a, 3b, 5a, and 5b were safer with low ulcer index than celecoxib. Docking study was performed for the most active compounds such as 2b, 3a, and 3f on COX-2 and 15-LOX enzymes. PMID:27158139

  10. Generation and Dietary Modulation of Anti-Inflammatory Electrophilic Omega-3 Fatty Acid Derivatives

    PubMed Central

    Cipollina, Chiara; Salvatore, Sonia R.; Muldoon, Matthew F.; Freeman, Bruce A.; Schopfer, Francisco J.

    2014-01-01

    Dietary ω-3 polyunsaturated fatty acids (PUFAs) decrease cardiovascular risk via suppression of inflammation. The generation of electrophilic α,β-unsaturated ketone derivatives of the ω-3 PUFAs docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) in activated human macrophages is catalyzed by cyclooxygenase-2 (Cox-2). These derivatives are potent pleiotropic anti-inflammatory signaling mediators that act via mechanisms including the activation of Nrf2-dependent phase 2 gene expression and suppression of pro-inflammatory NF-κB-driven gene expression. Herein, the endogenous generation of ω-3 PUFAs electrophilic ketone derivatives and their hydroxy precursors was evaluated in human neutrophils. In addition, their dietary modulation was assessed through a randomized clinical trial. Methods Endogenous generation of electrophilic omega-3 PUFAs and their hydroxy precursors was evaluated by mass spectrometry in neutrophils isolated from healthy subjects, both at baseline and upon stimulation with calcium ionophore. For the clinical trial, participants were healthy adults 30–55 years of age with a reported EPA+DHA consumption of ≤300 mg/day randomly assigned to parallel groups receiving daily oil capsule supplements for a period of 4 months containing either 1.4 g of EPA+DHA (active condition, n = 24) or identical appearing soybean oil (control condition, n = 21). Participants and laboratory technicians remained blinded to treatment assignments. Results 5-lypoxygenase-dependent endogenous generation of 7-oxo-DHA, 7-oxo-DPA and 5-oxo-EPA and their hydroxy precursors is reported in human neutrophils stimulated with calcium ionophore and phorbol 12-myristate 13-acetate (PMA). Dietary EPA+DHA supplementation significantly increased the formation of 7-oxo-DHA and 5-oxo-EPA, with no significant modulation of arachidonic acid (AA) metabolite levels. Conclusions The endogenous detection of these electrophilic ω-3 fatty acid ketone derivatives supports the

  11. Ibuprofen-arginine generates nitric oxide and has enhanced anti-inflammatory effects.

    PubMed

    De Palma, Clara; Di Paola, Rosanna; Perrotta, Cristiana; Mazzon, Emanuela; Cattaneo, Dario; Trabucchi, Emilio; Cuzzocrea, Salvatore; Clementi, Emilio

    2009-10-01

    Ibuprofen, a chiral non-steroidal anti-inflammatory drug chemically related to fenoprofen and naproxen, has moderate but definite anti-inflammatory, analgesic and antipyretic properties, with considerably less gastrointestinal adverse effect than other drugs in the same family. Currently available in the market are preparations in which bioavailability of ibuprofen is increased by salification with various salts. We have investigated the pharmacological properties of one such salt, ibuprofen-arginine, of biological interest because l-arginine acts as substrate of the nitric oxide (NO) synthesising enzymes. Using epithelial HeLa cells expressing the endothelial NO synthase we show that ibuprofen-arginine releases NO and that this NO protects against the cytotoxic apoptogenic effects of staurosporine. We also found that ibuprofen-arginine is endowed with enhanced anti-inflammatory effects with respect to ibuprofen, as shown by reduced hind paw oedema, neutrophil infiltration and chondrocyte apoptosis in collagen-induced mouse arthritis, a model of chronic inflammation. NO has pleiotropic beneficial effects that may contribute to limit inflammation and anti-inflammatory compounds able to release NO display higher efficacy than the parent drugs in defined clinical settings. Our results open the possibility that NO generation contributes to the enhanced anti-inflammatory effects of ibuprofen-arginine vs. ibuprofen, suggesting co-administration of anti-inflammatory drugs and arginine as an additional way to exploit the beneficial effects of NO. PMID:19539763

  12. Feijoa sellowiana Berg fruit juice: anti-inflammatory effect and activity on superoxide anion generation.

    PubMed

    Monforte, Maria T; Fimiani, Vincenzo; Lanuzza, Francesco; Naccari, Clara; Restuccia, Salvatore; Galati, Enza M

    2014-04-01

    Feijoa sellowiana Berg var. coolidge fruit juice was studied in vivo for the anti-inflammatory activity by carrageenin-induced paw edema test and in vitro for the effects on superoxide anion release from neutrophils in human whole blood. The fruit juice was analyzed by the high-performance liquid chromatography method, and quercetin, ellagic acid, catechin, rutin, eriodictyol, gallic acid, pyrocatechol, syringic acid, and eriocitrin were identified. The results showed a significant anti-inflammatory activity of F. sellowiana fruit juice, sustained also by an effective antioxidant activity observed in preliminary studies on 1,1-diphenyl-2-picrylhydrazyl (DPPH) test. In particular, the anti-inflammatory activity edema inhibition is significant since the first hour (44.11%) and persists until the fifth hour (44.12%) of the treatment. The effect on superoxide anion release was studied in human whole blood, in the presence of activators affecting neutrophils by different mechanisms. The juice showed an inhibiting response on neutrophils basal activity in all experimental conditions. In stimulated neutrophils, the higher inhibition of superoxide anion generation was observed at concentration of 10(-4) and 10(-2) mg/mL in whole blood stimulate with phorbol-myristate-13-acetate (PMA; 20% and 40%) and with N-formyl-methionyl-leucyl-phenylalanine (FMLP; 15% and 48%). The significant reduction of edema and the inhibition of O2(-) production, occurring mainly through interaction with protein-kinase C pathway, confirm the anti-inflammatory effect of F. sellowiana fruit juice. PMID:24433073

  13. On the induction of cyclooxygenase-2, inducible nitric oxide synthase and soluble phospholipase A2 in rat mesangial cells by a nonsteroidal anti-inflammatory drug: the role of cyclic AMP.

    PubMed

    Klein, T; Ullrich, V; Pfeilschifter, J; Nüsing, R

    1998-03-01

    One of the challenges in the therapy with anti-inflammatory drugs is the avoidance of gastrointestinal side effects, which may be achieved by selective inhibition of cyclooxygenase (COX) -2. CGP 28238 is reported with these characteristics inhibiting selectively the COX-2 activity at nanomolar concentrations. However, we report here on a novel action of this compound uncovered during the application of higher concentrations. In rat mesangial cells, CGP 28238 induced the mRNA and the protein of COX-2 as well as those of inducible nitric oxide synthase and soluble phospholipase A2. In the case of COX-2, this stimulation had no effect on the production of COX-2 metabolites because of the effective blockade of the enzyme. In contrast, the level of NO produced by the cells increased in a concentration-dependent manner from 1.2 to 12.5 nmol of nitrite/3 x 10(5) cells. Furthermore, in combination with low doses of IL-1 CGP 28238 superinduced the formation of nitrite. The observed effects were independent of the inhibition of prostaglandin formation, as suggested by the failure of the potent COX inhibitor diclofenac to cause similar effects. Furthermore, the activity and expression of enzymes downstream of the COX step, such as prostacyclin synthase, were unaffected by CGP 28238. The inductive action of CGP 28238 could be blocked by inhibitors for tyrosine kinases and protein kinase A, such as genistein and KT5720, respectively. The increase in intracellular cAMP concentration in rat mesangial cells and the inhibition by CGP 28238 of phosphodiesterase 4 activity with an IC50 value of 23 muM gave a rationale to explain the underlying mechanisms for the induction of the inflammatory response genes COX-2, soluble phospholipase A2 and inducible NO synthase in rat mesangial cells. PMID:9495802

  14. Discovery of nonsteroidal anti-inflammatory drug and anticancer drug enhancing reprogramming and induced pluripotent stem cell generation.

    PubMed

    Yang, Chao-Shun; Lopez, Claudia G; Rana, Tariq M

    2011-10-01

    Recent breakthroughs in creating induced pluripotent stem cells (iPSCs) provide alternative means to obtain embryonic stem-like cells without destroying embryos by introducing four reprogramming factors (Oct3/4, Sox2, and Klf4/c-Myc or Nanog/Lin28) into somatic cells. iPSCs are versatile tools for investigating early developmental processes and could become sources of tissues or cells for regenerative therapies. Here, for the first time, we describe a strategy to analyze genomics datasets of mouse embryonic fibroblasts (MEFs) and embryonic stem cells to identify genes constituting barriers to iPSC reprogramming. We further show that computational chemical biology combined with genomics analysis can be used to identify small molecules regulating reprogramming. Specific downregulation by small interfering RNAs (siRNAs) of several key MEF-specific genes encoding proteins with catalytic or regulatory functions, including WISP1, PRRX1, HMGA2, NFIX, PRKG2, COX2, and TGFβ3, greatly increased reprogramming efficiency. Based on this rationale, we screened only 17 small molecules in reprogramming assays and discovered that the nonsteroidal anti-inflammatory drug Nabumetone and the anticancer drug 4-hydroxytamoxifen can generate iPSCs without Sox2. Nabumetone could also produce iPSCs in the absence of c-Myc or Sox2 without compromising self-renewal and pluripotency of derived iPSCs. In summary, we report a new concept of combining genomics and computational chemical biology to identify new drugs useful for iPSC generation. This hypothesis-driven approach provides an alternative to shot-gun screening and accelerates understanding of molecular mechanisms underlying iPSC induction. PMID:21898684

  15. Gastrointestinal and Cardiovascular Risk of Nonsteroidal Anti-inflammatory Drugs

    PubMed Central

    Al-Saeed, Abdulwahed

    2011-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) confer a gastrointestinal (GI) side effect profile and concerns regarding adverse cardiovascular effects have emerged associated with considerable morbidity and mortality. NSAIDs are highly effective in treating pain and inflammation, but it is well recognized that these agents are associated with substantial gastrointestinal toxicity. Cyclo-oxygenase-2 inhibitors may also reduce the risk for gastrointestinal events, although they may increase cardiovascular adverse events. The selection of an appropriate analgesic or anti-inflammatory agent with or without gastroprotective therapy should be individualized. PMID:22253945

  16. Comparison of Anti-Oxidant and Anti-Inflammatory Effects between Fresh and Aged Black Garlic Extracts.

    PubMed

    Jeong, Yi Yeong; Ryu, Ji Hyeon; Shin, Jung-Hye; Kang, Min Jung; Kang, Jae Ran; Han, Jaehee; Kang, Dawon

    2016-01-01

    Numerous studies have demonstrated that aged black garlic (ABG) has strong anti-oxidant activity. Little is known however regarding the anti-inflammatory activity of ABG. This study was performed to identify and compare the anti-oxidant and anti-inflammatory effects of ABG extract (ABGE) with those of fresh raw garlic (FRG) extract (FRGE). In addition, we investigated which components are responsible for the observed effects. Hydrogen peroxide (H2O2) and lipopolysaccharide (LPS) were used as a pro-oxidant and pro-inflammatory stressor, respectively. ABGE showed high ABTS and DPPH radical scavenging activities and low ROS generation in RAW264.7 cells compared with FRGE. However, inhibition of cyclooxygenase-2 and 5-lipooxygenase activities by FRGE was stronger than that by ABGE. FRGE reduced PGE₂, NO, IL-6, IL-1β, LTD₄, and LTE₄ production in LPS-activated RAW264.7 cells more than did ABGE. The combination of FRGE and sugar (galactose, glucose, fructose, or sucrose), which is more abundant in ABGE than in FRGE, decreased the anti-inflammatory activity compared with FRGE. FRGE-induced inhibition of NF-κB activation and pro-inflammatory gene expression was blocked by combination with sugars. The lower anti-inflammatory activity in ABGE than FRGE could result from the presence of sugars. Our results suggest that ABGE might be helpful for the treatment of diseases mediated predominantly by ROS. PMID:27043510

  17. Anti-inflammatory Activity.

    PubMed

    2016-01-01

    Inflammation is the body's first response to infection or injury and is critical for both innate and adaptive immunity. It can be considered as part of the complex biological response of vascular tissues to harmful stimuli such as pathogens, damaged cells, or irritants. The search for natural compounds and phytoconstituents that are able to interfere with these mechanisms by preventing a prolonged inflammation could be useful for human health. Here, the anti-inflammatory properties of plant-based drugs are put together with both in vitro and acute (carrageenan, egg albumin and croton oil) and chronic (cotton pellet) in vivo models. PMID:26939273

  18. Evidence That Links Loss of Cyclooxygenase-2 With Increased Asymmetric Dimethylarginine

    PubMed Central

    Ahmetaj-Shala, Blerina; Kirkby, Nicholas S.; Knowles, Rebecca; Al’Yamani, Malak; Mazi, Sarah; Wang, Zhen; Tucker, Arthur T.; Mackenzie, Louise; Armstrong, Paul C. J.; Nüsing, Rolf M.; Tomlinson, James A. P.; Warner, Timothy D.; Leiper, James

    2015-01-01

    Background— Cardiovascular side effects associated with cyclooxygenase-2 inhibitor drugs dominate clinical concern. Cyclooxygenase-2 is expressed in the renal medulla where inhibition causes fluid retention and increased blood pressure. However, the mechanisms linking cyclooxygenase-2 inhibition and cardiovascular events are unknown and no biomarkers have been identified. Methods and Results— Transcriptome analysis of wild-type and cyclooxygenase-2−/− mouse tissues revealed 1 gene altered in the heart and aorta, but >1000 genes altered in the renal medulla, including those regulating the endogenous nitric oxide synthase inhibitors asymmetrical dimethylarginine (ADMA) and monomethyl-l-arginine. Cyclo-oxygenase-2−/− mice had increased plasma levels of ADMA and monomethyl-l-arginine and reduced endothelial nitric oxide responses. These genes and methylarginines were not similarly altered in mice lacking prostacyclin receptors. Wild-type mice or human volunteers taking cyclooxygenase-2 inhibitors also showed increased plasma ADMA. Endothelial nitric oxide is cardio-protective, reducing thrombosis and atherosclerosis. Consequently, increased ADMA is associated with cardiovascular disease. Thus, our study identifies ADMA as a biomarker and mechanistic bridge between renal cyclooxygenase-2 inhibition and systemic vascular dysfunction with nonsteroidal anti-inflammatory drug usage. Conclusions— We identify the endogenous endothelial nitric oxide synthase inhibitor ADMA as a biomarker and mechanistic bridge between renal cyclooxygenase-2 inhibition and systemic vascular dysfunction. PMID:25492024

  19. The conjugation of nonsteroidal anti-inflammatory drugs (NSAID) to small peptides for generating multifunctional supramolecular nanofibers/hydrogels

    PubMed Central

    Li, Jiayang; Kuang, Yi; Shi, Junfeng; Gao, Yuan; Zhou, Jie

    2013-01-01

    Summary Here we report supramolecular hydrogelators made of nonsteroidal anti-inflammatory drugs (NSAID) and small peptides. The covalent linkage of Phe–Phe and NSAIDs results in conjugates that self-assemble in water to form molecular nanofibers as the matrices of hydrogels. When the NSAID is naproxen (1), the resultant hydrogelator 1a forms a hydrogel at a critical concentration (cgc) of 0.2 wt % at pH 7.0. Hydrogelator 1a, also acting as a general motif, enables enzymatic hydrogelation in which the precursor turns into a hydrogelator upon hydrolysis catalyzed by a phosphatase at physiological conditions. The conjugates of Phe–Phe with other NSAIDs, such as (R)-flurbiprofen (2), racemic flurbiprofen (3), and racemic ibuprofen (4), are able to form molecular hydrogels, except in the case of aspirin (5). After the conjugation with the small peptides, NSAIDs exhibit improved selectivity to their targets. In addition, the peptides made of D-amino acids help preserve the activities of NSAIDs. Besides demonstrating that common NSAIDs are excellent candidates to promote aromatic–aromatic interaction in water to form hydrogels, this work contributes to the development of functional molecules that have dual or multiple roles and ultimately may lead to new molecular hydrogels of therapeutic agents for topical use. PMID:23766806

  20. The conjugation of nonsteroidal anti-inflammatory drugs (NSAID) to small peptides for generating multifunctional supramolecular nanofibers/hydrogels.

    PubMed

    Li, Jiayang; Kuang, Yi; Shi, Junfeng; Gao, Yuan; Zhou, Jie; Xu, Bing

    2013-01-01

    Here we report supramolecular hydrogelators made of nonsteroidal anti-inflammatory drugs (NSAID) and small peptides. The covalent linkage of Phe-Phe and NSAIDs results in conjugates that self-assemble in water to form molecular nanofibers as the matrices of hydrogels. When the NSAID is naproxen (1), the resultant hydrogelator 1a forms a hydrogel at a critical concentration (cgc) of 0.2 wt % at pH 7.0. Hydrogelator 1a, also acting as a general motif, enables enzymatic hydrogelation in which the precursor turns into a hydrogelator upon hydrolysis catalyzed by a phosphatase at physiological conditions. The conjugates of Phe-Phe with other NSAIDs, such as (R)-flurbiprofen (2), racemic flurbiprofen (3), and racemic ibuprofen (4), are able to form molecular hydrogels, except in the case of aspirin (5). After the conjugation with the small peptides, NSAIDs exhibit improved selectivity to their targets. In addition, the peptides made of D-amino acids help preserve the activities of NSAIDs. Besides demonstrating that common NSAIDs are excellent candidates to promote aromatic-aromatic interaction in water to form hydrogels, this work contributes to the development of functional molecules that have dual or multiple roles and ultimately may lead to new molecular hydrogels of therapeutic agents for topical use. PMID:23766806

  1. Anti-inflammatory activity of constituents isolated from Terminalia chebula ***waiting for publication date

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was aimed at the evaluation of the anti-inflammatory activity of twelve compounds isolated from the methanolic extract of fruits of Terminalia chebula. The activity was determined in terms of their ability to inhibit inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in L...

  2. Pulsed Dipolar Spectroscopy Reveals That Tyrosyl Radicals Are Generated in Both Monomers of the Cyclooxygenase-2 Dimer.

    PubMed

    Orlando, Benjamin J; Borbat, Peter P; Georgieva, Elka R; Freed, Jack H; Malkowski, Michael G

    2015-12-22

    Cyclooxygenases (COXs) are heme-containing sequence homodimers that utilize tyrosyl radical-based catalysis to oxygenate substrates. Tyrosyl radicals are formed from a single turnover of substrate in the peroxidase active site generating an oxy-ferryl porphyrin cation radical intermediate that subsequently gives rise to a Tyr-385 radical in the cyclooxygenase active site and a Tyr-504 radical nearby. We have utilized double-quantum coherence (DQC) spectroscopy to determine the distance distributions between Tyr-385 and Tyr-504 radicals in COX-2. The distances obtained with DQC confirm that Tyr-385 and Tyr-504 radicals were generated in each monomer and accurately match the distances measured in COX-2 crystal structures. PMID:26636181

  3. Rosuvastatin Alters the Proteome of High Density Lipoproteins: Generation of alpha-1-antitrypsin Enriched Particles with Anti-inflammatory Properties.

    PubMed

    Gordon, Scott M; McKenzie, Benjamin; Kemeh, Georgina; Sampson, Maureen; Perl, Shira; Young, Neal S; Fessler, Michael B; Remaley, Alan T

    2015-12-01

    Statins lower plasma cholesterol by as much as 50%, thus reducing future cardiovascular events. However, the physiological effects of statins are diverse and not all are related to low density lipoprotein cholesterol (LDL-C) lowering. We performed a small clinical pilot study to assess the impact of statins on lipoprotein-associated proteins in healthy individuals (n = 10) with normal LDL-C (<130 mg/dL), who were treated with rosuvastatin (20 mg/day) for 28 days. Proteomic analysis of size-exclusion chromatography isolated LDL, large high density lipoprotein (HDL-L), and small HDL (HDL-S) fractions and spectral counting was used to compare relative protein detection before and after statin therapy. Significant protein changes were found in each lipoprotein pool and included both increases and decreases in several proteins involved in lipoprotein metabolism, complement regulation and acute phase response. The most dramatic effect of the rosuvastatin treatment was an increase in α-1-antirypsin (A1AT) spectral counts associated with HDL-L particles. Quantitative measurement by ELISA confirmed an average 5.7-fold increase in HDL-L associated A1AT. Molecular modeling predictions indicated that the hydrophobic reactive center loop of A1AT, the functional domain responsible for its protease inhibitor activity, is likely involved in lipid binding and association with HDL was found to protect A1AT against oxidative inactivation. Cell culture experiments, using J774 macrophages, demonstrated that the association of A1AT with HDL enhances its antiprotease activity, preventing elastase induced production of tumor necrosis factor α. In conclusion, we show that statins can significantly alter the protein composition of both LDL and HDL and our studies reveal a novel functional relationship between A1AT and HDL. The up-regulation of A1AT on HDL enhances its anti-inflammatory functionality, which may contribute to the non-lipid lowering beneficial effects of statins. PMID

  4. The Complement Inhibitor Factor H Generates an Anti-Inflammatory and Tolerogenic State in Monocyte-Derived Dendritic Cells.

    PubMed

    Olivar, Rut; Luque, Ana; Cárdenas-Brito, Sonia; Naranjo-Gómez, Mar; Blom, Anna M; Borràs, Francesc E; Rodriguez de Córdoba, Santiago; Zipfel, Peter F; Aran, Josep M

    2016-05-15

    The activation of the complement system is a key initiating step in the protective innate immune-inflammatory response against injury, although it may also cause harm if left unchecked. The structurally related soluble complement inhibitors C4b-binding protein (C4BP) and factor H (FH) exert a tight regulation of the classical/lectin and alternative pathways of complement activation, respectively, attenuating the activity of the C3/C5 convertases and, consequently, avoiding serious damage to host tissues. We recently reported that the acute-phase C4BP isoform C4BP lacking the β-chain plays a pivotal role in the modulation of the adaptive immune responses. In this study, we demonstrate that FH acts in the early stages of monocyte to dendritic cell (DC) differentiation and is able to promote a distinctive tolerogenic and anti-inflammatory profile on monocyte-derived DCs (MoDCs) challenged by a proinflammatory stimulus. Accordingly, FH-treated and LPS-matured MoDCs are characterized by altered cytoarchitecture, resembling immature MoDCs, lower expression of the maturation marker CD83 and the costimulatory molecules CD40, CD80, and CD86, decreased production of key proinflammatory Th1-cytokines (IL-12, TNF-α, IFN-γ, IL-6, and IL-8), and preferential production of immunomodulatory mediators (IL-10 and TGF-β). Moreover, FH-treated MoDCs show low Ag uptake and, when challenged with LPS, display reduced CCR7 expression and chemotactic migration, impaired CD4(+) T cell alloproliferation, inhibition of IFN-γ secretion by the allostimulated T cells, and, conversely, induction of CD4(+)CD127(low/negative)CD25(high)Foxp3(+) regulatory T cells. Thus, this novel noncanonical role of FH as an immunological brake able to directly affect the function of MoDCs in an inflammatory environment may exhibit therapeutic potential in hypersensitivity, transplantation, and autoimmunity. PMID:27076676

  5. Cyclooxygenase-2 Generates the Endogenous Mutagen trans-4-Hydroxy-2-nonenal in Enterococcus faecalis-infected Macrophages

    PubMed Central

    Wang, Xingmin; Allen, Toby D.; Yang, Yonghong; Moore, Danny R.; Huycke, Mark M.

    2013-01-01

    Infection of macrophages by the human intestinal commensal Enterococcus faecalis generates DNA damage and chromosomal instability in mammalian cells through bystander effects. These effects are characterized by clastogenesis and damage to mitotic spindles in target cells and are mediated, in part, by trans-4-hydroxy-2-nonenal (4-HNE). In this study we investigated the role of cyclooxygenase (COX) and lipoxygenase (LOX) in producing this reactive aldehyde using E. faecalis-infected macrophages and interleukin-10 knockout mice colonized with this commensal. 4-HNE production by E. faecalis-infected macrophages was significantly reduced by COX and LOX inhibitors. The infection of macrophages led to decreased Cox1 and Alox5 expression while COX-2 and 4-HNE increased. Silencing Alox5 and Cox1 with gene-specific siRNAs had no effect on 4-HNE production. In contrast, silencing Cox2 significantly decreased 4-HNE production by E. faecalis-infected macrophages. Depleting intracellular glutathione increased 4-HNE production by these cells. Next, to confirm COX-2 as a source for 4-HNE, we assayed the products generated by recombinant human COX-2 and found 4-HNE in a concentration-dependent manner using arachidonic acid as a substrate. Finally, tissue macrophages in colon biopsies from interleukin-10 knockout mice colonized with E. faecalis were positive for COX-2 by immunohistochemical staining. This was associated with increased staining for 4-HNE-protein adducts in surrounding stroma. These data show that E. faecalis, a human intestinal commensal, can trigger macrophages to produce 4-HNE through COX-2. Importantly, it reinforces the concept of COX-2 as a procarcinogenic enzyme capable of damaging DNA in target cells through bystander effects that contribute to colorectal carcinogenesis. PMID:23321929

  6. Anti-inflammatory and immunomodulatory properties of Carica papaya.

    PubMed

    Pandey, Saurabh; Cabot, Peter J; Shaw, P Nicholas; Hewavitharana, Amitha K

    2016-07-01

    Chronic inflammation is linked with the generation and progression of various diseases such as cancer, diabetes and atherosclerosis, and anti-inflammatory drugs therefore have the potential to assist in the treatment of these conditions. Carica papaya is a tropical plant that is traditionally used in the treatment of various ailments including inflammatory conditions. A literature search was conducted by using the keywords "papaya", "anti-inflammatory and inflammation" and "immunomodulation and immune" along with cross-referencing. Both in vitro and in vivo investigation studies were included. This is a review of all studies published since 2000 on the anti-inflammatory activity of papaya extracts and their effects on various immune-inflammatory mediators. Studies on the anti-inflammatory activities of recognized phytochemicals present in papaya are also included. Although in vitro and in vivo studies have shown that papaya extracts and papaya-associated phytochemicals possess anti-inflammatory and immunomodulatory properties, clinical studies are lacking. PMID:27416522

  7. Effects of the New Generation Synthetic Reconstituted Surfactant CHF5633 on Pro- and Anti-Inflammatory Cytokine Expression in Native and LPS-Stimulated Adult CD14+ Monocytes

    PubMed Central

    Glaser, Kirsten; Fehrholz, Markus; Curstedt, Tore; Kunzmann, Steffen; Speer, Christian P.

    2016-01-01

    Background Surfactant replacement therapy is the standard of care for the prevention and treatment of neonatal respiratory distress syndrome. New generation synthetic surfactants represent a promising alternative to animal-derived surfactants. CHF5633, a new generation reconstituted synthetic surfactant containing SP-B and SP-C analogs and two synthetic phospholipids has demonstrated biophysical effectiveness in vitro and in vivo. While several surfactant preparations have previously been ascribed immunomodulatory capacities, in vitro data on immunomodulation by CHF5633 are limited, so far. Our study aimed to investigate pro- and anti-inflammatory effects of CHF5633 on native and LPS-stimulated human adult monocytes. Methods Highly purified adult CD14+ cells, either native or simultaneously stimulated with LPS, were exposed to CHF5633, its components, or poractant alfa (Curosurf®). Subsequent expression of TNF-α, IL-1β, IL-8 and IL-10 mRNA was quantified by real-time quantitative PCR, corresponding intracellular cytokine synthesis was analyzed by flow cytometry. Potential effects on TLR2 and TLR4 mRNA and protein expression were monitored by qPCR and flow cytometry. Results Neither CHF5633 nor any of its components induced inflammation or apoptosis in native adult CD14+ monocytes. Moreover, LPS-induced pro-inflammatory responses were not aggravated by simultaneous exposure of monocytes to CHF5633 or its components. In LPS-stimulated monocytes, exposure to CHF5633 led to a significant decrease in TNF-α mRNA (0.57 ± 0.23-fold, p = 0.043 at 4h; 0.56 ± 0.27-fold, p = 0.042 at 14h). Reduction of LPS-induced IL-1β mRNA expression was not significant (0.73 ± 0.16, p = 0.17 at 4h). LPS-induced IL-8 and IL-10 mRNA and protein expression were unaffected by CHF5633. For all cytokines, the observed CHF5633 effects paralleled a Curosurf®-induced modulation of cytokine response. TLR2 and TLR4 mRNA and protein expression were not affected by CHF5633 and Curosurf

  8. Generation of the First TCR Transgenic Mouse with CD4(+) T Cells Recognizing an Anti-inflammatory Regulatory T Cell-Inducing Hsp70 Peptide.

    PubMed

    Jansen, Manon A A; van Herwijnen, Martijn J C; van Kooten, Peter J S; Hoek, Aad; van der Zee, Ruurd; van Eden, Willem; Broere, Femke

    2016-01-01

    Antigen-specific regulatory T cells (Tregs) directed at self-antigens are difficult to study since suitable specific tools to isolate and characterize these cells are lacking. A T cell receptor (TCR)-transgenic mouse would generate possibilities to study such -antigen-specific T cells. As was shown previously, immunization with the mycobacterial heat shock protein (Hsp) 70-derived peptide B29 and its mouse homologs mB29a and mB29b induced anti-inflammatory responses. Furthermore, B29 induced antigen--specific Tregs in vivo. To study mB29b-specific Tregs, we isolated the TCR from T cell hybridomas generated against mB29b and produced a TCR transgenic mouse that expresses a MHC-class II restricted mB29b-specific TCR. These TCR transgenic CD4(+) T cells were found to cross-react with the B29 epitope as identified with peptide-induced proliferation and IL-2 production. Thus, we have successfully generated a novel mouse model with antigen-specific CD4(+) T cells that recognize self and bacterial Hsp 70-derived peptides. With this novel mouse model, it will be possible to study primary antigen-specific T cells with specificity for a regulatory Hsp70 T cell epitope. This will enable the isolation and characterization CD4(+)CD25(+) Tregs with a proven specificity. This will provide useful knowledge of the induction, activation, and mode of action of Hsp70-specific Tregs, for instance, during experimental arthritis. PMID:27014269

  9. Generation of the First TCR Transgenic Mouse with CD4+ T Cells Recognizing an Anti-inflammatory Regulatory T Cell-Inducing Hsp70 Peptide

    PubMed Central

    Jansen, Manon A. A.; van Herwijnen, Martijn J. C.; van Kooten, Peter J. S.; Hoek, Aad; van der Zee, Ruurd; van Eden, Willem; Broere, Femke

    2016-01-01

    Antigen-specific regulatory T cells (Tregs) directed at self-antigens are difficult to study since suitable specific tools to isolate and characterize these cells are lacking. A T cell receptor (TCR)-transgenic mouse would generate possibilities to study such ­antigen-specific T cells. As was shown previously, immunization with the mycobacterial heat shock protein (Hsp) 70-derived peptide B29 and its mouse homologs mB29a and mB29b induced anti-inflammatory responses. Furthermore, B29 induced antigen-­specific Tregs in vivo. To study mB29b-specific Tregs, we isolated the TCR from T cell hybridomas generated against mB29b and produced a TCR transgenic mouse that expresses a MHC-class II restricted mB29b-specific TCR. These TCR transgenic CD4+ T cells were found to cross-react with the B29 epitope as identified with peptide-induced proliferation and IL-2 production. Thus, we have successfully generated a novel mouse model with antigen-specific CD4+ T cells that recognize self and bacterial Hsp 70-derived peptides. With this novel mouse model, it will be possible to study primary antigen-specific T cells with specificity for a regulatory Hsp70 T cell epitope. This will enable the isolation and characterization CD4+CD25+ Tregs with a proven specificity. This will provide useful knowledge of the induction, activation, and mode of action of Hsp70-specific Tregs, for instance, during experimental arthritis. PMID:27014269

  10. A fraction from Dojuksan 30% ethanol extract exerts its anti-inflammatory effects through Nrf2-dependent heme oxygenase-1 expression.

    PubMed

    Lee, Dong-Sung; Kim, Kyoung-Su; Ko, Wonmin; Bae, Gi-Sang; Park, Sung-Joo; Jang, Jun-Hyeog; Oh, Hyuncheol; Kim, Youn-Chul

    2016-02-01

    Dojuksan is a traditional herbal medicine used in Korea and China to treat urinary diseases. In the present study, we aimed to examine the anti-inflammatory effects of an ethanol solvent extract of Dojuksan and a fraction (by bioassay-guided fractionation) derived from this extract, and to elucidate the specific mechanisms involved. The Dojuksan 30% ethanol extract (DEE) had a more significant and potent anti-inflammatory effect than the Dojuksan water extract (DWE). DEE markedly inhibited the production of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), as well as nuclear factor-κB (NF-κB) binding activity. We found that the anti-inflammatory effects of DEE were mediated by the induction of nuclear factor E2-related factor 2 (Nrf2)-dependent heme oxygenase-1 (HO-1). To further explore the anti-inflammatory effects of DEE, we generated 6 different fractions of DEE. Of these, DEE-5 decreased the production of NO more significantly than the other fractions. DEE-5 also significantly decreased the expression of iNOS and COX-2, and the production of NO, PGE2, TNF-α and IL-1β. In addition, DEE-5 also significantly increased HO-1 levels; HO-1 significanlty contributed to the inhibitory effects of DEE-5 on the production of pro-inflammatory mediators. In this study, we determined whether the choice of extraction solvent affects the biological activity of Dojuksan, a traditional herbal formula. Our findings demonstrate that DEE and a fraction derived from this extract exerts anti-inflammatory effects through Nrf2‑dependent HO-1 expression, and that DEE may thus have greater potential therapeutic application than DWE. PMID:26647788

  11. Anti-Inflammatory, Antioxidant, Anti-Angiogenic and Skin Whitening Activities of Phryma leptostachya var. asiatica Hara Extract

    PubMed Central

    Jung, Hyun-Joo; Cho, Young-Wook; Lim, Hye-Won; Choi, Hojin; Ji, Dam-Jung; Lim, Chang-Jin

    2013-01-01

    This work aimed to assess some pharmacological activities of P. leptostachya var. asiatica Hara. The dried roots of P. leptostachya var. asiatica Hara were extracted with 70% ethanol to generate the powdered extract, named PLE. Anti-angiogenic activity was detected using chick chorioallantoic membrane (CAM) assay. In vitro anti-inflammatory activity was evaluated via analyzing nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Antioxidant activity was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay and reactive oxygen species (ROS) level in the stimulated macrophage cells. Matrix metalloproteinase-9 (MMP-9) and -2 (MMP-2) activities in the culture media were detected using zymography. PLE exhibits an anti-angiogenic activity in the CAM assay, and displays an inhibitory action on the generation of NO in the LPS-stimulated macrophage cells. In the stimulated macrophage cells, it is able to diminish the enhanced ROS level. It can potently scavenge the stable DPPH free radical. It suppresses the induction of iNOS and COX-2 and the enhanced MMP-9 activity in the stimulated macrophage cells. Both monooxygenase and oxidase activities of tyrosinase were strongly inhibited by PLE. Taken together, the dried roots of P. leptostachya var. asiatica Hara possess anti-angiogenic, anti-inflammatory, antioxidant and skin whitening activities, which might partly provide its therapeutic efficacy in traditional medicine. PMID:24009862

  12. Antibacterial and Anti-Inflammatory Activities of Physalis Alkekengi var. franchetii and Its Main Constituents

    PubMed Central

    Shu, Zunpeng; Xing, Na; Wang, Qiuhong; Li, Xinli; Xu, Bingqing; Li, Zhenyu; Kuang, Haixue

    2016-01-01

    This study was designed to determine whether the 50% EtOH fraction from AB-8 macroporous resin fractionation of a 70% EtOH extract of P. Alkekengi (50-EFP) has antibacterial and/or anti-inflammatory activity both in vivo and in vitro and to investigate the mechanism of 50-EFP anti-inflammatory activity. Additionally, this study sought to define the chemical composition of 50-EFP. Results indicated that 50-EFP showed significant antibacterial activity in vitro and efficacy in vivo. Moreover, 50-EFP significantly reduced nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α), interleukin 1 (IL-1), and interleukin 6 (IL-6) production in lipopolysaccharide- (LPS-) stimulated THP-1 cells. Nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) (examined at the protein level) in THP-1 cells were suppressed by 50-EFP, which inhibited nuclear translocation of p65. Consistent with this anti-inflammatory activity in vitro, 50-EFP reduced inflammation in both animal models. Finally, seventeen compounds (8 physalins and 9 flavones) were isolated as major components of 50-EFP. Our data demonstrate that 50-EFP has antibacterial and anti-inflammatory activities both in vitro and in vivo. The anti-inflammatory effect appears to occur, at least in part, through the inhibition of nuclear translocation of p65. Moreover, physalins and flavones are probably the active components in 50-EFP that exert antibacterial and anti-inflammatory activities. PMID:27057196

  13. Peroxisome proliferator-activated receptor-γ mediates the anti-inflammatory effect of 3-hydroxy-4-pyridinecarboxylic acid derivatives: synthesis and biological evaluation.

    PubMed

    Brun, Paola; Dean, Annalisa; Di Marco, Valerio; Surajit, Pathak; Castagliuolo, Ignazio; Carta, Davide; Ferlin, Maria Grazia

    2013-04-01

    Seven 3-hydroxy-4-pyridinecarboxylic acid derivatives (HPs), aza-analogues of salicylic acid and structurally close to other potent inflammatory pyridine compounds such as aminopyridinylmethanols and aminopyridinamines, were synthesized, and their anti-inflammatory activity was evaluated. The synthesis was performed by adopting a general procedure involving an intramolecular Diels-Alder cycloaddition of oxazoles with acrylic acid to form various substituted pyridinic acids. The newly synthesized HPs did not exhibit cytotoxic activity on human monocytes-derived macrophages at concentrations up to 10(2) μM. Anti-inflammatory activity of the compounds was screened in vitro by evaluating the capability to inhibit cytokines release from lipopolysaccharide (LPS) stimulated human macrophages. 3-Hydroxy-1-methyl-4-pyridinecarboxylic acid (24) was found to be the most active HP. At 10 μM concentration, HP 24 reduced LPS-induced and nuclear factor-κB activation and cyclooxygenase-2 expression, while increased intracellular reactive oxygen species generation and peroxisome proliferator-activated receptor (PPAR-γ) mRNA transcript level. Indeed, pre-treatment of LPS-exposed human macrophages with PPAR-γ specific antagonist completely prevented HP 24-induced TNF-α and IL8 down regulation, demonstrating that the PPARγ pathway is mandatory for the HP 24 anti-inflammatory effect. Finally, daily treatment with HP 24 ameliorated the outcome of DSS-induced colitis in mice, significantly reducing colonic MPO activity and IL-1β tissue levels. PMID:23416190

  14. Anti-inflammatory effects of the chloroform extract of Pulicaria guestii ameliorated the neutrophil infiltration and nitric oxide generation in rats.

    PubMed

    Alghaithy, A A; El-Beshbishy, H A; Abdel-Naim, A B; Nagy, A A; Abdel-Sattar, E M

    2011-11-01

    Pulicaria guestii Rech.f. & Rawi is a fragrant, perennial herb, which grows wild, west of Al-Madinah, Saudi Arabia. Several reports were published on the anti-inflammatory activity of the sesquiterpene lactones, phenolics and flavonoids, which constitute the main active constituents of the members of the genus Pulicaria. The present study was designed to explore the potential anti-inflammatory effect of P. guestii in several experimental models. The methanol extract of the dried aerial parts of P. guestii was extracted with petroleum ether, chloroform and n-butanol. The chloroform extract was analysed on TLC and examined under UV and visible light in presence of AlCl(3) spray. The free radical scavenging activity and the total phenolic content in the CHCl(3) extract were estimated. The crude methanol extract and the CHCl(3) fraction were examined against carrageenin-induced paw edema and ear edema induced by croton oil application. The crude methanolic extract significantly reduced carrageenin-induced rat paw edema. After fractionation, the chloroform fraction caused significant reduction in carrageenin-induced rat paw edema in addition to diminishing prostaglandin E(2) (PGE(2)) in the inflammatory exudates. Topical application of chloroform fraction significantly reduced rat ear edema induced by croton oil application. In the same model, chloroform fraction reduced neutrophil infiltration, as indicated by the significant decrease in myeloperoxidase activity, and ameliorated histopathological changes induced by croton oil application. In lipopolysaccharide-induced inflammation in rat air pouch, chloroform fraction significantly reduced the nitric oxide level and tumor necrosis factor-α release. In conclusion, the chloroform fraction of P. guestii extract possesses anti-inflammatory activity in several experimental models. Further investigations are needed to identify the active constituents responsible for this anti-inflammatory activity. PMID:21505007

  15. Role of lipoxins and resolvins as anti-inflammatory and proresolving mediators in colon cancer.

    PubMed

    Janakiram, Naveena B; Rao, Chinthalapally V

    2009-06-01

    Recently, lipoxins (LXs) and resolvins (Rvs) have become the topic of intense interest because of expanding views of their action, particularly in chronic disorders where unresolved inflammation is a key factor leading to colon carcinogenesis. Rvs are biosynthesized from omega-3 fatty acids eicosapentanoic acid (EPA) and docosahexaenoic acid (DHA) via cyclooxygenase-2/lipoxygenase (COX-2/LOX) pathways; Rvs are shown to dramatically reduce dermal inflammation, peritonitis, dendritic cell migration, and interleukin production. This explains that dietary supplementation of omega-3 fatty acids generates potent local endogenous mediators that control inflammation. LXs are biosynthesized from COX-2/LOX pathways. Metabolites of 15-LOX-1 and 2 are anti-tumorigenic; similarly, 15-epi-LXA(4) synthesized during COX-2 acetylation by low doses of aspirin too possesses anti-tumorigenic effects. Acetylating nonsteroidal anti-inflammatory drugs (NSAIDs), like aspirin, switches COX-2 from forming PGE(2) (promoting tumorigenesis) to 15-epi-LXA(4) (antitumorigenesis). LXs and Rvs are endogenously generated during the spontaneous resolution phase. These newly identified LXs and Rvs have proved to be potent regulators of both leukocytes and cytokine productions, thereby regulating the events of interest in inflammation and resolution. In light of existing knowledge on interconnected pathways of pro-inflammatory mediators (leukotrienes, chemokines (IL8, SDF-1 alpha, MIP-1 alpha, MCP-1,2 etc), and cytokines (IL3, IL6, IL12, IL-1 beta, GM-CSF, B94, TNF-alpha etc)), the anti-inflammatory properties of pro-resolving mediators in preventing chronic inflammation which leads to carcinogenesis needs further understanding. In this review, we explore the mechanisms that trigger formation of LXs and Rvs, to highlight the relative importance of LXs and Rvs in carcinogenesis in relation to pro-inflammatory mediators. PMID:19601807

  16. Anti-Inflammatory and Antinociceptive Activities of Bufalin in Rodents

    PubMed Central

    Huang, Yang; Yin, Junqiang; Lin, Wenqian

    2014-01-01

    The aims of this study were to evaluate the anti-inflammatory and analgesic effects of bufalin, a major component of “Chan-su.” We used a carrageenan-induced paw edema model to assess the anti-inflammatory activity of this compound, and Western blot analysis detected NF-κB signaling during this effect. The antinociceptive activities were evaluated by acetic acid-induced writhing, formalin, and hot-plate tests; open-field test investigated effects on the central nervous system. Our data showed that bufalin (0.3 and 0.6 mg/kg, i.p.) potently decreased carrageenan-induced paw edema. Bufalin down regulated the expression levels of nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) during these treatments. Further studies demonstrated that bufalin significantly inhibited the activation of NF-κB signaling. Bufalin also reduced acetic acid-induced writhing and the licking time in the formalin test and increased hot-plate reaction latencies. Naloxone pretreatment (2 mg/kg, i.p.) in the early phases of the formalin test and hot-plate test significantly attenuated the bufalin-induced antinociception effects, which suggests the involvement of the opioid system. A reduction in locomotion was not observed in the open-field test after bufalin administration. Taken together, bufalin treatment resulted in in vivo anti-inflammatory and analgesic effects, and bufalin may be a novel, potential drug for the treatment of inflammatory diseases. PMID:24719521

  17. Intracellular Secretory Leukoprotease Inhibitor Modulates Inositol 1,4,5-Triphosphate Generation and Exerts an Anti-Inflammatory Effect on Neutrophils of Individuals with Cystic Fibrosis and Chronic Obstructive Pulmonary Disease

    PubMed Central

    Reeves, Emer P.; Banville, Nessa; Ryan, Dorothy M.; O'Reilly, Niamh; Bergin, David A.; Pohl, Kerstin; Molloy, Kevin; McElvaney, Oliver J.; Alsaleh, Khalifah; Aljorfi, Ahmed; Kandalaft, Osama; O'Flynn, Eimear; Geraghty, Patrick; O'Neill, Shane J.; McElvaney, Noel G.

    2013-01-01

    Secretory leukoprotease inhibitor (SLPI) is an anti-inflammatory protein present in respiratory secretions. Whilst epithelial cell SLPI is extensively studied, neutrophil associated SLPI is poorly characterised. Neutrophil function including chemotaxis and degranulation of proteolytic enzymes involves changes in cytosolic calcium (Ca2+) levels which is mediated by production of inositol 1,4,5-triphosphate (IP3) in response to G-protein-coupled receptor (GPCR) stimuli. The aim of this study was to investigate the intracellular function of SLPI and the mechanism-based modulation of neutrophil function by this antiprotease. Neutrophils were isolated from healthy controls (n = 10), individuals with cystic fibrosis (CF) (n = 5) or chronic obstructive pulmonary disease (COPD) (n = 5). Recombinant human SLPI significantly inhibited fMet-Leu-Phe (fMLP) and interleukin(IL)-8 induced neutrophil chemotaxis (P < 0.05) and decreased degranulation of matrix metalloprotease-9 (MMP-9), hCAP-18, and myeloperoxidase (MPO) (P < 0.05). The mechanism of inhibition involved modulation of cytosolic IP3 production and downstream Ca2+ flux. The described attenuation of Ca2+ flux was overcome by inclusion of exogenous IP3 in electropermeabilized cells. Inhibition of IP3 generation and Ca2+ flux by SLPI may represent a novel anti-inflammatory mechanism, thus strengthening the attractiveness of SLPI as a potential therapeutic molecule in inflammatory airway disease associated with excessive neutrophil influx including CF, non-CF bronchiectasis, and COPD. PMID:24073410

  18. Crystallization of recombinant cyclo-oxygenase-2

    NASA Astrophysics Data System (ADS)

    Stevens, Anna M.; Pawlitz, Jennifer L.; Kurumbail, Ravi G.; Gierse, James K.; Moreland, Kirby T.; Stegeman, Roderick A.; Loduca, Jina Y.; Stallings, William C.

    1999-01-01

    The integral membrane protein, prostaglandin H 2 synthase, or cyclo-oxygenase (COX), catalyses the first step in the conversion of arachidonic acid to prostaglandins (PGs) and is the target of nonsteroidal anti-inflammatory drugs (NSAIDs). Two isoforms are known. The constitutive enzyme, COX-1, is present in most tissues and is responsible for the physiological production of PGs. The isoform responsible for the elevated production of PGs during inflammation is COX-2 which is induced specifically at inflammatory sites. Three-dimensional structures of inhibitor complexes of COX-2, and of site variants of COX-2 which mimic COX-1, provide insight into the structural basis for selective inhibition of COX-2. Additionally, structures of COX-2 mutants and complexes with the substrate can provide a clearer understanding of the catalytic mechanism of the reaction. A crystallization protocol has been developed for COX-2 which reproducibly yields diffraction quality crystals. Polyethyleneglycol 550 monomethylether (MMP550) and MgCl 2 were systematically varied and used in conjunction with the detergent β- D-octylglucopyranoside ( β-OG). As a result of many crystallization trials, we determined that the initial β-OG concentration should be held constant, allowing the salt concentration to modulate the critical micelle concentration (CMC) of the detergent. Over 25 crystal structures have been solved using crystals generated from this system. Most crystals belong to the space group P2 12 12, with lattice constants of a=180, b=134, c=120 Å in a pseudo body-centered lattice.

  19. NF-κB-targeted anti-inflammatory activity of Prunella vulgaris var. lilacina in macrophages RAW 264.7.

    PubMed

    Hwang, Yu-Jin; Lee, Eun-Ju; Kim, Haeng-Ran; Hwang, Kyung-A

    2013-01-01

    Prunella vulgaris var. lilacina, a herbal medicine, has long been used in Korea for the treatment of sore throat, and to alleviate fever and accelerate wound healing. Although the therapeutic effect of P. vulgaris var. lilacina is likely associated with anti-inflammatory activity, the precise underlying mechanisms are largely unknown. Here, we sought to elucidate the possible mechanisms of the anti-inflammatory activity. We have investigated the anti-inflammatory activity of the various solvent fractions (hexane, butanol, chloroform and water) from the ethanol extract of P. vulgaris var. lilacina in activated macrophages. The hexane fraction exhibited higher anti-inflammatory activities, inducing inhibition of nitric oxide and prostaglandin E2 production as well as inducible nitric oxide synthase, cyclooxygenase-2, and tumor necrosis factor-α mRNA expression in response to lipopolysaccharide stimulation. Moreover, the hexane fraction from P. vulgaris var. lilacina significantly inhibited the activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and the nuclear translocation of the NF-κB p50 and p65 subunits. These results indicate that P. vulgaris var. lilacina has an anti-inflammatory capacity in vitro, suggesting that it could be a potential source of natural anti-inflammatory agents. PMID:24177568

  20. Anti-inflammatory effects of Houttuynia cordata supercritical extract in carrageenan-air pouch inflammation model.

    PubMed

    Kim, Dajeong; Park, Dongsun; Kyung, Jangbeen; Yang, Yun-Hui; Choi, Ehn-Kyoung; Lee, Yoon-Bok; Kim, Hyun-Kyu; Hwang, Bang Yeon; Kim, Yun-Bae

    2012-06-01

    Anti-inflammatory effects of Houttuynia cordata supercritical extract (HSE) were investigated in rat carrageenan-air pouch model. Oral administration of HSE (50-200 mg/kg) suppressed carrageenan-induced exudation and albumin leakage, as well as inflammatory cell infiltration at a high dose (200 mg/kg). Intraperitoneal injection of dexamethasone (2 mg/kg) only decreased exudation and cell infiltration, while indomethacin (2 mg/kg, i.p.) reduced exudate volume and albumin content without influence on the cell number. HSE lowered tumor-necrosis factor-α (TNF-α) and nitric oxide (NO), as well as prostaglandin E(2) (PGE(2)). Dexamethasone only reduced TNF-α and NO, while indomethacin decreased PGE(2). The results indicate that HSE exhibits anti-inflammatory effects by inhibiting both TNF-α-NO and cyclooxygenase-2-PGE(2) pathways. PMID:22787488

  1. Novel Biphasic Role of LipoxinA4 on Expression of Cyclooxygenase-2 in Lipopolysaccharide-Stimulated Lung Fibroblasts

    PubMed Central

    Zheng, Shengxing; Wang, Qian; He, Qian; Song, Xiaorong; Ye, Duyun; Gao, Fang; Jin, Shengwei; Lian, QingQuan

    2011-01-01

    Fibroblasts are important to host defence and immunity, can also as initiators of inflammation as well. As the endogenous “braking signal”, Lipoxins can regulate anti-inflammation and the resolution of inflammation. We investigated the effect of lipoxinA4 on the expression of cyclooxygenase-2 in lipopolysaccharide-stimulated lung fibroblasts. We demonstrated that the expression of cyclooxygenase-2 protein was significantly increased and peaked initially at 6 hours, with a second increase, with maximal levels occurring 24 hours after lipopolysaccharide challenge. ProstaglandinE2 levels also peaked at 6 hours, and prostaglandinD2 levels were increased at both 6 and 24 hours. Exogenous lipoxinA4 inhibited the first peak of cyclooxygenase-2 expression as well as the production of prostaglandinE2 induced by lipopolysaccharide in a dose-dependent manner. In contrast, exogenous lipoxinA4 increased the second peak of cyclooxygenase-2 expression as well as the production of prostaglandinD2 induced by lipopolysaccharide in a dose-dependent manner. LipoxinA4 receptor mRNA expression was markedly stimulated by lipopolysaccharide but inhibited by lipoxinA4. We present evidence for a novel biphasic role of lipoxinA4 on the expression of cyclooxygenase-2 in lipopolysaccharide-stimulated lung fibroblasts, whereby LXA4 has an anti-inflammatory and proresolving activity in lung fibroblasts following LPS stimulation. PMID:21765620

  2. Analgesic and Anti-Inflammatory Activities of Rosa taiwanensis Nakai in Mice

    PubMed Central

    Tsai, Der-Shiang; Huang, Mei-Hsuen; Tsai, Jen-Chieh; Chang, Yuan-Shuang; Chiu, Yung-Jia; Lin, Yen-Chang

    2015-01-01

    Abstract In this study, we evaluated the analgesic and anti-inflammatory activities of a 70% ethanol extract from Rosa taiwanensis Nakai (RTEtOH). The analgesic effect was determined using acetic acid-induced writhing response and formalin test. The anti-inflammatory activity was evaluated by λ-carrageenan-induced paw edema in mice. The anti-inflammatory mechanism of RTEtOH was examined by measuring the levels of cyclooxygenase-2 (COX-2), nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and malondialdehyde (MDA) in the paw edema tissue and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GRd) in the liver tissue. The betulinic acid and oleanolic acid contents of RTEtOH were assayed by HPLC. The results showed that RTEtOH decreased the acetic acid-induced writhing responses (1.0 g/kg) and the late phase of the formalin-induced licking time (0.5 and 1.0 g/kg). In the anti-inflammatory models, RTEtOH (0.5 and 1.0 g/kg) reduced the paw edema at 3, 4, and 5 h after λ-carrageenan administration. Moreover, the anti-inflammatory mechanisms might be due to the decreased levels of COX-2, TNF-α, IL-1β, and IL-6, as well as the inhibition of NO and MDA levels through increasing the activities of SOD, GPx, and GRd. The contents of two active compounds, betulinic acid and oleanolic acid, were quantitatively determined. This study demonstrated the analgesic and anti-inflammatory activities of RTEtOH and provided evidence to support its therapeutic use in inflammatory diseases. PMID:25494361

  3. Anti-Inflammatory Effects of Hyptis albida Chloroform Extract on Lipopolysaccharide-Stimulated Peritoneal Macrophages.

    PubMed

    Sánchez Miranda, Elizabeth; Pérez Ramos, Julia; Fresán Orozco, Cristina; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud

    2013-01-01

    We examined the effects of a chloroform extract of Hyptis albida (CHA) on inflammatory responses in mouse lipopolysaccharide (LPS) induced peritoneal macrophages. Our findings indicate that CHA inhibits LPS-induced production of tumor necrosis factor (TNF- α ) and interleukin-6 (IL-6). During the process, levels of cyclooxygenase-2 (COX-2), nitric oxide synthase (iNOS), and nitric oxide (NO) increased in the mouse peritoneal macrophages; however, the extract suppressed them significantly. These results provide novel insights into the anti-inflammatory actions of CHA and support its potential use in the treatment of inflammatory diseases. PMID:23970974

  4. Anti-Inflammatory Effects of Hyptis albida Chloroform Extract on Lipopolysaccharide-Stimulated Peritoneal Macrophages

    PubMed Central

    Sánchez Miranda, Elizabeth; Pérez Ramos, Julia; Fresán Orozco, Cristina; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud

    2013-01-01

    We examined the effects of a chloroform extract of Hyptis albida (CHA) on inflammatory responses in mouse lipopolysaccharide (LPS) induced peritoneal macrophages. Our findings indicate that CHA inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6). During the process, levels of cyclooxygenase-2 (COX-2), nitric oxide synthase (iNOS), and nitric oxide (NO) increased in the mouse peritoneal macrophages; however, the extract suppressed them significantly. These results provide novel insights into the anti-inflammatory actions of CHA and support its potential use in the treatment of inflammatory diseases. PMID:23970974

  5. Drug Targets for Cardiovascular-Safe Anti-Inflammatory: In Silico Rational Drug Studies.

    PubMed

    Shahbazi, Sajad; Sahrawat, Tammanna R; Ray, Monalisa; Dash, Swagatika; Kar, Dattatreya; Singh, Shikha

    2016-01-01

    Cyclooxygenase-2 (COX-2) plays an important role in memory consolidation and synaptic activity, the most fundamental functions of the brain. It converts arachidonic acid to prostaglandin endoperoxide H2. In contrast, if over-expressed, it causes inflammation in response to cytokine, pro-inflammatory molecule, and growth factor. Anti-inflammatory agents, by allosteric or competitive inhibition of COX-2, alleviate the symptoms of inflammation. Coxib family drugs, particularly celecoxib, are the most famous anti-inflammatory agents available in the market showing significant inhibitory effect on COX-2 activity. Due to high cardiovascular risk of this drug group, recent researches are focused on the investigation of new safer drugs for anti-inflammatory diseases. Natural compounds, particularly, phytochemicals are found to be good candidates for drug designing and discovery. In the present study, we performed in silico studies to quantitatively scrutinize the molecular interaction of curcumin and its structural analogs with COX-2, COX-1, FXa and integrin αIIbβIII to investigate their therapeutic potential as a cardiovascular-safe anti-inflammatory medicine (CVSAIM). The results of both ADMET and docking study indicated that out of all the 39 compounds studied, caffeic acid had remarkable interaction with proteins involved in inflammatory response. It was also found to inhibit the proteins that are involved in thrombosis, thereby, having the potential to be developed as therapeutic agent. PMID:27258084

  6. Drug Targets for Cardiovascular-Safe Anti-Inflammatory: In Silico Rational Drug Studies

    PubMed Central

    Shahbazi, Sajad; Sahrawat, Tammanna R.; Ray, Monalisa; Dash, Swagatika; Kar, Dattatreya; Singh, Shikha

    2016-01-01

    Cyclooxygenase-2 (COX-2) plays an important role in memory consolidation and synaptic activity, the most fundamental functions of the brain. It converts arachidonic acid to prostaglandin endoperoxide H2. In contrast, if over-expressed, it causes inflammation in response to cytokine, pro-inflammatory molecule, and growth factor. Anti-inflammatory agents, by allosteric or competitive inhibition of COX-2, alleviate the symptoms of inflammation. Coxib family drugs, particularly celecoxib, are the most famous anti-inflammatory agents available in the market showing significant inhibitory effect on COX-2 activity. Due to high cardiovascular risk of this drug group, recent researches are focused on the investigation of new safer drugs for anti-inflammatory diseases. Natural compounds, particularly, phytochemicals are found to be good candidates for drug designing and discovery. In the present study, we performed in silico studies to quantitatively scrutinize the molecular interaction of curcumin and its structural analogs with COX-2, COX-1, FXa and integrin αIIbβIII to investigate their therapeutic potential as a cardiovascular-safe anti-inflammatory medicine (CVSAIM). The results of both ADMET and docking study indicated that out of all the 39 compounds studied, caffeic acid had remarkable interaction with proteins involved in inflammatory response. It was also found to inhibit the proteins that are involved in thrombosis, thereby, having the potential to be developed as therapeutic agent. PMID:27258084

  7. A review of anti-inflammatory agents for symptoms of schizophrenia.

    PubMed

    Keller, William R; Kum, Lionel M; Wehring, Heidi J; Koola, Maju Mathew; Buchanan, Robert W; Kelly, Deanna L

    2013-04-01

    Schizophrenia is a chronic debilitating mental disorder that affects about 1% of the US population. The pathophysiology and etiology remain unknown, thus new treatment targets have been challenging and few novel treatments with new mechanisms of action have come to market in the past few decades. Increasing attention has been paid to the role of inflammation in schizophrenia and new data suggests that decreasing inflammation and inflammatory biomarkers may play some role in schizophrenia treatment. This review summarizes the clinical trial literature regarding medications that possess anti-inflammatory properties that have been tested for schizophrenia symptoms and covers such medications as non-steroidal anti-inflammatory agents, such as the cyclo-oxygenase-2 (COX-2) inhibitors and aspirin, omega-3 fatty acids, neurosteroids and minocycline. Overall, there is accumulating evidence, albeit mostly adjunctive treatments, that agents working on inflammatory pathways have some benefits in people with schizophrenia. In the next few years the field will begin to see data on many treatments with anti-inflammatory properties that are currently under study. Hopefully advancements in understanding inflammation and effective treatments having anti-inflammatory properties may help revolutionize our understanding and provide new targets for prevention and treatment in schizophrenia. PMID:23151612

  8. Chemoprevention in gastrointestinal physiology and disease. Anti-inflammatory approaches for colorectal cancer chemoprevention.

    PubMed

    Fajardo, Alexandra M; Piazza, Gary A

    2015-07-15

    Colorectal cancer (CRC) is one of the most common human malignancies and a leading cause of cancer-related deaths in developed countries. Identifying effective preventive strategies aimed at inhibiting the development and progression of CRC is critical for reducing the incidence and mortality of this malignancy. The prevention of carcinogenesis by anti-inflammatory agents including nonsteroidal anti-inflammatory drugs (NSAIDs), selective cyclooxygenase-2 (COX-2) inhibitors, and natural products is an area of considerable interest and research. Numerous anti-inflammatory agents have been identified as potential CRC chemopreventive agents but vary in their mechanism of action. This review will discuss the molecular mechanisms being studied for the CRC chemopreventive activity of NSAIDs (i.e., aspirin, sulindac, and ibuprofen), COX-2 inhibitors (i.e., celecoxib), natural products (i.e., curcumin, resveratrol, EGCG, genistein, and baicalein), and metformin. A deeper understanding of how these anti-inflammatory agents inhibit CRC will provide insight into the development of potentially safer and more effective chemopreventive drugs. PMID:26021807

  9. Anti-Inflammatory and Anti-Superbacterial Properties of Sulforaphane from Shepherd's Purse

    PubMed Central

    Choi, Woo Jin; Kim, Seong Keun; Park, Hee Kuk; Sohn, Uy Dong

    2014-01-01

    Shepherd's purse, Capsella bursa-pastoris (L.) Medik., has been considered a health food for centuries in Asia and is known to contain the isothiocyanate compound sulforaphane. In this study, we evaluated the anti-inflammatory and antibacterial properties of a sulforaphane-containing solution (SCS) isolated from shepherd's purse. SCS had significant anti-inflammatory activity indicated by the decreased levels of nitric oxide (NO), cytokines (interleukin 1β [IL-1β], IL-6, and IL-10), and prostaglandin E2 (PGE2) in lipopolysaccharide-stimulated RAW 264.7 murine macrophages. In addition, SCS decreased the inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2) levels, which confirmed the anti-inflammatory activity of SCS. Further, SCS inhibited vancomycin-resistant enterococci (VRE) and Bacillus anthracis. The minimal inhibitory concentration was 250 µg/ml for VRE and 1,000 µg/ml for B. anthracis. Taken together, these data indicate that SCS has potential anti-inflammatory and anti-superbacterial properties, and thus it can be used as a functional food or pharmaceutical. PMID:24634594

  10. Anti-inflammatory and antiarthritic activity of anthraquinone derivatives in rodents.

    PubMed

    Kshirsagar, Ajay D; Panchal, Prashant V; Harle, Uday N; Nanda, Rabindra K; Shaikh, Haidarali M

    2014-01-01

    Aloe emodin is isolated compound of aloe vera which is used traditionally as an anti-inflammatory agent. In vitro pharmacokinetic data suggest that glucuronosyl or sulfated forms of aloe emodin may provide some limitations in its absorption capacity. Aloe emodin was reported to have in vitro anti-inflammatory activity due to inhibition of inducible nitric oxide (iNO) and prostaglandin E2, via its action on murine macrophages. However, present work evidenced that molecular docking of aloe emodin modulates the anti-inflammatory activity, as well as expression of COX-2 (cyclooxygenase-2) in rodent. The AEC (4,5-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2 carboxylic acid) was synthesized using aloe emodin as starting material. The study was planned for evaluation of possible anti-inflammatory and antiarthritic activity in carrageenan rat induced paw oedema and complete Freund's adjuvant induced arthritis in rats. The AE (aloe emodin) and AEC significantly (P < 0.001) reduced carrageenan induced paw edema at 50 and 75 mg/kg. Complete Freund's adjuvant induced arthritis model showed significant (P < 0.001) decrease in injected and noninjected paw volume, arthritic score. AE and AEC showed significant effect on various biochemical, antioxidant, and hematological parameters. Diclofenac sodium 10 mg/kg showed significant (P < 0.001) inhibition in inflammation and arthritis. PMID:25610704

  11. Chemoprevention in gastrointestinal physiology and disease. Anti-inflammatory approaches for colorectal cancer chemoprevention

    PubMed Central

    Piazza, Gary A.

    2015-01-01

    Colorectal cancer (CRC) is one of the most common human malignancies and a leading cause of cancer-related deaths in developed countries. Identifying effective preventive strategies aimed at inhibiting the development and progression of CRC is critical for reducing the incidence and mortality of this malignancy. The prevention of carcinogenesis by anti-inflammatory agents including nonsteroidal anti-inflammatory drugs (NSAIDs), selective cyclooxygenase-2 (COX-2) inhibitors, and natural products is an area of considerable interest and research. Numerous anti-inflammatory agents have been identified as potential CRC chemopreventive agents but vary in their mechanism of action. This review will discuss the molecular mechanisms being studied for the CRC chemopreventive activity of NSAIDs (i.e., aspirin, sulindac, and ibuprofen), COX-2 inhibitors (i.e., celecoxib), natural products (i.e., curcumin, resveratrol, EGCG, genistein, and baicalein), and metformin. A deeper understanding of how these anti-inflammatory agents inhibit CRC will provide insight into the development of potentially safer and more effective chemopreventive drugs. PMID:26021807

  12. Nurr1 and PPARγ protect PC12 cells against MPP(+) toxicity: involvement of selective genes, anti-inflammatory, ROS generation, and antimitochondrial impairment.

    PubMed

    Jodeiri Farshbaf, Mohammad; Forouzanfar, Mahboobeh; Ghaedi, Kamran; Kiani-Esfahani, Abbas; Peymani, Maryam; Shoaraye Nejati, Alireza; Izadi, Tayebeh; Karbalaie, Khadijeh; Noorbakhshnia, Maryam; Rahgozar, Soheila; Baharvand, Hossein; Nasr-Esfahani, Mohammad Hossein

    2016-09-01

    Parkinson's disease (PD) can degenerate dopaminergic (DA) neurons in midbrain, substantia-nigra pars compacta. Alleviation of its symptoms and protection of normal neurons against degeneration are the main aspects of researches to establish novel therapeutic strategies. PPARγ as a member of PPARs have shown neuroprotection in a number of neurodegenerative disorders such as Alzheimer's disease and PD. Nuclear receptor related 1 protein (Nurr1) is, respectively, member of NR4A family and has received great attentions as potential target for development, maintenance, and survival of DA neurons. Based on neuroprotective effects of PPARγ and dual role of Nurr1 in anti-inflammatory pathways and development of DA neurons, we hypothesize that PPARγ and Nurr1 agonists alone and in combined form can be targets for neuroprotective therapeutic development for PD in vitro model. 1-Methyl-4-phenylpyridinium (MPP(+)) induced neurotoxicity in PC12 cells as an in vitro model for PD studies. Treatment/cotreatment with PPARγ and Nurr1 agonists 24 h prior to MPP(+) induction enhanced the viability of PC12 cell. The viability of PC12 cells was determined by MTS test. Mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) were detected by flow cytometry. In addition, the relative expression of four genes including TH (the marker of DA neurons), Ephrin A1, Nurr1, and Ferritin light chain were assessed by RT-qPCR. In the MPP(+)-pretreated PC12 cells, PPARγ and Nurr1 agonists and their combined form resulted in a decrease in the cell death rate. Moreover, production of intracellular ROS and MMP modulated by MPP(+) was decreased by PPARγ and Nurr1 agonists' treatment alone and in the combined form. PMID:27435855

  13. Anti-inflammatory effects of enzymatic hydrolysates of velvet antler in RAW 264.7 cells in vitro and zebrafish model

    PubMed Central

    Lee, Seung-Hong; Yang, Hye-Won; Ding, Yuling; Wang, Yanmei; Jeon, You-Jin; Moon, Sang-Ho; Jeon, Byong-Tae; Sung, Si-Heung

    2015-01-01

    Enzymatic hydrolysis has been successfully used for the extraction of numerous biologically active components from a wide variety of natural sources. In the present study, velvet antler was subjected to the extraction process using Alcalase protease. We analyzed bioactive components, such as uronic acid, sulfated-glycosaminoglycans (sulfated-GAGs), and sialic acid, present in the velvet antler Alcalase hydrolysate (VAAH) and assessed their anti-inflammatory effects in zebrafish as well as in vitro using cell lines. VAAH mainly contained uronic acid (78.22 mg/g) and sulfated-GAGs (50.47 mg/g), while the amount of sialic acid was negligible (5.55 mg/g). VAAH inhibited the production of nitric oxide (NO) by lipopolysaccharide (LPS)-induced cells in a dose-dependent manner and the inhibitory effect of VAAH on NO production was higher than that of hot water extracts. VAAH treatment also reduced the expression of inflammatory mediators such as nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, we evaluated anti-inflammatory effects of VAAH using LPS-stimulated zebrafish. Treatment with LPS significantly increased cell death, NO, and reactive oxygen species (ROS) levels in zebrafish. Notably, VAAH significantly inhibited the extent of LPS-stimulated cell death and generation of NO and ROS in zebrafish. These results suggest that VAAH alleviated inflammation and cell death by inhibiting the generation of ROS induced by LPS treatment. Thus, VAAH could be used as a potential natural remedy with a strong anti-inflammatory effect. Taken together, we believe that based on our present results, enzymatic hydrolysis of velvet antler may be an effective process to make antler products acceptable as elements of health foods and nutraceutical components with increased biological activity. PMID:27152107

  14. Anti-inflammatory effect of methanolic extract of Conyzacanadensis in lipopolysaccharide (LPS)-stimulated RAW264.7 murine macrophage cells.

    PubMed

    Song, Jia-Le; Yi, Ruo-Kun; Gao, Yang

    2016-05-01

    The aim of this study was to investigate the potential anti-inflammatory effect of Conyzacanadeusis methanol extract (CME) using a cell model of RAW264.7 murine macrophage cell stimulated with lipopolysaccharide (LPS)(1μg/ml). Co-treatment with different concentrations (10, 50 and 100μg/ml) of CME was concentration-dependently reduced the LPS-induced generation of prostaglandin E2 (PGE2), nitric oxide (NO) tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6. In addition, CME also reduced the mRNA expressions of cyclooxygenase-2 (COX-2), inducible nitric oxide (iNOS), TNF-α, IL-1β and IL-6 in LPS-stimulated RAW264.7 cells. These results suggested that CME showed an anti-inflammatory activity through reduced the mRNA expression of COX-2, iNOS, TNF-α IL-1β and IL-6 and also decreased the productions of PGE2, NO, TNF-α IL-1β and IL-6in LPS-stimulated RAW264.7 cells. PMID:27166556

  15. Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L.) Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties

    PubMed Central

    Filannino, Pasquale; Cavoski, Ivana; Thlien, Nadia; Vincentini, Olimpia; De Angelis, Maria; Silano, Marco; Gobbetti, Marco; Di Cagno, Raffaella

    2016-01-01

    Cactus pear (Opuntia ficus-indica L.) is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties of cactus cladodes pulp, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. Preliminarily, the antioxidant activity was determined through in vitro assays. Further, it was confirmed through ex vivo analysis on intestinal Caco-2/TC7 cells, and the profile of flavonoids was characterized. Cactus cladode pulp was fermented with lactic acid bacteria, which were previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum and incubated under the same conditions, was used as the control. Lactobacillus plantarum CIL6, POM1 and 1MR20, Lactobacillus brevis POM2 and POM4, Lactobacillus rossiae 2LC8 and Pediococcus pentosaceus CILSWE5 were the best growing strains. Fermentation of cladode pulp with L. brevis POM2 and POM4 allowed the highest concentration of γ-amino butyric acid. Lactic acid fermentation had preservative effects (P<0.05) on the levels of vitamin C and carotenoids. Two flavonoid derivatives (kaemferol and isorhamnetin) were identified in the ethyl acetate extracts, which were considered to be the major compounds responsible for the increased radical scavenging activity. After inducing oxidative stress by IL-1β, the increased antioxidant activity (P<0.05) of fermented cladode pulp was confirmed using Caco-2/TC7 cells. Fermented cladode pulp had also immune-modulatory effects towards Caco-2 cells. Compared to the control, fermented cladode pulp exhibited a significantly (P<0.05) higher inhibition of IL-8, TNFα and prostaglandins PGE2 synthesis. The highest

  16. Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L.) Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties.

    PubMed

    Filannino, Pasquale; Cavoski, Ivana; Thlien, Nadia; Vincentini, Olimpia; De Angelis, Maria; Silano, Marco; Gobbetti, Marco; Di Cagno, Raffaella

    2016-01-01

    Cactus pear (Opuntia ficus-indica L.) is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties of cactus cladodes pulp, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. Preliminarily, the antioxidant activity was determined through in vitro assays. Further, it was confirmed through ex vivo analysis on intestinal Caco-2/TC7 cells, and the profile of flavonoids was characterized. Cactus cladode pulp was fermented with lactic acid bacteria, which were previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum and incubated under the same conditions, was used as the control. Lactobacillus plantarum CIL6, POM1 and 1MR20, Lactobacillus brevis POM2 and POM4, Lactobacillus rossiae 2LC8 and Pediococcus pentosaceus CILSWE5 were the best growing strains. Fermentation of cladode pulp with L. brevis POM2 and POM4 allowed the highest concentration of γ-amino butyric acid. Lactic acid fermentation had preservative effects (P<0.05) on the levels of vitamin C and carotenoids. Two flavonoid derivatives (kaemferol and isorhamnetin) were identified in the ethyl acetate extracts, which were considered to be the major compounds responsible for the increased radical scavenging activity. After inducing oxidative stress by IL-1β, the increased antioxidant activity (P<0.05) of fermented cladode pulp was confirmed using Caco-2/TC7 cells. Fermented cladode pulp had also immune-modulatory effects towards Caco-2 cells. Compared to the control, fermented cladode pulp exhibited a significantly (P<0.05) higher inhibition of IL-8, TNFα and prostaglandins PGE2 synthesis. The highest

  17. Therapeutic potential of a non-steroidal bifunctional anti-inflammatory and anti-cholinergic agent against skin injury induced by sulfur mustard

    SciTech Connect

    Chang, Yoke-Chen; Wang, James D.; Hahn, Rita A.; Gordon, Marion K.; Joseph, Laurie B.; Heck, Diane E.; Heindel, Ned D.; Young, Sherri C.; Sinko, Patrick J.; Casillas, Robert P.; Laskin, Jeffrey D.; Laskin, Debra L.; Gerecke, Donald R.

    2014-10-15

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal–epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. - Highlights: • Bifunctional anti-inflammatory prodrug (NDH4338) tested on SM exposed mouse skin • The prodrug NDH4338 was designed to target COX2 and acetylcholinesterase. • The application of NDH4338 improved cutaneous wound repair after SM induced injury. • NDH4338 treatment demonstrated a reduction in COX2 expression on SM injured skin. • Changes of skin repair

  18. Free radicals and the pathogenesis of type 1 diabetes: beta-cell cytokine-mediated free radical generation via cyclooxygenase-2.

    PubMed

    Tabatabaie, Tahereh; Vasquez-Weldon, Angelica; Moore, Danny R; Kotake, Yashige

    2003-08-01

    Free radical formation evoked by proinflammatory cytokines has been suggested to be involved in the destruction of beta-cells in the course of type 1 diabetes development. However, there is no direct evidence to support this hypothesis. In this study, we used electron paramagnetic resonance spectroscopy in conjunction with spin-trapping methodology to directly determine whether cytokines give rise to free radical formation in the islets. Our results demonstrate that direct, in vivo administration of tumor necrosis factor-alpha (1,000 units), interleukin-1beta (1,000 units), and interferon-gamma (2,000 units) into the rat pancreas through a bile duct cannula leads to the formation of lipid-derived free radicals in this tissue. These free radicals most likely are generated by the beta-cells because previous depletion of these cells by streptozotocin abolished the cytokine-induced free radical formation. Furthermore, macrophage depletion was found to decrease the production of free radicals. Inhibition of the enzyme inducible cyclooxygenase (COX-2) and the transcription factor nuclear factor-kappaB (NF-kappaB) significantly diminished the free radicals' signal intensity, implicating these factors in the formation of free radicals. We have also demonstrated that cytokine treatment leads to the activation of NF-kappaB in the pancreatic islets of the rats. PMID:12882915

  19. The anti-inflammatory effect of Indonesian Areca catechu leaf extract in vitro and in vivo

    PubMed Central

    Lee, Kang Pa; Sudjarwo, Giftania Wardani; Kim, Ji-Su; Dirgantara, Septrianto; Maeng, Won Jai

    2014-01-01

    BACKGROUND/OBJECTIVES Overproduction of nitric oxide (NO) by the inducible nitric oxide synthase (iNOS) enzyme can cause inflammation. Cyclooxygenase-2 (COX-2) is also involved in the inflammatory response through regulation of nuclear factor-kappa B (NF-κB). Areca catechu is one of the known fruit plants of the Palmaceae family. It has been used for a long time as a source of herbal medicine in Indonesia. In this study, we explored the effect of Indonesian Areca catechu leaf ethanol extract (ACE) in lipopolysaccharide (LPS)-induced inflammation and carrageenan-induced paw edema models. Recently, this natural extract has been in the spotlight because of its efficacy and limited or no toxic side effects. However, the mechanism underlying its anti-inflammatory effect remains to be elucidated. MATERIALS/METHODS We measured NO production by using the Griess reagent, and determined the expression levels of inflammation-related proteins, such as iNOS, COX2, and NF-κB, by western blot. To confirm the effect of ACE in vivo, we used the carrageenan-induced paw edema model. RESULTS Compared to untreated cells, LPS-stimulated RAW 264.7 cells treated with ACE showed reduced NO generation and reduced iNOS and COX-2 expression. We found that the acute inflammatory response was significantly reduced by ACE in the carrageenan-induced paw edema model. CONCLUSION Taken together, these results suggest that ACE can inhibit inflammation and modulate NO generation via downregulation of iNOS levels and NF-κB signaling in vitro and in vivo. ACE may have a potential medical benefit as an anti-inflammation agent. PMID:24944770

  20. Cyclooxygenase selectivity of non-steroid anti-inflammatory drugs in humans: ex vivo evaluation.

    PubMed

    Giuliano, F; Ferraz, J G; Pereira, R; de Nucci, G; Warner, T D

    2001-08-24

    We have recently described a novel assay to assess ex vivo the activity and selectivity on cyclooxygenase-1 and -2 (EC 1.14.99.1) of non-steroid anti-inflammatory drugs (NSAID) administered to rats [Br. J. Pharmacol. 126 (1999) 1824.]. Here, we have extended these studies to humans. Healthy male volunteers were given orally one of the following drugs (mg) for 5 days: etodolac (200 or 400 b.i.d.), meloxicam (7.5 or 15 q.d.), nimesulide (100 or 200 b.i.d.), nabumetone (500 or 1000 b.i.d.) or naproxen (500 b.i.d.). Blood samples were withdrawn from the volunteers before and up to 24 h after the last dose. Plasma obtained from the blood was tested for its ability to inhibit prostanoid formation in interleukin-1beta-treated A549 cells (cyclooxygenase-2 system) and human washed platelets (cyclooxygenase-1 system). Plasma from etodolac-treated subjects demonstrated a slight selectivity towards the inhibition of cyclooxygenase-2. This effect was more prominent in plasma from subjects receiving meloxicam or nimesulide. Plasma from nabumetone-treated subjects showed no or little selectivity towards cyclooxygenase-1 depending on the dose of drug administered, while plasma taken from subjects receiving naproxen was more active at inhibiting cyclooxygenase-1 than cyclooxygenase-2. In conclusion, we have demonstrated that this assay can be used to assess ex vivo the relative activity against cyclooxygenase-1 and cyclooxygenase-2 of NSAIDs consumed by human volunteers. It is to be hoped that data from such systems will aid in our understanding of the relationships between the differential inhibition of cyclooxygenase-1 and cyclooxygenase-2 by NSAIDs and their reported efficacies and (gastrointestinal) toxicities. PMID:11525777

  1. Immunomodulatory and anti-inflammatory effects of chondroitin sulphate

    PubMed Central

    du Souich, Patrick; García, Antonio G; Vergés, Josep; Montell, Eulàlia

    2009-01-01

    Chondroitin sulphate (CS) is a natural glycosaminoglycan present in the extracellular matrix and is formed by the 1–3 linkage of D-glucuronic acid to N-acetylgalactosamine. In chondrocytes, CS diminishes interleukin-1 p (IL-1p)-induced increases in p38 mitogen-activated protein kinase (p38MAPK) and signal-regulated kinase 1/2 (Erk1/2) phosphorylation, and decreases nuclear factor-KB (NF-kB) nuclear translocation and as a consequence, reduces the formation of pro-inflammatory cytokines, IL-1 p and TNF-a, and pro-inflammatory enzymes, such as phospholipase A2 (PLA2), cyclooxygenase 2 (COX-2) and nitric oxide synthase-2 (NOS-2). The mechanism of action of CS explains its beneficial effect on the cartilage, synovial membrane and subchondral bone. On the other hand, in vivo, CS given orally prevents hepatic NF-κB nuclear translocation, suggesting that systemic CS may elicit an anti-inflammatory effect in many tissues besides the articulation. There is preliminary evidence showing that in human beings, CS may be of benefit in other diseases where inflammation is an essential marker, such as psoriasis and atherosclerosis. The review of the literature suggest that CS might also be of interest for the treatment of other diseases with an inflammatory and/or autoimmune character, such as inflammatory bowel disease, degenerative diseases of the central nervous system and stroke, multiple sclerosis and other autoimmune diseases. PMID:19522843

  2. Isolation and characterization of anti-inflammatory peptides derived from whey protein.

    PubMed

    Ma, Ye; Liu, Jie; Shi, Haiming; Yu, Liangli Lucy

    2016-09-01

    The present study was conducted to isolate and characterize anti-inflammatory peptides from whey protein hydrolysates using alcalase. Nine subfractions were obtained after sequential purification by ultrafiltration, Sephadex G-25 gel (GE Healthcare, Uppsala, Sweden) filtration chromatography, and preparative HPLC. Among them, subfraction F4e showed the strongest inhibitory activity on interleukin-1β (IL-1β), cyclooxygenase-2, and tumor necrosis factor-α (TNF-α) mRNA expression in lipopolysaccharide-induced RAW 264.7 mouse macrophages. Eight peptides, including 2 new peptides-Asp-Tyr-Lys-Lys-Tyr (DYKKY) and Asp-Gln-Trp-Leu (DQWL)-were identified from subfractions F4c and F4e, respectively, using ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Peptide DQWL showed the strongest inhibitory ability on IL-1β, cyclooxygenase-2, and TNF-α mRNA expression and production of IL-1β and TNF-α proteins at concentrations of 10 and 100μg/mL, respectively. Additionally, DQWL treatment significantly inhibited nuclear factor-κB activation by suppressing nuclear translocation of nuclear factor-κB p65 and blocking inhibitor κB kinase phosphorylation and inhibitor κB degradation together with p38 mitogen-activated protein kinase activation. Our study suggests that peptide DQWL has anti-inflammatory potential; further confirmation using an in vivo model is needed. PMID:27394940

  3. Development and mechanism investigation of a new piperlongumine derivative as a potent anti-inflammatory agent.

    PubMed

    Sun, Lan-Di; Wang, Fu; Dai, Fang; Wang, Yi-Hua; Lin, Dong; Zhou, Bo

    2015-06-01

    Inflammation, especially chronic inflammation, is directly involvement in the pathogenesis of many diseases including cancer. An effective approach for managing inflammation is to employ chemicals to block activation of nuclear factor-κB (NF-κB), a key regulator for inflammatory processes. Piperlongumine (piplartine, PL), an electrophilic molecule isolated from Piper longum L., possesses excellent anti-cancer and anti-inflammatory properties. In this study, a new PL analogue (PL-0N) was designed by replacing nitrogen atom of lactam in PL with carbon atom to increase its electrophilicity and thus anti-inflammatory activity. It was found that PL-0N is more potent than the parent compound in suppressing lipopolysaccharide (LPS)-induced secretion of nitric oxide and prostaglandin E2 as well as expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW264.7 macrophages. Mechanistic investigation implies that PL-0N exerts anti-inflammatory activity through inhibition of LPS-induced NF-κB transduction pathway, down-regulation of LPS-induced MAPKs activation and impairment of proteasomal activity, but also enhancement of LPS-induced autophagy; the inhibition of NF-κB by PL-0N is achieved at various stages by: (i) preventing phosphorylation of IKKα/β, (ii) stabilizing the suppressor protein IκBα, (iii) interfering with the nuclear translocation of NF-κB, and (iv) inhibiting the DNA-binding of NF-κB. These data indicate that nitrogen-atom-lacking pattern is a successful strategy to improve anti-inflammatory property of PL, and that the novel molecule, PL-0N may be served as a promising lead for developing natural product-directed anti-inflammatory agents. PMID:25850000

  4. Anti-inflammatory effects of Scoparia dulcis L. and betulinic acid.

    PubMed

    Tsai, Jen-Chieh; Peng, Wen-Huang; Chiu, Tai-Hui; Lai, Shang-Chih; Lee, Chao-Ying

    2011-01-01

    The aims of this study intended to investigate the anti-inflammatory activity of the 70% ethanol extract from Scoparia dulcis (SDE) and betulinic acid on λ-carrageenan-induced paw edema in mice. The anti-inflammatory mechanism of SDE and betulinic acid was examined by detecting the levels of cyclooxygenase-2 (COX-2), nitric oxide (NO), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β) and malondialdehyde (MDA) in the edema paw tissue and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRd) in the liver. The betulinic acid content in SDE was detected by high performance liquid chromatography (HPLC). In the anti-inflammatory model, the results showed that SDE (0.5 and 1.0 g/kg) and betulinic acid (20 and 40 mg/kg) reduced the paw edema at 3, 4 and 5 h after λ-carrageenan administration. Moreover, SDE and betulinic acid affected the levels of COX-2, NO, TNF-α and IL1-β in the λ-carrageenan-induced edema paws. The activities of SOD, GPx and GRd in the liver tissue were increased and the MDA levels in the edema paws were decreased. It is suggested that SDE and betulinic acid possessed anti-inflammatory activities and the anti-inflammatory mechanisms appear to be related to the reduction of the levels of COX-2, NO, TNF-α and IL1-β in inflamed tissues, as well as the inhibition of MDA level via increasing the activities of SOD, GPx and GRd. The analytical result showed that the content of betulinic acid in SDE was 6.25 mg/g extract. PMID:21905284

  5. Anti-Inflammatory Iridoids of Botanical Origin

    PubMed Central

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer’s disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective anti-inflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo. PMID:22414102

  6. Inhibition of Nuclear Factor κB Activation and Cyclooxygenase-2 Expression by Aqueous Extracts of Hispanic Medicinal Herbs

    PubMed Central

    Gonzales, Amanda M.; Hunsaker, Lucy A.; Franco, Carolina R.; Royer, Robert E.; Vander Jagt, David L.; Vander Jagt, Dorothy J.

