Sample records for cyclooxygenase-2 inhibitors non-selective

  1. Flurbiprofen : A non-selective cyclooxygenase (COX) inhibitor for treatment of non-infectious, non-necrotising anterior scleritis

    PubMed Central

    Agrawal, Rupesh; Lee, Cecilia; Gonzalez-Lopez, Julio J.; Khan, Sharmina; Rodrigues, Valeria; Pavesio, Carlos

    2016-01-01

    Objective To analyse the safety and efficacy of a non-selective cyclo-oxygenase (COX) inhibitor in the management of non-infectious, non-necrotising anterior scleritis. Methods Retrospective chart review of 126 patients with non-necrotising anterior scleritis treated with oral flurbiprofen (Froben®(Abbott Healthcare)) with ( group B, n=61) or without topical steroids (group A, n=65) was performed and time to remission was plotted. Results The observed incidence rate was 1.07 (95% CI: 0.57–1.99) per 1000 person-years with failure rate of 0.68 (95% CI: 0.22–2.12) per 1000 person-years in group A and 1.41 (95% CI: 0.67–2.96) per 1000 person-years in group B. The failure rate was 3.97(1.89–9.34) per 1000 person-years with hazard ratio of 10.01 ( 95% CI: 2.52–39.65; p<0.001) for patients with associated systemic disease. Conclusion To our best knowledge, this is the first and largest case series on the safety and efficacy of a non-selective COX inhibitor in the management of anterior scleritis. PMID:26308394

  2. Prescriptions for selective cyclooxygenase-2 inhibitors, non-selective non-steroidal anti-inflammatory drugs, and risk of breast cancer in a population-based case-control study.

    PubMed

    Cronin-Fenton, Deirdre P; Pedersen, Lars; Lash, Timothy L; Friis, Søren; Baron, John A; Sørensen, Henrik T

    2010-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) prevent the growth of mammary tumours in animal models. Two population-based case-control studies suggest a reduced risk of breast cancer associated with selective cyclooxygenase-2 (sCox-2) inhibitor use, but data regarding the association between breast cancer occurrence and use of non-selective NSAIDs are conflicting. We conducted a population-based case-control study using Danish healthcare databases to examine if use of NSAIDs, including sCox-2 inhibitors, was associated with a reduced risk of breast cancer. We included 8,195 incident breast cancer cases diagnosed in 1991 through 2006 and 81,950 population controls. Overall, we found no reduced breast cancer risk in ever users (>2 prescriptions) of sCox-2 inhibitors (odds ratio (OR) = 1.08, 95% confidence interval (95% CI) = 0.99, 1.18), aspirin (OR = 0.98, 95% CI = 0.90-1.07), or non-selective NSAIDs OR = 1.04, (95% CI = 0.98, 1.10)). Recent use (>2 prescriptions within two years of index date) of sCox-2 inhibitors, aspirin, or non-selective NSAIDs was likewise not associated with breast cancer risk (Ors = 1.06 (95% CI = 0.96, 1.18), 0.96 (95% CI = 0.87, 1.06) and 0.99 (95% CI = 0.85, 1.16), respectively). Risk estimates by duration (<10, 10 to 15, 15+ years) or intensity (low/medium/high) of NSAID use were also close to unity. Regardless of intensity, shorter or long-term NSAID use was not significantly associated with breast cancer risk. Overall, we found no compelling evidence of a reduced risk of breast cancer associated with use of sCox-2 inhibitors, aspirin, or non-selective NSAIDs.

  3. Celecoxib: a potent cyclooxygenase-2 inhibitor in cancer prevention.

    PubMed

    Kismet, Kemal; Akay, M Turan; Abbasoglu, Osman; Ercan, Aygün

    2004-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are the most widely used therapeutic agents in the treatment of pain, inflammation and fever. They may also have a role in the management of cancer prevention, Alzheimer's disease and prophylaxis against cardiovascular disease. These drugs act primarily by inhibiting cyclooxygenase enzyme, which has two isoforms, cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). Selective COX-2 inhibitors provide potent anti-inflammatory and analgesic effects without the side effects of gastric and renal toxicity and inhibition of platelet function. Celecoxib is a potent COX-2 inhibitor being developed for the treatment of rheumatoid arthritis and osteoarthritis. Chemoprevention is the use of pharmacological or natural agents to prevent, suppress, interrupt or reverse the process of carcinogenesis. For this purpose, celecoxib is being used for different cancer types. The effects of NSAIDs on tumor growth remain unclear, but are most likely to be multifocal. In this article, we reviewed COX-2 selectivity, the pharmacological properties of celecoxib, the use of celecoxib for cancer prevention and the mechanisms of chemoprevention.

  4. Effect of selective versus non-selective cyclooxygenase inhibitors on ischemia-reperfusion-induced hepatic injury in rats.

    PubMed

    Abdel-Gaber, Seham A; Ibrahim, Mohamed A; Amin, Entesar F; Ibrahim, Salwa A; Mohammed, Rehab K; Abdelrahman, Aly M

    2015-08-01

    Ischemia-reperfusion (IR) injury represents an important pathological process of liver injury during major hepatic surgery. The role of cyclooxygenase (COX) enzymes in the pathogenesis of ischemia-reperfusion (IR)-induced liver injury is not clear. This study investigated the effect of a selective COX-2 inhibitor, celecoxib, versus non-selective, indomethacin, on hepatic IR injury in rats. Hepatic IR was induced in adult male rats. The animals were divided into 4 groups: normal control (sham group), IR non-treated group; IR-indomethacin-treated group; and IR-celecoxib-treated group. Liver injury was evaluated by serum alanine aminotransferase (ALT) and a histopathological examination of liver tissues. Hepatic tissue content of oxidative stress parameters glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase, malondialdehyde (MDA), nitric oxide (NO) and the inflammatory marker, tumor necrosis factor-alpha, (TNF-α) were measured. Moreover, the immunohistochemical detection of endothelial NO synthase (eNOS), inducible NO synthase (iNOS), and caspase-3 in the hepatic tissue was performed. Celecoxib, but not indomethacin, significantly attenuated hepatic IR injury as evidenced by reduction in serum ALT as well as by improvement in the histopathological scoring. Such effect was associated with attenuation in oxidative stress and TNF-α, along with modulation of immunohistochemical expression of eNOS, iNOS and caspase-3 in the hepatic tissue. The present study concluded that selective COX-2 inhibition (but not non-selective), is hepatoprotective against liver IR injury; indicating a differential role of COX-1 versus COX-2. Modulation of iNOS, eNOS and caspase-3 might participate in the protective effect of selective COX-2-inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. [Specific inhibitors of cyclooxygenase-2 (COX-2): current knowledge and perspectives].

    PubMed

    Rioda, W T; Nervetti, A

    2001-01-01

    The Authors summarize the current knowledge on a new class of nonsteroidal anti-inflammatory drugs (NSAIDs), the coxib (celecoxib and rofecoxib), in the treatment of rheumatic diseases. Celecoxib and rofecoxib are selective cyclooxygenase-2 (COX-2) inhibitors which possess the same anti-inflammatory and analgesic activities, but a better gastric tolerability compared to the non-selective COX-1 and COX-2 inhibitors. The Authors also report other possible therapeutic effects of these NSADIs as evidenced by the more recent data of the literature. Celecoxib seems to reduce the incidence of new polyps in patients with familial adenomatous polyposis. It has been suggested the use of celecoxib as a protective drug against the development of colorectal cancer. Other (neoplastic) or pre-neoplastic conditions, such as bladder dysplasia, Barret esophagus, attinic keratosis and Alzheimer's disease seem to have benefit from this class of drugs.

  6. Cyclooxygenase-2 inhibitors modulate skin aging in a catalytic activity-independent manner

    PubMed Central

    Lee, Mi Eun; Kim, So Ra; Lee, Seungkoo; Jung, Yu-Jin; Choi, Sun Shim; Kim, Woo Jin

    2012-01-01

    It has been proposed that the pro-inflammatory catalytic activity of cyclooxygenase-2 (COX-2) plays a key role in the aging process. However, it remains unclear whether the COX-2 activity is a causal factor for aging and whether COX-2 inhibitors could prevent aging. We here examined the effect of COX-2 inhibitors on aging in the intrinsic skin aging model of hairless mice. We observed that among two selective COX-2 inhibitors and one non-selective COX inhibitor studied, only NS-398 inhibited skin aging, while celecoxib and aspirin accelerated skin aging. In addition, NS-398 reduced the expression of p53 and p16, whereas celecoxib and aspirin enhanced their expression. We also found that the aging-modulating effect of the inhibitors is closely associated with the expression of type I procollagen and caveolin-1. These results suggest that pro-inflammatory catalytic activity of COX-2 is not a causal factor for aging at least in skin and that COX-2 inhibitors might modulate skin aging by regulating the expression of type I procollagen and caveolin-1. PMID:22771771

  7. Identification of [4-[4-(methylsulfonyl)phenyl]-6-(trifluoromethyl)-2-pyrimidinyl] amines and ethers as potent and selective cyclooxygenase-2 inhibitors.

    PubMed

    Swarbrick, Martin E; Beswick, Paul J; Gleave, Robert J; Green, Richard H; Bingham, Sharon; Bountra, Chas; Carter, Malcolm C; Chambers, Laura J; Chessell, Iain P; Clayton, Nick M; Collins, Sue D; Corfield, John A; Hartley, C David; Kleanthous, Savvas; Lambeth, Paul F; Lucas, Fiona S; Mathews, Neil; Naylor, Alan; Page, Lee W; Payne, Jeremy J; Pegg, Neil A; Price, Helen S; Skidmore, John; Stevens, Alexander J; Stocker, Richard; Stratton, Sharon C; Stuart, Alastair J; Wiseman, Joanne O

    2009-08-01

    A novel series of [4-[4-(methylsulfonyl)phenyl]-6-(trifluoromethyl)-2-pyrimidine-based cyclooxygenase-2 (COX-2) inhibitors, which have a different arrangement of substituents compared to the more common 1,2-diarylheterocycle based molecules, have been discovered. For example, 2-(butyloxy)-4-[4-(methylsulfonyl)phenyl]-6-(trifluoromethyl)pyrimidine (47), a member of the 2-pyrimidinyl ether series, has been shown to be a potent and selective inhibitor with a favourable pharmacokinetic profile, high brain penetration and good efficacy in rat models of hypersensitivity.

  8. Non-steroidal anti-inflammatory drugs, Cyclooxygenase-2 inhibitors and paracetamol use in Queensland and in the whole of Australia.

    PubMed

    Barozzi, Nadia; Tett, Susan E

    2008-09-24

    Cross national drug utilization studies can provide information about different influences on physician prescribing. This is important for medicines with issues around safety and quality of use, like non selective non-steroidal anti-inflammatory drugs (ns-NSAIDs) and cyclo-oxygenase-2 (COX-2) inhibitors. To enable comparison of prescription medicine use across different jurisdictions with a range of population sizes, data first need to be compared within Australia to understand whether use in a smaller sub-population may be considered as representative of the total use within Australia. The aim of this study was to compare the utilization of non selective NSAID, COX-2 inhibitors and paracetamol between Queensland and Australia. Dispensing data were obtained for concession beneficiaries for Australia for ns-NSAIDs, COX-2 inhibitors and paracetamol subsidized by the PBS over the period 1997-2003. The same data were purchased for Queensland. Data were converted to Defined Daily Dose (DDD)/1000 beneficiaries/day (World Health Organization anatomical therapeutic chemical classification, 2005). Total NSAID and paracetamol consumption were similar in Australia and Queensland. Ns-NSAID use decreased sharply with the introduction of COX-2 inhibitors (from approximately 80 to 40 DDD/1000 beneficiaries/day). Paracetamol was constant (approximately 45 DDD/1000 beneficiaries/day). COX-2 inhibitors consumption was initially higher in Queensland than in the whole of Australia. Despite initial divergence in celecoxib use between Queensland and Australia, the use of ns-NSAIDs, COX-2 inhibitors and paracetamol overall, in concession beneficiaries, was comparable in Australia and Queensland.

  9. Identification of 2,3-diaryl-pyrazolo[1,5-b]pyridazines as potent and selective cyclooxygenase-2 inhibitors.

    PubMed

    Beswick, Paul; Bingham, Sharon; Bountra, Chas; Brown, Terry; Browning, Kerry; Campbell, Ian; Chessell, Iain; Clayton, Nick; Collins, Sue; Corfield, John; Guntrip, Stephen; Haslam, Claudine; Lambeth, Paul; Lucas, Fiona; Mathews, Neil; Murkit, Graham; Naylor, Alan; Pegg, Neil; Pickup, Elizabeth; Player, Hazel; Price, Helen; Stevens, Alexander; Stratton, Sharon; Wiseman, Joanne

    2004-11-01

    GW406381 (8), currently undergoing clinical evaluation for the treatment of inflammatory pain is a member of a novel series of 2,3-diaryl-pyrazolo[1,5-b]pyridazine based cyclooxygenase-2 (COX-2) inhibitors, which have been shown to be highly potent and selective. Several examples of the series, in addition to possessing favourable pharmacokinetic profiles and analgesic activity in vivo, have also demonstrated relatively high brain penetration in the rat compared with the clinically available compounds, which may ultimately prove beneficial in the treatment of pain.

  10. Surface plasmon resonance studies and biochemical evaluation of a potent peptide inhibitor against cyclooxygenase-2 as an anti-inflammatory agent.

    PubMed

    Somvanshi, Rishi K; Kumar, Ashwini; Kant, Shashi; Gupta, Deepti; Singh, S Bhaskar; Das, Utpal; Srinivasan, Alagiri; Singh, Tej P; Dey, Sharmistha

    2007-09-14

    Cyclooxygenase (COX) is a key enzyme in the biosynthetic pathway leading to the formation of prostaglandins, which are mediators of inflammation [D.L. Dewitt, W.L. Smith, Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence, Proc. Natl. Acad. Sci. USA 85 (1988) 1412-1416, 1]. It exists mainly in two isoforms COX-1 and COX-2 [A. Raz, A. Wyche, N. Siegel, P. Needleman, Regulation of fibroblast cyclooxygenase synthesis by interleukin-1, J. Biol. Chem. 263 (1988) 3022-3028, 2]. The conventional non-steroidal anti-inflammatory drugs (NSAIDs) have adverse gastrointestinal side-effects, because they inhibit both isoforms [T.D. Warner, F. Guiliano, I. Vojnovic, A. Bukasa, J.A. Mitchell, J.P. Vane, Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis, Proc. Natl. Acad. Sci. USA 96 (1999) 7563-7568, 3; L.J. Marnett, A.S. Kalgutkar, Cyclooxygenase 2 inhibitors: discovery, selectivity and the future, Trends Pharmacol. Sci. 20 (1999) 465-469, 4; J.R. Vane, NSAIDs, Cox-2 inhibitors, and the gut, Lancet 346 (1995) 1105-1106, 5]. Therefore drugs which selectively inhibit COX-2, known as coxibs were developed. Recent reports on the harmful cardiovascular and renovascular side-effects of the anti-inflammatory drugs have led to the quest for a novel class of COX-2 selective inhibitors. Keeping this in mind, we have used the X-ray crystal structures of the complexes of the COX-1 and COX-2 with the known inhibitors for a rational, structure based approach to design a small peptide, which is potent inhibitor for COX-2. The peptides have been checked experimentally by in-vitro kinetic studies using surface plasmon resonance (SPR) and other biochemical methods. We have identified a tripeptide inhibitor which is a potential lead for a new class of COX-2 inhibitor. The dissociation constant (K(D)) determined for COX-2

  11. Differential effects of selective cyclooxygenase (COX)-1 and COX-2 inhibitors on anorexic response and prostaglandin generation in various tissues induced by zymosan.

    PubMed

    Naoi, Kazuhisa; Kogure, Suguru; Saito, Masataka; Hamazaki, Tomohito; Watanabe, Shiro

    2006-07-01

    We have shown that anorexic response is induced by intraperitoneal injection of zymosan in mice, although the role of prostaglandins in this response is relatively unknown as compared with lipopolysaccharide (LPS)-induced anorexic response. Indomethacin (0.5 and 2.0 mg/kg), a non-selective cyclooxygenase (COX) inhibitor, as well as meloxicam (0.5 mg/kg), a selective COX-2 inhibitor, but not FR122047 (2.0 mg/kg), a selective COX-1 inhibitor, attenuated zymosan-induced anorexia. Zymosan injection elevated COX-2 expression in brain and liver but not in small intestine and colon. Meloxicam (0.5 mg/kg) and FR122047 treatment (2.0 mg/kg) similarly suppressed the generation of brain prostaglandin E(2) (PGE(2)) and peritoneal prostacyclin (PGI(2)) upon zymosan injection. PGE(2) generation in liver upon zymosan injection was suppressed by meloxicam (0.5 mg/kg) but not by FR122047 treatment (2.0 mg/kg). Our observations suggest that COX-2 plays an important role in zymosan-induced anorexia, which is a similar feature in LPS-induced anorexic response. However, non-selective inhibition by selective COX-1 and COX-2 inhibitors of brain PGE(2) generation upon zymosan injection does not support the role of COX-2 expressed in brain in zymosan-induced anorexic response. PGE(2) generation in liver may account for peripheral role of COX-2 in zymosan-induced anorexic response.

  12. The role of chemoprevention by selective cyclooxygenase-2 inhibitors in colorectal cancer patients - a population-based study

    PubMed Central

    2012-01-01

    Background There are limited population-based studies focusing on the chemopreventive effects of selective cyclooxygenase-2 (COX-2) inhibitors against colorectal cancer. The purpose of this study is to assess the trends and dose–response effects of various medication possession ratios (MPR) of selective COX-2 inhibitor used for chemoprevention of colorectal cancer. Methods A population-based case–control study was conducted using the Taiwan Health Insurance Research Database (NHIRD). The study comprised 21,460 colorectal cancer patients and 79,331 controls. The conditional logistic regression was applied to estimate the odds ratios (ORs) for COX-2 inhibitors used for several durations (5 years, 3 years, 1 year, 6 months and 3 months) prior to the index date. Results In patients receiving selective COX-2 inhibitors, the OR was 0.51 (95% CI=0.29~0.90, p=0.021) for an estimated 5-year period in developing colorectal cancer. ORs showing significant protection effects were found in 10% of MPRs for 5-year, 3-year, and 1-year usage. Risk reduction against colorectal cancer by selective COX-2 inhibitors was observed as early as 6 months after usage. Conclusion Our results indicate that selective COX-2 inhibitors may reduce the development of colorectal cancer by at least 10% based on the MPRs evaluated. Given the limited number of clinical reports from general populations, our results add to the knowledge of chemopreventive effects of selective COX-2 inhibitors against cancer in individuals at no increased risk of colorectal cancer. PMID:23217168

  13. Cyclooxygenase-2 inhibitors: promise or peril?

    PubMed Central

    Mengle-Gaw, Laurel J; Schwartz, Benjamin D

    2002-01-01

    The discovery of two isoforms of the cyclooxygenase enzyme, COX-1 and COX-2, and the development of COX-2-specific inhibitors as anti-inflammatories and analgesics have offered great promise that the therapeutic benefits of NSAIDs could be optimized through inhibition of COX-2, while minimizing their adverse side effect profile associated with inhibition of COX-1. While COX-2 specific inhibitors have proven to be efficacious in a variety of inflammatory conditions, exposure of large numbers of patients to these drugs in postmarketing studies have uncovered potential safety concerns that raise questions about the benefit/risk ratio of COX-2-specific NSAIDs compared to conventional NSAIDs. This article reviews the efficacy and safety profiles of COX-2-specific inhibitors, comparing them with conventional NSDAIDs. PMID:12467519

  14. Cyclooxygenase-2 inhibitors. Synthesis and pharmacological activities of 5-methanesulfonamido-1-indanone derivatives.

    PubMed

    Li, C S; Black, W C; Chan, C C; Ford-Hutchinson, A W; Gauthier, J Y; Gordon, R; Guay, D; Kargman, S; Lau, C K; Mancini, J

    1995-12-08

    The recent discovery of an alternative form cyclooxygenase (cyclooxygenase-2, COX-2), which has been proposed to play a significant role in inflammatory conditions, may provide an opportunity to develop anti-inflammatory drugs with fewer side effects than existing non-steroidal anti-inflammatory drugs (NSAIDs). We have now identified 6-[(2,4-difluorophenyl)-thio]-5-methanesulfonamido-1-indanone++ + (20) (L-745,337) as a potent, selective, and orally active COX-2 inhibitor. The structure-activity relationships in this series have been extensively studied. Ortho- and para-substituted 6-phenyl substitutents are optimal for in vitro potency. Replacement of this phenyl ring by a variety of heterocycles gave compounds that were less active. The methanesulfonamido group seems to be the optimal group at the 5-position of the indanone system. Compound 20 has an efficacy profile that is superior or comparable to that of the nonselective COX inhibitor indomethacin in animal models of inflammation, pain, and fever and appears to be nonulcerogenic within the dosage ranges required for functional efficacy. Although 20 and its oxygen linkage analog 2 (flosulide) are equipotent in the in vitro assays, compound 20 is more potent in the rat paw edema assay, has a longer t1/2 in squirrel monkeys, and seems less ulcergenic than 2 in rats.

  15. Clinical pharmacology of lumiracoxib: a selective cyclo-oxygenase-2 inhibitor.

    PubMed

    Rordorf, Christiane M; Choi, Les; Marshall, Paul; Mangold, James B

    2005-01-01

    Lumiracoxib (Prexige) is a selective cyclo-oxygenase (COX)-2 inhibitor developed for the treatment of osteoarthritis, rheumatoid arthritis and acute pain. Lumiracoxib possesses a carboxylic acid group that makes it weakly acidic (acid dissociation constant [pKa] 4.7), distinguishing it from other selective COX-2 inhibitors. Lumiracoxib has good oral bioavailability (74%). It is rapidly absorbed, reaching maximum plasma concentrations 2 hours after dosing, and is highly plasma protein bound. Lumiracoxib has a short elimination half-life from plasma (mean 4 hours) and demonstrates dose-proportional plasma pharmacokinetics with no accumulation during multiple dosing. In patients with rheumatoid arthritis, peak lumiracoxib synovial fluid concentrations occur 3-4 hours later than in plasma and exceed plasma concentrations from 5 hours after dosing to the end of the 24-hour dosing interval. These data suggest that lumiracoxib may be associated with reduced systemic exposure, while still reaching sites where COX-2 inhibition is required for pain relief. Lumiracoxib is metabolised extensively prior to excretion, with only a small amount excreted unchanged in urine or faeces. Lumiracoxib and its metabolites are excreted via renal and faecal routes in approximately equal amounts. The major metabolic pathways identified involve oxidation of the 5-methyl group of lumiracoxib and/or hydroxylation of its dihaloaromatic ring. Major metabolites of lumiracoxib in plasma are the 5-carboxy, 4'-hydroxy and 4'-hydroxy-5-carboxy derivatives, of which only the 4'-hydroxy derivative is active and COX-2 selective. In vitro, the major oxidative pathways are catalysed primarily by cytochrome P450 (CYP) 2C9 with very minor contribution from CYP1A2 and CYP2C19. However, in patients genotyped as poor CYP2C9 metabolisers, exposure to lumiracoxib (area under the plasma concentration-time curve) is not significantly increased compared with control subjects, indicating no requirement for adjustment

  16. Overexpression of COX-2 in Rat Oral Cancers and Prevention of Oral Carcinogenesis in Rats by Selective and Non-Selective COX Inhibitors

    PubMed Central

    McCormick, David L.; Phillips, Jonathan M.; Horn, Thomas L.; Johnson, William D.; Steele, Vernon E.; Lubet, Ronald A.

    2009-01-01

    Oral squamous cell carcinomas induced in rats by 4-nitroquinoline-1-oxide (NQO) demonstrate substantial overexpression of cyclooxygenase-2 (COX-2) when compared to adjacent phenotypically normal oral tissues. By contrast, neither 5-lipoxygenase (5-LOX) nor 12-lipoxygenase (12-LOX) is overexpressed in rat oral cancers. Two chemoprevention studies were performed to test the resulting hypothesis that COX-2 is a useful target for oral cancer chemoprevention in the rat. In both studies, male F344 rats received drinking water exposure to NQO (20 ppm) for 10 weeks, followed by administration of chemopreventive agents from week 10 until study termination at week 26. In the first study, groups of rats were fed basal diet (control), or basal diet supplemented with the selective COX-2 inhibitor, celecoxib (500 or 1500 mg/kg diet); the non-selective COX inhibitor, piroxicam (50 or 150 mg/kg diet); or the 5-LOX inhibitor, zileuton (2000 mg/kg diet). In the second study, rats were fed basal diet (control) or basal diet supplemented with NO-Naproxen (180 or 90 mg/kg diet), a non-selective COX inhibitor that demonstrates reduced gastrointestinal toxicity. When compared to dietary controls, celecoxib decreased oral cancer incidence, cancer invasion score, and cancer-related mortality. Piroxicam decreased cancer-related mortality and cancer invasion score, while NO-naproxen decreased oral cancer incidence and cancer invasion score. By contrast, zileuton demonstrated no chemopreventive activity by any parameter assessed. These data demonstrate that both selective and non-selective inhibitors of COX-2 can prevent NQO-induced oral carcinogenesis in rats. The chemopreventive activity of COX inhibitors may be linked to overexpression of their enzymatic target in incipient oral neoplasms. PMID:20051374

  17. Enhancing radiotherapy with cyclooxygenase-2 enzyme inhibitors: a rational advance?

    PubMed

    Choy, Hak; Milas, Luka

    2003-10-01

    Results of preclinical studies suggesting that the efficacy of molecular therapies is enhanced when they are combined with radiation have generated a surge of clinical trials combining these modalities. We reviewed the literature to identify the rationale and experimental foundation supporting the use of cyclooxygenase-2 (COX-2) inhibitors with standard radiotherapy regimens in current clinical trials. Radiation affects the ability of cells to divide and proliferate and induces the expression of genes involved in signaling pathways that promote cell survival or trigger cell death. Future advances in radiotherapy will hinge on understanding mechanisms by which radiation-induced transcription of genes governs cell death and survival, the selective control of this process, and the optimal approaches to combining this knowledge with existing therapeutic modalities. COX-2 is expressed in all stages of cancer, and in several cancers its overexpression is associated with poor prognosis. Evidence from clinical and preclinical studies indicates that COX-2-derived prostaglandins participate in carcinogenesis, inflammation, immune response suppression, apoptosis inhibition, angiogenesis, and tumor cell invasion and metastasis. Clinical trial results have demonstrated that selective inhibition of COX-2 can alter the development and the progression of cancer. In animal models, selective inhibition of COX-2 activity is associated with the enhanced radiation sensitivity of tumors without appreciably increasing the effects of radiation on normal tissue, and preclinical evidence suggests that the principal mechanism of radiation potentiation through selective COX-2 inhibition is the direct increase in cellular radiation sensitivity and the direct inhibition of tumor neovascularization. Results of current early-phase studies of non-small-cell lung, esophageal, cervical, and brain cancers will determine whether therapies that combine COX-2 inhibitors and radiation will enter

  18. Parecoxib Increases Blood Pressure Through Inhibition of Cyclooxygenase-2 Messenger RNA in an Experimental Model.

    PubMed

    Vértiz-Hernández, Ángel Antonio; Martínez-Morales, Flavio; Valle-Aguilera, Roberto; López-Sánchez, Pedro; Villalobos-Molina, Rafael; Pérez-Urizar, José

    2015-01-01

    Cyclooxygenase-2 selective inhibitors have been developed to alleviate pain and inflammation; however, the use of a selective cyclooxygenase-2 inhibitor is associated with mild edema, hypertension, and cardiovascular risk. To evaluate, in an experimental model in normotensive rats, the effect of treatment with parecoxib in comparison with diclofenac and aspirin and L-NAME, a non-selective nitric oxide synthetase, on mean arterial blood pressure, and cyclooxygenase-1 and -2 messenger RNA and protein expression in aortic tissue. Rats were treated for seven days with parecoxib (10 mg/kg/day), diclofenac (3.2 mg/kg/day), aspirin (10 mg/kg/day), or L-NAME (10 mg/kg/day). Mean arterial blood pressure was evaluated in rat tail; cyclooxygenase-1 and -2 were evaluated by reverse transcription-polymerase chain reaction and Western blot analysis in aortic tissue. Parecoxib and L-NAME, but not aspirin and diclofenac, increased mean arterial blood pressure by about 50% (p < 0.05) without changes in cardiac frequency. Messenger RNA cyclooxygenase-1 expression in aortic tissue was not modified with any drug (p < 0.05). L-NAME and parecoxib treatment decreased messenger RNA cyclooxygenase-2 and cyclooxygenase-2 (p < 0.05). While cyclooxygenase-1 protein decreased with the three drugs tested but not with L-NAME (p < 0.05), the cyclooxygenase-2 protein decreased only with aspirin and parecoxib (p < 0.05). Parecoxib increases the blood pressure of normotensive rats by the suppression of COX-2 gene expression, which apparently induced cardiovascular control.

  19. Inhibitory effect of selective cyclooxygenase-2 inhibitor lumiracoxib on human organic anion transporters hOAT1 and hOAT3.

    PubMed

    Uwai, Yuichi; Honjo, Hiroaki; Iwamoto, Kikuo

    2010-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) delay renal excretion of antifolate methotrexate by inhibiting human organic anion transporters hOAT1 (SLC22A6) and hOAT3 (SLC22A8). In this study, we performed uptake experiments using Xenopus laevis oocytes to assess the inhibitory effect of selective cyclooxygenase-2 inhibitors on hOAT1 and hOAT3. The uptake of methotrexate into oocytes was increased by the injection of hOAT1 and hOAT3 cRNA, and transport was strongly inhibited by lumiracoxib. The apparent 50% inhibitory concentrations of lumiracoxib were estimated to be 3.3 µM and 1.9 µM for uptake of p-aminohippurate by hOAT1 and of estrone sulfate by hOAT3, respectively. Eadie-Hofstee plot analysis showed that lumiracoxib inhibited hOAT1 and hOAT3 in a competitive manner. For other cyclooxygenase-2 inhibitors celecoxib, etoricoxib, rofecoxib and valdecoxib, slight to moderate inhibition of hOAT3 only was observed. These findings show that lumiracoxib has inhibitory potential toward hOAT1 and hOAT3, comparable to that of nonselective NSAIDs.

  20. A selective cyclooxygenase-2 inhibitor (Etodolac) prevents spontaneous biliary tumorigenesis in a hamster bilioenterostomy model.

    PubMed

    Kitasato, Amane; Kuroki, Tamotsu; Adachi, Tomohiko; Ono, Shinichiro; Tanaka, Takayuki; Tsuneoka, Noritsugu; Hirabaru, Masataka; Takatsuki, Mitsuhisa; Eguchi, Susumu

    2014-01-01

    Secondary biliary carcinomas are associated with persistent reflux cholangitis after bilioenterostomy. Cyclooxygenase-2 (COX-2) has been a target for cancer prevention. The aim of this study was to evaluate the chemopreventive efficacy of long-term treatment with a selective COX-2 inhibitor medication during the natural course after bilioenterostomy without chemical induction. Syrian golden hamsters which underwent choledochojejunostomy were randomly divided into two groups: the control group (n = 31), which was fed a normal diet, and the etodolac group (n = 33), which was fed 0.01% etodolac (a selective COX-2 inhibitor) mixed in the meal. The hamsters were killed at the postoperative weeks 20-39, 40-59, 60-79, or 80-100. Biliary neoplasms, cholangitis, proliferating cell nuclear antigen labeling index (PCNA-LI) of the biliary epithelium, and prostaglandin E2 (PGE2) production were evaluated. The occurrence rates of biliary neoplasm were 43.8 and 15.2% in the control and etodolac groups, respectively (p < 0.05). The incidence of biliary neoplasm increased as time progressed in the control group, whereas it remained at a low level throughout the experimental period in the etodolac group. PGE2 products tended to be lower in the etodolac group, and PCNA-LI was significantly lower in the etodolac group (p < 0.01). These results suggest that the medication etodolac suppresses cell proliferation of the biliary epithelium, thereby preventing biliary carcinogenesis. Etodolac is expected to prevent secondary biliary carcinogenesis caused by persistent reflux cholangitis after bilioenterostomy. © 2014 S. Karger AG, Basel.

  1. Nimesulide, a cyclooxygenase-2 selective inhibitor, suppresses obesity-related non-alcoholic fatty liver disease and hepatic insulin resistance through the regulation of peroxisome proliferator-activated receptor γ

    PubMed Central

    Tsujimoto, Shunsuke; Kishina, Manabu; Koda, Masahiko; Yamamoto, Yasutaka; Tanaka, Kohei; Harada, Yusuke; Yoshida, Akio; Hisatome, Ichiro

    2016-01-01

    Cyclooxygenase (COX)-2 selective inhibitors suppress non-alcoholic fatty liver disease (NAFLD); however, the precise mechanism of action remains unknown. The aim of this study was to examine how the COX-2 selective inhibitor nimesulide suppresses NAFLD in a murine model of high-fat diet (HFD)-induced obesity. Mice were fed either a normal chow diet (NC), an HFD, or HFD plus nimesulide (HFD-nime) for 12 weeks. Body weight, hepatic COX-2 mRNA expression and triglyceride accumulation were significantly increased in the HFD group. Triglyceride accumulation was suppressed in the HFD-nime group. The mRNA expression of hepatic peroxisome proliferator-activated receptor γ (PPARγ) and the natural PPARγ agonist 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) were significantly increased in the HFD group and significantly suppressed in the HFD-nime group. Glucose metabolism was impaired in the HFD group compared with the NC group, and it was significantly improved in the HFD-nime group. In addition, the plasma insulin levels in the HFD group were increased compared with those in the NC group, and were decreased in the HFD-nime group. These results indicate that HFD-induced NAFLD is mediated by the increased hepatic expression of COX-2. We suggest that the production of 15d-PGJ2, which is mediated by COX-2, induces NAFLD and hepatic insulin resistance by activating PPARγ. Furthermore, the mRNA expression of tissue inhibitor of metalloproteinases-1 (TIMP-1), procollagen-1 and monocyte chemoattractant protein-1 (MCP-1), as well as the number of F4/80-positive hepatic (Kupffer) cells, were significantly increased in the HFD group compared with the NC group, and they were reduced by nimesulide. In conclusion, COX-2 may emerge as a molecular target for preventing the development of NAFLD and insulin resistance in diet-related obesity. PMID:27431935

  2. Indomethacin but not a selective cyclooxygenase-2 inhibitor inhibits esophageal adenocarcinogenesis in rats

    PubMed Central

    Esquivias, Paula; Morandeira, Antonio; Escartín, Alfredo; Cebrián, Carmelo; Santander, Sonia; Esteva, Francisco; García-González, María Asunción; Ortego, Javier; Lanas, Angel; Piazuelo, Elena

    2012-01-01

    AIM: To evaluate the effects of indomethacin [dual cyclooxygenase (COX)-1/COX-2 inhibitor] and 3-(3,4-difluorophenyl)-4-(4-(methylsulfonyl) phenyl)-2-(5H)-furanone (MF-tricyclic) (COX-2 selective inhibitor) in a rat experimental model of Barrett’s esophagus and esophageal adenocarcinoma. METHODS: A total of 112 surviving post-surgery rats were randomly divided into three groups: the control group (n = 48), which did not receive any treatment; the indomethacin group (n = 32), which were given 2 mg/kg per day of the COX-1/COX-2 inhibitor; and the MF-tricyclic group (n = 32), which received 10 mg/kg per day of the selective COX-2 inhibitor. Randomly selected rats were killed either 8 wk or 16 wk after surgery. The timing of the deaths was in accordance with a previous study performed in our group. Only rats that were killed at the times designated by the protocol were included in the study. We then assessed the histology and prostaglandin E2 (PGE2) expression levels in the rat esophagi. An additional group of eight animals that did not undergo esophagojejunostomy were included in order to obtain normal esophageal tissue as a control. RESULTS: Compared to a control group with no treatment (vehicle-treated rats), indomethacin treatment was associated with decreases in ulcerated esophageal mucosa (16% vs 35% and 14% vs 17%, 2 mo and 4 mo after surgery, respectively; P = 0.021), length of intestinal metaplasia in continuity with anastomosis (2 ± 1.17 mm vs 2.29 ± 0.75 mm and 1.25 ± 0.42 mm vs 3.5 ± 1.54 mm, 2 mo and 4 mo after surgery, respectively; P = 0.007), presence of intestinal metaplasia beyond anastomosis (20% vs 71.4% and 0% vs 60%, 2 mo and 4 mo after surgery, respectively; P = 0.009), severity of dysplasia (0% vs 71.4% and 20% vs 85.7% high-grade dysplasia, 2 mo and 4 mo after surgery, respectively; P = 0.002), and adenocarcinoma incidence (0% vs 57.1% and 0% vs 60%, 2 mo and 4 mo after surgery, respectively; P < 0.0001). Treatment with the selective COX

  3. Regression of experimentally induced endometriosis with a new selective cyclooxygenase-2 enzyme inhibitor.

    PubMed

    Kilico, Ismail; Kokcu, Arif; Kefeli, Mehmet; Kandemir, Bedri

    2014-01-01

    Cyclooxygenase-2 (COX-2) levels increase in women with endometriosis. COX-2, via increasing prostaglandin E2, contributes to an increase in vascular endothelial growth factor. In this way, COX-2 may contribute to the progression and continuity of endometriosis. We investigated the effect of dexketoprofen trometamol, a new selective COX-2 enzyme inhibitor, on experimentally induced endometriotic cysts. Experimental endometriotic cysts were created in 60 adult female Wistar albino rats. The rats were randomized to 2 equal groups, a control (group Con) and a dexketoprofen (group Dex) group. Six weeks later, cyst volumes were measured as in vivo (volume 1). Following volume 1 measurement, for 4 weeks group Con received 0.1 ml distilled water; group Dex received 0.375 mg dexketoprofen trometamol/0.1 ml distilled water, intramuscularly, twice a day. At the end of administration, the cyst volumes were remeasured (volume 2), and the cysts totally excised and weighed. Glandular (GT) and stromal tissues (ST) and natural killer (NK) cell contents in the cyst wall were scored. NK cell content and volume 1 were not different between the 2 groups. Volume 2, cyst weight, and GT and ST contents in group Dex were significantly lower than those in group Con. Dexketoprofen trometamol significantly reduced the development of experimentally induced endometriotic cysts both macroscopically and microscopically.

  4. Cyclooxygenase-2 inhibitors for non-small-cell lung cancer: A phase II trial and literature review.

    PubMed

    Yokouchi, Hiroshi; Kanazawa, Kenya; Ishida, Takashi; Oizumi, Satoshi; Shinagawa, Naofumi; Sukoh, Noriaki; Harada, Masao; Ogura, Shigeaki; Munakata, Mitsuru; Dosaka-Akita, Hirotoshi; Isobe, Hiroshi; Nishimura, Masaharu

    2014-09-01

    Several preclinical and clinical studies have demonstrated that cyclooxygenase-2 (COX-2) inhibitors are efficient for the treatment of non-small-cell lung cancer (NSCLC). However, two recent phase III clinical trials using COX-2 inhibitors in combination with platinum-based chemotherapy failed to demonstrate a survival benefit. Thus, validation and discussion regarding the usefulness of COX-2 inhibitors for patients with NSCLC are required. We conducted a prospective trial using COX-2 inhibitors for the treatment of 50 NSCLC patients accrued between April, 2005 and July, 2006. Patients with untreated advanced NSCLC received oral meloxicam (150 mg daily), carboplatin (area under the curve = 5 mg/ml × min on day 1) and docetaxel (60 mg/m 2 on day 1) every 3 weeks. The primary endpoint was response rate. The response and disease control rates were 36.0 and 76.0%, respectively. The time-to-progression (TTP) and overall survival (OS) were 5.7 months [95% confidence interval (CI): 4.6-6.7] and 13.7 months (95% CI: 11.4-15.9), respectively. The 1-year survival ratio was 56.0%. Grade 3 neuropathy was observed in only 1 patient. We performed tumor immunohistochemistry for COX-2 and p27 and investigated the correlation between their expression and clinical outcome. COX-2 expression in the tumor tended to correlate with a higher response rate (50.0% in the high- and 18.2% in the low-COX-2 group; P=0.092). Based on our results and previous reports, various trial designs, such as the prospective use of COX-2 inhibitors only for patients with COX-2-positive NSCLC, including the exploratory analysis of biomarkers associated with the COX-2 pathway, may be worth further consideration.

  5. Pharmacology of a selective cyclooxygenase-2 inhibitor, HN-56249: a novel compound exhibiting a marked preference for the human enzyme in intact cells.

    PubMed

    Berg, J; Fellier, H; Christoph, T; Kremminger, P; Hartmann, M; Blaschke, H; Rovensky, F; Towart, R; Stimmeder, D

    2000-04-01

    HN-56249 (3-(2,4-dichlorothiophenoxy)-4-methylsulfonylamino-benzenesu lfonamide), a highly selective cyclooxygenase (COX)-2 inhibitor, is the prototype of a novel series of COX inhibitors comprising bicyclic arylethersulfonamides; of this series HN-56249 is the most potent and selective human COX-2 inhibitor. HN-56249 inhibited platelet aggregation as a measure of COX-1 activity only moderately (IC50 26.5+/-1.7 microM). In LPS-stimulated monocytic cells the release of prostaglandin (PG) F1alpha as a measure of COX-2 was markedly inhibited (IC50 0.027+/-0.001 microM). Thus, HN-56249 showed an approximately 1000-fold selectivity for COX-2 in intact cells. In whole blood assays HN-56249 showed a potent inhibitory activity for COX-2 (IC50 0.78+/-0.37 microM) only. COX-1 was only weakly inhibited (IC50 867+/-181 microM). Hence, HN-56249 exhibited a greater than 1000-fold selectivity for whole blood COX-2. HN-56249 surpassed the COX-2 selectivities of the COX-2 selective inhibitors 3-cyclohexyloxy-4-methylsulfonylamino-nitrobenzene (NS-398) and 6-(2,4-difluorophenoxy)-5-methyl-sulfonylamino-1-indanone (flosulide) in the intact cell assays by eight- and threefold, respectively, and in the whole blood assays by approximately 40-fold. Following i.v. administration HN-56249 inhibited carrageenan-induced rat paw oedema only moderately (ID50 26.2+/-5.7 mg/kg, mean +/- SEM), approximately tenfold less potent than indomethacin (ID50 2.1+/-0.2 mg/kg, mean +/- SEM). After oral administration HN-56249 reversed thermal hyperalgesia in the carrageenan-induced rat paw oedema test, however, some 30-fold less potently than diclofenac. Comparing the inhibitory potency of HN-56249 against human COX-2 with that against murine COX-2 in intact cells revealed a 300-fold selectivity for the human enzyme. Similar effects were observed with other COX-2-selective arylethersulfonamides. In contrast, non-COX-2-selective arylethersulfonamides, including a highly selective COX-1 inhibitor, inhibited

  6. Effect of cyclooxygenase inhibitors on gentamicin-induced nephrotoxicity in rats.

    PubMed

    Hosaka, E M; Santos, O F P; Seguro, A C; Vattimo, M F F

    2004-07-01

    The frequent use of nonsteroidal anti-inflammatory drugs (NSAID) in combination with gentamicin poses the additional risk of nephrotoxic renal failure. Cyclooxygenase-1 (COX-1) is the main enzyme responsible for the synthesis of renal vasodilator prostaglandins, while COX-2 participates predominantly in the inflammatory process. Both are inhibited by non-selective NSAID such as indomethacin. Selective COX-2 inhibitors such as rofecoxib seem to have fewer renal side effects than non-selective inhibitors. The objective of the present study was to determine whether the combined use of rofecoxib and gentamicin can prevent the increased renal injury caused by gentamicin and indomethacin. Male Wistar rats (250-300 g) were treated with gentamicin (100 mg/kg body weight, ip, N = 7), indomethacin (5 mg/kg, orally, N = 7), rofecoxib (1.4 mg/kg, orally, N = 7), gentamicin + rofecoxib (100 and 1.4 mg/kg, respectively) or gentamicin + indomethacin (100 and 5 mg/kg, respectively, N = 8) for 5 days. Creatinine clearance and alpha-glutathione-S-transferase concentrations were used as markers of renal injury. Animals were anesthetized with ether and sacrificed for blood collection. The use of gentamicin plus indomethacin led to worsened renal function (0.199 +/- 0.019 ml/min), as opposed to the absence of a nephrotoxic effect of rofecoxib when gentamicin plus rofexicob was used (0.242 +/- 0.011 ml/min). These results indicate that COX-2-selective inhibitors can be used as an alternative treatment to conventional NSAID, especially in situations in which risk factors for nephrotoxicity are present.

  7. Binding of indomethacin methyl ester to cyclooxygenase-2. A computational study.

    PubMed

    Sárosi, Menyhárt-Botond

    2018-06-05

    Inhibitors selective towards the second isoform of prostaglandin synthase (cyclooxygenase, COX-2) are promising nonsteroidal anti-inflammatory drugs and antitumor medications. Methylation of the carboxylate group in the relatively nonselective COX inhibitor indomethacin confers significant COX-2 selectivity. Several other modifications converting indomethacin into a COX-2 selective inhibitor have been reported. Earlier experimental and computational studies on neutral indomethacin derivatives suggest that the methyl ester derivative likely binds to COX-2 with a similar binding mode as that observed for the parent indomethacin. However, docking studies followed by molecular dynamics simulations revealed two possible binding modes in COX-2 for indomethacin methyl ester, which differs from the experimental binding mode found for indomethacin. Both alternative binding modes might explain the observed COX-2 selectivity of indomethacin methyl ester. Graphical abstract Binding of indomethacin methyl ester to cyclooxygenase-2.

  8. "Selective" switching from non-selective to selective non-steroidal anti-inflammatory drugs.

    PubMed

    Bennett, Kathleen; Teeling, Mary; Feely, John

    2003-11-01

    Non-steroidal anti inflammatory drugs (NSAIDs) are thought to account for almost 25% of all reported adverse drug reactions, primarily gastrointestinal (GI) toxicity. Selective cyclo-oxygenase-2 (COX-2) inhibitors have been shown to preferentially inhibit activity of the COX-2 enzyme, which maintains anti-inflammatory activity but reduces GI toxicity. To determine the degree of switching from non-selective NSAIDs to COX-2 inhibitors and to examine the factors that were associated with switching. The General Medical Services prescription database (1.2 million people) was examined for NSAID prescriptions from December 1999 through November 2001. All those receiving non-selective NSAIDs and those switching to selective COX-2 inhibitors after at least 1 month on a non-selective NSAID were identified (non-switchers and switchers, respectively). Age, sex, dose of non-selective NSAID and co-prescribing of anti-peptic ulcer (anti-PU) drugs were considered between switchers and non-switchers, and odds ratios (OR) calculated using logistic regression. The effect of chronic use (> or =3 months prescription of a non-selective NSAID during the study period) on switching was also evaluated. A total of 81,538 of 480,573 patients (17%) initially prescribed non-selective NSAIDs were switched to COX-2 inhibitors during the study. The elderly (65 years or older) were more likely to be switched to a COX-2 inhibitor [OR=1.81, 95% confidence interval (CI) 1.79, 1.84]. Women were also more likely to be switched to COX-2 inhibitor therapy (OR=1.25, 95% CI 1.23, 1.27). Previous but not subsequent prescribing of anti-PU drugs was also associated with switching. Chronic users showed similar switching patterns. Prescribers are more likely to switch older female patients and those with a past history of peptic ulcers from non-selective NSAIDs to COX-2 inhibitors. This suggests that doctors take risk factors into consideration when prescribing NSAIDs. The relatively low rate of switching may

  9. Clinical pharmacokinetics and pharmacodynamics of celecoxib: a selective cyclo-oxygenase-2 inhibitor.

    PubMed

    Davies, N M; McLachlan, A J; Day, R O; Williams, K M

    2000-03-01

    Celecoxib, a nonsteroidal anti-inflammatory drug (NSAID), is the first specific inhibitor of cyclo-oxygenase-2 (COX-2) approved to treat patients with rheumatism and osteoarthritis. Preliminary data suggest that celecoxib also has analgesic and anticancer properties. The selective inhibition of COX-2 is thought to lead to a reduction in the unwanted effects of NSAIDs. Upper gastrointestinal complication rates in clinical trials are significantly lower for celecoxib than for traditional nonselective NSAIDs (e.g. naproxen, ibuprofen and diclofenac). The rate of absorption of celexocib is moderate when given orally (peak plasma drug concentration occurs after 2 to 4 hours), although the extent of absorption is not known. Celexocib is extensively protein bound, primarily to plasma albumin, and has an apparent volume of distribution of 455+/-166L in humans. The area under the plasma concentration-time curve (AUC) of celecoxib increases in proportion to increasing oral doses between 100 and 800mg. Celecoxib is eliminated following biotransformation to carboxylic acid and glucuronide metabolites that are excreted in urine and faeces, with little drug (2%) being eliminated unchanged in the urine. Celecoxib is metabolised primarily by the cytochrome P450 (CYP) 2C9 isoenzyme and has an elimination half-life of about 11 hours in healthy individuals. Racial differences in drug disposition and pharmacokinetic changes in the elderly have been reported for celecoxib. Plasma concentrations (AUC) of celecoxib appear to be 43% lower in patients with chronic renal insufficiency [glomerular filtration rate 2.1 to 3.6 L/h (35 to 60 ml/min)] compared with individuals with healthy renal function, with a 47% increase in apparent clearance. Compared with healthy controls, it has been reported that the steady-state AUC is increased by approximately 40% and 180% in patients with mild and moderate hepatic impairment, respectively. Celecoxib does not appear to interact with warfarin

  10. New Ferrocene Compounds as Selective Cyclooxygenase (COX-2) Inhibitors: Design, Synthesis, Cytotoxicity and Enzyme-inhibitory Activity.

    PubMed

    Farzaneh, Shabnam; Zeinalzadeh, Elnaz; Daraei, Bahram; Shahhosseini, Soraya; Zarghi, Afshin

    2018-01-01

    Due to the astonishing properties of ferrocene and its derivatives, it has a broad application in diverse areas. Numerous ferrocene derivatives demonstrated anti-proliferative activity. Also COX-2, as a key isoenzyme for production of prostaglandins, is frequently overexpressed in various cancers. It is now recognized that COX-2 over expression promotes tumorigenic functions which can be suppressed by COX-2 inhibitors, a phenomenon useful for the preventing of tumor progression. The combination of COX-2 inhibitors with other anti-cancer or cancer prevention drugs may reduce their side effects in future cancer prevention and treatment. Owing to high anticancer potential of ferrocene derivatives and considerable COX-2 inhibitory and cytotoxicity effects of our previously synthesized chalcones, we decided to incorporate the ferrocenyl moiety into appropriate COX-2 inhibitor chalcone based scaffold, to evaluate COX-2 inhibitory activity as well as anticancer activities. Chalcones were synthesized via clasien-schmidt condensation of methylsulfonyl aldehyde and acetyl ferrocene. Further different amines with solvent free and ultra sound condition were reacted with chalcones to have different 1-ferrocenyl-3-amino carbonyl compounds. Docking study was carried out with Auto Dock vina software. All the newly-synthesized compounds were evaluated for their cyclooxygenase-2 (COX-2) inhibitory activity using chemiluminescent enzyme assays as well as cytotoxicity activity against MCF-7 and T47D and fibroblast cell lines by MTT assay. In vitro COX-1/COX-2 inhibition studies demonstrated that all compounds were selective inhibitors of the COX-2 isozyme with IC50 values in the highly potent 0.05-0.12 µM range, and COX-2 selectivity indexes (SI) in the 148.3-313.7 range. These results indicated that either potency or selectivity of COX-2 inhibitory activity was affected by the nature and size of the substituents on C-3 of propane-1-one. Also anti-proliferative and toxicity

  11. CYCLOOXYGENASE COMPETITIVE INHIBITORS ALTER TYROSYL RADICAL DYNAMICS IN PROSTAGLANDIN H SYNTHASE-2

    PubMed Central

    Wu, Gang; Tsai, Ah-Lim; Kulmacz, Richard J.

    2009-01-01

    Reaction of prostaglandin H synthase (PGHS) isoforms 1 or 2 with peroxide forms a radical at Tyr385 that is required for cyclooxygenase catalysis, and another radical at Tyr504, whose function is unknown. Both tyrosyl radicals are transient and rapidly dissipated by reductants, suggesting that cyclooxygenase catalysis might be vulnerable to suppression by intracellular antioxidants. Our initial hypothesis was that the two radicals are in equilibrium and that their proportions and stability are altered upon binding of fatty acid substrate. As a test, we examined the effects of three competitive inhibitors (nimesulide, flurbiprofen and diclofenac) on the proportions and stability of the two radicals in PGHS-2 pretreated with peroxide. Adding nimesulide after ethyl peroxide led to some narrowing of the tyrosyl radical signal detected by EPR spectroscopy, consistent with a small increase in the proportion of the Tyr504 radical. Neither flurbiprofen nor diclofenac changed the EPR linewidth when added after peroxide. In contrast, the effects of cyclooxygenase inhibitors on the stability of the preformed tyrosyl radicals were dramatic. The half-life of total tyrosyl radical was 4.1 min in the control, >10 hr with added nimesulide, 48 min with flurbiprofen, and 0.8 min with diclofenac. Stabilization of the tyrosyl radicals was evident even at substoichiometric levels of nimesulide. Thus, the inhibitors had potent, structure-dependent, effects on the stability of both tyrosyl radicals. This dramatic modulation of tyrosyl radical stability by cyclooxygenase site ligands suggests a mechanism for regulating the reactivity of PGHS tyrosyl radicals with cellular antioxidants. PMID:19894761

  12. Molecular basis of cyclooxygenase enzymes (COXs) selective inhibition

    PubMed Central

    Limongelli, Vittorio; Bonomi, Massimiliano; Marinelli, Luciana; Gervasio, Francesco Luigi; Cavalli, Andrea; Novellino, Ettore; Parrinello, Michele

    2010-01-01

    The widely used nonsteroidal anti-inflammatory drugs block the cyclooxygenase enzymes (COXs) and are clinically used for the treatment of inflammation, pain, and cancers. A selective inhibition of the different isoforms, particularly COX-2, is desirable, and consequently a deeper understanding of the molecular basis of selective inhibition is of great demand. Using an advanced computational technique we have simulated the full dissociation process of a highly potent and selective inhibitor, SC-558, in both COX-1 and COX-2. We have found a previously unreported alternative binding mode in COX-2 explaining the time-dependent inhibition exhibited by this class of inhibitors and consequently their long residence time inside this isoform. Our metadynamics-based approach allows us to illuminate the highly dynamical character of the ligand/protein recognition process, thus explaining a wealth of experimental data and paving the way to an innovative strategy for designing new COX inhibitors with tuned selectivity. PMID:20215464

  13. Nimesulide, a cyclooxygenase-2 selective inhibitor, suppresses obesity-related non-alcoholic fatty liver disease and hepatic insulin resistance through the regulation of peroxisome proliferator-activated receptor γ.

    PubMed

    Tsujimoto, Shunsuke; Kishina, Manabu; Koda, Masahiko; Yamamoto, Yasutaka; Tanaka, Kohei; Harada, Yusuke; Yoshida, Akio; Hisatome, Ichiro

    2016-09-01

    Cyclooxygenase (COX)-2 selective inhibitors suppress non-alcoholic fatty liver disease (NAFLD); however, the precise mechanism of action remains unknown. The aim of this study was to examine how the COX-2 selective inhibitor nimesulide suppresses NAFLD in a murine model of high-fat diet (HFD)‑induced obesity. Mice were fed either a normal chow diet (NC), an HFD, or HFD plus nimesulide (HFD-nime) for 12 weeks. Body weight, hepatic COX-2 mRNA expression and triglyceride accumulation were significantly increased in the HFD group. Triglyceride accumulation was suppressed in the HFD-nime group. The mRNA expression of hepatic peroxisome proliferator-activated receptor γ (PPARγ) and the natural PPARγ agonist 15-deoxy-Δ12,14-prostaglandin J2 (15d‑PGJ2) were significantly increased in the HFD group and significantly suppressed in the HFD-nime group. Glucose metabolism was impaired in the HFD group compared with the NC group, and it was significantly improved in the HFD-nime group. In addition, the plasma insulin levels in the HFD group were increased compared with those in the NC group, and were decreased in the HFD-nime group. These results indicate that HFD-induced NAFLD is mediated by the increased hepatic expression of COX-2. We suggest that the production of 15d-PGJ2, which is mediated by COX-2, induces NAFLD and hepatic insulin resistance by activating PPARγ. Furthermore, the mRNA expression of tissue inhibitor of metalloproteinases-1 (TIMP‑1), procollagen-1 and monocyte chemoattractant protein-1 (MCP-1), as well as the number of F4/80-positive hepatic (Kupffer) cells, were significantly increased in the HFD group compared with the NC group, and they were reduced by nimesulide. In conclusion, COX-2 may emerge as a molecular target for preventing the development of NAFLD and insulin resistance in diet-related obesity.

  14. Contribution of vasoactive eicosanoids and nitric oxide production to the effect of selective cyclooxygenase-2 inhibitor, NS-398, on endotoxin-induced hypotension in rats.

    PubMed

    Tunctan, Bahar; Korkmaz, Belma; Cuez, Tuba; Kemal Buharalioglu, C; Sahan-Firat, Seyhan; Falck, John; Malik, Kafait U

    2010-11-01

    Our previous studies with the use of non-selective cyclooxygenase (COX) inhibitor, indomethacin, demonstrated that prostanoids produced during endotoxaemia increase inducible nitric oxide synthase (iNOS) protein expression and nitric oxide synthesis, and decrease cyctochrome P450 (CYP) 4A1 protein expression and CYP 4A activity. The results suggest that dual inhibition of iNOS and COX by indomethacin restores blood pressure presumably due to increased production of 20-hydroxyeicosatetraenoic acid (20-HETE) derived from CYP 4A in endotoxaemic rats. The present study examined whether increased levels of vasoconstrictor eicosanoids, 20-HETE, prostaglandin F(2α) (PGF(2α) )and thromboxane A(2) (TxA(2) ), would contribute to the effect of selective COX-2 inhibition to prevent endotoxin (ET)-induced fall in blood pressure associated with an increase in the production of vasodilator prostanoids, prostaglandin I(2) (PGI(2) ) and prostaglandin E(2) (PGE(2) ) and nitric oxide synthesis. Mean arterial blood pressure fell by 31 mmHg and heart rate (HR) rose by 90 beats/min. in male Wistar rats treated with ET (10 mg/kg, i.p.). The fall in mean arterial pressure and increase in HR were associated with increased levels of 6-keto-prostaglandin F(1α) (6-keto-PGF(1α) ), PGE(2) , TxB(2) , and nitrite in the serum, kidney, heart, thoracic aorta and/or superior mesenteric artery. Systemic and renal 20-HETE and PGF(2α) levels were also decreased in endotoxaemic rats. These effects of ET were prevented by a selective COX-2 inhibitor, N-(2-cyclohexyloxy-4-nitrophenyl)methansulphonamide (10 mg/kg, i.p.), given 1 hr after injection of ET. These data suggest that an increase in 20-HETE and PGF(2α) levels associated with decreased production of PGI(2) , PGE(2) , and TxA(2) , and nitric oxide synthesis contributes to the effect of selective COX-2 inhibitor to prevent the hypotension during rat endotoxaemia. © 2010 The Authors. Basic & Clinical Pharmacology & Toxicology © 2010 Nordic

  15. Inhibitory effect of selective cyclooxygenase-2 inhibitor etoricoxib on human organic anion transporter 3 (hOAT3).

    PubMed

    Honjo, Hiroaki; Uwai, Yuichi; Iwamoto, Kikuo

    2011-04-01

    It is well known that nonsteroidal anti-inflammatory drugs (NSAIDs) delay the elimination of methotrexate. One of the mechanisms is thought to be inhibition of methotrexate uptake via human organic anion transporter 3 (hOAT3, SLC22A8) in the renal proximal tubule by NSAIDs. In this study, we evaluated the inhibitory effects of selective cyclooxygenase-2 inhibitor etoricoxib on hOAT3 by uptake experiments using Xenopus laevis oocytes. The injection of hOAT3 cRNA stimulated the uptake of methotrexate into the oocytes, and its transport was inhibited by etoricoxib. Etoricoxib inhibited estrone sulfate uptake by hOAT3 dose dependently, and the 50% inhibitory concentration was estimated to be 9.8 µM. Eadie-Hofstee plot analysis showed that etoricoxib inhibited hOAT3 in a competitive manner. These findings show that etoricoxib has inhibitory effect on hOAT3, and that the potential is comparable to that of traditional NSAIDs. ©2011 Bentham Science Publishers Ltd.

  16. Crystal structure of rofecoxib bound to human cyclooxygenase-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlando, Benjamin J.; Malkowski, Michael G.

    2016-10-26

    Rofecoxib (Vioxx) was one of the first selective cyclooxygenase-2 (COX-2) inhibitors (coxibs) to be approved for use in humans. Within five years after its release to the public, Vioxx was withdrawn from the market owing to the adverse cardiovascular effects of the drug. Despite the widespread knowledge of the development and withdrawal of Vioxx, relatively little is known at the molecular level about how the inhibitor binds to COX-2. Vioxx is unique in that the inhibitor contains a methyl sulfone moiety in place of the sulfonamide moiety found in other coxibs such as celecoxib and valdecoxib. Here, new crystallization conditionsmore » were identified that allowed the structural determination of human COX-2 in complex with Vioxx and the structure was subsequently determined to 2.7- Å resolution. The crystal structure provides the first atomic level details of the binding of Vioxx to COX-2. As anticipated, Vioxx binds with its methyl sulfone moiety located in the side pocket of the cyclooxygenase channel, providing support for the isoform selectivity of this drug.« less

  17. The Selective Cyclooxygenase-2 Inhibitor, the Compound 11b Improves Haloperidol Induced Catatonia by Enhancing the Striatum Dopaminergic Neurotransmission

    PubMed Central

    Fathi-Moghaddam, Hadi; Shafiee Ardestani, Mehdi; Saffari, Mostafa; Jabbari Arabzadeh, Ali; Elmi, Mitra

    2010-01-01

    A substantial amount of evidence has proposed an important role for Cyclooxygenase-2 (COX-2) enzyme in brain diseases and affiliate disorders. The purpose of this research was studying the effects of COX-2 selective inhibition on haloperidol-induced catatonia in an animal model of drug overdose and Parkinson’s disease (PD). In this study, the effect of acute and Sub-chronic oral administration of a new selective COX-2 inhibitor, i.e. the compound 11b or 1-(Phenyl)-5-(4-methylsulfonylphenyl)-2-ethylthioimidazole, in a dosage of 2, 4 and 8 mg/kg on haloperidol-induced catatonia was evaluated and compared to the standard drug scopolamine (1 mg/kg) by microanalysis of Striatum dopaminergic neurotransmission. The results showed a very high potency for 11b in improving the catalepsy by enhancing the dopaminergic neurotranmission (p < 0.05). In addition, statistical analysis showed the dose- and time-dependent behavior of the observed protective effect of 11b against the haloperidol-induced catatonia and enhancement of the dopaminergic neurotransmission. These findings are additional pharmacological data that suggest the effectiveness of COX-2 inhibition in treatment of schizophreny-associated rigidity. PMID:24381603

  18. O-desmethylquinine as a cyclooxygenase-2 (COX-2) inhibitors using AutoDock Vina

    NASA Astrophysics Data System (ADS)

    Damayanti, Sophi; Mahardhika, Andhika Bintang; Ibrahim, Slamet; Chong, Wei Lim; Lee, Vannajan Sanghiran; Tjahjono, Daryono Hadi

    2014-10-01

    Computational approach was employed to evaluate the biological activity of novel cyclooxygenase-2 COX-2 inhibitor, O-desmethylquinine, in comparison to quinine as common inhibitor which can also be used an agent of antipyretic, antimalaria, analgesic and antiinflamation. The molecular models of the compound were constructed and optimized with the density function theory with at the B3LYP/6-31G (d,p) level using Gaussian 09 program. Molecular docking studies of the compounds were done to obtain the COX-2 complex structures and their binding energies were analyzed using the AutoDock Vina. The results of docking of the two ligands were comparable and cannot be differentiated from the energy scoring function with AutoDock Vina.

  19. Cannabidiolic acid as a selective cyclooxygenase-2 inhibitory component in cannabis.

    PubMed

    Takeda, Shuso; Misawa, Koichiro; Yamamoto, Ikuo; Watanabe, Kazuhito

    2008-09-01

    In the present study it was revealed that cannabidiolic acid (CBDA) selectively inhibited cyclooxygenase (COX)-2 activity with an IC(50) value (50% inhibition concentration) around 2 microM, having 9-fold higher selectivity than COX-1 inhibition. In contrast, Delta(9)-tetrahydrocannabinolic acid (Delta(9)-THCA) was a much less potent inhibitor of COX-2 (IC(50) > 100 microM). Nonsteroidal anti-inflammatory drugs containing a carboxyl group in their chemical structures such as salicylic acid are known to inhibit nonselectively both COX-1 and COX-2. CBDA and Delta(9)-THCA have a salicylic acid moiety in their structures. Thus, the structural requirements for the CBDA-mediated COX-2 inhibition were next studied. There is a structural difference between CBDA and Delta(9)-THCA; phenolic hydroxyl groups of CBDA are freed from the ring formation with the terpene moiety, although Delta(9)-THCA has dibenzopyran ring structure. It was assumed that the whole structure of CBDA is important for COX-2 selective inhibition because beta-resorcylic acid itself did not inhibit COX-2 activity. Methylation of the carboxylic acid moiety of CBDA led to disappearance of COX-2 selectivity. Thus, it was suggested that the carboxylic acid moiety in CBDA is a key determinant for the inhibition. Furthermore, the crude extract of cannabis containing mainly CBDA was shown to have a selective inhibitory effect on COX-2. Taken together, these lines of evidence in this study suggest that naturally occurring CBDA in cannabis is a selective inhibitor for COX-2.

  20. Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor.

    PubMed

    Kalle, Arunasree M; Rizvi, Arshad

    2011-01-01

    Multidrug resistance (MDR) is a major problem in the treatment of infectious diseases and cancer. Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)-specific inhibitor celecoxib would not only inhibit COX-2 but also help in the reversal of drug resistance in cancers by inhibiting the MDR1 efflux pump. Here, we demonstrate that celecoxib increases the sensitivity of bacteria to the antibiotics ampicillin, kanamycin, chloramphenicol, and ciprofloxacin by accumulating the drugs inside the cell, thus reversing MDR in bacteria.

  1. Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic.

    PubMed Central

    Masferrer, J L; Zweifel, B S; Manning, P T; Hauser, S D; Leahy, K M; Smith, W G; Isakson, P C; Seibert, K

    1994-01-01

    We have examined the role of cyclooxygenase 2 (COX-2) in a model of inflammation in vivo. Carrageenan administration to the subcutaneous rat air pouch induces a rapid inflammatory response characterized by high levels of prostaglandins (PGs) and leukotrienes in the fluid exudate. The time course of the induction of COX-2 mRNA and protein coincided with the production of PGs in the pouch tissue and cellular infiltrate. Carrageenan-induced COX-2 immunoreactivity was localized to macrophages obtained from the fluid exudate as well as to the inner surface layer of cells within the pouch lining. Dexamethasone inhibited both COX-2 expression and PG synthesis in the fluid exudate but failed to inhibit PG synthesis in the stomach. Furthermore, NS-398, a selective COX-2 inhibitor, and indomethacin, a nonselective COX-1/COX-2 inhibitor, blocked proinflammatory PG synthesis in the air pouch. In contrast, only indomethacin blocked gastric PG and, additionally, produced gastric lesions. These results suggest that inhibitors of COX-2 are potent antiinflammatory agents which do not produce the typical side effects (e.g., gastric ulcers) associated with the nonselective, COX-1-directed antiinflammatory drugs. Images PMID:8159730

  2. [Cyclooxygenase inhibitors and antiplatelet effect of acetylsalicylic acid. selective approach to nonsteroidal anti-inflammatory drugs in cardiological practice].

    PubMed

    Lomakin, N V; Gruzdev, A K

    2011-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) represent class of medicines which is wide concerning chemical structure and mechanism of action. In the light of contradictory data on efficacy and safety of NSAID in cardiovascular patients selection of most appropriate NSAID (basing on profile of efficacy and safety) in patients receiving continuous therapy with low dose aspirin appears to be a problem. In this paper we discuss peculiarities of drug interaction between cyclooxygenase inhibitors and acetylsalicylic acid, and principles of selection of adequate NSAI.

  3. Efficacy and tolerability of lumiracoxib, a highly selective cyclo-oxygenase-2 (COX2) inhibitor, in the management of pain and osteoarthritis

    PubMed Central

    Geusens, Piet; Lems, Willem

    2008-01-01

    Lumiracoxib is a COX2 inhibitor that is highly selective, is more effective than placebo on pain in osteoarthritis (OA), with similar analgesic and anti-inflammatory effects as non-selective NSAIDs and the selective COX2 inhibitor celecoxib, has a lower incidence of upper gastrointestinal (GI) side effects in patients not taking aspirin, and a similar incidence of cardiovascular (CV) side effects compared to naproxen or ibuprofen. In the context of earlier guidelines and taking into account the GI and CV safety results of the TARGET study, lumiracoxib had secured European Medicines Agency (EMEA) approval with as indication symptomatic treatment of OA as well as short-term management of acute pain associated with primary dysmenorrhea and following orthopedic or dental surgery. In the complex clinical context of efficiency and safety of selective and non-selective COX inhibitors, its prescription and use should be based on the risk and safety profile of the patient. In addition, there is further need for long-term GI and CV safety studies and general post-marketing safety on its use in daily practice. Meanwhile, at the time of submission of this manuscript, the EMEA has withdrawn lumiracoxib throughout Europe because of the risk of serious side effects affecting the liver. PMID:18728796

  4. Luteinized unruptured follicle syndrome increased by inactive disease and selective cyclooxygenase 2 inhibitors in women with inflammatory arthropathies.

    PubMed

    Micu, Mihaela C; Micu, Romeo; Ostensen, Monika

    2011-09-01

    Administration of nonsteroidal antiinflammatory drugs (NSAIDs) may impair fertility. The occurrence of the luteinized unruptured follicle (LUF) syndrome was assessed in women with inflammatory arthropathies exposed to NSAIDs and compared to that in nonexposed women. Fourteen patients with inflammatory rheumatic disease, 29 women with noninflammatory musculoskeletal conditions, and 449 women not exposed to NSAIDs were studied by intravaginal ultrasound monitoring for follicular development and ovulation in 1 or more menstrual cycles. Disease activity was assessed in inflammatory rheumatic disease. In 59 monitored cycles of patients with continuous NSAID exposure, 35.6% of LUF syndromes occurred compared to 3.4% of LUF syndromes in untreated women (P < 0.001). Etoricoxib was responsible for 75% of LUF syndromes in patients exposed continuously, whereas diclofenac generated 15% of LUF syndromes. An ibuprofen dosage of 1,600 mg/day did not induce LUF syndrome either at continuous periovulatory or discontinuous exposure. Interestingly, the frequency of LUF syndrome was 46.2% in patients with inactive inflammatory disease compared to 15% in patients with active disease (P = 0.023). Etoricoxib generated LUF syndrome in 94.2% of the cases with inactive disease versus 28.6% in patients with active disease (P = 0.003). NSAIDs increased the risk of the LUF syndrome, particularly in patients with inactive disease. The selective cyclooxygenase 2 (COX-2) inhibitor etoricoxib was a more potent inductor of LUF syndrome than nonselective COX inhibitors. Continuous periovulatory exposure to NSAIDs should be avoided when planning a pregnancy in patients with rheumatic diseases. Copyright © 2011 by the American College of Rheumatology.

  5. Preferential Cyclooxygenase 2 Inhibitors as a Nonhormonal Method of Emergency Contraception: A Look at the Evidence.

    PubMed

    Weiss, Erich A; Gandhi, Mona

    2016-04-01

    To review the literature surrounding the use of preferential cyclooxygenase 2 (COX-2) inhibitors as an alternative form of emergency contraception. MEDLINE (1950 to February 2014) was searched using the key words cyclooxygenase or COX-2 combined with contraception, emergency contraception, or ovulation. Results were limited to randomized control trials, controlled clinical trials, and clinical trials. Human trials that measured the effects of COX inhibition on female reproductive potential were included for review. The effects of the COX-2 inhibitors rofecoxib, celecoxib, and meloxicam were evaluated in 6 trials. Each of which was small in scope, enrolled women of variable fertility status, used different dosing regimens, included multiple end points, and had variable results. Insufficient evidence exists to fully support the use of preferential COX-2 inhibitors as a form of emergency contraception. Although all trials resulted in a decrease in ovulatory cycles, outcomes varied between dosing strategies and agents used. A lack of homogeneity in these studies makes comparisons difficult. However, success of meloxicam in multiple trials warrants further study. Larger human trials are necessary before the clinical utility of this method of emergency contraception can be fully appreciated. © The Author(s) 2014.

  6. Evaluation of selective cyclooxygenase-2 inhibitor-induced small bowel injury: randomized cross-over study compared with loxoprofen in healthy subjects.

    PubMed

    Mizukami, Kazuhiro; Murakami, Kazunari; Yamauchi, Mika; Matsunari, Osamu; Ogawa, Ryo; Nakagawa, Yoshifumi; Okimoto, Tadayoshi; Kodama, Masaaki; Fujioka, Toshio

    2013-05-01

    Non-steroidal anti-inflammatory drugs have the potential to injure the mucosa of the upper digestive tract and small bowel, whereas celecoxib (a selective cyclooxygenase-2 inhibitor) has less influence on the entire digestive tract mucosa. The present study was conducted to compare the extents of small bowel mucosal injury induced by celecoxib and loxoprofen (the most frequently used non-steroidal anti-inflammatory drugs in Japan). Ten healthy adult males were given celecoxib (200 mg/day, Group C) and loxoprofen (180 mg/day, Group L) in a cross-over design for 14 days, and the influence of each drug on small bowel mucosa was evaluated by comparing pre- and post-treatment capsule endoscopy findings. We measured the percentage of patients with small bowel mucosal injury following administration of these drugs as primary endpoint. Additionally, mean number of small bowel mucosal injuries per subject was analyzed as secondary endpoint. The percentage of subjects experiencing small bowel mucosal injury as primary endpoint was 10% in Group C and 70% in Group L after treatment. This magnitude of the difference of between Group C and Group L was statistically significant (P = 0.031). The number of small bowel mucosal injuries as secondary endpoint differed significantly between the two groups, and the influence of celecoxib on small bowel injury was less than that of loxoprofen. These results indicate that celecoxib has less influence on small bowel mucosa than loxoprofen and can be used safely. © 2012 The Authors. Digestive Endoscopy © 2012 Japan Gastroenterological Endoscopy Society.

  7. Cardiovascular Toxicity of Cyclooxygenase Inhibitors and Promising Natur a l Substitutes.

    PubMed

    Bahmani, Mahmoud; Sarrafchi, Amir; Shirzad, Hedayatollah; Asgari, Sedigheh; Rafieian-Kopaei, Mahmoud

    2017-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are a group of drugs which are used for a wide variety of diseases including pain and inflammatory conditions such as osteoarthritis, rheumatoid arthritis, musculoskeletal disorders, and other comorbid complications. However, this group of drugs have undesirable effects such as peptic ulcer, bleeding and renal failure. Some of these side effects are associated with or caused by generation of oxidative stress. Following the withdrawal of a cyclo-oxygenase-2 (COX-2) inhibitor drug, rofecoxib (VIOXX®) due to cardiovascular complications, scientists suggested that natural COX-2 inhibitors might provide valuable alternatives to COX inhibitors. Although, most of medicinal plants reduce pain and inflammation in a similar manner to synthetic medications, however, they often have fewer side effects and are better tolerated. The present review other than focusing on cardiovascular and some other complications of NSAIDs, is trying to introduce the natural alternative remedies for these medications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Selective cyclooxygenase-2 inhibitor suppresses renal thromboxane production but not proliferative lesions in the MRL/lpr murine model of lupus nephritis.

    PubMed

    Oates, Jim C; Halushka, Perry V; Hutchison, Florence N; Ruiz, Philip; Gilkeson, Gary S

    2011-02-01

    Proliferative lupus nephritis (LN) is marked by increased renal thromboxane (TX) A₂ production. Targeting the TXA₂ receptor or TXA₂ synthase effectively improves renal function in humans with LN and improves glomerular pathology in murine LN. This study was designed to address the following hypotheses: (1) TXA₂ production in the MRL/MpJ-Tnfrsf6(lpr)/J (MRL/lpr) model of proliferative LN is cyclooxygenase (COX)-2 dependent and (2) COX2 inhibitor therapy improves glomerular filtration rate (GFR), proteinuria, markers of innate immune response and glomerular pathology. Twenty female MRL/lpr and 20 BALB/cJ mice were divided into 2 equal treatment groups: (1) SC-236, a moderately selective COX2 inhibitor or (2) vehicle. After treatment from the age of 10 to 20 weeks, the effectiveness of inhibition of TXA₂ was determined by measuring urine TXB₂. Response endpoints measured at the age of 20 weeks were renal function (GFR), proteinuria, urine nitrate + nitrite (NO(x)) and glomerular histopathology. SC-236 therapy reduced surrogate markers of renal TXA₂ production during early, active glomerulonephritis. When this pharmacodynamic endpoint was reached, therapy improved GFR. Parallel reductions in markers of the innate immune response (urine NO(x)) during therapy were observed. However, the beneficial effect of SC-236 therapy on GFR was only transient, and renal histopathology was not improved in late disease. These data demonstrate that renal TXA2 production is COX2 dependent in murine LN and suggest that NO production is directly or indirectly COX2 dependent. However, COX2 inhibitor therapy in this model failed to improve renal pathology, making COX2 inhibition a less attractive approach for treating LN.

  9. Cyclooxygenase-2 selectivity of non-steroidal anti-inflammatory drugs and the risk of myocardial infarction and cerebrovascular accident.

    PubMed

    Abraham, N S; El-Serag, H B; Hartman, C; Richardson, P; Deswal, A

    2007-04-15

    To assess degree of cyclooxygenase-2 (COX-2) selectivity of a non-steroidal anti-inflammatory drug (NSAID) and risk of myocardial infarction (MI) or cerebrovascular accident (CVA). Prescription fill data were linked to medical records of a merged VA-Medicare dataset. NSAIDs were categorized by Cox-2 selectivity. Incidence of CVA and MI within 180 days of index prescription was assessed using Cox-proportional hazards models adjusted for gender, race, cardiovascular and pharmacological risk factors and propensity for prescription of highly COX-2 selective NSAIDs. Of 384,322 patients (97.5% men and 85.4% white), 79.4% were prescribed a poorly selective, 16.4% a moderately selective and 4.2% a highly selective NSAID. There were 985 incident cases of MI and 586 cases of CVA in >145 870 person-years. Highly selective agents had the highest rate of MI (12.3 per 1000 person-years; [95% CI: 12.2-12.3]) and CVA (8.1 per 1000 person-years; [95% CI: 8.0-8.2]). Periods without NSAID exposure were associated with lowest risk. In adjusted models, highly selective COX-2 selective NSAIDs were associated with a 61% increase in CVA and a 47% increase in MI, when compared with poorly selective NSAIDs. The risk of MI and CVA increases with any NSAID. Highly COX-2 selective NSAIDs confer the greatest risk.

  10. Water avoidance stress induces frequency through cyclooxygenase-2 expression: a bladder rat model.

    PubMed

    Yamamoto, Keisuke; Takao, Tetsuya; Nakayama, Jiro; Kiuchi, Hiroshi; Okuda, Hidenobu; Fukuhara, Shinichiro; Yoshioka, Iwao; Matsuoka, Yasuhiro; Miyagawa, Yasushi; Tsujimura, Akira; Nonomura, Norio

    2012-02-01

    Water avoidance stress is a potent psychological stressor and it is associated with visceral hyperalgesia, which shows degeneration of the urothelial layer mimicking interstitial cystitis. Cyclooxygenase-2 inhibitors have been recognized to ameliorate frequency both in clinical and experimental settings. We investigated the voiding pattern and cyclooxygenase-2 expression in a rat bladder model of water avoidance stress. After being subjected to water avoidance stress or a sham procedure, rats underwent metabolic cage analysis and cystometrography. Real time reverse transcription polymerase chain reaction was carried out to examine cyclooxygenase-2 messenger ribonucleic acid in bladders of rats. Protein expression of cyclooxygenase-2 was analyzed with immunohistochemistry and western blotting. Furthermore, the effects of the cyclooxygenase-2 inhibitor, etodolac, were investigated by carrying out cystometrography, immunohistochemistry and western blotting. Metabolic cage analysis and cystometrography showed significantly shorter intervals and less volume of voiding in water avoidance stress rats. Significantly higher expression of cyclooxygenase-2 messenger ribonucleic acid was verified by reverse transcription polymerase chain reaction. Immunohistochemistry and western blotting showed significantly higher cyclooxygenase-2 protein levels in water avoidance stress bladders. Furthermore, immunohistochemistry showed high cyclooxygenase-2 expression exclusively in smooth muscle cells. All water avoidance stress-induced changes were reduced by cyclooxygenase-2 inhibitor pretreatment. Chronic stress might cause frequency through cyclooxygenase-2 gene upregulation in bladder smooth muscle cells. Further study of cyclooxygenase-2 in the water avoidance stress bladder might provide novel therapeutic modalities for interstitial cystitis. © 2011 The Japanese Urological Association.

  11. Alpha-tocopherol succinate increases cyclooxygenase-2 activity: Tissue-specific action in pregnant rat uterus in vitro.

    PubMed

    Kothencz, Anna; Hajagos-Tóth, Judit; Csányi, Adrienn; Gáspár, Róbert

    2018-01-01

    Lipid soluble vitamin E plays a role in several physiological mechanisms, however, the mechanism of this action is controversial. We investigated how tocopherol (α-tocopherol acid succinate) influences the effects of cyclooxygenase inhibitors (COXi) in the smooth muscles. The contractility of the samples from 22-day-pregnant myometrium and non-pregnant myometrium and trachea was determined in an isolated organ bath in vitro. The activity of cyclooxygenase enzymes (COX) was also measured in the tissues. Diclofenac (10 -9 -10 -5 M) and rofecoxib (10 -10 -10 -5 M) decreased the contractions in non-pregnant and 22-day-pregnant uteri. Tocopherol (10 -7 M) increased the relaxant effect only in pregnant uteri. Both diclofenac (10 -9 -10 -5 M) and rofecoxib (10 -10 -10 -5 M) reduced the tracheal tones, while they were slightly intensified by pretreatment with tocopherol (10 -7 M). Tocopherol enhanced the contractions of pregnant uteri. Tocopherol (10 -7 M) itself can induce the cyclooxygenase activity and shift the COX-1 and COX-2 ratio to COX-2. The lowest COX activity was found in non-pregnant uteri, while the highest one was in the trachea. The COX enzymes, especially COX-2, play an important role in the contraction of pregnant uteri in rat. Tocopherol has a tissue specific COX-2 activity increasing effect in pregnant rat uterus but has no such action in non-pregnant uteri or tracheal tissue. Hereby, tocopherol may intensify selectively the uterine relaxing effect of COX-2 inhibitors in preterm contractions. However, tocopherol can enhance the contractile response of pregnant uterus that may increase the risk of premature contractions. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Outcomes studies of the gastrointestinal safety of cyclooxygenase-2 inhibitors.

    PubMed

    Scheiman, James M

    2002-01-01

    Short-term endoscopic studies of the highly selective cyclooxygenase-2 (COX-2) inhibitors (coxibs) rofecoxib and celecoxib have shown that these agents are well tolerated and have efficacy equivalent to nonselective nonsteroidal anti-inflammatory drugs (NSAIDs) with fewer adverse effects on the upper gastrointestinal (GI) tract. These studies are limited, however, as the detection of endoscopic lesions is not well correlated with symptomatic ulcers and ulcer complications. Outcomes studies of the GI safety are, therefore, essential to understanding how coxibs are likely to perform in a clinical practice setting. Four large outcomes studies (Vioxx Gastrointestinal Outcomes Research, VIGOR; Assessment of Difference Between Vioxx and Naproxen to Ascertain Gastrointestinal Tolerability and Effectiveness trial, ADVANTAGE; Celecoxib Long-term Arthritis Safety Study, CLASS; and the Successive Celecoxib Efficacy and Safety Studies, SUCCESS) examined the GI safety of rofecoxib and celecoxib in over 39,000 patients with osteoarthritis or rheumatoid arthritis. Results of these studies showed that patients taking a supratherapeutic dose of rofecoxib or celecoxib had significantly lower rates of GI-related adverse events than those taking a nonselective NSAID (naproxen, ibuprofen, or diclofenac). Reduced risk of upper GI events was seen in patients with multiple risk factors and in patients using low-dose aspirin and corticosteroids concomitantly with a coxib. Results of large outcomes studies provide support for the COX-2 hypothesis and demonstrate the long-term safety and tolerability of coxibs.

  13. Persistency of use of COX-2-specific inhibitors and non-specific non-steroidal anti-inflammatory drugs (NSAIDs) in Quebec.

    PubMed

    Moride, Y; Ducruet, T; Rochon, S; Lavoie, F

    2003-11-01

    The effectiveness of pharmacological therapies is dependent in part on patient persistency with the prescribed therapeutic regimen. In the case of non-specific non-steroidal anti-inflammatory drugs (NSAIDs), effectiveness is often compromised by undesirable side-effects, poor compliance or discontinuation of therapy. While patterns of utilization of non-specific NSAIDs have been investigated, few data are available on the patterns of persistency for cyclooxygenase (COX)-2-specific inhibitors. This study used a provincial health-care system database in Quebec, Canada, to determine the duration of treatment in new users of COX-2-specific inhibitors and non-specific NSAIDs over the first 3 months of treatment, and to characterize the factors associated with treatment persistency. Results demonstrate that the median duration of treatment was longer among patients initially prescribed COX-2-specific inhibitors (30 days and 23 days for celecoxib and rofecoxib respectively) than in those prescribed non-selective NSAIDs (10 days). Although the percentage of patients remaining on COX-2-specific drugs declined over the course of treatment, few patients on either celecoxib or rofecoxib switched drugs, either to the other COX-2-specific inhibitor or to non-specific NSAIDs. Factors associated with persistent drug use were: COX-2-specific inhibitors, age, and the use of gastroprotective agents either at treatment initiation or during follow-up. Dosage, chronic disease score and prescriber's specialty were only marginally associated with persistency. Prior use of gastroprotective agents was associated with lower persistency. Although the limitations of this study, which included lack of information on the indication for the prescription and the reason for switch or discontinuation, preclude definite conclusions regarding patterns of use of these drugs, the data suggest that the use of COX-2-specific inhibitors may result in increased persistency with treatment.

  14. Cyclooxygenase inhibitors: From pharmacology to clinical read-outs.

    PubMed

    Patrignani, Paola; Patrono, Carlo

    2015-04-01

    Acetylsalicylic acid (aspirin) is a prototypic cyclooxygenase (COX) inhibitor. It was synthesized serendipitously from a natural compound, i.e., salicylic acid, with known analgesic activity. This chemical modification, obtained for the first time in an industrial environment in 1897, endowed aspirin with the unique capacity of acetylating and inactivating permanently COX-isozymes. Traditional nonsteroidal anti-inflammatory drugs (tNSAIDs) were developed to mimic the pharmacological effects of aspirin, using aspirin-sensitive experimental models of pain and inflammation as the template for screening new chemical entities. Among the tNSAIDs, some were endowed with moderate COX- selectivity (e.g., diclofenac), but no studies of sufficient size and duration were performed to show any clinically relevant difference between different members of the class. Similarly, no serious attempts were made to unravel the mechanisms involved in the shared therapeutic and toxic effects of tNSAIDs until the discovery of COX-2. This led to characterizing their main therapeutic effects as being COX-2-dependent and their gastrointestinal (GI) toxicity as being COX-1-dependent, and provided a rationale for developing a new class of selective COX-2 inhibitors, the coxibs. This review will discuss the clinical pharmacology of tNSAIDs and coxibs, and the clinical read-outs of COX-isozyme inhibition. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance." Copyright © 2014 Elsevier B.V. All rights reserved.

  15. COX-2 inhibitor and non-selective NSAID use in those at increased risk of NSAID-related adverse events: a retrospective database study.

    PubMed

    Gadzhanova, Svetla; Ilomäki, Jenni; Roughead, Elizabeth E

    2013-01-01

    Adverse events related to analgesic use represent a challenge for optimizing treatment of pain in older people. The aim of this study was to determine whether non-selective non-steroidal anti-inflammatory drug (NS-NSAID) and cyclo-oxygenase (COX)-2 inhibitor use is appropriately targeted in those with a prior history of gastrointestinal (GI) events, myocardial infarction (MI) or stroke. A retrospective study of pharmacy claims data from the Australian Government Department of Veterans' Affairs was conducted, involving 288,912 veterans aged 55 years and over. Analgesic utilization from 2007 to 2009 was assessed. Three risk cohorts (veterans with prior hospitalization for GI bleed, MI or stroke) and a low-risk cohort were identified. Poisson regression was applied to test for a linear trend over the study period. The prevalence of analgesics dispensed in the overall study population was approximately 34 % between 2007 and 2009. COX-2 inhibitors were more widely dispensed than NS-NSAIDs in all those at risk of NSAID-related adverse events. At the end of 2009, the ratio was 5.1 % to 2.5 % in the GI cohort, 3.6 % to 3.2 % in the MI cohort and 3.6 % to 2.6 % in the stroke cohort. Although COX-2 inhibitors appeared to be preferred over NS-NSAIDs in those with a prior history of GI events, 2.5 % of patients were still using an NS-NSAID at the end of the study period. Consistent with treatment guidelines, in most of these cases, these drugs were co-dispensed with proton pump inhibitors. COX-2 inhibitors were used at slightly higher rates than NS-NSAIDs in those with a prior history of MI or stroke, which is not consistent with guidelines recommending NS-NSAID use.