    2010-01-01

    Abstract Nonsteroidal anti-inflammatory drugs (NSAIDs) are a primary choice of therapy for diseases with a chronic inflammatory component. Unfortunately, long-term NSAID therapy is often accompanied by severe side effects, including cardiovascular and gastrointestinal complications. Because of this, there is critical need for identification of new and safer treatments for chronic inflammation to circumvent these side effects. Inflammatory diseases have been successfully remedied with natural herbs by many cultures. To better understand the potential of natural herbs in treating chronic inflammation and to identify their mechanism of action, we have evaluated the anti-inflammatory activities of 20 medicinal herbs commonly used in the Hispanic culture. We have established a standardized method for preparing aqueous extracts (teas) from the selected medicinal herbs and screened for inhibition of tumor necrosis factor-α-induced activation of nuclear factor κB (NF-κB), which is the central signaling pathway of the inflammatory response. A number of herbal teas were identified that exhibited significant anti-inflammatory activity. In particular, tea from the herb commonly called laurel was found to be an especially potent inhibitor of NF-κB-dependent cyclooxygenase-2 gene expression and prostaglandin E2 production in cultured murine macrophages. These findings indicate that laurel tea extract contains potent anti-inflammatory compounds that function by inhibiting the major signal transduction pathway responsible for inducing an inflammatory event. Based on these results, laurel may represent a new, safe therapeutic agent for managing chronic inflammation. PMID:20482259

  7. Constituents from Vigna vexillata and Their Anti-Inflammatory Activity

    PubMed Central

    Leu, Yann-Lii; Hwang, Tsong-Long; Kuo, Ping-Chung; Liou, Kun-Pei; Huang, Bow-Shin; Chen, Guo-Feng

    2012-01-01

    The seeds of Vigna genus are important food resources and there have already been many reports regarding their bioactivities. In our preliminary bioassay, the chloroform layer of methanol extracts of V. vexillata demonstrated significant anti-inflammatory bioactivity. Therefore, the present research is aimed to purify and identify the anti-inflammatory principles of V. vexillata. One new sterol (1) and two new isoflavones (2,3) were reported from the natural sources for the first time and their chemical structures were determined by the spectroscopic and mass spectrometric analyses. In addition, 37 known compounds were identified by comparison of their physical and spectroscopic data with those reported in the literature. Among the isolates, daidzein (23), abscisic acid (25), and quercetin (40) displayed the most significant inhibition of superoxide anion generation and elastase release. PMID:22949828

  8. Anti-Inflammatory Activities of Cinnamomum cassia Constituents In Vitro and In Vivo

    PubMed Central

    Liao, Jung-Chun; Deng, Jeng-Shyan; Chiu, Chuan-Sung; Hou, Wen-Chi; Huang, Shyh-Shyun; Shie, Pei-Hsin; Huang, Guang-Jhong

    2012-01-01

    We have investigated the anti-inflammatory effects of Cinnamomum cassia constituents (cinnamic aldehyde, cinnamic alcohol, cinnamic acid, and coumarin) using lipopolysaccharide (LPS)-stimulated mouse macrophage (RAW264.7) and carrageenan (Carr)-induced mouse paw edema model. When RAW264.7 macrophages were treated with cinnamic aldehyde together with LPS, a significant concentration-dependent inhibition of nitric oxide (NO), tumor necrosis factor (TNF-α), and prostaglandin E2 (PGE2) levels productions were detected. Western blotting revealed that cinnamic aldehyde blocked protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear transcription factor kappa B (NF-κB), and IκBα, significantly. In the anti-inflammatory test, cinnamic aldehyde decreased the paw edema after Carr administration, and increased the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in the paw tissue. We also demonstrated cinnamic aldehyde attenuated the malondialdehyde (MDA) level and myeloperoxidase (MPO) activity in the edema paw after Carr injection. Cinnamic aldehyde decreased the NO, TNF-α, and PGE2 levels on the serum level after Carr injection. Western blotting revealed that cinnamic aldehyde decreased Carr-induced iNOS, COX-2, and NF-κB expressions in the edema paw. These findings demonstrated that cinnamic aldehyde has excellent anti-inflammatory activities and thus has great potential to be used as a source for natural health products. PMID:22536283

  9. C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects.

    PubMed

    Romay, Ch; González, R; Ledón, N; Remirez, D; Rimbau, V

    2003-06-01

    Phycocyanin (Pc) is a phycobiliprotein that has been recently reported to exhibit a variety of pharmacological properties. In this regard, antioxidant, anti-inflammatory, neuroprotective and hepatoprotective effects have been experimentally attributed to Pc. When it was evaluated as an antioxidant in vitro, it was able to scavenge alkoxyl, hydroxyl and peroxyl radicals and to react with peroxinitrite (ONOO(-);) and hypochlorous acid (HOCl). Pc also inhibits microsomal lipid peroxidation induced by Fe(+2)-ascorbic acid or the free radical initiator 2,2' azobis (2-amidinopropane) hydrochloride (AAPH). Furthermore, it reduces carbon tetrachloride (CCl(4))-induced lipid peroxidation in vivo. Pc has been evaluated in twelve experimental models of inflammation and exerted anti-inflammatory effects in a dose-dependent fashion in all of these. Thus, Pc reduced edema, histamine (Hi) release, myeloperoxidase (MPO) activity and the levels of prostaglandin (PGE(2)) and leukotriene (LTB(4)) in the inflamed tissues. These anti-inflammatory effects of Pc can be due to its scavenging properties toward oxygen reactive species (ROS) and its inhibitory effects on cyclooxygenase 2 (COX-2) activity and on Hi release from mast cells. Pc also reduced the levels of tumor necrosis factor (TNF-alpha) in the blood serum of mice treated with endotoxin and it showed neuroprotective effects in rat cerebellar granule cell cultures and in kainate-induced brain injury in rats. PMID:12769719

  10. In vitro anti-inflammatory and immunomodulatory properties of umbelliprenin and methyl galbanate.

    PubMed

    Zamani Taghizadeh Rabe, Shahrzad; Iranshahi, Mehrdad; Mahmoudi, Mahmoud

    2016-01-01

    Ferula species (Apiaceae) are considered important medicinal plants. The present in vitro study sought to investigate the immunomodulatory and anti-inflammatory properties of terpenoid coumarins isolated from Ferula szowitsiana on immune cells isolated from naïve mice and to elucidate possible underlying mechanisms of action. With splenocytes, effects of the agents on PHA-induced proliferation and interleukin (IL)-4 and interferon (IFN)-γ release were assessed. With peritoneal macrophages, anti-inflammatory potentials were evaluated in lipopolysaccharide (LPS)/IFNγ-stimulated cells via measures of changes in nitric oxide (NO) and PGE(2) secretion. Expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was also determined via Western blot analysis. The results indicated that umbelliprenin (UMB) and methyl galbanate (MG) reduced remarkably PHA-induced splenocyte proliferation and both preferentially induced T(H)2 IL-4 and suppressed T(H)1 IFNγ secretion. Each also significantly suppressed LPS-induced production of NO and PGE(2) apparently and also led to reductions in inducible iNOS and COX-expression. To the authors' knowledge, the present study is the first to report on anti-inflammatory and immunomodulatory effects of UMB and MG in vitro. The present results suggest that each could potentially be exploited as a natural immunosuppressant against inflammatory and autoimmune diseases once substantial further toxicological analyses have been done to confirm overall safety in vivo. PMID:26004404

  11. Anti-inflammatory effects of a triple-bond resveratrol analog: structure and function relationship.

    PubMed

    Antus, Csenge; Radnai, Balazs; Dombovari, Peter; Fonai, Fruzsina; Avar, Peter; Matyus, Peter; Racz, Boglarka; Sumegi, Balazs; Veres, Balazs

    2015-02-01

    Resveratrol is a polyphenol found in grapes and red wine, showing well-characterized anti-inflammatory and antiproliferative activities. In order to exceed resveratrol׳s biological effects and to reveal the structural determinants of the molecule׳s activity, numerous derivatives were synthesized recently. Most of these resveratrol analogs vary from the original molecule in the number, position or identity of the phenolic functional groups. Investigation of the analogs provided important data regarding structure-activity relationship of the molecule. With the exception of cis- and trans-resveratrol and the reduced form dihydroresveratrol, little is known about the molecular effects of the stilbene backbone. In the present study we investigated the anti-inflammatory properties of a new, triple-bond resveratrol analog, 3,4',5-trihydroxy-diphenylacetylene (TDPA) on lipopolysaccharide-stimulated RAW macrophages. We found that the analog had weaker antioxidant activity and stronger inhibitory effect on nuclear factor-kappaB activation, and on cyclooxygenase-2, tumor necrosis factor α and interleukin-6 production. It also prevented lipopolysaccharide-induced depolarization of the mitochondrial membrane. In contrast to resveratrol, TDPA increased the phosphorylation of c-Jun N-terminal and p38 mitogen activated protein kinases. In summary, we identified a novel compound with better anti-inflammatory properties than resveratrol. Our results contributed to a better understanding of the structural determinants of resveratrol׳s biological activities. PMID:25528327

  12. Meloxicam, a cyclooxygenase 2 inhibitor, supports hematopoietic recovery in gamma-irradiated mice.

    PubMed

    Hofer, M; Pospísil, M; Znojil, V; Holá, J; Vacek, A; Weiterová, L; Streitová, D; Kozubík, A

    2006-09-01

    Meloxicam, a selective inhibitor of cyclooxygenase 2, a nonsteroidal anti-inflammatory drug with an improved side-effects profile in terms of gastrointestinal toxicity, has been found to stimulate hematopoiesis in whole-body gamma-irradiated mice. A distinct corroboration of this positive action of meloxicam is an enhancement of the recovery of hematopoietic progenitor cells committed to granulocyte-macrophage and erythroid development, which has been demonstrated in sublethally irradiated animals treated with meloxicam at a dose of 20 mg/kg administered intraperitoneally either singly 1 h before irradiation or repeatedly after radiation exposure. The results suggest that meloxicam can be added to the list of biological response modifiers that can be used in the treatment of hematopoietic damage induced by ionizing radiation. PMID:16953674

  13. Anti-inflammatory activity of mycelial extracts from medicinal mushrooms.

    PubMed

    Geng, Yan; Zhu, Shuiling; Lu, Zhenming; Xu, Hongyu; Shi, Jin-Song; Xu, Zheng-Hong

    2014-01-01

    Medicinal mushrooms have been essential components of traditional Chinese herbal medicines for thousands of years, and they protect against diverse health-related conditions. The components responsible for their anti-inflammatory activity have yet to be fully studied. This study investigates the anti-inflammatory activity of n-hexane, chloroform, ethyl acetate, and methanol extracts of mycelia in submerged culture from 5 commercially available medicinal mushrooms, namely Cephalosporium sinensis, Cordyceps mortierella, Hericium erinaceus, Ganoderma lucidum, and Armillaria mellea. MTT colorimetric assay was applied to measure the cytotoxic effects of different extracts. Their anti-inflammatory activities were evaluated via inhibition against production of lipopolysaccharide (LPS)-induced nitric oxide (NO) in murine macrophage-like cell line RAW264.7 cells. Of the 20 extracts, n-hexane, chloroform, ethyl acetate, and methanol extracts from C. sinensis, C. mortierella, and G. lucidum; chloroform extracts from H. erinaceus and A. mellea; and ethyl acetate extracts from A. mellea at nontoxic concentrations (<300 μg/mL) dose-dependently inhibited LPS-induced NO production. Among them, the chloroform extract from G. lucidum was the most effective inhibitor, with the lowest half maximal inhibitory concentration (64.09 ± 6.29 μg/mL) of the LPS-induced NO production. These results indicate that extracts from medicinal mushrooms exhibited anti-inflammatory activity that might be attributable to the inhibition of NO generation and can therefore be considered a useful therapeutic and preventive approach to various inflammation-related diseases. PMID:25271860

  14. Chemical Constituents from the Fruiting Bodies of Hexagonia apiaria and Their Anti-inflammatory Activity.

    PubMed

    Thang, Tran Dinh; Kuo, Ping-Chung; Ngoc, Nguyen Thi Bich; Hwang, Tsong-Long; Yang, Mei-Lin; Ta, Shih-Huang; Lee, E-Jian; Kuo, Dai-Huang; Hung, Nguyen Huy; Tuan, Nguyen Ngoc; Wu, Tian-Shung

    2015-11-25

    A chemical investigation of the fruiting bodies of Hexagonia apiaria resulted in the identification of nine compounds including five new triterpenoids, hexagonins A-E (1-5), along with four known compounds. The purified constituents were examined for their anti-inflammatory activity. Among the tested compounds, hexatenuin A displayed the most significant inhibition of superoxide anion generation and elastase release. These triterpenoids may have potentials as anti-inflammatory agents. PMID:26575215

  15. Anti-inflammatory iridoids of botanical origin.

    PubMed

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer's disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective antiinflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo. PMID:22414102

  16. Anti-inflammatory activity of cationic lipids.

    PubMed

    Filion, M C; Phillips, N C

    1997-10-01

    1. The effect of liposome phospholipid composition has been assumed to be relatively unimportant because of the presumed inert nature of phospholipids. 2. We have previously shown that cationic liposome formulations used for gene therapy inhibit, through their cationic component, the synthesis by activated macrophages of the pro-inflammatory mediators nitric oxide (NO) and tumour necrosis factor-alpha (TNF-alpha). 3. In this study, we have evaluated the ability of different cationic lipids to reduce footpad inflammation induced by carrageenan and by sheep red blood cell challenge. 4. Parenteral (i.p. or s.c) or local injection of the positively charged lipids dimethyldioctadecylammomium bromide (DDAB), dioleyoltrimethylammonium propane (DOTAP), dimyristoyltrimethylammonium propane (DMTAP) or dimethylaminoethanecarbamoyl cholesterol (DC-Chol) significantly reduced the inflammation observed in both models in a dose-dependent manner (maximum inhibition: 70-95%). 5. Cationic lipids associated with dioleyol- or dipalmitoyl-phosphatidylethanolamine retained their anti-inflammatory activity while cationic lipids associated with dipalmitoylphosphatidylcholine (DPPC) or dimyristoylphosphatidylglycerol (DMPG) showed no anti-inflammatory activity, indicating that the release of cationic lipids into the macrophage cytoplasm is a necessary step for anti-inflammatory activity. The anti-inflammatory activity of cationic lipids was abrogated by the addition of dipalmitoylphosphatidylethanolamine-poly(ethylene)glycol-2000 (DPPE-PEG2000) which blocks the interaction of cationic lipids with macrophages. 6. Because of the significant role of protein kinase C (PKC) in the inflammatory process we have determined whether the cationic lipids used in this study inhibit PKC activity. The cationic lipids significantly inhibited the activity of PKC but not the activity of a non-related protein kinase, PKA. The synthesis of interleukin-6 (IL-6), which is not dependent on PKC activity for its

  17. Anti-inflammatory activity studies on the stems and roots of Jasminum lanceolarium Roxb.

    PubMed

    Yan, Wen-xia; Zhang, Jian-hua; Zhang, Yi; Meng, Da-li; Yan, Dan

    2015-08-01

    Jasminum lanceolarium Roxb is an important traditional Chinese medicine. Its stems and roots have been used for the treatment of rheumatism and fever while the leaves are used as an anti-inflammatory agent to relieve pain. In order to support its traditional Chinese medicinal uses, five animal models were designed and the anti-inflammatory and analgesic properties of the 70% EtOH-H2O extracts of J. lanceolarium (EJL) were investigated. Meanwhile, biochemical parameters such as cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX) in blood serum of rats exposed to acute (carrageenan) inflammation model were evaluated. At doses of 400 mg/kg, EJL exhibited higher anti-inflammation effect than that of indomethacin and better analgesic activity than that of aspirin (P<0.001). Furthermore, eleven isolated compounds including six lignanoids (1, 2, 6, 7, 8, and 11) and five iridoids (3, 4, 5, 9, and 10) were isolated from the active extracts and showed significant anti-inflammatory activities with the IC50 values of 1.76-5.22 mg/mL, respectively, when testing their inhibitory effects on phospholipase A2 in vitro. The results demonstrated that the possible anti-inflammatory mechanisms might be attributed to inhibit the hydrolysis of membrane phospholipids, production on both COX-2 and 5-LOX, and then finally inhibit the release of prostaglandins (PGs), which suggested that EJL had a non-selective inhibitory effect on the release or actions of these mediators, and might be a dual LOX-COX inhibitor for the treatment of inflammation from the natural resource. The studies on the animals and the inflammatory mediators, along with the bioactive compounds presumed that the existences of iridoids and lignanoids could be response for their bioactivities of the whole plants. PMID:26055344

  18. Mechanism underlying the reversal of contractility dysfunction in experimental colitis by cyclooxygenase-2 inhibition.

    PubMed

    Khan, I; Oriowo, M A

    2006-03-01

    Inflammatory bowel diseases are associated with reduced colonic contractility and induction of cyclooxygenase-2. In this study a possible role of cyclooxygenase-2 in and the underlying mechanism of the reduced contractility were investigated in experimental colitis. The effects of meloxicam, a cyclooxygenase-2 selective inhibitor were examined on colonic contractility and MAP kinase p38 and ERK(1/2) expression. Colitis was induced in Sprague-Dawley male rats by intra-colonic instillation of trinitrobenzenesulphonic acid (TNBS; 40 mg/rat in 50 ethanol). The animals were divided into three groups. Group 1 (n=9) received meloxicam (3 mg/kg-day) gavage 1 h before and 1 day (Group 2) after induction of colitis. Group 3 (n=9) received phosphate buffered saline (PBS) in a similar manner and served as colitic control. The non colitic control animals received meloxicam in a similar manner. The animals were sacrificed after 5 days of treatment, colon was cleaned with PBS and colonic smooth muscle was obtained which was used in this study. Meloxicam treatment given 1 h before or 1 day after administration of colitis restored the reduced colonic contractility without affecting the sensitivity to carbachol. The levels of colonic smooth muscle IL-1beta mRNA, PGE(2), ERK(1/2), p38, malondialdehyde, myeloperoxidase activity and colonic mass were increased, whereas the body weight was decreased due to TNBS. The changes except colonic muscle mass and p38 expression were reversed by meloxicam treatment. These findings indicate that restoration of reduced colonic contractility by meloxicam is mediated by ERK(1/2), and that ERK(1/2) may serve as an important anti inflammatory target for treatment of colitis. PMID:16835710

  19. A Revised Mechanism for Human Cyclooxygenase-2.

    PubMed

    Liu, Yi; Roth, Justine P

    2016-01-01

    The mechanism of ω-6 polyunsaturated fatty acid oxidation by wild-type cyclooxygenase 2 and the Y334F variant, lacking a conserved hydrogen bond to the catalytic tyrosyl radical/tyrosine, was examined for the first time under physiologically relevant conditions. The enzymes show apparent bimolecular rate constants and deuterium kinetic isotope effects that increase in proportion to co-substrate concentrations before converging to limiting values. The trends exclude multiple dioxygenase mechanisms as well as the proposal that initial hydrogen atom abstraction from the fatty acid is the first irreversible step in catalysis. Temperature dependent kinetic studies reinforce the novel finding that hydrogen transfer from the reduced catalytic tyrosine to a terminal peroxyl radical is the first irreversible step that controls regio- and stereospecific product formation. PMID:26565028

  20. Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale)

    PubMed Central

    van Breemen, Richard B.; Tao, Yi; Li, Wenkui

    2010-01-01

    Ginger roots have been used to treat inflammation and have been reported to inhibit cyclooxygenase (COX). Ultrafiltration liquid chromatography mass spectrometry was used to screen a chloroform partition of a methanol extract of ginger roots for COX-2 ligands, and 10-gingerol, 12-gingerol, 8-shogaol, 10-shogaol, 6-gingerdione, 8-gingerdione, 10-gingerdione, 6-dehydro-10-gingerol, 6-paradol, and 8-paradol bound to the enzyme active site. Purified 10-gingerol, 8-shogaol and 10-shogaol inhibited COX-2 with IC50 values of 32 μM, 17.5 μM and 7.5 μM, respectively. No inhibition of COX-1 was detected. Therefore, 10-gingerol, 8-shogaol and 10-shogaol inhibit COX-2 but not COX-1, which can explain, in part, anti-inflammatory properties of ginger. PMID:20837112

  1. [Recent development of selective cyclooxygenase-2 inhibitors].

    PubMed

    Kawai, Shinichi

    2002-12-01

    Nonsteroidal anti-inflammatory drugs(NSAIDs) are clinically effective against the inflammatory symptoms of rheumatoid arthritis. Recent attention has been focused on selective cyclooxygenase(COX)-2 inhibitors, a type of NSAID that inhibits a subtype of COX. Because of the different actions of COX-1 and COX-2, selective COX-2 inhibitors were expected to reduce adverse reactions such as gastrointestinal disorders. Various clinical studies have confirmed that the efficacy of COX-2 inhibitors for RA is similar to that of conventional NSAIDs, but they cause fewer severe gastrointestinal disorders. The incidence of complications related to renal dysfunction, such as edema and hypertension, is not different. Patients using selective COX-2 inhibitors have recently been reported to show an increase in thrombotic complications such as myocardial infarction. Therefore, more data on adverse events should be collected in the future from large-scale clinical studies to further clarify the actual value of selective COX-2 inhibitors. PMID:12510364

  2. Anti-Inflammatory and Analgesic Effects of the Marine-Derived Compound Excavatolide B Isolated from the Culture-Type Formosan Gorgonian Briareum excavatum.

    PubMed

    Lin, Yen-You; Lin, Sung-Chun; Feng, Chien-Wei; Chen, Pei-Chin; Su, Yin-Di; Li, Chi-Min; Yang, San-Nan; Jean, Yen-Hsuan; Sung, Ping-Jyun; Duh, Chang-Yih; Wen, Zhi-Hong

    2015-05-01

    In recent years, several marine-derived compounds have been clinically evaluated. Diterpenes are secondary metabolites from soft coral that exhibit anti-inflammatory, anti-tumor and cytotoxic activities. In the present study, we isolated a natural diterpene product, excavatolide B, from cultured Formosan gorgonian Briareum excavatum and investigated its anti-inflammatory activities. We found that excavatolide B significantly inhibited the mRNA expression of the proinflammatory mediators, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in lipopolysaccharide (LPS)-challenged murine macrophages (RAW 264.7). We also examined the anti-inflammatory and anti-nociceptive effects of excavatolide B on intraplantar carrageenan-induced inflammatory responses. Excavatolide B was found to significantly attenuate carrageenan-induced nociceptive behaviors, mechanical allodynia, thermal hyperalgesia, weight bearing deficits and paw edema. In addition, excavatolide B inhibited iNOS, as well as the infiltration of immune cells in carrageenan-induced inflammatory paw tissue. PMID:25923315

  3. Anti-Inflammatory and Analgesic Effects of the Marine-Derived Compound Excavatolide B Isolated from the Culture-Type Formosan Gorgonian Briareum excavatum

    PubMed Central

    Lin, Yen-You; Lin, Sung-Chun; Feng, Chien-Wei; Chen, Pei-Chin; Su, Yin-Di; Li, Chi-Min; Yang, San-Nan; Jean, Yen-Hsuan; Sung, Ping-Jyun; Duh, Chang-Yih; Wen, Zhi-Hong

    2015-01-01

    In recent years, several marine-derived compounds have been clinically evaluated. Diterpenes are secondary metabolites from soft coral that exhibit anti-inflammatory, anti-tumor and cytotoxic activities. In the present study, we isolated a natural diterpene product, excavatolide B, from cultured Formosan gorgonian Briareum excavatum and investigated its anti-inflammatory activities. We found that excavatolide B significantly inhibited the mRNA expression of the proinflammatory mediators, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in lipopolysaccharide (LPS)-challenged murine macrophages (RAW 264.7). We also examined the anti-inflammatory and anti-nociceptive effects of excavatolide B on intraplantar carrageenan-induced inflammatory responses. Excavatolide B was found to significantly attenuate carrageenan-induced nociceptive behaviors, mechanical allodynia, thermal hyperalgesia, weight bearing deficits and paw edema. In addition, excavatolide B inhibited iNOS, as well as the infiltration of immune cells in carrageenan-induced inflammatory paw tissue. PMID:25923315

  4. ATP-Binding Pocket-Targeted Suppression of Src and Syk by Luteolin Contributes to Its Anti-Inflammatory Action

    PubMed Central

    Lee, Jeong-Oog; Jeong, Deok; Kim, Mi-Yeon; Cho, Jae Youl

    2015-01-01

    Luteolin is a flavonoid identified as a major anti-inflammatory component of Artemisia asiatica. Numerous reports have demonstrated the ability of luteolin to suppress inflammation in a variety of inflammatory conditions. However, its exact anti-inflammatory mechanism has not been fully elucidated. In the present study, the anti-inflammatory mode of action in activated macrophages of luteolin from Artemisia asiatica was examined by employing immunoblotting analysis, a luciferase reporter gene assay, enzyme assays, and an overexpression strategy. Luteolin dose-dependently inhibited the secretion of nitric oxide (NO) and prostaglandin E2 (PGE2) and diminished the levels of mRNA transcripts of inducible NO synthase (iNOS), tumor necrosis factor- (TNF-) α, and cyclooxygenase-2 (COX-2) in lipopolysaccharide- (LPS-) and pam3CSK-treated macrophage-like RAW264.7 cells without displaying cytotoxicity. Luteolin displayed potent NO-inhibitory activity and also suppressed the nuclear translocation of NF-κB (p65 and p50) via blockade of Src and Syk, but not other mitogen-activated kinases. Overexpression of wild type Src and point mutants thereof, and molecular modelling studies, suggest that the ATP-binding pocket may be the luteolin-binding site in Src. These results strongly suggest that luteolin may exert its anti-inflammatory action by suppressing the NF-κB signaling cascade via blockade of ATP binding in Src and Syk. PMID:26236111

  5. Enhanced anti-inflammatory potential of cinnamate-zinc layered hydroxide in lipopolysaccharide-stimulated RAW 264.7 macrophages

    PubMed Central

    Adewoyin, Malik; Mohsin, Sumaiyah Megat Nabil; Arulselvan, Palanisamy; Hussein, Mohd Zobir; Fakurazi, Sharida

    2015-01-01

    Background Cinnamic acid (CA) is a phytochemical originally derived from Cinnamomum cassia, a plant with numerous pharmacological properties. The intercalation of CA with a nanocarrier, zinc layered hydroxide, produces cinnamate-zinc layered hydroxide (ZCA), which has been previously characterized. Intercalation is expected to improve the solubility and cell specificity of CA. The nanocarrier will also protect CA from degradation and sustain its release. The aim of this study was to assess the effect of intercalation on the anti-inflammatory capacity of CA. Methods In this study, the anti-inflammatory activity of ZCA was investigated and compared with that of nonintercalated CA. Evaluations were based on the capacity of ZCA and CA to modulate the release of nitric oxide, prostaglandin E2, interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), IL-1β, and IL-10 in lipopolysaccharide-induced RAW 264.7 cells. Additionally, the expression of proinflammatory enzymes, ie, cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor kappa B (NF-κB), were examined. Results Although both ZCA and CA downregulated nitric oxide, prostaglandin E2, tumor necrosis factor alpha, IL-1β, and IL-6, ZCA clearly displayed better activity. Similarly, expression of cyclooxygenase-2 and inducible nitric oxide synthase were inhibited in samples treated with ZCA and CA. The two compounds effectively inactivated the transcription factor NF-κB, but the anti-inflammatory cytokine, IL-10, was significantly upregulated by ZCA only. Conclusion The present findings suggest that ZCA possesses better anti-inflammatory potential than CA, while zinc layered hydroxide had little or no effect, and these results were comparable with the positive control. PMID:25995619

  6. Medicinal plants with anti-inflammatory activities.

    PubMed

    Maione, Francesco; Russo, Rosa; Khan, Haroon; Mascolo, Nicola

    2016-06-01

    Medicinal plants have been the main remedy to treat various ailments for a long time and nowadays, many drugs have been developed from traditional medicine. This paper reviews some medicinal plants and their main constituents which possess anti-inflammatory activities useful for curing joint inflammation, inflammatory skin disorders, cardiovascular inflammation and other inflammatory diseases. Here, we provide a brief overview of quick and easy reading on the role of medicinal plants and their main constituents in these inflammatory diseases. We hope that this overview will shed some light on the function of these natural anti-inflammatory compounds and attract the interest of investigators aiming at the design of novel therapeutic approaches for the treatment of various inflammatory conditions. PMID:26221780

  7. Natural products and anti-inflammatory activity.

    PubMed

    Yuan, Gaofeng; Wahlqvist, Mark L; He, Guoqing; Yang, Min; Li, Duo

    2006-01-01

    The aim of this review paper was to summarise some commonly available natural products and their anti-inflammatory activity. We have collected data from MEDLINE, Current Contents and scientific journals, which included 92 publications. There are numerous natural products detailed in this literature; however we have summarized a few of the most commonly available and potent ones. In this paper, the natural products with anti-inflammatory activity including curcumin, parthenolide, cucurbitacins, 1,8-cineole, pseudopterosins, lyprinol, bromelain, flavonoids, saponins, marine sponge natural products and Boswellia serrata gum resin were reviewed. Natural products play a significant role in human health in relation to the prevention and treatment of inflammatory conditions. Further studies are being conducted to investigate the mechanism of action, metabolism, safety and long term side effect of these natural products, as well as interactions between these natural products with food and drug components. PMID:16672197

  8. The new nonsteroidal anti-inflammatory drugs.

    PubMed

    Scherbel, A L; Wilke, W S

    1981-10-01

    Most physicians regard to newer short-acting anti-inflammatory drugs as a substitute for aspirin because they are less toxic. Although these drugs cannot induce remissions of rheumatoid arthritis, they do afford symptomatic relief and exert both a moderate algesic and anti-inflammatory effect in conditions like osteoarthritis, gout, pseudogout, and a variety of musculoskeletal syndromes. The many adverse reactions and toxic effects associated with these drugs are probably related to the inhibition of prostaglandin synthetase, which in turn reduces the biosynthesis of prostaglandins in widespread areas of the body. Thus limited in number, these compounds cannot play an effective role in the body's defense mechanisms. Researchers postulate that this failure accounts for the gastrointestinal and renal lesions--as well as other, as yet unexplained toxic manifestations--noted in patients taking these drugs. For safety's sake, the newer anti-inflammatory drugs should be used with large doses of aspirin, other agents that inhibit prostaglandin synthetase, or drugs that are potentially nephro-toxic. PMID:6974117

  9. Anti-inflammatory properties of cryptolepine.

    PubMed

    Olajide, Olumayokun A; Ajayi, Abayomi M; Wright, Colin W

    2009-10-01

    Cryptolepine is the major alkaloid of the West African shrub, Cryptolepis sanguinolenta. Cryptolepine has been shown to inhibit nitric oxide production, and DNA binding of Nuclear Factor-kappa B following inflammatory stimuli in vitro. In order to validate the anti-inflammatory property of this compound in vivo, we investigated its effects on a number of animal models of inflammation. Cryptolepine (10-40 mg/kg i.p.) produced significant dose-dependent inhibition of the carrageenan-induced rat paw oedema, and carrageenan-induced pleurisy in rats. These effects were compared with those of the non-steroidal anti-inflammatory drug indomethacin (10 mg/kg). At doses of 10-40 mg/kg i.p., cryptolepine inhibited lipopolysaccharide (LPS)-induced microvascular permeability in mice in a dose-related fashion. Oral administration of up to 40 mg/kg of the compound for four consecutive days did not induce gastric lesion formation in rats. Analgesic activity was also exhibited by cryptolepine through a dose-related (10-40 mg/kg i.p.) inhibition of writhing induced by i.p. administration of acetic acid in mice. The results of this study reveal that cryptolepine possesses in vivo anti-inflammatory activity. PMID:19288476

  10. Non Steroidal Anti Inflammatory Drugs As Gatekeepers Of Colon Carcinoma Highlight New Scenarios Beyond Cyclooxygenases Inhibition.

    PubMed

    Guarnieri, Tiziana

    2016-01-01

    Epidemiological data suggest that Non Steroidal Anti Inflammatory Drugs (NSAIDs) and Cyclooxygenase 2 (COX2) inhibitors (COXibs) can exert chemopreventive and antitumour effects in many human neoplasia. This is particularly true in colon cancer (CC), where the regular assumption of these molecules has been shown to exert chemopreventive and chemotherapeutic effects. Since the late '90s, there has been a progressive increase in experimental evidence, indicating that in CC the antiproliferative effects of NSAIDs and COXibs could be both dependent on and independent of COXs inhibition, and that these effects do not necessarily exclude each other. This review will examine some of these COX-independent cellular pathways, with a focus on those involved in the inhibition of CC cells proliferation through transcription factors crosstalk. PMID:26310524

  11. Three Novel Alkaloids from Portulaca oleracea L. and Their Anti-inflammatory Effects.

    PubMed

    Li, Cui-Yu; Meng, Yi-Han; Ying, Zhe-Ming; Xu, Nan; Hao, Dong; Gao, Ming-Zhe; Zhang, Wen-Jie; Xu, Liang; Gao, Yu-Cong; Ying, Xi-Xiang

    2016-07-27

    Three novel carbon skeleton alkaloids, named oleracimine (1), oleracimine A (2), and oleracone A (3), with one novel azulene carbon skeleton compound, oleracone B (4), and one known compound, β-carboline (5), were first isolated from Portulaca oleracea L. The structures were determined using spectroscopic methods, including one- and two-dimensional nuclear magnetic resonance and high-resolution electrospray ionization time-of-flight mass spectrometry techniques. In addition, oleracimine (1) was used to investigate the anti-inflammatory effects on lipopolysaccharide-stimulated macrophages. The results of enzyme-linked immunosorbent assay, western blot, and real-time polymerase chain reaction showed that oleracimine (1) remarkably inhibited nitric oxide production and could dose-dependently decrease the secretions of interleukin 6, tumor necrosis factor α, nitric oxide, and prostaglandin E2 in cell culture supernatants as well as the mRNA of cyclooxygenase-2 and inducible nitric oxide synthase. PMID:27396870

  12. The effects of C-glycosylation of luteolin on its antioxidant, anti-Alzheimer's disease, anti-diabetic, and anti-inflammatory activities.

    PubMed

    Choi, Jae Sue; Islam, Md Nurul; Ali, Md Yousof; Kim, Young Myeong; Park, Hye Jin; Sohn, Hee Sook; Jung, Hyun Ah

    2014-10-01

    To investigate the effect of C-glycosylation at different positions of luteolin, the structure-activity relationships of luteolin and a pair of isomeric C-glycosylated derivatives orientin and isoorientin, were evaluated. We investigated the effects of C-glycosylation on the antioxidant, anti-Alzheimer's disease (AD), anti-diabetic and anti-inflammatory effects of luteolin and its two C-glycosides via in vitro assays of peroxynitrite (ONOO(-)), total reactive oxygen species (ROS), nitric oxide (NO), 1,1-diphenyl-2-picrylhydraxyl (DPPH), aldose reductase, protein tyrosine phosphatase 1B (PTP1B), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor cleaving enzyme 1 (BACE1), and cellular assays of NO production and inducible nitric oxide synthase (iNOS)/cyclooxygenase-2 expression in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Of the three compounds, isoorientin showed the highest scavenging activity against DPPH, NO, and ONOO(-), while luteolin was the most potent inhibitor of ROS generation. In addition, luteolin showed the most potent anti-AD activity as determined by its inhibition of AChE, BChE, and BACE1. With respect to anti-diabetic effects, luteolin exerted the strongest inhibitory activity against PTP1B and rat lens aldose reductase. Luteolin also inhibited NO production and iNOS protein expression in LPS-stimulated macrophages, while orientin and isoorientin were inactive at the same concentrations. The effects of C-glycosylation at different positions of luteolin may be closely linked to the intensity and modulation of antioxidant, anti-AD, anti-diabetic, and anti-inflammatory effects of luteolin and its C-glycosylated derivatives. PMID:24988985

  13. Therapeutic Potential of a Non-Steroidal Bifunctional Anti-Inflammatory and Anti-Cholinergic Agent against Skin Injury Induced by Sulfur Mustard

    PubMed Central

    Chang, Yoke-Chen; Wang, James D.; Hahn, Rita A.; Gordon, Marion K.; Joseph, Laurie B.; Heck, Diane E.; Heindel, Ned D.; Young, Sherri C.; Sinko, Patrick J.; Casillas, Robert P.; Laskin, Jeffrey D.; Laskin, Debra L.; Gerecke, Donald R.

    2014-01-01

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 hr post-SM exposure. After 96 hr, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermalepidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. PMID:25127551

  14. Anti-inflammatory activity of polyphenolics from açai (Euterpe oleracea Martius) in intestinal myofibroblasts CCD-18Co cells.

    PubMed

    Dias, Manoela Maciel dos Santos; Martino, Hércia Stampini Duarte; Noratto, Giuliana; Roque-Andrade, Andrea; Stringheta, Paulo César; Talcott, Stephen; Ramos, Afonso Mota; Mertens-Talcott, Susanne U

    2015-10-01

    The demand for tropical fruits high in polyphenolics including açai (Euterpe oleracea Mart.) has been increasing based on ascribed health benefits and antioxidant properties. This study evaluated the anti-inflammatory activities of açai polyphenolics in human colon myofibroblastic CCD-18Co cells to investigate the suppression of reactive oxygen species (ROS), and mRNA and protein expression of inflammatory proteins. Non-cytotoxic concentrations of açai extract, 1-5 mg gallic acid equivalent L(-1), were selected. The generation of ROS was induced by lipopolysaccharide (LPS) and açai extract partially reversed this effect to 0.53-fold of the LPS-control. Açai extract (5 mg GAE L(-1)) down-regulated LPS-induced mRNA-expression of tumor necrosis factor alpha, TNF-α (to 0.42-fold), cyclooxygenase 2, COX-2 (to 0.61-fold), toll-like receptor-4, TLR-4 (to 0.52-fold), TNF receptor-associated factor 6, TRAF-6 (to 0.64-fold), nuclear factor kappa-B, NF-κB (to 0.76-fold), vascular cell adhesion molecule 1, VCAM-1 (to 0.71-fold) and intercellular adhesion molecule 1, ICAM-1 (to 0.68-fold). The protein levels of COX-2, TLR-4, p-NF-κB and ICAM-1 were induced by LPS and the açai extract partially reversed this effect in a dose-dependent manner. These results suggest the anti-inflammatory effect of açai polyphenolic extract in intestinal cells are at least in part mediated through the inhibition of ROS and the expression of TLR-4 and NF-κB. Results indicate the potential for açai polyphenolics in the prevention of intestinal inflammation. PMID:26243669

  15. Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate.

    PubMed

    Ahn, Chang-Bum; Cho, Young-Sook; Je, Jae-Young

    2015-02-01

    In this study, the anti-inflammatory peptide from salmon pectoral fin byproduct protein hydrolysate by pepsin hydrolysis, was purified and identified using Sephadex G-25 gel permeation chromatography, high performance liquid chromatography and time-of-flight liquid chromatography/tandem mass spectrometry (TOF LC/MS/MS). The purified anti-inflammatory peptide was identified to be a tripeptide (PAY). Lipopolysaccharide treatment significantly (p<0.05) stimulated the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW264.7 cells. However, PAY treatment significantly (p<0.05) inhibited the production of NO by 63.80% and PGE2 by 45.33%. Western blotting analysis revealed that PAY significantly (p<0.05) suppressed the protein expression of inducible nitric oxide synthase and cyclooxygenase-2, which are responsible for the production of NO and PGE2. Additionally, PAY treatment also significantly (p<0.05) attenuated the production of pro-inflammatory cytokines, including tumour necrosis factor-α, interleukin-6 and -1β. PMID:25172694

  16. Anti-inflammatory effects of fermented and non-fermented Sophora flavescens: a comparative study

    PubMed Central

    2011-01-01

    Background The roots of Sophora flavescens (Leguminosae) have been used in East Asian countries as an herbal medicine and a food ingredient for thousands of years. The aim of the present study was to investigate the effects of S. flavescens fermentation on endotoxin-induced uveitis (EIU) in rats. Methods EIU was induced in rats via a footpad injection of lipopolysaccharide (LPS). Immediately after the LPS inoculation, fermented and non-fermented extracts of S. flavescens (FSE and NFSE, respectively) were administered orally, and the aqueous humor was collected from both eyes 24 hours later. The anti-inflammatory effects of FSE and NFSE were examined in terms of regulation of nuclear factor kappa B (NF-κB) activation and the expression of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), intercellular cell adhesion molecule (ICAM)-1, and cyclooxygenase-2 (COX-2). The regulation of maleic dialdehyde (MDA) levels and polymorphonuclear cell (PMN) infiltration by FSE and NFSE were also examined. Results Treatment with FSE significantly inhibited LPS-induced increases in IL-1β and TNF-α production and the expression of iNOS, ICAM-1 and COX-2. Moreover, FSE suppressed LPS-induced NF-κB activation, and reduced both MDA levels and infiltration by PMN. Conclusion These results indicate that solid state fermentation may enhance the anti-inflammatory effects of S. flavescens. PMID:22026927

  17. Supercritical carbon dioxide extract exhibits enhanced antioxidant and anti-inflammatory activities of Physalis peruviana.

    PubMed

    Wu, S J; Tsai, J Y; Chang, S P; Lin, D L; Wang, S S; Huang, S N; Ng, L T

    2006-12-01

    Physalis peruviana L. (PP) is a medicinal herb widely used in folk medicine. In this study, supercritical carbon dioxide (SFE-CO2) method was employed to obtain three different PP extracts, namely SCEPP-0, SCEPP-4 and SCEPP-5. The total flavonoid and phenol concentrations, as well as antioxidant and anti-inflammatory activities of these extracts were analyzed and compared with aqueous and ethanolic PP extracts. Among all the extracts tested, SCEPP-5 demonstrated the highest total flavonoid (234.63+/-9.61 mg/g) and phenol (90.80+/-2.21 mg/g) contents. At concentrations 0.1-30 microg/ml, SCEPP-5 also demonstrated the strongest superoxide anion scavenging activity and xanthine oxidase inhibitory effect. At 30 microg/ml, SCEPP-5 significantly prevented lipopolysaccharide (LPS; 1 microg/ml)-induced cell cytotoxicity in murine macrophage (Raw 264.7) cells. At 10-50 microg/ml, it also significantly inhibited LPS-induced NO release and PGE2 formation in a dose-dependent pattern. SCEPP-5 at 30 microg/ml remarkably blocked the LPS induction of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Taken together, these results suggest that SCEPP-5, an extract of SFE-CO2, displayed the strongest antioxidant and anti-inflammatory activities as compared to other extracts. Its protection against LPS-induced inflammation could be through the inhibition of iNOS and COX-2 expression. PMID:16820275

  18. Anti-inflammatory Activity of Grains of Paradise (Aframomum melegueta Schum) Extract

    PubMed Central

    2015-01-01

    The ethanolic extract of grains of paradise (Aframomum melegueta Schum, Zingiberaceae) has been evaluated for inhibitory activity on cyclooxygenase-2 (COX-2) enzyme, in vivo for the anti-inflammatory activity and expression of several pro-inflammatory genes. Bioactivity-guided fractionation showed that the most active COX-2 inhibitory compound in the extract was [6]-paradol. [6]-Shogaol, another compound from the extract, was the most active inhibitory compound in pro-inflammatory gene expression assays. In a rat paw edema model, the whole extract reduced inflammation by 49% at 1000 mg/kg. Major gingerols from the extract [6]-paradol, [6]-gingerol, and [6]-shogaol reduced inflammation by 20, 25 and 38%. respectively when administered individually at a dose of 150 mg/kg. [6]-Shogaol efficacy was at the level of aspirin, used as a positive control. Grains of paradise extract has demonstrated an anti-inflammatory activity, which is in part due to the inhibition of COX-2 enzyme activity and expression of pro-inflammatory genes. PMID:25293633

  19. Erdosteine: antitussive and anti-inflammatory effects.

    PubMed

    Dal Negro, Roberto W

    2008-01-01

    Erdosteine is a multifactorial drug currently used in COPD for its rheologic activity on bronchial secretions and its positive effects on bacterial adhesiveness. Erdosteine produces an active metabolite (Met 1) which was shown to produce antioxidant effects during the respiratory burst of human PMNs, due to the presence of an SH group. The substantial antitussive effects of erdosteine were first documented in clinical trials even though mucolytic agents are regarded as not consistently effective in ameliorating cough in patients with bronchitis, although they may be of benefit to this population in other ways. Actually, a mucolytic drug could exert antitussive effects if it also affects mucus consistency and enhances ciliary function. In the last decade, data from several studies on animal models pointed to the possible antitussive and anti-inflammatory properties of erdosteine and an indirect anti-inflammatory mechanism of action was suggested. Recently, data from some controlled versus placebo studies documented the antioxidant properties of erdosteine in humans and in current smokers with COPD. The mechanism of action was described as related to erdosteine's ability to inhibit some inflammatory mediators and some pro-inflammatory cytokines that are specifically involved in oxidative stress. As oxidative stress is also presumed to impair beta-adrenoceptor function and contribute to airway obstruction, specific controlled studies recently investigated the effect of antioxidant intervention on short-term airway response to salbutamol in nonreversible COPD, according to a double-blind design versus placebo and NAC. Only erdosteine consistently restored a significant short-term reversibility in COPD subjects, previously unresponsive to beta(2) adrenergics. This peculiar activity of erdosteine (to our knowledge never previously assessed) proved related to the ROS scavenging activity (which actually proved equal to that of N), and its significant inhibiting effect on

  20. Cyclooxygenase-2 in newborn hyperoxic lung injury.

    PubMed

    Britt, Rodney D; Velten, Markus; Tipple, Trent E; Nelin, Leif D; Rogers, Lynette K

    2013-08-01

    Supraphysiological O2 concentrations, mechanical ventilation, and inflammation significantly contribute to the development of bronchopulmonary dysplasia (BPD).Exposure of newborn mice to hyperoxia causes inflammation and impaired alveolarization similar to that seen in infants with BPD.Previously, we demonstrated that pulmonary cyclooxygenase-2 (COX-2) protein expression is increased in hyperoxia-exposed newborn mice.The present studies were designed to define the role of COX-2 in newborn hyperoxic lung injury.We tested the hypothesis that attenuation of COX-2 activity would reduce hyperoxia-induced inflammation and improve alveolarization.Newborn C3H/HeN micewere injected daily with vehicle, aspirin (nonselective COX-2 inhibitor), or celecoxib (selective COX-2 inhibitor) for the first 7 days of life.Additional studies utilized wild-type (C57Bl/6, COX-2(+/+)), heterozygous (COX-2(+/-)), and homozygous (COX-2(-/-)) transgenic mice.Micewere exposed to room air (21% O2) or hyperoxia (85% O2) for 14 days.Aspirin-injected and COX-2(-/-) pups had reduced levels of monocyte chemoattractant protein (MCP-1) in bronchoalveolar lavage fluid (BAL).Both aspirin and celecoxib treatment reduced macrophage numbers in the alveolar walls and air spaces.Aspirin and celecoxib treatment attenuated hyperoxia-induced COX activity, including altered levels of prostaglandin (PG)D2 metabolites.Decreased COX activity, however, did not prevent hyperoxia-induced lung developmental deficits.Our data suggest thatincreased COX-2 activity may contribute to proinflammatory responses, including macrophage chemotaxis, during exposure to hyperoxia.Modulation of COX-2 activity may be a useful therapeutic target to limit hyperoxia-induced inflammation in preterm infants at risk of developing BPD. PMID:23624331

  1. [The mode of anti-inflammatory action of a topical non-steroidal anti-inflammatory drug, etofenamate].

    PubMed

    Nakamura, H; Motoyoshi, S; Ishii, K; Seto, Y; Shimoda, A; Kadokawa, T

    1987-01-01

    In order to ascertain the mode of anti-inflammatory action of a topical non-steroidal anti-inflammatory drug, etofenamate which is a diethylene glycol ester of flufenamic acid, the in vitro test for the mechanism of the action were carried out. Etofenamate (3 microM) was hydrolysed to flufenamic acid at a rate of 39.5% and 57.0% of the dose during 30 and 60 min incubation, respectively, when incubated with rat peritoneal macrophages stimulated with starch and bacto peptone in phosphate-buffered saline. PGE2 generation by these cells in MEM medium was dose-relatedly inhibited with etofenamate as well as flufenamic acid at the dosage range of 1 to 30 microM. This suggests that unchanged etofenamate is active, since the highest conversion rate of etofenamate to flufenamic acid was 15% of the dose during the incubation. Etofenamate produced a dose-related inhibition against lipoxygenase prepared from peritoneal polymorphonuclear leucocytes of guinea pigs, and its activity (IC50 = 5.3 X 10(-5) M) was stronger than that of caffeic acid; flufenamic acid was inactive. Inhibitory activity of etofenamate was one-third or less that of flufenamic acid against the hypotonic-hyperthermic lysis of rat erythrocytes and heat-denaturation of bovine serum albumin. From these results, it was suggested that topically applied etofenamate produces its anti-inflammatory action through prostaglandin synthesis inhibition by flufenamic acid produced in the inflammatory tissue and inhibition of prostaglandin synthesis by macrophages and lipoxygenase inhibition by unchanged etofenamate. PMID:2883093

  2. Methanol extract of Xanthium strumarium L. possesses anti-inflammatory and anti-nociceptive activities.

    PubMed

    Kim, In-Tae; Park, Young-Mi; Won, Jong-Heon; Jung, Hyun-Ju; Park, Hee-Juhn; Choi, Jong-Won; Lee, Kyung-Tae

    2005-01-01

    As an attempt to identify bioactive natural products with anti-inflammatory activity, we evaluated the effects of the methanol extract of the semen of Xanthium strumarium L. (MEXS) on lipopolysaccharide (LPS)-induced nitric oxide (NO), prostaglandin E2 (PGE2) and tumor necrosis factor-alpha (TNF-alpha) production in RAW 264.7 cells. Our data indicate that MEXS is a potent inhibitor of NO, PGE2 and TNF-alpha production. Consistent with these findings, the expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and iNOS, COX-2 and TNF-alpha mRNA were down-regulated in a concentration-dependent manner. Furthermore, MEXS inhibited nuclear factor kappa B (NF-kappaB) DNA binding activity and the translocation of NF-kappaB to the nucleus by blocking the degradation of inhibitor of kappa B-alpha (IkappaB-alpha). We further evaluated the anti-inflammatory and anti-nociceptive activities of MEXS in vivo. MEXS (100, 200 mg/kg/d, p.o.) reduced acute paw edema induced by carrageenin in rats, and showed analgesic activities in an acetic acid-induced abdominal constriction test and a hot plate test in mice. Thus, our study suggests that the inhibitions of iNOS, COX-2 expression, and TNF-alpha release by the methanol extract of the semen of Xanthium strumarium L. are achieved by blocking NF-kappaB activation, and that this is also responsible for its anti-inflammatory effects. PMID:15635170

  3. Acute gastrointestinal permeability responses to different non-steroidal anti-inflammatory drugs

    PubMed Central

    Smecuol, E; Bai, J; Sugai, E; Vazquez, H; Niveloni, S; Pedreira, S; Maurino, E; Meddings, J

    2001-01-01

    BACKGROUND AND AIMS—Non-steroidal anti-inflammatory drugs (NSAIDs) cause gastrointestinal damage both in the upper and lower gastrointestinal tract. New anti-inflammatory drugs have been developed in an attempt to improve their gastrointestinal side effect profile. Our objective was to compare the effect on gastrointestinal permeability of acute equieffective doses of four different NSAIDs; three were designed to reduce gastrointestinal mucosal injury.
MATERIALS—Healthy volunteers underwent sugar tests in a randomised fashion, 15 days apart, at: (1) baseline; (2) after two days of 75 mg slow release (microspheres) indomethacin; (3) after two days of 7.5 mg oral meloxicam which preferentially inhibits cyclooxygenase 2; and (4) after two days of 750 mg naproxen. A subgroup of subjects was tested after two days of 200 mg celecoxib. In each test, subjects ingested a solution containing sucrose, lactulose, and mannitol and sucralose, to evaluate gastroduodenal, intestinal, and colonic permeability, respectively.
RESULTS—Gastric permeability was significantly affected by naproxen (p<0.05) but not by slow release indomethacin, meloxicam, or celecoxib. Intestinal permeability was significantly increased by the first three NSAIDs (p<0.05) but not by celecoxib. Abnormal lactulose/mannitol ratios were observed in 42% of meloxicam treatments, in 62% during indomethacin, and in 75% of subjects treated with naproxen. Finally, colonic permeability, as measured by sucralose, was not significantly increased by any of the four drugs.
CONCLUSION—Our study provides evidence that the newly developed NSAIDs reduce gastric mucosal permeability significantly. However, most produced significant alteration of small intestinal permeability. In contrast, our results suggest that celecoxib seems to exhibit the most desirable gastrointestinal side effect profile.


Keywords: permeability; non-steroidal anti-inflammatory drugs; celecoxib; meloxican; small intestine

  4. Sesquiterpenes from Essential Oils and Anti-Inflammatory Activity.

    PubMed

    da Silveira e Sá, Rita de Cássia; Andrade, Luciana Nalone; de Sousa, Damião Pergentino

    2015-10-01

    This review is aimed at presenting relevant information on the therapeutic potential of essential oil sesquiterpenes with anti-inflammatory activity. The data reviewed provide a basis for seeking new anti-inflammatory drugs from natural products that do not exhibit the undesirable side effects often displayed by anti-inflammatory drugs. In this review the experimental models, possible mechanisms of action, and chemical structures of 12 sesquiterpenes are presented. PMID:26669122

  5. Anti-inflammatory activity of extracts from Conyza canadensis.

    PubMed

    Lenfeld, J; Motl, O; Trka, A

    1986-04-01

    The petroleum ether and ethanolic extract from the epigean part of Conyza canadensis exhibits a significant anti-inflammatory effect on rats with a carrageenin and formalin oedema. Eight sesquiterpenic hydrocarbons with the highest anti-inflammatory activity were found in the petroleum ether fraction (beta-santalene, beta-himachalene, cuparene, alpha-curcumene, gamma-cadinene and three other unidentified hydrocarbons). Of these substances, beta-himachalene was further studied and its anti-inflammatory activity was demonstrated. PMID:3725873

  6. Use of Selective Cyclooxygenase-2 Inhibitors, Other Analgesics, and Risk of Glioma

    PubMed Central

    Seliger, Corinna; Meier, Christoph R.; Becker, Claudia; Jick, Susan S.; Bogdahn, Ulrich; Hau, Peter; Leitzmann, Michael F.

    2016-01-01

    Background Selective cyclooxygenase-2 (COX-2) inhibitors are analgesic, antipyretic, and anti-inflammatory drugs. They have been found to inhibit the development of glioma in laboratory investigations. Whether these drugs reduce the risk of glioma incidence in humans is unknown. Methods We conducted a matched case-control analysis using the U.K.-based Clinical Practice Research Datalink (CPRD). We identified 2,469 cases matched to 24,690 controls on age, sex, calendar time, general practice, and number of years of active history in the CPRD prior to the index date. We conducted conditional logistic regression analyses to determine relative risks, estimated as odds ratios (ORs) with 95% confidence intervals (CIs) of glioma in relation to use of selective COX-2 inhibitors, adjusted for several confounding variables. Results Use of selective COX-2 inhibitors was unrelated to risk of glioma (adjusted OR for 1–9 versus 0 prescriptions = 1.02; 95% CI = 0.92–1.13, 10–29 versus 0 prescriptions = 1.01; 95% CI = 0.80–1.28, ≥30 versus 0 prescriptions = 1.16; 95% CI = 0.86–1.55). Trends for increasing numbers of prescriptions for other non-steroidal anti-inflammatory drugs (NSAIDs), and non-NSAID analgesics were also not associated with glioma risk. Conclusion Further epidemiologic studies are needed to confirm the null relation of use of selective COX-2 inhibitors to glioma risk and to explain the discrepancy between laboratory investigations and our observational study. Impact: Use of selective COX-2 inhibitors is unrelated to glioma risk. PMID:26871579

  7. A RECOMBINANT IgG Fc THAT RECAPITULATES THE ANTI-INFLAMMATORY ACTIVITY OF IVIG

    PubMed Central

    Anthony, Robert M.; Nimmerjahn, Falk; Ashline, David J.; Reinhold, Vernon N.; Paulson, James C.; Ravetch, Jeffrey V.

    2008-01-01

    High doses of monomeric IgG purified from pooled human plasma confer anti-inflammatory activity for a wide variety of autoimmune diseases. The heterogeneity of IVIG, derived from its Fab specificity, IgG subclass distribution and variable glycosylation have confounded efforts to develop a recombinant substitute for this blood-derived product. Recent studies have demonstrated that this paradoxical anti-inflammatory activity of IgG is completely dependent on sialylation of the N-linked glycan of the IgG Fc fragment. Determining the precise glycan requirements for this anti-inflammatory activity allowed appropriate glycan engineering of an IgG1 Fc fragment, leading to the generation of a fully recombinant, sialylated IgG1 Fc with greatly enhanced potency. PMID:18420934

  8. Intravital Microscopic Methods to Evaluate Anti-inflammatory Effects and Signaling Mechanisms Evoked by Hydrogen Sulfide

    PubMed Central

    Zuidema, Mozow Y.; Korthuis, Ronald J.

    2016-01-01

    Hydrogen sulfide (H2S) is an endogenous gaseous signaling molecule with potent anti-inflammatory properties. Exogenous application of H2S donors, administered either acutely during an inflammatory response or as an antecedent preconditioning intervention that invokes the activation of anti-inflammatory cell survival programs, effectively limits leukocyte rolling, adhesion and emigration, generation of reactive oxygen species, chemokine and cell adhesion molecule expression, endothelial barrier disruption,capillary perfusion deficits, and parenchymal cell dysfunction and injury. This chapter focuses on intravital microscopic methods that can be used to assess the anti-inflammatory effects exerted by H2S, as well as to explore the cellular signaling mechanisms by which this gaseous molecule limits the aforementioned inflammatory responses. Recent advances include use of intravital multiphoton microscopy and optical biosensor technology to explore signaling mechanisms in vivo. PMID:25747477

  9. Review of Anti-Inflammatory Herbal Medicines

    PubMed Central

    Ghasemian, Mona; Owlia, Sina; Owlia, Mohammad Bagher

    2016-01-01

    Medicinal plants and their secondary metabolites are progressively used in the treatment of diseases as a complementary medicine. Inflammation is a pathologic condition that includes a wide range of diseases such as rheumatic and immune-mediated conditions, diabetes, cardiovascular accident, and etcetera. We introduce some herbs which their anti-inflammatory effects have been evaluated in clinical and experimental studies. Curcuma longa, Zingiber officinale, Rosmarinus officinalis, Borago officinalis, evening primrose, and Devil's claw are some of the introduced medicinal herbs in this review. Since the treatment of inflammation is not a one-dimensional remedy, this review tries to reach a multidimensional therapeutic approach to inflammation with the help of herbal medicine and modification in lifestyle. PMID:27247570

  10. Review of Anti-Inflammatory Herbal Medicines.

    PubMed

    Ghasemian, Mona; Owlia, Sina; Owlia, Mohammad Bagher

    2016-01-01

    Medicinal plants and their secondary metabolites are progressively used in the treatment of diseases as a complementary medicine. Inflammation is a pathologic condition that includes a wide range of diseases such as rheumatic and immune-mediated conditions, diabetes, cardiovascular accident, and etcetera. We introduce some herbs which their anti-inflammatory effects have been evaluated in clinical and experimental studies. Curcuma longa, Zingiber officinale, Rosmarinus officinalis, Borago officinalis, evening primrose, and Devil's claw are some of the introduced medicinal herbs in this review. Since the treatment of inflammation is not a one-dimensional remedy, this review tries to reach a multidimensional therapeutic approach to inflammation with the help of herbal medicine and modification in lifestyle. PMID:27247570

  11. Corneal reepithelialization and anti-inflammatory agents.

    PubMed Central

    Srinivasan, B D

    1982-01-01

    These studies have demonstrated that nonsteroidal anti-inflammatory agents (cyclooxygenase and lipoxygenase inhibitors) can inhibit PMN arrival in the tear fluid following corneal injury but do not inhibit the reepithelialization either by corneal epithelial cells or by conjunctival epithelial cells. Therefore, they can be used safely in ocular inflammatory conditions even when corneal epithelial defects are present. Corticosteroids, on the other hand, inhibit reepithelialization by conjunctival epithelial cells and not by corneal epithelial cells in the doses tested. This inhibition does not occur with pretreatment prior to injury, suggesting that corticosteroids can be used clinically in conditions that have intact corneal epithelium without fear of slowing down wound healing should epithelial defects occur when not on steroid therapy. Furthermore, the steroid inhibition is temporary since there is a breakthrough in steroid inhibition with time, and occurs only if the steroids have been used shortly after deepithelialization. The steroid inhibition can be reversed by specific steroid antagonist, indicating that the steroid effect is mediated through specific receptors. An exciting and new hypothesis proposes that corticosteroids induce the formation of an inhibitory protein that inhibits the phospholipase enzyme to cause a block in arachidonic acid release from cell membranes. This mechanism of action may also be prevalent in the steroid effect on corneal reepithelialization, and experiments are under way to isolate this inhibitory protein from steroid-treated conjunctival epithelium. This isolation and pharmacologic characterization of this inhibitory protein is of obvious advantage to the field of ophthalmic therapeutics since this protein may have the anti-inflammatory potential of the steroids without their steroid sideeffects. Images FIGURE 3 a FIGURE 3 b PMID:6763806

  12. Cobalt Protoporphyrin Upregulates Cyclooxygenase-2 Expression Through a Heme Oxygenase-Independent Mechanism.

    PubMed

    Lin, Hsiao-Yun; Tsai, Chon-Haw; Lin, Chingju; Yeh, Wei-Lan; Tsai, Cheng-Fang; Chang, Pei-Chun; Wu, Ling-Hsuan; Lu, Dah-Yuu

    2016-09-01

    Cobalt protoporphyrin (CoPP) is a potent HO-1 inducer and generally known to be an antioxidant in various cell types. Little is known about the CoPP-induced cyclooxygenase-2 (COX-2) expression and its downstream signaling in microglial cells. In current study, CoPP caused concentration- and time-dependent increases in COX-2 expression in microglial cells. Furthermore, activation of apoptosis signal-regulating kinase (ASK) 1/MAP kinase involved in CoPP-induced COX-2 expression in microglia. CoPP also induced P2X7 receptor activation, and treatment of P2X7 inhibitors effectively reduced CoPP-induced COX-2 expression. Protein inhibitor of activated STAT (PIAS) 1 is reported to be involved in modulating anti-inflammatory response through negative regulation of transcription factors. Interestingly, treatment with CoPP markedly induced PIAS1 degradation which is regulated by PI3K, Akt, and glycogen synthase kinase 3α/β (GSK3α/β) signaling pathways. These results suggest that CoPP induces COX-2 expression through activating P2X7 receptors and ASK1/MAP kinases as well as PIAS1 degradation signaling pathways. Our study provides a new insight into the regulatory effect of CoPP on neuroinflammation in microglial cells. PMID:26255181

  13. Paeoniflorin ameliorates rheumatoid arthritis in rat models through oxidative stress, inflammation and cyclooxygenase 2

    PubMed Central

    JIA, ZHILIN; HE, JIAO

    2016-01-01

    Paeoniflorin has anti-inflammatory, anti-allergy, immune regulatory and pain-relieving effects, amongst other roles. However, the mechanisms underlying the protective effects of paeoniflorin on rheumatoid arthritis (RA) remain under investigation; the objective of the current study was to evaluate these protective effects in the context of an RA model. Rats were randomly divided into 5 groups, as follows: The control group, the RA rat model group, and the paeoniflorin groups, in which paeoniflorin was administered at concentrations of 5, 10 and 20 mg/kg for 3 weeks. The pain thresholds and arthritic symptoms of the RA rats were measured. Oxidative stress and inflammatory cytokines were also analyzed and western blot analysis was used to evaluate cyclooxygenase-2 (COX-2) protein expression levels. Paeoniflorin significantly increased the pain threshold and decreased the arthritic symptoms in the RA rat model. Notably, paeoniflorin reduced the malondialdehyde concentration and increased the activity of superoxide dismutase, catalase and glutathione peroxidase. Furthermore, paeoniflorin attenuated the activity of nuclear factor-κB p65 unit, tumor necrosis factor-α, interleukin (IL)-1β and IL-6, and reduced the COX-2 protein expression level. The present study indicates that paeoniflorin ameliorates disease in rat models of RA through oxidative stress, inflammation and alterations to COX-2 expression. PMID:26893662

  14. Inhibition of cyclooxygenase-2 impacts chondrocyte hypertrophic differentiation during endochondral ossification.

    PubMed

    Welting, T J M; Caron, M M J; Emans, P J; Janssen, M P F; Sanen, K; Coolsen, M M E; Voss, L; Surtel, D A M; Cremers, A; Voncken, J W; van Rhijn, L W

    2011-01-01

    Skeletogenesis and bone fracture healing involve endochondral ossification, a process during which cartilaginous primordia are gradually replaced by bone tissue. In line with a role for cyclooxygenase-2 (COX-2) in the endochondral ossification process, non-steroidal anti-inflammatory drugs (NSAIDs) were reported to negatively affect bone fracture healing due to impaired osteogenesis. However, a role for COX-2 activity in the chondrogenic phase of endochondral ossification has not been addressed before. We show that COX-2 activity fulfils an important regulatory function in chondrocyte hypertrophic differentiation. Our data reveal essential cross-talk between COX-2 and bone morphogenic protein-2 (BMP-2) during chondrocyte hypertrophic differentiation. BMP-2 mediated chondrocyte hypertrophy is associated with increased COX-2 expression and pharmacological inhibition of COX-2 activity by NSAIDs (e.g., Celecoxib) decreases hypertrophic differentiation in various chondrogenic models in vitro and in vivo, while leaving early chondrogenic development unaltered. Our findings demonstrate that COX-2 activity is a novel factor partaking in chondrocyte hypertrophy in the context of endochondral ossification and these observations provide a novel etiological perspective on the adverse effects of NSAIDs on bone fracture healing and have important implications for the use of NSAIDs during endochondral skeletal development. PMID:22183916

  15. Anti-Inflammatory Effect of Apigenin on LPS-Induced Pro-Inflammatory Mediators and AP-1 Factors in Human Lung Epithelial Cells.

    PubMed

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Nagesh, Rashmi; Ramesh, Govindarajan T; Sharma, S Chidananda

    2016-02-01

    Apigenin is one of the plant flavonoids present in fruits and vegetables, acting as an important nutraceutical component. It is recognized as a potential antioxidant, antimicrobial, and anti-inflammatory molecule. In the present study, the mechanism of anti-inflammatory action of apigenin on lipopolysaccharide (LPS)-induced pro-inflammatory cytokines and activator protein-1 (AP-1) factors in human lung A549 cells was investigated. The anti-inflammatory activity of apigenin on LPS-induced inflammation was determined by analyzing the expression of pro-inflammatory cytokines, nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and different AP-1 factors. Apigenin significantly inhibited the LPS-induced expression of iNOS, COX-2, expression of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, and TNF-α), and AP-1 proteins (c-Jun, c-Fos, and JunB) including nitric oxide production. Study confirms the anti-inflammatory effect of apigenin by inhibiting the expression of inflammatory mediators and AP-1 factors involved in the inflammation and its importance in the treatment of lung inflammatory diseases. PMID:26276128

  16. Anti-Inflammatory Constituents from Bidens frondosa.

    PubMed

    Le, Jiamei; Lu, Wenquan; Xiong, Xiaojuan; Wu, Zhijun; Chen, Wansheng

    2015-01-01

    A new polyacetylene glucoside (3E,5E,11E)-tridecatriene-7,9-diyne-1,2,13-triol-2-O-β-D-glucopyranoside (1), a new phenylpropanoid glucoside 2'-butoxyethylconiferin (2), and a new flavonoid glycoside 8,3',4'-trihydroxyflavone-7-O-(6''-O-p-coumaroyl)-β-D-glucopyranoside (3), have been isolated from Bidens frondosa together with fifty-three known compounds 4-56. The structures of these compounds were established by spectroscopic methods. mainly ESIMS, 1D- and 2D-NMR spectroscopic data. and comparison with literature data. Compounds 1-34, 36, 39, 43, 47, 51, and 52 were tested for inhibition of nuclear factor kappa B (NF-κB) in 293-NF-κB-luciferase report cell line induced by lipopolysaccharide (LPS), and compounds 1, 2, 3, 9, 15, 21, 24 and 51 were tested for the production of TNF-α, IL-1β, IL-6, IL-10 in RAW 264.7 macrophages induced by LPS. In conclusion, the isolated compounds 1, 2, 3, 9, 15, 21, 24 and 51 exhibited significant activity in anti-inflammatory activity assays. PMID:26473814

  17. Anti-inflammatory effect of fucoidan extracted from Ecklonia cava in zebrafish model.

    PubMed

    Lee, Seung-Hong; Ko, Chang-Ik; Jee, Youngheun; Jeong, Yoonhwa; Kim, Misook; Kim, Jin-Soo; Jeon, You-Jin

    2013-01-30

    Fucoidan extracted from Ecklonia cava had strong anti-inflammatory activities. However, the direct effects of fucoidan of E. cava on anti-inflammatory activities in vivo model remained to be determined. Therefore, the present study was designed to assess in vivo anti-inflammatory effect of fucoidan extracted from E. cava (ECF) using tail-cutting-induced and lipopolysaccharide (LPS)-stimulated zebrafish model. Treating zebrafish model with tail-cutting and LPS-treatment significantly increased the ROS and NO level. However, ECF inhibited this tail-cutting-induced and LPS-stimulated ROS and NO generation. These results show that ECF alleviated inflammation by inhibiting the ROS and NO generation induced by tail-cutting and LPS-treatment. In addition, ECF has a protective effect against the toxicity induced by LPS exposure in zebrafish embryos. This outcome could explain the potential anti-inflammatory activity of ECF, which might have a beneficial effect during the treatment of inflammatory diseases. PMID:23218269

  18. Anti-inflammatory properties of quebecol and its derivatives.

    PubMed

    Cardinal, Sébastien; Azelmat, Jabrane; Grenier, Daniel; Voyer, Normand

    2016-01-15

    Herein we report our results on the anti-inflammatory activity of quebecol, a polyphenolic compound discovered in maple syrup. Bioassays demonstrated that quebecol has an anti-inflammatory effect on LPS-induced NF-κB activation and inhibits the secretion of two pro-inflammatory cytokines, IL-6 and TNF-α. We also prepared and tested precursors of quebecol and its derivatives corresponding to its substructures of interest, with the aim to study the structure-activity relationships. Comparing the results obtained for all tested compounds allowed the identification of the main moiety responsible for the anti-inflammatory activity of quebecol. PMID:26691759

  19. Anti-Angiogenic and Anti-Inflammatory Properties of Kahweol, a Coffee Diterpene

    PubMed Central

    Cárdenas, Casimiro; Quesada, Ana R.; Medina, Miguel A.

    2011-01-01

    Background Epidemiological studies have shown that unfiltered coffee consumption is associated with a low incidence of cancer. This study aims to identify the effects of kahweol, an antioxidant diterpene contained in unfiltered coffee, on angiogenesis and key inflammatory molecules. Methodology/Principal Findings The experimental procedures included in vivo angiogenesis assays (both the chicken and quail choriallantoic membrane assay and the angiogenesis assay with fluorescent zebrafish), the ex vivo mouse aortic ring assay and the in vitro analysis of the effects of treatment of human endothelial cells with kahweol in cell growth, cell viability, cell migration and zymographic assays, as well as the tube formation assay on Matrigel. Additionally, two inflammation markers were determined, namely, the expression levels of cyclooxygenase 2 and the levels of secreted monocyte chemoattractant protein-1. We show for the first time that kahweol is an anti-angiogenic compound with inhibitory effects in two in vivo and one ex vivo angiogenesis models, with effects on specific steps of the angiogenic process: endothelial cell proliferation, migration, invasion and tube formation on Matrigel. We also demonstrate the inhibitory effect of kahweol on the endothelial cell potential to remodel extracellular matrix by targeting two key molecules involved in the process, MMP-2 and uPA. Finally, the anti-inflammatory potential of this compound is demonstrated by its inhibition of both COX-2 expression and MCP-1 secretion in endothelial cells. Conclusion/Significance Taken together, our data indicate that, indeed, kahweol behaves as an anti-inflammatory and anti-angiogenic compound with potential use in antitumoral therapies. These data may contribute to the explanation of the reported antitumoral effects of kahweol, including the recent epidemiological meta-analysis showing that drinking coffee could decrease the risk of certain cancers. PMID:21858104

  20. Anti-Inflammatory Effects of Agrimoniin-Enriched Fractions of Potentilla erecta.

    PubMed

    Hoffmann, Julia; Casetti, Federica; Bullerkotte, Ute; Haarhaus, Birgit; Vagedes, Jan; Schempp, Christoph M; Wölfle, Ute

    2016-01-01

    Potentilla erecta (PE) is a small herbaceous plant with four yellow petals belonging to the Rosaceae family. The rhizome of PE has traditionally been used as an antidiarrheal, hemostatic and antihemorrhoidal remedy. PE contains up to 20% tannins and 5% ellagitannins, mainly agrimoniin. Agrimoniin is a hydrolyzable tannin that is a potent radical scavenger. In this study we tested the anti-inflammatory effect of four PE fractions with increasing amounts of agrimoniin obtained by Sephadex column separation. First, we analyzed in HaCaT keratinocytes the expression of cyclooxygenase-2 (COX-2) induced by ultraviolet-B (UVB) irradiation. As COX-2 catalyzes the metabolism of arachidonic acid to prostanoids such as PGE₂, we also measured the PGE₂ concentration in cell culture supernatants. PE inhibited UVB-induced COX-2 expression in HaCaT cells and dose-dependently reduced PGE₂. The PE fraction with the highest agrimoniin amount (PE4) was the most effective in this experiment, whereas fraction PE1 containing mainly sugars had no effect. PE4 also dose dependently inhibited the phosphorylation of the epidermal growth factor receptor (EGFR) which plays a crucial role in UVB-mediated COX-2 upregulation. A placebo-controlled UV-erythema study with increasing concentrations of PE4 demonstrated a dose dependent inhibition of UVB-induced inflammation in vivo. Similarly, PE4 significantly reduced UVB-induced PGE₂ production in suction blister fluid in vivo. In summary, PE fractions with a high agrimoniin content display anti-inflammatory effects in vitro and in vivo in models of UVB-induced inflammation. PMID:27322232

  1. Resveratrol as a Bioenhancer to Improve Anti-Inflammatory Activities of Apigenin

    PubMed Central

    Lee, Jin-Ah; Ha, Sang Keun; Cho, EunJung; Choi, Inwook

    2015-01-01

    The aim of this study was to improve the anti-inflammatory activities of apigenin through co-treatment with resveratrol as a bioenhancer of apigenin. RAW 264.7 cells pretreated with hepatic metabolites formed by the co-metabolism of apigenin and resveratrol (ARMs) in HepG2 cells were stimulated with lipopolysaccharide (LPS). ARMs prominently inhibited (p < 0.05) the production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin (IL)-1β, IL-6 and TNF-α. Otherwise no such activity was observed by hepatic metabolites of apigenin alone (AMs). ARMs also effectively suppressed protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Co-administration of apigenin (50 mg/kg) and resveratrol (25 mg/kg) also showed a significant reduction of carrageenan-induced paw edema in mice (61.20% to 23.81%). Co-administration of apigenin and resveratrol led to a 2.39 fold increase in plasma apigenin levels compared to administration of apigenin alone, suggesting that co-administration of resveratrol could increase bioavailability of apigenin. When the action of resveratrol on the main apigenin metabolizing enzymes, UDP-glucuronosyltransferases (UGTs), was investigated, resveratrol mainly inhibited the formation of apigenin glucuronides by UGT1A9 in a non-competitive manner with a Ki value of 7.782 μM. These results suggested that resveratrol helps apigenin to bypass hepatic metabolism and maintain apigenin’s anti-inflammatory activities in the body. PMID:26610561

  2. Antioxidant and Anti-inflammatory Activities of Butanol Extract of Melaleuca leucadendron L.

    PubMed Central

    Surh, Jeonghee; Yun, Jung-Mi

    2012-01-01

    Melaleuca leucadendron L. has been used as a tranquilizing, sedating, evil-dispelling and pain-relieving agent. We examined the effects of M. leucadendron L. extracts on oxidative stress and inflammation. M. leucadendron L. was extracted with methanol (MeOH) and then fractionated with chloroform (CHCl3) and butanol (BuOH). Antioxidant activity of the MeOH extract and BuOH fraction were higher than that of both α-tocopherol and butyrated hydroxytoluene (BHT). Total phenol content in the extracts of M. leucadendron L., especially the BuOH fraction, well correlated with the antioxidant activity. The anti-inflammatory activity of BuOH extracts were investigated by lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production, and cyclooxygenase-2 (COX-2) expression in RAW 264.7 macrophages. The BuOH fraction significantly inhibited LPS-induced NO and PGE2 production. Furthermore, BuOH extract of M. leucadendron L. inhibited the expression of COX-2 and iNOS protein without an appreciable cytotoxic effect on RAW264.7 cells. The extract of M. leucadendron L. also suppressed the phosphorylation of inhibitor κBα (IκBα) and its degradation associated with nuclear factor-κB (NF-κB) activation. Furthermore, BuOH fraction inhibited LPS-induced NF-κB transcriptional activity in a dose-dependent manner. These results suggested that M. leucadendron L. could be useful as a natural anti-oxidant and anti-inflammatory resource. PMID:24471059

  3. Anti-inflammatory activity of patchouli alcohol isolated from Pogostemonis Herba in animal models.

    PubMed

    Li, Yu-Cui; Xian, Yan-Fang; Ip, Siu-Po; Su, Zi-Ren; Su, Ji-Yan; He, Jing-Jin; Xie, Qing-Feng; Lai, Xiao-Ping; Lin, Zhi-Xiu

    2011-12-01

    Pogostemonis Herba has long been used in traditional Chinese medicine for the treatment of inflammatory disorders. Patchouli alcohol (PA), a tricyclic sesquiterpene isolated from Pogostemonis Herba, is known to possess a variety of pharmacological activities. The present study aimed to investigate the in vivo anti-inflammatory effect of PA using two common inflammatory animal models i.e., xylene-induced ear edema in mice and carrageenan-induced paw edema in rats. The degree of edema in both inflammatory animals, as well as the protein and mRNA expression of some inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), prostaglandin E₂ (PGE₂) and nitric oxide (NO) in the hind paw of carrageenan-treated rats were measured. Results showed that PA (10-40 mg/kg) significantly inhibited the ear edema induced by xylene in mice and the paw edema induced by carrageenan in rats. In addition, treatment with PA (10-40 mg/kg) also dose-dependently decreased the production of TNF-α, IL-1β, PGE₂ and NO in the hind paw of carrageenan-treated rats. Furthermore, PA treatment also suppressed the mRNA expression of TNF-α, IL-1β, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the hind paw of carrageenan-treated rats. These results suggest that PA possesses potent anti-inflammatory activity, which may be mediated, at least in part, by down-regulating the mRNA expression of a panel of inflammatory mediators including TNF-α, IL-1β, iNOS and COX-2. PMID:21958968

  4. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease.

    PubMed

    García-Lafuente, Ana; Guillamón, Eva; Villares, Ana; Rostagno, Mauricio A; Martínez, José Alfredo

    2009-09-01

    Chronic inflammation is being shown to be increasingly involved in the onset and development of several pathological disturbances such as arteriosclerosis, obesity, diabetes, neurodegenerative diseases and even cancer. Treatment for chronic inflammatory disorders has not been solved, and there is an urgent need to find new and safe anti-inflammatory compounds. Flavonoids belong to a group of natural substances occurring normally in the diet that exhibit a variety of beneficial effects on health. The anti-inflammatory properties of flavonoids have been studied recently, in order to establish and characterize their potential utility as therapeutic agents in the treatment of inflammatory diseases. Several mechanisms of action have been proposed to explain in vivo flavonoid anti-inflammatory actions, such as antioxidant activity, inhibition of eicosanoid generating enzymes or the modulation of the production of proinflammatory molecules. Recent studies have also shown that some flavonoids are modulators of proinflammatory gene expression, thus leading to the attenuation of the inflammatory response. However, much work remains to be done in order to achieve definitive conclusions about their potential usefulness. This review summarizes the known mechanisms involved in the anti-inflammatory activity of flavonoids and the implications of these effects on the protection against cancer and cardiovascular disease. PMID:19381780

  5. Structural investigation of chitosan-based microspheres with some anti-inflammatory drugs

    NASA Astrophysics Data System (ADS)

    Dreve, Simina; Kacso, Iren; Popa, Adriana; Raita, Oana; Dragan, Felicia; Bende, A.; Borodi, Gh.; Bratu, I.

    2011-06-01

    The use of chitosan as an excipient in oral formulations, as a drug delivery vehicle for ulcerogenic anti-inflammatory drugs and as base in polyelectrolyte complex systems, to prepare solid release systems as sponges was investigated. The preparation by double emulsification of chitosan hydrogels carrying diclofenac, acetyl-salycilic acid and hydrocortisone acetate as anti-inflammatory drugs is reported. The concentration of anti-inflammatory drug in the chitosan hydrogel generating the sponges was 0.08 mmol. Chitosan-drug loaded sponges with anti-inflammatory drugs were prepared by freeze-drying at -60 °C and 0.009 atm. Structural investigations of the solid formulations were done by Fourier-transformed infrared and ultraviolet-visible spectroscopy, spectrofluorimetry, differential scanning calorimetry and X-ray diffractometry. The results indicated that the drug molecules are forming temporary chelates in chitosan hydrogels and sponges. Electron paramagnetic resonance demonstrates the presence of free radicals in a wide range and the antioxidant activity for chitosan-drug supramolecular cross-linked assemblies.

  6. 2-(2-Arylphenyl)benzoxazole As a Novel Anti-Inflammatory Scaffold: Synthesis and Biological Evaluation

    PubMed Central

    2014-01-01

    The 2-(2-arylphenyl)benzoxazole moiety has been found to be a new and selective ligand for the enzyme cyclooxygenase-2 (COX-2). The 2-(2-arylphenyl)benzoxazoles 3a–m have been synthesized by Suzuki reaction of 2-(2-bromophenyl)benzoxazole. Further synthetic manipulation of 3f and 3i led to 3o and 3n, respectively. The compounds 3g, 3n, and 3o selectively inhibited COX-2 with selectivity index of 3n much better than that of the COX-2 selective NSAID celecoxib. The in vivo anti-inflammatory potency of 3g and 3n is comparable to that of celecoxib and the nonselective NSAID diclofenac at two different doses, and 3o showed better potency compared to these clinically used NSAIDs. PMID:24900871

  7. Selective Cyclooxygenase-2 Inhibition Protects Against Myocardial Damage in Experimental Acute Ischemia

    PubMed Central

    Carnieto, Alberto; Dourado, Paulo Magno Martins; da Luz, Protásio Lemos; Chagas, Antonio Carlos Palandri

    2009-01-01

    BACKGROUND Acute myocardial infarction is associated with tissue inflammation. Early coronary reperfusion clearly improves the outcome but may help propagate the inflammatory response and enhance tissue damage. Cyclooxygenase-2 is an enzyme that catalyzes the initial step in the formation of inflammatory prostaglandins from arachidonic acid. Cyclooxygenase-2 levels are increased when ischemic cardiac events occur. The overall function of COX-2 in the inflammatory process generated by myocardial ischemic damage has not yet been elucidated. GOAL The objective of this study was to determine whether a selective cyclooxygenase-2 inhibitor (rofecoxib) could alter the evolution of acute myocardial infarction after reperfusion. METHODS AND RESULTS This study was performed with 48 mongrel dogs divided into two groups: controls and those treated with the drug. All animals were prepared for left anterior descending coronary artery occlusion. The dogs then underwent 180 minutes of coronary occlusion, followed by 30 minutes of reperfusion. Blood samples were collected from the venous sinus immediately before coronary occlusion and after 30 minutes of reperfusion for measurements of CPK-MB, CPK-MBm and troponin I. During the experiment we observed the mean blood pressure, heart rate and coronary flow. The coronary flow and heart rate did not change, but in the control group, there was blood pressure instability, in addition to maximal levels of CPK-MB post-infarction. The same results were observed for CPK-MBm and troponin I. CONCLUSION In a canine model of myocardial ischemia-reperfusion, selective inhibition of Cyclooxygenase-2 with rofecoxib was not associated with early detrimental effects on the hemodynamic profile or the gross extent of infarction; in fact, it may be beneficial by limiting cell necrosis. PMID:19330252

  8. Anti-Inflammatory Activity of Chitooligosaccharides in Vivo

    PubMed Central

    Fernandes, João C.; Spindola, Humberto; de Sousa, Vanessa; Santos-Silva, Alice; Pintado, Manuela E.; Malcata, Francisco Xavier; Carvalho, João E.

    2010-01-01

    All the reports to date on the anti-inflammatory activity of chitooligosaccharides (COS) are mostly based on in vitro methods. In this work, the anti-inflammatory activity of two COS mixtures is characterized in vivo (using balb/c mice), following the carrageenan-induced paw edema method. This is a widely accepted animal model of acute inflammation to evaluate the anti-inflammatory effect of drugs. Our data suggest that COS possess anti-inflammatory activity, which is dependent on dose and, at higher doses, also on the molecular weight. A single dose of 500 mg/kg b.w. weight may be suitable to treat acute inflammation cases; however, further studies are needed to ascertain the effect upon longer inflammation periods as well as studies upon the bioavailability of these compounds. PMID:20631868

  9. Anti-Inflammatory Activity of Delonix regia (Boj. Ex. Hook)

    PubMed Central

    Shewale, Vaishali D.; Deshmukh, Tushar A.; Patil, Liladhar S.; Patil, Vijay R.

    2012-01-01

    The present work was to evaluate the anti-inflammatory activity of Delonix regia leaves (Family: Caesalpiniaceae). The powder of Delonix regia leaves was subjected to extraction with ethanol in soxhlet extractor. The ethanol extract after preliminary phytochemical investigation showed the presence of sterols, triterpenoids, phenolic compounds and flavonoids. The anti-inflammatory activity was studied using carrageenan-induced rat paw edema and cotton pellet granuloma at a three different doses (100, 200, and 400 mg/kg b.w. p.o.) of ethanol extract. The ethanol extract of Delonix regia leaves was exhibited significant anti-inflammatory activity at the dose of 400 mg/kg in both models when compared with control group. Indomethacin (10 mg/kg b.w. p.o) was also shown significant anti-inflammatory activity in both models. PMID:22110490

  10. Comparative topical anti-inflammatory activity of cannabinoids and cannabivarins.

    PubMed

    Tubaro, Aurelia; Giangaspero, Anna; Sosa, Silvio; Negri, Roberto; Grassi, Gianpaolo; Casano, Salvatore; Della Loggia, Roberto; Appendino, Giovanni

    2010-10-01

    A selection of seven phytocannabinoids representative of the major structural types of classic cannabinoids and their corresponding cannabivarins was investigated for in vivo topical anti-inflammatory activity in the Croton oil mouse ear dermatitis assay. Differences in the terpenoid moiety were far more important for anti-inflammatory activity than those at the C-3 alkyl residue, suggesting the involvement not only of cannabinoid receptors, but also of other inflammatory end-points targeted by phytocannabinoids. PMID:20450962

  11. Synthesis and anti-inflammatory activity of aromatic glucosinolates.

    PubMed

    Vo, Quan V; Trenerry, Craige; Rochfort, Simone; Wadeson, Jenny; Leyton, Carolina; Hughes, Andrew B

    2013-10-01

    Aromatic GLs are important members of the glucosinolate family of compounds because of their potential biological activity and medicinal properties. This study has shown success in the high yielding synthesis of some important aromatic GLs as well as the results of testing for anti-inflammatory properties of the synthetic GLs. 3,4-Dimethoxyphenylglucosinolate was found to be the most active anti-inflammatory of the seven glucosinolates assayed. PMID:23978357

  12. Lipoxins exert antiangiogenic and anti-inflammatory effects on Kaposi's sarcoma cells.

    PubMed

    Marginean, Alexandru; Sharma-Walia, Neelam

    2015-08-01

    Lipoxin A4 (LXA4) is an endogenously produced host molecule with anti-inflammatory resolution effects. Previous studies demonstrated it to be involved in anti-vascular endothelial growth factor (VEGF)-mediated angiogenesis and in a possible anticancer role via interaction with its receptor, lipoxin A 4 receptor (ALXR). Here, we examined the effects of LXA4 and its epimer 15-epi-LXA4 in inhibiting proinflammatory and angiogenic functions in a human Kaposi's sarcoma tumor-derived cell line (KS-IMM). KS-IMM cells expressed increased levels of inflammatory cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LO) pathway enzymes when compared with human microvascular dermal endothelial cells (HMVEC-d). KS-IMM cells secreted high levels of prostaglandin E2 (PGE2) and chemotactic leukotriene B4 (LTB4). Treatment with LXA4 or 15-epi-LXA4 effectively reduced the levels of COX-2, 5-LO proteins, and secretion of PGE2 and LTB4 in KS-IMM cells. LXA4 or 15-epi-LXA4 treatment also decreased secretion of proinflammatory interleukin 6 (IL-6) and IL-8 cytokines but induced the secretion of anti-inflammatory IL-10. LXA4 treatment reduced the phosphorylation of VEGF receptor (VEGFR) and ephrin family receptor tyrosine kinases. LXA4 treatment effectively induced dephosphorylation of multiple cellular kinases such as Focal Adhesion Kinase, Protein kinase B, nuclear factor kappa-light-chain-enhancer of activated B cells, and Extracellular signal-regulated kinases (ERK)1/2, and reduced angiogenic factor VEGF-C secretion in KS cells. LX treatment drastically induced the Src-homology 2 domain-containing phosphatase tyrosine (Y542) phosphatase and reduced VEGFR-2 phosphorylation at sites Y1059, Y1175, and Y1212. Treatment of KS-IMM cells with LXA4 resulted in selective localization of VEGFR-2 in nonlipid raft (non-LR) and ALXR to LR fractions. These results demonstrated that LXA4 or 15-epi-LXA4 induce anti-inflammatory and antiangiogenic effects in KS cells and suggest that treatment with LXs is

  13. [Anti-inflammatory effects of methylprednisolone aceponate in animals].

    PubMed

    Ikoma, Y; Yamashita, M; Kamitani, K; Nakagawa, H

    1991-11-01

    In the case of dermal application of the drugs to croton oil-induced ear edema in rats and picryl chloride-induced delayed type hypersensitivity in mice, the anti-inflammatory effect of methylprednisolone aceponate (MPA) was slightly weaker than those of clobetasol 17-propionate and diflucortolone 21-valerate, but stronger than those of hydrocortisone 17-butyrate and hydrocortisone 17-butyrate 21-propionate. Betamethasone 17-valerate applied dermally was less and more effective than MPA to ear edema in rats and delayed type hypersensitivity in mice, respectively. The anti-inflammatory effect of MPA was weaker in subcutaneous administration than in topical application to the two inflammatory models. It was suggested that MPA has strong anti-inflammatory effects and weak systemic effects by topical application. Methylprednisolone 17-propionate (MP-17P) and methylprednisolone (MP), unesterified in only the C-21 position and in both the C-17 and 21 positions of MPA, respectively, showed weaker anti-inflammatory activities than MPA by topical application to croton oil-induced ear edema. The ratio of the anti-inflammatory effects by topical application to subcutaneous administration of MPA was higher than those of MP-17P and MP. The excellent characteristics of MPA as a dermal anti-inflammatory drug are suggested to be derived from di-esterification of MP, which has a weak activity intrinsically. PMID:1813371

  14. Hypoglycemic agents and potential anti-inflammatory activity

    PubMed Central

    Kothari, Vishal; Galdo, John A; Mathews, Suresh T

    2016-01-01

    Current literature shows an association of diabetes and secondary complications with chronic inflammation. Evidence of these immunological changes include altered levels of cytokines and chemokines, changes in the numbers and activation states of various leukocyte populations, apoptosis, and fibrosis during diabetes. Therefore, treatment of diabetes and its complications may include pharmacological strategies to reduce inflammation. Apart from anti-inflammatory drugs, various hypoglycemic agents have also been found to reduce inflammation that could contribute to improved outcomes. Extensive studies have been carried out with thiazolidinediones (peroxisome proliferator-activated receptor-γ agonist), dipeptidyl peptidase-4 inhibitors, and metformin (AMP-activated protein kinase activator) with each of these classes of compounds showing moderate-to-strong anti-inflammatory action. Sulfonylureas and alpha glucosidase inhibitors appeared to exert modest effects, while the injectable agents, insulin and glucagon-like peptide-1 receptor agonists, may improve secondary complications due to their anti-inflammatory potential. Currently, there is a lack of clinical data on anti-inflammatory effects of sodium–glucose cotransporter type 2 inhibitors. Nevertheless, for all these glucose-lowering agents, it is essential to distinguish between anti-inflammatory effects resulting from better glucose control and effects related to intrinsic anti-inflammatory actions of the pharmacological class of compounds. PMID:27114714

  15. Expression of cyclooxygenase-2, alpha 1-acid-glycoprotein and inducible nitric oxide synthase in the developing lesions of murine leprosy

    PubMed Central

    Silva Miranda, Mayra; Rodríguez, Kendy Wek; Martínez Cordero, Erasmo; Rojas-Espinosa, Oscar

    2006-01-01

    Murine leprosy is a chronic disease of the mouse, the most popular animal model used in biomedical investigation, which is caused by Mycobacterium lepraemurium (MLM) whose characteristic lesion is the macrophage-made granuloma. From onset to the end of the disease, the granuloma undergoes changes that gradually transform the environment into a more appropriate milieu for the growth of M. lepraemurium. The mechanisms that participate in the formation and maturation of the murine leprosy granulomas are not completely understood; however, microbial and host-factors are believed to participate in their formation. In this study, we analysed the role of various pro-inflammatory and anti-inflammatory proteins in granulomas of murine leprosy after 21 weeks of infection. We assessed the expression of cyclooxygenase-2 (COX-2), alpha acid-glycoprotein (AGP), and inducible nitric oxide synthase (iNOS) at sequential stages of infection. We also looked for the nitric-oxide nitrosylation product, nitrotyrosine (NT) in the granulomatous lesions of murine leprosy. We found that a pro-inflammatory environment predominates in the early granulomas while an anti-inflammatory environment predominates in late granulomas. No obvious signs of bacillary destruction were observed during the entire period of infection, but nitrosylation products and cell alterations were observed in granulomas in the advanced stages of disease. The change from a pro-inflammatory to an anti-inflammatory environment, which is probably driven by the bacillus itself, results in a more conducive environment for both bacillus replication and the disease progression. PMID:17222216

  16. Nonsteroidal Anti-inflammatory-Organometallic Anticancer Compounds.

    PubMed

    Păunescu, Emilia; McArthur, Sarah; Soudani, Mylène; Scopelliti, Rosario; Dyson, Paul J

    2016-02-15

    Compounds that combine metal-based drugs with covalently linked targeted organic agents have been shown, in some instances, to exhibit superior anticancer properties compared to the individual counterparts. Within this framework, we prepared a series of organometallic ruthenium(II)- and osmium(II)-p-cymene complexes modified with the nonsteroidal anti-inflammatory drugs (NSAIDs) indomethacin and diclofenac. The NSAIDs are attached to the organometallic moieties via monodentate (pyridine/phosphine) or bidentate (bipyridine) ligands, affording piano-stool Ru(II) and Os(II) arene complexes of general formula [M(η(6)-p-cymene)Cl2(N)], where N is a pyridine-based ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate}, [M(η(6)-p-cymene)Cl2(P)], where P is a phosphine ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate, and [M(η(6)-p-cymene)Cl(N,N')][Cl], where N,N' is a bipyridine-based ligand, (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate), (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(2-((2,6-dichlorophenyl)amino)phenyl)acetate), (bis(2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate), or (bis(2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate). The antiproliferative properties of the complexes were assessed in human ovarian cancer cells (A2780 and A2780cisR, the latter being resistant to cisplatin) and nontumorigenic human embryonic kidney (HEK-293) cells. Some of the complexes are considerably more cytotoxic than the original drugs and also display significant cancer cell selectivity. PMID:26824462

  17. Assay of Endocannabinoid Oxidation by Cyclooxygenase-2.

    PubMed

    Kudalkar, Shalley N; Kingsley, Philip J; Marnett, Lawrence J

    2016-01-01

    The endocannabinoids, 2-arachidonoylglycerol (2-AG) and arachidonylethanolamide (AEA), are endogenous ligands for the cannabinoid receptors (CB1 and CB2) and are implicated in a wide array of physiological processes. These neutral arachidonic acid (AA) derivatives have been identified as efficient substrates for the second isoform of the cyclooxygenase enzyme (COX-2). A diverse family of prostaglandin glycerol esters (PG-Gs) and prostaglandin ethanolamides (PG-EAs) is generated by the action of COX-2 (and downstream prostaglandin synthases) on 2-AG and AEA. As the biological importance of the endocannabinoid system becomes more apparent, there is a tremendous need for robust, sensitive, and efficient analytical methodology for the endocannabinoids and their metabolites. In this chapter, we describe methodology suitable for carrying out oxygenation of endocannabinoids by COX-2, and analysis of products of endocannabinoid oxygenation by COX-2 and of endocannabinoids themselves from in vitro and cell assays. PMID:27245906

  18. Anti-inflammatory and heme oxygenase-1 inducing activities of lanostane triterpenes isolated from mushroom Ganoderma lucidum in RAW264.7 cells

    SciTech Connect

    Choi, Solip; Nguyen, Van Thu; Tae, Nara; Lee, Suhyun; Ryoo, Sungwoo; Min, Byung-Sun; Lee, Jeong-Hyung

    2014-11-01

    Ganoderma lucidum is a popular medicinal mushroom used in traditional medicine for preventing or treating a variety of diseases. In the present study, we investigated the anti-inflammatory and heme oxygenase (HO)-1 inducing effects of 12 lanostane triterpenes from G. lucidum in RAW264.7 cells. Of these, seven triterpenes, butyl lucidenateE{sub 2}, butyl lucidenateD{sub 2} (GT-2), butyl lucidenate P, butyl lucidenateQ, Ganoderiol F, methyl ganodenate J and butyl lucidenate N induced HO-1 expression and suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) production. Inhibiting HO-1 activity abrogated the inhibitory effects of these triterpenes on the production of NO in LPS-stimulated RAW264.7 cells, suggesting the involvement of HO-1 in the anti-inflammatory effects of these triterpenes. We further studied the anti-inflammatory and HO-1 inducing effects of GT-2. Mitogen-activated protein kinase inhibitors or N-acetylcysteine, an antioxidant, did not suppress GT-2-mediated HO-1 induction; however, LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, blocked GT-2-induced HO-1 mRNA and protein expression. GT-2 increased nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and knockdown of Nrf2 by small interfering RNA blocked GT-2-mediated HO-1 induction, suggesting that GT-2 induced HO-1 expression via the PI3K/AKT-Nrf2 pathway. Consistent with the notion that HO-1 has anti-inflammatory properties, GT-2 inhibited the production of tumor necrosis factor-α and interleukin-6, as well as inducible nitric oxide synthase and cyclooxygenase-2 expression. These findings suggest that HO-1 inducing activities of these lanostane triterpenes may be important in the understanding of a novel mechanism for the anti-inflammatory activity of G. lucidum. - Highlights: • The anti-inflammatory effects of selected triterpenes from Ganoderma lucidum are demonstrated. • Heme oxygenase-1 induction is attributable to the anti-inflammatory properties of these

  19. Apparent tolerance of turkey vultures (Cathartes aura) to the non-steroidal anti-inflammatory drug diclofenac

    USGS Publications Warehouse

    Rattner, B.A.; Whitehead, M.A.; Gasper, G.; Meteyer, C.U.; Link, W.A.; Taggart, M.A.; Meharg, A.A.; Pattee, O.H.; Pain, D.J.

    2008-01-01

    The nonsteroidal anti-inflammatory drug diclofenac is extremely toxic to Old World Gyps vultures (median lethal dose 0.1?0.2 mg/kg), evoking visceral gout, renal necrosis, and mortality within a few days of exposure. Unintentional secondary poisoning of vultures that fed upon carcasses of diclofenac-treated livestock decimated populations in the Indian subcontinent. Because of the widespread use of diclofenac and other cyclooxygenase-2 inhibiting drugs, a toxicological study was undertaken in turkey vultures (Cathartes aura) as an initial step in examining sensitivity of New World scavenging birds. Two trials were conducted entailing oral gavage of diclofenac at doses ranging from 0.08 to 25 mg/kg body weight. Birds were observed for 7 d, blood samples were collected for plasma chemistry (predose and 12, 24, and 48 h and 7 d postdose), and select individuals were necropsied. Diclofenac failed to evoke overt signs of toxicity, visceral gout, renal necrosis, or elevate plasma uric acid at concentrations greater than 100 times the estimated median lethal dose reported for Gyps vultures. For turkey vultures receiving 8 or 25 mg/kg, the plasma half-life of diclofenac was estimated to be 6 h, and it was apparently cleared after several days as no residues were detectable in liver or kidney at necropsy. Differential sensitivity among avian species is a hallmark of cyclooxygenase-2 inhibitors, and despite the tolerance of turkey vultures to diclofenac, additional studies in related scavenging species seem warranted.

  20. Anti-Inflammatory Activity of Haskap Cultivars is Polyphenols-Dependent

    PubMed Central

    Rupasinghe, H. P. Vasantha; Boehm, Mannfred M. A.; Sekhon-Loodu, Satvir; Parmar, Indu; Bors, Bob; Jamieson, Andrew R.

    2015-01-01

    Haskap (Lonicera caerulea L.) berries have long been used for their health promoting properties against chronic conditions. The current study investigated the effect of Canadian haskap berry extracts on pro-inflammatory cytokines using a human monocytic cell line THP-1 derived macrophages stimulated by lipopolysaccharide. Methanol extracts of haskap from different growing locations in Canada were prepared and characterized for their total phenolic profile using colorimetric assays and liquid chromatography—Mass spectrometry (UPLC-MS/MS). Human THP-1 monocytes were seeded in 24-well plates (5 × 105/well) and treated with phorbol 12-myristate 13-acetate (PMA, 0.1 μg/mL) for 48 h to induce macrophage differentiation. After 48 h, the differentiated macrophages were washed with Hank’s buffer and treated with various concentrations of test compounds for 4 h, followed by the lipopolysaccharide (LPS)-stimulation (18 h). Borealis cultivar showed the highest phenolic content, flavonoid content and anthocyanin content (p < 0.05). A negative correlation existed between the polyphenol concentration of the extracts and pro-inflammatory cytokines: Interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), prostaglandin (PGE2), and cyclooxygenase-2 (COX-2) enzyme. Borealis exhibited comparable anti-inflammatory effects to COX inhibitory drug, diclofenac. The results showed that haskap berry polyphenols has the potential to act as an effective inflammation inhibitor. PMID:26043379

  1. The anti-inflammatory effects of methylsulfonylmethane on lipopolysaccharide-induced inflammatory responses in murine macrophages.

    PubMed

    Kim, Yoon Hee; Kim, Dae Hwan; Lim, Hwan; Baek, Doo-Yeon; Shin, Hyun-Kyung; Kim, Jin-Kyung

    2009-04-01

    Methylsulfonylmethane (MSM), also known as dimethyl sulfone and methyl sulfone, is an organic sulfur-containing compound that occurs naturally in a variety of fruits, vegetables, grains, and animals, including humans. In the present study, we demonstrated the anti-inflammatory effects of MSM in lipopolysaccharide (LPS)-stimulated murine macrophages, RAW264.7 cells. MSM significantly inhibited the release of nitric oxide and prostaglandin E(2) by alleviating the expression of inducible nitric oxide synthase and cyclooxygenase-2 in LPS-stimulated RAW264.7 cells. Furthermore, the levels of interleukin-6 and tumor necrosis factor-alpha were decreased by MSM treatment in cell culture supernatants. Further study indicated that the translocation of the p65 subunit of nuclear factor (NF)-kappaB to the nucleus was inhibited by MSM treatment in LPS-stimulated RAW264.7 cells, in which it helped block degradation of inhibitor of NF-kappaB. In addition, in vivo studies demonstrated that topical administration of MSM at 500-1250 microg/ear resulted in similar inhibitory activities in 12-O-tetradecanoylphorbol 13-acetate-induced mouse ear edema. Collectively, theses results indicate that MSM inhibits LPS-induced release of pro-inflammatory mediators in murine macrophages through downregulation of NF-kappaB signaling. PMID:19336900

  2. Topical anti-inflammatory effects of isorhamnetin glycosides isolated from Opuntia ficus-indica.

    PubMed

    Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A; Martínez-Vitela, Carlos; Serna-Saldívar, Sergio O

    2015-01-01

    Opuntia ficus-indica (OFI) has been widely used in Mexico as a food and for the treatment of different health disorders such as inflammation and skin aging. Its biological properties have been attributed to different phytochemicals such as the isorhamnetin glycosides which are the most abundant flavonoids. Moreover, these compounds are considered a chemotaxonomic characteristic of OFI species. The aim of this study was to evaluate the effect of OFI extract and its isorhamnetin glycosides on different inflammatory markers in vitro and in vivo. OFI extract was obtained by alkaline hydrolysis of OFI cladodes powder and pure compounds were obtained by preparative chromatography. Nitric oxide (NO), cyclooxygenase-2 (COX-2), tumor necrosis factor- (TNF-) α, and interleukin- (IL-) 6 production were measured. NO production was tested in lipopolysaccharide-stimulated RAW 264.7 cells while in vivo studies were carried on croton oil-induced ear edema model. OFI extract and diglycoside isorhamnetin-glucosyl-rhamnoside (IGR) at 125 ng/mL suppressed the NO production in vitro (73.5 ± 4.8% and 68.7 ± 5.0%, resp.) without affecting cell viability. Likewise, IGR inhibited the ear edema (77.4 ± 5.7%) equating the indomethacin effects (69.5 ± 5.3%). Both IGR and OFI extract significantly inhibited the COX-2, TNF-α, and IL-6 production. IGR seems to be a suitable natural compound for development of new anti-inflammatory ingredient. PMID:25821823

  3. Topical Anti-Inflammatory Effects of Isorhamnetin Glycosides Isolated from Opuntia ficus-indica

    PubMed Central

    Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A.; Martínez-Vitela, Carlos; Serna-Saldívar, Sergio O.

    2015-01-01

    Opuntia ficus-indica (OFI) has been widely used in Mexico as a food and for the treatment of different health disorders such as inflammation and skin aging. Its biological properties have been attributed to different phytochemicals such as the isorhamnetin glycosides which are the most abundant flavonoids. Moreover, these compounds are considered a chemotaxonomic characteristic of OFI species. The aim of this study was to evaluate the effect of OFI extract and its isorhamnetin glycosides on different inflammatory markers in vitro and in vivo. OFI extract was obtained by alkaline hydrolysis of OFI cladodes powder and pure compounds were obtained by preparative chromatography. Nitric oxide (NO), cyclooxygenase-2 (COX-2), tumor necrosis factor- (TNF-) α, and interleukin- (IL-) 6 production were measured. NO production was tested in lipopolysaccharide-stimulated RAW 264.7 cells while in vivo studies were carried on croton oil-induced ear edema model. OFI extract and diglycoside isorhamnetin-glucosyl-rhamnoside (IGR) at 125 ng/mL suppressed the NO production in vitro (73.5 ± 4.8% and 68.7 ± 5.0%, resp.) without affecting cell viability. Likewise, IGR inhibited the ear edema (77.4 ± 5.7%) equating the indomethacin effects (69.5 ± 5.3%). Both IGR and OFI extract significantly inhibited the COX-2, TNF-α, and IL-6 production. IGR seems to be a suitable natural compound for development of new anti-inflammatory ingredient. PMID:25821823

  4. Nonsteroidal anti-inflammatory drugs during pregnancy and the initiation of lactation.

    PubMed

    Bloor, Melanie; Paech, Michael

    2013-05-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) and aspirin, which are available as "over-the counter" medications in most countries, are widely used by both pregnant and lactating women. They are popular non-opioid analgesics for the treatment of pain after vaginal and operative delivery. In addition, NSAIDs are used for tocolysis in premature labor, and low-dose aspirin has a role in the prevention of preeclampsia and recurrent miscarriage in antiphospholipid syndrome. NSAIDs and aspirin may affect fertility and increase the risk of early pregnancy loss. In the second trimester their use is considered reasonably safe, but has been associated with fetal cryptorchism. In the third trimester, NSAIDs and aspirin are usually avoided because of significant fetal risks such as renal injury, oligohydramnios, constriction of the ductus arteriosus (with potential for persistent pulmonary hypertension in the newborn), necrotizing enterocolitis, and intracranial hemorrhage. Maternal administration or ingestion of most NSAIDs results in low infant exposure via breastmilk, such that both cyclooxygenase-1 and cyclooxygenase-2 inhibitors are generally considered safe, and preferable to aspirin, when breastfeeding. PMID:23558845

  5. Anti-Inflammatory Activity of Haskap Cultivars is Polyphenols-Dependent.

    PubMed

    Rupasinghe, H P Vasantha; Boehm, Mannfred M A; Sekhon-Loodu, Satvir; Parmar, Indu; Bors, Bob; Jamieson, Andrew R

    2015-01-01

    Haskap (Lonicera caerulea L.) berries have long been used for their health promoting properties against chronic conditions. The current study investigated the effect of Canadian haskap berry extracts on pro-inflammatory cytokines using a human monocytic cell line THP-1 derived macrophages stimulated by lipopolysaccharide. Methanol extracts of haskap from different growing locations in Canada were prepared and characterized for their total phenolic profile using colorimetric assays and liquid chromatography-Mass spectrometry (UPLC-MS/MS). Human THP-1 monocytes were seeded in 24-well plates (5 × 10⁵/well) and treated with phorbol 12-myristate 13-acetate (PMA, 0.1 μg/mL) for 48 h to induce macrophage differentiation. After 48 h, the differentiated macrophages were washed with Hank's buffer and treated with various concentrations of test compounds for 4 h, followed by the lipopolysaccharide (LPS)-stimulation (18 h). Borealis cultivar showed the highest phenolic content, flavonoid content and anthocyanin content (p < 0.05). A negative correlation existed between the polyphenol concentration of the extracts and pro-inflammatory cytokines: Interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), prostaglandin (PGE2), and cyclooxygenase-2 (COX-2) enzyme. Borealis exhibited comparable anti-inflammatory effects to COX inhibitory drug, diclofenac. The results showed that haskap berry polyphenols has the potential to act as an effective inflammation inhibitor. PMID:26043379

  6. Antioxidant and cyclooxygenase-2-inhibiting activity of 4,4'-biphenol, 2,2'-biphenol and phenol.

    PubMed

    Murakami, Yukio; Ishii, Hiroaki; Hoshina, Syuhei; Takada, Naoki; Ueki, Ayako; Tanaka, Shoji; Kadoma, Yoshinori; Ito, Shigeru; Machino, Mamoru; Fujisawa, Seiichiro

    2009-06-01

    The anthropogenic substance 4,4'-biphenol and its analogues are estrogenic and cytotoxic. It has been previously found that synthesized ortho-dimers of phenolic compounds possess potent antioxidative and anti-inflammatory activity. To clarify the relationships between radical-scavenging and anti-inflammatory activities, the radical-scavenging activities of 4,4'-biphenol, 2,2'-biphenol and phenol were investigated by using differential scanning calorimetry to measure the induction period for polymerization of methyl methacrylate initiated by thermal decomposition of 2,2'-azobisisobutyronitrile. We also investigated tThe inhibitory effects of these compounds on lipopolysaccharide (LPS)-stimulated cyclooxygenase-2 (COX-2) mRNA and protein expression and on binding of activator-protein-1 (AP-1) and nuclear factor kappa-B (NF-kappaB) to their respective consensus sequences were also investigated in RAW 264.7 cells. Furthermore, theoretical parameters such as phenolic-OH bond dissociation enthalpy (BDE) and ionization potential (IP(koopman)) were calculated at the density functional theory (DFT)/B3LYP levels. Cytotoxicity declined in the order 4,4'-biphenol > 2,2'-biphenol > phenol. 2,2'-Biphenol, but not 4,4'-biphenol, showed inhibitory effects on LPS-stimulated COX-2 expression and on AP-1 and NF-kappaB binding to their consensus sequences at 1-10 muM. Expression of COX-2 in RAW cells was enhanced by 4,4'-biphenol plus LPS, possibly because of radical-mediated transformation of 4,4'-biphenol to the cytotoxic diphenylquinone, as judged by the stoichiometric factor (n value) of 3.429 and low IP(koopman) value of this biphenol. In contrast, the anti-inflammatory activity of 2,2'-biphenol may be the result of the formation of a dimer derived from oxidation of this compound, as suggested by its n value close to 1. Phenol showed anti-inflammatory activity but did not completely inhibit COX-2 expression, even at higher concentrations. PMID:19528508

  7. Implication of the anti-inflammatory bioactive lipid prostaglandin D2-glycerol ester in the control of macrophage activation and inflammation by ABHD6.

    PubMed

    Alhouayek, Mireille; Masquelier, Julien; Cani, Patrice D; Lambert, Didier M; Muccioli, Giulio G

    2013-10-22

    Proinflammatory macrophages are key mediators in several pathologies; thus, controlling their activation is necessary. The endocannabinoid system is implicated in various inflammatory processes. Here we show that in macrophages, the newly characterized enzyme α/β-hydrolase domain 6 (ABHD6) controls 2-arachidonoylglycerol (2-AG) levels and thus its pharmacological effects. Furthermore, we characterize a unique pathway mediating the effects of 2-AG through its oxygenation by cyclooxygenase-2 to give rise to the anti-inflammatory prostaglandin D2-glycerol ester (PGD2-G). Pharmacological blockade of cyclooxygenase-2 or of prostaglandin D synthase prevented the effects of increasing 2-AG levels by ABHD6 inhibition in vitro, as well as the 2-AG-induced increase in PGD2-G levels. Together, our data demonstrate the physiological relevance of the interaction between the endocannabinoid and prostanoid systems. Moreover, we show that ABHD6 inhibition in vivo allows for fine-tuning of 2-AG levels in mice, therefore reducing lipopolysaccharide-induced inflammation, without the characteristic central side effects of strong increases in 2-AG levels obtained following monoacylglycerol lipase inhibition. In addition, administration of PGD2-G reduces lipopolysaccharide-induced inflammation in mice, thus confirming the biological relevance of this 2-AG metabolite. This points to ABHD6 as an interesting therapeutic target that should be relevant in treating inflammation-related conditions, and proposes PGD2-G as a bioactive lipid with potential anti-inflammatory properties in vivo. PMID:24101490

  8. Synthesis and biological evaluation of boswellic acid-NSAID hybrid molecules as anti-inflammatory and anti-arthritic agents.

    PubMed

    Shenvi, Suvarna; Kiran, K R; Kumar, Krishna; Diwakar, Latha; Reddy, G Chandrasekara

    2015-06-15

    Methyl esters of the β-boswellic acid (BA) and 11-keto-β-boswellic acid (KBA) obtained from Boswellia serrata resin were subjected to Steglich esterification with the different non-steroidal anti-inflammatory drugs (NSAID) viz., ibuprofen, naproxen, diclophenac and indomethacin. The novel hybrids of methyl boswellate (5-8) and that of methyl 11-keto boswellate (9-12) were evaluated for anti-inflammatory activity by carrageenan-induced rat hind paw edema model and anti-arthritic activity by Complete Freund's Adjuvant (CFA) induced arthritis in Wister albino rat. Significant inhibition on carrageenan-induced paw edema has been observed with 5, 6 and 10 where as in CFA induced rats, hybrids 5, 8, 9 and 12 exhibited pronounced antiarthritic activity. Hybrid molecules 5 and 9 have been found to be more effective in inhibiting in-vivo COX-2 than ibuprofen by itself, thus showing the synergistic effect. Hybrid 5 and 9 tested for in-vitro lipoxygenase and cyclooxygenase-2 (LOX/COX-2) inhibitory activity. The studies revealed that both 5 and 9 inhibited COX-2 relatively better than LOX enzyme. PMID:26010018

  9. Anti-Inflammatory Effect of Rosa rugosa Flower Extract in Lipopolysaccharide-Stimulated RAW264.7 Macrophages

    PubMed Central

    Tursun, Xirali; Zhao, Yongxin; Talat, Zulfiya; Xin, Xuelei; AdilaTursun; Abdulla, Rahima; AkberAisa, Haji

    2016-01-01

    Rosa rugosa Thunb, a deciduous shrub of the genus Rosa, has been widely used to treat stomach aches, diarrhoea, pain, and chronic inflammatory disease in eastern Asia. In recent years, our research team has extensively studied the Rosa rugosa flower extract, and specifically undertook pharmacological experiments which have optimized the extraction process. Our methods have yielded a standard extract enriched in phenolic compounds, named PRE. Herein, we expand our efforts and evaluated the anti-inflammatory activity of PRE on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages. PRE significantly inhibited production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor (TNF)-a, interleukin (IL)-6, and interleukin 1β (IL-1β), as well as expression of their synthesizing enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase2 (COX-2). Furthermore, PRE inhibited activity of mitogen-activated protein kinases (MAPK) as well as nuclear factor-kappa B (NF-κB) signaling pathway. Our findings are the first to explain the anti-inflammatory mechanism by PRE in LPS-stimulated macrophages. Given these results, we propose that PRE has therapeutic potential in the prevention of inflammatory disorders. PMID:26797110

  10. Noni (Morinda citrifolia L.) Fruit Extracts Improve Colon Microflora and Exert Anti-Inflammatory Activities in Caco-2 Cells.

    PubMed

    Huang, Hsin-Lun; Liu, Cheng-Tzu; Chou, Ming-Chih; Ko, Chien-Hui; Wang, Chin-Kun

    2015-06-01

    Intestinal microflora and inflammation are associated with the risk of inflammatory bowel diseases. Noni (Morinda citrifolia L.) has various bioactivities, but its effect on colon health remains unknown. This study focused on the effects of fermented noni fruit extracts on colon microflora and inflammation of colon epithelial cells. The anti-inflammatory activities of ethanol and ethyl acetate extracts on Caco-2 cells were evaluated including interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2). The growth of Lactobacillus and Bifidobacterium species was promoted by ethanol extract. Ethyl acetate extract decreased intracellular reactive oxygen species and significantly suppressed COX-2, IL-8, and prostaglandin E2 production and neutrophil chemotaxis by suppressing the translocation of the p65 subunit. Quercetin was the main contributor to the anti-inflammatory activity. The fermented noni fruit promoted probiotic growths and downregulated the intracellular oxidation and inflammation in Caco-2 cells. These results suggest that fermented noni fruit might protect against inflammatory diseases of the colon. PMID:25651187

  11. Anti-inflammatory effects of glaucocalyxin B in microglia cells.

    PubMed

    Gan, Ping; Zhang, Li; Chen, Yanke; Zhang, Yu; Zhang, Fali; Zhou, Xiang; Zhang, Xiaohu; Gao, Bo; Zhen, Xuechu; Zhang, Jian; Zheng, Long Tai

    2015-05-01

    Over-activated microglia is involved in various kinds of neurodegenerative process including Parkinson, Alzheimer and HIV dementia. Suppression of microglial over activation has emerged as a novel strategy for treatment of neuroinflammation-based neurodegeneration. In the current study, anti-inflammatory and neuroprotective effects of the ent-kauranoid diterpenoids, which were isolated from the aerial parts of Rabdosia japonica (Burm. f.) var. glaucocalyx (Maxim.) Hara, were investigated in cultured microglia cells. Glaucocalyxin B (GLB), one of five ent-kauranoid diterpenoids, significantly decreased the generation of nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) in the lipopolysaccharide (LPS)-activated microglia cells. In addition, GLB inhibited activation of nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (MAPK) and generation of reactive oxygen species (ROS) in LPS-activated microglia cells. Furthermore, GLB strongly induced the expression of heme oxygenase (HO)-1 in BV-2 microglia cells. Finally, GLB exhibited neuroprotective effect by preventing over-activated microglia induced neurotoxicity in a microglia/neuron co-culture model. Taken together, the present study demonstrated that the GLB possesses anti-nueroinflammatory activity, and might serve as a potential therapeutic agent for treating neuroinflammatory diseases. PMID:26003084

  12. Anti-inflammatory and anti-granuloma activity of Berberis aristata DC. in experimental models of inflammation

    PubMed Central

    Kumar, Rohit; Gupta, Yogendra Kumar; Singh, Surender

    2016-01-01

    Objective: Berberis aristata (Berberidaceae) is an important medicinal plant used in traditional system of medicine for the treatment of rheumatoid arthritis and other inflammatory disorders. The aim of the present study is to scientifically validate the traditional use of BA in the treatment of inflammatory disorders. Materials and Methods: Anti-inflammatory and anti-granuloma activity of BA hydroalcoholic extract (BAHE) were evaluated in experimental models, viz., carrageenan-induced paw edema, cotton pellet-induced granuloma formation, and complete Freund's adjuvant-induced stimulation of peritoneal macrophages in rats. Expression of inflammatory mediators, viz., tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-10, TNF-R1, and cyclooxygenase-2 (COX-2) was carried out in serum and peritoneal macrophages to derive the plausible mechanism of BAHE in activated peritoneal macrophages. Results: Pretreatment with BAHE produced a dose-dependent reduction (P < 0.01) in carrageenan-induced paw edema and cotton pellet-induced granuloma model. BAHE treatment produced significant (P < 0.01) reduction in serum inflammatory cytokine levels as compared to control. Protein expression of pro-inflammatory markers, IL-1β, IL-6, TNF-R1, and COX-2, was found to be reduced in stimulated macrophages whereas anti-inflammatory cytokine, IL-10, was upregulated in peritoneal macrophages. Conclusion: The result of the present study thus demonstrates the anti-inflammatory and anti-granuloma activity of BAHE which may be attributed to its inhibitory activity on macrophage-derived cytokine and mediators. PMID:27114638

  13. Anti-inflammatory potential of peat moss extracts in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    PubMed

    Choi, Woo-Suk; Jeong, Jin-Woo; Kim, Sung Ok; Kim, Gi-Young; Kim, Byung-Woo; Kim, Cheol Min; Seo, Yong-Bae; Kim, Woe-Yeon; Lee, Sang-Yeol; Jo, Kwon-Ho; Choi, Young Ju; Choi, Yung Hyun; Kim, Gun-Do

    2014-10-01

    The aim of the present study was to identify the anti-inflammatory and anti-oxidative effects of peat moss aqueous extract (PME) on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. To demonstrate the anti-inflammatory and antioxidant effects of PME, the levels of nitric oxide (NO) and cytokines were measured using Griess reagent and cytokine ELISA kits, respectively. Reverse transcriptase-polymerase chain reaction (RT-PCR) and western blot analysis were conducted to evaluate the expression of genes and proteins. Immunofluorescence was used to measure the expression and translocation of transcription factors. Pre-treatment with PME inhibited the production of prostaglandin E(2) and NO by suppressing the gene expression of cyclooxygenase-2 and inducible NO synthase, respectively. The LPS-stimulated gene expression and the production of tumor necrosis factor-α and interleukin-1β were significantly reduced by PME. In the LPS-stimulated RAW 264.7 cells, nuclear factor‑κB (NF-κB) translocated from the cytosol to the nucleus, while pre-treatment with PME induced the sequestration of NF-κB in the cytosol through the inhibition of IκBα degradation. In the same manner, PME contributed to the inhibition of the activation of mitogen-activated protein kinases. In addition, the PME-treated RAW 264.7 cells facilitated the activation of nuclear factor-like 2 (Nrf2) , and in turn, enhanced heme oxygenase-1 (HO-1) expression. These results indicate that PME exerts anti-inflammatory and antioxidant effects, and suggest that PME may neutralize inflammation and prevent cellular damage by oxidative stress. PMID:25109657

  14. Antioxidant and anti-inflammatory potential of hesperetin metabolites obtained from hesperetin-administered rat serum: an ex vivo approach.

    PubMed

    Yang, Hsin-Ling; Chen, Ssu-Ching; Senthil Kumar, K J; Yu, Kang-Ni; Lee Chao, Pei-Dawn; Tsai, Shang-Yuan; Hou, Yu-Chi; Hseu, You-Cheng

    2012-01-11

    In recent years much attention has been focused on the pharmaceutical relevance of bioflavonoids, especially hesperidin and its aglycon hesperetin in terms of their antioxidant and anti-inflammatory actions. However, the bioactivity of their metabolites, the real molecules in vivo hesperetin glucuronides/sulfates produced after ingestion, has been poorly understood. Thus, the study using an ex vivo approach is aimed to compare the antioxidant and anti-inflammatory activities of hesperidin/hesperetin or hesperetin metabolites derived from hesperetin-administered rat serum. We found that hesperetin metabolites (2.5-20 μM) showed higher antioxidant activity against various oxidative systems, including superoxide anion scavenging, reducing power, and metal chelating effects, than that of hesperidin or hesperetin. The data also showed that pretreatment of hesperetin metabolites (1-10 μM) within the range of physiological concentrations, compared to hesperetin, significantly inhibited nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production, as evidenced by the inhibition of their precursors, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels without appreciable cytotoxicity on LPS-activated RAW264.7 macrophages or A7r5 smooth muscle cells. Concomitantly, hesperetin metabolites dose-dependently inhibited LPS-induced intracellular reactive oxygen species (ROS). Furthermore, hesperetin metabolites significantly downregulate LPS-induced nuclear factor-κB (NF-κB) activation followed by the suppression of inhibitor-κB (I-κB) degradation and phosphorylation of c-Jun N-terminal kinase1/2 (JNK1/2) and p38 MAPKs after challenge with LPS. Hesperetin metabolites ex vivo showed potent antioxidant and anti-inflammatory activity in comparison with hesperidin/hesperetin. PMID:22098419

  15. Group V Secretory Phospholipase A2 Amplifies the Induction of Cyclooxygenase 2 and Delayed Prostaglandin D2 Generation in Mouse Bone Marrow Culture-Derived Mast Cells in a Strain-Dependent Manner.

    PubMed Central

    Diaz, Bruno L.; Satake, Yoshiyuki; Kikawada, Eriya; Balestrieri, Barbara; Arm, Jonathan P.

    2006-01-01

    Activation of bone marrow-derived mast cells (BMMC) with stem cell factor (SCF) or IgE and antigen elicits exocytosis and an immediate phase of prostaglandin (PG) D2 and leukotriene (LT) C4 generation. Activation of BMMC by SCF, IL-1β and IL-10 elicits a delayed phase of PGD2 generation dependent on cyclooxygenase (COX) 2 induction. Cytosolic phospholipase A2 α provides arachidonic acid in both phases and amplifies COX-2 induction. Pharmacological experiments implicate an amplifying role for secretory (s) PLA2. We used mice lacking the gene encoding group V sPLA2 (Pla2g5 −/−) to definitively test its role in eicosanoid generation by BMMC. Pla2g5 −/− BMMC on a C57BL/6 genetic background showed a modest reduction in exocytosis and immediate PGD2 generation after activation with SCF or with IgE and antigen, while LTC4 generation was not modified. Delayed-phase PGD2 generation and COX-2 induction were reduced ~35% in C57BL/6 Pla2g5 −/− BMMC and were restored by exogenous PGE2. There was no deficit in either phase of eicosanoid generation by Pla2g5 −/− BMMC on a BALB/c background. Thus, group V sPLA2 amplifies COX-2 expression and delayed phase PGD2 generation in a strain-dependent manner; it has at best a limited role in immediate eicosanoid generation by BMMC. PMID:17064958

  16. Cannabinoid-like anti-inflammatory compounds from flax fiber.

    PubMed

    Styrczewska, Monika; Kulma, Anna; Ratajczak, Katarzyna; Amarowicz, Ryszard; Szopa, Jan

    2012-09-01

    Flax is a valuable source of fibers, linseed and oil. The compounds of the latter two products have already been widely examined and have been proven to possess many health-beneficial properties. In the course of analysis of fibers extract from previously generated transgenic plants overproducing phenylpropanoids a new terpenoid compound was discovered.The UV spectra and the retention time in UPLC analysis of this new compound reveal similarity to a cannabinoid-like compound, probably cannabidiol (CBD). This was confirmed by finding two ions at m/z 174.1 and 231.2 in mass spectra analysis. Further confirmation of the nature of the compound was based on a biological activity assay. It was found that the compound affects the expression of genes involved in inflammatory processes in mouse and human fibroblasts and likely the CBD from Cannabis sativa activates the specific peripheral cannabinoid receptor 2 (CB2) gene expression. Besides fibers, the compound was also found in all other flax tissues. It should be pointed out that the industrial process of fabric production does not affect CBD activity.The presented data suggest for the first time that flax products can be a source of biologically active cannabinoid-like compounds that are able to influence the cell immunological response. These findings might open up many new applications for medical flax products, especially for the fabric as a material for wound dressing with anti-inflammatory properties. PMID:22706678

  17. Analgesic and Anti-Inflammatory Activity of Pinus roxburghii Sarg.

    PubMed Central

    Kaushik, Dhirender; Kumar, Ajay; Kaushik, Pawan; Rana, A. C.

    2012-01-01

    The Chir Pine, Pinus roxburghii, named after William Roxburgh, is a pine native to the Himalaya. Pinus roxburghii Sarg. (Pinaceae) is traditionally used for several medicinal purposes in India. As the oil of the plant is extensively used in number of herbal preparation for curing inflammatory disorders, the present study was undertaken to assess analgesic and anti-inflammatory activities of its bark extract. Dried and crushed leaves of Pinus roxburghii Sarg. were defatted with petroleum ether and then extracted with alcohol. The alcoholic extract at the doses of 100 mg/kg, 300 mg/kg, and 500 mg/kg body weight was subjected to evaluation of analgesic and anti-inflammatory activities in experimental animal models. Analgesic activity was evaluated by acetic acid-induced writhing and tail immersion tests in Swiss albino mice; acute and chronic anti-inflammatory activity was evaluated by carrageenan-induced paw oedema and cotton pellet granuloma in Wistar albino rats. Diclofenac sodium and indomethacin were employed as reference drugs for analgesic and anti-inflammatory studies, respectively. In the present study, the alcoholic bark extract of Pinus roxburghii Sarg. demonstrated significant analgesic and anti-inflammatory activities in the tested models. PMID:22761611

  18. Anti-inflammatory and analgesic effects of Daphne retusa Hemsl.

    PubMed

    Hu, Xiaojia; Jin, Huizi; Xu, Wenzheng; Zhang, Wei; Liu, Xiaohua; Yan, Shikai; Chen, Ming; Li, Jianqiang; Zhang, Wei-dong

    2008-10-30

    Daphne retusa Hemsl. belongs to the genus Daphne, a member of Thymelaeaceae family. The barks and stems of Daphne retusa are used as a folkloric medicine 'Zhu Shi Ma' in Western China because of its effects of detumescence and acesodyne. In this paper, we investigate the anti-inflammatory and analgesic effects of the 75% ethanol extract of the stems and barks of Daphne retusa and different fractions partitioned with petroleum ether, methylene chloride, ethyl acetate and n-butanol, respectively. The anti-inflammatory effects were evaluated using xylene-induced ear oedema in mice and carrageenan-induced paw oedema in rats, while the acetic acid-induced writhing test and hot-plate test as models for evaluating the centrally and peripherally analgesic activity. The results showed the plant has significant anti-inflammatory and analgesic effects (P<0.05-0.01). Meanwhile, the result of the acute toxicity test at which the MTD was above 5g/kg indicates that the plant extract is relatively safe in, and/or non-toxic to, mice. The findings of these experimental animal studies indicate that the Daphne retusa ethanol extract possesses anti-inflammatory and analgesic properties, and thus provide pharmacological support to folkloric, ethnomedical uses of 'Zhu shima' in the treatment and/of management of anti-inflammatory and painful conditions in China. PMID:18692124

  19. Modeling Natural Anti-Inflammatory Compounds by Molecular Topology

    PubMed Central

    Galvez-Llompart, María; Zanni, Riccardo; García-Domenech, Ramón

    2011-01-01

    One of the main pharmacological problems today in the treatment of chronic inflammation diseases consists of the fact that anti-inflammatory drugs usually exhibit side effects. The natural products offer a great hope in the identification of bioactive lead compounds and their development into drugs for treating inflammatory diseases. Computer-aided drug design has proved to be a very useful tool for discovering new drugs and, specifically, Molecular Topology has become a good technique for such a goal. A topological-mathematical model, obtained by linear discriminant analysis, has been developed for the search of new anti-inflammatory natural compounds. An external validation obtained with the remaining compounds (those not used in building up the model), has been carried out. Finally, a virtual screening on natural products was performed and 74 compounds showed actual anti-inflammatory activity. From them, 54 had been previously described as anti-inflammatory in the literature. This can be seen as a plus in the model validation and as a reinforcement of the role of Molecular Topology as an efficient tool for the discovery of new anti-inflammatory natural compounds. PMID:22272145

  20. Hesperetin derivatives: Synthesis and anti-inflammatory activity.

    PubMed

    Wang, Qian-Qian; Shi, Jing-Bo; Chen, Chen; Huang, Cheng; Tang, Wen-Jian; Li, Jun

    2016-03-01

    Sixteen novel hesperetin derivatives containing Mannich base moiety were designed and synthesized and their anti-inflammatory activities were evaluated by inhibiting tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in mouse RAW264.7 macrophages. Compounds 3a-3k showed better hydrophilic, while compounds 3l-3p with aromatic groups was hydrophobic. The anti-inflammatory activity of title compounds was correlated with logP values, among them, compounds 3c, 3e and 3i with minus logP values exhibited best anti-inflammatory activity through decreasing both IL-6 and TNF-α. Furthermore, the expression of LPS-induced notch1 and inos was reduced by compounds 3c, 3e, and 3i, and compound 3e attenuated LPS-induced inos protein levels in a dose-dependent manner. PMID:26848111

  1. Anti-inflammatory and cytotoxic neoflavonoids and benzofurans from Pterocarpus santalinus.

    PubMed

    Wu, Shou-Fang; Chang, Fang-Rong; Wang, Sheng-Yang; Hwang, Tsong-Long; Lee, Chia-Lin; Chen, Shu-Li; Wu, Chin-Chung; Wu, Yang-Chang

    2011-05-27

    Five new benzofurans, pterolinuses A-E (1-5), six new neoflavonoids, pterolinuses F-J (8-13), and five known compounds (6, 7, 14-16) were isolated from an extract of Pterocarpus santalinus heartwood. All new structures were elucidated by spectroscopic methods, and configurations were confirmed by CD spectral data and optical rotation values. The isolates were evaluated for anti-inflammatory and cytotoxic activities. Six compounds (1, 2, 4, 6, 7, and 15) showed significant inhibition in at least one anti-inflammatory assay. Compound 2 showed the best selective effect against superoxide anion generation in human neutrophils with, an IC50 value of 0.19 μg/mL, and was 6.2-fold more potent than the positive control LY294002. Compound 14 showed the highest cytotoxicity against Ca9-22 cancer cells, with an IC50 value of 0.46 μg/mL. PMID:21488654

  2. Observing Anti-inflammatory and Anti-nociceptive Activities of Glycyrrhizin Through Regulating COX-2 and Pro-inflammatory Cytokines Expressions in Mice.

    PubMed

    Wang, Hong-Ling; Li, Yu-Xiang; Niu, Ya-Ting; Zheng, Jie; Wu, Jing; Shi, Guang-Jiang; Ma, Lin; Niu, Yang; Sun, Tao; Yu, Jian-Qiang

    2015-12-01

    The present study aimed to investigate the potential anti-inflammatory and anti-nociceptive activities of glycyrrhizin (GL) in mice and to explore the possible related mechanisms. Xylene-induced ear edema, carrageenan-induced paw edema and acetic acid-induced vascular permeability test were used to investigate the anti-inflammatory activities of GL in mice. Anti-nociceptive effects of GL were assessed by using acetic acid-induced writhing, hot plate test and formalin test, as well as evaluation of spontaneous locomotor activity and motor performance. The mRNA expression of pro-inflammatory cytokines (such as TNF-α, IL-6 and iNOS) and the protein expression of cyclooxygenase-2 (COX-2) were explored by using real-time fluorogenic PCR and Western blot, respectively. The results showed that GL significantly reduced xylene-induced ear edema, carrageenan-induced paw edema, and acetic acid-induced vascular permeation. Additionally, GL significantly inhibited the nociceptions induced by acetic acid and formalin. However, the nociceptions could not be decreased by GL in the hot plate test, and GL did not affect spontaneous locomotor activity and motor performance. The expression levels of TNF-α, IL-6, iNOS and COX-2 were significantly downregulated by GL. In conclusion, GL exerts significant anti-inflammatory and analgesic activities by attenuating the expression levels of TNF-α, IL-6, iNOS and COX-2. PMID:26178479

  3. Anti-Inflammatory Effect of 1,3,5,7-Tetrahydroxy-8-isoprenylxanthone Isolated from Twigs of Garcinia esculenta on Stimulated Macrophage

    PubMed Central

    Zhang, Dan-Dan; Zhang, Hong; Lao, Yuan-zhi; Wu, Rong; Xu, Jin-wen; Murad, Ferid; Bian, Ka; Xu, Hong-Xi

    2015-01-01

    Garcinia Linn. plants having rich natural xanthones and benzophenones with anti-inflammatory activity attracted a great deal of attention to discover and develop them as potential drug candidates. Through screening targeting nitric oxide accumulation in stimulated macrophage, we found that 1,3,5,7-tetrahydroxy-8-isoprenylxanthone (TIE) had potential anti-inflammatory effect. To understand how TIE elicits its anti-inflammatory activity, we uncovered that it significantly inhibits the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS/IFNγ-stimulated RAW264.7 cells. In further study, we showed that TIE reduced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), two key molecules responsible for the production of NO and PGE2 during inflammation progress. Additionally, TIE also suppressed the expression of inflammatory cytokines IL-6, IL-12, and TNF-α. TIE-led suppression in iNOS, COX-2, and cytokines production were probably the consequence of TIE's capability to block ERK and p38MAPK signaling pathway. Moreover, TIE blocked activation of nuclear factor-kappa B (NF-κB) as well as NF-κB regulation of miR155 expression. Our study suggests that TIE may represent as a potential therapeutic agent for the treatment of inflammatory diseases. PMID:26538826

  4. Anti-inflammatory effects of apigenin in lipopolysaccharide-induced inflammatory in acute lung injury by suppressing COX-2 and NF-kB pathway.

    PubMed

    Wang, Jing; Liu, Yu-Tao; Xiao, Lu; Zhu, Lingpeng; Wang, Qiujuan; Yan, Tianhua

    2014-12-01

    This study aims to evaluate the possible mechanisms responsible for the anti-inflammatory effects of apigenin lipopolysaccharide (LPS)-induced inflammatory in acute lung injury. In this study, the anti-inflammatory effects of apigenin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and the possible mechanisms involved in this protection were investigated. Pretreatment with apigenin prior to the administration of intratracheal LPS significantly induced a decrease in lung wet weight/dry weight ratio in total leukocyte number and neutrophil percent in the bronchoalveolar lavage fluid (BALF) and in IL-6 and IL-1β, the tumor neurosis factor-α (TNF-α) in the BALF. These results showed that anti-inflammatory effects of apigenin against the LPS-induced ALI may be due to its ability of primary inhibition of cyclooxygenase-2 (COX-2) gene expression and nuclear factor kB (NF-kB) gene expression of lung. The results presented here suggest that the protective mechanism of apigenin may be attributed partly to decreased production of proinflammatory cytokines through the inhibition of COX-2 and NF-kB activation. The results support that use of apigenin is beneficial in the treatment of ALI. PMID:24958013

  5. Anti-inflammatory effects of Lactobacillus brevis K65 on RAW 264.7 cells and in mice with dextran sulphate sodium-induced ulcerative colitis.

    PubMed

    Liu, Y-W; Ong, W-K; Su, Y-W; Hsu, C-C; Cheng, T-H; Tsai, Y-C

    2016-06-01

    Lactic acid bacteria (LAB) with anti-inflammatory effects may be beneficial to the prevention or treatment for inflammation-related diseases, such as inflammatory bowel diseases. In an in vitro assay, heat-killed Lactobacillus brevis K65 (K65) reduced lipopolysaccharide-induced production of nitric oxide, tumour necrosis factor (TNF)-α and prostaglandin E2 in RAW 264.7 cells. In RAW 264.7 cells stably expressing an ind=ucible nitric oxide synthase (iNOS) reporter, viable K65 showed greater inhibition of iNOS production than its heat-killed form. In order to further examine the in vivo anti-inflammatory effect of K65, viable K65 was orally administered to BALB/c mice before and during the period of dextran sulphate sodium (DSS)-induced ulcerative colitis (UC). K65 improved UC symptoms, including reduced the levels of the pro-inflammatory cytokines, TNF-α, interleukin (IL)-6 and IL-1β, and lowered the activity of myeloperoxidase. Furthermore, K65 inhibited TNF-α, cyclo-oxygenase 2, forkhead box P3, and Toll-like receptor 4 mRNA expression in the colonic tissue of DSS-induced UC mice. Taken together, K65, a LAB with in vitro anti-inflammatory activity showed preventive effects on mice with DSS-induced UC by lowering the expression of inflammatory molecules. PMID:26925602

  6. [Non-steroidal anti-inflammatory drugs in pregnancy].

    PubMed

    Valha, P; Zmrhal, J; Feyereisl, J

    2010-02-01

    Non-steroidal anti-inflammatory drugs, usually abbreviated to NSAIDs, are drugs with analgesic, antipyretic (lowering an elevated body temperature and relieving pain without impairing consciousness) and, in higher doses, with anti-inflammatory effects (reducing inflammation). As inhibitors of cyclooxygenase NSAIDs given during pregnancy have the potential to cause adverse maternal and fetal effects. Maternal effects include prolongation of pregnancy and labour, whereas constriction of the ductus arteriosus, renal dysfunction and haemostatic abnormalities can occur in the fetus and neonate. As weak acids, NSAIDs are excreted in small amounts into human breast milk with little risk for adverse effects in the suckling infant. PMID:20437842

  7. Kalanchosine dimalate, an anti-inflammatory salt from Kalanchoe brasiliensis.

    PubMed

    Costa, Sônia Soares; de Souza, Maria de Lourdes Mendes; Ibrahim, Tereza; de Melo, Giany Oliveira; de Almeida, Ana Paula; Guette, Catherine; Férézou, Jean-Pierre; Koatz, Vera Lucia G

    2006-05-01

    This report describes the isolation and characterization of kalanchosine dimalate (KMC), an anti-inflammatory salt from the fresh juice of the aerial parts of Kalanchoe brasiliensis. KMC comprises the new metabolite kalanchosine (1) and malic acid (2) in a 1:2 stoichiometric ratio. Kalanchosine (1), 3,6-diamino-4,5-dihydroxyoctanedioic acid, is the first naturally occurring dimeric bis(gamma-hydroxy-beta-amino acid) and is at least partially responsible for the anti-inflammatory properties of K. brasiliensis. PMID:16724848

  8. Vasoconstrictor and the anti-inflammatory effects of 7 corticosteroids.

    PubMed

    Crijns, M B; Nater, J P; van Oostveen, F; van der Valk, P G

    1984-08-01

    The vasoconstrictor effect of 7 proprietary corticosteroid creams was compared with their effect on patches of allergic contact dermatitis provoked by patch testing in 20 subjects. A parallel between the blanching effect on the normal skin and the anti-inflammatory effect on the eczematous skin was generally found. A modified patch test method using the Finn chamber technique is described, which (with certain restrictions) offers an opportunity of studying the anti-inflammatory effect of corticosteroids on allergic dermatitis under standard conditions. PMID:6488765

  9. Marine Diterpenoids as Potential Anti-Inflammatory Agents.

    PubMed

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E; Fernandez, Patricia L

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules. PMID:26538822

  10. Colitis caused by non-steroidal anti-inflammatory drugs.

    PubMed Central

    Ravi, S.; Keat, A. C.; Keat, E. C.

    1986-01-01

    Four cases of acute proctocolitis associated with non-steroidal anti-inflammatory drug therapy are presented. The drugs implicated were flufenamic acid, mefenamic acid, naproxen and ibuprofen. After resolution of symptoms and signs of proctocolitis three of the four patients were subsequently rechallenged with the implicated drug: in each there was a rapid relapse. PMID:3774712

  11. The Use of Nonsteroidal Anti-Inflammatory Drugs in Sports.

    ERIC Educational Resources Information Center

    Calabrese, Leonard H.; Rooney, Theodore W.

    1986-01-01

    Recent advances in the understanding of the mechanism of action and clinical pharmacology of the new nonsteroidal anti-inflammatory drugs (NSAIDs) can help practitioners decide which to use and how to administer them. Indications for and effects of NSAIDs are described. (MT)

  12. The present status of anti-inflammatory agents in dermatology.

    PubMed

    Stüttgen, G

    1988-01-01

    Many classes of drugs exert anti-inflammatory activity through mechanisms which affect all or part of the inflammatory process. Some of these agents are beneficial in the practice of dermatology, while others, such as penicillamine, mast cell blockers and serotonin antagonists, find little or no application. Corticosteroids, for example, are nonspecific in their anti-inflammatory effects and remain a mainstay of therapy, despite their side effect profile. Other drugs, such as the non-steroidal anti-inflammatory agents or gold, can be used in the treatment of diseases associated with rheumatic or autoimmune states. Moreover, antihistamines play an important role in the control of itching, but are mainly indicated in controlling non-dermatological allergic sequelae. Interestingly, chloroquine and dapsone, which were originally developed for use in malaria prophylaxis and leprosy, respectively, have value in treating a wide range of dermatological conditions via mechanisms which include the inhibition of P-450 isoenzymes. In diseases characterised by disturbed cornification (e.g. psoriasis pustulosa), retinoids are of particular value. These drugs are thought to act by inhibition of collagenases, proteases and granulocyte migration. Undoubtedly, further investigation of drug classes such as oxygen radical controllers and immunomodulators will clarify their mechanisms and establish their therapeutic usefulness among the anti-inflammatory agents now available for dermatological use. PMID:3076131

  13. Glycosaminoglycan analogs as a novel anti-inflammatory strategy

    PubMed Central

    Severin, India C.; Soares, Adriano; Hantson, Jennifer; Teixeira, Mauro; Sachs, Daniela; Valognes, Delphine; Scheer, Alexander; Schwarz, Matthias K.; Wells, Timothy N. C.; Proudfoot, Amanda E. I.; Shaw, Jeffrey

    2012-01-01

    Heparin, a glycosaminoglycan (GAG), has both anti-inflammatory and anti-coagulant properties. The clinical use of heparin against inflammation, however, has been limited by concerns about increased bleeding. While the anti-coagulant activity of heparin is well understood, its anti-inflammatory properties are less so. Heparin is known to bind to certain cytokines, including chemokines, small proteins which mediate inflammation through their control of leukocyte migration and activation. Molecules which can interrupt the chemokine-GAG interaction without inhibiting coagulation could therefore, represent a new class of anti-inflammatory agents. In the present study, two approaches were undertaken, both focusing on the heparin-chemokine relationship. In the first, a structure based strategy was used: after an initial screening of potential small molecule binders using protein NMR on a target chemokine, binding molecules were optimized through structure-based design. In the second approach, commercially available short oligosaccharides were polysulfated. In vitro, these molecules prevented chemokine-GAG binding and chemokine receptor activation without disrupting coagulation. However, in vivo, these compounds caused variable results in a murine peritoneal recruitment assay, with a general increase of cell recruitment. In more disease specific models, such as antigen-induced arthritis and delayed-type hypersensitivity, an overall decrease in inflammation was noted, suggesting that the primary anti-inflammatory effect may also involve factors beyond the chemokine system. PMID:23087686

  14. Marine Diterpenoids as Potential Anti-Inflammatory Agents

    PubMed Central

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E.; Fernandez, Patricia L.

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules. PMID:26538822

  15. Anti-Inflammatory Effects of Specific Cyclooxygenase 2,5-Lipoxygenase, and Inducible Nitric Oxide Synthase Inhibitors on Experimental Autoimmune Anterior Uveitis (EAAU)

    PubMed Central

    Bora, Nalini S.; Sohn, Jeong-Hyeon; Bora, Puran S.; Kaplan, Henry J.; Kulkarni, Prasad

    2007-01-01

    Purpose Inflammation, in general, causes the release of a variety of inflammatory mediators that in turn induce cyclooxygenase (COX) 2, nitric oxide synthase (iNOS) and 5-lipoxygense (LP) synthesis, producing large amounts of inflammatory prostaglandins (PG), nitric oxide (NO), and leukotriene (LT) B4. Therefore, inhibition of these enzymes may abrogate intraocular inflammation in experimental autoimmune anterior uveitis (EAAU). Methods Lewis rats were immunized with melanin-associated antigen (MAA) isolated from bovine iris and ciliary body. These animals were divided into three groups. The first group of rats received subcutaneous injection of COX 2 inhibitor CS 236 at different time points. The second and third groups of animals received subcutaneous aminoguanidine (AG), an iNOS inhibitor, and nordihydroguaiaretic acid (NDGA), a 5-LP inhibitor, respectively. Control animals received vehicle. Rat eyes were examined daily by slit-lamp biomicroscopy from Day 7 to 30 post injection for uveitis. Animals were also sacrificed at various time points for histologic analysis. Results Control animals developed severe EAAU in both eyes. The disease started in these animals on Day 12 post immunization and lasted for ten days. Interestingly, CS 236, a potent COX 2 inhibitor, completely abrogated EAAU when the animals were treated daily from the Day 0 to 14 or Day 0 to 20 after MAA injection. Furthermore, daily CS 236 treatment after the onset of EAAU (Day 14–20) significantly reduced the severity (both clinical and histologic) of EAAU and shortened the duration of disease. iNOS inhibitor (AG) and 5-LP inhibitor (NDGA) partially attenuated EAAU. Conclusions Our results show that EAAU was partially attenuated by AG and NDGA. Interestingly, CS 236, a potent COX 2 inhibitor, completely inhibited EAAU in male Lewis rats most likely by inhibiting the initial phase and onset of the disease. PMID:16019677

  16. Boswellia carterii liquisolid systems with promoted anti-inflammatory activity.

    PubMed

    Mostafa, Dina Mahmoud; Ammar, Nagwa Mohammed; Abd El-Alim, Sameh Hosam; Kassem, Ahmed Alaa; Hussein, Rehab Ali; Awad, Gamal; El-Awdan, Sally Abdul-Wanees

    2015-01-01

    Boswellia carterii (BC) Birdwood oleogum resin is an ancient remedy of inflammation processes known since Ancient Egyptian time. Of boswellic acids, 3-acetyl-11-keto-β-boswellic acid (AKBA) is the most potent anti-inflammatory active principle. Liquisolid systems of the biologically active fraction of BC oleogum resin were prepared for improving dissolution properties using low dose oral delivery to achieve enhanced anti-inflammatory activity, in comparison with the standard oral anti-inflammatory; Indomethacin. AKBA was assayed, employing an accurate and sensitive HPLC method. Detection was carried out at 210 nm using UV/Vis detector. A solubility study for the bioactive fraction was conducted. Microcrystalline cellulose and Aeroperl®300 Pharma were used as carrier and coating materials. Angle of slide, liquid load factor and Carr's flow index were estimated. Six systems were prepared using polyethylene glycol 400, solvent and two drug loading concentrations; 20 and 40 %. For each concentration, three carrier: coat ratios were dispensed; 20:1, 10:1, and 5:1. Dissolution study was performed and two systems were selected for characterization and in vivo evaluation by investigating upper GIT ulcerogenic effect and anti-inflammatory efficacy in rats. Results indicate absence of ulcers and significantly higher and prolonged anti-inflammatory efficacy for formulations F1 and F2, with carrier: coat ratio, 5:1 and drug loads of 20 and 40 %, respectively, compared with standard oral indomethacin. We conclude higher efficacy of BC bioactive fraction liquisolids compared with Indomethacin with greater safety on GIT, longer duration of action and hence better patient compliance. PMID:25895614

  17. Bioengineered Colorectal Cancer Drugs: Orally Delivered Anti-Inflammatory Agents.

    PubMed

    Urbanska, Aleksandra Malgorzata; Zhang, Xiaoying; Prakash, Satya

    2015-07-01

    Intestinal inflammation is one of the major factors that increase colorectal cancer (CRC) incidence worldwide. Inflammation in the gastrointestinal tract is directly linked to tumor development at the early stages of the disease, thus a key issue toward the prevention and the treatment of colonic neoplasia. Thus, the use of anti-inflammatory drugs has emerged first as a strategy to reduce chronic inflammation in case of many inflammatory bowel diseases (IBD), but it has proven its efficacy by reducing the risk of colonic neoplasia. This comprehensive review highlights the role of chronic inflammation, mainly in IBD, in the development of CRC including molecular and immune mechanisms that have tumorigenic effects. Multiple lines of evidence indicate that several bioactive and phytochemical compounds used as anti-inflammatory drugs have also antitumoral attributes. The uses of orally delivered cytokines and small molecules, as well as key dietary supplementation as anti-inflammatory therapeutics are discussed. In addition, comprehensive knowledge about CRC and intestinal inflammation, and the importance of the intestinal mucosal wall as a mucosal immunological barrier that comes into play during interactions with gut microbiota (pathogens and commensal), luminal secretions (bile acids, and bacterial and epithelial metabolites), and ingested chemicals (food components, high fat content, heterocyclic amines, and low intake of dietary fiber) are underscored. The multifunctionality of several anti-inflammatory drugs opens a line for their application in the treatment and prevention not only in IBD but also in CRC. Current bioengineering approaches for oral delivery of anti-inflammatory agents including cytokines, genetically modified bacteria, or small molecule inhibitors of inflammation directly contribute to the early management of CRC. Limitations of the current therapeutics, which stem from the lack of complete understanding of the complex molecular interactions

  18. Anti-inflammatory drug delivery from hyaluronic acid hydrogels.

    PubMed

    Hahn, Sei K; Jelacic, Sandra; Maier, Ronald V; Stayton, Patrick S; Hoffman, Allan S

    2004-01-01

    Two different types of hyaluronic acid (HA) hydrogels were synthesized by crosslinking HA with divinyl sulfone (DVS) and poly(ethylene glycol)-divinyl sulfone (VS-PEG-VS). Vitamin E succinate (VES), an anti-inflammatory drug, and bovine serum albumin (BSA), a model of anti-inflammatory protein drugs, were loaded into the gels and their release kinetics were measured in vitro. VES and BSA released with a burst from both HA hydrogels during the first few hours, and release continued gradually for several days. The rate of release from HA-VS-PEG-VS-HA hydrogels was faster than that from HA-DVS-HA hydrogels, presumably due to the lower crosslink density in the former. The anti-inflammatory action of released VES was tested by incubating peripheral blood mononuclear cells (PBMC) on HA hydrogels with and without VES in the gel. The number of cells adhering on HA hydrogels was very low compared to that on tissue culture polystyrene (TCPS), which might be one of the important advantages of using HA hydrogels for implant coatings or tissue engineering applications. ELISA test results showed that the tumor necrosis factor-alpha (TNF-alpha) concentration was very low in the supernatant of the wells containing the HA hydrogel with VES in contact with the activated macrophages compared to that without VES. This is probably the effect of the released VES reducing the production of anti-inflammatory cytokine, TNF-alpha. HA hydrogels containing anti-inflammatory drugs may have potential for use in tissue engineering and also as biocompatible coatings of implants. PMID:15503629

  19. In-vitro and in-vivo anti-inflammatory and antinociceptive effects of the methanol extract of the roots of Morinda officinalis.

    PubMed

    Kim, In-Tae; Park, Hee-Juhn; Nam, Jung-Hwan; Park, Young-Mi; Won, Jong-Heon; Choi, Jongwon; Choe, Bong-Keun; Lee, Kyung-Tae

    2005-05-01

    The anti-inflammatory effects of the methanol extract of the roots of Morinda officinalis (MEMO) (Rubiaceae) were evaluated in-vitro and in-vivo. The effects of MEMO on lipopolysaccharide (LPS)induced responses in the murine macrophage cell line RAW 264.7 were examined. MEMO potently inhibited the production of nitric oxide (NO), prostaglandin E2 and tumour necrosis factor-alpha (TNF-alpha) in LPS-stimulated RAW 264.7 macrophages. Consistent with these results, the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein level, and of iNOS, COX-2 and TNF-alpha at the mRNA level, was also inhibited by MEMO in a concentration-dependent manner. Furthermore, MEMO inhibited the nuclear factor kappa B (NF-kappaB) activation induced by LPS, and this was associated with the prevention of degradation of the inhibitor kappaB (IkappaB), and subsequently with attenuated p65 protein in the nucleus. The anti-inflammatory effect of MEMO was examined in rats using the carrageenan-induced oedema model. The antinociceptive effects of MEMO were assessed in mice using the acetic acid-induced abdominal constriction test and the hot-plate test. MEMO (100, 200 mg kg-1 per day, p.o.) exhibited anti-inflammatory and antinociceptive effects in these animal models. Taken together, the data demonstrate that MEMO has anti-inflammatory and antinociceptive activity, inhibiting iNOS, COX-2 and TNF-alpha expression by down-regulating NF-kappaB binding activity. PMID:15901350

  20. The structure of ibuprofen bound to cyclooxygenase-2.

    PubMed

    Orlando, Benjamin J; Lucido, Michael J; Malkowski, Michael G

    2015-01-01

    The cyclooxygenases (COX-1 and COX-2) catalyze the rate-limiting step in the biosynthesis of prostaglandins, and are the pharmacological targets of non-steroidal anti-inflammatory drugs (NSAIDs) and COX-2 selective inhibitors (coxibs). Ibuprofen (IBP) is one of the most commonly available over-the-counter pharmaceuticals in the world. The anti-inflammatory and analgesic properties of IBP are thought to arise from inhibition of COX-2 rather than COX-1. While an X-ray crystal structure of IBP bound to COX-1 has been solved, no such structure exists for the cognate isoform COX-2. We have determined the crystal structure of muCOX-2 with a racemic mixture of (R/S)-IBP. Our structure reveals that only the S-isomer of IBP was bound, indicating that the S-isomer possesses higher affinity for COX-2 than the R-isomer. Mutational analysis of Arg-120 and Tyr-355 at the entrance of the cyclooxygenase channel confirmed their role in binding and inhibition of COX-2 by IBP. Our results provide the first atomic level detail of the interaction between IBP and COX-2. PMID:25463020

  1. THE STRUCTURE OF IBUPROFEN BOUND TO CYCLOOXYGENASE-2

    PubMed Central

    Orlando, Benjamin J.; Lucido, Michael J.; Malkowski, Michael G.

    2014-01-01

    The cyclooxygenases (COX-1 and COX-2) catalyze the rate-limiting step in the biosynthesis of prostaglandins, and are the pharmacological targets of non-steroidal anti-inflammatory drugs (NSAIDs) and COX-2 selective inhibitors (coxibs). Ibuprofen (IBP) is one of the most commonly available over-the-counter pharmaceuticals in the world. The anti-inflammatory and analgesic properties of IBP are thought to arise from inhibition of COX-2 rather than COX-1. While an x-ray crystal structure of IBP bound to COX-1 has been solved, no such structure exists for the cognate isoform COX-2. We have determined the crystal structure of muCOX-2 with a racemic mixture of (R/S)-IBP. Our structure reveals that only the S-isomer of IBP was bound, indicating that the S-isomer possesses higher affinity for COX-2 than the R-isomer. Mutational analysis of Arg-120 and Tyr-355 at the entrance of the cyclooxygenase channel confirmed their role in binding and inhibition of COX-2 by IBP. Our results provide the first atomic level detail of the interaction between IBP and COX-2. PMID:25463020

  2. Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity

    PubMed Central

    Washburn, Nathaniel; Schwab, Inessa; Ortiz, Daniel; Bhatnagar, Naveen; Lansing, Jonathan C.; Medeiros, Amy; Tyler, Steven; Mekala, Divya; Cochran, Edward; Sarvaiya, Hetal; Garofalo, Kevin; Meccariello, Robin; Meador, James W.; Rutitzky, Laura; Schultes, Birgit C.; Ling, Leona; Avery, William; Nimmerjahn, Falk; Manning, Anthony M.; Kaundinya, Ganesh V.; Bosques, Carlos J.

    2015-01-01

    Despite the beneficial therapeutic effects of intravenous immunoglobulin (IVIg) in inflammatory diseases, consistent therapeutic efficacy and potency remain major limitations for patients and physicians using IVIg. These limitations have stimulated a desire to generate therapeutic alternatives that could leverage the broad mechanisms of action of IVIg while improving therapeutic consistency and potency. The identification of the important anti-inflammatory role of fragment crystallizable domain (Fc) sialylation has presented an opportunity to develop more potent Ig therapies. However, translating this concept to potent anti-inflammatory therapeutics has been hampered by the difficulty of generating suitable sialylated products for clinical use. Therefore, we set out to develop the first, to our knowledge, robust and scalable process for generating a well-qualified sialylated IVIg drug candidate with maximum Fc sialylation devoid of unwanted alterations to the IVIg mixture. Here, we describe a controlled enzymatic, scalable process to produce a tetra-Fc–sialylated (s4-IVIg) IVIg drug candidate and its qualification across a wide panel of analytic assays, including physicochemical, pharmacokinetic, biodistribution, and in vivo animal models of inflammation. Our in vivo characterization of this drug candidate revealed consistent, enhanced anti-inflammatory activity up to 10-fold higher than IVIg across different animal models. To our knowledge, this candidate represents the first s4-IVIg suitable for clinical use; it is also a valuable therapeutic alternative with more consistent and potent anti-inflammatory activity. PMID:25733881

  3. Anti-inflammatory diterpenoids from Croton tonkinensis.

    PubMed

    Kuo, Ping-Chung; Yang, Mei-Lin; Hwang, Tsong-Long; Lai, Yuan-Yu; Li, Yue-Chiun; Thang, Tran Dinh; Wu, Tian-Shung

    2013-02-22

    Phytochemical investigation of the methanolic extract of Croton tonkinensis afforded two known kauranes (1, 2), eight new ent-kauranes (3-10), and 16 known ent-kaurane-type diterpenoids (12-27). In addition, 30 known compounds were identified by comparison of their physical and spectroscopic data with reported data. Among the isolated compounds, ent-18-acetoxykaur-16-en-15-one (20) displayed the most significant inhibition of superoxide anion generation and elastase release. PMID:23347584

  4. Anti-Inflammatory Effects of Progesterone in Lipopolysaccharide-Stimulated BV-2 Microglia

    PubMed Central

    Lei, Beilei; Mace, Brian; Dawson, Hana N.; Warner, David S.; Laskowitz, Daniel T.; James, Michael L.