  16. Impact of wines and wine constituents on cyclooxygenase-1, cyclooxygenase-2, and 5-lipoxygenase catalytic activity.

    PubMed

    Kutil, Zsofia; Temml, Veronika; Maghradze, David; Pribylova, Marie; Dvorakova, Marcela; Schuster, Daniela; Vanek, Tomas; Landa, Premysl

    2014-01-01

    Cyclooxygenases and lipoxygenases are proinflammatory enzymes; the former affects platelet aggregation, vasoconstriction, vasodilatation and later the development of atherosclerosis. Red wines from Georgia and central and western Europe inhibited cyclooxygenase-1 (COX-1) activity in the range of 63-94%, cyclooxygenase-2 (COX-2) activity in the range of 20-44% (tested at a concentration of 5 mL/L), and 5-lipoxygenase (5-LOX) activity in the range of 72-84% (at a concentration of 18.87 mL/L). White wines inhibited 5-LOX in the range of 41-68% at a concentration of 18.87 mL/L and did not inhibit COX-1 and COX-2. Piceatannol (IC50 = 0.76 μM) was identified as a strong inhibitor of 5-LOX followed by luteolin (IC50 = 2.25 μM), quercetin (IC50 = 3.29 μM), and myricetin (IC50 = 4.02 μM). trans-Resveratrol was identified as an inhibitor of COX-1 (IC50 = 2.27 μM) and COX-2 (IC50 = 3.40 μM). Red wine as a complex mixture is a powerful inhibitor of COX-1, COX-2, and 5-LOX, the enzymes involved in eicosanoid biosynthetic pathway.

  17. Impact of Wines and Wine Constituents on Cyclooxygenase-1, Cyclooxygenase-2, and 5-Lipoxygenase Catalytic Activity

    PubMed Central

    Temml, Veronika; Maghradze, David; Vanek, Tomas

    2014-01-01

    Cyclooxygenases and lipoxygenases are proinflammatory enzymes; the former affects platelet aggregation, vasoconstriction, vasodilatation and later the development of atherosclerosis. Red wines from Georgia and central and western Europe inhibited cyclooxygenase-1 (COX-1) activity in the range of 63–94%, cyclooxygenase-2 (COX-2) activity in the range of 20–44% (tested at a concentration of 5 mL/L), and 5-lipoxygenase (5-LOX) activity in the range of 72–84% (at a concentration of 18.87 mL/L). White wines inhibited 5-LOX in the range of 41–68% at a concentration of 18.87 mL/L and did not inhibit COX-1 and COX-2. Piceatannol (IC50 = 0.76 μM) was identified as a strong inhibitor of 5-LOX followed by luteolin (IC50 = 2.25 μM), quercetin (IC50 = 3.29 μM), and myricetin (IC50 = 4.02 μM). trans-Resveratrol was identified as an inhibitor of COX-1 (IC50 = 2.27 μM) and COX-2 (IC50 = 3.40 μM). Red wine as a complex mixture is a powerful inhibitor of COX-1, COX-2, and 5-LOX, the enzymes involved in eicosanoid biosynthetic pathway. PMID:24976682

  18. Cyclooxygenase inhibitors are potent sensitizers of prostate tumours to hyperthermia and radiation.

    PubMed

    Asea, A; Mallick, R; Lechpammer, S; Ara, G; Teicher, B A; Fiorentino, S; Stevenson, M A; Calderwood, S K

    2001-01-01

    It has previously been demonstrated that hyperthermia can activate prostaglandin synthesis and that prostaglandins are protective against hyperthermia. This study examined the use of inhibitors of prostaglandin synthesis on the response of prostate tumours to hyperthermia. The non-steroidal anti-inflammatory drugs (NSAID) ibuprofen and sulindac, known cyclooxygenase inhibitors that inhibit prostaglandin production, were effective hyperthermia sensitizers and augmented growth delay of DU-145 and PC-3 prostate tumours to combined radiation and hyperthermia treatment protocols. Pre-treatment of mice with ibuprofen and sulindac at hyperthermia sensitizing doses resulted in significant (p < 0.01) inhibition of hyperthemia-induced serum prostaglandin E2. These findings indicate that NSAID may have both sensitizing effects on prostate tumour growth and may function by inhibiting prostaglandin synthesis.

  19. Study of osteoarthritis treatment with anti-inflammatory drugs: cyclooxygenase-2 inhibitor and steroids.

    PubMed

    Cho, Hongsik; Walker, Andrew; Williams, Jeb; Hasty, Karen A

    2015-01-01

    Patients with osteoarthritis (OA), a condition characterized by cartilage degradation, are often treated with steroids, nonsteroidal anti-inflammatory drugs (NSAIDs), and cyclooxygenase-2 (COX-2) selective NSAIDs. Due to their inhibition of the inflammatory cascade, the drugs affect the balance of matrix metalloproteinases (MMPs) and inflammatory cytokines, resulting in preservation of extracellular matrix (ECM). To compare the effects of these treatments on chondrocyte metabolism, TNF-α was incubated with cultured chondrocytes to mimic a proinflammatory environment with increasing production of MMP-1 and prostaglandin E2 (PGE2). The chondrocytes were then treated with either a steroid (prednisone), a nonspecific COX inhibitor NSAID (piroxicam), or a COX-2 selective NSAID (celecoxib). Both prednisone and celecoxib decreased MMP-1 and PGE-2 production while the nonspecific piroxicam decreased only the latter. Both prednisone and celecoxib decreased gene expression of MMP-1 and increased expression of aggrecan. Increased gene expression of type II collagen was also noted with celecoxib. The nonspecific piroxicam did not show these effects. The efficacy of celecoxib in vivo was investigated using a posttraumatic OA (PTOA) mouse model. In vivo, celecoxib increases aggrecan synthesis and suppresses MMP-1. In conclusion, this study demonstrates that celecoxib and steroids exert similar effects on MMP-1 and PGE2 production in vitro and that celecoxib may demonstrate beneficial effects on anabolic metabolism in vivo.

  20. Anti-tumor effect and mechanism of cyclooxygenase-2 inhibitor through matrix metalloproteinase 14 pathway in PANC-1 cells.

    PubMed

    Li, Siyuan; Gu, Zhuoyu; Xiao, Zhiwei; Zhou, Ting; Li, Jun; Sun, Kan

    2015-01-01

    To investigate whether celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, can attenuate proliferation, migration, invasion and MMP-14 expression in pancreatic cancer cells PANC-1 and the possible anti-tumor mechanism of celecoxib. Human pancreatic cancer cell line PANC-1 cells were treated with diverse concentrations of celecoxib (20, 60, 100 μmol/L). Cell proliferation, invasion and migration capabilities were measured by MTT colorimetry, transwell invasion assay, and scratch assay separately. At the same time, the protein expression of COX-2 and MMP-14 was assessed by ELISA. The capabilities of proliferation, invasion and migration in PANC-1 cells were attenuated in a concentration-dependent manner after treated with celecoxib, followed by the down-regulation of the protein expression of COX-2 and MMP-14. In addition, MMP-14 expression was significantly positively correlated with COX-2 expression. COX-2 inhibitor celecoxib can inhibit the proliferation, invasion and migration of PANC-1 cells via down-regulating the expression of MMP-14 in a concentration-dependent manner, thus contributing to its anti-tumor effect in pancreatic cancer.

  1. Cyclo-oxygenase-2 contributes to constitutive prostanoid production in rat kidney and brain

    PubMed Central

    2005-01-01

    Cyclo-oxygenases (COXs) catalyse the synthesis of PGH2 (prostaglandin H2), which serves as the common substrate for the production of PGE2, PGD2, PGF2α, prostacyclin (or PGI2) and TXs (thromboxanes). While COX-1 is the major isoform responsible for prostanoid synthesis in healthy tissues, little information is available on the contribution of constitutive COX-2 to the various prostanoid synthetic pathways under non-inflammatory conditions. To evaluate further the role of COX-2 in prostanoid biosynthesis, rats were acutely treated with the selective COX-1 inhibitor SC-560 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethylpyrazole] or the selective COX-2 inhibitors MF tricyclic [3-(3,4-difluorophenyl)-4-(4-(methylsulphonyl)phenyl)-2-(5H)-furanone] and DFU [5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulphonyl)phenyl-2-(5H)-furanone]. Selected tissues were then processed for a complete analysis of their prostanoid content by liquid chromatography MS. Whereas the treatment with SC-560 caused a 60–70% inhibition in the total prostanoid content of most tissues examined, a significant decrease (35–50%) in total prostanoid content following selective COX-2 inhibition was solely detected for kidney and brain tissues. Analysis of the individual prostanoids reveals significant inhibition of 6-oxo-PGF1α, PGE2, PGD2, PGF2α and TXB2 in the kidney and inhibition of all these prostanoids with the exception of PGD2 in the forebrain. These results demonstrate that constitutively expressed COX-2 contributes to the production of prostanoids in kidney and brain for each of the PGE2, PGI2 and TXB2 pathways under non-inflammatory conditions. Approaches to modulate inflammation through specific inhibition of terminal synthases, such as mPGES-1 (microsomal PGE2 synthase-1), thus have the potential to differ from COX-2 inhibitors and non-selective non-steroidal anti-inflammatory drugs with regard to effects on constitutive prostanoid synthesis and on renal function. PMID

  2. Low-dose aspirin, non-steroidal anti-inflammatory drugs, selective COX-2 inhibitors and breast cancer recurrence

    PubMed Central

    Cronin-Fenton, Deirdre P; Heide-Jørgensen, Uffe; Ahern, Thomas P; Lash, Timothy L; Christiansen, Peer; Ejlertsen, Bent; Sørensen, Henrik T

    2017-01-01

    Background Aspirin, non-steroidal anti-inflammatory drugs (NSAIDs), and selective COX-2 inhibitors may improve outcomes in breast cancer patients. We investigated the association of aspirin, NSAIDs, and use of selective COX-2 inhibitors with breast cancer recurrence. Methods We identified incident stage I–III Danish breast cancer patients in the Danish Breast Cancer Cooperative Group registry, who were diagnosed during 1996–2008. Prescriptions for aspirin (>99% low-dose aspirin), NSAIDs, and selective COX-2 inhibitors were ascertained from the National Prescription Registry (NPR). Follow-up began on the date of breast cancer primary surgery and continued until the first of recurrence, death, emigration, or 01/01/2013. We used Cox regression models to compute hazard ratios (HR) and corresponding 95% confidence intervals (95%CI) associating prescriptions with recurrence, adjusting for confounders. Results We identified 34,188 breast cancer patients with 233,130 person-years of follow-up. Median follow-up was 7.1 years; 5,325 patients developed recurrent disease. Use of aspirin, NSAIDs, or selective COX-2 inhibitors was not associated with the rate of recurrence (HRadjusted aspirin=1.0, 95% CI=0.90, 1.1; NSAIDs=0.99, 95% CI=0.92, 1.1; selective COX-2 inhibitors=1.1, 95% CI=0.98, 1.2), relative to non-use. Pre-diagnostic use of the exposure drugs was associated with reduced recurrence rates (HRaspirin=0.92, 95%CI=0.82, 1.0; HRNSAIDs=0.86, 95%CI=0.81, 0.91; HRsCOX-2inhibitors=0.88, 95%CI=0.83, 0.95). Conclusions This prospective cohort study suggests that post-diagnostic prescriptions for aspirin, NSAIDs, and selective COX-2 inhibitors have little or no association with the rate of breast cancer recurrence. Pre-diagnostic use of the drugs was, however, associated with a reduced rate of breast cancer recurrence. PMID:27007644

  3. Cyclooxygenase inhibitory natural products: current status.

    PubMed

    Jachak, Sanjay M

    2006-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are of huge therapeutic benefit in the treatment of rheumatoid arthritis and various types of inflammatory conditions. The target for these drugs is cyclooxygenase (COX), a rate-limiting enzyme involved in the conversion of arachidonic acid into inflammatory prostaglandins. COX-2 selective inhibitors are believed to have the same anti-inflammatory, anti-pyretic and analgesic activities as that of nonselective inhibitor NSAIDs with little or none of the gastrointestinal side effects. Thus, in the last 6-7 years several selective COX-2 inhibitors including coxibs were discovered and introduced into clinic. Recent reports evidence that selective COX-2 inhibitor such as rofecoxib, can lead to thrombotic cardiovascular events through inhibition of prostacyclin formation in the infracted heart. This has resulted in withdrawal of rofecoxib from the clinic in September 2004. Moreover, the COX-2/COX-1 selectivity ratio is vital in the design of COX-2 inhibitory drugs, as it is clear from rofecoxib, which is more than 50-fold COX-2 selective. After looking at all above mentioned facts, natural product-based compounds seem better as these compounds are generally supposed to be devoid of severe side effects. The literature indicates that natural product-based compounds are mainly COX-1 selective. Through minor semi-synthetic changes in the structures, their selectivity towards COX-2 can be increased. The present review article addresses natural product COX inhibitors of plant and marine origin, reported during last ten years and their advantages, possible leads for further development and current status. In addition we describe our experience in the characterization, design and synthesis of potential natural COX inhibitors.

  4. Design, Synthesis and Biological Evaluation of Novel Peptide-Like Analogues as Selective COX-2 Inhibitors

    PubMed Central

    Ahmaditaba, Mohammad Ali; Houshdar Tehrani, Mohammad Hassan; Zarghi, Afshin; Shahosseini, Sorayya; Daraei, Bahram

    2018-01-01

    A new series of peptide-like derivatives containing different aromatic amino acids and possessing pharmacophores of COX-2 inhibitors as SO2Me or N3 attached to the para position of an end phenyl ring was synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. The synthetic reactions were based on the solid phase peptide synthesis method using Wang resin. One of the analogues, i.e., compound 2d, as the representative of these series was recognized as the most effective and the highest selective COX-2 inhibitor with IC50 value of 0.08 μM and COX-2 selectivity index of 351.2, among the other synthesized compounds. Molecular docking study was operated to determine possible binding models of compound 2d to COX-2 enzyme. The study showed that the p-azido-phenyl fragment of 2d occupied inside the secondary COX-2 binding site (Arg513, and His90). The structure-activity relationships acquired disclosed that compound 2d with 4-(azido phenyl) group as pharmacophore and histidine as amino acid gives the essential geometry to provide inhibition of the COX-2 enzyme with high selectivity. Compound 2d can be a good candidate for the development of new hits of COX-2 inhibitors.

  5. Effects of a cyclooxygenase-2 preferential inhibitor in young healthy dogs exposed to air pollution: a pilot study.

    PubMed

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Gómez-Garza, Gilberto; Carrasco-Portugal, Miriam Del C; Pérez-Guillé, Beatriz; Flores-Murrieta, Francisco J; Pérez-Guillé, Gabriela; Osnaya, Norma; Juárez-Olguín, Hugo; Monroy, Maria E; Monroy, Silvia; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Patel, Sarjubhai A; Kumarathasan, Prem; Vincent, Renaud; Henríquez-Roldán, Carlos; Torres-Jardón, Ricardo; Maronpot, Robert R

    2009-08-01

    Residency in cities with high air pollution is associated with neuroinflammation and neurodegeneration in healthy children, young adults, and dogs. Nonsteroidal anti-inflammatory drugs may offer neuroprotection. The authors measured the plasma concentrations of 3-nitrotyrosine and the cerebro-spinal-fluid concentrations of prostaglandin E2 metabolite and the oligomeric form of amyloid derived diffusible ligand; measured the mRNA expression of cyclooxygenase-2, interleukin 1beta, CD14, and Aquaporin-4 in target brain areas; and evaluated brain MRI, cognition, and neuropathology in 8 dogs treated with a preferential cyclooxygenase-2 inhibitor (Nimesulide) versus 7 untreated litter-matched Mexico City dogs. Nimesulide significantly decreased nitrotyrosine in plasma (p < .0001), frontal gray IL1beta (p = .03), and heart IL1beta (p = .02). No effect was seen in mRNA COX2, amyloid, and PGE2 in CSF or the MRI white matter lesions. All exposed dogs exhibited olfactory bulb and frontal accumulation of Abeta(42) in neurons and blood vessels and frontal vascular subcortical pathology. White matter hyperintense MRI frontal lesions were seen in 4/6 non-treated and 6/8 treated dogs. Nonsteroidal anti-inflammatory drugs may offer limited neuroprotection in the setting of severe air pollution exposures. The search for potentially beneficial drugs useful to ameliorate the brain effects of pollution represents an enormous clinical challenge.

  6. ASP6537, a novel highly selective cyclooxygenase-1 inhibitor, exerts potent antithrombotic effect without "aspirin dilemma".

    PubMed

    Sakata, Chinatsu; Kawasaki, Tomihisa; Kato, Yasuko; Abe, Masaki; Suzuki, Ken-ichi; Ohmiya, Makoto; Funatsu, Toshiyuki; Morita, Yoshiaki; Okada, Masamichi

    2013-07-01

    Aspirin inhibits both the cyclooxygenase (COX)-1-dependent production of thromboxane A2 (TXA2) in platelets and COX-2-dependent production of anti-aggregatory prostaglandin I2 (PGI2) in vessel walls, resulting in "aspirin dilemma." Our objective is to investigate whether ASP6537 can overcome aspirin dilemma and exert a potent antithrombotic effect without a concurrent ulcerogenic effect. We evaluated the inhibitory effects of ASP6537 on recombinant human COX-1 (rhCOX-1) and rhCOX-2 activities using a COX-1/2 selectivity test. To determine whether ASP6537 induces aspirin dilemma, we examined the effects of ASP6537 on in vitro TXA2 and PGI2 metabolite production from platelets and isolated aorta of guinea pigs, and on plasma concentrations of TXA2 and PGI2 metabolites in aged rats. Finally, we evaluated the antithrombotic effects and ulcerogenic activity of ASP6537 using an electrically induced carotid arterial thrombosis model and a gastric ulcer model in guinea pigs. The IC50 ratios of rhCOX-2 to rhCOX-1 for ASP6537 and aspirin were >142,000 and 1.63 fold, respectively. ASP6537 inhibited TXA2 production more selectively than aspirin in in vitro and in vivo TXA2/PGI2 production studies. ASP6537 exerted a significant antithrombotic effect at ≥3 mg/kg, while aspirin tended to inhibit thrombosis at 300 mg/kg but it was not statistically significant. Further, ASP6537 did not induce ulcer formation at 100 mg/kg, whereas aspirin exhibited an ulcerogenic effect at doses of ≥100 mg/kg. ASP6537 functions as a highly selective COX-1 inhibitor with a superior ability to aspirin for normalizing TXA2/PGI2 balance, and exerts antithrombotic effect without ulcerogenic effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Short-term exposure of platelets to glucose impairs inhibition of platelet aggregation by cyclooxygenase inhibitors.

    PubMed

    Kobzar, Gennadi; Mardla, Vilja; Samel, Nigulas

    2011-01-01

    Aspirin treatment reduces cardiovascular events and deaths in high-risk non-diabetic patients, but not in patients suffering from diabetes. In these patients, hyperglycemia has been found to cause reduced platelet sensitivity to aspirin. It is supposed that long-term exposure of platelets to glucose leads to non-enzymatic glycosylation and impairs aspirin inhibition of platelet aggregation. On the other hand, short-term exposure of platelets to glucose also attenuates the effect of aspirin on platelets. The aim of the present work was to analyse the effect of short-term exposure of glucose on the inhibition of platelet aggregation by aspirin and other cyclooxygenase (COX) inhibitors. Already a 15 min exposure of platelets to glucose impaired aspirin inhibition of the platelet aggregation induced by collagen, thrombin, adenosine diphosphate (ADP), and arachidonic acid (AA). Aspirin inhibition of platelet aggregation in platelet-rich plasma (PRP) was attenuated by 5.6, 11.2, 16.8, and 22.4 mM of glucose in a concentration-dependent way. The same effect was observed with indomethacin and acetaminophen used as cyclooxygenase inhibitors instead of aspirin. N-methyl-L-arginine, an inhibitor of nitric oxide synthase, prevented the effect of glucose on aspirin, indomethacin and acetaminophen inhibition of platelet aggregation. Other monosaccharides, for example fructose and galactose, impaired aspirin inhibition as did glucose. Lactic acid (0.1, 0.2, 0.4, 0.8 mM), the end product of anaerobic glycolysis in platelets, impaired the inhibition of platelet aggregation with aspirin in a concentration-dependent way but did not affect indomethacin. It is suggested that lactic acid might be a mediator of the effect of glucose on aspirin inhibition in platelets.

  8. Select Dietary Phytochemicals Function as Inhibitors of COX-1 but Not COX-2

    PubMed Central

    Li, Haitao; Zhu, Feng; Sun, Yanwen; Li, Bing; Oi, Naomi; Chen, Hanyong; Lubet, Ronald A.; Bode, Ann M.; Dong, Zigang

    2013-01-01

    Recent clinical trials raised concerns regarding the cardiovascular toxicity of selective cyclooxygenase-2 (COX-2) inhibitors. Many active dietary factors are reported to suppress carcinogenesis by targeting COX-2. A major question was accordingly raised: why has the lifelong use of phytochemicals that likely inhibit COX-2 presumably not been associated with adverse cardiovascular side effects. To answer this question, we selected a library of dietary-derived phytochemicals and evaluated their potential cardiovascular toxicity in human umbilical vein endothelial cells. Our data indicated that the possibility of cardiovascular toxicity of these dietary phytochemicals was low. Further mechanistic studies revealed that the actions of these phytochemicals were similar to aspirin in that they mainly inhibited COX-1 rather than COX-2, especially at low doses. PMID:24098505

  9. Immunosuppression in irradiated breast cancer patients: In vitro effect of cyclooxygenase inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasserman, J.; Blomgren, H.; Rotstein, S.

    1989-01-01

    We have documented in previous studies that local irradiation therapy for breast cancer caused severe lymphopenia with reduction of both T and non-T lymphocytes. Non-T cells were relatively more depressed but recovered within six months. The recovery of T cells, on the other hand, remained incomplete 10-11 years after irradiation. Several lymphocyte functions were also severely impaired. An association was found between prognosis and postirradiation mitogen reactivity of lymphocytes from these patients. Mortality up to eight years after irradiation was significantly higher in patients with low postirradiation phytohemagglutinin and PPD reactivity. The radiation induced decrease in mitogenic response seemed mainlymore » to be caused by immunosuppressive monocytes, which suggests that the underlying mechanism might be mediated by increased production of prostaglandins by monocytes. For this reason we examined the effect of some cyclooxygenase products on different lymphocyte functions and found that prostaglandins A2, D2, and E2 inhibited phytohemagglutinin response in vitro. Natural killer cell activity was also reduced by prostaglandins D2 and E2. The next step was to examine various inhibitors of cyclooxygenase in respect to their capacity to revert irradiation-induced suppression of in vitro mitogen response in lymphocytes from breast cancer patients. It was demonstrated that Diclofenac Na (Voltaren), Meclofenamic acid, Indomethacin, and lysin-mono-acetylsalicylate (Aspisol) could enhance mitogen responses both before and after radiation therapy. This effect was most pronounced at completion of irradiation. On a molar basis, Diclofenac Na was most effective followed by Indomethacin, Meclofenamic acid, and lysin-monoacetylsalicylate.« less

  10. Protective effects of amifostine and cyclooxygenase-1 inhibitor against normal human epidermal keratinocyte toxicity induced by methotrexate and 5-fluorouracil.

    PubMed

    Maiguma, Takayoshi; Kaji, Hiroaki; Makino, Kazutaka; Teshima, Daisuke

    2009-07-01

    Our study aimed to find more effective protective agents against mucosa toxicity induced by methotrexate and 5-fluorouracil. We focused on the relationship between oral mucositis and keratinocyte injury and examined methotrexate and 5-fluorouracil-induced cytotoxicity in normal human epidermal keratinocyte cell lines. Cell viability and superoxide radical activity were measured based on converting WST-1 (4-[3-(4-indophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzen disulfonate) to a water-soluble formazan dye. DNA synthesis by 5-bromo-2'-deoxyuridine incorporation was measured as an indirect parameter of cell proliferation. Allopurinol and amifostine were used as the radical scavengers. l-glutamine was used as a mucosa-protective agent. A cyclooxygenase inhibitor interrupting the production of hydroxyl radicals in the arachidonic acid cascade was also examined. 5-fluorouracil and methotrexate caused cytotoxicity due to the activation of intracellular superoxide radicals specifically on normal human epidermal keratinocytes. From the electron spin resonance study, it was found that allopurinol was a superoxide radical scavenger, while amifostine was hydroxyl radical scavenger. Allopurinol showed no effect on the cytotoxicity due to 5-fluorouracil and methotrexate. The cell injury induced by methotrexate was restored by amifostine. However, the cell injury induced by 5-fluorouracil was markedly recovered by a selective cyclooxygenase-1 inhibitor compared to amifostine. It was suggested that amifostine and cyclooxygenase-1 inhibitor could be useful protective agents against methotrexate and 5-fluorouracil chemotherapeutic toxicity. Additionally, this in vitro cell injury model using normal human epidermal keratinocytes may be useful for understanding the pathophysiology of oral mucositis induced by chemotherapeutic agents.

  11. Molecular Basis for Cyclooxygenase Inhibition by the Non-steroidal Anti-inflammatory Drug Naproxen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duggan, Kelsey C.; Walters, Matthew J.; Musee, Joel

    Naproxen ((S)-6-methoxy-{alpha}-methyl-2-naphthaleneacetic acid) is a powerful non-selective non-steroidal anti-inflammatory drug that is extensively used as a prescription and over-the-counter medication. Naproxen exhibits gastrointestinal toxicity, but its cardiovascular toxicity may be reduced compared with other drugs in its class. Despite the fact that naproxen has been marketed for many years, the molecular basis of its interaction with cyclooxygenase (COX) enzymes is unknown. We performed a detailed study of naproxen-COX-2 interactions using site-directed mutagenesis, structure-activity analysis, and x-ray crystallography. The results indicate that each of the pendant groups of the naphthyl scaffold are essential for COX inhibition, and only minimal substitutions aremore » tolerated. Mutation of Trp-387 to Phe significantly reduced inhibition by naproxen, a result that appears unique to this inhibitor. Substitution of S or CH2 for the O atom of the p-methoxy group yielded analogs that were not affected by the W387F substitution and that exhibited increased COX-2 selectivity relative to naproxen. Crystallization and x-ray analysis yielded structures of COX-2 complexed to naproxen and its methylthio analog at 1.7 and 2.3 {angstrom} resolution, respectively. The combination of mutagenesis, structure analysis, and x-ray crystallography provided comprehensive information on the unique interactions responsible for naproxen binding to COX-2.« less

  12. Mechanism of acetaminophen inhibition of cyclooxygenase isoforms.

    PubMed

    Ouellet, M; Percival, M D

    2001-03-15

    Acetaminophen has similar analgesic and antipyretic properties to nonsteroidal antiinflammatory drugs (NSAIDs), which act via inhibition of cyclooxygenase enzymes. However, unlike NSAIDs, acetaminophen is at best weakly antiinflammatory. The mechanism by which acetaminophen exerts its therapeutic action has yet to be fully determined, as under most circumstances, acetaminophen is a very weak cyclooxygenase inhibitor. The potency of acetaminophen against both purified ovine cyclooxygenase-1 (oCOX-1) and human cyclooxygenase-2 (hCOX-2) was increased approximately 30-fold by the presence of glutathione peroxidase and glutathione to give IC50 values of 33 microM and 980 microM, respectively. Acetaminophen was found to be a good reducing agent of both oCOX-1 and hCOX-2. The results are consistent with a mechanism of inhibition of acetaminophen in which it acts to reduce the active oxidized form of COX to the resting form. Inhibition would therefore be more effective under conditions of low peroxide concentration, consistent with the known tissue selectivity of acetaminophen.

  13. Cyclooxygenase-2 is an obligatory factor in methamphetamine-induced neurotoxicity.

    PubMed

    Thomas, David M; Kuhn, Donald M

    2005-05-01

    Methamphetamine causes persistent damage to dopamine nerve endings of the striatum. The mechanisms underlying its neurotoxicity are not fully understood, but considerable evidence points to oxidative stress as a probable mechanism. A recent microarray analysis of gene expression changes caused by methamphetamine revealed that cyclooxygenase-2 (COX-2) was induced along with its transcription factor CCAAT/enhancer-binding protein (Thomas DM, Francescutti-Verbeem DM, Liu X, and Kuhn DM, 2004). We report presently that methamphetamine increases striatal expression of COX-2 protein. Cyclooxygenase-1 (COX-1) expression was not changed. Mice bearing a null mutation of the gene for COX-2 were resistant to methamphetamine-induced neurotoxicity. COX-1 knockouts, like wild-type mice, showed extensive dopamine nerve terminal damage. Selective inhibitors of COX-1 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethyl pyrazole (SC-560)], COX-2 [N-[2-(cyclohexyloxy)-4-nitrophenyl] methanesulfonamide (NS-398), rofecoxib], or COX-3 (antipyrine) or a nonselective inhibitor of the COX-1/2 isoforms (ketoprofen) did not protect mice from neurotoxicity. Finally, methamphetamine did not change striatal prostaglandin E(2) content. Taken together, these data suggest that COX-2 is an obligatory factor in methamphetamine-induced neurotoxicity. The functional aspect of COX-2 that contributes to drug-induced neurotoxicity does not appear to be its prostaglandin synthetic capacity. Instead, the peroxidase activity associated with COX-2, which can lead to the formation of reactive oxygen species and dopamine quinones, can account for its role.

  14. Inhibition of untransformed prostaglandin H(2) production and stretch-induced contraction of rabbit pulmonary arteries by indoxam, a selective secretory phospholipase A(2) inhibitor.

    PubMed

    Tanabe, Yoshiyuki; Saito, Maki; Morikawa, Yuki; Kamataki, Akihisa; Sawai, Takashi; Hirose, Masamichi; Nakayama, Koichi

    2011-01-01

    Involvement of secretory phospholipase A(2) (sPLA(2)) in the stretch-induced production of untransformed prostaglandin H(2) (PGH(2)) in the endothelium of rabbit pulmonary arteries was investigated. The stretch-induced contraction was significantly inhibited by indoxam, a selective inhibitor for sPLA(2), and NS-398, a selective inhibitor for cyclooxygenase-2 (COX-2). Indoxam inhibited the RGD-sensitive-integrin-independent production of untransformed PGH(2), but did not affect the RGD-sensitive-integrin-dependent production of thromboxane A(2) (TXA(2)). These results suggest that the stretch-induced contraction and untransformed PGH(2) production was mediated by sPLA(2)-COX-2 pathway, making it a new possible target for pharmacological intervention of pulmonary artery contractility.

  15. First-dose analgesic effect of the cyclo-oxygenase-2 selective inhibitor lumiracoxib in osteoarthritis of the knee: a randomized, double-blind, placebo-controlled comparison with celecoxib [NCT00267215

    PubMed Central

    Wittenberg, Ralf H; Schell, Ernest; Krehan, Gerhard; Maeumbaed, Roland; Runge, Hans; Schlüter, Peter; Fashola, Taiwo OA; Thurston, Helen J; Burger, Klaus J; Trechsel, Ulrich

    2006-01-01

    Cyclo-oxygenase-2 selective inhibitors are frequently used to manage osteoarthritis. We compared the analgesic efficacy of the novel cyclo-oxygenase-2 selective inhibitor lumiracoxib (Prexige®) versus placebo and celecoxib in patients with knee osteoarthritis. This seven day, double-blind, placebo and active comparator controlled, parallel group study included 364 patients aged ≥50 years with moderate-to-severe symptomatic knee osteoarthritis. Patients received lumiracoxib 400 mg/day (four times the recommended chronic dose in osteoarthritis; n = 144), placebo (n = 75), or celecoxib 200 mg twice daily (n = 145). The primary variable was actual pain intensity difference (100 mm visual–analogue scale) between baseline and the mean of three hour and five hour assessments after the first dose. Actual pain intensity difference, average and worst pain, pain relief and functional status (Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC™]) were measured over seven days. Patients also completed a global evaluation of treatment effect at study end or premature discontinuation. For the primary variable, the superiority of lumiracoxib versus placebo, the noninferiority of lumiracoxib versus celecoxib, and the superiority of lumiracoxib versus celecoxib were assessed by closed test procedure adjusting for multiplicity, thereby maintaining the overall 5% significance level. In addition, celecoxib was assessed versus placebo in a predefined exploratory manner to assess trial sensitivity. Lumiracoxib provided better analgesia than placebo 3–5 hours after the first dose (P = 0.004) through to study end. The estimated difference between lumiracoxib and celecoxib 3–5 hours after the first dose was not significant (P = 0.185). Celecoxib was not significantly different from placebo in this analysis (P = 0.069). At study end 13.9% of lumiracoxib-treated patients reported complete pain relief versus 5.5% and 5.3% of celecoxib and placebo recipients

  16. The selective cyclooxygenase-2 inhibitor parecoxib markedly improves the ability of the duodenum to regulate luminal hypertonicity in anaesthetized rats.

    PubMed

    Sedin, J; Sjöblom, M; Nylander, O

    2012-07-01

    To examine whether the prevention of post-operative duodenal ileus by treatment with parecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, affects the ability of the duodenum to respond to luminal hypertonicity. The proximal duodenums of anaesthetized rats were perfused with hypertonic NaCl solutions with osmolalities of 400, 500, 600 or 700 mOsm kg(-1) , and the effects on mucosal permeability, motility, transepithelial net fluid flux and effluent osmolality were assessed in the absence (control) and presence of parecoxib. Parecoxib-treated, but not control animals, exhibited duodenal contractions, which were reduced by the nicotinic receptor antagonists mecamylamine and hexamethonium and by perfusion with 700 mOsm kg(-1) . All animals responded to luminal hypertonicity with induction of net fluid secretion, which peaked at an osmolality of 500 mOsm kg(-1) . The hypertonicity-induced increases in fluid secretion were twofold greater in parecoxib-treated than in control rats and attenuated by nicotinic receptor blockade. The decrease in luminal osmolality correlated with the osmolality of the perfusion solution in both control and parecoxib-treated animals but the osmolality-adjusting capability was markedly better in the latter group. Rats exposed to duodenal luminal distension responded to hypertonicity with a greater fluid secretion and a larger decrease in luminal osmolality than control rats. Perfusion with 700 mOsm kg(-1) increased mucosal permeability in parecoxib-treated animals only, an effect abolished by nicotinic receptor blockade. Parecoxib markedly improved the ability of the duodenum to sense and to decrease luminal hypertonicity by a mechanism most probably involving inhibition of COX-2 and stimulation of nicotinic acetylcholine receptors. © 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.

  17. Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale)

    PubMed Central

    van Breemen, Richard B.; Tao, Yi; Li, Wenkui

    2010-01-01

    Ginger roots have been used to treat inflammation and have been reported to inhibit cyclooxygenase (COX). Ultrafiltration liquid chromatography mass spectrometry was used to screen a chloroform partition of a methanol extract of ginger roots for COX-2 ligands, and 10-gingerol, 12-gingerol, 8-shogaol, 10-shogaol, 6-gingerdione, 8-gingerdione, 10-gingerdione, 6-dehydro-10-gingerol, 6-paradol, and 8-paradol bound to the enzyme active site. Purified 10-gingerol, 8-shogaol and 10-shogaol inhibited COX-2 with IC50 values of 32 μM, 17.5 μM and 7.5 μM, respectively. No inhibition of COX-1 was detected. Therefore, 10-gingerol, 8-shogaol and 10-shogaol inhibit COX-2 but not COX-1, which can explain, in part, anti-inflammatory properties of ginger. PMID:20837112

  18. The Bitter Barricading of Prostaglandin Biosynthesis Pathway: Understanding the Molecular Mechanism of Selective Cyclooxygenase-2 Inhibition by Amarogentin, a Secoiridoid Glycoside from Swertia chirayita

    PubMed Central

    Sundar, Durai; Thorat, Sunil S.

    2014-01-01

    Swertia chirayita, a medicinal herb inhabiting the challenging terrains and high altitudes of the Himalayas, is a rich source of essential phytochemical isolates. Amarogentin, a bitter secoiridoid glycoside from S. chirayita, shows varied activity in several patho-physiological conditions, predominantly in leishmaniasis and carcinogenesis. Experimental analysis has revealed that amarogentin downregulates the cyclooxygenase-2 (COX-2) activity and helps to curtail skin carcinogenesis in mouse models; however, there exists no account on selective inhibition of the inducible cyclooxygenase (COX) isoform by amarogentin. Hence the computer-aided drug discovery methods were used to unravel the COX-2 inhibitory mechanism of amarogentin and to check its selectivity for the inducible isoform over the constitutive one. The generated theoretical models of both isoforms were subjected to molecular docking analysis with amarogentin and twenty-one other Food and Drug Authority (FDA) approved lead molecules. The post-docking binding energy profile of amarogentin was comparable to the binding energy profiles of the FDA approved selective COX-2 inhibitors. Subsequent molecular dynamics simulation analysis delineated the difference in the stability of both complexes, with amarogentin-COX-2 complex being more stable after 40ns simulation. The total binding free energy calculated by MMGBSA for the amarogentin-COX-2 complex was −52.35 KCal/mol against a binding free energy of −8.57 KCal/mol for amarogentin-COX-1 complex, suggesting a possible selective inhibition of the COX-2 protein by the natural inhibitor. Amarogentin achieves this potential selectivity by small, yet significant, structural differences inherent to the binding cavities of the two isoforms. Hypothetically, it might block the entry of the natural substrates in the hydrophobic binding channel of the COX-2, inhibiting the cyclooxygenation step. To sum up briefly, this work highlights the mechanism of the possible

  19. The bitter barricading of prostaglandin biosynthesis pathway: understanding the molecular mechanism of selective cyclooxygenase-2 inhibition by amarogentin, a secoiridoid glycoside from Swertia chirayita.

    PubMed

    Shukla, Shantanu; Bafna, Khushboo; Sundar, Durai; Thorat, Sunil S

    2014-01-01

    Swertia chirayita, a medicinal herb inhabiting the challenging terrains and high altitudes of the Himalayas, is a rich source of essential phytochemical isolates. Amarogentin, a bitter secoiridoid glycoside from S. chirayita, shows varied activity in several patho-physiological conditions, predominantly in leishmaniasis and carcinogenesis. Experimental analysis has revealed that amarogentin downregulates the cyclooxygenase-2 (COX-2) activity and helps to curtail skin carcinogenesis in mouse models; however, there exists no account on selective inhibition of the inducible cyclooxygenase (COX) isoform by amarogentin. Hence the computer-aided drug discovery methods were used to unravel the COX-2 inhibitory mechanism of amarogentin and to check its selectivity for the inducible isoform over the constitutive one. The generated theoretical models of both isoforms were subjected to molecular docking analysis with amarogentin and twenty-one other Food and Drug Authority (FDA) approved lead molecules. The post-docking binding energy profile of amarogentin was comparable to the binding energy profiles of the FDA approved selective COX-2 inhibitors. Subsequent molecular dynamics simulation analysis delineated the difference in the stability of both complexes, with amarogentin-COX-2 complex being more stable after 40ns simulation. The total binding free energy calculated by MMGBSA for the amarogentin-COX-2 complex was -52.35 KCal/mol against a binding free energy of -8.57 KCal/mol for amarogentin-COX-1 complex, suggesting a possible selective inhibition of the COX-2 protein by the natural inhibitor. Amarogentin achieves this potential selectivity by small, yet significant, structural differences inherent to the binding cavities of the two isoforms. Hypothetically, it might block the entry of the natural substrates in the hydrophobic binding channel of the COX-2, inhibiting the cyclooxygenation step. To sum up briefly, this work highlights the mechanism of the possible

  20. Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO.

    PubMed

    Basu, Gargi D; Tinder, Teresa L; Bradley, Judy M; Tu, Tony; Hattrup, Christine L; Pockaj, Barbara A; Mukherjee, Pinku

    2006-08-15

    We report that administration of celecoxib, a specific cyclooxygenase-2 (COX-2) inhibitor, in combination with a dendritic cell-based cancer vaccine significantly augments vaccine efficacy in reducing primary tumor burden, preventing metastasis, and increasing survival. This combination treatment was tested in MMTV-PyV MT mice that develop spontaneous mammary gland tumors with metastasis to the lungs and bone marrow. Improved vaccine potency was associated with an increase in tumor-specific CTLs. Enhanced CTL activity was attributed to a significant decrease in levels of tumor-associated IDO, a negative regulator of T cell activity. We present data suggesting that inhibiting COX-2 activity in vivo regulates IDO expression within the tumor microenvironment; this is further corroborated in the MDA-MB-231 human breast cancer cell line. Thus, a novel mechanism of COX-2-induced immunosuppression via regulation of IDO has emerged that may have implications in designing future cancer vaccines.

  1. COX-2 chronology

    PubMed Central

    Hawkey, C J

    2005-01-01

    The role of selective cyclooxygenase (COX)-2 inhibitors in medical practice has become controversial since evidence emerged that their use is associated with an increased risk of myocardial infarction. Selective COX-2 inhibitors were seen as successor to non-selective non-steroidal anti-inflammatory drugs, in turn successors to aspirin. The importance of pain relief means that such drugs have always attracted attention. The fact that they work through inhibition of cyclooxygenase, are widespread, and have multiple effects also means that adverse effects that were unanticipated (even though predictable) have always emerged. In this paper I therefore present an historical perspective so that the lessons of the past may be applied to the present. PMID:16227351

  2. Binding Energy Calculation of Patchouli Alcohol Isomer Cyclooxygenase Complexes Suggested as COX-1/COX-2 Selective Inhibitor

    PubMed Central

    Mahdi, Chanif; Nurdiana, Nurdiana; Kikuchi, Takheshi; Fatchiyah, Fatchiyah

    2014-01-01

    To understand the structural features that dictate the selectivity of the two isoforms of the prostaglandin H2 synthase (PGHS/COX), the three-dimensional (3D) structure of COX-1/COX-2 was assessed by means of binding energy calculation of virtual molecular dynamic with using ligand alpha-Patchouli alcohol isomers. Molecular interaction studies with COX-1 and COX-2 were done using the molecular docking tools by Hex 8.0. Interactions were further visualized by using Discovery Studio Client 3.5 software tool. The binding energy of molecular interaction was calculated by AMBER12 and Virtual Molecular Dynamic 1.9.1 software. The analysis of the alpha-Patchouli alcohol isomer compounds showed that all alpha-Patchouli alcohol isomers were suggested as inhibitor of COX-1 and COX-2. Collectively, the scoring binding energy calculation (with PBSA Model Solvent) of alpha-Patchouli alcohol isomer compounds (CID442384, CID6432585, CID3080622, CID10955174, and CID56928117) was suggested as candidate for a selective COX-1 inhibitor and CID521903 as nonselective COX-1/COX-2. PMID:25484897

  3. Conceptualizing adverse outcome pathways for cyclooxygenase inhibitors using transcriptomic and metabolomic characterization

    EPA Science Inventory

    Cyclooxygenase (COX) inhibition is of concern in fish because COX inhibitors (e.g., ibuprofen) are ubiquitous in aquatic systems/fish tissues, and can disrupt synthesis of prostaglandins that modulate a variety of essential biological functions (e.g., reproduction). This study ut...

  4. The roles of the cyclo-oxygenases types one and two in prostaglandin synthesis in human fetal membranes at term.

    PubMed

    Sawdy, R J; Slater, D M; Dennes, W J; Sullivan, M H; Bennett, P R

    2000-01-01

    The aim of this study was to determine the relative contributions of cyclo-oxygenase (COX) types 1 and 2 to prostaglandin synthesis at term. Fetal membranes were collected from 6 pregnancies after elective caesarean section at term, prior to labour. The presence of COX-1 and COX-2 protein was determined using Western analysis. The relative contributions of the two isoforms of COX to prostaglandin synthesis were determined by incubation of fetal membrane discs with either a COX-2 selective inhibitor, SC236, or a COX-1 selective inhibitor, SC560, and measurement of prostaglandin release during 24 h using enzyme-linked immuno-sorbent assay (ELISA). Both COX-1 and COX-2 protein were demonstrated in amnion and chorion-decidua. The COX-2 selective inhibitor, SC-236, significantly reduced prostaglandin synthesis, both in its COX-2 specific and higher, non-specific concentration ranges. The COX-1 selective inhibitor, SC-560, had no effect upon prostaglandin synthesis in its COX-1 specific concentration range, but did significantly reduce prostaglandin synthesis at higher, non-selective concentrations. Fetal membranes contain both COX-1 and COX-2 at term, but only COX-2 contributes towards prostaglandin synthesis. COX-2 selective NSAI drugs will be as effective as non-selective agents in inhibition of fetal membrane prostaglandin synthesis and may represent a new strategy for tocolysis. Copyright 2000 Harcourt Publishers Ltd.

  5. Design, Synthesis, and Evaluation of New Tripeptides as COX-2 Inhibitors.

    PubMed

    Vernieri, Ermelinda; Gomez-Monterrey, Isabel; Milite, Ciro; Grieco, Paolo; Musella, Simona; Bertamino, Alessia; Scognamiglio, Ilaria; Alcaro, Stefano; Artese, Anna; Ortuso, Francesco; Novellino, Ettore; Sala, Marina; Campiglia, Pietro

    2013-01-01

    Cyclooxygenase (COX) is a key enzyme in the biosynthetic pathway leading to the formation of prostaglandins, which are mediators of inflammation. It exists mainly in two isoforms COX-1 and COX-2. The conventional nonsteroidal anti-inflammatory drugs (NSAIDs) have gastrointestinal side effects because they inhibit both isoforms. Recent data demonstrate that the overexpression of these enzymes, and in particular of cyclooxygenases-2, promotes multiple events involved in tumorigenesis; in addition, numerous studies show that the inhibition of cyclooxygenases-2 can delay or prevent certain forms of cancer. Agents that inhibit COX-2 while sparing COX-1 represent a new attractive therapeutic development and offer a new perspective for a further use of COX-2 inhibitors. The present study extends the evaluation of the COX activity to all 20(3) possible natural tripeptide sequences following a rational approach consisting in molecular modeling, synthesis, and biological tests. Based on data obtained from virtual screening, only those peptides with better profile of affinity have been selected and classified into two groups called S and E. Our results suggest that these novel compounds may have potential as structural templates for the design and subsequent development of the new selective COX-2 inhibitors drugs.

  6. [Cyclooxygenase-2: a new therapeutic target in atherosclerosis?].

    PubMed

    Páramo, José A; Beloqui, Oscar; Orbe, Josune

    2006-05-27

    It is now widely accepted that atherosclerosis is a complex chronic inflammatory disorder of the arterial tree associated with several risk factors. From the initial phases to eventual rupture of vulnerable atherosclerotic plaques, a low-grade inflammation, also termed microinflammation, appears to play a key pathogenetic role. Systemic inflammatory markers (C reactive protein, cytokines adhesion molecules) also play a role in this process. Experimental and clinical evidence suggests that cyclooxygenase-2 (COX-2), an enzyme which catalyzes the generation of prostaglandins from arachidonic acid, also contributes to lesion formation. Recent reports by our group have demonstrated increased monocyte COX-2 activity and the production of prostaglandin E2 in relation to cardiovascular risk factors and subclinical atherosclerosis in asymptomatic subjects. Our findings support the notion that the COX-2/prostaglandin E2 axis may have a role, raising the question as to whether its selective inhibition might be an attractive therapeutic target in atherosclerosis. COX-2 inhibitors, collectively called "coxibs" (celecoxib, rofecoxib, valdecoxib, lumiracoxib, etc), held a promise as anti-inflammatory drugs without the some of the side effects of aspirin or non steroidal antiinflammatory agents. However, clinical studies raise several clinically relevant questions as to their beneficial role in atherosclerosis prevention, because of increased thrombogenicity and cardiovascular risk, and therefore coxibs should be restricted in atherosclerosis-prone patients.

  7. Comparison of nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 (COX-2) inhibitors use in Australia and Nova Scotia (Canada)

    PubMed Central

    Barozzi, Nadia; Sketris, Ingrid; Cooke, Charmaine; Tett, Susan

    2009-01-01

    AIMS Cyclooxygenase-2 (COX-2) inhibitors were marketed aggressively and their rapid uptake caused safety concerns and budgetary challenges in Canada and Australia. The objectives of this study were to compare and contrast COX-2 inhibitors and nonselective nonsteroidal anti-inflammatory drug (ns-NSAID) use in Nova Scotia (Canada) and Australia and to identify lessons learned from the two jurisdictions. METHODS Ns-NSAID and COX-2 inhibitor Australian prescription data (concession beneficiaries) were downloaded from the Medicare Australia website (2001–2006). Similar Pharmacare data were obtained for Nova Scotia (seniors and those receiving Community services). Defined daily doses per 1000 beneficiaries day−1 were calculated. COX-2 inhibitors/all NSAIDs ratios were calculated for Australia and Nova Scotia. Ns-NSAIDs were divided into low, moderate and high risk for gastrointestinal side-effects and the proportions of use in each group were determined. Which drugs accounted for 90% of use was also calculated. RESULTS Overall NSAID use was different in Australia and Nova Scotia. However, ns-NSAID use was similar. COX-2 inhibitor dispensing was higher in Australia. The percentage of COX-2 inhibitor prescriptions over the total NSAID use was different in the two countries. High-risk NSAID use was much higher in Australia. Low-risk NSAID prescribing increased in Nova Scotia over time. The low-risk/high-risk ratio was constant throughout over the period in Australia and increased in Nova Scotia. CONCLUSIONS There are significant differences in Australia and Nova Scotia in use of NSAIDs, mainly due to COX-2 prescribing. Nova Scotia has a higher proportion of low-risk NSAID use. Interventions to provide physicians with information on relative benefits and risks of prescribing specific NSAIDs are needed, including determining their impact. PMID:19660008

  8. Involvement of hypothalamic cyclooxygenase-2, interleukin-1β and melanocortin in the development of docetaxel-induced anorexia in rats.

    PubMed

    Yamamoto, Kouichi; Asano, Keiko; Ito, Yui; Matsukawa, Naoki; Kim, Seikou; Yamatodani, Atsushi

    2012-12-16

    Docetaxel, a taxane derivative, is frequently used for the treatment of advanced breast cancer, non-small cell lung cancer, and metastatic prostate cancer. Clinical reports demonstrated that docetaxel-based chemotherapy often induces anorexia, but the etiology is not completely understood. To elucidate possible mechanisms, we investigated the involvement of central interleukin (IL)-1β, cyclooxygenase (COX)-2, and pro-opiomelanocortin (POMC) in the development of docetaxel-induced anorexia in rats. Rats received docetaxel (10mg/kg, i.p.) with or without pretreatment with selective COX-2 inhibitors, NS-398 (10 and 30 mg/kg, i.g.) or celecoxib (10 and 30 mg/kg, i.g.), and a non-selective COX inhibitor, indomethacin (10mg/kg, i.g.), then food intake was monitored for 24h after administration. We also examined expression of IL-1β, COX-2, and POMC mRNA in hypothalamus of docetaxel-treated rats and the effect of a COX-2 inhibitor on docetaxel-induced POMC mRNA expression. Food consumption in rats was significantly decreased 24h after administration of docetaxel and anorexia was partially reversed by all COX inhibitors. Administration of docetaxel increased IL-1β, COX-2, and POMC mRNA expression in the hypothalamus of rats. The time required to increase these gene expressions was comparable to the latency period of docetaxel-induced anorexia in rats. In addition, pretreatment with COX-2 inhibitors suppressed docetaxel-induced expression of POMC mRNA. These results suggest that IL-1β and COX-2 mRNA expression and subsequent activation of POMC in the hypothalamus may contribute to the development of docetaxel-induced anorexia in rats. Copyright © 2012. Published by Elsevier Ireland Ltd.

  9. Pharmacokinetic and pharmacodynamic interaction between the lipoxygenase inhibitor MK-0591 and the cyclooxygenase inhibitor ibuprofen in man.

    PubMed

    Depré, M; Van Hecken, A; Verbesselt, R; De Lepeleire, I; Schwartz, J; Porras, A; Larson, P; Lin, C; De Schepper, P J

    1998-01-01

    Twelve healthy male subjects participated in a double-blind, placebo-controlled, randomized, three-period, crossover study to investigate the safety, tolerability, biochemical activity and pharmacokinetics of ibuprofen, a cyclooxygenase inhibitor and MK-0591, a 5-lipoxygenase inhibitor, given as single entities and in combination. Each subject received for three consecutive 8-day periods, separated by 1 week washout, each of the following treatments: ibuprofen 600 mg three times a day with 125 mg MK-0591 twice a day, ibuprofen 600 mg three times a day with placebo for MK-0591 and MK-0591 125 mg twice a day with placebo for ibuprofen. Cyclooxygenase inhibition was measured by platelet thromboxane (TxB2) generation test, and 5-lipoxygenase inhibition was measured by urinary leukotriene E4 excretion and ex vivo LTB4 generation in calcium-ionophore-stimulated blood. TxB2 suppression on day 8 by ibuprofen was not affected by concomitant treatment with MK-0591. MK-0591 alone had no effect on TxB2 generation. Leukotriene biosynthesis was inhibited by more than 90% by MK-0591 alone and by combined treatment, while ibuprofen alone had no effect. Coadministration appears to affect the pharmacokinetics of MK-0591 (decrease of area under the plasma concentration-vs-time curve [AUC] and maximum plasma concentrations [Cmax]) and of ibuprofen (increase of AUC and half-lives of elimination (t1/2) of the (S)-enantiomer, increase of t1/2 the (R)-enantiomer). Combined treatment had no effect on creatinine clearance nor on the number and intensity of the reported adverse experiences.

  10. The cyclooxygenase-2 inhibitor parecoxib inhibits surgery-induced proinflammatory cytokine expression in the hippocampus in aged rats.

    PubMed

    Peng, Mian; Wang, Yan-Lin; Wang, Fei-Fei; Chen, Chang; Wang, Cheng-Yao

    2012-11-01

    Neuroinflammatory response triggered by surgery has been increasingly reported to be associated with postoperative cognitive dysfunction. Proinflammatory cytokines, such as interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α), play a pivotal role in mediating surgery-induced neuroinflammation. The role of cyclooxygenase-2 (COX-2), a critical regulator in inflammatory response, in surgery-induced neuroinflammation is still unknown. The aim of the study was to investigate the changes of COX-2 expression and prostaglandin E2 (PGE2) production in the hippocampus in aged rats following partial hepatectomy. The effects of selective COX-2 inhibitor (parecoxib) on hippocampal proinflammatory cytokine expression were also evaluated. Aged rats were randomly divided into three groups: control (n = 10), surgery (n = 30), and parecoxib (n = 30). Control animals received sterile saline to control for the effects of injection stress. Rats in the surgery group received partial hepatectomy under isoflurane anesthesia and sterile saline injection. Rats in the parecoxib group received surgery and anesthesia similar to surgery group rats, and parecoxib treatment. On postanesthetic days 1, 3, and 7, animals were euthanized to assess levels of hippocampal COX-2 expression, PGE2 production, and cytokines IL-1β and TNF-α expression. The effects of parecoxib on proinflammatory cytokine expression were also assessed. Partial hepatectomy significantly increased COX-2 expression, PGE2 production, and proinflammatory cytokine expression in the hippocampus in aged rats on postoperative days 1 and 3. Parecoxib inhibited hippocampal IL-1β and TNF-α expression through downregulation of the COX-2/PGE2 pathway. COX-2 may play a critical role in surgery-induced neuroinflammation. The COX-2 inhibitor may be a promising candidate for treatment of neuroinflammation caused by surgical trauma. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Cyclooxygenase-2 inhibitor induces apoptosis in breast cancer cells in an in vivo model of spontaneous metastatic breast cancer.

    PubMed

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Lagioia, Michelle; Gendler, Sandra J; Mukherjee, Pinku

    2004-11-01

    Cyclooxygenase-2 (COX-2) inhibitors are rapidly emerging as a new generation of therapeutic drug in combination with chemotherapy or radiation therapy for the treatment of cancer. The mechanisms underlying its antitumor effects are not fully understood and more thorough preclinical trials are needed to determine if COX-2 inhibition represents a useful approach for prevention and/or treatment of breast cancer. The purpose of this study was to evaluate the growth inhibitory mechanism of a highly selective COX-2 inhibitor, celecoxib, in an in vivo oncogenic mouse model of spontaneous breast cancer that resembles human disease. The oncogenic mice carry the polyoma middle T antigen driven by the mouse mammary tumor virus promoter and develop primary adenocarcinomas of the breast. Results show that oral administration of celecoxib caused significant reduction in mammary tumor burden associated with increased tumor cell apoptosis and decreased proliferation in vivo. In vivo apoptosis correlated with significant decrease in activation of protein kinase B/Akt, a cell survival signaling kinase, with increased expression of the proapoptotic protein Bax and decreased expression of the antiapoptotic protein Bcl-2. In addition, celecoxib treatment reduced levels of proangiogenic factor (vascular endothelial growth factor), suggesting a role of celecoxib in suppression of angiogenesis in this model. Results from these preclinical studies will form the basis for assessing the feasibility of celecoxib therapy alone or in combination with conventional therapies for treatment and/or prevention of breast cancer.

  12. Spherical harmonics coefficients for ligand-based virtual screening of cyclooxygenase inhibitors.

    PubMed

    Wang, Quan; Birod, Kerstin; Angioni, Carlo; Grösch, Sabine; Geppert, Tim; Schneider, Petra; Rupp, Matthias; Schneider, Gisbert

    2011-01-01

    Molecular descriptors are essential for many applications in computational chemistry, such as ligand-based similarity searching. Spherical harmonics have previously been suggested as comprehensive descriptors of molecular structure and properties. We investigate a spherical harmonics descriptor for shape-based virtual screening. We introduce and validate a partially rotation-invariant three-dimensional molecular shape descriptor based on the norm of spherical harmonics expansion coefficients. Using this molecular representation, we parameterize molecular surfaces, i.e., isosurfaces of spatial molecular property distributions. We validate the shape descriptor in a comprehensive retrospective virtual screening experiment. In a prospective study, we virtually screen a large compound library for cyclooxygenase inhibitors, using a self-organizing map as a pre-filter and the shape descriptor for candidate prioritization. 12 compounds were tested in vitro for direct enzyme inhibition and in a whole blood assay. Active compounds containing a triazole scaffold were identified as direct cyclooxygenase-1 inhibitors. This outcome corroborates the usefulness of spherical harmonics for representation of molecular shape in virtual screening of large compound collections. The combination of pharmacophore and shape-based filtering of screening candidates proved to be a straightforward approach to finding novel bioactive chemotypes with minimal experimental effort.

  13. Medicaid prior-authorization programs and the use of cyclooxygenase-2 inhibitors.

    PubMed

    Fischer, Michael A; Schneeweiss, Sebastian; Avorn, Jerry; Solomon, Daniel H

    2004-11-18

    Over the past five years, selective cyclooxygenase-2 inhibitors (coxibs) have accounted for a growing proportion of prescriptions for nonsteroidal antiinflammatory drugs (NSAIDs). To control these expenses, many state Medicaid programs have implemented prior-authorization requirements before coxibs can be prescribed. We evaluated the effect of such programs on the use of coxibs by Medicaid beneficiaries. We surveyed state Medicaid agencies to determine whether prescription of coxibs required prior authorization and, if so, the criteria for authorization. For each program, we compared these criteria with evidence-based recommendations for prescribing of coxibs. Using data for all filled prescriptions in 50 state Medicaid programs from 1999 through the end of 2003, we calculated the proportion of defined daily doses of NSAIDs accounted for by coxibs. Time-series analyses were used to measure the changes in prescription patterns after the implementation of each prior-authorization program. By 2001, coxibs accounted for half of all NSAID doses covered by Medicaid. This proportion varied widely according to the state in 2003, from a low of 11 percent to a high of 70 percent of all NSAID doses. Twenty-two states implemented prior-authorization programs for coxibs during the study period. Overall, the implementation of such programs reduced the proportion of NSAID doses made up by coxibs by 15.0 percent (95 percent confidence interval, 10.9 to 19.2 percent), corresponding to a decrease of 10.28 dollars (95 percent confidence interval, 7.56 dollars to 13.00 dollars) in spending per NSAID prescription. The effect of such programs was not influenced by the degree to which a prior-authorization program incorporated evidence-based prescribing recommendations. The use of coxibs and spending on NSAIDs varies widely by state and declined substantially after the implementation of prior-authorization programs. Determining whether these reductions are clinically appropriate will

  14. Outstanding Anti-inflammatory Potential of Selected Asteraceae Species through the Potent Dual Inhibition of Cyclooxygenase-1 and 5-Lipoxygenase.

    PubMed

    Chagas-Paula, Daniela Aparecida; Oliveira, Tiago Branquinho; Faleiro, Danniela Príscylla Vasconcelos; Oliveira, Rejane Barbosa; Costa, Fernando Batista Da

    2015-09-01

    Cyclooxygenase and 5-lipoxygenase are enzymes that catalyze important inflammatory pathways, suggesting that dual cyclooxygenase/lipoxygenase inhibitors should be more efficacious as anti-inflammatory medicines with lower side effects than the currently available nonsteroidal anti-inflammatory drugs. Many plants from the family Asteraceae have anti-inflammatory activities, which could be exerted by inhibiting the cyclooxygenase-1 and 5-lipoxygenase enzymes. Nevertheless, only a small number of compounds from this family have been directly evaluated for their ability to inhibit the enzymes in cell-free assays. Therefore, this study systematically evaluated 57 Asteraceae extracts in vitro in enzyme activity experiments to determine whether any of these extracts exhibit dual inhibition of cyclooxygenase-1 and 5-lipoxygenase. The chemical profiles of the extracts were obtained by the high-performance liquid chromatography-ultraviolet-diode array detector method, and their major constituents were dereplicated. Of the 57 tested extracts, 13 (26.6 %, IC50 range from 0.03-36.2 µg/mL) of them displayed dual inhibition. Extracts from known anti-inflammatory herbs, food plants, and previously uninvestigated species are among the most active. Additionally, the extract action was found to be specific with IC50 values close to or below those of the standard inhibitors. Thus, the active extracts and active substances of these species are potent inhibitors acting through the mechanism of dual inhibition of cyclooxygenase-1 and 5-lipoxygenase. The extracts were prepared for this study using nontoxic extraction solvents (EtOH-H2O), requiring only a small amount of plant material to carry out the bioassays and the phytochemical analyses. In summary, this study demonstrated the potential of the investigated species as dual inhibitors, revealing their potential as pharmaceuticals or nutraceuticals. Georg Thieme Verlag KG Stuttgart · New York.

  15. Cancer-induced anorexia in tumor-bearing mice is dependent on cyclooxygenase-1.

    PubMed

    Ruud, Johan; Nilsson, Anna; Engström Ruud, Linda; Wang, Wenhua; Nilsberth, Camilla; Iresjö, Britt-Marie; Lundholm, Kent; Engblom, David; Blomqvist, Anders

    2013-03-01

    It is well-established that prostaglandins (PGs) affect tumorigenesis, and evidence indicates that PGs also are important for the reduced food intake and body weight loss, the anorexia-cachexia syndrome, in malignant cancer. However, the identity of the PGs and the PG producing cyclooxygenase (COX) species responsible for cancer anorexia-cachexia is unknown. Here, we addressed this issue by transplanting mice with a tumor that elicits anorexia. Meal pattern analysis revealed that the anorexia in the tumor-bearing mice was due to decreased meal frequency. Treatment with a non-selective COX inhibitor attenuated the anorexia, and also tumor growth. When given at manifest anorexia, non-selective COX-inhibitors restored appetite and prevented body weight loss without affecting tumor size. Despite COX-2 induction in the cerebral blood vessels of tumor-bearing mice, a selective COX-2 inhibitor had no effect on the anorexia, whereas selective COX-1 inhibition delayed its onset. Tumor growth was associated with robust increase of PGE(2) levels in plasma - a response blocked both by non-selective COX-inhibition and by selective COX-1 inhibition, but not by COX-2 inhibition. However, there was no increase in PGE(2)-levels in the cerebrospinal fluid. Neutralization of plasma PGE(2) with specific antibodies did not ameliorate the anorexia, and genetic deletion of microsomal PGE synthase-1 (mPGES-1) affected neither anorexia nor tumor growth. Furthermore, tumor-bearing mice lacking EP(4) receptors selectively in the nervous system developed anorexia. These observations suggest that COX-enzymes, most likely COX-1, are involved in cancer-elicited anorexia and weight loss, but that these phenomena occur independently of host mPGES-1, PGE(2) and neuronal EP(4) signaling. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Suppression of follicular rupture with meloxicam, a cyclooxygenase-2 inhibitor: potential for emergency contraception.

    PubMed

    Jesam, Cristián; Salvatierra, Ana María; Schwartz, Jill L; Croxatto, Horacio B

    2010-02-01

    There is evidence that cyclooxygenase-2 (COX-2) inhibitors can prevent or delay follicular rupture. COX-2 inhibitors, such as meloxicam, may offer advantages over emergency contraception with levonorgestrel, such as extending the therapeutic window for up to 24 h. We assessed the effect of meloxicam administered in the late follicular phase upon ovulation in women. This was a single center, double blind, crossover study designed to assess the effects in 27 eligible women (18-40 years old, surgically sterilized with regular menstrual cycles) of meloxicam, 15 or 30 mg/day, administered orally for five consecutive days during the late follicular phase, starting when the leading follicle reached 18 mm diameter. Volunteers underwent two treatment cycles separated by one resting cycle, with randomization to dose sequence. Main outcomes were follicular rupture; serum LH, progesterone and estradiol (E2) levels; and incidence of adverse events. Twenty-two volunteers completed the study. There were no differences between meloxicam doses in menstrual cycle length. Dysfunctional ovulation was observed in 11/22 (50%) cycles treated with 15 mg/day and 20/22 (90.9%) cycles with 30 mg/day (P = 0.0068). All women had normal luteal phase progesterone levels; mean maximal values +/- SEM were 42 +/- 4.1 and 46.8 +/- 2.6 nmol/l for 15 and 30 mg/day groups, respectively. There were no serious adverse events, and no changes in LH and E2 levels or in cycle length. Meloxicam 30 mg given for five consecutive days in the late follicular phase is safe, effective and may be an alternative form of emergency contraception.

  17. Synthesis and pharmacological evaluation of N-substituted 2-(2-oxo-2H-chromen-4-yloxy)propanamide as cyclooxygenase inhibitors.

    PubMed

    Rambabu, D; Mulakayala, Naveen; Ismail; Kumar, K Ravi; Kumar, G Pavan; Mulakayala, Chaitanya; Kumar, Chitta Suresh; Kalle, Arunasree M; Rao, M V Basaveswara; Oruganti, Srinivas; Pal, Manojit

    2012-11-01

    A series of novel N-substituted 2-(2-oxo-2H-chromen-4-yloxy)propanamide derivatives were synthesized via converting the readily available 4-hydroxy coumarin to the corresponding ethyl 2-(2-oxo-2H-chromen-4-yloxy)propanoate followed by hydrolysis and then reacting with different substituted amines. The molecular structures of two representative compounds, that is, 3 and 5l were confirmed by single crystal X-ray diffraction study. All the compounds synthesized were evaluated for their cyclooxygenase (COX) inhibiting properties in vitro. The compound 5i showed balanced selectivity towards COX-2 over COX-1 inhibition and good docking scores when docked into the COX-2 protein. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. 2,4,5-TMBA, a natural inhibitor of cyclooxygenase-2, suppresses adipogenesis and promotes lipolysis in 3T3-L1 adipocytes.

    PubMed

    Wu, Man-Ru; Hou, Ming-Hon; Lin, Ya-Lin; Kuo, Chia-Feng

    2012-07-25

    Obesity is a global health problem. Because of the high costs and side effects of obesity-treatment drugs, the potential of natural products as alternatives for treating obesity is under exploration. 2,4,5-Trimethoxybenzaldehyde (2,4,5-TMBA) present in plant roots, seeds, and leaves was reported to be a significant inhibitor of cyclooxygenase-2 (COX-2) activity at the concentration of 100 μg/mL. Because COX-2 is associated with differentiation of preadipocytes, the murine 3T3-L1 cells were cultured with 100 μg/mL of 2,4,5-TMBA during differentiation and after the cells were fully differentiated to study the effect of 2,4,5-TMBA on adipogenesis and lipolysis. Oil Red O staining and triglyceride assay revealed that 2,4,5-TMBA inhibited the formation of lipid droplets during differentiation; moreover, 2,4,5-TMBA down-regulated the protein levels of adipogenic signaling molecules and transcription factors MAP kinase kinase (MEK), extracellular signal-regulated kinase (ERK), CCAAT/enhancer binding protein (C/EBP)α, β, and δ, peroxisome proliferator-activated receptor (PPAR)γ, adipocyte determination and differentiation-dependent factor 1 (ADD1), and the rate-limiting enzyme for lipid synthesis acetyl-CoA carboxylase (ACC). In fully differentiated adipocytes, treatment with 2,4,5-TMBA for 72 h significantly decreased lipid accumulation by increasing the hydrolysis of triglyceride through suppression of perilipin A (lipid droplet coating protein) and up-regulation of hormone-sensitive lipase (HSL). The results of this in vitro study will pioneer future in vivo studies on antiobesity effects of 2,4,5-TMBA and selective COX-2 inhibitors.

  19. The effect of low-dose aspirin on the decreased risk of development of dyspepsia and gastrointestinal ulcers associated to cyclooxygenase-2 selective inhibitors.

    PubMed

    Benito-Garcia, Elizabeth; Michaud, Kaleb; Wolfe, Frederick

    2007-08-01

    To evaluate the risk of gastrointestinal (GI) symptoms and ulcers associated to the use of low-dose aspirin (ASA) among patients with rheumatoid arthritis (RA) and osteoarthritis (OA) treated with cyclooxygenase-2 (COX-2) drugs, to clarify the controversy in the literature. Using a longitudinal databank, a prospective study using Cox proportional hazards models was performed in patients receiving COX-2 therapy for RA or OA to examine the effect of ASA on GI events. In 4 separate analyses patients reported dyspeptic symptoms and GI ulcers at semiannual intervals for up to 3 years. Ulcers were validated by review of medical records. Among 4240 patients taking COX-2-specific inhibitors, with no ulcer at study start, the age- and sex-adjusted hazard ratios for the effect of ASA on the development of epigastric pain, heartburn, nausea, and ulcers, without these previous events, were 1.11 (95% CI 0.97-1.29), 1.00 (95% CI 0.88-1.15), 1.32 (95% CI 1.13-1.54), and 1.27 (95% CI 0.78-2.05). The use of a propensity score to account for the risk of ASA prescription showed an even lower effect of ASA among all GI variables. This risk occurs within the setting of no prior GI symptoms or GI events, and independently of the use of proton pump inhibitors, other GI drugs, other nonsteroidal antiinflammatory drugs, prednisone, or methotrexate. In actual practice, the use of low-dose ASA has a small effect on the risk of developing dyspeptic symptoms in a group of patients with rheumatic disease.

  20. Divergent effects of new cyclooxygenase inhibitors on gastric ulcer healing: Shifting the angiogenic balance

    PubMed Central

    Ma, Li; del Soldato, Piero; Wallace, John L.

    2002-01-01

    Delayed gastric ulcer healing is a well recognized problem associated with the use of cyclooxygenase (COX) inhibitors. In contrast, NO-releasing COX inhibitors do not interfere with ulcer healing. These divergent effects may in part be due to differences in their effects on platelets, which are known to influence ulcer healing. Therefore, we compared the effects of a nonselective COX inhibitor (flurbiprofen), a nitric oxide-releasing COX inhibitor (HCT-1026), and a selective COX-2 inhibitor (celecoxib) on gastric ulcer healing, angiogenesis, and platelet/serum levels of vascular endothelial growth factor (VEGF) and endostatin. Gastric ulcers were induced in rats by serosal application of acetic acid. Daily treatment with the test drugs was started 3 days later and continued for 1 week. Celecoxib and flurbiprofen impaired angiogenesis and delayed ulcer healing, as well as increasing serum endostatin levels relative to those of VEGF. HCT-1026 did not delay ulcer healing nor impair angiogenesis, and also did not change the ratio of serum endostatin to VEGF. Incubation of human umbilical vein endothelial cells with serum from celecoxib- or flurbiprofen-treated rats resulted in suppressed proliferation and increased apoptosis, effects that were reversed by an antiendostatin antibody. These results demonstrate a previously unrecognized mechanism through which nonsteroidal antiinflammatory drugs can delay ulcer healing, namely, through altering the balance of anti- and proangiogenic factors in the serum. The absence of a delaying effect of HCT-1026 on ulcer healing may be related to the maintenance of a more favorable balance in serum levels of pro- and antiangiogenic growth factors. PMID:12232050

  1. An in silico high-throughput screen identifies potential selective inhibitors for the non-receptor tyrosine kinase Pyk2

    PubMed Central

    Meirson, Tomer; Samson, Abraham O; Gil-Henn, Hava

    2017-01-01

    The non-receptor tyrosine kinase proline-rich tyrosine kinase 2 (Pyk2) is a critical mediator of signaling from cell surface growth factor and adhesion receptors to cell migration, proliferation, and survival. Emerging evidence indicates that signaling by Pyk2 regulates hematopoietic cell response, bone density, neuronal degeneration, angiogenesis, and cancer. These physiological and pathological roles of Pyk2 warrant it as a valuable therapeutic target for invasive cancers, osteoporosis, Alzheimer’s disease, and inflammatory cellular response. Despite its potential as a therapeutic target, no potent and selective inhibitor of Pyk2 is available at present. As a first step toward discovering specific potential inhibitors of Pyk2, we used an in silico high-throughput screening approach. A virtual library of six million lead-like compounds was docked against four different high-resolution Pyk2 kinase domain crystal structures and further selected for predicted potency and ligand efficiency. Ligand selectivity for Pyk2 over focal adhesion kinase (FAK) was evaluated by comparative docking of ligands and measurement of binding free energy so as to obtain 40 potential candidates. Finally, the structural flexibility of a subset of the docking complexes was evaluated by molecular dynamics simulation, followed by intermolecular interaction analysis. These compounds may be considered as promising leads for further development of highly selective Pyk2 inhibitors. PMID:28572720

  2. Potential use of COX-2–aromatase inhibitor combinations in breast cancer

    PubMed Central

    Bundred, N J; Barnes, N L P

    2005-01-01

    Cyclooxygenase-2 (COX-2) is overexpressed in several epithelial tumours, including breast cancer. Cyclooxygenase-2-positive tumours tend to be larger, higher grade, node-positive and HER-2/neu-positive. High COX-2 expression is associated with poor prognosis. Cyclooxygenase-2 inhibition reduces the incidence of tumours in animal models, inhibits the development of invasive cancer in colorectal cancer and reduces the frequency of polyps in familial adenomatous polyposis (FAP). These effects may be as a result of increased apoptosis, reduced angiogenesis and/or proliferation. Studies of COX-2 inhibitors in breast cancer are underway both alone and in combination with other agents. There is evidence to suggest that combining COX-2 inhibitors with aromatase inhibitors, growth factor receptor blockers, or chemo- or radiotherapy may be particularly effective. Preliminary results from combination therapy with celecoxib and exemestane in postmenopausal women with advanced breast cancer showed that the combination increased the time to recurrence. Up to 80% of ductal carcinomas in situ (DCISs) express COX-2, therefore COX-2 inhibition may be of particular use in this situation. Cyclooxygenase-2 expression correlates strongly with expression of HER-2/neu. As aromatase inhibitors appear particularly effective in patients with HER-2/neu-positive tumours, the combination of aromatase inhibitors and COX-2 inhibitors may be particularly useful in both DCIS and invasive cancer. PMID:16100520

  3. Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity.

    PubMed

    Srivastava, Janmejai K; Pandey, Mitali; Gupta, Sanjay

    2009-11-04

    Inducible cyclooxygenase (COX-2) has been implicated in the process of inflammation and carcinogenesis. Chamomile has long been used in traditional medicine for the treatment of inflammatory diseases. In this study we aimed to investigate whether chamomile interferes with the COX-2 pathway. We used lipopolysaccharide (LPS)-activated RAW 264.7 macrophages as an in vitro model for our studies. Chamomile treatment inhibited the release of LPS-induced prostaglandin E(2) in RAW 264.7 macrophages. This effect was found to be due to inhibition of COX-2 enzyme activity by chamomile. In addition, chamomile caused reduction in LPS-induced COX-2 mRNA and protein expression, without affecting COX-1 expression. The non-steroidal anti-inflammatory drug, sulindac and a specific COX-2 inhibitor, NS398, were shown to act similarly in LPS-activated RAW 264.7 cells. Our data suggest that chamomile works by a mechanism of action similar to that attributed to non-steroidal anti-inflammatory drugs. These findings add a novel aspect to the biological profile of chamomile which might be important for understanding the usefulness of aqueous chamomile extract in the form of tea in preventing inflammation and cancer.

  4. Corn silk induced cyclooxygenase-2 in murine macrophages.

    PubMed

    Kim, Kyung A; Shin, Hyun-Hee; Choi, Sang Kyu; Choi, Hye-Seon

    2005-10-01

    Stimulation of murine macrophages with corn silk induced cyclooxygenase (COX)-2 with secretion of PGE2. Expression of COX-2 was inhibited by pyrolidine dithiocarbamate (PDTC), and increased DNA binding by nuclear factor kappa B (NF-kappaB), indicating that COX-2 induction proceeds also via the NF-kappaB signaling pathway. A specific inhibitor of COX-2 decreased the expression level of inducible nitric oxide synthase (iNOS) stimulated by corn silk. PGE2 elevated the expression level of iNOS, probably via EP2 and EP4 receptors on the surface of the macrophages.

  5. Loss in MCL-1 function sensitizes non-Hodgkin's lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199).

    PubMed

    Phillips, D C; Xiao, Y; Lam, L T; Litvinovich, E; Roberts-Rapp, L; Souers, A J; Leverson, J D

    2015-11-13

    As a population, non-Hodgkin's lymphoma (NHL) cell lines positive for the t(14;18) translocation and/or possessing elevated BCL2 copy number (CN; BCL2(High)) are exquisitely sensitive to navitoclax or the B-cell lymphoma protein-2 (BCL-2)-selective inhibitor venetoclax. Despite this, some BCL2(High) cell lines remain resistant to either agent. Here we show that the MCL-1-specific inhibitor A-1210477 sensitizes these cell lines to navitoclax. Chemical segregation of this synergy with the BCL-2-selective inhibitor venetoclax or BCL-XL-selective inhibitor A-1155463 indicated that MCL-1 and BCL-2 are the two key anti-apoptotic targets for sensitization. Similarly, the CDK inhibitor flavopiridol downregulated MCL-1 expression and synergized with venetoclax in BCL2(High) NHL cell lines to a similar extent as A-1210477. A-1210477 also synergized with navitoclax in the majority of BCL2(Low) NHL cell lines. However, chemical segregation with venetoclax or A-1155463 revealed that synergy was driven by BCL-XL inhibition in this population. Collectively these data emphasize that BCL2 status is predictive of venetoclax potency in NHL not only as a single agent, but also in the adjuvant setting with anti-tumorigenic agents that inhibit MCL-1 function. These studies also potentially identify a patient population (BCL2(Low)) that could benefit from BCL-XL (navitoclax)-driven combination therapy.

  6. Synthesis, biological evaluation and molecular docking studies of stellatin derivatives as cyclooxygenase (COX-1, COX-2) inhibitors and anti-inflammatory agents.

    PubMed

    Gautam, Raju; Jachak, Sanjay M; Kumar, Vivek; Mohan, C Gopi

    2011-03-15

    Stellatin (4), isolated from Dysophylla stellata is a cyclooxygenase (COX) inhibitor. The present study reports the synthesis and biological evaluation of new stellatin derivatives for COX-1, COX-2 inhibitory and anti-inflammatory activities. Eight derivatives showed more pronounced COX-2 inhibition than stellatin and, 17 and 21 exhibited the highest COX-2 inhibition. They also exhibited the significant anti-inflammatory activity in TPA-induced mouse ear edema assay and their anti-inflammatory effects were more than that of stellatin and indomethacin at 0.5mg/ear. The derivatives were further evaluated for antioxidant activity wherein 16 and 17 showed potent free radical scavenging activity against DPPH and ABTS radicals. Molecular docking study revealed the binding orientations of stellatin and its derivatives into the active sites of COX-1 and COX-2 and thereby helps to design the potent inhibitors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Loss in MCL-1 function sensitizes non-Hodgkin's lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199)

    PubMed Central

    Phillips, D C; Xiao, Y; Lam, L T; Litvinovich, E; Roberts-Rapp, L; Souers, A J; Leverson, J D

    2015-01-01

    As a population, non-Hodgkin's lymphoma (NHL) cell lines positive for the t(14;18) translocation and/or possessing elevated BCL2 copy number (CN; BCL2High) are exquisitely sensitive to navitoclax or the B-cell lymphoma protein-2 (BCL-2)-selective inhibitor venetoclax. Despite this, some BCL2High cell lines remain resistant to either agent. Here we show that the MCL-1-specific inhibitor A-1210477 sensitizes these cell lines to navitoclax. Chemical segregation of this synergy with the BCL-2-selective inhibitor venetoclax or BCL-XL-selective inhibitor A-1155463 indicated that MCL-1 and BCL-2 are the two key anti-apoptotic targets for sensitization. Similarly, the CDK inhibitor flavopiridol downregulated MCL-1 expression and synergized with venetoclax in BCL2High NHL cell lines to a similar extent as A-1210477. A-1210477 also synergized with navitoclax in the majority of BCL2Low NHL cell lines. However, chemical segregation with venetoclax or A-1155463 revealed that synergy was driven by BCL-XL inhibition in this population. Collectively these data emphasize that BCL2 status is predictive of venetoclax potency in NHL not only as a single agent, but also in the adjuvant setting with anti-tumorigenic agents that inhibit MCL-1 function. These studies also potentially identify a patient population (BCL2Low) that could benefit from BCL-XL (navitoclax)-driven combination therapy. PMID:26565405

  8. Prospective performance evaluation of selected common virtual screening tools. Case study: Cyclooxygenase (COX) 1 and 2.

    PubMed

    Kaserer, Teresa; Temml, Veronika; Kutil, Zsofia; Vanek, Tomas; Landa, Premysl; Schuster, Daniela

    2015-01-01

    Computational methods can be applied in drug development for the identification of novel lead candidates, but also for the prediction of pharmacokinetic properties and potential adverse effects, thereby aiding to prioritize and identify the most promising compounds. In principle, several techniques are available for this purpose, however, which one is the most suitable for a specific research objective still requires further investigation. Within this study, the performance of several programs, representing common virtual screening methods, was compared in a prospective manner. First, we selected top-ranked virtual screening hits from the three methods pharmacophore modeling, shape-based modeling, and docking. For comparison, these hits were then additionally predicted by external pharmacophore- and 2D similarity-based bioactivity profiling tools. Subsequently, the biological activities of the selected hits were assessed in vitro, which allowed for evaluating and comparing the prospective performance of the applied tools. Although all methods performed well, considerable differences were observed concerning hit rates, true positive and true negative hits, and hitlist composition. Our results suggest that a rational selection of the applied method represents a powerful strategy to maximize the success of a research project, tightly linked to its aims. We employed cyclooxygenase as application example, however, the focus of this study lied on highlighting the differences in the virtual screening tool performances and not in the identification of novel COX-inhibitors. Copyright © 2015 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  9. [Non-selective and selective non-steroidal anti-inflammatory drugs, administration in pregnancy and breast feeding].

    PubMed

    Fardet, Laurence; Nizard, Jacky; Généreau, Thierry

    2002-09-28

    THE FACTS: Non steroidal anti-inflammatory drugs (NSAI), except aspirin, are classically contraindicated during pregnancy. Nevertheless, they are widely used, in particular by the obstetricians. During pregnancy, the potential toxicity of these drugs is double, maternal and fetal. The maternal toxicity is comparable to that, already known in adults, with however, some particularities at the time of labor and delivery. The fetal toxicity is mainly renal and cardiovascular, with the NSAI responsible for oligoamniosis and premature closure of the arterial canal of the fetus. On the other hand, the use of these molecules during breast-feeding does not seem source of adverse events, notably in the newborn. THE VARIOUS MOLECULES: Among the family of non-selective non-steroidal anti-inflammatories, indications and adverse events of the various molecules differ considerably. Moreover, whereas the majority of these molecules are non-selective, i.e. inhibiting the two isoforms of cyclooxygenase, new therapeutics, specifically inhibiting cyclooxygenase-2, are now available. Few studies have been published concerning their prescription during pregnancy and breast-feeding and their maternal and fetal side effects remain ignored by most of the practitioners.

  10. Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity

    PubMed Central

    Srivastava, Janmejai K; Pandey, Mitali; Gupta, Sanjay

    2009-01-01

    Aims Inducible cyclooxygenase (COX-2) has been implicated in the process of inflammation and carcinogenesis. Chamomile has long been used in traditional medicine for the treatment of inflammatory diseases. In this study we aimed to investigate whether chamomile interferes with the COX-2 pathway. Main Methods We used lipopolysaccharide (LPS)-activated RAW 264.7 macrophages as an in vitro model for our studies. Key Findings Chamomile treatment inhibited the release of LPS-induced prostaglandin E(2) in RAW 264.7 macrophages. This effect was found to be due to inhibition of COX-2 enzyme activity by chamomile. In addition, chamomile caused reduction in LPS-induced COX-2 mRNA and protein expression, without affecting COX-1 expression. The non-steroidal anti-inflammatory drug, sulindac and a specific COX-2 inhibitor, NS398, were shown to act similarly in LPS-activated RAW 264.7 cells. Our data suggest that chamomile works by a mechanism of action similar to that attributed to non-steroidal anti-inflammatory drugs. Significance These findings add a novel aspect to the biological profile of chamomile which might be important for understanding the usefulness of aqueous chamomile extract in the form of tea in preventing inflammation and cancer. PMID:19788894

  11. A Rational Approach for the Identification of Non-Hydroxamate HDAC6-Selective Inhibitors

    NASA Astrophysics Data System (ADS)

    Goracci, Laura; Deschamps, Nathalie; Randazzo, Giuseppe Marco; Petit, Charlotte; Dos Santos Passos, Carolina; Carrupt, Pierre-Alain; Simões-Pires, Claudia; Nurisso, Alessandra

    2016-07-01

    The human histone deacetylase isoform 6 (HDAC6) has been demonstrated to play a major role in cell motility and aggresome formation, being interesting for the treatment of multiple tumour types and neurodegenerative conditions. Currently, most HDAC inhibitors in preclinical or clinical evaluations are non-selective inhibitors, characterised by a hydroxamate zinc-binding group (ZBG) showing off-target effects and mutagenicity. The identification of selective HDAC6 inhibitors with novel chemical properties has not been successful yet, also because of the absence of crystallographic information that makes the rational design of HDAC6 selective inhibitors difficult. Using HDAC inhibitory data retrieved from the ChEMBL database and ligand-based computational strategies, we identified 8 original new non-hydroxamate HDAC6 inhibitors from the SPECS database, with activity in the low μM range. The most potent and selective compound, bearing a hydrazide ZBG, was shown to increase tubulin acetylation in human cells. No effects on histone H4 acetylation were observed. To the best of our knowledge, this is the first report of an HDAC6 selective inhibitor bearing a hydrazide ZBG. Its capability to passively cross the blood-brain barrier (BBB), as observed through PAMPA assays, and its low cytotoxicity in vitro, suggested its potential for drug development.

  12. Targeted imaging of cancer by fluorocoxib C, a near-infrared cyclooxygenase-2 probe

    NASA Astrophysics Data System (ADS)

    Uddin, Md. Jashim; Crews, Brenda C.; Ghebreselasie, Kebreab; Daniel, Cristina K.; Kingsley, Philip J.; Xu, Shu; Marnett, Lawrence J.

    2015-05-01

    Cyclooxygenase-2 (COX-2) is a promising target for the imaging of cancer in a range of diagnostic and therapeutic settings. We report a near-infrared COX-2-targeted probe, fluorocoxib C (FC), for visualization of solid tumors by optical imaging. FC exhibits selective and potent COX-2 inhibition in both purified protein and human cancer cell lines. In vivo optical imaging shows selective accumulation of FC in COX-2-overexpressing human tumor xenografts [1483 head and neck squamous cell carcinoma (HNSCC)] implanted in nude mice, while minimal uptake is detectable in COX-2-negative tumor xenografts (HCT116) or 1483 HNSCC xenografts preblocked with the COX-2-selective inhibitor celecoxib. Time course imaging studies conducted from 3 h to 7-day post-FC injection revealed a marked reduction in nonspecific fluorescent signals with retention of fluorescence in 1483 HNSCC tumors. Thus, use of FC in a delayed imaging protocol offers an approach to improve imaging signal-to-noise that should improve cancer detection in multiple preclinical and clinical settings.