    2014-01-01

    Female sex is associated with improved outcome in experimental brain injury models, such as traumatic brain injury, ischemic stroke, and intracerebral hemorrhage. This implies female gonadal steroids may be neuroprotective. A mechanism for this may involve modulation of post-injury neuroinflammation. As the resident immunomodulatory cells in central nervous system, microglia are activated during acute brain injury and produce inflammatory mediators which contribute to secondary injury including proinflammatory cytokines, and nitric oxide (NO) and prostaglandin E2 (PGE2), mediated by inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively. We hypothesized that female gonadal steroids reduce microglia mediated neuroinflammation. In this study, the progesterone’s effects on tumor necrosis factor alpha (TNF-α), iNOS, and COX-2 expression were investigated in lipopolysaccharide (LPS)-stimulated BV-2 microglia. Further, investigation included nuclear factor kappa B (NF-κB) and mitogen activated protein kinase (MAPK) pathways. LPS (30 ng/ml) upregulated TNF-α, iNOS, and COX-2 protein expression in BV-2 cells. Progesterone pretreatment attenuated LPS-stimulated TNF-α, iNOS, and COX-2 expression in a dose-dependent fashion. Progesterone suppressed LPS-induced NF-κB activation by decreasing inhibitory κBα and NF-κB p65 phosphorylation and p65 nuclear translocation. Progesterone decreased LPS-mediated phosphorylation of p38, c-Jun N-terminal kinase and extracellular regulated kinase MAPKs. These progesterone effects were inhibited by its antagonist mifepristone. In conclusion, progesterone exhibits pleiotropic anti-inflammatory effects in LPS-stimulated BV-2 microglia by down-regulating proinflammatory mediators corresponding to suppression of NF-κB and MAPK activation. This suggests progesterone may be used as a potential neurotherapeutic to treat inflammatory components of acute brain injury. PMID:25080336

  5. Anti-inflammatory role of microsomal prostaglandin E synthase-1 in a model of neuroinflammation.

    PubMed

    Brenneis, Christian; Coste, Ovidiu; Altenrath, Kai; Angioni, Carlo; Schmidt, Helmut; Schuh, Claus-Dieter; Zhang, Dong Dong; Henke, Marina; Weigert, Andreas; Brüne, Bernhard; Rubin, Barry; Nusing, Rolf; Scholich, Klaus; Geisslinger, Gerd

    2011-01-21

    A major immunological response during neuroinflammation is the activation of microglia, which subsequently release proinflammatory mediators such as prostaglandin E(2) (PGE(2)). Besides its proinflammatory properties, cyclooxygenase-2 (COX-2)-derived PGE(2) has been shown to exhibit anti-inflammatory effects on innate immune responses. Here, we investigated the role of microsomal PGE(2) synthase-1 (mPGES-1), which is functionally coupled to COX-2, in immune responses using a model of lipopolysaccharide (LPS)-induced spinal neuroinflammation. Interestingly, we found that activation of E-prostanoid (EP)2 and EP4 receptors, but not EP1, EP3, PGI(2) receptor (IP), thromboxane A(2) receptor (TP), PGD(2) receptor (DP), and PGF(2) receptor (FP), efficiently blocked LPS-induced tumor necrosis factor α (TNFα) synthesis and COX-2 and mPGES-1 induction as well as prostaglandin synthesis in spinal cultures. In vivo, spinal EP2 receptors were up-regulated in microglia in response to intrathecally injected LPS. Accordingly, LPS priming reduced spinal synthesis of TNFα, interleukin 1β (IL-1β), and prostaglandins in response to a second intrathecal LPS injection. Importantly, this reduction was only seen in wild-type but not in mPGES-1-deficient mice. Furthermore, intrathecal application of EP2 and EP4 agonists as well as genetic deletion of EP2 significantly reduced spinal TNFα and IL-1β synthesis in mPGES-1 knock-out mice after LPS priming. These data suggest that initial inflammation prepares the spinal cord for a negative feedback regulation by mPGES-1-derived PGE(2) followed by EP2 activation, which limits the synthesis of inflammatory mediators during chronic inflammation. Thus, our data suggest a role of mPGES-1-derived PGE(2) in resolution of neuroinflammation. PMID:21075851

  6. Nonsteroidal anti-inflammatory drugs alter vasa recta diameter via pericytes.

    PubMed

    Kennedy-Lydon, Teresa; Crawford, Carol; Wildman, Scott S; Peppiatt-Wildman, Claire M

    2015-10-01

    We have previously shown that vasa recta pericytes are known to dilate vasa recta capillaries in the presence of PGE2 and contract vasa recta capillaries when endogenous production of PGE2 is inhibited by the nonselective nonsteroidal anti-inflammatory drug (NSAID) indomethacin. In the present study, we used a live rat kidney slice model to build on these initial observations and provide novel data that demonstrate that nonselective, cyclooxygenase-1-selective, and cyclooxygenase -2-selective NSAIDs act via medullary pericytes to elicit a reduction of vasa recta diameter. Real-time images of in situ vasa recta were recorded, and vasa recta diameters at pericyte and nonpericyte sites were measured offline. PGE2 and epoprostenol (a prostacyclin analog) evoked dilation of vasa recta specifically at pericyte sites, and PGE2 significantly attenuated pericyte-mediated constriction of vasa recta evoked by both endothelin-1 and ANG II. NSAIDs (indomethacin > SC-560 > celecoxib > meloxicam) evoked significantly greater constriction of vasa recta capillaries at pericyte sites than at nonpericyte sites, and indomethacin significantly attenuated the pericyte-mediated vasodilation of vasa recta evoked by PGE2, epoprostenol, bradykinin, and S-nitroso-N-acetyl-l-penicillamine. Moreover, a reduction in PGE2 was measured using an enzyme immune assay after superfusion of kidney slices with indomethacin. In addition, immunohistochemical techniques were used to demonstrate the population of EP receptors in the medulla. Collectively, these data demonstrate that pericytes are sensitive to changes in PGE2 concentration and may serve as the primary mechanism underlying NSAID-associated renal injury and/or further compound-associated tubular damage. PMID:26202223

  7. Anti-inflammatory activity of β-patchoulene isolated from patchouli oil in mice.

    PubMed

    Zhang, Zhenbiao; Chen, Xiaoying; Chen, Hanbin; Wang, Lan; Liang, Jiali; Luo, Dandan; Liu, Yuhong; Yang, Hongmei; Li, Yucui; Xie, Jianhui; Su, Ziren

    2016-06-15

    β-Patchoulene (β-PAE) is a tricyclic sesquiterpene isolated from the oil of Pogostemon cablin (patchouli oil), which has been widely used in traditional Chinese medicine for the treatment of inflammatory diseases. However, as one of the major principle of patchouli oil, the biological activity of β-PAE has not been explored so far. In the present study, the anti-inflammatory activity in vivo, and the underlying mechanism, of β-PAE was investigated on experimental mice models of acute inflammation, i.e. xylene-induced ear edema, acetic acid-induced vascular permeability and carrageenan-induced paw edema. The results showed that β-PAE evoked a significant dose-dependent inhibition of ear edema induced by xylene, paw edema induced by carrageenan and suppressed the increase of vascular permeability elicited by acetic acid. Histopathological analysis indicated that β-PAE could markedly decrease the cellular infiltration in paw tissue. β-PAE was also shown to significantly decrease the malondialdehyde (MDA) level and myeloperoxidase (MPO) activity in edema paw. In addition, carrageenan-induced production of some pro-inflammatory cytokines: tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), prostaglandin E2 (PGE2) and nitric oxide (NO), were suppressed in a dose-dependent manner in mice subjected to β-PAE pretreatment, and it also significantly down-regulated the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Further analysis revealed that β-PAE also inhibited the translocation of nuclear factor-κB (NF-κB) from the cytoplasm to the nucleus and stabilize the conversion of nuclear factor-κBα (IκBα) level. These results provided additional chemical and pharmacological basis for the traditional application of P. cablin in inflammatory disorders. PMID:27090925

  8. Centrally Synthesized Estradiol Is a Potent Anti-Inflammatory in the Injured Zebra Finch Brain.

    PubMed

    Pedersen, Alyssa L; Nelson, Lars H; Saldanha, Colin J

    2016-05-01

    In homeotherms, injury to the brain, such as a penetrating wound, increases microglial cytokine expression and astroglial aromatase (estrogen synthase). In songbirds, injury-induced synthesis of estrogens is neuroprotective as aromatase inhibition and replacement with estradiol (E2) exacerbates and mitigates the extent of damage, respectively. The influence of induced aromatization on inflammation, however, remains unstudied. We hypothesized that injury-induced aromatization, via E2 synthesis, may affect neuroinflammation after a penetrating brain injury. Using adult zebra finches, we first documented an increase in the transcription of cytokines but not aromatase, 2 hours after the injury. Twenty-four hours after the injury, however, aromatase was dramatically elevated and cytokine expression had returned to baseline, suggesting that aromatization may be involved in the decrease of cytokines and neuroinflammation. In two subsequent experiments, we tested the influence of the inhibition of induced aromatization and aromatase inhibition with concomitant central E2 replacement on the transcription of the cytokines TNF-α, IL-1β, and IL-6, the enzyme cyclooxygenase-2 (cox-2), and its product prostaglandin E2 (PGE2). Administration of fadrozole, an aromatase inhibitor, caused a sustained elevation of IL-1β in females and TNF-α, cox-2, and PGE2 in both sexes. This prolonged neuroinflammation appears to be due to a failure to synthesize E2 locally because intracranial E2 replacement lowered IL-1β in females, TNF-α in males, and cox-2 and PGE2 in both sexes. IL-6 was not affected by injury, aromatase inhibition, or E2 replacement in either sex. These data suggest that E2 synthesis after a penetrating brain injury is a potent and inducible anti-inflammatory signal, with specific modulation of discrete cytokine signaling. PMID:26963472

  9. Anti-inflammatory effects and antioxidant activity of dihydroasparagusic acid in lipopolysaccharide-activated microglial cells.

    PubMed

    Salemme, Adele; Togna, Anna Rita; Mastrofrancesco, Arianna; Cammisotto, Vittoria; Ottaviani, Monica; Bianco, Armandodoriano; Venditti, Alessandro

    2016-01-01

    The activation of microglia and subsequent release of toxic pro-inflammatory factors are crucially associated with neurodegenerative disease, characterized by increased oxidative stress and neuroinflammation, including Alzheimer and Parkinson diseases and multiple sclerosis. Dihydroasparagusic acid is the reduced form of asparagusic acid, a sulfur-containing flavor component produced by Asparagus plants. It has two thiolic functions able to coordinate the metal ions, and a carboxylic moiety, a polar function, which may enhance excretion of the complexes. Thiol functions are also present in several biomolecules with important physiological antioxidant role as glutathione. The aim of this study is to evaluate the anti-inflammatory and antioxidant potential effect of dihydroasparagusic acid on microglial activation in an in vitro model of neuroinflammation. We have used lipopolysaccharide to induce an inflammatory response in primary rat microglial cultures. Our results suggest that dihydroasparagusic acid significantly prevented lipopolysaccharide-induced production of pro-inflammatory and neurotoxic mediators such as nitric oxide, tumor necrosis factor-α, prostaglandin E2, as well as inducible nitric oxide synthase and cyclooxygenase-2 protein expression and lipoxygenase activity in microglia cells. Moreover it effectively suppressed the level of reactive oxygen species and affected lipopolysaccharide-stimulated activation of mitogen activated protein kinase, including p38, and nuclear factor-kB pathway. These results suggest that dihydroasparagusic acid's neuroprotective properties may be due to its ability to dampen induction of microglial activation. It is a compound that can effectively inhibit inflammatory and oxidative processes that are important factors of the etiopathogenesis of neurodegenerative diseases. PMID:26592472

  10. Anti-inflammatory and cytotoxic activities of Bursera copallifera

    PubMed Central

    Columba-Palomares, M. F. María C.; Villareal, Dra. María L.; Acevedo Quiroz, M. C. Macdiel E.; Marquina Bahena, M. C. Silvia; Álvarez Berber, Dra. Laura P.; Rodríguez-López, Dra. Verónica

    2015-01-01

    Background: The plant species Bursera copallifera (DC) bullock is used in traditional medicine to treat inflammation. The leaves of this plant can be prepared as an infusion to treat migraines, bronchitis, and dental pain Objective: The purpose of this study was to determine the anti-inflammatory and cytotoxic activities of organic extracts from the stems, stem bark, and leaves of B. copallifera, which was selected based on the knowledge of its traditional use. Materials and Methods: We evaluated the ability of extracts to inhibit mouse ear inflammation in response to topical application of 12-O tetradecanoylphorbol-13-acetate. The extracts with anti-inflammatory activity were evaluated for their inhibition of pro-inflammatory enzymes. In addition, the in vitro cytotoxic activities of the organic extracts were evaluated using the sulforhodamine B assay. Results: The hydroalcoholic extract of the stems (HAS) exhibited an anti-inflammatory activity of 54.3% (0.5 mg/ear), whereas the anti-inflammatory activity of the dichloromethane-methanol extract from the leaves (DMeL) was 55.4% at a dose of 0.1 mg/ear. Methanol extract from the leaves (MeL) showed the highest anti-inflammatory activity (IC50 = 4.4 μg/mL), hydroalcoholic extract of leaves, and DMeL also reduce the enzyme activity, (IC50 = 6.5 μg/mL, IC50 = 5.7 μg/mL), respectively, from stems HAS exhibit activity at the evaluated concentrations (IC50 =6.4 μg/mL). The hydroalcoholic extract of the stems exhibited the highest cytotoxic activity against a breast adenocarcinoma cell line (MCF7, IC50 = 0.90 μg/mL), whereas DMeL exhibited an IC50 value of 19.9 μg/mL. Conclusion: In conclusion, extracts from leaves and stems inhibited cyclooxygenase-1, which is the target enzyme for nonsteroidal anti inflammatory drugs, and some of these extracts demonstrated substantial antiproliferative effects against the MCF7 cell line. These results validate the traditional use of B. copallifera. PMID:26664022

  11. Curcumin attenuates cyclooxygenase-2 expression via inhibition of the NF-κB pathway in lipopolysaccharide-stimulated human gingival fibroblasts.

    PubMed

    Hu, Ping; Huang, Ping; Chen, Min Wei

    2013-05-01

    Porphyromonas gingivalis lipopolysaccharide (LPS) induces the expression of the cyclooxygenase-2 (COX-2), which contributes to the process of periodontitis. Curcumin, a constituent of turmeric, exhibits anti-inflammatory properties. We have investigated the anti-inflammatory effect of curcumin in human gingival fibroblasts (HGFs) stimulated by P. gingivalis LPS and its mechanism of action. HGFs pretreated with curcumin were stimulated by P. gingivalis LPS. COX-2 mRNA and protein expressions were analysed by real-time PCR and Western blot analysis. Activation of nuclear factor kappa B (NF-κB) was analysed by the NF-κB-dependent luciferase activity and electrophoretic mobility-shift assay (EMSA). Curcumin inhibited COX-2 mRNA and protein synthesis in LPS-stimulated HGFs in a dose-dependent manner. P. gingivalis LPS activated NF-κB-dependent transcription in HGFs, which were also downregulated by pretreatment with curcumin. Therefore, curcumin can inhibit P. gingivalis LPS-induced COX-2 expression, which may be due to the inhibition of the NF-κB pathway. PMID:23494805

  12. The superoxide anion donor, potassium superoxide, induces pain and inflammation in mice through production of reactive oxygen species and cyclooxygenase-2

    PubMed Central

    Maioli, N.A.; Zarpelon, A.C.; Mizokami, S.S.; Calixto-Campos, C.; Guazelli, C.F.S.; Hohmann, M.S.N.; Pinho-Ribeiro, F.A.; Carvalho, T.T.; Manchope, M.F.; Ferraz, C.R.; Casagrande, R.; Verri, W.A.

    2015-01-01

    It is currently accepted that superoxide anion (O2 •−) is an important mediator in pain and inflammation. The role of superoxide anion in pain and inflammation has been mainly determined indirectly by modulating its production and inactivation. Direct evidence using potassium superoxide (KO2), a superoxide anion donor, demonstrated that it induced thermal hyperalgesia, as assessed by the Hargreaves method. However, it remains to be determined whether KO2 is capable of inducing other inflammatory and nociceptive responses attributed to superoxide anion. Therefore, in the present study, we investigated the nociceptive and inflammatory effects of KO2. The KO2-induced inflammatory responses evaluated in mice were: mechanical hyperalgesia (electronic version of von Frey filaments), thermal hyperalgesia (hot plate), edema (caliper rule), myeloperoxidase activity (colorimetric assay), overt pain-like behaviors (flinches, time spent licking and writhing score), leukocyte recruitment, oxidative stress, and cyclooxygenase-2 mRNA expression (quantitative PCR). Administration of KO2 induced mechanical hyperalgesia, thermal hyperalgesia, paw edema, leukocyte recruitment, the writhing response, paw flinching, and paw licking in a dose-dependent manner. KO2 also induced time-dependent cyclooxygenase-2 mRNA expression in the paw skin. The nociceptive, inflammatory, and oxidative stress components of KO2-induced responses were responsive to morphine (analgesic opioid), quercetin (antioxidant flavonoid), and/or celecoxib (anti-inflammatory cyclooxygenase-2 inhibitor) treatment. In conclusion, the well-established superoxide anion donor KO2 is a valuable tool for studying the mechanisms and pharmacological susceptibilities of superoxide anion-triggered nociceptive and inflammatory responses ranging from mechanical and thermal hyperalgesia to overt pain-like behaviors, edema, and leukocyte recruitment. PMID:25714890

  13. The superoxide anion donor, potassium superoxide, induces pain and inflammation in mice through production of reactive oxygen species and cyclooxygenase-2.

    PubMed

    Maioli, N A; Zarpelon, A C; Mizokami, S S; Calixto-Campos, C; Guazelli, C F S; Hohmann, M S N; Pinho-Ribeiro, F A; Carvalho, T T; Manchope, M F; Ferraz, C R; Casagrande, R; Verri, W A

    2015-04-01

    It is currently accepted that superoxide anion (O2•-) is an important mediator in pain and inflammation. The role of superoxide anion in pain and inflammation has been mainly determined indirectly by modulating its production and inactivation. Direct evidence using potassium superoxide (KO2), a superoxide anion donor, demonstrated that it induced thermal hyperalgesia, as assessed by the Hargreaves method. However, it remains to be determined whether KO2 is capable of inducing other inflammatory and nociceptive responses attributed to superoxide anion. Therefore, in the present study, we investigated the nociceptive and inflammatory effects of KO2. The KO2-induced inflammatory responses evaluated in mice were: mechanical hyperalgesia (electronic version of von Frey filaments), thermal hyperalgesia (hot plate), edema (caliper rule), myeloperoxidase activity (colorimetric assay), overt pain-like behaviors (flinches, time spent licking and writhing score), leukocyte recruitment, oxidative stress, and cyclooxygenase-2 mRNA expression (quantitative PCR). Administration of KO2 induced mechanical hyperalgesia, thermal hyperalgesia, paw edema, leukocyte recruitment, the writhing response, paw flinching, and paw licking in a dose-dependent manner. KO2 also induced time-dependent cyclooxygenase-2 mRNA expression in the paw skin. The nociceptive, inflammatory, and oxidative stress components of KO2-induced responses were responsive to morphine (analgesic opioid), quercetin (antioxidant flavonoid), and/or celecoxib (anti-inflammatory cyclooxygenase-2 inhibitor) treatment. In conclusion, the well-established superoxide anion donor KO2 is a valuable tool for studying the mechanisms and pharmacological susceptibilities of superoxide anion-triggered nociceptive and inflammatory responses ranging from mechanical and thermal hyperalgesia to overt pain-like behaviors, edema, and leukocyte recruitment. PMID:25714890

  14. Cyclooxygenase-2 (COX-2) expression in canine intracranial meningiomas.

    PubMed

    Rossmeisl, J H; Robertson, J L; Zimmerman, K L; Higgins, M A; Geiger, D A

    2009-09-01

    Meningiomas are the most common canine intracranial tumour. Neurologic disability and death from treatment failure remain problematic despite current surgical and radiotherapeutic treatments for canine intracranial meningiomas. Cyclooxygenase-2 (COX-2) over-expression has been demonstrated in multiple canine malignancies, and COX-2 inhibitory treatment strategies have been shown to have both preventative and therapeutic effects in spontaneous and experimental models of cancer. The purpose of this study was to evaluate COX-2 expression in canine intracranial meningiomas. Immunohistochemical and Western blot (WB) analyses showed COX-2 expression in multiple tissues of the normal canine brain, and 87% (21/24) of intracranial meningiomas studied were immunoreactive to COX-2. No significant associations between COX-2 immunoreactivity and tumour grade were identified. Further studies are required to elucidate the physiologic roles of constitutive COX-2 expression in the central nervous system as well as its participation in meningioma tumourigenesis. PMID:19691646

  15. Cyclooxygenase-2 inhibition reduces stress-induced affective pathology.

    PubMed

    Gamble-George, Joyonna Carrie; Baldi, Rita; Halladay, Lindsay; Kocharian, Adrina; Hartley, Nolan; Silva, Carolyn Grace; Roberts, Holly; Haymer, Andre; Marnett, Lawrence J; Holmes, Andrew; Patel, Sachin

    2016-01-01

    Mood and anxiety disorders are the most prevalent psychiatric conditions and are exacerbated by stress. Recent studies have suggested cyclooxygenase-2 (COX-2) inhibition could represent a novel treatment approach or augmentation strategy for affective disorders including anxiety disorders and major depression. We show that traditional COX-2 inhibitors and a newly developed substrate-selective COX-2 inhibitor (SSCI) reduce a variety of stress-induced behavioral pathologies in mice. We found that these behavioral effects were associated with a dampening of neuronal excitability in the basolateral amygdala (BLA) ex vivo and in vivo, and were mediated by small-conductance calcium-activated potassium (SK) channel and CB1 cannabinoid receptor activation. Taken together, these data provide further support for the potential utility of SSCIs, as well as traditional COX-2 inhibitors, as novel treatment approaches for stress-related psychiatric disorders. PMID:27162170

  16. Cyclooxygenase-2 inhibition reduces stress-induced affective pathology

    PubMed Central

    Gamble-George, Joyonna Carrie; Baldi, Rita; Halladay, Lindsay; Kocharian, Adrina; Hartley, Nolan; Silva, Carolyn Grace; Roberts, Holly; Haymer, Andre; Marnett, Lawrence J; Holmes, Andrew; Patel, Sachin

    2016-01-01

    Mood and anxiety disorders are the most prevalent psychiatric conditions and are exacerbated by stress. Recent studies have suggested cyclooxygenase-2 (COX-2) inhibition could represent a novel treatment approach or augmentation strategy for affective disorders including anxiety disorders and major depression. We show that traditional COX-2 inhibitors and a newly developed substrate-selective COX-2 inhibitor (SSCI) reduce a variety of stress-induced behavioral pathologies in mice. We found that these behavioral effects were associated with a dampening of neuronal excitability in the basolateral amygdala (BLA) ex vivo and in vivo, and were mediated by small-conductance calcium-activated potassium (SK) channel and CB1 cannabinoid receptor activation. Taken together, these data provide further support for the potential utility of SSCIs, as well as traditional COX-2 inhibitors, as novel treatment approaches for stress-related psychiatric disorders. DOI: http://dx.doi.org/10.7554/eLife.14137.001 PMID:27162170

  17. Therapeutic Potential of Hydrazones as Anti-Inflammatory Agents

    PubMed Central

    Bala, Suman; Sharma, Neha; Saini, Vipin

    2014-01-01

    Hydrazones are a special class of organic compounds in the Schiff base family. Hydrazones constitute a versatile compound of organic class having basic structure (R1R2C=NNR3R4). The active centers of hydrazone, that is, carbon and nitrogen, are mainly responsible for the physical and chemical properties of the hydrazones and, due to the reactivity toward electrophiles and nucleophiles, hydrazones are used for the synthesis of organic compound such as heterocyclic compounds with a variety of biological activities. Hydrazones and their derivatives are known to exhibit a wide range of interesting biological activities like antioxidant, anti-inflammatory, anticonvulsant, analgesic, antimicrobial, anticancer, antiprotozoal, antioxidant, antiparasitic, antiplatelet, cardioprotective, anthelmintic, antidiabetic, antitubercular, trypanocidal, anti-HIV, and so forth. The present review summarizes the efficiency of hydrazones as potent anti-inflammatory agents. PMID:25383223

  18. Anti-Inflammatory Drug Design Using a Molecular Hybridization Approach

    PubMed Central

    Bosquesi, Priscila Longhin; Melo, Thais Regina Ferreira; Vizioli, Ednir Oliveira; dos Santos, Jean Leandro; Chung, Man Chin

    2011-01-01

    The design of new drugs with better physiochemical properties, adequate absorption, distribution, metabolism, and excretion, effective pharmacologic potency and lacking toxicity remains is a challenge. Inflammation is the initial trigger of several different diseases, such as Alzheimer's disease, asthma, atherosclerosis, colitis, rheumatoid arthritis, depression, cancer; and disorders such as obesity and sexual dysfunction. Although inflammation is not the direct cause of these disorders, inflammatory processes often increase related pain and suffering. New anti-inflammatory drugs developed using molecular hybridization techniques to obtain multiple-ligand drugs can act at one or multiple targets, allowing for synergic action and minimizing toxicity. This work is a review of new anti-inflammatory drugs developed using the molecular modification approach.

  19. Isoflavones: Anti-Inflammatory Benefit and Possible Caveats

    PubMed Central

    Yu, Jie; Bi, Xiaojuan; Yu, Bing; Chen, Daiwen

    2016-01-01

    Inflammation, a biological response of body tissues to harmful stimuli, is also known to be involved in a host of diseases, such as obesity, atherosclerosis, rheumatoid arthritis, and even cancer. Isoflavones are a class of flavonoids that exhibit antioxidant, anticancer, antimicrobial, and anti-inflammatory properties. Increasing evidence has highlighted the potential for isoflavones to prevent the chronic diseases in which inflammation plays a key role, though the underlying mechanisms remain unclear. Recently, some studies have raised concerns about isoflavones induced negative effects like carcinogenesis, thymic involution, and immunosuppression. Therefore, this review aims to summarize the anti-inflammatory effects of isoflavones, unravel the underlying mechanisms, and present the potential health risks. PMID:27294954

  20. Anti-inflammatory and antipyretic effects of boldine.

    PubMed

    Backhouse, N; Delporte, C; Givernau, M; Cassels, B K; Valenzuela, A; Speisky, H

    1994-10-01

    Boldine, an antioxidant alkaloid isolated from Peumus boldus, exhibits a dose-dependent anti-inflammatory activity in the carrageenan-induced guinea pig paw edema test with an oral ED50 of 34 mg/kg. Boldine also reduces bacterial pyrogen-induced hyperthermia in rabbits to an extent which varied between 51% and 98% at a dose of 60 mg/kg p.o. In vitro studies carried out in rat aortal rings revealed that boldine is an effective inhibitor of prostaglandin biosynthesis, promoting 53% inhibition at 75 microM. The latter in vitro effect may be mechanistically linked to the anti-inflammatory and antipyretic effects of boldine exerted in vivo. PMID:7879695

  1. Anti-inflammatory properties of α- and γ-tocopherol

    PubMed Central

    Reiter, Elke; Jiang, Qing; Christen, Stephan

    2007-01-01

    Natural vitamin E consists of four different tocopherol and four different tocotrienol homologues (α, β, γ, δ) that all have antioxidant activity. However, recent data indicate that the different vitamin E homologues also have biological activity unrelated to their antioxidant activity. In this review, we discuss the anti-inflammatory properties of the two major forms of vitamin E, α-tocopherol (αT) and γ-tocopherol (γT), and discuss the potential molecular mechanisms involved in these effects. While both tocopherols exhibit anti-inflammatory activity in vitro and in vivo, supplementation with mixed (γT-enriched) tocopherols seems to be more potent than supplementation with αT alone. This may explain the mostly negative outcomes of the recent large-scale interventional chronic disease prevention trials with αT and thus warrants further investigation. PMID:17316780

  2. Anti-inflammatory effects of a Houttuynia cordata supercritical extract.

    PubMed

    Shin, Sunhee; Joo, Seong Soo; Jeon, Jeong Hee; Park, Dongsun; Jang, Min Jung; Kim, Tae Ook; Kim, Hyun Kyu; Hwang, Bang Yeon; Kim, Ki Yon; Kim, Yun Bae

    2010-09-01

    Anti-inflammatory effects of Houttuynia cordata supercritical extract (HSE) were investigated in a carrageenan-air pouch model. HSE (200 mg/kg, oral) suppressed exudation and albumin leakage, as well as inflammatory cell infiltration. Dexamethasone (2 mg/kg, i.p.) only decreased exudation and cell infiltration, while indomethacin (2 mg/kg, i.p.) reduced exudate volume and albumin content. HSE lowered tumor-necrosis factor (TNF)-alpha and nitric oxide (NO), as well as prostaglandin E(2) (PGE(2)). Dexamethasone only reduced TNF-alpha and NO, while indomethacin decreased TNF-alpha and PGE(2). The suppressive activity of HSE on NO and PGE(2) production was confirmed in RAW 264.7. These results demonstrate that HSE exerts anti-inflammatory effects by inhibiting both TNF-alpha-NO and cyclooxygenase II-PGE(2) pathways. PMID:20706037

  3. Isoflavones: Anti-Inflammatory Benefit and Possible Caveats.

    PubMed

    Yu, Jie; Bi, Xiaojuan; Yu, Bing; Chen, Daiwen

    2016-01-01

    Inflammation, a biological response of body tissues to harmful stimuli, is also known to be involved in a host of diseases, such as obesity, atherosclerosis, rheumatoid arthritis, and even cancer. Isoflavones are a class of flavonoids that exhibit antioxidant, anticancer, antimicrobial, and anti-inflammatory properties. Increasing evidence has highlighted the potential for isoflavones to prevent the chronic diseases in which inflammation plays a key role, though the underlying mechanisms remain unclear. Recently, some studies have raised concerns about isoflavones induced negative effects like carcinogenesis, thymic involution, and immunosuppression. Therefore, this review aims to summarize the anti-inflammatory effects of isoflavones, unravel the underlying mechanisms, and present the potential health risks. PMID:27294954

  4. Antibiotic and Anti-Inflammatory Therapies for Cystic Fibrosis

    PubMed Central

    Chmiel, James F.; Konstan, Michael W.; Elborn, J. Stuart

    2013-01-01

    Cystic fibrosis (CF) lung disease is characterized by chronic bacterial infection and an unremitting inflammatory response, which are responsible for most of CF morbidity and mortality. The median expected survival has increased from <6 mo in 1940 to >38 yr now. This dramatic improvement, although not great enough, is due to the development of therapies directed at secondary disease pathologies, especially antibiotics. The importance of developing treatments directed against the vigorous inflammatory response was realized in the 1990s. New therapies directed toward the basic defect are now visible on the horizon. However, the impact of these drugs on downstream pathological consequences is unknown. It is likely that antibiotics and anti-inflammatory drugs will remain an important part of the maintenance regimen for CF in the foreseeable future. Current and future antibiotic and anti-inflammatory therapies for CF are reviewed. PMID:23880054

  5. Antibiotic and anti-inflammatory therapies for cystic fibrosis.

    PubMed

    Chmiel, James F; Konstan, Michael W; Elborn, J Stuart

    2013-10-01

    Cystic fibrosis (CF) lung disease is characterized by chronic bacterial infection and an unremitting inflammatory response, which are responsible for most of CF morbidity and mortality. The median expected survival has increased from <6 mo in 1940 to >38 yr now. This dramatic improvement, although not great enough, is due to the development of therapies directed at secondary disease pathologies, especially antibiotics. The importance of developing treatments directed against the vigorous inflammatory response was realized in the 1990s. New therapies directed toward the basic defect are now visible on the horizon. However, the impact of these drugs on downstream pathological consequences is unknown. It is likely that antibiotics and anti-inflammatory drugs will remain an important part of the maintenance regimen for CF in the foreseeable future. Current and future antibiotic and anti-inflammatory therapies for CF are reviewed. PMID:23880054

  6. Pharmacology in rehabilitation: nonsteroidal anti-inflammatory agents.

    PubMed

    Biederman, Ross E

    2005-06-01

    Nonsteroidal anti-inflammatory agents (NSAIDs) are the most commonly encountered over-the-counter (OTC) and prescription medications in physical therapy practice. Worldwide, over 73000000 prescriptions for nonsteroidal agents are written yearly. NSAIDs produce a wide range of beneficial effects to the physical therapy patient, enhancing the outcome of treatment. Helpful effects of NSAIDs include analgesia, antipyretic, anti-inflammatory, and antithrombotic properties. However, NSAIDs are also associated with frequent and significant side effects that are deleterious to treatment outcome, including delay in soft tissue and bone healing, renal and liver toxicity, hemorrhagic events, gastric irritation and ulceration, and central nervous system effects. Understanding of the pharmacological properties of these drugs, exemplified by aspirin, and the individual pharmacokinetics of specific preparations will help the therapist to screen patients for potential side effects, develop more effective plans of care, and, where allowed, effectively and safely prescribe NSAIDs. PMID:16001907

  7. [Helicobacter pylori, nonsteroidal anti-inflammatory agents and gastroduodenal changes].

    PubMed

    Teixeira, A V

    1995-09-01

    The author discusses the possible interactions between non-steroidal anti-inflammatory drugs (NSAIDs) and Helicobacter pylori (Hp) which may play an important role in the unleashing of gastroduodenal lesions. To our knowledge, AINEs have no influence on the prevalence of infection by Hp and the latter does not seem to influence the development and intensity of the lesions caused by NSAIDs. PMID:7484272

  8. The Anti-Inflammatory Actions of Exercise Training

    PubMed Central

    Flynn, Michael G.; McFarlin, Brian K.; Markofski, Melissa M.

    2014-01-01

    The list of diseases with a known inflammatory etiology is growing. Cardiovascular disease, osteoporosis, diabetes, geriatric cachexia, and Alzheimer’s disease have all been shown to be linked to or exacerbated by aberrantly regulated inflammatory processes. Nevertheless, there is mounting evidence that those who are physically active, or who become physically active, have a reduction in biomarkers associated with chronic inflammation. There was strong early consensus that exercise-induced reductions in inflammation were explained by body mass index or body fatness, but recent studies provide support for the contention that exercise has body fat–independent anti-inflammatory effects. With few exceptions, the anti-inflammatory effects of exercise appear to occur regardless of age or the presence of chronic diseases. What remains unclear are the mechanisms by which exercise training induces these anti-inflammatory effects, but there are several intriguing possibilities, including release of endogenous products, such as heat shock proteins; selective reduction of visceral adipose tissue mass or reducing infiltration of adipocytes by macrophages; shift in immune cell phenotype; cross-tolerizing effects; or exercise-induced shifts in accessory proteins of toll-like receptor signaling. However, future research endeavors are likely to uncover additional potential mechanisms, and it could be some time before functional mechanisms are made clear. In summary, the potential anti-inflammatory influences of exercise training may provide a low-cost, readily available, and effective treatment for low-grade systemic inflammation and could contribute significantly to the positive effects of exercise training on chronic disease. PMID:25431545

  9. Clinical Management of Nonsteroidal Anti-inflammatory Drug Hypersensitivity

    PubMed Central

    2008-01-01

    Hypersensitivity diseases caused by nonsteroidal anti-inflammatory agents are relatively common in the population. This article summarizes the present understanding on the various allergic and nonallergic clinical pictures produced through hypersensitivity to these drugs using the pathogenic classification of hypersensitivity reactions recently proposed by the Nomenclature Committee of the World Allergy Organization to guide clinicians in the diagnosis and management of patients with these conditions. PMID:23283307

  10. Photoelectron spectroscopy of non-steroidal anti-inflammatory drugs

    NASA Astrophysics Data System (ADS)

    Novak, Igor; Klasinc, Leo; Chong, Delano P.; McGlynn, Sean P.

    2013-08-01

    The electronic structures of eight non-steroidal anti-inflammatory drugs (NSAIDs) had been studied by UV photoelectron spectroscopy (UPS) and high-level Green's function (GF) calculations. Our UPS data show that the electronic structure influences the measured biological activity of NSAID, but that it is not the dominating factor. The role of electronic structure needs to be considered in conjunction with other factors like steric properties of the COX active site and orientation of relevant residues in the same site.

  11. Mechanisms of nonsteroidal anti-inflammatory drugs in cancer prevention.

    PubMed

    Umar, Asad; Steele, Vernon E; Menter, David G; Hawk, Ernest T

    2016-02-01

    Various clinical and epidemiologic studies show that nonsteroidal anti-inflammatory drugs (NSAIDs), including aspirin and cyclooxygenase inhibitors (COXIBs) help prevent cancer. Since eicosanoid metabolism is the main inhibitory targets of these drugs the resulting molecular and biological impact is generally accepted. As our knowledge base and technology progress we are learning that additional targets may be involved. This review attempts to summarize these new developments in the field. PMID:26970125

  12. Analgesic, diuretic, and anti-inflammatory principle from Scoparia dulcis.

    PubMed

    Ahmed, M; Shikha, H A; Sadhu, S K; Rahman, M T; Datta, B K

    2001-08-01

    Scoparinol, a diterpene, isolated from Scoparia dulcis showed significant analgesic (p < 0.001) and anti-inflammatory activity (p < 0.01) in animals. A sedative action of scoparinol was demonstrated by a marked potentiation of pentobarbital-induced sedation with a significant effect on both onset and duration of sleep (p < 0.05). Measurement of urine volume after administration of scoparinol indicated its significant diuretic action. PMID:11534346

  13. Anti-inflammatory cyclohexenyl chalcone derivatives in Boesenbergia pandurata.

    PubMed

    Tuchinda, Patoomratana; Reutrakul, Vichai; Claeson, Per; Pongprayoon, Ubonwan; Sematong, Tuanta; Santisuk, Thawatchai; Taylor, Walter C

    2002-01-01

    The cyclohexenyl chalcone derivative [(-)-hydroxypanduratin A], together with the previously known panduratin A, sakuranetin, pinostrobin, pinocembrin, and dihydro-5,6-dehydrokawain were isolated from the chloroform extract of the red rhizome variety of Boesenbergia pandurata (Robx.) Schltr. [currently known as Boesenbergia rotunda (L.) Mansf., Kulturpfl.]. Their structures were assigned on the basis of their spectroscopic data. (-)-Hydroxypanduratin A and (-)-panduratin A showed significant topical anti-inflammatory activity in the assay of TPA-induced ear edema in rats. PMID:11809452

  14. Evaluation of Anticancer, Antioxidant, and Possible Anti-inflammatory Properties of Selected Medicinal Plants Used in Indian Traditional Medication

    PubMed Central

    Shaikh, Rafik; Pund, Mahesh; Dawane, Ashwini; Iliyas, Sayyed

    2014-01-01

    The present study was carried out to evaluate the anticancer, antioxidant, and possible anti-inflammatory properties of diverse medicinal plants frequently used in Indian traditional medication. The selected botanicals such as Soymida fembrifuga (Roxb.) A. Juss. (Miliaceae), Tinospora cordifolia (Willd.) Miers. (Menispermaceae), Lavandula bipinnata (L.) O. Ktze. (Lamiaceae), and Helicteres isora L. (Sterculiaceae) extracted in different solvents were evaluated for their in vitro anticancer and antioxidant activities. The results obtained indicate that H. isora has potent cytotoxic activity toward the selected cancer cells such as HeLa-B75 (34.21 ± 0.24%), HL-60 (30.25 ± 1.36%), HEP-3B (25.36 ± 1.78%), and PN-15 (29.21 ± 0.52%). Interestingly, the selected botanicals selectively inhibited cyclooxygenase-2 (COX-2) more than (COX-1), which are the key enzymes implicated in inflammation. COX-2 inhibition was observed to be in the range of 19.66-49.52% as compared to COX-1 inhibition (3.93-19.61%). The results of the antioxidant study revealed that the selected plants were found to be effective 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl (OH), and superoxide radical (SOR) scavenging agents. High-performance thin layer chromatography (HPTLC) fingerprint of flavonoids was used as a measure of quality control of the selected plant samples. The results of the present findings strengthen the potential of the selected plants as a resource for the discovery of novel anticancer, anti-inflammatory, and antioxidant agents. PMID:25379467

  15. Anti-inflammatory effects of sargachromenol-rich ethanolic extract of Myagropsis myagroides on lipopolysaccharide-stimulated BV-2 cells

    PubMed Central

    2014-01-01

    Background Excessive pro-inflammatory cytokine production from activated microglia contributes to neurodegenerative diseases, thus, microglial inactivation may delay the progress of neurodegeneration by attenuating the neuroinflammation. Among 5 selected brown algae, we found the highest antioxidant and anti-neuroinflammatory activities from Myagropsis myagroides ethanolic extract (MME) in lipopolysaccharide (LPS)-stimulated BV-2 cells. Methods The levels of nitric oxide (NO), prostaglandin E2 (PGE2), and pro-inflammatory cytokines were measured by Griess assay and enzyme linked immunesorbent assay. The levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), mitogen-activated protein kinases (MAPKs), and Akt were measured using Western blot. Nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB) were determined by immunefluorescence and reporter gene assay, respectively. Results MME inhibited the expression of iNOS and COX-2 at mRNA and protein levels, resulting in reduction of NO and PGE2 production. As a result, pro-inflammatory cytokines were reduced by MME. MME also inhibited the activation and translocation of NF-κB by preventing inhibitor κB-α (IκB-α) degradation. Moreover, MME inhibited the phosphorylation of extracellular signal regulated kinases (ERKs) and c-Jun N-terminal kinases (JNKs). Main anti-inflammatory compound in MME was identified as sargachromenol by NMR spectroscopy. Conclusions These results indicate that the anti-inflammatory effect of sargachromenol-rich MME on LPS-stimulated microglia is mainly regulated by the inhibition of IκB-α/NF-κB and ERK/JNK pathways. PMID:25005778

  16. Evaluation of Anticancer, Antioxidant, and Possible Anti-inflammatory Properties of Selected Medicinal Plants Used in Indian Traditional Medication.

    PubMed

    Shaikh, Rafik; Pund, Mahesh; Dawane, Ashwini; Iliyas, Sayyed

    2014-10-01

    The present study was carried out to evaluate the anticancer, antioxidant, and possible anti-inflammatory properties of diverse medicinal plants frequently used in Indian traditional medication. The selected botanicals such as Soymida fembrifuga (Roxb.) A. Juss. (Miliaceae), Tinospora cordifolia (Willd.) Miers. (Menispermaceae), Lavandula bipinnata (L.) O. Ktze. (Lamiaceae), and Helicteres isora L. (Sterculiaceae) extracted in different solvents were evaluated for their in vitro anticancer and antioxidant activities. The results obtained indicate that H. isora has potent cytotoxic activity toward the selected cancer cells such as HeLa-B75 (34.21 ± 0.24%), HL-60 (30.25 ± 1.36%), HEP-3B (25.36 ± 1.78%), and PN-15 (29.21 ± 0.52%). Interestingly, the selected botanicals selectively inhibited cyclooxygenase-2 (COX-2) more than (COX-1), which are the key enzymes implicated in inflammation. COX-2 inhibition was observed to be in the range of 19.66-49.52% as compared to COX-1 inhibition (3.93-19.61%). The results of the antioxidant study revealed that the selected plants were found to be effective 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl (OH), and superoxide radical (SOR) scavenging agents. High-performance thin layer chromatography (HPTLC) fingerprint of flavonoids was used as a measure of quality control of the selected plant samples. The results of the present findings strengthen the potential of the selected plants as a resource for the discovery of novel anticancer, anti-inflammatory, and antioxidant agents. PMID:25379467

  17. Structural characterization of anti-inflammatory Immunoglobulin G Fc proteins

    PubMed Central

    Ahmed, Alysia A.; Giddens, John; Pincetic, Andrew; Lomino, Joseph V.; Ravetch, Jeffrey V.; Wang, Lai-Xi; Bjorkman, Pamela J.

    2014-01-01

    Immunoglobulin G (IgG) is a central mediator of host defense due to its ability to recognize and eliminate pathogens. The recognition and effector responses are encoded on distinct regions of IgGs. The diversity of the antigen recognition Fab domains accounts for IgG's ability to bind with high specificity to essentially any antigen. Recent studies have indicated that the Fc effector domain also displays considerable heterogeneity, accounting for its complex effector functions of inflammation, modulation and immune suppression. Therapeutic anti-tumor antibodies, for example, require the pro-inflammatory properties of the IgG Fc to eliminate tumor cells, while the anti-inflammatory activity of Intravenous Immunoglobulin G (IVIG) requires specific Fc glycans for activity. In particular, the anti-inflammatory activity of IVIG is ascribed to a small population of IgGs in which the Asn297-linked complex N-glycans attached to each Fc CH2 domain include terminal α2,6-linked sialic acids. We used chemoenzymatic glycoengineering to prepare fully di-sialylated IgG Fc and solved its crystal structure. Comparison of the structures of asialylated Fc, sialylated Fc, and F241A Fc, a mutant that displays increased glycan sialylation, suggests that increased conformational flexibility of the CH2 domain is associated with the switch from pro- to anti-inflammatory activity of the Fc. PMID:25036289

  18. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues.

    PubMed

    Surendra Kumar, R; Arif, Ibrahim A; Ahamed, Anis; Idhayadhulla, Akbar

    2016-09-01

    A new sequence of pyrazole derivatives (1-6) was synthesized from condensation technique under utilizing ultrasound irradiation. Synthesized compounds were characterized from IR, (1)H NMR, (13)C NMR, Mass and elemental analysis. Synthesized compounds (1-6) were screened for antimicrobial activity. Among the compounds 3 (MIC: 0.25 μg/mL) was exceedingly antibacterially active against gram negative bacteria of Escherichia coli and compound 4 (MIC: 0.25 μg/mL) was highly active against gram positive bacteria of Streptococcus epidermidis compared with standard Ciprofloxacin. Compound 2 (MIC: 1 μg/mL) was highly antifungal active against Aspergillus niger proportionate to Clotrimazole. Synthesized compounds (1-6) were screened for anti-inflammatory activity and the compound 2-((5-hydroxy-3-methyl-1H-pyrazol-4-yl)(4-nitrophenyl)methyl)hydrazinecarboxamide (4) was better activity against anti-inflammatory when compared with standard drugs (Diclofenac sodium). Compounds (2, 3 and 4) are the most important molecules and hence the need to develop new drugs of antibacterial, antifungal and anti-inflammatory agents. PMID:27579011

  19. Anti-inflammatory activities of selected synthetic homoisoflavanones.

    PubMed

    Shaikh, Mahidansha M; Kruger, Hendrik G; Bodenstein, Johannes; Smith, Peter; du Toit, Karen

    2012-01-01

    Four homoisoflavanones of the 3-benzylidene-4-chromanone type, some of which were previously isolated from Caesalpinia pulcherrima, were synthesised to determine their anti-inflammatory activity and cytotoxicity. A range of four different homoisoflavanones (compounds 4a-4d) were synthesised from the corresponding substituted phenols. ¹H- and ¹³C-NMR data together with high-resolution mass spectroscopy data were employed to elucidate the structures. Anti-inflammatory activity was determined in mice with acute croton oil-induced auricular dermatitis. In vitro cytotoxicity was tested against a Chinese hamster ovarian cell line using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay. Compound 4a exhibited a tendency to inhibit oedema in a dose-dependent manner after 3 and 6 h of treatment. Compounds 4b-4d also inhibited oedema, although a clear dose-response relationship was not observed. Compounds 4a-4c were found to be less cytotoxic than compound 4d. Compound 4b was the least cytotoxic. Compounds 4a-4d exhibited anti-inflammatory activity and varying levels of cytotoxicity. PMID:21950651

  20. Anti-inflammatory activity and composition of Senecio salignus Kunth.

    PubMed

    González, Cuauhtemoc Pérez; Vega, Roberto Serrano; González-Chávez, Marco; Sánchez, Miguel Angel Zavala; Gutiérrez, Salud Pérez

    2013-01-01

    We investigated the anti-inflammatory activity of Senecio salignus. This medicinal plant is often used in Mexico for the treatment of fever and rheumatism. Chloroform and methanol extracts of the plant were tested on 12-O-tetradecanoylphorbol-13-acetate- (TPA-) induced edema in mice ears. The methanol extract of the plant inhibited edema by 36 ± 4.4% compared with the control, while the chloroform extract exhibited an even greater level of inhibition (64.1%). The chloroform extract was then fractionated, and the composition of the active fraction was determined by GC-MS. The anti-inflammatory activity of this fraction was then tested on TPA-induced ear edema in mice, and we found that the active fraction could inhibit edema by 46.9%. The anti-inflammatory effect of the fraction was also tested on carrageenan-induced paw edema in rats at doses of 100 mg/kg; a 58.9 ± 2.8% reduction of the edema was observed 4 h after administration of carrageenan, and the effect was maintained for 5 h. PMID:23691512

  1. Anti-Inflammatory Activity and Composition of Senecio salignus Kunth

    PubMed Central

    Pérez González, Cuauhtemoc; Serrano Vega, Roberto; González-Chávez, Marco; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud

    2013-01-01

    We investigated the anti-inflammatory activity of Senecio salignus. This medicinal plant is often used in Mexico for the treatment of fever and rheumatism. Chloroform and methanol extracts of the plant were tested on 12-O-tetradecanoylphorbol-13-acetate- (TPA-) induced edema in mice ears. The methanol extract of the plant inhibited edema by 36 ± 4.4% compared with the control, while the chloroform extract exhibited an even greater level of inhibition (64.1%). The chloroform extract was then fractionated, and the composition of the active fraction was determined by GC-MS. The anti-inflammatory activity of this fraction was then tested on TPA-induced ear edema in mice, and we found that the active fraction could inhibit edema by 46.9%. The anti-inflammatory effect of the fraction was also tested on carrageenan-induced paw edema in rats at doses of 100 mg/kg; a 58.9 ± 2.8% reduction of the edema was observed 4 h after administration of carrageenan, and the effect was maintained for 5 h. PMID:23691512

  2. Anti-inflammatory effect of thalidomide dithiocarbamate and dithioate analogs.

    PubMed

    Talaat, Roba; El-Sayed, Waheba; Agwa, Hussein S; Gamal-Eldeen, Amira M; Moawia, Shaden; Zahran, Magdy A H

    2015-08-01

    Thalidomide has anti-inflammatory, immunomodulatory, and anti-angiogenic properties. It has been used to treat a variety of cancers and autoimmune diseases. This study aimed to characterize anti-inflammatory activities of novel thalidomide analogs by exploring their effects on splenocytes proliferation and macrophage functions and their antioxidant activity. MTT assay was used to assess the cytotoxic effect of thalidomide analogs against splenocytes. Tumor necrosis factor (TNF-α) and nuclear factor kappa B (NF-κB-P65) were determined by enzyme-linked immunosorbent assay (ELISA). Nitric oxide (NO) was estimated by colorimetric assay. Antioxidant activity was examined by ORAC assay. Our results demonstrated that thalidomide dithioate analog 2 and thalidomide dithiocarbamate analog 4 produced a slight increase in splenocyte proliferation compared with thalidomide. Thalidomide dithiocarbamate analog 1 is a potent inhibitor of TNF-α production, whereas thalidomide dithiocarbamate analog 5 is a potent inhibitor of both TNF-α and NO. Analog 2 has a pronounced inhibitory effect on NF-κB-P65 production level. All thalidomide analogs showed prooxidant activity against hydroxyl (OH) radical. Analog 1 and thalidomide dithioate analog 3 have prooxidant activity against peroxyl (ROO) radical in relation to thalidomide. On the other hand, analog 4 has a potent scavenging capacity against peroxyl (ROO) radical compared with thalidomide. Taken together, the results of this study suggest that thalidomide analogs might have valuable anti-inflammatory activities with more pronounced effect than thalidomide itself. PMID:26051520

  3. UV Filters, Ingredients with a Recognized Anti-Inflammatory Effect

    PubMed Central

    Couteau, Céline; Chauvet, Catherine; Paparis, Eva; Coiffard, Laurence

    2012-01-01

    Background To explain observed differences during SPF determination using either an in vivo or in vitro method, we hypothesized on the presence of ingredients having anti-inflammatory properties. Methodology/Principal Findings To research our hypothesis, we studied the 21 UV filters both available on the market and authorized by European regulations and subjected these filters to the phorbol-myristate-acetate test using mice. We then catalogued the 13 filters demonstrating a significant anti-inflammatory effect with edema inhibition percentages of more than 70%. The filters are: diethylhexyl butamido triazone (92%), benzophenone-5 and titanium dioxide (90%), benzophenone-3 (83%), octocrylène and isoamyl p-methoxycinnamate (82%), PEG-25 PABA and homosalate (80%), octyl triazone and phenylbenzimidazole sulfonic acid (78%), octyl dimethyl PABA (75%), bis-ethylhexyloxyphenol methoxyphenyl triazine and diethylamino hydroxybenzoyl hexylbenzoate (70%). These filters were tested at various concentrations, including their maximum authorized dose. We detected a dose-response relationship. Conclusions/Significance The anti-inflammatory effect of a sunscreen ingredient may affect the in vivo SPF value. PMID:23284607

  4. Anti-inflammatory properties of pterocarpanquinone LQB-118 in mice.

    PubMed

    Riça, Ingred G; Netto, Chaquip D; Rennó, Magdalena N; Abreu, Paula A; Costa, Paulo R R; da Silva, Alcides J M; Cavalcante, Moisés C M

    2016-09-15

    Pterocarpanquinone (+/-)-LQB-118 presents antineoplastic and antiparasitic properties and also shows great inhibitory effect on TNF-α release in vitro. Here, its anti-inflammatory activity was evaluated in a lipopolysaccharide (LPS)-induced lung inflammation model in C57BL/6 mice. LPS inhalation induced a marked neutrophil infiltration to the lungs which was reduced by intraperitoneal treatment with (+/-)-LQB-118 in a similar manner to that of dexamethasone and even better than that of acetylsalicylic acid. Moreover, (+/-)-LQB-118 administration resulted in decrease of NF-κB activation and KC level in lungs, with a pronounced inhibitory effect on TNF-α release, measured in bronchoalveolar lavage fluid. Trying to understand the anti-inflammatory mechanism by which (+/-)-LQB-118 acts, we performed a molecular modeling analysis, including docking to estrogen receptors α and β. Results suggested that (+/-)-LQB-118 may bind to both receptors, with a similar orientation to 17-β-estradiol. Together, these results showed that (+/-)-LQB-118 exhibits an anti-inflammatory effect, most likely by inhibiting TNF-α release and NF-κB activation, which may be related to the estrogen receptor binding. PMID:27492193

  5. Anti-inflammatory activity of Pistacia khinjuk in different experimental models: isolation and characterization of its flavonoids and galloylated sugars.

    PubMed

    Esmat, Ahmed; Al-Abbasi, Fahad A; Algandaby, Mardi M; Moussa, Ashaimaa Y; Labib, Rola M; Ayoub, Nahla A; Abdel-Naim, Ashraf B

    2012-03-01

    The present study aimed at isolating and elucidating the structure of the main components of Pistacia khinjuk L. and exploring its potential anti-inflammatory effect in different experimental models. The extract was evaluated for anti-inflammatory activity by measuring paw volume in three experimental models. Then, prostaglandin E₂ (PGE₂) level, ear edema, tissue myeloperoxidase (MPO) activity, histopathology, nitric oxide (NO) level, and tumor necrosis factor-α (TNF-α) level were assessed. Seven phenolic compounds, mainly flavonoids and galloylated compounds, were isolated from the aqueous methanol extract: gallic acid (1), methyl gallate (2), quercetin-3-O-β-D-⁴C₁-galactopyranoside (hyperin) (3), myricetin-3-O-α-L-¹C₄-rhamnopyranoside (myricitrin) (4), 1,6-digalloyl-β-D-glucose (5), 1,4-digalloyl-β-D-glucopyranoside (6), and 2,3-di-O-galloyl-(α/β)-⁴C₁-glucopyranose (nilocitin) (7). The anti-inflammatory activity was evidenced by decreased carrageenan-induced rat paw edema and PGE₂ elevation. In the croton oil-induced ear edema model, MPO activity was significantly inhibited, and inflammatory histopathological changes were ameliorated. In the rat air pouch model, NO generation and TNF-α release were significantly inhibited. The isolation and nuclear magnetic resonance spectral data of compound 6 from the genus Pistacia are revealed for the first time. Also, P. khinjuk L. aqueous methanol extract possesses anti-inflammatory activity in several experimental models. PMID:22082098

  6. The Dietary Flavonoid Kaempferol Mediates Anti-Inflammatory Responses via the Src, Syk, IRAK1, and IRAK4 Molecular Targets

    PubMed Central

    Kim, Shi Hyoung; Park, Jae Gwang; Lee, Jongsung; Yang, Woo Seok; Park, Gye Won; Kim, Han Gyung; Baek, Kwang-Soo; Hossen, Muhammad Jahangir; Lee, Mi-nam; Kim, Jong-Hoon

    2015-01-01

    Even though a lot of reports have suggested the anti-inflammatory activity of kaempferol (KF) in macrophages, little is known about its exact anti-inflammatory mode of action and its immunopharmacological target molecules. In this study, we explored anti-inflammatory activity of KF in LPS-treated macrophages. In particular, molecular targets for KF action were identified by using biochemical and molecular biological analyses. KF suppressed the release of nitric oxide (NO) and prostaglandin E2 (PGE2), downregulated the cellular adhesion of U937 cells to fibronectin (FN), neutralized the generation of radicals, and diminished mRNA expression levels of inflammatory genes encoding inducible NO synthase (iNOS), TNF-α, and cyclooxygenase- (COX-) 2 in lipopolysaccharide- (LPS-) and sodium nitroprusside- (SNP-) treated RAW264.7 cells and peritoneal macrophages. KF reduced NF-κB (p65 and p50) and AP-1 (c-Jun and c-Fos) levels in the nucleus and their transcriptional activity. Interestingly, it was found that Src, Syk, IRAK1, and IRAK4 responsible for NF-κB and AP-1 activation were identified as the direct molecular targets of KF by kinase enzyme assays and by measuring their phosphorylation patterns. KF was revealed to have in vitro and in vivo anti-inflammatory activity by the direct suppression of Src, Syk, IRAK1, and IRAK4, involved in the activation of NF-κB and AP-1. PMID:25922567

  7. D-Amino Acids Boost the Selectivity and Confer Supramolecular Hydrogels of a Non-steroidal Anti-inflammatory Drug (NSAID)

    PubMed Central

    Li, Jiayang; Kuang, Yi; Gao, Yuan; Du, Xuewen; Shi, Junfeng

    2012-01-01

    As systemically used therapeutics for treatmenting acute or chronic pains or inflammations, non-steroidal anti-inflammatory drugs (NSAID) also associate with the adverse gastrointestinal and renal effects and cardiovascular risks. Thus, it is beneficial to develop topical gels that selectively inhibit cyclooxygenase-2 (COX-2) for the management of local inflammation. In this work, we demonstrate that the covalent conjugation of D-amino acids to naproxen (i.e., an NSAID) not only affords supramolecular hydrogelators for the topical gels, but also unexpectedly and significantly elevates the selectivity towards COX-2 about 20 times at little expense of the activity of naproxen. This work illustrates a previously unexplored approach that employs D-amino acids for the development of functional molecules that have dual or multiple roles and exceptional biostability, which offers a new class of molecular hydrogels of therapeutic agents. PMID:23136972

  8. Crystal Structures of mPGES-1 Inhibitor Complexes Form a Basis for the Rational Design of Potent Analgesic and Anti-Inflammatory Therapeutics.

    PubMed

    Luz, John Gately; Antonysamy, Stephen; Kuklish, Steven L; Condon, Bradley; Lee, Matthew R; Allison, Dagart; Yu, Xiao-Peng; Chandrasekhar, Srinivasan; Backer, Ryan; Zhang, Aiping; Russell, Marijane; Chang, Shawn S; Harvey, Anita; Sloan, Ashley V; Fisher, Matthew J

    2015-06-11

    Microsomal prostaglandin E synthase 1 (mPGES-1) is an α-helical homotrimeric integral membrane inducible enzyme that catalyzes the formation of prostaglandin E2 (PGE2) from prostaglandin H2 (PGH2). Inhibition of mPGES-1 has been proposed as a therapeutic strategy for the treatment of pain, inflammation, and some cancers. Interest in mPGES-1 inhibition can, in part, be attributed to the potential circumvention of cardiovascular risks associated with anti-inflammatory cyclooxygenase 2 inhibitors (coxibs) by targeting the prostaglandin pathway downstream of PGH2 synthesis and avoiding suppression of antithrombotic prostacyclin production. We determined the crystal structure of mPGES-1 bound to four potent inhibitors in order to understand their structure-activity relationships and provide a framework for the rational design of improved molecules. In addition, we developed a light-scattering-based thermal stability assay to identify molecules for crystallographic studies. PMID:25961169

  9. Cardiovascular complications of non-steroidal anti-inflammatory drugs.

    PubMed

    Fosslien, Egil

    2005-01-01

    Coxibs, such as rofecoxib, celecoxib, and valdecoxib, selectively inhibit cyclooxygenase (COX)-2, the mainly inducible, pro-inflammatory COX isoform. Unlike traditional non-steroidal anti-inflammatory drugs (NSAIDs) most coxibs do not significantly inhibit COX-1 and are therefore less toxic to the gastrointestinal tract. Hence, coxibs widely replaced traditional NSAIDs for treatment of arthritis and other painful inflammatory conditions. In many, but not all, clinical studies, coxibs became associated with higher risks of myocardial infarction (MI) and stroke. Several mechanisms may be involved in the pathogenesis of such complications. First, selective inhibition of COX-1 lowers platelet synthesis of thromboxane (TXA(2)), a thrombogenic and atherogenic eicosanoid. Selective inhibition of COX-2 limits endothelial cell synthesis of prostacyclin (PGI(2)), an arachidonic acid product that opposes the effects of thromboxane. In apoE-/- mice, interruption of TXA(2) signaling by deletion of its receptor (TP) limits atherogenesis, whereas interruption of PGI2 signaling by deletion of its receptor (IP) accelerates atherogenesis. This suggests that selective inhibition of COX-2 can disrupt the physiological balance between thromboxane and prostacyclin and thus increase atherosclerosis, thrombogenesis, and the risk of cardiovascular complications. Second, COX inhibition can raise levels of arachidonic acid, which can inhibit mitochondrial oxidative phosphorylation (OXPHOS) and increase OXPHOS generation of reactive oxygen species. Several NSAIDs, including coxibs and meloxicam, directly uncouple or inhibit OXPHOS. Studies of apoE-/- mice indicate that mitochondrial dysfunction plays an early role in atherogenesis. Third, many NSAIDs exhibit COX-independent properties. For example, in animal models, short-term treatment with celecoxib reduces monocyte chemotaxis by reducing expression of monocyte chemoattractant protein (MCP)-1. However, long-term treatment results in the

  10. New cytotoxic and anti-inflammatory steroids from the soft coral Klyxum flaccidum.

    PubMed

    Tseng, Wan-Ru; Huang, Chiung-Yao; Tsai, Yi-Ying; Lin, Yun-Sheng; Hwang, Tsong-Long; Su, Jui-Hsin; Sung, Ping-Jyun; Dai, Chang-Feng; Sheu, Jyh-Horng

    2016-07-15

    Four new steroids, namely klyflaccisteroids G-J (1-4) were isolated from the Formosan soft coral Klyxum flaccidum. The structures of compounds 1-4 were established by spectral data analysis (IR, MS, 1D and 2D NMR) and comparison of spectral data with those of the related known compounds. Cytotoxicity assay revealed that 4 exhibited inhibition activity against the growth of HT-29, P388 and K562 cancer cell lines, whereas 2 showed selective cytotoxicity toward P388 cells. Compound 4 was also found to display significant anti-inflammatory activity for suppressing superoxide anion generation (O2(-)) and elastase release. PMID:27256910

  11. Antioxidant, analgesic and anti-inflammatory activities of the methanolic extract of Piper betle leaves

    PubMed Central

    Alam, Badrul; Akter, Fahima; Parvin, Nahida; Sharmin Pia, Rashna; Akter, Sharmin; Chowdhury, Jesmin; Sifath-E-Jahan, Kazi; Haque, Ekramul

    2013-01-01

    Objective: The present study was designed to evaluate the antioxidant, analgesic, and anti-inflammatory activities of the methanolic extract of Piper betle leaves (MPBL). Materials and Methods: MPBL was evaluated for anti-inflammatory activity using carrageenan-induced hind paw edema model. Analgesic activity of MPBL was evaluated by hot plate, writhing, and formalin tests. Total phenolic and flavonoids content, total antioxidant activity, scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, peroxynitrate (ONOO) as well as inhibition of total ROS generation, and assessment of reducing power were used to evaluate antioxidant potential of MPBL. Results: The extract of MPBL, at the dose of 100 and 200 mg/kg, produced a significant (p<0.05) increase in pain threshold in hot plate method whereas significantly (p<0.05) reduced the writhing caused by acetic acid and the number of licks induced by formalin in a dose-dependent manner. The same ranges of doses of MPBL caused significant (p<0.05) inhibition of carrageenan-induced paw edema after 4 h in a dose-dependent manner. In DPPH, ONOO-, and total ROS scavenging method, MPBL showed good antioxidant potentiality with the IC50 value of 16.33±1.02, 25.16±0.61 , and 41.72±0.48 µg/ml, respectively with a significant (p<0.05) good reducing power. Conclusion: The findings of the study suggested that MPBL has strong analgesic, anti-inflammatory, and antioxidant effects, conforming the traditional use of this plant for inflammatory pain alleviation to its antioxidant potentiality. PMID:25050265

  12. Postoperative non-steroidal anti-inflammatory drugs and colorectal anastomotic leakage. NSAIDs and anastomotic leakage.

    PubMed

    Klein, Mads

    2012-03-01

    Anastomotic leakage (AL) is the most important and one of the most serious complications after colorectal resections with primary anastomosis. Any factors that contribute to increase the risk of AL should be identified and--if possible--eliminated. Non-steroidal anti-inflammatory drugs (NSAIDs) are often used for treating pain after surgical procedures, among these also colorectal resections. The objective of this Ph.d. thesis was to investigate whether the use of NSAIDs in the postoperative period increases the risk of AL, and investigate the effect on pathophysiological mechanisms. In order to achieve this, the following studies were performed. Study I was a retrospective, case-control study in 75 patients undergoing laparoscopic colorectal resection for colorectal cancer. 33 of these patients received the NSAID diclofenac in the postoperative period; the remaining 42 did not receive any NSAID. There were significantly more ALs among the patients receiving diclofenac (7/33 vs. 1/42, p=0.018). In uni- and multivariate logistic regression analyses, diclofenac was the only factor associated with increased AL rate. This study functioned as a hypothesis generating study and laid the ground for the subsequent studies. Study II was an experimental, randomized, case-control study in 32 Wistar rats. The rats had a colonic anastomosis performed and were randomized to diclofenac or placebo treatment. After three days, the rats were sacrificed and the anastomoses were harvested. First, the anastomotic strengths were tested by longitudinal; subsequently, the levels of the enzyme cyclooxygenase-2 (COX-2) in the anastomotic tissues were measured. There was no difference among the groups with regard to anastomotic strength, but the animals treated with diclofenac had significantly lower COX-2 levels (median (range) 1.30 (0.42-3.31) ng/mg vs. 2.44 (0.88 - 18.94) ng/mg, p<0.001). This study showed that the used dose of diclofenac was sufficient and relevant, but did not show a

  13. Anti-Inflammatory Activity of Tanzawaic Acid Derivatives from a Marine-Derived Fungus Penicillium steckii 108YD142.

    PubMed

    Shin, Hee Jae; Pil, Gam Bang; Heo, Soo-Jin; Lee, Hyi-Seung; Lee, Jong Seok; Lee, Yeon-Ju; Lee, Jihoon; Won, Ho Shik

    2016-01-01

    Chemical investigation of a marine-derived fungus, Penicillium steckii 108YD142, resulted in the discovery of a new tanzawaic acid derivative, tanzawaic acid Q (1), together with four known analogues, tanzawaic acids A (2), C (3), D (4), and K (5). The structures of tanzawaic acid derivatives 1-5 were determined by the detailed analysis of 1D, 2D NMR and LC-MS data, along with chemical methods and literature data analysis. These compounds significantly inhibited nitric oxide (NO) production and the new tanzawaic acid Q (1) inhibited the lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins and mRNA expressions in RAW 264.7 macrophages. Additionally, compound 1 reduced the mRNA levels of inflammatory cytokines. Taken together, the results of this study demonstrated that the new tanzawaic acid derivative inhibits LPS-induced inflammation. This is the first report on the anti-inflammatory activity of tanzawaic acid Q (1). PMID:26761016

  14. Involvement of the Antioxidant Effect and Anti-inflammatory Response in Butyrate-Inhibited Vascular Smooth Muscle Cell Proliferation

    PubMed Central

    Mathew, Omana P.; Ranganna, Kasturi; Milton, Shirlette G.

    2014-01-01

    Epigenetic mechanisms by altering the expression and, in turn, functions of target genes have potential to modify cellular processes that are characteristics of atherosclerosis, including inflammation, proliferation, migration and apoptosis/cell death. Butyrate, a natural epigenetic modifier and a histone deacetylase inhibitor (HDACi), is an inhibitor of vascular smooth muscle cell (VSMC) proliferation, a critical event in atherogenesis. Here, we examined whether glutathione peroxidases (GPxs), a family of antioxidant enzymes, are modulated by butyrate, contributing to its antiproliferation action on VSMC through the regulation of the inflammatory response by using western blotting, immunostaining methods and activity assay. Treatment of VSMC with butyrate not only upregulates glutathione peroxidase (GPx) 3 and GPx4, but also increases the overall catalytic activity of GPx supporting involvement of antioxidant effect in butyrate arrested VSMC proliferation. Moreover, analysis of the redox-sensitive NF-κB transcription factor system, the target of GPx, reveals that butyrate causes downregulation of IKKα, IKKβ, IkBα and NF-κBp65 expression and prevents NF-κBp65 phosphorylation at serine536 causing inhibition of the expression NF-κB target inflammatory genes, including inducible nitric oxide synthase, VCAM-1 and cyclooxygenase-2. Overall, these observations suggest a link between the antioxidant effect and anti-inflammatory response in butyrate-arrested VSMC proliferation, accentuating the atheroprotective and therapeutic potential of natural products, like butyrate, in vascular proliferative diseases. PMID:25390157

  15. Anti-Inflammatory Activity of Tanzawaic Acid Derivatives from a Marine-Derived Fungus Penicillium steckii 108YD142

    PubMed Central

    Shin, Hee Jae; Pil, Gam Bang; Heo, Soo-Jin; Lee, Hyi-Seung; Lee, Jong Seok; Lee, Yeon-Ju; Lee, Jihoon; Won, Ho Shik

    2016-01-01

    Chemical investigation of a marine-derived fungus, Penicillium steckii 108YD142, resulted in the discovery of a new tanzawaic acid derivative, tanzawaic acid Q (1), together with four known analogues, tanzawaic acids A (2), C (3), D (4), and K (5). The structures of tanzawaic acid derivatives 1–5 were determined by the detailed analysis of 1D, 2D NMR and LC-MS data, along with chemical methods and literature data analysis. These compounds significantly inhibited nitric oxide (NO) production and the new tanzawaic acid Q (1) inhibited the lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins and mRNA expressions in RAW 264.7 macrophages. Additionally, compound 1 reduced the mRNA levels of inflammatory cytokines. Taken together, the results of this study demonstrated that the new tanzawaic acid derivative inhibits LPS-induced inflammation. This is the first report on the anti-inflammatory activity of tanzawaic acid Q (1). PMID:26761016

  16. Anti-inflammatory and joint protective effects of extra-virgin olive-oil polyphenol extract in experimental arthritis.

    PubMed

    Rosillo, María Ángeles; Alcaraz, María José; Sánchez-Hidalgo, Marina; Fernández-Bolaños, José G; Alarcón-de-la-Lastra, Catalina; Ferrándiz, María Luisa

    2014-12-01

    The consumption of extra virgin olive oil (EVOO) in Mediterranean countries has shown beneficial effects. A wide range of evidence indicates that phenolic compounds present in EVOO are endowed with anti-inflammatory properties. In this work, we evaluated the effects of EVOO-polyphenol extract (PE) in a model of rheumatoid arthritis, the collagen-induced arthritis model in mice. On day 0, DBA-1/J mice were immunized with bovine type II collagen. On day 21, mice received a booster injection. PE (100 and 200 mg/kg) was orally administered once a day from days 29 to 41 to arthritic mice. We have demonstrated that PE decreases joint edema, cell migration, cartilage degradation and bone erosion. PE significantly reduced the levels of proinflammatory cytokines and prostaglandin E2 in the joint as well as the expression of cyclooxygenase-2 and microsomal prostaglandin E synthase-1. Our data indicate that PE inhibits c-Jun N-terminal kinase, p38 and signal transducer and activator of transcription-3. In addition, PE decreases nuclear factor κB translocation leading to the down-regulation of the arthritic process. These results support the interest of natural diet components in the development of therapeutic products for arthritic conditions. PMID:25294776

  17. Treatment of persistent mating-induced endometritis in mares with the non-steroid anti-inflammatory drug vedaprofen.

    PubMed

    Rojer, H; Aurich, C

    2010-12-01

    Recently, successful treatment of mares with a history of persistent mating-induced endometritis (PMIE) with dexamethasone has been reported. As systemic treatment of horses with glucocorticoids should be handled with caution, we tested the hypothesis that treatment with the non-steroid anti-inflammatory drug (NSAID) vedaprofen, an inhibitor of cyclooxygenase-2, may have comparative, positive effects on fertility. Barren mares with a history of repeated PMIE were treated with vedaprofen (n = 8; initially 2 mg/kg bodyweight followed by 1 mg/kg orally twice daily) from 1 day before the first insemination to 1 day after ovulation or left untreated (n = 9). All mares received oxytocin (20 I.E. s.c.) thrice daily. Uterine swabs were collected for bacteriology and cytology. The day after ovulation, fluid accumulation was detected in three control mares and four treated mares (n.s.). The percentage of neutrophils in uterine cytology was significantly increased in comparison to the day before ovulation irrespective of treatment. Pregnancy was confirmed in two of nine mares in the control group and seven of eight mares in the treatment group (p < 0.05). NSAIDs may positively affect fertility in mares with a history of PMIE. PMID:20074320

  18. Cyclooxygenase-2 and the inflammogenesis of breast cancer

    PubMed Central

    Harris, Randall E; Casto, Bruce C; Harris, Zachary M

    2014-01-01

    Cohesive scientific evidence from molecular, animal, and human investigations supports the hypothesis that constitutive overexpression of cyclooxygenase-2 (COX-2) is a ubiquitous driver of mammary carcinogenesis, and reciprocally, that COX-2 blockade has strong potential for breast cancer prevention and therapy. Key findings include the following: (1) COX-2 is constitutively expressed throughout breast cancer development and expression intensifies with stage at detection, cancer progression and metastasis; (2) essential features of mammary carcinogenesis (mutagenesis, mitogenesis, angiogenesis, reduced apoptosis, metastasis and immunosuppression) are linked to COX-2-driven prostaglandin E2 (PGE-2) biosynthesis; (3) upregulation of COX-2 and PGE-2 expression induces transcription of CYP-19 and aromatase-catalyzed estrogen biosynthesis which stimulates unbridled mitogenesis; (4) extrahepatic CYP-1B1 in mammary adipose tissue converts paracrine estrogen to carcinogenic quinones with mutagenic impact; and (5) agents that inhibit COX-2 reduce the risk of breast cancer in women without disease and reduce recurrence risk and mortality in women with breast cancer. Recent sharp increases in global breast cancer incidence and mortality are likely driven by chronic inflammation of mammary adipose and upregulation of COX-2 associated with the obesity pandemic. The totality of evidence clearly supports the supposition that mammary carcinogenesis often evolves as a progressive series of highly specific cellular and molecular changes in response to induction of constitutive over-expression of COX-2 and the prostaglandin cascade in the “inflammogenesis of breast cancer”. PMID:25302170

  19. Role of cyclooxygenase-2 in gastric cancer development and progression

    PubMed Central

    Cheng, Jian; Fan, Xiao-Ming

    2013-01-01

    Although the incidence of gastric cancer has been declining in recent decades, it remains a major public health issue as the second leading cause of cancer death worldwide. In China, gastric cancer is still the main cause of death in patients with malignant tumors. Most patients are diagnosed at an advanced stage and mortality is high. Cyclooxygenase-2 (COX-2) is a rate-limiting enzyme in prostanoid synthesis and plays an important role in the development and progression of gastric cancer. The expression of COX-2 in gastric cancer is upregulated and its molecular mechanisms have been investigated. Helicobacter pylori infection, tumor suppressor gene mutation and the activation of nuclear factor-kappa B may be responsible for the elevated expression of COX-2 in gastric cancer. The mechanisms of COX-2 in the development and progression of gastric cancer are probably through promoting the proliferation of gastric cancer cells, while inhibiting apoptosis, assisting angiogenesis and lymphatic metastasis, and participating in cancer invasion and immunosuppression. This review is intended to discuss, comment and summarize recent research progress on the role of COX-2 in gastric cancer development and progression, and elucidate the molecular mechanisms which might be involved in the carcinogenesis. PMID:24259966

  20. Role of cyclooxygenase-2 in intestinal injury in neonatal rats

    PubMed Central

    LU, HUI; ZHU, BING

    2014-01-01

    Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in premature neonates. The pathogenesis of NEC remains poorly understood. The present study aimed to investigate the dynamic change and role of cyclooxygenase-2 (COX-2) in neonatal rats with intestinal injury. Wistar rats, <24 h in age, received an intraperitoneal injection with 5 mg/kg lipopolysaccharide (LPS). Ileal tissues were collected at 1, 3, 6, 12 and 24 h following the LPS challenge for histological evaluation of NEC and for measurements of COX-2 mRNA. The correlation between the degree of intestinal injury and expression of COX-2 mRNA was determined. The LPS-injected pups showed a significant increase in injury scores compared to the control, and the most deteriorating change was at 12 h. COX-2 mRNA expression was upregulated following LPS injection. There was a significantly positive correlation between COX-2 mRNA and the grade of intestinal injury within 12 h, whereas COX-2 mRNA expression had a significantly negative correlation with the severity of intestinal injury at 24 h. COX-2 plays an important role in LPS-induced intestinal injury and the repair processes. Caution should be exerted concerning the potential therapeutic uses of COX-2 inhibitors or promoters in NEC. PMID:25279162

  1. Antinociceptive and anti-inflammatory potential of Rhododendron arboreum bark.

    PubMed

    Nisar, Muhammad; Ali, Sajid; Muhammad, Naveed; Gillani, Syed N; Shah, Muhmmad R; Khan, Haroon; Maione, Francesco

    2016-07-01

    Rhododendron arboreum Smith. (Ericaceae), an evergreen small tree, is one of the 1000 species that belongs to genus Rhododendron distributed worldwide. In folk medicine, as various parts of this plant exhibit medicinal properties, it is used in the treatment of different ailments.The present study was designed to evaluate the potential anti-inflammatory and antinociceptive effects of methanolic extract of R. arboreum bark, followed by activity-guided fractionation of n-hexane, n-butanol, chloroform, ethyl acetate and aqueous fractions.The ethyl acetate fraction (200 mg/kg i.p.) showed the maximum analgesic effect (82%) in acetic acid-induced writhing, followed, to a less extent, by crude extract and chloroform fraction both at a dose of 200 mg/kg i.p. (65.09% and 67.89%, respectively). In carrageenan-induced mouse paw oedema, the crude extract and its related fractions displayed in a dose-dependent manner (50-200 mg/kg i.p.) an anti-inflammatory activity for all time-courses (1-5 hrs). For the active extract/fractions (200 mg/kg i.p.), the maximum effect was observed 5 h after carrageenan injection. These evidences were also supported by in vitro lipoxygenase inhibitory properties. In conclusion, R. arboreum crude methanolic extract and its fractions exhibited anti-inflammatory and antinociceptive effects. For these reasons, this plant could be a promising source of new compounds for the management of pain and inflammatory diseases. PMID:25501256

  2. Anti-inflammatory activity of Euphorbia aegyptiaca extract in rats

    PubMed Central

    Abo-dola, Marium A.; Lutfi, Mohamed F.

    2016-01-01

    Background There were no studies on the anti-inflammatory activity of Euphorbia aegyptiaca, though it is commonly used by Sudanese herbalists in the treatment of rheumatoid arthritis. Objectives To determine phytochemical constituents of Euphorbia aegyptiaca To investigate the anti-inflammatory activity of Euphorbia aegyptiaca in rats. Methodology Plant material was extracted by ethanol and phytochemical screening was done according to standard methods. The thickness of Albino rats’ paws were measured before injection of 0.1 ml of 1% formalin in the sub planter region and then, 1, 2, 3, 4 and 24 hours after oral dose of ethanolic extract of Euphorbia aegyptiaca at a rate of 400mg/kg, 800mg/kg, indomethacin (5mg/kg) and normal saline (5ml/kg). Edema inhibition percentage (EI%) and mean paw thickness (MPT) were measured in the different groups and compared using appropriate statistical methods. Results The phytochemical screening revealed the presence of saponins, cumarins, flavonoids, tannins, sterols, triterpenes, and absence of alkaloids, anthraquinones glycosides and cyanogenic glycosides. The mean of EI% of rats treated with indomethacin at a dose of 5 mg/kg over different time intervals (64.0%) was significantly lower compared to those treated with Euphorbia aegyptiaca at a dose of 800 mg/kg (75.0%, P< 0.001), but higher compared to rats treated at higher dose of 400 mg/kg (57.4%, P< 0.001). In contrast, MPT of rats treated with indomethacin at a dose of 5 mg/kg (6.5±1.1 mm) was significantly higher compared to those treated with Euphorbia aegyptiaca at a dose of 800 mg/kg (6.1±.7 mm, P< 0.001) as well as 400 mg/kg (5.9±.5, P< 0.001). Conclusion Euphorbia aegyptiaca ethanolic extract has a sustained dose-dependent anti-inflammatory activity. PMID:27004059

  3. Anti-inflammatory and vascularprotective properties of 8-prenylapigenin.

    PubMed

    Paoletti, Tiziana; Fallarini, Silvia; Gugliesi, Francesca; Minassi, Alberto; Appendino, Giovanni; Lombardi, Grazia

    2009-10-12

    Flavonoids display several biological activities, but exhibit poor oral absorption and rapid metabolism. To improve their pharmacological profile four C8-prenyl flavonoids, structurally related to the anti-inflammatory lead apigenin, were synthesized, and the two least cytotoxic (IC(50)>30 microM) compounds [8-prenylnaringenin (8-PN) and 8-prenylapigenin (8-PA)] in RAW 264.7 murine macrophages were assayed against a panel of biological targets. The anti-inflammatory properties of these compounds were evaluated in an in vitro model of inflammation [cells exposed to 0.1 microg/ml lipopolysaccharide (LPS) for 24h]. Both 8-PN and 8-PA were equally effective and potent in inhibiting the LPS-induced gene expression [tumor necrosis factor (TNF)-alpha, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2] (RT-PCR) and release (ELISA) of pro-inflammatory mediators [TNF-alpha, NO, prostaglandin (PG)E(2)], through mechanisms involving the inhibition of nuclear factor-kappaB (NF-kappaB) activation (EMSA) and reactive oxygen species accumulation [2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) determination]. One-digit nM concentrations of 8-PN or 8-PA induced a significant increase in the basal production of the atheroprotective prostacyclin (PGI(2)) by human umbilical vein endothelial cells (HUVEC), with maximal effects at 10 nM. Both NS-398, a specific COX-2 inhibitor, and ICI 182 780, a non-selective estrogen receptor antagonist, abolished the activity of these compounds, suggesting a COX- and estrogen receptor-dependent mechanism of activity. 8-PA, a weaker estrogenic compound than 8-PN, resulted only 2-fold less potent than 8-PN in potentiating PGI(2) production by HUVEC, qualifying this C8-prenyl flavonoid as a lead for the rational design of new anti-inflammatory and vascularprotective compounds. PMID:19686724

  4. The anti-inflammatory effect of a glycosylation product derived from the high hydrostatic pressure enzymatic hydrolysate of a flatfish byproduct.