  13. Cyclooxygenase-2 inhibitor blocks the production of West Nile virus-induced neuroinflammatory markers in astrocytes.

    PubMed

    Verma, Saguna; Kumar, Mukesh; Nerurkar, Vivek R

    2011-03-01

    Inflammatory immune responses triggered initially to clear West Nile virus (WNV) infection later become detrimental and contribute to the pathological processes such as blood-brain barrier (BBB) disruption and neuronal death, thus complicating WNV-associated encephalitis (WNVE). It has been demonstrated previously that WNV infection in astrocytes results in induction of multiple matrix metalloproteinases (MMPs), which mediate BBB disruption. Cyclooxygenase (COX) enzymes and their product, prostaglandin E2 (PGE2), modulate neuroinflammation and regulate the production of multiple inflammatory molecules including MMPs. Therefore, this study determined and characterized the pathophysiological consequences of the expression of COX enzymes in human brain cortical astrocytes (HBCAs) following WNV infection. Whilst COX-1 mRNA expression did not change, WNV infection significantly induced RNA and protein expression of COX-2 in HBCAs. Similarly, PGE2 production was also enhanced significantly in infected HBCAs and was blocked in the presence of the COX-2-specific inhibitor NS-398, thus suggesting that COX-2, and not COX-1, was the source of the increased PGE2. Treatment of infected HBCAs with NS-398 attenuated the expression of MMP-1, -3 and -9 in a dose-dependent manner. Similarly, expression of interleukin-1β, -6 and -8, which were markedly elevated in infected HBCAs, exhibited a significant reduction in their levels in the presence of NS-398. These results provide direct evidence that WNV-induced COX-2/PGE2 is involved in modulating the expression of multiple neuroinflammatory mediators, thereby directly linking COX-2 with WNV disease pathogenesis. The ability of COX-2 inhibitors to modulate WNV-induced COX-2 and PGE2 signalling warrants further investigation in an animal model as a potential approach for clinical management of neuroinflammation associated with WNVE.

  14. Crystallization of recombinant cyclo-oxygenase-2

    NASA Astrophysics Data System (ADS)

    Stevens, Anna M.; Pawlitz, Jennifer L.; Kurumbail, Ravi G.; Gierse, James K.; Moreland, Kirby T.; Stegeman, Roderick A.; Loduca, Jina Y.; Stallings, William C.

    1999-01-01

    The integral membrane protein, prostaglandin H 2 synthase, or cyclo-oxygenase (COX), catalyses the first step in the conversion of arachidonic acid to prostaglandins (PGs) and is the target of nonsteroidal anti-inflammatory drugs (NSAIDs). Two isoforms are known. The constitutive enzyme, COX-1, is present in most tissues and is responsible for the physiological production of PGs. The isoform responsible for the elevated production of PGs during inflammation is COX-2 which is induced specifically at inflammatory sites. Three-dimensional structures of inhibitor complexes of COX-2, and of site variants of COX-2 which mimic COX-1, provide insight into the structural basis for selective inhibition of COX-2. Additionally, structures of COX-2 mutants and complexes with the substrate can provide a clearer understanding of the catalytic mechanism of the reaction. A crystallization protocol has been developed for COX-2 which reproducibly yields diffraction quality crystals. Polyethyleneglycol 550 monomethylether (MMP550) and MgCl 2 were systematically varied and used in conjunction with the detergent β- D-octylglucopyranoside ( β-OG). As a result of many crystallization trials, we determined that the initial β-OG concentration should be held constant, allowing the salt concentration to modulate the critical micelle concentration (CMC) of the detergent. Over 25 crystal structures have been solved using crystals generated from this system. Most crystals belong to the space group P2 12 12, with lattice constants of a=180, b=134, c=120 Å in a pseudo body-centered lattice.

  15. Conservative Secondary Shell Substitution In Cyclooxygenase-2 Reduces Inhibition by Indomethacin Amides and Esters via Altered Enzyme Dynamics

    PubMed Central

    2015-01-01

    The cyclooxygenase enzymes (COX-1 and COX-2) are the therapeutic targets of nonsteroidal anti-inflammatory drugs (NSAIDs). Neutralization of the carboxylic acid moiety of the NSAID indomethacin to an ester or amide functionality confers COX-2 selectivity, but the molecular basis for this selectivity has not been completely revealed through mutagenesis studies and/or X-ray crystallographic attempts. We expressed and assayed a number of divergent secondary shell COX-2 active site mutants and found that a COX-2 to COX-1 change at position 472 (Leu in COX-2, Met in COX-1) reduced the potency of enzyme inhibition by a series of COX-2-selective indomethacin amides and esters. In contrast, the potencies of indomethacin, arylacetic acid, propionic acid, and COX-2-selective diarylheterocycle inhibitors were either unaffected or only mildly affected by this mutation. Molecular dynamics simulations revealed identical equilibrium enzyme structures around residue 472; however, calculations indicated that the L472M mutation impacted local low-frequency dynamical COX constriction site motions by stabilizing the active site entrance and slowing constriction site dynamics. Kinetic analysis of inhibitor binding is consistent with the computational findings. PMID:26704937

  16. Receptor binding mode and pharmacological characterization of a potent and selective dual CXCR1/CXCR2 non-competitive allosteric inhibitor

    PubMed Central

    Bertini, R; Barcelos, LS; Beccari, AR; Cavalieri, B; Moriconi, A; Bizzarri, C; Di Benedetto, P; Di Giacinto, C; Gloaguen, I; Galliera, E; Corsi, MM; Russo, RC; Andrade, SP; Cesta, MC; Nano, G; Aramini, A; Cutrin, JC; Locati, M; Allegretti, M; Teixeira, MM

    2012-01-01

    BACKGROUND AND PURPOSE DF 2156A is a new dual inhibitor of IL-8 receptors CXCR1 and CXCR2 with an optimal pharmacokinetic profile. We characterized its binding mode, molecular mechanism of action and selectivity, and evaluated its therapeutic potential. EXPERIMENTAL APPROACH The binding mode, molecular mechanism of action and selectivity were investigated using chemotaxis of L1.2 transfectants and human leucocytes, in addition to radioligand and [35S]-GTPγS binding approaches. The therapeutic potential of DF 2156A was evaluated in acute (liver ischaemia and reperfusion) and chronic (sponge-induced angiogenesis) experimental models of inflammation. KEY RESULTS A network of polar interactions stabilized by a direct ionic bond between DF 2156A and Lys99 on CXCR1 and the non-conserved residue Asp293 on CXCR2 are the key determinants of DF 2156A binding. DF 2156A acted as a non-competitive allosteric inhibitor blocking the signal transduction leading to chemotaxis without altering the binding affinity of natural ligands. DF 2156A effectively and selectively inhibited CXCR1/CXCR2-mediated chemotaxis of L1.2 transfectants and leucocytes. In a murine model of sponge-induced angiogenesis, DF 2156A reduced leucocyte influx, TNF-α production and neovessel formation. In vitro, DF 2156A prevented proliferation, migration and capillary-like organization of HUVECs in response to human IL-8. In a rat model of liver ischaemia and reperfusion (I/R) injury, DF 2156A decreased PMN and monocyte-macrophage infiltration and associated hepatocellular injury. CONCLUSION AND IMPLICATIONS DF 2156A is a non-competitive allosteric inhibitor of both IL-8 receptors CXCR1 and CXCR2. It prevented experimental angiogenesis and hepatic I/R injury in vivo and, therefore, has therapeutic potential for acute and chronic inflammatory diseases. PMID:21718305

  17. Use of a Cyclooxygenase-2 Inhibitor Does Not Inhibit Platelet Activation or Growth Factor Release From Platelet-Rich Plasma.

    PubMed

    Ludwig, Hilary C; Birdwhistell, Kate E; Brainard, Benjamin M; Franklin, Samuel P

    2017-12-01

    It remains unestablished whether use of cyclooxygenase (COX)-2 inhibitors impairs platelet activation and anabolic growth factor release from platelets in platelet-rich plasma (PRP). The purpose of this study was to assess the effects of a COX-2 inhibitor on platelet activation and anabolic growth factor release from canine PRP when using a clinically applicable PRP activator and to determine whether a 3-day washout would be sufficient to abrogate any COX-2 inhibitor-related impairment on platelet function. Controlled laboratory study. Ten healthy dogs underwent blood collection and PRP preparation. Dogs were then administered a COX-2 inhibitor for 7 days, after which PRP preparation was repeated. The COX-2 inhibitor was continued for 4 more days and PRP preparation performed a third time, 3 days after discontinuation of the COX-2 inhibitor. Immediately after PRP preparation, the PRP was divided into 4 aliquots: 2 unactivated and 2 activated using human γ-thrombin (HGT). One activated and 1 unactivated sample were assessed using flow cytometry for platelet expression of CD62P and platelet-bound fibrinogen using the canine activated platelet-1 (CAP1) antibody. The 2 remaining samples were centrifuged and the supernatant assayed for transforming growth factor-β1 (TGF-β1), platelet-derived growth factor-BB (PDGF-BB), and thromboxane B2 (TXB2) concentrations. Differences in platelet activation and TGF-β1, PDGF-BB, and TXB2 concentrations over the 3 study weeks were evaluated using a 1-way repeated-measures ANOVA, and comparisons between activated and unactivated samples within a study week were assessed with paired t tests. There were no statistically significant ( P > .05) effects of the COX-2 inhibitor on percentage of platelets positive for CD62P or CAP1 or on concentrations of TGF-β1, PDGF-BB, or TXB2. All unactivated samples had low levels of activation or growth factor concentrations and significantly ( P < .05) greater activation and growth factor

  18. Prescriptions for cyclooxygenase-2 inhibitors and other nonsteroidal anti-inflammatory agents in a medicaid managed care population: African Americans versus Caucasians.

    PubMed

    Shaya, Fadia T; Blume, Steven

    2005-01-01

    To determine whether race is a predictor of a patient's likelihood of being prescribed selective cyclooxygenase-2 inhibitors (COX-2s) versus other nonsteroidal anti-inflammatory agents (NSAIDs) in Medicaid managed care plans (MCO). All medical and prescription claims for Medicaid MCO enrollees receiving at least one prescription for a COX-2 or NSAID between January 2000 and June 2002 were retrieved. Selected for study were adults claiming at least one COX-2 prescription or NSAID prescription with a minimum 30 days of supply after June 2000; having 60 total days of supply or more over the study period was also required for study inclusion. The probability of being prescribed a COX-2 was estimated as a logistic function of patient age, gender, race, city/suburban/rural residence, and history of rheumatoid arthritis, osteoarthritis, chronic back pain, acute pains, gastrointestinal problems, use of anticoagulants or corticosteroids, and comorbidities. Of the 16,868 enrollees meeting the selection criteria, 4,005 (24%) were prescribed a COX-2 and 12,863 another NSAID. Half of those studied were African American, three-quarters were female, and a third were 50-64 years old. After adjusting for confounders, odds of a COX-2 prescription were a third less for African Americans and other races compared to Caucasians (OR, 0.67; 95% confidence intervals, 0.62-0.73). Patient race is a significant predictor of COX-2 prescriptions in the Medicaid population, even after adjusting for other demographic and clinical variables. Cost to the patient was not a factor, as the patient copayment was 1 US dollar for any prescription.

  19. Induction of cyclooxygenase-2 expression by allergens in lymphocytes from allergic patients.

    PubMed

    Chacón, Pedro; Vega, Antonio; Monteseirín, Javier; El Bekay, Rajaa; Alba, Gonzalo; Pérez-Formoso, José Luis; Msartínez, Alberto; Asturias, Juan A; Pérez-Cano, Ramón; Sobrino, Francisco; Conde, José

    2005-08-01

    Cyclooxygenase (COX) is a key enzyme in prostaglandin (PG) synthesis. Up-regulation of COX-2 expression is responsible for increased PG release during inflammatory conditions and is thought to be also involved in allergic states. In this study, we demonstrate that in human T, B and natural killer lymphocytes from allergic patients, COX-2 expression became induced upon cell challenge with specific allergens and that this process is presumably IgE dependent and occurs after CD23 receptor ligation. This induction took place at both mRNA and protein levels and was accompanied by PGD2 release. IgE-dependent lymphocyte treatment elicited, in parallel, an activation of the MAPK p38 and extracellular signal-regulated kinase 1/2, an enhancement of calcineurin (CaN) activity, and an increase of the DNA-binding activity of the nuclear factor of activated T cells and of NF-kappaB, with a concomitant decrease in the levels of the cytosolic inhibitor of kappaB, IkappaB. In addition, specific chemical inhibitors of MAPK, such as PD098059 and SB203580, as well as MG-132, an inhibitor of proteasomal activity, abolished allergen-induced COX-2 up-regulation, suggesting that this process is mediated by MAPK and NF-kappaB. However, induction of COX-2 expression was not hampered by the CaN inhibitor cyclosporin A. We also examined the effect of a selective COX-2 inhibitor, NS-398, on cytokine production by human lymphocytes. Treatment with NS-398 severely diminished the IgE-dependently induced production of IL-8 and TNF-alpha. These results underscore the relevant role of lymphocyte COX-2 in allergy and suggest that COX-2 inhibitors may contribute to the improvement of allergic inflammation through the reduction of inflammatory mediator production by human lymphocytes.

  20. Discovery of potent and selective sirtuin 2 (SIRT2) inhibitors using a fragment-based approach.

    PubMed

    Cui, Huaqing; Kamal, Zeeshan; Ai, Teng; Xu, Yanli; More, Swati S; Wilson, Daniel J; Chen, Liqiang

    2014-10-23

    Sirtuin 2 (SIRT2) is one of the sirtuins, a family of NAD(+)-dependent deacetylases that act on a variety of histone and non-histone substrates. Accumulating biological functions and potential therapeutic applications have drawn interest in the discovery and development of SIRT2 inhibitors. Herein we report our discovery of novel SIRT2 inhibitors using a fragment-based approach. Inspired by the purported close binding proximity of suramin and nicotinamide, we prepared two sets of fragments, namely, the naphthylamide sulfonic acids and the naphthalene-benzamides and -nicotinamides. Biochemical evaluation of these two series provided structure-activity relationship (SAR) information, which led to the design of (5-benzamidonaphthalen-1/2-yloxy)nicotinamide derivatives. Among these inhibitors, one compound exhibited high anti-SIRT2 activity (48 nM) and excellent selectivity for SIRT2 over SIRT1 and SIRT3. In vitro, it also increased the acetylation level of α-tubulin, a well-established SIRT2 substrate, in both concentration- and time-dependent manners. Further kinetic studies revealed that this compound behaves as a competitive inhibitor against the peptide substrate and most likely as a noncompetitive inhibitor against NAD(+). Taken together, these results indicate that we have discovered a potent and selective SIRT2 inhibitor whose novel structure merits further exploration.

  1. Cyclooxygenase-2 mediates the febrile response of mice to interleukin-1beta.

    PubMed

    Li, S; Ballou, L R; Morham, S G; Blatteis, C M

    2001-08-10

    Various lines of evidence have implicated cyclooxygenase (COX)-2 as a modulator of the fever induced by the exogenous pyrogen lipopolysaccharide (LPS). Thus, treatment with specific inhibitors of COX-2 suppresses the febrile response without affecting basal body (core) temperature (T(c)). Furthermore, COX-2 gene-ablated mice are unable to develop a febrile response to intraperitoneal (i.p.) LPS, whereas their COX-1-deficient counterparts produce fevers not different from their wild-type (WT) controls. To extend the apparently critical role of COX-2 for LPS-induced fevers to fevers produced by endogenous pyrogens, we studied the thermal responses of COX-1- and COX-2 congenitally deficient mice to i.p. and intracerebroventricular (i.c.v.) injections of recombinant murine (rm) interleukin (IL)-1beta. We also assessed the effects of one selective COX-1 inhibitor, SC-560, and two selective COX-2 inhibitors, nimesulide (NIM) and dimethylfuranone (DFU), on the febrile responses of WT and COX-1(-/-) mice to LPS and rmIL-1beta, i.p. Finally, we verified the integrity of the animals' responses to PGE2, i.c.v. I.p. and i.c.v. rmIL-1beta induced similar fevers in WT and COX-1 knockout mice, but provoked no rise in the T(c)s of COX-2 null mutants. The fever produced in WT mice by i.p. LPS was not affected by SC-560, but it was attenuated and abolished by NIM and DFU, respectively, while that caused by i.p. rmIL-1beta was converted into a T(c) fall by DFU. There were no differences in the responses to i.c.v. PGE2 among the WT and COX knockout mice. These results, therefore, further support the notion that the production of PGE2 in response to pyrogens is critically dependent on COX-2 expression.

  2. Inhibitors Selective for Mycobacterial Versus Human Proteasomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, G.; Li, D; Sorio de Carvalho, L

    Many anti-infectives inhibit the synthesis of bacterial proteins, but none selectively inhibits their degradation. Most anti-infectives kill replicating pathogens, but few preferentially kill pathogens that have been forced into a non-replicating state by conditions in the host. To explore these alternative approaches we sought selective inhibitors of the proteasome of Mycobacterium tuberculosis. Given that the proteasome structure is extensively conserved, it is not surprising that inhibitors of all chemical classes tested have blocked both eukaryotic and prokaryotic proteasomes, and no inhibitor has proved substantially more potent on proteasomes of pathogens than of their hosts. Here we show that certain oxathiazol-2-onemore » compounds kill non-replicating M.?tuberculosis and act as selective suicide-substrate inhibitors of the M.?tuberculosis proteasome by cyclocarbonylating its active site threonine. Major conformational changes protect the inhibitor-enzyme intermediate from hydrolysis, allowing formation of an oxazolidin-2-one and preventing regeneration of active protease. Residues outside the active site whose hydrogen bonds stabilize the critical loop before and after it moves are extensively non-conserved. This may account for the ability of oxathiazol-2-one compounds to inhibit the mycobacterial proteasome potently and irreversibly while largely sparing the human homologue.« less

  3. Cyclooxygenase-1 and -2 Play Contrasting Roles in Listeria-Stimulated Immunity.

    PubMed

    Theisen, Erin; McDougal, Courtney E; Nakanishi, Masako; Stevenson, David M; Amador-Noguez, Daniel; Rosenberg, Daniel W; Knoll, Laura J; Sauer, John-Demian

    2018-06-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase (COX) activity and are commonly used for pain relief and fever reduction. NSAIDs are used following childhood vaccinations and cancer immunotherapies; however, how NSAIDs influence the development of immunity following these therapies is unknown. We hypothesized that NSAIDs would modulate the development of an immune response to Listeria monocytogenes -based immunotherapy. Treatment of mice with the nonspecific COX inhibitor indomethacin impaired the generation of cell-mediated immunity. This phenotype was due to inhibition of the inducible COX-2 enzyme, as treatment with the COX-2-selective inhibitor celecoxib similarly inhibited the development of immunity. In contrast, loss of COX-1 activity improved immunity to L. monocytogenes Impairments in immunity were independent of bacterial burden, dendritic cell costimulation, or innate immune cell infiltrate. Instead, we observed that PGE 2 production following L. monocytogenes is critical for the formation of an Ag-specific CD8 + T cell response. Use of the alternative analgesic acetaminophen did not impair immunity. Taken together, our results suggest that COX-2 is necessary for optimal CD8 + T cell responses to L. monocytogenes , whereas COX-1 is detrimental. Use of pharmacotherapies that spare COX-2 activity and the production of PGE 2 like acetaminophen will be critical for the generation of optimal antitumor responses using L. monocytogenes . Copyright © 2018 by The American Association of Immunologists, Inc.

  4. Derivation and evaluation of adverse outcome pathways for the effects of cyclooxygenase inhibitors on reproductive processes in fish

    EPA Science Inventory

    Cyclooxygenase (COX) inhibition is of concern in fish because COX inhibitors (e.g., ibuprofen) are ubiquitous in aquatic systems/fish tissues, and can disrupt synthesis of prostaglandins that modulate a variety of essential biological functions (e.g., reproduction). This study ut...

  5. Discovery of thienoquinolone derivatives as selective and ATP non-competitive CDK5/p25 inhibitors by structure-based virtual screening

    PubMed Central

    Chatterjee, Arindam; Doerksen, Robert J.; Khan, Ikhlas A.

    2014-01-01

    Calpain mediated cleavage of CDK5 natural precursor p35 causes a stable complex formation of CDK5/p25, which leads to hyperphosphorylation of tau. Thus inhibition of this complex is a viable target for numerous acute and chronic neurodegenerative diseases involving tau protein, including Alzheimer’s disease. Since CDK5 has the highest sequence homology with its mitotic counterpart CDK2, our primary goal was to design selective CDK5/p25 inhibitors targeting neurodegeneration. A novel structure-based virtual screening protocol comprised of e-pharmacophore models and virtual screening work-flow was used to identify nine compounds from a commercial database containing 2.84 million compounds. An ATP non-competitive and selective thieno[3,2-c]quinolin-4(5H)-one inhibitor (10) with ligand efficiency (LE) of 0.3 was identified as the lead molecule. Further SAR optimization led to the discovery of several low micromolar inhibitors with good selectivity. The research represents a new class of potent ATP non-competitive CDK5/p25 inhibitors with good CDK2/E selectivity. PMID:25438765

  6. Altered monocyte cyclo-oxygenase response in non-obese diabetic mice.

    PubMed

    Beyan, H; Buckley, L R; Bustin, S A; Yousaf, N; Pozzilli, P; Leslie, R D

    2009-02-01

    Monocytes infiltrate islets in non-obese diabetic (NOD) mice. Activated monocyte/macrophages express cyclo-oxygenase-2 (COX-2) promoting prostaglandin-E(2) (PGE(2)) secretion, while COX-1 expression is constitutive. We investigated in female NOD mice: (i) natural history of monocyte COX expression basally and following lipopolysaccharide (LPS) stimulation; (ii) impact of COX-2 specific inhibitor (Vioxx) on PGE(2), insulitis and diabetes. CD11b(+) monocytes were analysed for COX mRNA expression from NOD (n = 48) and C57BL/6 control (n = 18) mice. NOD mice were treated with either Vioxx (total dose 80 mg/kg) (n = 29) or methylcellulose as control (n = 29) administered by gavage at 4 weeks until diabetes developed or age 30 weeks. In all groups, basal monocyte COX mRNA and PGE(2) secretion were normal, while following LPS, after 5 weeks of age monocyte/macrophage COX-1 mRNA decreased (P < 0.01) and COX-2 mRNA increased (P < 0.01). However, diabetic NOD mice had reduced COX mRNA response (P = 0.03). Vioxx administration influenced neither PGE(2), insulitis nor diabetes. We demonstrate an isoform switch in monocyte/macrophage COX mRNA expression following LPS, which is altered in diabetic NOD mice as in human diabetes. However, Vioxx failed to affect insulitis or diabetes. We conclude that monocyte responses are altered in diabetic NOD mice but COX-2 expression is unlikely to be critical to disease risk.

  7. Intragastric acid control in non-steroidal anti-inflammatory drug users: comparison of esomeprazole, lansoprazole and pantoprazole.

    PubMed

    Goldstein, J L; Miner, P B; Schlesinger, P K; Liu, S; Silberg, D G

    2006-04-15

    Studies to date have not directly compared the pharmacodynamic efficacies of different proton pump inhibitors in controlling intragastric acidity in patients treated with non-steroidal anti-inflammatory drugs. To compare acid suppression with once-daily esomeprazole 40 mg, lansoprazole 30 mg and pantoprazole 40 mg in patients receiving non-selective or cyclo-oxygenase-2-selective non-steroidal anti-inflammatory drug therapy. In this multicentre, open-label, comparative, three-way crossover study, adult patients (n = 90) receiving non-steroidal anti-inflammatory drugs were randomized to one of six treatment sequences. At the study site, patients were administered esomeprazole 40 mg, lansoprazole 30 mg and pantoprazole 40 mg for 5 days each, with a washout period of > or =10 days between each treatment. Twenty-four-hour pH testing was performed on day 5 of each dosing period. The mean percentage of time during the 24-h pH monitoring period that gastric pH was >4.0 was significantly greater with esomeprazole (74.2%) compared with lansoprazole (66.5%; P < 0.001) and pantoprazole (60.8%; P < 0.001), and significantly greater with esomeprazole (P < 0.05) than with the comparators regardless of whether using non-selective vs. cyclo-oxygenase-2-selective non-steroidal anti-inflammatory drugs. At the doses studied, esomeprazole treatment provides significantly greater gastric acid suppression than lansoprazole or pantoprazole in patients receiving non-selective or cyclo-oxygenase-2-selective non-steroidal anti-inflammatory drugs.

  8. The novel benzopyran class of selective cyclooxygenase-2 inhibitors. Part 2: The second clinical candidate having a shorter and favorable human half-life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jane L.; Limburg, David; Graneto, Matthew J.

    2012-05-29

    In this Letter, we provide the structure-activity relationships, optimization of design, testing criteria, and human half-life data for a series of selective COX-2 inhibitors. During the course of our structure-based drug design efforts, we discovered two distinct binding modes within the COX-2 active site for differently substituted members of this class. The challenge of a undesirably long human half-life for the first clinical candidate 1t{sub 1/2} = 360 h was addressed by multiple strategies, leading to the discovery of 29b-(S) (SC-75416) with t{sub 1/2} = 34 h.

  9. A dual inhibitor of cyclooxygenase and 5-lipoxygenase protects against kainic acid-induced brain injury.

    PubMed

    Minutoli, Letteria; Marini, Herbert; Rinaldi, Mariagrazia; Bitto, Alessandra; Irrera, Natasha; Pizzino, Gabriele; Pallio, Giovanni; Calò, Margherita; Adamo, Elena Bianca; Trichilo, Vincenzo; Interdonato, Monica; Galfo, Federica; Squadrito, Francesco; Altavilla, Domenica

    2015-06-01

    Systemic administration of kainic acid causes inflammation and apoptosis in the brain, resulting in neuronal loss. Dual cyclooxygenase/5-lipoxygenase (COX/5-LOX) inhibitors could represent a possible neuroprotective approach in preventing glutamate excitotoxicity. Consequently, we investigated the effects of a dual inhibitor of COX/5-LOX following intraperitoneal administration of kainic acid (KA, 10 mg/kg) in rats. Animals were randomized to receive either the dual inhibitor of COX/5-LOX (flavocoxid, 20 mg/kg i.p.) or its vehicle (1 ml/kg i.p.) 30 min after KA administration. Sham brain injury rats were used as controls. We evaluated protein expression of phosphorylated extracellular signal-regulated kinase (p-ERK1/2) and tumor necrosis factor alpha (TNF-α) as well as levels of malondialdehyde (MDA), prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) in the hippocampus. Animals were also observed for monitoring behavioral changes according to Racine Scale. Finally, histological analysis and brain edema evaluation were carried out. Treatment with the dual inhibitor of COX/5-LOX decreased protein expression of p-ERK1/2 and TNF-α in hippocampus, markedly reduced MDA, LTB4 and PGE2 hippocampal levels, and also ameliorated brain edema. Histological analysis showed a reduction in cell damage in rats treated with the dual inhibitor of COX/5-LOX, particularly in hippocampal subregion CA3c. Moreover, flavocoxid significantly improved behavioral signs following kainic acid administration. Our results suggest that dual inhibition of COX/5-LOX by flavocoxid has neuroprotective effects during kainic acid-induced excitotoxicity.

  10. Mechanisms underlying sodium nitroprusside-induced tolerance in the mouse aorta: Role of ROS and cyclooxygenase-derived prostanoids.

    PubMed

    Diniz, Mariana C; Olivon, Vania C; Tavares, Lívia D; Simplicio, Janaina A; Gonzaga, Natália A; de Souza, Daniele G; Bendhack, Lusiane M; Tirapelli, Carlos R; Bonaventura, Daniella

    2017-05-01

    To determine the role of reactive oxygen species (ROS) on sodium nitroprusside (SNP)-induced tolerance. Additionally, we evaluated the role of ROS on NF-κB activation and pro-inflammatory cytokines production during SNP-induced tolerance. To induce in vitro tolerance, endothelium-intact or -denuded aortic rings isolated from male Balb-c mice were incubated for 15, 30, 45 or 60min with SNP (10nmol/L). Tolerance to SNP was observed after incubation of endothelium-denuded, but not endothelium-intact aortas for 60min with this inorganic nitrate. Pre-incubation of denuded rings with tiron (superoxide anion (O 2 - ) scavenger), and the NADPH oxidase inhibitors apocynin and atorvastatin reversed SNP-induced tolerance. l-NAME (non-selective NOS inhibitor) and l-arginine (NOS substrate) also prevented SNP-induced tolerance. Similarly, ibuprofen (non-selective cyclooxygenase (COX) inhibitor), nimesulide (selective COX-2 inhibitor), AH6809 (prostaglandin PGF 2 α receptor antagonist) or SQ29584 [PGH 2 /thromboxane TXA 2 receptor antagonist] reversed SNP-induced tolerance. Increased ROS generation was detected in tolerant arteries and both tiron and atorvastatin reversed this response. Tiron prevented tolerance-induced increase on O 2 - and hydrogen peroxide (H 2 O 2 ) levels. The increase onp65/NF-κB expression and TNF-α production in tolerant arteries was prevented by tiron. The major new finding of our study is that SNP-induced tolerance is mediated by NADPH-oxidase derived ROS and vasoconstrictor prostanoids derived from COX-2, which are capable of reducing the vasorelaxation induced by SNP. Additionally, we found that ROS mediate the activation of NF-κB and the production of TNF-α in tolerant arteries. These findings identify putative molecular mechanisms whereby SNP induces tolerance in the vasculature. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Microglia cyclooxygenase-2 activity in experimental gliomas: possible role in cerebral edema formation.

    PubMed

    Badie, Behnam; Schartner, Jill M; Hagar, Aaron R; Prabakaran, Sakthivel; Peebles, Todd R; Bartley, Becky; Lapsiwala, Samir; Resnick, Daniel K; Vorpahl, Jessica

    2003-02-01

    Cerebral edema is responsible for significant morbidity and mortality in patients harboring malignant gliomas. To examine the role of inflammatory cells in brain edema formation, we studied the expression cyclooxygenase (COX)-2, a key enzyme in arachidonic acid metabolism, by microglia in the C6 rodent glioma model. The expression of COX-2 in primary microglia cultures obtained from intracranial rat C6 gliomas was examined using reverse transcription-PCR, Western analysis, and prostaglandin E(2) (PGE(2)) enzyme immunoassay. Blood-tumor barrier permeability was studied in the same tumor model using magnetic resonance imaging. In contrast to C6 glioma cells, microglia isolated from intracranial C6 tumors produced high levels of PGE(2) through a COX-2-dependent pathway. To test whether the observed microglia COX-2 activity played a role in brain edema formation in gliomas, tumor-bearing rats were treated with rofecoxib, a selective COX-2 inhibitor. Rofecoxib was as effective as dexamethasone in decreasing the diffusion of contrast material into the brain parenchyma (P = 0.01, rofecoxib versus control animals), suggesting a reduction in blood-tumor barrier permeability. These findings suggest that glioma-infiltrating microglia are a major source of PGE(2) production through the COX-2 pathway and support the use of COX-2 inhibitors as possible alternatives to glucocorticoids in the treatment of peritumoral edema in patients with malignant brain tumors.

  12. Inhibitory effect of etodolac, a selective cyclooxygenase-2 inhibitor, on stomach carcinogenesis in Helicobacter pylori-infected Mongolian gerbils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magari, Hirohito; Shimizu, Yasuhito; Inada, Ken-ichi

    2005-08-26

    The effect of the selective COX-2 inhibitor, etodolac, on Helicobacter pylori (Hp)-associated stomach carcinogenesis was investigated in Mongolian gerbils (MGs). Hp-infected MGs were fed for 23 weeks with drinking water containing 10 ppm N-methyl-N-nitrosourea. They were then switched to distilled water and placed on a diet containing 5-30 mg/kg/day etodolac for 30 weeks. We found that etodolac dose-dependently inhibited the development of gastric cancer, and no cancer was detected at a dose of 30 mg/kg/day. Etodolac did not affect the extent of inflammatory cell infiltration or oxidative DNA damage, but it significantly inhibited mucosal cell proliferation and dose-dependently repressed themore » development of intestinal metaplasia in the stomachs of Hp-infected MGs. These results suggest that COX-2 is a key molecule in inflammation-mediated stomach carcinogenesis and that chemoprevention of stomach cancer should be possible by controlling COX-2 expression or activity.« less

  13. Celecoxib versus a non-selective NSAID plus proton-pump inhibitor: what are the considerations?.

    PubMed

    Chen, Judy T; Pucino, Frank; Resman-Targoff, Beth H

    2006-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are extensively used worldwide. However, associated adverse gastrointestinal effects (NSAID gastropathy) such as bleeding, perforation and obstruction result in considerable morbidity, mortality, and expense. Although it is essential to employ gastroprotective strategies to minimize these complications in patients at risk, controversy remains on whether celecoxib alone or a non-selective NSAID in conjunction with a proton-pump inhibitor (PPI) is a superior choice. Recent concerns regarding potential cardiovascular toxicities associated with cox-2 selective inhibitors may favor non-selective NSAID/PPI co-therapy as the preferred choice. Concomitant use of low-dose aspirin with any NSAID increases the risk of gastrointestinal complications and diminishes the improved gastrointestinal safety profile of celecoxib; whereas use of ibuprofen plus PPI regimens may negate aspirin's antiplatelet benefits. Evidence shows that concurrent use of a non-selective NSAID (such as naproxen) plus a PPI is as effective in preventing NSAID gastropathy as celecoxib, and may be more cost-effective. Patients failing or intolerant to this therapy would be candidates for celecoxib at the lowest effective dose for the shortest duration of time. Potential benefits from using low-dose celecoxib with a PPI in patients previously experiencing bleeding ulcers while taking NSAIDs remains to be proven. An evidence-based debate is presented to assist clinicians with the difficult decision-making process of preventing NSAID gastropathy while minimizing other complications.

  14. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells.

    PubMed

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Gendler, Sandra J; Mukherjee, Pinku

    2005-01-01

    Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G0/G1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with reduced vascularization and

  15. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells

    PubMed Central

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Gendler, Sandra J; Mukherjee, Pinku

    2005-01-01

    Introduction Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. Methods MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. Results The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G0/G1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with

  16. Derivation and evaluation of putative adverse outcome pathways for the effects of cyclooxygenase inhibitors on reproductive processes in female fish

    EPA Science Inventory

    Cyclooxygenase (COX) inhibition is of concern in fish because COX inhibitors (e.g., ibuprofen) are ubiquitous in aquatic systems/fish tissues, and can disrupt synthesis of prostaglandins that modulate a variety of essential biological functions including reproduction. High conten...

  17. Fluorocoxib A Loaded Nanoparticles Enable Targeted Visualization of Cyclooxygenase-2 in Inflammation and Cancer

    PubMed Central

    Uddin, Md. Jashim; Werfel, Thomas A.; Crews, Brenda C.; Gupta, Mukesh K.; Kavanaugh, Taylor E.; Kingsley, Philip J.; Boyd, Kelli; Marnett, Lawrence J.; Duvall, Craig L.

    2016-01-01

    Cyclooxygenase-2 (COX-2) is expressed in virtually all solid tumors and its overexpression is a hallmark of inflammation. Thus, it is a potentially powerful biomarker for the early clinical detection of inflammatory disease and human cancers. We report a reactive oxygen species (ROS) responsive micellar nanoparticle, PPS-b-POEGA, that solubilizes the first fluorescent COX-2-selective inhibitor fluorocoxib A (FA) for COX-2 visualization in vivo. Pharmacokinetics and biodistribution of FA-PPS-b-POEGA nanoparticles (FA-NPs) were assessed after a fully-aqueous intravenous (i.v.) administration in wild-type mice and revealed 4 – 8 h post-injection as an optimal fluorescent imaging window. Carrageenan-induced inflammation in the rat and mouse footpads and 1483 HNSCC tumor xenografts were successfully visualized by FA-NPs with fluorescence up to 10-fold higher than that of normal tissues. The targeted binding of the FA cargo was blocked by pretreatment with the COX-2 inhibitor indomethacin, confirming COX-2-specific binding and local retention of FA at pathological sites. Our collective data indicate that FA-NPs are the first i.v.-ready FA formulation, provide high signal-to-noise in inflamed, premalignant, and malignant tissues, and will uniquely enable clinical translation of the poorly water-soluble FA compound. PMID:27043768

  18. Development of a potent and selective FLT3 kinase inhibitor by systematic expansion of a non-selective fragment-screening hit.

    PubMed

    Nakano, Hirofumi; Hasegawa, Tsukasa; Imamura, Riyo; Saito, Nae; Kojima, Hirotatsu; Okabe, Takayoshi; Nagano, Tetsuo

    2016-05-01

    A non-selective inhibitor (1) of FMS-like tyrosine kinase-3 (FLT3) was identified by fragment screening and systematically modified to afford a potent and selective inhibitor 26. We confirmed that 26 inhibited the growth of FLT-3-activated human acute myeloid leukemia cell line MV4-11. Our design strategy enabled rapid development of a novel type of FLT3 inhibitor from the hit fragment in the absence of target-structural information. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Practical approaches to minimizing gastrointestinal and cardiovascular safety concerns with COX-2 inhibitors and NSAIDs

    PubMed Central

    2005-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are highly effective in treating the pain and inflammation associated with osteoarthritis and rheumatoid arthritis, but it is well recognized that these agents are associated with substantial gastrointestinal toxicity. Treatment guidelines suggest that patients with one or more risk factors for NSAID associated ulcers should be prescribed preventive treatment. However, well over 80% of such patients may not receive an appropriate therapeutic intervention. Multiple strategies are available to reduce the risk for NSAID associated gastrointestinal complications. First, risk may be reduced by using non-NSAID analgesics. Second, use of the minimum effective dose of the NSAID may reduce risk. Third, co-therapy with a proton pump inhibitor or misoprostol may be desirable in at-risk patients. Use of cyclo-oxygenase-2 inhibitors may also reduce the risk for gastrointestinal events, although this benefit is eliminated in patients who receive aspirin, and cyclo-oxygenase-2 inhibitors may increase cardiovascular adverse events. The optimal management of NSAID related gastrointestinal complications must be based on the individual patient's risk factors for gastrointestinal and cardiovascular disease, as well as on the efficacy and tolerability of both the NSAID and accompanying gastroprotective agent. PMID:16168078

  20. Benzothiophene inhibitors of MK2. Part 2: Improvements in kinase selectivity and cell potency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, David R.; Meyers, Marvin J.; Kurumbail, Ravi G.

    2010-10-01

    Optimization of kinase selectivity for a set of benzothiophene MK2 inhibitors provided analogs with potencies of less than 500 nM in a cell based assay. The selectivity of the inhibitors can be rationalized by examination of X-ray crystal structures of inhibitors bound to MK2.

  1. Cyclooxygenase-1, not cyclooxygenase-2, is responsible for physiological production of prostacyclin in the cardiovascular system

    PubMed Central

    Kirkby, Nicholas S.; Lundberg, Martina H.; Harrington, Louise S.; Leadbeater, Philip D. M.; Milne, Ginger L.; Potter, Claire M. F.; Al-Yamani, Malak; Adeyemi, Oladipupo; Warner, Timothy D.; Mitchell, Jane A.

    2012-01-01

    Prostacyclin is an antithrombotic hormone produced by the endothelium, whose production is dependent on cyclooxygenase (COX) enzymes of which two isoforms exist. It is widely believed that COX-2 drives prostacyclin production and that this explains the cardiovascular toxicity associated with COX-2 inhibition, yet the evidence for this relies on indirect evidence from urinary metabolites. Here we have used a range of experimental approaches to explore which isoform drives the production of prostacyclin in vitro and in vivo. Our data show unequivocally that under physiological conditions it is COX-1 and not COX-2 that drives prostacyclin production in the cardiovascular system, and that urinary metabolites do not reflect prostacyclin production in the systemic circulation. With the idea that COX-2 in endothelium drives prostacyclin production in healthy individuals removed, we must seek new answers to why COX-2 inhibitors increase the risk of cardiovascular events to move forward with drug discovery and to enable more informed prescribing advice. PMID:23045674

  2. [Effect of preoperative cyclooxygenase-2 inhibitor for postoperative pain in patients after total knee arthroplasty: a meta-analysis].

    PubMed

    Ji, Zhong-wei; Bao, Ni-rong; Zhao, Jian-ning; Ni, Jian-fa

    2015-09-01

    To systematically evaluate the efficacy and safety of preoperative administration of cyclooxygenase-2 (COX-2) inhibitor on pain occurring with total knee arthroplasty (TKA). We electronically searched PubMed, Cochrane Library, EMBASE, CNKI, CBM, Wanfang data from inception to March 15, 2014 and manual searched journal of library collection to identify randomized controlled trials (RCTs) about preoperative administration of COX-2 inhibitor on pain occurring with TKA. The methodological quality of the included RCTs was assessed and the data were extracted according to the Cochrane Handbook 5.1.0. Meta-analysis was performed by using RevMan 5.2 software. A total of 6 RCTs involving 228 patients were included. The results of meta-analyses showed that: (1) Efficacy: The visual analog scale (VAS) of post-operation at 12-hour (WMD = -0.60, 95% CI -0.83 to -0.37, P < 0.000 01) and 24-hour (WMD = -0.74, 95% CI -1.29 to - 0.19, P = 0.008) was decreased when COX-2 inhibitor was used before operation. And compared with control group, experimental group decreased the modified numerical pain rating scale (MNPRS) at 24-hour (WMD = -0.50, 95% CI -0.70 to -0.30, P < 0.000 01), 48-hour (WMD = -0.55,95% CI -0.65 to -0.45,P < 0.000 01) under quiescent conditions, and the same result at 24-hour (WMD = -0.82, 95% CI -1.26 to -0.38, P <0.000 01), 48-hour (WMD = -0.71, 95% CI -0.82 to -0.60, P < 0.000 01) under active conditions. The morphine consumption postoperatively were fewer in experimental group at the first day (WMD = - 1.35, 95% CI -1.92 to -0.79, P < 0.000 01) and the second day (WMD = -1.60, 95% CI -2.68 to -0.52, P = 0.004). (2) Safety: COX-2 inhibitor could lessen the incidence of postoperative pruritus (RR = 0.35, 95% CI 0.15 to 0.84, P = 0.02), but not statistically decrease of nausea and vomiting (RR = 0.83, 95% CI 0.54 to 1.28, P = 0.40) and exhaustion (RR = 0.63, 95% CI 0.05 to 7.67, P = 0.72). The current evidence indicated that preoperative administration of COX-2

  3. 2',5'-Dihydroxychalcone as a potent chemical mediator and cyclooxygenase inhibitor.

    PubMed

    Lin, C N; Lee, T H; Hsu, M F; Wang, J P; Ko, F N; Teng, C M

    1997-05-01

    Eleven chalcone derivatives have been tested for their inhibitory effects on platelet aggregation in rabbit platelet suspension and the activation of mast cells and neutrophils. Arachidonic acid-induced platelet aggregation was potently inhibited by almost all the compounds and some also had a potent inhibitory effect on collagen-induced platelet aggregation and cyclooxygenase. Some hydroxychalcone derivatives showed strong inhibitory effects on the release of beta-glucuronidase and lysozyme, and on superoxide formation by rat neutrophils stimulated with the peptide fMet-Leu-Phe (fMLP). We found that the anti-inflammatory effect of 2',5'-dihydroxychalcone was greater than that of trifluoperazine. 2'5'-Dihydroxy and 2',3,4,5'-tetrahydroxyl chalcones, even at low concentration (50 microM), tested in platelet-rich plasma from man almost completely inhibited secondary aggregation induced by adrenaline. These results suggest that the anti-platelet effects of the chalcones are mainly a result of inhibition of thromboxane formation.

  4. Vitual screening and binding mode elucidation of curcumin analogues on Cyclooxygenase-2 using AYO_COX2_V1.1 protocol

    NASA Astrophysics Data System (ADS)

    Mulatsari, E.; Mumpuni, E.; Herfian, A.

    2017-05-01

    Curcumin is yellow colored phenolic compounds contained in Curcuma longa. Curcumin is known to have biological activities as anti-inflammatory, antiviral, antioxidant, and anti-infective agent [1]. Synthesis of curcumin analogue compounds has been done and some of them had biological activity like curcumin. In this research, the virtual screening of curcumin analogue compounds has been conducted. The purpose of this research was to determine the activity of these compounds as selective Cyclooxygenase-2inhibitors in in-silico. Binding mode elucidation was made by active and inactive representative compounds to see the interaction of the amino acids in the binding site of the compounds. This research used AYO_COX2_V.1.1, a structure-based virtual screening protocol (SBVS) that has been validated by Mumpuni E et al, 2014 [2]. AYO_COX2_V.1.1 protocol using a variety of integrated applications such as SPORES, PLANTS, BKchem, OpenBabel and PyMOL. The results of virtual screening conducted on 49 curcumin analogue compounds obtained 8 compounds with 4 active amino acid residues (GLY340, ILE503, PHE343, and PHE367) that were considered active as COX-2 inhibitor.

  5. Cyclooxygenase metabolites mediate glomerular monocyte chemoattractant protein-1 formation and monocyte recruitment in experimental glomerulonephritis.

    PubMed

    Schneider, A; Harendza, S; Zahner, G; Jocks, T; Wenzel, U; Wolf, G; Thaiss, F; Helmchen, U; Stahl, R A

    1999-02-01

    Monocyte chemoattractant protein-1 (MCP-1) has been shown to play a significant role in the recruitment of monocytes/macrophages in experimental glomerulonephritis. Whereas a number of inflammatory mediators have been characterized that are involved in the expression of MCP-1 in renal disease, little is known about repressors of chemokine formation in vivo. We hypothesized that cyclooxygenase (COX) products influence the formation of MCP-1 and affect inflammatory cell recruitment in glomerulonephritis. The effect of COX inhibitors was evaluated in the antithymocyte antibody model and an anti-glomerular basement membrane model of glomerulonephritis. Rats were treated with the COX-1/COX-2 inhibitor indomethacin and the selective COX-2 inhibitors meloxicam and SC 58125. Animals were studied at 1 hour, 24 hours, and 5 days after induction of the disease. Indomethacin, to a lesser degree the selective COX-2 inhibitors, enhanced glomerular MCP-1 and RANTES mRNA levels. Indomethacin enhanced glomerular monocyte chemoattractant activity an the infiltration of monocytes/macrophages at 24 hours and 5 days. Our studies demonstrate that COX products may serve as endogenous repressors of MCP-1 formation in experimental glomerulonephritis. The data suggest that COX-1 and COX-2 products mediate these effects differently because the selective COX-2 inhibitors had less influence on chemokine expression.

  6. Pathogenesis of NSAID-induced gastric damage: Importance of cyclooxygenase inhibition and gastric hypermotility

    PubMed Central

    Takeuchi, Koji

    2012-01-01

    This article reviews the pathogenic mechanism of non-steroidal anti-inflammatory drug (NSAID)-induced gastric damage, focusing on the relation between cyclooxygenase (COX) inhibition and various functional events. NSAIDs, such as indomethacin, at a dose that inhibits prostaglandin (PG) production, enhance gastric motility, resulting in an increase in mucosal permeability, neutrophil infiltration and oxyradical production, and eventually producing gastric lesions. These lesions are prevented by pretreatment with PGE2 and antisecretory drugs, and also via an atropine-sensitive mechanism, not related to antisecretory action. Although neither rofecoxib (a selective COX-2 inhibitor) nor SC-560 (a selective COX-1 inhibitor) alone damages the stomach, the combined administration of these drugs provokes gastric lesions. SC-560, but not rofecoxib, decreases prostaglandin E2 (PGE2) production and causes gastric hypermotility and an increase in mucosal permeability. COX-2 mRNA is expressed in the stomach after administration of indomethacin and SC-560 but not rofecoxib. The up-regulation of indomethacin-induced COX-2 expression is prevented by atropine at a dose that inhibits gastric hypermotility. In addition, selective COX-2 inhibitors have deleterious influences on the stomach when COX-2 is overexpressed under various conditions, including adrenalectomy, arthritis, and Helicobacter pylori-infection. In summary, gastric hypermotility plays a primary role in the pathogenesis of NSAID-induced gastric damage, and the response, causally related with PG deficiency due to COX-1 inhibition, occurs prior to other pathogenic events such as increased mucosal permeability; and the ulcerogenic properties of NSAIDs require the inhibition of both COX-1 and COX-2, the inhibition of COX-1 upregulates COX-2 expression in association with gastric hypermotility, and PGs produced by COX-2 counteract the deleterious effect of COX-1 inhibition. PMID:22611307

  7. Additive antithrombotic effect of ASP6537, a selective cyclooxygenase (COX)-1 inhibitor, in combination with clopidogrel in guinea pigs.

    PubMed

    Sakata, Chinatsu; Suzuki, Ken-Ichi; Morita, Yoshiaki; Kawasaki, Tomihisa

    2017-03-05

    Clopidogrel (Plavix ® , Sanofi-Aventis), the adenosine diphosphate P2Y 12 receptor antagonist, is reported to be effective in the prevention of cardiovascular events and is often used in combination with aspirin, particularly in high-risk patients. ASP6537 is a reversible cyclooxygenase (COX)-1 inhibitor that is under investigation as an anti-platelet agent. First, we investigated the reversibility of the antiplatelet effect of ASP6537 and its interaction with ibuprofen to compare the usability of ASP6537 with that of aspirin. We then evaluated the antithrombotic effect of ASP6537 in combination with clopidogrel using a FeCl 3 -induced thrombosis model in guinea pigs. ASP6537 exerted reversible antiplatelet activity, and no pharmacodynamic interaction with ibuprofen was noted. When administered as monotherapy, ASP6537 exerted a significant antithrombotic effect at ≥3mg/kg, while aspirin inhibited thrombosis at 100mg/kg. ASP6537 exerted significant additive effects in combination with clopidogrel, and the minimum antithrombotic dose was reduced by concomitant administration of clopidogrel. Our study showed that ASP6537 did not interact with ibuprofen and has clear additive effects in combination with clopidogrel. ASP6537 may therefore represent a promising antiplatelet agent for use in clinical settings in combination with clopidogrel. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Cyclooxygenase 2 Promotes Parathyroid Hyperplasia in ESRD

    PubMed Central

    Zhang, Qian; Qiu, Junsi; Li, Haiming; Lu, Yanwen; Wang, Xiaoyun; Yang, Junwei; Wang, Shaoqing; Zhang, Liyin; Gu, Yong; Hao, Chuan-Ming

    2011-01-01

    Hyperplasia of the PTG underlies the secondary hyperparathyroidism (SHPT) observed in CKD, but the mechanism underlying this hyperplasia is incompletely understood. Because aberrant cyclooxygenase 2 (COX2) expression promotes epithelial cell proliferation, we examined the effects of COX2 on the parathyroid gland in uremia. In patients with ESRD who underwent parathyroidectomy, clusters of cells within the parathyroid glands had increased COX2 expression. Some COX2-positive cells exhibited two nuclei, consistent with proliferation. Furthermore, nearly 78% of COX2-positive cells expressed proliferating cell nuclear antigen (PCNA). In the 5/6-nephrectomy rat model, rats fed a high-phosphate diet had significantly higher serum PTH levels and larger parathyroid glands than sham-operated rats. Compared with controls, the parathyroid glands of uremic rats exhibited more PCNA-positive cells and greater COX2 expression in the chief cells. Treatment with COX2 inhibitor celecoxib significantly reduced PCNA expression, attenuated serum PTH levels, and reduced the size of the glands. In conclusion, COX2 promotes the pathogenesis of hyperparathyroidism in ESRD, suggesting that inhibiting the COX2 pathway could be a potential therapeutic target. PMID:21335517

  9. Potency and selectivity of carprofen enantiomers for inhibition of bovine cyclooxygenase in whole blood assays.

    PubMed

    Brentnall, Claire; Cheng, Zhangrui; McKellar, Quintin A; Lees, Peter

    2012-12-01

    Whole blood in vitro assays were used to determine the potency and selectivity of carprofen enantiomers for inhibition of the isoforms of cyclooxygenase (COX), COX-1 and COX-2, in the calf. S(+)-carprofen possessed preferential activity for COX-2 inhibition but, because the slopes of inhibition curves differed, the COX-1:COX-2 inhibition ratio decreased from 9.04:1 for inhibitory concentration (IC)10 to 1.84:1 for IC95. R(-) carprofen inhibited COX-2 preferentially only for low inhibition of the COX isoforms (IC10 COX-1:COX-2=6.63:1), whereas inhibition was preferential for COX-1 for a high level of inhibition (IC95 COX-1:COX-2=0.20:1). S(+) carprofen was the more potent inhibitor of COX isoforms; potency ratios S(+):R(-) carprofen were 11.6:1 for IC10 and 218:1 for IC90. Based on serum concentrations of carprofen enantiomers obtained after administration of a therapeutic dose of 1.4 mg/kg to calves subcutaneously, S(+)-carprofen concentrations exceeded the in vitro IC80 COX-2 value for 32 h and the IC20 for COX-1 for 33 h. The findings are discussed in relation to efficacy and safety of carprofen in calves. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Effects of specific inhibition of cyclooxygenase-2 on sodium balance, hemodynamics, and vasoactive eicosanoids.

    PubMed

    Catella-Lawson, F; McAdam, B; Morrison, B W; Kapoor, S; Kujubu, D; Antes, L; Lasseter, K C; Quan, H; Gertz, B J; FitzGerald, G A

    1999-05-01

    Conventional nonsteroidal anti-inflammatory drugs inhibit both cyclooxygenase (Cox) isoforms (Cox-1 and Cox-2) and may be associated with nephrotoxicity. The present study was undertaken to assess the renal effects of the specific Cox-2 inhibitor, MK-966. Healthy older adults (n = 36) were admitted to a clinical research unit, placed on a fixed sodium intake, and randomized under double-blind conditions to receive the specific Cox-2 inhibitor, MK-966 (50 mg every day), a nonspecific Cox-1/Cox-2 inhibitor, indomethacin (50 mg t.i.d.), or placebo for 2 weeks. All treatments were well tolerated. Both active regimens were associated with a transient but significant decline in urinary sodium excretion during the first 72 h of treatment. Blood pressure and body weight did not change significantly in any group. The glomerular filtration rate (GFR) was decreased by indomethacin but was not changed significantly by MK-966 treatment. Thromboxane biosynthesis by platelets was inhibited by indomethacin only. The urinary excretion of the prostacyclin metabolite 2,3-dinor-6-keto prostaglandin F1alpha was decreased by both MK-966 and indomethacin and was unchanged by placebo. Cox-2 may play a role in the systemic biosynthesis of prostacyclin in healthy humans. Selective inhibition of Cox-2 by MK-966 caused a clinically insignificant and transient retention of sodium, but no depression of GFR. Inhibition of both Cox isoforms by indomethacin caused transient sodium retention and a decline in GFR. Our data suggest that acute sodium retention by nonsteroidal anti-inflammatory drugs in healthy elderly subjects is mediated by the inhibition of Cox-2, whereas depression of GFR is due to inhibition of Cox-1.

  11. Flavocoxid, dual inhibitor of cyclooxygenase-2 and 5-lipoxygenase, exhibits neuroprotection in rat model of ischaemic stroke.

    PubMed

    Singh, Dhirendra Pratap; Chopra, Kanwaljit

    2014-05-01

    The efficacy of flavocoxid, a prescription medical food used in osteoarthritis in the USA, containing natural flavonoids, baicalin and catechin in experimentally induced cerebral ischaemia in rats was evaluated. Rationale behind the study was that the transient acute ischaemic attack triggers neuroinflammatory cascade. Global cerebral ischaemia was induced transiently by occluding both common carotid arteries for 15 min followed by restoration of perfusion. Flavocoxid (50, 100, 200mg/kg; p.o.) pre-treatment was instituted 6 days prior to surgery and fluoxetine (10mg/kg, p.o.) and rivastigmine (2mg/kg, p.o.) as a standard treatment for depression and cognition impairment was implied from day 1 after the surgery. Different behavioural, biochemical, neurochemical tests, molecular markers of inflammation e.g. tumour necrosis factor-α, interleukin-1 beta, and nuclear factor-kappa B levels and infarct volume were determined. Flavocoxid's strong antioxidant properties figured out from the decreased level of lipid peroxidation and protection of endogenous antioxidants like reduced glutathione and superoxide dismutase. It also reduced TNF-α, IL-1β, and NF-κB levels, and infarct volume as well as protected the loss of biogenic amines in brain tissue of ischaemic rats. This dual inhibitor of cyclooxygenase-1 and 2 with additional 5-lipoxygenase inhibition activity might be useful as a potential neuroprotectant medical food in ischaemic stroke prone patient population. Copyright © 2014. Published by Elsevier Inc.

  12. Discovery of a series of dihydroquinoxalin-2(1H)-ones as selective BET inhibitors from a dual PLK1-BRD4 inhibitor.

    PubMed

    Hu, Jianping; Wang, Yingqing; Li, Yanlian; Xu, Lin; Cao, Danyan; Song, ShanShan; Damaneh, Mohammadali Soleimani; Wang, Xin; Meng, Tao; Chen, Yue-Lei; Shen, Jingkang; Miao, Zehong; Xiong, Bing

    2017-09-08

    Recent years have seen much effort to discover new chemotypes of BRD4 inhibitors. Interestingly, some kinase inhibitors have been demonstrated to be potent bromodomain inhibitors, especially the PLK1 inhibitor BI-2536 and the JAK2 inhibitor TG101209, which can bind to BRD4 with IC 50 values of 0.025 μM and 0.13 μM, respectively. Although the concept of dual inhibition is intriguing, selective BRD4 inhibitors are preferred as they may diminish off-target effects and provide more flexibility in anticancer drug combination therapy. Inspired by BI-2536, we designed and prepared a series of dihydroquinoxalin-2(1H)-one derivatives as selective bromodomain inhibitors. We found compound 54 had slightly higher activity than (+)-JQ1 in the fluorescence anisotropy assay and potent antiproliferative cellular activity in the MM.1S cell line. We have successfully solved the cocrystal structure of 52 in complex with BRD4-BD1, providing a solid structural basis for the binding mode of compounds of this series. Compound 54 exhibited high selectivity over most non-BET subfamily members and did not show bioactivity towards the PLK1 kinase at 10 or 1 μM. From in vivo studies, compound 54 demonstrated a good PK profile, and the results from in vivo pharmacological studies clearly showed the efficacy of 54 in the mouse MM.1S xenograft model. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Primary care physician perceptions of non-steroidal anti-inflammatory drug and aspirin-associated toxicity: results of a national survey.

    PubMed

    Chey, W D; Eswaren, S; Howden, C W; Inadomi, J M; Fendrick, A M; Scheiman, J M

    2006-03-01

    To assess primary care physician perceptions of non-steroidal anti-inflammatory drug (NSAID) and aspirin-associated toxicity. A group of gastroenterologists and internal medicine physicians created a survey, which was administered via the Internet to a large number of primary care physicians from across the US. One thousand primary care physicians participated. Almost one-third of primary care physicians recommended 325 mg rather than 81 mg of aspirin/day for cardioprotection. Fifty-nine percent thought enteric-coated or buffered aspirin reduced the risk of upper gastrointestinal (GI) bleeding. Seventy-six percent believed that Helicobacter pylori infection increased the risk of NSAID ulcers but fewer than 25% tested NSAID users for this infection. More than two-thirds were aware that aspirin co-therapy decreased the GI safety benefits of the cyclo-oxygenase 2 selective NSAIDs. However, 84% felt that aspirin with a cyclo-oxygenase 2 selective NSAID was safer than aspirin with a non-selective NSAID. When presented a patient at high risk for NSAID-related GI toxicity, almost 50% of primary care physicians recommended a proton pump inhibitor and cyclo-oxygenase 2 selective NSAID. This survey has identified areas of misinformation regarding the risk-benefit of NSAIDs and aspirin and the utilization of gastroprotective strategies. Further education on NSAIDs for primary care physicians is warranted.

  14. Opposing Effects of Cyclooxygenase-2 (COX-2) on Estrogen Receptor β (ERβ) Response to 5α-Reductase Inhibition in Prostate Epithelial Cells*

    PubMed Central

    Liu, Teresa T.; Grubisha, Melanie J.; Frahm, Krystle A.; Wendell, Stacy G.; Liu, Jiayan; Ricke, William A.; Auchus, Richard J.; DeFranco, Donald B.

    2016-01-01

    Current pharmacotherapies for symptomatic benign prostatic hyperplasia (BPH), an androgen receptor-driven, inflammatory disorder affecting elderly men, include 5α-reductase (5AR) inhibitors (i.e. dutasteride and finasteride) to block the conversion of testosterone to the more potent androgen receptor ligand dihydrotestosterone. Because dihydrotestosterone is the precursor for estrogen receptor β (ERβ) ligands, 5AR inhibitors could potentially limit ERβ activation, which maintains prostate tissue homeostasis. We have uncovered signaling pathways in BPH-derived prostate epithelial cells (BPH-1) that are impacted by 5AR inhibition. The induction of apoptosis and repression of the cell adhesion protein E-cadherin by the 5AR inhibitor dutasteride requires both ERβ and TGFβ. Dutasteride also induces cyclooxygenase type 2 (COX-2), which functions in a negative feedback loop in TGFβ and ERβ signaling pathways as evidenced by the potentiation of apoptosis induced by dutasteride or finasteride upon pharmacological inhibition or shRNA-mediated ablation of COX-2. Concurrently, COX-2 positively impacts ERβ action through its effect on the expression of a number of steroidogenic enzymes in the ERβ ligand metabolic pathway. Therefore, effective combination pharmacotherapies, which have included non-steroidal anti-inflammatory drugs, must take into account biochemical pathways affected by 5AR inhibition and opposing effects of COX-2 on the tissue-protective action of ERβ. PMID:27226548

  15. Identification and characterization of carprofen as a multitarget fatty acid amide hydrolase/cyclooxygenase inhibitor.

    PubMed

    Favia, Angelo D; Habrant, Damien; Scarpelli, Rita; Migliore, Marco; Albani, Clara; Bertozzi, Sine Mandrup; Dionisi, Mauro; Tarozzo, Glauco; Piomelli, Daniele; Cavalli, Andrea; De Vivo, Marco

    2012-10-25

    Pain and inflammation are major therapeutic areas for drug discovery. Current drugs for these pathologies have limited efficacy, however, and often cause a number of unwanted side effects. In the present study, we identify the nonsteroidal anti-inflammatory drug carprofen as a multitarget-directed ligand that simultaneously inhibits cyclooxygenase-1 (COX-1), COX-2, and fatty acid amide hydrolase (FAAH). Additionally, we synthesized and tested several derivatives of carprofen, sharing this multitarget activity. This may result in improved analgesic efficacy and reduced side effects (Naidu et al. J. Pharmacol. Exp. Ther.2009, 329, 48-56; Fowler, C. J.; et al. J. Enzyme Inhib. Med. Chem.2012, in press; Sasso et al. Pharmacol. Res.2012, 65, 553). The new compounds are among the most potent multitarget FAAH/COX inhibitors reported so far in the literature and thus may represent promising starting points for the discovery of new analgesic and anti-inflammatory drugs.

  16. Use of a balanced dual cyclooxygenase-1/2 and 5-lypoxygenase inhibitor in experimental colitis.

    PubMed

    Pallio, Giovanni; Bitto, Alessandra; Pizzino, Gabriele; Galfo, Federica; Irrera, Natasha; Minutoli, Letteria; Arcoraci, Vincenzo; Squadrito, Giovanni; Macrì, Antonio; Squadrito, Francesco; Altavilla, Domenica

    2016-10-15

    Cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) play an important role in inflammatory bowel diseases (IBDs). We investigated the effects of flavocoxid, a dual COX/LOX inhibitor, in experimental colitis induced with either dinitrobenzenesulfonic acid (DNBS) or dextrane sulphate sodium (DSS) In the first model, colitis was induced in rats by a single intra-colonic instillation (25mg in 0.8ml 50% ethanol) of DNBS; after 24h animals were randomized to receive orally twice a day, flavocoxid (10mg/kg), zileuton (50mg/kg), or celecoxib (5mg/kg). Sham animals received 0.8ml of saline by a single intra-colonic instillation. Rats were killed 4 days after induction and samples were collected for analysis. In the second model, colitis was induced in rats by the administration of 8% DSS dissolved in drinking water; after 24h animals were randomized to the same above reported treatments. Sham animals received standard drinking water. Rats were killed 5 days after induction and samples were collected for analysis. Flavocoxid, zileuton and celecoxib improved weight loss, reduced colonic myeloperoxydase activity, macroscopic and microscopic damage, and TNF-α serum levels. Flavocoxid and celecoxib also reduced malondialdheyde, 6-keto PGF1α and PGE-2 levels while flavocoxid and zileuton decreased LTB-4 levels. In addition, flavocoxid treatment improved histological features and apoptosis as compared to zileuton and celecoxib; moreover only flavocoxid reduced TXB2, thus avoiding an imbalance in eicosanoids production. Our results show that flavocoxid has protective effect in IBDs and may represents a future safe treatment for inflammatory bowel diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Potentiation of neutrophil cyclooxygenase-2 by adenosine: an early anti-inflammatory signal

    PubMed Central

    Cadieux, Jean-Sébastien; Leclerc, Patrick; St-Onge, Mireille; Dussault, Andrée-Anne; Laflamme, Cynthia; Picard, Serge; Ledent, Catherine; Borgeat, Pierre; Pouliot, Marc

    2010-01-01

    Summary Neutrophils, which are often the first to migrate at inflamed sites, can generate leukotriene B4 from the 5-lipoxygenase pathway and prostaglandin E2 through the inducible cyclooxygenase-2 pathway. Adenosine, an endogenous autacoid with several anti-inflammatory properties, blocks the synthesis of leukotriene B4 while it potentiates the cyclooxygenase-2 pathway in fMLP-treated neutrophils, following activation of the A2A receptor. Using the murine air pouch model of inflammation, we observed that inflammatory leukocytes from mice lacking the A2A receptor have less cyclooxygenase-2 induction than wild-type animals. In human leukocytes, A2A receptor activation specifically elicited potentiation of cyclooxygenase-2 in neutrophils, but not in monocytes. Signal transduction studies indicated that the cAMP, ERK1/2, PI-3K and p38K intracellular pathways are implicated both in the direct upregulation of cyclooxygenase-2 and in its potentiation. Together, these results indicate that neutrophils are particularly important mediators of adenosine’s effects. Given the uncontrolled inflammatory phenotype observed in knockout mice and in view of the potent inhibitory actions of prostaglandin E2 on inflammatory cells, an increased cyclooxygenase-2 expression resulting from A2A receptor activation, observed particularly in neutrophils, may take part in an early modulatory mechanism promoting anti-inflammatory activities of adenosine. PMID:15769843

  18. The effectiveness of cyclooxygenase-2 inhibitors and evaluation of angiogenesis in the model of experimental colorectal cancer.

    PubMed

    Gungor, Hilal; Ilhan, Nevin; Eroksuz, Hatice

    2018-06-01

    Colorectal cancer (CRC) is an important cause of cancer-related deaths worldwide. Early diagnosis and treatment of CRCs are of importance for improving the survival. In the present study, we studied the effects of nonsteroidal anti-inflammatory drugs (NSAIDs)-induced chemopreventive effects on tumor development incidence and angiogenesis in experimental CRC rats. 1,2-Dimethylhydrazine dihydrochloride (DMH) was used as cancer-inducing agent and two NSAIDs (celecoxib and diclofenac) were given orally as chemopreventive agents. Histopathological and immuno histochemical evaluations were performed in colorectal tissue samples, whereas angiogenesis parameters were studied in blood samples. Histopathological examination showed that adenocarcinoma (62.5%), dysplastic changes (31.25%) and inflammattory changes (6.25%) were detected in DMH group, whereas no pathological change was observed in control rats. In treatment groups, there was marked decrease in adenocarcinoma rate (30% and 10%, respectively). A significant increase was detected in MMP-2, MMP-9 levels and MMP-2/TIMP-2 ratio in DMH group as compared with controls and treatment groups. In immunohistochemical evaluations, there was an increase in intensity and extent of staining of MMP-2 and MMP-9 in DMH group as compared to controls and treatment groups. The decrease in celecoxib group was more prominent. Overall, it was concluded that NSAIDs, particularly cyclooxygenase-2 (COX-2) inhibitors, might have a protective effect on CRC development and slow down progression of tumor in a DMH-induced experimental cancer model. One of the possible mechanisms in the chemoprevention of colon cancer seems to be inhibition of angiogenesis by diclofenac and celecoxib. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Molecular Mechanism of Selectivity among G Protein-Coupled Receptor Kinase 2 Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thal, David M.; Yeow, Raymond Y.; Schoenau, Christian

    2012-07-11

    G protein-coupled receptors (GPCRs) are key regulators of cell physiology and control processes ranging from glucose homeostasis to contractility of the heart. A major mechanism for the desensitization of activated GPCRs is their phosphorylation by GPCR kinases (GRKs). Overexpression of GRK2 is strongly linked to heart failure, and GRK2 has long been considered a pharmaceutical target for the treatment of cardiovascular disease. Several lead compounds developed by Takeda Pharmaceuticals show high selectivity for GRK2 and therapeutic potential for the treatment of heart failure. To understand how these drugs achieve their selectivity, we determined crystal structures of the bovine GRK2-G{beta}{gamma} complexmore » in the presence of two of these inhibitors. Comparison with the apoGRK2-G{beta}{gamma} structure demonstrates that the compounds bind in the kinase active site in a manner similar to that of the AGC kinase inhibitor balanol. Both balanol and the Takeda compounds induce a slight closure of the kinase domain, the degree of which correlates with the potencies of the inhibitors. Based on our crystal structures and homology modeling, we identified five amino acids surrounding the inhibitor binding site that we hypothesized could contribute to inhibitor selectivity. However, our results indicate that these residues are not major determinants of selectivity among GRK subfamilies. Rather, selectivity is achieved by the stabilization of a unique inactive conformation of the GRK2 kinase domain.« less

  20. Proton-pump inhibitors are associated with a reduced risk for bleeding and perforated gastroduodenal ulcers attributable to non-steroidal anti-inflammatory drugs: a nested case-control study

    PubMed Central

    Vonkeman, Harald E; Fernandes, Robert W; van der Palen, Job; van Roon, Eric N; van de Laar, Mart AFJ

    2007-01-01

    Treatment with non-steroidal anti-inflammatory drugs (NSAIDs) is hampered by gastrointestinal ulcer complications, such as ulcer bleeding and perforation. The efficacy of proton-pump inhibitors in the primary prevention of ulcer complications arising from the use of NSAIDs remains unproven. Selective cyclooxygenase-2 (COX-2) inhibitors reduce the risk for ulcer complications, but not completely in high-risk patients. This study determines which patients are especially at risk for NSAID ulcer complications and investigates the effectiveness of different preventive strategies in daily clinical practice. With the use of a nested case-control design, a large cohort of NSAID users was followed for 26 months. Cases were patients with NSAID ulcer complications necessitating hospitalisation; matched controls were selected from the remaining cohort of NSAID users who did not have NSAID ulcer complications. During the observational period, 104 incident cases were identified from a cohort of 51,903 NSAID users with 10,402 patient years of NSAID exposure (incidence 1% per year of NSAID use, age at diagnosis 70.4 ± 16.7 years (mean ± SD), 55.8% women), and 284 matched controls. Cases were characterised by serious, especially cardiovascular, co-morbidity. In-hospital mortality associated with NSAID ulcer complications was 10.6% (incidence 21.2 per 100,000 NSAID users). Concomitant proton-pump inhibitors (but not selective COX-2 inhibitors) were associated with a reduced risk for NSAID ulcer complications (the adjusted odds ratio 0.33; 95% confidence interval 0.17 to 0.67; p = 0.002). Especially at risk for NSAID ulcer complications are elderly patients with cardiovascular co-morbidity. Proton-pump inhibitors are associated with a reduced risk for NSAID ulcer complications. PMID:17521422

  1. Mechanical stimulation of skeletal muscle increases prostaglandin F2(alpha) synthesis and cyclooxygenase activity by a pertussis toxin sensitive mechanism

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.; Shansky, Janet; Solerssi, Rosa; Chromiak, Joseph

    1992-01-01

    Repetitive mechanical stimulation of differentiated skeletal muscle in tissue culture increases the production of prostaglandin F(sub 2(alpha)), an anabolic stimulator of myofiber growth. Within 4 h of initiating mechanical activity, the activity of cyclooxygenase, a regulatory enzyme in prostaglandin synthesis, was increased 82% (P is less than .005), and this increase was maintained for at least 24 h. Kinetic analysis of the stretch-activated cyclooxygenase indicated a two to three-fold decrease in the enzyme's K(sub m) with no change in V(sub max). The stretch-induced increase in enzymatic activity was not inhibited by cycloheximide, was independent of cellular electrical activity (tetrodotoxin-insensitive), but was prevented by the G protein inhibitor pertussis toxin. Pertussis toxin also inhibited the stretch-induced increases in PGF(sub 2(alpha)) production, and cell growth. It is concluded that stretch of skeletal muscle increases the synthesis of the anabolic modulator PGF(sub 2(alpha)) by a G protein-dependent process which involves activation of cyclooxygenase by a posttranslational mechanism.

  2. Flaxseed oil increases aortic reactivity to phenylephrine through reactive oxygen species and the cyclooxygenase-2 pathway in rats

    PubMed Central

    2014-01-01

    Background Flaxseed oil has the highest concentration of omega-3 α-linolenic acid, which has been associated with cardiovascular benefit. However, the mechanism underlying the vascular effects induced through flaxseed oil is not well known. Thus, in the present study, we investigated the effects of flaxseed oil on vascular function in isolated rat aortic rings. Methods Wistar rats were treated daily with flaxseed oil or a control (mineral oil) intramuscular (i.m.) for fifteen days. Isolated aortic segments were used to evaluate cyclooxygenase-2 (COX-2) protein expression, superoxide anion levels and vascular reactivity experiments. Results Flaxseed oil treatment increased the vasoconstrictor response of aortic rings to phenylephrine. Endothelium removal increased the response to phenylephrine in aortic segments isolated from both groups, but the effect was smaller in the treated group. L-NAME incubation similarly increased the phenylephrine response in segments from both groups. The TXA2 synthase inhibitor furegrelate, the selective COX-2 inhibitor NS 398, the TP receptor antagonist SQ 29.548, the reactive oxygen species (ROS) scavenger apocynin, the superoxide anion scavengers tiron and the phospholipase A2 inhibitor dexamethasone partially reversed the flaxseed oil-induced increase in reactivity to phenylephrine. Conclusions These findings suggest that flaxseed oil treatment increased vascular reactivity to phenylephrine through an increase in ROS production and COX-2-derived TXA2 production. The results obtained in the present study provide new insight into the effects of flaxseed oil treatment (i.m.) on vascular function. PMID:24993607

  3. Rational discovery of dengue type 2 non-competitive inhibitors.

    PubMed

    Heh, Choon H; Othman, Rozana; Buckle, Michael J C; Sharifuddin, Yusrizam; Yusof, Rohana; Rahman, Noorsaadah A

    2013-07-01

    Various works have been carried out in developing therapeutics against dengue. However, to date, no effective vaccine or anti-dengue agent has yet been discovered. The development of protease inhibitors is considered as a promising option, but most previous works have involved competitive inhibition. In this study, we focused on rational discovery of potential anti-dengue agents based on non-competitive inhibition of DEN-2 NS2B/NS3 protease. A homology model of the DEN-2 NS2B/NS3 protease (using West Nile Virus NS2B/NS3 protease complex, 2FP7, as the template) was used as the target, and pinostrobin, a flavanone, was used as the standard ligand. Virtual screening was performed involving a total of 13 341 small compounds, with the backbone structures of chalcone, flavanone, and flavone, available in the ZINC database. Ranking of the resulting compounds yielded compounds with higher binding affinities compared with the standard ligand. Inhibition assay of the selected top-ranking compounds against DEN-2 NS2B/NS3 proteolytic activity resulted in significantly better inhibition compared with the standard and correlated well with in silico results. In conclusion, via this rational discovery technique, better inhibitors were identified. This method can be used in further work to discover lead compounds for anti-dengue agents. © 2013 John Wiley & Sons A/S.

  4. Surgical versus medical treatment with cyclooxygenase inhibitors for symptomatic patent ductus arteriosus in preterm infants.

    PubMed

    Malviya, Manoj N; Ohlsson, Arne; Shah, Sachin S

    2013-03-28

    A patent ductus arteriosus (PDA) with significant left to right shunt increases morbidity and mortality in preterm infants. Early closure of the ductus arteriosus may be achieved pharmacologically or by surgery. The preferred initial treatment of a symptomatic PDA, surgical ligation or treatment with indomethacin, is not clear. To compare the effect of surgical ligation of PDA versus medical treatment with cyclooxygenase inhibitors (indomethacin, ibuprofen or mefenamic acid), each used as the initial treatment, on neonatal mortality in preterm infants with a symptomatic PDA. For this update we searched The Cochrane Library 2012, Issue 2, MEDLINE, EMBASE, CINAHL, Clinicaltrials.gov, Controlled-trials.com, Proceedings of the Annual Meetings of the Pediatric Academic Societies (2000 to 2011) (Abstracts2View(TM)) and Web of Science on 8 February 2012. Randomised or quasi-randomised trials in preterm or low birth weight neonates with symptomatic PDA and comparing surgical ligation with medical treatment with cyclooxygenase inhibitors, each used as the initial treatment for closure of PDA. The authors independently assessed methodological quality and extracted data for the included trial. We used RevMan 5.1 for analyses of the data. One study reporting on 154 neonates was found eligible. No significant difference between surgical closure and indomethacin treatment was found for in-hospital mortality, chronic lung disease, necrotising enterocolitis, sepsis, creatinine level or intraventricular haemorrhage. There was a significant increase in the surgical group in the incidence of pneumothorax (risk ratio (RR) 2.68; 95% confidence interval (CI) 1.45 to 4.93; risk difference (RD) 0.25; 95% CI 0.11 to 0.38; number needed to treat to harm (NNTH) 4 (95% CI 3 to 9)) and retinopathy of prematurity stage III and IV (RR 3.80; 95% CI 1.12 to 12.93; RD 0.11; 95% CI 0.02 to 0.20; NNTH 9 (95% CI 5 to 50)) compared to the indomethacin group. There was a statistically significant

  5. Discovery of novel quinazoline-2,4(1H,3H)-dione derivatives as potent PARP-2 selective inhibitors.

    PubMed

    Zhao, Hailong; Ji, Ming; Cui, Guonan; Zhou, Jie; Lai, Fangfang; Chen, Xiaoguang; Xu, Bailing

    2017-08-01

    The PARP-2 selective inhibitor is important for clarifying specific roles of PARP-2 in the pathophysiological process and developing desired drugs with reduced off-target side effects. In this work, a series of novel quinazoline-2,4(1H,3H)-dione derivatives was designed and synthesized to explore isoform selective PARP inhibitors. As a result, compound 11a (PARP-1 IC 50 =467nM, PARP-2 IC 50 =11.5nM, selectivity PARP-1/PARP-2=40.6) was disclosed as the most selective PARP-2 inhibitor with high potency to date. The binding features of compound 11a within PARP-1 and PARP-2 were investigated respectively to provide useful insights for the further construction of new isoform selective inhibitors of PARP-1 and PARP-2 by using CDOCKER program. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Modeling and simulation to support dose selection and clinical development of SC-75416, a selective COX-2 inhibitor for the treatment of acute and chronic pain.

    PubMed

    Kowalski, K G; Olson, S; Remmers, A E; Hutmacher, M M

    2008-06-01

    Pharmacokinetic/pharmacodynamic (PK/PD) models were developed and clinical trial simulations were conducted to recommend a study design to test the hypothesis that a dose of SC-75416, a selective cyclooxygenase-2 inhibitor, can be identified that achieves superior pain relief (PR) compared to 400 mg ibuprofen in a post-oral surgery pain model. PK/PD models were developed for SC-75416, rofecoxib, valdecoxib, and ibuprofen relating plasma concentrations to PR scores using a nonlinear logistic-normal model. Clinical trial simulations conducted using these models suggested that 360 mg SC-75416 could achieve superior PR compared to 400 mg ibuprofen. A placebo- and positive-controlled parallel-group post-oral surgery pain study was conducted evaluating placebo, 60, 180, and 360 mg SC-75416 oral solution, and 400 mg ibuprofen. The study results confirmed the hypothesis that 360 mg SC-75416 achieved superior PR relative to 400 mg ibuprofen (DeltaTOTPAR6=3.3, P<0.05) and demonstrated the predictive performance of the PK/PD models.

  7. Houttuynia cordata, a novel and selective COX-2 inhibitor with anti-inflammatory activity.

    PubMed

    Li, Weifeng; Zhou, Ping; Zhang, Yanmin; He, Langchong

    2011-01-27

    Houttuynia cordata Thunb. (Saururaceae; HC) has been long used in traditional oriental medicine for the treatment of inflammation diseases. Modern research has implicated inducible cyclooxygenase-2 (COX-2) as a key regulator of the inflammatory process. In the present study, we aimed to investigate the effect of HC on COX-2. We examined the effects of HC on lipopolysaccharide (LPS)-induced prostaglandin (PG) E(2) production, an indirect indicator of COX-2 activity, and COX-2 gene and protein expression in mouse peritoneal macrophages. LPS-induced mouse peritoneal macrophages were employed as an in vitro model system. LPS-induced PGE(2) production was assessed by enzyme-linked immunosorbant assay and COX-2 protein expression was assessed by Western blot assay. The results showed that HC was able to inhibit the release of LPS-induced PGE(2) from mouse peritoneal macrophages (IC50 value: 44.8 μg/mL). Moreover, the inhibitory activity of HC essential oil elicited a dose-dependent inhibition of COX-2 enzyme activity (IC50 value: 30.9 μg/mL). HC was also found to cause reduction in LPS-induced COX-2 mRNA and protein expression, but did not affect COX-1 expression. The non-steroidal anti-inflammatory drug (NSAID) and specific COX-2 inhibitor NS398 functioned similarly in LPS-induced mouse peritoneal macrophages. Taken together, our data suggest HC mediates inhibition of COX-2 enzyme activity and can affect related gene and protein expression. HC works by a mechanism of action similar to that of NSAIDs. These results add a novel aspect to the biological profile of HC. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Synthesis and biological evaluation of N-difluoromethyl-1,2-dihydropyrid-2-one acetic acid regioisomers: dual inhibitors of cyclooxygenases and 5-lipoxygenase.

    PubMed

    Yu, Gang; Praveen Rao, P N; Chowdhury, Morshed A; Abdellatif, Khaled R A; Dong, Ying; Das, Dipankar; Velázquez, Carlos A; Suresh, Mavanur R; Knaus, Edward E

    2010-04-01

    A new group of acetic acid (7a-c, R(1) = H), and propionic acid (7d-f, R(1) = Me), regioisomers wherein a N-difluoromethyl-1,2-dihydropyrid-2-one moiety is attached via its C-3, C-4, and C-5 position was synthesized. This group of compounds exhibited a more potent inhibition, and hence selectivity, for the cyclooxygenase-2 (COX-2) relative to the COX-1 isozyme. Attachment of the N-difluoromethyl-1,2-dihydropyrid-2-one ring system to an acetic acid, or propionic acid, moiety confers potent 5-LOX inhibitory activity, that is, absent in traditional arylacetic acid NSAIDs. 2-(1-Difluoromethyl-2-oxo-1,2-dihydropyridin-5-yl)acetic acid (7c) exhibited the best combination of dual COX-2 and 5-LOX inhibitory activities. Molecular modeling (docking) studies showed that the highly electronegative CHF(2) substituent present in 7c, that showed a modest selectivity for the COX-2 isozyme, is oriented within the secondary pocket (Val523) present in COX-2 similar to the sulfonamide (SO(2)NH(2)) COX-2 pharmacophore present in celecoxib, and that the N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore is oriented close to the region containing the LOX enzyme catalytic iron (His361, His366, and His545). Accordingly, the N-difluoromethyl-1,2-dihyrdopyrid-2-one moiety possesses properties suitable for the design of dual COX-2/5-LOX inhibitory drugs. 2010 Elsevier Ltd. All rights reserved.

  9. Role of the cyclooxygenase 2-thromboxane pathway in 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced decrease in mesencephalic vein blood flow in the zebrafish embryo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teraoka, Hiroki; Kubota, Akira; Dong, Wu

    2009-01-01

    Previously, we reported that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) evoked developmental toxicity required activation of aryl hydrocarbon receptor type 2 (AHR2), using zebrafish embryos. However, the downstream molecular targets of AHR2 activation are largely unknown and are the focus of the present investigation. TCDD induces cyclooxygenase 2 (COX2), a rate-limiting enzyme for prostaglandin synthesis in certain cells. In the present study, we investigated the role of the COX2-thromboxane pathway in causing a specific endpoint of TCDD developmental toxicity in the zebrafish embryo, namely, a decrease in regional blood flow in the dorsal midbrain. It was found that the TCDD-induced reduction in mesencephalic veinmore » blood flow was markedly inhibited by selective COX2 inhibitors, NS-398 and SC-236, and by a general COX inhibitor, indomethacin, but not by a selective COX1 inhibitor, SC-560. Gene knock-down of COX2 by two different types of morpholino antisense oligonucleotides, but not by their negative homologs, also protected the zebrafish embryos from mesencephalic vein circulation failure caused by TCDD. This inhibitory effect of TCDD on regional blood flow in the dorsal midbrain was also blocked by selective antagonists of the thromboxane receptor (TP). Treatment of control zebrafish embryos with a TP agonist also caused a reduction in mesencephalic vein blood flow and it too was blocked by a TP antagonist, without any effect on trunk circulation. Finally, gene knock-down of thromboxane A synthase 1 (TBXS) with morpholinos but not by the morpholinos' negative homologs provided significant protection against TCDD-induced mesencephalic circulation failure. Taken together, these results point to a role of the prostanoid synthesis pathway via COX2-TBXS-TP in the local circulation failure induced by TCDD in the dorsal midbrain of the zebrafish embryo.« less

  10. Cyclooxygenase-2 expression in non-metastatic triple-negative breast cancer patients.

    PubMed

    Mosalpuria, Kailash; Hall, Carolyn; Krishnamurthy, Savitri; Lodhi, Ashutosh; Hallman, D Michael; Baraniuk, Mary S; Bhattacharyya, Anirban; Lucci, Anthony

    2014-09-01

    Triple-negative breast cancer (TNBC) is characterised by lack of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor (HER)2/neu gene amplification. TNBC patients typically present at a younger age, with a larger average tumor size, higher grade and higher rates of lymph node positivity compared to patients with ER/PR-positive tumors. Cyclooxygenase (COX)-2 regulates the production of prostaglandins and is overexpressed in a variety of solid tumors. In breast cancer, the overexpression of COX-2 is associated with indicators of poor prognosis, such as lymph node metastasis, poor differentiation and large tumor size. Since both TNBC status and COX-2 overexpression are known poor prognostic markers in primary breast cancer, we hypothesized that the COX-2 protein is overexpressed in the primary tumors of TNBC patients. The purpose of this study was to determine whether there exists an association between TNBC status and COX-2 protein overexpression in primary breast cancer. We prospectively evaluated COX-2 expression levels in primary tumor samples obtained from 125 patients with stage I-III breast cancer treated between February, 2005 and October, 2007. Information on clinicopathological factors was obtained from a prospective database. Baseline tumor characteristics and patient demographics were compared between TNBC and non-TNBC patients using the Chi-square and Fisher's exact tests. In total, 60.8% of the patients were classified as having ER-positive tumors, 51.2% were PR-positive, 14.4% had HER-2/neu amplification and 28.0% were classified as TNBC. COX-2 overexpression was found in 33.0% of the patients. TNBC was associated with COX-2 overexpression (P=0.009), PR expression (P=0.048) and high tumor grade (P=0.001). After adjusting for age, menopausal status, body mass index (BMI), lymph node status and neoadjuvant chemotherapy (NACT), TNBC was an independent predictor of COX-2 overexpression (P=0.01). In conclusion, the

  11. Celecoxib extends C. elegans lifespan via inhibition of insulin-like signaling but not cyclooxygenase-2 activity

    PubMed Central

    Ching, Tsui-Ting; Chiang, Wei-Chung; Chen, Ching-Shih; Hsu, Ao-Lin

    2011-01-01

    Summary One goal of aging research is to develop interventions that combat age-related illnesses and slow aging. Although numerous mutations have been shown to achieve this in various model organisms, only a handful of chemicals have been identified to slow aging. Here we report that celecoxib, a non-steroidal anti-inflammatory drug (NSAID) widely used to treat pain and inflammation, extends C. elegans lifespan and delays the age-associated physiological changes, such as motor activity declines. Celecoxib also delays the progression of age-related proteotoxicity as well as tumor growth in C. elegans. Celecoxib was originally developed as a potent COX-2 inhibitor. However, the result from a structural-activity analysis demonstrated that the anti-aging effect of celecoxib might be independent of its COX-2 inhibitory activity, as analogs of celecoxib that lack cyclooxygenase-2 (COX-2) inhibitory activity produces a similar effect on lifespan. Furthermore, we found that celecoxib acts directly on 3’-phosphoinositide-dependent kinase-1 (PDK-1), a component of the insulin/IGF-1 signaling (IIS) cascade to increase lifespan. PMID:21348927

  12. Cancer/stroma interplay via cyclooxygenase-2 and indoleamine 2,3-dioxygenase promotes breast cancer progression.

    PubMed

    Chen, Jing-Yi; Li, Chien-Feng; Kuo, Cheng-Chin; Tsai, Kelvin K; Hou, Ming-Feng; Hung, Wen-Chun

    2014-07-25

    Expression of indoleamine 2,3-dioxygenase (IDO) in primary breast cancer increases tumor growth and metastasis. However, the clinical significance of stromal IDO and the regulation of stromal IDO are unclear. Metabolomics and enzyme-linked immunosorbent assay (ELISA) were used to study the effect of cyclooxygenase-2 (COX-2)-overexpressing breast cancer cells on IDO expression in co-cultured human breast fibroblasts. Biochemical inhibitors and short-hairpin RNA (shRNA) were used to clarify how prostaglandin E2 (PGE2) upregulates IDO expression. Associations of stromal IDO with clinicopathologic parameters were tested in tumor specimens. An orthotopic animal model was used to examine the effect of COX-2 and IDO inhibitors on tumor growth. Kynurenine, the metabolite generated by IDO, increases in the supernatant of fibroblasts co-cultured with COX-2-overexpressing breast cancer cells. PGE2 released by cancer cells upregulates IDO expression in fibroblasts through an EP4/signal transducer and activator of transcription 3 (STAT3)-dependent pathway. Conversely, fibroblast-secreted kynurenine promotes the formation of the E-cadherin/Aryl hydrocarbon receptor (AhR)/S-phase kinase-associated protein 2 (Skp2) complex, resulting in degradation of E-cadherin to increase breast cancer invasiveness. The enhancement of motility of breast cancer cells induced by co-culture with fibroblasts is suppressed by the IDO inhibitor 1-methyl-tryptophan. Pathological analysis demonstrates that upregulation of stromal IDO is a poor prognosis factor and is associated with of COX-2 overexpression. Co-expression of cancer COX-2 and stromal IDO predicts a worse disease-free and metastasis-free survival. Finally, COX-2 and IDO inhibitors inhibit tumor growth in vivo. Integration of metabolomics and molecular and pathological approaches reveals the interplay between cancer and stroma via COX-2, and IDO promotes tumor progression and predicts poor patient survival.

  13. Trimethyltin-activated cyclooxygenase stimulates tumor necrosis factor-alpha release from glial cells through reactive oxygen species.

    PubMed

    Viviani, B; Corsini, E; Pesenti, M; Galli, C L; Marinovich, M

    2001-04-15

    Exposure of a primary culture of glial cells to the classical neurotoxicant trimethyltin (TMT) results in the release of prostaglandin (PG)E(2) and tumor necrosis factor (TNF)-alpha. Prior treatment of glial cells with either the nonspecific inhibitor of cyclooxygenase and lypoxygenase eicosatetraynoic acid (ETYA) or the cyclooxygenase inhibitor indomethacin completely prevented TMT-induced PGE(2) production and TNF-alpha release, suggesting a role for cyclooxygenase metabolites in TMT-induced TNF-alpha release. Exposure of glial cells to increasing concentrations of PGE(2) or other prostanoids did not increase TNF-alpha synthesis, while the presence of exogenous PGE(2) during treatment of glial cells with TMT actually suppressed TNF-alpha release. The activation of arachidonic acid metabolism produces reactive oxygen species (ROS). Scavenging of ROS by means of the antioxidant trolox prevented the TMT-induced release of TNF-alpha from glial cells, while indomethacin was found to suppress ROS formation induced by 1 microM TMT in glial cells. These results suggest that activation of arachidonic acid metabolism causes TNF-alpha release through the production of ROS rather than PGE(2). Indeed, PGE(2) may exert negative feedback on the release of TNF-alpha. Copyright 2001 Academic Press.

  14. Design, Synthesis and Biological Evaluation of Histone Deacetylase (HDAC) Inhibitors: Saha (Vorinostat) Analogs and Biaryl Indolyl Benzamide Inhibitors Display Isoform Selectivity

    NASA Astrophysics Data System (ADS)

    Negmeldin, Ahmed Thabet

    HDAC proteins have emerged as interesting targets for anti-cancer drugs due to their involvement in cancers, as well as several other diseases. Several HDAC inhibitors have been approved by the FDA as anti-cancer drugs, including SAHA (suberoylanilide hydroxamic acid, Vorinostat). Unfortunately, SAHA inhibits most HDAC isoforms, which limit its use as a pharmacological tool and may lead to side effects in the clinic. In this work we were interested in developing isoform selective HDAC inhibitors, which may decrease or eliminate the side effects associated with non-selective inhibitors treatment. In addition, isoform selective HDAC inhibitors can be used as biological tools to help understand the HDAC-related cancer biology. Our strategy was based on synthesis and screening of several derivatives of the non-selective FDA approved drug SAHA substituted at different positions of the linker region. Several SAHA analogs modified at the C4 and C5 positions of the linker were synthesized. The new C4- and C5-modified SAHA libraries, along with the previously synthesized C2-modified SAHA analogs were screened in vitro and in cellulo for HDAC isoform selectivity. Interestingly, several analogs exhibited dual HDAC6/HDAC8 selectivity. Enantioselective syntheses of the pure enantiomers of some of the interesting analogs were performed and the enantiomers were screened in vitro. Among the most interesting analogs, ( R)-C4-benzyl SAHA displayed 520- to 1300-fold selectivity for HDAC6 and HDAC8 over HDAC1, 2, and 3, with IC50 values of 48 and 27 nM with HDAC6 and 8, respectively. Docking studies were performed to provide structural rationale for the observed selectivity of the new analogs. In addition, rational design, synthesis, and screening of several other biaryl indolyl benzamide HDAC inhibitors is discussed, and some showed modest HDAC1 selectivity. The new biaryl indolyl benzamides can be useful to further develop HDAC1 selective inhibitors. The dual HDAC6/8 selective

  15. Potential for control of detrusor smooth muscle spontaneous rhythmic contraction by cyclooxygenase products released by interstitial cells of Cajal

    PubMed Central

    Collins, Clinton; Klausner, Adam P; Herrick, Benjamin; Koo, Harry P; Miner, Amy S; Henderson, Scott C; Ratz, Paul H

    2009-01-01

    Interstitial cells of Cajal (ICCs) have been identified as pacemaker cells in the upper urinary tract and urethra, but the role of ICCs in the bladder remains to be determined. We tested the hypotheses that ICCs express cyclooxygenase (COX), and that COX products (prostaglandins), are the cause of spontaneous rhythmic contraction (SRC) of isolated strips of rabbit bladder free of urothelium. SRC was abolished by 10 μM indomethacin and ibuprofen (non-selective COX inhibitors). SRC was concentration-dependently inhibited by selective COX-1 (SC-560 and FR-122047) and COX-2 inhibitors (NS-398 and LM-1685), and by SC-51089, a selective antagonist for the PGE-2 receptor (EP) and ICI-192,605 and SQ-29,548, selective antagonists for thromboxane receptors (TP). The partial agonist/antagonist of the PGF-2α receptor (FP), AL-8810, inhibited SRC by ∼50%. Maximum inhibition was ∼90% by SC-51089, ∼80–85% by the COX inhibitors and ∼70% by TP receptor antagonists. In the presence of ibuprofen to abolish SRC, PGE-2, sulprostone, misoprostol, PGF-2α and U-46619 (thromboxane mimetic) caused rhythmic contractions that mimicked SRC. Fluorescence immunohistochemistry coupled with confocal laser scanning microscopy revealed that c-Kit and vimentin co-localized to interstitial cells surrounding detrusor smooth muscle bundles, indicating the presence of extensive ICCs in rabbit bladder. Co-localization of COX-1 and vimentin, and COX-2 and vimentin by ICCs supports the hypothesis that ICCs were the predominant cell type in rabbit bladder expressing both COX isoforms. These data together suggest that ICCs appear to be an important source of prostaglandins that likely play a role in regulation of SRC. Additional studies on prostaglandin-dependent SRC may generate opportunities for the application of novel treatments for disorders leading to overactive bladder. PMID:19243470

  16. Safety and Efficacy Study of the Cyclooxygenase-2 Inhibitor Parecoxib Sodium Applied for Postoperative Analgesia After Endo-Nasal Operation.

    PubMed

    Chen, Hong; Luo, Ailin

    2016-04-01

    To evaluate the safety and efficacy of the cyclooxygenase-2 inhibitor parecoxib sodium after endo-nasal operation. Patients aged 18 to 55 years with body mass index (BMI) ≤25 and ASAI~II who were undergoing endo-nasal operation were randomly allocated to receive either i.v. parecoxib sodium 40 mg or i.v. placebo (saline) 2 mL 15 minutes before induction of anesthesia. The magnitude of pain was measured using the visual analogue scale (VAS) and recorded on awakening, then at interval of 1, 2, 4, 6, 8, 12, and 24 hours after operation. Safety evaluation including nausea, vomiting, dry mouth, drowsiness, urinary retention, respiratory depression, surgical site bleeding, and so on was assessed. The patients' satisfaction of the postoperative analgesia was recorded and compared between the 2 groups. A total of 64 patients were enrolled in the study, including 31 in parecoxib group and 33 in placebo group. The VAS scores at 1, 2, 4, 6, 8 hours after operation were significantly lower in parecoxib group than in placebo group (P < 0.05). The P values were 0.002, <0.001, 0.001 at 2, 4, 6 hours after operation, respectively. The percentage of the patients who considered the postoperative analgesia "good" or "excellent" was 45.2% in parecoxib group and 9.1% in placebo group. There were no serious side effects in both groups. Parecoxib sodium was effective and safe when used for postoperative analgesia in endo-nasal operation. © 2015 World Institute of Pain.

  17. Cyclooxygenase-2 regulated by the nuclear factor-κB pathway plays an important role in endometrial breakdown in a female mouse menstrual-like model.

    PubMed

    Xu, Xiangbo; Chen, Xihua; Li, Yunfeng; Cao, Huizi; Shi, Cuige; Guan, Shuo; Zhang, Shucheng; He, Bin; Wang, Jiedong

    2013-08-01

    The role of prostaglandins (PGs) in menstruation has long been proposed. Although evidence from studies on human and nonhuman primates supports the involvement of PGs in menstruation, whether PGs play an obligatory role in the process remains unclear. Although cyclooxygenase (COX) inhibitors have been used in the treatment of irregular uterine bleeding, the mechanism involved has not been elucidated. In this study, we used a recently established mouse menstrual-like model for investigating the role of COX in endometrial breakdown and its regulation. Administration of the nonspecific COX inhibitor indomethacin and the COX-2 selective inhibitor DuP-697 led to inhibition of the menstrual-like process. Furthermore, immunostaining analysis showed that the nuclear factor (NF)κB proteins P50, P65, and COX-2 colocalized in the outer decidual stroma at 12 to 16 hours after progesterone withdrawal. Chromatin immunoprecipitation analysis showed that NFκB binding to the Cox-2 promoter increased at 12 hours after progesterone withdrawal in vivo, and real-time PCR analysis showed that the NFκB inhibitors pyrrolidine dithiocarbamate and MG-132 inhibited Cox-2 mRNA expression in vivo and in vitro, respectively. Furthermore, COX-2 and NFκB inhibitors similarly reduced endometrial breakdown, suggesting that NFκB/COX-2-derived PGs play a critical role in this process. In addition, the CD45(+) leukocyte numbers were sharply reduced following indomethacin (COX-1 and COX-2 inhibitor), DuP-697 (COX-2 inhibitor), and pyrrolidine dithiocarbamate (NFκB inhibitor) treatment. Collectively, these data indicate that NFκB/COX-2-induced PGs regulate leukocyte influx, leading to endometrial breakdown.

  18. Alkaloids as Cyclooxygenase Inhibitors in Anticancer Drug Discovery.

    PubMed

    Hashmi, Muhammad Ali; Khan, Afsar; Farooq, Umar; Khan, Sehroon

    2018-01-01

    Cancer is the leading cause of death worldwide and anticancer drug discovery is a very hot area of research at present. There are various factors which control and affect cancer, out of which enzymes like cyclooxygenase-2 (COX-2) play a vital role in the growth of tumor cells. Inhibition of this enzyme is a very useful target for the prevention of various types of cancers. Alkaloids are a diverse group of naturally occurring compounds which have shown great COX-2 inhibitory activity both in vitro and in vivo. In this mini-review, we have discussed different alkaloids with COX-2 inhibitory activities and anticancer potential which may act as leads in modern anticancer drug discovery. Different classes of alkaloids including isoquinoline alkaloids, indole alkaloids, piperidine alkaloids, quinazoline alkaloids, and various miscellaneous alkaloids obtained from natural sources have been discussed in detail in this review. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Evaluation of loxoprofen and its alcohol metabolites for potency and selectivity of inhibition of cyclooxygenase-2.

    PubMed

    Riendeau, Denis; Salem, Myriam; Styhler, Angela; Ouellet, Marc; Mancini, Joseph A; Li, Chun Sing

    2004-03-08

    Loxoprofen, its trans-alcohol and cis-alcohol metabolites were evaluated for selectivity of inhibition of COX-2 over COX-1. The (2S,1'R,2'S)-trans-alcohol derivative was found to be the most active metabolite and to be a potent and nonselective inhibitor of COX-2 and COX-1 in both enzyme and human whole blood assays.

  20. Coculture with endothelial cells enhances osteogenic differentiation of periodontal ligament stem cells via cyclooxygenase-2/prostaglandin E2/vascular endothelial growth factor signaling under hypoxia.

    PubMed

    Zhao, Lixing; Wu, Yeke; Tan, Lijun; Xu, Zhenrui; Wang, Jun; Zhao, Zhihe; Li, Xiaoyu; Li, Yu; Yang, Pu; Tang, Tian

    2013-12-01

    During periodontitis and orthodontic tooth movement, periodontal vasculature is severely impaired, leading to a hypoxic microenvironment of periodontal cells. However, the impact of hypoxia on periodontal cells is poorly defined. The present study investigates responses of cocultured endothelial cells (ECs) and periodontal ligament stem cells (PDLSCs) to hypoxia. Osteogenic differentiation, molecular characterization, and various behaviors of PDLSCs and human umbilical venous ECs under hypoxia were assessed by quantitative real-time reverse-transcription polymerase chain reaction, Western blot, and enzyme-linked immunosorbent assay. Moreover, the effect of ECs on PDLSC osteogenic differentiation was tested using NS398 (cyclooxygenase 2 blocker), SU5416 (vascular endothelial growth factor [VEGF] receptor inhibitor), AH6809, L-798106, and L-161982 (EP1/2/3/4 antagonists). First, hypoxia promoted osteogenic differentiation in PDLSCs and enhanced EC migration, whereas PD98059 (extracellular signal-regulated protein kinase [ERK] inhibitor) blocked, and cocultured ECs further enhanced, hypoxia-induced osteogenic differentiation. Second, NS398 impaired EC migration and prostaglandin E2 (PGE2)/VEGF release, whereas cocultured PDLSCs and exogenous PGE2 partially reversed it. Third, NS398 (pretreated ECs) decreased PGE2/VEGF concentrations. NS398-treated ECs and AH6809/SU5416-treated PDLSCs impaired cocultured EC-induced enhancement of PDLSC osteogenic differentiation. Hypoxia enhances ERK-mediated osteogenic differentiation in PDLSCs. Coculture with EC further augments PDLSC osteogenic differentiation via cyclooxygenase-2/PGE2/VEGF signaling.

  1. Design and synthesis of novel pyrimidine analogs as highly selective, non-covalent BTK inhibitors.

    PubMed

    Kawahata, Wataru; Asami, Tokiko; Irie, Takayuki; Sawa, Masaaki

    2018-01-15

    BTK is a promising target for the treatment of multiple diseases such as B cell malignances, asthma, and rheumatoid arthritis. Here, we report the discovery of a series of novel pyrimidine analogs as potent, highly selective, non-covalent inhibitors of BTK. Compound 25d demonstrated higher affinity to an unactivated conformation of BTK that resulted in an excellent kinase selectivity. Compound 25d showed a good oral bioavailability in mice, and significantly inhibits the PCA reaction in mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Increased expression of cyclooxygenase-2 protein during rat hepatocarcinogenesis caused by a choline-deficient, L-amino acid-defined diet and chemopreventive efficacy of a specific inhibitor, nimesulide.

    PubMed

    Denda, Ayumi; Kitayama, Wakashi; Murata, Akiko; Kishida, Hideki; Sasaki, Yasutaka; Kusuoka, Osamu; Tsujiuchi, Toshifumi; Tsutsumi, Masahiro; Nakae, Dai; Takagi, Hidetoshi; Konishi, Yoichi

    2002-02-01

    Expression of cyclooxygenase (COX)-2 protein during rat hepatocarcinogenesis associated with fatty change, fibrosis, cirrhosis and oxidative DNA damage, caused by a choline-deficient, L-amino acid-defined (CDAA) diet were investigated in F344 male rats, along with the chemopreventive efficacy of the specific COX-2 inhibitor, nimesulide (NIM). Nimesulide, which was administered in the diet at concentrations of 200, 400, 600 and 800 p.p.m. for 12 weeks, decreased the number and size of preneoplastic enzyme-altered liver foci, levels of oxidative DNA damage, and the grade and incidence of fibrosis in a dose-dependent manner. A preliminary long-term study of 65 weeks also revealed that 800 p.p.m. NIM decreased the multiplicity of neoplastic nodules and hepatocellular carcinomas and prevented the development of cirrhosis. Western blot analysis revealed that COX-2 protein was barely expressed in control livers and increased approximately 2.9-fold in the livers of rats fed on a CDAA diet for 12 weeks and approximately 4.5-5.4-fold in tumors, with a diameter larger than 5 mm, at 80 weeks. Immunohistochemically, COX-2 protein was positive in sinusoidal and stromal cells in fibrotic septa, which were identified by immunoelectron microscopy as Kupffer cells, macrophages, either activated Ito cells or fibroblasts, after exposure to the CDAA diet for 12 weeks, whereas it was only occasionally weakly positive in sinusoidal, probably Kupffer, cells in control livers. In neoplastic nodules in rats fed on a CDAA diet for 30 and 80 weeks, sinusoidal cells and cells with relatively large round nuclei and scanty cytoplasm were strongly positive for COX-2 protein, with the neoplastic hepatocytes in the minority of the nodules, but not the cancer cells, being moderately positive. These results clearly indicate that rat hepatocarcinogenesis, along with fatty change, fibrosis and cirrhosis, is associated with increased expression of COX-2 protein, and point to the chemopreventive efficacy

  3. Virtual screening of selective multitarget kinase inhibitors by combinatorial support vector machines.

    PubMed

    Ma, X H; Wang, R; Tan, C Y; Jiang, Y Y; Lu, T; Rao, H B; Li, X Y; Go, M L; Low, B C; Chen, Y Z

    2010-10-04

    Multitarget agents have been increasingly explored for enhancing efficacy and reducing countertarget activities and toxicities. Efficient virtual screening (VS) tools for searching selective multitarget agents are desired. Combinatorial support vector machines (C-SVM) were tested as VS tools for searching dual-inhibitors of 11 combinations of 9 anticancer kinase targets (EGFR, VEGFR, PDGFR, Src, FGFR, Lck, CDK1, CDK2, GSK3). C-SVM trained on 233-1,316 non-dual-inhibitors correctly identified 26.8%-57.3% (majority >36%) of the 56-230 intra-kinase-group dual-inhibitors (equivalent to the 50-70% yields of two independent individual target VS tools), and 12.2% of the 41 inter-kinase-group dual-inhibitors. C-SVM were fairly selective in misidentifying as dual-inhibitors 3.7%-48.1% (majority <20%) of the 233-1,316 non-dual-inhibitors of the same kinase pairs and 0.98%-4.77% of the 3,971-5,180 inhibitors of other kinases. C-SVM produced low false-hit rates in misidentifying as dual-inhibitors 1,746-4,817 (0.013%-0.036%) of the 13.56 M PubChem compounds, 12-175 (0.007%-0.104%) of the 168 K MDDR compounds, and 0-84 (0.0%-2.9%) of the 19,495-38,483 MDDR compounds similar to the known dual-inhibitors. C-SVM was compared to other VS methods Surflex-Dock, DOCK Blaster, kNN and PNN against the same sets of kinase inhibitors and the full set or subset of the 1.02 M Zinc clean-leads data set. C-SVM produced comparable dual-inhibitor yields, slightly better false-hit rates for kinase inhibitors, and significantly lower false-hit rates for the Zinc clean-leads data set. Combinatorial SVM showed promising potential for searching selective multitarget agents against intra-kinase-group kinases without explicit knowledge of multitarget agents.

  4. Gastrointestinal toxicity among patients taking selective COX-2 inhibitors or conventional NSAIDs, alone or combined with proton pump inhibitors: a case-control study.

    PubMed

    Bakhriansyah, Mohammad; Souverein, Patrick C; de Boer, Anthonius; Klungel, Olaf H

    2017-10-01

    To assess the risk of gastrointestinal perforation, ulcers, or bleeding (PUB) associated with the use of conventional nonsteroidal anti-inflammatory drugs (NSAIDs) with proton pump inhibitors (PPIs) and selective COX-2 inhibitors, with or without PPIs compared with conventional NSAIDs. A case-control study was performed within conventional NSAIDs and/or selective COX-2 inhibitors users identified from the Dutch PHARMO Record Linkage System in the period 1998-2012. Cases were patients aged ≥18 years with a first hospital admission for PUB. For each case, up to four controls were matched for age and sex at the date a case was hospitalized (index date). Logistic regression analysis was used to calculate odds ratios (ORs). At the index date, 2634 cases and 5074 controls were current users of conventional NSAIDs or selective COX-2 inhibitors. Compared with conventional NSAIDs, selective COX-2 inhibitors with PPIs had the lowest risk of PUB (adjusted OR 0.51, 95% confidence interval [CI]: 0.35-0.73) followed by selective COX-2 inhibitors (adjusted OR 0.66, 95%CI: 0.48-0.89) and conventional NSAIDs with PPIs (adjusted OR 0.79, 95%CI: 0.68-0.92). Compared with conventional NSAIDs, the risk of PUB was lower for those aged ≥75 years taking conventional NSAIDs with PPIs compared with younger patients (adjusted interaction OR 0.79, 95%CI: 0.64-0.99). However, those aged ≥75 years taking selective COX-2 inhibitors, the risk was higher compared with younger patients (adjusted interaction OR 1.22, 95%CI: 1.01-1.47). Selective COX-2 inhibitors with PPIs, selective COX-2 inhibitors, and conventional NSAIDs with PPIs were associated with lower risks of PUB compared with conventional NSAIDs. These effects were modified by age. © 2017 The Authors. Pharmacoepidemiology & Drug Safety Published by John Wiley & Sons Ltd. © 2017 The Authors. Pharmacoepidemiology & Drug Safety Published by John Wiley & Sons Ltd.

  5. Redox and non-redox mechanism of in vitro cyclooxygenase inhibition by natural quinones.

    PubMed

    Landa, Premysl; Kutil, Zsofia; Temml, Veronika; Vuorinen, Anna; Malik, Jan; Dvorakova, Marcela; Marsik, Petr; Kokoska, Ladislav; Pribylova, Marie; Schuster, Daniela; Vanek, Tomas

    2012-03-01

    In this study, ten anthra-, nine naphtho-, and five benzoquinone compounds of natural origin and five synthetic naphthoquinones were assessed, using an enzymatic in vitro assay, for their potential to inhibit cyclooxygenase-1 and -2 (COX-1 and COX-2), the key enzymes of the arachidonic acid cascade. IC₅₀ values comparable with COX reference inhibitor indomethacin were recorded for several quinones (primin, alkannin, diospyrin, juglone, 7-methyljuglone, and shikonin). For some of the compounds, we suggest the redox potential of quinones as the mechanism responsible for in vitro COX inhibition because of the quantitative correlation with their pro-oxidant effect. Structure-relationship activity studies revealed that the substitutions at positions 2 and 5 play the key roles in the COX inhibitory and pro-oxidant actions of naphthoquinones. In contrast, the redox mechanism alone could not explain the activity of primin, embelin, alkannin, and diospyrin. For these four quinones, molecular modeling suggested similar binding modes as for conventional nonsteroidal anti-inflammatory drugs (NSAIDs). © Georg Thieme Verlag KG Stuttgart · New York.

  6. Involvement of cyclooxygenase-2 in carbachol-induced positive inotropic response in mouse isolated left atrium.

    PubMed

    Hara, Yukio; Ike, Asako; Tanida, Riyo; Okada, Muneyoshi; Yamawaki, Hideyuki

    2009-12-01

    The mouse heart is expected to have characteristic contractile properties. However, basic information on the function of the mouse heart has not been accumulated sufficiently. In this study, the involvement of cyclooxygenase (COX)-2 in carbachol (CCh)-induced inotropic response was investigated in mouse isolated left atrium. Influences of CCh and their mechanisms of action on developed tension elicited by electrical stimulation were examined pharmacologically. The presence of COX-2 in atrium was examined by Western blotting and immunohistochemical analysis. CCh (3 microM for 15 min) produced a biphasic inotropic response: a transient decrease in contractile force followed by a late increase. Atropine suppressed the biphasic inotropic response to CCh. A muscarinic M(3) receptor antagonist, 4-diphenyl-acetoxy-N-methlpiperidine, inhibited the late positive inotropic action. Blockade of prostaglandin (PG) E(2) or F(2alpha) receptor by 6-isopropoxy-9-oxoxanthene-2-carboxylic acid (AH6809) or 9alpha, 15R-dihydroxy-11beta-fluoro-15-(2,3-dihydro-1H-inden-2-yl)-16,17,18,19,20-pentanor-prosta 5Z, 13E-dien-1-oic acid (AL8810), respectively, significantly suppressed the positive inotropic response to CCh. A nonselective COX inhibitor, indomethacin, and a selective COX-2 inhibitor, N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398) inhibited the positive response. A COX-1 inhibitor, valeroyl salicylate, did not affect the positive response. The positive response was almost completely abolished in the endocardial endothelium-deprived atria. Existence of COX-2 in endocardial endothelium was confirmed by Western blotting and immunohistochemical analysis. The present study indicated that the CCh-induced positive inotropic response was mediated by PGs, possibly PGE(2) and PGF(2alpha), released in part from endocardial endothelium. Furthermore, for the first time, we demonstrated that the production of PGs depended in part on COX-2 in endocardial endothelium through the

  7. Structure of the β-form of human MK2 in complex with the non-selective kinase inhibitor TEI-L03090

    PubMed Central

    Fujino, Aiko; Fukushima, Kei; Kubota, Takaharu; Matsumoto, Yoshiyuki; Takimoto-Kamimura, Midori

    2013-01-01

    Mitogen-activated protein kinase-activated protein kinase 2 (MK2 or MAPKAP-K2), a serine/threonine kinase from the p38 mitogen-activated protein kinase signalling pathway, plays an important role in the production of TNF-α and other cytokines. In a previous report, it was shown that MK2 in complex with the selective inhibitor TEI-I01800 adopts an α-helical glycine-rich loop that is induced by the stable nonplanar conformer of TEI-I01800. To understand the mechanism of the structural change, the structure of MK2 bound to TEI-L03090, which lacks the key substituent found in TEI-I01800, was determined. MK2–TEI-L03090 has a β-sheet glycine-rich loop in common with other kinases, as predicted. This result suggests that a small compound can induce a drastic conformational change in the target protein structure and can be used to design potent and selective inhibitors. PMID:24316826

  8. Expression of cyclooxygenase-2 in normal urothelium, and superficial and advanced transitional cell carcinoma of bladder.

    PubMed

    Margulis, Vitaly; Shariat, Shahrokh F; Ashfaq, Raheela; Thompson, Melissa; Sagalowsky, Arthur I; Hsieh, Jer-Tsong; Lotan, Yair

    2007-03-01

    We compared the differential expression of cyclooxygenase-2 in normal bladder tissue, primary bladder transitional cell carcinoma and transitional cell carcinoma metastases to lymph nodes, and determined whether cyclooxygenase-2 expression is associated with molecular alterations commonly found in bladder transitional cell carcinoma and clinical outcomes after radical cystectomy. Immunohistochemical staining for cyclooxygenase-2, survivin (Novus Biologicals, Littleton, Colorado), p21, p27, pRB, p53, MIB-1, Bax, Bcl-2, cyclin D(1) (Dakotrade mark), cyclin E (Oncogene, Cambridge, Massachusetts) and caspase-3 (Cell Signaling, Beverley, Massachusetts) was performed on archival bladder specimens from 9 subjects who underwent cystectomy for benign causes, 21 patients who underwent transurethral resection and 157 consecutive patients after radical cystectomy, and on 41 positive lymph nodes. Cyclooxygenase-2 was expressed in none of the 9 normal bladder specimens (0%), 52% of transurethral resection specimens, 62% of cystectomy specimens and 80% of lymph nodes involved with transitional cell carcinoma. Cyclooxygenase-2 expression was associated with higher pathological stage, lymphovascular invasion and metastases to lymph nodes (p=0.001, 0.045 and 0.002, respectively). Cyclooxygenase-2 expression was associated with altered expression of p53 (p=0.039), pRB (p=0.025), cyclin D1 (p=0.034) and caspase-3 (p=0.014). On univariate analysis cyclooxygenase-2 expression was associated with an increased risk of disease recurrence and bladder cancer specific mortality (p=0.0189 and 0.0472, respectively). However, on multivariate analysis only pathological stage and metastases to lymph nodes were associated with disease recurrence (p<0.001 and <0.001) and survival (p<0.001 and 0.015, respectively). Cyclooxygenase-2 is not expressed in normal bladder urothelium. Cyclooxygenase-2 over expression is associated with pathological and molecular features of biologically aggressive disease

  9. Cyclooxygenase-2-issued prostaglandin e(2) enhances the production of endogenous IL-10, which down-regulates dendritic cell functions.

    PubMed

    Harizi, Hedi; Juzan, Monique; Pitard, Vincent; Moreau, Jean-François; Gualde, Norbert

    2002-03-01

    PGE(2) is a well-known immunomodulator produced in the immune response by APCs, such as dendritic cells (DCs), the most potent APC of the immune system. We investigated the PGE(2) biosynthetic capacity of bone marrow-derived DC (BM-DC) and the effects of PG on the APC. We observed that BM-DC produce PGE(2) and other proinflammatory mediators, such as leukotriene B(4) and NO, after LPS exposure. Constitutively present in BM-DC, cyclooxygenase (COX)-1 did not contribute significantly to the total pool of PGE(2) compared with the LPS-induced COX-2-produced PGE(2). Treatment of BM-DC with exogenous PGE(2) induced the production of large amounts of IL-10 and less IL-12p70. In addition, selective inhibition of COX-2, but not COX-1, was followed by significant decrements in PGE(2) and IL-10, a concomitant restoration of IL-12 production, and an enhancement of DC stimulatory potential. In contrast, we found no demonstrable role for leukotriene B(4) or NO. In view of the potential of PGE(2) to stimulate IL-10, we examined the possibility that the suppressive effect of PGE(2) is mediated via IL-10. We found that exogenous IL-10 inhibits IL-12p70 production in the presence of NS-398, a COX-2 selective inhibitor, while the inhibitory effects of PGE(2) were totally reversed by anti-IL-10. We conclude that COX-2-mediated PGE(2) up-regulates IL-10, which down-regulates IL-12 production and the APC function of BM-DC.

  10. Prevention of posterior capsular opacification through cyclooxygenase-2 inhibition

    PubMed Central

    Barden, Curtis A; Lu, Ping; Kusewitt, Donna F.; Colitz, Carmen M. H.

    2007-01-01

    Purpose To determine if cyclooxygenase-2 (COX-2) is upregulated when lens epithelial cells (LEC) in clinical samples of cataracts and posterior capsule opacification (PCO) undergo epithelial-mesenchymal transition (EMT)-like changes. We also wanted to learn if inhibition of the enzymatic activity of COX-2 could prevent PCO formation. Methods To ensure that EMT-like changes were occurring in LEC, real-time RT-PCR was used to examine expression of EMT markers. Clinical samples of canine cataracts and PCO were examined for COX-2 expression using immunohistochemistry, western blot analysis, and real-time RT-PCR. The COX-2 inhibitors, rofecoxib and celecoxib, were used in an ex vivo model of PCO formation, and the effects on cellular migration, proliferation, and apoptosis were analyzed using immunohistochemistry and western blots. Prostaglandin E2 (PGE2) expression was examined with ELISA. Results Markers of EMT, such as lumican, Snail, Slug, and COX-2 were expressed in LEC. In clinical samples of cataracts and PCO, there was overexpression of COX-2 protein and mRNA. Both rofecoxib and celecoxib were effective at inhibiting PCO formation in our ex vivo model. Prevention of PCO with the COX-2 inhibitors appeared to work through decreased migration and proliferation, and increased apoptosis. Neither of the drugs had a toxic effect on confluent LEC and appeared to inhibit PCO through their pharmacologic action. Synthesis of PGE2 was inhibiting in the capsules treated with the COX-2 inhibiting drugs. Conclusions Extracapsular phacoemulsification cataract surgery is the most common surgical procedure performed in human and veterinary ophthalmology. The most frequent postoperative complication is PCO. The LEC that remain adhered to the lens capsule undergo EMT-like changes, proliferate, and migrate across the posterior lens capsule causing opacities. We have shown that COX-2, a protein associated with EMT, is upregulated in canine cataracts and PCO. Inhibiting the enzymatic

  11. Synthesis, biological evaluation and docking analysis of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones as potential cyclooxygenase-2 (COX-2) inhibitors.

    PubMed

    Grover, Jagdeep; Kumar, Vivek; Sobhia, M Elizabeth; Jachak, Sanjay M

    2014-10-01

    As a part of our continued efforts to discover new COX inhibitors, a series of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones were synthesized and evaluated for in vitro COX inhibitory potential. Within this series, seven compounds (3a-d, 3h, 3k and 3q) were identified as potential and selective COX-2 inhibitors (COX-2 IC50's in 1.79-4.35μM range; COX-2 selectivity index (SI)=6.8-16.7 range). Compound 3b emerged as most potent (COX-2 IC50=1.79μM; COX-1 IC50 >30μM) and selective COX-2 inhibitor (SI >16.7). Further, compound 3b displayed superior anti-inflammatory activity (59.86% inhibition of edema at 5h) in comparison to celecoxib (51.44% inhibition of edema at 5h) in carrageenan-induced rat paw edema assay. Structure-activity relationship studies suggested that N-phenyl ring substituted with p-CF3 substituent (3b, 3k and 3q) leads to more selective inhibition of COX-2. To corroborate obtained experimental biological data, molecular docking study was carried out which revealed that compound 3b showed stronger binding interaction with COX-2 as compared to COX-1. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Inhibition of cyclooxygenase-2-dependent survivin mediates decursin-induced apoptosis in human KBM-5 myeloid leukemia cells

    PubMed Central

    Ahn, Quein; Jeong, Soo-Jin; Lee, Hyo-Jung; Kwon, Hee-Young; Han, Ihn; Kim, Hyun Seok; Lee, Hyo-Jeong; Lee, Eun-Ok; Ahn, Kwang Seok; Jung, Min-Hyung; Zhu, Shudong; Chen, Chang-Yan; Kim, Sung-Hoon

    2013-01-01

    We demonstrate that decursin induces apoptosis via regulation of cyclooxygenase-2 (COX-2) and survivin in leukemic KBM-5 cells. By activating an apoptotic machinery, decursin is cytotoxic to KBM-5 cells. In this apoptotic process, decursin can activate caspase family members and triggers PARP cleavage. At the same time, the expression of COX-2 and survivin in the cells is downregulated. Furthermore, decursin is in synergy with COX-2 inhibitor, celecoxib or NS398 for the induction of apoptosis. Overall, these results suggest that decursin, via inhibiting COX-2 and survivin, sensitizes human leukemia cells to apoptosis and is a potential chemotherapeutic agent to treat this disease. PMID:20673699

  13. Promising Tools in Prostate Cancer Research: Selective Non-Steroidal Cytochrome P450 17A1 Inhibitors

    PubMed Central

    Bonomo, Silvia; Hansen, Cecilie H.; Petrunak, Elyse M.; Scott, Emily E.; Styrishave, Bjarne; Jørgensen, Flemming Steen; Olsen, Lars

    2016-01-01

    Cytochrome P450 17A1 (CYP17A1) is an important target in the treatment of prostate cancer because it produces androgens required for tumour growth. The FDA has approved only one CYP17A1 inhibitor, abiraterone, which contains a steroidal scaffold similar to the endogenous CYP17A1 substrates. Abiraterone is structurally similar to the substrates of other cytochrome P450 enzymes involved in steroidogenesis, and interference can pose a liability in terms of side effects. Using non-steroidal scaffolds is expected to enable the design of compounds that interact more selectively with CYP17A1. Therefore, we combined a structure-based virtual screening approach with density functional theory (DFT) calculations to suggest non-steroidal compounds selective for CYP17A1. In vitro assays demonstrated that two such compounds selectively inhibited CYP17A1 17α-hydroxylase and 17,20-lyase activities with IC50 values in the nanomolar range, without affinity for the major drug-metabolizing CYP2D6 and CYP3A4 enzymes and CYP21A2, with the latter result confirmed in human H295R cells. PMID:27406023

  14. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin-more » (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance

  15. Role of phosphorylated extracellular signal-regulated kinase, calcitonin gene-related peptide and cyclooxygenase-2 in experimental rat models of migraine

    PubMed Central

    DONG, XIAOMENG; HU, YAOZHI; JING, LONG; CHEN, JINBO

    2015-01-01

    Although migraine is a common neurological condition, the pathomechanism is not yet fully understood. Activation of the trigeminovascular system (TVS) has an important function in this disorder and neurogenic inflammation and central sensitization are important mechanisms underlying this condition. Nitroglycerin (NTG) infusion in rats closely mimics a universally accepted human model of migraine. Electrical stimulation of the trigeminal ganglion (ESTG) of rats can also activate TVS during a migraine attack. Numerous studies have revealed that phosphorylated extracellular signal-regulated kinase (p-ERK), calcitonin gene-related peptide (CGRP) and cyclooxygenase-2 (COX-2) are involved in pain and nociceptive pathways. However, few studies have examined whether p-ERK, CGRP and COX-2 are involved in neurogenic inflammation and central sensitization. In the present study, the expression of p-ERK, CGRP and COX-2 was detected in the dura mater, trigeminal ganglion (TG) and spinal trigeminal nucleus caudalis in NTG-induced rats and ESTG models by immunohistochemistry. The three areas considered were crucial components of the TVS. The selective COX-2 inhibitor nimesulide was used in ESTG rats to examine the association between p-ERK, CGRP and COX-2. The results demonstrated that p-ERK, CGRP and COX-2 mediated neurogenic inflammation and central sensitization in migraine. In addition, the expression of p-ERK and CGRP was attenuated by the COX-2 inhibitor. PMID:25892078

  16. A double-blind, randomized, placebo-controlled, single-dose study of the cyclooxygenase-2 inhibitor, GW406381, as a treatment for acute migraine.

    PubMed

    Wentz, A L; Jimenez, T B; Dixon, R M; Aurora, S K; Gold, M

    2008-04-01

    The objective of the present study was to explore the clinical efficacy and tolerability of GW406381, a cyclooxygenase-2 (COX-2) inhibitor with relatively high CNS penetration, in acute migraine. This was a double-blind, single-dose study of GW406381 compared with placebo and naproxen sodium compared with placebo (protocol number CXA20008). Three hundred and thirty-seven subjects were randomized 1:1:1 to GW406381 (70 mg), naproxen sodium (825 mg), or placebo for the treatment of one migraine headache of moderate or severe intensity in a potential 8-week period. The primary end-point was the proportion of subjects with headache relief [reduction in headache severity score from pre-dose 2 (moderate) or 3 (severe) to 0 (no pain) or 1 (mild)] at 2 h post-dose for GW406381 compared with placebo. Significantly higher proportions of subjects treated with GW406381 (50%, P = 0.032) or naproxen sodium (56%, P = 0.005) than with placebo (35%) reported headache relief at 2 h post-dose. Additional significant benefits were observed on many secondary outcomes, including proportions of subjects pain-free, for both GW406381 and naproxen sodium treatment compared with placebo. Both active treatments were well tolerated. Single-dose GW406381 (70 mg) and naproxen sodium (825 mg) were effective and well tolerated in the treatment of acute migraine.

  17. Explorative study on isoform-selective histone deacetylase inhibitors.

    PubMed

    Suzuki, Takayoshi

    2009-09-01

    Histone deacetylases (HDACs) catalyze the deacetylation of the acetylated lysine residues of histones and non-histone proteins, and are involved in various fundamental life phenomena, such as gene expression and cell cycle progression. Thus far, eighteen HDAC family members (HDAC1-11 and SIRT1-7) have been identified, but the functions of the HDAC isoforms are not yet fully understood. In addition, some of the HDAC isoforms have been suggested to be associated with various disease states, including cancer and neurodegenerative disorders. Therefore, isoform-selective HDAC inhibitors are of great interest, not only as tools for probing the biological functions of the isoforms, but also as candidate therapeutic agents with few side effects. It was against this background that we initiated research programs to identify isoform-selective HDAC inhibitors. We designed HDAC inhibitors based on the three-dimensional structure of the enzyme and on the proposed catalytic mechanism of HDACs, and found several isoform-selective HDAC inhibitors. Furthermore, we elucidated the functions of HDAC6 by chemical genetic approaches using these inhibitors. The results of this research also suggested the feasibility of using isoform-selective HDAC inhibitors as therapeutic agents.

  18. Analgesic effects of the COX-2 inhibitor parecoxib on surgical pain through suppression of spinal ERK signaling.

    PubMed

    Guo, Ya-Jing; Shi, Xu-Dan; Fu, DI; Yang, Yong; Wang, Ya-Ping; Dai, Ru-Ping

    2013-07-01

    Cyclooxygenase (COX)-2 inhibitors are widely used for postoperative pain control in clinical practice. However, it is unknown whether spinal sensitization is involved in the analgesic effects of COX-2 inhibitors on surgical pain. Extracellular signal-regulated kinase (ERK) in the spinal cord is implicated in various types of pain, including surgical pain. The present study investigated the role of spinal ERK signaling in the analgesic effect of the COX-2 inhibitor parecoxib on surgical pain. Surgical pain was produced in rats by surgical incision of the hind paw. Phosphorylated (p)-ERK1/2 expression was determined by immunohistochemistry. Pain hypersensitivity was evaluated by measuring the paw withdrawal threshold using the von Frey test. The selective COX-2 inhibitor parecoxib was delivered 20 min before or 20 min after the incision by intraperitoneal injection. Pretreatment with parecoxib markedly attenuated the pain hypersensitivity induced by incision. However, post-treatment with parecoxib produced minimal analgesic effects. Parecoxib inhibited the increase in spinal p-ERK expression following surgical incision. The present study thus suggests that the COX-2 inhibitor parecoxib exerts its analgesic effect on surgical pain through the inhibition of neuronal ERK activation in the spinal cord. COX-2 inhibitor delivery prior to surgery has more potent analgesic effects, suggesting the advantage of preventive analgesia for post-operative pain control.

  19. Studies on non-steroidal inhibitors of aromatase enzyme; 4-(aryl/heteroaryl)-2-(pyrimidin-2-yl)thiazole derivatives.

    PubMed

    Sahin, Zafer; Ertas, Merve; Berk, Barkın; Biltekin, Sevde Nur; Yurttas, Leyla; Demirayak, Seref

    2018-05-01

    Steroidal and non-steroidal aromatase inhibitors target the suppression of estrogen biosynthesis in the treatment of breast cancer. Researchers have increasingly focused on developing non-steroidal derivatives for their potential clinical use avoiding steroidal side-effects. Non-steroidal derivatives generally have planar aromatic structures attached to the azole ring system. One part of this ring system comprises functional groups that inhibit aromatization through the coordination of the haem group of the aromatase enzyme. Replacement of the triazole ring system and development of aromatic/cyclic structures of the side chain can increase selectivity over aromatase enzyme inhibition. In this study, 4-(aryl/heteroaryl)-2-(pyrimidin-2-yl)thiazole derivatives were synthesized and physical analyses and structural determination studies were performed. The IC 50 values were determined by a fluorescence-based aromatase inhibition assay and compound 1 (4-(2-hydroxyphenyl)-2-(pyrimidine-2-yl)thiazole) were found potent inhibitor of enzyme (IC 50 :0.42 nM). Then, their antiproliferative activity over MCF-7 and HEK-293 cell lines was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Compounds 1, 7, 8, 13, 15, 18, 21 were active against MCF-7 breast cancer cells. Lastly, a series of docking experiments were undertaken to analyze the crystal structure of human placental aromatase and identify the possible interactions between the most active structure and the active site. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Cyclooxygenase-2-dependent bronchoconstriction in perfused rat lungs exposed to endotoxin.

    PubMed

    Uhlig, S; Nüsing, R; von Bethmann, A; Featherstone, R L; Klein, T; Brasch, F; Müller, K M; Ullrich, V; Wendel, A

    1996-05-01

    Lipopolysaccharides (LPS), widely used to study the mechanisms of gram-negative sepsis, increase airway resistance by constriction of terminal bronchioles. The role of the cyclooxygenase (COX) isoenzymes and their prostanoid metabolites in this process was studied. Pulmonary resistance, the release of thromboxane (TX) and the expression of COX-2 mRNA were measured in isolated blood-free perfused rat lungs exposed to LPS. LPS induced the release of TX and caused increased airway resistance after about 30 min. Both TX formation and LPS-induced bronchoconstriction were prevented by treatment with the unspecific COX inhibitor acetyl salicylic acid, the specific COX-2 inhibitor CGP-28238, dexamethasone, actinomycin D, or cycloheximide. LPS-induced bronchoconstriction was also inhibited by the TX receptor antagonist BM-13177. The TX-mimetic compound, U-46619, increased airway resistance predominantly by constricting terminal bronchioles. COX-2-specific mRNA in lung tissue was elevated after LPS exposure, and this increase was attenuated by addition of dexamethasone or of actinomycin D. In contrast to LPS, platelet-activating factor (PAF) induced immediate TX release and bronchoconstriction that was prevented by acetyl salicylic acid, but not by CGP-28238. LPS elicits the following biochemical and functional changes in rat lungs: (i) induction of COX-2; (ii) formation of prostaglandins and TX; (iii) activation of the TX receptor on airway smooth muscle cells; (iv) constriction of terminal bronchioles; and (v) increased airway resistance. In contrast to LPS, the PAF-induced TX release is likely to depend on COX-1.

  1. Need for common internal controls when assessing the relative efficacy of pharmacologic agents using a meta-analytic approach: case study of cyclooxygenase 2-selective inhibitors for the treatment of osteoarthritis.

    PubMed

    Lee, Chin; Hunsche, Elke; Balshaw, Robert; Kong, Sheldon X; Schnitzer, Thomas J

    2005-08-15

    To evaluate the role of common internal controls in a meta-analysis of the relative efficacy of cyclooxygenase 2-selective inhibitors (coxibs) in the treatment of osteoarthritis (OA). A systematic search of Medline and US Food and Drug Administration electronic databases was performed to identify randomized, placebo-controlled clinical trials of coxibs (etoricoxib, celecoxib, rofecoxib, valdecoxib) in patients with hip and/or knee OA. The effect size for coxibs and common active internal controls (nonsteroidal antiinflammatory drugs [NSAIDs], naproxen) were determined by the mean changes from baseline in Western Ontario and McMaster Universities Osteoarthritis Index pain subscores as compared with placebo. The effect size for all coxib groups combined (0.44) indicated greater efficacy as compared with placebo, but significant heterogeneity (P < 0.0001) was observed. Rofecoxib at dosages of 12.5 mg/day and 25 mg/day and etoricoxib at a dosage of 60 mg/day had similar effect sizes (0.68 and 0.73, respectively), but these effect sizes were comparatively greater than those for both celecoxib at dosages of 200 mg/day and 100 mg twice daily or valdecoxib at a dosage of 10 mg/day (0.26 and 0.16, respectively). The effect sizes for NSAIDs or naproxen versus placebo, as determined using data from rofecoxib/etoricoxib trials, were consistently higher than the effect sizes derived from trials of celecoxib/valdecoxib. Significant heterogeneity was present in the overall effect size for NSAIDs (P = 0.007) and naproxen (P = 0.04) groups based on data available from all coxib trials. Coxibs and common active internal controls showed larger effect sizes versus placebo in the rofecoxib/etoricoxib trials than in the celecoxib/valdecoxib trials. These findings suggest systematic differences among published coxib trials and emphasize the need for direct-comparison trials. In the absence of such trials, common internal controls should be assessed when performing indirect meta

  2. Abstracts and Program Fourth International Shock Congress and Twenty Second Annual Conference on Shock. Philadelphia, Pennsylvania, June 12-16, 1999. Supplement to SHOCK Volume 11.

    DTIC Science & Technology

    1999-06-16

    selective modulation of y/5 T- cell activity after major burn trauma may provide therapeutic advantages for such patients. 17 SERUM MELATONIN LEVELS...and GM 568501). 145 EFFECT OF SELECT CYCLOOXYGENASE (COX>l AND COX-2 INHIBITORS ON PROSTAGLANDIN PRODUCTION AND T-CELL PROLIFERATION IN SEPSIS...imported from non-ischemic tissues. Treatment with NG- monomethyl-L-arginine, a non selective inhibitor of nitric oxide synthase (given at 10 mg/kg i.V

  3. Inhibition of cyclooxygenase-2-dependent survivin mediates decursin-induced apoptosis in human KBM-5 myeloid leukemia cells.

    PubMed

    Ahn, Quein; Jeong, Soo-Jin; Lee, Hyo-Jung; Kwon, Hee-Young; Han, Ihn; Kim, Hyun Seok; Lee, Hyo-Jeong; Lee, Eun-Ok; Ahn, Kwang Seok; Jung, Min-Hyung; Zhu, Shudong; Chen, Chang-Yan; Kim, Sung-Hoon

    2010-12-08

    We demonstrate that decursin induces apoptosis via regulation of cyclooxygenase-2 (COX-2) and survivin in leukemic KBM-5 cells. By activating an apoptotic machinery, decursin is cytotoxic to KBM-5 cells. In this apoptotic process, decursin can activate caspase family members and triggers PARP cleavage. At the same time, the expression of COX-2 and survivin in the cells is downregulated. Furthermore, decursin is in synergy with COX-2 inhibitor, celecoxib or NS398 for the induction of apoptosis. Overall, these results suggest that decursin, via inhibiting COX-2 and survivin, sensitizes human leukemia cells to apoptosis and is a potential chemotherapeutic agent to treat this disease. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Role of cyclooxygenase-2 in intestinal injury in neonatal rats.

    PubMed

    Lu, Hui; Zhu, Bing

    2014-11-01

    Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in premature neonates. The pathogenesis of NEC remains poorly understood. The present study aimed to investigate the dynamic change and role of cyclooxygenase-2 (COX-2) in neonatal rats with intestinal injury. Wistar rats, <24 h in age, received an intraperitoneal injection with 5 mg/kg lipopolysaccharide (LPS). Ileal tissues were collected at 1, 3, 6, 12 and 24 h following the LPS challenge for histological evaluation of NEC and for measurements of COX-2 mRNA. The correlation between the degree of intestinal injury and expression of COX-2 mRNA was determined. The LPS-injected pups showed a significant increase in injury scores compared to the control, and the most deteriorating change was at 12 h. COX-2 mRNA expression was upregulated following LPS injection. There was a significantly positive correlation between COX-2 mRNA and the grade of intestinal injury within 12 h, whereas COX-2 mRNA expression had a significantly negative correlation with the severity of intestinal injury at 24 h. COX-2 plays an important role in LPS-induced intestinal injury and the repair processes. Caution should be exerted concerning the potential therapeutic uses of COX-2 inhibitors or promoters in NEC.

  5. Chemopreventive effects of NSAIDs as inhibitors of cyclooxygenase-2 and inducers of apoptosis in experimental lung carcinogenesis.

    PubMed

    Setia, Shruti; Vaish, Vivek; Sanyal, Sankar Nath

    2012-07-01

    Roles of cyclooxygenase (COX) enzyme and intrinsic pathway of apoptosis have been explored for the chemopreventive effects of non-steroidal anti-inflammatory drugs (NSAIDs) on 9,10-dimethyl benz(a)anthracene (DMBA)-induced lung cancer in rat model. 16 weeks after the administration of DMBA, morphological analysis revealed the occurrences of tumours and lesions, which were regressed considerably with the co-administration of indomethacin and etoricoxib, the two NSAIDs under investigation. DMBA group was marked by hyperplasia and dysplasia as observed by histological examination, and these features were corrected to a large extent by the two NSAIDs. Elevated levels of COX-2 were seen in the DMBA group, the enzyme responsible for prostaglandin synthesis during inflammation and cancer, whilst the expression of the constitutive isoform, COX-1, was equally expressed in all the groups. Apoptosis was quantified by studying the activities of apaf-1, caspase-9, and 3 by immunofluorescence and western blots. Their activities were found to diminish in the DMBA-treated animals as compared to the other groups. Fluorescent co-staining of the isolated broncho-alveolar lavage cells showed reduced number of apoptotic cells in the DMBA group, indicating decrease in apoptosis after carcinogen administration. The present results thus suggest that the mechanism of cancer chemoprevention of NSAIDs may include the suppression of COX-2 and the induction of apoptosis.

  6. Pharmacophore Based Virtual Screening Approach to Identify Selective PDE4B Inhibitors

    PubMed Central

    Gaurav, Anand; Gautam, Vertika

    2017-01-01

    Phosphodiesterase 4 (PDE4) has been established as a promising target in asthma and chronic obstructive pulmonary disease. PDE4B subtype selective inhibitors are known to reduce the dose limiting adverse effect associated with non-selective PDE4B inhibitors. This makes the development of PDE4B subtype selective inhibitors a desirable research goal. To achieve this goal, ligand based pharmacophore modeling approach is employed. Separate pharmacophore hypotheses for PDE4B and PDE4D inhibitors were generated using HypoGen algorithm and 106 PDE4 inhibitors from literature having thiopyrano [3,2-d] Pyrimidines, 2-arylpyrimidines, and triazines skeleton. Suitable training and test sets were created using the molecules as per the guidelines available for HypoGen program. Training set was used for hypothesis development while test set was used for validation purpose. Fisher validation was also used to test the significance of the developed hypothesis. The validated pharmacophore hypotheses for PDE4B and PDE4D inhibitors were used in sequential virtual screening of zinc database of drug like molecules to identify selective PDE4B inhibitors. The hits were screened for their estimated activity and fit value. The top hit was subjected to docking into the active sites of PDE4B and PDE4D to confirm its selectivity for PDE4B. The hits are proposed to be evaluated further using in-vitro assays. PMID:29201082

  7. Prevalence of 5-lipoxygenase expression in canine osteosarcoma and the effects of a dual 5-lipoxygenase/cyclooxygenase inhibitor on osteosarcoma cells in vitro and in vivo.

    PubMed

    Goupil, R C; Bushey, J J; Peters-Kennedy, J; Wakshlag, J J

    2012-09-01

    Canine osteosarcoma is an insidious disease with few effective treatment modalities; therefore, use of pharmacologic intervention to improve mortality or morbidity is constantly sought. The use of cyclooxygenase enzyme inhibitors has been an area of interest with limited efficacy based on retrospective examination of tumor expression and in vivo cell proliferation models. Recently, examination of dual cyclooxygenase and 5-lipoxygenase inhibitors in human and canine oncology suggests that 5-lipoxygenase inhibitors may be an effective approach in vitro and during tumor induction in rodent models. Therefore, the authors decided to examine 5-lipoxygenase expression in primary canine osteosarcoma samples and have shown that approximately 65% of osteosarcomas label positive for cytoplasmic 5-lipoxygenase. Further examination of a cell culture and xenograft model shows similar 5-lipoxygenase expression. Surprisingly, a canine 5-lipoxygenase inhibitor (tepoxalin) significantly reduced cell proliferation at physiologic doses in vitro and diminished xenograft tumor growth in nude mice, suggesting that further investigation is needed. Traditionally, 5-lipoxygense leads to production of lipid mediators, such as leukotriene B(4) and 5-oxo-eicosatetraenoic acid, which, when added back to the media of tepoxalin-treated cells, did not recover cell proliferation. The lack of nuclear staining in primary and xenografted tumors and the lack of response to eicoasanoids suggest that lipid mediator production is not the primary means by which tepoxalin acts to alter proliferation. Regardless of the mechanisms involved in retarding cell proliferation, future investigation is warranted.

  8. The effects of centrally injected arachidonic acid on respiratory system: Involvement of cyclooxygenase to thromboxane signaling pathway.

    PubMed

    Erkan, Leman Gizem; Guvenc, Gokcen; Altinbas, Burcin; Niaz, Nasir; Yalcin, Murat

    2016-05-01

    Arachidonic acid (AA) is a polyunsaturated fatty acid that is present in the phospholipids of the cell membranes of the body and is abundant in the brain. Exogenously administered AA has been shown to affect brain metabolism and to exhibit cardiovascular and neuroendocrine actions. However, little is known regarding its respiratory actions and/or central mechanism of its respiratory effects. Therefore, the present study was designed to investigate the possible effects of centrally injected AA on respiratory system and the mediation of the central cyclooxygenase (COX) to thromboxane A2 (TXA2) signaling pathway on AA-induced respiratory effects in anaesthetized rats. Intracerebroventricular (i.c.v.) administration of AA induced dose- and time-dependent increase in tidal volume, respiratory rates and respiratory minute ventilation and also caused an increase in partial oxygen pressure (pO2) and decrease in partial carbon dioxide pressure (pCO2) in male anaesthetized Spraque Dawley rats. I.c.v. pretreatment with ibuprofen, a non-selective COX inhibitor, completely blocked the hyperventilation and blood gases changes induced by AA. In addition, central pretreatment with different doses of furegrelate, a TXA2 synthesis inhibitor, also partially prevented AA-evoked hyperventilation and blood gases effects. These data explicitly show that centrally administered AA induces hyperventilation with increasing pO2 and decreasing pCO2 levels which are mediated by the activation of central COX to TXA2 signaling pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Pre-clinical pharmacology of ICI D2138, a potent orally-active non-redox inhibitor of 5-lipoxygenase.

    PubMed Central

    McMillan, R. M.; Spruce, K. E.; Crawley, G. C.; Walker, E. R.; Foster, S. J.

    1992-01-01

    1. This paper describes the pre-clinical pharmacology of ICI D2138, a potent orally-active non-redox inhibitor of 5-lipoxygenase which is undergoing clinical evaluation. 2. ICI D2138 potently inhibited leukotriene synthesis in murine peritoneal macrophages (IC50 = 3 nM) and human blood (IC50 = 20 nM). In human and dog blood, ICI D2138 did not inhibit thromboxane B2 synthesis at a concentration of 500 microM, thus the selectivity ratio (cyclo-oxygenase: 5-lipoxygenase) was greater than 20,000. In contrast, zileuton (a 5-lipoxygenase inhibitor also undergoing clinical evaluation) exhibited a selectivity ratio of 15-100. 3. ICI D2138 potently and dose-dependently inhibited ex vivo leukotriene B4 (LTB4) synthesis by rat blood with ED50 values of 0.9, 4.0 and 80.0 mg kg-1 p.o. at 3, 10 and 20 h respectively after dosing. Similar activity was observed for inhibition of LTB4 production in a zymosan-inflamed rat air pouch model. Zileuton produced ED50 values of 5 and 20 mg kg-1 at 3 and 10 h respectively. 4. Oral administration of 1, 3 or 10 mg kg-1 ICI D2138 to dogs produced maximal inhibition of ex vivo LTB4 synthesis by blood for 5, 9 and 31 h respectively. A dose of 5 mg kg-1 p.o. of zileuton caused maximal inhibition of LTB4 for 24 h. 5. Oral administration of 10 mg kg-1 ICI D2138 caused total inhibition of LTB4 production in zymosan-inflamed rabbit knee joint. 6. Topical administration of ICI D2138 to rabbit skin caused a dose-related inhibition of arachidonic acid-induced plasma extravasation with an ID30 of 1.08 nmol per site.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1334748

  10. Differential effect of ethanol and hydrogen peroxide on barrier function and prostaglandin E2 release in differentiated Caco-2 cells: selective prevention by growth factors.

    PubMed

    Catalioto, Rose-Marie; Festa, Carla; Triolo, Antonio; Altamura, Maria; Maggi, Carlo Alberto; Giuliani, Sandro

    2009-02-01

    The present study investigates the effects of ethanol and hydrogen peroxide (H(2)O(2)) on the barrier function and prostaglandin E(2) (PGE(2)) release in differentiated Caco-2 cells. Epithelial barrier integrity was estimated by measuring transepithelial electrical resistance (TEER), the transport of reference compounds and lactate dehydrogenase leakage, the PGE(2) release by enzyme immunoassay. Ethanol and H(2)O(2) decreased TEER and increased the transport of lucifer yellow without affecting that of propranolol and phenylalanine. Only the effects of ethanol were accompanied by PGE(2) production and were reversible without causing long-term cytotoxicity. The cyclooxygenase-2 inhibitor, NS-398, prevented the effect of ethanol on both PGE(2) release and TEER, while inhibition of both cyclooxygenase-2 and tyrosine kinase drastically compromised cell viability and TEER recovery. Hepatocyte growth factor, keratinocyte growth factor or insulin prevented the effect of ethanol on cell permeability, but not on PGE(2) release. Their combination prevented the effect of H(2)O(2). In conclusion, ethanol and H(2)O(2) increased paracellular permeability in differentiated Caco-2 cells without affecting transcellular and active transport. Cyclooxygenase-2 stimulated PGE(2) release mediated the reversible effect of ethanol on tight junctions and, meanwhile, contributed to cell survival. Growth factors, normally present in the intestine, exerted a selective protective effect toward paracellular permeability increase induced by irritants.

  11. Luteolin, a novel natural inhibitor of tumor progression locus 2 serine/threonine kinase, inhibits tumor necrosis factor-alpha-induced cyclooxygenase-2 expression in JB6 mouse epidermis cells.

    PubMed

    Kim, Jong-Eun; Son, Joe Eun; Jang, Young Jin; Lee, Dong Eun; Kang, Nam Joo; Jung, Sung Keun; Heo, Yong-Seok; Lee, Ki Won; Lee, Hyong Joo

    2011-09-01

    Targeting tumor necrosis factor (TNF)-α-mediated signal pathways may be a promising strategy for developing chemopreventive agents, because TNF-α-mediated cyclooxygenase (COX)-2 expression plays a key role in inflammation and carcinogenesis. Luteolin [2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-chromenone] exerts anticarcinogenic effects, although little is known about the underlying molecular mechanisms and specific targets of this compound. In the present study, we found that luteolin inhibited TNF-α-induced COX-2 expression by down-regulating the transactivation of nuclear factor-κB and activator protein-1. Furthermore, luteolin inhibited TNF-α-induced phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase 1/ERK/p90(RSK), mitogen-activated protein kinase kinase 4/c-Jun N-terminal kinase/c-Jun, and Akt/p70(S6K). However, it had no effect on the phosphorylation of p38. These effects of luteolin on TNF-α-mediated signaling pathways and COX-2 expression are similar to those achieved by blocking tumor progression locus 2 serine/threonine kinase (TPL2) using pharmacologic inhibitors and small interfering RNAs. Luteolin inhibited TPL2 activity in vitro and in TPL2 immunoprecipitation kinase assays by binding directly in an ATP-competitive manner. Overall, these results indicate that luteolin exerts potent chemopreventive activities, which primarily target TPL2.

  12. Preserved heart function and maintained response to cardiac stresses in a genetic model of cardiomyocyte-targeted deficiency of cyclooxygenase-2

    PubMed Central

    Papanicolaou, Kyriakos N.; Streicher, John M.; Ishikawa, Tomo-o; Herschman, Harvey; Wang, Yibin; Walsh, Kenneth

    2010-01-01

    Cyclooxygenase-1 and -2 are rate-limiting enzymes in the formation of a wide array of bioactive lipid mediators collectively known as prostanoids (prostaglandins, prostacyclins, thromboxanes). Evidence from clinical trials shows that selective inhibition of the second isoenzyme (cyclooxygenase-2, or Cox-2) is associated with increased risk for serious cardiovascular events and findings from animal-based studies have suggested protective roles of Cox-2 for the heart. To further characterize the function of Cox-2 in the heart, mice with loxP sites flanking exons 4 and 5 of Cox-2 were rendered knockout specifically in cardiac myocytes (Cox-2 CKO mice) via cre-mediated recombination. Baseline cardiac performance of CKO mice remained unchanged and closely resembled that of control mice. Furthermore, myocardial infarct size induced after in vivo ischemia/reperfusion (I/R) injury was comparable between CKO and control mice. In addition, cardiac hypertrophy and function four weeks after transverse aortic constriction (TAC) was found to be similar between the two groups. Assessment of Cox-2 expression in purified adult cardiac cells isolated after I/R and TAC suggests that the dominant source of Cox-2 is found in the non-myocyte fraction. In conclusion, our animal-based analyses together with the cell-based observations portray a limited role of cardiomyocyte-produced Cox-2 at baseline and in the context of ischemic or hemodynamic challenge. PMID:20399788

  13. Evidence for cyclooxygenase-dependent sweating in young males during intermittent exercise in the heat

    PubMed Central

    Fujii, Naoto; McGinn, Ryan; Stapleton, Jill M; Paull, Gabrielle; Meade, Robert D; Kenny, Glen P

    2014-01-01

    Our recent work implicated nitric oxide (NO) in the control of sweating during intermittent exercise; however, it is unclear if cyclooxygenase (COX) is also involved. On separate days, ten healthy young (24 ± 4 years) males cycled in the heat (35°C). Two 30 min exercise bouts were performed at either a moderate (400 W, moderate heat load) or high (700 W, high heat load) rate of metabolic heat production and were followed by 20 and 40 min of recovery, respectively. Forearm sweating (ventilated capsule) was evaluated at four skin sites that were continuously perfused via intradermal microdialysis with: (1) lactated Ringer solution (Control), (2) 10 mm ketorolac (a non-selective COX inhibitor), (3) 10 mm NG-nitro-l-arginine methyl ester (l-NAME; a non-selective NO synthase inhibitor) or (4) a combination of 10 mm ketorolac + 10 mml-NAME. During the last 5 min of the first exercise at moderate heat load, forearm sweating (mg min−1 cm−2) was equivalently reduced with ketorolac (0.54 ± 0.08), l-NAME (0.55 ± 0.07) and ketorolac+l-NAME (0.56 ± 0.08) compared to Control (0.67 ± 0.06) (all P < 0.05). Similar results were obtained for the second exercise at moderate heat load (all P < 0.05). However, forearm sweating was similar between the four sites during exercise at high heat load and during recovery regardless of exercise intensity (all P > 0.05). We show that (1) although both COX and NO modulate forearm sweating during intermittent exercise bouts in the heat at a moderate heat load, the effects are not additive, and (2) the contribution of both enzymes to forearm sweating is less evident during intermittent exercise when the heat load is high and during recovery. PMID:25326453

  14. The Influence of Glycosylation of Natural and Synthetic Prenylated Flavonoids on Binding to Human Serum Albumin and Inhibition of Cyclooxygenases COX-1 and COX-2.

    PubMed

    Tronina, Tomasz; Strugała, Paulina; Popłoński, Jarosław; Włoch, Aleksandra; Sordon, Sandra; Bartmańska, Agnieszka; Huszcza, Ewa

    2017-07-21

    The synthesis of different classes of prenylated aglycones (α,β-dihydroxanthohumol ( 2 ) and ( Z )-6,4'-dihydroxy-4-methoxy-7-prenylaurone ( 3 )) was performed in one step reactions from xanthohumol ( 1 )-major prenylated chalcone naturally occurring in hops. Obtained flavonoids ( 2 - 3 ) and xanthohumol ( 1 ) were used as substrates for regioselective fungal glycosylation catalyzed by two Absidia species and Beauveria bassiana . As a result six glycosides ( 4 - 9 ) were formed, of which four glycosides ( 6 - 9 ) have not been published so far. The influence of flavonoid skeleton and the presence of glucopyranose and 4- O -methylglucopyranose moiety in flavonoid molecule on binding to main protein in plasma, human serum albumin (HSA), and inhibition of cyclooxygenases COX-1 and COX-2 were investigated. Results showed that chalcone ( 1 ) had the highest binding affinity to HSA (8.624 × 10⁴ M -1 ) of all tested compounds. It has also exhibited the highest inhibition of cyclooxygenases activity, and it was a two-fold stronger inhibitor than α,β-dihydrochalcone ( 2 ) and aurone ( 3 ). The presence of sugar moiety in flavonoid molecule caused the loss of HSA binding activity as well as the decrease in inhibition of cyclooxygenases activity.

  15. Interaction of Constitutive Nitric Oxide Synthases with Cyclooxygenases in Regulation of Bicarbonate Secretion in the Gastric Mucosa.

    PubMed

    Zolotarev, V A; Andreeva, Yu V; Vershinina, E; Khropycheva, R P

    2017-05-01

    Neuronal NO synthase blocker 7-nitroindazole suppressed bicarbonate secretion in rat gastric mucosa induced by mild local irritation with 1 M NaCl (pH 2.0). Non-selective blocker of neuronal and endothelial synthases, Nω-nitro-L-arginine (L-NNA), did not affect HCO 3 - production, but inhibited secretion after pretreatment with omeprazole. Non-selective cyclooxygenase blocker indomethacin inhibited HCO 3 - production under conditions of normal synthase activity and in the presence of L-NNA, but was ineffective when co-administered with 7-nitroindazole. It was concluded that neuronal and endothelial synthases are involved in different mechanisms of regulation of HCO 3 - secretion in the gastric mucosa induced by mild irritation. Activation of neuronal synthase stimulated HCO 3 - production, which is mediated mainly through activation of cyclooxygenase. Theoretically, activation of endothelial synthase should suppress HCO 3 - production. The effect of endothelial synthase depends on acid secretion in the stomach and bicarbonate concentration in the submucosa, as it was demonstrated in experiments with intravenous NaHCO 3 infusion.

  16. Association between selective serotonin reuptake inhibitors and upper gastrointestinal bleeding: population based case-control study

    PubMed Central

    de Abajo, Francisco José; Rodríguez, Luis Alberto García; Montero, Dolores

    1999-01-01

    Objective To examine the association between selective serotonin reuptake inhibitors and risk of upper gastrointestinal bleeding. Design Population based case-control study. Setting General practices included in the UK general practice research database. Subjects 1651 incident cases of upper gastrointestinal bleeding and 248 cases of ulcer perforation among patients aged 40 to 79 years between April 1993 and September 1997, and 10 000 controls matched for age, sex, and year that the case was identified. Interventions Review of computer profiles for all potential cases, and an internal validation study to confirm the accuracy of the diagnosis on the basis of the computerised information. Main outcome measures Current use of selective serotonin reuptake inhibitors or other antidepressants within 30 days before the index date. Results Current exposure to selective serotonin reuptake inhibitors was identified in 3.1% (52 of 1651) of patients with upper gastrointestinal bleeding but only 1.0% (95 of 10 000) of controls, giving an adjusted rate ratio of 3.0 (95% confidence interval 2.1 to 4.4). This effect measure was not modified by sex, age, dose, or treatment duration. A crude incidence of 1 case per 8000 prescriptions was estimated. A small association was found with non-selective serotonin reuptake inhibitors (relative risk 1.4, 1.1 to 1.9) but not with antidepressants lacking this inhibitory effect. None of the groups of antidepressants was associated with ulcer perforation. The concurrent use of selective serotonin reuptake inhibitors with non-steroidal anti-inflammatory drugs increased the risk of upper gastrointestinal bleeding beyond the sum of their independent effects (15.6, 6.6 to 36.6). A smaller interaction was also found between selective serotonin reuptake inhibitors and low dose aspirin (7.2, 3.1 to 17.1). Conclusions Selective serotonin reuptake inhibitors increase the risk of upper gastrointestinal bleeding. The absolute effect is, however

  17. Flavocoxid, a dual inhibitor of cyclooxygenase-2 and 5-lipoxygenase, reduces pancreatic damage in an experimental model of acute pancreatitis

    PubMed Central

    Polito, F; Bitto, A; Irrera, N; Squadrito, F; Fazzari, C; Minutoli, L; Altavilla, D

    2010-01-01

    BACKGROUND AND PURPOSE Acute pancreatitis is an autodigestive process resulting in acute inflammation of the pancreas. Accumulating evidence indicates the essential contribution of cyclooxygenase (COX)-2 and 5-lipoxygenase (5-LOX) to acute pancreatitis. We studied the effects of flavocoxid, a plant-derived dual inhibitor of COX-2 and 5-LOX, in a model of caerulein (CER)-induced acute pancreatitis. EXPERIMENTAL APPROACH Rats were given CER (80 µg·kg−1 for each of four injections at hourly intervals) or vehicle (Sham-CER). Animals were then randomized to receive flavocoxid (20 mg·kg−1 i.p.) or vehicle, 30 min after the first CER injection. Two hours after the last CER injection, we evaluated damage to the pancreas by histological methods; serum levels of amylase, lipase, leukotriene (LT)B4 and prostaglandin (PG)E2; pancreatic expression of COX-2 and 5-LOX and tumour necrosis factor-α (TNF-α) gene expression by real-time polymerase chain reaction. KEY RESULTS Caerulein induced inflammatory changes in the pancreas and raised values of the other variables measured. In CER-treated animals, but not in those given saline, flavocoxid inhibited COX-2 and 5-LOX expression, reduced serum levels of lipase and amylase and the degree of pancreatic oedema. Treatment with flavocoxid blunted the increased pancreatic TNF-α mRNA expression, serum leukotriene B4 and prostaglandin E2 levels, and protected against histological damage in terms of vacuolization and leukocyte infiltration. CONCLUSIONS AND IMPLICATIONS Our results confirm the key role of both COX-2 and 5-LOX in the inflammatory response to acute pancreatitis. Flavocoxid may provide a potential therapeutic approach to the treatment of patients at high risk of developing this life-threatening condition. PMID:20977452

  18. In vitro effects of the cyclooxygenase inhibitor indomethacin and of the phospholipase-C inhibitor U-73122 on carbachol-induced contractions of porcine detrusor muscle.

    PubMed

    Badawi, Jasmin Katrin; Seja, Tobias; Bross, Stephan

    2008-12-01

    Prostaglandin synthetase inhibitors belong to one substance class additionally used in the treatment of bladder dysfunctions associated with involuntary bladder contractions. However, the mechanism of action of non-steroidal anti-inflammatory drugs (NSAIDs) on the detrusor muscle is not clear. In this study, it was examined in vitro whether the NSAID indomethacin exhibited an inhibitory effect on carbachol-induced contractions of the porcine detrusor muscle. Additionally, the inhibitory effect of the phospholipase-C inhibitor U-73122 on carbachol-induced contractions of the porcine detrusor muscle was investigated. Experiments were performed on the muscle strips of the porcine detrusor muscle suspended in a tissue bath. Effects of indomethacin at 10(-6) and 10(-5) M on the maximum carbachol-induced contraction and on the carbachol-response curve were investigated. Additionally, the inhibitory influence of U-73122 at a concentration of 10(-5.5) M on the carbachol-response curve was investigated. Pretreatment with indomethacin at both concentrations did not result in a significant reduction in the maximum contraction compared with the control. In the experiments in which carbachol concentration-response curves were generated, indomethacin exhibited at both concentrations a very small but significant change at carbachol concentrations of 10(-8) and 10(-7.5) M. In the experiments with U-73122, a significant change was found in the concentration-response curve of carbachol at all concentrations of carbachol from 10(-6.5) to 10(-4) M. The mean maximum carbachol-induced contraction was 141.8 +/- 6.8% after incubation with U-73122 and 166.0 +/- 6.4% in the control group (P < 0.05). Indomethacin did not inhibit the carbachol-induced contractions of the porcine detrusor muscle. The cyclooxygenase does not play a significant role in the carbachol-induced bladder contraction of the porcine detrusor muscle. The inhibitory action of the phospholipase-C inhibitor U-73122 on the

  19. RVX-297- a novel BD2 selective inhibitor of BET bromodomains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharenko, Olesya A., E-mail: olesya@zenithepigenetics.com; Gesner, Emily M.; Patel, Reena G.

    Bromodomains are epigenetic readers that specifically bind to the acetyl lysine residues of histones and transcription factors. Small molecule BET bromodomain inhibitors can disrupt this interaction which leads to potential modulation of several disease states. Here we describe the binding properties of a novel BET inhibitor RVX-297 that is structurally related to the clinical compound RVX-208, currently undergoing phase III clinical trials for the treatment of cardiovascular diseases, but is distinctly different in its biological and pharmacokinetic profiles. We report that RVX-297 preferentially binds to the BD2 domains of the BET bromodomain and Extra Terminal (BET) family of protein. Wemore » demonstrate the differential binding modes of RVX-297 in BD1 and BD2 domains of BRD4 and BRD2 using X-ray crystallography, and describe the structural differences driving the BD2 selective binding of RVX-297. The isothermal titration calorimetry (ITC) data illustrate the related differential thermodynamics of binding of RVX-297 to single as well as dual BET bromodomains. - Highlights: • A novel inhibitor of BET bromodomains, RVX-297 is described. • The differential binding modes of RVX-297 in BD1 and BD2 domains of BRD4 and BRD2 using X-ray crystallography are described. • RVX-297 preferentially binds to the BD2 domains of the BET bromodomains. • The structural and thermodynamic properties of the BD2 selective binding of RVX-297 are characterized.« less

  20. Expression of cyclooxygenase-1 and -2 in canine nasal carcinomas.

    PubMed

    Borzacchiello, G; Paciello, O; Papparella, S

    2004-07-01

    Cyclooxygenase-1 (COX-1) and cyclooxygenase -2 (COX-2) are known to play a role in the carcinogenesis of many human and animal primary epithelial tumours. However, expression of COX-1 and -2 has not been investigated in canine nasal epithelial carcinoma, a rare form of neoplasia. COX-1 immunolabelling was demonstrated in normal canine nasal mucosa and in a minority of neoplastic specimens. Cytoplasmic COX-2, however, was strongly expressed in the majority of canine nasal carcinomas. In addition, COX-2 expression was demonstrated in dysplastic epithelium and in a proportion of stromal cells. Co-expression of both enzyme isoforms was revealed by confocal laser scanning microscopy. The results indicate that COX-2 is overexpressed in a proportion of naturally occurring canine nasal carcinomas, suggesting its possible role in canine nasal tumorigenesis. Copyright 2004 Elsevier Ltd.

  1. Endogenous glucocorticoids regulate an inducible cyclooxygenase enzyme.

    PubMed Central

    Masferrer, J L; Seibert, K; Zweifel, B; Needleman, P

    1992-01-01

    The effect of endogenous glucocorticoids on the expression of the cyclooxygenase enzyme was studied by contrasting cyclooxygenase expression and prostanoid synthesis in adrenalectomized and sham-adrenalectomized mice with or without the concurrent administration of endotoxin. Peritoneal macrophages obtained from adrenalectomized mice showed a 2- to 3-fold induction in cyclooxygenase synthesis and activity when compared to sham controls. Intravenous injection of a sublethal dose of endotoxin (5 micrograms/kg) further stimulated cyclooxygenase synthesis, resulting in a 4-fold increase in prostaglandin production. Similar cyclooxygenase induction can be achieved in macrophages obtained from normal mice but only after high doses of endotoxin (2.5 mg/kg) that are 100% lethal to adrenalectomized mice. Restoration of glucocorticoids in adrenalectomized animals with dexamethasone completely inhibited the elevated cyclooxygenase and protected these animals from endotoxin-induced death. In contrast, no signs of cyclooxygenase induction were observed in the kidneys of the adrenalectomized mice, even when treated with endotoxin. Dexamethasone did not affect the constitutive cyclooxygenase activity and prostaglandin production present in normal and adrenalectomized kidneys. These data indicate the existence of a constitutive cyclooxygenase that is normally present in most cells and tissues and is unaffected by steroids and of an inducible cyclooxygenase that is expressed only in the context of inflammation by proinflammatory cells, like macrophages, and that is under glucocorticoid regulation. Under normal physiological conditions glucocorticoids maintain tonic inhibition of inducible cyclooxygenase expression. Depletion of glucocorticoids or the presence of an inflammatory stimulus such as endotoxin causes rapid induction of this enzyme, resulting in an exacerbated inflammatory response that is often lethal. Images PMID:1570314

  2. CD40 engagement on dendritic cells induces cyclooxygenase-2 and EP2 receptor via p38 and ERK MAPKs.

    PubMed

    Harizi, Hedi; Limem, Ilef; Gualde, Norbert

    2011-02-01

    We have previously reported that cyclooxygenase (COX)-2-derived prostaglandin (PG)E2 critically regulates dendritic cell (DC) inflammatory phenotype and function through EP2/EP4 receptor subtypes. As genes activated by CD40 engagement are directly relevant to inflammation, we examined the effects of CD40 activation on inflammatory PGs in murine bone marrow-derived DC (mBM-DC). We showed for the first time that activation of mBM-DC with agonist anti-CD40 monoclonal antibody (anti-CD40 mAb) dose dependently induces the synthesis of significant amounts of PGE2 via inducible expression of COX-2 enzyme, as NS-398, a COX-2-selective inhibitor reduces this upregulation. In contrast to lipopolysaccharide, which upregulates mBM-DC surface levels of EP2 and EP4 receptors, CD40 crosslinking on mBM-DC increases EP2, but not EP4, receptor expression. Flow cytometry analysis and radioligand-binding assay showed that EP2 was the major EP receptor subtype, which binds to PGE2 at the surface of anti-CD40-activated mBM-DC. Upregulation of COX-2 and EP2 levels by CD40 engagement was accompanied by dose-dependent phosphorylation of p38 and ERK1/2 mitogen-activated protein kinase (MAPK) and was abrogated by inhibitors of both pathways. Collectively, we demonstrated that CD40 engagement on mBM-DC upregulates COX-2 and EP2 receptor expression through activation of p38 and ERK1/2 MAPK signaling. Triggering the PGE2/EP2 pathway by anti-CD40 mAb resulted on the induction of Th2 immune response. Thus, CD40-induced production of PGE2 by mBM-DC could represent a negative feedback mechanism involving EP2 receptor and limiting the propagation of Th1 responses. Blocking CD40 pathway may represent a novel therapeutic pathway of inhibiting COX-2-derived prostanoids in chronically inflamed tissues (that is, arthritis).

  3. Carbonic anhydrase inhibition: insight into non-COX-2 pharmacological effect of some coxibs.

    PubMed

    Dogné, Jean-Michel; Thiry, Anne; Supuran, Claudiu T

    2008-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) represent the most commonly used medications for the treatment of pain and inflammation, but numerous well-described adverse drug reactions (ADRs) limit their use. These drugs act via the inhibition of cyclooxygenase (COX) enzyme of which at least two isoforms were described: COX-1 which plays important roles in homeostatic processes such as thrombogenesis and homeostasis of the gastrointestinal tract and kidneys and COX-2 expressed in pathological conditions such as inflammation or cancer proliferation. Selective COX-2 inhibitors or "coxibs" were initially developed as a therapeutic strategy to avoid not only the gastrointestinal but also the renal and cardiovascular side effects of non specific NSAIDs. However, this class of drug did not fulfill all their promises. Indeed, numerous unexpected side effects have limited their use and some of them have been withdrawn or suspended from the market for different safety reasons including cardiovascular, hepatic and skin adverse reactions. For instance, cardiovascular warnings have been applied to the whole class of coxibs and more recently for all classical NSAIDs as well. However, differences in the chemical structures should be taken into consideration in order to discriminate between coxibs and the development of some ADRs of which renal events and hypertension. The aim of this paper is to focus on the differences in chemical structures of all marketed COX-2 inhibitors and their unexpected effects on carbonic anhydrase in order to provide non-COX-2 mechanistic insights into some of the differences observed between coxibs.

  4. Synthesis and Characterization of Novel Acyl-Glycine Inhibitors of GlyT2.

    PubMed

    Mostyn, Shannon N; Carland, Jane E; Shimmon, Susan; Ryan, Renae M; Rawling, Tristan; Vandenberg, Robert J

    2017-09-20

    It has been demonstrated previously that the endogenous compound N-arachidonyl-glycine inhibits the glycine transporter GlyT2, stimulates glycinergic neurotransmission, and provides analgesia in animal models of neuropathic and inflammatory pain. However, it is a relatively weak inhibitor with an IC 50 of 9 μM and is subject to oxidation via cyclooxygenase, limiting its therapeutic value. In this paper we describe the synthesis and testing of a novel series of monounsaturated C18 and C16 acyl-glycine molecules as inhibitors of the glycine transporter GlyT2. We demonstrate that they are up to 28 fold more potent that N-arachidonyl-glycine with no activity at the closely related GlyT1 transporter at concentrations up to 30 μM. This novel class of compounds show considerable promise as a first generation of GlyT2 transport inhibitors.

  5. Flavocoxid, a dual inhibitor of cyclooxygenase-2 and 5-lipoxygenase, reduces pancreatic damage in an experimental model of acute pancreatitis.

    PubMed

    Polito, F; Bitto, A; Irrera, N; Squadrito, F; Fazzari, C; Minutoli, L; Altavilla, D

    2010-11-01

    Acute pancreatitis is an autodigestive process resulting in acute inflammation of the pancreas. Accumulating evidence indicates the essential contribution of cyclooxygenase (COX)-2 and 5-lipoxygenase (5-LOX) to acute pancreatitis. We studied the effects of flavocoxid, a plant-derived dual inhibitor of COX-2 and 5-LOX, in a model of caerulein (CER)-induced acute pancreatitis. Rats were given CER (80 µg·kg⁻¹ for each of four injections at hourly intervals) or vehicle (Sham-CER). Animals were then randomized to receive flavocoxid (20 mg·kg⁻¹ i.p.) or vehicle, 30 min after the first CER injection. Two hours after the last CER injection, we evaluated damage to the pancreas by histological methods; serum levels of amylase, lipase, leukotriene (LT)B₄ and prostaglandin (PG)E₂ ; pancreatic expression of COX-2 and 5-LOX and tumour necrosis factor-α (TNF-α) gene expression by real-time polymerase chain reaction. Caerulein induced inflammatory changes in the pancreas and raised values of the other variables measured. In CER-treated animals, but not in those given saline, flavocoxid inhibited COX-2 and 5-LOX expression, reduced serum levels of lipase and amylase and the degree of pancreatic oedema. Treatment with flavocoxid blunted the increased pancreatic TNF-α mRNA expression, serum leukotriene B₄ and prostaglandin E₂ levels, and protected against histological damage in terms of vacuolization and leukocyte infiltration. Our results confirm the key role of both COX-2 and 5-LOX in the inflammatory response to acute pancreatitis. Flavocoxid may provide a potential therapeutic approach to the treatment of patients at high risk of developing this life-threatening condition. © 2010 The Authors. British Journal of Pharmacology © 2010 The British Pharmacological Society.

  6. Targeting SHP2 for EGFR inhibitor resistant non-small cell lung carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jie; Zeng, Li-Fan; Shen, Weihua

    Highlights: •SHP2 is required for EGFR inhibitor resistant NSCLC H1975 cell proliferation. •SHP2 inhibitor blocks EGF-stimulated ERK1/2 activation and proliferation. •SHP2 inhibitor exhibits marked anti-tumor activity in H1975 xenograft mice. •SHP2 inhibitor synergizes with PI3K inhibitor in suppressing cell growth. •Targeting SHP2 represents a novel strategy for EGFR inhibitor resistant NSCLCs. -- Abstract: Targeted therapy with inhibitors of epidermal growth factor receptor (EGFR) has produced a noticeable benefit to non-small cell lung cancer (NSCLC) patients whose tumors carry activating mutations (e.g. L858R) in EGFR. Unfortunately, these patients develop drug resistance after treatment, due to acquired secondary gatekeeper mutations in EGFRmore » (e.g. T790M). Given the critical role of SHP2 in growth factor receptor signaling, we sought to determine whether targeting SHP2 could have therapeutic value for EGFR inhibitor resistant NSCLC. We show that SHP2 is required for EGF-stimulated ERK1/2 phosphorylation and proliferation in EGFR inhibitor resistant NSCLC cell line H1975, which harbors the EGFR T790M/L858R double-mutant. We demonstrate that treatment of H1975 cells with II-B08, a specific SHP2 inhibitor, phenocopies the observed growth inhibition and reduced ERK1/2 activation seen in cells treated with SHP2 siRNA. Importantly, we also find that II-B08 exhibits marked anti-tumor activity in H1975 xenograft mice. Finally, we observe that combined inhibition of SHP2 and PI3K impairs both the ERK1/2 and PI3K/AKT signaling axes and produces significantly greater effects on repressing H1975 cell growth than inhibition of either protein individually. Collectively, these results suggest that targeting SHP2 may represent an effective strategy for treatment of EGFR inhibitor resistant NSCLCs.« less

  7. Celastrol, an inhibitor of heat shock protein 90β potently suppresses the expression of matrix metalloproteinases, inducible nitric oxide synthase and cyclooxygenase-2 in primary human osteoarthritic chondrocytes.