    PubMed

    Choe, In-Hu; Jeon, Hyeon Jin; Eom, Sung-Hwan; Han, Young-Ki; Kim, Yoon Sook; Lee, Sang-Hoon

    2016-06-15

    In this study, flatfish byproducts were hydrolyzed by Protamex at high hydrostatic pressure and glycosylated with ribose to utilize the protein of flatfish byproducts as a nutraceutical. We investigated the anti-inflammatory effects of glycosylated fish byproduct protein hydrolysate (GFPH) and its anti-inflammatory mechanisms were elucidated in lipopolysaccharide (LPS)-stimulated RAW 264.7 mouse macrophage. The results showed that GFPH suppresses LPS-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) dose-dependently. The enzyme-linked immunosorbent assay (ELISA) kit clearly demonstrated that GFPH significantly reduced the production of pro-inflammatory cytokines such as, interleukin (IL)-6, interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein (MCP)-1. Moreover, GFPH reduced nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) activation. These results indicate that the inhibitory effects of GFPH on LPS-induced NO and PGE2 production might be due to the suppression of the NF-κB and MAPKs signaling pathways. Therefore, these results suggest that flatfish byproducts are latent bioactive resources and GFPH may have potential as a therapeutic agent in the treatment of various inflammatory diseases. PMID:27068102

  5. Anti-Inflammatory Effect of Procyanidins from Wild Grape (Vitis amurensis) Seeds in LPS-Induced RAW 264.7 Cells

    PubMed Central

    Bak, Min-Ji; Truong, Van Long; Kang, Hey-Sook; Jun, Mira; Jeong, Woo-Sik

    2013-01-01

    In the present study, the anti-inflammatory effect and underlying mechanisms of wild grape seeds procyanidins (WGP) were examined using lipopolysaccharide- (LPS-) stimulated RAW 264.7 cells. We used nitric oxide (NO) and prostaglandin E2 (PGE2) and reactive oxygen species (ROS) assays to examine inhibitory effect of WGP and further investigated the mechanisms of WGP suppressed LPS-mediated genes and upstream expression by Western blot and confocal microscopy analysis. Our data indicate that WGP significantly reduced NO, PGE2, and ROS production and also inhibited the expression of proinflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions. Consistently, WGP significantly reduced LPS-stimulated expression of proinflammatory cytokines such as tumor necrosis factor α (TNF-α) and interleukin- (IL-) 1β. Moreover, WGP prevented nuclear translocation of nuclear factor-κB (NFκB) p65 subunit by reducing inhibitory κB-α (IκBα) and NFκB phosphorylation. Furthermore, we found that WGP inhibited LPS-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK). Taken together, our results demonstrated that WGP exerts potent anti-inflammatory activity through the inhibition of iNOS and COX-2 by regulating NFκB and p38 MAPK pathway. PMID:24260615

  6. Alpha-Pinene Exhibits Anti-Inflammatory Activity Through the Suppression of MAPKs and the NF-κB Pathway in Mouse Peritoneal Macrophages.

    PubMed

    Kim, Dae-Seung; Lee, Hyun-Ja; Jeon, Yong-Deok; Han, Yo-Han; Kee, Ji-Ye; Kim, Hyun-Jeong; Shin, Hyun-Ji; Kang, JongWook; Lee, Beom Su; Kim, Sung-Hoon; Kim, Su-Jin; Park, Sang-Hyun; Choi, Byung-Min; Park, Sung-Joo; Um, Jae-Young; Hong, Seung-Heon

    2015-01-01

    In this study, we found that alpha-pinene (α-pinene) exhibits anti-inflammatory activity through the suppression of mitogen-activated protein kinases (MAPKs) and the nuclear factor-kappa B (NF-κB) pathway in mouse peritoneal macrophages. α-Pinene is found in the oils of many coniferous trees and rosemary. We investigated the inhibitory effects of α-Pinene on inflammatory responses induced by lipopolysaccharide (LPS) using mouse peritoneal macrophages. α-Pinene significantly decreased the LPS-induced production of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and nitric oxide (NO). α-Pinene also inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions in LPS-stimulated macrophages. Additionally, the activations of MAPKs and NF-κB were attenuated by means of α-pinene treatment. These results indicate that α-pinene has an anti-inflammatory effect and that it is a potential candidate as a new drug to treat various inflammatory diseases. PMID:26119957

  7. Induction of heme oxygenase-1 mediates the anti-inflammatory effects of the ethanol extract of Rubus coreanus in murine macrophages.

    PubMed

    Park, Jun Hong; Oh, Sun-Mee; Lim, Soon Sung; Lee, Yeon Sil; Shin, Hyun-Kyung; Oh, Yang-Seok; Choe, Nong-Hoon; Park, Jung Han Yoon; Kim, Jin-Kyung

    2006-12-01

    Foods of plant origin, especially fruits and vegetables, draw increased attention because of their potential benefits to human health. The aim of the present study was to determine in vitro anti-inflammatory activity of four different extracts obtained from the fruits of Rubus coreanus (aqueous and ethanol extracts of unripe and ripe fruits). Among the four extracts, the ethanol extract of unripe fruits of R. coreanus (URCE) suppressed nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production in lipopolysaccharide (LPS)-stimulated RAW264.7 murine macrophages. We also demonstrated that URCE by itself is a potent inducer of heme oxygenase-1 (HO-1). Inhibition of HO-1 activity by tin protoporphyrin, a specific HO-1 inhibitor, suppressed the URCE-induced reductions in the production of NO and PGE(2) as well as the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2). Our data suggest that URCE exerts anti-inflammatory effects in macrophages via activation of the HO-1 pathway and helps to elucidate the mechanism underlying the potential therapeutic value of R. coreanus extracts. PMID:17049489

  8. Anti-inflammatory activity of Abutilon indicum extract.

    PubMed

    Tripathi, Priyanka; Chauhan, N S; Patel, J R

    2012-01-01

    Abutilon indicum Linn. had been broadly used for its reported biological activities in indigenous system of medicine. The ethanolic extract of the whole plant of A. indicum Linn. was evaluated for its anti-inflammatory activity at doses 250, 500 and 750 mg kg⁻¹ using the carrageenan-induced paw oedema in healthy Wistar albino rats. Results of in vivo activity led to the conclusion that the ethanolic extract of A. indicum showed predominantly significant activity in a dose-dependent manner, which is comparable to the reference standard ibuprofen. The results prove the traditional use of plant in the treatment of inflammation. PMID:21999427

  9. Natural anti-inflammatory agents for pain relief

    PubMed Central

    Maroon, Joseph C.; Bost, Jeffrey W.; Maroon, Adara

    2010-01-01

    The use of both over-the-counter and prescription nonsteroidal medications is frequently recommended in a typical neurosurgical practice. But persistent long-term use safety concerns must be considered when prescribing these medications for chronic and degenerative pain conditions. This article is a literature review of the biochemical pathways of inflammatory pain, the potentially serious side effects of nonsteroidal drugs and commonly used and clinically studied natural alternative anti-inflammatory supplements. Although nonsteroidal medications can be effective, herbs and dietary supplements may offer a safer, and often an effective, alternative treatment for pain relief, especially for long-term use. PMID:21206541

  10. Multiple cutaneous sensitization to nonsteroidal anti-inflammatory drugs.

    PubMed

    Gonzalo, M A; Revenga, F

    1996-01-01

    The use of topical nonsteroidal anti-inflammatory drugs is widespread (particularly in countries bordering the Mediterranean). Compared to their wide use, the incidence of published adverse cutaneous effects appears minimal, although they are increasing. Most of them are a form of allergic contact dermatitis (ACD). Multiple sensitization and/or cross-reactions are rarely reported. Interestingly, our patient presented ACD with diclofenac and etofenamate (both from different chemical groups) and, furthermore, patch tests were positive with bencydamine and indomethacin (both indolacetic acid derivatives), piroxicam and fepradinol. We think that our results could not be explained due to cross-reactivity, and that multiple sensitization was more likely. PMID:8864624

  11. Synthesis and anti-inflammatory activity of indole glucosinolates.

    PubMed

    Vo, Quan V; Trenerry, Craige; Rochfort, Simone; Wadeson, Jenny; Leyton, Carolina; Hughes, Andrew B

    2014-01-15

    The nitronate and nitrovinyl methods to synthesize indole glucosinolates (GLs) have been investigated. The results were applied to generally the most prevalent natural indole glucosinolates to synthesize 4-methoxyglucobrassicin (MGB) and neo-glucobrassicin (NGB) in moderate overall yield for the first time. The anti-inflammatory activity of the synthetic indole GLs was determined by inhibition of TNF-α secretion in LPS-stimulated THP-1 cells. The data showed that glucobrassicin (GB) exhibited higher activity than other synthetic indolyl GLs. PMID:24360830

  12. Anti-inflammatory and immunosuppressive drugs and reproduction

    PubMed Central

    Østensen, Monika; Khamashta, Munther; Lockshin, Michael; Parke, Ann; Brucato, Antonio; Carp, Howard; Doria, Andrea; Rai, Raj; Meroni, Pierluigi; Cetin, Irene; Derksen, Ronald; Branch, Ware; Motta, Mario; Gordon, Caroline; Ruiz-Irastorza, Guillermo; Spinillo, Arsenio; Friedman, Deborah; Cimaz, Rolando; Czeizel, Andrew; Piette, Jean Charles; Cervera, Ricard; Levy, Roger A; Clementi, Maurizio; De Carolis, Sara; Petri, Michelle; Shoenfeld, Yehuda; Faden, David; Valesini, Guido; Tincani, Angela

    2006-01-01

    Rheumatic diseases in women of childbearing years may necessitate drug treatment during a pregnancy, to control maternal disease activity and to ensure a successful pregnancy outcome. This survey is based on a consensus workshop of international experts discussing effects of anti-inflammatory, immunosuppressive and biological drugs during pregnancy and lactation. In addition, effects of these drugs on male and female fertility and possible long-term effects on infants exposed to drugs antenatally are discussed where data were available. Recommendations for drug treatment during pregnancy and lactation are given. PMID:16712713

  13. Terpenoids with anti-inflammatory activity from Abies chensiensis.

    PubMed

    Zhao, Qian-Qian; Wang, Shu-Fang; Li, Ya; Song, Qiu-Yan; Gao, Kun

    2016-06-01

    The phytochemical investigation of Abies chensiensis led to the isolation and identification of nine new compounds including eight triterpenoids (1-8) and a new abietane-type diterpene (9), along with three known compounds (10-12). The absolute configuration of 9 was assigned by X-ray diffraction analysis. Compounds 1-11 were evaluated for the anti-inflammatory activity. Among the tested compounds, 1, 2, 5 and 6 exhibited potent inhibitory activity with IC50 values of 15.97, 18.73, 20.18 and 10.97μM, respectively. PMID:27080759

  14. A study of the mechanisms underlying the anti-inflammatory effect of ellagic acid in carrageenan-induced paw edema in rats

    PubMed Central

    Mansouri, Mohammad Taghi; Hemmati, Ali Asghar; Naghizadeh, Bahareh; Mard, Seyyed Ali; Rezaie, Anahita; Ghorbanzadeh, Behnam

    2015-01-01

    Objectives: Ellagic acid (EA) has shown antinociceptive and anti-inflammatory effects. Inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2) enzymes and also cytokines play a key role in many inflammatory conditions. This study was aimed to investigate the mechanisms involved in the anti-inflammatory effect of EA. Materials and Methods: Carrageenan-induced mouse paw edema model was used for induction of inflammation. Results: The results showed that intraplantar injection of carrageenan led to time-dependent development of peripheral inflammation, which resulted in a significant increase in the levels of tumor necrosis factor α (TNF-α) and interleukin 1 (IL-1) β, nitric oxide (NO) and prostaglandin E2 (PGE2) and also iNOS and COX-2 protein expression in inflamed paw. However, systemic administration of EA (1–30 mg/kg, intraperitoneal [i.p.]) could reduce edema in a dose-dependent fashion in inflamed rat paws with ED50 value 8.41 (5.26–14.76) mg/kg. It decreased the serum concentration of NO, PGE2, aspartate aminotransferase and alanine aminotransferase, and suppress the protein expression of iNOS, COX-2 enzymes, and attenuated the formation of PGE2, TNF-α and IL-1 β in inflamed paw tissue. We also demonstrated that EA significantly decreased the malondialdehyde (MDA) level in liver at 5 h after carrageenan injection. Moreover, histopathological studies indicated that EA significantly diminished migration of polymorphonuclear leukocytes into site of inflammation, as did indomethacin. Conclusions: Collectively, the anti-inflammatory mechanisms of EA might be related to the decrease in the level of MDA, iNOS, and COX-2 in the edema paw via the suppression of pro-inflammatory cytokines (TNFα, IL1 β), NO and PGE2 overproduction. PMID:26069367

  15. Analgesic and anti-Inflammatory effect of UP3005, a botanical composition Containing two standardized extracts of Uncaria gambir and Morus alba

    PubMed Central

    Yimam, Mesfin; Lee, Young-Chul; Kim, Tae-Woo; Moore, Breanna; Jiao, Ping; Hong, Mei; Kim, Hyun-Jin; Nam, Jeong-Bum; Kim, Mi-Ran; Oh, Jin-Sun; Cleveland, Sabrina; Hyun, Eu-Jin; Chu, Min; Jia, Qi

    2015-01-01

    Background: Osteoarthritis (OA) is a chronic debilitating degenerative joint disease characterized by cartilage degradation and synovial inflammation exhibited by clinical symptoms such as joint swelling, synovitis, and inflammatory pain. Present day pain relief therapeutics heavily relies on the use of prescription and over the counter nonsteroidal anti-inflammatory drugs as the first line of defense where their long-term usage causes detrimental gastrointestinal and cardiovascular-related side-effects. As a result, the need for evidence based safer and efficacious alternatives from natural sources to overcome the most prominent and disabling symptoms of arthritis is a necessity. Materials and Methods: Describe the anti-inflammatory and analgesic effect of UP3005, a composition that contains a standardized blend of two extracts from the leaf of Uncaria gambir and the root bark of Morus alba in carrageenan-induced rat paw edema, abdominal constriction (writhing’s) and ear swelling assays in mouse with oral dose ranges of 100–400 mg/kg. Results: In vivo, statistically significant improvement in pain resistance, and suppression of paw edema and ear thickness in animals treated with UP3005 were observed compared with vehicle-treated diseased rats and mice. Ibuprofen was used a reference compound in all the studies. In vitro, enzymatic inhibition activities of UP3005 were determined with IC50 values of 12.4 μg/ml, 39.8 μg/ml and 13.6 μg/ml in cyclooxygenase-2 (COX-1), COX-2 and lipoxygenase (5-LOX) enzyme activity assay, respectively. Conclusions: These data suggest that UP3005, analgesic and anti-inflammatory agent of botanical origin with balanced dual COX-LOX inhibition activity, could potentially be used for symptom management of OA. PMID:26109786

  16. New compound, 5-O-isoferuloyl-2-deoxy-D-ribono-γ-lacton from Clematis mandshurica: Anti-inflammatory effects in lipopolysaccharide-stimulated BV2 microglial cells.

    PubMed

    Dilshara, Matharage Gayani; Lee, Kyoung-Tae; Lee, Chang-Min; Choi, Yung Hyun; Lee, Hak-Ju; Choi, Il-Whan; Kim, Gi-Young

    2015-01-01

    Microglia are main immune cells to exacerbate neural disorders in persistent overactivating. Therefore, it is a good strategy to regulate microglia for the treatment of neural disorders. In the present study, we isolated and characterized a novel compound, 5-O-isoferuloyl-2-deoxy-D-ribono-γ-lacton (5-DRL) from Clematis mandshurica, and evaluated its anti-inflammatory effect in lipopolysaccharide (LPS)-treated BV2 microglial cells. 5-DRL inhibited the expression of LPS-stimulated proinflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2), as well as their regulatory genes inducible NO syntheses (iNOS) and cyclooxygenase-2 (COX-2). 5-DRL also downregulated the LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB) through suppression of the nuclear translocation of the NF-κB subunits, p65 and p50. Consistent with the inhibition of iNOS and COX-2 via NF-κB activity with 5-DRL, an inhibitor of NF-κB, pyrrolidine dithiocarbamate (PDTC), also led to the suppression of LPS-induced iNOS and COX-2 expression. Additionally, 5-DRL corresponding with antioxidants, N-acetylcysteine (NAC) and glutathione (GSH), remarkably inhibited reactive oxygen species (ROS) generation. Both NAC and GSH, thus attenuated the expression of iNOS and COX-2 by suppressing NF-κB activation, indicating that 5-DRL suppresses LPS-induced iNOS and COX-2 expression through downregulation of the ROS-dependent NF-κB signaling pathway. The present study also indicated that 5-DRL suppresses NO and PGE2 production by inducing heme oxygenase-1 (HO-1) via nuclear factor erythroid 2-related factor 2 (Nrf2). Taken together, the present data indicate that 5-DRL attenuates the production of proinflammatory mediators such as NO and PGE2 as well as their regulatory genes in LPS-stimulated BV2 microglial cells by inhibiting ROS-dependent NF-κB activation and stimulating the Nrf2/HO-1 signal pathway. These data may be implicated in the application of 5-DRL in LPS

  17. The Crosstalk Between Nrf2 and AMPK Signal Pathways Is Important for the Anti-Inflammatory Effect of Berberine in LPS-Stimulated Macrophages and Endotoxin-Shocked Mice

    PubMed Central

    Mo, Chunfen; Wang, Ling; Zhang, Jie; Numazawa, Satoshi; Tang, Hong; Tang, Xiaoqiang; Han, XiaoJuan; Li, Junhong; Yang, Ming; Wang, Zhe; Wei, Dandan

    2014-01-01

    Abstract Aims: The response of AMP-activated protein kinase (AMPK) to oxidative stress has been recently reported but the downstream signals of this response are largely unknown. Meanwhile, the upstream events for the activation of nuclear factor erythroid-2-related factor-2 (Nrf2), a critical transcriptional activator for antioxidative responses, remain unclear. In the present study, we investigated the relationship between AMPK and Nrf2 signal pathways in lipopolysaccharide (LPS)-triggered inflammatory system, in which berberine (BBR), a known AMPK activator, was used for inflammation suppression. Results and Innovation: In inflammatory macrophages, BBR attenuated LPS-induced expression of inflammatory genes (inducible nitric oxide synthase [iNOS], cyclooxygenase-2 [COX2], interleukin [IL]-6), and the generation of nitric oxide and reactive oxygen species, but increased the transcription of Nrf2-targeted antioxidative genes (NADPH quinone oxidoreductase-1 [NQO-1], heme oxygenase-1 [HO-1]), as well as the nuclear localization and phosphorylation of Nrf2 protein. Importantly, we found BBR-induced activation of Nrf2 is AMPK-dependent, as either pharmacologically or genetically inactivating AMPK blocked the activation of Nrf2. Consistent with in vitro experiments, BBR down-regulated the expression of proinflammatory genes but upregulated those of Nrf2-targeted genes in lungs of LPS-injected mice, and these effects were attenuated in Nrf2-deficient mice. Moreover, the effect of BBR on survival time extension and plasma redox regulation in endotoxin-shocked mice was largely weakened when Nrf2-depleted. Conclusions: Our results demonstrate convergence between AMPK and Nrf2 pathways and this intersection is essential for anti-inflammatory effect of BBR in LPS-stimulated macrophages and endotoxin-shocked mice. Uncovering this intersection is significant for understanding the relationship between energy homeostasis and antioxidative responses and may be beneficial for

  18. Actions and toxicity of nonsteroidal anti-inflammatory drugs.

    PubMed

    Simon, L S

    1996-05-01

    Use of nonsteroidal anti-inflammatory drugs (NSAIDs) continues to be an important therapeutic intervention throughout the world for patients with pain and inflammation. The six major classes of NSAIDs (including the salicylates) bear the common property of inhibiting cyclooxygenase, the enzyme that catalyzes the synthesis of cyclic endoperoxides from arachidonic acid to yield prostaglandins. Anecdotal evidence has accumulated that the nonacetylated salicylates are as efficacious as the other NSAIDs, but there have been few controlled trials demonstrating that they are reasonable anti-inflammatory agents. This paper discusses the newest of the available clinical observations that nonacetylated salicylates are as efficacious as one of the newer NSAIDs in patients with rheumatoid arthritis. Because the nonacetylated salicylates are weak prostaglandin inhibitors, several other non-prostaglandin mediated mechanisms of action for the NSAIDs have been postulated and are described in this paper. In addition to papers describing NSAID effects on cartilage, this year several interesting papers described further effects of tenidap, a novel NSAID presently in development. Other papers reviewed attempts to develop NSAIDs with less severe gastrointestinal effects. Some reports discuss the use of topical NSAIDs, which are not clearly better than oral preparations. Data are also reviewed demonstrating that misoprostol effectively decreased significant poor gastrointestinal outcomes in patients who were treated with this NSAID for 6 months. New treatment regimens for decreasing misoprostol-induced toxicity are also reviewed. Finally, the effects of NSAID prophylaxis in preventing heterotopic bone formation in patients with osteoarthritis who undergo hip replacement surgery are noted. PMID:8796974

  19. Anticancer and anti-inflammatory activities of some dietary cucurbits.

    PubMed

    Sharma, Dhara; Rawat, Indu; Goel, H C

    2015-04-01

    In this study, we investigated few dietary cucurbits for anticancer activity by monitoring cytotoxic (MTT and LDH assays), apoptotic (caspase-3 and annexin-V assays), and also their anti-inflammatory effects by IL-8 cytokine assay. Aqua-alcoholic (50:50) whole extracts of cucurbits [Lagenaria siceraria (Ls), Luffa cylindrica (Lc) and Cucurbita pepo (Cp)] were evaluated in colon cancer cells (HT-29 and HCT-15) and were compared with isolated biomolecule, cucurbitacin-B (Cbit-B). MTT and LDH assays revealed that the cucurbit extracts and Cbit-B, in a concentration dependent manner, decreased the viability of HT-29 and HCT-15 cells substantially. The viability of lymphocytes was, however, only marginally decreased, yielding a potential advantage over the tumor cells. Caspase-3 assay revealed maximum apoptosis with Ls while annexin V assay demonstrated maximum efficacy of Lc in this context. These cucurbits have also shown decreased secretion of IL-8, thereby revealing their anti-inflammatory capability. The results have demonstrated the therapeutic potential of dietary cucurbits in inhibiting cancer and inflammatory cytokine. PMID:26011982

  20. Molecular Targets of Dietary Polyphenols with Anti-inflammatory Properties

    PubMed Central

    Yoon, Joo-Heon

    2005-01-01

    There is persuasive epidemiological and experimental evidence that dietary polyphenols have anti-inflammatory activity. Aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) have long been used to combat inflammation. Recently, cyclooxygenase (COX) inhibitors have been developed and recommended for treatment of rheumatoid arthritis (RA) and osteoarthritis (OA). However, two COX inhibitors have been withdrawn from the market due to unexpected side effects. Because conventional therapeutic and surgical approaches have not been able to fully control the incidence and outcome of many inflammatory diseases, there is an urgent need to find safer compounds and to develop mechanism-based approaches for the management of these diseases. Polyphenols are found in many dietary plant products, including fruits, vegetables, beverages, herbs, and spices. Several of these compounds have been found to inhibit the inflammation process as well as tumorigenesis in experimental animals; they can also exhibit potent biological properties. In addition, epidemiological studies have indicated that populations who consume foods rich in specific polyphenols have lower incidences of inflammatory disease. This paper provides an overview of the research approaches that can be used to unravel the biology and health effects of polyphenols. Polyphenols have diverse biological effects, however, this review will focus on some of the pivotal molecular targets that directly affect the inflammation process. PMID:16259055

  1. Anti-inflammatory Cerebrosides from Cultivated Cordyceps militaris.

    PubMed

    Chiu, Ching-Peng; Liu, Shan-Chi; Tang, Chih-Hsin; Chan, You; El-Shazly, Mohamed; Lee, Chia-Lin; Du, Ying-Chi; Wu, Tung-Ying; Chang, Fang-Rong; Wu, Yang-Chang

    2016-02-24

    Cordyceps militaris (bei-chong-chaw, northern worm grass) is a precious and edible entomopathogenic fungus, which is widely used in traditional Chinese medicine (TCM) as a general booster for the nervous system, metabolism, and immunity. Saccharides, nucleosides, mannitol, and sterols were isolated from this fungus. The biological activity of C. militaris was attributed to the saccharide and nucleoside contents. In this study, the aqueous methanolic fraction of C. militaris fruiting bodies exhibited a significant anti-inflammatory activity. Bioactivity-guided fractionation of the active fraction led to the isolation of eight compounds, including one new and two known cerebrosides (ceramide derivatives), two nucleosides, and three sterols. Cordycerebroside A (1), the new cerebroside, along with soyacerebroside I (2) and glucocerebroside (3) inhibited the accumulation of pro-inflammatory iNOS protein and reduced the expression of COX-2 protein in LPS-stimulated RAW264.7 macrophages. This is the first study on the isolation of cerebrosides with anti-inflammatory activity from this TCM. PMID:26853111

  2. Immunosuppressive and anti-inflammatory properties of engineered nanomaterials

    PubMed Central

    Ilinskaya, A N; Dobrovolskaia, M A

    2014-01-01

    Nanoparticle interactions with various components of the immune system are determined by their physicochemical properties such as size, charge, hydrophobicity and shape. Nanoparticles can be engineered to either specifically target the immune system or to avoid immune recognition. Nevertheless, identifying their unintended impacts on the immune system and understanding the mechanisms of such accidental effects are essential for establishing a nanoparticle's safety profile. While immunostimulatory properties have been reviewed before, little attention in the literature has been given to immunosuppressive and anti-inflammatory properties. The purpose of this review is to fill this gap. We will discuss intended immunosuppression achieved by either nanoparticle engineering, or the use of nanoparticles to carry immunosuppressive or anti-inflammatory drugs. We will also review unintended immunosuppressive properties of nanoparticles per se and consider how such properties could be either beneficial or adverse. Linked Articles This article is part of a themed section on Nanomedicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-17 PMID:24724793

  3. Anti-inflammatory strategies in the treatment of schizophrenia.

    PubMed

    Andrade, Chittaranjan

    2016-01-01

    Schizophrenia is a major mental illness with a lifetime prevalence of about 1%. Antipsychotic drugs, with a primary mechanism of action that involves dopamine receptor blockade, are the mainstay in the treatment of the disorder. However, despite optimum antipsychotic treatment, few patients return to pre-morbid levels; the treatment deficit includes refractory positive symptoms, negative symptoms, mood impairments, cognitive impairments, social impairments, and/or a variety of medication-related adverse effects, including extrapyramidal symptoms, metabolic disturbances, hyperprolactinemia, and others. To address these, antipsychotic treatment has been augmented with psychosocial interventions, cognitive rehabilitation, different kinds of electrical and magnetic brain stimulation, and a large range of drugs from the neuropsychiatric as well as, surprise, the general medical pharmacopeia. The pleomorphic pathophysiology of schizophrenia includes abnormalities in immunological and inflammatory pathways, and so it is not surprising that anti-inflammatory drugs have also been trialed as augmentation agents in schizophrenia. This article critically examines the outcomes after augmentation with conventional anti-inflammatory interventions; results from randomized controlled trials do not encourage the use of either aspirin (1000 mg/day) or celecoxib (400 mg/day), both of which have been studied for this indication during the past decade and a half. PMID:26427750

  4. Nanoliposomal Nitroglycerin Exerts Potent Anti-Inflammatory Effects

    PubMed Central

    Ardekani, Soroush; Scott, Harry A.; Gupta, Sharad; Eum, Shane; Yang, Xiao; Brunelle, Alexander R.; Wilson, Sean M.; Mohideen, Umar; Ghosh, Kaustabh

    2015-01-01

    Nitroglycerin (NTG) markedly enhances nitric oxide (NO) bioavailability. However, its ability to mimic the anti-inflammatory properties of NO remains unknown. Here, we examined whether NTG can suppress endothelial cell (EC) activation during inflammation and developed NTG nanoformulation to simultaneously amplify its anti-inflammatory effects and ameliorate adverse effects associated with high-dose NTG administration. Our findings reveal that NTG significantly inhibits human U937 cell adhesion to NO-deficient human microvascular ECs in vitro through an increase in endothelial NO and decrease in endothelial ICAM-1 clustering, as determined by NO analyzer, microfluorimetry, and immunofluorescence staining. Nanoliposomal NTG (NTG-NL) was formulated by encapsulating NTG within unilamellar lipid vesicles (DPhPC, POPC, Cholesterol, DHPE-Texas Red at molar ratio of 6:2:2:0.2) that were ~155 nm in diameter and readily uptaken by ECs, as determined by dynamic light scattering and quantitative fluorescence microscopy, respectively. More importantly, NTG-NL produced a 70-fold increase in NTG therapeutic efficacy when compared with free NTG while preventing excessive mitochondrial superoxide production associated with high NTG doses. Thus, these findings, which are the first to reveal the superior therapeutic effects of an NTG nanoformulation, provide the rationale for their detailed investigation for potentially superior vascular normalization therapies. PMID:26584637

  5. Nanoliposomal Nitroglycerin Exerts Potent Anti-Inflammatory Effects

    NASA Astrophysics Data System (ADS)

    Ardekani, Soroush; Scott, Harry A.; Gupta, Sharad; Eum, Shane; Yang, Xiao; Brunelle, Alexander R.; Wilson, Sean M.; Mohideen, Umar; Ghosh, Kaustabh

    2015-11-01

    Nitroglycerin (NTG) markedly enhances nitric oxide (NO) bioavailability. However, its ability to mimic the anti-inflammatory properties of NO remains unknown. Here, we examined whether NTG can suppress endothelial cell (EC) activation during inflammation and developed NTG nanoformulation to simultaneously amplify its anti-inflammatory effects and ameliorate adverse effects associated with high-dose NTG administration. Our findings reveal that NTG significantly inhibits human U937 cell adhesion to NO-deficient human microvascular ECs in vitro through an increase in endothelial NO and decrease in endothelial ICAM-1 clustering, as determined by NO analyzer, microfluorimetry, and immunofluorescence staining. Nanoliposomal NTG (NTG-NL) was formulated by encapsulating NTG within unilamellar lipid vesicles (DPhPC, POPC, Cholesterol, DHPE-Texas Red at molar ratio of 6:2:2:0.2) that were ~155 nm in diameter and readily uptaken by ECs, as determined by dynamic light scattering and quantitative fluorescence microscopy, respectively. More importantly, NTG-NL produced a 70-fold increase in NTG therapeutic efficacy when compared with free NTG while preventing excessive mitochondrial superoxide production associated with high NTG doses. Thus, these findings, which are the first to reveal the superior therapeutic effects of an NTG nanoformulation, provide the rationale for their detailed investigation for potentially superior vascular normalization therapies.

  6. Topical anti-inflammatory activity of Solanum corymbiflorum leaves.

    PubMed

    Piana, Mariana; Camponogara, Camila; Boligon, Aline Augusti; Machado, Michel Mansur; de Brum, Thiele Faccim; Oliveira, Sara Marchesan; de Freitas Bauermann, Liliane

    2016-02-17

    Solanum corymbiflorum is popularly known as "baga-de-veado" and its leaves are applied on inflamed legs, scabies, tick bite, boils, mastitis, low back pain and otitis. The aim of this study was evaluate anti-inflammatory in vivo activity and relate this activity with antioxidant compounds present in the extract of S. corymbiflorum leaves. The extract from S. corymbiflorum leaves topically applied was able to reduce the croton oil-induced ear edema and myeloperoxidase (MPO) activity with maximum inhibition of 87±3% and 45±7%, rescpectively in the dose of 1mg/ear. Similar results were found for positive control dexamethasone, which presented inhibitions of ear edema and MPO activity of 89±3% and 50±3%, respectively in a dose of 0.1mg/ear. These findings are due, at least in part, the presence of polyphenols (195.28mg GAE/g) and flavonoids, as chlorogenic acid (59.27mg/g), rutin (12.72mg/g), rosmarinic acid, caffeic acid and gallic acid found by high performance liquid chromatography (HPLC) analysis. This species showed potencial antioxidant by 1,1-diphenyl-2-picrylhydrazyl (DPPH), and carbonyl groups in proteins methods which may be related with the presence of this compounds. This species possess anti-inflammatory activity confirming their popular use for the local treatment of skin inflammatory disorders. PMID:26721215

  7. HU-444, a Novel, Potent Anti-Inflammatory, Nonpsychotropic Cannabinoid.

    PubMed

    Haj, Christeene G; Sumariwalla, Percy F; Hanuš, Lumír; Kogan, Natalya M; Yektin, Zhana; Mechoulam, Raphael; Feldmann, Mark; Gallily, Ruth

    2015-10-01

    Cannabidiol (CBD) is a component of cannabis, which does not cause the typical marijuana-type effects, but has a high potential for use in several therapeutic areas. In contrast to Δ(9)-tetrahydrocannabinol (Δ(9)-THC), it binds very weakly to the CB1 and CB2 cannabinoid receptors. It has potent activity in both in vitro and in vivo anti-inflammatory assays. Thus, it lowers the formation of tumor necrosis factor (TNF)-α, a proinflammatory cytokine, and was found to be an oral antiarthritic therapeutic in murine collagen-induced arthritis in vivo. However, in acidic media, it can cyclize to the psychoactive Δ(9)-THC. We report the synthesis of a novel CBD derivative, HU-444, which cannot be converted by acid cyclization into a Δ(9)-THC-like compound. In vitro HU-444 had anti-inflammatory activity (decrease of reactive oxygen intermediates and inhibition of TNF-α production by macrophages); in vivo it led to suppression of production of TNF-α and amelioration of liver damage as well as lowering of mouse collagen-induced arthritis. HU-444 did not cause Δ(9)-THC-like effects in mice. We believe that HU-444 represents a potential novel drug for rheumatoid arthritis and other inflammatory diseases. PMID:26272937

  8. Anti-inflammatory, antiapoptotic, and antioxidant activity of fluoxetine.

    PubMed

    Caiaffo, Vitor; Oliveira, Belisa D R; de Sá, Fabrício B; Evêncio Neto, Joaquim

    2016-06-01

    Fluoxetine is a selective serotonin uptake inhibitor that has been widely used to determine the neurotransmission of serotonin in the central nervous system. This substance has emerged as the drug of choice for the treatment of depression due to is safer profile, fewer side effects, and greater tolerability. Studies have found the following important functions of fluoxetine related to the central nervous system: neuroprotection; anti-inflammatory properties similar to standard drugs for the treatment of inflammatory conditions; antioxidant properties, contributing to its therapeutic action and an important intracellular mechanism underlying the protective pharmacological effects seen in clinical practice in the treatment of different stress-related adverse health conditions; and antiapoptotic properties, with greater neuron survival and a reduction in apoptosis mediators as well as oxidative substances, such as superoxide dismutase and hydrogen peroxide. The aim of this study was to perform a review of the literature on the important role of fluoxetine in anti-inflammatory, cell survival, and neuron trophicity mechanisms (antiapoptotic properties) as well as its role regarding enzymes of the antioxidant defense system. PMID:27433341

  9. A novel anti-inflammatory peptide from human lipocortin 5.

    PubMed Central

    Perretti, M.; Becherucci, C.; Mugridge, K. G.; Solito, E.; Silvestri, S.; Parente, L.

    1991-01-01

    1. A novel anti-inflammatory peptide (residues 204-212) of human recombinant lipocortin 5 (hrLC5) found on the high similarity region with uteroglobin is described. 2. Peptide 204-212 dose-dependently inhibited the contractions of rat isolated stomach strips elicited by porcine pancreatic phospholipase A2 (PLA2). Contractions caused by arachidonic acid (AA), prostaglandin E2 (PGE2) and 5-hydroxytryptamine were not affected. No direct enzyme inhibition was observed in a radiochemical assay. 3. PGE2 release by both human fibroblasts and rat macrophages was reduced by peptide 204-212 in a dose-dependent manner. 4. The development of carrageenin-induced oedema in rats was significantly inhibited by the local administration of peptide 204-212. 5. The pattern and potency of the biological effects of peptide 204-212 are similar to those of antiflammin 2, a lipocortin 1-derived peptide. 6. It is suggested that peptide 204-212 may represent the active site responsible for the anti-inflammatory properties of lipocortin 5. PMID:1832064

  10. Develop Anti-Inflammatory Nanotherapies to Treat Cardiovascular Disease

    NASA Astrophysics Data System (ADS)

    Tang, Jun

    Cardiovascular disease (CVD) is the leading cause of disease-related death in the world, accounting for 30 % global mortality. The majority of CVD is caused by atherosclerosis, a chronic inflammatory disease of major arteries featured by the deposition of lipids and cholesterol. Inflammation of atherosclerosis is mainly promoted by the pathological macrophages and monocytes, and modulating their functions has been proposed as a promising therapeutic target. This dissertation first presents the development of a novel simvastatin-loaded high-density lipoprotein (HDL) based nanoparticle ([S]-rHDL), which was able to deliver anti-inflammatory simvastatin preferentially to inflammatory monocytes in the blood and to macrophages in advanced atherosclerotic plaques, leading to the reduced inflammation in the tissue. Second, extensive in vivo characterization of [S]-rHDL in a mouse atherosclerosis model revealed that the anti-inflammatory capability of [S]-rHDL derived from its effects on blood monocytes, endothelial layer, monocyte recruitment, and plaque macrophage function. Third, a translational study that integrated the use of [S]-rHDL into oral statin treatment demonstrated a great potential for this nanomedicine as an attractive addition to the current high-dose oral statin standard-of-care for acute coronary syndrome. Finally, preliminary results suggested potential applications of the rHDL platform to other macrophage-implicated diseases.

  11. Analgesic, anti-inflammatory, and antipyretic effects of Ixora coccinea.

    PubMed

    Ali Adnan, Md Syed; Al-Amin, Md Mamun; Nasir Uddin, Mir Muhammad; Shohel, M; Bhattacharjee, Rajib; Hannan, J M A; Das, Biplab Kumar

    2014-01-27

    Abstract Background: The present study was carried out to explore the potential of the ethanol extract of Ixora coccinea L. (IC) leaves as analgesic, anti-inflammatory and antipyretic agents using the hot-plate, acetic acid-induced writhing, carrageenan-induced paw edema and brewer's yeast-induced pyrexia tests in rodents. Methods: The extract was prepared by soaking the dried powdered leaves of IC in ethanol for 2 days. The filtrate thus obtained by filtration and evaporation was considered as a stock solution and was used in all experimental models. Results: Oral administration of IC (250 and 500 mg/kg) significantly (p<0.05) increased the reaction time in the hot-plate test. Ixora coccinea (250 and 500 mg/kg) produced 56.14% and 63.16% inhibition (p<0.05) in acetic acid-induced writhing. It also (250 and 500 mg/kg) produced significant (p<0.05) inhibition of paw edema pronounced at 6 h after carrageenan injection. Intraperitoneal administration of IC (250 and 500 mg/kg) lowered the body temperature in brewer's yeast-induced hyperthermia. Conclusions: Based on the findings, it may be concluded that the IC leaves possessed analgesic, anti-inflammatory, and antipyretic activities. Phytochemical constituents of IC leaves such as flavonoids, tannins, and triterpenes in ethanol extract could be correlated with its observed biological activities. PMID:24468614

  12. A Novel Anti-Inflammatory Effect for High Density Lipoprotein

    PubMed Central

    Cameron, Scott J.; Morrell, Craig N.; Bao, Clare; Swaim, AnneMarie F.; Rodriguez, Annabelle; Lowenstein, Charles J.

    2015-01-01

    High density lipoprotein has anti-inflammatory effects in addition to mediating reverse cholesterol transport. While many of the chronic anti-inflammatory effects of high density lipoprotein (HDL) are attributed to changes in cell adhesion molecules, little is known about acute signal transduction events elicited by HDL in endothelial cells. We now show that high density lipoprotein decreases endothelial cell exocytosis, the first step in leukocyte trafficking. ApoA-I, a major apolipoprotein of HDL, mediates inhibition of endothelial cell exocytosis by interacting with endothelial scavenger receptor-BI which triggers an intracellular protective signaling cascade involving protein kinase C (PKC). Other apolipoproteins within the HDL particle have only modest effects upon endothelial exocytosis. Using a human primary culture of endothelial cells and murine apo-AI knockout mice, we show that apo-AI prevents endothelial cell exocytosis which limits leukocyte recruitment. These data suggest that high density lipoprotein may inhibit diseases associated with vascular inflammation in part by blocking endothelial exocytosis. PMID:26680360

  13. Human milk anti-inflammatory component contents during acute mastitis.

    PubMed

    Buescher, E S; Hair, P S

    2001-06-15

    Mastitis is a common complication of human lactation. We examined milk specimens from eight women with clinical mastitis to determine their content of anti-inflammatory components. Antioxidant activity (spontaneous cytochrome c reducing activity), selected pro-inflammatory cytokines (IL-6, IL-1beta), selected endogenous cytokine control molecules (sIL-6R, sIL-1RII, and sTNFRI), lactoferrin, Na(+):K(+) ratios, and milk bioactivities that cause shedding of sIL-1RII from human polymorphonuclear leukocytes (PMN), suppress PMN aggregation, and suppress PMN adherence responses were not increased compared to normal milks. Neither the bioactivities that deplete PMN intracellular Ca(2+) stores nor those that block Ca(2+) influx into fMLP-stimulated PMN were significantly increased in mastitis milks. In contrast, levels of TNFalpha, sTNFRII, and IL-1RA and bioactivities that cause shedding of sTNFRI from human PMN were significantly increased compared to normal milks. Mastitis milk has the same anti-inflammatory components and characteristics of normal milk, with elevations in selected components/activities that may help protect the nursing infant from developing clinical illness due to feeding on mastitis milk. PMID:11520075

  14. A Novel Anti-Inflammatory Effect for High Density Lipoprotein.

    PubMed

    Cameron, Scott J; Morrell, Craig N; Bao, Clare; Swaim, AnneMarie F; Rodriguez, Annabelle; Lowenstein, Charles J

    2015-01-01

    High density lipoprotein has anti-inflammatory effects in addition to mediating reverse cholesterol transport. While many of the chronic anti-inflammatory effects of high density lipoprotein (HDL) are attributed to changes in cell adhesion molecules, little is known about acute signal transduction events elicited by HDL in endothelial cells. We now show that high density lipoprotein decreases endothelial cell exocytosis, the first step in leukocyte trafficking. ApoA-I, a major apolipoprotein of HDL, mediates inhibition of endothelial cell exocytosis by interacting with endothelial scavenger receptor-BI which triggers an intracellular protective signaling cascade involving protein kinase C (PKC). Other apolipoproteins within the HDL particle have only modest effects upon endothelial exocytosis. Using a human primary culture of endothelial cells and murine apo-AI knockout mice, we show that apo-AI prevents endothelial cell exocytosis which limits leukocyte recruitment. These data suggest that high density lipoprotein may inhibit diseases associated with vascular inflammation in part by blocking endothelial exocytosis. PMID:26680360

  15. Anti-inflammatory effects of fangchinoline and tetrandrine.

    PubMed

    Choi, H S; Kim, H S; Min, K R; Kim, Y; Lim, H K; Chang, Y K; Chung, M W

    2000-02-01

    Fangchinoline and tetrandrine are the major alkaloids from Stephania tetrandrae S. Moore which has been used traditionally for the treatment of inflammatory diseases in oriental countries including Korea. Both fangchinoline and tetrandrine showed anti-inflammatory effects on mouse ear edema induced by croton oil. In addition, the effects of fangchinoline and tetrandrine on cyclooxygenase, murine interleukin-5 (mIL-5) and human interleukin-6 (hIL-6) were examined in vitro to investigate the anti-inflammatory action mechanisms. One hundred micromolar of fangchinoline showed 35% of inhibition on cyclooxygenase, but the same concentration of tetrandrine did not show any inhibition. On the other hand, 12.5 microM of tetrandrine exhibited 95% of inhibition on mIL-5 activity, while fangchinoline did not show any effects. However, 4 microM of fangchinoline and 6 microM of tetrandrine showed 63 and 86% of inhibitions on hIL-6 activity, respectively. These results suggest that biochemical mechanisms of fangchinoline and tetrandrine on anti-inflammation are significantly different even though they are similar in chemical structure. PMID:10687873

  16. Cyclooxygenase-2 Mediates Anandamide Metabolism in the Mouse Brain

    PubMed Central

    Kaczocha, Martin

    2010-01-01

    Cyclooxygenase-2 (COX-2) mediates inflammation and contributes to neurodegeneration. Best known for its pathological up-regulation, COX-2 is also constitutively expressed within the brain and mediates synaptic transmission through prostaglandin synthesis. Along with arachidonic acid, COX-2 oxygenates the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol in vitro. Inhibition of COX-2 enhances retrograde signaling in the hippocampus, suggesting COX-2 mediates endocannabinoid tone in healthy brain. The degree to which COX-2 may regulate endocannabinoid metabolism in vivo is currently unclear. Therefore, we explored the effect of COX-2 inhibition on [3H]AEA metabolism in mouse brain. Although AEA is hydrolyzed primarily by fatty acid amide hydrolase (FAAH), ex vivo autoradiography revealed that COX-2 inhibition by nimesulide redirected [3H]AEA substrate from COX-2 to FAAH in the cortex, hippocampus, thalamus, and periaqueductal gray. These data indicate that COX-2 possesses the capacity to metabolize AEA in vivo and can compete with FAAH for AEA in several brain regions. Temporal fluctuations in COX-2 expression were observed in the brain, with an increase in COX-2 protein and mRNA in the hippocampus at midnight compared with noon. COX-2 immunolocalization was robust in the hippocampus and several cortical regions. Although most regions exhibited no temporal changes in COX-2 immunolocalization, increased numbers of immunoreactive cells were detected at midnight in layers II and III of the somatosensory and visual cortices. These temporal variations in COX-2 distribution reduced the enzyme's contribution toward [3H]AEA metabolism in the somatosensory cortex at midnight. Taken together, our findings establish COX-2 as a mediator of regional AEA metabolism in mouse brain. PMID:20702753

  17. Competition and allostery govern substrate selectivity of cyclooxygenase-2

    PubMed Central

    Mitchener, Michelle M.; Hermanson, Daniel J.; Shockley, Erin M.; Brown, H. Alex; Lindsley, Craig W.; Reese, Jeff; Rouzer, Carol A.; Lopez, Carlos F.; Marnett, Lawrence J.

    2015-01-01

    Cyclooxygenase-2 (COX-2) oxygenates arachidonic acid (AA) and its ester analog, 2-arachidonoylglycerol (2-AG), to prostaglandins (PGs) and prostaglandin glyceryl esters (PG-Gs), respectively. Although the efficiency of oxygenation of these substrates by COX-2 in vitro is similar, cellular biosynthesis of PGs far exceeds that of PG-Gs. Evidence that the COX enzymes are functional heterodimers suggests that competitive interaction of AA and 2-AG at the allosteric site of COX-2 might result in differential regulation of the oxygenation of the two substrates when both are present. Modulation of AA levels in RAW264.7 macrophages uncovered an inverse correlation between cellular AA levels and PG-G biosynthesis. In vitro kinetic analysis using purified protein demonstrated that the inhibition of 2-AG oxygenation by high concentrations of AA far exceeded the inhibition of AA oxygenation by high concentrations of 2-AG. An unbiased systems-based mechanistic model of the kinetic data revealed that binding of AA or 2-AG at the allosteric site of COX-2 results in a decreased catalytic efficiency of the enzyme toward 2-AG, whereas 2-AG binding at the allosteric site increases COX-2’s efficiency toward AA. The results suggest that substrates interact with COX-2 via multiple potential complexes involving binding to both the catalytic and allosteric sites. Competition between AA and 2-AG for these sites, combined with differential allosteric modulation, gives rise to a complex interplay between the substrates, leading to preferential oxygenation of AA. PMID:26392530

  18. Cantharidin-induced inflammation in mouse ear model for translational research of novel anti-inflammatories.

    PubMed

    Ivetic Tkalcevic, Vanesa; Hrvacic, Boska; Bosnar, Martina; Cuzic, Snjezana; Bosnjak, Berislav; Erakovic Haber, Vesna; Glojnaric, Ines

    2012-08-01

    The murine model of cantharidin-induced ear inflammation was profiled in detail for its alignment with the human model and to explore the mechanism of anti-inflammatory activity of the macrolide antibiotics, clarithromycin and azithromycin. Ear swelling in CD1 mice persisted for 7 days, with peak intensity at 16 h after inflammation induction. As in humans, cantharidin (12.5 μg/ear) generated macrophage-inflammatory protein (MIP)-2, monocyte chemoattractant protein (MCP)-1, keratinocyte-derived chemokine (KC), interleukin (IL)-6, IL-1β, and myeloperoxidase (MPO) production, as well as neutrophil accumulation in mouse ear tissue. The tested macrolides, clarithromycin and azithromycin, administered orally (2 × 150 mg/kg) 0.5 h before and 5 h after cantharidin challenge, reduced MIP-2, MCP-1, KC, and MPO concentrations and thereby decreased ear swelling. Our results suggest that cantharidin-induced acute inflammation represents an excellent model for translational research of novel anti-inflammatories. PMID:22677362

  19. Importance of asparagine on the conformational stability and chemical reactivity of selected anti-inflammatory peptides

    NASA Astrophysics Data System (ADS)

    Soriano-Correa, Catalina; Barrientos-Salcedo, Carolina; Campos-Fernández, Linda; Alvarado-Salazar, Andres; Esquivel, Rodolfo O.

    2015-08-01

    Inflammatory response events are initiated by a complex series of molecular reactions that generate chemical intermediaries. The structure and properties of peptides and proteins are determined by the charge distribution of their side chains, which play an essential role in its electronic structure and physicochemical properties, hence on its biological functionality. The aim of this study was to analyze the effect of changing one central amino acid, such as substituting asparagine for aspartic acid, from Cys-Asn-Ser in aqueous solution, by assessing the conformational stability, physicochemical properties, chemical reactivity and their relationship with anti-inflammatory activity; employing quantum-chemical descriptors at the M06-2X/6-311+G(d,p) level. Our results suggest that asparagine plays a more critical role than aspartic acid in the structural stability, physicochemical features, and chemical reactivity of these tripeptides. Substituent groups in the side chain cause significant changes on the conformational stability and chemical reactivity, and consequently on their anti-inflammatory activity.

  20. A functional variant of elafin with improved anti-inflammatory activity for pulmonary inflammation.

    PubMed

    Small, Donna M; Zani, Marie-Louise; Quinn, Derek J; Dallet-Choisy, Sandrine; Glasgow, Arlene M A; O'Kane, Cecilia; McAuley, Danny F; McNally, Paul; Weldon, Sinéad; Moreau, Thierry; Taggart, Clifford C

    2015-01-01

    Elafin is a serine protease inhibitor produced by epithelial and immune cells with anti-inflammatory properties. Research has shown that dysregulated protease activity may elicit proteolytic cleavage of elafin, thereby impairing the innate immune function of the protein. The aim of this study was to generate variants of elafin (GG- and QQ-elafin) that exhibit increased protease resistance while retaining the biological properties of wild-type (WT) elafin. Similar to WT-elafin, GG- and QQ-elafin variants retained antiprotease activity and susceptibility to transglutaminase-mediated fibronectin cross-linking. However, in contrast to WT-elafin, GG- and QQ-elafin displayed significantly enhanced resistance to degradation when incubated with bronchoalveolar lavage fluid from patients with cystic fibrosis. Intriguingly, both variants, particularly GG-elafin, demonstrated improved lipopolysaccharide (LPS) neutralization properties in vitro. In addition, GG-elafin showed improved anti-inflammatory activity in a mouse model of LPS-induced acute lung inflammation. Inflammatory cell infiltration into the lung was reduced in lungs of mice treated with GG-elafin, predominantly neutrophilic infiltration. A reduction in MCP-1 levels in GG-elafin treated mice compared to the LPS alone treatment group was also demonstrated. GG-elafin showed increased functionality when compared to WT-elafin and may be of future therapeutic relevance in the treatment of lung diseases characterized by a protease burden. PMID:25189740

  1. Degradable magnesium-based implant materials with anti-inflammatory activity.

    PubMed

    Peng, Qiuming; Li, Kun; Han, Zengsheng; Wang, Erde; Xu, Zhigang; Liu, Riping; Tian, Yongjun

    2013-07-01

    The objective of this study was to prepare a new biodegradable Mg-based biomaterial, which provides good mechanical integrity in combination with anti-inflammatory function during the degradation process. The silver element was used, because it improved the mechanical properties as an effective grain refiner and it is also treated as a potential anti-inflammatory core. The new degradable Mg-Zn-Ag biomaterial was prepared by zone solidification technology and extrusion. The mechanical properties were mostly enhanced by fine grain strengthening. In addition, the alloys exhibited good cytocompatibility. The anti-inflammatory function of degradation products was identified by both interleukin-1α and nitric oxide modes. The anti-inflammatory impact was significantly associated with the concentration of silver ion. It was demonstrated that Mg-Zn-Ag system was a potential metallic stent with anti-inflammatory function, which can reduce the long-term dependence of anti-inflammatory drug after coronary stent implantation. PMID:23203562

  2. Breast cancer--new aspects of tumor biology: are calcitriol and cyclooxygenase-2 possible targets for breast cancer?

    PubMed

    Thill, M; Terjung, A; Friedrich, M

    2014-01-01

    Up until now there have been many advances in treatment options for breast cancers such as targeted therapies like monoclonal antibodies, tyrosine kinase inhibitors, mTOR antagonists, and vaccines. Despite these advances, there are still many more that warrant further exploration. Two of these targets might be the cyclooxygenase-2 (COX-2), the key enzyme required to convert arachidonic acid to prostaglandins, and calcitriol [1,25(OH)2D3] which is the biologically active form of vitamin D. Both calcitriol and the inhibition of COX-2 have shown antiproliferative and prodifferentiation, as well as pro-apoptotic effects in different malignancies in vitro and in vivo, and the key prostaglandin catabolic enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is known to have tumor suppressor activity. Furthermore, the combination ofcalcitriol and nonsteroidal anti-inflammatory drugs (NSAIDs), such as non-selective and selective COX-2 inhibitors, acting synergistically to achieve significant cell growth inhibition in prostate cancer. Some epidemiological studies suggest that vitamin D confers a moderate benefit against breast cancer while most epidemiological studies presume that NSAIDs confer the same. Nevertheless there is growing body of evidence that COX-2 expression is a fundamental step in breast cancer carcinogenesis. To date, clinical trials have been conducted in patients with different malignancies using treatment strategies including COX-2 inhibitors and calcitriol and are showing partially encouraging results. The goal of this review is to shed light on the association between the prostaglandin as well as vitamin D metabolism relating to the incidence and therapy of breast cancers. Moreover, this review will also highlight potential treatment options, as well as extract any existing interactions between the two metabolisms. PMID:25118473

  3. Trianthema portulacastrum Linn. Displays Anti-Inflammatory Responses during Chemically Induced Rat Mammary Tumorigenesis through Simultaneous and Differential Regulation of NF-κB and Nrf2 Signaling Pathways

    PubMed Central

    Mandal, Animesh; Bishayee, Anupam

    2015-01-01

    Trianthema portulacastrum, a medicinal and dietary plant, has gained substantial importance due to its various pharmacological properties, including anti-inflammatory and anticarcinogenic activities. We have recently reported that a characterized T. pofrtulacastrum extract (TPE) affords a considerable chemoprevention of 7,12-dimethylbenz(a)anthracene (DMBA)-induced rat mammary tumorigenesis though the underlying mechanisms are not completely understood. The objective of this study was to investigate anti-inflammatory mechanisms of TPE during DMBA mammary carcinogenesis in rats by monitoring cyclooxygenase-2 (COX-2), heat shock protein 90 (HSP90), nuclear factor-kappaB (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2). Mammary tumors were harvested from our previous study in which TPE (50–200 mg/kg) was found to inhibit mammary tumorigenesis in a dose-response manner. The expressions of intratumor COX-2, HSP90, NF-κB, inhibitory kappaB-alpha (IκBα) and Nrf2 were determined by immunohistochemistry. TPE downregulated the expression of COX-2 and HSP90, blocked the degradation of IκBα, hampered the translocation of NF-κB from cytosol to nucleus and upregulated the expression and nuclear translocation of Nrf2 during DMBA mammary carcinogenesis. These results in conjunction with our previous findings suggest that TPE prevents DMBA-induced breast neoplasia by anti-inflammatory mechanisms mediated through simultaneous and differential modulation of two interconnected molecular circuits, namely NF-κB and Nrf2 signaling pathways. PMID:25622256

  4. Trianthema portulacastrum Linn. displays anti-inflammatory responses during chemically induced rat mammary tumorigenesis through simultaneous and differential regulation of NF-κB and Nrf2 signaling pathways.

    PubMed

    Mandal, Animesh; Bishayee, Anupam

    2015-01-01

    Trianthema portulacastrum, a medicinal and dietary plant, has gained substantial importance due to its various pharmacological properties, including anti-inflammatory and anticarcinogenic activities. We have recently reported that a characterized T. portulacastrum extract (TPE) affords a considerable chemoprevention of 7,12-dimethylbenz(a)anthracene (DMBA)-induced rat mammary tumorigenesis though the underlying mechanisms are not completely understood. The objective of this study was to investigate anti-inflammatory mechanisms of TPE during DMBA mammary carcinogenesis in rats by monitoring cyclooxygenase-2 (COX-2), heat shock protein 90 (HSP90), nuclear factor-kappaB (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2). Mammary tumors were harvested from our previous study in which TPE (50-200 mg/kg) was found to inhibit mammary tumorigenesis in a dose-response manner. The expressions of intratumor COX-2, HSP90, NF-κB, inhibitory kappaB-alpha (IκBα) and Nrf2 were determined by immunohistochemistry. TPE downregulated the expression of COX-2 and HSP90, blocked the degradation of IκBα, hampered the translocation of NF-κB from cytosol to nucleus and upregulated the expression and nuclear translocation of Nrf2 during DMBA mammary carcinogenesis. These results in conjunction with our previous findings suggest that TPE prevents DMBA-induced breast neoplasia by anti-inflammatory mechanisms mediated through simultaneous and differential modulation of two interconnected molecular circuits, namely NF-κB and Nrf2 signaling pathways. PMID:25622256

  5. New Anti-Inflammatory Metabolites by Microbial Transformation of Medrysone

    PubMed Central

    Bano, Saira; Wahab, Atia-tul-; Yousuf, Sammer; Jabeen, Almas; Mesaik, Mohammad Ahmed; Rahman, Atta-ur-; Choudhary, M. Iqbal

    2016-01-01

    Microbial transformation of the anti-inflammatory steroid medrysone (1) was carried out for the first time with the filamentous fungi Cunninghamella blakesleeana (ATCC 8688a), Neurospora crassa (ATCC 18419), and Rhizopus stolonifer (TSY 0471). The objective was to evaluate the anti-inflammatory potential of the substrate (1) and its metabolites. This yielded seven new metabolites, 14α-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (2), 6β-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (3), 15β-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (4), 6β,17α-dihydroxy-6α-methylpregn-4-ene-3,11,20-trione (5), 6β,20S-dihydroxy-6α-methylpregn-4-ene-3,11-dione (6), 11β,16β-dihydroxy-6α-methylpregn-4-ene-3,11-dione (7), and 15β,20R-dihydroxy-6α-methylpregn-4-ene-3,11-dione (8). Single-crystal X-ray diffraction technique unambiguously established the structures of the metabolites 2, 4, 6, and 8. Fungal transformation of 1 yielded oxidation at the C-6β, -11β, -14α, -15β, -16β positions. Various cellular anti-inflammatory assays, including inhibition of phagocyte oxidative burst, T-cell proliferation, and cytokine were performed. Among all the tested compounds, metabolite 6 (IC50 = 30.3 μg/mL) moderately inhibited the reactive oxygen species (ROS) produced from zymosan-induced human whole blood cells. Compounds 1, 4, 5, 7, and 8 strongly inhibited the proliferation of T-cells with IC50 values between <0.2–10.4 μg/mL. Compound 7 was found to be the most potent inhibitor (IC50 < 0.2 μg/mL), whereas compounds 2, 3, and 6 showed moderate levels of inhibition (IC50 = 14.6–20.0 μg/mL). Compounds 1, and 7 also inhibited the production of pro-inflammatory cytokine TNF-α. All these compounds were found to be non-toxic to 3T3 cells (mouse fibroblast), and also showed no activity when tested against HeLa (human epithelial carcinoma), or against PC3 (prostate cancer) cancer cell lines. PMID:27104348

  6. Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status

    PubMed Central

    Cameron, Amy R.; Morrison, Vicky L.; Levin, Daniel; Mohan, Mohapradeep; Forteath, Calum; Beall, Craig; McNeilly, Alison D.; Balfour, David J.K.; Savinko, Terhi; Wong, Aaron K.F.; Viollet, Benoit; Sakamoto, Kei; Fagerholm, Susanna C.; Foretz, Marc

    2016-01-01

    Rationale: The diabetes mellitus drug metformin is under investigation in cardiovascular disease, but the molecular mechanisms underlying possible benefits are poorly understood. Objective: Here, we have studied anti-inflammatory effects of the drug and their relationship to antihyperglycemic properties. Methods and Results: In primary hepatocytes from healthy animals, metformin and the IKKβ (inhibitor of kappa B kinase) inhibitor BI605906 both inhibited tumor necrosis factor-α–dependent IκB degradation and expression of proinflammatory mediators interleukin-6, interleukin-1β, and CXCL1/2 (C-X-C motif ligand 1/2). Metformin suppressed IKKα/β activation, an effect that could be separated from some metabolic actions, in that BI605906 did not mimic effects of metformin on lipogenic gene expression, glucose production, and AMP-activated protein kinase activation. Equally AMP-activated protein kinase was not required either for mitochondrial suppression of IκB degradation. Consistent with discrete anti-inflammatory actions, in macrophages, metformin specifically blunted secretion of proinflammatory cytokines, without inhibiting M1/M2 differentiation or activation. In a large treatment naive diabetes mellitus population cohort, we observed differences in the systemic inflammation marker, neutrophil to lymphocyte ratio, after incident treatment with either metformin or sulfonylurea monotherapy. Compared with sulfonylurea exposure, metformin reduced the mean log-transformed neutrophil to lymphocyte ratio after 8 to 16 months by 0.09 U (95% confidence interval, 0.02–0.17; P=0.013) and increased the likelihood that neutrophil to lymphocyte ratio would be lower than baseline after 8 to 16 months (odds ratio, 1.83; 95% confidence interval, 1.22–2.75; P=0.00364). Following up these findings in a double-blind placebo controlled trial in nondiabetic heart failure (trial registration: NCT00473876), metformin suppressed plasma cytokines including the aging

  7. Anti-inflammatory and antifibrotic effects of methyl palmitate

    SciTech Connect

    El-Demerdash, Ebtehal

    2011-08-01

    Methyl palmitate (MP) has been shown earlier to inhibit Kupffer cells and rat peritoneal macrophages. To evaluate the potential of MP to inhibit the activation of other macrophages, RAW cells (macrophages of alveolar origin) were treated with varying concentrations of MP (0.25, 0.5, 1 mM). Assessment of cytotoxicity using MTT assay revealed that 0.25 and 0.5 mM are not toxic to RAW cells. MP was able to inhibit the phagocytic function of RAW cells. Treatment of cells with MP 24 hours prior to LPS stimulation significantly decreased nitric oxide release and altered the pattern of cytokines release; there was a significant decrease in TNF-{alpha} and a significant increase in IL-10 compared to the controls. However, there is a non-significant change in IL-6 level. Furthermore, phosphorylation of inhibitory kappa B (I{kappa}B{alpha}) protein was significantly decreased in RAW cells treated with 0.5 mM MP after LPS stimulation. Based upon the in-vitro results, it was examined whether MP treatment will be effective in preventing bleomycin-induced lung inflammation and fibrosis in-vivo. Bleomycin given by itself caused destruction of the lung architecture characterized by pulmonary fibrosis with collapse of air alveoli and emphysematous. Bleomycin induced a significant increase in hydroxyproline level and activated NF-{kappa}B, p65 expression in the lung. MP co-treatment significantly ameliorated bleomycin effects. These results suggest that MP has a potential of inhibiting macrophages in general. The present study demonstrated for the first time that MP has anti-inflammatory and antifibrotic effect that could be through NF-kB inhibition. Thus MP like molecule could be a promising anti-inflammatory and antifibrotic drug. - Research Highlights: >Methyl palmitate is a universal macrophage inhibitor. >It could be a promising nucleus of anti-inflammatory and antifibrotic drugs. >The underlying mechanism of these effects could be through NF-kB inhibition.

  8. Anti-inflammatory effects of hydroxycinnamic acid derivatives

    SciTech Connect

    Nagasaka, Reiko; Chotimarkorn, Chatchawan; Shafiqul, Islam Md.; Hori, Masatoshi; Ozaki, Hiroshi; Ushio, Hideki . E-mail: hushio@kaiyodai.ac.jp

    2007-06-29

    NF-{kappa}B family of transcription factors are involved in numerous cellular processes, including differentiation, proliferation, and inflammation. It was reported that hydroxycinnamic acid derivatives (HADs) are inhibitors of NF-{kappa}B activation. Rice bran oil contains a lot of phytosteryl ferulates, one of HADs. We have investigated effects of phytosteryl ferulates on NF-{kappa}B activation in macrophage. Cycloartenyl ferulate (CAF), one of phytosteryl ferulates, significantly reduced lipopolysaccharide (LPS)-induced NO production and mRNA expression of inducible NO synthase and cyclooxygenese-2 but upregulated SOD activity. Electrophoresis mobility shift assay revealed that CAF inhibited DNA-binding of NF-{kappa}B. CAF and phytosteryl ferulates probably have potentially anti-inflammatory properties.

  9. Anti-inflammatory effects of the hydroxycarboxylic acid receptor 2.

    PubMed

    Graff, Emily C; Fang, Han; Wanders, Desiree; Judd, Robert L

    2016-02-01

    The hydroxycarboxylic acid receptors (HCA1-3) are a family of G-protein-coupled receptors that are critical for sensing endogenous intermediates of metabolism. All three receptors are predominantly expressed on adipocytes and mediate anti-lipolytic effects. In addition to adipocytes, HCA2 is highly expressed on immune cells, including macrophages, monocytes, neutrophils and dermal dendritic cells, among other cell types. The endogenous ligand for HCA2 is beta-hydroxybutyrate (β-OHB), a ketone body produced by the liver through β-oxidation when an individual is in a negative energy balance. Recent studies demonstrate that HCA2 mediates profound anti-inflammatory effects in a variety of tissues, indicating that HCA2 may be an important therapeutic target for treating inflammatory disease processes. This review summarizes the roles of HCA2 on inflammation in a number of tissues and clinical states. PMID:26773933

  10. Risk of stroke associated with nonsteroidal anti-inflammatory drugs

    PubMed Central

    Park, Ki; Bavry, Anthony A

    2014-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs), both cyclooxygenase (COX)-2-selective and nonselective agents, have been associated with the increased risk of adverse cardiovascular events. The majority of studies have focused on myocardial infarction as the primary cardiovascular outcome. However, the association between NSAIDs and the risk of stroke events is not as clear, although an understanding of this association is important since stroke continues to be a significant cause of morbidity and mortality. Various factors may contribute to an association between NSAIDs and stroke, including hypertension and thrombosis. Additionally, the risk may vary with different NSAID types. In this review, we discuss the relevant literature assessing the possible association between NSAID use and stroke events, along with the potential mechanisms and the possible directions for future study. PMID:24421643

  11. Hormetic and anti-inflammatory properties of oxidized phospholipids.

    PubMed

    Mauerhofer, Christina; Philippova, Maria; Oskolkova, Olga V; Bochkov, Valery N

    2016-06-01

    Oxidized phospholipids are generally recognized as deleterious factors involved in disease pathogenesis. This review summarizes the data suggesting that under certain biological conditions the opposite is correct, namely that OxPLs can also induce protective effects. Examples that are discussed in the review include upregulation of antioxidant genes, inhibition of inflammatory signaling pathways through Nrf2-dependent and -independent mechanisms, antagonism of Toll-like receptors, immuno-modulating and immuno-suppressive action of OxPLs in adaptive immunity and autoimmune disease, activation of PPARs known for their anti-inflammatory action, as well as protective action against lung edema in acute lung inflammation. The data support the notion that oxidation of phospholipids provides a negative feedback preventing damage to host tissues due to uncontrolled inflammation and oxidative stress. PMID:26948981

  12. Go Green: The Anti-Inflammatory Effects of Biliverdin Reductase

    PubMed Central

    Wegiel, Barbara; Otterbein, Leo E.

    2012-01-01

    Biliverdin (BV) has emerged as a cytoprotective and important anti-inflammatory molecule. Conversion of BV to bilirubin (BR) is catalyzed by biliverdin reductase (BVR) and is required for the downstream signaling and nuclear localization of BVR. Recent data by others and us make clear that BVR is a critical regulator of innate immune responses resulting from acute insult and injury and moreover, that a lack of BVR results in an enhanced proinflammatory phenotype. In macrophages, BVR is regulated by its substrate BV which leads to activation of the PI3K–Akt-IL-10 axis and inhibition of TLR4 expression via direct binding of BVR to the TLR4 promoter. In this review, we will summarize recent findings on the role of BVR and the bile pigments in inflammation in context with its activity as an enzyme, receptor, and transcriptional regulator. PMID:22438844

  13. Anti-inflammatory activity of the bark of Hippocratea excelsa.

    PubMed

    Perez, R M; Perez, S; Zavala, M A; Salazar, M

    1995-07-01

    The ethanol extract of the plant Hippocratea excelsa was examined for its anti-inflammatory effects using several animal models. It produced significant inhibition of carrageenan-induced paw edema and reduced the weight of cotton pellet-induced granuloma at doses of 25-100 mg/kg. The extract was found to exert a protective effect on heat-induced erythrocyte lysis at concentrations of 25, 50 and 100 micrograms/ml. In chronic models of formaldehyde and adjuvant arthritis, its anti-arthritic activity was found to be less than that of phenylbutazone (PNB). It may be inferred that the ethanol extract is effective against both exudative-proliferative and chronic phases of inflammation. PMID:7500640

  14. Nonsteroidal Anti-Inflammatory Drugs and the Kidney

    PubMed Central

    Hörl, Walter H.

    2010-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit the isoenzymes COX-1 and COX-2 of cyclooxygenase (COX). Renal side effects (e.g., kidney function, fluid and urinary electrolyte excretion) vary with the extent of COX-2-COX-1 selectivity and the administered dose of these compounds. While young healthy subjects will rarely experience adverse renal effects with the use of NSAIDs, elderly patients and those with co-morbibity (e.g., congestive heart failure, liver cirrhosis or chronic kidney disease) and drug combinations (e.g., renin-angiotensin blockers, diuretics plus NSAIDs) may develop acute renal failure. This review summarizes our present knowledge how traditional NSAIDs and selective COX-2 inhibitors may affect the kidney under various experimental and clinical conditions, and how these drugs may influence renal inflammation, water transport, sodium and potassium balance and how renal dysfunction or hypertension may result.

  15. [Anti-inflammatory effects of tea-flavonoids].

    PubMed

    Hoensch, H; Oertel, R

    2012-12-01

    Tea flavonoids belong to the large group of polyphenols and display antioxidative, anti-inflammatory and anti-neoplastic activities. These phytochemicals are xenobiotics and are synthesized by tea plants such as Camellia sinensis and Camomilla recucita. These botanicals exhibit in vivo activities similar to that of biologicals which are widely used for chronic inflammatory diseases (rheumatoid arthritis, chronic inflammatory bowel disease). Epigallocathechin gallate and apigenin from these plants inhibit cytokines, chemokines and activated immune cells in vivo and in vitro. Clinical disorders with induced inflammatory pathways could benefit from flavonoid treatment. Dietary supplementation with specific tea-flavonoids could be used for Crohn's disease, ulcerative colitis and irritable bowel syndrome. Suppression of cytokine production could ultimately lead to inhibition of carcinogenesis. This mechanism could explain why flavonoids are effective in the prevention of intestinal neoplasia. This innovative new form of therapy should be tested in controlled, randomized clinical studies. PMID:23233307

  16. Antioxidant and Anti-Inflammatory Activities of Barettin

    PubMed Central

    Lind, Karianne F.; Hansen, Espen; Østerud, Bjarne; Eilertsen, Karl-Erik; Bayer, Annette; Engqvist, Magnus; Leszczak, Kinga; Jørgensen, Trond Ø.; Andersen, Jeanette H.

    2013-01-01

    In this paper, we present novel bioactivity for barettin isolated from the marine sponge Geodia barretti. We found that barettin showed strong antioxidant activity in biochemical assays as well as in a lipid peroxidation cell assay. A de-brominated synthetic analogue of barettin did not show the same activity in the antioxidant cell assay, indicating that bromine is important for cellular activity. Barettin was also able to inhibit the secretion of the inflammatory cytokines IL-1β and TNFα from LPS-stimulated THP-1 cells. This combination of anti-inflammatory and antioxidant activities could indicate that barettin has an atheroprotective effect and may therefore be an interesting product to prevent development of atherosclerosis. PMID:23880935

  17. Anti-inflammatory agents from plants: progress and potential.

    PubMed

    Recio, M C; Andujar, I; Rios, J L

    2012-01-01

    The identification of substances that can promote the resolution of inflammation in a way that is homeostatic, modulatory, efficient, and well-tolerated by the body is of fundamental importance. Traditional medicines have long provided front-line pharmacotherapy for many millions of people worldwide. Medicinal extracts are a rich source of therapeutic leads for the pharmaceutical industry. The use of medicinal plant therapies to treat chronic illness, including rheumatoid arthritis (RA) and inflammatory bowel disease (IBD), is thus widespread and on the rise.The aim of this review is to present recent progress in clinical anti-inflammatory studies of plant extracts and compound leads such as green tea polyphenols, curcumin, resveratrol, boswellic acid, and cucurbitacins, among others, against chronic inflammatory diseases, mainly RA and IBD. In this context, the present paper also highlights the most promising experimental data on those plant extracts and pure compounds active in animal models of the aforementioned diseases. PMID:22414101

  18. Further studies on the anti-inflammatory effect of insulin.

    PubMed

    Ottlecz, A; Koltai, M; Gecse, A

    1977-10-01

    Experiments performed on rats showed that insulin, when applied i.v. or s.c., inhibited the foot edema induced by carrageenin, thermic effect of 45.7 degrees C, compound 48/80 and 5-HT, but moderately increased the paw swelling evoked by kallikrein, a kinin-forming enzyme. The increased vascular permeability elicited by intradermal injection of histamine, 5-HT, bradykinin, PGE1, carrageenin and compound 48/80 was also suppressed. The anti-inflammatory effect was not significantly altered by propranolol and adrenalectomy on the thermal and carrageenin edema, it was variably inhibited on the skin test, and was completely abolished on the paw swelling induced by 5-HT and compound 48/80. Since insulin had little or no effect on the vascular response when given topically together with the vasoactive agents, its complex effect on the acute inflammation appears to be brought about via indirect mechanisms. PMID:930760

  19. Anti-inflammatory polyphenol constituents derived from Cissus pteroclada Hayata.

    PubMed

    Li, Yi-Jie; Xu, Cheng-Ting; Lin, Dan-Dan; Qin, Jiang-Ke; Ye, Gao-Jie; Deng, Qing-Hua

    2016-08-01

    A new bergenin derivative, bergenin-11-O-α-d-galactopyranoside (compound 1), together with seven known polyphenolic compounds, were isolated from the stem of Cissus pteroclada Hayata. The structures of the 8 compounds were elucidated by spectroscopic methods, including extensive 1D and 2D NMR techniques. Moreover, the in vitro anti-inflammatory effects of compounds (1-8) in LPS-stimulated murine macrophage RAW 264.7 cells were also investigated. Our results revealed that compound 1 inhibited the production of pro-inflammatory mediators NO and PGE2 and the expression of NF-κB, TNF-α, IL-1β, iNOS and COX-2. PMID:27374242

  20. Aryl Hydrocarbon Receptor-Dependent Retention of Nuclear HuR Suppresses Cigarette Smoke-Induced Cyclooxygenase-2 Expression Independent of DNA-Binding

    PubMed Central

    Zago, Michela; Sheridan, Jared A.; Nair, Parameswaran; Rico de Souza, Angela; Gallouzi, Imed-Eddine; Rousseau, Simon; Di Marco, Sergio; Hamid, Qutayba; Eidelman, David H.; Baglole, Carolyn J.

    2013-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to man-made environmental toxicants, has emerged as an endogenous regulator of cyclooxygenase-2 (Cox-2) by a mechanism that is poorly understood. In this study, we first used AhR-deficient (AhR−/−) primary pulmonary cells, together with pharmacological tools to inhibit new RNA synthesis, to show that the AhR is a prominent factor in the destabilization of Cox-2 mRNA. The destabilization of Cox-2 mRNA and subsequent suppression of cigarette smoke-induced COX-2 protein expression by the AhR was independent of its ability to bind the dioxin response element (DRE), thereby differentiating the DRE-driven toxicological AhR pathway from its anti-inflammatory abilities. We further describe that the AhR destabilizes Cox-2 mRNA by sequestering HuR within the nucleus. The role of HuR in AhR stabilization of Cox-2 mRNA was confirmed by knockdown of HuR, which resulted in rapid Cox-2 mRNA degradation. Finally, in the lungs of AhR−/− mice exposed to cigarette smoke, there was little Cox-2 mRNA despite robust COX-2 protein expression, a finding that correlates with almost exclusive cytoplasmic HuR within the lungs of AhR−/− mice. Therefore, we propose that the AhR plays an important role in suppressing the expression of inflammatory proteins, a function that extends beyond the ability of the AhR to respond to man-made toxicants. These findings open the possibility that a DRE-independent AhR pathway may be exploited therapeutically as an anti-inflammatory target. PMID:24086407

  1. Kainic acid-induced neurodegeneration and activation of inflammatory processes in organotypic hippocampal slice cultures: treatment with cyclooxygenase-2 inhibitor does not prevent neuronal death.

    PubMed

    Järvelä, Juha T; Ruohonen, Saku; Kukko-Lukjanov, Tiina-Kaisa; Plysjuk, Anna; Lopez-Picon, Francisco R; Holopainen, Irma E

    2011-06-01

    In the postnatal rodent hippocampus status epilepticus (SE) leads to age- and region-specific excitotoxic neuronal damage, the precise mechanisms of which are still incompletely known. Recent studies suggest that the activation of inflammatory responses together with glial cell reactivity highly contribute to excitotoxic neuronal damage. However, pharmacological tools to attenuate their activation in the postnatal brain are still poorly elucidated. In this study, we investigated the role of inflammatory mediators in kainic acid (KA)-induced neuronal damage in organotypic hippocampal slice cultures (OHCs). A specific cyclooxygenase-2 (COX-2) inhibitor N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398) was used to study whether or not it could ameliorate neuronal death. Our results show that KA treatment (24 h) resulted in a dose-dependent degeneration of CA3a/b pyramidal neurons. Furthermore, COX-2 immunoreactivity was pronouncedly enhanced particularly in CA3c pyramidal neurons, microglial and astrocyte morphology changed from a resting to active appearance, the expression of the microglial specific protein, Iba1, increased, and prostaglandin E₂ (PGE₂) production increased. These indicated the activation of inflammatory processes. However, the expression of neither proinflammatory cytokines, i.e. tumour necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β), nor the anti-inflammatory cytokine IL-10 mRNA was significantly altered by KA treatment as studied by real-time PCR. Despite activation of an array of inflammatory processes, neuronal damage could not be rescued either with the combined pre- and co-treatment with a specific COX-2 inhibitor, NS-398. Our results suggest that KA induces activation of a repertoire of inflammatory processes in immature OHCs, and that the timing of anti-inflammatory treatment to achieve neuroprotection is a challenge due to developmental properties and the complexity of inflammatory processes activated by

  2. New Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Inhibitors, Nalidixic Acid Linked to Isatin Schiff Bases via Certain l-Amino Acid Bridges.

    PubMed

    Naglah, Ahmed M; Ahmed, Atallah F; Wen, Zhi-Hong; Al-Omar, Mohamed A; Amr, Abd El-Galil E; Kalmouch, Atef

    2016-01-01

    A series of new Schiff bases were synthesized by condensation of isatins with the nalidixic acid-l-amino acid hydrazides. Prior to hydrazide formation, a peptide linkage has been prepared via coupling of nalidixic acid with appropriate l-amino acid methyl esters to yield 3a-c. The chemical structures of the new Schiff bases (5b and 5d-h) were confirmed by means of IR, NMR, mass spectroscopic, and elemental analyses. The anti-inflammatory activity of these Schiff bases was evaluated via measurement of the expressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells model. The Schiff bases exhibited significant dual inhibitory effect against the induction of the pro-inflammatory iNOS and COX-2 proteins with variable potencies. However, they strongly down-regulated the iNOS expression to the level of 16.5% ± 7.4%-42.2% ± 19.6% compared to the effect on COX-2 expression (<56.4% ± 3.1% inhibition) at the same concentration (10 μM). The higher iNOS inhibition activity of the tested Schiff bases, relative to that of COX-2, seems to be a reflection of the combined suppressive effects exerted by their nalidixic acid, isatins (4a-c), and l-amino acid moieties against iNOS expression. These synthesized nalidixic acid-l-amino acid-isatin conjugates can be regarded as a novel class of anti-inflammatory antibacterial agents. PMID:27092477

  3. Atypical Activin A and IL-10 Production Impairs Human CD16+ Monocyte Differentiation into Anti-Inflammatory Macrophages.

    PubMed

    González-Domínguez, Érika; Domínguez-Soto, Ángeles; Nieto, Concha; Flores-Sevilla, José Luis; Pacheco-Blanco, Mariana; Campos-Peña, Victoria; Meraz-Ríos, Marco A; Vega, Miguel A; Corbí, Ángel L; Sánchez-Torres, Carmen

    2016-02-01

    Human CD14(++)CD16(-) and CD14(+/lo)CD16(+) monocyte subsets comprise 85 and 15% of blood monocytes, respectively, and are thought to represent distinct stages in the monocyte differentiation pathway. However, the differentiation fates of both monocyte subsets along the macrophage (Mϕ) lineage have not yet been elucidated. We have now evaluated the potential of CD14(++) CD16(-) and CD16(+) monocytes to differentiate and to be primed toward pro- or anti-inflammatory Mϕs upon culture with GM-CSF or M-CSF, respectively (subsequently referred to as GM14, M14, GM16, or M16). Whereas GM16 and GM14 were phenotypic and functionally analogous, M16 displayed a more proinflammatory profile than did M14. Transcriptomic analyses evidenced that genes associated with M-CSF-driven Mϕ differentiation (including FOLR2, IL10, IGF1, and SERPINB2) are underrepresented in M16 with respect to M14. The preferential proinflammatory skewing of M16 relative to M14 was found to be mediated by the secretion of activin A and the low levels of IL-10 produced by M16. In fact, activin A receptor blockade during the M-CSF-driven differentiation of CD16(+) monocytes, or addition of IL-10-containing M14-conditioned medium, significantly enhanced their expression of anti-inflammatory-associated molecules while impairing their acquisition of proinflammatory-related markers. Thus, we propose that M-CSF drives CD14(++)CD16- monocyte differentiation into bona fide anti-inflammatory Mϕs in a self-autonomous manner, whereas M-CSF-treated CD16(+) monocytes generate Mϕs with a skewed proinflammatory profile by virtue of their high activin A expression unless additional anti-inflammatory stimuli such as IL-10 are provided. PMID:26729812

  4. In-vitro anti- inflammatory activity of aqueous extract of leaves of Plectranthus amboinicus (Lour.) Spreng

    PubMed Central

    Ravikumar, V.R.; Dhanamani, M.; Sudhamani, T.

    2009-01-01

    Aqueous extract of leaves of Plectranthus amboinicus (lour.) Spreng, which is traditionally used in the treatment of cough and cold was screened for its anti- inflammatory activity by HRBC membrane stabilisation model. Aqueous extract (500 mcg/ml) showed significant anti-inflammatory activity as compared to that of hydrocortisone sodium. PMID:22557324

  5. In-vitro anti- inflammatory activity of aqueous extract of leaves of Plectranthus amboinicus (Lour.) Spreng.

    PubMed

    Ravikumar, V R; Dhanamani, M; Sudhamani, T

    2009-04-01

    Aqueous extract of leaves of Plectranthus amboinicus (lour.) Spreng, which is traditionally used in the treatment of cough and cold was screened for its anti- inflammatory activity by HRBC membrane stabilisation model. Aqueous extract (500 mcg/ml) showed significant anti-inflammatory activity as compared to that of hydrocortisone sodium. PMID:22557324

  6. Hypericum in Infection: Identification of Anti-viral and Anti-inflammatory Constituents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Iowa Center for Research on Botanical Dietary Supplements seeks to optimize Echinacea, Hypericum and Prunella supplements for human-health benefit, focusing on anti-viral, anti-inflammatory and anti-pain effects. This paper reports on ongoing anti-viral and anti-inflammatory studies on Hypericu...

  7. Preventative oral methylthioadenosine is anti-inflammatory and reduces DSS-induced colitis in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methylthioadenosine (MTA) is a precursor of the methionine salvage pathway and has been shown to have anti-inflammatory properties in various models of acute and chronic inflammation. However, the anti-inflammatory properties of MTA in models of intestinal inflammation are not defined. We hypothesiz...

  8. Anti-inflammatory effects of supercritical carbon dioxide extract and its isolated carnosic acid from Rosmarinus officinalis leaves.

    PubMed

    Kuo, Chia-Feng; Su, Jeng-De; Chiu, Chun-Hung; Peng, Chiung-Chi; Chang, Chi-Huang; Sung, Tzu-Ying; Huang, Shiau-Huei; Lee, Wen-Chin; Chyau, Charng-Cherng

    2011-04-27

    Rosemary (Rosmarinus officinalis) leaves possess a variety of bioactivities. Previous studies have shown that the extract of rosemary leaves from supercritical fluid extraction inhibits the expression of inflammatory mediators with apparent dose-dependent responses. In this study, three different extraction conditions (5000 psi at 40, 60, and 80 °C) of supercritical carbon dioxide (SC-CO(2)) toward the extraction of antioxidants from rosemary were investigated. Furthermore, simultaneous comparison of the anti-inflammatory properties between rosemary extract prepared from SC-CO(2) under optimal conditions (5,000 psi and 80 °C) and its purified carnosic acid (CA) using lipopolysaccharide (LPS)-treated murine RAW 264.7 macrophage cells was also presented. Results showed that the yield of 3.92% and total phenolics of 213.5 mg/g extract obtained from the most effective extraction conditions showed a high inhibitory effect on lipid peroxidation (IC(50) 33.4 μg/mL). Both the SC-CO(2) extract and CA markedly suppressed the LPS-induced production of nitric oxide (NO) and tumor necrosis factor-α (TNF-α), as well as the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), phosphorylated inhibitor-kappaB (P-IκB), and nuclear factor-kappaB (NF-κB)/p65 in a dose-dependent manner. The five major compounds of verbenone, cirsimaritin, salvigenin, carnosol, and CA existing in the SC-CO(2) extract were isolated by semipreparative HPLC and identified by HPLC-MS/MS analysis. CA was the most abundant recorded compound and the most important photochemical with an anti-inflammatory effect with an IC(50) of 22.5 μM or 7.47 μg/mL presented to the best inhibitory activity on NO production better than that of the 14.50 μg/mL dosage prepared from the SC-CO(2) extract. Nevertheless, the effective inhibition of LPS-induced NF-κB signaling in RAW 264.7 cells from the SC-CO(2) extract extends the potential application of nutraceutical formulation for the

  9. Involvement of PKA and HO-1 signaling in anti-inflammatory effects of surfactin in BV-2 microglial cells

    SciTech Connect

    Park, Sun Young; Kim, Ji-Hee; Lee, Sang Joon; Kim, YoungHee

    2013-04-01

    Surfactin, one of the most powerful biosurfactants, is a bacterial cyclic lipopeptide. Here, we investigated the anti-neuroinflammatory properties of surfactin in lipoteichoic acid (LTA)-stimulated BV-2 microglial cells. Surfactin significantly inhibited excessive production of the pro-inflammatory mediators TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), prostaglandin E{sub 2} (PGE{sub 2}), nitric oxide (NO) and reactive oxygen species (ROS), and suppressed the expression of matrix metalloproteinase-9 (MMP-9), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequent mechanistic studies revealed that surfactin inhibited LTA-induced nuclear factor-kappaB (NF-κB) and signal transducer and activator of transcription-1 (STAT-1) activation. However, surfactin increases the phosphorylation of the STAT-3, a component of the homeostatic mechanism causing anti-inflammatory events. We also demonstrated that surfactin induces heme oxygenase-1 (HO-1) expression and nuclear factor-regulated factor-2 (Nrf-2) activation, and that the anti-inflammatory effects of surfactin are abrogated by small interfering RNA-mediated knock-down of HO-1 or Nrf-2. Interestingly, we found that surfactin increased the level of cAMP and induced phosphorylation of cAMP responsive element binding protein (CREB) in microglial cells. Furthermore, treatment with the protein kinase A (PKA) inhibitor, H-89, blocked HO-1 induction by surfactin and abolished surfactin's suppressive effects on ROS and NO production. These results indicate that HO-1 and its upstream effector, PKA, play a pivotal role in the anti-neuroinflammatory response of surfactin in LTA-stimulated microglia. Therefore, surfactin might have therapeutic potential for neuroprotective agents to treat inflammatory and neurodegenerative diseases. - Highlights: ► Surfactin inhibits proinflammatory mediator synthesis in LTA-activated BV-2 cells. ► Surfactin suppresses NF-κB and STAT-1, but potentiates

  10. Chemical Constituents of the Rhizomes of Bletilla formosana and Their Potential Anti-inflammatory Activity.

    PubMed

    Lin, Che-Wei; Hwang, Tsong-Long; Chen, Fu-An; Huang, Chia-Hsin; Hung, Hsin-Yi; Wu, Tian-Shung

    2016-08-26

    Nine new phenanthrenes (1-9) and a new benzyl glycoside (10) together with 45 known compounds were isolated from the rhizomes of Bletilla formosana. The structures of 1-10 were elucidated primarily on the basis of their 1D and 2D NMR spectroscopic data. Most of the isolated compounds were evaluated for their anti-inflammatory activities. The results showed that IC50 values for the inhibition of superoxide anion generation and elastase release ranged from 0.2 to 6.5 μM and 0.3 to 5.7 μM, respectively. Structure-activity relationships of the isolated compounds were also investigated. The inhibitory potencies were determined as phenanthrenes > bibenzyls > biphenanthrenes. PMID:27525452

  11. Anti-Inflammatory Action of Pterostilbene is Mediated Through the p38 Mitogen-Activated Protein Kinase Pathway in Colon Cancer Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidation and nitration/nitrosation stress and generation of pro-inflammatory cytokines are hallmarks of inflammation. Since chronic inflammation is implicated in several pathological conditions in humans, including cancers of the colon, we have been interested in identifying new anti-inflammatory c...

  12. Characterization of Eicosanoids Produced by Adipocyte Lipolysis: IMPLICATION OF CYCLOOXYGENASE-2 IN ADIPOSE INFLAMMATION.

    PubMed

    Gartung, Allison; Zhao, Jiawei; Chen, Simon; Mottillo, Emilio; VanHecke, Garrett C; Ahn, Young-Hoon; Maddipati, Krishna Rao; Sorokin, Andrey; Granneman, James; Lee, Menq-Jer

    2016-07-29

    Excessive adipocyte lipolysis generates lipid mediators and triggers inflammation in adipose tissue. However, the specific roles of lipolysis-generated mediators in adipose inflammation remain to be elucidated. In the present study, cultured 3T3-L1 adipocytes were treated with isoproterenol to activate lipolysis and the fatty acyl lipidome of released lipids was determined by using LC-MS/MS. We observed that β-adrenergic activation elevated levels of approximately fifty lipid species, including metabolites of cyclooxygenases, lipoxygenases, epoxygenases, and other sources. Moreover, we found that β-adrenergic activation induced cyclooxygenase 2 (COX-2), not COX-1, expression in a manner that depended on activation of hormone-sensitive lipase (HSL) in cultured adipocytes and in the epididymal white adipose tissue (EWAT) of C57BL/6 mice. We found that lipolysis activates the JNK/NFκB signaling pathway and inhibition of the JNK/NFκB axis abrogated the lipolysis-stimulated COX-2 expression. In addition, pharmacological inhibition of COX-2 activity diminished levels of COX-2 metabolites during lipolytic activation. Inhibition of COX-2 abrogated the induction of CCL2/MCP-1 expression by β-adrenergic activation and prevented recruitment of macrophage/monocyte to adipose tissue. Collectively, our data indicate that excessive adipocyte lipolysis activates the JNK/NFκB pathway leading to the up-regulation of COX-2 expression and recruitment of inflammatory macrophages. PMID:27246851

  13. Anti-inflammatory effect of methanol extract from Erigeron Canadensis L. may be involved with upregulation of heme oxygenase-1 expression and suppression of NFκB and MAPKs activation in macrophages

    PubMed Central

    Sung, Jeehye; Sung, Misun; Kim, Younghwa; Ham, Hyeonmi; Jeong, Heon-Sang

    2014-01-01

    BACKGROUND/OBJECTIVES In this study, we determined the anti-inflammatory activities and the underlying molecular mechanisms of the methanol extract from Erigeron Canadensis L. (ECM) in LPS-stimulated RAW264.7 macrophage cells. MATERIALS/METHODS The potential anti-inflammatory properties of ECM were investigated by using RAW264.7 macrophages. We used western blot assays and real time quantitative polymerase chain reaction to detect protein and mRNA expression, respectively. Luciferase assays were performed to determine the transactivity of transcription factors. RESULTS ECM significantly inhibited inducible nitric oxide synthase (iNOS)-derived NO and cyclooxygenase-2 (COX-2) derived PGE2 production in LPS-stimulated RAW264.7 macrophages. These inhibitory effects of ECM were accompanied by decreases in LPS-induced nuclear translocations and transactivities of NFκB. Moreover, phosphorylation of mitogen-activated protein kinase (MAPKs) including extracellular signal-related kinase (ERK1/2), p38, and c-jun N-terminal kinase (JNK) was significantly suppressed by ECM in LPS-stimulated RAW264.7 macrophages. Further studies demonstrated that ECM by itself induced heme oxygenase-1 (HO-1) protein expression at the protein levels in dose-dependent manner. However, zinc protoporphyrin (ZnPP), a selective HO-1 inhibitor, abolished the ECM-induced suppression of NO production. CONCLUSIONS These results suggested that ECM-induced HO-1 expression was partly responsible for the resulting anti-inflammatory effects. These findings suggest that ECM exerts anti-inflammatory actions and help to elucidate the mechanisms underlying the potential therapeutic values of Erigeron Canadensis L. PMID:25110553

  14. Distal bowel selectivity in the chemoprevention of experimental colon carcinogenesis by the non-steroidal anti-inflammatory drug nabumetone.

    PubMed

    Roy, H K; Karolski, W J; Ratashak, A

    2001-05-15

    Use of non-steroidal anti-inflammatory drugs (NSAIDs) for chemoprevention of colon cancer has been hindered by their potential gastro-intestinal toxicity. Nabumetone, which is approximately 10 to 36 times safer than conventional NSAIDs, was evaluated in 2 models of experimental colon carcinogenesis. In azoxymethane (AOM)-treated Fisher 344 rats, nabumetone caused dose-dependent inhibition of aberrant crypt foci (ACF), with 750 and 1,500 ppm resulting in 15% and 37% reductions, respectively (p < 0.05). Moreover, complex ACF were reduced by 48% in the latter group. MIN mice studies confirmed the chemopreventive efficacy of nabumetone, with 900 ppm suppressing approximately half of the intestinal tumors. Interestingly, inhibition of intermediate biomarkers in both models was markedly greater in the distal than the proximal bowel. To mechanistically evaluate this regional selectivity, we assessed cyclo-oxygenase-2 (COX-2) expression in the uninvolved mucosa and demonstrated a 3- to 4-fold excess in the distal relative to the proximal bowel in both MIN mice and AOM-treated rats. We then investigated another putative NSAID target, peroxisome proliferator-activated receptor-delta (PPAR-delta) and demonstrated up-regulation during AOM-induced colonic tumorigenesis. Furthermore, in pre-neoplastic mucosa, there was a 3-fold excess of PPAR-delta in the distal colon. We demonstrate that nabumetone is an effective protective agent in both experimental models of colon carcinogenesis. The striking distal predilection of nabumetone may be, at least partially, explained by distal bowel over-expression of COX-2 and PPAR-delta. PMID:11304699

  15. Convergence of Nitric Oxide and Lipid Signaling: Anti-Inflammatory Nitro-Fatty Acids

    PubMed Central

    Baker, Paul R.S.; Schopfer, Francisco J.; O’Donnell, Valerie B.; Freeman, Bruce A.

    2009-01-01

    The signaling mediators nitric oxide (·NO) and oxidized lipids, once viewed to transduce metabolic and inflammatory information via discrete and independent pathways, are now appreciated as interdependent regulators of immune response and metabolic homeostasis. The interactions between these two classes of mediators result in reciprocal control of mediator sythesis that is strongly influenced by the local chemical environment. The relationship between the two pathways extends beyond co-regulation of ·NO and eicosanoid formation to converge via the nitration of unsaturated fatty acids to yield nitro derivatives (NO2-FA). These pluripotent signaling molecules are generated in vivo as an adaptive response to oxidative inflammatory conditions and manifest predominantly anti-inflammatory signaling reactions. These actions of NO2-FA are diverse, with these species serving as a potential chemical reserve of ·NO, reacting with cellular nucleophiles to post-translationally modify protein structure, function and localization. In this regard these species act as potent endogenous ligands for peroxisome proliferator activated receptor γ. Functional consequences of these signaling mechanisms have been shown in multiple model systems, including the inhibition of platelet and neutrophil functions, induction of heme oxygenase-1, inhibition of LPS-induced cytokine release in monocytes, increased insulin sensitivity and glucose uptake in adipocytes and relaxation of pre-constricted rat aortic segments. These observations have propelled further in vitro and in vivo studies of mechanisms of NO2-FA signaling and metabolism, highlighting the therapeutic potential of this class of molecules as anti-inflammatory drug candidates. PMID:19200454

  16. Heart rate reduction with ivabradine promotes shear stress-dependent anti-inflammatory mechanisms in arteries.

    PubMed

    Luong, Le; Duckles, Hayley; Schenkel, Torsten; Mahmoud, Marwa; Tremoleda, Jordi L; Wylezinska-Arridge, Marzena; Ali, Majid; Bowden, Neil P; Villa-Uriol, Mari-Cruz; van der Heiden, Kim; Xing, Ruoyu; Gijsen, Frank J; Wentzel, Jolanda; Lawrie, Allan; Feng, Shuang; Arnold, Nadine; Gsell, Willy; Lungu, Angela; Hose, Rodney; Spencer, Tim; Halliday, Ian; Ridger, Victoria; Evans, Paul C

    2016-07-01

    Blood flow generates wall shear stress (WSS) which alters endothelial cell (EC) function. Low WSS promotes vascular inflammation and atherosclerosis whereas high uniform WSS is protective. Ivabradine decreases heart rate leading to altered haemodynamics. Besides its cardio-protective effects, ivabradine protects arteries from inflammation and atherosclerosis via unknown mechanisms. We hypothesised that ivabradine protects arteries by increasing WSS to reduce vascular inflammation. Hypercholesterolaemic mice were treated with ivabradine for seven weeks in drinking water or remained untreated as a control. En face immunostaining demonstrated that treatment with ivabradine reduced the expression of pro-inflammatory VCAM-1 (p<0.01) and enhanced the expression of anti-inflammatory eNOS (p<0.01) at the inner curvature of the aorta. We concluded that ivabradine alters EC physiology indirectly via modulation of flow because treatment with ivabradine had no effect in ligated carotid arteries in vivo, and did not influence the basal or TNFα-induced expression of inflammatory (VCAM-1, MCP-1) or protective (eNOS, HMOX1, KLF2, KLF4) genes in cultured EC. We therefore considered whether ivabradine can alter WSS which is a regulator of EC inflammatory activation. Computational fluid dynamics demonstrated that ivabradine treatment reduced heart rate by 20 % and enhanced WSS in the aorta. In conclusion, ivabradine treatment altered haemodynamics in the murine aorta by increasing the magnitude of shear stress. This was accompanied by induction of eNOS and suppression of VCAM-1, whereas ivabradine did not alter EC that could not respond to flow. Thus ivabradine protects arteries by altering local mechanical conditions to trigger an anti-inflammatory response. PMID:27075869

  17. Progressive Metaplastic and Dysplastic Changes in Mouse Pancreas Induced by Cyclooxygenase-2 Overexpression1

    PubMed Central

    Colby, Jennifer KL; Klein, Russell D; McArthur, Mark J; Conti, Claudio J; Kiguchi, Kaoru; Kawamoto, Toru; Riggs, Penny K; Pavone, Amy I; Sawicki, Janet; Fischer, Susan M

    2008-01-01

    Cyclooxygenase-2 (COX-2) overexpression is an established factor linking chronic inflammation with metaplastic and neoplastic change in various tissues. We generated transgenic mice (BK5.COX-2) in which elevation of COX-2 and its effectors trigger a metaplasia-dysplasia sequence in exocrine pancreas. Histologic evaluation revealed a chronic pancreatitis-like state characterized by acinar-to-ductal metaplasia and a well-vascularized fibroinflammatory stroma that develops by 3 months. By 6 to 8 months, strongly dysplastic features suggestive of pancreatic ductal adenocarcinoma emerge in the metaplastic ducts. Increased proliferation, cellular atypia, and loss of normal cell/tissue organization are typical features in transgenic pancreata. Alterations in biomarkers associated with human inflammatory and neoplastic pancreatic disease were detected using immunohistochemistry. The abnormal pancreatic phenotype can be completely prevented by maintaining mice on a diet containing celecoxib, a well-characterized COX-2 inhibitor. Despite the high degree of atypia, only limited evidence of invasion to adjacent tissues was observed, with no evidence of distant metastases. However, cell lines derived from spontaneous lesions are aggressively tumorigenic when injected into syngeneic or nude mice. The progressive nature of the metaplastic/dysplastic changes observed in this model make it a valuable tool for examining the transition from chronic inflammation to neoplasia. PMID:18670639

  18. 5-Lipoxygenase/cyclooxygenase-2 cross-talk through cysteinyl leukotriene receptor 2 in endothelial cells.

    PubMed

    Lötzer, Katharina; Jahn, Steffen; Kramer, Cornelia; Hildner, Markus; Nüsing, Rolf; Funk, Colin D; Habenicht, Andreas J R

    2007-11-01

    The 5-lipoxygenase (5-LO) pathway generates lipid mediators, i.e. the cysteinyl leukotrienes (cysLTs) LTC(4)/LTD(4) and LTB(4). CysLT receptors are expressed in endothelial cells (EC) and EC cysLT(2)-R activation induces diverse pro-inflammatory genes in vitro. We now report that LTD(4) promotes formation of an atherosclerosis-protective and anti-thrombotic eicosanoid by markedly up-regulating EC cyclooxygenase-2 (COX-2). CysLT-induced COX-2 transcripts were transiently up-regulated as determined by microarray and QRT-PCR analyses though COX-2 protein remained elevated for several hours. Prostacyclin formation, measured as its stable metabolite 6-keto-PGF(1alpha), was increased several fold in LTD(4)-stimulated ECs, and was inhibited by the COX-2-specific inhibitor, NS-398. COX-2 up-regulation was Ca(2+)-dependent and was partially blocked by cyclosporin A indicating that the 5-LO/COX-2 cross-talk involved signaling through a nuclear factor of activated T cells (NFAT) dependent pathway. Since prostacyclin is a major blood vessel-protective and anti-thrombotic eicosanoid, the EC cysLT(2)-R may limit its otherwise pro-inflammatory actions through a protective Ca(2+)/calcineurin/NFAT-dependent COX-2 feedback loop. PMID:17991613

  19. Cerebral analgesic response to nonsteroidal anti-inflammatory drug ibuprofen.

    PubMed

    Hodkinson, Duncan J; Khawaja, Nadine; OʼDaly, Owen; Thacker, Michael A; Zelaya, Fernando O; Wooldridge, Caroline L; Renton, Tara F; Williams, Steven C R; Howard, Matthew A

    2015-07-01

    Nonopioid agents, such as nonsteroidal anti-inflammatory drugs (NSAIDs), are the most commonly used class of analgesics. Increasing evidence suggests that cyclooxygenase (COX) inhibition at both peripheral and central sites can contribute to the antihyperalgesic effects of NSAIDs, with the predominant clinical effect being mediated centrally. In this study, we examined the cerebral response to ibuprofen in presurgical and postsurgical states and looked at the analgesic interaction between surgical state and treatment. We used an established clinical pain model involving third molar extraction, and quantitative arterial spin labelling (ASL) imaging to measure changes in tonic/ongoing neural activity. Concurrent to the ASL scans, we presented visual analogue scales inside the scanner to evaluate the subjective experience of pain. This novel methodology was incorporated into a randomized double-blind placebo-controlled design, with an open method of drug administration. We found that independent of its antinociceptive action, ibuprofen has no effect on regional cerebral blood flow under pain-free conditions (presurgery). However, in the postsurgical state, we observed increased activation of top-down modulatory circuits, which was accompanied by decreases in the areas engaged because of ongoing pain. Our findings demonstrate that ibuprofen has a measurable analgesic response in the human brain, with the subjective effects of pain relief reflected in two distinct brain networks. The observed activation of descending modulatory circuits warrants further investigation, as this may provide new insights into the inhibitory mechanisms of analgesia that might be exploited to improve safety and efficacy in pain management. PMID:25851460

  20. Non-steroidal Anti-inflammatory Drugs in Raptors

    USGS Publications Warehouse

    Oaks, J. Lindsay; Meteyer, Carol U.

    2012-01-01

    The use of analgesia has become standard, and appropriate, practice in avian medicine. As in mammals, pain control in avian patients is usually accomplished with opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) used singly or in combination for a multimodal approach. Despite their usefulness, widespread use, and relative safety in clinical use, few controlled studies in birds have been conducted on efficacy, safety, and dosing. The guidelines for the use of NSAIDs in raptors and other birds have mainly been empirical. More recently, NSAIDs in free-living raptors have emerged as a major conservation issue with the discovery that diclofenac sodium was responsible for the population crash of three species of Gyps vultures in southern Asia. In this context, residues of veterinary NSAIDs in domestic animals are now considered environmental contaminants that can be significantly toxic to vultures and possibly other avian scavengers. Ironically, the disaster with Asian vultures has led to a considerable body of research on NSAIDs in raptors to the benefit of clinicians who now have scientific information available to help assess dosing, safety, toxicity, and pharmacokinetics of NSAIDs in their raptor patients.

  1. Anti-inflammatory phenanthrene derivatives from stems of Dendrobium denneanum.

    PubMed

    Lin, Yuan; Wang, Fei; Yang, Li-Juan; Chun, Ze; Bao, Jin-Ku; Zhang, Guo-Lin

    2013-11-01

    Cultivated Dendrobium denneanum has been substituted for other endangered Dendrobium species in recent years, but there have been few studies regarding either its chemical constituents or pharmacological effects. In this study, three phenanthrene glycosides, three 9,10-dihydrophenanthrenes, two 9,10-dihydrophenanthrenes glycosides, and four known phenanthrene derivatives, were isolated from the stems of D. denneanum. Their structures were elucidated on the basis of MS and NMR spectroscopic data. Ten compounds were found to inhibit nitric oxide (NO) production in lipopolysaccharide (LPS)-activated mouse macrophage RAW264.7 cells with IC50 values of 0.7-41.5 μM, and exhibited no cytotoxicity in RAW264.7, HeLa, or HepG2 cells. Additionally, it was found that 2,5-dihydroxy-4-methoxy-phenanthrene 2-O-β-d-glucopyranoside, and 5-methoxy-2,4,7,9S-tetrahydroxy-9,10-dihydrophenanthrene suppressed LPS-induced expression of inducible NO synthase (iNOS) inhibited phosphorylation of p38, JNK as well as mitogen-activated protein kinase (MAPK), and inhibitory kappa B-α (IκBα). This indicated that both compounds exert anti-inflammatory effects by inhibiting MAPKs and nuclear factor κB (NF-κB) pathways. PMID:24042064

  2. Incorporation of anti-inflammatory agent into mesoporous silica.

    PubMed

    Braz, Wilson Rodrigues; Rocha, Natállia Lamec; de Faria, Emerson H; Silva, Márcio L A E; Ciuffi, Katia J; Tavares, Denise C; Furtado, Ricardo Andrade; Rocha, Lucas A; Nassar, Eduardo J

    2016-09-23

    The unique properties of macroporous, mesoporous, and microporous systems, including their ability to accommodate molecules of different sizes inside their pores and to act as drug delivery systems, have been the object of extensive studies. In this work, mesoporous silica with hexagonal structure was obtained by template synthesis via the sol-gel process. The resulting material was used as support to accommodate the anti-inflammatory agent indomethacin. The alkaline route was used to prepare the mesoporous silica; cetyltrimethylammonium bromide was employed as porogenic agent. The silica particles were functionalized with 3-aminopropyltriethoxysilane alkoxide (APTES) by the sol-gel post-synthesis method. Indomethacin was incorporated into the silica functionalized with APTES and into non-functionalized silica. The resulting systems were characterized by x-ray diffraction (XRD), specific area, infrared spectroscopy, and thermal analyses (TGA). XRD attested to formation of mesoporous silica with hexagonal structure. This structure remained after silica functionalization with APTES and incorporation of indomethacin. Typical infrared spectroscopy vibrations and organic material decomposition during TGA confirmed silica functionalization and drug incorporation. The specific surface area and pore volume of the functionalized material incorporated with indomethacin decreased as compared with the specific surface area and pore volume of the non-functionalized silica containing no drug, suggesting both the functionalizing agent and the drug were present in the silica. Cytotoxicity tests conducted on normal fibroblasts (GM0479A) cells attested that the silica matrix containing indomethacin was less toxic than the free drug. PMID:27533108

  3. Colonic anastomoses and non-steroidal anti-inflammatory drugs.

    PubMed

    Slim, K; Joris, J; Beloeil, H

    2016-08-01

    Nonsteroidal anti-inflammatory drugs (NSAID) play an important role in the treatment of post-operative pain, particularly in the context of enhanced recovery after colorectal surgery. Several recent articles have suggested that NSAID may have a deleterious effect on colo-colic or colo-rectal anastomoses. The aim of this review is to analyze the evidence based on meta-analyses and cohort studies in the literature. A systematic review of clinical studies identified twelve studies including two meta-analyses and ten comparative cohort studies that included a large number of patients. The data in these studies are heterogeneous, often biased, and do not permit a formal recommendation based on a high level of evidence. The main conclusion of this review is that the balance of benefit vs. risk (analgesic effect/risk of anastomotic disruption) is acceptable; it appears (with a low level of evidence) that a prescription of NSAID for 48h after surgery may be recommended for elective colon surgery. Nevertheless, it is important to respect the specific contra-indications of NSAID and avoid post-operative NSAID use if there are risk factors for anastomotic leakage: advanced age, malnutrition, severe co-morbidities, intra-operative difficulties. PMID:27480526

  4. Anti-inflammatory, Analgesic and Antiulcer properties of Porphyra vietnamensis

    PubMed Central

    Bhatia, Saurabh; Sharma, Kiran; Sharma, Ajay; Nagpal, Kalpana; Bera, Tanmoy

    2015-01-01

    Objectives: Aim of the present work was to investigate the anti-inflammatory, analgesic and antiulcer effects of red seaweed Porphyra vietnamensis (P. vietnamenis). Materials and Methods: Aqueous (POR) and alcoholic (PE) fractions were successfully isolated from P. vietnamenis. Further biological investigations were performed using a classic test of paw edema induced by carrageenan, writhing induced by acetic acid, hot plate method and naproxen induced gastro-duodenal ulcer. Results: Among the fractions POR showed better activity. POR and PE significantly (p < 0.05) reduced carrageenan induced paw edema in a dose dependent manner. In the writhing test POR significantly (p < 0.05) reduced abdominal writhes than PE. In hot plate method POR showed better analgesic activity than PE. POR showed comparable ulcers reducing potential (p<0.01) to that of omeprazole, and has more ulcer reducing potential then PE. Conclusions: The results of this study demonstrated that P. vietnamenis aqueous fraction possesses biological activity that is close to the standards taken for the treatment of peripheral painful or/and inflammatory and ulcer conditions. PMID:25767759

  5. Effects of nonsteroidal anti-inflammatory drugs on microvascular dynamics.

    PubMed

    Slater, C; House, S D

    1993-03-01

    Techniques of intravital microscopy were used to assess the effect of the nonsteroidal anti-inflammatory drugs (NSAIDs), indomethacin and ibuprofen, on the microcirculation. Hemodynamics in venules of the rat mesentery were studied in terms of vessel diameter, red blood cell velocity, and leukocyte-endothelium interactions: leukocyte-endothelium adhesion (LEA), white blood cell (WBC) marginating flux, and WBC velocity. Measurements were made during (1) control conditions (topical suffusion with ringer-gelatin drip), (2) topically suffused indomethacin or ibuprofen, (3) an induced inflammatory response (suffusion with the chemoattractant N-Formyl-Methionyl-Leucyl-Phenylalanine (FMLP)), and (4) concomitant suffusion with FMLP and NSAID. Short term topical suffusion (90 sec) with indomethacin and ibuprofen had little or no effect on control hemodynamics. Five-minute suffusions with indomethacin (5 x 10(-5) to 5 x 10(-4) M) significantly increased LEA while ibuprofen (5 x 10(-3) M) significantly decreased LEA. Topical suffusion with the chemotactic agent FMLP induced inflammation and significantly increased LEA in venules. Treatment with indomethacin during induced inflammation had no effect on the inflammatory reaction in terms of the microvascular hemodynamics measured in this study. Treatment with ibuprofen during induced inflammation significantly reduced LEA and increased red blood cell velocity. In conclusion, although both of the NSAIDs studied here are known to block the cyclooxygenase pathway of arachidonic acid metabolism, the actions of indomethacin and ibuprofen on the inflammatory process are very different with an important effect of ibuprofen being to decrease LEA. PMID:8361400

  6. Proteomic analysis of the anti-inflammatory action of minocycline

    PubMed Central

    Dunston, Christopher R; Griffiths, Helen R; Lambert, Peter A; Staddon, Susan; Vernallis, Ann B

    2011-01-01

    Minocycline possesses anti-inflammatory properties independently of its antibiotic activity although the underlying molecular mechanisms are unclear. Lipopolysaccharide (LPS)-induced cytokines and pro-inflammatory protein expression are reduced by minocycline in cultured macrophages. Here, we tested a range of clinically important tetracycline compounds (oxytetracycline, doxycycline, minocycline and tigecycline) and showed that they all inhibited LPS-induced nitric oxide production. We made the novel finding that tigecycline inhibited LPS-induced nitric oxide production to a greater extent than the other tetracycline compounds tested. To identify potential targets for minocycline, we assessed alterations in the macrophage proteome induced by LPS in the presence or absence of a minocycline pre-treatment using 2-DE and nanoLC-MS. We found a number of proteins, mainly involved in cellular metabolism (ATP synthase β-subunit and aldose reductase) or stress response (heat shock proteins), which were altered in expression in response to LPS, some of which were restored, at least in part, by minocycline. This is the first study to document proteomic changes induced by minocycline. The observation that minocycline inhibits some, but not all, of the LPS-induced proteomic changes shows that minocycline specifically affects some signalling pathways and does not completely inhibit macrophage activation. PMID:21182193

  7. Proteasome inhibition: a new anti-inflammatory strategy.

    PubMed

    Elliott, Peter J; Zollner, Thomas Matthias; Boehncke, Wolf-Henning

    2003-04-01

    The ubiquitin-proteasome pathway has a central role in the selective degradation of intracellular proteins. Among the key proteins modulated by the proteasome are those involved in the control of inflammatory processes, cell cycle regulation, and gene expression. Consequently proteasome inhibition is a potential treatment option for cancer and inflammatory conditions. Thus far, proof of principle has been obtained from studies in numerous animal models for a variety of human diseases including cancer, reperfusion injury, and inflammatory conditions such as rheumatoid arthritis, asthma, multiple sclerosis, and psoriasis. Two proteasome inhibitors, each representing a unique chemical class, are currently under clinical evaluation. Velcade (PS-341) is currently being evaluated in multiple phase II clinical trials for several solid tumor indications and has just entered a phase III trial for multiple myeloma. PS-519, representing another class of inhibitors, focuses on the inflammatory events following ischemia and reperfusion injury. Since proteasome inhibitors exhibit anti-inflammatory and antiproliferative effects, diseases characterized by both of these processes simultaneously, as is the case in rheumatoid arthritis or psoriasis, might also represent clinical opportunities for such drugs. PMID:12700891

  8. Pharmaceutical aspects of anti-inflammatory TNF-blocking drugs.

    PubMed

    Jinesh, Sandhya

    2015-06-01

    Tumor necrosis factor (TNF) is a key regulator of inflammatory processes in several immune-mediated inflammatory diseases such as rheumatoid arthritis, ankylosing spondylitis, Crohn's disease, ulcerative colitis, psoriasis and psoriatic arthritis. Inactivating TNF has been found to be a plausible approach in treating these conditions. Two major strategies have been adopted by scientists to inactivate TNF: one is to use monoclonal antibodies (mAbs) that bind to TNF, and the other is to use fusion proteins that bind to TNF, both inactivate TNF and help to prevent TNF-mediated inflammatory processes. Monoclonal antibodies (mAbs) are biological products that selectively bind to specific antigen molecules, and fusion proteins are soluble receptors that bind to TNF. These types of drugs are generally known as biologics and there has been an explosion in the development and testing of biologics since the 1994 US approval and launch of abciximab, a mAb that binds to GPIIb/IIIa on platelets. Anti-TNF drugs that are currently approved by FDA for treating inflammatory conditions include adalimumab, certolizumab pegol, golimumab, infliximab and etanercept. Since these agents are complex protein molecules, the pharmacodynamics and pharmacokinetics of these drugs are different from small-molecule anti-inflammatory agents. This review focuses on the pharmaceutical aspects of these drugs such as mechanism of action, adverse effects, pharmacokinetics and drug interactions. An effort was also taken to compare the pharmacodynamics and pharmacokinetic properties of these drugs, with the available data at this time. PMID:25687751

  9. Anti-inflammatory Hydrolyzable Tannins from Myricaria bracteata.

    PubMed

    Liu, Jia-Bao; Ding, Ya-Si; Zhang, Ying; Chen, Jia-Bao; Cui, Bao-Song; Bai, Jin-Ye; Lin, Ming-Bao; Hou, Qi; Zhang, Pei-Cheng; Li, Shuai

    2015-05-22

    Twelve hydrolyzable tannins were obtained from the twigs of Myricaria bracteata, including two new hellinoyl-type dimers, bracteatinins D1 (1) and D2 (2); a new hellinoyl-type trimer, bracteatinin T1 (3); two known monomers, nilotinin M4 (4) and 1,3-di-O-galloyl-4,6-O-(aS)-hexahydroxydiphenoyl-β-d-glucose (5); six known dimers, tamarixinin A (6), nilotinin D8 (7), hirtellins A (10), B (9), and E (8), and isohirtellin C (11); and a known trimer, hirtellin T3 (12). The structures of the tannins were elucidated by spectroscopic data analysis and comparisons to known tannins. All compounds were evaluated as free radical scavengers using 1,1-diphenyl-2-picrylhydrazyl and hydroxy radicals and compared to the activity of BHT and Trolox. Compound 6 showed a significant anti-inflammatory effect on croton oil-induced ear edema in mice (200 mg/kg, inhibition rate 69.8%) and on collagen-induced arthritis in DBA/1 mice (20 mg/kg, inhibition rate 46.0% at day 57). PMID:25918997

  10. Nonsteroidal anti-inflammatory drug gastropathy: new avenues for safety

    PubMed Central

    Roth, Sanford H

    2011-01-01

    Chronic oral or systemic nonselective nonsteroidal anti-inflammatory drug (NSAID) therapy, ubiquitously used by physicians to treat osteoarthritis-associated pain, is associated with a wide range of symptomatic adverse events, the most frequent and serious of which is gastropathy. Although cardiovascular and renal problems are a very real concern, they are significantly less frequent. These complications can be life-threatening in at-risk populations such as older adults, who are common users of long-term oral systemic NSAID therapy. Topical NSAID formulations deliver effective doses of analgesics directly to the affected joints, thereby limiting systemic exposure and potentially the risk of systemic adverse events, such as gastropathy and serious cardiovascular events. There are currently two topical NSAIDs approved by the US Food and Drug Administration for osteoarthritis-associated pain, as well as for the signs and symptoms of osteoarthritis. This review discusses the relative safety, and the gastrointestinal, cardiovascular, and renal risks of chronic oral or systemic NSAID therapy and topical NSAID formulations in patients with osteoarthritis. PMID:21753867

  11. Nonsteroidal Anti-Inflammatory Drug Hypersensitivity in Preschool Children

    PubMed Central

    2007-01-01

    Although extensively studied in adults, nonsteroidal anti-inflammatory drug (NSAID) hypersensitivity in children, especially in young children, remains poorly defined. Pediatricians, prescribing antipyretics for children, rarely encounter significant problems, but the few epidemiologic studies performed show conflicting results. Although it is clear that some patients with acetylsalicylic acid (ASA)-sensitive asthma have their clinical onset of disease in childhood and bronchoconstriction after ASA challenge is seen in 0 to 22% of asthmatic children so challenged, ibuprofen at antipyretic doses may cause acute respiratory problems only in a very small number of mild to moderate asthmatics. The recently elucidated mechanism of action of acetaminophen may explain some occurrences of adverse reactions in patients with cross-reactive NSAID hypersensitivity on the basis of its inhibitory activity on the newly described enzyme, cyclooxygenase (COX)-3. This nonspecific sensitivity to inhibition of COX is most likely genetically determined and shows a remarkable association with atopic disease even in the very young age group and possibly an increased predilection in specific ethnic groups. This review summarizes state-of-the-art published data on NSAID hypersensitivity in preschool children. PMID:20525116

  12. N-Amino acid linoleoyl conjugates: anti-inflammatory activities.

    PubMed

    Burstein, Sumner; McQuain, Catherine; Salmonsen, Rebecca; Seicol, Benjamin

    2012-01-15

    Several N-linked amino acid-linoleic acid conjugates were studied for their potential as anti inflammatory agents. The parent molecule, N-linoleoylglycine was tested in an in vivo model, the mouse peritonitis assay where it showed activity in reducing leukocyte migration at doses as low as 0.3mg/kg when administered by mouth in safflower oil. Harvested peritoneal cells produced elevated levels of the inflammation-resolving eicosanoid 15-deoxy-Δ(13,14)-PGJ(2). These results are similar to those obtained in earlier studies with N-arachidonoylglycine. An in vitro model using mouse macrophage RAW cells was used to evaluate a small group of structural analogs for their ability to stimulate 15-deoxy-Δ(13,14)-PGJ(2) production. The d-alanine derivative was the most active while the d-phenylalanine showed almost no response. A high degree of stereo specificity was observed comparing the d and l alanine isomers; the latter being the less active. It was concluded that linoleic acid conjugates could provide suitable templates in a drug discovery program leading to novel agents for promoting the resolution of chronic inflammation. PMID:22217875

  13. Cyclooxygenase-2 or tumor necrosis factor-α inhibitors attenuate the mechanotransductive effects of pulsed focused ultrasound to suppress mesenchymal stromal cell homing to healthy and dystrophic muscle

    PubMed Central

    Tebebi, Pamela A.; Burks, Scott R.; Kim, Saejeong J.; Williams, Rashida A.; Nguyen, Ben A.; Venkatesh, Priyanka; Frenkel, Victor; Frank, Joseph A.

    2014-01-01

    Maximal homing of infused stem cells to diseased tissue is critical for regenerative medicine. Pulsed focused ultrasound (pFUS) is a clinically relevant platform to direct stem cell migration. Through mechanotransduction, pFUS establishes local gradients of cytokines, chemokines, trophic factors (CCTF) and cell adhesion molecules (CAM) in treated skeletal muscle that subsequently infused mesenchymal stromal cells (MSC) can capitalize to migrate into the parenchyma. Characterizing molecular responses to mechanical pFUS effects revealed tumor necrosis factor-alpha (TNFα) drives cyclooxygenase-2 (COX2) signaling to locally increase CCTF/CAM that are necessary for MSC homing. pFUS failed to increase chemoattractants and induce MSC homing to treated muscle in mice pretreated with ibuprofen (non-specific COX inhibitor) or etanercept (TNFα inhibitor). pFUS-induced MSC homing was also suppressed in COX2-knockout mice, demonstrating ibuprofen blocked the mechanically-induced CCTF/CAM by acting on COX2. Anti-inflammatory drugs, including ibuprofen, are administered to muscular dystrophy (MD) patients and ibuprofen also suppressed pFUS-induced homing to muscle in a mouse model of MD. Drug interactions with cell therapies remain unexplored and are not controlled for during clinical cell therapy trials. This study highlights potentially negative drug-host interactions that suppress stem cell homing and could undermine cell-based approaches for regenerative medicine. PMID:25534849

  14. The effect of ultraviolet radiation on the anti-inflammatory effect of filters.

    PubMed

    Couteau, C; Couteau, O; Chauvet, C; Paparis, E; Coiffard, L J M

    2013-08-16

    A certain number of filters have notable anti-inflammatory properties with percentage inhibition of PMA-induced edema in mice at over 70%. The question arose as to whether this effect was likely to continue after UV irradiation. It can be noted that 7 filters retain an equivalent anti-inflammatory effect before and after 2h of irradiation in a Suntest device (650 W/m(2)). For 9 filters, the anti-inflammatory effect decreases and for 5 filters, the anti-inflammatory effect increases. Various behaviors should be noted. 3 groups of substances can be distinguished: such as phenylbenzimidazole sulfonic acid which loses its anti-inflammatory character after irradiation (the percentage inhibition falls from 80 to 44%), oxybenzone which retains a constant anti-inflammatory character (89% inhibition before and after irradiation and also octyl methoxycinnamate which becomes very anti-inflammatory (with a percentage inhibition of 93%). The same phenomenon is observed in the case of commercial products. This should be made known as it can have a considerable impact on the results which are displayed on the packaging of sun products. PMID:23639290

  15. Yu Ping Feng San, an ancient Chinese herbal decoction, regulates the expression of inducible nitric oxide synthase and cyclooxygenase-2 and the activity of intestinal alkaline phosphatase in cultures.

    PubMed

    Du, Crystal Y Q; Choi, Roy C Y; Dong, Tina T X; Lau, David T W; Tsim, Karl W K

    2014-01-01

    Yu Ping Feng San (YPFS), a Chinese herbal decoction comprising Astragali Radix (AR; Huangqi), Atractylodis Macrocephalae Rhizoma (AMR; Baizhu), and Saposhnikoviae Radix (SR; Fangfeng), has been used clinically to treat inflammatory bowel diseases (IBD). Previously, we demonstrated a dual role of YPFS in regulating cytokine release in cultured macrophages. In this study, we elucidated the anti-inflammatory effect of YPFS that is mediated through modulating the expression of three key enzymes involved in IBD: inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and intestinal alkaline phosphatase (IALP). In a lipopolysaccharide (LPS)-induced chronic-inflammation model of cultured murine macrophages, YPFS treatment suppressed the activation of iNOS and COX-2 expression in a dose-dependent manner. Conversely, application of YPFS in cultured small intestinal enterocytes markedly induced the expression of IALP in a time-dependent manner, which might strengthen the intestinal detoxification system. A duality of YPFS in modulating the expression of iNOS and COX-2 was determined here. The expression of iNOS and COX-2 in macrophages was induced by YPFS, and this activation was partially blocked by the NF-κB-specific inhibitor BAY 11-7082, indicating a role of NF-κB signaling. These YPFS-induced changes in gene regulation strongly suggest that the anti-inflammatory effects of YPFS are mediated through the regulation of inflammatory enzymes. PMID:24967898

  16. Potential of prescription registries to capture individual-level use of aspirin and other nonsteroidal anti-inflammatory drugs in Denmark: trends in utilization 1999–2012

    PubMed Central

    Schmidt, Morten; Hallas, Jesper; Friis, Søren

    2014-01-01

    Background Due to over-the-counter availability, no consensus exists on whether adequate information on nonsteroidal anti-inflammatory drug (NSAID) use can be obtained from prescription registries. Objectives To examine utilization of aspirin and nonaspirin NSAIDs in Denmark between 1999 and 2012 and to quantify the proportion of total sales that was sold on prescription. Method Based on nationwide data from the Danish Serum Institute and the Danish National Prescription Registry, we retrieved sales statistics for the Danish primary health care sector to calculate 1-year prevalences of prescription users of aspirin or nonaspirin NSAIDs, and to estimate the corresponding proportions of total sales dispensed on prescription. Results Both low-dose aspirin and nonaspirin NSAIDs were commonly used in the Danish population between 1999 and 2012, particularly among elderly individuals. The 1-year prevalence of prescribed low-dose aspirin increased throughout the study period, notably among men. Nonaspirin NSAID use was frequent in all age groups above 15 years and showed a female preponderance. Overall, the prevalence of prescribed nonaspirin NSAIDs decreased moderately after 2004, but substantial variation according to NSAID subtype was observed; ibuprofen use increased, use of all newer selective cyclooxygenase-2 inhibitors nearly ceased after 2004, diclofenac use decreased by nearly 50% after 2008, and naproxen use remained stable. As of 2012, the prescribed proportion of individual-level NSAID sales was 92% for low-dose aspirin, 66% for ibuprofen, and 100% for all other NSAIDs. Conclusion The potential for identifying NSAID use from prescription registries in Denmark is high. Low-dose aspirin and nonaspirin NSAID use varied substantially between 1999 and 2012. Notably, use of cyclooxygenase-2 inhibitors nearly ceased, use of diclofenac decreased markedly, and naproxen use remained unaltered. PMID:24872722

  17. Anti-inflammatory activity of root bark and stem bark of Shyonaka

    PubMed Central

    Doshi, Krunal; Ilanchezhian, R; Acharya, Rabinarayan; Patel, B. R.; Ravishankar, B.

    2012-01-01

    Background: Shyonaka (Oroxylum indicum Vent.; Bignoniaceae) root bark is one of the ingredients of dashamoola (a group of 10 roots), and is used for its anti-inflammatory and analgesic action in a number of compound formulations in Ayurveda. Aim: Ayurvedic Pharmacopoeia of India (API) recommends using the stem bark instead of root bark. Material and Methods: An attempt has been made to study the anti-inflammatory activity of both root bark and stem bark kashaya (decoction) experimentally. Conclusion Results showed significant anti-inflammatory activity of root bark and stem bark decoction. PMID:23326090

  18. Polysaccharide Constituents of Three Types of Sea Urchin Shells and Their Anti-Inflammatory Activities

    PubMed Central

    Jiao, Heng; Shang, Xiaohui; Dong, Qi; Wang, Shuang; Liu, Xiaoyu; Zheng, Heng; Lu, Xiaoling

    2015-01-01

    As a source of potent anti-inflammatory traditional medicines, the quantitative chromatographic fingerprints of sea urchin shell polysaccharides were well established via pre-column derivatization high performance liquid chromatography (HPLC) analysis. Based on the quantitative results, the content of fucose and glucose could be used as preliminary distinguishing indicators among three sea urchin shell species. Besides, the anti-inflammatory activities of the polysaccharides from sea urchin shells and their gonads were also determined. The gonad polysaccharide of Anthocidaris crassispina showed the most potent anti-inflammatory activity among all samples tested. PMID:26389925

  19. ANTI-INFLAMMATORY AND MAST CELL PROTECTIVE EFFECT OF FICUS RELIGIOSA

    PubMed Central

    Viswanathan, S.; Thirugnanasambantham, P.; Reddy, M. Kannappa; Narasimhan, S.; Subramaniam, G. Anantha

    1990-01-01

    The aqueous extract of bark of Ficus religiosa was prepared and investigated for its anti-inflammatory effect and for its protective effect on mast cells against degranulation. A significant anti-inflammatory effect was observed in both acute and chronic models of inflammation. The extract also protected mast cells from degranulation induced by various degranulatiors. The observed anti-inflammatory and mast cell protective effect may be responsible for the beneficial effect of Ficus religiosa in kumkum dermatitis and other inflammatory conditions. PMID:22556521

  20. Anti-inflammatory and mast cell protective effect of ficus religiosa.

    PubMed

    Viswanathan, S; Thirugnanasambantham, P; Reddy, M K; Narasimhan, S; Subramaniam, G A

    1990-10-01

    The aqueous extract of bark of Ficus religiosa was prepared and investigated for its anti-inflammatory effect and for its protective effect on mast cells against degranulation. A significant anti-inflammatory effect was observed in both acute and chronic models of inflammation. The extract also protected mast cells from degranulation induced by various degranulatiors. The observed anti-inflammatory and mast cell protective effect may be responsible for the beneficial effect of Ficus religiosa in kumkum dermatitis and other inflammatory conditions. PMID:22556521

  1. Anti-inflammatory effects of essential oils extracted from Chamaecyparis obtusa on murine models of inflammation and RAW 264.7 cells.

    PubMed

    Park, Yujin; Yoo, Seung-Ah; Kim, Wan-Uk; Cho, Chul-Soo; Woo, Jong-Min; Yoon, Chong-Hyeon

    2016-04-01

    Antimicrobial, antifungal and anti-inflammatory effects of essential oils extracted from Chamaecyparis obtusa (EOCO) have previously been reported. In the present study, the anti-inflammatory effects of EOCO were investigated in two murine models of inflammation: Carrageenan-induced paw edema and thioglycollate-induced peritonitis, and in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. The expression levels of proinflammatory cytokines were analyzed by ELISA, the expression of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were determined by western blotting, and nitrite concentration was measured using Griess reagent. In mice with carrageenan-induced edema, paw thickness and the expression levels of interleukin (IL)‑1β and IL-6 in paw homogenates were significantly decreased in the EOCO (5 and 10 mg/kg) group, as compared with the control group. In mice with thioglycollate-induced peritonitis, treatment with EOCO (5 and 10 mg/kg) reduced the number of total cells and suppressed tumor necrosis factor‑α (TNF‑α), IL‑1β and IL‑6 levels in peritoneal fluid. In addition, EOCO reduced nitric oxide, TNF‑α and IL‑6 production, and suppressed iNOS and COX‑2 expression in LPS‑stimulated RAW 264.7 cells. These results suggest that EOCO may exert anti‑inflammatory effects in vivo and in vitro, and that these effects may be associated with the inhibition of inflammatory mediators. Therefore, EOCO may be considered an effective therapeutic agent for the treatment of inflammatory diseases. PMID:26936418

  2. Tenuigenin exhibits anti-inflammatory activity via inhibiting MAPK and NF-κB and inducing Nrf2/HO-1 signaling in macrophages.

    PubMed

    Lv, Hongming; Ren, Wenzhi; Zheng, Yuwei; Wang, Lidong; Lu, Gejin; Yi, Pengfei; Ci, Xinxin

    2016-01-01

    Tenuigenin (TNG), isolated from the root of the Chinese herb Polygala tenuifolia, possesses various biological and pharmacological activities, including anti-oxidation and anti-inflammation activities. In this study, we aimed to further investigate whether its anti-inflammatory activity is associated with the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Our results showed that TNG treatment dramatically reduced prostaglandin E2 (PGE2) and NO production, decreased iNOS and COX-2 gene expression, inhibited JNK1/2, ERK1/2, p38 and NF-κB (p65) phosphorylation, and blocked IκBα phosphorylation and degradation. Further studies revealed that TNG dramatically up-regulated heme oxygenase (HO)-1 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression, which was related to the induction of Nrf2 nuclear translocation and decreased Keap1 protein expression. Additionally, treatment with JNK1/2, ERK1/2 or p38 inhibitors had no effect on the TNG-induced HO-1 protein expression. Furthermore, the LPS-induced iNOS and COX-2 expression levels were inhibited by TNG, which was partially reversed by the HO-1-siRNA and HO-1 inhibitors. Together, these results showed that TNG's anti-inflammatory activity is related to the inhibition of iNOS and COX-2 expression via down-regulation of the MAPK and NF-κB, and up-regulation of the Nrf2/HO-1 signaling pathways. PMID:26499342

  3. Heme oxygenase-1-mediated anti-inflammatory effects of tussilagonone on macrophages and 12-O-tetradecanoylphorbol-13-acetate-induced skin inflammation in mice.

    PubMed

    Lee, Joohee; Kang, Unwoo; Seo, Eun Kyoung; Kim, Yeong Shik

    2016-05-01

    The dried flower buds of Tussilago farfara L. have been used in traditional medicine, mainly as an antitussive in the treatment of cough and other respiratory problems. In the present study, we investigated the anti-inflammatory signaling pathway via the upregulation of heme oxygenase-1 (HO-1) in response to tussilagonone (TGN), a sesquiterpene compound isolated from T. farfara. TGN induced HO-1 expression and nuclear factor-E2-related factor 2 (Nrf2) activation in RAW 264.7 cells. Nuclear translocation of Nrf2 by TGN also increased in a time- and dose-dependent manner, indicating that TGN induced HO-1 via the Nrf2 pathway. Consistent with the notion that HO-1 has anti-inflammatory properties, TGN suppressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression and reduced the mRNA expression of proinflammatory cytokines, as well as nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. TGN inhibited the phosphorylation and degradation of inhibitory κB-α (IκB-α) and the nuclear translocation of nuclear factor (NF)-κB. However, a specific inhibitor of HO-1 reversed the TGN-mediated suppression of NO production and knockdown of HO-1 by small interfering RNA abrogated inhibitory effects of TGN on iNOS and COX-2 protein expression and NF-κB nuclear translocation. Furthermore, TGN reduced iNOS and COX-2 expression in a 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation mouse model. Taken together, these findings suggest an important role for TGN-induced HO-1 activation in regulating inflammatory responses. Moreover, TGN is a potent therapeutic candidate for targeting the crosstalk between Nrf2/HO-1 and the NF-κB signaling pathway in the prevention or treatment of inflammation-associated diseases. PMID:26950613

  4. Nickel chloride (NiCl2)-caused inflammatory responses via activation of NF-κB pathway and reduction of anti-inflammatory mediator expression in the kidney

    PubMed Central

    Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Chen, Kejie

    2015-01-01

    Nickel (Ni) or Ni compounds target a number of organs and produce multiple toxic effects. Kidney is the major organ for Ni accumulation and excretion. There are no investigations on the Ni- or Ni compounds-induced renal inflammatory responses in human beings and animals at present. Therefore, we determined NiCl2-caused alteration of inflammatory mediators, and functional damage in the broiler's kidney by the methods of biochemistry, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). Dietary NiCl2 in excess of 300 mg/kg caused the renal inflammatory responses that characterized by increasing mRNA expression levels of the pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-18 (IL-18) via the activation of nucleic factor κB (NF-κB), and decreasing mRNA expression levels of the anti-inflammatory mediators including interleukin-2 (IL-2), interleukin-4 (IL-4) and interleukin-13 (IL-13). Concurrently, NiCl2 caused degeneration, necrosis and apoptosis of the tubular cells, which was consistent with the alteration of renal function parameters including elevated alkaline phosphatase (AKP) activity, and reduced activities of sodium-potassium adenosine triphosphatase (Na+/K+-ATPase), calcium adenosine triphosphatase (Ca2+-ATPase), lactic dehydrogenase (LDH), succinate dehydrogenase (SDH) and acid phosphatase (ACP) in the kidney. The above-mentioned results present that the activation of NF-κB pathway and reduction of anti-inflammatory mediator expression are main mechanisms of NiCl2-caused renal inflammatory responses and that the renal function is decreased or impaired after NiCl2-treated. PMID:26417933

  5. Comparative anti-inflammatory activities of curcumin and tetrahydrocurcumin based on the phenolic O-H bond dissociation enthalpy, ionization potential and quantum chemical descriptor.

    PubMed

    Murakami, Yukio; Ishii, Hiroaki; Takada, Naoki; Tanaka, Shoji; Machino, Mamoru; Ito, Shigeru; Fujisawa, Seiichiro

    2008-01-01

    Curcumin and its reduced derivative tetrahydrocurcumin have been shown to exhibit chemopreventive activity. Cyclooxygenase-2 (COX-2) inhibition in lipopolysaccharide (LPS)- or Porphyromonas gingivalis fimbria-stimulated RAW 264.7 cells was investigated using Northern blot analysis. The fimbria-stimulated expression of the COX-2 gene was inhibited by curcumin but not by tetrahydrocurcumin. LPS-stimulated COX-2 gene expression was completely inhibited by curcumin, but an increase in the concentration of tetrahydrocurcumin did not cause complete inhibition of COX-2 expression. The inhibitory effect of curcumin on nuclear factor kappa B (NF-kappaB) activation in the cells was clearly observed, but that of tetrahydrocurcumin was incomplete even at a concentration of 20 microM. To explain the difference in effect between the two compounds, analysis of the frontier orbital was performed using ab initio 6-31G* wave function. The calculated chemical hardness (eta) for curcumin was clearly smaller, whereas its electronegativity (chi) and electrophilicity (omega) were clearly greater than the corresponding values for the curcumin-related compounds tetrahydrocurcumin, isoeugenol and eugenol. This suggested that the anti-inflammatory activities of curcumin may be related to eta-, chi- and/or omega-controlled enzymes. In addition, the bond dissociation enthalpy (BDE) of the phenolic OH was calculated using the density function theory (DFT)/B3LY. The total BDE values of curcumin and tetrahydrocurcumin were almost identical, but the BDE of one-electron oxidation and ionization potential (IP) for curcumin were lower than those for tetrahydrocurcumin, suggesting the highly pro-oxidative activity of curcumin. Curcumin has both oxidant and antioxidant properties. A causal link between the anti-inflammatory activities and molecular properties of phenolic antioxidants is suggested. PMID:18507010

  6. Anti-inflammatory effects of vina-ginsenoside R2 and majonoside R2 isolated from Panax vietnamensis and their metabolites in lipopolysaccharide-stimulated macrophages.

    PubMed

    Jeong, Jin-Ju; Van Le, Thi Hong; Lee, Sang-Yun; Eun, Su-Hyeon; Nguyen, Minh Duc; Park, Jeong Hill; Kim, Dong-Hyun

    2015-09-01

    Panax vietnamensis Ha et Grushv., with its main constituents vina-ginsenoside R2 (VR2) and majonoside R2 (MR2), is used in traditional folk medicine in the hill tribes of Vietnam for anti-fatigue, anti-inflammatory, and life-saving purposes. In a preliminary study, VR2 and MR2 were shown to be metabolized to pseudoginsenoside RT4 (PRT4) and ocotillol by human gut microbiota. Therefore, we measured the anti-inflammatory effects of VR2, MR2, and their metabolites in lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophages. Among these ginsenosides, only VR2 exhibited cytotoxicity against peritoneal macrophages. MR2, PRT4, and ocotillol inhibited LPS-stimulated transcription factor (NF)-κB activation, and expression of the proinflammatory cytokines tumor necrosis factor-α and interleukin (IL)-1. However, these ginsenosides did not inhibit peptidoglycan-induced NF-κB activation in the macrophages. These three ginsenosides also inhibited LPS-stimulated cyclooxygenase-2 and inducible NO synthase expression, and phosphorylation of NF-κB signal molecules IL-1 receptor-associated kinase 1 and tumor growth factor-β-activated kinase 1 in peritoneal macrophages. Treatment with either PRT4 or ocotillol inhibited the Alexa Fluor 488-conjugated LPS-mediated shift of macrophages, as observed by flow cytometry. They also potently inhibited the binding of LPS to TLR4 on peritoneal macrophages, both with and without transfected MyD88 siRNA. Among the tested ginsenosides, ocotillol exhibited the strongest inhibitory effect on inflammation in LPS-stimulated macrophages via the NF-κB signaling pathway. Based on these findings, orally administered VR2 and MR2 of P. vietnamensis may be metabolized to ocotillol via PRT4, and the metabolites, particularly ocotillol, may inhibit inflammation by inhibiting the binding of LPS to TLR4 on macrophages. PMID:26256699

  7. Antioxidant and Anti-Inflammatory Properties of an Aqueous Cyanophyta Extract Derived from Arthrospira Platensis: Contribution to Bioactivities by the Non-Phycocyanin Aqueous Fraction

    PubMed Central

    Jensen, Gitte S.; Attridge, Victoria L.; Beaman, Joni L.; Guthrie, Jesse; Ehmann, Axel; Benson, Kathleen F.

    2015-01-01

    Abstract The goal for this work was to characterize basic biological properties of a novel Arthrospira platensis-based aqueous cyanophyta extract (ACE), enriched in the known anti-inflammatory cyclooxygenase-2 (COX-2) inhibitor phycocyanin (PC), but also containing a high level of non-PC bioactive compounds. Antioxidant properties were tested in parallel in the Folin–Ciocalteu assay (chemical antioxidant capacity) and in the cellular antioxidant protection (CAP-e) bioassay, where both the PC and the non-PC fractions contributed to the antioxidant capacity and CAP of ACE. In contrast to the COX-2 inhibition seen in the presence of PC, the inhibition of enzymatic activity of the inflammatory mediator Lipoxygenase was associated specifically with the non-PC fraction of ACE. Inhibition of formation of reactive oxygen species (ROS) was evaluated using polymorphonuclear cells from healthy human donors. The inhibition of ROS formation was seen for both the PC and non-PC fractions, with ACE showing the most robust effect. The effects of PC, non-PC, and ACE on clotting and clot lysing was tested using a modified Euglobulin fibrinolytic assay in vitro. In the presence of PC, non-PC, and ACE, the time for clot formation and lysis was not affected; however, the clots were significantly more robust. This effect was statistically significant (p<.05) at doses between 125–500 μg/mL, and returned to baseline at lower doses. Both PC and the non-PC fraction contributed to the antioxidant properties and anti-inflammatory effects, without a negative impact on blood clotting in vitro. This suggests a potential benefit for the consumable ACE extract in assisting the reduction of inflammatory conditions. PMID:25764268

  8. Antioxidant and anti-inflammatory properties of an aqueous cyanophyta extract derived from Arthrospira platensis: contribution to bioactivities by the non-phycocyanin aqueous fraction.

    PubMed

    Jensen, Gitte S; Attridge, Victoria L; Beaman, Joni L; Guthrie, Jesse; Ehmann, Axel; Benson, Kathleen F

    2015-05-01

    The goal for this work was to characterize basic biological properties of a novel Arthrospira platensis-based aqueous cyanophyta extract (ACE), enriched in the known anti-inflammatory cyclooxygenase-2 (COX-2) inhibitor phycocyanin (PC), but also containing a high level of non-PC bioactive compounds. Antioxidant properties were tested in parallel in the Folin-Ciocalteu assay (chemical antioxidant capacity) and in the cellular antioxidant protection (CAP-e) bioassay, where both the PC and the non-PC fractions contributed to the antioxidant capacity and CAP of ACE. In contrast to the COX-2 inhibition seen in the presence of PC, the inhibition of enzymatic activity of the inflammatory mediator Lipoxygenase was associated specifically with the non-PC fraction of ACE. Inhibition of formation of reactive oxygen species (ROS) was evaluated using polymorphonuclear cells from healthy human donors. The inhibition of ROS formation was seen for both the PC and non-PC fractions, with ACE showing the most robust effect. The effects of PC, non-PC, and ACE on clotting and clot lysing was tested using a modified Euglobulin fibrinolytic assay in vitro. In the presence of PC, non-PC, and ACE, the time for clot formation and lysis was not affected; however, the clots were significantly more robust. This effect was statistically significant (p<.05) at doses between 125-500 μg/mL, and returned to baseline at lower doses. Both PC and the non-PC fraction contributed to the antioxidant properties and anti-inflammatory effects, without a negative impact on blood clotting in vitro. This suggests a potential benefit for the consumable ACE extract in assisting the reduction of inflammatory conditions. PMID:25764268

  9. In vivo and in vitro anti-inflammatory activity of neorogioltriol, a new diterpene extracted from the red algae Laurencia glandulifera.

    PubMed

    Chatter, Rim; Ben Othman, Rym; Rabhi, Sameh; Kladi, Maria; Tarhouni, Safa; Vagias, Constantinos; Roussis, Vassilios; Guizani-Tabbane, Lamia; Kharrat, Riadh

    2011-01-01

    Neorogioltriol is a tricyclic brominated diterpenoid isolated from the organic extract of the red algae Laurencia glandulifera. In the present study, the anti-inflammatory effects of neorogioltriol were evaluated both in vivo using carrageenan-induced paw edema and in vitro on lipopolysaccharide (LPS)-treated Raw264.7 macrophages. The in vivo study demonstrated that the administration of 1 mg/kg of neorogioltriol resulted in the significant reduction of carregeenan-induced rat edema. In vitro, our results show that neorogioltriol treatment decreased the luciferase activity in LPS-stimulated Raw264.7 cells, stably transfected with the NF-κB-dependent luciferase reporter. This effect on NF-κB activation is not mediated through MAPK pathways. The inhibition of NF-κB activity correlates with decreased levels of LPS-induced tumor necrosis factor-alpha (TNFα) present in neorogioltriol treated supernatant cell culture. Further analyses indicated that this product also significantly inhibited the release of nitric oxide and the expression of cyclooxygenase-2 (COX-2) in LPS-stimulated Raw264.7 cells. These latter effects could only be observed for neorogioltriol concentrations below 62.5 μM. To our knowledge, this is the first report describing a molecule derived from Laurencia glandulifera with anti-inflammatory activity both in vivo and in vitro. The effect demonstrated in vitro may be explained by the inhibition of the LPS-induced NF-κB activation and TNFα production. NO release and COX-2 expression may reinforce this effect. PMID:21822417

  10. Anti-inflammatory effect of enzymatic hydrolysates from Styela clava flesh tissue in lipopolysaccharide-stimulated RAW 264.7 macrophages and in vivo zebrafish model

    PubMed Central

    Ko, Seok-Chun

    2015-01-01

    BACKGROUND/OBJECTIVES In this study, potential anti-inflammatory effect of enzymatic hydrolysates from Styela clava flesh tissue was assessed via nitric oxide (NO) production in lipopolysaccahride (LPS) induced RAW 264.7 macrophages and in vivo zebrafish model. MATERIALS/METHODS We investigated the ability of enzymatic hydrolysates from Styela clava flesh tissue to inhibit LPS-induced expression of pro-inflammatory mediators in RAW 264.7 macrophages, and the molecular mechanism through which this inhibition occurred. In addition, we evaluated anti-inflammatory effect of enzymatic hydrolysates against a LPS-exposed in in vivo zebrafish model. RESULTS Among the enzymatic hydrolysates, Protamex-proteolytic hydrolysate exhibited the highest NO inhibitory effect and was fractionated into three ranges of molecular weight by using ultrafiltration (UF) membranes (MWCO 5 kDa and 10 kDa). The above 10 kDa fraction down-regulated LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), thereby reducing production of NO and prostaglandin E2 (PGE2) in LPS-activated RAW 264.7 macrophages. The above 10 kDa fraction suppressed LPS-induced production of pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. In addition, the above 10 kDa fraction inhibited LPS-induced phosphorylation of extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK), and p38. Furthermore, NO production in live zebrafish induced by LPS was reduced by addition of the above 10 kDa fraction from S. clava enzymatic hydrolysate. CONCLUSION The results of this study suggested that hydrolysates derived from S. clava flesh tissue would be new anti-inflammation materials in functional resources. PMID:26060532

  11. Nickel chloride (NiCl2)-caused inflammatory responses via activation of NF-κB pathway and reduction of anti-inflammatory mediator expression in the kidney.

    PubMed

    Guo, Hongrui; Deng, Huidan; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Chen, Kejie

    2015-10-01

    Nickel (Ni) or Ni compounds target a number of organs and produce multiple toxic effects. Kidney is the major organ for Ni accumulation and excretion. There are no investigations on the Ni- or Ni compounds-induced renal inflammatory responses in human beings and animals at present. Therefore, we determined NiCl2-caused alteration of inflammatory mediators, and functional damage in the broiler's kidney by the methods of biochemistry, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). Dietary NiCl2 in excess of 300 mg/kg caused the renal inflammatory responses that characterized by increasing mRNA expression levels of the pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-18 (IL-18) via the activation of nucleic factor κB (NF-κB), and decreasing mRNA expression levels of the anti-inflammatory mediators including interleukin-2 (IL-2), interleukin-4 (IL-4) and interleukin-13 (IL-13). Concurrently, NiCl2 caused degeneration, necrosis and apoptosis of the tubular cells, which was consistent with the alteration of renal function parameters including elevated alkaline phosphatase (AKP) activity, and reduced activities of sodium-potassium adenosine triphosphatase (Na(+)/K(+)-ATPase), calcium adenosine triphosphatase (Ca(2+)-ATPase), lactic dehydrogenase (LDH), succinate dehydrogenase (SDH) and acid phosphatase (ACP) in the kidney. The above-mentioned results present that the activation of NF-κB pathway and reduction of anti-inflammatory mediator expression are main mechanisms of NiCl2-caused renal inflammatory responses and that the renal function is decreased or impaired after NiCl2-treated. PMID:26417933

  12. To Extinguish the Fire from Outside the Cell or to Shutdown the Gas Valve Inside? Novel Trends in Anti-Inflammatory Therapies

    PubMed Central

    Marcuzzi, Annalisa; Piscianz, Elisa; Valencic, Erica; Monasta, Lorenzo; Vecchi Brumatti, Liza; Tommasini, Alberto

    2015-01-01

    Cytokines are the most important soluble mediators of inflammation. Rare pediatric diseases provided exemplar conditions to study the anti-inflammatory efficacy of new generation therapies (biologics/biopharmaceuticals) selectively targeting single cytokines. Monoclonal antibodies and recombinant proteins have revolutionized anti-inflammatory therapies in the last two decades, allowing the specific targeting of single cytokines. They are very effective in extinguishing inflammation from outside the cell, even with the risk of an excessive and prolonged immunosuppression. Small molecules can enter the cell and shutdown the valve of inflammation by directly targeting signal proteins involved in cytokine release or in response to cytokines. They are orally-administrable drugs whose dosage can be easily adjusted to obtain the desired anti-inflammatory effect. This could make these drugs more suitable for a wide range of diseases as stroke, gout, or neurological impairment, where inflammatory activation plays a pivotal role as trigger. Autoinflammatory diseases, which have previously put anti-cytokine proteins in the limelight, can again provide a valuable model to measure the real potential of small inhibitors as anti-inflammatory agents. PMID:26370962

  13. Anti-inflammatory effect of Momordica charantia in sepsis mice.

    PubMed

    Chao, Che-Yi; Sung, Ping-Jyun; Wang, Wei-Hsien; Kuo, Yueh-Hsiung

    2014-01-01

    Wild bitter gourd (Momordica charantia L. var. abbreviate Seringe), a common vegetable in Asia, is used in traditional medicine to treat various diseases, including inflammation. Extant literature indicates that wild bitter gourds have components that activate PPARα and PPARγ. This research probed the influence of adding wild bitter gourd to diets on inflammation responses in mice with sepsis induced by intraperitoneal injection of LPS. Male BALB/c mice were divided normal, sepsis, positive control, and three experimental groups. The latter ate diets with low (1%), moderate (2%), and high (10%) ratios of wild bitter gourd lyophilized powder. Before mice were sacrificed, with the exception of the normal group, intraperitoneal injection of LPS induced sepsis in each group; positive control group was injected with LPS after PDTC. This experiment revealed starkly lower weights in groups with added wild bitter gourd than those of the remaining groups. Blood lipids (TG, cholesterol, and NEFA) were also lower in comparison to the sepsis group, and blood glucose concentrations recovered and approached normal levels. Blood biochemistry values related to inflammation reactions indicated GOT, GPT, C-RP, and NO concentrations of groups with added wild bitter gourd were all lower than those of the sepsis group. Secretion levels of the spleen pro-inflammatory cytokines IL-1, IL-6, and TNF-α tallied significantly lower in comparison to the sepsis group, whereas secretion levels of IL-10 anti-inflammatory cytokine increased. Expression level of proteins NF-κB, iNOS, and COX-2 were significantly inhibited. Results indicate wild bitter gourd in diets promoted lipid metabolism, reducing fat accumulation, and improving low blood glucose in sepsis. Addition of wild bitter gourd can reduce inflammation biochemical markers or indicators and pro-inflammatory cytokines in the body, hence improving the inflammation responses in mice with sepsis. PMID:25153878

  14. Anti-Inflammatory Effect of Taurine in Burned Patients

    PubMed Central

    Lak, Sima; Ostadrahimi, Alireza; Nagili, Behrooz; Asghari-Jafarabadi, Mohammad; Beigzali, Sanaz; Salehi, Feridoon; Djafarzadeh, Roxana

    2015-01-01

    Purpose: Burn induced inflammatory response can be mediated by reactive oxygen metabolites and accompanied by multiple organ dysfunction. Taurine has protective effects against various inflammatory conditions. The aim of this study was to determine the effect of Taurine supplement in thermal burn victims. Methods: Thirty patients with severe thermal burns were enrolled in this randomized double-blinded clinical trial. These patients were randomly divided into two equal groups (namely Control and Taurine groups), where both received isocaloric and isonitrogenous formula. One group was supplemented with 50 mg/kg of Taurine per day for a duration of 10 days. Blood samples were obtained to measure Interleukin-10 (IL-10), high-sensitivity C-reactive protein (hs-CRP), and Tumor Necrosis Factor alpha (TNF-α) levels at the beginning and the end of the study. Results: Change in serum level of IL-10 in Taurine group was more than Control group [-13.60(-31.40, -10.40) compared to -4.00(-20.00, -0.20) respectively; P = 0.030]. This change was significant in patients with more than 30% TBSA of burn [-14.20(-31.40, -10.40) compared to -2.40(-9.60, 0.40) respectively; P = 0.013]. As for the hs-CRP and TNF-α levels, the difference between the two groups were not significant. Conclusion: Based on the results obtained, Taurine supplement showed a positive outcome on anti-inflammatory cytokine IL-10 in all burn patients. This effect was even more significant in patients with higher percentage of burn area. Taurine had no significant effect on the inflammatory marker hs-CRP and the pro-inflammatory cytokine TNF-α level. For a more thorough verification, measurement of a wider range of inflammatory cytokines in more frequent time intervals are suggested. PMID:26819926

  15. Determination of Teloschistes flavicans (sw) norm anti-inflammatory activity

    PubMed Central

    Pereira, Eugênia C.; da Silva, Nicácio H.; Santos, Renata Almeida; Sudário, Ana Patrícia Paiva; Rodrigues e Silva, Antonio Alfredo; de Sousa Maia, Maria Bernadete

    2010-01-01

    Background: Lichens produce a variety of substances that possesses pharmacological actions. However, rare products are submitted to rigorous scientific tests or have the risk potential or side effects evaluated. The lack of medical and sanitary control, absence of accurate botanical identification or purity certification, founded in diverse natural products, may represent great danger to population health. This work aimed to evaluate toxic effects and anti-inflammatory action in vivo of Teloschistes flavicans (Sw.) Norm. (TFN) unrefined extracts, as well as determinate its main constituents. Methods: The carrageenan induced paw edema and cotton pellet implant induced granuloma methods were utilized, besides a classic acute toxicity test. TFN acetone extract inhibited carrageenan paw edema on 60, 120, and 180 min (inhibition percentiles of 45.03%, 60.59% and 41.72%). Results: TFN ethereal (inhibition percentiles of 23.95% and 29.01%) and chloroform (inhibition percentiles of 28.8% and 22.04%) extracts inhibited edema on 120 and 180 min. None of the extract inhibited the granuloma development. None of the extract caused death or other acute toxicity signs. Vicanicine (60.26% in ethereal extract and 51.17% in acetone extract), parietine (9.60% in ethereal extract and 15.38% on second), falacinol (0.78% in ether and 14.95% in acetone) and very low concentration of falacinal (0.15% in ethereal extract and 3.32% in acetone extract) were detected in the medicine. Conclusions: The tested extracts have antiedematogenic activity, but are not effective on subchronic inflammation. The extracts do not present toxic effects in administered doses. PMID:21808568

  16. Phenolic composition, anitproliferative and anti-inflammatory properties of conventional and organic cinnamon and peppermint

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional and organic cinnamon and peppermint were investigated for their phenolic profile, antiproliferative, anti-inflammatory, and antioxidant properties. Accelerated solvent extraction (ASE) with 75% acetone was a better method than Soxhlet and overnight extraction for phenolic content and a...

  17. Anticancer, Anti-Inflammatory, and Analgesic Activities of Synthesized 2-(Substituted phenoxy) Acetamide Derivatives

    PubMed Central

    Pal, Dilipkumar; Hegde, Rahul Rama; Hashim, Syed Riaz

    2014-01-01

    The aphorism was to develop new chemical entities as potential anticancer, anti-inflammatory, and analgesic agents. The Leuckart synthetic pathway was utilized in development of novel series of 2-(substituted phenoxy)-N-(1-phenylethyl)acetamide derivatives. The compounds containing 1-phenylethylamine as basic moiety attached to substituted phenols were assessed for their anticancer activity against MCF-7 (breast cancer), SK-N-SH (neuroblastoma), anti-inflammatory activity, and analgesic activity. These investigations revealed that synthesized products 3a–j with halogens on the aromatic ring favors as the anticancer and anti-inflammatory activity. Among all, compound 3c N-(1-(4-chlorophenyl)ethyl)-2-(4-nitrophenoxy)acetamide exhibited anticancer, anti-inflammatory, and analgesic activities. In conclusion, 3c may have potential to be developed into a therapeutic agent. PMID:25197642

  18. Anticancer, anti-inflammatory, and analgesic activities of synthesized 2-(substituted phenoxy) acetamide derivatives.

    PubMed

    Rani, Priyanka; Pal, Dilipkumar; Hegde, Rahul Rama; Hashim, Syed Riaz

    2014-01-01

    The aphorism was to develop new chemical entities as potential anticancer, anti-inflammatory, and analgesic agents. The Leuckart synthetic pathway was utilized in development of novel series of 2-(substituted phenoxy)-N-(1-phenylethyl)acetamide derivatives. The compounds containing 1-phenylethylamine as basic moiety attached to substituted phenols were assessed for their anticancer activity against MCF-7 (breast cancer), SK-N-SH (neuroblastoma), anti-inflammatory activity, and analgesic activity. These investigations revealed that synthesized products 3a-j with halogens on the aromatic ring favors as the anticancer and anti-inflammatory activity. Among all, compound 3c N-(1-(4-chlorophenyl)ethyl)-2-(4-nitrophenoxy)acetamide exhibited anticancer, anti-inflammatory, and analgesic activities. In conclusion, 3c may have potential to be developed into a therapeutic agent. PMID:25197642

  19. Kaurenic acid: An in vivo experimental study of its anti-inflammatory and antipyretic effects

    PubMed Central

    Sosa-Sequera, Miriam C.; Suárez, Omar; Daló, Nelson L.

    2010-01-01

    Objective: This study was designed to investigate the anti-inflammatory and antipyretic effects of kaurenic acid (KA), a tetracyclic diterpenoid carboxylic acid, using in vivo experimental animal models. Material and Methods: The anti-inflammatory activity of KA was evaluated in rats, using egg albumin-induced paw edema (acute test) and Freund’s complete adjuvant-induced paw edema (subacute test), whereas the antipyretic effect was studied in rabbits by peptone-induced pyresis. Acute and subacute toxicity of KA were analyzed in NMRI mice. Results: KA showed anti-inflammatory and antipyretic properties, and the effect caused was significantly dose-related (P < 0.001) in both cases. The mean lethal doses of KA were 439.2 and 344.6 mg/kg for acute and subacute toxicity, respectively. Conclusion: On the basis of these findings, it may be inferred that KA has an anti-inflammatory and antipyretic potential. PMID:21206621

  20. Experimental evaluation of analgesic and anti-inflammatory potential of Oyster mushroom Pleurotus florida

    PubMed Central

    Ganeshpurkar, Aditya; Rai, Gopal

    2013-01-01

    Background: Edible mushrooms have been used as flavorful foods and as health nutritional supplements for several centuries. A number of bioactive molecules have been identified in numerous mushroom species Objective: To evaluate the analgesic and anti-inflammatory potential of Oyster Mushroom Pleurotus florida using various experimental models in Wistar rats. Materials and Methods: Acute toxicity studies were performed whereby dose of 250 mg/ kg and 500 mg/kg was selected for present study, Analgesic activity was determined using hot plate method, tail flick method, acetic acid induced writhing and formalin induced pain in rats, while carrageenan was used to induce inflammation and anti-inflammatory studies were performed. Results: HEE showed significant (P < 0.01) analgesic and anti-inflammatory response against all experimental models. Conclusion: These studies conclude that Pleurotus florida possesses analgesic and anti- inflammatory potential which might be due to presence of myochemicals like flavonoids, phenolics and polysaccharides. PMID:23543896

  1. Anti-inflammatory Agents in the Treatment of Diabetes and Its Vascular Complications.

    PubMed

    Pollack, Rena M; Donath, Marc Y; LeRoith, Derek; Leibowitz, Gil

    2016-08-01

    The association between hyperglycemia and inflammation and vascular complications in diabetes is now well established. Antidiabetes drugs may alleviate inflammation by reducing hyperglycemia; however, the anti-inflammatory effects of these medications are inconsistent and it is unknown whether their beneficial metabolic effects are mediated via modulation of chronic inflammation. Recent data suggest that immunomodulatory treatments may have beneficial effects on glycemia, β-cell function, and insulin resistance. However, the mechanisms underlying their beneficial metabolic effects are not always clear, and there are concerns regarding the specificity, safety, and efficacy of immune-based therapies. Herein, we review the anti-inflammatory and metabolic effects of current antidiabetes drugs and of anti-inflammatory therapies that were studied in patients with type 2 diabetes. We discuss the potential benefit of using anti-inflammatory treatments in diabetes and important issues that should be addressed prior to implementation of such therapeutic approaches. PMID:27440839

  2. Comparative anti-inflammatory efficacy of topical corticosteroids with low glaucoma-inducing potential.

    PubMed

    Leibowitz, H M; Ryan, W J; Kupferman, A

    1992-01-01

    Fluorometholone and clobetasone butyrate have been developed as ophthalmic corticosteroids because of their lesser potential to elevate intraocular pressure. Nevertheless, their primary use is the inhibition of an inflammatory response. Quantification of their anti-inflammatory effect in the rabbit cornea indicates that 0.1% fluorometholone and 0.1% clobetasone butyrate are effective, but weak, anti-inflammatory agents. An increase in concentration of fluorometholone to 0.25% failed to enhance its anti-inflammatory effectiveness significantly, while an increase in concentration of clobetasone butyrate to 0.5% did significantly increase its anti-inflammatory effect. As with all other corticosteroid bases studied to date, formulation of fluorometholone as an acetate derivative significantly increased its effectiveness, rendering it as effective as 1.0% prednisolone acetate, the most effective of commercially available ophthalmic corticosteroids. PMID:1731703

  3. Anti-inflammatory effects of proanthocyanidin-rich red rice extract via suppression of MAPK, AP-1 and NF-κB pathways in Raw 264.7 macrophages

    PubMed Central

    Yodkeeree, Supachai; Pitchakarn, Pornsiri; Punfa, Wanisa

    2016-01-01

    BACKGROUND/OBJECTIVES Several pharmacological properties of red rice extract have been reported including anti-oxidant, anti-tumor, and reduced cancer cell invasion. This study was conducted to evaluate the anti-inflammatory effects of red rice extract on the production of inflammatory mediators in lipopolysaccharide (LPS)-induced Raw 264.7 macrophages. MATERIALS/METHODS Pro-inflammatory cytokines including tumor necrosis factor-α and interleukin-6 were determined by ELISA and cyclooxygenase-2 and inducible nitric oxide synthase expression was evaluated using western blot analysis. In addition, the signaling pathway controlling the inflammatory cascade such as nuclear factor kappa B (NF-κB), activator proteins-1 (AP-1), and mitogen-activated protein kinase (MAPK) was determined. RESULTS Our results showed that red rice polar extract fraction (RR-P), but not non-polar extract fraction, inhibited interleukin-6, tumor necrosis factor-α, and nitric oxide production in LPS-induced Raw 264.7 cells. RR-P also reduced the expression of inflammatory enzymes, inducible nitric oxide synthase, and cyclooxygenase-2. In addition, activation of AP-1 and NF-κB transcription factor in the nucleus was abrogated by RR-P. RR-P inhibited the phosphorylation of extracellular signaling-regulated kinase 1/2, c-Jun NH2-terminal kinase, and p38 MAPK signaling responsible for the expression of inflammatory mediators in LPS-stimulated Raw 264.7 cells. Based on chemical analysis, high amounts of proanthocyanidin and catechins were detected in the RR-P fraction. However, only proanthocyanidin reduced NF-κB and AP-1 activation in LPS-activated Raw 264.7 cells. CONCLUSION These observations suggest that the anti-inflammatory properties of RR-P may stem from the inhibition of pro-inflammatory mediators via suppression of the AP-1, NF-κB, and MAPKs pathways. PMID:27247720

  4. [Anti-Inflammatory Activity of the Polypeptide of the Sea Anemone, Heteractis crispa].