    PubMed

    Ding, Qian-Hai; Cheng, Ye; Chen, Wei-Ping; Zhong, Hui-Ming; Wang, Xiang-Hua

    2013-05-15

    Overexpression of matrix metalloproteinases (MMPs), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) have long been suggested to play crucial roles in the progression of osteoarthritis. Studies have showed that selective MMPs, iNOS and COX-2 inhibitors possess great potential as chondroprotective agents for osteoarthritis. Therefore, there have been intensive efforts to develop novel natural compounds that target MMPs, iNOS and COX-2 activation. As interleukin-1β (IL-1β) is one of the key proinflammatory cytokines contributing to the progression in osteoarthritis, we investigated the effect of celastrol, a triterpenoid compound extracted from the Chinese herb Tript erygium wilfordii Hook F, in neutralizing the inflammatory effects of IL-1β on MMPs, iNOS and COX-2 expression as well as nitric oxide (NO) and prostaglandin E2 (PGE2) production. Protein expression was detected by Western blotting or by enzyme-linked immunosorbent assay (ELISA); messenger RNA (mRNA) expression was examined by real-time reverse transcription-polymerase chain reaction analysis and the involvement of signal pathway was assessed by transient transfection and luciferase activity assay. We found that treatment of primary human osteoarthritic chondrocytes with various concentrations of celastrol resulted in striking decrease in the expression of MMP-1, MMP-3, MMP-13, iNOS-2 and COX-2. In addition, celastrol treatment of cells also inhibited the activation of nuclear factor-kappa B (NF-kappaB). Taken together, we provide evidence that celastrol can protect human chondrocytes by downregulating the expression of MMPs, iNOS and COX-2. We suggest that celastrol could be a useful agent for prevention and treatment of osteoarthritis. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  8. GNE-886: A Potent and Selective Inhibitor of the Cat Eye Syndrome Chromosome Region Candidate 2 Bromodomain (CECR2).

    PubMed

    Crawford, Terry D; Audia, James E; Bellon, Steve; Burdick, Daniel J; Bommi-Reddy, Archana; Côté, Alexandre; Cummings, Richard T; Duplessis, Martin; Flynn, E Megan; Hewitt, Michael; Huang, Hon-Ren; Jayaram, Hariharan; Jiang, Ying; Joshi, Shivangi; Kiefer, James R; Murray, Jeremy; Nasveschuk, Christopher G; Neiss, Arianne; Pardo, Eneida; Romero, F Anthony; Sandy, Peter; Sims, Robert J; Tang, Yong; Taylor, Alexander M; Tsui, Vickie; Wang, Jian; Wang, Shumei; Wang, Yongyun; Xu, Zhaowu; Zawadzke, Laura; Zhu, Xiaoqin; Albrecht, Brian K; Magnuson, Steven R; Cochran, Andrea G

    2017-07-13

    The biological function of bromodomains, epigenetic readers of acetylated lysine residues, remains largely unknown. Herein we report our efforts to discover a potent and selective inhibitor of the bromodomain of cat eye syndrome chromosome region candidate 2 (CECR2). Screening of our internal medicinal chemistry collection led to the identification of a pyrrolopyridone chemical lead, and subsequent structure-based drug design led to a potent and selective CECR2 bromodomain inhibitor (GNE-886) suitable for use as an in vitro tool compound.

  9. Constitutive cyclooxygenase-2 is involved in central nociceptive processes in humans

    PubMed Central

    Martin, Frédéric; Fletcher, Dominique; Chauvin, Marcel; Bouhassira, Didier

    2007-01-01

    Background Prostaglandins play a major role in inflammation and pain. They are synthesised by the two cyclooxygenase (COX) isoforms: COX-1, which is expressed constitutively in many cell types and COX-2, which is induced at the site of inflammation. However, unlike peripheral tissues, COX-2 is expressed constitutively in the central nervous system and may play a role in nociceptive processes. The present study aimed to investigate the role of constitutive COX-2 in the spinal transmission of nociceptive signals in humans. Methods We used 12 healthy volunteers to compare the effects of the specific COX-2 inhibitor sodium parecoxib (1 mg/kg) or placebo, administered intravenously in a double-blind and cross-over fashion, on the electrophysiological recordings of the nociceptive flexion (RIII) reflex. The RIII reflex is an objective psychophysiological index of the spinal transmission of nociceptive signals and was recorded from the biceps femoris after electrical stimulation of the sural nerve. Two experiments, seven days apart, were carried out on each volunteer. On each experimental day, the effects of parecoxib or placebo were tested on: 1) the RIII reflex threshold, 2) the stimulus-response curves of the reflex up to the tolerance threshold (frequency of stimulation: 0.1 Hz); 3) the progressive increase of the reflex and pain sensations (i.e. “wind-up” phenomenon) induced by a series of 15 stimulations at a frequency of 1 Hz (intensity 20% above RIII threshold). Results Parecoxib, but not placebo, significantly reduced the slope of the stimulus-response curve, suggesting a reduction in the gain of the spinal transmision of nociceptive signals. By contrast, the “wind-up” phenomenon was not significantly altered after administration of parecoxib or placebo. Conclusions Our study shows that constitutive COX-2 modulates spinal nociceptive processes and that the anti-inflammatory and antinociceptive actions of COX-2 inhibitors are not necessarily related. PMID

  10. Selective serotonin reuptake inhibitors and adverse pregnancy outcomes.

    PubMed

    Wen, Shi Wu; Yang, Qiuying; Garner, Peter; Fraser, William; Olatunbosun, Olufemi; Nimrod, Carl; Walker, Mark

    2006-04-01

    The purpose of this study was to assess the safety of the use of selective serotonin reuptake inhibitors in pregnancy. We carried out a retrospective cohort study of 972 pregnant women who had been given at least 1 selective serotonin reuptake inhibitor prescription in the year before delivery and 3878 pregnant women who did not receive selective serotonin reuptake inhibitors and who were matched by the year of the infant's birth, the type of institute at birth, and the mother's postal code from 1990 to 2000 in the Canadian province of Saskatchewan. The risks of low birth weight (adjusted odds ratio, 1.58; 95% CI, 1.19, 2.11), preterm birth (adjusted odds ratio, 1.57; 95% CI, 1.28, 1.92), fetal death (adjusted odds ratio, 2.23; 95% CI, 1.01, 4.93), and seizures (adjusted odds ratio, 3.87; 95% CI, 1.00, 14.99) were increased in infants who were born to mothers who had received selective serotonin reuptake inhibitor therapy. The use of selective serotonin reuptake inhibitors in pregnancy may increase the risks of low birth weight, preterm birth, fetal death, and seizures.

  11. Selective Inhibitors of Fibroblast Activation Protein (FAP) with a (4-Quinolinoyl)-glycyl-2-cyanopyrrolidine Scaffold.

    PubMed

    Jansen, Koen; Heirbaut, Leen; Cheng, Jonathan D; Joossens, Jurgen; Ryabtsova, Oxana; Cos, Paul; Maes, Louis; Lambeir, Anne-Marie; De Meester, Ingrid; Augustyns, Koen; Van der Veken, Pieter

    2013-05-09

    Fibroblast activation protein (FAP) is a serine protease that is generally accepted to play an important role in tumor growth and other diseases involving tissue remodeling. Currently there are no FAP inhibitors with reported selectivity toward both the closely related dipeptidyl peptidases (DPPs) and prolyl oligopeptidase (PREP). We present the discovery of a new class of FAP inhibitors with a N-(4-quinolinoyl)-Gly-(2-cyanopyrrolidine) scaffold. We have explored the effects of substituting the quinoline ring and varying the position of its sp(2) hybridized nitrogen atom. The most promising inhibitors combined low nanomolar FAP inhibition and high selectivity indices (>10(3)) with respect to both the DPPs and PREP. Preliminary experiments on a representative inhibitor demonstrate that plasma stability, kinetic solubility, and log D of this class of compounds can be expected to be satisfactory.

  12. Furan-2-ylmethylene thiazolidinediones as novel, potent, and selective inhibitors of phosphoinositide 3-kinase gamma.

    PubMed

    Pomel, Vincent; Klicic, Jasna; Covini, David; Church, Dennis D; Shaw, Jeffrey P; Roulin, Karen; Burgat-Charvillon, Fabienne; Valognes, Delphine; Camps, Montserrat; Chabert, Christian; Gillieron, Corinne; Françon, Bernard; Perrin, Dominique; Leroy, Didier; Gretener, Denise; Nichols, Anthony; Vitte, Pierre Alain; Carboni, Susanna; Rommel, Christian; Schwarz, Matthias K; Rückle, Thomas

    2006-06-29

    Class I phosphoinositide 3-kinases (PI3Ks), in particular PI3Kgamma, have become attractive drug targets for inflammatory and autoimmune diseases. Here, we disclose a novel series of furan-2-ylmethylene thiazolidinediones as selective, ATP-competitive PI3Kgamma inhibitors. Structure-based design and X-ray crystallography of complexes formed by inhibitors bound to PI3Kgamma identified key pharmacophore features for potency and selectivity. An acidic NH group on the thiazolidinedione moiety and a hydroxy group on the furan-2-yl-phenyl part of the molecule play crucial roles in binding to PI3K and contribute to class IB PI3K selectivity. Compound 26 (AS-252424), a potent and selective small-molecule PI3Kgamma inhibitor emerging from these efforts, was further profiled in three different cellular PI3K assays and shown to be selective for class IB PI3K-mediated cellular effects. Oral administration of 26 in a mouse model of acute peritonitis led to a significant reduction of leukocyte recruitment.

  13. Crystal structure of checkpoint kinase 2 in complex with NSC 109555, a potent and selective inhibitor

    PubMed Central

    Lountos, George T; Tropea, Joseph E; Zhang, Di; Jobson, Andrew G; Pommier, Yves; Shoemaker, Robert H; Waugh, David S

    2009-01-01

    Checkpoint kinase 2 (Chk2), a ser/thr kinase involved in the ATM-Chk2 checkpoint pathway, is activated by genomic instability and DNA damage and results in either arrest of the cell cycle to allow DNA repair to occur or apoptosis if the DNA damage is severe. Drugs that specifically target Chk2 could be beneficial when administered in combination with current DNA-damaging agents used in cancer therapy. Recently, a novel inhibitor of Chk2, NSC 109555, was identified that exhibited high potency (IC50 = 240 nM) and selectivity. This compound represents a new chemotype and lead for the development of novel Chk2 inhibitors that could be used as therapeutic agents for the treatment of cancer. To facilitate the discovery of new analogs of NSC 109555 with even greater potency and selectivity, we have solved the crystal structure of this inhibitor in complex with the catalytic domain of Chk2. The structure confirms that the compound is an ATP-competitive inhibitor, as the electron density clearly reveals that it occupies the ATP-binding pocket. However, the mode of inhibition differs from that of the previously studied structure of Chk2 in complex with debromohymenialdisine, a compound that inhibits both Chk1 and Chk2. A unique hydrophobic pocket in Chk2, located very close to the bound inhibitor, presents an opportunity for the rational design of compounds with higher binding affinity and greater selectivity. PMID:19177354

  14. Cyclooxygenase 2 inhibition suppresses tubuloglomerular feedback: roles of thromboxane receptors and nitric oxide

    PubMed Central

    Araujo, Magali; Welch, William J.

    2009-01-01

    Thromboxane (TxA2) and nitric oxide (NO) are potent vasoactive autocoids that modulate tubuloglomerular feedback (TGF). Each is produced in the macula densa (MD) by cyclooxygenase-2 (COX-2) and neuronal nitric oxide synthase (nNOS), respectively. Both enzymes are similarly regulated in the MD and their interaction may be an important factor in the regulation of TGF and glomerular filtration rate. We tested the hypothesis that TGF is modified by the balance between MD nNOS-dependent NO and MD COX-2-dependent TxA2. We measured maximal TGF during perfusion of the loop of Henle (LH) by continuous recording of the proximal tubule stopped flow pressure response to LH perfusion of artificial tubular fluid (ATF) at 0 and 40 nl/min. The response to inhibitors of COX-1 (SC-560), COX-2 [parecoxib (Pxb)], and nNOS (l-NPA) added to the ATF solution was measured in separate nephrons. COX-2 inhibition with Pxb reduced TGF by 46% (ATF + vehicle vs. ATF + Pxb), whereas COX-1 inhibition with SC-560 reduced TGF by only 23%. Pretreatment with intravenous infusion of SQ-29,548, a selective thromboxone/PGH2 receptor (TPR) antagonist, blocked all of the SC-560 effect on TGF, suggesting that this effect was due to activation of TPR. However, SQ-29,548 only partially diminished the effect of Pxb (−66%). Specific inhibition of nNOS with l-NPA increased TGF, as expected. However, the ability of Pxb to reduce TGF was significantly impaired with comicroperfusion of l-NPA. These data suggest that COX-2 modulates TGF by two proconstrictive actions: generation of TxA2 acting on TPR and by simultaneous reduction of NO. PMID:19144694

  15. Cyclooxygenases 1 and 2 Differentially Regulate Blood Pressure and Cerebrovascular Responses to Acute and Chronic Intermittent Hypoxia: Implications for Sleep Apnea

    PubMed Central

    Beaudin, Andrew E.; Pun, Matiram; Yang, Christina; Nicholl, David D. M.; Steinback, Craig D.; Slater, Donna M.; Wynne‐Edwards, Katherine E.; Hanly, Patrick J.; Ahmed, Sofia B.; Poulin, Marc J.

    2014-01-01

    Background Obstructive sleep apnea (OSA) is associated with increased risk of cardiovascular and cerebrovascular disease resulting from intermittent hypoxia (IH)‐induced inflammation. Cyclooxygenase (COX)‐formed prostanoids mediate the inflammatory response, and regulate blood pressure and cerebral blood flow (CBF), but their role in blood pressure and CBF responses to IH is unknown. Therefore, this study's objective was to determine the role of prostanoids in cardiovascular and cerebrovascular responses to IH. Methods and Results Twelve healthy, male participants underwent three, 6‐hour IH exposures. For 4 days before each IH exposure, participants ingested a placebo, indomethacin (nonselective COX inhibitor), or Celebrex® (selective COX‐2 inhibitor) in a double‐blind, randomized, crossover study design. Pre‐ and post‐IH blood pressure, CBF, and urinary prostanoids were assessed. Additionally, blood pressure and urinary prostanoids were assessed in newly diagnosed, untreated OSA patients (n=33). Nonselective COX inhibition increased pre‐IH blood pressure (P≤0.04) and decreased pre‐IH CBF (P=0.04) while neither physiological variable was affected by COX‐2 inhibition (P≥0.90). Post‐IH, MAP was elevated (P≤0.05) and CBF was unchanged with placebo and nonselective COX inhibition. Selective COX‐2 inhibition abrogated the IH‐induced MAP increase (P=0.19), but resulted in lower post‐IH CBF (P=0.01). Prostanoids were unaffected by IH, except prostaglandin E2 was elevated with the placebo (P=0.02). Finally, OSA patients had elevated blood pressure (P≤0.4) and COX‐1 formed thromboxane A2 concentrations (P=0.02). Conclusions COX‐2 and COX‐1 have divergent roles in modulating vascular responses to acute and chronic IH. Moreover, COX‐1 inhibition may mitigate cardiovascular and cerebrovascular morbidity in OSA. Clinical Trial Registration URL: www.clinicaltrials.gov. Unique identifier: NCT01280006 PMID:24815497

  16. Cyclooxygenase-2 facilitates dengue virus replication and serves as a potential target for developing antiviral agents.

    PubMed

    Lin, Chun-Kuang; Tseng, Chin-Kai; Wu, Yu-Hsuan; Liaw, Chih-Chuang; Lin, Chun-Yu; Huang, Chung-Hao; Chen, Yen-Hsu; Lee, Jin-Ching

    2017-03-20

    Cyclooxygenase-2 (COX-2) is one of the important mediators of inflammation in response to viral infection, and it contributes to viral replication, for example, cytomegalovirus or hepatitis C virus replication. The role of COX-2 in dengue virus (DENV) replication remains unclear. In the present study, we observed an increased level of COX-2 in patients with dengue fever compared with healthy donors. Consistent with the clinical data, an elevated level of COX-2 expression was also observed in DENV-infected ICR suckling mice. Using cell-based experiments, we revealed that DENV-2 infection significantly induced COX-2 expression and prostaglandin E 2 (PGE 2 ) production in human hepatoma Huh-7 cells. The exogenous expression of COX-2 or PGE 2 treatment dose-dependently enhanced DENV-2 replication. In contrast, COX-2 gene silencing and catalytic inhibition sufficiently suppressed DENV-2 replication. In an ICR suckling mouse model, we identified that the COX-2 inhibitor NS398 protected mice from succumbing to life-threatening DENV-2 infection. By using COX-2 promoter-based analysis and specific inhibitors against signaling molecules, we identified that NF-κB and MAPK/JNK are critical factors for DENV-2-induced COX-2 expression and viral replication. Altogether, our results reveal that COX-2 is an important factor for DENV replication and can serve as a potential target for developing therapeutic agents against DENV infection.

  17. Protein kinase Cε regulates nuclear translocation of extracellular signal-regulated kinase, which contributes to bradykinin-induced cyclooxygenase-2 expression.

    PubMed

    Nakano, Rei; Kitanaka, Taku; Namba, Shinichi; Kitanaka, Nanako; Sugiya, Hiroshi

    2018-06-04

    The proinflammatory mediator bradykinin stimulated cyclooxygenase-2 (COX-2) expression and subsequently prostaglandin E 2 synthesis in dermal fibroblasts. The involvement of B2 receptors and Gαq in the role of bradykinin was suggested by using pharmacological inhibitors. The PKC activator PMA stimulated COX-2 mRNA expression. Bradykinin failed to induce COX-2 mRNA expression in the presence of PKC inhibitors, whereas the effect of bradykinin was observed in the absence of extracellular Ca 2+ . Bradykinin-induced COX-2 mRNA expression was inhibited in cells transfected with PKCε siRNA. These observations suggest that the novel PKCε is concerned with bradykinin-induced COX-2 expression. Bradykinin-induced PKCε phosphorylation and COX-2 mRNA expression were inhibited by an inhibitor of 3-phosphoinositide-dependent protein kinase-1 (PDK-1), and bradykinin-induced PDK-1 phosphorylation was inhibited by phospholipase D (PLD) inhibitors, suggesting that PLD/PDK-1 pathway contributes to bradykinin-induced PKCε activation. Pharmacological and knockdown studies suggest that the extracellular signal-regulated kinase 1 (ERK1) MAPK signaling is involved in bradykinin-induced COX-2 expression. Bradykinin-induced ERK phosphorylation was attenuated in the cells pretreated with PKC inhibitors or transfected with PKCε siRNA. We observed the interaction between PKCε and ERK by co-immunoprecipitation experiments. These observations suggest that PKCε activation contributes to the regulation of ERK1 activation. Bradykinin stimulated the accumulation of phosphorylated ERK in the nuclear fraction, that was inhibited in the cells treated with PKC inhibitors or transfected with PKCε siRNA. Consequently, we concluded that bradykinin activates PKCε via the PLD/PDK-1 pathway, which subsequently induces activation and translocation of ERK1 into the nucleus, and contributes to COX-2 expression for prostaglandin E 2 synthesis in dermal fibroblasts.

  18. USP22 acts as an oncogene by regulating the stability of cyclooxygenase-2 in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Haibo; Tian, Yue; Yang, Yang

    2015-05-08

    The histone ubiquitin hydrolase ubiquitin-specific protease 22 (USP22) is an epigenetic modifier and an oncogene that is upregulated in many types of cancer. In non-small cell lung cancer (NSCLC), aberrant expression of USP22 is a predictor of poor survival, as is high expression of cyclooxygenase-2 (COX-2). Despite its oncogenic role, few substrates of USP22 have been identified and its mechanism of action in cancer remains unclear. Here, we identified COX-2 as a direct substrate of USP22 and showed that its levels are modulated by USP22 mediated deubiquitination. Silencing of USP22 downregulated COX-2, decreased its half-life, and inhibited lung carcinoma cellmore » proliferation by directly interacting with and modulating the stability and activity of COX-2 through the regulation of its ubiquitination status. The findings of the present study suggest a potential mechanism underlying the oncogenic role of USP22 mediated by the modulation of the stability and activity of COX-2. - Highlights: • USP22 interacts with COX-2. • USP22 deubiquitinates and stabilizes COX-2. • USP22 is required for COX-2-mediated upregulation of prostaglandin E2.« less

  19. Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy.

    PubMed

    Leverson, Joel D; Phillips, Darren C; Mitten, Michael J; Boghaert, Erwin R; Diaz, Dolores; Tahir, Stephen K; Belmont, Lisa D; Nimmer, Paul; Xiao, Yu; Ma, Xiaoju Max; Lowes, Kym N; Kovar, Peter; Chen, Jun; Jin, Sha; Smith, Morey; Xue, John; Zhang, Haichao; Oleksijew, Anatol; Magoc, Terrance J; Vaidya, Kedar S; Albert, Daniel H; Tarrant, Jacqueline M; La, Nghi; Wang, Le; Tao, Zhi-Fu; Wendt, Michael D; Sampath, Deepak; Rosenberg, Saul H; Tse, Chris; Huang, David C S; Fairbrother, Wayne J; Elmore, Steven W; Souers, Andrew J

    2015-03-18

    The BCL-2/BCL-XL/BCL-W inhibitor ABT-263 (navitoclax) has shown promising clinical activity in lymphoid malignancies such as chronic lymphocytic leukemia. However, its efficacy in these settings is limited by thrombocytopenia caused by BCL-XL inhibition. This prompted the generation of the BCL-2-selective inhibitor venetoclax (ABT-199/GDC-0199), which demonstrates robust activity in these cancers but spares platelets. Navitoclax has also been shown to enhance the efficacy of docetaxel in preclinical models of solid tumors, but clinical use of this combination has been limited by neutropenia. We used venetoclax and the BCL-XL-selective inhibitors A-1155463 and A-1331852 to assess the relative contributions of inhibiting BCL-2 or BCL-XL to the efficacy and toxicity of the navitoclax-docetaxel combination. Selective BCL-2 inhibition suppressed granulopoiesis in vitro and in vivo, potentially accounting for the exacerbated neutropenia observed when navitoclax was combined with docetaxel clinically. By contrast, selectively inhibiting BCL-XL did not suppress granulopoiesis but was highly efficacious in combination with docetaxel when tested against a range of solid tumors. Therefore, BCL-XL-selective inhibitors have the potential to enhance the efficacy of docetaxel in solid tumors and avoid the exacerbation of neutropenia observed with navitoclax. These studies demonstrate the translational utility of this toolkit of selective BCL-2 family inhibitors and highlight their potential as improved cancer therapeutics. Copyright © 2015, American Association for the Advancement of Science.

  20. Exploiting differences in caspase-2 and -3 S₂ subsites for selectivity: structure-based design, solid-phase synthesis and in vitro activity of novel substrate-based caspase-2 inhibitors.

    PubMed

    Maillard, Michel C; Brookfield, Frederick A; Courtney, Stephen M; Eustache, Florence M; Gemkow, Mark J; Handel, Rebecca K; Johnson, Laura C; Johnson, Peter D; Kerry, Mark A; Krieger, Florian; Meniconi, Mirco; Muñoz-Sanjuán, Ignacio; Palfrey, Jordan J; Park, Hyunsun; Schaertl, Sabine; Taylor, Malcolm G; Weddell, Derek; Dominguez, Celia

    2011-10-01

    Several caspases have been implicated in the pathogenesis of Huntington's disease (HD); however, existing caspase inhibitors lack the selectivity required to investigate the specific involvement of individual caspases in the neuronal cell death associated with HD. In order to explore the potential role played by caspase-2, the potent but non-selective canonical Ac-VDVAD-CHO caspase-2 inhibitor 1 was rationally modified at the P(2) residue in an attempt to decrease its activity against caspase-3. With the aid of structural information on the caspase-2, and -3 active sites and molecular modeling, a 3-(S)-substituted-l-proline along with four additional scaffold variants were selected as P(2) elements for their predicted ability to clash sterically with a residue of the caspase-3 S(2) pocket. These elements were then incorporated by solid-phase synthesis into pentapeptide aldehydes 33a-v. Proline-based compound 33h bearing a bulky 3-(S)-substituent displayed advantageous characteristics in biochemical and cellular assays with 20- to 60-fold increased selectivity for caspase-2 and ∼200-fold decreased caspase-3 potency compared to the reference inhibitor 1. Further optimization of this prototype compound may lead to the discovery of valuable pharmacological tools for the study of caspase-2 mediated cell death, particularly as it relates to HD. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Non-Steroidal Anti-Inflammatory Drugs and Cardiovascular Outcomes in Women: Results from the Women’s Health Initiative

    PubMed Central

    Bavry, Anthony A.; Thomas, Fridtjof; Allison, Matthew; Johnson, Karen C.; Howard, Barbara V.; Hlatky, Mark; Manson, JoAnn E.; Limacher, Marian C.

    2014-01-01

    Background Conclusive data regarding cardiovascular (CV) toxicity of non-steroidal anti-inflammatory drugs (NSAIDs) are sparse. We hypothesized that regular NSAID use is associated with increased risk for CV events in post-menopausal women, and that this association is stronger with greater cyclooxygenase (cox)-2 compared with cox-1 inhibition. Methods and Results Post-menopausal women enrolled in the Women’s Health Initiative (WHI) were classified as regular users or non-users of non-aspirin NSAIDs. Cox regression examined NSAID use as a time-varying covariate and its association with the primary outcome of total CV disease defined as CV death, nonfatal myocardial infarction, or nonfatal stroke. Secondary analyses considered the association of selective cox-2 inhibitors (e.g., celecoxib), non-selective agents with cox-2>cox-1 inhibition (e.g., naproxen), and non-selective agents with cox-1>cox-2 inhibition (e.g., ibuprofen) with the primary outcome. Overall, 160,801 participants were available for analysis (mean follow-up 11.2 years). Regular NSAID use at some point in time was reported by 53,142 participants. Regular NSAID use was associated with an increased hazard for CV events versus no NSAID use (HR=1.10[95% CI 1.06–1.15], Pitalic>0.001). Selective cox-2 inhibitors were associated with a modest increased hazard for CV events (HR=1.13[1.04–1.23], P=0.004; celecoxib only HR=1.13[1.01–1.27], P=0.031). Among aspirin users, concomitant selective cox-2 inhibitor use was no longer associated with increased hazard for CV events. There was an increased risk for agents with cox-2>cox-1 inhibition (HR=1.17[1.10–1.24], Pbold>0.001; naproxen only HR=1.22[1.12–1.34], P<0.001). This harmful association remained among concomitant aspirin users. We did not observe a risk elevation for agents with cox-1>cox-2 inhibition (HR=1.01[0.95–1.07], P=0.884; ibuprofen only HR=1.00[0.93–1.07], P=0.996). Conclusions Regular use of selective cox-2 inhibitors and non-selective

  2. Methotrexate as a preferential cyclooxygenase 2 inhibitor in whole blood of patients with rheumatoid arthritis.

    PubMed

    Mello, S B; Barros, D M; Silva, A S; Laurindo, I M; Novaes, G S

    2000-05-01

    To investigate the regulation of whole-blood cyclooxygenase-1 and -2 (COX-2 and COX-1) activities by methotrexate (MTX) in rheumatoid arthritis (RA) patients. Whole blood was withdrawn from nine healthy volunteers, 12 RA patients treated with MTX (RA/MTX) and six RA patients treated with chloroquine (RA/CQ). COX-1 activity was quantified as platelet thromboxane B(2) production in unstimulated blood and COX-2 activity was measured as prostaglandin E(2) (PGE(2)) production in whole blood stimulated with LPS. Thromboxane B(2) and PGE(2) were measured by radioimmunoassay. We studied the drug effect in vitro by direct incubation of MTX with blood obtained from normal donors. Ex vivo assays were performed with blood collected from RA/MTX and RA/CQ patients. The influence of serum factors on enzyme activities was analysed in blood collected from normal donors and incubated with RA/MTX, autologous or heterologous serum. In vitro assays showed no direct action of MTX on the activity of either enzyme. Assays performed with blood from RA/MTX patients showed preferential inhibition of COX-2 activity (PGE(2) = 10.11 +/- 2.42 ng/ml) when compared with blood of normal donors (PGE(2) = 37.7 +/- 4.36 ng/ml; P = 0.001). Inhibition of COX-2 activity was also observed when blood of normal donors was co-incubated with RA/MTX serum. Our results clearly show that the anti-inflammatory action of low-dose MTX is partly mediated by a serum factor induced by MTX or a MTX metabolite that preferentially inhibits the activity of COX-2.

  3. Identification and isolation of the cyclooxygenase-2 inhibitory principle in Isatis tinctoria.

    PubMed

    Danz, H; Stoyanova, S; Wippich, P; Brattström, A; Hamburger, M

    2001-07-01

    Various extracts prepared from the traditional dye and medicinal plant Isatis tinctoria L. were submitted to a broad in vitro screening against 16 anti-inflammatory targets. Dichloromethane (DCM) extracts from dried leaves showed a marked cyclooxygenase (COX) inhibitory activity with a preferential effect on COX-2 catalysed prostaglandin synthesis. A supercritical fluid extraction (SFE) procedure employing CO2-modifier mixtures was developed by which the bioactivity profile and chromatographic fingerprint of the DCM extract could be reproduced. High-resolution activity directed on-line identification of the COX-2 inhibitory principle, using a combination of LC-DAD-MS with a microtitre-based bioassay, led to the identification of tryptanthrin (1) as the constituent responsible for essentially all COX-2 inhibitory activity in the crude extract. Following on-line identification, 1 was isolated at preparative scale and its structure confirmed by comparison with synthetic tryptanthrin. In an assay with lipopolysaccharide stimulated Mono Mac 6 cells, tryptanthrin (1) was of comparable potency (IC50 = 64 nM) than the preferential COX-2 inhibitors nimesulide (IC50 = 39 nM) and NS 398 (IC50 = 2 nM). The SFE extract and 1 showed no cytotoxicity in Mono Mac 6 and RAW 264.7 cells when tested at 100 microg/ml and 10 microM, respectively.

  4. Area-Selective Atomic Layer Deposition of SiO2 Using Acetylacetone as a Chemoselective Inhibitor in an ABC-Type Cycle

    PubMed Central

    2017-01-01

    Area-selective atomic layer deposition (ALD) is rapidly gaining interest because of its potential application in self-aligned fabrication schemes for next-generation nanoelectronics. Here, we introduce an approach for area-selective ALD that relies on the use of chemoselective inhibitor molecules in a three-step (ABC-type) ALD cycle. A process for area-selective ALD of SiO2 was developed comprising acetylacetone inhibitor (step A), bis(diethylamino)silane precursor (step B), and O2 plasma reactant (step C) pulses. Our results show that this process allows for selective deposition of SiO2 on GeO2, SiNx, SiO2, and WO3, in the presence of Al2O3, TiO2, and HfO2 surfaces. In situ Fourier transform infrared spectroscopy experiments and density functional theory calculations underline that the selectivity of the approach stems from the chemoselective adsorption of the inhibitor. The selectivity between different oxide starting surfaces and the compatibility with plasma-assisted or ozone-based ALD are distinct features of this approach. Furthermore, the approach offers the opportunity of tuning the substrate-selectivity by proper selection of inhibitor molecules. PMID:28850774

  5. Identification of COX inhibitors in the hexane extract of Japanese horse chestnut (Aesculus turbinata) seeds.

    PubMed

    Sato, Itaru; Kofujita, Hisayoshi; Tsuda, Shuji

    2007-07-01

    Japanese horse chestnut (Aesculus turbinata) seed extract inhibits the activity of cyclooxygenase (COX), but its active constituents have not been identified. In the present study, COX inhibitors were isolated from the hexane extract of this seed by means of 4 steps of liquid chromatography and were identified by gas chromatography/mass spectrometry and nuclear magnetic resonance. The COX inhibitors in the extract of Japanese horse chestnut seeds were identified as linoleic acid, linolenic acid, and oleic acid. Their efficacies were in the following order: linolenic acid = linoleic acid > oleic acid. These active constituents are C18 unsaturated fatty acids; stearic acid, a C18 saturated fatty acid, had no activity. Linolenic acid and linoleic acid had high selectivity toward COX-2 (selectivity index = 10), whereas oleic acid had no selectivity. Considering the efficacy and yield of each fatty acid, linoleic acid may be the principal COX inhibitor in this seed.

  6. Targeting Type 2 Diabetes with C-Glucosyl Dihydrochalcones as Selective Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: Synthesis and Biological Evaluation.

    PubMed

    Jesus, Ana R; Vila-Viçosa, Diogo; Machuqueiro, Miguel; Marques, Ana P; Dore, Timothy M; Rauter, Amélia P

    2017-01-26

    Inhibiting glucose reabsorption by sodium glucose co-transporter proteins (SGLTs) in the kidneys is a relatively new strategy for treating type 2 diabetes. Selective inhibition of SGLT2 over SGLT1 is critical for minimizing adverse side effects associated with SGLT1 inhibition. A library of C-glucosyl dihydrochalcones and their dihydrochalcone and chalcone precursors was synthesized and tested as SGLT1/SGLT2 inhibitors using a cell-based fluorescence assay of glucose uptake. The most potent inhibitors of SGLT2 (IC 50 = 9-23 nM) were considerably weaker inhibitors of SGLT1 (IC 50 = 10-19 μM). They showed no effect on the sodium independent GLUT family of glucose transporters, and the most potent ones were not acutely toxic to cultured cells. The interaction of a C-glucosyl dihydrochalcone with a POPC membrane was modeled computationally, providing evidence that it is not a pan-assay interference compound. These results point toward the discovery of structures that are potent and highly selective inhibitors of SGLT2.

  7. RNA interference as a key to knockdown overexpressed cyclooxygenase-2 gene in tumour cells

    PubMed Central

    Strillacci, A; Griffoni, C; Spisni, E; Manara, M C; Tomasi, V

    2006-01-01

    Silencing those genes that are overexpressed in cancer and contribute to the survival and progression of tumour cells is the aim of several researches. Cyclooxygenase-2 (COX-2) is one of the most intensively studied genes since it is overexpressed in most tumours, mainly in colon cancer. The use of specific COX-2 inhibitors to treat colon cancer has generated great enthusiasm. Yet, the side effects of some inhibitors emerging during long-term treatment have caused much concern. Genes silencing by RNA interference (RNAi) has led to new directions in the field of experimental oncology. In this study, we detected sequences directed against COX-2 mRNA, that potently downregulate COX-2 gene expression and inhibit phorbol 12-myristate 13-acetate-induced angiogenesis in vitro in a specific, nontoxic manner. Moreover, we found that the insertion of a specific cassette carrying anti-COX-2 short hairpin RNA sequence into a viral vector (pSUPER.retro) greatly increased silencing potency in a colon cancer cell line (HT29) without activating any interferon response. Phenotypically, COX-2 deficient HT29 cells showed a significant impairment of their in vitro malignant behaviour. Thus, the retroviral approach enhancing COX-2 knockdown, mediated by RNAi, proved to be an useful tool to better understand the role of COX-2 in colon cancer. Furthermore, the higher infection efficiency we observed in tumour cells, if compared to normal endothelial cells, may disclose the possibility to specifically treat tumour cells without impairing endothelial COX-2 activity. PMID:16622456

  8. Negative Cooperativity in the Interaction of Prostaglandin H Synthase-1 with the Competitive Inhibitor Naproxen Can Be Described as the Interaction of a Non-competitive Inhibitor with Heterogeneous Enzyme Preparation.

    PubMed

    Filimonov, I S; Berzova, A P; Barkhatov, V I; Krivoshey, A V; Trushkin, N A; Vrzheshch, P V

    2018-02-01

    The kinetic mechanism of the interaction of nonsteroidal anti-inflammatory drugs (NSAIDs) with their main pharmacological target, prostaglandin H synthase (PGHS), has not yet been established. We showed that inhibition of PGHS-1 from sheep vesicular glands by naproxen (a representative of NSAIDs) demonstrates a non-competitive character with respect to arachidonic acid and cannot be described within a framework of the commonly used kinetic schemes. However, it can be described by taking into account the negative cooperativity of naproxen binding to the cyclooxygenase active sites of the PGHS-1 homodimer (the first naproxen molecule forms a more stable complex (K 1 = 0.1 µM) with the enzyme than the second naproxen molecule (K 2 = 9.2 µM)). An apparent non-competitive interaction of PGHS-1 with naproxen is due to slow dissociation of the enzyme-inhibitor complexes. The same experimental data could also be described using commonly accepted kinetic schemes, assuming that naproxen interacts was a mixture of two enzyme species with the inhibition constants K α = 0.05 µM and K β = 18.3 µM. Theoretical analysis and numerical calculations show that the phenomenon of kinetic convergence of these two models has a general nature: when K 2 > K 1 , the kinetic patterns (for transient kinetics and equilibrium state) generated by the cooperative model could be described by a scheme assuming the presence of two enzyme forms with the inhibition constants K α = K 1 /2, K β = 2·K 2 . When K 2 < K 1 , the cooperative model can be presented as a scheme with two inhibitor molecules simultaneously binding to the enzyme with the observed inhibition constant K (K = K 1 ·K 2 ). The assumption on the heterogeneity of the enzyme preparation in relation to its affinity to the inhibitor can be used instead of the assumption on the negative cooperativity of the enzyme-inhibitor interactions for convenient and easy practical description of such phenomena in enzymology, biotechnology

  9. Novel propanamides as fatty acid amide hydrolase inhibitors.

    PubMed

    Deplano, Alessandro; Morgillo, Carmine Marco; Demurtas, Monica; Björklund, Emmelie; Cipriano, Mariateresa; Svensson, Mona; Hashemian, Sanaz; Smaldone, Giovanni; Pedone, Emilia; Luque, F Javier; Cabiddu, Maria G; Novellino, Ettore; Fowler, Christopher J; Catalanotti, Bruno; Onnis, Valentina

    2017-08-18

    Fatty acid amide hydrolase (FAAH) has a key role in the control of the cannabinoid signaling, through the hydrolysis of the endocannabinoids anandamide and in some tissues 2-arachidonoylglycerol. FAAH inhibition represents a promising strategy to activate the cannabinoid system, since it does not result in the psychotropic and peripheral side effects characterizing the agonists of the cannabinoid receptors. Here we present the discovery of a novel class of profen derivatives, the N-(heteroaryl)-2-(4-((2-(trifluoromethyl)pyridin-4-yl)amino)phenyl)propanamides, as FAAH inhibitors. Enzymatic assays showed potencies toward FAAH ranging from nanomolar to micromolar range, and the most compounds lack activity toward the two isoforms of cyclooxygenase. Extensive structure-activity studies and the definition of the binding mode for the lead compound of the series are also presented. Kinetic assays in rat and mouse FAAH on selected compounds of the series demonstrated that slight modifications of the chemical structure could influence the binding mode and give rise to competitive (TPA1) or non-competitive (TPA14) inhibition modes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Cyclooxygenase-2 inhibitory and antioxidant compounds from the truffle Elaphomyces granulatus

    Treesearch

    Rita Stanikunaite; Shabana I. Khan; James M. Trappe; Samir A. Ross

    2009-01-01

    The ethanol extract of fruiting bodies of Elaphomyces granulatus, a truffle-like fungus, was evaluated for cyclooxygenase-2 (COX-2) enzyme inhibitory and antioxidant activities. Inhibition of COX-2 activity was evaluated in mouse macrophages (RAW 264.7). The extract of E. granulatus caused a 68% inhibition of COX-2 activity at...

  11. A PI3K p110α-selective inhibitor enhances the efficacy of anti-HER2/neu antibody therapy against breast cancer in mice.

    PubMed

    Choi, Jae-Hyeog; Kim, Ki Hyang; Roh, Kug-Hwan; Jung, Hana; Lee, Anbok; Lee, Ji-Young; Song, Joo Yeon; Park, Seung Jae; Kim, Ilhwan; Lee, Won-Sik; Seo, Su-Kil; Choi, Il-Whan; Fu, Yang-Xin; Yea, Sung Su; Park, SaeGwang

    2018-01-01

    Combination therapies with phosphoinositide 3-kinase (PI3K) inhibitors and trastuzumab (anti-human epidermal growth factor receptor [HER]2/neu antibody) are effective against HER2+ breast cancer. Isoform-selective PI3K inhibitors elicit anti-tumor immune responses that are distinct from those induced by inhibitors of class I PI3K isoforms (pan-PI3K inhibitors). The present study investigated the therapeutic effect and potential for stimulating anti-tumor immunity of combined therapy with an anti-HER2/neu antibody and pan-PI3K inhibitor (GDC-0941) or a PI3K p110α isoform-selective inhibitor (A66) in mouse models of breast cancer. The anti-neu antibody inhibited tumor growth and enhanced anti-tumor immunity in HER2/neu+ breast cancer TUBO models, whereas GDC-0941 or A66 alone did not. Anti-neu antibody and PI3K inhibitor synergistically promoted anti-tumor immunity by increasing functional T cell production. In the presence of the anti-neu antibody, A66 was more effective than GDC-0941 at increasing the fraction of CD4 + , CD8 + , and IFN-γ + CD8 + T cells in the tumor-infiltrating lymphocyte population. Detection of IFN-γ levels by enzyme-linked immunospot assay showed that the numbers of tumor-specific T cells against neu and non-neu tumor antigens were increased by combined PI3K inhibitor plus anti-neu antibody treatment, with A66 exhibiting more potent effects than GDC-0941. In a TUBO (neu+) and TUBO-P2J (neu-) mixed tumor model representing immunohistochemistry 2+ tumors, A66 suppressed tumor growth and prolonged survival to a greater extent than GDC-0941 when combined with anti-neu antibody. These results demonstrate that a PI3K p110α-isoform-selective inhibitor is an effective adjunct to trastuzumab in the treatment of HER2-positive breast cancer.

  12. Diabetes Upregulation of Cyclooxygenase 2 Contributes to Altered Coronary Reactivity After Cardiac Surgery.

    PubMed

    Feng, Jun; Anderson, Kelsey; Singh, Arun K; Ehsan, Afshin; Mitchell, Hunter; Liu, Yuhong; Sellke, Frank W

    2017-08-01

    We hypothesized that upregulation of inducible cyclooxygenase 2 (COX-2) contributes to altered coronary arteriolar reactivity early after cardioplegic arrest and cardiopulmonary bypass (CP/CPB) in patients with diabetes mellitus who are undergoing cardiac surgery. The right atrial tissue samples of nondiabetes (ND), controlled diabetes (CDM), and uncontrolled diabetes (UDM) patients undergoing cardiac surgery were harvested before and after CP/CPB. Coronary arterioles (80 to 150 μm) were dissected from the harvested atrial tissue samples, cannulated, and pressurized. The changes in diameter were measured with video microscopy. The protein expression and localization of COX-1 and COX-2 were assayed by Western blot and immunohistochemistry. In the diabetes arterioles, bradykinin-induced relaxation response was inhibited by the selective COX-2 inhibitor NS398 at baseline (p < 0.05). This effect was more pronounced in UDM arterioles than CDM (p < 0.05). After CP/CPB, bradykinin-induced responses in all groups were inhibited by NS398, but this effect was more pronounced in the UDM patients (p < 0.05). The intensities of COX-2 staining of coronary arterioles and COX-2 protein levels in myocardium were higher in diabetes than nondiabetes at baseline (p < 0.05). The post-CP/CPB protein levels of the inducible COX-2 were significantly increased compared with pre-CP/CPB values in all groups (p < 0.05), whereas this increase was higher with diabetes than with ND (p < 0.05). Furthermore, these effects were more profound in UDM than CDM (p < 0.05). Diabetes and CP/CPB are associated with upregulation in COX-2 expression in human coronary vasculature. Upregulation of COX-2 expression may contribute to bradykinin-induced coronary arteriolar relaxation in diabetic patients undergoing cardiac surgery. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Inhibition of microsomal prostaglandin E-synthase-1 (mPGES-1) selectively suppresses PGE2 in an in vitro equine inflammation model.

    PubMed

    Martin, Emily M; Jones, Samuel L

    2017-10-01

    Inhibition of prostaglandin E 2 (PGE 2 ) production effectively limits inflammation in horses, however nonspecific prostaglandin blockade via cyclooxygenase (COX) inhibition elicits deleterious gastrointestinal side effects in equine patients. Thus, more selective PGE 2 targeting therapeutics are needed to treat inflammatory disease in horses. One potential target is microsomal prostaglandin E-synthase-1 (mPGES-1), which is the terminal enzyme downstream of COX-2 in the inducible PGE 2 synthesis cascade. This enzyme has yet to be studied in equine leukocytes, which play a pivotal role in equine inflammatory disease. The objective of this study was to determine if mPGES-1 is a PGE 2 -selective anti-inflammatory target in equine leukocytes. To evaluate this objective, leukocyte-rich plasma (LRP) was isolated from equine whole blood collected via jugular venipuncture of six healthy adult horses of mixed breeds and genders. LRP was primed with granulocyte-monocyte colony-stimulating factor (GM-CSF) and stimulated with lipopolysaccharide (LPS) in the presence or absence of an mPGES-1 inhibitor (MF63), a COX-2 inhibitor (NS-398), or a nonselective COX inhibitor (indomethacin). Following treatment, mPGES-1 and COX-2 mRNA and protein levels were measured via qPCR and western blot, respectively, and PGE 2 , thromboxane (TXA 2 ) and prostacyclin (PGI 2 ) levels were measured in cellular supernatants via ELISA. This study revealed that LPS significantly increased mPGES-1 mRNA, but not protein levels in equine LRP as measured by qPCR and western blot, respectively. In contrast, COX-2 mRNA and protein were coordinately induced by LPS. Importantly, treatment of LPS-stimulated leukocytes with indomethacin and NS-398 significantly reduced extracellular concentrations of multiple prostanoids (PGE 2 , TXA 2 and PGI 2 ), while the mPGES-1 inhibitor MF63 selectively inhibited PGE 2 production only. mPGES-1 inhibition also preserved higher basal levels of PGE 2 production when compared

  14. Discovery of highly selective inhibitors of p38alpha.

    PubMed

    Popa-Burke, Ioana; Birkos, Steve; Blackwell, Leonard; Cheatham, Lynn; Clark, Jennifer; Dickson, John K; Galasinski, Scott; Janzen, William P; Mendoza, Jose; Miller, Jennifer L; Mohney, Robert P; Steed, Paul M; Hodge, C Nicholas

    2005-01-01

    The p38 MAP kinases are a family of serine/threonine protein kinases that play a key role in cellular pathways leading to pro-inflammatory responses. We have developed and implemented a method for rapidly identifying and optimizing potent and selective p38alpha inhibitors, which is amenable to other targets and target classes. A diverse library of druggable, purified and quantitated molecules was assembled and standardized enzymatic assays were performed in a microfluidic format that provided very accurate and precise inhibition data allowing for development of SAR directly from the primary HTS. All compounds were screened against a collection of more than 60 enzymes (kinases, proteases and phosphatases), allowing for removal of promiscuous and non-selective inhibitors very early in the discovery process. Follow-up enzymological studies included measurement of concentration of compound in buffer, yielding accurate determination of K(i) and IC50 values, as well as mechanism of action. In addition, active compounds were screened against less desirable properties such as inhibition of the enzyme activity by aggregation, irreversible binding, and time-dependence. Screening of an 88,634-compound library through the above-described process led to the rapid identification of multiple scaffolds (>5 active compounds per scaffold) of potential drug leads for p38alpha that are highly selective against all other enzymes tested, including the three other p38 isoforms. Potency and selectivity data allowed prioritization of the identified scaffolds for optimization. Herein we present results around our 3-thio-1,2,4-triazole lead series of p38- selective inhibitors, including identification, SAR, synthesis, selectivity profile, enzymatic and cellular data in their progression towards drug candidates.

  15. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wenjun; Ercan, Dalia; Chen, Liang

    2010-01-12

    The clinical efficacy of epidermal growth factor receptor (EGFR) kinase inhibitors in EGFR-mutant non-small-cell lung cancer (NSCLC) is limited by the development of drug-resistance mutations, including the gatekeeper T790M mutation. Strategies targeting EGFR T790M with irreversible inhibitors have had limited success and are associated with toxicity due to concurrent inhibition of wild-type EGFR. All current EGFR inhibitors possess a structurally related quinazoline-based core scaffold and were identified as ATP-competitive inhibitors of wild-type EGFR. Here we identify a covalent pyrimidine EGFR inhibitor by screening an irreversible kinase inhibitor library specifically against EGFR T790M. These agents are 30- to 100-fold more potentmore » against EGFR T790M, and up to 100-fold less potent against wild-type EGFR, than quinazoline-based EGFR inhibitors in vitro. They are also effective in murine models of lung cancer driven by EGFR T790M. Co-crystallization studies reveal a structural basis for the increased potency and mutant selectivity of these agents. These mutant-selective irreversible EGFR kinase inhibitors may be clinically more effective and better tolerated than quinazoline-based inhibitors. Our findings demonstrate that functional pharmacological screens against clinically important mutant kinases represent a powerful strategy to identify new classes of mutant-selective kinase inhibitors.« less

  16. Lactoferrin from Camelus dromedarius Inhibits Nuclear Transcription Factor-kappa B Activation, Cyclooxygenase-2 Expression and Prostaglandin E2 Production in Stimulated Human Chondrocytes

    PubMed Central

    Rasheed, Naila; Alghasham, Abdullah; Rasheed, Zafar

    2016-01-01

    Background: Osteoarthritis (OA) is a progressive joint disorder, which remains the leading cause of chronic disability in aged people. Nuclear factor-kappa B (NF)-κB is a major cellular event in OA and its activation by interleukin-1β (IL-1β) plays a critical role in cartilage breakdown in these patients. Objective: In this study, we examined the effect of lactoferrin on NF-κB activation, cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production in stimulated human articular chondrocytes. Materials and Methods: Human chondrocytes were derived from OA articular cartilage and treated with camel lactoferrin and then stimulated with IL-1β. Gene expression was determined by TaqMan assays and protein expression was studied by Western immunoblotting. NF-κB activity and PGE2 levels were determined by ELISA based assays. NF-κB activity was also determined by treatment of chondrocytes with NF-κB specific inhibitor Bay 11–7082. Results: Lactoferrin inhibited IL-1β-induced activation and nuclear translocation of NF-κB p65 in human OA chondrocytes. Lactoferrin also inhibited mRNA/protein expression of COX-2 and production of PGE2. Moreover, Bay 11–7082 also inhibited IL-1β-induced expression of COX-2 and production of PGE2. The inhibitory effect of lactoferrin on the IL-1β induced expression of COX-2 or production of PGE2 was mediated at least in part via suppression of NF-κB activation. Conclusions: Our data determine camel lactoferrin as a novel inhibitor of IL-1β-induced activation of NF-κB signaling events and production of cartilage-degrading molecule PGE2 via inhibition of COX-2 expressions. These results may have important implications for the development of novel therapeutic strategies for the prevention/treatment of OA and other degenerative/inflammatory diseases. SUMMARY Lactoferrin shows anti-arthritic activity in IL-1β stimulated primary human chondrocytes.Lactoferrin inhibits IL-1β-induced NF-κB activation.Lactoferrin inhibits

  17. Lactoferrin from Camelus dromedarius Inhibits Nuclear Transcription Factor-kappa B Activation, Cyclooxygenase-2 Expression and Prostaglandin E2 Production in Stimulated Human Chondrocytes.

    PubMed

    Rasheed, Naila; Alghasham, Abdullah; Rasheed, Zafar

    2016-01-01

    Osteoarthritis (OA) is a progressive joint disorder, which remains the leading cause of chronic disability in aged people. Nuclear factor-kappa B (NF)-κB is a major cellular event in OA and its activation by interleukin-1β (IL-1β) plays a critical role in cartilage breakdown in these patients. In this study, we examined the effect of lactoferrin on NF-κB activation, cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production in stimulated human articular chondrocytes. Human chondrocytes were derived from OA articular cartilage and treated with camel lactoferrin and then stimulated with IL-1β. Gene expression was determined by TaqMan assays and protein expression was studied by Western immunoblotting. NF-κB activity and PGE2 levels were determined by ELISA based assays. NF-κB activity was also determined by treatment of chondrocytes with NF-κB specific inhibitor Bay 11-7082. Lactoferrin inhibited IL-1β-induced activation and nuclear translocation of NF-κB p65 in human OA chondrocytes. Lactoferrin also inhibited mRNA/protein expression of COX-2 and production of PGE2. Moreover, Bay 11-7082 also inhibited IL-1β-induced expression of COX-2 and production of PGE2. The inhibitory effect of lactoferrin on the IL-1β induced expression of COX-2 or production of PGE2 was mediated at least in part via suppression of NF-κB activation. Our data determine camel lactoferrin as a novel inhibitor of IL-1β-induced activation of NF-κB signaling events and production of cartilage-degrading molecule PGE2 via inhibition of COX-2 expressions. These results may have important implications for the development of novel therapeutic strategies for the prevention/treatment of OA and other degenerative/inflammatory diseases. Lactoferrin shows anti-arthritic activity in IL-1β stimulated primary human chondrocytes.Lactoferrin inhibits IL-1β-induced NF-κB activation.Lactoferrin inhibits production of cartilage degrading PGE2 via inhibition of COX-2 expression

  18. Development of Antioxidant COX-2 Inhibitors as Radioprotective Agents for Radiation Therapy—A Hypothesis-Driven Review

    PubMed Central

    Laube, Markus; Kniess, Torsten; Pietzsch, Jens

    2016-01-01

    Radiation therapy (RT) evolved to be a primary treatment modality for cancer patients. Unfortunately, the cure or relief of symptoms is still accompanied by radiation-induced side effects with severe acute and late pathophysiological consequences. Inhibitors of cyclooxygenase-2 (COX-2) are potentially useful in this regard because radioprotection of normal tissue and/or radiosensitizing effects on tumor tissue have been described for several compounds of this structurally diverse class. This review aims to substantiate the hypothesis that antioxidant COX-2 inhibitors are promising radioprotectants because of intercepting radiation-induced oxidative stress and inflammation in normal tissue, especially the vascular system. For this, literature reporting on COX inhibitors exerting radioprotective and/or radiosensitizing action as well as on antioxidant COX inhibitors will be reviewed comprehensively with the aim to find cross-points of both and, by that, stimulate further research in the field of radioprotective agents. PMID:27104573

  19. Selective JAK inhibitors in development for rheumatoid arthritis.

    PubMed

    Norman, Peter

    2014-08-01

    The JAK kinases are a family of four tyrosine receptor kinases that play a pivotal role in cytokine receptor signalling pathways via their interaction with signal transducers and activators of transcription proteins. Selective inhibitors of JAK kinases are viewed as of considerable potential as disease-modifying anti-inflammatory drugs for the treatment of rheumatoid arthritis. This article provides a review of the clinical development and available clinical results for those JAK inhibitors currently under investigation. Phase II data for four JAK inhibitors (baricitinib, decernotinib, filgotinib and INCB-039110) are contrasted with that reported for the recently approved JAK inhibitor tofacitinib. The preclinical data on these, in addition to peficitinib, ABT-494, INCB-047986 and AC-410 are also discussed, as are some of the inhibitors in preclinical development. JAK inhibitors are effective in the treatment of rheumatoid arthritis as evidenced by several inhibitors enabling the majority of treated patients to achieve ACR20 responses, with baricitinib and INCB-039110 both effective when administered once daily. JAK inhibitors differ in isoform specificity profiles, with good efficacy achievable by selective inhibition of either JAK1 (filgotinib or INCB-039110) or JAK3 (decernotinib). It remains to be seen what selectivity provides the optimal side-effect profile and to what extent inhibition of JAK2 should be avoided.

  20. Endothelin-1 increases expression of cyclooxygenase-2 and production of interlukin-8 in hunan pulmonary epithelial cells.

    PubMed

    Peng, Hong; Chen, Ping; Cai, Ying; Chen, Yan; Wu, Qing-Hua; Li, Yun; Zhou, Rui; Fang, Xiang

    2008-03-01

    Inducible cyclooxygenase (COX-2) and inflammatory cytokines play important roles in inflammatory processes of chronic obstructive pulmonary disease (COPD). Endothelin-1 (ET-1) might be also involved in the pathophysilogical processes in COPD. In the present study, we determined whether ET-1 could regulate the expression of COX-2 and alter the production of interleukin-8 (IL-8) in human pulmonary epithelial cells (A549). Induced sputum samples were collected from 13 stable COPD patients and 14 healthy subjects. The COX-2 protein, ET-1, PGE(2) and IL-8 in these sputum samples were analyzed. A549 cells were incubated with ET-1 in the presence or absence of celecoxib, a selective COX-2 inhibitor. The expression of COX-2 protein in the cell and the amounts of PGE(2) and IL-8 in the medium were measured. The levels of COX-2 protein, ET-1, PGE(2) and IL-8 were significantly increased in induced sputum from COPD patients when compared to healthy subjects. ET-1 increased the expression of COX-2 protein, as well as the production of PGE(2) in A549 cells. Increased production of PGE(2) was inhibited by celecoxib. ET-1 also increased the production of IL-8. Interestingly, ET-1-induced production of IL-8 was also inhibited by celecoxib. These findings indicate that ET-1 plays important roles in regulating COX-2 expression and production of IL-8 in A549 cells. ET-1 mediated production of IL-8 is likely through a COX-2-dependent mechanism.

  1. COX-1 Inhibitors: Beyond Structure Toward Therapy.

    PubMed

    Vitale, Paola; Panella, Andrea; Scilimati, Antonio; Perrone, Maria Grazia

    2016-07-01

    Biosynthesis of prostaglandins from arachidonic acid (AA) is catalyzed by cyclooxygenase (COX), which exists as COX-1 and COX-2. AA is in turn released from the cell membrane upon neopathological stimuli. COX inhibitors interfere in this catalytic and disease onset process. The recent prominent discovery involvements of COX-1 are mainly in cancer and inflammation. Five classes of COX-1 inhibitors are known up to now and this classification is based on chemical features of both synthetic compounds and substances from natural sources. Physicochemical interactions identification between such molecules and COX-1 active site was achieved through X-ray, mutagenesis experiments, specific assays and docking investigations, as well as through a pharmacometric predictive model building. All these insights allowed the design of new highly selective COX-1 inhibitors to be tested into those disease models in which COX-1 is involved. Particularly, COX-1 is expressed at high levels in the early to advanced stages of human epithelial ovarian cancer, and it also seems to play a pivotal role in cancer progression. The refinement of COX-1 selective inhibitor structure has progressed to the stage that some of the inhibitors described in this review could be considered as promising active principle ingredients of drugs and hence part of specific therapeutic protocols. This review aims to outline achievements, in the last 5 years, dealing with the identification of highly selective synthetic and from plant extracts COX-1 inhibitors and their theranostic use in neuroinflammation and ovarian cancer. Their gastrotoxic effect is also discussed. © 2016 Wiley Periodicals, Inc.

  2. Development of a novel non-radioactive cell-based method for the screening of SGLT1 and SGLT2 inhibitors using 1-NBDG.

    PubMed

    Chang, Hung-Chi; Yang, Su-Fu; Huang, Ching-Chun; Lin, Tzung-Sheng; Liang, Pi-Hui; Lin, Chun-Jung; Hsu, Lih-Ching

    2013-08-01

    Sodium-coupled glucose co-transporters SGLT1 and SGLT2 play important roles in intestinal absorption and renal reabsorption of glucose, respectively. Blocking SGLT2 is a novel mechanism for lowering the blood glucose level by inhibiting renal glucose reabsorption and selective SGLT2 inhibitors are under development for treatment of type 2 diabetes. Furthermore, it has been reported that perturbation of SGLT1 is associated with cardiomyopathy and cancer. Therefore, both SGLT1 and SGLT2 are potential therapeutic targets. Here we report the development of a non-radioactive cell-based method for the screening of SGLT inhibitors using COS-7 cells transiently expressing human SGLT1 (hSGLT1), CHO-K1 cells stably expressing human SGLT2 (hSGLT2), and a novel fluorescent d-glucose analogue 1-NBDG as a substrate. Our data indicate that 1-NBDG can be a good replacement for the currently used isotope-labeled SGLT substrate, (14)C-AMG. The Michaelis constant of 1-NBDG transport (0.55 mM) is similar to that of d-glucose (0.51 mM) and AMG (0.40 mM) transport through hSGLT1. The IC50 values of a SGLT inhibitor phlorizin for hSGLT1 obtained using 1-NBDG and (14)C-AMG were identical (0.11 μM) in our cell-based system. The IC50 values of dapagliflozin, a well-known selective SGLT2 inhibitor, for hSGLT2 and hSGLT1 determined using 1-NBDG were 1.86 nM and 880 nM, respectively, which are comparable to the published results obtained using (14)C-AMG. Compared to (14)C-AMG, the use of 1-NBDG is cost-effective, convenient and potentially more sensitive. Taken together, a non-radioactive system using 1-NBDG has been validated as a rapid and reliable method for the screening of SGLT1 and SGLT2 inhibitors.

  3. Induction of cyclo-oxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Dahiya, R.; Hughes-Fulford, M.

    1997-01-01

    Prostaglandins are synthesized from arachidonic acid by the enzyme cyclo-oxygenase. There are two isoforms of cyclooxygenases: COX-1 (a constitutive form) and COX-2 (an inducible form). COX-2 has recently been categorized as an immediate-early gene and is associated with cellular growth and differentiation. The purpose of this study was to investigate the effects of exogenous dimethylprostaglandin E2 (dmPGE2) on prostate cancer cell growth. Results of these experiments demonstrate that administration of dmPGE2 to growing PC-3 cells significantly increased cellular proliferation (as measured by the cell number), total DNA content and endogenous PGE2 concentration. DmPGE2 also increased the steady-state mRNA levels of its own inducible synthesizing enzyme, COX-2, as well as cellular growth to levels similar to those seen with fetal calf serum and phorbol ester. The same results were observed in other human cancer cell types, such as the androgen-dependent LNCaP cells, breast cancer MDA-MB-134 cells and human colorectal carcinoma DiFi cells. In PC-3 cells, the dmPGE2 regulation of the COX-2 mRNA levels was both time dependent, with maximum stimulation seen 2 h after addition, and dose dependent on dmPGE2 concentration, with maximum stimulation seen at 5 microg ml(-1). The non-steroidal anti-inflammatory drug flurbiprofen (5 microM), in the presence of exogenous dmPGE2, inhibited the up-regulation of COX-2 mRNA and PC-3 cell growth. Taken together, these data suggest that PGE2 has a specific role in the maintenance of human cancer cell growth and that the activation of COX-2 expression depends primarily upon newly synthesized PGE2, perhaps resulting from changes in local cellular PGE2 concentrations.

  4. Critical role of cyclooxygenase-2 activation in pathogenesis of hydronephrosis caused by lactational exposure of mice to dioxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Noriko; Matsumura, Fumio; Vogel, Christopher F.A.

    2008-09-15

    Congenital hydronephrosis is a serious disease occurring among infants and children. Besides the intrinsic genetic factors, in utero exposure to a xenobiotic, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has been suggested to induce hydronephrosis in rodents owing to anatomical obstruction in the ureter. Here, we report that hydronephrosis induced in mouse pups exposed lactationally to TCDD is not associated with anatomical obstruction, but with abnormal alterations in the subepithelial mesenchyma of the ureter. In the kidneys of these pups, the expressions of a battery of inflammatory cytokines including monocyte chemoattractant protein (MCP)-1, tumor necrosis factor {alpha} (TNF{alpha}) and interleukin (IL) -1{beta} were up-regulated asmore » early as postnatal day (PND) 7. The amounts of cyclooxygenase (COX) -2 mRNA and protein as well as prostaglandin E2 (PGE{sub 2}) were conspicuously up-regulated in an arylhydrocarbon-receptor-dependent manner in the TCDD-induced hydronephrotic kidney, with a subsequent down-regulation of the gene expressions of Na{sup +} and K{sup +} transporters, NKCC2 and ROMK. Daily administration of a COX-2 selective inhibitor to newborns until PND 7 completely abrogated the TCDD-induced PGE{sub 2} synthesis and gene expressions of inflammatory cytokines and electrolyte transporters, and eventually prevented the onset of hydronephrosis. These findings suggest an essential role of COX-2 in mediating the TCDD action of inducing hydronephrosis through the functional impairment rather than the anatomical blockade of the ureter.« less

  5. Structure-based design, synthesis, molecular docking study and biological evaluation of 1,2,4-triazine derivatives acting as COX/15-LOX inhibitors with anti-oxidant activities.

    PubMed

    Khoshneviszadeh, Mehdi; Shahraki, Omolbanin; Khoshneviszadeh, Mahsima; Foroumadi, Alireza; Firuzi, Omidreza; Edraki, Najmeh; Nadri, Hamid; Moradi, Alireza; Shafiee, Abbas; Miri, Ramin

    2016-12-01

    A set of 1,2,4-triazine derivatives were designed as cyclooxygenase-2 (COX-2) inhibitors. These compounds were synthesized and screened for inhibition of cyclooxygenases (COX-1 and COX-2) based on a cellular assay using human whole blood (HWB) and lipoxygenase (LOX-15) that are key enzymes in inflammation. The results showed that 3-(2-(benzo[d][1,3]dioxol-5-ylmethylene)hydrazinyl)-5,6-bis(4-methoxyphenyl)-1,2,4-triazine (G11) was identified as the most potent COX-2 inhibitor (78%) relative to COX-1 (50%). Ferric reducing anti-oxidant power (FRAP) assay revealed that compound G10 possesses the highest anti-oxidant activity. The compound G3 with IC50 value of 124 μM was the most potent compound in LOX inhibitory assay. Molecular docking was performed and a good agreement was observed between computational and experimental results.

  6. LLY-507, a cell-active, potent, and selective inhibitor of protein-lysine methyltransferase SMYD2

    DOE PAGES

    Nguyen, Hannah; Allali-Hassani, Abdellah; Antonysamy, Stephen; ...

    2015-03-30

    SMYD2 is a lysine methyltransferase that catalyzes the monomethylation of several protein substrates including p53. SMYD2 is overexpressed in a significant percentage of esophageal squamous primary carcinomas, and that overexpression correlates with poor patient survival. However, the mechanism(s) by which SMYD2 promotes oncogenesis is not understood. A small molecule probe for SMYD2 would allow for the pharmacological dissection of this biology. In this report, we disclose LLY-507, a cell-active, potent small molecule inhibitor of SMYD2. LLY-507 is >100-fold selective for SMYD2 over a broad range of methyltransferase and non-methyltransferase targets. A 1.63-Å resolution crystal structure of SMYD2 in complex withmore » LLY-507 shows the inhibitor binding in the substrate peptide binding pocket. LLY-507 is active in cells as measured by reduction of SMYD2-induced monomethylation of p53 Lys(370) at submicromolar concentrations. We used LLY-507 to further test other potential roles of SMYD2. Mass spectrometry-based proteomics showed that cellular global histone methylation levels were not significantly affected by SMYD2 inhibition with LLY-507, and subcellular fractionation studies indicate that SMYD2 is primarily cytoplasmic, suggesting that SMYD2 targets a very small subset of histones at specific chromatin loci and/or non-histone substrates. Breast and liver cancers were identified through in silico data mining as tumor types that display amplification and/or overexpression of SMYD2. LLY-507 inhibited the proliferation of several esophageal, liver, and breast cancer cell lines in a dose-dependent manner. As a result, these findings suggest that LLY-507 serves as a valuable chemical probe to aid in the dissection of SMYD2 function in cancer and other biological processes.« less

  7. LLY-507, a cell-active, potent, and selective inhibitor of protein-lysine methyltransferase SMYD2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hannah; Allali-Hassani, Abdellah; Antonysamy, Stephen

    SMYD2 is a lysine methyltransferase that catalyzes the monomethylation of several protein substrates including p53. SMYD2 is overexpressed in a significant percentage of esophageal squamous primary carcinomas, and that overexpression correlates with poor patient survival. However, the mechanism(s) by which SMYD2 promotes oncogenesis is not understood. A small molecule probe for SMYD2 would allow for the pharmacological dissection of this biology. In this report, we disclose LLY-507, a cell-active, potent small molecule inhibitor of SMYD2. LLY-507 is >100-fold selective for SMYD2 over a broad range of methyltransferase and non-methyltransferase targets. A 1.63-Å resolution crystal structure of SMYD2 in complex withmore » LLY-507 shows the inhibitor binding in the substrate peptide binding pocket. LLY-507 is active in cells as measured by reduction of SMYD2-induced monomethylation of p53 Lys(370) at submicromolar concentrations. We used LLY-507 to further test other potential roles of SMYD2. Mass spectrometry-based proteomics showed that cellular global histone methylation levels were not significantly affected by SMYD2 inhibition with LLY-507, and subcellular fractionation studies indicate that SMYD2 is primarily cytoplasmic, suggesting that SMYD2 targets a very small subset of histones at specific chromatin loci and/or non-histone substrates. Breast and liver cancers were identified through in silico data mining as tumor types that display amplification and/or overexpression of SMYD2. LLY-507 inhibited the proliferation of several esophageal, liver, and breast cancer cell lines in a dose-dependent manner. As a result, these findings suggest that LLY-507 serves as a valuable chemical probe to aid in the dissection of SMYD2 function in cancer and other biological processes.« less

  8. Inhibitor development in non-severe haemophilia across Europe.

    PubMed

    Fischer, Kathelijn; Iorio, Alfonso; Lassila, Riitta; Peyvandi, Flora; Calizzani, Gabriele; Gatt, Alex; Lambert, Thierry; Windyga, Jerzy; Gilman, Estelle A; Hollingsworth, R; Makris, Michael

    2015-10-01

    Evidence about inhibitor formation in non-severe haemophilia and the potential role for clotting factor concentrate type is scant. It was the aim of this study to report inhibitor development in non-severe haemophilia patients enrolled in the European Haemophilia Safety Surveillance (EUHASS) study. Inhibitors are reported quarterly and total treated patients annually. Incidence rates and 95% confidence intervals (95% CI) were calculated according to diagnosis and concentrate used. Between 1-10-2008 and 31-12-2012, 68 centres reported on 7,969 patients with non-severe haemophilia A and 1,863 patients with non-severe haemophilia B. For haemophilia A, 37 inhibitors occurred in 8,622 treatment years, resulting in an inhibitor rate of 0.43/100 treatment years (95% CI 0.30-0.59). Inhibitors occurred at a median age of 35 years, after a median of 38 exposure days (EDs; P25-P75: 20-80); with 72% occurring within the first 50 EDs. In haemophilia B, one inhibitor was detected in 2,149 treatment years, resulting in an inhibitor rate of 0.05/100 years (95% CI 0.001-0.26). This inhibitor developed at the age of six years, after six EDs. The rate of inhibitors appeared similar across recombinant and plasma derived factor VIII (FVIII) concentrates. Rates for individual concentrates could not be calculated at this stage due to low number of events. In conclusion, inhibitors in non-severe haemophilia occur three times more frequently than in previously treated patients with severe haemophilia at a rate of 0.43/100 patient years (haemophilia A) and 0.05/100 years (haemophilia B). Although the majority of inhibitors developed in the first 50 EDs, inhibitor development continued with increasing exposure to FVIII.

  9. Inhibitor development and mortality in non-severe hemophilia A.

    PubMed

    Eckhardt, C L; Loomans, J I; van Velzen, A S; Peters, M; Mauser-Bunschoten, E P; Schwaab, R; Mazzucconi, M G; Tagliaferri, A; Siegmund, B; Reitter-Pfoertner, S E; van der Bom, J G; Fijnvandraat, K

    2015-07-01

    The life expectancy of non-severe hemophilia A (HA) patients equals the life expectancy of the non-hemophilic population. However, data on the effect of inhibitor development on mortality and on hemophilia-related causes of death are scarce. The development of neutralizing factor VIII antibodies in non-severe HA patients may dramatically change their clinical outcome due to severe bleeding complications. We assessed the association between the occurrence of inhibitors and mortality in patients with non-severe HA. In this retrospective cohort study, clinical data and vital status were collected for 2709 non-severe HA patients (107 with inhibitors) who were treated between 1980 and 2011 in 34 European and Australian centers. Mortality rates for patients with and without inhibitors were compared. During 64,200 patient-years of follow-up, 148 patients died (mortality rate, 2.30 per 1000 person-years; 95% confidence interval (CI), 1.96-2.70) at a median age of 64 years (interquartile range [IQR], 49-76). In 62 patients (42%) the cause of death was hemophilia related. Sixteen inhibitor patients died at a median age of 71 years (IQR, 60-81). In ten patients the inhibitor was present at time of death; seven of them died of severe bleeding complications. The all-cause mortality rate in inhibitor patients was > 5 times increased compared with that for those without inhibitors (age-adjusted mortality rate ratio, 5.6). Inhibitor development in non-severe hemophilia is associated with increased mortality. High rates of hemophilia-related mortality in this study indicate that non-severe hemophilia is not mild at all and stress the importance of close follow-up for these patients. © 2015 International Society on Thrombosis and Haemostasis.

  10. A selective, non-peptide caspase-1 inhibitor, VRT-018858, markedly reduces brain damage induced by transient ischemia in the rat.

    PubMed

    Ross, Jerard; Brough, David; Gibson, Rosemary M; Loddick, Sarah A; Rothwell, Nancy J

    2007-10-01

    Numerous preclinical studies have reported neuroprotective effects of new agents in animal studies. None of these agents has yet translated into a successful clinical trial and therefore to a new therapy. There are many possible reasons for this failure, including poor design of clinical trials, mismatch between preclinical and clinical protocols, and insufficient preclinical data. The enzyme caspase-1 has been implicated in neuronal death. Deletion of the caspase-1 gene, or administration of partially selective inhibitors, reduces neuronal injury induced by cerebral ischemia in rodents. We report here, for the first time, that VRT-018858, the non-peptide, active metabolite of the selective caspase-1 inhibitor pro-drug, pralnacasan, markedly reduced ischemic injury in rats. VRT-018858 was neuroprotective when delivered at 1 and 3h (42% and 58% neuroprotection, respectively) but not 6h after injury, and protection was sustained 7 days after the induction of ischemia (66% neuroprotection). These data confirm caspase-1 as an important target for intervention in acute CNS injury, and propose a new class of caspase-1 inhibitors as highly effective neuroprotective agents.

  11. Sodium glucose co-transporter 2 (SGLT2) inhibitors: novel antidiabetic agents.

    PubMed

    Washburn, William N

    2012-05-01

    Maintenance of glucose homeostasis in healthy individuals involves SGLT2 (sodium glucose co-transporter 2)-mediated recovery of glucose from the glomerular filtrate which otherwise would be excreted in urine. Clinical studies indicate that SGLT2 inhibitors provide an insulin-independent means to reduce the hyperglycemia that is the hallmark of type 2 diabetes mellitus (T2DM) with minimal risk of hypoglycemia. The pharmacophore common to the SGLT2 inhibitors currently in development is a diarylmethane C-glucoside which is discussed in this review. The focus is how this pharmacophore was further modified as inferred from the patents publishing from 2009 to 2011. The emphasis is on the strategy that each group employed to circumvent the constraints imposed by prior art and how the resulting SGLT2 potency and selectivity versus SGLT1 compared with that of the lead clinical compound dapagliflozin. SGLT2 inhibitors offer a new fundamentally different approach for treatment of diabetes. To date, the clinical results suggest that for non-renally impaired patients this class of inhibitors could be safely used at any stage of T2DM either alone or in combination with other marketed antidiabetic medications.

  12. Structural Biology Insight for the Design of Sub-type Selective Aurora Kinase Inhibitors.

    PubMed

    Sarvagalla, Sailu; Coumar, Mohane Selvaraj

    2015-01-01

    Aurora kinase A, B and C, are key regulators of mitosis and are over expressed in many of the human cancers, making them an ideal drug target for cancer chemotherapy. Currently, over a dozen of Aurora kinase inhibitors are in various phases of clinical development. The majority of the inhibitors (VX-680/MK-0457, PHA-739358, CYC116, SNS-314, AMG 900, AT-9283, SCH- 1473759, ABT-348, PF-03814735, R-763/AS-703569, KW-2449 and TAK-901) are pan-selective (isoform non-selective) and few are Aurora A (MLN8054, MLN8237, VX-689/MK5108 and ENMD 2076) and Aurora B (AZD1152 and GSK1070916) sub-type selective. Despite the intensive research efforts in the past decade, no Aurora kinase inhibitor has reached the market. Recent evidence suggests that the sub-type selective Aurora kinase A inhibitor could possess advantages over pan-selective Aurora inhibitors, by avoiding Aurora B mediated neutropenia. However, sub-type selective Aurora kinase A inhibitor design is very challenging due to the similarity in the active site among the isoforms. Structural biology and computational aspects pertaining to the design of Aurora kinase inhibitors were analyzed and found that a possible means to develop sub-type selective inhibitor is by targeting Aurora A specific residues (Leu215, Thr217 and Arg220) or Aurora B specific residues (Arg159, Glu161 and Lys164), near the solvent exposed region of the protein. Particularly, a useful strategy for the design of sub-type selective Aurora A inhibitor could be by targeting Thr217 residue as in the case of MLN8054. Further preclinical and clinical studies with the sub-type selective Aurora inhibitors could help bring them to the market for the treatment of cancer.

  13. Selective and cell-active inhibitors of the USP1/UAF1 deubiquitinase complex reverse cisplatin resistance in non-small cell lung cancer cells

    PubMed Central

    Chen, Junjun; Dexheimer, Thomas S.; Ai, Yongxing; Liang, Qin; Villamil, Mark A.; Inglese, James; Maloney, David J; Jadhav, Ajit; Simeonov, Anton; Zhuang, Zhihao

    2012-01-01

    Ubiquitin-specific proteases (USPs) have in recent years emerged as a promising therapeutic target class. We identified selective small-molecule inhibitors against a deubiquitinase complex, the human USP1/UAF1, through quantitative high throughput screening (qHTS) of a collection of bioactive molecules. The top inhibitors, pimozide and GW7647, inhibited USP1/UAF1 noncompetitively with a Ki of 0.5 and 0.7 μM respectively, and displayed selectivity against a number of deubiquitinases, deSUMOylase and cysteine proteases. The USP1/UAF1 inhibitors act synergistically with cisplatin in inhibiting cisplatin-resistant non-small cell lung cancer (NSCLC) cell proliferation. USP1/UAF1 represents a promising target for drug intervention because of its involvement in translesion synthesis and Fanconi anemia pathway important for normal DNA damage response. Our results support USP1/UAF1 as a potential therapeutic target and provide the first example of targeting the USP/WD40 repeat protein complex for inhibitor discovery. PMID:22118673

  14. Identification of azabenzimidazoles as potent JAK1 selective inhibitors.

    PubMed

    Vasbinder, Melissa M; Alimzhanov, Marat; Augustin, Martin; Bebernitz, Geraldine; Bell, Kirsten; Chuaqui, Claudio; Deegan, Tracy; Ferguson, Andrew D; Goodwin, Kelly; Huszar, Dennis; Kawatkar, Aarti; Kawatkar, Sameer; Read, Jon; Shi, Jie; Steinbacher, Stefan; Steuber, Holger; Su, Qibin; Toader, Dorin; Wang, Haixia; Woessner, Richard; Wu, Allan; Ye, Minwei; Zinda, Michael

    2016-01-01

    We have identified a class of azabenzimidazoles as potent and selective JAK1 inhibitors. Investigations into the SAR are presented along with the structural features required to achieve selectivity for JAK1 versus other JAK family members. An example from the series demonstrated highly selective inhibition of JAK1 versus JAK2 and JAK3, along with inhibition of pSTAT3 in vivo, enabling it to serve as a JAK1 selective tool compound to further probe the biology of JAK1 selective inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A calpain-2 selective inhibitor enhances learning & memory by prolonging ERK activation.

    PubMed

    Liu, Yan; Wang, Yubin; Zhu, Guoqi; Sun, Jiandong; Bi, Xiaoning; Baudry, Michel

    2016-06-01

    While calpain-1 activation is required for LTP induction by theta burst stimulation (TBS), calpain-2 activation limits its magnitude during the consolidation period. A selective calpain-2 inhibitor applied either before or shortly after TBS enhanced the degree of potentiation. In the present study, we tested whether the selective calpain-2 inhibitor, Z-Leu-Abu-CONH-CH2-C6H3 (3, 5-(OMe)2 (C2I), could enhance learning and memory in wild-type (WT) and calpain-1 knock-out (C1KO) mice. We first showed that C2I could reestablish TBS-LTP in hippocampal slices from C1KO mice, and this effect was blocked by PD98059, an inhibitor of ERK. TBS resulted in PTEN degradation in hippocampal slices from both WT and C1KO mice, and C2I treatment blocked this effect in both mouse genotypes. Systemic injection of C2I 30 min before training in the fear-conditioning paradigm resulted in a biphasic dose-response curve, with low doses enhancing and high doses inhibiting freezing behavior. The difference between the doses needed to enhance and inhibit learning matches the difference in concentrations producing inhibition of calpain-2 and calpain-1. A low dose of C2I also restored normal learning in a novel object recognition task in C1KO mice. Levels of SCOP, a ERK phosphatase known to be cleaved by calpain-1, were decreased in dorsal hippocampus early but not late following training in WT mice; C2I treatment did not affect the early decrease in SCOP levels but prevented its recovery at the later time-point and prolonged ERK activation. The results indicate that calpain-2 activation limits the extent of learning, an effect possibly due to temporal limitation of ERK activation, as a result of SCOP synthesis induced by calpain-2-mediated PTEN degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Non-peptidic cruzain inhibitors with trypanocidal activity discovered by virtual screening and in vitro assay.

    PubMed

    Wiggers, Helton J; Rocha, Josmar R; Fernandes, William B; Sesti-Costa, Renata; Carneiro, Zumira A; Cheleski, Juliana; da Silva, Albérico B F; Juliano, Luiz; Cezari, Maria H S; Silva, João S; McKerrow, James H; Montanari, Carlos A

    2013-01-01

    A multi-step cascade strategy using integrated ligand- and target-based virtual screening methods was developed to select a small number of compounds from the ZINC database to be evaluated for trypanocidal activity. Winnowing the database to 23 selected compounds, 12 non-covalent binding cruzain inhibitors with affinity values (K i) in the low micromolar range (3-60 µM) acting through a competitive inhibition mechanism were identified. This mechanism has been confirmed by determining the binding mode of the cruzain inhibitor Nequimed176 through X-ray crystallographic studies. Cruzain, a validated therapeutic target for new chemotherapy for Chagas disease, also shares high similarity with the mammalian homolog cathepsin L. Because increased activity of cathepsin L is related to invasive properties and has been linked to metastatic cancer cells, cruzain inhibitors from the same library were assayed against it. Affinity values were in a similar range (4-80 µM), yielding poor selectivity towards cruzain but raising the possibility of investigating such inhibitors for their effect on cell proliferation. In order to select the most promising enzyme inhibitors retaining trypanocidal activity for structure-activity relationship (SAR) studies, the most potent cruzain inhibitors were assayed against T. cruzi-infected cells. Two compounds were found to have trypanocidal activity. Using compound Nequimed42 as precursor, an SAR was established in which the 2-acetamidothiophene-3-carboxamide group was identified as essential for enzyme and parasite inhibition activities. The IC50 value for compound Nequimed42 acting against the trypomastigote form of the Tulahuen lacZ strain was found to be 10.6±0.1 µM, tenfold lower than that obtained for benznidazole, which was taken as positive control. In addition, by employing the strategy of molecular simplification, a smaller compound derived from Nequimed42 with a ligand efficiency (LE) of 0.33 kcal mol(-1) atom(-1) (compound

  17. The viral protein A238L inhibits cyclooxygenase-2 expression through a nuclear factor of activated T cell-dependent transactivation pathway.

    PubMed

    Granja, Aitor G; Nogal, Maria L; Hurtado, Carolina; Vila, Virginia; Carrascosa, Angel L; Salas, María L; Fresno, Manuel; Revilla, Yolanda

    2004-12-17

    Cyclooxygenase-2 is transiently induced upon cell activation or viral infections, resulting in inflammation and modulation of the immune response. Here we report that A238L, an African swine fever virus protein, efficiently inhibits cyclooxygenase-2 gene expression in Jurkat T cells and in virus-infected Vero cells. Transfection of Jurkat cells stably expressing A238L with cyclooxygenase-2 promoter-luciferase constructs containing 5'-terminal deletions or mutations in distal or proximal nuclear factor of activated T cell (NFAT) response elements revealed that these sequences are involved in the inhibition induced by A238L. Overexpression of a constitutively active version of the calcium-dependent phosphatase calcineurin or NFAT reversed the inhibition mediated by A238L on cyclooxygenase-2 promoter activation, whereas overexpression of p65 NFkappaB had no effect. A238L does not modify the nuclear localization of NFAT after phorbol 12-myristate 13-acetate/calcium ionophore stimulation. Moreover, we show that the mechanism by which the viral protein down-regulates cyclooxygenase-2 activity does not involve inhibition of the binding between NFAT and its specific DNA sequences into the cyclooxygenase-2 promoter. Strikingly, A238L dramatically inhibited the transactivation mediated by a GAL4-NFAT fusion protein containing the N-terminal transactivation domain of NFAT1. Taken together, these data indicate that A238L down-regulates cyclooxygenase-2 transcription through the NFAT response elements, being NFAT-dependent transactivation implicated in this down-regulation.

  18. Dolastatin 15, a mollusk linear peptide, and Celecoxib, a selective cyclooxygenase-2 inhibitor, prevent preneoplastic colonic lesions and induce apoptosis through inhibition of the regulatory transcription factor NF-κB and an inflammatory protein, iNOS.

    PubMed

    Piplani, Honit; Vaish, Vivek; Sanyal, Sankar Nath

    2012-11-01

    The marine ecosystem is a unique and enormously rich source of natural products with potential chemopreventive applications in cancer. In the present study, we explored the chemopreventive role and the molecular mechanism of Dolastatin, a linear peptide from an Indian Ocean mollusk, and Celecoxib, a well-established cyclooxygenase-2 (COX-2) inhibitor in an individual as well as in a combination regimen in 1,2-dimethylhydrazine dihydrochloride (DMH)-induced colon carcinogenesis in a rat model. After a 6-week treatment with DMH, morphological analysis revealed a marked occurrence of preneoplastic features in the colonic mucosa, whereas histologically well-characterized dysplasia and hyperplasia were observed in DMH-treated animals. Simultaneous administration of Celecoxib and Dolastatin reduced these features significantly. DMH treatment affected the number of apoptotic cells in colonic enterocytes, which reverted to the normal level with the use of Celecoxib and Dolastatin. Inflammation remains the dominant molecular mechanism in the development of multiple plaque lesions, the carcinogenic lesions in a DMH-induced process that may be mediated by COX-2. Western blot and immunofluorescence analysis revealed a higher expression of COX-2 and nuclear factor-κB, the transcription factors responsible for proinflammatory proteins such as TNFα, and also the inducible nitric oxide synthase in the DMH group, which was further recovered significantly with the use of Celecoxib and Dolastatin. In-silico molecular docking analysis of Dolastatin as a ligand with various regulatory proteins suggests that although the peptide failed to dock to COX-2, it successfully did so with inducible nitric oxide synthase, thereby indicating the potential of this inflammatory protein as a molecular anticancer target in colon carcinogenesis.

  19. Parallel medicinal chemistry approaches to selective HDAC1/HDAC2 inhibitor (SHI-1:2) optimization.

    PubMed

    Kattar, Solomon D; Surdi, Laura M; Zabierek, Anna; Methot, Joey L; Middleton, Richard E; Hughes, Bethany; Szewczak, Alexander A; Dahlberg, William K; Kral, Astrid M; Ozerova, Nicole; Fleming, Judith C; Wang, Hongmei; Secrist, Paul; Harsch, Andreas; Hamill, Julie E; Cruz, Jonathan C; Kenific, Candia M; Chenard, Melissa; Miller, Thomas A; Berk, Scott C; Tempest, Paul

    2009-02-15

    The successful application of both solid and solution phase library synthesis, combined with tight integration into the medicinal chemistry effort, resulted in the efficient optimization of a novel structural series of selective HDAC1/HDAC2 inhibitors by the MRL-Boston Parallel Medicinal Chemistry group. An initial lead from a small parallel library was found to be potent and selective in biochemical assays. Advanced compounds were the culmination of iterative library design and possess excellent biochemical and cellular potency, as well as acceptable PK and efficacy in animal models.

  20. Experimental dissociation of the effects of prostaglandins on renal sodium and water reabsorption by cyclo-oxygenase inhibitors in the rat.

    PubMed

    Bartoli, E; Branca, G F; Faedda, R; Olmeo, N A; Satta, A; Soggia, G

    1982-07-01

    1 The relative importance of the effect of prostaglandins on renal sodium and water reabsorption was assessed in rats. 2 Clearance experiments were performed on 24 anaesthetized rats divided into 3 groups. Each group was infused throughout either with Ringer solution at 9 ml/h (Protocol I), or at 3 ml/h (Protocol II) or with hypotonic fluid at 5 ml/h (Protocol III). Clearance periods were performed before and after intravenous injection of indomethacin (5 mg/kg) and then of aspirin (20 mg/kg). The natriuretic response to different degrees of volume expansion was not modified during the action of the inhibitors. 3 When baseline urine osmolality (Uosm) was high (Protocol II) no further increase occurred in the presence of prostaglandin inhibition. Conversely, Uosm rose from 771 +/- 134 to 1356 +/- 414 and from 575 +/- 245 to 841 +/- 407 mosm/kg (P less than 0.05) in Protocol I and Protocol III respectively, when antidiuretic hormone secretion was inhibited by the higher degree of volume expansion. 4 There was a significant correlation between the change in urine flow rate induced by cyclooxygenase inhibitors and the attendant variations in Na excretion, r = 0.42, n = 41, P less than 0.01. 5 Thus, prostaglandins affect Na loss during saline load as a side effect of their action on water permeability. They could play an important role in volume depletion by counterbalancing the large secretion rate of renal vasoconstrictors.

  1. Experimental dissociation of the effects of prostaglandins on renal sodium and water reabsorption by cyclo-oxygenase inhibitors in the rat.

    PubMed Central

    Bartoli, E.; Branca, G. F.; Faedda, R.; Olmeo, N. A.; Satta, A.; Soggia, G.

    1982-01-01

    1 The relative importance of the effect of prostaglandins on renal sodium and water reabsorption was assessed in rats. 2 Clearance experiments were performed on 24 anaesthetized rats divided into 3 groups. Each group was infused throughout either with Ringer solution at 9 ml/h (Protocol I), or at 3 ml/h (Protocol II) or with hypotonic fluid at 5 ml/h (Protocol III). Clearance periods were performed before and after intravenous injection of indomethacin (5 mg/kg) and then of aspirin (20 mg/kg). The natriuretic response to different degrees of volume expansion was not modified during the action of the inhibitors. 3 When baseline urine osmolality (Uosm) was high (Protocol II) no further increase occurred in the presence of prostaglandin inhibition. Conversely, Uosm rose from 771 +/- 134 to 1356 +/- 414 and from 575 +/- 245 to 841 +/- 407 mosm/kg (P less than 0.05) in Protocol I and Protocol III respectively, when antidiuretic hormone secretion was inhibited by the higher degree of volume expansion. 4 There was a significant correlation between the change in urine flow rate induced by cyclooxygenase inhibitors and the attendant variations in Na excretion, r = 0.42, n = 41, P less than 0.01. 5 Thus, prostaglandins affect Na loss during saline load as a side effect of their action on water permeability. They could play an important role in volume depletion by counterbalancing the large secretion rate of renal vasoconstrictors. PMID:6809089

  2. Cyclooxygenase-2 expression after preoperative chemoradiotherapy correlates with more frequent esophageal cancer recurrence

    PubMed Central

    Yoshikawa, Reigetsu; Fujiwara, Yoshinori; Koishi, Kenji; Kojima, Syoudou; Matsumoto, Tomohiro; Yanagi, Hidenori; Yamamura, Takehira; Hashimoto-Tamaoki, Tomoko; Nishigami, Takashi; Tsujimura, Tohru

    2007-01-01

    AIM: To investigate the relationship between cycloo-xygenase-2 (COX-2), and vascular endothelial growth factor (VEGF), and to determine the clinical significance of this relationship in esophageal cancer patients undergoing chemoradiotherapy (CRT). METHODS: Immunohistochemical staining was used to evaluate COX-2 and VEGF expression in 40 patients with histologically-confirmed esophageal squamous carcinoma (ESCC) who were undergoing preoperative CRT. RESULTS: Fourteen out of 40 ESCC patients showed a pathological complete response (CR) after CRT. COX-2 and VEGF protein expressions were observed in the cytoplasm of 17 and 13 tumors, respectively, with null expression in 9 and 13 tumors, respectively. COX-2 expression was strongly correlated with VEGF expression (P < 0.05). There were also significant associations between COX-2 expression, tumor recurrence, and lymph-node involvement (P = 0.0277 and P = 0.0095, respectively). COX-2 expression and VEGF expression had significant prognostic value for disease-free survival (log-rank test; P = 0.0073 and P = 0.0341, respectively), but not for overall survival, as assessed by univariate analysis. CONCLUSION: Our results suggest that COX-2 expression correlates with VEGF expression and might be a useful prognostic factor for more frequent tumor recurrence in ESCC patients undergoing neoadjuvant CRT. These findings support the use of anti-angiogenic COX-2 inhibitors in the treatment of ESCC. PMID:17511025

  3. Uncovering Molecular Bases Underlying Bone Morphogenetic Protein Receptor Inhibitor Selectivity

    PubMed Central

    Alsamarah, Abdelaziz; LaCuran, Alecander E.; Oelschlaeger, Peter; Hao, Jijun; Luo, Yun

    2015-01-01

    Abnormal alteration of bone morphogenetic protein (BMP) signaling is implicated in many types of diseases including cancer and heterotopic ossifications. Hence, small molecules targeting BMP type I receptors (BMPRI) to interrupt BMP signaling are believed to be an effective approach to treat these diseases. However, lack of understanding of the molecular determinants responsible for the binding selectivity of current BMP inhibitors has been a big hindrance to the development of BMP inhibitors for clinical use. To address this issue, we carried out in silico experiments to test whether computational methods can reproduce and explain the high selectivity of a small molecule BMP inhibitor DMH1 on BMPRI kinase ALK2 vs. the closely related TGF-β type I receptor kinase ALK5 and vascular endothelial growth factor receptor type 2 (VEGFR2) tyrosine kinase. We found that, while the rigid docking method used here gave nearly identical binding affinity scores among the three kinases; free energy perturbation coupled with Hamiltonian replica-exchange molecular dynamics (FEP/H-REMD) simulations reproduced the absolute binding free energies in excellent agreement with experimental data. Furthermore, the binding poses identified by FEP/H-REMD led to a quantitative analysis of physical/chemical determinants governing DMH1 selectivity. The current work illustrates that small changes in the binding site residue type (e.g. pre-hinge region in ALK2 vs. ALK5) or side chain orientation (e.g. Tyr219 in caALK2 vs. wtALK2), as well as a subtle structural modification on the ligand (e.g. DMH1 vs. LDN193189) will cause distinct binding profiles and selectivity among BMP inhibitors. Therefore, the current computational approach represents a new way of investigating BMP inhibitors. Our results provide critical information for designing exclusively selective BMP inhibitors for the development of effective pharmacotherapy for diseases caused by aberrant BMP signaling. PMID:26133550

  4. Discovery of new class of methoxy carrying isoxazole derivatives as COX-II inhibitors: Investigation of a detailed molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Joy, Monu; Elrashedy, Ahmed A.; Mathew, Bijo; Pillay, Ashona Singh; Mathews, Annie; Dev, Sanal; Soliman, Mahmoud E. S.; Sudarsanakumar, C.

    2018-04-01

    Two novel isoxazole derivatives were synthesized and characterized by NMR and single crystal X-ray crystallography techniques. The methoxy and dimethoxy functionalized variants of isoxazole were screened for its anti-inflammatory profile using cyclooxygenase fluorescent inhibitor screening assay methods along with standard drugs, Celecoxib and Diclofenac. The potent and selective nature of the two isoxazole derivatives on COX-II isoenzyme with a greater magnitude of inhibitory concentration, as compared to the standard drugs and further exploited through molecular dynamics (MD) simulation. Classical, accelerated and multiple MD simulations were performed to investigate the actual binding mode of the two non-steroidal anti-inflammatory drug candidates and addressed their functional selectivity towards COX-II enzyme inhibitory nature.

  5. The natural dual cyclooxygenase and 5-lipoxygenase inhibitor flavocoxid is protective in EAE through effects on Th1/Th17 differentiation and macrophage/microglia activation.

    PubMed

    Kong, Weimin; Hooper, Kirsten M; Ganea, Doina

    2016-03-01

    Prostaglandins and leukotrienes, bioactive mediators generated by cyclooxygenases (COX) and 5-lipoxygenase (5-LO) from arachidonic acid, play an essential role in neuroinflammation. High levels of LTB4 and PGE2 and increased expression of COX and 5-LO, as well as high expression of PGE2 receptors were reported in multiple sclerosis (MS) patients and in experimental autoimmune encephalomyelitis (EAE). Prostaglandins and leukotrienes have an interdependent and compensatory role in EAE, which led to the concept of therapy using dual COX/5-LO inhibitors. The plant derived flavocoxid, a dual COX/5-LO inhibitor with anti-inflammatory and antioxidant properties, manufactured as a prescription pharmaconutrient, was reported to be neuroprotective in models of transient ischemic stroke and brain injury. The present study is the first report on prophylactic and therapeutic effects of flavocoxid in EAE. The beneficial effects correlate with reduced expression of proinflammatory cytokines and of COX2 and 5-LO in spinal cords and spleens of EAE mice. The protective mechanisms include: 1. reduction in expression of MHCII/costimulatory molecules and production of proinflammatory cytokines; 2. promotion of the M2 phenotype including IL-10 expression and release by macrophages and microglia; 3. inhibition of Th1 and Th17 differentiation through direct effects on T cells. The direct inhibitory effect on Th1/Th17 differentiation, and promoting the development of M2 macrophages and microglia, represent novel mechanisms for the flavocoxid anti-inflammatory activity. As a dual COX/5-LO inhibitor with antioxidant properties, flavocoxid might be useful as a potential therapeutic medical food agent in MS patients. Copyright © 2015. Published by Elsevier Inc.

  6. Selectivity of ROCK inhibitors in the spontaneously tonic smooth muscle.

    PubMed

    Rattan, Satish; Patel, Chirag A

    2008-03-01

    The selectivity of different Rho kinase (ROCK) inhibitors in the spontaneously tonic smooth muscle has not been investigated. We examined this issue using Y-27632 [(R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarbox anecarboxamide, 2HCl], H-1152 [(S)-(+)-(2-methyl-5-isoquinolinyl) sulfonylhomopiperazine, 2HCl], HA-1077 [(5 isoquinolinesulfonyl) homopiperazine, 2HCl], and ROCK inhibitor II [N-(4-pyridyl)-N'-(2,4,6-trichlorophenyl)urea]. We compared these inhibitors in the spontaneously tonic smooth muscle of the internal anal sphincter (IAS). ROCK, protein kinase C (PKC), and myosin light chain kinase (MLCK) activities were determined in the IAS, before and after different ROCK inhibitors. Y-27632 and H-1152 were approximately 30-fold more potent in the IAS (IC(50): 4.4 x 10(-7) and 7.9 x 10(-8) M, respectively) vs. the phasic rectal smooth muscle (RSM) (IC(50): 1.3 x 10(-5) and 2.5 x 10(-6) M, respectively). HA-1077 and ROCK inhibitor II were equipotent in the IAS vs. RSM. In the IAS, H-1152 was the most potent whereas ROCK inhibitor II is the least. Y-27632 and H-1152 caused concentration-dependent decrease in the IAS tone that correlates directly with the decreases in ROCK activity, without significant effect in the PKC and MLCK activities. This specifically selective correlation between ROCK activity and decrease in the IAS tone was absent in the case of HA-1077 and ROCK inhibitor II, which also inhibited PKC and MLCK. We conclude that the IAS tone is critically dependent on ROCK activity, and H-1152 and Y-27632 are the most selective and potent ROCK inhibitors in the IAS.

  7. Up-regulation of cyclooxygenase-2 by product-prostaglandin E2

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Hughes-Fulford, M.

    1997-01-01

    The development of prostate cancer has been linked to high level of dietary fat intake. Our laboratory investigates the connection between cancer cell growth and fatty acid products. Studying human prostatic carcinoma PC-3 cells, we found that prostaglandin E2 (PGE2) increased cell growth and up-regulated the gene expression of its own synthesizing enzyme, cyclooxygenase-2 (COX-2). PGE2 increased COX-2 mRNA expression dose-dependently with the highest levels of stimulation seen at the 3-hour period following PGE2 addition. The NSAID flurbiprofen (5 microM), in the presence of exogenous PGE2, inhibited the up-regulation of COX-2 mRNA and cell growth. These data suggest that the levels of local intracellular PGE2 play a major role in the growth of prostate cancer cells through an activation of COX-2 gene expression.

  8. Increased pulmonary vascular contraction to serotonin after cardiopulmonary bypass: role of cyclooxygenase.

    PubMed

    Sato, K; Li, J; Metais, C; Bianchi, C; Sellke, F

    2000-05-15

    Pulmonary vascular resistance is frequently elevated after cardiopulmonary bypass (CPB). We examined if altered pulmonary microvascular reactivity to serotonin (5-HT) is due to altered expression of isoforms of nitric oxide synthase (NOS) or cyclooxygenase (COX). Pigs (n = 8) were heparinized and placed on total CPB for 90 min and then perfused off CPB for 90 min. Noninstrumented pigs (n = 6) served as controls for vascular studies. Relaxation responses (% of precontraction) of microvessels (60-150 microm in diameter) were examined in vitro in a pressurized (20 mm Hg) no-flow state with video microscopic imaging. Expression of eNOS, iNOS, and inducible (COX-2) and constitutive (COX-1) cyclooxygenase was examined with Western blotting and reverse transcription polymerase chain reaction. Pulmonary vascular resistance (PVR) increased from 316 +/- 39 mm Hg x s/cm(5) at baseline to 495 +/- 53 at 60 min and 565 +/- 62 at 90 min after termination of CPB. 5-HT elicited a relaxation response (46.8 +/- 11. 8%) in precontracted control microvessels. This response was not affected by the NOS inhibitor N(G)-nitro-l-arginine. After CPB, pulmonary microvessels contracted significantly to 5-HT (-29 +/- 27%, P < 0.05 vs control). This response was partially inhibited (7 +/- 20%, P = 0.06) in the presence of the COX-2 inhibitor NS398, but was unaffected by the thromboxane synthase inhibitor U63557A (-20 +/- 19%). Expression of iNOS or COX-1 was not changed after CPB. Protein and mRNA expressions of COX-2 both increased significantly after CPB, while that of eNOS decreased by approximately 50%. PVR increased after CPB. This was associated with a hypercontractile response of isolated pulmonary microvessels to 5-HT that was in part mediated by the release of prostaglandins (but not thromboxane) and associated with increased expression of COX-2 and with decreased expression of eNOS. Copyright 2000 Academic Press.

  9. New Coumarin Derivatives as Potent Selective COX-2 Inhibitors: Synthesis, Anti-Inflammatory, QSAR, and Molecular Modeling Studies.

    PubMed

    Dawood, Dina H; Batran, Rasha Z; Farghaly, Thoraya A; Khedr, Mohammed A; Abdulla, Mohamed M

    2015-12-01

    Two new series of coumarin derivatives incorporating thiazoline and thiazolidinone moieties were designed, synthesized, and investigated in vivo for their anti-inflammatory activities using the carrageenan-induced rat paw edema model and in vitro for their inhibitory activities against the human cyclooxygenase (COX)-1 and COX-2 isoforms. Most of the synthesized compounds demonstrated exceptionally high in vivo anti-inflammatory activity and displayed superior GI safety profiles (0-7% ulceration) as compared to indomethacin. All the bioactive compounds showed in vitro high affinity and selectivity toward the COX-2 isoenzyme, compared to the reference celecoxib with IC50 values ranging from 0.31 to 0.78 μM. The ethyl thiosemicarbazone 2b, thiazoline derivatives 3a, 3b, 5b, 6a, and 7f, and the thiazolidinone compounds 8b and 9a showed the highest in vivo and in vitro anti-inflammatory activities with remarkable COX-2 selectivity. Quantitative structure-activity relationship study (QSAR) was done and resulted in a highly predictive power R(2) (0.908). A molecular docking study revealed a relationship between the docking affinity and the biological results. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Salidroside suppresses solar ultraviolet-induced skin inflammation by targeting cyclooxygenase-2.

    PubMed

    Wu, Dan; Yuan, Ping; Ke, Changshu; Xiong, Hua; Chen, Jingwen; Guo, Jinguang; Lu, Mingmin; Ding, Yanyan; Fan, Xiaoming; Duan, Qiuhong; Shi, Fei; Zhu, Feng

    2016-05-03

    Solar ultraviolet (SUV) irradiation causes skin disorders such as inflammation, photoaging, and carcinogenesis. Cyclooxygenase-2 (COX-2) plays a key role in SUV-induced skin inflammation, and targeting COX-2 may be a strategy to prevent skin disorders. In this study, we found that the expression of COX-2, phosphorylation of p38 or JNKs were increased in human solar dermatitis tissues and SUV-irradiated human skin keratinocyte HaCaT cells and mouse epidermal JB6 Cl41 cells. Knocking down COX-2 inhibited the production of prostaglandin E2 (PGE2), the phosphorylation of p38 or JNKs in SUV-irradiated cells, which indicated that COX-2 is not only the key enzyme for PGs synthesis, but also an upstream regulator of p38 or JNKs after SUV irradiation. The virtual ligand screening assay was used to search for natural drugs in the Chinese Medicine Database, and indicated that salidroside might be a COX-2 inhibitor. Molecule modeling indicated that salidroside can directly bind with COX-2, which was proved by in vitro pull-down binding assay. Ex vivo studies showed that salidroside has no toxicity to cells, and inhibits the production of PGE2, phosphorylation of p38 or JNKs, and secretion of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) caused by SUV irradiation. In vivo studies demonstrated that salidroside attenuates the skin inflammation induced by SUV. In brief, our data provided the evidences for the protective role of salidroside against SUV-induced inflammation by targeting COX-2, and salidroside might be a promising drug for the treatment of SUV-induced skin inflammation.

  11. Degradation of substance P by membrane peptidases in the rat substantia nigra: effect of selective inhibitors.

    PubMed

    Oblin, A; Danse, M J; Zivkovic, B

    1988-01-11

    The hydrolysis of substance P by membrane peptidases prepared from the rat substantia nigra was studied in the presence of selective inhibitors. Substance P degradation by synaptic and mitochondrial membranes was completely inhibited by 1,10-phenanthroline (1 mM), a non-specific metallopeptidase inhibitor. Captopril and bestatine, selective inhibitors of angiotensin converting enzyme and aminopeptidases respectively, were without effects. However, phosphoramidon (1 microM), a putative 'enkephalinase' inhibitor, selectively inhibited substance P degradation by synaptic membranes. These results suggest that a phosphoramidon-sensitive endopeptidase may be the principal enzyme responsible for substance P degradation in substantia nigra.

  12. Cyclo-oxygenase isozymes in mucosal ulcergenic and functional responses following barrier disruption in rat stomachs.

    PubMed

    Hirata, T; Ukawa, H; Yamakuni, H; Kato, S; Takeuchi, K

    1997-10-01

    1. We examined the effects of selective and nonselective cyclo-oxygenase (COX) inhibitors on various functional changes in the rat stomach induced by topical application of taurocholate (TC) and investigated the preferential role of COX isozymes in these responses. 2. Rat stomachs mounted in ex vivo chambers were perfused with 50 mM HCl and transmucosal potential difference (p.d.), mucosal blood flow (GMBF), luminal acid loss and luminal levels of prostaglandin E2 (PGE2) were measured before, during and after exposure to 20 mM TC. 3. Mucosal application of TC in control rats caused a reduction in p.d., followed by an increase of luminal acid loss and GMBF, and produced only minimal damage in the mucosa 2 h later. Pretreatment with indomethacin (10 mg kg[-1], s.c.), a nonselective COX-1 and COX-2 inhibitor, attenuated the gastric hyperaemic response caused by TC without affecting p.d. and acid loss, resulting in haemorrhagic lesions in the mucosa. In contrast, selective COX-2 inhibitors, such as NS-398 and nimesulide (10 mg kg[-1], s.c.), had no effect on any of the responses induced by TC and did not cause gross damage in the mucosa. 4. Luminal PGE2 levels were markedly increased during and after exposure to TC and this response was significantly inhibited by indomethacin but not by either NS-398 or nimesulide. The expression of COX-1-mRNA was consistently detected in the gastric mucosa before and after TC treatment, while a faint expression of COX-2-mRNA was detected only 2 h after TC treatment. 5. Both NS-398 and nimesulide significantly suppressed carrageenan-induced rat paw oedema, similar to indomethacin. 6. These results confirmed a mediator role for prostaglandins in the gastric hyperaemic response following TC-induced barrier disruption, and suggest that COX-1 but not COX-2 is a key enzyme in maintaining 'housekeeping' functions in the gastric mucosa under both normal and adverse conditions.

  13. The Sodium Glucose Cotransporter 2 Inhibitor Ipragliflozin Promotes Preferential Loss of Fat Mass in Non-obese Diabetic Goto-Kakizaki Rats.

    PubMed

    Takasu, Toshiyuki; Hayashizaki, Yuka; Hirosumi, Jiro; Minoura, Hideaki; Amino, Nobuaki; Kurosaki, Eiji; Takakura, Shoji

    2017-01-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors improve hyperglycemia in patients with type 2 diabetes mellitus (T2DM) by increasing urinary glucose excretion. In addition to their antihyperglycemic effect, SGLT2 inhibitors also reduce body weight and fat mass in obese and overweight patients with T2DM. However, whether or not SGLT2 inhibitors similarly affect body composition of non-obese patients with T2DM remains unclear. In this study, we investigated the effect of the SGLT2 inhibitor ipragliflozin on body composition in a Goto-Kakizaki (GK) rat model of non-obese T2DM. GK rats were treated with ipragliflozin once daily for 9 weeks, starting at 23 weeks of age. Body composition was then analyzed using dual-energy X-ray absorptiometry. Treatment with ipragliflozin increased urinary glucose excretion, reduced hemoglobin A1c (HbA1c) levels and suppressed body weight gain as the dose increased. Body composition analysis revealed that body fat mass was lower in the ipragliflozin-treated groups than in the control group, while lean body mass and bone mineral contents were comparable between groups. Thus, an SGLT2 inhibitor ipragliflozin was found to promote preferential loss of fat mass in a rat model of non-obese T2DM. Ipragliflozin might also promote preferential loss of fat in non-obese patients with T2DM.

  14. Targeting Mitogen-activated Protein Kinase-activated Protein Kinase 2 (MAPKAPK2, MK2): Medicinal Chemistry Efforts to Lead Small Molecule Inhibitors to Clinical Trials

    PubMed Central

    Fiore, Mario; Forli, Stefano; Manetti, Fabrizio

    2015-01-01

    The p38/MAPK-activated kinase 2 (MK2) pathway is involved in a series of pathological conditions (inflammation diseases and metastasis) and in the resistance mechanism to antitumor agents. None of the p38 inhibitors entered advanced clinical trials because of their unwanted systemic side effects. For this reason, MK2 was identified as an alternative target to block the pathway, but avoiding the side effects of p38 inhibition. However, ATP-competitive MK2 inhibitors suffered from low solubility, poor cell permeability, and scarce kinase selectivity. Fortunately, non-ATP-competitive inhibitors of MK2 have been already discovered that allowed circumventing the selectivity issue. These compounds showed the additional advantage to be effective at lower concentrations in comparison to the ATP-competitive inhibitors. Therefore, although the significant difficulties encountered during the development of these inhibitors, MK2 is still considered as an attractive target to treat inflammation and related diseases, to prevent tumor metastasis, and to increase tumor sensitivity to chemotherapeutics. PMID:26502061

  15. Cyclooxygenase-2 and 5-lipoxygenase in dogs with chronic enteropathies.

    PubMed

    Dumusc, S D; Ontsouka, E C; Schnyder, M; Hartnack, S; Albrecht, C; Bruckmaier, R M; Burgener, I A

    2014-01-01

    Cyclooxygenase-2 (COX-2) is a key enzyme in the synthesis of pro-inflammatory prostaglandins and 5-lipoxygenase (5-LO) is the major source of leukotrienes. Their role in IBD has been demonstrated in humans and animal models, but not in dogs with chronic enteropathies (CCE). COX-2 and 5-LO are upregulated in dogs with CCE. Fifteen healthy control dogs (HCD), 10 dogs with inflammatory bowel disease (IBD), and 15 dogs with food-responsive diarrhea (FRD). Prospective study. mRNA expression of COX-2, 5-LO, IL-1b, IL-4, IL-6, TNF, IL-10 and TFG-β was evaluated by quantitative real-time RT-PCR in duodenal and colonic biopsies before and after treatment. COX-2 expression in the colon was significantly higher in IBD and FRD before and after treatment (all P < .01). IL-1b was higher in FRD in the duodenum after treatment (P = .021). TGF-β expression was significantly higher in the duodenum of HCD compared to FRD/IBD before treatment (both P < .001) and IBD after treatment (P = .012). There were no significant differences among groups and within groups before and after treatment for IL-4, IL-6, TNF, and IL-10. There was a significant correlation between COX-2 and IL-1b in duodenum and colon before treatment in FRD and IBD, whereas 5-LO correlated better with IL-6 and TNF. IL-10 and TGF-β usually were correlated. COX-2 is upregulated in IBD and FRD, whereas IL-1b and TGF-β seem to be important pro- and anti-inflammatory cytokines, respectively. The use of dual COX/5-LO inhibitors could be an interesting alternative in the treatment of CCE. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  16. Decreased cyclooxygenase inhibition by aspirin in polymorphic variants of human prostaglandin H synthase-1

    PubMed Central

    Liu, Wen; Poole, Elizabeth M.; Ulrich, Cornelia M.; Kulmacz, Richard J.

    2012-01-01

    Objectives Aspirin, a major anti-platelet and cancer preventing drug, irreversibly blocks the cyclooxygenase activity of prostaglandin H synthase-1 (PGHS-1). Considerable differences in aspirin effectiveness are observed between individuals, and some of this variability may be due to PGHS-1 protein variants. Our overall aim is to determine which, if any, of the known variants in the mature PGHS-1 protein lead to functional alterations in cyclooxygenase catalysis or inhibition by aspirin. The present study targeted four PGHS-1 variants: R53H, R108Q, L237M and V481I. Methods Wildtype human PGHS-1 and the four polymorphic variants were expressed as histidine-tagged, homodimeric proteins in insect cells using baculovirus vectors, solubilized with detergent, and purified by affinity chromatography. The purified proteins were characterized in vitro to evaluate cyclooxygenase and peroxidase catalytic parameters and the kinetics of cyclooxygenase inhibition by aspirin and NS-398. Results Compared to wildtype, several variants exhibited a higher COX/POX ratio (up to 1.5-fold, for R108Q), an elevated arachidonate Km (up to 1.9-fold, for R108Q), and/or a lower aspirin reactivity (up to 60% less, for R108Q). The decreased aspirin reactivity in R108Q reflected both a 70% increase in the Ki for aspirin and a 30% decrease in the rate constant for acetyl group transfer to the protein. Computational modeling of the brief aspirin pulses experienced by PGHS-1 in circulating platelets during daily aspirin dosing predicted that the 60% lower aspirin reactivity in R108Q gives a 15-fold increase in surviving cyclooxygenase activity; smaller, ~2-fold increases in surviving cyclooxygenase activity were predicted for L237M and V481I. NS-398 competitively inhibited cyclooxygenase catalysis of the wildtype (Ki = 6 μM) and inhibited cyclooxygenase inactivation by 1.0 mM aspirin in both wildtype (IC50 = 0.8 μM) and R108Q (IC50 = 2.1 μM). Conclusions Of the four PGHS-1 variants examined, R108

  17. Fluorocoxib A enables targeted detection of cyclooxygenase-2 in laser-induced choroidal neovascularization

    NASA Astrophysics Data System (ADS)

    Uddin, Md. Jashim; Moore, Chauca E.; Crews, Brenda C.; Daniel, Cristina K.; Ghebreselasie, Kebreab; McIntyre, J. Oliver; Marnett, Lawrence J.; Jayagopal, Ashwath

    2016-09-01

    Ocular angiogenesis is a blinding complication of age-related macular degeneration and other retinal vascular diseases. Clinical imaging approaches to detect inflammation prior to the onset of neovascularization in these diseases may enable early detection and timely therapeutic intervention. We demonstrate the feasibility of a previously developed cyclooxygenase-2 (COX-2) targeted molecular imaging probe, fluorocoxib A, for imaging retinal inflammation in a mouse model of laser-induced choroidal neovascularization. This imaging probe exhibited focal accumulation within laser-induced neovascular lesions, with minimal detection in proximal healthy tissue. The selectivity of the probe for COX-2 was validated in vitro and by in vivo retinal imaging with nontargeted 5-carboxy-X-rhodamine dye, and by blockade of the COX-2 active site with nonfluorescent celecoxib prior to injection of fluorocoxib A. Fluorocoxib A can be utilized for imaging COX-2 expression in vivo for further validation as an imaging biomarker in retinal diseases.

  18. Discovery and quantitative structure-activity relationship study of lepidopteran HMG-CoA reductase inhibitors as selective insecticides.

    PubMed

    Zang, Yang-Yang; Li, Yuan-Mei; Yin, Yue; Chen, Shan-Shan; Kai, Zhen-Peng

    2017-09-01

    In a previous study we have demonstrated that insect 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) can be a potential selective insecticide target. Three series of inhibitors were designed on the basis of the difference in HMGR structures from Homo sapiens and Manduca sexta, with the aim of discovering potent selective insecticide candidates. An in vitro bioassay showed that gem-difluoromethylenated statin analogues have potent effects on JH biosynthesis of M. sexta and high selectivity between H. sapiens and M. sexta. All series II compounds {1,3,5-trisubstituted [4-tert-butyl 2-(5,5-difluoro-2,2-dimethyl-6-vinyl-4-yl) acetate] pyrazoles} have some effect on JH biosynthesis, whereas most of them are inactive on human HMGR. In particular, the IC 50 value of compound II-12 (37.8 nm) is lower than that of lovastatin (99.5 nm) and similar to that of rosuvastatin (24.2 nm). An in vivo bioassay showed that I-1, I-2, I-3 and II-12 are potential selective insecticides, especially for lepidopteran pest control. A predictable and statistically meaningful CoMFA model of 23 inhibitors (20 as training sets and three as test sets) was obtained with a value of q 2 and r 2 of 0.66 and 0.996 respectively. The final model suggested that a potent insect HMGR inhibitor should contain suitable small and non-electronegative groups in the ring part, and electronegative groups in the side chain. Four analogues were discovered as potent selective lepidopteran HMGR inhibitors, which can specifically be used for lepidopteran pest control. The CoMFA model will be useful for the design of new selective insect HMGR inhibitors that are structurally related to the training set compounds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Effect of celecoxib plus standard chemotherapy on serum levels of vascular endothelial growth factor and cyclooxygenase-2 in patients with gastric cancer.

    PubMed

    Han, Xiaopeng; Li, Hongtao; Su, Lin; Zhu, Wankun; Xu, Wei; Li, Kun; Zhao, Qingchuan; Yang, Hua; Liu, Hongbin

    2014-03-01

    Elevated serum levels of vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2) are associated with poor prognosis in patients with gastric cancer. Little is known regarding the clinical benefits of combining celecoxib, a selective inhibitor of COX-2, with standard chemotherapy regimens for the treatment of gastric cancer patients. In this study, we investigated the effect of the combinatorial use of celecoxib with standard chemotherapy on the serum levels of VEGF and COX-2 in patients with gastric cancer. In our study, 80 patients with gastric cancer who underwent laparoscopic radical surgery were randomized into two groups, the combination [celecoxib plus standard oxaliplatin, leucovorin and 5-fluorouracil (FOLFOX4) chemotherapy, n=40] and the FOLFOX4 alone (n=40) groups. In the combination group, celecoxib was orally administered to the patients (400 mg, twice daily). The serum levels of VEGF and COX-2 were measured by ELISA prior to and following surgery. We detected no significant difference in the serum levels of VEGF and COX-2 between the combination and FOLFOX4 alone groups prior to chemotherapy (P>0.05). However, after 6 cycles of chemotherapy, there was a greater decrease in the serum levels of VEGF and COX-2 in the combination group compared to those in the FOLFOX4 group (P<0.01). In addition, the serum levels of VEGF and COX-2 were closely correlated in patients with gastric adenocarcinoma prior to treatment. Our data indicated that, when combined with standard chemotherapy, celecoxib may reduce the serum levels of VEGF and COX-2, suggesting that COX-2 inhibitors may be of therapeutic value through the inhibition of tumor angiogenesis and the prevention of recurrence or metastasis. Thus, celecoxib may be a useful adjuvant agent to standard chemotherapy in patients with advanced gastric cancer.

  20. Endogenous cyclo-oxygenase activity regulates mouse gastric surface pH

    PubMed Central

    Baumgartner, Heidi K; Kirbiyik, Uzay; Coskun, Tamer; Chu, Shaoyou; Montrose, Marshall H

    2002-01-01

    In the stomach, production of prostaglandins by cyclo-oxygenase (COX) is believed to be important in mucosal defence. We tested the hypothesis that endogenous COX activity is required for protective gastric surface pH control. Intact stomachs of anaesthetized mice were perfused with a weakly buffered solution (150 mmNaCl + 4 mm Homopipes) at pH values from 2.5 to 7.0. Gastric effluents were collected to measure pH and estimate amounts of acid or alkali secretion in nanomoles secreted per minute. A switch from net acid to net alkali secretion was seen in response to acidifying luminal pH with an apparent ‘set point’ between pH 4 and 5. At luminal pH 3, the net alkali secretion (12.7 ± 2.8 nmol OH− equivalents min−1) was abolished (2.2 ± 1.7 nmol OH− min−1) by the non-specific COX inhibitor indomethacin (5 mg kg−1 I.P.). Similar inhibition was observed using a COX-1 inhibitor (SC-560; 10 mg kg−1 I.P.), but not a COX-2 inhibitor (NS-398; 10 mg kg−1 I.P.). Subsequent treatment with 16,16-dimethyl prostaglandin E2 (dm-PGE2; 1 mg kg−1 I.P.) rescued the alkali secretion (21.8 ± 2.7 nmol OH− min−1). In either the absence or presence of the H+,K+-ATPase inhibitor omeprazole (60 mg kg−1 I.P.), indomethacin blocked similar amounts of net alkali secretion (10.5 ± 2.7 and 16.4 ± 3.4 nmol OH− min−1, respectively). We also used in vivo confocal microscopy to examine pH near the mucosal surface. The gastric mucosal surface of anaesthetized mice was exposed and mucosal surface pH was imaged using the fluorescence intensity ratio of Cl-NERF as a pH indicator. Results showed a switch from a continuous net acid to net alkali secretion by the stomach in response to changing superfusate pH from 5 to 3. At luminal pH 3, the relatively alkaline surface pH (4.3 ± 0.1) was acidified (3.6 ± 0.2) by indomethacin, and subsequent dm-PGE2 restored surface pH (4.2 ± 0.2). We conclude that the pre-epithelial alkaline layer is regulated by endogenous COX

  1. Acylated Gly-(2-cyano)pyrrolidines as inhibitors of fibroblast activation protein (FAP) and the issue of FAP/prolyl oligopeptidase (PREP)-selectivity.

    PubMed

    Ryabtsova, Oxana; Jansen, Koen; Van Goethem, Sebastiaan; Joossens, Jurgen; Cheng, Jonathan D; Lambeir, Anne-Marie; De Meester, Ingrid; Augustyns, Koen; Van der Veken, Pieter

    2012-05-15

    A series of N-acylated glycyl-(2-cyano)pyrrolidines were synthesized with the aim of generating structure-activity relationship (SAR) data for this class of compounds as inhibitors of fibroblast activation protein (FAP). Specifically, the influence of (1) the choice of the N-acyl group and (2) structural modification of the 2-cyanopyrrolidine residue were investigated. The inhibitors displayed inhibitory potency in the micromolar to nanomolar range and showed good to excellent selectivity with respect to the proline selective dipeptidyl peptidases (DPPs) DPP IV, DPP9 and DPP II. Additionally, selectivity for FAP with respect to prolyl oligopeptidase (PREP) is reported. Not unexpectedly, the latter data suggest significant overlap in the pharmacophoric features that define FAP or PREP-inhibitory activity and underscore the importance of systematically evaluating the FAP/PREP-selectivity index for inhibitors of either of these two enzymes. Finally, this study forwards several compounds that can serve as leads or prototypic structures for future FAP-selective-inhibitor discovery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Arachidonic acid metabolites follow the preferential course of cyclooxygenase pathway for the basal tone in the internal anal sphincter.

    PubMed

    de Godoy, Márcio A F; Rattan, Neeru; Rattan, Satish

    2009-04-01

    Present studies determined the roles of the cyclooxygenase (COX) versus the lipoxygenase (LO) pathways in the metabolic pathway of arachidonic acid (AA) in the internal anal sphincter (IAS) tone. Studies were performed in the rat IAS versus the nontonic rectal smooth muscle (RSM). Indomethacin, the dual COX inhibitor, but not nordihydroguaiaretic acid (NDGA), the LO inhibitor, produced a precipitous decrease in the IAS tone. However, when added in the background of indomethacin, NDGA caused significant reversal of the IAS tone. These inhibitors had no significant effect on the RSM. To follow the significance of COX versus LO pathways, we examined the effects of AA and its metabolites. In the IAS, AA caused an increase in the IAS tone (Emax=38.8+/-3.0% and pEC50=3.4+/-0.1). In the RSM, AA was significantly less efficacious and potent (Emax=11.3+/-3.5% and pEC50=2.2+/-0.3). The AA metabolites (via COXs) PGF2alpha and U-46619 (a stable analog of thromboxane A2) produced increases in the IAS tone and force in the RSM. Conversely, AA metabolites (via 5-LO) lipoxin A4, 5-HETE, and leukotriene C4 decreased the IAS tone. Finally, the contractile effects of AA in the IAS were selectively attenuated by the COX-1 but not the COX-2 inhibitor. Collectively, the specific effects of AA and the COX inhibitor, the Western blot and RT-PCR analyses showing specifically higher levels of COX-1, suggest a preferential role of the COX (specifically COX-1) pathway versus the LO in the regulation of the IAS tone.

  3. Dimethyl ester of bilirubin exhibits anti-inflammatory activity through inhibition of secretory phospholipase A2, lipoxygenase and cyclooxygenase.

    PubMed

    Joshi, Vikram; Umashankara, M; Ramakrishnan, Chandrasekaran; Nanjaraj Urs, Ankanahalli N; Suvilesh, Kanve Nagaraj; Velmurugan, Devadasan; Rangappa, Kanchugarakoppal S; Vishwanath, Bannikuppe Sannanaik

    2016-05-15

    Overproduction of arachidonic acid (AA) mediated by secretory phospholipase A2 group IIA (sPLA2IIA) is a hallmark of many inflammatory disorders. AA is subsequently converted into pro-inflammatory eicosanoids through 5-lipoxygenase (5-LOX) and cyclooxygenase-1/2 (COX-1/2) activities. Hence, inhibition of sPLA2IIA, 5-LOX and COX-1/2 activities is critical in regulating inflammation. We have previously reported unconjugated bilirubin (UCB), an endogenous antioxidant, as sPLA2IIA inhibitor. However, lipophilic UCB gets conjugated in liver with glucuronic acid into hydrophilic conjugated bilirubin (CB). Since hydrophobicity is pre-requisite for sPLA2IIA inhibition, conjugation reduces the efficacy of UCB. In this regard, UCB was chemically modified and derivatives were evaluated for sPLA2IIA, 5-LOX and COX-1/2 inhibition. Among the derivatives, BD1 (dimethyl ester of bilirubin) exhibited ∼ 3 fold greater inhibitory potency towards sPLA2IIA compared to UCB. Both UCB and BD1 inhibited human 5-LOX and COX-2 activities; however only BD1 inhibited AA induced platelet aggregation. Molecular docking studies demonstrated BD1 as better inhibitor of aforesaid enzymes than UCB and other endogenous antioxidants. These data suggest that BD1 exhibits strong anti-inflammatory activity through inhibition of AA cascade enzymes which is of great therapeutic importance. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Nimesulide, a COX-2 inhibitor, does not reduce lesion size or number in a nude mouse model of endometriosis.

    PubMed

    Hull, M L; Prentice, A; Wang, D Y; Butt, R P; Phillips, S C; Smith, S K; Charnock-Jones, D S

    2005-02-01

    Women with endometriosis have elevated levels of cyclooxygenase-2 (COX-2) in peritoneal macrophages and endometriotic tissue. Inhibition of COX-2 has been shown to reduce inflammation, angiogenesis and cellular proliferation. It may also downregulate aromatase activity in ectopic endometrial lesions. Ectopic endometrial establishment and growth are therefore likely to be suppressed in the presence of COX-2 inhibitors. We hypothesized that COX-2 inhibition would reduce the size and number of ectopic human endometrial lesions in a nude mouse model of endometriosis. The selective COX-2 inhibitor, nimesulide, was administered to estrogen-supplemented nude mice implanted with human endometrial tissue. Ten days after implantation, the number and size of ectopic endometrial lesions were evaluated and compared with lesions from a control group. Immunohistochemical assessment of vascular development and macrophage and myofibroblast infiltration in control and treated lesions was performed. There was no difference in the number or size of ectopic endometrial lesions in control and nimesulide-treated nude mice. Nimesulide did not induce a visually identifiable difference in blood vessel development or macrophage or myofibroblast infiltration in nude mouse explants. The hypothesized biological properties of COX-2 inhibition did not influence lesion number or size in the nude mouse model of endometriosis.

  5. Alectinib: a selective, next-generation ALK inhibitor for treatment of ALK-rearranged non-small-cell lung cancer.

    PubMed

    Santarpia, Mariacarmela; Altavilla, Giuseppe; Rosell, Rafael

    2015-06-01

    Crizotinib was the first clinically available anaplastic lymphoma kinase (ALK) inhibitor, showing remarkable activity against ALK-rearranged non-small-cell lung cancer (NSCLC). Despite initial responses, acquired resistance to crizotinib inevitably develops, with the brain being a common site of relapse. Alectinib is a highly selective, next-generation ALK inhibitor with potent inhibitory activity also against ALK mutations conferring resistance to crizotinib, including the gatekeeper L1196M substitution. In a Phase I/II study from Japan, alectinib was found to be highly active and safe in crizotinib-naïve, ALK-rearranged NSCLC patients. Alectinib also demonstrated promising antitumor activity in crizotinib-resistant patients, including those with CNS metastases. Based on these data, the drug received Breakthrough Therapy Designation by the US FDA and has been recently approved in Japan for the treatment of ALK-positive, advanced NSCLC patients. However, patients may eventually develop resistance to alectinib, highlighting the need for novel therapeutic strategies to further improve the management of ALK-rearranged NSCLC.

  6. The Medicinal Timber Canarium patentinervium Miq. (Burseraceae Kunth.) Is an Anti-Inflammatory Bioresource of Dual Inhibitors of Cyclooxygenase (COX) and 5-Lipoxygenase (5-LOX).

    PubMed

    Mogana, R; Teng-Jin, K; Wiart, C

    2013-01-01

    The barks and leaves extracts of Canarium patentinervium Miq. (Burseraceae Kunth.) were investigated for cyclooxygenase (COX) and 5-lipoxygenase (LOX) inhibition via in vitro models. The corresponding antioxidative power of the plant extract was also tested via nonenzyme and enzyme in vitro assays. The ethanolic extract of leaves inhibited the enzymatic activity of 5-LOX, COX-1, and COX-2 with IC50 equal to 49.66 ± 0.02 μg/mL, 0.60 ± 0.01 μg/mL, and 1.07 ± 0.01 μg/mL, respectively, with selective COX-2 activity noted in ethanolic extract of barks with COX-1/COX-2 ratio of 1.22. The ethanol extract of barks confronted oxidation in the ABTS, DPPH, and FRAP assay with EC50 values equal to 0.93 ± 0.01 μg/mL, 2.33 ± 0.02 μg/mL, and 67.00 ± 0.32 μg/mL, respectively, while the ethanol extract of leaves confronted oxidation in β-carotene bleaching assay and superoxide dismutase (SOD) assay with EC50 value of 6.04 ± 0.02 μg/mL and IC50 value of 3.05 ± 0.01 μg/mL. The ethanol extract acts as a dual inhibitor of LOX and COX enzymes with potent antioxidant capacity. The clinical significance of these data is quite clear that they support a role for Canarium patentinervium Miq. (Burseraceae Kunth.) as a source of lead compounds in the management of inflammatory diseases.

  7. Cyclooxygenase-2 polymorphisms in Parkinson's disease.

    PubMed

    Håkansson, Anna; Bergman, Olle; Chrapkowska, Cecilia; Westberg, Lars; Belin, Andrea Carmine; Sydow, Olof; Johnels, Bo; Olson, Lars; Holmberg, Björn; Nissbrandt, Hans

    2007-04-05

    Accumulating evidence indicate that cyclooxygenase-2 (COX-2) is of pathophysiological importance for the neurodegeneration in Parkinson's disease (PD). For example, in a large epidemiological study, use of NSAIDs was associated with a lower risk of PD. Genetic variants of the COX-2 gene might therefore influence the risk of developing the disease. The genotype distribution of four common single nucleotide polymorphisms (SNPs) in the COX-2 gene (rs689466:A496G, rs20417:G926C, rs5277:G3050C, rs5275:C8473T) was analyzed in PD patients and control subjects in a Swedish population. No differences could be seen between the PD-patient and controls regarding the A496G, G926C, and G3050C SNPs, but the allele frequency of the C8473T SNP was found to differ when male patients were compared to controls (P = 0.007). In females no difference could be seen between PD-patients and controls. In conclusion, the results suggest a possible influence of the COX-2 C8473T SNP in PD, although it only seems to be of importance in men. (c) 2006 Wiley-Liss, Inc.

  8. Inhibition of cyclooxygenase (COX)-2 affects endothelial progenitor cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colleselli, Daniela; Bijuklic, Klaudija; Mosheimer, Birgit A.

    2006-09-10

    Growing evidence indicates that inducible cyclooxygenase-2 (COX-2) is involved in the pathogenesis of inflammatory disorders and various types of cancer. Endothelial progenitor cells recruited from the bone marrow have been shown to be involved in the formation of new vessels in malignancies and discussed for being a key point in tumour progression and metastasis. However, until now, nothing is known about an interaction between COX and endothelial progenitor cells (EPC). Expression of COX-1 and COX-2 was detected by semiquantitative RT-PCR and Western blot. Proliferation kinetics, cell cycle distribution and rate of apoptosis were analysed by MTT test and FACS analysis.more » Further analyses revealed an implication of Akt phosphorylation and caspase-3 activation. Both COX-1 and COX-2 expression can be found in bone-marrow-derived endothelial progenitor cells in vitro. COX-2 inhibition leads to a significant reduction in proliferation of endothelial progenitor cells by an increase in apoptosis and cell cycle arrest. COX-2 inhibition leads further to an increased cleavage of caspase-3 protein and inversely to inhibition of Akt activation. Highly proliferating endothelial progenitor cells can be targeted by selective COX-2 inhibition in vitro. These results indicate that upcoming therapy strategies in cancer patients targeting COX-2 may be effective in inhibiting tumour vasculogenesis as well as angiogenic processes.« less

  9. Tricyclic Covalent Inhibitors Selectively Target Jak3 through an Active Site Thiol*

    PubMed Central

    Goedken, Eric R.; Argiriadi, Maria A.; Banach, David L.; Fiamengo, Bryan A.; Foley, Sage E.; Frank, Kristine E.; George, Jonathan S.; Harris, Christopher M.; Hobson, Adrian D.; Ihle, David C.; Marcotte, Douglas; Merta, Philip J.; Michalak, Mark E.; Murdock, Sara E.; Tomlinson, Medha J.; Voss, Jeffrey W.

    2015-01-01

    The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. We have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). We found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC50 < 100 nm) inhibit Jak3 activity in cell-based assays. These results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases. PMID:25552479

  10. Tricyclic Covalent Inhibitors Selectively Target Jak3 through an Active Site Thiol

    DOE PAGES

    Goedken, Eric R.; Argiriadi, Maria A.; Banach, David L.; ...

    2014-12-31

    The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. In this paper, we have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). Wemore » found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC 50 < 100 nM) inhibit Jak3 activity in cell-based assays. Finally, these results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases.« less

  11. Tricyclic Covalent Inhibitors Selectively Target Jak3 through an Active Site Thiol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goedken, Eric R.; Argiriadi, Maria A.; Banach, David L.

    The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. In this paper, we have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). Wemore » found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC 50 < 100 nM) inhibit Jak3 activity in cell-based assays. Finally, these results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases.« less

  12. Molecular docking analysis of known flavonoids as duel COX-2 inhibitors in the context of cancer

    PubMed Central

    Dash, Raju; Uddin, Mir Muhammad Nasir; Hosen, S.M. Zahid; Rahim, Zahed Bin; Dinar, Abu Mansur; Kabir, Mohammad Shah Hafez; Sultan, Ramiz Ahmed; Islam, Ashekul; Hossain, Md Kamrul

    2015-01-01

    Cyclooxygenase-2 (COX-2) catalyzed synthesis of prostaglandin E2 and it associates with tumor growth, infiltration, and metastasis in preclinical experiments. Known inhibitors against COX-2 exhibit toxicity. Therefore, it is of interest to screen natural compounds like flavanoids against COX-2. Molecular docking using 12 known flavanoids against COX-2 by FlexX and of ArgusLab were performed. All compounds showed a favourable binding energy of >-10 KJ/mol in FlexX and > -8 kcal/mol in ArgusLab. However, this data requires in vitro and in vivo verification for further consideration. PMID:26770028

  13. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement.

    PubMed

    Altenhöfer, Sebastian; Radermacher, Kim A; Kleikers, Pamela W M; Wingler, Kirstin; Schmidt, Harald H H W

    2015-08-10

    Oxidative stress, an excess of reactive oxygen species (ROS) production versus consumption, may be involved in the pathogenesis of different diseases. The only known enzymes solely dedicated to ROS generation are nicotinamide adenine dinucleotide phosphate (NADPH) oxidases with their catalytic subunits (NOX). After the clinical failure of most antioxidant trials, NOX inhibitors are the most promising therapeutic option for diseases associated with oxidative stress. Historical NADPH oxidase inhibitors, apocynin and diphenylene iodonium, are un-specific and not isoform selective. Novel NOX inhibitors stemming from rational drug discovery approaches, for example, GKT137831, ML171, and VAS2870, show improved specificity for NADPH oxidases and moderate NOX isoform selectivity. Along with NOX2 docking sequence (NOX2ds)-tat, a peptide-based inhibitor, the use of these novel small molecules in animal models has provided preliminary in vivo evidence for a pathophysiological role of specific NOX isoforms. Here, we discuss whether novel NOX inhibitors enable reliable validation of NOX isoforms' pathological roles and whether this knowledge supports translation into pharmacological applications. Modern NOX inhibitors have increased the evidence for pathophysiological roles of NADPH oxidases. However, in comparison to knockout mouse models, NOX inhibitors have limited isoform selectivity. Thus, their use does not enable clear statements on the involvement of individual NOX isoforms in a given disease. The development of isoform-selective NOX inhibitors and biologicals will enable reliable validation of specific NOX isoforms in disease models other than the mouse. Finally, GKT137831, the first NOX inhibitor in clinical development, is poised to provide proof of principle for the clinical potential of NOX inhibition.

  14. Anti-leukaemic activity of the TYK2 selective inhibitor NDI-031301 in T-cell acute lymphoblastic leukaemia.

    PubMed

    Akahane, Koshi; Li, Zhaodong; Etchin, Julia; Berezovskaya, Alla; Gjini, Evisa; Masse, Craig E; Miao, Wenyan; Rocnik, Jennifer; Kapeller, Rosana; Greenwood, Jeremy R; Tiv, Hong; Sanda, Takaomi; Weinstock, David M; Look, A Thomas

    2017-04-01

    Activation of tyrosine kinase 2 (TYK2) contributes to the aberrant survival of T-cell acute lymphoblastic leukaemia (T-ALL) cells. Here we demonstrate the anti-leukaemic activity of a novel TYK2 inhibitor, NDI-031301. NDI-031301 is a potent and selective inhibitor of TYK2 that induced robust growth inhibition of human T-ALL cell lines. NDI-031301 treatment of human T-ALL cell lines resulted in induction of apoptosis that was not observed with the JAK inhibitors tofacitinib and baricitinib. Further investigation revealed that NDI-031301 treatment uniquely leads to activation of three mitogen-activated protein kinases (MAPKs), resulting in phosphorylation of ERK, SAPK/JNK and p38 MAPK coincident with PARP cleavage. Activation of p38 MAPK occurred within 1 h of NDI-031301 treatment and was responsible for NDI-031301-induced T-ALL cell death, as pharmacological inhibition of p38 MAPK partially rescued apoptosis induced by TYK2 inhibitor. Finally, daily oral administration of NDI-031301 at 100 mg/kg bid to immunodeficient mice engrafted with KOPT-K1 T-ALL cells was well tolerated, and led to decreased tumour burden and a significant survival benefit. These results support selective inhibition of TYK2 as a promising potential therapeutic strategy for T-ALL. © 2017 John Wiley & Sons Ltd.

  15. Antitumor effect of the selective COX-2 inhibitor celecoxib on endometrial adenocarcinoma in vitro and in vivo

    PubMed Central

    XIAO, YITAO; TENG, YINCHENG; ZHANG, RUI; LUO, LAIMIN

    2012-01-01

    The aim of this study was to investigate the antitumor effect of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib on endometrial adenocarcinoma in mice. Various amounts of celecoxib were added to HEC-1B cells in vitro for different durations. Cell cycle and apoptosis were analyzed using flow cytometry. HEC-1B cytostasis, invasiveness and COX-2 expression were examined by MTT, transwell cabin and western blot assays, respectively. An in vivo human endometrial adenocarcinoma model was established in BALB/c nude mice using HEC-1B cells. For two weeks, the celecoxib groups were treated with celecoxib 2 or 4 mg/day via oral administration and the control group was treated with saline. Tumor volume, growth curves and the inhibition rate (IR) were recorded. COX-2 expression levels and microvessel density (MVD) were investigated using an immunohistochemical technique. In the celecoxib groups, cell proliferation was significantly inhibited in a concentration- and time-dependent manner. The proportion of cells in the G0/G1 phase increased within 24 h after the addition of celecoxib whereas those in the S and G2/M phases decreased with an increasing apoptosis peak (sub-G1) and apoptosis rate. The microporous Matrigel-coated polycarbonate membrane of the Transwell cabin was traversable for the HEC-1B cells. The invasiveness was attenuated when the celecoxib concentration was increased. The tumor growth was also greatly inhibited when the celecoxib concentration was increased. The tumor IRs were 32.4 and 48.6% following treatment with 2 and 4 mg/day celecoxib, respectively. COX-2 was mainly expressed in the cytoplasm of the tumor cells. In the celecoxib groups, the COX-2 expression levels were concentration-dependent. The COX-2 expression level and MVD decreased when the celecoxib concentration was increased. The results of dependability analysis revealed that the COX-2 expression level was positively correlated with MVD (r=0.921; P<0.01). The antitumor effect of

  16. Inhibition of Nuclear Factor κB Activation and Cyclooxygenase-2 Expression by Aqueous Extracts of Hispanic Medicinal Herbs

    PubMed Central

    Gonzales, Amanda M.; Hunsaker, Lucy A.; Franco, Carolina R.; Royer, Robert E.; Vander Jagt, David L.; Vander Jagt, Dorothy J.

    2010-01-01

    Abstract Nonsteroidal anti-inflammatory drugs (NSAIDs) are a primary choice of therapy for diseases with a chronic inflammatory component. Unfortunately, long-term NSAID therapy is often accompanied by severe side effects, including cardiovascular and gastrointestinal complications. Because of this, there is critical need for identification of new and safer treatments for chronic inflammation to circumvent these side effects. Inflammatory diseases have been successfully remedied with natural herbs by many cultures. To better understand the potential of natural herbs in treating chronic inflammation and to identify their mechanism of action, we have evaluated the anti-inflammatory activities of 20 medicinal herbs commonly used in the Hispanic culture. We have established a standardized method for preparing aqueous extracts (teas) from the selected medicinal herbs and screened for inhibition of tumor necrosis factor-α-induced activation of nuclear factor κB (NF-κB), which is the central signaling pathway of the inflammatory response. A number of herbal teas were identified that exhibited significant anti-inflammatory activity. In particular, tea from the herb commonly called laurel was found to be an especially potent inhibitor of NF-κB-dependent cyclooxygenase-2 gene expression and prostaglandin E2 production in cultured murine macrophages. These findings indicate that laurel tea extract contains potent anti-inflammatory compounds that function by inhibiting the major signal transduction pathway responsible for inducing an inflammatory event. Based on these results, laurel may represent a new, safe therapeutic agent for managing chronic inflammation. PMID:20482259

  17. Cyclooxygenase-2 inhibitory effects and composition of the volatile oil from the dried roots of Lithospermum erythrorhizon.

    PubMed

    Kawata, Jyunichi; Kameda, Munekazu; Miyazawa, Mitsuo

    2008-04-01

    The composition of the volatile oil from Lithospermi Radix, the dried roots of Lithospermum erythrorhizon (Boraginaceae), has been investigated by capillary GC and GC-MS. To investigate the anti-inflammatory activity of the oil, in-vitro inhibition of ovine cyclooxygenase-1 and 2 (COX-1 and COX-2) activity by the oil was studied. Fifty-four components of the oil were identified, representing 92.74% of the oil. The main components were 2-methylbutanoic acid (21.50%), 3-methylbutanoic acid (12.61%), 2-methylpropanoic acid (8.99%), methyl linoleate (8.76%), methyl oleate (6.27%), methyl palmitate (6.06%), and 2-methyl-2-butenoic acid (5.74%). Highly selective COX-2 inhibition was observed; at 50 microg/ml the oil inhibited 38.8% of COX-2 activity.

  18. Found in Translation: How Preclinical Research Is Guiding the Clinical Development of the BCL2-Selective Inhibitor Venetoclax.

    PubMed

    Leverson, Joel D; Sampath, Deepak; Souers, Andrew J; Rosenberg, Saul H; Fairbrother, Wayne J; Amiot, Martine; Konopleva, Marina; Letai, Anthony

    2017-12-01

    Since the discovery of apoptosis as a form of programmed cell death, targeting the apoptosis pathway to induce cancer cell death has been a high-priority goal for cancer therapy. After decades of effort, drug-discovery scientists have succeeded in generating small-molecule inhibitors of antiapoptotic BCL2 family proteins. Innovative medicinal chemistry and structure-based drug design, coupled with a strong fundamental understanding of BCL2 biology, were essential to the development of BH3 mimetics such as the BCL2-selective inhibitor venetoclax. We review a number of preclinical studies that have deepened our understanding of BCL2 biology and facilitated the clinical development of venetoclax. Significance: Basic research into the pathways governing programmed cell death have paved the way for the discovery of apoptosis-inducing agents such as venetoclax, a BCL2-selective inhibitor that was recently approved by the FDA and the European Medicines Agency. Preclinical studies aimed at identifying BCL2-dependent tumor types have translated well into the clinic thus far and will likely continue to inform the clinical development of venetoclax and other BCL2 family inhibitors. Cancer Discov; 7(12); 1376-93. ©2017 AACR. ©2017 American Association for Cancer Research.

  19. The Effect of Nizatidine, a MATE2K Selective Inhibitor, on the Pharmacokinetics and Pharmacodynamics of Metformin in Healthy Volunteers

    PubMed Central

    Morrissey, Kari M.; Stocker, Sophie L.; Chen, Eugene C.; Castro, Richard A.; Brett, Claire M.; Giacomini, Kathleen M.

    2015-01-01

    Background and Objectives In the proximal tubule, basic drugs are transported from the renal cells to the tubule lumen through the concerted action of the H+/organic cation antiporters, multidrug and toxin extrusion 1 (MATE1) and 2K (MATE2K). Dual inhibitors of the MATE transporters have been shown to have a clinically relevant effect on the pharmacokinetics of concomitantly administered basic drugs. However, the clinical impact of selective renal organic cation transport inhibition on the pharmacokinetics and pharmacodynamics of basic drugs, such as metformin, is unknown. This study sought to identify a selective MATE2K inhibitor in vitro and to determine its clinical impact on the pharmacokinetics and pharmacodynamics of metformin in healthy subjects. Methods A strategic cell-based screen of 71 U.S. Food and Drug Administration (FDA)-approved medications was conducted to identify selective inhibitors of renal organic cation transporters that are capable of inhibiting at clinically relevant concentrations. From this screen, nizatidine was identified and predicted to be a clinically potent and selective inhibitor of MATE2K-mediated transport. The effect of nizatidine on the pharmacokinetics and pharmacodynamics of metformin was evaluated in 12 healthy volunteers in an open-label, randomized, two-phase crossover drug-drug interaction (DDI) study. Results In healthy volunteers, the MATE2K-selective inhibitor, nizatidine, significantly increased the apparent volume of distribution, half-life and hypoglycemic activity of metformin. However, despite achieving unbound maximum concentrations greater than the in vitro inhibition potency (IC50) of MATE2K-mediated transport, nizatidine did not affect the renal clearance or net secretory clearance of metformin. Conclusion This study demonstrates that a selective inhibition of MATE2K by nizatidine, affected the apparent volume of distribution, tissue levels and peripheral effects of metformin. However, nizatidine did not alter

  20. Structure–Activity Relationship Studies and in Vivo Activity of Guanidine-Based Sphingosine Kinase Inhibitors: Discovery of SphK1- and SphK2-Selective Inhibitors

    PubMed Central

    Kharel, Yugesh; Raje, Mithun R.; Gao, Ming; Tomsig, Jose L.; Lynch, Kevin R.; Santos, Webster L.

    2015-01-01

    Sphingosine 1-phosphate (S1P) is a pleiotropic signaling molecule that acts as a ligand for five G-protein coupled receptors (S1P1–5) whose downstream effects are implicated in a variety of important pathologies including sickle cell disease, cancer, inflammation, and fibrosis. The synthesis of S1P is catalyzed by sphingosine kinase (SphK) isoforms 1 and 2, and hence, inhibitors of this phosphorylation step are pivotal in understanding the physiological functions of SphKs. To date, SphK1 and 2 inhibitors with the potency, selectivity, and in vivo stability necessary to determine the potential of these kinases as therapeutic targets are lacking. Herein, we report the design, synthesis, and structure–activity relationship studies of guanidine-based SphK inhibitors bearing an oxadiazole ring in the scaffold. Our studies demonstrate that SLP120701, a SphK2-selective inhibitor (Ki = 1 μM), decreases S1P levels in histiocytic lymphoma (U937) cells. Surprisingly, homologation with a single methylene unit between the oxadiazole and heterocyclic ring afforded a SphK1-selective inhibitor in SLP7111228 (Ki = 48 nM), which also decreased S1P levels in cultured U937 cells. In vivo application of both compounds, however, resulted in contrasting effect in circulating levels of S1P. Administration of SLP7111228 depressed blood S1P levels while SLP120701 increased levels of S1P. Taken together, these compounds provide an in vivo chemical toolkit to interrogate the effect of increasing or decreasing S1P levels and whether such a maneuver can have implications in disease states. PMID:25643074

  1. High-throughput screening to identify selective inhibitors of microbial sulfate reduction (and beyond)

    NASA Astrophysics Data System (ADS)

    Carlson, H. K.; Coates, J. D.; Deutschbauer, A. M.

    2015-12-01

    The selective perturbation of complex microbial ecosystems to predictably influence outcomes in engineered and industrial environments remains a grand challenge for geomicrobiology. In some industrial ecosystems, such as oil reservoirs, sulfate reducing microorganisms (SRM) produce hydrogen sulfide which is toxic, explosive and corrosive. Current strategies to selectively inhibit sulfidogenesis are based on non-specific biocide treatments, bio-competitive exclusion by alternative electron acceptors or sulfate-analogs which are competitive inhibitors or futile/alternative substrates of the sulfate reduction pathway. Despite the economic cost of sulfidogenesis, there has been minimal exploration of the chemical space of possible inhibitory compounds, and very little work has quantitatively assessed the selectivity of putative souring treatments. We have developed a high-throughput screening strategy to target SRM, quantitatively ranked the selectivity and potency of hundreds of compounds and identified previously unrecognized SRM selective inhibitors and synergistic interactions between inhibitors. Once inhibitor selectivity is defined, high-throughput characterization of microbial community structure across compound gradients and identification of fitness determinants using isolate bar-coded transposon mutant libraries can give insights into the genetic mechanisms whereby compounds structure microbial communities. The high-throughput (HT) approach we present can be readily applied to target SRM in diverse environments and more broadly, could be used to identify and quantify the potency and selectivity of inhibitors of a variety of microbial metabolisms. Our findings and approach are relevant for engineering environmental ecosystems and also to understand the role of natural gradients in shaping microbial niche space.

  2. Rescue strategies against non-steroidal anti-inflammatory drug-induced gastroduodenal damage.

    PubMed

    Lim, Yun Jeong; Lee, Jeong Sang; Ku, Yang Suh; Hahm, Ki-Baik

    2009-07-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are the most commonly prescribed drugs worldwide, which attests to their efficacy as analgesic, antipyretic and anti-inflammatory agents as well as anticancer drugs. However, NSAID use also carries a risk of major gastroduodenal events, including symptomatic ulcers and their serious complications that can lead to fatal outcomes. The development of "coxibs" (selective cyclooxygenase-2 [COX-2] inhibitors) offered similar efficacy with reduced toxicity, but this promise of gastroduodenal safety has only partially been fulfilled, and is now dented with associated risks of cardiovascular or intestinal complications. Recent advances in basic science and biotechnology have given insights into molecular mechanisms of NSAID-induced gastroduodenal damage beyond COX-2 inhibition. The emergence of newer kinds of NSAIDs should alleviate gastroduodenal toxicity without compromising innate drug efficacy. In this review, novel strategies for avoiding NSAID-associated gastroduodenal damage will be described.

  3. Structural Characterization of Proline-rich Tyrosine Kinase 2 (PYK2) Reveals a Unique (DFG-out) Conformation and Enables Inhibitor Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Seungil; Mistry, Anil; Chang, Jeanne S.

    Proline-rich tyrosine kinase 2 (PYK2) is a cytoplasmic, non-receptor tyrosine kinase implicated in multiple signaling pathways. It is a negative regulator of osteogenesis and considered a viable drug target for osteoporosis treatment. The high-resolution structures of the human PYK2 kinase domain with different inhibitor complexes establish the conventional bilobal kinase architecture and show the conformational variability of the DFG loop. The basis for the lack of selectivity for the classical kinase inhibitor, PF-431396, within the FAK family is explained by our structural analyses. Importantly, the novel DFG-out conformation with two diarylurea inhibitors (BIRB796, PF-4618433) reveals a distinct subclass of non-receptormore » tyrosine kinases identifiable by the gatekeeper Met-502 and the unique hinge loop conformation of Leu-504. This is the first example of a leucine residue in the hinge loop that blocks the ATP binding site in the DFG-out conformation. Our structural, biophysical, and pharmacological studies suggest that the unique features of the DFG motif, including Leu-504 hinge-loop variability, can be exploited for the development of selective protein kinase inhibitors.« less

  4. Design and Synthesis of a Library of Lead-Like 2,4-Bisheterocyclic Substituted Thiophenes as Selective Dyrk/Clk Inhibitors

    PubMed Central

    Schmitt, Christian; Kail, Dagmar; Mariano, Marica; Empting, Martin; Weber, Nadja; Paul, Tamara; Hartmann, Rolf W.; Engel, Matthias

    2014-01-01

    The Dyrk family of protein kinases is implicated in the pathogenesis of several diseases, including cancer and neurodegeneration. Pharmacological inhibitors were mainly described for Dyrk1A so far, but in fewer cases for Dyrk1B, Dyrk2 or other isoforms. Herein, we report the development and optimization of 2,4-bisheterocyclic substituted thiophenes as a novel class of Dyrk inhibitors. The optimized hit compounds displayed favorable pharmacokinetic properties and high ligand efficiencies, and inhibited Dyrk1B in intact cells. In a larger selectivity screen, only Clk1 and Clk4 were identified as additional targets of compound 48, but no other kinases frequently reported as off-targets. Interestingly, Dyrk1A is implicated in the regulation of alternative splicing, a function shared with Clk1/Clk4; thus, some of the dual inhibitors might be useful as efficient splicing modulators. A further compound (29) inhibited Dyrk1A and 1B with an IC50 of 130 nM, showing a moderate selectivity over Dyrk2. Since penetration of the central nervous system (CNS) seems possible based on the physicochemical properties, this compound might serve as a lead for the development of potential therapeutic agents against glioblastoma. Furthermore, an inhibitor selective for Dyrk2 (24) was also identified, which might be are suitable as a pharmacological tool to dissect Dyrk2 isoform–mediated functions. PMID:24676346

  5. Red ginseng represses hypoxia-induced cyclooxygenase-2 through sirtuin1 activation.

    PubMed

    Lim, Wonchung; Shim, Myeong Kuk; Kim, Sikwan; Lee, YoungJoo

    2015-06-01

    Korean red ginseng (KRG) is a traditional herbal medicine made by steaming and drying the fresh ginseng, leading to chemical transformation of some components by heat. It ameliorates various inflammatory diseases and strengthens the endocrine, immune, and central nervous systems. The cyclooxygenase-2 (COX-2)/prostaglandin E2 pathway in hypoxic cancer cells has important implications for stimulation of inflammation and tumorigenesis. In this study we examined the effects and the mechanism underlying Korean red ginseng water extract (KRG-WE) inhibition of hypoxia-induced COX-2 in human distal lung epithelial A549 cells. The effect of the KRG on suppression of hypoxia-induced COX-2 in A549 cells were determined by Western blot and/or qRT-PCR. The anti-invasive effect of KRG-WE was evaluated on A549 cells using matrigel invasion assay. The activation of glucocorticoid receptor (GR) and sirtuin1 (Sirt1) was examined by using specific inhibitors. We first observed that hypoxia induced COX-2 protein and mRNA levels and promoter activity were suppressed by KRG-WE. Second, we observed that hypoxia-induced cell migration is dramatically reduced by KRG-WE. Third, we found that the effect of KRG-WE was not antagonized by the GR antagonist RU486 implying that the effect is mediated other than GR pathway. Finally, we demonstrated that inhibition of Sirt1 abolished the effect of KRG-WE on hypoxia-induced COX-2 suppression and cell-invasion indicating that the suppression is mediated by Sirt1. Taken together, KRG-WE inhibits the hypoxic induction of COX-2 expression and cell invasion through Sirt1 activation. Our results imply that KRG-WE could be effective for suppression of inflammation under hypoxia. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors

    PubMed Central

    Davare, Monika A.; Vellore, Nadeem A.; Wagner, Jacob P.; Eide, Christopher A.; Goodman, James R.; Drilon, Alexander; Deininger, Michael W.; O’Hare, Thomas; Druker, Brian J.

    2015-01-01

    Oncogenic ROS1 fusion proteins are molecular drivers in multiple malignancies, including a subset of non-small cell lung cancer (NSCLC). The phylogenetic proximity of the ROS1 and anaplastic lymphoma kinase (ALK) catalytic domains led to the clinical repurposing of the Food and Drug Administration (FDA)-approved ALK inhibitor crizotinib as a ROS1 inhibitor. Despite the antitumor activity of crizotinib observed in both ROS1- and ALK-rearranged NSCLC patients, resistance due to acquisition of ROS1 or ALK kinase domain mutations has been observed clinically, spurring the development of second-generation inhibitors. Here, we profile the sensitivity and selectivity of seven ROS1 and/or ALK inhibitors at various levels of clinical development. In contrast to crizotinib’s dual ROS1/ALK activity, cabozantinib (XL-184) and its structural analog foretinib (XL-880) demonstrate a striking selectivity for ROS1 over ALK. Molecular dynamics simulation studies reveal structural features that distinguish the ROS1 and ALK kinase domains and contribute to differences in binding site and kinase selectivity of the inhibitors tested. Cell-based resistance profiling studies demonstrate that the ROS1-selective inhibitors retain efficacy against the recently reported CD74-ROS1G2032R mutant whereas the dual ROS1/ALK inhibitors are ineffective. Taken together, inhibitor profiling and stringent characterization of the structure–function differences between the ROS1 and ALK kinase domains will facilitate future rational drug design for ROS1- and ALK-driven NSCLC and other malignancies. PMID:26372962

  7. Synthesis and Evaluation of Novel Benzofuran Derivatives as Selective SIRT2 Inhibitors.

    PubMed

    Zhou, Yumei; Cui, Huaqing; Yu, Xiaoming; Peng, Tao; Wang, Gang; Wen, Xiaoxue; Sun, Yunbo; Liu, Shuchen; Zhang, Shouguo; Hu, Liming; Wang, Lin

    2017-08-14

    A series of benzofuran derivatives were designed and synthesized, and their inhibitory activites were measured against the SIRT1-3. The enzymatic assay showed that all the compounds showed certain anti-SIRT2 activity and selective over SIRT1 and SIRT3 with IC 50 (half maximal inhibitory concentration) values at the micromolar level. The preliminary structure-activity relationships were analyzed and the binding features of compound 7e (IC 50 3.81 µM) was predicted using the CDOCKER program. The results of this research could provide informative guidance for further optimizing benzofuran derivatives as potent SIRT2 inhibitors.

  8. Expression of cyclooxygenase-2 in transitional cell carcinoma of the urinary bladder in dogs.

    PubMed

    Khan, K N; Knapp, D W; Denicola, D B; Harris, R K

    2000-05-01

    To evaluate expression of cyclooxygenase (COX)-1 and COX-2 in the urinary bladder epithelium of clinically normal dogs and in transitional cell carcinoma cells of dogs. 21 dogs with transitional cell carcinoma of the urinary bladder and 8 dogs with clinically normal urinary bladders. COX-1 and COX-2 were evaluated by use of isoform-specific antibodies with standard immunohistochemical methods. COX-1, but not COX-2, was constitutively expressed in normal urinary bladder epithelium; however, COX-2 was expressed in neoplastic epithelium in primary tumors and in metastatic lesions of all 21 dogs and in new proliferating blood vessels in 3 dogs. Also, COX-1 was expressed in the neoplastic cells. Lack of expression of COX-2 in normal bladder epithelium and its substantial expression in transitional cell carcinoma cells suggest that this isoform may be involved in tumor cell growth. Inhibition of COX-2 is a likely mechanism of the antineoplastic effects of non steroidal antiinflammatory drugs.

  9. Selective Inhibition of HER2-Positive Breast Cancer Cells by the HIV Protease Inhibitor Nelfinavir

    PubMed Central

    2012-01-01

    Background Human epidermal growth factor receptor 2 (HER2)–positive breast cancer is highly aggressive and has higher risk of recurrence than HER2-negative cancer. With few treatment options available, new drug targets specific for HER2-positive breast cancer are needed. Methods We conducted a pharmacological profiling of seven genotypically distinct breast cancer cell lines using a subset of inhibitors of breast cancer cells from a screen of the Johns Hopkins Drug Library. To identify molecular targets of nelfinavir, identified in the screen as a selective inhibitor of HER2-positive cells, we conducted a genome-wide screen of a haploinsufficiency yeast mutant collection. We evaluated antitumor activity of nelfinavir with xenografts in athymic nude mouse models (n = 4–6 per group) of human breast cancer and repeated mixed-effects regression analysis. All statistical tests were two-sided. Results Pharmacological profiling showed that nelfinavir, an anti-HIV drug, selectively inhibited the growth of HER2-positive breast cancer cells in vitro. A genome-wide screening of haploinsufficiency yeast mutants revealed that nelfinavir inhibited heat shock protein 90 (HSP90) function. Further characterization using proteolytic footprinting experiments indicated that nelfinavir inhibited HSP90 in breast cancer cells through a novel mechanism. In vivo, nelfinavir selectively inhibited the growth of HER2-positive breast cancer cells (tumor volume index of HCC1954 cells on day 29, vehicle vs nelfinavir, mean = 14.42 vs 5.16, difference = 9.25, 95% confidence interval [CI] = 5.93 to 12.56, P < .001; tumor volume index of BT474 cells on day 26, vehicle vs nelfinavir, mean = 2.21 vs 0.90, difference = 1.31, 95% CI = 0.83 to 1.78, P < .001). Moreover, nelfinavir inhibited the growth of trastuzumab- and/or lapatinib-resistant, HER2-positive breast cancer cells in vitro at clinically achievable concentrations. Conclusion Nelfinavir was found to be a new class of HSP90 inhibitor and

  10. O-Phenyl Carbamate and Phenyl Urea Thiiranes as Selective Matrix Metalloproteinase-2 Inhibitors that Cross the Blood-Brain Barrier

    PubMed Central

    Gooyit, Major; Song, Wei; Mahasenan, Kiran V.; Lichtenwalter, Katerina; Suckow, Mark A.; Schroeder, Valerie A.; Wolter, William R.; Mobashery, Shahriar; Chang, Mayland

    2013-01-01

    Brain metastasis occurs in 20% to 40% of cancer patients. Treatment is mostly palliative and the inability of most drugs to penetrate the brain presents one of the greatest challenges in the development of therapeutics for brain metastasis. Matrix metalloproteinase-2 (MMP-2) plays important roles in invasion and vascularization of the central nervous system and represents a potential target for treatment of brain metastasis. Carbonate, O-phenyl carbamate, urea, and N-phenyl carbamate derivatives of SB-3CT, a selective and potent gelatinase inhibitor were synthesized and evaluated. The O-phenyl carbamate and urea variants were selective and potent inhibitors of MMP-2. Carbamate 5b was metabolized to the potent gelatinase inhibitor 2, which was present at therapeutic concentrations in the brain. In contrast, phenyl urea 6b crossed the blood-brain barrier, however higher doses would result in therapeutic brain concentrations. Carbamate 5b and urea 6b show potential for intervention of MMP-2-dependent diseases, such as brain metastasis. PMID:24028490

  11. JAK2 inhibitor therapy in myeloproliferative disorders: rationale, preclinical studies and ongoing clinical trials.

    PubMed

    Pardanani, A

    2008-01-01

    The recent identification of somatic mutations such as JAK2V617F that deregulate Janus kinase (JAK)-signal transducer and activator of transcription signaling has spurred development of orally bioavailable small-molecule inhibitors that selectively target JAK2 kinase as an approach to pathogenesis-directed therapy of myeloproliferative disorders (MPD). In pre-clinical studies, these compounds inhibit JAK2V617F-mediated cell growth at nanomolar concentrations, and in vivo therapeutic efficacy has been demonstrated in mouse models of JAK2V617F-induced disease. In addition, ex vivo growth of progenitor cells from MPD patients harboring JAK2V617F or MPLW515L/K mutations is also potently inhibited. JAK2 inhibitors currently in clinical trials can be grouped into those designed to primarily target JAK2 kinase (JAK2-selective) and those originally developed for non-MPD indications, but that nevertheless have significant JAK2-inhibitory activity (non-JAK2 selective). This article discusses the rationale for using JAK2 inhibitors for the treatment of MPD, as well as relevant aspects of clinical trial development for these patients. For instance, which group of MPD patients is appropriate for initial Phase I studies? Should JAK2V617F-negative MPD patients be included in the initial studies? What are the likely consequences of 'off-target' JAK3 and wild-type JAK2 inhibition? How should treatment responses be monitored?

  12. Selective inhibitors of zinc-dependent histone deacetylases. Therapeutic targets relevant to cancer.

    PubMed

    Kollar, Jakub; Frecer, Vladimir

    2015-01-01

    Histone deacetylases (HDACs), which act on acetylated histones and/or other non-histone protein substrates, represent validated epigenetic targets for the treatment of cancer and other human diseases. The inhibition of HDAC activity was shown to induce cell cycle arrest, differentiation, apoptosis as well as a decrease in proliferation, angiogenesis, migration, and cell resistance to chemotherapy. Targeting single HDAC isoforms with selective inhibitors will help to reveal the role of individual HDACs in cancer development or uncover further biological consequences of protein acetylation. This review focuses on conventional zinc-containing HDACs. In its first part, the biological role of individual HDACs in various types of cancer is summarized. In the second part, promising HDAC inhibitors showing activity both in enzymatic and cell-based assays are surveyed with an emphasis on the inhibitors selective to the individual HDACs.

  13. Entropy as a Driver of Selectivity for Inhibitor Binding to Histone Deacetylase 6.

    PubMed

    Porter, Nicholas J; Wagner, Florence F; Christianson, David W

    2018-05-18

    Among the metal-dependent histone deacetylases, the class IIb isozyme HDAC6 is remarkable because of its role in the regulation of microtubule dynamics in the cytosol. Selective inhibition of HDAC6 results in microtubule hyperacetylation, leading to cell cycle arrest and apoptosis, which is a validated strategy for cancer chemotherapy and the treatment of other disorders. HDAC6 inhibitors generally consist of a Zn 2+ -binding group such as a hydroxamate, a linker, and a capping group; the capping group is a critical determinant of isozyme selectivity. Surprisingly, however, even "capless" inhibitors exhibit appreciable HDAC6 selectivity. To probe the chemical basis for this selectivity, we now report high-resolution crystal structures of HDAC6 complexed with capless cycloalkyl hydroxamate inhibitors 1-4. Each inhibitor hydroxamate group coordinates to the catalytic Zn 2+ ion with canonical bidentate geometry. Additionally, the olefin moieties of compounds 2 and 4 bind in an aromatic crevice between the side chains of F583 and F643. Reasoning that similar binding could be achieved in the representative class I isozyme HDAC8, we employed isothermal titration calorimetry to study the thermodynamics of inhibitor binding. These measurements indicate that the entropy of inhibitor binding is generally positive for binding to HDAC6 and negative for binding to HDAC8, resulting in ≤313-fold selectivity for binding to HDAC6 relative to HDAC8. Thus, favorable binding entropy contributes to HDAC6 selectivity. Notably, cyclohexenyl hydroxamate 2 represents a promising lead for derivatization with capping groups that may further enhance its impressive 313-fold thermodynamic selectivity for HDAC6 inhibition.

  14. Selectivity Mechanism of ATP-Competitive Inhibitors for PKB and PKA.

    PubMed

    Wu, Ke; Pang, Jingzhi; Song, Dong; Zhu, Ying; Wu, Congwen; Shao, Tianqu; Chen, Haifeng

    2015-07-01

    Protein kinase B (PKB) acts as a central node on the PI3K kinase pathway. Constitutive activation and overexpression of PKB have been identified to involve in various cancers. However, protein kinase A (PKA) sharing high homology with PKB is essential for metabolic regulation. Therefore, specific targeting on PKB is crucial strategy in drug design and development for antitumor. Here, we had revealed the selectivity mechanism for PKB inhibitors with molecular dynamics simulation and 3D-QSAR methods. Selective inhibitors of PKB could form more hydrogen bonds and hydrophobic contacts with PKB than those with PKA. This could explain that selective inhibitor M128 is more potent to PKB than to PKA. Then, 3D-QSAR models were constructed for these selective inhibitors and evaluated by test set compounds. 3D-QSAR model comparison of PKB inhibitors and PKA inhibitors reveals possible methods to improve the selectivity of inhibitors. These models can be used to design new chemical entities and make quantitative prediction of the specific selective inhibitors before resorting to in vitro and in vivo experiment. © 2014 John Wiley & Sons A/S.

  15. PI3Kδ-selective and PI3Kα/δ-combinatorial inhibitors in clinical development for B-cell non-Hodgkin lymphoma.

    PubMed

    Lampson, Benjamin L; Brown, Jennifer R

    2017-11-01

    The efficacy of the prototypical phosphatidylinositol-3-kinase (PI3K) inhibitor idelalisib for the treatment of chronic lymphocytic leukemia (CLL) and indolent non-Hodgkin lymphoma (iNHL) has led to development of multiple compounds targeting this pathway. Areas Covered: We review the hypothesized therapeutic mechanisms of PI3K inhibitors, including abrogation of B cell receptor signaling, blockade of microenvironmental pro-survival signals, and enhancement of anti-tumor immunity. We examine toxicities of idelalisib, including bacterial infections (possibly secondary to drug-induced neutropenia), opportunistic infections (possibly attributable to on-target inhibition of T cell function), and organ toxicities such as transaminitis and enterocolitis (possibly autoimmune, secondary to on-target inhibition of p110δ in regulatory T cells). We evaluate PI3K inhibitors that have entered trials for the treatment of lymphoma, focusing on agents with selectivity for PI3Kα and PI3Kδ. Expert Opinion: PI3K inhibitors, particularly those that target p110δ, have robust efficacy in the treatment of CLL and iNHL. However, idelalisib has infectious and autoimmune toxicities that limit its use. Outside of trials, idelalisib should be restricted to CLL patients with progression on ibrutinib or iNHL patients with progression on two prior therapies. Whether newer PI3K inhibitors will demonstrate differentiated toxicity profiles in comparable patient populations while retaining efficacy remains to be seen.

  16. Coxibs interfere with the action of aspirin by binding tightly to one monomer of cyclooxygenase-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimon, Gilad; Sidhu, Ranjinder S.; Lauver, D. Adam

    Pain associated with inflammation involves prostaglandins synthesized from arachidonic acid (AA) through cyclooxygenase-2 (COX-2) pathways while thromboxane A{sub 2} formed by platelets from AA via cyclooxygenase-1 (COX-1) mediates thrombosis. COX-1 and COX-2 are both targets of nonselective nonsteroidal antiinflammatory drugs (nsNSAIDs) including aspirin whereas COX-2 activity is preferentially blocked by COX-2 inhibitors called coxibs. COXs are homodimers composed of identical subunits, but we have shown that only one subunit is active at a time during catalysis; moreover, many nsNSAIDS bind to a single subunit of a COX dimer to inhibit the COX activity of the entire dimer. Here, we reportmore » the surprising observation that celecoxib and other coxibs bind tightly to a subunit of COX-1. Although celecoxib binding to one monomer of COX-1 does not affect the normal catalytic processing of AA by the second, partner subunit, celecoxib does interfere with the inhibition of COX-1 by aspirin in vitro. X-ray crystallographic results obtained with a celecoxib/COX-1 complex show how celecoxib can bind to one of the two available COX sites of the COX-1 dimer. Finally, we find that administration of celecoxib to dogs interferes with the ability of a low dose of aspirin to inhibit AA-induced ex vivo platelet aggregation. COX-2 inhibitors such as celecoxib are widely used for pain relief. Because coxibs exhibit cardiovascular side effects, they are often prescribed in combination with low-dose aspirin to prevent thrombosis. Our studies predict that the cardioprotective effect of low-dose aspirin on COX-1 may be blunted when taken with coxibs.« less

  17. Sequential expression of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor in rat hippocampal neurons after fluid percussion injury

    PubMed Central

    Li, Zhiqiang; Shu, Qingming; Li, Lingzhi; Ge, Maolin; Zhang, Yongliang

    2014-01-01

    Traumatic brain injury causes gene expression changes in different brain regions. Occurrence and development of traumatic brain injury are closely related, involving expression of three factors, namely cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. However, little is known about the correlation of these three factors and brain neuronal injury. In this study, primary cultured rat hippocampal neurons were subjected to fluid percussion injury according to Scott's method, with some modifications. RT-PCR and semi-quantitative immunocytochemical staining was used to measure the expression levels of cyclooxygenase-2, glutamate receptor-2, and platelet activating factor receptor. Our results found that cyclooxygenase-2 expression were firstly increased post-injury, and then decreased. Both mRNA and protein expression levels reached peaks at 8 and 12 hours post-injury, respectively. Similar sequential changes in glutamate receptor 2 were observed, with highest levels mRNA and protein expression at 8 and 12 hours post-injury respectively. On the contrary, the expressions of platelet activating factor receptor were firstly decreased post-injury, and then increased. Both mRNA and protein expression levels reached the lowest levels at 8 and 12 hours post-injury, respectively. Totally, our findings suggest that these three factors are involved in occurrence and development of hippocampal neuronal injury. PMID:25206921

  18. The opposite effect of isotype-selective monoamine oxidase inhibitors on adipogenesis in human bone marrow mesenchymal stem cells.

    PubMed

    Byun, Youngjoo; Park, Jongho; Hong, Soo Hyun; Han, Mi Hwa; Park, Suzie; Jung, Hyo-Il; Noh, Minsoo

    2013-06-01

    Adiponectin production during adipocyte differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) can be used to evaluate the pharmacological activity of anti-diabetic drugs to improve insulin sensitivity. Monoamine oxidase (MAO) inhibitors such as phenelzine and pargyline inhibit adipogenesis in murine pre-adipocytes. In this study, however, we found that selective MAO-A inhibitors, moclobemide and Ro41-1049, and a selective MAO-B inhibitor, selegiline, promoted adiponectin production during adipocyte differentiation in hBM-MSCs, which suggested the anti-diabetic potential of these drugs. In contrast, non-selective MAO inhibitors, phenelzine and tranylcypromine, inhibited adipocyte differentiation of hBM-MSCs. Concomitant treatments of MAO-A and MAO-B selective inhibitors did not change the stimulatory effect on adiponectin production in hBM-MSCs. Taken together, the opposite effects of isotype-selective MAO inhibitors on adiponectin production during adipogenesis in hBM-MSCs may not be directly associated with the inhibitory effects of MAO, suggested that the structure of MAO inhibitors may contain a novel anti-diabetic pharmacophore. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Cyclooxygenase-2 Selectively Controls Renal Blood Flow Through a Novel PPARβ/δ-Dependent Vasodilator Pathway.

    PubMed

    Kirkby, Nicholas S; Sampaio, Walkyria; Etelvino, Gisele; Alves, Daniele T; Anders, Katie L; Temponi, Rafael; Shala, Fisnik; Nair, Anitha S; Ahmetaj-Shala, Blerina; Jiao, Jing; Herschman, Harvey R; Xiaomeng, Wang; Wahli, Walter; Santos, Robson A; Mitchell, Jane A

    2018-02-01

    Cyclooxygenase-2 (COX-2) is an inducible enzyme expressed in inflammation and cancer targeted by nonsteroidal anti-inflammatory drugs. COX-2 is also expressed constitutively in discreet locations where its inhibition drives gastrointestinal and cardiovascular/renal side effects. Constitutive COX-2 expression in the kidney regulates renal function and blood flow; however, the global relevance of the kidney versus other tissues to COX-2-dependent blood flow regulation is not known. Here, we used a microsphere deposition technique and pharmacological COX-2 inhibition to map the contribution of COX-2 to regional blood flow in mice and compared this to COX-2 expression patterns using luciferase reporter mice. Across all tissues studied, COX-2 inhibition altered blood flow predominantly in the kidney, with some effects also seen in the spleen, adipose, and testes. Of these sites, only the kidney displayed appreciable local COX-2 expression. As the main site where COX-2 regulates blood flow, we next analyzed the pathways involved in kidney vascular responses using a novel technique of video imaging small arteries in living tissue slices. We found that the protective effect of COX-2 on renal vascular function was associated with prostacyclin signaling through PPARβ/δ (peroxisome proliferator-activated receptor-β/δ). These data demonstrate the kidney as the principle site in the body where local COX-2 controls blood flow and identifies a previously unreported PPARβ/δ-mediated renal vasodilator pathway as the mechanism. These findings have direct relevance to the renal and cardiovascular side effects of drugs that inhibit COX-2, as well as the potential of the COX-2/prostacyclin/PPARβ/δ axis as a therapeutic target in renal disease. © 2018 The Authors.