    PubMed

    Sintsova, O V; Monastyrnaya, M M; Pislyagin, E A; Menchinskaya, E S; Leychenko, E V; Aminin, D L; Kozlovskaya, E P

    2015-01-01

    The anti-inflammatory effect of the recombinant polypeptide HCGS 1.20, a Kunitz-type serine protease inhibitor of the sea anemone Heteractis crispa, was investigated. It was shown that the polypeptide inhibits the increase of the concentration of calcium ions in mouse bone marrow derived macrophages elicited by histamine, and reduces the content of NO in lipopolysaccharide stimulated macrophages. A presumable mechanism of anti-inflammatory action of the polypeptide was being discussed. PMID:27125018

  5. Molecular Nanofibers of Olsalazine Confer Supramolecular Hydrogels for Reductive Release of An Anti-inflammatory Agent

    PubMed Central

    Li, Xinming; Li, Jiayang; Gao, Yuan; Kuang, Yi; Shi, Junfeng; Xu, Bing

    2011-01-01

    Tripeptide derivatives to conjugate with olsalazine, a clinically used anti-inflammatory prodrug, yield small molecules that self-assemble in water, which confer supramolecular hydrogels that undergo sol-gel phase transition upon reduction, resulting in the controlled-release of 5-aminosalicylic acid as the anti-inflammatory agent. This methodology will ultimately lead to new biomaterials for site-specific drug delivery. PMID:21121607

  6. [Anti-inflammatory and analgesic activities of a trans-cutaneous non-steroidal anti-inflammatory agent, etofenamate gel].

    PubMed

    Nakamura, H; Yokoyama, Y; Motoyoshi, S; Seto, Y; Ishii, K; Imazu, C; Kadokawa, T; Shimizu, M

    1982-08-01

    Anti-inflammatory and analgesic activities of topically applied etofenamate gel (5% etofenamate) were investigated in experimental animals. Etofenamate gel showed a dose related inhibition against vascular permeability caused by histamine in mice and ultra violet light-induced erythema in guinea pigs at doses of 10--100 mg/site and 25--200 (ED50 = 26.6) mg/site, respectively. The erythema was not inhibited with its topical application of 100 mg/site to the skin distant from the erythema. Granuloma formation, caused by felt-pellet implantation, was inhibited in a dose dependent manner by repeated application of etofenamate gel (10--100 mg/site/day). Etofenamate gel inhibited the pain-like responses in both the arthritic joint and the edematous hind paw of rats with 50--200 mg/joint and 100 mg/paw, respectively. In these tests, the vehicle gel did not show any significant activity. The potency of etofenamate gel was stronger than that of adrenal-extracts ointment (Mobilat) and approximately comparable to indomethacin ointment (1% indomethacin) in a weight basis of formulations. Topical application of etofenamate (0.5--2 mg/ear) resulted in a dose related decrease of contact hypersensitivity to oxazolone in mice, and its activity was nearly equipotent to flufenamic acid and about one-fourth that of indomethacin. From these results, it was suggested that etofenamate gel, applied topically to the inflamed tissue, showed a certain inhibitory activity against acute and subacute-chronic inflammation and inflammatory pain-like responses. PMID:7173741

  7. Antimicrobial, Antiparasitic, Anti-Inflammatory, and Cytotoxic Activities of Lopezia racemosa

    PubMed Central

    Cruz Paredes, Carla; Bolívar Balbás, Paulina; Juárez, Zaida Nelly; Sánchez Arreola, Eugenio; Hernández, Luis Ricardo

    2013-01-01

    The present study investigates the potential benefits of the Mexican medicinal plant Lopezia racemosa (Onagraceae). Extracts and fractions from aerial parts of this plant were assessed to determine their antibacterial, antifungal, antiparasitic, anti-inflammatory and cytotoxic activities in vitro. Aerial parts of the plant were extracted with various solvents and fractionated accordingly. Extracts and fractions were tested against a panel of nine bacterial and four fungal species. The antiparasitic activity was tested against Leishmania donovani, whereas the anti-inflammatory activity of the compounds was determined by measuring the secretion of interleukin-6 from human-derived macrophages. The same macrophage cell line was used to investigate the cytotoxicity of the compounds. Various extracts and fractions showed antibacterial, antifungal, antiparasitic, and anti-inflammatory activities. The hexanic fraction HF 11-14b was the most interesting fraction with antimicrobial, and anti-inflammatory activities. The benefit of L. racemosa as a traditional medicinal plant was confirmed as shown by its antibacterial, antifungal and anti-inflammatory activities. To the best of our knowledge, this is the first study reporting the biological activities of L. racemosa, including antiparasitic and anti-inflammatory activities. PMID:23843731

  8. Topical Anti-inflammatory Activity of New Hybrid Molecules of Terpenes and Synthetic Drugs.

    PubMed

    Theoduloz, Cristina; Delporte, Carla; Valenzuela-Barra, Gabriela; Silva, Ximena; Cádiz, Solange; Bustamante, Fernanda; Pertino, Mariano Walter; Schmeda-Hirschmann, Guillermo

    2015-01-01

    The aim of the study was to assess changes in the activity of anti-inflammatory terpenes from Chilean medicinal plants after the formation of derivatives incorporating synthetic anti-inflammatory agents. Ten new hybrid molecules were synthesized combining terpenes (ferruginol (1), imbricatolic acid (2) and oleanolic acid (3)) with ibuprofen (4) or naproxen (5). The topical anti-inflammatory activity of the compounds was assessed in mice by the arachidonic acid (AA) and 12-O-tetradecanoyl phorbol 13-acetate (TPA) induced ear edema assays. Basal cytotoxicity was determined towards human lung fibroblasts, gastric epithelial cells and hepatocytes. At 1.4 µmol/mouse, a strong anti-inflammatory effect in the TPA assay was observed for oleanoyl ibuprofenate 12 (79.9%) and oleanoyl ibuprofenate methyl ester 15 (80.0%). In the AA assay, the best activity was observed for 12 at 3.2 µmol/mouse, with 56.8% reduction of inflammation, in the same range as nimesulide (48.9%). All the terpenyl-synthetic anti-inflammatory hybrids showed better effects in the TPA assay, with best activity for 6, 12 and 15. The cytotoxicity of the compounds 8 and 10 with a free COOH, was higher than that of 2. The derivatives from 3 were less toxic than the triterpene. Several of the new compounds presented better anti-inflammatory effect and lower cytotoxicity than the parent terpenes. PMID:26096431

  9. [In vitro anti-inflammatory and free radical scavenging activities of flavans from Ilex centrochinensis].

    PubMed

    Li, Lu-jun; Yu, Li-juan; Li, Yan-ci; Liu, Meng-yuan; Wu, Zheng-zhi

    2015-04-01

    This study was carried out to evaluate the anti-inflammatory and free radical scavenging activities of flavans from flex centrochinensis S. Y. Hu in vitro and their structure-activity relationship. LPS-stimulated RAW 264.7 macrophage was used as inflammatory model. MTT assay for cell availability, Griess reaction for nitric oxide (NO) production, the content of TNF-alpha, IL-1beta, IL-6 and PGE, were detected with ELISA kits; DPPH, superoxide anion and hydroxyl free radicals scavenging activities were also investigated. According to the result, all flavans tested exhibited anti-inflammatory effect in different levels. Among them, compounds 1, 3, 4 and 6 showed potent anti-inflammatory effect through the inhibition of NO, TNF-alpha, IL-lp and IL-6, of which 1 was the most effective inhibitor, however, 2 and 5 were relatively weak or inactive. The order of free radical scavenging activities was similar to that of anti-inflammatory activities. Therefore, these results suggest that 3, 4 and 6, especially of 1, were,in part responsible for the anti-inflammatory and free radical scavenging activity of Ilex centrochinensis. Hydroxyl group at 4'-position of B-ring plays an important role in the anti-inflammatory and free radical scavenging capacities. PMID:26281592

  10. Rose geranium essential oil as a source of new and safe anti-inflammatory drugs

    PubMed Central

    Boukhatem, Mohamed Nadjib; Kameli, Abdelkrim; Ferhat, Mohamed Amine; Saidi, Fairouz; Mekarnia, Maamar

    2013-01-01

    Background Since the available anti-inflammatory drugs exert an extensive variety of side effects, the search for new anti-inflammatory agents has been a priority of pharmaceutical industries. Aims The aim of the present study was to assess the anti-inflammatory activities of the essential oil of rose geranium (RGEO). Methods The chemical composition of the RGEO was investigated by gas chromatography. The major components were citronellol (29.13%), geraniol (12.62%), and citronellyl formate (8.06%). In the carrageenan-induced paw edema, five different groups were established and RGEO was administered orally in three different doses. Results RGEO (100 mg/kg) was able to significantly reduce the paw edema with a comparable effect to that observed with diclofenac, the positive control. In addition, RGEO showed a potent anti-inflammatory activity by topical treatment in the method of croton oil-induced ear edema. When the dose was 5 or 10 µl of RGEO per ear, the inflammation was reduced by 73 and 88%, respectively. This is the first report to demonstrate a significant anti-inflammatory activity of Algerian RGEO. In addition, histological analysis confirmed that RGEO inhibited the inflammatory responses in the skin. Conclusion Our results indicate that RGEO may have significant potential for the development of novel anti-inflammatory drugs with improved safety profile. PMID:24103319

  11. Evaluation of anti-inflammatory activity of selected medicinal plants of Khyber Pakhtunkhwa, Pakistan.

    PubMed

    Khuda, Fazli; Iqbal, Zafar; Khan, Ayub; Zakiullah; Shah, Yasar; Ahmad, Lateef; Nasir, Fazli; Hassan, Muhammad; Ismail; Shah, Waheed Ali

    2014-03-01

    In present study, the anti-inflammatory potential of three medicinal plants, Xanthium strumarium, Achyranthes aspera and Duchesnea indica were evaluated, using both in vitro and in vivo assays. Carrageenan induced hind paw edema model was used to carry out the in vivo anti-inflammatory activity, while for in vitro screening lipoxygenase inhibition assay was used. Crude extract of all the selected plants depicted significant (plt;0.001) anti-inflammatory activity, at late phase of inflammation. Achyranthes aspera also showed considerable anti-inflammatory activity (47%) at relatively lower concentration (200 mg/ml), at the initial phase of inflammation. Similarly the ethyl acetate fraction of all the selected plants showed significant lipoxygenase inhibition activity when compared with the standard drug (Baicalein). The results obtained from both in vitro and in vivo anti-inflammatory activity suggest that the ethyl acetate fraction of the crude extract of all the selected plants can be used for the isolation of new lead compounds with better anti-inflammatory activity. PMID:24577927

  12. Heme oxygenase-1 is dispensable for the anti-inflammatory activity of intravenous immunoglobulin

    PubMed Central

    Galeotti, Caroline; Hegde, Pushpa; Das, Mrinmoy; Stephen-Victor, Emmanuel; Canale, Fernando; Muñoz, Marcos; Sharma, Varun K.; Dimitrov, Jordan D.; Kaveri, Srini V.; Bayry, Jagadeesh

    2016-01-01

    Intravenous immunoglobulin G (IVIG) is used in the therapy of various autoimmune and inflammatory conditions. The mechanisms by which IVIG exerts anti-inflammatory effects are not completely understood. IVIG interacts with numerous components of the immune system including dendritic cells, macrophages, T and B cells and modulate their functions. Recent studies have reported that heme oxygenase-1 (HO-1) pathway plays an important role in the regulation of inflammatory response in several pathologies. Several therapeutic agents exert anti-inflammatory effects via induction of HO-1. Therefore, we aimed at exploring if anti-inflammatory effects of IVIG are mediated via HO-1 pathway. Confirming the previous reports, we report that IVIG exerts anti-inflammatory effects on innate cells as shown by the inhibitory effects on IL-6 and nitric oxide production and confers protection in experimental autoimmune encephalomyelitis (EAE) model. However, these effects were not associated with an induction of HO-1 either in innate cells such as monocytes, dendritic cells and macrophages or in the kidneys and liver of IVIG-treated EAE mice. Also, inhibition of endogenous HO-1 did not modify anti-inflammatory effects of IVIG. These results thus indicate that IVIG exerts anti-inflammatory effects independent of HO-1 pathway. PMID:26796539

  13. Cyclooxygenase-2 Inhibitory and Antioxidant Compounds from the Truffle Elaphomyces granulatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ethanol extract of fruiting bodies of Elaphomyces granulatus, a truffle-like fungus, was evaluated for cyclooxygenase-2 (COX-2) enzyme inhibitory and antioxidant activities. Inhibition of COX-2 activity was evaluated in mouse macrophages (RAW 264.7). The extract of E. granulatus caused a 68% inh...

  14. Regulation of neutrophil extracellular trap formation by anti-inflammatory drugs.

    PubMed

    Lapponi, María José; Carestia, Agostina; Landoni, Verónica Inés; Rivadeneyra, Leonardo; Etulain, Julia; Negrotto, Soledad; Pozner, Roberto Gabriel; Schattner, Mirta

    2013-06-01

    The formation of neutrophil extracellular traps (NETs) is a newly described phenomenon that increases the bacteria-killing ability and the inflammatory response of neutrophils. Because NET generation occurs in an inflammatory microenvironment, we examined its regulation by anti-inflammatory drugs. Treatment of neutrophils with dexamethasone had no effect, but acetylsalicylic acid (ASA) treatment prevented NET formation. NETosis was also abrogated by the presence of BAY 11-7082 [(E)-3-[4-methylphenylsulfonyl]-2-propenenitrile] and Ro 106-9920 [6-(phenylsulfinyl)tetrazolo[1,5-b]pyridazine], two structurally unrelated nuclear factor-κB (NF-κB) inhibitors. The decrease in NET formation mediated by ASA, BAY-11-7082, and Ro 106-9920 was correlated with a significant reduction in the phosphorylation of NF-κB p65 subunit, indicating that the activation of this transcription factor is a relevant signaling pathway involved in the generation of DNA traps. The inhibitory effect of these drugs was also observed when NET generation was induced under acidic or hyperthermic conditions, two stress signals of the inflammatory microenvironment. In a mouse peritonitis model, while pretreatment of animals with ASA or BAY 11-7082 resulted in a marked suppression of NET formation along with increased bacteremia, dexamethasone had no effect. Our results show that NETs have an important role in the local control of infection and that ASA and NF-κB blockade could be useful therapies to avoid undesired effect of persistent neutrophil activation. PMID:23536315

  15. Reversible Suppression of Cyclooxygenase 2 (COX-2) Expression In Vivo by Inducible RNA Interference

    PubMed Central

    Zaiss, Anne K.; Zuber, Johannes; Chu, Chun; Machado, Hidevaldo B.; Jiao, Jing; Catapang, Arthur B.; Ishikawa, Tomo-o; Gil, Jose S.; Lowe, Scott W.; Herschman, Harvey R.

    2014-01-01

    Prostaglandin-endoperoxide synthase 2 (PTGS2), also known as cyclooxygenase 2 (COX-2), plays a critical role in many normal physiological functions and modulates a variety of pathological conditions. The ability to turn endogenous COX-2 on and off in a reversible fashion, at specific times and in specific cell types, would be a powerful tool in determining its role in many contexts. To achieve this goal, we took advantage of a recently developed RNA interference system in mice. An shRNA targeting the Cox2 mRNA 3′untranslated region was inserted into a microRNA expression cassette, under the control of a tetracycline response element (TRE) promoter. Transgenic mice containing the COX-2-shRNA were crossed with mice encoding a CAG promoter-driven reverse tetracycline transactivator, which activates the TRE promoter in the presence of tetracycline/doxycycline. To facilitate testing the system, we generated a knockin reporter mouse in which the firefly luciferase gene replaces the Cox2 coding region. Cox2 promoter activation in cultured cells from triple transgenic mice containing the luciferase allele, the shRNA and the transactivator transgene resulted in robust luciferase and COX-2 expression that was reversibly down-regulated by doxycycline administration. In vivo, using a skin inflammation-model, both luciferase and COX-2 expression were inhibited over 80% in mice that received doxycycline in their diet, leading to a significant reduction of infiltrating leukocytes. In summary, using inducible RNA interference to target COX-2 expression, we demonstrate potent, reversible Cox2 gene silencing in vivo. This system should provide a valuable tool to analyze cell type-specific roles for COX-2. PMID:24988319

  16. Artificial sweetener neohesperidin dihydrochalcone showed antioxidative, anti-inflammatory and anti-apoptosis effects against paraquat-induced liver injury in mice.

    PubMed

    Shi, Qiong; Song, Xiufang; Fu, Juanli; Su, Chuanyang; Xia, Xiaomin; Song, Erqun; Song, Yang

    2015-12-01

    The present study evaluated the protective effect of artificial sweetener neohesperidin dihydrochalcone (NHDC) against paraquat (PQ)-induced acute liver injury in mice. A single dose of PQ (75mg/kg body weight, i.p.) induced acute liver toxicity with the evidences of increased liver damage biomarkers, aspartate transaminase (AST) and alanine transaminase (ALT) activities in serum. Consistently, PQ decreased the antioxidant capacity by reducing glutathione peroxidase (GP-X), glutathione-S-transferase (GST) and catalase (CAT) activities, glutathione (GSH) level and total antioxidant capacity (T-AOC), as well as increasing reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) levels. Histopathological examination revealed that PQ induced numerous changes in the liver tissues. Immunochemical staining assay indicated the upregulation of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions. However, NHDC ameliorates PQ-induced hepatic toxicity in mice by reversing these parameters. Additionally, NHDC significantly inhibited PQ-induced nuclear factor-kappa B (NF-κB) expression and mitochondrial-driven apoptotic signaling. TUNEL assay confirmed that PQ-induced apoptosis was relieved by NHDC. In conclusion, these findings suggested that NHDC showed potent antioxidant, anti-inflammatory and anti-apoptotic effects against PQ-induced acute liver damage. PMID:26362205

  17. Antioxidant and Anti-inflammatory Effects of Yam (Dioscorea batatas Decne.) on Azoxymethane-induced Colonic Aberrant Crypt Foci in F344 Rats

    PubMed Central

    Son, In Suk; Lee, Jeong Soon; Lee, Ju Yeon; Kwon, Chong Suk

    2014-01-01

    Yam (Dioscorea batatas Decne.) has long been used as a health food and oriental folk medicine because of its nutritional fortification, tonic, anti-diarrheal, anti-inflammatory, antitussive, and expectorant effects. Reactive oxygen species (ROS), which are known to be implicated in a range of diseases, may be important progenitors of carcinogenesis. The aim of this study was to investigate the modulatory effect of yam on antioxidant status and inflammatory conditions during azoxymethane (AOM)-induced colon carcinogenesis in male F344 rats. We measured the formation of aberrant crypt foci (ACF), hemolysate antioxidant enzyme activities, colonic mucosal antioxidant enzyme gene expression, and colonic mucosal inflammatory mediator gene expression. The feeding of yam prior to carcinogenesis significantly inhibited AOM-induced colonic ACF formation. In yam-administered rats, erythrocyte levels of glutathione, glutathione peroxidase (GPx), and catalase were increased and colonic mucosal gene expression of Cu/Zn-superoxide dismutase (SOD), Mn-SOD, and GPx were up-regulated compared to the AOM group. Colonic mucosal gene expression of inflammatory mediators (i.e., nuclear factor kappaB, inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor alpha, and interleukin-1beta) was suppressed by the yam-supplemented diet. These results suggest that yam could be very useful for the prevention of colon cancer, as they enhance the antioxidant defense system and modulate inflammatory mediators. PMID:25054106

  18. Does the Preemptive Use of Oral Nonsteroidal Anti-inflammatory Drugs Reduce Postoperative Pain in Surgical Removal of Third Molars? A Meta-analysis of Randomized Clinical Trials

    PubMed Central

    Costa, Fábio Wildson Gurgel; Esses, Diego Felipe Silveira; de Barros Silva, Paulo Goberlânio; Carvalho, Francisco Samuel Rodrigues; Sá, Carlos Diego Lopes; Albuquerque, Assis Filipe Medeiros; Bezerra, Tácio Pinheiro; Ribeiro, Thyciana Rodrigues; Fonteles, Cristiane Sá Roriz; Soares, Eduardo Costa Studart

    2015-01-01

    The purpose of this study was to investigate the effectiveness of preemptive analgesia with nonsteroidal anti-inflammatory drugs (NSAIDs) in third-molar surgery. A PubMed literature search was conducted for articles restricted to the English language using the following terms (DeCS/MeSH) or combinations: analgesia, third molar, and preemptive. From a total of 704 articles, 6 (n = 420 subjects) were selected. All studies presented a low risk of bias (Cochrane criteria) but exhibited high heterogeneity of methods. Two studies were excluded from the meta-analysis because they did not have adequate numeric values (dichotomous data) for the calculations. Preemptive analgesia showed no significant benefit (n = 298, P = .2227, odds ratio: 2.30, 0.60–8.73) in reducing postoperative pain after removal of lower impacted third molars. However, there was a probable direct relationship between the effectiveness of NSAIDs in preemptive analgesia for removal of third molars and its selectivity for the cyclooxygenase-2 (COX-2). Preemptive analgesia did not have a significant effect in reducing postoperative pain after removal of lower impacted third molars. More homogeneous and well-delineated clinical studies are necessary to determine a possible association between NSAIDs' selectivity for COX-2 and treatment effectiveness. PMID:26061574

  19. Suppression of Transglutaminase-2 is Involved in Anti-Inflammatory Actions of Glucosamine in 12-O-Tetradecanoylphorbol-13-Acetate-Induced Skin Inflammation

    PubMed Central

    Cho, Sun A; Lee, Hye Ja; Lee, Eun Ji; Kang, June Hee; Kim, You Lee; Kim, Hyun Ji; Oh, Seung Hyun; Choi, Changsun; Lee, Ho; Kim, Soo Youl

    2012-01-01

    Glucosamine (GS) is well known for the treatment of inflam-mation. However, the mechanism and efficacy of GS for skin inflammation are unclear. The aim of this study was to evaluate the effects and mechanism of GS in the mouse 12-O-tetradecanoyl 13-acetate (TPA)-induced ear edema model. TPA-induced ear edema was evoked in ICR or transglutaminase 2 (Tgase-2) (-/-) mice. GS was administered orally (10-100 mg/kg) or topically (0.5-2.0 w/v %) prior to TPA treatment. Orally administered GS at 10 mg/kg showed a 76 or 57% reduction in ear weight or myeloperoxidase, respectively, and a decreased expression of cyclooxy-genase-2 (COX-2), NF-κB and Tgase-2 in TPA-induced ear edema by western blot and immunohistochemistry. Role of Tgase-2 in TPA ear edema is examined using Tgase-2 (-/-) mice and TPA did not induce COX-2 expression in ear of Tgase-2 (-/-) mice. These observations suggested that Tgase-2 is involved in TPA-induced COX-2 expression in the inflamed ear of mice and anti-inflammatory effects of glucosamine is mediated through suppression of Tgase-2 in TPA ear edema. PMID:24009824

  20. Does the Preemptive Use of Oral Nonsteroidal Anti-inflammatory Drugs Reduce Postoperative Pain in Surgical Removal of Third Molars? A Meta-analysis of Randomized Clinical Trials.

    PubMed

    Costa, Fábio Wildson Gurgel; Esses, Diego Felipe Silveira; de Barros Silva, Paulo Goberlânio; Carvalho, Francisco Samuel Rodrigues; Sá, Carlos Diego Lopes; Albuquerque, Assis Filipe Medeiros; Bezerra, Tácio Pinheiro; Ribeiro, Thyciana Rodrigues; Sá Roriz Fonteles, Cristiane; Soares, Eduardo Costa Studart

    2015-01-01

    The purpose of this study was to investigate the effectiveness of preemptive analgesia with nonsteroidal anti-inflammatory drugs (NSAIDs) in third-molar surgery. A PubMed literature search was conducted for articles restricted to the English language using the following terms (DeCS/MeSH) or combinations: analgesia, third molar, and preemptive. From a total of 704 articles, 6 (n=420 subjects) were selected. All studies presented a low risk of bias (Cochrane criteria) but exhibited high heterogeneity of methods. Two studies were excluded from the meta-analysis because they did not have adequate numeric values (dichotomous data) for the calculations. Preemptive analgesia showed no significant benefit (n=298, P=.2227, odds ratio: 2.30, 0.60-8.73) in reducing postoperative pain after removal of lower impacted third molars. However, there was a probable direct relationship between the effectiveness of NSAIDs in preemptive analgesia for removal of third molars and its selectivity for the cyclooxygenase-2 (COX-2). Preemptive analgesia did not have a significant effect in reducing postoperative pain after removal of lower impacted third molars. More homogeneous and well-delineated clinical studies are necessary to determine a possible association between NSAIDs' selectivity for COX-2 and treatment effectiveness. PMID:26061574

  1. Co-administration of 3-Acetyl-11-Keto-Beta-Boswellic Acid Potentiates the Protective Effect of Celecoxib in Lipopolysaccharide-Induced Cognitive Impairment in Mice: Possible Implication of Anti-inflammatory and Antiglutamatergic Pathways.

    PubMed

    Sayed, Aya Shoukry; El Sayed, Nesrine Salah El Dine

    2016-05-01

    Neuro-inflammation is known to initiate the underlying pathogenesis of several neurodegenerative disorders which may progress to cognitive, behavioral, and functional impairment. Boswellia serrata is a well-known powerful anti-inflammatory agent used to treat several inflammatory diseases. The aim of the current study is to investigate the effect of the combination therapy of 3-acetyl-11-keto-β-boswellic acid (AKBA), a 5-lipoxygenase (5-LOX) inhibitor and celecoxib, and a selective cyclooxygenase-2 (COX-2) inhibitor as dual enzyme inhibitors compared to monotherapies with celecoxib and AKBA. Cognitive dysfunction is induced by intraperational injection of lipopolysaccharide (LPS) in mice. Radial maze, Y maze, and novel object recognition (NOR) were performed to evaluate the possible behavioral changes. Moreover, estimation of glutamate and tumor necrosis factor-alpha (TNF-α), as well as an immunohistochemical investigation of amyloid beta peptide (Aβ) was performed to evaluate the molecular changes that followed the LPS or drug treatment. The results showed that the combination therapy of AKBA and celecoxib reversed the behavioral and molecular changes caused by LPS cognitive dysfunction model that predispose cognitive dysfunction in mice. This study showed the effectiveness of the dual therapy with AKBA and celecoxib as anti-inflammatory, antiglutamatergic, and anti-amyloidogenic agents in the management of cognitive dysfunction. PMID:26984336

  2. Adenosine 5'-monophosphate-activated protein kinase regulates IL-10-mediated anti-inflammatory signaling pathways in macrophages.

    PubMed

    Zhu, Yanfang Peipei; Brown, Jonathan R; Sag, Duygu; Zhang, Lihua; Suttles, Jill

    2015-01-15

    AMP-activated protein kinase (AMPK) is a conserved serine/threonine kinase with a critical function in the regulation of metabolic pathways in eukaryotic cells. Recently, AMPK has been shown to play an additional role as a regulator of inflammatory activity in leukocytes. Treatment of macrophages with chemical AMPK activators, or forced expression of a constitutively active form of AMPK, results in polarization to an anti-inflammatory phenotype. In addition, we reported previously that stimulation of macrophages with anti-inflammatory cytokines such as IL-10, IL-4, and TGF-β results in rapid activation of AMPK, suggesting that AMPK contributes to the suppressive function of these cytokines. In this study, we investigated the role of AMPK in IL-10-induced gene expression and anti-inflammatory function. IL-10-stimulated wild-type macrophages displayed rapid activation of PI3K and its downstream targets Akt and mammalian target of rapamycin complex (mTORC1), an effect that was not seen in macrophages generated from AMPKα1-deficient mice. AMPK activation was not impacted by treatment with either the PI3K inhibitor LY294002 or the JAK inhibitor CP-690550, suggesting that IL-10-mediated activation of AMPK is independent of PI3K and JAK activity. IL-10 induced phosphorylation of both Tyr(705) and Ser(727) residues of STAT3 in an AMPKα1-dependent manner, and these phosphorylation events were blocked by inhibition of Ca(2+)/calmodulin-dependent protein kinase kinase β, an upstream activator of AMPK, and by the mTORC1 inhibitor rapamycin, respectively. The impaired STAT3 phosphorylation in response to IL-10 observed in AMPKα1-deficient macrophages was accompanied by reduced suppressor of cytokine signaling 3 expression and an inadequacy of IL-10 to suppress LPS-induced proinflammatory cytokine production. Overall, our data demonstrate that AMPKα1 is required for IL-10 activation of the PI3K/Akt/mTORC1 and STAT3-mediated anti-inflammatory pathways regulating macrophage

  3. Pharmacodynamics and pharmacokinetics of nonsteroidal anti-inflammatory drugs in species of veterinary interest.

    PubMed

    Lees, P; Landoni, M F; Giraudel, J; Toutain, P L

    2004-12-01

    This review summarises selected aspects of the pharmacokinetics (PK) and pharmacodynamics (PD) of nonsteroidal anti-inflammatory drugs (NSAIDs). It is not intended to be comprehensive, in that it covers neither minor species nor several important aspects of NSAID PD. The limited objective of the review is to summarise those aspects of NSAID PK and PD, which are important to an understanding of PK-PD integration and PK-PD modelling (the subject of the next review in this issue). The general features of NSAID PK are: usually good bioavailability from oral, intramuscular and subcutaneous administration routes (but with delayed absorption in horses and ruminants after oral dosing), a high degree of binding to plasma protein, low volumes of distribution, limited excretion of administered dose as parent drug in urine, marked inter-species differences in clearance and elimination half-life and ready penetration into and slow clearance from acute inflammatory exudate. The therapeutic effects of NSAIDs are exerted both locally (at peripheral inflammatory sites) and centrally. There is widespread acceptance that the principal mechanism of action (both PD and toxicodynamics) of NSAIDs at the molecular level comprises inhibition of cyclooxygenase (COX), an enzyme in the arachidonic acid cascade, which generates inflammatory mediators of the prostaglandin group. However, NSAIDs possess also many other actions at the molecular level. Two isoforms of COX have been identified. Inhibition of COX-1 is likely to account for most of the side-effects of NSAIDs (gastrointestinal irritation, renotoxicity and inhibition of blood clotting) but a minor contribution also to some of the therapeutic effects (analgesic and anti-inflammatory actions) cannot be excluded. Inhibition of COX-2 accounts for most and possibly all of the therapeutic effects of NSAIDs. Consequently, there has been an intensive search to identify and develop drugs with selectivity for inhibition of COX-2. Whole blood in

  4. Structural Basis of Fatty Acid Substrate Binding to Cyclooxygenase-2*

    PubMed Central

    Vecchio, Alex J.; Simmons, Danielle M.; Malkowski, Michael G.

    2010-01-01

    The cyclooxygenases (COX-1 and COX-2) are membrane-associated heme-containing homodimers that generate prostaglandin H2 from arachidonic acid (AA). Although AA is the preferred substrate, other fatty acids are oxygenated by these enzymes with varying efficiencies. We determined the crystal structures of AA, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) bound to Co3+-protoporphyrin IX-reconstituted murine COX-2 to 2.1, 2.4, and 2.65 Å, respectively. AA, EPA, and docosahexaenoic acid bind in different conformations in each monomer constituting the homodimer in their respective structures such that one monomer exhibits nonproductive binding and the other productive binding of the substrate in the cyclooxygenase channel. The interactions identified between protein and substrate when bound to COX-1 are conserved in our COX-2 structures, with the only notable difference being the lack of interaction of the carboxylate of AA and EPA with the side chain of Arg-120. Leu-531 exhibits a different side chain conformation when the nonproductive and productive binding modes of AA are compared. Unlike COX-1, mutating this residue to Ala, Phe, Pro, or Thr did not result in a significant loss of activity or substrate binding affinity. Determination of the L531F:AA crystal structure resulted in AA binding in the same global conformation in each monomer. We speculate that the mobility of the Leu-531 side chain increases the volume available at the opening of the cyclooxygenase channel and contributes to the observed ability of COX-2 to oxygenate a broad spectrum of fatty acid and fatty ester substrates. PMID:20463020

  5. Gastrodin Inhibits Expression of Inducible NO Synthase, Cyclooxygenase-2 and Proinflammatory Cytokines in Cultured LPS-Stimulated Microglia via MAPK Pathways

    PubMed Central

    Zhong, Lian-Mei; Li, Yue-Min; Zhang, Wei; Bian, Li-Gong; Ai, Qing-Long; Liu, Yi-Dan; Sun, Jun; Lu, Di

    2011-01-01

    Background Microglial activation plays an important role in neurodegenerative diseases by producing several proinflammatory enzymes and proinflammatory cytokines. The phenolic glucoside gastrodin, a main constituent of a Chinese herbal medicine, has been known to display anti-inflammatory properties. The current study investigates the potential mechanisms whereby gastrodin affects the expression of potentially pro-inflammatory proteins by cultured murine microglial BV-2 cells stimulated with lipopolysaccharide (LPS). Methodology/Principal Findings BV-2 cells were pretreated with gastrodin (30, 40, and 60 µM) for 1 h and then stimulated with LPS (1 µg/ml) for another 4 h. The effects on proinflammatory enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and proinflammatory cytokines, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), are analysed by double-immunofluorescence labeling and RT-PCR assay. To reveal the mechanisms of action of gastrodin we investigated the involvement of mitogen-activated protein kinases (MAPKs) cascades and their downstream transcription factors, nuclear factor-κB (NF-κB) and cyclic AMP-responsive element (CRE)-binding protein (CREB). Gastrodin significantly reduced the LPS-induced protein and mRNA expression levels of iNOS, COX-2, TNF-α, IL-1β and NF-κB. LPS (1 µg/ml, 30 min)-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) and this was inhibited by pretreatment of BV-2 cells with different concentrations of gastrodin (30, 40, and 60 µM). In addition, gastrodin blocked LPS-induced phosphorylation of inhibitor κB-α (IκB-α) (and hence the activation of NF-κB) and of CREB, respectively. Conclusion and Implications This study indicates that gastrodin significantly attenuate levels of neurotoxic proinflammatory mediators and proinflammatory cytokines by inhibition of

  6. Nonsteroidal Anti-Inflammatory Drugs in the Treatment of Retinal Diseases.

    PubMed

    Rodrigues, Eduardo Büchele; Farah, Michel Eid; Bottós, Juliana Mantovani; Bom Aggio, Fabio

    2016-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are an important class of drugs in medicine and ophthalmology. Several NSAIDs have been commercially available for many years: diclofenac, flurbiprofen, indomethacin, ketorolac and suprofen. The purpose of this chapter is to review the clinical use of earlier and newer pharmacologic agents of the NSAID class. NSAIDs may have a modulating effect on ocular inflammation and pain through the prevention of prostaglandin synthesis via cyclooxygenase inhibition. Newer-generation NSAIDs have emerged in recent years for the treatment of ocular pain and inflammation. Nepafenac ophthalmic suspension 0.1% is a new topical NSAID prodrug that has been approved by the Food and Drug Administration for the treatment of pain and inflammation after cataract surgery. Preliminary data suggest nepafenac may also provide unique efficacy in the posterior segment, since its corneal permeability characteristics are superior to those of other NSAIDs. Nevanac, diclofenac, ketorolac and bromfenac are some notable NSAID candidates which should be investigated intravitreally or topically for retinal pharmacotherapy. In addition, for intraocular surgery, NSAIDs can help to prevent intraoperative miosis, reduce ocular pain, decrease postoperative inflammation and prevent cystoid macular edema. Retinal, choroidal and vitreous diseases may be the target of future nepafenac studies, either as monotherapy or as combination treatments. PMID:26502088

  7. Pitavastatin is a potent anti-inflammatory agent in the rat paw model of acute inflammation.

    PubMed

    Qadir, Farida; Alam, Syed Mahboob; Siddiqi, Abeer Qamar; Kamran, Afshan

    2014-11-01

    Statins are used extensively as anti-hyperlipidemic agents. In addition to curtailing cholesterol synthesis they have been found to have multiple actions unrelated to cholesterol lowering "the pleiotropic effects," which includes inhibition of inflammation. We aimed at investigating the effect of pitavastatin a 3rd generation statin, in suppressing acute inflammation in rat paw edema model. Male Sprague-Dawley rats were randomly assigned to one of five groups (n=8): Control, indomethacin and pitavastatin (0.2mg/kg, 0.4mg/kg, 0.8mg/kg) treated. 1hour following treatment, inflammation was induced by sub-planter injection of egg albumin into the hind paw. Anti-inflammatory effect was evaluated by measurement of edema formation every half hour for three hours, assessment of polymorphonuclear leukocyte (PMNL) infiltration and measurement of tissue damage in skin biopsies. Ascending doses of pitavastatin were found to attenuate these parameters. The lowest dose of pitavastatin (0.2mg/kg) was found to significantly reduce edema volume, PMNL infiltration and tissue damage. The efficacy of the smallest dose was found comparable to indomethacin. PMID:26045381

  8. Inhibition of islet amyloid polypeptide aggregation and associated cytotoxicity by nonsteroidal anti-inflammatory drugs.

    PubMed

    Fortin, Jessica S; Benoit-Biancamano, Marie-Odile

    2016-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) constitute an important pharmacotherapeutic class that, over the past decade, have expanded in application to a panoply of medical conditions. They have been tested for neurodegenerative diseases such as Alzheimer's to reduce inflammation and also in the attempt to abrogate amyloid deposition. However, the use of NSAIDs as aggregation inhibitors has not been extensively studied in pancreatic amyloid deposition. Pancreatic amyloidosis involves the misfolding of islet amyloid polypeptide (IAPP) and contributes to the progression of type-2 diabetes in humans and felines. To ascertain their antiamyloidogenic activity, several NSAIDs were tested using fluorometric thioflavin-T assays, circular dichroism, photo-induced cross-linking assays, and cell culture. Celecoxib, diclofenac, indomethacin, meloxicam, niflumic acid, nimesulide, phenylbutazone, piroxicam, sulindac, and tenoxicam reduced fibrillization at a molar ratio of 1:10. The circular dichroism spectra of diclofenac, piroxicam, and sulindac showed characteristic spectral signatures found in predominantly α-helical structures. The oligomerization of human IAPP was abrogated with diclofenac and sulindac at a molar ratio of 1:5. The cytotoxic effects of pre-incubated human IAPP on cultured INS-1 cells were noticeably reduced in the presence of diclofenac, meloxicam, phenylbutazone, sulindac, and tenoxicam at a molar ratio of 1:10. Our results demonstrate that NSAIDs can provide chemical scaffolds to generate new and promising antiamyloidogenic agents that can be used alone or as a coadjuvant therapy. PMID:26524404

  9. Chloroformic and Methanolic Extracts of Olea europaea L. Leaves Present Anti-Inflammatory and Analgesic Activities

    PubMed Central

    Chebbi Mahjoub, R; Khemiss, M.; Dhidah, M.; Dellaï, A.; Bouraoui, A.; Khemiss, F.

    2011-01-01

    Olea europaea L. is used in traditional medicine in the Mediterranean areas. Its natural products are used in the treatment of different disorders, like fighting fever and some infectious diseases such as malaria, the treatment of arrhythmia, and relief of intestinal spasms. The aim of the current study is to investigate the possible anti-inflammatory and anatinociceptive effects of methanol and chloroformic extracts prepared from leaves of Olea europaea L. The anti-inflammatory and antinociceptive effects of the different extracts of Olea europaea leaves were assessed after intraperitoneal administration into rats and mice, using the carrageenan-induced paw edema model in rats to test the anti-inflammatory effect and the acetic acid-induced writhing in mice to test the analgesic effect. The chloroformic and methanolic leaves extracts, studied at the doses of 50, 100, and 200 mg/kg (Body Weight: BW), exhibited significant dose-dependent anti-inflammatory and analgesic activities. Based on the results obtained, it can be concluded that Olea europaea leaves extracts have anti-inflammatory and antinociceptive effects. PMID:22084717

  10. Anti-Inflammatory and Antioxidant Activities of Salvia fruticosa: An HPLC Determination of Phenolic Contents.

    PubMed

    Boukhary, Rima; Raafat, Karim; Ghoneim, Asser I; Aboul-Ela, Maha; El-Lakany, Abdalla

    2016-01-01

    Objectives. Salvia fruticosa Mill. (S. fruticosa) is widely used in folk medicine. Accordingly, the present study was designed to evaluate the antioxidant and anti-inflammatory activities of S. fruticosa, and to determine the phenolic constituents of its extracts. Methods. The antioxidant activity was determined using 2,2-diphenylpicrylhydrazyl assay. Total phenolic contents were estimated using Folin-Ciocalteu reagent, and high-performance liquid chromatography was performed to identify phenolic constituents. To evaluate the anti-inflammatory activity, carrageenan-induced mouse paw edema was determined plethysmographically. Key Findings. Different plant extracts demonstrated strong radical scavenging activity, where the ethyl acetate extract had the highest value in the roots and the lowest in the aerial parts. This antioxidant activity was correlated to the total phenolic content of different extracts, where rutin and luteolin were the most abundant constituents. Interestingly, both the roots and aerial parts revealed a significant anti-inflammatory activity comparable to diclofenac. Conclusions. This study is the first to demonstrate pharmacologic evidence of the potential anti-inflammatory activity of S. fruticosa. This activity may partly be due to the radical scavenging effects of its polyphenolic contents. These findings warrant the popular use of the East Mediterranean sage and highlight the potential of its active constituents in the development of new anti-inflammatory drugs. PMID:26881007

  11. The anti-inflammatory and analgesic properties of prosopis chilenses in rats

    PubMed Central

    Abodola, MA; Lutfi, MF; Bakhiet, AO; Mohamed, AH

    2015-01-01

    Background Prosopis chilensis is used locally in Sudan for inflammatory conditions of joints; however, literature lacks scientific evidence for anti-inflammatory effect of this plant. Aims To evaluate anti-inflammatory and analgesic effects of prosopis chilenses. Material and Methods Edema inhibition percent (EI %) and hot plate method were used to evaluate anti-inflammatory and analgesic effects of Prosopis chilenses in Wistar albino rats. Anti-inflammatory and analgesic effects of Prosopis chilenses were compared to indomethacin and acetylsalicylic acid respectively. Results Ethanolic extract of prosopis chilensis at a dose of 200 and 100mg/kg body weight achieved peak EI% (EI% = 96.1%) and (EI% = 94.4%) three and four hours after oral dosing respectively. The maximum EI% for indomethacin was 97.0% and was recorded after 4 hours following oral administration of the drug at a dose of 5 mg/kg body weight. Prosopis chilensis extracts at doses of 100 and 200 mg/kg body weight significantly increased the rats’ response time to hot plate compared to acetylsalicylic acid at a dose rate of 100mg/kg body weight (P<0.05). Conclusion The current results suggest potential anti-inflammatory and analgesic effects of prosopis chilenses. Relevance of these effects to prosopis chilenses phy-to-constituents was discussed. PMID:26609291

  12. Anti-Inflammatory Properties and Chemical Characterization of the Essential Oils of Four Citrus Species.

    PubMed

    Amorim, Jorge Luis; Simas, Daniel Luiz Reis; Pinheiro, Mariana Martins Gomes; Moreno, Daniela Sales Alviano; Alviano, Celuta Sales; da Silva, Antonio Jorge Ribeiro; Fernandes, Patricia Dias

    2016-01-01

    Citrus fruits have potential health-promoting properties and their essential oils have long been used in several applications. Due to biological effects described to some citrus species in this study our objectives were to analyze and compare the phytochemical composition and evaluate the anti-inflammatory effect of essential oils (EO) obtained from four different Citrus species. Mice were treated with EO obtained from C. limon, C. latifolia, C. aurantifolia or C. limonia (10 to 100 mg/kg, p.o.) and their anti-inflammatory effects were evaluated in chemical induced inflammation (formalin-induced licking response) and carrageenan-induced inflammation in the subcutaneous air pouch model. A possible antinociceptive effect was evaluated in the hot plate model. Phytochemical analyses indicated the presence of geranial, limonene, γ-terpinene and others. EOs from C. limon, C. aurantifolia and C. limonia exhibited anti-inflammatory effects by reducing cell migration, cytokine production and protein extravasation induced by carrageenan. These effects were also obtained with similar amounts of pure limonene. It was also observed that C. aurantifolia induced myelotoxicity in mice. Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral. Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia. PMID:27088973

  13. Anti-Inflammatory Properties and Chemical Characterization of the Essential Oils of Four Citrus Species

    PubMed Central

    Amorim, Jorge Luis; Simas, Daniel Luiz Reis; Pinheiro, Mariana Martins Gomes; Moreno, Daniela Sales Alviano; Alviano, Celuta Sales; da Silva, Antonio Jorge Ribeiro

    2016-01-01

    Citrus fruits have potential health-promoting properties and their essential oils have long been used in several applications. Due to biological effects described to some citrus species in this study our objectives were to analyze and compare the phytochemical composition and evaluate the anti-inflammatory effect of essential oils (EO) obtained from four different Citrus species. Mice were treated with EO obtained from C. limon, C. latifolia, C. aurantifolia or C. limonia (10 to 100 mg/kg, p.o.) and their anti-inflammatory effects were evaluated in chemical induced inflammation (formalin-induced licking response) and carrageenan-induced inflammation in the subcutaneous air pouch model. A possible antinociceptive effect was evaluated in the hot plate model. Phytochemical analyses indicated the presence of geranial, limonene, γ-terpinene and others. EOs from C. limon, C. aurantifolia and C. limonia exhibited anti-inflammatory effects by reducing cell migration, cytokine production and protein extravasation induced by carrageenan. These effects were also obtained with similar amounts of pure limonene. It was also observed that C. aurantifolia induced myelotoxicity in mice. Anti-inflammatory effect of C. limon and C. limonia is probably due to their large quantities of limonene, while the myelotoxicity observed with C. aurantifolia is most likely due to the high concentration of citral. Our results indicate that these EOs from C. limon, C. aurantifolia and C. limonia have a significant anti-inflammatory effect; however, care should be taken with C. aurantifolia. PMID:27088973

  14. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages

    PubMed Central

    Wang, Ji; Kang, Yu-Xia; Pan, Wen; Lei, Wan; Feng, Bin; Wang, Xiao-Juan

    2016-01-01

    Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%–8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions. PMID:27331813

  15. Anti-Inflammatory and Antioxidant Activities of Salvia fruticosa: An HPLC Determination of Phenolic Contents

    PubMed Central

    Boukhary, Rima; Ghoneim, Asser I.; Aboul-Ela, Maha; El-Lakany, Abdalla

    2016-01-01

    Objectives. Salvia fruticosa Mill. (S. fruticosa) is widely used in folk medicine. Accordingly, the present study was designed to evaluate the antioxidant and anti-inflammatory activities of S. fruticosa, and to determine the phenolic constituents of its extracts. Methods. The antioxidant activity was determined using 2,2-diphenylpicrylhydrazyl assay. Total phenolic contents were estimated using Folin-Ciocalteu reagent, and high-performance liquid chromatography was performed to identify phenolic constituents. To evaluate the anti-inflammatory activity, carrageenan-induced mouse paw edema was determined plethysmographically. Key Findings. Different plant extracts demonstrated strong radical scavenging activity, where the ethyl acetate extract had the highest value in the roots and the lowest in the aerial parts. This antioxidant activity was correlated to the total phenolic content of different extracts, where rutin and luteolin were the most abundant constituents. Interestingly, both the roots and aerial parts revealed a significant anti-inflammatory activity comparable to diclofenac. Conclusions. This study is the first to demonstrate pharmacologic evidence of the potential anti-inflammatory activity of S. fruticosa. This activity may partly be due to the radical scavenging effects of its polyphenolic contents. These findings warrant the popular use of the East Mediterranean sage and highlight the potential of its active constituents in the development of new anti-inflammatory drugs. PMID:26881007

  16. Systems pharmacology dissection of the anti-inflammatory mechanism for the medicinal herb Folium eriobotryae.

    PubMed

    Zhang, Jingxiao; Li, Yan; Chen, Su-Shing; Zhang, Lilei; Wang, Jinghui; Yang, Yinfeng; Zhang, Shuwei; Pan, Yanqiu; Wang, Yonghua; Yang, Ling

    2015-01-01

    Inflammation is a hallmark of many diseases like diabetes, cancers, atherosclerosis and arthritis. Thus, lots of concerns have been raised toward developing novel anti-inflammatory agents. Many alternative herbal medicines possess excellent anti-inflammatory properties, yet their precise mechanisms of action are yet to be elucidated. Here, a novel systems pharmacology approach based on a large number of chemical, biological and pharmacological data was developed and exemplified by a probe herb Folium Eriobotryae, a widely used clinical anti-inflammatory botanic drug. The results show that 11 ingredients of this herb with favorable pharmacokinetic properties are predicted as active compounds for anti-inflammatory treatment. In addition, via systematic network analyses, their targets are identified to be 43 inflammation-associated proteins including especially COX2, ALOX5, PPARG, TNF and RELA that are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway, the rheumatoid arthritis pathway and NF-κB signaling pathway. All these demonstrate that the integrated systems pharmacology method provides not only an effective tool to illustrate the anti-inflammatory mechanisms of herbs, but also a new systems-based approach for drug discovery from, but not limited to, herbs, especially when combined with further experimental validations. PMID:25636035

  17. Analgesic and anti-inflammatory activities of bupropion in animal models

    PubMed Central

    Hajhashemi, V.; Khanjani, P.

    2014-01-01

    Antidepressants are widely used for the treatment of various neuropathic pain conditions in humans. Recent studies have demonstrated that bupropion is effective for the treatment of neuropathic pain. Also antidepressants like bupropion showed anti-inflammatory properties. So in the present study, the analgesic and anti-inflammatory effects of bupropion in mice and rat were investigated. The acetic acid, formalin and hot plate tests were used in male mice to assess analgesic activity. For evaluation of anti-inflammatory effect, carrageenan-induced rat paw edema and croton oil-induced ear edema were used. Bupropion was administered at the doses of 10, 20 and 40 mg/kg (i.p.). Bupropion at a dose of 40 mg/kg significantly reduced acetic acid-induced abdominal writhes and also was effective in suppression of formalin-induced behavior and showed significant analgesia in hot plate test. While 40 mg/kg bupropion showed considerable anti-inflammatory response in carrageenan test, but no effect was observed in croton oil-induced ear edema. The results showed that bupropion has analgesic and anti-inflammatory effects in animal models and further studies are needed to find out its mechanism of action. PMID:25657796

  18. Anti-inflammatory activity and mechanism of surfactin in lipopolysaccharide-activated macrophages.

    PubMed

    Zhang, Yuanyuan; Liu, Chuan; Dong, Bin; Ma, Xiaolei; Hou, Lihua; Cao, Xiaohong; Wang, Chunling

    2015-04-01

    Surfactin is primarily produced by Bacillus natto TK-1 and is one of the most powerful biosurfactants. It consists of a heptapeptide interlinked with a β-hydroxy fatty acid. Because of its special structure, surfactin shows broad biological effects, including anti-tumour, anti-microbial and anti-mycoplasma activities. It also has potential anti-inflammatory activity; however, the anti-inflammatory mechanism of surfactin has not been explored. In this study, we investigated the anti-inflammatory mechanism of surfactin in lipopolysaccharide (LPS)-stimulated macrophages. Surfactin exhibited an anti-inflammatory effect without cytotoxicity at certain concentrations, and the lipopolysaccharide (LPS)-stimulated cells appeared normal after surfactin treatment. Surfactin significantly inhibited the increased expression of IFN-γ, IL-6, iNOS and nitric oxide (NO). TLR4 is the critical receptor for LPS; therefore, the TLR4 signal transduction pathway is the primary pathway that mediates LPS-induced inflammation. The results show that surfactin downregulated the LPS-induced TLR4 protein expression of macrophages and indicated that the surfactin-mediated signal pathway was involved in with TLR4. The subsequent studies demonstrated that surfactin exhibited anti-inflammatory effects by attenuating the activation of nuclear factor-κB (NF-κB), which is involved in the nuclear factor-κB (NF-κB) cell signalling pathways. These results suggest that surfactin may be a new therapeutic agent for inflammation. PMID:25331175

  19. Anti-inflammatory activity of D-002: an active product isolated from beeswax.

    PubMed

    Carbajal, D; Molina, V; Valdés, S; Arruzazabala, M L; Más, R; Magraner, J

    1998-10-01

    D-002 is a natural mixture of high molecular weight alcohols isolated and purified from beeswax, which contains triacontanol among its main components. This study was undertaken to investigate the anti-inflammatory effects of D-002 administered by the oral route in two animal models commonly used in the pharmacological screening of anti-inflammatory drugs. D-002 administered orally to rats (100 and 200 mg/kg) produced a mild but significant reduction of exudate volume in carrageenan-induced pleuritic inflammation that was accompanied by a marked and significant decrease of leukotriene B4 (LTB4) levels in the exudate. D-002 (25, 50 and 200 mg/kg) also significantly diminished the granuloma weight in the cotton pellet granuloma in rats. In both cases, D-002 was less effective than indomethacin, which was used as an established anti-inflammatory reference drug. On the other hand, D-002 administered from 25-1000 mg/kg did not induce erosions or gastromucosal lesions in rats, which differs from results usually obtained with non steroidal anti-inflammatory drugs. These results indicate that D-002 is a mild anti-inflammatory agent without any ulcerogenic effect associated. The results suggest that these effects are probably not mediated through an inhibition of cyclooxygenase, but a reduction in LTB4 levels induced by D-002 could explain these results. PMID:9849648

  20. Chemical composition and anti-inflammatory activity of the leaves of Byrsonima verbascifolia.

    PubMed

    Saldanha, Aline Aparecida; do Carmo, Lucas Fernandes; do Nascimento, Sara Batista; de Matos, Natália Alves; de Carvalho Veloso, Clarice; Castro, Ana Hortência Fonsêca; De Vos, Ric C H; Klein, André; de Siqueira, João Máximo; Carollo, Carlos Alexandre; do Nascimento, Thalita Vieira; Toffoli-Kadri, Mônica Cristina; Soares, Adriana Cristina

    2016-10-01

    An ethnopharmacological survey indicates that the genus Byrsonima has some medicinal species that are commonly found in the Brazilian Cerrado and has been used as an anti-inflammatory and for gastroduodenal disorders. The aim of this study was to evaluate the anti-inflammatory and antioxidant activity along with qualitative chemical characterization of the methanolic extract of the leaves of Byrsonima verbascifolia (BvME) obtained by exhaustive percolation. The data from the chemical analyses by liquid chromatography-mass spectrometry led to tentative identification of 42 compounds belonging to proanthocyanidins, galloyl quinic acid derivatives, flavonoids, and triterpene glycoside derivatives. BvME contain flavonoids and show an antioxidative activity. The methanolic extract administered intraperitoneally at doses of 50, 100, or 300 mg/kg showed a significant reduction in paw edema and modulated the neutrophil influx in a mouse model. Furthermore, the anti-edematogenic activity of the extract provided in smaller doses (12.5 and 25 mg/kg) was also demonstrated in a mouse paw edema model. The extract inhibited NO production by macrophages induced by lipopolysaccharide. We presume that the anti-inflammatory effects of BvME are due to a combination of compounds present in B. verbascifolia, including catechins (procyanidins), flavonoids, and triterpene glycosides and that these anti-inflammatory actions should be mediated, at least partly, through the inhibition of NO production. This study supports and validates the ethnopharmacological uses of B. verbascifolia as an anti-inflammatory. PMID:27278224

  1. Systems Pharmacology Dissection of the Anti-Inflammatory Mechanism for the Medicinal Herb Folium Eriobotryae

    PubMed Central

    Zhang, Jingxiao; Li, Yan; Chen, Su-Shing; Zhang, Lilei; Wang, Jinghui; Yang, Yinfeng; Zhang, Shuwei; Pan, Yanqiu; Wang, Yonghua; Yang, Ling

    2015-01-01

    Inflammation is a hallmark of many diseases like diabetes, cancers, atherosclerosis and arthritis. Thus, lots of concerns have been raised toward developing novel anti-inflammatory agents. Many alternative herbal medicines possess excellent anti-inflammatory properties, yet their precise mechanisms of action are yet to be elucidated. Here, a novel systems pharmacology approach based on a large number of chemical, biological and pharmacological data was developed and exemplified by a probe herb Folium Eriobotryae, a widely used clinical anti-inflammatory botanic drug. The results show that 11 ingredients of this herb with favorable pharmacokinetic properties are predicted as active compounds for anti-inflammatory treatment. In addition, via systematic network analyses, their targets are identified to be 43 inflammation-associated proteins including especially COX2, ALOX5, PPARG, TNF and RELA that are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway, the rheumatoid arthritis pathway and NF-κB signaling pathway. All these demonstrate that the integrated systems pharmacology method provides not only an effective tool to illustrate the anti-inflammatory mechanisms of herbs, but also a new systems-based approach for drug discovery from, but not limited to, herbs, especially when combined with further experimental validations. PMID:25636035

  2. Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus.

    PubMed

    Li, Zheng; Geng, Ya-Na; Jiang, Jian-Dong; Kong, Wei-Jia

    2014-01-01

    Oxidative stress and inflammation are proved to be critical for the pathogenesis of diabetes mellitus. Berberine (BBR) is a natural compound isolated from plants such as Coptis chinensis and Hydrastis canadensis and with multiple pharmacological activities. Recent studies showed that BBR had antioxidant and anti-inflammatory activities, which contributed in part to its efficacy against diabetes mellitus. In this review, we summarized the antioxidant and anti-inflammatory activities of BBR as well as their molecular basis. The antioxidant and anti-inflammatory activities of BBR were noted with changes in oxidative stress markers, antioxidant enzymes, and proinflammatory cytokines after BBR administration in diabetic animals. BBR inhibited oxidative stress and inflammation in a variety of tissues including liver, adipose tissue, kidney and pancreas. Mechanisms of the antioxidant and anti-inflammatory activities of BBR were complex, which involved multiple cellular kinases and signaling pathways, such as AMP-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPKs), nuclear factor erythroid-2-related factor-2 (Nrf2) pathway, and nuclear factor- κ B (NF- κ B) pathway. Detailed mechanisms and pathways for the antioxidant and anti-inflammatory activities of BBR still need further investigation. Clarification of these issues could help to understand the pharmacology of BBR in the treatment of diabetes mellitus and promote the development of antidiabetic natural products. PMID:24669227

  3. Antioxidant and Anti-Inflammatory Activities of Berberine in the Treatment of Diabetes Mellitus

    PubMed Central

    Geng, Ya-Na; Kong, Wei-Jia

    2014-01-01

    Oxidative stress and inflammation are proved to be critical for the pathogenesis of diabetes mellitus. Berberine (BBR) is a natural compound isolated from plants such as Coptis chinensis and Hydrastis canadensis and with multiple pharmacological activities. Recent studies showed that BBR had antioxidant and anti-inflammatory activities, which contributed in part to its efficacy against diabetes mellitus. In this review, we summarized the antioxidant and anti-inflammatory activities of BBR as well as their molecular basis. The antioxidant and anti-inflammatory activities of BBR were noted with changes in oxidative stress markers, antioxidant enzymes, and proinflammatory cytokines after BBR administration in diabetic animals. BBR inhibited oxidative stress and inflammation in a variety of tissues including liver, adipose tissue, kidney and pancreas. Mechanisms of the antioxidant and anti-inflammatory activities of BBR were complex, which involved multiple cellular kinases and signaling pathways, such as AMP-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPKs), nuclear factor erythroid-2-related factor-2 (Nrf2) pathway, and nuclear factor-κB (NF-κB) pathway. Detailed mechanisms and pathways for the antioxidant and anti-inflammatory activities of BBR still need further investigation. Clarification of these issues could help to understand the pharmacology of BBR in the treatment of diabetes mellitus and promote the development of antidiabetic natural products. PMID:24669227

  4. A Systematic Review for Anti-Inflammatory Property of Clusiaceae Family: A Preclinical Approach

    PubMed Central

    de Melo, Mônica Santos; Quintans, Jullyana de Souza Siqueira; Araújo, Adriano Antunes de Souza; Duarte, Marcelo Cavalcante; Bonjardim, Leonardo Rigoldi; Moraes, Valéria Regina de Souza; de Araújo-Júnior, João Xavier

    2014-01-01

    Background. Clusiaceae family (sensu lato) is extensively used in ethnomedicine for treating a number of disease conditions which include cancer, inflammation, and infection. The aim of this review is to report the pharmacological potential of plants of Clusiaceae family with the anti-inflammatory activity in animal experiments. Methods. A systematic review about experiments investigating anti-inflammatory activity of Clusiaceae family was carried out by searching bibliographic databases such as Medline, Scopus and Embase. In this update, the search terms were “anti-inflammatory agents,” “Clusiaceae,” and “animals, laboratory.” Results. A total of 255 publications with plants this family were identified. From the initial 255 studies, a total of 21 studies were selected for the final analysis. Studies with genera Allanblackia, Clusia, Garcinia or Rheedia, and Hypericum showed significant anti-inflammatory activity. The findings include a decrease of total leukocytes, a number of neutrophils, total protein concentration, granuloma formation, and paw or ear edema formation. Other interesting findings included decreased of the MPO activity, and inflammatory mediators such as NF-κB and iNOS expression, PGE2 and Il-1β levels and a decrease in chronic inflammation. Conclusion. The data reported suggests the anti-inflammatory effect potential of Clusiaceae family in animal experiments. PMID:24976853

  5. Synthesis, characterization, and anti-inflammatory activity of diclofenac-bound cotton fibers.

    PubMed

    Cassano, Roberta; Trombino, Sonia; Ferrarelli, Teresa; Barone, Eugenio; Arena, Vincenzo; Mancuso, Cesare; Picci, Nevio

    2010-07-12

    In the present work, we report on the synthesis of cellulose cotton fibers covalently linked to diclofenac moieties and the evaluation of the anti-inflammatory activity of this new biomaterial. In spite of recent progress in experimental and clinical medicine, the problem of chronic wounds treatment is still debated. In fact, conventional methods are based on the use of ointment-soaked bandages, but several physical and biological factors contribute to making the efficacy of this method quite low. For this reason, we developed the idea to using modified cotton gauzes to prevent inflammation during wound healing. In this light, diclofenac, a nonsteroidal anti-inflammatory drug, was covalently linked to the cellulose backbone of hydrophilic cotton fibers by a heterogeneous synthesis to produce a functionalized biopolymer with a satisfactory degree of substitution and anti-inflammatory activity. Diclofenac was directly linked to fiber microfibril hydroxylic groups using THF with thionyl chloride. The obtained biopolymer was characterized by infrared spectroscopy (FT-IR) to confirm ester linkages. Finally, the anti-inflammatory activity was evaluated in a well-established in vivo model. The results suggested that these biomaterials possess an excellent anti-inflammatory activity in vivo, so they can be efficiently employed in biomedical fields for chronic wound management to ensure a valid protection against inflammation. PMID:20536117

  6. Multidimensional preparative liquid chromatography to isolate flavonoids from bergamot juice and evaluation of their anti-inflammatory potential.

    PubMed

    Russo, Marina; Dugo, Paola; Marzocco, Stefania; Inferrera, Veronica; Mondello, Luigi

    2015-12-01

    Important objectives of a high-performance liquid chromatography preparative process are: purity of products isolated, yield, and throughput. The multidimensional preparative liquid chromatography method used in this work was developed mainly to increase the throughput; moreover purity and yield are increased thanks to the automated collection of the molecules based on the intensity of a signal generated from the mass spectrometer detector, in this way only a specific product can be targeted. This preparative system allowed, in few analyses both in the first and second dimensions, the isolation of eight pure compounds present at very different concentration in the original sample with high purity (>95%) and yield, which showed how the system is efficient and versatile. Pure molecules were used to validate the analytical method and to test the anti-inflammatory and antiproliferative potential of flavonoids. The contemporary presence, in bergamot juice, of all the flavonoids together increases the anti-inflammatory effect with respect to the single compound alone. PMID:26495990

  7. Sesamol suppresses cyclooxygenase-2 transcriptional activity in colon cancer cells and modifies intestinal polyp development in ApcMin/+ mice

    PubMed Central

    Shimizu, Satomi; Fujii, Gen; Takahashi, Mami; Nakanishi, Ruri; Komiya, Masami; Shimura, Misato; Noma, Nobuharu; Onuma, Wakana; Terasaki, Masaru; Yano, Tomohiro; Mutoh, Michihiro

    2014-01-01

    Excessive prostaglandin production by cyclooxygenase-2 in stromal and epithelial cells is a causative factor of colorectal carcinogenesis. Thus, compounds which inhibit cyclooxygenase-2 transcriptional activity in colon epithelial cells could be candidates for anti-carcinogenic agents. A cyclooxygenase-2 transcriptional activity in the human colon cancer cell line DLD-1 has been measured using a β-galactosidase reporter gene system. Using this system, we demonstrated that the decrease in basal cyclooxygenase-2 transcriptional activities at 100 µM sesamol, one of the lignans in sesame seeds, was 50%. Other compounds in sesame seeds such as sesamin, sesamolin, ferulic acid, and syringic acid did not exhibit significant suppression of cyclooxygenase-2 transcriptional activity at up to 100 µM. In a following experiment, 6-week-old male Min mice, Apc-deficient mice, were divided into a non-treated and 500 ppm sesamol groups. At the age of 15 weeks, it was found that treatment with sesamol decreased the number of polyps in the middle part of small intestine to 66.1% of the untreated value. Moreover, sesamol suppressed cyclooxygenase-2 and cytosolic prostaglandin E2 synthase mRNA in the polyp parts. The present findings may demonstrate the novel anti-carcinogenetic property of sesamol, and imply that agents that can suppress cyclooxygenase-2 expression may be useful cancer chemopreventive agents. PMID:24688218

  8. COX-2-Specific inhibitors--the emergence of a new class of analgesic and anti-inflammatory drugs.

    PubMed

    Everts, B; Währborg, P; Hedner, T

    2000-01-01

    The prostaglandin series of bioactive compounds is formed by the interaction of two distinct but related enzymes, cyclo-oxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). COX-1 is a constitutive form which is present mainly in the gastric mucosa, kidney and platelets. COX-2 is mainly an inducible form, although also to some extent present constitutively in the CNS, the juxtaglomerular apparatus of the kidney and in the placenta during late gestation. Both isoforms contribute to the inflammatory process, but COX-2 is of considerable therapeutic interest as it is induced, resulting in an enhanced formation of prostaglandins, during acute as well as chronic inflammation. Conventional NSAIDs inhibit both isoforms to a similar extent and in an approximately equal dose and concentration range. The two recently developed and clinically available selective COX-2 inhibitors, celecoxib and rofecoxib, are about 100-1000 times more selective on the COX-2 than on the COX-1 isoform. In Europe rofecoxib is today indicated for the symptoms and signs of osteoarthritis, whereas celecoxib is indicated for both osteoarthritis and rheumatoid arthritis. The major clinical interest of these drugs has been related to the lower incidence of gastrointestinal bleeding which, with the conventional COX-1/COX-2 agents has been a source of hospitalisation, disablement and death, especially in the elderly. Clinical trials have convincingly demonstrated that celecoxib and rofecoxib in clinical use induce very few gastrointestinal complications compared to conventional and non-selective NSAIDs. However, the well known contraindications for NSAIDs, such as late pregnancy, aspirin-induced asthma, congestive heart failure and renal dysfunction, will so far apply also to the COX-2 inhibitors. Compared to the traditional and non-selective NSAIDs, COX-2 inhibitors may provide an insight into additional therapeutic areas, such as gastrointestinal cancer and dementia, where the potential relevance to COX-2

  9. Interaction of inflammatory and anti-inflammatory responses in microglia by Staphylococcus aureus-derived lipoteichoic acid

    SciTech Connect

    Huang, Bor-Ren; Tsai, Cheng-Fang; Lin, Hsiao-Yun; Tseng, Wen-Pei; Huang, Shiang-Suo; Wu, Chi-Rei; Lin, Chingju; Yeh, Wei-Lan; Lu, Dah-Yuu

    2013-05-15

    We investigated the interaction between proinflammatory and inflammatory responses caused by Staphylococcus aureus-derived lipoteichoic acid (LTA) in primary cultured microglial cells and BV-2 microglia. LTA induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels increase in a concentration- and time-dependent manner. Meanwhile, LTA also increased nitric oxide (NO) and PGE{sub 2} production in microglia. Administration of TLR2 antagonist effectively inhibited LTA-induced NO, iNOS, and COX-2 expression. Moreover, treatment of cells with LTA caused a time-dependent activation of ERK, p38, JNK, as well as AKT. We also found that LTA-induced iNOS and COX-2 up-regulation were attenuated by p38, JNK, and PI3-kinase inhibitors. On the other hand, LTA-enhanced HO-1 expression was attenuated by p38 and PI3-kinase inhibitors. Treatment of cells with NF-κB and AP-1 inhibitors antagonized LTA-induced iNOS and COX-2 expression. However, only NF-κB inhibitors reduced LTA-induced HO-1 expression in microglia. Furthermore, stimulation of cells with LTA also activated IκBα phosphorylation, p65 phosphorylation at Ser{sup 536}, and c-Jun phosphorylation. Moreover, LTA-induced increases of κB-DNA and AP-1-DNA binding activity were inhibited by p38, JNK, and PI3-kinase inhibitors. HO-1 activator CoPP IX dramatically reversed LTA-induced iNOS expression. Our results provided mechanisms linking LTA and inflammation/anti-inflammation, and indicated that LTA plays a regulatory role in microglia activation. - Highlights: • LTA causes an increase in iNOS, COX-2, and HO-1 expression in microglia. • LTA induces iNOS and COX-2 expression through TLR-2/NF-κB and AP-1 pathways. • HO-1 expression is regulated through p38, JNK, PI3K/AKT and AP-1 pathways. • Induced HO-1 reduces LTA-induced iNOS expression. • LTA plays a regulatory role on inflammatory/anti-inflammatory responses.

  10. Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor.

    PubMed

    Kalle, Arunasree M; Rizvi, Arshad

    2011-01-01

    Multidrug resistance (MDR) is a major problem in the treatment of infectious diseases and cancer. Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)-specific inhibitor celecoxib would not only inhibit COX-2 but also help in the reversal of drug resistance in cancers by inhibiting the MDR1 efflux pump. Here, we demonstrate that celecoxib increases the sensitivity of bacteria to the antibiotics ampicillin, kanamycin, chloramphenicol, and ciprofloxacin by accumulating the drugs inside the cell, thus reversing MDR in bacteria. PMID:20937780

  11. Acceleration of cardiovascular disease by a dysfunctional prostacyclin receptor mutation: potential implications for cyclooxygenase-2 inhibition.

    PubMed

    Arehart, Eric; Stitham, Jeremiah; Asselbergs, Folkert W; Douville, Karen; MacKenzie, Todd; Fetalvero, Kristina M; Gleim, Scott; Kasza, Zsolt; Rao, Yamini; Martel, Laurie; Segel, Sharon; Robb, John; Kaplan, Aaron; Simons, Michael; Powell, Richard J; Moore, Jason H; Rimm, Eric B; Martin, Kathleen A; Hwa, John

    2008-04-25

    Recent increased adverse cardiovascular events observed with selective cyclooxygenase-2 inhibition led to the withdrawal of rofecoxib (Vioxx) and valdecoxib (Bextra), but the mechanisms underlying these atherothrombotic events remain unclear. Prostacyclin is the major end product of cyclooxygenase-2 in vascular endothelium. Using a naturally occurring mutation in the prostacyclin receptor, we report for the first time that a deficiency in prostacyclin signaling through its G protein-coupled receptor contributes to atherothrombosis in human patients. We report that a prostacyclin receptor variant (R212C) is defective in adenylyl cyclase activation in both patient blood and in an in vitro COS-1 overexpression system. This promotes increased platelet aggregation, a hallmark of atherothrombosis. Our analysis of patients in 3 separate white cohorts reveals that this dysfunctional receptor is not likely an initiating factor in cardiovascular disease but that it accelerates the course of disease in those patients with the greatest risk factors. R212C was associated with cardiovascular disease only in the high cardiovascular risk cohort (n=980), with no association in the low-risk cohort (n=2293). In those at highest cardiovascular risk, both disease severity and adverse cardiovascular events were significantly increased with R212C when compared with age- and risk factor-matched normal allele patients. We conclude that for haploinsufficient mutants, such as the R212C, the enhanced atherothrombotic phenotype is likely dependent on the presence of existing atherosclerosis or injury (high risk factors), analogous to what has been observed in the cyclooxygenase-2 inhibition studies or prostacyclin receptor knockout mice studies. Combining both biochemical and clinical approaches, we conclude that diminished prostacyclin receptor signaling may contribute, in part, to the underlying adverse cardiovascular outcomes observed with cyclooxygenase-2 inhibition. PMID:18323528

  12. Inhibition of cyclo-oxygenase-2 exacerbates ischaemia-induced acute myocardial dysfunction in the rabbit

    PubMed Central

    Rossoni, Giuseppe; Muscara, Marcelo N; Cirino, Giuseppe; Wallace, John L

    2002-01-01

    The effects of treatment with a number of cyclo-oxygenase inhibitors, (celecoxib, meloxicam, DuP-697 and aspirin) on ischaemia-reperfusion-induced myocardial dysfunction were examined using an in vitro perfused rabbit heart model.Ischaemia resulted in myocardial dysfunction, as indicated by a significant increase in left ventricular end diastolic pressure and marked changes in coronary perfusion pressure and left ventricular developed pressure. In the post-ischaemic state, coronary perfusion pressure increased dramatically, left ventricular developed pressure recovered to a small degree and there were significant increases in creatinine kinase release (indicative of myocardial damage) and prostacyclin release.Pretreatment with aspirin, or with drugs that selectively inhibit cyclo-oxygenase-2 (celecoxib, meloxicam and DuP-697), resulted in a concentration-dependent exacerbation of the myocardial dysfunction and damage. Exacerbation of myocardial dysfunction and damage was evident with 10 μM concentrations of the cyclo-oxygenase-2 inhibitors, which inhibited prostacyclin release but did not affect cyclo-oxygenase-1 activity (as measured by whole blood thromboxane synthesis).NCX-4016, a nitric oxide-releasing aspirin derivative, significantly reduced the myocardial dysfunction and damage caused by ischaemia and reperfusion. Beneficial effects were observed even at a concentration (100 μM) that significantly inhibited prostacyclin synthesis by the heart.The results suggest that prostacyclin released by cardiac tissue in response to ischaemia and reperfusion is derived, at least in part, from cyclo-oxygenase-2. Cyclo-oxygenase-2 plays an important protective role in a setting of ischaemia-reperfusion of the heart. PMID:11906968

  13. Amides of non-steroidal anti-inflammatory drugs with thiomorpholine can yield hypolipidemic agents with improved anti-inflammatory activity.

    PubMed

    Theodosis-Nobelos, Panagiotis; Kourti, Malamati; Gavalas, Antonios; Rekka, Eleni A

    2016-02-01

    Novel amides of non steroidal anti-inflammatory drugs (NSAIDs), α-lipoic acid and indole-3-acetic acid with thiomorpholine were synthesised by a simple method and at high yields (60-92%). All the NSAID derivatives highly decreased lipidemic indices in the plasma of Triton treated hyperlipidemic rats. The most potent compound was the indomethacin derivative, which decreased total cholesterol, triglycerides and LDL cholesterol by 73%, 80% and 83%, respectively. They reduced acute inflammation equally or more than most parent acids. Hence, it could be concluded that amides of common NSAIDs with thiomorpholine acquire considerable hypolipidemic potency, while they preserve or augment their anti-inflammatory activity, thus addressing significant risk factors for atherogenesis. PMID:26750253

  14. β-Amino acid and amino-alcohol conjugation of a nonsteroidal anti-inflammatory drug (NSAID) imparts hydrogelation displaying remarkable biostability, biocompatibility, and anti-inflammatory properties.

    PubMed

    Majumder, Joydeb; Das, Mahua Rani; Deb, Jolly; Jana, Siddhartha Sankar; Dastidar, Parthasarathi

    2013-08-13

    A well-known nonsteroidal anti-inflammatory drug (NSAID), namely, naproxen (Np), was conjugated with β-alanine and various combinations of amino alcohols and l-alanine. Quite a few bioconjugates, thus synthesized, were capable of gelling pure water, NaCl solution (0.9 wt %), and phosphate-buffered saline (PBS) (pH 7.4). The hydrogels were characterized by rheology and electron microscopy. Hydrogelation was probed by FT-IR and temperature-variable (1)H NMR studies. Single-crystal X-ray diffraction (SXRD) of a nonhydrogelator and a hydrogelator in the series established a useful structure-property (gelation) correlation. MTT assay of the hydrogelators in the mouse macrophage RAW 264.7 cell line showed excellent biocompatibility. The prostaglandin E2 (PGE2) assay of the hydrogelators revealed their anti-inflammatory response, which was comparable to that of the parent NSAID naproxen sodium (Ns). PMID:23859562

  15. Nonsteroidal anti-inflammatory drug administration in children with history of wheeze

    PubMed Central

    Sih, Kendra; Goldman, Ran D.

    2016-01-01

    Question A child in my clinic who recently sprained his ankle is experiencing pain and having trouble bearing weight on the affected leg. His mother has been giving him acetaminophen, as she was told never to use nonsteroidal anti-inflammatory drugs (NSAIDs) because of his pharmacologically controlled asthma. Is asthma in children a contraindication to giving NSAIDs? Is NSAID-exacerbated respiratory disease (NERD) a real entity? Answer Nonsteroidal anti-inflammatory drugs are effective analgesic and antipyretic medications. While described in adults with some predisposing conditions, NERD has not been clearly described in a large number of children. Nonsteroidal anti-inflammatory drugs can be recommended to children with known wheeze who do not have a history of NERD reaction. PMID:27521389

  16. Mushrooms: A Potential Natural Source of Anti-Inflammatory Compounds for Medical Applications

    PubMed Central

    Elsayed, Elsayed A.; El Enshasy, Hesham; Wadaan, Mohammad A. M.; Aziz, Ramlan

    2014-01-01

    For centuries, macrofungi have been used as food and medicine in different parts of the world. This is mainly attributed to their nutritional value as a potential source of carbohydrates, proteins, amino acids, and minerals. In addition, they also include many bioactive metabolites which make mushrooms and truffles common components in folk medicine, especially in Africa, the Middle East, China, and Japan. The reported medicinal effects of mushrooms include anti-inflammatory effects, with anti-inflammatory compounds of mushrooms comprising a highly diversified group in terms of their chemical structure. They include polysaccharides, terpenoids, phenolic compounds, and many other low molecular weight molecules. The aims of this review are to report the different types of bioactive metabolites and their relevant producers, as well as the different mechanisms of action of mushroom compounds as potent anti-inflammatory agents. PMID:25505823

  17. In vitro anti-inflammatory activity of phenolic rich extracts from white and red common beans.

    PubMed

    García-Lafuente, Ana; Moro, Carlos; Manchón, Noelia; Gonzalo-Ruiz, Alicia; Villares, Ana; Guillamón, Eva; Rostagno, Mauricio; Mateo-Vivaracho, Laura

    2014-10-15

    According to epidemiological evidence, diets rich in fruits and vegetables can reduce the incidence of several chronic diseases that share an inflammatory component. These protective effects are attributed, in part, to the occurrence of different antioxidant components, mainly phenolic compounds. Our aim was to characterise phenolic composition, and to determine antioxidant and anti-inflammatory activities of phenolic rich extracts obtained from two kinds of common beans, white kidney beans (WKB) and round purple beans (RPB). Phenolic acids were the predominant component in WKB extracts, whereas RPB extracts presented higher concentrations of phenolic compounds, mainly catechin derivatives, proanthocyanidins and catechin glucoside. In addition, RPB extracts showed higher antioxidant capacity and higher anti-inflammatory activity by the reduction of NO production and cytokine mRNA expression of LPS stimulated macrophages. These results suggest that common bean extracts may be used as a source of anti-inflammatory agents as well as a dietary complement for health promotion. PMID:24837943

  18. Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control

    PubMed Central

    Lee, Young-Sun; Jun, Hee-Sook

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone mainly secreted from intestinal L cells in response to nutrient ingestion. GLP-1 has beneficial effects for glucose homeostasis by stimulating insulin secretion from pancreatic beta-cells, delaying gastric emptying, decreasing plasma glucagon, reducing food intake, and stimulating glucose disposal. Therefore, GLP-1-based therapies such as GLP-1 receptor agonists and inhibitors of dipeptidyl peptidase-4, which is a GLP-1 inactivating enzyme, have been developed for treatment of type 2 diabetes. In addition to glucose-lowering effects, emerging data suggests that GLP-1-based therapies also show anti-inflammatory effects in chronic inflammatory diseases including type 1 and 2 diabetes, atherosclerosis, neurodegenerative disorders, nonalcoholic steatohepatitis, diabetic nephropathy, asthma, and psoriasis. This review outlines the anti-inflammatory actions of GLP-1-based therapies on diseases associated with chronic inflammation in vivo and in vitro, and their molecular mechanisms of anti-inflammatory action. PMID:27110066

  19. Anti-inflammatory properties of new bioisosteres of indomethacin synthesized from safrole which are sulindac analogues.

    PubMed

    Pereira, E F; Pereira, N A; Lima, M E; Coelho, F A; Barreiro, E J

    1989-01-01

    The anti-inflammatory activities of new compounds (I, II, III and IV) synthesized in 30% overall yield from the abundant natural product safrole, the principal chemical constituent of the oil of sassafras (Ocotea pretiosa, Lauraceae), were determined in mice. The synthesis of these new indenyl-acetic acids (I and II) and indenyl-propionic acids (III and IV) was based on the minimal structural features of non-steroid anti-inflammatory agents of the aryl- or heteroarylcarboxylic acid group. The compounds exhibited potencies 4- to 10-fold less than that of indomethacin in inhibiting carrageenan-induced hindpaw edema. In contrast, like sulindac, all the new compounds were more potent than indomethacin in antagonizing writhing pain and increased vascular permeability caused by acetic acid. The results confirm the anticipated bioisosteric relationship between these synthetic derivatives, designed as sulindac analogues, and the classical non-steroidal anti-inflammatory agent, indomethacin. PMID:2638933

  20. Synthesis and anti-inflammatory activity of some potential cyclic phenothiazines.

    PubMed

    Kumar, A; Ram, T; Tyagi, R; Goel, B; Bansal, E; Srivastava, V K

    1998-05-01

    Some new schiff's bases (IVa-IVe), thiazolidinones (Va-Ve), delta 2-triazolines (VIa-VIe) and formazans (VIIa-VIIe) of 2-chlorophenothiazine have been synthesized and screened against Carrageenin induced oedema in albino rats. Some compounds of the series have shown promising activity. The most active compound is 2-chloro-10[5-(2-fluorophenyl-2-oxo-4 thiazolidin-1-yl)-amino acetyl] phenothiazine was found to be most potent. This compound (Vb) was further evaluated in detail and compared with phenylbutazone for its relative anti inflammatory potency (ED50), ulcerogenic liabilities (UD50) and acute toxicity (ALD50). It was found to be almost comparable to phenylbutazone as regards anti-inflammatory activity was concerned but and minimum ulcerogenic liability and cardiovascular effects. Hence, it seems promising as an anti-inflammatory agent in our preliminary studies. PMID:9689901

  1. Anti-inflammatory and antinociceptive properties of dantrolene sodium in rats and mice.

    PubMed

    Büyükokuroğlu, Mehmet Emin

    2002-06-01

    Our study aimed at examining the possible anti-inflammatory and antinociceptive effects of dantrolene sodium in rats and mice. The anti-inflammatory effect of dantrolene sodium (2.5, 5 and 10 mg kg (-1)) was investigated and compared with diclofenac sodium (5 mg kg (-1)) using the formalin-, histamine-, and carrageenan-induced paw oedema and cotton pellet granuloma tests. Analgesic effects of dantrolene sodium were evaluated and compared with metamizol (200 mg kg (-1)) in acetic acid-induced writhing and formalin-induced paw licking tests. It was found that dantrolene sodium significantly diminished the nociceptive response in mice, showing at the same time considerable anti-inflammatory properties in rats. PMID:12162945

  2. Analgesic and Anti-inflammatory action of Opuntia elatior Mill fruits

    PubMed Central

    Chauhan, Sanjay P.; Sheth, Navin R.; Suhagia, Bhanubhai N.