  20. Nonylphenol regulates cyclooxygenase-2 expression via Ros-activated NF-κB pathway in sertoli TM4 cells.

    PubMed

    Liu, Xiaozhen; Nie, Shaoping; Huang, Danfei; Xie, Mingyong

    2015-09-01

    The aim of this study was to investigate the signaling pathways involved in the cyclooxygenase (COX)-2 regulation induced by nonylphenol (NP) in mouse testis Sertoli TM4 cells. Our results showed that treatment of TM4 cells with NP increased COX-2 protein expression and interleukin-6 (IL)-6 and prostaglandin E2 (PGE2) secretion in a dose-dependent manner. Pretreatment with reactive oxygen species (ROS) scavenger, N-acetylcysteine (NAC), attenuated NP-induced ROS production, COX-2 expression, and IL-6 and PGE2 release in TM4 cells. Exposure to NP stimulated activation of NF-κB, whereas the NF-κB inhibitor, pyrrolidine dithiocarbamate, attenuated NP-enhanced COX-2 expression and IL-6 and PGE2 release in TM4 cells in a dose-dependent manner. Furthermore, NAC blocked NP-induced activation of NF-κB. In addition, inhibition of COX-2 mitigated NP-induced IL-6 release. In conclusion, NP induced ROS generation, activation of NF-κB pathway, COX-2 upregulation, and IL-6 and PGE2 secretion in TM4 cells. NP may regulate COX-2 expression via ROS-activated NF-κB pathway in Sertoli TM4 cells. © 2014 Wiley Periodicals, Inc.

  1. Computational Studies of Difference in Binding Modes of Peptide and Non-Peptide Inhibitors to MDM2/MDMX Based on Molecular Dynamics Simulations

    PubMed Central

    Chen, Jianzhong; Zhang, Dinglin; Zhang, Yuxin; Li, Guohui

    2012-01-01

    Inhibition of p53-MDM2/MDMX interaction is considered to be a promising strategy for anticancer drug design to activate wild-type p53 in tumors. We carry out molecular dynamics (MD) simulations to study the binding mechanisms of peptide and non-peptide inhibitors to MDM2/MDMX. The rank of binding free energies calculated by molecular mechanics generalized Born surface area (MM-GBSA) method agrees with one of the experimental values. The results suggest that van der Waals energy drives two kinds of inhibitors to MDM2/MDMX. We also find that the peptide inhibitors can produce more interaction contacts with MDM2/MDMX than the non-peptide inhibitors. Binding mode predictions based on the inhibitor-residue interactions show that the π–π, CH–π and CH–CH interactions dominated by shape complimentarity, govern the binding of the inhibitors in the hydrophobic cleft of MDM2/MDMX. Our studies confirm the residue Tyr99 in MDMX can generate a steric clash with the inhibitors due to energy and structure. This finding may theoretically provide help to develop potent dual-specific or MDMX inhibitors. PMID:22408446

  2. Identification and Structure-Function Analysis of Subfamily Selective G Protein-Coupled Receptor Kinase Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homan, Kristoff T.; Larimore, Kelly M.; Elkins, Jonathan M.

    2015-02-13

    Selective inhibitors of individual subfamilies of G protein-coupled receptor kinases (GRKs) would serve as useful chemical probes as well as leads for therapeutic applications ranging from heart failure to Parkinson’s disease. To identify such inhibitors, differential scanning fluorimetry was used to screen a collection of known protein kinase inhibitors that could increase the melting points of the two most ubiquitously expressed GRKs: GRK2 and GRK5. Enzymatic assays on 14 of the most stabilizing hits revealed that three exhibit nanomolar potency of inhibition for individual GRKs, some of which exhibiting orders of magnitude selectivity. Most of the identified compounds can bemore » clustered into two chemical classes: indazole/dihydropyrimidine-containing compounds that are selective for GRK2 and pyrrolopyrimidine-containing compounds that potently inhibit GRK1 and GRK5 but with more modest selectivity. The two most potent inhibitors representing each class, GSK180736A and GSK2163632A, were cocrystallized with GRK2 and GRK1, and their atomic structures were determined to 2.6 and 1.85 Å spacings, respectively. GSK180736A, developed as a Rho-associated, coiled-coil-containing protein kinase inhibitor, binds to GRK2 in a manner analogous to that of paroxetine, whereas GSK2163632A, developed as an insulin-like growth factor 1 receptor inhibitor, occupies a novel region of the GRK active site cleft that could likely be exploited to achieve more selectivity. However, neither compound inhibits GRKs more potently than their initial targets. This data provides the foundation for future efforts to rationally design even more potent and selective GRK inhibitors.« less

  3. Expression of cyclooxygenase-1 and cyclooxygenase-2, syndecan-1 and connective tissue growth factor in benign and malignant breast tissue from premenopausal women.

    PubMed

    Fahlén, M; Zhang, H; Löfgren, L; Masironi, B; von Schoultz, E; von Schoultz, B; Sahlin, L

    2017-05-01

    Stromal factors have been identified as important for tumorigenesis and metastases of breast cancer. From 49 premenopausal women, samples were collected from benign or malignant tumors and the seemingly normal tissue adjacent to the tumor. The factors studied, with real-time polymerase chain reaction (PCR) and immunohistochemistry, were cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2), syndecan-1 (S-1) and connective tissue growth factor (CTGF). COX-1 and S-1 mRNA levels were higher in the malignant tumors than in normal and benign tissues. The COX-2 mRNA level was lower in the malignant tumor than in the normal tissue, while CTGF mRNA did not differ between the groups. COX-1 immunostaining was higher in stroma from malignant tumors than in benign tissues, whereas COX-2 immunostaining was higher in the malignant tissue. Glandular S-1 immunostaining was lower in malignant tumors compared to benign and normal tissues, and the opposite was found in stroma. Conclusively, mRNA levels of COX-1 and COX-2 were oppositely regulated, with COX-1 being increased in the malignant tumor while COX-2 was decreased. S-1 protein localization switched from glandular to stromal cells in malignant tissues. Thus, these markers are, in premenopausal women, localized and regulated differently in normal/benign breast tissue as compared to the malignant tumor.

  4. Inhibition of Cyclooxygenase-2 (COX-2) Initiates Autophagy and Potentiates MPTP-Induced Autophagic Cell Death of Human Neuroblastoma Cells, SH-SY5Y: an Inside in the Pathology of Parkinson's Disease.

    PubMed

    Niranjan, Rituraj; Mishra, Kaushal Prasad; Thakur, Ashwani Kumar

    2018-03-01

    Cyclooxygenase-2 or COX-2 has been known to be crucial for Parkinson's disease (PD) pathogenesis; however, its exact role is still not known. We first time report that inhibition of COX-2 promotes 1-methyl-4-phenyl 1,2,3,6 tetrahydropyridine (MPTP)-induced neuronal cell death via induction of autophagic mechanisms. We found that treatment with MPTP induced cell death of neuroblastoma cells SH-SY5Y in a dose dependent manner. Treatment of MPTP has also upregulated the expressions of autophagic proteins such as LC3, beclin, ATG-5, and p62. Interestingly, nimesulide, a preferential COX-2 inhibitor, further potentiated the MPTP-induced cell death of human neuroblastoma cells. Treatment of nimesulide with MPTP further potentiated expressions of p62, ATG-5, beclin-1, LC3 autophagic proteins. Furthermore, nimesulide with MPTP increased apoptotic protein cleaved caspase-3 and also induced expression of p53 gene. Interestingly, it was observed that Akt inhibitor significantly increased MPTP-induced cell death of neuroblastoma cells. However, (-) deprenyl, a monoamine oxidase B (MAO B) inhibitor, attenuated MPTP-induced autophagic response and protected cell death. The prior treatment with prostaglandin E2 protected against nimesulide induced-death of neuronal cells. This study confirms that neuroinflammation is associated to the autophagy and may be one of the main pathological mechanisms in Parkinson's disease and other inflammation-associated disorders.

  5. Selection and use of crystallization inhibitors for matrix-type transdermal drug-delivery systems containing sex steroids.

    PubMed

    Lipp, R

    1998-12-01

    The purpose of this study was to stabilize transdermal drug-delivery systems (TDDS) highly loaded with sex steroids against recrystallization of drugs during storage. To facilitate the selection of potential crystallization inhibitors a drug-excipient interaction test was also established. Analysis of the thermal behaviour of 1:1 steroid-excipient mixtures by differential scanning calorimetry (DSC) revealed that oestradiol and gestodene interact strongly with silicone dioxide and povidones, e.g. povidone K12. The addition of povidone K12 to polyacrylate-based matrix TDDS containing either 3% oestradiol or 2% gestodene resulted in stable systems which did not recrystallize during storage at 25 degrees C for more than 5 years. Significant recrystallization was, on the other hand, observed in non-stabilized reference patches even after 1 to 2 months storage. The DSC screening model proved very effective for selection of inhibitors of the crystallization of sex steroids in matrix TDDS. The crystallization inhibitor approach is a highly versatile stabilization tool for matrix patches containing high concentrations of sex steroids.

  6. Effects of chalcone derivatives on lipoxygenase and cyclooxygenase activities of mouse epidermis.

    PubMed

    Nakadate, T; Aizu, E; Yamamoto, S; Kato, R

    1985-09-01

    The effects of chalcone derivatives on 12-lipoxygenase and cyclooxygenase of mouse epidermis were investigated. The chalcone derivatives which have 3,4-dihydroxycinnamoyl structure in the molecule, such as 3,4-dihydroxychalcone, 3,4,2'-trihydroxychalcone, 3,4,4'-trihydroxychalcone and 3,4,2'4'-tetrahydroxychalcone, potently inhibited epidermal 12-lipoxygenase activity. Although some of them also inhibited cyclooxygenase activity at relatively high concentrations, the inhibitory effects of these chalcone derivatives on 12-lipoxygenase were 10 times or more potent than their effects on cyclooxygenase. The chalcone derivatives which have cinnamoyl or 4-hydroxycinnamoyl structure, instead of 3,4-dihydroxycinnamoyl structure, in the molecule, showed little or no inhibitory effects on either 12-lipoxygenase or cyclooxygenase activities. The inhibitory effects of chalcone derivatives on 12-lipoxygenase and cyclooxygenase of mouse epidermis are dependent on the particular structure, i.e. 3,4-dihydroxycinnamoyl structure, of the chalcone derivatives.

  7. 2D-QSAR and 3D-QSAR Analyses for EGFR Inhibitors

    PubMed Central

    Zhao, Manman; Zheng, Linfeng; Qiu, Chun

    2017-01-01

    Epidermal growth factor receptor (EGFR) is an important target for cancer therapy. In this study, EGFR inhibitors were investigated to build a two-dimensional quantitative structure-activity relationship (2D-QSAR) model and a three-dimensional quantitative structure-activity relationship (3D-QSAR) model. In the 2D-QSAR model, the support vector machine (SVM) classifier combined with the feature selection method was applied to predict whether a compound was an EGFR inhibitor. As a result, the prediction accuracy of the 2D-QSAR model was 98.99% by using tenfold cross-validation test and 97.67% by using independent set test. Then, in the 3D-QSAR model, the model with q2 = 0.565 (cross-validated correlation coefficient) and r2 = 0.888 (non-cross-validated correlation coefficient) was built to predict the activity of EGFR inhibitors. The mean absolute error (MAE) of the training set and test set was 0.308 log units and 0.526 log units, respectively. In addition, molecular docking was also employed to investigate the interaction between EGFR inhibitors and EGFR. PMID:28630865

  8. Acute effects of aceclofenac, COX-2 inhibitor, on penicillin-induced epileptiform activity.

    PubMed

    Taşkıran, Mehmet; Taşdemir, Abdulkadir; Ayyıldız, Nusret

    2017-04-01

    The effects of COX-2 inhibitors on seizure activity are controversial. The aim of the current study was to determine the post-treatment effect of aceclofenac on penicillin-induced experimental epilepsy. Male Wistar rats were used in all experiments (n=18). The seizure activity was triggered by penicillin (i.c.). Aceclofenac was injected intraperitoneally at doses of 10mg/kg and 20mg/kg. Intraperitoneal administration of 10 and 20mg/kg aceclofenac doses, exhibited proconvulsant properties on seizure activity on rats. The mean spike frequency and amplitude of aceclofenac 10mg/kg were 41.89±2.12 spike/min and 0.619±0.094mV, respectively. The mean spike frequency and amplitude of aceclofenac 20mg/kg were 35.26±2.72 spike/min and 0.843±0.089mV, respectively. The results indicated that not all of the COX-2 inhibitors may have anticonvulsant or proconvulsant features on patients with epilepsy susceptibility and must be used with great care. It was also suggested that not only cyclooxygenase metabolic pathway but also lipoxygenase pathway should be considered together in further detailed studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Gene Therapy With Inducible Nitric Oxide Synthase Protects Against Myocardial Infarction via a Cyclooxygenase-2—Dependent Mechanism

    PubMed Central

    Li, Qianhong; Guo, Yiru; Xuan, Yu-Ting; Lowenstein, Charles J.; Stevenson, Susan C.; Prabhu, Sumanth D.; Wu, Wen-Jian; Zhu, Yanqing; Bolli, Roberto

    2013-01-01

    Although the inducible isoform of NO synthase (iNOS) mediates late preconditioning (PC), it is unknown whether iNOS gene transfer can replicate the cardioprotective effects of late PC, and the role of this protein in myocardial ischemia is controversial. Thus, the cDNA for human iNOS was cloned behind the Rous sarcoma virus (RSV) promoter to create adenovirus (Ad) 5/iNOS lacking E1, E2a, and E3 regions. Intramyocardial injection of Ad5/iNOS in mice increased local iNOS protein expression and activity and markedly reduced infarct size. The infarct-sparing effects of Ad5/iNOS were at least as powerful as those of ischemic PC. The increased iNOS expression was associated with increased cyclooxygenase-2 (COX-2) protein expression and prostanoid levels. Pretreatment with the COX-2selective inhibitor NS-398 completely abrogated the infarct-sparing actions of Ad5/iNOS, demonstrating that COX-2 is an obligatory downstream effector of iNOS-dependent cardioprotection. We conclude that gene transfer of iNOS (an enzyme commonly thought to be detrimental) affords powerful cardioprotection the magnitude of which is equivalent to that of late PC. This is the first report that upregulation of iNOS, in itself, is sufficient to reduce infarct size. The results provide proof-of-principle for gene therapy against ischemia/reperfusion injury, which increases local myocardial NO synthase levels without the need for continuous intravenous infusion of NO donors and without altering systemic hemodynamics. The data also reveal the existence of a close coupling between iNOS and COX-2, whereby induction of the former enzyme leads to secondary induction of the latter, which in turn mediates the cytoprotective effects of iNOS. We propose that iNOS and COX-2 form a stress-responsive functional module that mitigates ischemia/reperfusion injury. PMID:12702642

  10. Role of cyclooxygenase isoforms in prostacyclin biosynthesis and murine prehepatic portal hypertension

    PubMed Central

    Skill, N. J.; Theodorakis, N. G.; Wang, Y. N.; Wu, J. M.; Redmond, E. M.; Sitzmann, J. V.

    2008-01-01

    Portal hypertension (PHT) is a common complication of liver cirrhosis and significantly increases morbidity and mortality. Abrogation of PHT using NSAIDs has demonstrated that prostacyclin (PGI2), a direct downstream metabolic product of cyclooxygenase (COX) activity, is an important mediator in the development of experimental and clinical PHT. However, the role of COX isoforms in PGI2 biosynthesis and PHT is not fully understood. Prehepatic PHT was induced by portal vein ligation (PVL) in wild-type, COX-1−/−, and COX-2−/− mice treated with and without COX-2 (NS398) or COX-1 (SC560) inhibitors. Hemodynamic measurements and PGI2 biosynthesis were determined 1–7 days after PVL or sham surgery. Gene deletion or pharmacological inhibition of COX-1 or COX-2 attenuated but did not ameliorate PGI2 biosynthesis after PVL or prevent PHT. In contrast, treatment of COX-1−/− mice with NS398 or COX-2−/− mice with SC560 restricted PGI2 biosynthesis and abrogated the development of PHT following PVL. In conclusion, either COX-1 or COX-2 can mediate elevated PGI2 biosynthesis and the development of experimental prehepatic PHT. Consequently, PGI2 rather then COX-selective drugs are indicated in the treatment of PHT. Identification of additional target sites downstream of COX may benefit the >27,000 patients whom die annually from cirrhosis in the United States alone. PMID:18772366

  11. TS-071 is a novel, potent and selective renal sodium-glucose cotransporter 2 (SGLT2) inhibitor with anti-hyperglycaemic activity.

    PubMed

    Yamamoto, K; Uchida, S; Kitano, K; Fukuhara, N; Okumura-Kitajima, L; Gunji, E; Kozakai, A; Tomoike, H; Kojima, N; Asami, J; Toyoda, H; Arai, M; Takahashi, T; Takahashi, K

    2011-09-01

    The renal sodium-glucose cotransporter 2 (SGLT2) plays an important role in the reuptake of filtered glucose in the proximal tubule and therefore may be an attractive target for the treatment of diabetes mellitus. This study characterizes the pharmacological profile of TS-071 ((1S)-1,5-anhydro-1-[5-(4-ethoxybenzyl)-2-methoxy-4-methylphenyl]-1-thio-D-glucitol hydrate), a novel SGLT2 inhibitor in vitro and in vivo. Inhibition of glucose uptake by TS-071 was studied in CHO-K1 cells stably expressing either human SGLT1 or SGLT2. Single oral dosing studies were performed in rats, mice and dogs to assess the abilities of TS-071 to increase urinary glucose excretion and to lower plasma glucose levels. TS-071 inhibited SGLT2 activity in a concentration-dependent manner and was a potent and highly selective inhibitor of SGLT2. Orally administered TS-071 increased urinary glucose excretion in Zucker fatty rats and beagle dogs at doses of 0.3 and 0.03 mg·kg(-1) respectively. TS-071 improved glucose tolerance in Zucker fatty rats without stimulating insulin secretion and reduced hyperglycaemia in streptozotocin (STZ)-induced diabetic rats and db/db mice at a dose of 0.3 mg·kg(-1). These data indicate that TS-071 is a potent and selective SGLT2 inhibitor that improves glucose levels in rodent models of type 1 and 2 diabetes and may be useful for the treatment for diabetes mellitus. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  12. Inhibitors of the 5-lipoxygenase arachidonic acid pathway induce ATP release and ATP-dependent organic cation transport in macrophages.

    PubMed

    da Silva-Souza, Hercules Antônio; Lira, Maria Nathalia de; Costa-Junior, Helio Miranda; da Cruz, Cristiane Monteiro; Vasconcellos, Jorge Silvio Silva; Mendes, Anderson Nogueira; Pimenta-Reis, Gabriela; Alvarez, Cora Lilia; Faccioli, Lucia Helena; Serezani, Carlos Henrique; Schachter, Julieta; Persechini, Pedro Muanis

    2014-07-01

    We have previously described that arachidonic acid (AA)-5-lipoxygenase (5-LO) metabolism inhibitors such as NDGA and MK886, inhibit cell death by apoptosis, but not by necrosis, induced by extracellular ATP (ATPe) binding to P2X7 receptors in macrophages. ATPe binding to P2X7 also induces large cationic and anionic organic molecules uptake in these cells, a process that involves at least two distinct transport mechanisms: one for cations and another for anions. Here we show that inhibitors of the AA-5-LO pathway do not inhibit P2X7 receptors, as judged by the maintenance of the ATPe-induced uptake of fluorescent anionic dyes. In addition, we describe two new transport phenomena induced by these inhibitors in macrophages: a cation-selective uptake of fluorescent dyes and the release of ATP. The cation uptake requires secreted ATPe, but, differently from the P2X7/ATPe-induced phenomena, it is also present in macrophages derived from mice deficient in the P2X7 gene. Inhibitors of phospholipase A2 and of the AA-cyclooxygenase pathway did not induce the cation uptake. The uptake of non-organic cations was investigated by measuring the free intracellular Ca(2+) concentration ([Ca(2+)]i) by Fura-2 fluorescence. NDGA, but not MK886, induced an increase in [Ca(2+)]i. Chelating Ca(2+) ions in the extracellular medium suppressed the intracellular Ca(2+) signal without interfering in the uptake of cationic dyes. We conclude that inhibitors of the AA-5-LO pathway do not block P2X7 receptors, trigger the release of ATP, and induce an ATP-dependent uptake of organic cations by a Ca(2+)- and P2X7-independent transport mechanism in macrophages. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Activation loop targeting strategy for design of receptor-interacting protein kinase 2 (RIPK2) inhibitors.

    PubMed

    Suebsuwong, Chalada; Pinkas, Daniel M; Ray, Soumya S; Bufton, Joshua C; Dai, Bing; Bullock, Alex N; Degterev, Alexei; Cuny, Gregory D

    2018-02-15

    Development of selective kinase inhibitors remains a challenge due to considerable amino acid sequence similarity among family members particularly in the ATP binding site. Targeting the activation loop might offer improved inhibitor selectivity since this region of kinases is less conserved. However, the strategy presents difficulties due to activation loop flexibility. Herein, we report the design of receptor-interacting protein kinase 2 (RIPK2) inhibitors based on pan-kinase inhibitor regorafenib that aim to engage basic activation loop residues Lys169 or Arg171. We report development of CSR35 that displayed >10-fold selective inhibition of RIPK2 versus VEGFR2, the target of regorafenib. A co-crystal structure of CSR35 with RIPK2 revealed a resolved activation loop with an ionic interaction between the carboxylic acid installed in the inhibitor and the side-chain of Lys169. Our data provides principle feasibility of developing activation loop targeting type II inhibitors as a complementary strategy for achieving improved selectivity. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. Icotinib, a selective EGF receptor tyrosine kinase inhibitor, for the treatment of non-small-cell lung cancer.

    PubMed

    Tan, Fenlai; Shi, Yuankai; Wang, Yinxiang; Ding, Lieming; Yuan, Xiaobin; Sun, Yan

    2015-01-01

    Advanced non-small-cell lung cancer (NSCLC) is the main cause for cancer-related mortality. Treatments for advanced NSCLC are largely palliative and a benefit plateau appears to have reached with the platinum-based chemotherapy regimens. EGF receptor (EGFR) tyrosine kinase inhibitors gefitinib, erlotinib and afatinib came up with prolonged progression-free survival and improved quality of life, especially in EGFR-mutated patients. Icotinib is an oral selective EGFR tyrosine kinase, which was approved by China Food and Drug administration in June 2011 for treating advanced NSCLC. Its approval was based on the registered Phase III trial (ICOGEN), which showed icotinib is noninferior to gefitinib. This review will discuss the role of icotinib in NSCLC, and its potential application and ongoing investigations.

  15. Mechanisms and Clinical Activity of an EGFR and HER2 Exon 20-selective Kinase Inhibitor in Non-small Cell Lung Cancer

    PubMed Central

    Robichaux, Jacqulyne P.; Elamin, Yasir Y.; Tan, Zhi; Carter, Brett W.; Zhang, Shuxing; Liu, Shengwu; Li, Shuai; Chen, Ting; Poteete, Alissa; Estrada-Bernal, Adriana; Le, Anh T.; Truini, Anna; Nilsson, Monique B.; Sun, Huiying; Roarty, Emily; Goldberg, Sarah B.; Brahmer, Julie R.; Altan, Mehmet; Lu, Charles; Papadimitrakopoulou, Vassiliki; Politi6, Katerina; Doebele, Robert C.; Wong, Kwok-Kin; Heymach, John V.

    2018-01-01

    Although most activating mutations of epidermal growth factor receptor (EGFR)-mutant non–small cell lung cancers (NSCLCs) are sensitive to available EGFR tyrosine kinase inhibitors (TKIs), a subset with alterations in exon 20 of EGFR and HER2 are intrinsically resistant and lack an effective therapy. We used in silico, in vitro, and in vivo testing to model structural alterations induced by exon 20 mutations and to identify effective inhibitors. 3D modeling indicated alterations restricted the size of the drug-binding pocket, limiting the binding of large, rigid inhibitors. We found that poziotinib, owing to its small size and flexibility, can circumvent these steric changes and is a potent inhibitor of the most common EGFR and HER2 exon 20 mutants. Poziotinib demonstrated greater activity than approved EGFR TKIs in vitro and in patient-derived xenograft models of EGFR or HER2 exon 20 mutant NSCLC and in genetically engineered mouse models of NSCLC. In a phase 2 trial, the first 11 patients with NSCLC with EGFR exon 20 mutations receiving poziotinib had a confirmed objective response rate of 64%. These data identify poziotinib as a potent, clinically active inhibitor of EGFR and HER2 exon 20 mutations and illuminate the molecular features of TKIs that may circumvent steric changes induced by these mutations. PMID:29686424

  16. Towards isozyme-selective HDAC inhibitors for interrogating disease.

    PubMed

    Gupta, Praveer; Reid, Robert C; Iyer, Abishek; Sweet, Matthew J; Fairlie, David P

    2012-01-01

    Histone deacetylase (HDAC) enzymes have emerged as promising targets for the treatment of a wide range of human diseases, including cancers, inflammatory and metabolic disorders, immunological, cardiovascular, and infectious diseases. At present, such applications are limited by the lack of selective inhibitors available for each of the eighteen HDAC enzymes, with most currently available HDAC inhibitors having broad-spectrum activity against multiple HDAC enzymes. Such broad-spectrum activity maybe useful in treating some diseases like cancers, but can be detrimental due to cytotoxic side effects that accompany prolonged treatment of chronic diseased states. Here we summarize progress towards the design and discovery of HDAC inhibitors that are selective for some of the eleven zinc-containing classical HDAC enzymes, and identify opportunities to use such isozyme-selective inhibitors as chemical probes for interrogating the biological roles of individual HDAC enzymes in diseases.

  17. Structure and function based design of Plasmodium-selective proteasome inhibitors

    PubMed Central

    Li, Hao; O'Donoghue, Anthony J.; van der Linden, Wouter A.; Xie, Stanley C.; Yoo, Euna; Foe, Ian T.; Tilley, Leann; Craik, Charles S.; da Fonseca, Paula C. A.; Bogyo, Matthew

    2016-01-01

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation1. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle2-5. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome resulting in toxicity that precludes their use as therapeutic agents2,6. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, we used a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We designed inhibitors based on amino acid preferences specific to the parasite proteasome, and found that they preferentially inhibit the β 2 subunit. We determined the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy (cryo-EM) and single particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information regarding active site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin (ART) family anti-malarials7,8, we observed growth inhibition synergism with low doses of this β 2 selective inhibitor in ART sensitive and resistant parasites. Finally, we demonstrated that a parasite selective inhibitor could be used to attenuate parasite growth in vivo without significant toxicity to the host. Thus, the

  18. Increased Cyclooxygenase-2-Derived Prostanoids Contributes to the Hyperreactivity to Noradrenaline in Mesenteric Resistance Arteries from Offspring of Diabetic Rats

    PubMed Central

    Santos-Rocha, Juliana; Duarte, Gloria P.; Xavier, Fabiano E.

    2012-01-01

    This study analyzed the effect of in utero exposure to maternal diabetes on contraction to noradrenaline in mesenteric resistance arteries (MRA) from adult offspring, focusing on the role of cyclooxygenase (COX)-derived prostanoids. Diabetes in the maternal rat was induced by a single injection of streptozotocin (50 mg/kg body weight) on day 7 of pregnancy. Contraction to noradrenaline was analyzed in isolated MRA from offspring of diabetic (O-DR) and non-diabetic (O-CR) rats at 3, 6 and 12 months of age. Release of thromboxane A2 (TxA2) and prostaglandins E2 (PGE2) and F2α (PGF2α), was measured by specific enzyme immunoassay kits. O-DR developed hypertension from 6 months of age compared with O-CR. Arteries from O-DR were hyperactive to noradrenaline only at 6 and 12 months of age. Endothelial removal abolished this hyperreactivity to noradrenaline between O-CR and O-DR. Preincubation with either the COX-1/2 (indomethacin) or COX-2 inhibitor (NS-398) decreased noradrenaline contraction only in 6- and 12-month-old O-DR, while it remained unmodified by COX-1 inhibitor SC-560. In vessels from 6-month-old O-DR, a similar reduction in the contraction to noradrenaline produced by NS-398 was observed when TP and EP receptors were blocked (SQ29548+AH6809). In 12-month-old O-DR, this effect was only achieved when TP, EP and FP were blocked (SQ29548+AH6809+AL8810). Noradrenaline-stimulated TxB2 and PGE2 release was higher in 6- and 12-month-old O-DR, whereas PGF2α was increased only in 12-month-old O-DR. Our results demonstrated that in utero exposure to maternal hyperglycaemia in rats increases the participation of COX-2-derived prostanoids on contraction to noradrenaline, which might help to explain the greater response to this agonist in MRA from 6- and 12-month-old offspring. As increased contractile response in resistance vessels may contribute to hypertension, our results suggest a role for these COX-2-derived prostanoids in elevating vascular resistance and blood

  19. Long-term efficacy and safety of sodium-glucose cotransporter-2 inhibitors as add-on to metformin treatment in the management of type 2 diabetes mellitus

    PubMed Central

    Li, Jian; Gong, Yanping; Li, Chunlin; Lu, Yanhui; Liu, Yu; Shao, Yinghong

    2017-01-01

    Abstract Background: Drug intensification is often required for patients with type 2 diabetes mellitus on stable metformin therapy. Among the potential candidates for a combination therapy, sodium-glucose transporter-2 (SGLT2) inhibitors have shown promising outcomes. This meta-analysis was performed to compare the efficacy and safety of SGLT2 inhibitors with non-SGLT2 combinations as add-on treatment to metformin. Methods: Literature search was carried out in multiple electronic databases for the acquisition of relevant randomized controlled trials (RCTs) by following a priori eligibility criteria. After the assessment of quality of the included RCTs, meta-analyses of mean differences or odds ratios (OR) were performed to achieve overall effect sizes of the changes from baseline in selected efficacy and safety endpoints reported in the individual studies. Between-studies heterogeneity was estimated with between-studies statistical heterogeneity (I2) index. Results: Six RCTs fulfilled the eligibility criteria. SGLT2 inhibitors as add-on to metformin treatment reduced % HbA1c significantly more than non-SGLT2 combinations after 52 weeks (P = .002) as well as after 104 weeks (P < .00001). Among other endpoints, SGLT2 inhibitors also reduced fasting plasma glucose levels, body weight, systolic, and diastolic blood pressures after 52 weeks and 104 weeks significantly (P < .00001) more than non-SGLT2 combinations. Incidence of hypoglycemia was significantly lower (P = .02) but incidence of suspected or confirmed genital tract infections was significantly higher (P < .00001) in SGLT2 inhibitors treated in comparison with non-SGLT2 combinations. Conclusion: As add-on to metformin treatment, SGLT2 inhibitors are found significantly more efficacious than non-SGLT2 inhibitor combinations in the management of type 2 diabetes mellitus, although, SGLT2 inhibitor therapy is associated with significantly higher incidence of suspected or confirmed genital tract

  20. Monofluorophosphate is a selective inhibitor of respiratory sulfate-reducing microorganisms.

    PubMed

    Carlson, Hans K; Stoeva, Magdalena K; Justice, Nicholas B; Sczesnak, Andrew; Mullan, Mark R; Mosqueda, Lorraine A; Kuehl, Jennifer V; Deutschbauer, Adam M; Arkin, Adam P; Coates, John D

    2015-03-17

    Despite the environmental and economic cost of microbial sulfidogenesis in industrial operations, few compounds are known as selective inhibitors of respiratory sulfate reducing microorganisms (SRM), and no study has systematically and quantitatively evaluated the selectivity and potency of SRM inhibitors. Using general, high-throughput assays to quantitatively evaluate inhibitor potency and selectivity in a model sulfate-reducing microbial ecosystem as well as inhibitor specificity for the sulfate reduction pathway in a model SRM, we screened a panel of inorganic oxyanions. We identified several SRM selective inhibitors including selenate, selenite, tellurate, tellurite, nitrate, nitrite, perchlorate, chlorate, monofluorophosphate, vanadate, molydate, and tungstate. Monofluorophosphate (MFP) was not known previously as a selective SRM inhibitor, but has promising characteristics including low toxicity to eukaryotic organisms, high stability at circumneutral pH, utility as an abiotic corrosion inhibitor, and low cost. MFP remains a potent inhibitor of SRM growing by fermentation, and MFP is tolerated by nitrate and perchlorate reducing microorganisms. For SRM inhibition, MFP is synergistic with nitrite and chlorite, and could enhance the efficacy of nitrate or perchlorate treatments. Finally, MFP inhibition is multifaceted. Both inhibition of the central sulfate reduction pathway and release of cytoplasmic fluoride ion are implicated in the mechanism of MFP toxicity.

  1. Discovery of a novel class of potent coumarin monoamine oxidase B inhibitors: development and biopharmacological profiling of 7-[(3-chlorobenzyl)oxy]-4-[(methylamino)methyl]-2H-chromen-2-one methanesulfonate (NW-1772) as a highly potent, selective, reversible, and orally active monoamine oxidase B inhibitor.

    PubMed

    Pisani, Leonardo; Muncipinto, Giovanni; Miscioscia, Teresa Fabiola; Nicolotti, Orazio; Leonetti, Francesco; Catto, Marco; Caccia, Carla; Salvati, Patricia; Soto-Otero, Ramon; Mendez-Alvarez, Estefania; Passeleu, Celine; Carotti, Angelo

    2009-11-12

    In an effort to discover novel selective monoamine oxidase (MAO) B inhibitors with favorable physicochemical and pharmacokinetic profiles, 7-[(m-halogeno)benzyloxy]coumarins bearing properly selected polar substituents at position 4 were designed, synthesized, and evaluated as MAO inhibitors. Several compounds with MAO-B inhibitory activity in the nanomolar range and excellent MAO-B selectivity (selectivity index SI > 400) were identified. Structure-affinity relationships and docking simulations provided valuable insights into the enzyme-inhibitor binding interactions at position 4, which has been poorly explored. Furthermore, computational and experimental studies led to the identification and biopharmacological characterization of 7-[(3-chlorobenzyl)oxy]-4-[(methylamino)methyl]-2H-chromen-2-one methanesulfonate 22b (NW-1772) as an in vitro and in vivo potent and selective MAO-B inhibitor, with rapid blood-brain barrier penetration, short-acting and reversible inhibitory activity, slight inhibition of selected cytochrome P450s, and low in vitro toxicity. On the basis of this preliminary preclinical profile, inhibitor 22b might be viewed as a promising clinical candidate for the treatment of neurodegenerative diseases.

  2. New potent and selective cytochrome P450 2B6 (CYP2B6) inhibitors based on three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis

    PubMed Central

    Korhonen, L E; Turpeinen, M; Rahnasto, M; Wittekindt, C; Poso, A; Pelkonen, O; Raunio, H; Juvonen, R O

    2007-01-01

    Background and purpose: The cytochrome P450 2B6 (CYP2B6) enzyme metabolises a number of clinically important drugs. Drug-drug interactions resulting from inhibition or induction of CYP2B6 activity may cause serious adverse effects. The aims of this study were to construct a three-dimensional structure-activity relationship (3D-QSAR) model of the CYP2B6 protein and to identify novel potent and selective inhibitors of CYP2B6 for in vitro research purposes. Experimental approach: The inhibition potencies (IC50 values) of structurally diverse chemicals were determined with recombinant human CYP2B6 enzyme. Two successive models were constructed using Comparative Molecular Field Analysis (CoMFA). Key results: Three compounds proved to be very potent and selective competitive inhibitors of CYP2B6 in vitro (IC50<1 μM): 4-(4-chlorobenzyl)pyridine (CBP), 4-(4-nitrobenzyl)pyridine (NBP), and 4-benzylpyridine (BP). A complete inhibition of CYP2B6 activity was achieved with 0.1 μM CBP, whereas other CYP-related activities were not affected. Forty-one compounds were selected for further testing and construction of the final CoMFA model. The created CoMFA model was of high quality and predicted accurately the inhibition potency of a test set (n=7) of structurally diverse compounds. Conclusions and implications: Two CoMFA models were created which revealed the key molecular characteristics of inhibitors of the CYP2B6 enzyme. The final model accurately predicted the inhibitory potencies of several structurally unrelated compounds. CBP, BP and NBP were identified as novel potent and selective inhibitors of CYP2B6 and CBP especially is a suitable inhibitor for in vitro screening studies. PMID:17325652

  3. 5-((3-Amidobenzyl)oxy)nicotinamides as Sirtuin 2 Inhibitors.

    PubMed

    Ai, Teng; Wilson, Daniel J; More, Swati S; Xie, Jiashu; Chen, Liqiang

    2016-04-14

    Derived from our previously reported human sirtuin 2 (SIRT2) inhibitors that were based on a 5-aminonaphthalen-1-yloxy nicotinamide core structure, 5-((3-amidobenzyl)oxy)nicotinamides offered excellent activity against SIRT2 and high isozyme selectivity over SIRT1 and SIRT3. Selected compounds also exhibited generally favorable in vitro absorption, distribution, metabolism, and excretion properties. Kinetic studies revealed that a representative SIRT2 inhibitor acted competitively against both NAD(+) and the peptide substrate, an inhibitory modality that was supported by our computational study. More importantly, two selected compounds exhibited significant protection against α-synuclein aggregation-induced cytotoxicity in SH-SY5Y cells. Therefore, 5-((3-amidobenzyl)oxy)nicotinamides represent a new class of SIRT2 inhibitors that are attractive candidates for further lead optimization in our continued effort to explore selective inhibition of SIRT2 as a potential therapy for Parkinson's disease.

  4. Discovery of Platelet-Type 12-Human Lipoxygenase Selective Inhibitors by High-Throughput Screening of Structurally Diverse Libraries

    PubMed Central

    Deschamps, Joshua D.; Gautschi, Jeffrey T.; Whitman, Stephanie; Johnson, Tyler A.; Gassner, Nadine C.; Crews, Phillip; Holman, Theodore R.

    2007-01-01

    Human lipoxygenases (hLO) have been implicated in a variety of diseases and cancers and each hLO isozyme appears to have distinct roles in cellular biology. This fact emphasizes the need for discovering selective hLO inhibitors for both understanding the role of specific lipoxygenases in the cell and developing pharmaceutical therapeutics. To this end, we have modified a known lipoxygenase assay for high-throughput (HTP) screening of both the National Cancer Institute (NCI) and the UC Santa Cruz marine extract library (UCSC-MEL) in search of platelet-type 12-hLO (12-hLO) selective inhibitors. The HTP screen led to the characterization of five novel 12-hLO inhibitors from the NCI repository. One is the potent but non-selective michellamine B, a natural product, antiviral agent. The other four compounds were selective inhibitors against 12-hLO, with three being synthetic compounds and one being α-mangostin, a natural product, caspase-3 pathway inhibitor. In addition, a selective inhibitor was isolated from the UCSC-MEL (neodysidenin), which has a unique chemical scaffold for an hLO inhibitor. Due to the unique structure of neodysidenin, steady-state inhibition kinetics were performed and its mode of inhibition against 12-hLO was determined to be competitive (Ki = 17 µM) and selective over reticulocyte 15-hLO-1 (Ki 15-hLO-1/12-hLO > 30). PMID:17826100

  5. KIDFamMap: a database of kinase-inhibitor-disease family maps for kinase inhibitor selectivity and binding mechanisms

    PubMed Central

    Chiu, Yi-Yuan; Lin, Chih-Ta; Huang, Jhang-Wei; Hsu, Kai-Cheng; Tseng, Jen-Hu; You, Syuan-Ren; Yang, Jinn-Moon

    2013-01-01

    Kinases play central roles in signaling pathways and are promising therapeutic targets for many diseases. Designing selective kinase inhibitors is an emergent and challenging task, because kinases share an evolutionary conserved ATP-binding site. KIDFamMap (http://gemdock.life.nctu.edu.tw/KIDFamMap/) is the first database to explore kinase-inhibitor families (KIFs) and kinase-inhibitor-disease (KID) relationships for kinase inhibitor selectivity and mechanisms. This database includes 1208 KIFs, 962 KIDs, 55 603 kinase-inhibitor interactions (KIIs), 35 788 kinase inhibitors, 399 human protein kinases, 339 diseases and 638 disease allelic variants. Here, a KIF can be defined as follows: (i) the kinases in the KIF with significant sequence similarity, (ii) the inhibitors in the KIF with significant topology similarity and (iii) the KIIs in the KIF with significant interaction similarity. The KIIs within a KIF are often conserved on some consensus KIDFamMap anchors, which represent conserved interactions between the kinase subsites and consensus moieties of their inhibitors. Our experimental results reveal that the members of a KIF often possess similar inhibition profiles. The KIDFamMap anchors can reflect kinase conformations types, kinase functions and kinase inhibitor selectivity. We believe that KIDFamMap provides biological insights into kinase inhibitor selectivity and binding mechanisms. PMID:23193279

  6. Effects of nitric oxide synthase inhibition with or without cyclooxygenase-2 inhibition on resting haemodynamics and responses to exendin-4

    PubMed Central

    Gardiner, S M; March, J E; Kemp, P A; Bennett, T

    2006-01-01

    Background and purpose: Interactions between the NO system and the cyclooxygenase systems may be important in cardiovascular regulation. Here we measured the effects of acute cyclooxygenase-2 inhibition (with parecoxib), alone and in combination with NOS inhibition (with N G-nitro-L-arginine methyl ester (L-NAME)), on resting cardiovascular variables and on responses to the glucagon-like peptide 1 agonist, exendin-4, which causes regionally-selective vasoconstriction and vasodilatation. Experimental approach: Rats were instrumented with flow probes and intravascular catheters to measure regional haemodynamics in the conscious, freely moving state. L-NAME was administered as a primed infusion 180 min after administration of parecoxib or vehicle, and exendin-4 was given 60 min after the onset of L-NAME infusion. Key results: Parecoxib had no effect on resting cardiovascular variables or on responses to L-NAME. Exendin-4 caused a pressor response accompanied by tachycardia, mesenteric vasoconstriction and hindquarters vasodilatation. Parecoxib did not affect haemodynamic responses to exendin-4, but L-NAME inhibited its hindquarters vasodilator and tachycardic effects. When combined, L-NAME and parecoxib almost abolished the hindquarters vasodilatation while enhancing the pressor response. Conclusions and implications: Cyclooxygenase-2-derived products do not affect basal haemodynamic status in conscious normotensive rats, or influence the NO system acutely. The inhibitory effects of L-NAME on the hindquarters vasodilator and tachycardic effects of exendin-4 are consistent with a previous study that showed those events to be β-adrenoceptor mediated. The additional effect of parecoxib on responses to exendin-4 in the presence of L-NAME, is consistent with other evidence for enhanced involvement of vasodilator prostanoids when NO production is reduced. PMID:17016494

  7. Chemoproteomics-Aided Medicinal Chemistry for the Discovery of EPHA2 Inhibitors.

    PubMed

    Heinzlmeir, Stephanie; Lohse, Jonas; Treiber, Tobias; Kudlinzki, Denis; Linhard, Verena; Gande, Santosh Lakshmi; Sreeramulu, Sridhar; Saxena, Krishna; Liu, Xiaofeng; Wilhelm, Mathias; Schwalbe, Harald; Kuster, Bernhard; Médard, Guillaume

    2017-06-21

    The receptor tyrosine kinase EPHA2 has gained attention as a therapeutic drug target for cancer and infectious diseases. However, EPHA2 research and EPHA2-based therapies have been hampered by the lack of selective small-molecule inhibitors. Herein we report the synthesis and evaluation of dedicated EPHA2 inhibitors based on the clinical BCR-ABL/SRC inhibitor dasatinib as a lead structure. We designed hybrid structures of dasatinib and the previously known EPHA2 binders CHEMBL249097, PD-173955, and a known EPHB4 inhibitor in order to exploit both the ATP pocket entrance as well as the ribose pocket as binding epitopes in the kinase EPHA2. Medicinal chemistry and inhibitor design were guided by a chemical proteomics approach, allowing early selectivity profiling of the newly synthesized inhibitor candidates. Concomitant protein crystallography of 17 inhibitor co-crystals delivered detailed insight into the atomic interactions that underlie the structure-affinity relationship. Finally, the anti-proliferative effect of the inhibitor candidates was confirmed in the glioblastoma cell line SF-268. In this work, we thus discovered a novel EPHA2 inhibitor candidate that features an improved selectivity profile while maintaining potency against EPHA2 and anticancer activity in SF-268 cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Kupffer cell ablation attenuates cyclooxygenase-2 expression after trauma and sepsis.

    PubMed

    Keller, Steve A; Paxian, Marcus; Lee, Sun M; Clemens, Mark G; Huynh, Toan

    2005-03-01

    Prostaglandins, synthesized by cyclooxygenase (COX), play an important role in the pathophysiology of inflammation. Severe injuries result in immunosuppression, mediated, in part, by maladaptive changes in macrophages. Herein, we assessed Kupffer cell-mediated cyclooxygenase-2 (COX-2) expression on liver function and damage after trauma and sepsis. To ablate Kupffer cells, Sprague Dawley rats were treated with gadolinium chloride (GdCl3) 48 and 24 h before experimentation. Animals then underwent femur fracture (FFx) followed 48 h later by cecal ligation and puncture (CLP). Controls received sham operations. After 24 h, liver samples were obtained, and mRNA and protein expression were determined by PCR, Western blot, and immunohistochemistry. Indocyanine-Green (ICG) clearance and plasma alanine aminotransferase (ALT) levels were determined to assess liver function and damage, respectively. One-way analysis of variance (ANOVA) with Student-Newman-Keuls test was used to assess statistical significance. After CLP alone, FFx+CLP, and GdCl3+FFx+CLP, clearance of ICG decreased. Plasma ALT levels increased in parallel with severity of injury. Kupffer cell depletion attenuated the increased ALT levels after FFx+CLP. Femur fracture alone did not alter COX-2 protein compared with sham. By contrast, COX-2 protein increased after CLP and was potentiated by sequential stress. Again, Kupffer cell depletion abrogated the increase in COX-2 after sequential stress. Immunohistochemical data confirmed COX-2 positive cells to be Kupffer cells. In this study, sequential stress increased hepatic COX-2 protein. Depletion of Kupffer cells reduced COX-2 and attenuated hepatocellular injuries. Our data suggest that Kupffer cell-dependent pathways may contribute to the inflammatory response leading to increased mortality after sequential stress.

  9. Small-Molecule Inhibitors of the MDM2–p53 Protein–Protein Interaction (MDM2 Inhibitors) in Clinical Trials for Cancer Treatment

    PubMed Central

    2015-01-01

    Design of small-molecule inhibitors (MDM2 inhibitors) to block the MDM2–p53 protein–protein interaction has been pursued as a new cancer therapeutic strategy. In recent years, potent, selective, and efficacious MDM2 inhibitors have been successfully obtained and seven such compounds have been advanced into early phase clinical trials for the treatment of human cancers. Here, we review the design, synthesis, properties, preclinical, and clinical studies of these clinical-stage MDM2 inhibitors. PMID:25396320

  10. SGLT2 inhibitors or GLP-1 receptor agonists as second-line therapy in type 2 diabetes: patient selection and perspectives.

    PubMed

    Gurgle, Holly E; White, Karen; McAdam-Marx, Carrie

    2016-01-01

    Controversy exists regarding the selection of second-line therapy for patients with type 2 diabetes mellitus (T2DM) who are unable to achieve glycemic control with metformin therapy alone. Newer pharmacologic treatments for T2DM include glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors. Both the classes of medication are efficacious, exhibit positive effects on weight, and are associated with minimal risk of hypoglycemia. The purpose of this review is to compare the clinical trial and real-world effectiveness data of glucagon-like peptide-1 receptor agonists versus sodium-glucose cotransporter 2 inhibitors related to A1c reduction, weight loss, cost-effectiveness, cardiovascular outcomes, and safety in patients with T2DM. This review summarizes comparative evidence for providers who are determining which of the two classes may be the most appropriate for a specific patient.

  11. Structure-Based Design of N-Substituted 1-Hydroxy-4-sulfamoyl-2-naphthoates as Selective Inhibitors of the Mcl-1 Oncoprotein

    PubMed Central

    Lanning, Maryanna E.; Yu, Wenbo; Yap, Jeremy L.; Chauhan, Jay; Chen, Lijia; Whiting, Ellis; Pidugu, Lakshmi S.; Atkinson, Tyler; Bailey, Hala; Li, Willy; Roth, Braden M.; Hynicka, Lauren; Chesko, Kirsty; Toth, Eric A.; Shapiro, Paul; MacKerell, Alexander D.; Wilder, Paul T.; Fletcher, Steven

    2016-01-01

    Structure-based drug design was utilized to develop novel, 1-hydroxy-2-naphthoate-based small-molecule inhibitors of Mcl-1. Ligand design was driven by exploiting a salt bridge with R263 and interactions with the p2 and p3 pockets of the protein. Significantly, target molecules were accessed in just two synthetic steps, suggesting further optimization will require minimal synthetic effort. Molecular modeling using the Site-Identification by Ligand Competitive Saturation (SILCS) approach was used to qualitatively direct ligand design as well as develop quantitative models for inhibitor binding affinity to Mcl-1 and the Bcl-2 relative Bcl-xL as well as for the specificity of binding to the two proteins. Results indicated hydrophobic interactions with the p2 pockets dominate the affinity of the most favourable binding ligand (3bl: Ki = 31 nM). Compounds were up to 20-fold selective for Mcl-1 over Bcl-xL. Selectivity of the inhibitors was driven by interactions with the deeper p2 pocket in Mcl-1 versus Bcl-xL. The SILCS-based SAR of the present compounds represents the foundation for the development of Mcl-1 specific inhibitors with the potential to treat a wide range of solid tumours and hematological cancers, including acute myeloid leukaemia. PMID:26985630

  12. 2-Aminomethylthieno[3,2-d]pyrimidin-4(3H)-ones bearing 3-methylpyrazole hinge binding moiety: Highly potent, selective, and time-dependent inhibitors of Cdc7 kinase.

    PubMed

    Kurasawa, Osamu; Homma, Misaki; Oguro, Yuya; Miyazaki, Tohru; Mori, Kouji; Uchiyama, Noriko; Iwai, Kenichi; Ohashi, Akihiro; Hara, Hideto; Yoshida, Sei; Cho, Nobuo

    2017-07-15

    In order to increase the success rate for developing new Cdc7 inhibitors for cancer therapy, we explored a new chemotype which can comply with the previously-constructed pharmacophore model. Substitution of a pyridine ring of a serendipitously-identified Cdc7 inhibitor 2b with a 3-methylpyrazole resulted in a 4-fold increase in potency and acceptable kinase selectivity, leading to the identification of thieno[3,2-d]pyrimidin-4(3H)-one as an alternative scaffold. Structure-activity relationship (SAR) study revealed that incorporation of a substituted aminomethyl group into the 2-position improved kinase selectivity. Indeed, a pyrrolidinylmethyl derivative 10c was a potent Cdc7 inhibitor (IC 50 =0.70nM) with high selectivity (Cdk2/Cdc7≥14,000, ROCK1/Cdc7=200). It should be noted that 10c exhibited significant time-dependent Cdc7 inhibition with slow dissociation kinetics, cellular pharmacodynamic (PD) effects, and COLO205 growth inhibition. Additionally, molecular basis of high kinase selectivity of 10c is discussed by using the protein structures of Cdc7 and Cdk2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Activated MET acts as a salvage signal after treatment with alectinib, a selective ALK inhibitor, in ALK-positive non-small cell lung cancer.

    PubMed

    Kogita, Akihiro; Togashi, Yosuke; Hayashi, Hidetoshi; Banno, Eri; Terashima, Masato; De Velasco, Marco A; Sakai, Kazuko; Fujita, Yoshihiko; Tomida, Shuta; Takeyama, Yoshifumi; Okuno, Kiyotaka; Nakagawa, Kazuhiko; Nishio, Kazuto

    2015-03-01

    Non-small cell lung cancer (NSCLC) carrying echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) rearrangements is hypersensitive to ALK inhibitors, including crizotinib and alectinib. Crizotinib was initially designed as a MET inhibitor, whereas alectinib is a selective ALK inhibitor. The MET signal, which is inhibited by crizotinib but not by alectinib, is dysregulated in many human cancers. However, the role of the MET signal in ALK-positive NSCLC remains unclear. In this study, we found that hepatocyte growth factor (HGF), ligand of MET, mediated the resistance to alectinib, but not to crizotinib, via the MET signal in ALK-positive NSCLC cell lines (H3122 and H2228 cell lines). In addition, alectinib activated the MET signal even in the absence of HGF and the inhibition of the MET signal enhanced the efficacy of alectinib. These findings suggest that activated MET acts as a salvage signal in ALK-positive NSCLC. This novel role of the MET signal in ALK-positive NSCLC may pave the way for further clinical trials examining MET inhibitors.

  14. The COX-2 inhibitor meloxicam prevents pregnancy when administered as an emergency contraceptive to nonhuman primates.

    PubMed

    McCann, Nicole C; Lynch, Terrie J; Kim, Soon Ok; Duffy, Diane M

    2013-12-01

    Cyclooxygenase-2 (COX-2) inhibitors reduce prostaglandin synthesis and disrupt essential reproductive processes. Ultrasound studies in women demonstrated that oral COX-2 inhibitors can delay or prevent follicle collapse associated with ovulation. The goal of this study was to determine if oral administration of a COX-2 inhibitor can inhibit reproductive function with sufficient efficacy to prevent pregnancy in primates. The COX-2 inhibitor meloxicam (or vehicle) was administered orally to proven fertile female cynomolgus macaques using one emergency contraceptive model and three monthly contraceptive models. In the emergency contraceptive model, females were bred with a proven fertile male once 2±1 days before ovulation, returned to the females' home cage, and then received 5 days of meloxicam treatment. In the monthly contraceptive models, females were co-caged for breeding with a proven fertile male for a total of 5 days beginning 2±1 days before ovulation. Animals received meloxicam treatment (1) cycle days 5-22, or (2) every day, or (3) each day of the 5-day breeding period. Female were then assessed for pregnancy. The pregnancy rate with meloxicam administration using the emergency contraception model was 6.5%, significantly lower than the pregnancy rate of 33.3% when vehicle without meloxicam was administered. Pregnancy rates with the three monthly contraceptive models (75%-100%) were not consistent with preventing pregnancy. Oral COX-2 inhibitor administration can prevent pregnancy after a single instance of breeding in primates. While meloxicam may be ineffective for regular contraception, pharmacological inhibition of COX-2 may be an effective method of emergency contraception for women. COX-2 inhibitors can interfere with ovulation, but the contraceptive efficacy of drugs of this class has not been directly tested. This study, conducted in nonhuman primates, is the first to suggest that a COX-2 inhibitor may be effective as an emergency contraceptive.

  15. Identification of novel Cyclooxygenase-2-dependent genes in Helicobacter pylori infection in vivo

    PubMed Central

    Walduck, Anna K; Weber, Matthias; Wunder, Christian; Juettner, Stefan; Stolte, Manfred; Vieth, Michael; Wiedenmann, Bertram; Meyer, Thomas F; Naumann, Michael; Hoecker, Michael

    2009-01-01

    Background Helicobacter pylori is a crucial determining factor in the pathogenesis of benign and neoplastic gastric diseases. Cyclooxygenase-2 (Cox-2) is the inducible key enzyme of arachidonic acid metabolism and is a central mediator in inflammation and cancer. Expression of the Cox-2 gene is up-regulated in the gastric mucosa during H. pylori infection but the pathobiological consequences of this enhanced Cox-2 expression are not yet characterized. The aim of this study was to identify novel genes down-stream of Cox-2 in an in vivo model, thereby identifying potential targets for the study of the role of Cox- 2 in H. pylori pathogenesis and the initiation of pre- cancerous changes. Results Gene expression profiles in the gastric mucosa of mice treated with a specific Cox-2 inhibitor (NS398) or vehicle were analysed at different time points (6, 13 and 19 wk) after H. pylori infection. H. pylori infection affected the expression of 385 genes over the experimental period, including regulators of gastric physiology, proliferation, apoptosis and mucosal defence. Under conditions of Cox-2 inhibition, 160 target genes were regulated as a result of H. pylori infection. The Cox-2 dependent subset included those influencing gastric physiology (Gastrin, Galr1), epithelial barrier function (Tjp1, connexin45, Aqp5), inflammation (Icam1), apoptosis (Clu) and proliferation (Gdf3, Igf2). Treatment with NS398 alone caused differential expression of 140 genes, 97 of which were unique, indicating that these genes are regulated under conditions of basal Cox-2 expression. Conclusion This study has identified a panel of novel Cox-2 dependent genes influenced under both normal and the inflammatory conditions induced by H. pylori infection. These data provide important new links between Cox-2 and inflammatory processes, epithelial repair and integrity. PMID:19317916

  16. Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia Fortanet, Jorge; Chen, Christine Hiu-Tung; Chen, Ying-Nan P.

    SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealedmore » the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein–ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine (SHP099, 1), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor.« less

  17. Systematic review and meta-analysis of selected toxicities of approved ALK inhibitors in metastatic non-small cell lung cancer.

    PubMed

    Costa, Rubens Barros; Costa, Ricardo L B; Talamantes, Sarah M; Kaplan, Jason B; Bhave, Manali A; Rademaker, Alfred; Miller, Corinne; Carneiro, Benedito A; Mahalingam, Devalingam; Chae, Young Kwang

    2018-04-24

    Anaplastic lymphoma kinase ( ALK ) inhibitors are the mainstay treatment for patients with non-small cell lung carcinoma (NSCLC) harboring a rearrangement of the ALK gene or the ROS1 oncogenes. With the recent publication of pivotal trials leading to the approval of these compounds in different indications, their toxicity profile warrants an update. A systematic literature search was performed in July 2017. Studies evaluating US FDA approved doses of one of the following ALK inhibitors: Crizotinib, Ceritinib, Alectinib or Brigatinib as monotherapy were included. Data were analyzed using random effects meta-analysis for absolute risks (AR), study heterogeneity, publication bias and differences among treatments. Fifteen trials with a total of 2,005 patients with evaluable toxicity data were included in this report. There was significant heterogeneity amongst different studies. The pooled AR of death and severe adverse events were 0.5% and 34.5%, respectively. Grade 3/4 nausea, vomiting, diarrhea, and constipation were uncommon: 2.6%, 2.5%, 2.7%, 1.2%, respectively. ALK inhibitors have an acceptable safety profile with a low risk of treatment-related deaths. Important differences in toxicity profile were detected amongst the different drugs.

  18. Systematic review and meta-analysis of selected toxicities of approved ALK inhibitors in metastatic non-small cell lung cancer

    PubMed Central

    Costa, Rubens Barros; Costa, Ricardo L.B.; Talamantes, Sarah M.; Kaplan, Jason B.; Bhave, Manali A.; Rademaker, Alfred; Miller, Corinne; Carneiro, Benedito A.; Mahalingam, Devalingam; Chae, Young Kwang

    2018-01-01

    Introduction Anaplastic lymphoma kinase (ALK) inhibitors are the mainstay treatment for patients with non-small cell lung carcinoma (NSCLC) harboring a rearrangement of the ALK gene or the ROS1 oncogenes. With the recent publication of pivotal trials leading to the approval of these compounds in different indications, their toxicity profile warrants an update. Materials and Methods A systematic literature search was performed in July 2017. Studies evaluating US FDA approved doses of one of the following ALK inhibitors: Crizotinib, Ceritinib, Alectinib or Brigatinib as monotherapy were included. Data were analyzed using random effects meta-analysis for absolute risks (AR), study heterogeneity, publication bias and differences among treatments. Results Fifteen trials with a total of 2,005 patients with evaluable toxicity data were included in this report. There was significant heterogeneity amongst different studies. The pooled AR of death and severe adverse events were 0.5% and 34.5%, respectively. Grade 3/4 nausea, vomiting, diarrhea, and constipation were uncommon: 2.6%, 2.5%, 2.7%, 1.2%, respectively. Conclusions ALK inhibitors have an acceptable safety profile with a low risk of treatment-related deaths. Important differences in toxicity profile were detected amongst the different drugs. PMID:29774128

  19. Inhibition of lipopolysaccharide-induced cyclooxygenase-2 expression and inducible nitric oxide synthase by 4-[(2′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate from Moringa oleifera

    PubMed Central

    Park, Eun-Jung; Cheenpracha, Sarot; Chang, Leng Chee; Kondratyuk, Tamara P.; Pezzuto, John M.

    2011-01-01

    Moringa oleifera Lamarack is commonly consumed for nutritional or medicinal properties. We recently reported the isolation and structure elucidation of novel bioactive phenolic glycosides, including 4-[(2′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate (RBITC), which was found to suppress inducible nitric oxide synthase (iNOS) expression and nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 mouse macrophage cells. Inhibitors of proteins such as cyclooxygenase-2 (COX-2) and iNOS are potential anti-inflammatory and cancer chemopreventive agents. The inhibitory activity of RBITC on NO production (IC50 = 0.96 ± 0.23 µM) was greater than that mediated by other well-known isothiocyanates such as sulforaphane (IC50 = 2.86 ± 0.39 µM) and benzyl isothiocyanate (IC50 = 2.08 ± 0.28 µM). RBITC inhibited expression of COX-2 and iNOS at both the protein and mRNA levels. Major upstream signaling pathways involved mitogen-activated protein kinases and nuclear factor-κB (NF-κB). RBITC inhibited phosphorylation of extracellular signal regulated kinase and stress-activated protein kinase, as well as ubiquitin-dependent degradation of inhibitor κBα (IκBα). In accordance with IκBα degradation, nuclear accumulation of NF-κB, and subsequent binding to NF-κB cis-acting element, was attenuated by treatment with RBITC. These data suggest RBITC should be included in the dietary armamentarium of isothiocyanates potentially capable of mediating anti-inflammatory or cancer chemopreventive activity. PMID:21774591

  20. Immunosensors for quantifying cyclooxygenase 2 pain biomarkers.

    PubMed

    Noah, Naumih M; Mwilu, Samuel K; Sadik, Omowunmi A; Fatah, Alim A; Arcilesi, Richard D

    2011-07-15

    Cyclooxygenase 2 (COX-2) is a key enzyme in pain biomarkers, inflammation and cancer cell proliferation. Thus biosensors that can quantify pain mediators based on biochemical mechanism are imperative. Biomolecular recognition and affinity of antigenic COX-2 with the antibody were investigated using surface plasmon resonance (SPR) and ultra-sensitive portable capillary (UPAC) fluorescence sensors. Polyclonal goat anti-COX-2 (human) antibodies were covalently immobilized on gold SPR surface and direct recognition for the COX-2 antigen assessed. The UPAC sensor utilized an indirect sandwich design involving covalently attached goat anti-COX-2 as the capture antibody and rabbit anti-COX-2 (human) antibody as the secondary antibody. UPAC fluorescence signals were directly proportional to COX-2 at a linear range of 7.46×10⁻⁴-7.46×10¹ ng/ml with detection limit of 1.02×10⁻⁴ ng/ml. With SPR a linear range was 3.64×10⁻⁴-3.64×10² ng/ml was recorded and a detection limit of 1.35×10⁻⁴ ng/ml. Validation was achieved in simulated blood samples with percent recoveries of 81.39% and 87.23% for SPR and UPAC respectively. The developed sensors have the potential to provide objective characterization of pain biomarkers for clinical diagnoses. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Found in translation: how preclinical research is guiding the clinical development of the BCL-2-selective inhibitor venetoclax

    PubMed Central

    Leverson, Joel D.; Sampath, Deepak; Souers, Andrew J.; Rosenberg, Saul H.; Fairbrother, Wayne J.; Amiot, Martine; Konopleva, Marina; Letai, Anthony

    2017-01-01

    Since the discovery of apoptosis as a form of programmed cell death, targeting the apoptosis pathway to induce cancer cell death has been a high priority goal for cancer therapy. After decades of effort, drug discovery scientists have succeeded in generating small-molecule inhibitors of antiapoptotic BCL-2 family proteins. Innovative medicinal chemistry and structure-based drug design, coupled with a strong fundamental understanding of BCL-2 biology, were essential to the development of BH3 mimetics such as the BCL-2-selective inhibitor venetoclax. We review a number of preclinical studies that have deepened our understanding of BCL-2 biology and facilitated the clinical development of venetoclax. PMID:29146569

  2. Tocotrienols suppress proinflammatory markers and cyclooxygenase-2 expression in RAW264.7 macrophages.

    PubMed

    Yam, Mun-Li; Abdul Hafid, Sitti Rahma; Cheng, Hwee-Ming; Nesaretnam, Kalanithi

    2009-09-01

    Tocotrienols are powerful chain breaking antioxidant. Moreover, they are now known to exhibit various non-antioxidant properties such as anti-cancer, neuroprotective and hypocholesterolemic functions. This study was undertaken to investigate the anti-inflammatory effects of tocotrienol-rich fraction (TRF) and individual tocotrienol isoforms namely delta-, gamma-, and alpha-tocotrienol on lipopolysaccharide-stimulated RAW264.7 macrophages. The widely studied vitamin E form, alpha-tocopherol, was used as comparison. Stimulation of RAW264.7 with lipopolysaccharide induced the release of various inflammatory markers. 10 mcirog/ml of TRF and all tocotrienol isoforms significantly inhibited the production of interleukin-6 and nitric oxide. However, only alpha-tocotrienol demonstrated a significant effect in lowering tumor necrosis factor-alpha production. Besides, TRF and all tocotrienol isoforms except gamma-tocotrienol reduced prostaglandin E(2) release. It was accompanied by the down-regulation of cyclooxygenase-2 gene expression by all vitamin E forms except alpha-tocopherol. Collectively, the data suggested that tocotrienols are better anti-inflammatory agents than alpha-tocopherol and the most effective form is delta-tocotrienol.

  3. Computer-aided identification of potential TYK2 inhibitors from drug database

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Li, Jianzong; Huang, Zhixin; Wang, Haiyang; Luo, Hao; Wang, Xin; Zhou, Nan; Wu, Chuanfang; Bao, Jinku

    2016-10-01

    TYK2 is a member of JAKs family protein tyrosine kinase activated in response to various cytokines. It plays a crucial role in transducing signals downstream of various cytokine receptors, which are involved in proinflammatory responses associated with immunological diseases. Thus, the study of selective TYK2 inhibitors is one of the most popular fields in anti-inflammation drug development. Herein, we adopted molecular docking, molecular dynamics simulation and MM-PBSA binding free energy calculation to screen potential TYK2-selective inhibitors from ZINC Drug Database. Finally, three small molecule drugs ZINC12503271 (Gemifloxacin), ZINC05844792 (Nebivolol) and ZINC00537805 (Glyburide) were selected as potential TYK2-selective inhibitors. Compared to known inhibitor 2,6-dichloro-N-{2-[(cyclopropylcarbonyl)amino]pyridin-4-yl}benzamide, these three candidates had better Grid score and Amber score from molecular docking and preferable results from binding free energy calculation as well. What's more, the ATP-binding site and A-loop motif had been identified to play key roles in TYK2-targeted inhibitor discovery. It is expected that our study will pave the way for the design of potent TYK2 inhibitors of new drugs to treat a wide variety of immunological diseases such as inflammatory diseases, multiple sclerosis, psoriasis inflammatory bowel disease (IBD) and so on.

  4. A highly selective, orally active inhibitor of Janus kinase 2, CEP-33779, ablates disease in two mouse models of rheumatoid arthritis

    PubMed Central

    2011-01-01

    Introduction Janus kinase 2 (JAK2) is involved in the downstream activation of signal transducer and activator of transcription 3 (STAT3) and STAT5 and is responsible for transducing signals for several proinflammatory cytokines involved in the pathogenesis of rheumatoid arthritis (RA), including interleukin (IL)-6, interferon γ (IFNγ) and IL-12. In this paper, we describe the efficacy profile of CEP-33779, a highly selective, orally active, small-molecule inhibitor of JAK2 evaluated in two mouse models of RA. Methods Collagen antibody-induced arthritis (CAIA) and collagen type II (CII)-induced arthritis (CIA) were established before the oral administration of a small-molecule JAK2 inhibitor, CEP-33779, twice daily at 10 mg/kg, 30 mg/kg, 55 mg/kg or 100 mg/kg over a period of 4 to 8 weeks. Results Pharmacodynamic inhibition of JAK2 reduced mean paw edema and clinical scores in both CIA and CAIA models of arthritis. Reduction in paw cytokines (IL-12, IFNγ and tumor necrosis factor α) and serum cytokines (IL-12 and IL-2) correlated with reduced spleen CII-specific T helper 1 cell frequencies as measured by ex vivo IFNγ enzyme-linked immunosorbent spot assay. Both models demonstrated histological evidence of disease amelioration upon treatment (for example, reduced matrix erosion, subchondral osteolysis, pannus formation and synovial inflammation) and reduced paw phosphorylated STAT3 levels. No changes in body weight or serum anti-CII autoantibody titers were observed in either RA model. Conclusions This study demonstrates the utility of using a potent and highly selective, orally bioavailable JAK2 inhibitor for the treatment of RA. Using a selective inhibitor of JAK2 rather than pan-JAK inhibitors avoids the potential complication of immunosuppression while targeting critical signaling pathways involved in autoimmune disease progression. PMID:21510883

  5. Iatrogenic effects of COX-2 inhibitors in the US population: findings from the Medical Expenditure Panel Survey.

    PubMed

    Vaithianathan, Rhema; Hockey, Peter M; Moore, Thomas J; Bates, David W

    2009-01-01

    Selective cyclo-oxygenase 2 inhibitors ('coxibs') have been demonstrated to increase cardiovascular risk, but the cumulative burden of adverse effects in the US population is uncertain. To quantify cardiovascular and gastrointestinal (GI) haemorrhage disease burden from coxibs and traditional 'non-selective' non-steroidal anti-inflammatory drugs (t-NSAIDs) in the US population. Adult respondents from the 1999-2003 Medical Expenditure Panel Survey, a representative sample of the US population which first became available in December 2006, were included. Respondents were followed for 2 years. Exposure was defined by two or more prescriptions of rofecoxib, celecoxib or a t-NSAID in the first year. Acute myocardial infarction (AMI), stroke and/or GI haemorrhage in the year following exposure. Exposure to rofecoxib was associated with an adjusted odds ratio (OR) of 3.30 for AMI (95% CI 1.41, 7.68; p=0.01) and 4.28 for GI haemorrhage (95% CI 1.33, 13.71; p=0.02). Celecoxib was not associated with a statistically significant effect on AMI (OR 1.44; 95% CI 0.57, 3.69; p=0.44), but there was an OR of 2.43 for stroke (95% CI 1.05, 5.58; p=0.04) and 4.98 for GI haemorrhage (95% CI 2.22, 11.17; p<0.001). The group of t-NSAIDs was not associated with a significant adverse effect on AMI (OR 1.47; 95% CI 0.76, 2.84; p=0.25) or stroke (OR 1.26; 95% CI 0.42, 3.81; p=0.68), and was associated with an OR of 2.38 for GI haemorrhage (CI 1.04, 5.46; p=0.04). In the 1999-2004 period rofecoxib was associated with 46 783 AMIs and 31 188 GI haemorrhages; celecoxib with 21 832 strokes and 69 654 GI haemorrhages; resulting in an estimated 26 603 deaths from both coxibs. The t-NSAID group was associated with an excess of 87 327 GI haemorrhages and 9606 deaths in the same period. Iatrogenic effects of coxibs in the US population were substantial, posing an important public health risk. Drugs that were rapidly accepted for assumed safety advantages proved instead to have caused substantial

  6. The Structural Basis of Cryptosporidium-Specific IMP Dehydrogenase Inhibitor Selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacPherson, Iain S.; Kirubakaran, Sivapriya; Gorla, Suresh Kumar

    2010-03-29

    Cryptosporidium parvum is a potential biowarfare agent, an important AIDS pathogen, and a major cause of diarrhea and malnutrition. No vaccines or effective drug treatment exist to combat Cryptosporidium infection. This parasite relies on inosine 5{prime}-monophosphate dehydrogenase (IMPDH) to obtain guanine nucleotides, and inhibition of this enzyme blocks parasite proliferation. Here, we report the first crystal structures of CpIMPDH. These structures reveal the structural basis of inhibitor selectivity and suggest a strategy for further optimization. Using this information, we have synthesized low-nanomolar inhibitors that display 10{sup 3} selectivity for the parasite enzyme over human IMPDH2.

  7. Curcumin, an atoxic antioxidant and natural NFkappaB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases.

    PubMed

    Bengmark, Stig

    2006-01-01

    The world suffers a tsunami of chronic diseases, and a typhoon of acute illnesses, many of which are associated with the inappropriate or exaggerated activation of genes involved in inflammation. Finding therapeutic agents which can modulate the inflammatory reaction is the highest priority in medical research today. Drugs developed by the pharmaceutical industry have thus far been associated with toxicity and side effects, which is why natural substances are of increasing interest. A literature search (PubMed) showed almost 1500 papers dealing with curcumin, most from recent years. All available abstracts were read. Approximately 300 full papers were reviewed. Curcumin, a component of turmeric, has been shown to be non-toxic, to have antioxidant activity, and to inhibit such mediators of inflammation as NFkappaB, cyclooxygenase-2 (COX-2), lipooxygenase (LOX), and inducible nitric oxide synthase (iNOS). Significant preventive and/or curative effects have been observed in experimental animal models of a number of diseases, including arteriosclerosis, cancer, diabetes, respiratory, hepatic, pancreatic, intestinal and gastric diseases, neurodegenerative and eye diseases. Turmeric, an approved food additive, or its component curcumin, has shown surprisingly beneficial effects in experimental studies of acute and chronic diseases characterized by an exaggerated inflammatory reaction. There is ample evidence to support its clinical use, both as a prevention and a treatment. Several natural substances have greater antioxidant effects than conventional vitamins, including various polyphenols, flavonoids and curcumenoids. Natural substances are worth further exploration both experimentally and clinically.

  8. The pathophysiological roles of COX-1 and COX-2 in the intestinal smooth muscle contractility under the anaphylactic condition.

    PubMed

    Kadowaki, Hiroko; Yamamoto, Takeshi; Kageyama-Yahara, Natsuko; Kurokawa, Nobuo; Kadowaki, Makoto

    2008-04-01

    Various inflammatory mediators released from antigen-activated mast cells are considered to play a key role in the pathogenesis of food allergy. The aim of the present study was to determine the mechanisms underlying the antigen-induced anaphylactic responses in the rat colons. Wistar rats were sensitized by intraperitoneal injection of ovalbumin (OVA). The contractilities of isolated proximal colons of the sensitized rats were studied in the organ bath. OVA challenges of sensitized tissues induced prolonged contractile responses. The antigen-induced contractions were greatly reduced by mast cell stabilizer doxantrazole (10 microM). However, the contractions were resistant to histamine H1 receptor antagonist and prostaglandin D2 receptor antagonist. In contrast, non-selective cyclooxygenase (COX) inhibitor indomethacin (1 microM) significantly reduced the contractions by 61.0%. Furthermore, selective COX-1 inhibitor FR122047 (10 microM) as well as selective COX-2 inhibitor NS-398 (10 microM) significantly inhibited the contractions by 50.1% and 50.3%, respectively. Nevertheless, the transcript levels of COX-2 as well as COX-1 were not upregulated by OVA in the proximal colons of the sensitized rats. The present results indicate that de novo arachidonic acid metabolites synthesis by constitutive COX-1 as well as constitutive COX-2 within mast cells contribute to the altered smooth muscle contractilities in the colons under the anaphylactic condition.

  9. Structure- and function-based design of Plasmodium-selective proteasome inhibitors.

    PubMed

    Li, Hao; O'Donoghue, Anthony J; van der Linden, Wouter A; Xie, Stanley C; Yoo, Euna; Foe, Ian T; Tilley, Leann; Craik, Charles S; da Fonseca, Paula C A; Bogyo, Matthew

    2016-02-11

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome, resulting in toxicity that precludes their use as therapeutic agents. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, here we use a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We design inhibitors based on amino-acid preferences specific to the parasite proteasome, and find that they preferentially inhibit the β2-subunit. We determine the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy and single-particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information about active-site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin family anti-malarials, we observe growth inhibition synergism with low doses of this β2-selective inhibitor in artemisinin-sensitive and -resistant parasites. Finally, we demonstrate that a parasite-selective inhibitor could be used to attenuate parasite growth in vivo without appreciable toxicity to the host. Thus, the Plasmodium proteasome is a

  10. Vascular Endothelial Growth Factor Receptor-2 Couples Cyclo-Oxygenase-2 with Pro-Angiogenic Actions of Leptin on Human Endothelial Cells

    PubMed Central

    Garonna, Elena; Botham, Kathleen M.; Birdsey, Graeme M.; Randi, Anna M.; Gonzalez-Perez, Ruben R.; Wheeler-Jones, Caroline P. D.

    2011-01-01

    Background The adipocyte-derived hormone leptin influences the behaviour of a wide range of cell types and is now recognised as a pro-angiogenic and pro-inflammatory factor. In the vasculature, these effects are mediated in part through its direct leptin receptor (ObRb)-driven actions on endothelial cells (ECs) but the mechanisms responsible for these activities have not been established. In this study we sought to more fully define the molecular links between inflammatory and angiogenic responses of leptin-stimulated human ECs. Methodology/Principal Findings Immunoblotting studies showed that leptin increased cyclo-oxygenase-2 (COX-2) expression (but not COX-1) in cultured human umbilical vein ECs (HUVEC) through pathways that depend upon activation of both p38 mitogen-activated protein kinase (p38MAPK) and Akt, and stimulated rapid phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2) on Tyr1175. Phosphorylation of VEGFR2, p38MAPK and Akt, and COX-2 induction in cells challenged with leptin were blocked by a specific leptin peptide receptor antagonist. Pharmacological inhibitors of COX-2, the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and p38MAPK abrogated leptin-induced EC proliferation (assessed by quantifying 5-bromo-2′-deoxyuridine incorporation, calcein fluorescence and propidium iodide staining), slowed the increased migration rate of leptin-stimulated cells (in vitro wound healing assay) and inhibited leptin-induced capillary-like tube formation by HUVEC on Matrigel. Inhibition of VEGFR2 tyrosine kinase activity reduced leptin-stimulated p38MAPK and Akt activation, COX-2 induction, and pro-angiogenic EC responses, and blockade of VEGFR2 or COX-2 activities abolished leptin-driven neo-angiogenesis in a chick chorioallantoic membrane vascularisation assay in vivo. Conclusions/Significance We conclude that a functional endothelial p38MAPK/Akt/COX-2 signalling axis is required for leptin's pro-angiogenic actions and that this is

  11. Risk Factors for Upper Gastrointestinal Bleeding in Patients Taking Selective COX-2 Inhibitors: A Nationwide Population-Based Cohort Study.

    PubMed

    Lin, Xi-Hsuan; Young, Shih-Hao; Luo, Jiing-Chyuan; Peng, Yen-Ling; Chen, Ping-Hsien; Lin, Chung-Chi; Chen, Wei-Ming; Hou, Ming-Chih; Lee, Fa-Yauh

    2018-02-01

    Cyclooxygenase-2 inhibitors (coxibs) are associated with less upper gastrointestinal bleeding (UGIB) than traditional nonsteroidal anti-inflammatory drugs (tNSAIDs). However, they also increase the risk of UGIB in high-risk patients. We aimed to identify the risk factors of UGIB in coxibs users. Retrospective cohort study. 2000-2010 National Health Insurance Research Database of Taiwan. Patients taking coxibs as the study group and patients not taking any coxibs as controls. After age, gender, and comorbidity matching by propensity score, 12,145 coxibs users and 12,145 matched controls were extracted for analysis. The primary end point was the occurrence of UGIB. Cox multivariate proportional hazard regression models were used to determine the risk factors for UGIB among all the enrollees and coxibs users. During a mean follow-up of three years, coxibs users had significantly higher incidence of UGIB than matched controls (P < 0.001, log-rank test). Cox regression analysis showed that coxibs increased risk of UGIB in all participants (hazard ratio = 1.37, 95% confidence interval = 1.19-1.55, P < 0.001). Independent risk factors for UGIB among coxibs users were age, male gender, diabetes, chronic renal disease, cirrhosis, history of peptic ulcer disease, PU bleeding (PUB), Helicobacter pylori (H. pylori) infection, and concomitant use of tNSAIDs, acetylsalicylic acid, or thienopyridines. Among coxibs users, H. pylori infection and history of PUB were especially important risk factors for UGIB. Further studies are needed to determine whether proton pump inhibitors might play a protective role in these at-risk patients. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  12. The effects of proton pump inhibitor on hepatic vascular responsiveness and hemodynamics in cirrhotic rats.

    PubMed

    Hsin, I-Fang; Hsu, Shao-Jung; Chuang, Chiao-Lin; Huo, Teh-Ia; Huang, Hui-Chun; Lee, Fa-Yauh; Ho, Hsin-Ling; Chang, Shu-Yu; Lee, Shou-Dong

    2018-05-17

    Liver cirrhosis is associated with increased intrahepatic resistance due to hepatic fibrosis and exaggerated vasoconstriction. Recent studies have indicated that proton pump inhibitors (PPIs), in addition to acid suppression, modulate vasoactive substances and vasoresponsiveness. PPIs are frequently prescribed in patients with cirrhosis due to a higher prevalence of peptic ulcers, however other impacts are unknown. Liver cirrhosis was induced in Sprague-Dawley rats with common bile duct ligation (BDL). On the 29th day after BDL and after hemodynamic measurements, the intrahepatic vascular responsiveness to high concentrations of endothelin-1 (ET-1) was evaluated after preincubation with (1) Krebs solution (vehicle), (2) esomeprazole (30 μM), or (3) esomeprazole plus N ω -nitro l-arginine (NNA, a non-selective NO synthase (NOS) inhibitor, 10 -4  M). After perfusion, the hepatic protein expressions of endothelial NOS (eNOS), inducible NOS (iNOS), cyclooxygenase (COX)-1, COX-2, endothelin-1, DDAH-1 (dimethylarginine dimethylaminohydrolase-1, ADMA inhibitor), DDAH-2, ADMA (asymmetrical dimethyl arginine, NOS inhibitor) were evaluated. In the chronic model, the BDL rats received (1) vehicle; or (2) esomeprazole (3.6 mg/kg/day, oral gavage) from the 1st to 28th day after BDL. On the 29th day and after hemodynamic measurements, plasma liver biochemistry and liver fibrosis were evaluated. Esomeprazole did not affect hepatic ET-1 vasoresponsiveness. The hepatic protein expressions of the aforementioned factors were not significantly different among the groups. There were no significant differences in hemodynamics, liver biochemistry and hepatic fibrosis after chronic esomeprazole administration. PPIs did not affect hepatic vasoresponsiveness or the release of vasoactive substances. Furthermore, they did not influence hemodynamics, liver biochemistry or severity of hepatic fibrosis in the cirrhotic rats. Copyright © 2018. Published by Elsevier Taiwan LLC.

  13. Rebamipide induces the gastric mucosal protective factor, cyclooxygenase-2, via activation of 5'-AMP-activated protein kinase.

    PubMed

    Lee, Sunyoung; Jeong, Seongkeun; Kim, Wooseong; Kim, Dohoon; Yang, Yejin; Yoon, Jeong-Hyun; Kim, Byung Joo; Min, Do Sik; Jung, Yunjin

    2017-01-29

    Rebamipide, an amino acid derivative of 2(1H)-quinolinone, has been used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. Induction of cyclooxygenase (COX)-2, a gastric mucosal protective factor, by rebamipide has been suggested as the major mechanism of the drug action. However, how rebamipide induces COX-2 at the molecular level needs further investigation. In this study, the molecular mechanism underlying the induction of COX-2 by rebamipide was investigated. In gastric carcinoma cells and macrophage cells, rebamipide induced phosphorylation of AMP-activated protein kinase (AMPK), leading to phosphorylation of acetyl-CoA carboxylase (ACC), a substrate of AMPK. The induction of COX-2 by rebamipide was dependent on AMPK activation because compound C, an AMPK inhibitor, abolished COX-2 induction by rebamipide. In a mouse ulcer model, rebamipide protected against hydrochloric acid/ethanol-induced gastric ulcer, and these protective effects were deterred by co-administration of compound C. In parallel, in the gastric tissues, rebamipide increased the phosphorylation AMPK, whereas compound C reduced the levels of COX-2 and phosphorylated ACC, which were increased by rebamipide. Taken together, the activation of AMPK by rebamipide may be a molecular mechanism that contributes to induction of COX-2, probably resulting in protection against gastric ulcers. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Discovery of Selective Phosphodiesterase 1 Inhibitors with Memory Enhancing Properties.

    PubMed

    Dyck, Brian; Branstetter, Bryan; Gharbaoui, Tawfik; Hudson, Andrew R; Breitenbucher, J Guy; Gomez, Laurent; Botrous, Iriny; Marrone, Tami; Barido, Richard; Allerston, Charles K; Cedervall, E Peder; Xu, Rui; Sridhar, Vandana; Barker, Ryan; Aertgeerts, Kathleen; Schmelzer, Kara; Neul, David; Lee, Dong; Massari, Mark Eben; Andersen, Carsten B; Sebring, Kristen; Zhou, Xianbo; Petroski, Robert; Limberis, James; Augustin, Martin; Chun, Lawrence E; Edwards, Thomas E; Peters, Marco; Tabatabaei, Ali

    2017-04-27

    A series of potent thienotriazolopyrimidinone-based PDE1 inhibitors was discovered. X-ray crystal structures of example compounds from this series in complex with the catalytic domain of PDE1B and PDE10A were determined, allowing optimization of PDE1B potency and PDE selectivity. Reduction of hERG affinity led to greater than a 3000-fold selectivity for PDE1B over hERG. 6-(4-Methoxybenzyl)-9-((tetrahydro-2H-pyran-4-yl)methyl)-8,9,10,11-tetrahydropyrido[4',3':4,5]thieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidin-5(6H)-one was identified as an orally bioavailable and brain penetrating PDE1B enzyme inhibitor with potent memory-enhancing effects in a rat model of object recognition memory.

  15. Immunohistochemical expression of cyclooxygenase-2 (COX-2) in oral nevi and melanoma.

    PubMed

    de Souza do Nascimento, Juliana; Carlos, Román; Delgado-Azañero, Wilson; Mosqueda Taylor, Adalberto; de Almeida, Oslei Paes; Romañach, Mário José; de Andrade, Bruno Augusto Benevenuto

    2016-07-01

    Cyclooxygenase-2 (COX-2) catalyses the conversion of arachidonic acid to prostaglandin, and its overexpression has been demonstrated in different malignant tumors, including cutaneous melanoma. However, no data about the expression of this protein in oral melanocytic lesions are available to date. The aim of this study was to evaluate the immunohistochemical expression of COX-2 in oral nevi and melanomas, comparing the results with correspondent cutaneous lesions. COX-2 was evaluated by immunohistochemistry in 49 oral melanocytic lesions, including 36 intramucosal nevi and 13 primary oral melanomas, and in four cutaneous nevi and eight melanomas. All cases of oral and cutaneous melanomas were positive for COX-2. On the other hand, all oral and cutaneous melanocytic nevi were negative. COX-2 is highly positive in oral melanomas and negative in oral nevi and might represent a useful marker to distinguish melanocytic lesions of the oral cavity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Design, synthesis and biological evaluation of uncharged catechol derivatives as selective inhibitors of PTP1B.

    PubMed

    Li, Xiang-Qian; Xu, Qi; Luo, Jiao; Wang, Li-Jun; Jiang, Bo; Zhang, Ren-Shuai; Shi, Da-Yong

    2017-08-18

    Protein tyrosine phosphatases 1B (PTP1B) is a promising and validated therapeutic target to effectively treat T2DM and obesity. However, the development of charged PTP1B inhibitors was restricted due to their low cell permeability and poor bioavailability. Based on active natural products, two series of uncharged catechol derivatives were identified as PTP1B inhibitors by targeting a secondary aryl phosphate-binding site as well as the catalytic site. The most potent inhibitor 22 showed an IC 50 of 0.487 μM against PTP1B and strong selectivity (27-fold) over TCPTP. Kinetic studies were also performed that 22 act as a competitive PTP1B inhibitor. The treatment of C2C12 myotubes with 22 markedly increased the phosphorylation levels of IRβ, Akt and IRS1 phosphorylation. The similarity of its action profiling with that produced by insulin suggested its potential as a new non-insulin-dependent drug candidate. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Cyclic stretch induces cyclooxygenase-2 gene expression in vascular endothelial cells via activation of nuclear factor kappa-{beta}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haige; Hiroi, Toyoko; Hansen, Baranda S.