    2015-01-01

    Background: Opuntia elatio Mill is a xerophytic plant with potentially active nutrients. It is traditionally appreciated for its pharmacological properties; however, the scientific information on this plant is insufficient. Objective: The present study evaluates the antinociceptive and anti-inflammatory action of prickly pear. Materials and Methods: Writhing and tail-immersion tests were carried out to evaluate analgesic action, while the carrageenan-induced paw edema and neutrophil adhesion tests were conducted in Albino wistar rats to assess anti-inflammatory action. Results: ED50 values of the fruit juice in writhing, tail immersion, and paw edema test were 0.919, 2.77, and 9.282 ml/kg, respectively. The fruits of Opuntia produced analgesic and anti-inflammatory action in a dose-dependent manner. Conclusion: The results establish the folklore use of prickly pear may be due to the presence of betacyanin and/or other phenolic compounds. PMID:26166996

  3. Evaluation of antinociceptive and anti-inflammatory activity of hydromethanol extract of Cocos nucifera L.

    PubMed

    Naskar, Sagar; Mazumder, U K; Pramanik, G; Saha, P; Haldar, P K; Gupta, M

    2013-02-01

    Cocos nucifera L. (family: arecaceae) is generally straight unbranched plant, traditionally cultivated for its fruit (coconut) in home gardens. In the present study, anti-inflammatory and antinociceptive (analgesic) activity of hydromethanol extract of Cocos nucifera L. (HECN) was evaluated in animal models. HECN showed significant (p < 0.05) and dosedependent anti-inflammatory activity in carrageenan induced paw oedema models of inflammation and the result was comparable with the standard drug diclofenac. In addition, the extract also showed highly significant (p < 0.01) antinociceptive activity. HECN treated group showed increase in the reaction time in hot plate method and decrease the writhing induced by acetic acid in mice when compared with control group animal. The anti-inflammatory and antinociceptive activity observed in the present study could be attributed largely to the presence of its antioxidant phytoconstituents such as flavonoid, saponin and polyphenols. PMID:22527352

  4. Identification of 14,20-dihydroxy-docosahexaenoic acid as a novel anti-inflammatory metabolite.

    PubMed

    Yokokura, Yoshiyuki; Isobe, Yosuke; Matsueda, Shinnosuke; Iwamoto, Ryo; Goto, Tomomi; Yoshioka, Takeshi; Urabe, Daisuke; Inoue, Masayuki; Arai, Hiroyuki; Arita, Makoto

    2014-12-01

    Docosahexaenoic acid (DHA) exhibits anti-inflammatory activity related to some of its oxygenated metabolites, such as D-series resolvins, protectin and maresin. Here, we analysed the lipids in inflammatory exudates using liquid chromatography-tandem mass spectrometry and identified a novel DHA metabolite, 14,20-dihydroxy-DHA (14,20-diHDHA) and showed that it is biosynthesized by eosinophils through the 12/15-lipoxygenase pathway. The chemical structure of the dominant 14,20-diHDHA isomer, which is endogenously biosynthesized by eosinophils, was identified as 14S,20R-diHDHA using chemically synthesized stereoisomers. Nanogram doses of 14,20-diHDHA displayed a potent anti-inflammatory action by limiting neutrophil infiltration in zymosan-induced peritonitis. The in vivo formation and potent anti-inflammatory action of 14,20-diHDHA may contribute to the protective effects of DHA. PMID:25012818

  5. Phytochemical analysis, antioxidant and anti-inflammatory activity of calyces from Physalis peruviana.

    PubMed

    Toro, Reina M; Aragón, Diana M; Ospina, Luis F; Ramos, Freddy A; Castellanos, Leonardo

    2014-11-01

    Physalis peruviana calyces are used extensively in folk medicine. The crude ethanolic extract and some fractions of calyces were evaluated in order to explore antioxidant and anti-inflammatory activities. The anti-inflammatory activity was evaluated by the TPA-induced ear edema model. The antioxidant in vitro activity was measured by means of the superoxide and nitric oxide scavenging activity of the extracts and fractions. The butanolic fraction was found to be promising due to its anti-inflammatory and antioxidant activities. Therefore, a bio-assay guided approach was employed to isolate and identify rutin (1) and nicotoflorin (2) from their NMR spectroscopic and MS data. The identification of rutin in calyces of P. peruviana supports the possible use of this waste material for phytotherapeutic, nutraceutical and cosmetic preparations. PMID:25532284

  6. Anti-inflammatory, Antioxidant and Antimicrobial Effects of Artemisinin Extracts from Artemisia annua L.

    PubMed Central

    Kim, Wan-Su; Choi, Woo Jin; Lee, Sunwoo; Kim, Woo Joong; Lee, Dong Chae; Sohn, Uy Dong; Shin, Hyoung-Shik

    2015-01-01

    The anti-inflammatory, antioxidant, and antimicrobial properties of artemisinin derived from water, methanol, ethanol, or acetone extracts of Artemisia annua L. were evaluated. All 4 artemisinin-containing extracts had anti-inflammatory effects. Of these, the acetone extract had the greatest inhibitory effect on lipopolysaccharide-induced nitric oxide (NO), prostaglandin E2 (PGE2), and proinflammatory cytokine (IL-1β , IL-6, and IL-10) production. Antioxidant activity evaluations revealed that the ethanol extract had the highest free radical scavenging activity, (91.0±3.2%), similar to α-tocopherol (99.9%). The extracts had antimicrobial activity against the periodontopathic microorganisms Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum subsp. animalis, Fusobacterium nucleatum subsp. polymorphum, and Prevotella intermedia. This study shows that Artemisia annua L. extracts contain anti-inflammatory, antioxidant, and antimicrobial substances and should be considered for use in pharmaceutical products for the treatment of dental diseases. PMID:25605993

  7. 3-Aminothiophene-2-acylhydrazones: non-toxic, analgesic and anti-inflammatory lead-candidates.

    PubMed

    da Silva, Yolanda Karla Cupertino; Reyes, Christian Tadeo Moreno; Rivera, Gildardo; Alves, Marina Amaral; Barreiro, Eliezer J; Moreira, Magna Suzana Alexandre; Lima, Lídia Moreira

    2014-01-01

    Different chemotypes are described as anti-inflammatory. Among them the N-acylhydrazones (NAH) are highlighted by their privileged structure nature, being present in several anti-inflammatory drug-candidates. In this paper a series of functionalized 3-aminothiophene-2-acylhydrazone derivatives 5a-i were designed, synthesized and bioassayed. These new derivatives showed great anti-inflammatory and analgesic potency and efficacy. Compounds 5a and 5d stand out in this respect, and were also active in CFA-induced arthritis in rats. After daily treatment for seven days with 5a and 5d (50 µmol/Kg), by oral administration, these compounds were not renal or hepatotoxic nor immunosuppressive. Compounds 5a and 5d also displayed good drug-scores and low risk toxicity calculated in silico using the program OSIRIS Property Explorer. PMID:24955640

  8. The potent anti-inflammatory agent escin does not increase corticosterone secretion and immune cell apoptosis in mice.

    PubMed

    Zhang, Leiming; Wang, Hongsheng; Fan, Huaying; Wang, Tian; Jiang, Na; Yu, Pengfei; Fu, Fenghua

    2011-09-01

    Escin exerts potent glucocorticoid-like anti-inflammatory effects. The aim of this study was to investigate whether the anti-inflammatory effect of escin is through the up-regulation of glucocorticoids and if escin induces pathological changes in immune organs. Mice were administrated with escin intravenously for 7 days before observing the relevant parameters. The results showed that escin exhibits a potent anti-inflammatory effect, but does not increase corticosterone secretion in mice, and does not increase immune cell apoptosis in the spleen and thymus of mice. These findings suggest that the anti-inflammatory effect of escin is not dependent on the release of corticosterone. PMID:21596110

  9. Esters of some non-steroidal anti-inflammatory drugs with cinnamyl alcohol are potent lipoxygenase inhibitors with enhanced anti-inflammatory activity.

    PubMed

    Theodosis-Nobelos, Panagiotis; Kourti, Malamati; Tziona, Paraskevi; Kourounakis, Panos N; Rekka, Eleni A

    2015-11-15

    Novel esters of non steroidal anti-inflammatory drugs, α-lipoic acid and indol-3-acetic acid with cinnamyl alcohol were synthesised by a straightforward method and at high yields (60-98%). They reduced acute inflammation more than the parent acids and are potent inhibitors of soybean lipoxygenase. Selected structures decreased plasma lipidemic indices in Triton-induced hyperlipidemia to rats. Therefore, the synthesised compounds may add to the current knowledge about agents acting against various inflammatory disorders. PMID:26494261

  10. Effects of nimesulide, acetylsalicylic acid, ibuprofen and nabumetone on cyclooxygenase-1- and cyclooxygenase-2-mediated prostanoid production in healthy volunteers ex vivo.

    PubMed

    Kerola, Markku; Vuolteenaho, Katriina; Kosonen, Outi; Kankaanranta, Hannu; Sarna, Seppo; Moilanen, Eeva

    2009-01-01

    : The beneficial actions of non-steroidal anti-inflammatory drugs (NSAIDs) have been associated with inhibition of cyclooxygenase-2 (COX-2), whereas some of their adverse effects are associated mainly with inhibition of COX-1. Selective COX-2 inhibitors reduce the risk of gastrointestinal adverse events, but increase the risk of thromboembolic events pointing to importance of optimal COX-1/COX-2 inhibition in drug safety. We compared the effects of acetylsalicylic acid, ibuprofen, nabumetone and nimesulide on COX-1 and COX-2 pathways in healthy volunteers in an ex vivo set-up using single oral doses commonly used to treat acute pain. In a randomized, double-blind four-phase cross-over study, 15 healthy volunteers were given orally a single dose of either acetylsalicylic acid 500 mg, ibuprofen 400 mg, nabumetone 1 g or nimesulide 100 mg. Blood samples were drawn before and 1, 3, 6, 24 and 48 hr after the drug for the assessment of COX-1 and COX-2 activity. COX-1 activity was measured as thromboxane(2) production during blood clotting and COX-2 activity as endotoxin-induced prostaglandin E(2) synthesis in blood leucocytes. The data show that after a single oral dose these four NSAIDs have different profiles of action on COX-1 and COX-2. As expected, acetylsalicylic acid appeared to be COX-1-selective and ibuprofen effectively inhibited both COX-1 and COX-2. Nabumetone showed only a slight inhibitory effect on COX-1 and COX-2. Nimesulide caused almost complete suppression of COX-2 activity and a partial reduction of COX-1 activity. This confirms the relative COX-2 selectivity of nimesulide. PMID:19152549

  11. Cyclooxygenase-2 is widely expressed in atherosclerotic lesions affecting native and transplanted human coronary arteries and colocalizes with inducible nitric oxide synthase and nitrotyrosine particularly in macrophages.

    PubMed

    Baker, C S; Hall, R J; Evans, T J; Pomerance, A; Maclouf, J; Creminon, C; Yacoub, M H; Polak, J M

    1999-03-01

    Inflammation appears to have a major role in the development of atherosclerotic lesions affecting native and transplanted coronary arteries. The subsequent risk of plaque rupture and acute ischemic events correlates with the degree of inflammation and may be modified by aspirin, an anti-inflammatory cyclooxygenase inhibitor. Cyclooxygenase-2 (Cox-2) and inducible nitric oxide synthase (iNOS) are involved in the inflammatory response via the rapid and exaggerated production of prostanoids and nitric oxide, both of which may have proatherosclerotic effects. These effects may be mediated by the formation of peroxynitrite in the case of nitric oxide and involve "cross talk" between the two enzyme systems. This study aimed to investigate native and transplant atherosclerosis for the presence and distribution of Cox-2 and iNOS. Immunocytochemical studies were performed on atherosclerotic lesions from patients with native (n=12) and transplant (n=5) coronary disease by using antibodies to Cox-2, iNOS, and nitrotyrosine (an indicator of peroxynitrite production). Control tissue was obtained from unused donor hearts and at the time of autopsy. Cox-2 and iNOS colocalized predominantly in macrophages/foam cells in both types of atherosclerosis. Cox-2 expression was also detected in medial smooth muscle cells and endothelial cells, including those of the vasa vasorum. Nitrotyrosine was found in the same distribution as that of iNOS and was colocalized with Cox-2 in macrophages. Cox-2 and iNOS are coexpressed in native and transplant atherosclerosis, possibly allowing for interaction between the enzymes and suggesting an alternative mechanism for the benefits of aspirin via inhibition of Cox-2 activity. PMID:10073969

  12. Regulation of p53, nuclear factor {kappa}B and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin

    SciTech Connect

    Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti; Srivastava, Smita; George, Jasmine; Prasad, Sahdeo; Shukla, Yogeshwer

    2008-01-01

    Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-{kappa}B), we also investigated the effect of bromelain on Cox-2 and NF-{kappa}B expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-{kappa}B by blocking phosphorylation and subsequent degradation of I{kappa}B{alpha}. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-{kappa}B-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects.

  13. Synthesis, Photophysical, and Biological Evaluation of Sulfated Polyglycerol Dendronized Perylenebisimides (PBIs)--A Promising Platform for Anti-Inflammatory Theranostic Agents?

    PubMed

    Heek, T; Kühne, C; Depner, H; Achazi, K; Dernedde, J; Haag, R

    2016-03-16

    A set of four water-soluble perylene bisimides (PBI) based on sulfated polyglycerol (PGS) dendrons were developed, their photophysical properties determined via UV/vis and fluorescence spectroscopy, and their performance as possible anti-inflammatory agents evaluated via biological in vitro studies. It could be shown that in contrast to charge neutral PG-PBIs the introduction of the additional electrostatic repulsion forces leads to a decrease in the dendron generation necessary for aggregation suppression, allowing the preparation of PBIs with fluorescence quantum yields of >95% with a considerable decreased synthetic effort. Furthermore, the values determined for L-selectin binding down to the nanomolar range, their limited impact on blood coagulation, and their minor activation of the complement system renders these systems ideal for anti-inflammatory purposes. PMID:26890394

  14. Atomic force microscopy based investigations of anti-inflammatory effects in lipopolysaccharide-stimulated macrophages.

    PubMed

    Pi, Jiang; Cai, Huaihong; Yang, Fen; Jin, Hua; Liu, Jianxin; Yang, Peihui; Cai, Jiye

    2016-01-01

    A new method based on atomic force microscopy (AFM) was developed to investigate the anti-inflammatory effects of drugs on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The LPS-stimulated RAW264.7 macrophage cell line is a widely used in vitro cell model for the screening of anti-inflammatory drugs or the study of anti-inflammatory mechanisms. In this work, the inhibitory effects of dexamethasone and quercetin on LPS-CD14 receptor binding in RAW264.7 macrophages was probed by LPS-functionalized tips for the first time. Both dexamethasone and quercetin were found to inhibit LPS-induced NO production, iNOS expression, IκBα phosphorylation, and IKKα/β phosphorylation in RAW264.7 macrophages. The morphology and ultrastructure of RAW264.7 macrophages were determined by AFM, which indicated that dexamethasone and quercetin could inhibit LPS-induced cell surface particle size and roughness increase in RAW264.7 macrophages. The binding of LPS and its receptor in RAW264.7 macrophages was determined by LPS-functionalized AFM tips, which demonstrated that the binding force and binding probability between LPS and CD14 receptor on the surface of RAW264.7 macrophages were also inhibited by dexamethasone or quercetin treatment. The obtained results imply that AFM, which is very useful for the investigation of potential targets for anti-inflammatory drugs on native macrophages and the enhancement of our understanding of the anti-inflammatory effects of drugs, is expected to be developed into a promising tool for the study of anti-inflammatory drugs. PMID:26476923

  15. Identification of an anti-inflammatory potential of Eriodictyon angustifolium compounds in human gingival fibroblasts.

    PubMed

    Walker, Jessica; Reichelt, Katharina V; Obst, Katja; Widder, Sabine; Hans, Joachim; Krammer, Gerhard E; Ley, Jakob P; Somoza, Veronika

    2016-07-13

    Polyphenol-rich plant extracts have been shown to possess anti-inflammatory activity against oral pathogen-induced cytokine release in model systems of inflammation. Here, it was hypothesized that a flavanone-rich extract of E. angustifolium exhibits an anti-inflammatory potential against endotoxin-induced inflammatory response in human gingival fibroblasts (HGF-1). HGF-1 cells were stimulated with lipopolysaccharide from Porphyromonas gingivalis (pg-LPS) to release pro-inflammatory cytokines. Concentrations of interleukins IL-6 and IL-8 and macrophage chemoattractant protein-1 in the incubation media upon stimulation were determined by means of magnetic bead analysis. A crude ethanol/water extract of E. angustifolium (EE) was fractionated via gel permeation chromatography into a flavanone-rich fraction (FF) and an erionic acid-rich fraction (EF). Individual flavanones and erionic acids as well as EE, EF and FF were tested in the pg-LPS-stimulated HGF-1 cells for their anti-inflammatory potential. The E. angustifolium extract possessed anti-inflammatory potential in this model system, attenuating the pg-LPS-induced release of IL-6 by up to 52.0 ± 15.5%. Of the individual flavanones, eriodictyol and naringenin had the most pronounced effect. However, a mixture of the flavanones did not possess the same effect as the entire flavanoid fraction, indicating that other compounds may contribute to the anti-inflammatory potential of E. angustifolium. For the first time, an anti-inflammatory potential of E. angustifolium and containing erionic acids has been determined. PMID:27248833

  16. Antimicrobial, Anti-inflammatory and Antioxidant Activities of Jatropha multifida L. (Euphorbiaceae)

    PubMed Central

    Anani, Kokou; Adjrah, Yao; Améyapoh, Yaovi; Karou, Simplice Damintoti; Agbonon, Amegnona; de Souza, Comlan; Gbeassor, Messanvi

    2016-01-01

    Background: Jatropha multifida is used in Togolease folk medicine for the healing of chronic wounds. Objective: This study aims to investigate antibacterial, anti-inflammatory and antioxidant activities of the leaves ethanolic extract. Materials and Methods: The antimicrobial activity was assayed by National Committee for Clinical Laboratory Standards broth microdilution method on strains of Staphylococcus aureus and Pseudomoas aeruginosa isolated from wounds, whereas the anti-inflammatory activity was performed by carrageenan and histamine induced paw edema method in rat modele. The 2, 2-diphenyl-1picrylhydrazyl (DPPH) free radical scavenging and ferric reducing antioxidant power (FRAP) were used for the antioxidant activity. Results: The antibacterial assay showed an in vitro growth inhibition of P. aeruginosa and S. aureus in dose-dependent manner, with minimum inhibitory concentration values ranging from 2.5 to 3.12 mg/mL for S. aureus and from 6.25 to 12.5 mg/mL for P. aeruginosa. The maximum paw anti-inflammatory effect occurred after 3 and 5 h administration of histamine and carrageenan, respectively. The DPPH radical scavenging and the FRAP assays yielded weak antioxidant activity. Conclusion: J. multifida possesses antibacterial and anti-inflammatory activities that could justify the use of the plant for the treatment of wounds in the folk medicine. SUMMARY Antibacterial on germs isolated from wound, anti-inflammatory and antioxidant activities of Jatropha multifida were assayed by NCCLS broth method, carrageenan and histamine, DPPH and FRAP respectively. The results indicated that Jatropha multifida possesses antibacterial and anti-inflammatory and weak antioxidant activities that could justify its use for the treatment of wounds in the folk medicine. PMID:27034606

  17. Genetically engineered immunomodulatory Streptococcus thermophilus strains producing antioxidant enzymes exhibit enhanced anti-inflammatory activities.

    PubMed

    Del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G; LeBlanc, Jean Guy

    2014-02-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti-inflammatory

  18. In vivo anti-inflammatory and anti-nociceptive activities of Cheilanthes farinosa.

    PubMed

    Yonathan, Mariamawit; Asres, Kaleab; Assefa, Ashenafi; Bucar, Franz

    2006-12-01

    In Ethiopia inflammatory skin diseases are among the most common health problems treated with traditional remedies which mainly comprise medicinal plants. In the present work, the anti-inflammatory and anti-nociceptive activities of Cheilanthes farinosa (Forsk.) Kaulf (Adianthaceae), a fern used in many parts of Ethiopia to treat inflammatory skin disorders, were studied using in vivo models of inflammation and pain. The results of the study showed that the fronds Cheilanthes farinosa possess strong anti-inflammatory and anti-nociceptive properties. It was further demonstrated that the active ingredients of the fern reside mainly in the methanol fraction from which three compounds viz. the flavonol glycoside rutin, and the natural cinnamic acids, caffeic acid and its quinic acid derivative chlorogenic acid have been isolated. The methanol extract was also shown to potentiate the anti-inflammatory activity of acetyl salicylic acid. At the tested concentrations, the methanol extract displayed a better anti-nociceptive activity than that of ASA in both the early and late phases of formalin induced nociception in mice. However, the activity of the extract was more pronounced in the late phase, which is commonly associated with inflammatory pain. Evaluation of the pharmacological properties of the compounds isolated from the active fractions pointed out that chlorogenic acid possesses strong anti-inflammatory and anti-nociceptive activities while caffeic acid and rutin were inactive. Moreover, on molar basis chlorogenic acid was proved to be superior in its anti-inflammatory action to acetyl salicylic acid. It was therefore concluded that chlorogenic acid contributes, in full or in part, to the anti-inflammatory and anti-nociceptive activities of Cheilanthes farinosa. Both the methanolic extract and pure chlorogenic acid failed to display anti-nociceptive activity when tested by the tail-flick test indicating that the plant is not a centrally acting analgesic but

  19. Genetically Engineered Immunomodulatory Streptococcus thermophilus Strains Producing Antioxidant Enzymes Exhibit Enhanced Anti-Inflammatory Activities

    PubMed Central

    del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G.

    2014-01-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti-inflammatory

  20. QSAR and Docking Studies on Capsazepine Derivatives for Immunomodulatory and Anti-Inflammatory Activity

    PubMed Central

    Shukla, Aparna; Sharma, Pooja; Prakash, Om; Singh, Monika; Kalani, Komal; Khan, Feroz; Bawankule, Dnyaneshwar Umrao; Luqman, Suaib; Srivastava, Santosh Kumar

    2014-01-01

    Capsazepine, an antagonist of capsaicin, is discovered by the structure and activity relationship. In previous studies it has been found that capsazepine has potency for immunomodulation and anti-inflammatory activity and emerging as a favourable target in quest for efficacious and safe anti-inflammatory drug. Thus, a 2D quantitative structural activity relationship (QSAR) model against target tumor necrosis factor-α (TNF-α) was developed using multiple linear regression method (MLR) with good internal prediction (r2 = 0.8779) and external prediction (r2pred = 0.5865) using Discovery Studio v3.5 (Accelrys, USA). The predicted activity was further validated by in vitro experiment. Capsazepine was tested in lipopolysaccharide (LPS) induced inflammation in peritoneal mouse macrophages. Anti-inflammatory profile of capsazepine was assessed by its potency to inhibit the production of inflammatory mediator TNF-α. The in vitro experiment indicated that capsazepine is an efficient anti-inflammatory agent. Since, the developed QSAR model showed significant correlations between chemical structure and anti-inflammatory activity, it was successfully applied in the screening of forty-four virtual derivatives of capsazepine, which finally afforded six potent derivatives, CPZ-29, CPZ-30, CPZ-33, CPZ-34, CPZ-35 and CPZ-36. To gain more insights into the molecular mechanism of action of capsazepine and its derivatives, molecular docking and in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) studies were performed. The results of QSAR, molecular docking, in silico ADMET screening and in vitro experimental studies provide guideline and mechanistic scope for the identification of more potent anti-inflammatory & immunomodulatory drug. PMID:25003344

  1. Evaluation of anti-inflammatory potential of leaf extracts of Skimmia anquetilia

    PubMed Central

    Kumar, Vijender; Bhat, Zulfiqar Ali; Kumar, Dinesh; Khan, NA; Chashoo, IA

    2012-01-01

    Objective To evaluate anti-inflammatory potential of leaf extract of Skimmia anquetilia by in-vitro and in-vivo anti-inflammatory models. Methods Acute toxicity study was carried out to determine the toxicity level of different extract using acute toxic class method as described in Organization of Economic Co-operation and Development Guidelines No.423. Carrageenan (1% w/w) was administered and inflammation was induced in rat paw. The leaf extracts of Skimmia anquetilia were evaluated for anti-inflammatory activity by in-vitro human red blood cell (HRBC) membrane stabilization method and in-vivo carrangeenan-induced rat paw edema method. Results The in-vitro membrane stabilizing test showed petroleum ether (PE), chloroform (CE), ethyl acetate (EE), methanol (ME) and aqueous extracts (AE) showed 49.44%, 59.39%, 60.15%, 68.40% and 52.18 % protection, respectively as compared to control groups. The in-vivo results of CE, EE and ME showed 58.20%, 60.17% and 67.53% inhibition of inflammation after 6h administration of test drugs in albino rats. The potency of the leaf extracts of Skimmia anquetilia were compared with standard diclofenac (10 mg/kg) which showed 74.18% protection in in-vitro HRBC membrane stabilization test and 71.64% inhibition in in-vivo carrangeenan-induced rat paw edema model. The ME showed a dose dependent significant (P< 0.01) anti-inflammatory activity in human red blood cell membrane stabilization test and reduction of edema in carrageenan induced rat paw edema. Conclusions The present investigation has confirmed the anti-inflammatory activity of Skimmia anquetilia due to presence of bioactive phytoconstitutes for the first time and provide the pharmacological evidence in favor of traditional claim of Skimmia anquetilia as an anti- inflammatory agent. PMID:23569983

  2. Propyphenazone-based analogues as prodrugs and selective cyclooxygenase-2 inhibitors.

    PubMed

    Radwan, Mohamed F; Dalby, Kevin N; Kaoud, Tamer S

    2014-09-11

    Improving the gastrointestinal safety profile of nonsteroidal anti-inflammatory drugs (NSAIDs) is an important goal. Herein, we report two strategies, using the nonacidic propyphenazone structure, with potential to overcome the side effects of NSAIDs. Propyphenazone was employed to temporarily mask the free acid group of the widely used NSAIDs ibuprofen, diclofenac, and ketoprofen to develop three mutual prodrugs hypothesized to have minimal GI irritation. The three prodrugs exhibit in vivo anti-inflammatory and analgesic activities with improved potency over each parent drug when compared to a nonhydrolyzable control betahistine-propyphenazone (BET-MP). Additionally, ANT-MP formed by the irreversible coupling of propyphenazone and 4-aminoantipyrine, displayed exceptional COXII selectivity (COXII IC50 of 0.97 ± 0.04 μM, compared to no observed inhibition of COXI at 160 μM). Inhibition of COXII suppresses inflammatory diseases without affecting COXI-mediated GI tract events. ANT-MP exhibited maximal analgesic effect when tested in vivo in an abdominal writhing assay (100% protection) and its anti-inflammatory activity showed a peak at 2 h in a carrageenan-induced paw edema model. Its unique selectivity toward the COXII enzyme was investigated using molecular modeling techniques. PMID:25221653

  3. Propyphenazone-Based Analogues as Prodrugs and Selective Cyclooxygenase-2 Inhibitors

    PubMed Central

    2014-01-01

    Improving the gastrointestinal safety profile of nonsteroidal anti-inflammatory drugs (NSAIDs) is an important goal. Herein, we report two strategies, using the nonacidic propyphenazone structure, with potential to overcome the side effects of NSAIDs. Propyphenazone was employed to temporarily mask the free acid group of the widely used NSAIDs ibuprofen, diclofenac, and ketoprofen to develop three mutual prodrugs hypothesized to have minimal GI irritation. The three prodrugs exhibit in vivo anti-inflammatory and analgesic activities with improved potency over each parent drug when compared to a nonhydrolyzable control betahistine–propyphenazone (BET–MP). Additionally, ANT–MP formed by the irreversible coupling of propyphenazone and 4-aminoantipyrine, displayed exceptional COXII selectivity (COXII IC50 of 0.97 ± 0.04 μM, compared to no observed inhibition of COXI at 160 μM). Inhibition of COXII suppresses inflammatory diseases without affecting COXI-mediated GI tract events. ANT–MP exhibited maximal analgesic effect when tested in vivo in an abdominal writhing assay (100% protection) and its anti-inflammatory activity showed a peak at 2 h in a carrageenan-induced paw edema model. Its unique selectivity toward the COXII enzyme was investigated using molecular modeling techniques. PMID:25221653

  4. Analgesic and anti-inflammatory activities of the sesquiterpene fraction from Annona reticulata L. bark.

    PubMed

    Chavan, Machindra J; Wakte, Pravin S; Shinde, Devanand B

    2012-01-01

    The sesquiterpene fraction of Annona reticulata bark was studied by GC/MS. Three major components were identified: copaene (35.40%), patchoulane (13.49%) and 1H-cycloprop(e)azulene (22.77%). The fraction was also screened for its analgesic and anti-inflammatory activities. The sesquiterpene fraction at doses 12.5 and 25 mg kg⁻¹ and the unsaponified petroleum ether extract at a dose of 50 mg kg⁻¹ exhibited significant central as well as peripheral analgesic and anti-inflammatory activities. These activities were comparable with the standard drugs used in the respective experiments. PMID:22007723

  5. Enhancement of anti-inflammatory activity of bromelain by its encapsulation in katira gum nanoparticles.

    PubMed

    Bernela, Manju; Ahuja, Munish; Thakur, Rajesh

    2016-06-01

    Bromelain-loaded katira gum nanoparticles were synthesized using 3 level optimization process and desirability approach. Nanoparticles of the optimized batch were characterized using particle size analysis, zeta potential, transmission electron microscopy and Fourier-transform infrared spectroscopy. Investigation of their in vivo anti-inflammatory activity by employing carrageenan induced rat-paw oedema method showed that encapsulation of bromelain in katira gum nanoparticles substantially enhanced its anti-inflammatory potential. This may be attributed to enhanced absorption owing to reduced particle size or to protection of bromelain from acid proteases. PMID:27083339

  6. Effects of salicylates and other nonsteroidal anti-inflammatory drugs on articular cartilage.

    PubMed

    Brandt, K D; Palmoski, M J

    1984-07-13

    According to in vivo experimental data, salicylates and several other nonsteroidal anti-inflammatory agents suppress proteoglycan biosynthesis in normal and degenerating articular cartilage. Therapeutic levels of aspirin in vivo had a similar adverse effect on degenerating cartilage, as noted in two canine models of osteoarthritis and cartilage atrophy. Because the effective daily antirheumatic dose of nonsteroidal anti-inflammatory drugs is lower than that of salicylates, these drugs may have less negative effects on degenerating articular cartilage. However, clinical significance cannot be extrapolated from these experimental data. PMID:6465163

  7. Synthesis, anti-inflammatory evaluation and docking studies of some new fluorinated fused quinazolines.

    PubMed

    Balakumar, C; Lamba, P; Kishore, D Pran; Narayana, B Lakshmi; Rao, K Venkat; Rajwinder, K; Rao, A Raghuram; Shireesha, B; Narsaiah, B

    2010-11-01

    A series of novel 8/10-trifluoromethyl-substituted-imidazo[1,2-c] quinazolines have been synthesized and evaluated in vivo (rat paw edema) for their anti-inflammatory activity and in silico (docking studies) to recognize the hypothetical binding motif of the title compounds with the cyclooxygenase isoenzymes (COX-1 and COX-2) employing GOLD (CCDC, 4.0.1 version) software. The compounds, 9b and 10b, were found to have good anti-inflammatory activity [around 80% of the standard: indomethacin]. The binding mode of the title compounds has been proposed based on the docking studies. PMID:20800934

  8. Anti-Inflammatory Activity of Aqueous Extract of Beta Vulgaris L.

    PubMed Central

    Jain, Swati; Garg, Vipin Kumar; Sharma, Pramod Kumar

    2011-01-01

    The present study deals with the investigation of phytochemically evaluated aqueous extract of leaves of Beta vulgaris for its anti-inflammatory activity. The anti-inflammatory activity was evaluated by carrageenan induced rat paw oedema method for acute inflammation and cotton pellet granuloma method for chronic inflammation. The standard drug used was indomethacin (10 mg/kg) for both the models. In both methods, aqueous extract at a dose level of 1000 mg/kg has shown significant activity which is comparable to that of the standard PMID:24826006

  9. Degradation of the anti-inflammatory drug ibuprofen by electro-peroxone process.

    PubMed

    Li, Xiang; Wang, Yujue; Yuan, Shi; Li, Zhaoxin; Wang, Bin; Huang, Jun; Deng, Shubo; Yu, Gang

    2014-10-15

    Electro-peroxone (E-peroxone) treatment of the anti-inflammatory drug ibuprofen aqueous solution was investigated in this study. The E-peroxone process combined conventional ozonation with electrolysis processes, and used a carbon-polytetrafluorethylene cathode to electrochemically generate H2O2 from O2 in the sparged ozone generator effluent (O2 and O3 mixture). The in-situ generated H2O2 then reacted with the sparged O3 to produce aqueous •OH, which can in turn oxidize pollutants effectively in the bulk solution. The E-peroxone process overcomes several intrinsic limitations of conventional ozonation and electrolysis processes for pollutant degradation such as the selective oxidation with O3 and mass transfer limitations of pollutants to the electrodes, and thus significantly enhanced both ibuprofen degradation and total organic carbon (TOC) mineralization. Results show that ibuprofen could be completely degraded much more rapidly in the E-peroxone process (e.g., 5-15 min under all tested reaction conditions) than in ozonation (≥30 min) and electrolysis (several hours) processes. In addition, thanks to the powerful and non-selective oxidation capacity of •OH, toxic intermediates formed during ibuprofen degradation could be completely mineralized in the E-peroxone process. The E-peroxone effluent (2 h) thus exhibited much lower toxicity (5% inhibition of bioluminescence of Vibrio fisheri) than the ozonation and electrolysis effluents (22% and 88% inhibition, respectively). The results of this study indicate that the E-peroxone process may provide a promising technology for pharmaceutical wastewater treatment. PMID:24981746

  10. LRH-1 mediates anti-inflammatory and antifungal phenotype of IL-13-activated macrophages through the PPARγ ligand synthesis

    PubMed Central

    Lefèvre, Lise; Authier, Hélène; Stein, Sokrates; Majorel, Clarisse; Couderc, Bettina; Dardenne, Christophe; Eddine, Mohamad Ala; Meunier, Etienne; Bernad, José; Valentin, Alexis; Pipy, Bernard; Schoonjans, Kristina; Coste, Agnès

    2015-01-01

    Liver receptor homologue-1 (LRH-1) is a nuclear receptor involved in the repression of inflammatory processes in the hepatointestinal tract. Here we report that LRH-1 is expressed in macrophages and induced by the Th2 cytokine IL-13 via a mechanism involving STAT6. We show that loss-of-function of LRH-1 in macrophages impedes IL-13-induced macrophage polarization due to impaired generation of 15-HETE PPARγ ligands. The incapacity to generate 15-HETE metabolites is at least partially caused by the compromised regulation of CYP1A1 and CYP1B1. Mice with LRH-1-deficient macrophages are, furthermore, highly susceptible to gastrointestinal and systemic Candida albicans infection. Altogether, these results identify LRH-1 as a critical component of the anti-inflammatory and fungicidal response of alternatively activated macrophages that acts upstream from the IL-13-induced 15-HETE/PPARγ axis. PMID:25873311

  11. Anti-Inflammatory and Antinociceptive Effects of Salbutamol on Acute and Chronic Models of Inflammation in Rats: Involvement of an Antioxidant Mechanism

    PubMed Central

    Uzkeser, Hulya; Cadirci, Elif; Halici, Zekai; Odabasoglu, Fehmi; Polat, Beyzagul; Yuksel, Tugba Nurcan; Ozaltin, Seda; Atalay, Fadime

    2012-01-01

    The possible role of β-2 adrenergic receptors in modulation of inflammatory and nociceptive conditions suggests that the β-2 adrenergic receptor agonist, salbutamol, may have beneficial anti-inflammatory and analgesic effects. Therefore, in this study, we induced inflammatory and nociceptive responses with carrageenan-induced paw edema or cotton-pellet-induced granuloma models, both of which result in oxidative stress. We hypothesized that salbutamol would prevent inflammatory and nociceptive responses by stimulating β-2 adrenergic receptors and the prevention of generation of ROS during the acute inflammation process in rats. Both doses of salbutamol used in the study (1 and 2 mg/kg) effectively blocked the acute inflammation and inflammatory nociception induced by carrageenan. In the cotton-pellet-induced granuloma test, both doses of salbutamol also significantly decreased the weight of granuloma tissue on the cotton pellets when compared to the control. Anti-inflammatory and analgesic effects of salbutamol were found to be comparable with those of indomethacin. Salbutamol decreased myeloperoxidase (MPO) activity and lipid peroxidation (LPO) level and increased the activity of superoxide dismutase (SOD) and level of glutathione (GSH) during the acute phase of inflammation. In conclusion, salbutamol can decrease acute and chronic inflammation, possibly through the stimulation of β-2 adrenergic receptors. This anti-inflammatory effect may be of significance in asthma treatment, where inflammation also takes part in the etiopathology. This study reveals that salbutamol has significant antioxidative effects, which at least partially explain its anti-inflammatory capabilities. These findings presented here may also shed light on the roles of β-2 adrenergic receptors in inflammatory and hyperalgesic conditions. PMID:22665951

  12. Anti-Inflammatory Potential of Ethanolic Leaf Extract of Eupatorium adenophorum Spreng. Through Alteration in Production of TNF-α, ROS and Expression of Certain Genes

    PubMed Central

    Chakravarty, Ashim K.; Mazumder, Tamal; Chatterjee, Shankar N.

    2011-01-01

    Search for a novel anti-inflammatory agent from a herbal source, such as Eupatorium adenophorum Spreng., a plant from the Eastern Himalayas, is of prime interest in the present investigation. Inflammation causes tissue destruction and development of diseases such as asthma, rheumatoid arthritis, and so forth. The ethanolic leaf extract of E. adenophorum (EEA) was administered intravenously and in other cases topically at the site of delayed type hypersensitivity (DTH) reaction in mouse foot paw induced with dinitrofluorobenzene. EEA can effectively inhibit DTH reaction and bring back normalcy to the paw much earlier than the controls. Efficacy of EEA on regulatory mechanisms for inflammation has also been considered. Intravenous administration of EEA increased the number of CD4+ T cells in spleen and tumor necrosis factor (TNF)-α in serum of DTH mice. Initially it was difficult to reconcile with the anti-inflammatory role of EEA and simultaneous induction of TNF-α, an established pro-inflammatory cytokine. EEA induces higher expression of TNF-α gene and amount of the cytokine in serum. We discussed the other role of TNF-α, its involvement in repairing tissue damage incurred in course of inflammatory reaction. EEA also induces TGF-β encoding a cytokine involved in tissue repair mechanism. EEA inhibits expression of another pro-inflammatory cytokine gene IL-1β and downregulates cycloxygenase 2 (COX2) gene responsible for metabolism of inflammatory mediators like prostaglandins. Furthermore, anti-inflammatory role of EEA is also revealed through its inhibition of hydroxyl radical generation. Notably EEA does not necessarily affect the expression of other inflammation-related genes such as IL-6, IL-10 and IKK. The present study reports and analyzes for the first time the anti-inflammatory property of the leaf extract of E. adenophorum. PMID:21808653

  13. Eicosapentaenoic acid is converted via ω-3 epoxygenation to the anti-inflammatory metabolite 12-hydroxy-17,18-epoxyeicosatetraenoic acid.

    PubMed

    Kubota, Tadafumi; Arita, Makoto; Isobe, Yosuke; Iwamoto, Ryo; Goto, Tomomi; Yoshioka, Takeshi; Urabe, Daisuke; Inoue, Masayuki; Arai, Hiroyuki

    2014-02-01

    Eicosapentaenoic acid (EPA) has beneficial effects in many inflammatory disorders. In this study, dietary EPA was converted to 17,18-epoxyeicosatetraenoic acid (17,18-EpETE) by ω-3 epoxygenation in the mouse peritoneal cavity. Mediator lipidomics revealed a series of novel oxygenated metabolites of 17,18-EpETE, and one of the major metabolites, 12-hydroxy-17,18-epoxyeicosatetraenoic acid (12-OH-17,18-EpETE), displayed a potent anti-inflammatory action by limiting neutrophil infiltration in murine zymosan-induced peritonitis. 12-OH-17,18-EpETE inhibited leukotriene B4-induced neutrophil chemotaxis and polarization in vitro in a low nanomolar range (EC50 0.6 nM). The complete structures of two natural isomers were assigned as 12S-OH-17R,18S-EpETE and 12S-OH-17S,18R-EpETE, using chemically synthesized stereoisomers. These natural isomers displayed potent anti-inflammatory action, whereas the unnatural stereoisomers were essentially devoid of activity. These results demonstrate that 17,18-EpETE derived from dietary EPA is converted to a potent bioactive metabolite 12-OH-17,18-EpETE, which may generate an endogenous anti-inflammatory metabolic pathway. PMID:24128889

  14. Design and In Vivo Anti-Inflammatory Effect of Ketoprofen Delayed Delivery Systems.

    PubMed

    Cerciello, Andrea; Auriemma, Giulia; Morello, Silvana; Pinto, Aldo; Del Gaudio, Pasquale; Russo, Paola; Aquino, Rita P

    2015-10-01

    For the treatment of inflammatory-based diseases affected by circadian rhythms, the development of once-daily dosage forms is required to target early morning symptoms. In this study, Zn-alginate beads containing ketoprofen (K) were developed by a tandem technique prilling/ionotropic gelation. The effect of main critical variables on particles micromeritics, inner structure as well as on drug loading and in vitro drug release was studied. The in vivo anti-inflammatory efficacy was evaluated using a modified protocol of carrageenan-induced edema in rat paw administering beads to rats by oral gavage at 0, 3, or 5 h before edema induction. Good drug loading and desired particle size and morphology were obtained for the optimized formulation F20. In vitro dissolution studies showed that F20 had a gastroresistant behavior and delayed release of the drug in simulated intestinal fluid. The in vitro delayed release pattern was clearly reflected in the prolonged anti-inflammatory effect in vivo of F20, compared to pure ketoprofen; F20, administered 3 h before edema induction, showed a significant anti-inflammatory activity, reducing maximum paw volume in response to carrageenan injection, whereas no response was observed for ketoprofen. The designed beads appear a promising platform suitable for a delayed release of anti-inflammatory drugs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3451-3458, 2015. PMID:26088065

  15. [Non-steroid anti-inflammatory agents. Stereoisomers of 2-(-4-biphenylyl)-3-oxybutyric acid].

    PubMed

    Guarnieri, A; Scapini, G; Burnelli, S; Andreani, A

    1977-05-01

    The synthesis, diastereoisomeric separation, attribution to erythro and threo series, and resolution of the enantiomers of 2-(4-biphenylyl)-3-oxybutyric acid are described. The four isomers were tested for anti-inflammatory activity: the preliminary results are interesting, particular those for the (--) erythro enantiomer. PMID:862887

  16. Anti-inflammatory and antinociceptive activities of Solenostemon monostachyus aerial part extract in mice

    PubMed Central

    Okokon, Jude Fiom; Davis, Koofreh; Nwidu, Lucky Legbosi

    2016-01-01

    Objective: Solenostemon monostachyus is used in traditional medicine for the treatment of various ailments such as ulcer, hypertension, pains and inflammatory diseases. Evaluation of anti-inflammatory and analgesic activities of S. monostachyus aerial parts was carried out to ascertain its uses in traditional medicine. Materials and Methods: The aerial parts of S. monostachyus was cold extracted by soaking the dried powdered material in ethanol. The aerial parts crude extract (75 –225 mg/kg) of S. monostachyus was investigated for analgesic and anti-inflammatory activities using various experimental models; acetic acid, formalin and thermal- induced pains models for analgesic study and carrageenin, egg albumin and xylene – induced edema models for anti-inflammatory investigation. Results: The extract caused a significant (p<0.05 – 0.001) dose-dependent reduction of inflammation and pains induced by different phlogistic agents used. These effects were comparable to those of the standard drug, (ASA, 100 mg/kg) used in some models. Conclusion: The anti-inflammatory and analgesic effects of this plant may in part be mediated through the chemical constituents of the plant and the results of the analgesic action suggest central and peripheral mechanisms. The findings of this work confirm the ethno medical use of this plant to treat inflammatory conditions. PMID:27462551

  17. Phytochemical Composition, Anti-inflammatory, and Antiproliferative Activity of Whole Wheat Flour

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five wheat cultivars (Macon, Louise, WestBred 936, Alpowa, and Blanca Grande) were evaluated for phenolics composition, carotenoid, and tocopherol composition, anti-inflammatory activity, and antiproliferative activity against HT-29 cells. Total ferulic acid ranged from 451.7-731.3 µg/g , with the ...

  18. Anti-inflammatory action of ethanolic extract of Ramulus mori on the BLT2-linked cascade.

    PubMed

    Park, Geun-Soo; Kim, Jeong-Keun; Kim, Jae-Hong

    2016-04-01

    Mulberry tree twigs (Ramulus mori) contain large amounts of oxyresveratrols and have traditionally been used as herbal medicines because of their anti-inflammatory properties. However, the signaling mechanism by which R. mori exerts its anti-inflammatory action remains to be elucidated. In this study, we observed that R. mori ethanol extracts (RME) exerted an inhibitory effect on the lipopolysaccharide (LPS)-induced production of the pro-inflammatory cytokine interleukin-6 (IL-6) in Raw264.7 macrophage cells. Additionally, RME inhibited IL-6 production by blocking the leukotriene B4 receptor- 2 (BLT2)-dependent-NADPH oxidase 1 (NOX1)-reactive oxygen species (ROS) cascade, leading to anti-inflammatory activity. Finally, RME suppressed the production of the BLT2 ligands LTB4 and 12(S)-HETE by inhibiting the p38 kinase- cytosolic phospholipase A2-5-/12-lipoxygenase cascade in LPS-stimulated Raw264.7 cells. Overall, our results suggest that RME inhibits the 'BLT2 ligand-BLT2'-linked autocrine inflammatory axis, and that this BLT2-linked cascade is one of the targets of the anti-inflammatory action of R. mori. [BMB Reports 2016; 49(4): 232-237]. PMID:26879317

  19. Pharmacological potential of Populus nigra extract as antioxidant, anti-inflammatory, cardiovascular and hepatoprotective agent

    PubMed Central

    Debbache-Benaida, Nadjet; Atmani-Kilani, Dina; Schini-Keirth, Valérie Barbara; Djebbli, Nouredine; Atmani, Djebbar

    2013-01-01

    Objective To evaluate antioxidant, anti-inflammatory, hepatoprotective and vasorelaxant activities of Populus nigra flower buds ethanolic extract. Methods Antioxidant and anti-inflammatory activities of the extract were assessed using respectively the ABTS test and the animal model of carrageenan-induced paw edema. Protection from hepatic toxicity caused by aluminum was examined by histopathologic analysis of liver sections. Vasorelaxant effect was estimated in endothelium-intact and -rubbed rings of porcine coronary arteries precontracted with high concentration of U46619. Results The results showed a moderate antioxidant activity (40%), but potent anti-inflammatory activity (49.9%) on carrageenan-induced mice paw edema, and also as revealed by histopathologic examination, complete protection against AlCl3-induced hepatic toxicity. Relaxant effects of the same extract on vascular preparation from porcine aorta precontracted with high concentration of U46619 were considerable at 10−1 g/L, and comparable (P>0.05) between endothelium-intact (67.74%, IC50=0.04 mg/mL) and -rubbed (72.72%, IC50=0.075 mg/mL) aortic rings. Conclusions The extract exerted significant anti-inflammatory, hepatoprotective and vasorelaxant activities, the latter being endothelium-independent believed to be mediated mainly by the ability of components present in the extract to exert antioxidant properties, probably related to an inhibition of Ca2+ influx. PMID:23998009

  20. Antioxidant, analgesic and anti-inflammatory effects of lavender essential oil.

    PubMed

    Silva, Gabriela L da; Luft, Carolina; Lunardelli, Adroaldo; Amaral, Robson H; Melo, Denizar A da Silva; Donadio, Márcio V F; Nunes, Fernanda B; de Azambuja, Marcos S; Santana, João C; Moraes, Cristina M B; Mello, Ricardo O; Cassel, Eduardo; Pereira, Marcos Aurélio de Almeida; de Oliveira, Jarbas R

    2015-08-01

    Several studies have investigated the antinociceptive, immunomodulatory and anti-inflammatory properties of compounds found in the lavender essential oil (LEO), however to date, there is still lack of substantial data. The objective of this study was to assess the antioxidant, anti-inflammatory and antinociceptive effects of lavender essential oil. The 1,1-diphenyl-2-picrylhydrazyl radical decolorization assay was used for antioxidant activity evaluation. The anti-inflammatory activity was tested using two models of acute inflammation: carrageenan-induced pleurisy and croton oil-induced ear edema. The antinociceptive activity was tested using the pain model induced by formalin. LEO has antioxidant activity, which is dose-dependent response. The inflammatory response evoked by carrageenan and by croton oil was reduced through the pre-treatment of animals with LEO. In the pleurisy model, the drug used as positive control, dexamethasone, was more efficacious. However, in the ear swelling, the antiedematogenic effect of the oil was similar to that observed for dexamethasone. In the formalin test, LEO consistently inhibited spontaneous nociception and presented a similar effect to that of tramadol. The results of this study reveal (in vivo) the analgesic and anti-inflammatory activities of LEO and demonstrates its important therapeutic potential. PMID:26247152

  1. Anti-inflammatory drugs and uterine cervical cancer cells: Antineoplastic effect of meclofenamic acid

    PubMed Central

    SORIANO-HERNANDEZ, ALEJANDRO D.; MADRIGAL-PÉREZ, DANIELA; GALVAN-SALAZAR, HECTOR R.; MARTINEZ-FIERRO, MARGARITA L.; VALDEZ-VELAZQUEZ, LAURA L.; ESPINOZA-GÓMEZ, FRANCISCO; VAZQUEZ-VUELVAS, OSCAR F.; OLMEDO-BUENROSTRO, BERTHA A.; GUZMAN-ESQUIVEL, JOSE; RODRIGUEZ-SANCHEZ, IRAM P.; LARA-ESQUEDA, AGUSTIN; MONTES-GALINDO, DANIEL A.; DELGADO-ENCISO, IVAN

    2015-01-01

    Uterine cervical cancer (UCC) is one of the main causes of cancer-associated mortality in women. Inflammation has been identified as an important component of this neoplasia; in this context, anti-inflammatory drugs represent possible prophylactic and/or therapeutic alternatives that require further investigation. Anti-inflammatory drugs are common and each one may exhibit a different antineoplastic effect. As a result, the present study investigated different anti-inflammatory models of UCC in vitro and in vivo. Celecoxib, sulindac, nimesulide, dexamethasone, meclofenamic acid, flufenamic acid and mefenamic acid were tested in UCC HeLa, VIPA, INBL and SiHa cell lines. The cytotoxicity of the drugs was evaluated in vitro. Celecoxib, sulindac, nimesulide, mefenamic acid and flufenamic acid presented with slight to moderate toxicity (10–40% of cell death corresponding to 100 µM) in certain cell lines, while meclofenamic acid exhibited significant cytotoxicity in all essayed cell lines (50–90% of cell death corresponding to 100 µM). The meclofenamic acid was tested in murine models (immunodeficient and immunocompetent) of UCC, which manifested a significant reduction in tumor growth and increased mouse survival. It was demonstrated that of the evaluated anti-inflammatory drugs, meclofenamic acid was the most cytotoxic, with a significant antitumor effect in murine models. Subsequent studies are necessary to evaluate the clinical utility of this drug. PMID:26622892

  2. Improvement of bioavailability and anti-inflammatory potential of curcumin in combination with emu oil.

    PubMed

    Jeengar, Manish Kumar; Shrivastava, Shweta; Nair, Kala; Singareddy, Sreenivasa Reddy; Putcha, Uday Kumar; Talluri, M V N Kumar; Naidu, V G M; Sistla, Ramakrishna

    2014-12-01

    The purpose of the present study is to evaluate the effect of emu oil on bioavailability of curcumin when co-administered and to evaluate the property that enhances the anti-inflammatory potential of curcumin. Oral bioavailability of curcumin in combination with emu oil was determined by measuring the plasma concentration of curcumin by HPLC. The anti-inflammatory potential was evaluated in carrageenan-induced paw edema model (acute model) and in Freund's complete adjuvant (FCA)-induced arthritis model (chronic model) in male SD rats. The anti-inflammatory potential of curcumin in combination with emu oil has been significantly increased in both acute and chronic inflammatory models as evident from inhibition of increase in paw volume, arthritic score, and expression of pro-inflammatory cytokines. The increased anti-inflammatory activity in combination therapy is due to enhanced bioavailability (5.2-fold compared to aqueous suspension) of curcumin by emu oil. Finally, it is concluded that the combination of emu oil with curcumin will be a promising approach for the treatment of arthritis. PMID:25028100

  3. Synthesis and biological evaluation studies of novel quinazolinone derivatives as antibacterial and anti-inflammatory agents

    PubMed Central

    F. Zayed, Mohamed; H. Hassan, Memy

    2013-01-01

    Some novel 6,8-diiodo-2-methyl-3-substituted-quinazolin-4(3H)-ones bearing sulfonamide derivatives (4–11) were synthesized in good yields and evaluated for their possible antibacterial, anti-inflammatory activities and acute toxicity. The structures of the synthesized compounds were confirmed on the basis of their spectral data and elemental analysis. Their antibacterial activities were evaluated by the agar well diffusion method while their anti-inflammatory activities were evaluated by the carrageenan-induced hind paw edema test. All the tested compounds showed considerable antibacterial activities and high to moderate anti-inflammatory activities that last for 12 h compared to ibuprofen. All the tested compounds showed no toxic symptoms or mortality rates 24 h post-administration at tested anti-inflammatory doses. In addition, LD50 for all tested compounds was higher than that for ibuprofen implying their good safety margin. The obtained results showed that the most active compounds could be useful as a template for future design, modification and investigation to produce more active analogs. PMID:24648828

  4. Antinociceptive and Anti-inflammatory Effects of Pistacia vera LeafExtract in Mice

    PubMed Central

    Hosseinzadeh, Hossein; Behravan, Effat; M Soleimani, Mohammad

    2011-01-01

    Pistacia vera L., a member of Anacardiaceae family, has been used for sedation and analgesia in traditional medicine. In this study, the antinociceptive and anti-inflammatory effects as well as acute toxicity of the aqueous and ethanolic extracts of P. vera leaves were investigated in mice. The antinociceptive activity was studied using hot plate and writhing tests. The effect of the extracts against acute inflammation was determined using xylene-induced ear edema and the activity of the extracts, against chronic inflammation, was assessed using the cotton pellet test. The LD50 values of the infusion and maceration extracts were 0.8 g/Kg and 0.79 g/Kg, respectively. The aqueous and ethanolic maceration extracts of the P. vera leaves at the doses of 0.4 g/Kg and 0.5 g/Kg (IP), respectively, showed antinociceptive effects. The pretreatment of naloxone (2 mg/Kg, SC) inhibited the activities of extracts in hot plate test, but naloxone at the same dose could not inhibit the antinociceptive activity in writhing test. The extracts also showed anti-inflammatory effects in acute and chronic anti-inflammatory tests. The ethanolic extract was as effective as diclofenac in both inflammatory tests. The aqueous and ethanolic extracts of P. vera leaves demonstrated central and peripheral antinociceptive activities dose-dependently and the central effect may be mediated by opioid system. The extracts also demonstrated anti-inflammatory effects against acute and chronic inflammation. PMID:24250418

  5. Analgesic and anti-inflammatory activity of root bark of Grewia asiatica Linn. in rodents

    PubMed Central

    Paviaya, Udaybhan Singh; Kumar, Parveen; Wanjari, Manish M.; Thenmozhi, S.; Balakrishnan, B. R.

    2013-01-01

    Background: Grewia asiatica Linn. (Family: Tiliaceae), called Phalsa in Hindi is an Indian medicinal plant used for a variety of therapeutic and nutritional uses. The root bark of the plant is traditionally used in rheumatism (painful chronic inflammatory condition). Aims: The present study demonstrates the analgesic and anti-inflammatory activity of root bark of G. asiatica in rodents. Settings and Design: The methanolic extract of Grewia asiatica (MEGA) and aqueous extract of Grewia asiatica (AEGA) of the bark were prepared and subjected to phytochemical tests and pharmacological screening for analgesic and anti-inflammatory effect in rodents. Materials and Methods: Analgesic effect was studied using acetic acid-induced writhing in mice and hot plate analgesia in rats while anti-inflammatory activity was investigated using carrageenan-induced paw oedema in rats. The MEGA or AEGA was administered orally in doses of 200 and 400 mg/kg/day of body weight. Statistical Analysis: Data were analysed by one-way analysis of variance followed by Dunnett's test. Results: The extracts showed a significant inhibition of writhing response and increase in hot plate reaction time and also caused a decrease in paw oedema. The effects were comparable with the standard drugs used. Conclusions: The present study indicates that root bark of G. asiatica exhibits peripheral and central analgesic effect and anti-inflammatory activity, which may be attributed to the various phytochemicals present in root bark of G. asiatica. PMID:24501443

  6. Experimental evaluation of analgesic and anti-inflammatory activity of simvastatin and atorvastatin

    PubMed Central

    Jaiswal, Swapnil R.; Sontakke, Smita D.

    2012-01-01

    Aim: The aim of this study is to evaluate the analgesic and anti-inflammatory activities of atorvastatin and simvastatin in different experimental models in mice and rats. Materials and Methods: Analgesic activity of simvastatin and atorvastatin was assessed in tail flick model in rats (n = 6), where it was compared with aspirin and tramadol and in acetic acid induced writhing in mice (n = 6), where it was compared with aspirin. Anti-inflammatory activity of statins was evaluated using carrageenin induced paw edema and formalin induced arthritis in rats. Results: In the tail flick method, analgesic effect of tramadol was significantly more than the other drugs except at two observation times, when it was comparable to simvastatin and atorvastatin. Effect of simvastatin was found to be comparable to aspirin. In acetic acid induced writhing method, analgesic activity of simvastatin was comparable to that of aspirin while that of atorvastatin was significantly less. In carrageenin induced paw edema in rats, both simvastatin and atorvastatin showed anti-inflammatory activity which was comparable to aspirin. Both the statins exhibited significant anti-inflammatory activity (P < 0.01) in formalin induced arthritis model though less than aspirin (P < 0.05). Conclusion: The results of this study if substantiated by further experimental and clinical research suggest that simvastatin and atorvastatin may play an adjuvant role, which may be particularly beneficial in the treatment of inflammatory disorders, especially when there is coexisting dyslipidemia. PMID:23087508

  7. Inhibition of amyloidogenesis by non-steroidal anti-inflammatory drugs and their hybrid nitrates

    PubMed Central

    Schiefer, Isaac T.; Abdul-Hay, Samer; Wang, Huali; Vanni, Michael; Qin, Zhihui; Thatcher, Gregory R. J.

    2011-01-01

    Poor blood-brain barrier penetration of non-steroidal anti-inflammatory drugs (NSAIDs) has been blamed for the failure of the selective amyloid lowering agent (SALA) R-flurbiprofen in phase 3 clinical trials for Alzheimer’s disease (AD). NO-donor NSAIDs (NO-NSAIDs) provide an alternative, gastric-sparing approach to NSAID SALAs, which may improve bioavailability. NSAID analogs were studied for anti-inflammatory activity and for SALA activity in N2a neuronal cells transfected with human amyloid precursor protein (APP). Flurbiprofen (1) analogs were obtained with enhanced anti-inflammatory and anti-amyloidogenic properties compared to 1, however, esterification led to elevated Aβ1–42 levels. Hybrid nitrate prodrugs possessed superior anti-inflammatory activity and reduced toxicity relative to the parent NSAIDs, including clinical candidate, CHF5074. Although hybrid nitrates elevated Aβ1–42 at higher concentration, SALA activity was observed at low concentrations (≤ 1 µM): both Aβ1–42 and the ratio of Aβ1–42/Aβ1–40 were lowered. This biphasic SALA activity was attributed to the intact nitrate drug. For several compounds the selective modulation of amyloidogenesis was tested using an immunoprecipitation MALDI-TOF approach. These data support the development of NO-NSAIDs as an alternative approach towards a clinically useful SALA. PMID:21405086

  8. Antinociceptive anti-inflammatory effect of Monotropein isolated from the root of Morinda officinalis.

    PubMed

    Choi, Jongwon; Lee, Kyung-Tae; Choi, Moo-Young; Nam, Jung-Hwan; Jung, Hyun-Ju; Park, Sun-Kyu; Park, Hee-Juhn

    2005-10-01

    The root of Morinda officinalis (Rubiaceae) is used to treat rheumatoid arthritis and impotence in the traditional Oriental medicine. To identify the antinociceptive anti-inflammatory components of this crude drug, we adopted an activity-directed fractionation approach. The active fraction of the BuOH extract of M. officinalis root was subjected to silica gel and ODS column chromatography to yield two diterpenes, compounds 1 and 2 and these were identified as monotropein and deacetylasperulosidic acid, respectively. The iridoid glycoside, monotropein, was tested for its anti-inflammatory antinociceptive effects using hot plate- and writhing antinociceptive assays and by using carrageenan-induced anti-inflammatory assays in mice and rats. Pretreatment with monotropein (at 20, 30 mg/kg/d, p.o.) significantly reduced stretching episodes and prolonged action time in mice. It also significantly reduced acute paw edema by carrageenan in rats. These results indicate that monotropein contributes to the antinociceptive and anti-inflammatory action of Morinda officinalis root. PMID:16204945

  9. Antinociceptive and Anti-Inflammatory Activities of Bridelia retusa Methanolic Fruit Extract in Experimental Animals

    PubMed Central

    Kumar, Tekeshwar; Jain, Vishal

    2014-01-01

    Antinociceptive and anti-inflammatory potentials of methanolic extract of Bridelia retusa fruit (BRME) were evaluated against different animal models in rodents. Antinociceptive effects of BRME were assessed in mice using the acetic acid-induced writhing and formalin test. Anti-inflammatory effects of BRME in three different doses, namely, 100, 200, and 400 mg/kg, were evaluated by utilizing different animal models representing various changes associated with inflammation, namely, carrageenan-induced paw oedema, histamine and serotonin-induced paw oedema, arachidonic acid-induced paw oedema, formalin-induced paw oedema, TPA-induced ear oedema, acetic acid-induced vascular permeability, total WBC count in paw fluid, and myeloperoxidase assay. Also BRME was phytochemically evaluated using chromatographic method. The BRME did not exhibit any signs of toxicity up to a dose of 2000 mg/kg. The extract showed statistical significant inhibition of induced nociception and inflammation in dose dependent manner. The higher dose of extract significantly inhibited pain and inflammation against control (P < 0.001). HPLC results revealed the presence of gallic acid and ellagic acid as phytoconstituents in BRME and it was proven as anti-inflammatory agents. The present study scientifically demonstrated the antinociceptive and anti-inflammatory potential of fruit of B. retusa methanolic extract. These effects may be attributed to the presence of polyphenolic phytoconstituents in the extract. PMID:25506619

  10. Synthesis and Biological Evaluation of Novel Resveratrol-NSAID Derivatives as Anti-inflammatory Agents.

    PubMed

    Peng, Wei; Ma, Yan-Yan; Zhang, Kun; Zhou, Ai-Yu; Zhang, Yu; Wang, Huaqian; Du, Zhiyun; Zhao, Deng-Gao

    2016-06-01

    Long-term use of nonsteroidal antiinflammatory drugs (NSAIDs) may cause serious side effects such as gastric mucosal damage. Resveratrol, a naturally dietary polyphenol, exhibited anti-inflammatory activity and a protective effect against gastric mucosa damage induced by NSAIDs. In this regard, we synthesized a series of resveratrol-based NSAIDs derivatives and evaluated their anti-inflammatory activity against nitric oxide (NO) overproduction in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. We identified mono-substituted resveratrol-ibuprofen combination 21 as the most potent anti-inflammatory agent, which is more active than a physical mixture of ibuprofen and resveratrol, individual ibuprofen, or individual resveratrol. In addition, compound 21 exerted potent inhibitory effects on the LPS-induced expression of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Furthermore, compound 21 significantly increased the survival rate in an LPS-induced acute inflammatory model and produced markedly less gastric damage than ibuprofen. It was found that compound 21 may be a potent anti-inflammatory agent for the treatment of inflammation-related diseases. PMID:27009373

  11. A Review on the Anti-Inflammatory Activity of Pomegranate in the Gastrointestinal Tract

    PubMed Central

    Colombo, Elisa; Sangiovanni, Enrico; Dell'Agli, Mario

    2013-01-01

    Several biological activities of pomegranate have been widely described in the literature, but the anti-inflammatory effect in the gastrointestinal tract has not been reviewed till now. The aim of the present paper is to summarize the evidence for or against the efficacy of pomegranate for coping with inflammatory conditions of the gastro-intestinal tract. The paper has been organized in three parts: (1) the first one is devoted to the modifications of pomegranate active compounds in the gastro-intestinal tract; (2) the second one considering the literature regarding the anti-inflammatory effect of pomegranate at gastric level; (3) the third part considers the anti-inflammatory effect of pomegranate in the gut. In vivo studies performed on the whole fruit or juice, peel, and flowers demonstrate antiulcer effect in a variety of animal models. Ellagic acid was the main responsible for this effect, although other individual ellagitannins could contribute to the biological activity of the mixture. Different preparations of pomegranate, including extracts from peels, flowers, seeds, and juice, show a significant anti-inflammatory activity in the gut. No clinical studies have been found, thus suggesting that future clinical studies are necessary to clarify the beneficial effects of pomegranate in the gastrointestinal tract. PMID:23573120

  12. Neutrophilia and an Anti-Inflammatory Drug as Markers of Inflammation in Delayed Muscle Soreness.

    ERIC Educational Resources Information Center

    Smith, Lucille L.; And Others

    This study reexamined the concept that delayed muscle soreness (DMS) is a form of inflammatory pain. This was accomplished by having 32 male volunteers perform exercise known to induce DMS and then assess the total and differential white blood cell changes. In addition, an anti-inflammatory drug, idomethacin, was administered to determine whether…

  13. Evaluation of Caesalpinia bonduc seed coat extract for anti-inflammatory and analgesic activity

    PubMed Central

    Kannur, Dayanand M.; Paranjpe, Mukta P.; Sonavane, Lalit V.; Dongre, Prerana P.; Khandelwal, Kishanchand R.

    2012-01-01

    In the present work, Caesalpinia bonduc seed coat extract (CBSCE) has been evaluated for anti-inflammatory and analgesic activity C. bonduc seeds have been attributed with anti-inflammatory and analgesic properties in the folklore medicine. Here in our study, we have tried to carry out the systematic evaluation of the seed coat extract of C. bonduc to substantiate these claims. C. bonduc seed coat was extracted with 95% ethanol and concentrated; further, the extract was screened for anti-inflammatory and analgesic activity. The studies were carried using Carrageenan-induced Paw Edema, Egg albumin-induced paw edema, Eddy's Hot Plate Test, Tail Immersion Method so as to prove acclaimed properties. The data was analyzed statistically by Students’ ‘t’ test. The results indicate that seed coat extract has the ability to decrease the induced inflammation at varied doses in Carrageenan model as well as in the Egg albumin model in rats. The antinociceptive results indicate that the extract has the ability to increase the pain threshold of the animals and reduce the pain factor, thereby inducing analgesia. Thus, it can be concluded that CBSCE posses analgesic and anti-inflammatory activity. PMID:23057003

  14. Study of anti-inflammatory activities of α-D-glucosylated eugenol.

    PubMed

    Zhang, Peng; Zhang, Erli; Xiao, Min; Chen, Chang; Xu, Weijian

    2013-01-01

    Inflammation is an immune response against a variety of noxious stimuli, such as infection, chemicals, and physical injury. Eugenol, a natural phenolic extract, has drawn much attention for its various desirable pharmacological functions and is, therefore, broadly used in our daily life and medical practice. However, further usage of eugenol is greatly limited due to its unwanted properties, such as physicochemical instability, poor solubility, and high-dose cytotoxicity. In hopes of extending its applicability through glycosylation, we previously reported a novel, efficient, and high throughput way to biosynthesize α-D-glucosylated eugenol (α-EG). In this study, we further explored the potential superior properties of α-EG to its parent eugenol in terms of anti-inflammatory activities. We demonstrated that α-EG was an effective anti-inflammatory mediator in both non-cellular and cellular environments. In addition, the non-cellular inhibitory effect of α-EG could be amplified by α-glucosidase, which ubiquitously exists in cytoplasm. Furthermore, α-EG exhibited a superior anti-inflammatory effect to its parent eugenol in a cellular environment. In words, our findings collectively suggest that α-EG is a stronger anti-inflammatory mediator and may thereby serve as a desirable substitute for eugenol and a potential therapeutic prodrug in treating inflammatory diseases in the future. PMID:23325490

  15. Antinociceptive and Anti-inflammatory Effects of Pistacia vera LeafExtract in Mice.

    PubMed

    Hosseinzadeh, Hossein; Behravan, Effat; M Soleimani, Mohammad

    2011-01-01

    Pistacia vera L., a member of Anacardiaceae family, has been used for sedation and analgesia in traditional medicine. In this study, the antinociceptive and anti-inflammatory effects as well as acute toxicity of the aqueous and ethanolic extracts of P. vera leaves were investigated in mice. The antinociceptive activity was studied using hot plate and writhing tests. The effect of the extracts against acute inflammation was determined using xylene-induced ear edema and the activity of the extracts, against chronic inflammation, was assessed using the cotton pellet test. The LD50 values of the infusion and maceration extracts were 0.8 g/Kg and 0.79 g/Kg, respectively. The aqueous and ethanolic maceration extracts of the P. vera leaves at the doses of 0.4 g/Kg and 0.5 g/Kg (IP), respectively, showed antinociceptive effects. The pretreatment of naloxone (2 mg/Kg, SC) inhibited the activities of extracts in hot plate test, but naloxone at the same dose could not inhibit the antinociceptive activity in writhing test. The extracts also showed anti-inflammatory effects in acute and chronic anti-inflammatory tests. The ethanolic extract was as effective as diclofenac in both inflammatory tests. The aqueous and ethanolic extracts of P. vera leaves demonstrated central and peripheral antinociceptive activities dose-dependently and the central effect may be mediated by opioid system. The extracts also demonstrated anti-inflammatory effects against acute and chronic inflammation. PMID:24250418

  16. Bioassay-guided evaluation of anti-inflammatory and antinociceptive activities of pistachio, Pistacia vera L.

    PubMed

    Orhan, I; Küpeli, E; Aslan, M; Kartal, M; Yesilada, E

    2006-04-21

    The ethanolic and aqueous extracts prepared from different parts of Pistacia vera L. (Anacardiaceae) as well as its oleoresin were evaluated for their in vivo anti-inflammatory and antinociceptive activities. Among the extracts screened, only the oleoresin was shown to possess a marked anti-inflammatory activity against carrageenan-induced hind paw edema model in mice without inducing any gastric damage at both 250 and 500 mg/kg doses whereas the rest of the extracts were totally inactive. While the oleoresin was found to display significant antinociceptive activity at 500 mg/kg dose, the ethanolic and aqueous extracts belonging to fruit, leaf, branch and peduncle of Pistacia vera did not exhibit any noticeable antinociception in p-benzoquinone-induced abdominal contractions in mice. Fractionation of the oleoresin indicated the n-hexane fraction to be active, which further led to recognition of some monoterpenes, mainly alpha-pinene (77.5%) by capillary gas chromatography-mass spectrometry (GC-MS) as well as the oleoresin itself. alpha-Pinene was also assessed for its antinociceptive and anti-inflammatory activities in the same manner and exerted a moderate anti-inflammatory effect at 500 mg/kg dose. PMID:16337351

  17. Anti-inflammatory effects of chronic aspirin on brain arachidonic acid metabolites.

    PubMed

    Basselin, Mireille; Ramadan, Epolia; Chen, Mei; Rapoport, Stanley I

    2011-01-01

    Pro-inflammatory and anti-inflammatory mediators derived from arachidonic acid (AA) modulate peripheral inflammation and its resolution. Aspirin (ASA) is a unique non-steroidal anti-inflammatory drug, which switches AA metabolism from prostaglandin E₂ (PGE₂) and thromboxane B₂ (TXB₂) to lipoxin A₄ (LXA₄) and 15-epi-LXA₄. However, it is unknown whether chronic therapeutic doses of ASA are anti-inflammatory in the brain. We hypothesized that ASA would dampen increases in brain concentrations of AA metabolites in a rat model of neuroinflammation, produced by a 6-day intracerebroventricular infusion of bacterial lipopolysaccharide (LPS). In rats infused with LPS (0.5 ng/h) and given ASA-free water to drink, concentrations in high-energy microwaved brain of PGE₂, TXB₂ and leukotriene B₄ (LTB₄) were elevated. In rats infused with artificial cerebrospinal fluid, 6 weeks of treatment with a low (10 mg/kg/day) or high (100 mg/kg/day) ASA dose in drinking water decreased brain PGE₂, but increased LTB₄, LXA₄ and 15-epi-LXA₄ concentrations. Both doses attenuated the LPS effects on PGE₂, and TXB₂. The increments in LXA₄ and 15-epi-LXA₄ caused by high-dose ASA were significantly greater in LPS-infused rats. The ability of ASA to increase anti-inflammatory LXA₄ and 15-epi-LXA₄ and reduce pro-inflammatory PGE₂ and TXB₂ suggests considering aspirin further for treating clinical neuroinflammation. PMID:20981485

  18. Acai juice attenuates atherosclerosis in apoe deficient mice through antioxidant and anti-inflammatory activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective - Acai fruit pulp has received much attention because of its high antioxidant capacity and potential anti-inflammatory effects. In this study, athero-protective effects of açaí juice were investigated in apolipoprotein E deficient (apoE -/-) mice. Methods and Results - ApoE-/- mice were f...

  19. Anti-inflammatory action of ethanolic extract of Ramulus mori on the BLT2-linked cascade

    PubMed Central

    Park, Geun-Soo; Kim, Jeong-Keun; Kim, Jae-Hong

    2016-01-01

    Mulberry tree twigs (Ramulus mori) contain large amounts of oxyresveratrols and have traditionally been used as herbal medicines because of their anti-inflammatory properties. However, the signaling mechanism by which R. mori exerts its anti-inflammatory action remains to be elucidated. In this study, we observed that R. mori ethanol extracts (RME) exerted an inhibitory effect on the lipopolysaccharide (LPS)-induced production of the pro-inflammatory cytokine interleukin-6 (IL-6) in Raw264.7 macrophage cells. Additionally, RME inhibited IL-6 production by blocking the leukotriene B4 receptor-2 (BLT2)-dependent-NADPH oxidase 1 (NOX1)-reactive oxygen species (ROS) cascade, leading to anti-inflammatory activity. Finally, RME suppressed the production of the BLT2 ligands LTB4 and 12(S)-HETE by inhibiting the p38 kinase-cytosolic phospholipase A2-5-/12-lipoxygenase cascade in LPS-stimulated Raw264.7 cells. Overall, our results suggest that RME inhibits the ‘BLT2 ligand-BLT2’-linked autocrine inflammatory axis, and that this BLT2-linked cascade is one of the targets of the anti-inflammatory action of R. mori. [BMB Reports 2016; 49(4): 232-237] PMID:26879317

  20. Antimicrobial and anti-inflammatory activities of leaf extract of Valeriana wallichii DC.

    PubMed

    Khuda, Fazli; Iqbal, Zafar; Zakiullah; Khan, Ayub; Nasir, Fazli

    2012-10-01

    Valeriana wallichii DC (Valerianaceae) is one of the most widely used traditional remedies for various complications associated with nervous system and digestion. No antimicrobial and anti-inflammatory studies have so far been carried out on the aerial parts of the plant. The present work was focused to evaluate the antimicrobial (antifungal and antibacterial) and anti-inflammatory properties of V. wallichii using reported methods. Chloroform fraction (VW-2) and hexane fraction (VW-3) exhibited significant activity against S. aureus and B. subtilus, respectively. The chloroform fraction (VW-2) showed significant activity against S. aureus with 0.27 mg/ml MIC, where 0.31 mg/ml MIC was deduced for VW-3 fraction against B. subtilus. VW-3 fraction was also found to be the most potent inhibitor of M. canis, showing 70% inhibition with an MIC value of 0.19 mg/ml. Considerable inhibitory activity was also observed for VW-2 and water fraction (VW-6) against M. canis and A. flavus. A remarkable anti-inflammatory like activity was observed for the crude extract at a dose of 200 mg/kg at all observed durations. Other doses of the sample also showed excellent activity. Looking to these results it may be concluded that V. wallichii may be a potential source for activity guided isolation of natural products with antimicrobial and anti-inflammatory-like properties. PMID:23009985

  1. Analgesic and anti-inflammatory activities of leaf extract of Mallotus repandus (Willd.) Muell. Arg.

    PubMed

    Hasan, Md Mahadi; Uddin, Nizam; Hasan, Md Rakib; Islam, A F M Mahmudul; Hossain, Md Monir; Rahman, Akib Bin; Hossain, Md Sazzad; Chowdhury, Ishtiaque Ahmed; Rana, Md Sohel

    2014-01-01

    In folk medicine Mallotus repandus (Willd.) Muell. Arg. is used to treat muscle pain, itching, fever, rheumatic arthritis, snake bite, hepatitis, and liver cirrhosis. This study aimed to evaluate the antinociceptive as well as the anti-inflammatory activities of the methanol extract of leaf. The leaves were extracted with methanol following hot extraction and tested for the presence of phytochemical constituents. Analgesic and anti-inflammatory activities were evaluated using acetic acid induced writhing test, xylene induced ear edema, cotton pellet induced granuloma, and tail immersion methods at doses of 500, 1000, and 2000 mg/kg body weight. The presence of flavonoids, saponins, and tannins was identified in the extract. The extract exhibited considerable antinociceptive and anti-inflammatory activities against four classical models of pain. In acetic acid induced writhing, xylene induced ear edema, and cotton pellet granuloma models, the extract revealed dose dependent activity. Additionally, it increased latency time in tail immersion model. It can be concluded that M. repandus possesses significant antinociceptive potential. These findings suggest that this plant can be used as a potential source of new antinociceptive and anti-inflammatory candidates. The activity of methanol extract is most likely mediated through central and peripheral inhibitory mechanisms. This study justified the traditional use of leaf part of this plant. PMID:25629031

  2. Phosphorylation site analysis of the anti-inflammatory and mRNA-destabilizing protein tristetraprolin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tristetraprolin (TTP/TIS11/ZFP36) is a member of the CCCH zinc finger proteins, and is an anti-inflammatory protein. Mice deficient in TTP develop a profound inflammatory syndrome with erosive arthritis, autoimmunity, and myeloid hyperplasia. TTP binds to AU-rich elements with high affinity for UUAU...

  3. Amauroderma rugosum (Blume & T. Nees) Torrend: Nutritional Composition and Antioxidant and Potential Anti-Inflammatory Properties

    PubMed Central

    Chan, Pui-Mun; Kanagasabapathy, Gowri; Tan, Yee-Shin; Sabaratnam, Vikineswary; Kuppusamy, Umah Rani

    2013-01-01

    Amauroderma rugosum is a wild mushroom that is worn as a necklace by the indigenous communities in Malaysia to prevent fits and incessant crying by babies. The aim of this study was to investigate the nutritive composition and antioxidant potential and anti-inflammatory effects of A. rugosum extracts on LPS-stimulated RAW264.7 cells. Nutritional analysis of freeze-dried mycelia of A. rugosum (KUM 61131) from submerged culture indicated a predominant presence of carbohydrates, proteins, dietary fibre, phosphorus, potassium, and sodium. The ethanol crude extract (EE), its hexane (HF), ethyl acetate (EAF), and aqueous (AF) fractions of mycelia of A. rugosum grown in submerged culture were evaluated for antioxidant potential and anti-inflammatory effects. EAF exhibited the highest total phenolic content and the strongest antioxidant activity based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays. HF showed dose-dependent inhibition of NO production in LPS-stimulated RAW264.7 cells and NO radical scavenging activity. Gas chromatographic analysis of HF revealed the presence of ethyl linoleate and ergosterol, compounds with known anti-inflammatory properties. In conclusion, the nutritive compositions and significant antioxidant potential and anti-inflammatory effects of mycelia extracts of A. rugosum have the potential to serve as a therapeutic agent or adjuvant in the management of inflammatory disorders. PMID:24371454

  4. Novel coumarin-benzimidazole derivatives as antioxidants and safer anti-inflammatory agents.

    PubMed

    Arora, Radha Krishan; Kaur, Navneet; Bansal, Yogita; Bansal, Gulshan

    2014-10-01

    Inspired from occurrence of anti-inflammatory activity of 3-substituted coumarins and antiulcer activity of various 2-substituted benzimidazoles, novel compounds have been designed by coupling coumarin derivatives at 3-position directly or through amide linkage with benzimidazole nucleus at 2-position. The resultant compounds are expected to exhibit both anti-inflammatory and antioxidant activities along with less gastric toxicity profile. Two series of coumarin-benzimidazole derivatives (4a-e and 5a-e) were synthesized and evaluated for anti-inflammatory activity and antioxidant activity. Compounds 4c, 4d and 5a displayed good anti-inflammatory (45.45%, 46.75% and 42.85% inhibition, respectively, versus 54.54% inhibition by indomethacin) and antioxidant (IC50 of 19.7, 13.9 and 1.2 µmol/L, respectively, versus 23.4 µmol/L for butylatedhydroxytoluene) activities. Evaluation of ulcer index and in vivo biochemical estimations for oxidative stress revealed that compounds 4d and 5a remain safe on gastric mucosa and did not induce oxidative stress in tissues. Calculation of various molecular properties suggests the compounds to be sufficiently bioavailable. PMID:26579406

  5. Spasmolytic and anti-inflammatory effects of constituents from Hertia cheirifolia.

    PubMed

    Ammar, Samia; Edziri, Hayet; Mahjoub, Mohamed Ali; Chatter, Rym; Bouraoui, Abderrahman; Mighri, Zine

    2009-12-01

    A sesquiterpenoid Bakkenolide (1), and two steroids, (3beta, 22E)-Stigmasta-5, 22-diène-3-ol (Stigmasterol) (2) and stigmasterol 3beta-glucoside (3), isolated from the Hertia cheirifolia (L.) chloroform extract, were evaluated respectively for their spasmolytic and anti-inflammatory activities. We note that these natural products were isolated and purified for the first time from the specie Hertia cheirifolia. Their structures have been established by spectroscopy (1 and 2D NMR experiences) and mass spectrometry. Chloroform-, ethyl acetate- and methanol-extracts were also tested for their spasmolytic and anti-inflammatory activities. Spasmolytic and anti-inflammatory screening were based respectively on the contractile response effects on rat isolated smooth muscles and on the dose-related carrageenan induced paw edema in rats. screening of the crude extracts showed spasmolytic and anti-inflammatory positive results. The antispasmodic effect of Bakkenolide was found in the same range as that of Alverine, a standard musculotropic spasmolytic agent. PMID:19403291