    2009-11-27

    Vascular endothelial cells respond to biomechanical forces, such as cyclic stretch and shear stress, by altering gene expression. Since endothelial-derived prostanoids, such as prostacyclin and thromboxane A{sub 2}, are key mediators of endothelial function, we investigated the effects of cyclic stretch on the expression of genes in human umbilical vein endothelial cells controlling prostanoid synthesis: cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), prostacyclin synthase (PGIS) and thromboxane A{sub 2} synthase (TXAS). COX-2 and TXAS mRNAs were upregulated by cyclic stretch for 24 h. In contrast, PGIS mRNA was decreased and stretch had no effect on COX-1 mRNA expression. We further show that stretch-inducedmore » upregulation of COX-2 is mediated by activation of the NF-{kappa}{beta} signaling pathway.« less

  18. Discovery of Allosteric and Selective Inhibitors of Inorganic Pyrophosphatase from Mycobacterium tuberculosis.

    PubMed

    Pang, Allan H; Garzan, Atefeh; Larsen, Martha J; McQuade, Thomas J; Garneau-Tsodikova, Sylvie; Tsodikov, Oleg V

    2016-11-18

    Inorganic pyrophosphatase (PPiase) is an essential enzyme that hydrolyzes inorganic pyrophosphate (PP i ), driving numerous metabolic processes. We report a discovery of an allosteric inhibitor (2,4-bis(aziridin-1-yl)-6-(1-phenylpyrrol-2-yl)-s-triazine) of bacterial PPiases. Analogues of this lead compound were synthesized to target specifically Mycobacterium tuberculosis (Mtb) PPiase (MtPPiase). The best analogue (compound 16) with a K i of 11 μM for MtPPiase is a species-specific inhibitor. Crystal structures of MtPPiase in complex with the lead compound and one of its analogues (compound 6) demonstrate that the inhibitors bind in a nonconserved interface between monomers of the hexameric MtPPiase in a yet unprecedented pairwise manner, while the remote conserved active site of the enzyme is occupied by a bound PP i substrate. Consistent with the structural studies, the kinetic analysis of the most potent inhibitor has indicated that it functions uncompetitively, by binding to the enzyme-substrate complex. The inhibitors appear to allosterically lock the active site in a closed state causing its dysfunctionalization and blocking the hydrolysis. These inhibitors are the first examples of allosteric, species-selective inhibitors of PPiases, serving as a proof-of-principle that PPiases can be selectively targeted.

  19. ACE and SGLT2 inhibitors: the future for non-diabetic and diabetic proteinuric renal disease.

    PubMed

    Perico, Norberto; Ruggenenti, Piero; Remuzzi, Giuseppe

    2017-04-01

    Most chronic nephropathies progress relentlessly to end-stage kidney disease. Research in animals and humans has helped our understanding of the mechanisms of chronic kidney disease progression. Current therapeutic strategies to prevent or revert renal disease progression focus on reduction of urinary protein excretion and blood pressure control. Blockade of the renin-angiotensin system (RAS) with angiotensin-converting enzyme inhibitors and/or angiotensin II type 1 receptor blockers is the most effective treatment to achieve these purposes in non-diabetic and diabetic proteinuric renal diseases. For those individuals in which nephroprotection by RAS blockade is only partial, sodium-glucose linked cotransporter-2 (SGLT2) inhibitors could be a promising new class of drugs to provide further renoprotective benefit when added on to RAS blockers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Cyclooxygenase-2 expression in the eyes of cats with and without uveitis.

    PubMed

    Sim, Zhi Hui; Pinard, Chantale L; Plattner, Brandon L; Bienzle, Dorothee

    2018-01-01

    OBJECTIVE To characterize the distribution and intensity of cyclooxygenase (COX)-2 expression in the eyes of cats with and without uveitis and to determine whether COX-2 expression is correlated with severity of inflammation. SAMPLES Archived ocular tissue specimens from 51 cats with and 10 cats without ocular disease. PROCEDURES Specimens from only 1 eye were evaluated for each cat. Specimens were stained with H&E stain or immunohistochemical stain for detection of COX-2 and reviewed. For each eye, the type, severity, and distribution of inflammation and the distribution and intensity of COX-2 expression were determined for the uvea and other ocular tissues. Correlation between COX-2 expression and inflammation severity was also assessed. RESULTS COX-2 was not expressed in any nondiseased eye. Of the 51 diseased eyes, 20 had histologic evidence of lymphocytic-plasmacytic uveitis, 13 had neutrophilic uveitis, 11 had diffuse iris melanoma with uveitis, and 7 had diffuse iris melanoma without uveitis. Of the 44 eyes with uveitis, COX-2 was detected in the uvea of 16, including 11 eyes with lymphocytic-plasmacytic uveitis, 4 with neutrophilic uveitis, and 1 with diffuse iris melanoma-induced uveitis. Inflammation was severe, moderate, or mild in 10, 5, and 1 of those eyes, respectively. Cyclooxygenase-2 was detected in the cornea of 21 eyes with uveitis and 1 eye with diffuse iris melanoma without uveitis. Uveitis severity was positively correlated with COX-2 expression in both the uvea and cornea. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that COX-2 is an inflammatory mediator in feline uveitis but not diffuse iris melanoma.

  1. Randomized trial of switching from prescribed non-selective non-steroidal anti-inflammatory drugs to prescribed celecoxib: the Standard care vs. Celecoxib Outcome Trial (SCOT)

    PubMed Central

    MacDonald, Thomas M.; Hawkey, Chris J.; Ford, Ian; McMurray, John J.V.; Scheiman, James M.; Hallas, Jesper; Findlay, Evelyn; Grobbee, Diederick E.; Hobbs, F.D. Richard; Ralston, Stuart H.; Reid, David M.; Walters, Matthew R.; Webster, John; Ruschitzka, Frank; Ritchie, Lewis D.; Perez-Gutthann, Susana; Connolly, Eugene; Greenlaw, Nicola; Wilson, Adam; Wei, Li; Mackenzie, Isla S.

    2017-01-01

    Background Selective cyclooxygenase-2 inhibitors and conventional non-selective non-steroidal anti-inflammatory drugs (nsNSAIDs) have been associated with adverse cardiovascular (CV) effects. We compared the CV safety of switching to celecoxib vs. continuing nsNSAID therapy in a European setting. Method Patients aged 60 years and over with osteoarthritis or rheumatoid arthritis, free from established CV disease and taking chronic prescribed nsNSAIDs, were randomized to switch to celecoxib or to continue their previous nsNSAID. The primary endpoint was hospitalization for non-fatal myocardial infarction or other biomarker positive acute coronary syndrome, non-fatal stroke or CV death analysed using a Cox model with a pre-specified non-inferiority limit of 1.4 for the hazard ratio (HR). Results In total, 7297 participants were randomized. During a median 3-year follow-up, fewer subjects than expected developed an on-treatment (OT) primary CV event and the rate was similar for celecoxib, 0.95 per 100 patient-years, and nsNSAIDs, 0.86 per 100 patient-years (HR = 1.12, 95% confidence interval, 0.81–1.55; P = 0.50). Comparable intention-to-treat (ITT) rates were 1.14 per 100 patient-years with celecoxib and 1.10 per 100 patient-years with nsNSAIDs (HR = 1.04; 95% confidence interval, 0.81–1.33; P = 0.75). Pre-specified non-inferiority was achieved in the ITT analysis. The upper bound of the 95% confidence limit for the absolute increase in OT risk associated with celecoxib treatment was two primary events per 1000 patient-years exposure. There were only 15 adjudicated secondary upper gastrointestinal complication endpoints (0.078/100 patient-years on celecoxib vs. 0.053 on nsNSAIDs OT, 0.078 vs. 0.053 ITT). More gastrointestinal serious adverse reactions and haematological adverse reactions were reported on nsNSAIDs than celecoxib, but more patients withdrew from celecoxib than nsNSAIDs (50.9% patients vs. 30.2%; P < 0.0001). Interpretation In

  2. Flurbiprofen, a Cyclooxygenase Inhibitor, Protects Mice from Hepatic Ischemia/Reperfusion Injury by Inhibiting GSK-3β Signaling and Mitochondrial Permeability Transition

    PubMed Central

    Fu, Hailong; Chen, Huan; Wang, Chengcai; Xu, Haitao; Liu, Fang; Guo, Meng; Wang, Quanxing; Shi, Xueyin

    2012-01-01

    Flurbiprofen acts as a nonselective inhibitor for cyclooxygenases (COX-1 and COX-2), but its impact on hepatic ischemia/reperfusion (I/R) injury remains unclear. Mice were randomized into sham, I/R and flurbiprofen (Flurb) groups. The hepatic artery and portal vein to the left and median liver lobes were occluded for 90 min and unclamped for reperfusion to establish a model of segmental (70%) warm hepatic ischemia. Pretreatment of animals with flurbiprofen prior to I/R insult significantly decreased serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH), and prevented hepatocytes from I/R-induced apoptosis/necrosis. Moreover, flurbiprofen dramatically inhibited mitochondrial permeability transition (MPT) pore opening, and thus prevented mitochondrial-related cell death and apoptosis. Mechanistic studies revealed that flurbiprofen markedly inhibited glycogen synthase kinase (GSK)-3β activity and increased phosphorylation of GSK-3β at Ser9, which, consequently, could modulate the adenine nucleotide translocase (ANT)–cyclophilin D (CyP-D) complex and the susceptibility to MPT induction. Therefore, administration of flurbiprofen prior to hepatic I/R ameliorates mitochondrial and hepatocellular damage through inhibition of MPT and inactivation of GSK-3β, and provides experimental evidence for clinical use of flurbiprofen to protect liver function in surgical settings in addition to its conventional use for pain relief. PMID:22714712

  3. Cyclooxygenase activity is important for efficient replication of mouse hepatitis virus at an early stage of infection

    PubMed Central

    Raaben, Matthijs; Einerhand, Alexandra WC; Taminiau, Lucas JA; van Houdt, Michel; Bouma, Janneke; Raatgeep, Rolien H; Büller, Hans A; de Haan, Cornelis AM; Rossen, John WA

    2007-01-01

    Cyclooxygenases (COXs) play a significant role in many different viral infections with respect to replication and pathogenesis. Here we investigated the role of COXs in the mouse hepatitis coronavirus (MHV) infection cycle. Blocking COX activity by different inhibitors or by RNA interference affected MHV infection in different cells. The COX inhibitors reduced MHV infection at a post-binding step, but early in the replication cycle. Both viral RNA and viral protein synthesis were affected with subsequent loss of progeny virus production. Thus, COX activity appears to be required for efficient MHV replication, providing a potential target for anti-coronaviral therapy. PMID:17555580

  4. Analogues of 2-aminopyridine-based selective inhibitors of neuronal nitric oxide synthase with increased bioavailability

    PubMed Central

    Lawton, Graham R.; Ranaivo, Hantamalala Ralay; Chico, Laura K.; Ji, Haitao; Xue, Fengtian; Martásek, Pavel; Roman, Linda J.; Watterson, D. Martin; Silverman, Richard B.

    2009-01-01

    Overproduction of nitric oxide by neuronal nitric oxide synthase (nNOS) has been linked to several neurodegenerative diseases. We have recently designed potent and isoform selective inhibitors of nNOS, but the lead compound contains several basic functional groups. A large number of charges and hydrogen bond donors can impede the ability of molecules to cross the blood brain barrier and thereby limit the effectiveness of potential neurological therapeutics. Replacement of secondary amines in our lead compound with neutral ether and amide groups was made to increase bioavailability and to determine if the potency and selectivity of the inhibitor would be impacted. An ether analogue has been identified that retains a similar potency and selectivity to that of the lead compound, and shows increased ability to penetrate the blood brain barrier. PMID:19268602

  5. Development and application of a fluorescent glucose uptake assay for the high-throughput screening of non-glycoside SGLT2 inhibitors.

    PubMed

    Wu, Szu-Huei; Yao, Chun-Hsu; Hsieh, Chieh-Jui; Liu, Yu-Wei; Chao, Yu-Sheng; Song, Jen-Shin; Lee, Jinq-Chyi

    2015-07-10

    Sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors are of current interest as a treatment for type 2 diabetes. Efforts have been made to discover phlorizin-related glycosides with good SGLT2 inhibitory activity. To increase structural diversity and better understand the role of non-glycoside SGLT2 inhibitors on glycemic control, we initiated a research program to identify non-glycoside hits from high-throughput screening. Here, we report the development of a novel, fluorogenic probe-based glucose uptake system based on a Cu(I)-catalyzed [3+2] cycloaddition. The safer processes and cheaper substances made the developed assay our first priority for large-scale primary screening as compared to the well-known [(14)C]-labeled α-methyl-D-glucopyranoside ([(14)C]-AMG) radioactive assay. This effort culminated in the identification of a benzimidazole, non-glycoside SGLT2 hit with an EC50 value of 0.62 μM by high-throughput screening of 41,000 compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Novel 2H-chromen-2-one derivatives of resveratrol: Design, synthesis, modeling and use as human monoamine oxidase inhibitors.

    PubMed

    Ruan, Ban-Feng; Cheng, Hui-Jie; Ren, Jing; Li, Hong-Lin; Guo, Lu-Lu; Zhang, Xing-Xing; Liao, Chenzhong

    2015-10-20

    Using a fragment-based drug design strategy, two biomedical interesting fragments, resveratrol and coumarin were linked to design a series of novel human monoamine oxidase (hMAO) inhibitors with a scaffold of 3-((E)-3-(2-((E)-styryl)phenyl)acryloyl)-2H-chromen-2-one, which demonstrated a very interesting selectivity profile against hMAO-A and hMAO-B: some compounds with this scaffold are selective hMAO-A inhibitors, whereas some are selective hMAO-B inhibitors. The small changes in the substituents of the coumarin moiety led to this interesting selectivity profile. The most potent selective hMAO-B inhibitor D7 has a selectivity ratio of 20.93, with an IC₅₀ value of 2.78 μM, similar or better than selegiline (IC₅₀ = 2.89 μM), a selective hMAO-B inhibitor currently in the market for the treatment of Parkinson's disease. Our modeling study indicates that Tyr 326 of hMAO-B (or corresponded Ile 335 of hMAO-A) may be the determinant for the specificity of these compounds. The selectivity profile of compounds reported herein suggests that we can further develop both selective hMAO-A and hMAO-B inhibitors based on this novel scaffold. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Discovery of Potent and Selective Inhibitors for ADAMTS-4 through DNA-Encoded Library Technology (ELT).

    PubMed

    Ding, Yun; O'Keefe, Heather; DeLorey, Jennifer L; Israel, David I; Messer, Jeffrey A; Chiu, Cynthia H; Skinner, Steven R; Matico, Rosalie E; Murray-Thompson, Monique F; Li, Fan; Clark, Matthew A; Cuozzo, John W; Arico-Muendel, Christopher; Morgan, Barry A

    2015-08-13

    The aggrecan degrading metalloprotease ADAMTS-4 has been identified as a novel therapeutic target for osteoarthritis. Here, we use DNA-encoded Library Technology (ELT) to identify novel ADAMTS-4 inhibitors from a DNA-encoded triazine library by affinity selection. Structure-activity relationship studies based on the selection information led to the identification of potent and highly selective inhibitors. For example, 4-(((4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-6-(((4-methylpiperazin-1-yl)methyl)amino)-1,3,5-triazin-2-yl)amino)methyl)-N-ethyl-N-(m-tolyl)benzamide has IC50 of 10 nM against ADAMTS-4, with >1000-fold selectivity over ADAMT-5, MMP-13, TACE, and ADAMTS-13. These inhibitors have no obvious zinc ligand functionality.

  8. Discovery of Potent and Selective Inhibitors for ADAMTS-4 through DNA-Encoded Library Technology (ELT)

    PubMed Central

    2015-01-01

    The aggrecan degrading metalloprotease ADAMTS-4 has been identified as a novel therapeutic target for osteoarthritis. Here, we use DNA-encoded Library Technology (ELT) to identify novel ADAMTS-4 inhibitors from a DNA-encoded triazine library by affinity selection. Structure–activity relationship studies based on the selection information led to the identification of potent and highly selective inhibitors. For example, 4-(((4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-6-(((4-methylpiperazin-1-yl)methyl)amino)-1,3,5-triazin-2-yl)amino)methyl)-N-ethyl-N-(m-tolyl)benzamide has IC50 of 10 nM against ADAMTS-4, with >1000-fold selectivity over ADAMT-5, MMP-13, TACE, and ADAMTS-13. These inhibitors have no obvious zinc ligand functionality. PMID:26288689

  9. High-throughput screening identifies Ceefourin 1 and Ceefourin 2 as highly selective inhibitors of multidrug resistance protein 4 (MRP4).

    PubMed

    Cheung, Leanna; Flemming, Claudia L; Watt, Fujiko; Masada, Nanako; Yu, Denise M T; Huynh, Tony; Conseil, Gwenaëlle; Tivnan, Amanda; Polinsky, Alexander; Gudkov, Andrei V; Munoz, Marcia A; Vishvanath, Anasuya; Cooper, Dermot M F; Henderson, Michelle J; Cole, Susan P C; Fletcher, Jamie I; Haber, Michelle; Norris, Murray D

    2014-09-01

    Multidrug resistance protein 4 (MRP4/ABCC4), a member of the ATP-binding cassette (ABC) transporter superfamily, is an organic anion transporter capable of effluxing a wide range of physiologically important signalling molecules and drugs. MRP4 has been proposed to contribute to numerous functions in both health and disease; however, in most cases these links remain to be unequivocally established. A major limitation to understanding the physiological and pharmacological roles of MRP4 has been the absence of specific small molecule inhibitors, with the majority of established inhibitors also targeting other ABC transporter family members, or inhibiting the production, function or degradation of important MRP4 substrates. We therefore set out to identify more selective and well tolerated inhibitors of MRP4 that might be used to study the many proposed functions of this transporter. Using high-throughput screening, we identified two chemically distinct small molecules, Ceefourin 1 and Ceefourin 2, that inhibit transport of a broad range of MRP4 substrates, yet are highly selective for MRP4 over other ABC transporters, including P-glycoprotein (P-gp), ABCG2 (Breast Cancer Resistance Protein; BCRP) and MRP1 (multidrug resistance protein 1; ABCC1). Both compounds are more potent MRP4 inhibitors in cellular assays than the most widely used inhibitor, MK-571, requiring lower concentrations to effect a comparable level of inhibition. Furthermore, Ceefourin 1 and Ceefourin 2 have low cellular toxicity, and high microsomal and acid stability. These newly identified inhibitors should be of great value for efforts to better understand the biological roles of MRP4, and may represent classes of compounds with therapeutic application. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Cyclooxygenase Inhibition in Sepsis: Is There Life after Death?

    PubMed Central

    Aronoff, David M.

    2012-01-01

    Prostaglandins are important mediators and modulators of the inflammatory response to infection. The prostaglandins participate in the pathogenesis of hemodynamic collapse, organ failure, and overwhelming inflammation that characterize severe sepsis and shock. In light of this, cyclooxygenase (COX) inhibiting pharmacological agents have been extensively studied for their capacity to ameliorate the aberrant physiological and immune responses during severe sepsis. Animal models of sepsis, using the systemic administration of pathogen-associated molecular patterns (PAMPs) or live pathogens, have been used to examine the effectiveness of COX inhibition as a treatment for severe sepsis. These studies have largely shown beneficial effects on mortality. However, human studies have failed to show clinical utility of COX inhibitor treatment in severely septic patients. Why this approach “worked” in animals but not in humans might reflect differences in the controlled nature of animal investigations compared to human studies. This paper contrasts the impact of COX inhibitors on mortality in animal models of sepsis and human studies of sepsis and examines potential reasons for differences between these two settings. PMID:22665954

  11. Bioassay-guided supercritical fluid extraction of cyclooxygenase-2 inhibiting substances in Plantago major L.

    PubMed

    Stenholm, A; Göransson, U; Bohlin, L

    2013-02-01

    Selective extraction of plant materials is advantageous for obtaining extracts enriched with desired constituents, thereby reducing the need for subsequent chromatography purification. Such compounds include three cyclooxygenase-2 (COX-2) inhibitory substances in Plantago major L. targeted in this investigation: α-linolenic acid (α-LNA) (18:3 ω-3) and the triterpenic acids ursolic acid and oleanolic acid. To investigate the scope for tuning the selectivity of supercritical fluid extraction (SFE) using bioassay guidance, and Soxhlet extraction with dichloromethane as solvent as a reference technique, to optimise yields of these substances. Extraction parameters were varied to optimise extracts' COX-2/COX-1 inhibitory effect ratios. The crude extracts were purified initially using a solid phase extraction (SPE) clean-up procedure and the target compounds were identified with GC-MS, LC-ESI-MS and LC-ESI-MS² using GC-FID for quantification. α-LNA was preferentially extracted in dynamic mode using unmodified carbon dioxide at 40°C and 172 bar, at a 0.04% (w/w) yield with a COX-2/COX-1 inhibitory effect ratio of 1.5. Ursolic and oleanolic acids were dynamically extracted at 0.25% and 0.06% yields, respectively, with no traces of (α-LNA) and a COX-2/COX-1-inhibitory effect ratio of 1.1 using 10% (v/v) ethanol as polar modifier at 75°C and 483 bar. The Soxhlet extracts had ursolic acid, oleanolic acid and αLNA yields up to 1.36%, 0.34% and 0.15%, respectively, with a COX-2/COX-1 inhibitory effect ratio of 1.2. The target substances can be extracted selectively by bioassay guided optimisation of SFE conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Acalabrutinib (ACP-196): a selective second-generation BTK inhibitor.

    PubMed

    Wu, Jingjing; Zhang, Mingzhi; Liu, Delong

    2016-03-09

    More and more targeted agents become available for B cell malignancies with increasing precision and potency. The first-in-class Bruton's tyrosine kinase (BTK) inhibitor, ibrutinib, has been in clinical use for the treatment of chronic lymphocytic leukemia, mantle cell lymphoma, and Waldenstrom's macroglobulinemia. More selective BTK inhibitors (ACP-196, ONO/GS-4059, BGB-3111, CC-292) are being explored. Acalabrutinib (ACP-196) is a novel irreversible second-generation BTK inhibitor that was shown to be more potent and selective than ibrutinib. This review summarized the preclinical research and clinical data of acalabrutinib.

  13. Design and synthesis of N₁-aryl-benzimidazoles 2-substituted as novel HIV-1 non-nucleoside reverse transcriptase inhibitors.

    PubMed

    Monforte, Anna-Maria; Ferro, Stefania; De Luca, Laura; Lo Surdo, Giuseppa; Morreale, Francesca; Pannecouque, Christophe; Balzarini, Jan; Chimirri, Alba

    2014-02-15

    A series of novel N1-aryl-2-arylthioacetamido-benzimidazoles were synthesized and evaluated as inhibitors of human immunodeficiency virus type-1 (HIV-1). Some of them proved to be effective in inhibiting HIV-1 replication at submicromolar and nanomolar concentration acting as HIV-1 non-nucleoside RT inhibitors (NNRTIs), with low cytotoxicity. The preliminary structure-activity relationship (SAR) of these new derivatives was discussed and rationalized by docking studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Discovery of a Highly Selective JAK2 Inhibitor, BMS-911543, for the Treatment of Myeloproliferative Neoplasms

    PubMed Central

    2015-01-01

    JAK2 kinase inhibitors are a promising new class of agents for the treatment of myeloproliferative neoplasms and have potential for the treatment of other diseases possessing a deregulated JAK2-STAT pathway. X-ray structure and ADME guided refinement of C-4 heterocycles to address metabolic liability present in dialkylthiazole 1 led to the discovery of a clinical candidate, BMS-911543 (11), with excellent kinome selectivity, in vivo PD activity, and safety profile. PMID:26288683

  15. 2-acetylphenol analogs as potent reversible monoamine oxidase inhibitors.

    PubMed

    Legoabe, Lesetja J; Petzer, Anél; Petzer, Jacobus P

    2015-01-01

    Based on a previous report that substituted 2-acetylphenols may be promising leads for the design of novel monoamine oxidase (MAO) inhibitors, a series of C5-substituted 2-acetylphenol analogs (15) and related compounds (two) were synthesized and evaluated as inhibitors of human MAO-A and MAO-B. Generally, the study compounds exhibited inhibitory activities against both MAO-A and MAO-B, with selectivity for the B isoform. Among the compounds evaluated, seven compounds exhibited IC50 values <0.01 µM for MAO-B inhibition, with the most selective compound being 17,000-fold selective for MAO-B over the MAO-A isoform. Analyses of the structure-activity relationships for MAO inhibition show that substitution on the C5 position of the 2-acetylphenol moiety is a requirement for MAO-B inhibition, and the benzyloxy substituent is particularly favorable in this regard. This study concludes that C5-substituted 2-acetylphenol analogs are potent and selective MAO-B inhibitors, appropriate for the design of therapies for neurodegenerative disorders such as Parkinson's disease.

  16. Rasagiline (TVP-1012): a new selective monoamine oxidase inhibitor for Parkinson's disease.

    PubMed

    Guay, David R P

    2006-12-01

    This article reviews the chemistry, pharmacodynamics, pharmacokinetics, clinical efficacy, tolerability, drug-interaction potential, indications, dosing, and potential role of rasagiline mesylate, a new selective monoamine oxidase (MAO) type B (MAO-B) inhibitor, in the treatment of Parkinson's disease. A MEDLINE/PUBMED search (1986 through September 2006) was conducted to identify studies involving rasagiline written in English. Additional references were obtained from the bibliographies of these studies. All studies evaluating any aspect of rasagiline, including in vitro, in vivo (animal), and human studies, were reviewed. Rasagiline mesylate was developed with the goal of producing a selective MAO-B inhibitor that is not metabolized to (presumed) toxic metabolites (eg, amphetamine and methamphetamine, which are byproducts of the metabolism of selegiline, another selective MAO-B inhibitor). In vitro and in vivo data have confirmed the drug's selectivity for MAO-B. Rasagiline is almost completely eliminated by oxidative metabolism (catalyzed by cytochrome P-450 [CYP] isozyme 1A2) followed by renal excretion of conjugated parent compound and metabolites. Drug clearance is sufficiently slow to allow once-daily dosing. Several studies have documented its efficacy as monotherapy for early-stage disease and as adjunctive therapy in L-dopa recipients with motor fluctuations. As monotherapy, rasagiline is well tolerated with an adverse-effect profile similar to that of placebo. As adjunctive therapy, it exhibits the expected adverse effects of dopamine excess, which can be ameliorated by reducing the L-dopa dosage. CYP1A2 inhibitors slow the elimination of rasagiline and mandate dosage reduction. Hepatic impairment has an analogous effect. The recommended dosage regimens for monotherapy and adjunctive therapy are 1 and 0.5 mg PO QD, respectively. Despite the well-documented selectivity of rasagiline, the manufacturer recommends virtually all of the dietary (vis

  17. What do we know about communicating risk? A brief review and suggestion for contextualising serious, but rare, risk, and the example of cox-2 selective and non-selective NSAIDs

    PubMed Central

    Moore, R Andrew; Derry, Sheena; McQuay, Henry J; Paling, John

    2008-01-01

    Background Communicating risk is difficult. Although different methods have been proposed – using numbers, words, pictures or combinations – none has been extensively tested. We used electronic and bibliographic searches to review evidence concerning risk perception and presentation. People tend to underestimate common risk and overestimate rare risk; they respond to risks primarily on the basis of emotion rather than facts, seem to be risk averse when faced with medical interventions, and want information on even the rarest of adverse events. Methods We identified observational studies (primarily in the form of meta-analyses) with information on individual non-steroidal anti-inflammatory drug (NSAID) or selective cyclooxygenase-2 inhibitor (coxib) use and relative risk of gastrointestinal bleed or cardiovascular event, the background rate of events in the absence of NSAID or coxib, and the likelihood of death from an event. Using this information we present the outcome of additional risk of death from gastrointestinal bleed and cardiovascular event for individual NSAIDs and coxibs alongside information about death from other causes in a series of perspective scales. Results The literature on communicating risk to patients is limited. There are problems with literacy, numeracy and the human tendency to overestimate rare risk and underestimate common risk. There is inconsistency in how people translate between numbers and words. We present a method of communicating information about serious risks using the common outcome of death, using pictures, numbers and words, and contextualising the information. The use of this method for gastrointestinal and cardiovascular harm with NSAIDs and coxibs shows differences between individual NSAIDs and coxibs. Conclusion Although contextualised risk information can be provided on two possible adverse events, many other possible adverse events with potential serious consequences were omitted. Patients and professionals want

  18. BaxΔ2 sensitizes colorectal cancer cells to proteasome inhibitor-induced cell death

    PubMed Central

    Mañas, Adriana; Chen, Wenjing; Nelson, Adam; Yao, Qi; Xiang, Jialing

    2018-01-01

    Proteasome inhibitors, such as bortezomib and carfilzomib, are FDA approved for the treatment of hemopoietic cancers, but recent studies have shown their great potential for treatment of solid tumors. BaxΔ2, a unique proapoptotic Bax isoform, promotes non-mitochondrial cell death and sensitizes cancer cells to chemotherapy. However, endogenous BaxΔ2 proteins are unstable and susceptible to proteasomal degradation. Here, we screened a panel of proteasome inhibitors in colorectal cancer cells with different Bax statuses. We found that all proteasome inhibitors tested were able to block BaxΔ2 degradation without affecting the level of Baxα or Bcl-2 proteins. Among the inhibitors tested, only bortezomib and carfilzomib were able to induce differential cell death corresponding to the distinct Bax statuses. BaxΔ2-positive cells had a significantly higher level of cell death at low nanomolar concentrations than Baxα-positive or Bax-negative cells. Furthermore, bortezomib-induced cell death in BaxΔ2-positive cells was predominantly dependent on the caspase 8/3 pathway, consistent with our previous studies. These results imply that BaxΔ2 can selectively sensitize cancer cells to proteasome inhibitors, enhancing their potential to treat colon cancer and other solid tumors. PMID:29291406

  19. Adenosine up-regulates cyclooxygenase-2 in human granulocytes: impact on the balance of eicosanoid generation.

    PubMed

    Pouliot, Marc; Fiset, Marie-Elaine; Massé, Mireille; Naccache, Paul H; Borgeat, Pierre

    2002-11-01

    Polymorphonuclear neutrophils (granulocytes; PMNs) are often the first blood cells to migrate toward inflammatory lesions to perform host defense functions. PMNs respond to specific stimuli by releasing several factors and generate lipid mediators of inflammation from the 5-lipoxygenase and the inducible cyclooxygenase (COX)-2 pathways. In view of adenosine's anti-inflammatory properties and suppressive impact on the 5-lipoxygenase pathway, we addressed in this study the impact of this autacoid on the COX-2 pathway. We observed that adenosine up-regulates the expression of the COX-2 enzyme and mRNA. Production of PGE(2) in response to exogenous arachidonic acid was also increased by adenosine and correlated with COX-2 protein levels. The potentiating effect of adenosine on COX-2 could be mimicked by pharmacological increases of intracellular cAMP levels, involving the latter as a putative second messenger for the up-regulation of COX-2 by adenosine. Specific COX-2 inhibitors were used to confirm the predominant role of the COX-2 isoform in the formation of prostanoids by stimulated PMNs. Withdrawal of extracellular adenosine strikingly emphasized the inhibitory potential of PGE(2) on leukotriene B(4) formation and involved the EP(2) receptor subtype in this process. Thus, adenosine may promote a self-limiting regulatory process through the increase of PGE(2) generation, which may result in the inhibition of PMN functions. This study identifies a new aspect of the anti-inflammatory properties of adenosine in leukocytes, introducing the concept that this autacoid may exert its immunomodulatory activities in part by modifying the balance of lipid mediators generated by PMNs.

  20. Effects of cyclooxygenase inhibitors on the alterations in lung mechanics caused by endotoxemia in the unanesthetized sheep.

    PubMed

    Snapper, J R; Hutchison, A A; Ogletree, M L; Brigham, K L

    1983-07-01

    The effects of Escherichia coli endotoxin on lung mechanics, hemodynamics, gas exchange, and lung fluid and solute exchange were studied in 12 chronically instrumented unanesthetized sheep. A possible role for cyclooxygenase products of arachidonate metabolism as mediators of the endotoxin-induced alterations in lung mechanics was investigated by studying sheep before and after cyclooxygenase inhibition with sodium meclofenamate and ibuprofen. Sheep were studied three times in random order: (a) sodium meclofenamate (or ibuprofen) infusion alone; (b) E. coli endotoxin alone; and (c) meclofenamate (or ibuprofen) and endotoxin. Meclofenamate alone had no effect on any of the variables measured. Endotoxin alone caused early marked changes in lung mechanics: resistance to airflow across the lungs (RL) increased 10-fold, dynamic lung compliance (Cdyn) decreased 80% and functional residual capacity (FRC) decreased by greater than 30%. The alveolar-to-arterial oxygen difference (delta AaPO2) increased markedly following endotoxemia. In the presence of sufficient meclofenamate to inhibit accumulation of thromboxane-B2 and 6-keto-prostaglandin F1 alpha in lung lymph, endotoxin caused no increase in RL, Cdyn decreased by less than 40%, and FRC decreased by only 6%. Meclofenamate significantly attenuated the hypoxemia and early pulmonary hypertension caused by endotoxemia but had no effect on the late increases in lung fluid and solute exchange. Ibuprofen had similar effects to those observed with meclofenamate. We conclude that both the pulmonary hypertension and changes in lung mechanics observed after endotoxemia may be mediated, at least in part, by constrictor prostaglandins or thromboxanes and that gas exchange may be improved by preventing endogenous synthesis of these mediators.

  1. Atorvastatin-induced cardioprotection is mediated by increasing inducible nitric oxide synthase and consequent S-nitrosylation of cyclooxygenase-2.

    PubMed

    Atar, Shaul; Ye, Yumei; Lin, Yu; Freeberg, Sheldon Y; Nishi, Shawn P; Rosanio, Salvatore; Huang, Ming-He; Uretsky, Barry F; Perez-Polo, Jose R; Birnbaum, Yochai

    2006-05-01

    We determined the effects of cyclooxygenase-1 (COX-1; SC-560), COX-2 (SC-58125), and inducible nitric oxide synthase (iNOS; 1400W) inhibitors on atorvastatin (ATV)-induced myocardial protection and whether iNOS mediates the ATV-induced increases in COX-2. Sprague-Dawley rats received 10 mg ATV.kg(-1).day(-1) added to drinking water or water alone for 3 days and received intravenous SC-58125, SC-560, 1400W, or vehicle alone. Anesthesia was induced with ketamine and xylazine and maintained with isoflurane. Fifteen minutes after intravenous injection rats underwent 30-min myocardial ischemia followed by 4-h reperfusion [infarct size (IS) protocol], or the hearts were explanted for biochemical analysis and immunoblotting. Left ventricular weight and area at risk (AR) were comparable among groups. ATV reduced IS to 12.7% (SD 3.1) of AR, a reduction of 64% vs. 35.1% (SD 7.6) in the sham-treated group (P < 0.001). SC-58125 and 1400W attenuated the protective effect without affecting IS in the non-ATV-treated rats. ATV increased calcium-independent NOS (iNOS) [11.9 (SD 0.8) vs. 3.9 (SD 0.1) x 1,000 counts/min; P < 0.001] and COX-2 [46.7 (SD 1.1) vs. 6.5 (SD 1.4) pg/ml of 6-keto-PGF(1alpha); P < 0.001] activity. Both SC-58125 and 1400W attenuated this increase. SC-58125 did not affect iNOS activity, whereas 1400W blocked iNOS activity. COX-2 was S-nitrosylated in ATV-treated but not sham-treated rats or rats pretreated with 1400W. COX-2 immunoprecipitated with iNOS but not with endothelial nitric oxide synthase. We conclude that ATV reduced IS by increasing the activity of iNOS and COX-2, iNOS is upstream to COX-2, and iNOS activates COX-2 by S-nitrosylation. These results are consistent with the hypothesis that preconditioning effects are mediated via PG.

  2. Structure-based design of oxygen-linked macrocyclic kinase inhibitors: discovery of SB1518 and SB1578, potent inhibitors of Janus kinase 2 (JAK2) and Fms-like tyrosine kinase-3 (FLT3)

    NASA Astrophysics Data System (ADS)

    Poulsen, Anders; William, Anthony; Blanchard, Stéphanie; Lee, Angeline; Nagaraj, Harish; Wang, Haishan; Teo, Eeling; Tan, Evelyn; Goh, Kee Chuan; Dymock, Brian

    2012-04-01

    Macrocycles from our Aurora project were screened in a kinase panel and were found to be active on other kinase targets, mainly JAKs, FLT3 and CDKs. Subsequently these compounds became leads in our JAK2 project. Macrocycles with a basic nitrogen in the linker form a salt bridge with Asp86 in CDK2 and Asp698 in FLT3. This residue is conserved in most CDKs resulting in potent pan CDK inhibition. One of the main project objectives was to achieve JAK2 potency with 100-fold selectivity against CDKs. Macrocycles with an ether linker have potent JAK2 activity with the ether oxygen forming a hydrogen bond to Ser936. A hydrogen bond to the equivalent residues of JAK3 and most CDKs cannot be formed resulting in good selectivity for JAK2 over JAK3 and CDKs. Further optimization of the macrocyclic linker and side chain increased JAK2 and FLT3 activity as well as improving DMPK properties. The selective JAK2/FLT3 inhibitor 11 (Pacritinib, SB1518) has successfully finished phase 2 clinical trials for myelofibrosis and lymphoma. Another selective JAK2/FLT3 inhibitor, 33 (SB1578), has entered phase 1 clinical development for the non-oncology indication rheumatoid arthritis.

  3. Cyclooxygenase inhibition does not alter methacholine-induced sweating

    PubMed Central

    Fujii, Naoto; McGinn, Ryan; Paull, Gabrielle; Stapleton, Jill M.; Meade, Robert D.

    2014-01-01

    Cholinergic agents (e.g., methacholine) induce cutaneous vasodilation and sweating. Reports indicate that either nitric oxide (NO), cyclooxygenase (COX), or both can contribute to cholinergic cutaneous vasodilation. Also, NO is reportedly involved in cholinergic sweating; however, whether COX contributes to cholinergic sweating is unclear. Forearm sweat rate (ventilated capsule) and cutaneous vascular conductance (CVC, laser-Doppler perfusion units/mean arterial pressure) were evaluated in 10 healthy young (24 ± 4 yr) adults (7 men, 3 women) at four skin sites that were continuously perfused via intradermal microdialysis with 1) lactated Ringer (control), 2) 10 mM ketorolac (a nonselective COX inhibitor), 3) 10 mM NG-nitro-l-arginine methyl ester (l-NAME, a nonselective NO synthase inhibitor), or 4) a combination of 10 mM ketorolac + 10 mM l-NAME. At the four skin sites, methacholine was simultaneously infused in a dose-dependent manner (1, 10, 100, 1,000, 2,000 mM). Relative to the control site, forearm CVC was not influenced by ketorolac throughout the protocol (all P > 0.05), whereas l-NAME and ketorolac + l-NAME reduced forearm CVC at and above 10 mM methacholine (all P < 0.05). Conversely, there was no main effect of treatment site (P = 0.488) and no interaction of methacholine dose and treatment site (P = 0.711) on forearm sweating. Thus forearm sweating (in mg·min−1·cm−2) from baseline up to the maximal dose of methacholine was not different between the four sites (at 2,000 mM, control 0.50 ± 0.23, ketorolac 0.44 ± 0.23, l-NAME 0.51 ± 0.22, and ketorolac + l-NAME 0.51 ± 0.23). We show that both NO synthase and COX inhibition do not influence cholinergic sweating induced by 1–2,000 mM methacholine. PMID:25213633

  4. Isolation and characterization of a monoamine oxidase B selective inhibitor from tobacco smoke.

    PubMed

    Khalil, Ashraf A; Davies, Bruce; Castagnoli, Neal

    2006-05-15

    It is well established that tobacco smokers have reduced levels of monoamine oxidase activities both in the brain and peripheral organs. Furthermore, extensive evidence suggests that smokers are less prone to develop Parkinson's disease. These facts, plus the observation that inhibition of monoamine oxidase B protects against the parkinsonian inducing effects of the nigrostriatal neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, have prompted studies to identify monoamine oxidase inhibitors in the tobacco plant and tobacco cigarette smoke. Our previous efforts on cured tobacco leaf extracts have led to the characterization of 2,3,6-trimethyl-1,4-naphthoquinone, a non-selective monoamine oxidase inhibitor, and farnesylacetone, a selective monoamine oxidase B inhibitor. We now have extended these studies to tobacco smoke constituents. Fractionation of the smoke extracts has confirmed and extended the qualitative results of an earlier report [J. Korean Soc. Tob. Sci.1997, 19, 136] demonstrating the inhibitory activity of the terpene trans,trans-farnesol on rat brain MAO-B. In the present study, K(i) values for the inhibition of human, baboon, monkey, dog, rat, and mouse liver MAO-B have been determined. Noteworthy is the absence of inhibitory effects on human placental MAO-A and beef liver MAO-B. A limited structure-activity relationship study of analogs of trans,trans-farnesol is reported. Although the health hazards associated with the use of tobacco products preclude any therapeutic opportunities linked to smoking, these results suggest the possibility of identifying novel structures of compounds that could lead to the development of neuroprotective agents.

  5. Superacid synthesized tertiary benzenesulfonamides and benzofuzed sultams act as selective hCA IX inhibitors: toward understanding a new mode of inhibition by tertiary sulfonamides.

    PubMed

    Métayer, Benoît; Martin-Mingot, Agnès; Vullo, Daniella; Supuran, Claudiu T; Thibaudeau, Sébastien

    2013-11-21

    A series of tertiary (fluorinated) benzenesulfonamides was synthesized in superacid HF-SbF5. To circumvent the problem of the in situ iminium ion formation, proved by low temperature NMR experiments, a tandem superacid catalysed cross-coupling reaction was employed to synthesize the benzofuzed sultams analogues. These tertiary benzenesulfonamides were tested as inhibitors of human carbonic anhydrases (hCAs, EC 4.2.1.1). These compounds did not inhibit the widespread off target hCA II isoform and showed strong selectivity toward tumor-associated carbonic anhydrase isoform IX. A dramatic effect of the electronic and structural shape of the inhibitors on selectivity was demonstrated, confirming the non-zinc-bonding mode of inhibition of this class of sulfonamides. This work allowed identifying a highly selective hCA IX inhibitor lead in this series.

  6. Cyclooxygenase inhibitory compounds from Gymnosporia heterophylla aerial parts.

    PubMed

    Ochieng, Charles O; Opiyo, Sylvia A; Mureka, Edward W; Ishola, Ismail O

    2017-06-01

    Gymnosporia heterophylla (Celastraceae) is an African medicinal plants used to treat painful and inflammatory diseases with partial scientific validation. Solvent extractions followed by repeated chromatographic purification of the G. heterophylla aerial parts led to the isolation of one new β-dihydroagarofuran sesquiterpene alkaloid (1), and two triterpenes (2-3). In addition, eight known compounds including one β-dihydroagarofuran sesquiterpene alkaloid (4), and six triterpenes (5-10) were isolated. All structures were determined through extensive analysis of the NMR an MS data as well as by comparison with literature data. These compounds were evaluated for the anti-inflammatory activities against COX-1 and -2 inhibitory potentials. Most of the compound isolated showed non selective COX inhibitions except for 3-Acetoxy-1β-hydroxyLupe-20(29)-ene (5), Lup-20(29)-ene-1β,3β-diol (6) which showed COX-2 selective inhibition at 0.54 (1.85), and 0.45 (2.22) IC 50 , in mM (Selective Index), respectively. The results confirmed the presence of anti-inflammatory compounds in G. heterophylla which are important indicators for development of complementary medicine for inflammatory reactions; however, few could be useful as selective COX-2 inhibitor. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Sensitization of meningeal nociceptors: inhibition by naproxen

    PubMed Central

    Levy, Dan; Zhang, Xi-Chun; Jakubowski, Moshe; Burstein, Rami

    2009-01-01

    Migraine attacks associated with throbbing (manifestation of peripheral sensitization) and cutaneous allodynia (manifestation of central sensitization) are readily terminated by intravenous administration of a non-selective cyclooxygenase (COX) inhibitor. Evidence that sensitization of rat central trigeminovascular neurons was also terminated in vivo by non-selective COX inhibition has led us to propose that COX inhibitors may act centrally in the dorsal horn. In the present study, we examined whether COX inhibition can also suppress peripheral sensitization in meningeal nociceptors. Using single-unit recording in the trigeminal ganglion in vivo, we found that intravenous infusion of naproxen, a non-selective COX inhibitor, reversed measures of sensitization induced in meningeal nociceptors by prior exposure of the dura to inflammatory soup (IS): ongoing activity of Aδ- and C-units and their response magnitude to mechanical stimulation of the dura, which were enhanced after IS, returned to baseline after naproxen infusion. Topical application of naproxen or the selective COX-2 inhibitor N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398) onto the dural receptive field of Aδ- and C-unit nociceptors also reversed the neuronal hyper-responsiveness to mechanical stimulation of the dura. The findings suggest that local COX activity in the dura could mediate the peripheral sensitization that underlies migraine headache. PMID:18333963

  8. NSAIDs: the Emperor’s new dogma?

    PubMed Central

    Bjarnason, I; Takeuchi, K; Simpson, R

    2003-01-01

    The spectacular marketing success of the selective cyclooxygenase 2 (COX-2) inhibitors is largely based on efficacy comparable with conventional non-steroidal anti-inflammatory drugs (NSAIDs) with vastly improved gastrointestinal safety. The additional key to the marketing success is the purity and simplicity of the message—that is, COX-1 inhibition causes the gastrointestinal side effects of NSAIDs (COX-1 dogma) while COX-2 blocking confers the therapeutic benefits (COX-2 dogma). Adherence to the COX dogmas with development of COX-2 selective agents has undoubtedly benefited many patients, but ironically their scientific basis is now seriously challenged by experimentation. PMID:12912873

  9. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: Involvement of nicotinic acetylcholine receptor (nAChR) and {beta}-adrenergic receptor signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Vivian Yvonne; Jin, H.C.; Ng, Enders K.O.

    Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor ({alpha}7 nAChR) and {beta}-adrenergic receptors. Treatment of cells with {alpha}-bungarotoxin ({alpha}-BTX, {alpha}7nAChR antagonist) or propranolol ({beta}-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE{sub 2} and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE{sub 2} induction canmore » only be suppressed by propranolol, but not {alpha}-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis.« less

  10. Flavocoxid, a dual inhibitor of cyclooxygenase and 5-lipoxygenase, blunts pro-inflammatory phenotype activation in endotoxin-stimulated macrophages.

    PubMed

    Altavilla, D; Squadrito, F; Bitto, A; Polito, F; Burnett, B P; Di Stefano, V; Minutoli, L

    2009-08-01

    The flavonoids, baicalin and catechin, from Scutellaria baicalensis and Acacia catechu, respectively, have been used for various clinical applications. Flavocoxid is a mixed extract containing baicalin and catechin, and acts as a dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (LOX) enzymes. The anti-inflammatory activity, measured by protein and gene expression of inflammatory markers, of flavocoxid in rat peritoneal macrophages stimulated with Salmonella enteritidis lipopolysaccharide (LPS) was investigated. LPS-stimulated (1 microg.mL(-1)) peritoneal rat macrophages were co-incubated with different concentrations of flavocoxid (32-128 microg.mL(-1)) or RPMI medium for different incubation times. Inducible COX-2, 5-LOX, inducible nitric oxide synthase (iNOS) and inhibitory protein kappaB-alpha (IkappaB-alpha) levels were evaluated by Western blot analysis. Nuclear factor kappaB (NF-kappaB) binding activity was investigated by electrophoretic mobility shift assay. Tumour necrosis factor-alpha (TNF-alpha) gene and protein expression were measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay respectively. Finally, malondialdehyde (MDA) and nitrite levels in macrophage supernatants were evaluated. LPS stimulation induced a pro-inflammatory phenotype in rat peritoneal macrophages. Flavocoxid (128 microg.mL(-1)) significantly inhibited COX-2 (LPS = 18 +/- 2.1; flavocoxid = 3.8 +/- 0.9 integrated intensity), 5-LOX (LPS = 20 +/- 3.8; flavocoxid = 3.1 +/- 0.8 integrated intensity) and iNOS expression (LPS = 15 +/- 1.1; flavocoxid = 4.1 +/- 0.4 integrated intensity), but did not modify COX-1 expression. PGE(2) and LTB(4) levels in culture supernatants were consequently decreased. Flavocoxid also prevented the loss of IkappaB-alpha protein (LPS = 1.9 +/- 0.2; flavocoxid = 7.2 +/- 1.6 integrated intensity), blunted increased NF-kappaB binding activity (LPS = 9.2 +/- 2; flavocoxid = 2.4 +/- 0.7 integrated intensity) and the enhanced

  11. The anti-tumor effect of HDAC inhibition in a human pancreas cancer model is significantly improved by the simultaneous inhibition of cyclooxygenase 2.

    PubMed

    Peulen, Olivier; Gonzalez, Arnaud; Peixoto, Paul; Turtoi, Andrei; Mottet, Denis; Delvenne, Philippe; Castronovo, Vincent

    2013-01-01

    Pancreatic ductal adenocarcinoma is the fourth leading cause of cancer death worldwide, with no satisfactory treatment to date. In this study, we tested whether the combined inhibition of cyclooxygenase-2 (COX-2) and class I histone deacetylase (HDAC) may results in a better control of pancreatic ductal adenocarcinoma. The impact of the concomitant HDAC and COX-2 inhibition on cell growth, apoptosis and cell cycle was assessed first in vitro on human pancreas BxPC-3, PANC-1 or CFPAC-1 cells treated with chemical inhibitors (SAHA, MS-275 and celecoxib) or HDAC1/2/3/7 siRNA. To test the potential antitumoral activity of this combination in vivo, we have developed and characterized, a refined chick chorioallantoic membrane tumor model that histologically and proteomically mimics human pancreatic ductal adenocarcinoma. The combination of HDAC1/3 and COX-2 inhibition significantly impaired proliferation of BxPC-3 cells in vitro and stalled entirely the BxPC-3 cells tumor growth onto the chorioallantoic membrane in vivo. The combination was more effective than either drug used alone. Consistently, we showed that both HDAC1 and HDAC3 inhibition induced the expression of COX-2 via the NF-kB pathway. Our data demonstrate, for the first time in a Pancreatic Ductal Adenocarcinoma (PDAC) model, a significant action of HDAC and COX-2 inhibitors on cancer cell growth, which sets the basis for the development of potentially effective new combinatory therapies for pancreatic ductal adenocarcinoma patients.

  12. [Treatment and prevention of erosive and ulcerative lesions in the stomach and duodenum caused by intake of non-steroidalanti-inflammatory drugs].

    PubMed

    Luzina, E V

    2014-01-01

    Therapy with non-steroidal anti-inflammatory drugs (NSAIDs) is a diffcult task. Good anti-inflammatory effect increases the risk of gastrointestinal complications with a frequency of 10-50%. The risk further increases with age (above 60-70 yr), the history of ulcer disease concomitant intake of acetylsalicylic acid, anticoagulants, and glucocorticosteroids. Long-term antisecretory therapy with proton pump inhibitors, e.g., esomeprazole, was shown to be an effective prophylactic tool. This drug maintains the intragastric pH value above 4 for 15 hr on the average. The risk of erosive and ulceraive lesions in the stomach and duodenum significantly decreases by selective cyclooxygenase-2 inhibitors, e.g., coxibs, that however increase the risk of thrombotic cardiovascular complications. The author proposes recommendations on the use of NSAIDs in the patients at risk of serious gastrointestinal and cardiovascular pathology. Naproxen in combination with proton pitmp inhibitors is the drug of choice among NSAIDs. Vimovo is a fixed combination of naproxen and esomeprazole. Results of comparative studies on the efficacy of vimovo and celecoxib are presented along with the data on the safety of this. combination compared with that of naproxen monotherapy

  13. Myricetin down-regulates phorbol ester-induced cyclooxygenase-2 expression in mouse epidermal cells by blocking activation of nuclear factor kappa B.

    PubMed

    Lee, Kyung Mi; Kang, Nam Joo; Han, Jin Hee; Lee, Ki Won; Lee, Hyong Joo

    2007-11-14

    Abnormal expression of cyclooxygenase-2 (COX-2) has been implicated in the development of cancer. There are multiple lines of evidence that red wine exerts chemopreventive effects, and 3,5,4'-trihydroxy- trans-stilbene (resveratrol), which is a non-flavonoid polyphenol found in red wine, has been reported to be a natural chemopreventive agent. However, other phytochemicals might contribute to the cancer-preventive activities of red wine, and the flavonol content of red wines is about 30 times higher than that of resveratrol. Here we report that 3,3',4',5,5',7-hexahydroxyflavone (myricetin), one of the major flavonols in red wine, inhibits 12-O-tetradecanoylphorbol-13-acetate (phorbol ester)-induced COX-2 expression in JB6 P+ mouse epidermal (JB6 P+) cells by suppressing activation of nuclear factor kappa B (NF-kappaB). Myricetin at 10 and 20 microM inhibited phorbol ester-induced upregulation of COX-2 protein, while resveratrol at the same concentration did not exert significant effects. The phorbol ester-induced production of prostaglandin E 2 was also attenuated by myricetin treatment. Myricetin inhibited both COX-2 and NF-kappaB transactivation in phorbol ester-treated JB6 P+ cells, as determined using a luciferase assay. Myricetin blocked the phorbol ester-stimulated DNA binding activity of NF-kappaB, as determined using an electrophoretic mobility shift assay. Moreover, TPCK (N-tosyl-l-phenylalanine chloromethyl ketone), a NF-kappaB inhibitor, significantly attenuated COX-2 expression and NF-kappaB promoter activity in phorbol ester-treated JB6 P+ cells. In addition, red wine extract inhibited phorbol ester-induced COX-2 expression and NF-kappaB transactivation in JB6 P+ cells. Collectively, these data suggest that myricetin contributes to the chemopreventive effects of red wine through inhibition of COX-2 expression by blocking the activation of NF-kappaB.

  14. Non-covalent Small-Molecule Kelch-like ECH-Associated Protein 1-Nuclear Factor Erythroid 2-Related Factor 2 (Keap1-Nrf2) Inhibitors and Their Potential for Targeting Central Nervous System Diseases.

    PubMed

    Pallesen, Jakob S; Tran, Kim T; Bach, Anders

    2018-05-29

    The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) has a protective effect against oxidative stress and plays a major role in inflammation and central nervous system (CNS) diseases. Inhibition of the protein-protein interaction (PPI) between Nrf2 and its repressor protein, Kelch-like ECH-associated protein 1 (Keap1), leads to translocation of Nrf2 from the cytosol to the nucleus and expression of detoxifying antioxidant enzymes. To date, several non-covalent small-molecule Keap1-Nrf2 inhibitors have been identified; however, many of them contain carboxylic acids and are rather large in size, which likely prevents or decreases CNS permeability. This Perspective describes current small-molecule Keap1-Nrf2 inhibitors with experimental evidence for the ability to inhibit the Keap1-Nrf2 interaction by binding to Keap1 in a non-covalent manner. Binding data, biostructural studies, and biological activity are summarized for the inhibitors, and their potential as CNS tool compounds is discussed by analyzing physicochemical properties, including CNS multiparameter optimization (MPO) scoring algorithms. Finally, several strategies for identifying CNS-targeting Keap1 inhibitors are described.

  15. Structure-Based Design and Synthesis of Potent and Selective Matrix Metalloproteinase 13 Inhibitors.

    PubMed

    Choi, Jun Yong; Fuerst, Rita; Knapinska, Anna M; Taylor, Alexander B; Smith, Lyndsay; Cao, Xiaohang; Hart, P John; Fields, Gregg B; Roush, William R

    2017-07-13

    We describe the use of comparative structural analysis and structure-guided molecular design to develop potent and selective inhibitors (10d and (S)-17b) of matrix metalloproteinase 13 (MMP-13). We applied a three-step process, starting with a comparative analysis of the X-ray crystallographic structure of compound 5 in complex with MMP-13 with published structures of known MMP-13·inhibitor complexes followed by molecular design and synthesis of potent but nonselective zinc-chelating MMP inhibitors (e.g., 10a and 10b). After demonstrating that the pharmacophores of the chelating inhibitors (S)-10a, (R)-10a, and 10b were binding within the MMP-13 active site, the Zn 2+ chelating unit was replaced with nonchelating polar residues that bridged over the Zn 2+ binding site and reached into a solvent accessible area. After two rounds of structural optimization, these design approaches led to small molecule MMP-13 inhibitors 10d and (S)-17b, which bind within the substrate-binding site of MMP-13 and surround the catalytically active Zn 2+ ion without chelating to the metal. These compounds exhibit at least 500-fold selectivity versus other MMPs.

  16. [Sodium Glucose Co-transporter Type 2 (SGLT2) Inhibitors in CKD].

    PubMed

    Insalaco, Monica; Zanoli, Luca; Rastelli, Stefania; Lentini, Paolo; Rapisarda, Francesco; Fatuzzo, Pasquale; Castellino, Pietro; Granata, Antonio

    2015-01-01

    Among the new drugs used for the treatment of Diabetes Mellitus type 2, sodium-glucose cotransporter 2 (SGLT2) inhibitors represent a promising therapeutic option. Since their ability to lower glucose is proportional to GFR, their effect is reduced in patients with chronic kidney disease (CKD). The antidiabetic mechanism of these drugs is insulin-independent and, therefore, complimentary to that of others antihyperglicaemic agents. Moreover, SGLT2 inhibitors are able to reduce glomerular hyperfiltration, systemic and intraglomerular pressure and uric acid levels, with consequent beneficial effects on the progression of kidney disease in non diabetic patients as well. Only few studies have been performed to evaluate the effects of SGLT2 inhibitors in patients with CKD. Therefore, safety and efficacy of SGLT2 inhibitors should be better clarified in the setting of CKD. In this paper, we will review the use of SGLT2 inhibitors in diabetic patients, including those with CKD.

  17. Discovery and antiplatelet activity of a selective PI3Kβ inhibitor (MIPS-9922).

    PubMed

    Zheng, Zhaohua; Pinson, Jo-Anne; Mountford, Simon J; Orive, Stephanie; Schoenwaelder, Simone M; Shackleford, David; Powell, Andrew; Nelson, Erin M; Hamilton, Justin R; Jackson, Shaun P; Jennings, Ian G; Thompson, Philip E

    2016-10-21

    A series of amino-substituted triazines were developed and examined for PI3Kβ inhibition and anti-platelet function. Structural adaptations of a morpholine ring of the prototype pan-PI3K inhibitor ZSTK474 yielded PI3Kβ selective compounds, where the selectivity largely derives from an interaction with the non-conserved Asp862 residue, as shown by site directed mutagenesis. The most PI3Kβ selective inhibitor from the series was studied in detail through a series of in vitro and in vivo functional studies. MIPS-9922, 10 potently inhibited ADP-induced washed platelet aggregation. It also inhibited integrin αIIbβ3 activation and αIIbβ3 dependent platelet adhesion to immobilized vWF under high shear. It prevented arterial thrombus formation in the in vivo electrolytic mouse model of thrombosis without inducing prolonged bleeding or excess blood loss. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Direct-to-consumer advertising of COX-2 inhibitors: effect on appropriateness of prescribing.

    PubMed

    Spence, Michele M; Teleki, Stephanie S; Cheetham, T Craig; Schweitzer, Stuart O; Millares, Mirta

    2005-10-01

    Spending on direct-to-consumer advertising (DTCA) of prescription drugs has increased dramatically in the past several years. An unresolved question is whether such advertising leads to inappropriate prescribing. In this study, the authors use survey and administrative data to determine the association of DTCA with the appropriate prescribing of cyclooxygenase-2 (COX-2) inhibitors for 1,382 patients. Treatment with either a COX-2 or a traditional nonsteroidal anti-inflammatory drug (NSAID) was defined as appropriate or not according to three different definitions of gastrointestinal risk. Patients who saw or heard a COX-2 advertisement and asked their physician about the advertised drug were significantly more likely to be prescribed a COX-2 (versus a NSAID, as recommended by evidence-based guidelines) than all other patients. Findings also suggest that some patients may benefit from DTCA. The authors discuss the need for balanced drug information for consumers, increased physician vigilance in prescribing appropriately, and further study of DTCA.

  19. Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: an expression profiling study.

    PubMed

    Chlapek, Petr; Redova, Martina; Zitterbart, Karel; Hermanova, Marketa; Sterba, Jaroslav; Veselska, Renata

    2010-05-11

    We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2) and SH-SY5Y, after combined treatment with all-trans retinoic acid (ATRA) and inhibitors of lipoxygenases (LOX) and cyclooxygenases (COX). This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells. Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 cancer-related genes. Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling. These changes were detected in both cell lines, and they were independent of the type of specific inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2) or SH-SY5Y) after combined treatment with both ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX) in combination with ATRA in both cell lines. Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-induced cell differentiation via inhibition of arachidonic acid metabolic pathway.

  20. A Multi-Level Theoretical Study to Disclose the Binding Mechanisms of Gold(III)-Bipyridyl Compounds as Selective Aquaglyceroporin Inhibitors.

    PubMed

    Graziani, Valentina; Marrone, Alessandro; Re, Nazzareno; Coletti, Cecilia; Platts, James A; Casini, Angela

    2017-10-04

    Structural studies have paved the avenue to a deeper understanding of aquaporins (AQPs), small ancient proteins providing efficient transmembrane pathways for water, small uncharged solutes such as glycerol, and possibly gas molecules. Despite the numerous studies, their roles in health and disease remain to be fully disclosed. The recent discovery of Au III complexes as potent and selective inhibitors of aquaglyceroporin isoforms paves the way to their possible therapeutic application. The binding of the selective human AQP3 inhibitor, the cationic complex [Au(bipy)Cl 2 ] + (Aubipy), to the protein channel has been investigated here by means of a multi-level theoretical workflow that includes QM, MD and QM/MM approaches. The hydroxo complex was identified as the prevalent form of Aubipy in physiological media and its binding to AQP3 studied by MD. Both non-covalent and coordinative Aubipy-AQP3 adducts were simulated to probe their role in the modulation of water channel functionality. The electronic structures of representative Aubipy-AQP3 adducts were then analysed to unveil the role played by the metal moiety in their stabilisation. This study spotlights the overall importance of three key aspects for AQP3 inhibition: 1) water speciation of the Au III complex, 2) stability of non-covalent adducts and 3) conformational changes induced within the pore by the coordinative binding of Au III . The obtained results are expected to orient future developments in the design of isoform-selective Au III inhibitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Discovery of Potent and Specific Dihydroisoxazole Inhibitors of Human Transglutaminase 2

    PubMed Central

    2015-01-01

    Transglutaminase 2 (TG2) is a ubiquitously expressed enzyme that catalyzes the posttranslational modification of glutamine residues on protein or peptide substrates. A growing body of literature has implicated aberrantly regulated activity of TG2 in the pathogenesis of various human inflammatory, fibrotic, and other diseases. Taken together with the fact that TG2 knockout mice are developmentally and reproductively normal, there is growing interest in the potential use of TG2 inhibitors in the treatment of these conditions. Targeted-covalent inhibitors based on the weakly electrophilic 3-bromo-4,5-dihydroisoxazole (DHI) scaffold have been widely used to study TG2 biology and are well tolerated in vivo, but these compounds have only modest potency, and their selectivity toward other transglutaminase homologues is largely unknown. In the present work, we first profiled the selectivity of existing inhibitors against the most pertinent TG isoforms (TG1, TG3, and FXIIIa). Significant cross-reactivity of these small molecules with TG1 was observed. Structure–activity and −selectivity analyses led to the identification of modifications that improved potency and isoform selectivity. Preliminary pharmacokinetic analysis of the most promising analogues was also undertaken. Our new data provides a clear basis for the rational selection of dihydroisoxazole inhibitors as tools for in vivo biological investigation. PMID:25333388

  2. SGLT2 inhibitors: molecular design and potential differences in effect.

    PubMed

    Isaji, Masayuki

    2011-03-01

    The physiological and pathological handling of glucose via sodium-glucose cotransporter-2 (SGLT2) in the kidneys has been evolving, and SGLT2 inhibitors have been focused upon as a novel drug for treating diabetes. SGLT2 inhibitors enhance renal glucose excretion by inhibiting renal glucose reabsorption. Consequently, SGLT2 inhibitors reduce plasma glucose insulin independently and improve insulin resistance in diabetes. To date, various SGLT2 inhibitors have been developed and evaluated in clinical studies. The potency and positioning of SGLT2 inhibitors as an antidiabetic drug are dependent on their characteristic profile, which induces selectivity, efficacy, pharmacokinetics, and safety. This profile decides which SGLT2 inhibitors can be expected for application of the theoretical concept of reducing renal glucose reabsorption for the treatment of diabetes. I review the structure and advancing profile of various SGLT2 inhibitors, comparing their similarities and differences, and discuss the expected SGLT2 inhibitors for an emerging category of antidiabetic drugs.

  3. Induction of selective blood-tumor barrier permeability and macromolecular transport by a biostable kinin B1 receptor agonist in a glioma rat model.

    PubMed

    Côté, Jérôme; Bovenzi, Veronica; Savard, Martin; Dubuc, Céléna; Fortier, Audrey; Neugebauer, Witold; Tremblay, Luc; Müller-Esterl, Werner; Tsanaclis, Ana-Maria; Lepage, Martin; Fortin, David; Gobeil, Fernand

    2012-01-01

    Treatment of malignant glioma with chemotherapy is limited mostly because of delivery impediment related to the blood-brain tumor barrier (BTB). B1 receptors (B1R), inducible prototypical G-protein coupled receptors (GPCR) can regulate permeability of vessels including possibly that of brain tumors. Here, we determine the extent of BTB permeability induced by the natural and synthetic peptide B1R agonists, LysdesArg(9)BK (LDBK) and SarLys[dPhe(8)]desArg(9)BK (NG29), in syngeneic F98 glioma-implanted Fischer rats. Ten days after tumor inoculation, we detected the presence of B1R on tumor cells and associated vasculature. NG29 infusion increased brain distribution volume and uptake profiles of paramagnetic probes (Magnevist and Gadomer) at tumoral sites (T(1)-weighted imaging). These effects were blocked by B1R antagonist and non-selective cyclooxygenase inhibitors, but not by B2R antagonist and non-selective nitric oxide synthase inhibitors. Consistent with MRI data, systemic co-administration of NG29 improved brain tumor delivery of Carboplatin chemotherapy (ICP-Mass spectrometry). We also detected elevated B1R expression in clinical samples of high-grade glioma. Our results documented a novel GPCR-signaling mechanism for promoting transient BTB disruption, involving activation of B1R and ensuing production of COX metabolites. They also underlined the potential value of synthetic biostable B1R agonists as selective BTB modulators for local delivery of different sized-therapeutics at (peri)tumoral sites.

  4. Early increased density of cyclooxygenase-2 (COX-2) immunoreactive neurons in Down syndrome.

    PubMed

    Mulet, Maria; Blasco-Ibáńez, José Miguel; Crespo, Carlos; Nácher, Juan; Varea, Emilio

    2017-01-01

    Neuroinflammation is one of the hallmarks of Alzheimer's disease. One of the enzymes involved in neuroinflammation, even in early stages of the disease, is COX-2, an inducible cyclooxygenase responsible for the generation of eicosanoids and for the generation of free radicals. Individuals with Down syndrome develop Alzheimer's disease early in life. Previous studies pointed to the possible overexpression of COX-2 and correlated it to brain regions affected by the disease. We analysed the COX-2 expression levels in individuals with Down syndrome and in young, adult and old mice of the Ts65Dn mouse model for Down syndrome. We have observed an overexpression of COX-2 in both, Down syndrome individuals and mice. Importantly, mice already presented an overexpression of COX-2 at postnatal day 30, before neurodegeneration begins; which suggests that neuroinflammation may underlie the posterior neurodegeneration observed in individuals with Down syndrome and in Ts65Dn mice and could be a factor for the premature appearance of Alzheimer's disease..

  5. Cyclooxygenase-2 Deficiency Leads to Intestinal Barrier Dysfunction and Increased Mortality During Polymicrobial Sepsis 1

    PubMed Central

    Fredenburgh, Laura E.; Velandia, Margarita M. Suarez; Ma, Jun; Olszak, Torsten; Cernadas, Manuela; Englert, Joshua A.; Chung, Su Wol; Liu, Xiaoli; Begay, Cynthia; Padera, Robert F.; Blumberg, Richard S.; Walsh, Stephen R.; Baron, Rebecca M.; Perrella, Mark A.

    2011-01-01

    Sepsis remains the leading cause of death in critically ill patients despite modern advances in critical care. Intestinal barrier dysfunction may lead to secondary bacterial translocation and the development of the multiple organ dysfunction syndrome during sepsis. Cyclooxygenase-2 (COX-2) is highly upregulated in the intestine during sepsis and we hypothesized that it may be critical in the maintenance of intestinal epithelial barrier function during peritonitis-induced polymicrobial sepsis. COX-2−/− and COX-2+/+ BALB/c mice underwent cecal ligation and puncture (CLP) or sham surgery. Mice chimeric for COX-2 were derived by bone marrow transplantation and underwent CLP. C2BBe1 cells, an intestinal epithelial cell line, were treated with the COX-2 inhibitor NS-398, PGD2, or vehicle and stimulated with cytokines. COX-2−/− mice developed exaggerated bacteremia and increased mortality compared with COX-2+/+ mice following CLP. Mice chimeric for COX-2 exhibited the recipient phenotype suggesting that epithelial COX-2 expression in the ileum attenuates bacteremia following CLP. Absence of COX-2 significantly increased epithelial permeability of the ileum and reduced expression of the tight junction proteins zonula occludens-1 (ZO-1), occludin, and claudin-1 in the ileum following CLP. Furthermore, PGD2 attenuated cytokine-induced hyperpermeability and ZO-1 downregulation in NS-398-treated C2BBe1 cells. Our findings reveal that absence of COX-2 is associated with enhanced intestinal epithelial permeability and leads to exaggerated bacterial translocation and increased mortality during peritonitis-induced sepsis. Taken together, our results suggest that epithelial expression of COX-2 in the ileum is a critical modulator of tight junction protein expression and intestinal barrier function during sepsis. PMID:21967897

  6. Human umbilical vein: involvement of cyclooxygenase-2 pathway in bradykinin B1 receptor-sensitized responses.

    PubMed

    Errasti, A E; Rey-Ares, V; Daray, F M; Rogines-Velo, M P; Sardi, S P; Paz, C; Podestá, E J; Rothlin, R P

    2001-08-01

    In isolated human umbilical vein (HUV), the contractile response to des-Arg9-bradykinin (des-Arg9-BK), selective BK B1 receptor agonist, increases as a function of the incubation time. Here, we evaluated whether cyclooxygenase (COX) pathway is involved in BK B1-sensitized response obtained in 5-h incubated HUV rings. The effect of different concentrations of indomethacin, sodium salicylate, ibuprofen, meloxicam, lysine clonixinate or NS-398 administrated 30 min before concentration-response curves (CRC) was studied. All treatments produced a significant rightward shift of the CRC to des-Arg9-BK in a concentration-dependent manner, which provides pharmacological evidence that COX pathway is involved in the BK B1 responses. Moreover, in this tissue, the NS-398 pKb (5.2) observed suggests that COX-2 pathway is the most relevant. The strong correlation between published pIC50 for COX-2 and the NSAIDs' pKbs estimated further supports the hypothesis that COX-2 metabolites are involved in BK B1 receptor-mediated responses. In other rings, indomethacin (30, 100 micromol/l) or NS-398 (10, 30 micromol/l) produced a significant rightward shift of the CRC to BK, selective BK B2 agonist, and its pKbs were similar to the values to inhibit BK B1 receptor responses, suggesting that COX-2 pathway also is involved in BK B2 receptor responses. Western blot analysis shows that COX-1 and COX-2 isoenzymes are present before and after 5-h in vitro incubation and apparently COX-2 does not suffer additional induction.

  7. A fragment-based approach leading to the discovery of a novel binding site and the selective CK2 inhibitor CAM4066.

    PubMed

    De Fusco, Claudia; Brear, Paul; Iegre, Jessica; Georgiou, Kathy Hadje; Sore, Hannah F; Hyvönen, Marko; Spring, David R

    2017-07-01

    Recently we reported the discovery of a potent and selective CK2α inhibitor CAM4066. This compound inhibits CK2 activity by exploiting a pocket located outside the ATP binding site (αD pocket). Here we describe in detail the journey that led to the discovery of CAM4066 using the challenging fragment linking strategy. Specifically, we aimed to develop inhibitors by linking a high-affinity fragment anchored in the αD site to a weakly binding warhead fragment occupying the ATP site. Moreover, we describe the remarkable impact that molecular modelling had on the development of this novel chemical tool. The work described herein shows potential for the development of a novel class of CK2 inhibitors. Copyright © 2017. Published by Elsevier Ltd.

  8. Effects of cyclooxygenase inhibition on cardiovascular function in a hypercholesterolemic swine model of chronic ischemia

    PubMed Central

    Chu, Louis M.; Robich, Michael P.; Bianchi, Cesario; Feng, Jun; Liu, Yuhong; Xu, Shu-Hua; Burgess, Thomas

    2012-01-01

    The cardiovascular effects of cyclooxygenase (COX) inhibition remain controversial, especially in the setting of cardiovascular comorbidities. We examined the effects of nonselective and selective COX inhibition on cardiovascular function in a hypercholesterolemic swine model of chronic ischemia. Twenty-four intact male Yorkshire swine underwent left circumflex ameroid constrictor placement and were subsequently given either no drug (HCC; n = 8), a nonselective COX inhibitor (440 mg/day naproxen; HCNS; n = 8), or a selective COX-2 inhibitor (200 mg/day celecoxib; HCCX; n = 8). After 7 wk, myocardial functional was measured and myocardium from the nonischemic ventricle and ischemic area-at-risk (AAR) were analyzed. Regional function as measured by segmental shortening was improved in the AAR of HCCX compared with HCC. There was no significant difference in perfusion to the nonischemic ventricle between groups, but myocardial perfusion in the AAR was significantly improved in the HCCX group compared with controls at rest and during pacing. Endothelium-dependent microvessel relaxation was diminished by ischemia in HCC animals, but both naproxen and celecoxib improved vessel relaxation in the AAR compared with controls, and also decreased the vasoconstrictive response to serotonin. Thromboxane levels in the AAR were decreased in both HCNS and HCCX compared with HCC, whereas prostacyclin levels were decreased only in HCNS, corresponding to a decrease in prostacyclin synthase expression. Chronic ischemia increased apoptosis in Troponin T negative cells and intramyocardial fibrosis, both of which were reduced by celecoxib administration in the AAR. Capillary density was decreased in both the HCNS and HCCX groups. Protein oxidative stress was decreased in both HCNS and HCCX, whereas lipid oxidative stress was decreased only in the HCCX group. Thus nonselective and especially selective COX inhibition may have beneficial myocardial effects in the setting of

  9. Effects of cyclooxygenase inhibition on cardiovascular function in a hypercholesterolemic swine model of chronic ischemia.

    PubMed

    Chu, Louis M; Robich, Michael P; Bianchi, Cesario; Feng, Jun; Liu, Yuhong; Xu, Shu-Hua; Burgess, Thomas; Sellke, Frank W

    2012-01-01

    The cardiovascular effects of cyclooxygenase (COX) inhibition remain controversial, especially in the setting of cardiovascular comorbidities. We examined the effects of nonselective and selective COX inhibition on cardiovascular function in a hypercholesterolemic swine model of chronic ischemia. Twenty-four intact male Yorkshire swine underwent left circumflex ameroid constrictor placement and were subsequently given either no drug (HCC; n = 8), a nonselective COX inhibitor (440 mg/day naproxen; HCNS; n = 8), or a selective COX-2 inhibitor (200 mg/day celecoxib; HCCX; n = 8). After 7 wk, myocardial functional was measured and myocardium from the nonischemic ventricle and ischemic area-at-risk (AAR) were analyzed. Regional function as measured by segmental shortening was improved in the AAR of HCCX compared with HCC. There was no significant difference in perfusion to the nonischemic ventricle between groups, but myocardial perfusion in the AAR was significantly improved in the HCCX group compared with controls at rest and during pacing. Endothelium-dependent microvessel relaxation was diminished by ischemia in HCC animals, but both naproxen and celecoxib improved vessel relaxation in the AAR compared with controls, and also decreased the vasoconstrictive response to serotonin. Thromboxane levels in the AAR were decreased in both HCNS and HCCX compared with HCC, whereas prostacyclin levels were decreased only in HCNS, corresponding to a decrease in prostacyclin synthase expression. Chronic ischemia increased apoptosis in Troponin T negative cells and intramyocardial fibrosis, both of which were reduced by celecoxib administration in the AAR. Capillary density was decreased in both the HCNS and HCCX groups. Protein oxidative stress was decreased in both HCNS and HCCX, whereas lipid oxidative stress was decreased only in the HCCX group. Thus nonselective and especially selective COX inhibition may have beneficial myocardial effects in the setting of

  10. Design, Synthesis and Biological Evaluation of4-(Imidazolylmethyl)-2-(4-methylsulfonyl phenyl)-Quinoline Derivatives as Selective COX-2 Inhibitors and In-vitro Anti-breast Cancer Agents

    PubMed Central

    Ghodsi, Razieh; Azizi, Ebrahim; Zarghi, Afshin

    2016-01-01

    A new group of 4-(Imidazolylmethyl)quinoline derivatives possessing a methylsulfonyl COX-2 pharmacophore at the para position of the C-2 phenyl ring were designed and synthesized as selective COX-2 inhibitors and in-vitroanti breast cancer agents. In-vitro COX-1 and COX-2 inhibition studies showed that all the compounds were potent and selective inhibitors of the COX-2 isozyme with IC50 values in the potent range 0.063-0.090 µM, and COX-2 selectivity indexes in the 179.9 to 547.6 range. Molecular modeling studies indicated that the methylsulfonyl substituent can be inserted into the secondary pocket of COX-2 active site for interactions with Arg513. Cytotoxicity of quinolines 9a-e against human breast cancer MCF-7 and T47D cell lines were also evaluated. All the compounds 9a-e were more cytotoxic against MCF-7 cells in comparison with those of T47D which express aromatase mRNA less than MCF-7 cells.The data showed that the increase of lipophilic properties of substituents on the C-7 and C-8 quinoline ring increased their cytotoxicity on MCF-7cells andCOX-2 inhibitory activity. Among the quinolines 9a-e, 4-((1H-Imidazol-1-yl)methyl) 7,8,9,10-tetrahydro-2-(4-methylsulfonylphenyl)-benzo[h]quinoline (9d)was identified as the most potent andselective COX-2inhibitor as well as the most cytotoxic agent against MCF-7 cells. PMID:27610157

  11. Disrupting Acetyl-Lysine Recognition: Progress in the Development of Bromodomain Inhibitors.

    PubMed

    Romero, F Anthony; Taylor, Alexander M; Crawford, Terry D; Tsui, Vickie; Côté, Alexandre; Magnuson, Steven

    2016-02-25

    Bromodomains, small protein modules that recognize acetylated lysine on histones, play a significant role in the epigenome, where they function as "readers" that ultimately determine the functional outcome of the post-translational modification. Because the initial discovery of selective BET inhibitors have helped define the role of that protein family in oncology and inflammation, BET bromodomains have continued to garner the most attention of any other bromodomain. More recently, non-BET bromodomain inhibitors that are potent and selective have been disclosed for ATAD2, CBP, BRD7/9, BRPF, BRPF/TRIM24, CECR2, SMARCA4, and BAZ2A/B. Such novel inhibitors can be used to probe the physiological function of these non-BET bromodomains and further understanding of their role in certain disease states. Here, we provide an update to the progress in identifying selective bromodomain inhibitors and their use as biological tools, as well as our perspective on the field.

  12. P38 AND EGF RECEPTOR KINASE-MEDIATED ACTIVATION OF THE PHOSPHATIDYLINOSITOL 3-KINASE/AKT PATHWAY IS REQUIRED FOR ZN2+INDUCED CYCLOOXYGENASE-2 EXPRESSION

    EPA Science Inventory

    Cyclooxygenase 2 (COX-2) expression is induced by physiological and inflammatory stimuli. Regulation of COX-2 expression is stimulus- and cell type-specific. Exposure to Zn2+ has been associated with activation of multiple intracellular signaling pathways as well as the induction...

  13. Nitric oxide synthase and cyclooxygenase modulate β-adrenergic cutaneous vasodilatation and sweating in young men.

    PubMed

    Fujii, Naoto; McNeely, Brendan D; Kenny, Glen P

    2017-02-15

    β-Adrenergic receptor agonists such as isoproterenol induce cutaneous vasodilatation and sweating in humans, but the mechanisms underpinning this response remain unresolved. Using intradermal microdialysis, we evaluated the roles of nitric oxide synthase (NOS) and cyclooxygenase (COX) in β-adrenergic cutaneous vasodilatation and sweating elicited by administration of isoproterenol. We show that while NOS contributes to β-adrenergic cutaneous vasodilatation, COX restricts cutaneous vasodilatation. We also show that combined inhibition of NOS and COX augments β-adrenergic sweating These new findings advance our basic knowledge regarding the physiological control of cutaneous blood flow and sweating, and provide important and new information to better understand the physiological significance of β-adrenergic receptors in the skin. β-Adrenergic receptor agonists such as isoproterenol can induce cutaneous vasodilatation and sweating in humans, but the mechanisms underpinning this response remain unresolved. We evaluated the hypotheses that (1) nitric oxide synthase (NOS) contributes to β-adrenergic cutaneous vasodilatation, whereas cyclooxygenase (COX) limits the vasodilatation, and (2) COX contributes to β-adrenergic sweating. In 10 young males (25 ± 5 years), cutaneous vascular conductance (CVC) and sweat rate were evaluated at four intradermal forearm skin sites infused with (1) lactated Ringer solution (control), (2) 10 mm N ω -nitro-l-arginine (l-NNA), a non-specific NOS inhibitor, (3) 10 mm ketorolac, a non-specific COX inhibitor, or (4) a combination of l-NNA and ketorolac. All sites were co-administered with a high dose of isoproterenol (100 μm) for 3 min to maximally induce β-adrenergic sweating (β-adrenergic sweating is significantly blunted by subsequent activations). Approximately 60 min after the washout period, three incremental doses of isoproterenol were co-administered (1, 10 and 100 μm each for 25 min). Increases in CVC induced

  14. In-vitro Wound Healing Effect of 15-Hydroxyprostaglandin Dehydrogenase Inhibitor from Plant

    PubMed Central

    Karna, Sandeep

    2017-01-01

    Background: Prostaglandins (PGs) have short existence in vivo because they are rapidly metabolized by NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) to 15-ketoprostaglandins. Inhibition of 15-PGDH causes elevated level of PGE2 in cellular system. It will be valuable for the therapeutic management of diseases requiring elevated PGE2 levels, like wound healing. Objective: Ninety-eight plant samples were screened for the discovery of potent 15-PGDH inhibitor. Among them, top five plant extracts as potent 15-PGDH inhibitor were chosen to determine PGE2 release from HaCaT (Keratinocyte cell line) cell line. Finally, top 15-PGDH inhibitor was selected to evaluate in vitro wound healing effect on HaCaT scratch model. Method: The inhibitory activity for 15-PGDH inhibitors was evaluated using fluorescence spectrophotometer by measuring the formation of NADH at 468 nm following excitation at 340 nm. Cell viability assay and PGE2 release was evaluated in HaCaT cell line after treatment of 15-PGDH inhibitors. Scratches were made using sterile 200 μL on HaCaT cell and wound-healing effect was evaluated after treatment of 15-PGDH inhibitor. Results: 15-PGDH inhibitors elevated PGE2 levels in concentration-dependent manner. Ethanol extract of Artocarpus heterophyllus (EEAH), the most potent 15-PGDH inhibitor (IC50 = 0.62 µg/mL) with least cytotoxicity (IC50 = 670 µg/ml), elevated both intracellular and extracellular PGE2 levels. EEAH facilitated in-vitro wound healing in a HaCaT (Keratinocyte cell line) scratch model. Conclusion: EEAH might apply to treat dermal wounds by elevating PGE2 levels via COX-1 induction and 15-PGDH inhibition. SUMMARY Biological inactivation of 15-PGDH causes elevated level of PGE2 which will be useful for the management of disease that requires elevated level of PGE2. Abbreviations used: 15-PGDH: 15-hydroxyprostaglandin dehydrogenase, COX: Cyclooxygenase, DTT: Dithiothreitol, DMEM: Dulbecco's modified Eagle's media, EEAH: Ethanol

  15. In-vitro Wound Healing Effect of 15-Hydroxyprostaglandin Dehydrogenase Inhibitor from Plant.

    PubMed

    Karna, Sandeep

    2017-01-01

    Prostaglandins (PGs) have short existence in vivo because they are rapidly metabolized by NAD + -dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) to 15-ketoprostaglandins. Inhibition of 15-PGDH causes elevated level of PGE 2 in cellular system. It will be valuable for the therapeutic management of diseases requiring elevated PGE 2 levels, like wound healing. Ninety-eight plant samples were screened for the discovery of potent 15-PGDH inhibitor. Among them, top five plant extracts as potent 15-PGDH inhibitor were chosen to determine PGE 2 release from HaCaT (Keratinocyte cell line) cell line. Finally, top 15-PGDH inhibitor was selected to evaluate in vitro wound healing effect on HaCaT scratch model. The inhibitory activity for 15-PGDH inhibitors was evaluated using fluorescence spectrophotometer by measuring the formation of NADH at 468 nm following excitation at 340 nm. Cell viability assay and PGE 2 release was evaluated in HaCaT cell line after treatment of 15-PGDH inhibitors. Scratches were made using sterile 200 μL on HaCaT cell and wound-healing effect was evaluated after treatment of 15-PGDH inhibitor. 15-PGDH inhibitors elevated PGE 2 levels in concentration-dependent manner. Ethanol extract of Artocarpus heterophyllus (EEAH), the most potent 15-PGDH inhibitor (IC 50 = 0.62 µg/mL) with least cytotoxicity (IC 50 = 670 µg/ml), elevated both intracellular and extracellular PGE 2 levels. EEAH facilitated in-vitro wound healing in a HaCaT (Keratinocyte cell line) scratch model. EEAH might apply to treat dermal wounds by elevating PGE 2 levels via COX-1 induction and 15-PGDH inhibition. Biological inactivation of 15-PGDH causes elevated level of PGE 2 which will be useful for the management of disease that requires elevated level of PGE 2 . Abbreviations used: 15-PGDH: 15-hydroxyprostaglandin dehydrogenase, COX: Cyclooxygenase, DTT: Dithiothreitol, DMEM: Dulbecco's modified Eagle's media, EEAH: Ethanol extract of Artocarpus heterophyllus, MRP4

  16. All-cause mortality of elderly Australian veterans using COX-2 selective or non-selective NSAIDs: a longitudinal study

    PubMed Central

    Kerr, Stephen J; Rowett, Debra S; Sayer, Geoffrey P; Whicker, Susan D; Saltman, Deborah C; Mant, Andrea

    2011-01-01

    AIM To determine hazard ratios for all-cause mortality in elderly Australian veterans taking COX-2 selective and non-selective NSAIDs. METHODS Patient cohorts were constructed from claims databases (1997 to 2007) for veterans and dependants with full treatment entitlement irrespective of military service. Patients were grouped by initial exposure: celecoxib, rofecoxib, meloxicam, diclofenac, non-selective NSAID. A reference group was constructed of patients receiving glaucoma/hypothyroid medications and none of the study medications. Univariate and multivariate analyses were performed using Cox proportional hazards regression models. Hazard ratios (HR) and 95% confidence intervals (CI) were estimated for each exposure group against each of the reference group. The final model was adjusted for age, gender and co-prescription as a surrogate for cardiovascular risk. Patients were censored if the gap in supply of study prescription exceeded 30 days or if another study medication was initiated. The outcome measure in all analyses was death. RESULTS Hazard ratios and 95% CIs, adjusted for age, gender and cardiovascular risk, for each group relative to the reference group were: celecoxib 1.39 (1.25, 1.55), diclofenac 1.44 (1.28, 1.62), meloxicam 1.49 (1.25, 1.78), rofecoxib 1.58 (1.39, 1.79), non-selective NSAIDs 1.76 (1.59, 1.94). CONCLUSIONS In this large cohort of Australian veterans exposed to COX-2 selective and non-selective NSAIDs, there was a significant increased mortality risk for those exposed to either COX-2-selective or non-selective NSAIDs relative to those exposed to unrelated (glaucoma/hypothyroid) medications. PMID:21276041

  17. In Silico Analysis of the Potential of the Active Compounds Fucoidan and Alginate Derived from Sargassum Sp. as Inhibitors of COX-1 and COX-2.

    PubMed

    Dewi, Lestari

    2016-06-01

    The enzyme cyclooxygenase (COX) is an enzyme that catalyzes the formation of one of the mediators of inflammation, the prostaglandins. Inhibition of COX allegedly can improve inflammation-induced pathological conditions. The purpose of the present study was to evaluate the potential of Sargassum sp. components, Fucoidan and alginate, as COX inhibitors. The study was conducted by means of a computational (in silico) method. It was performed in two main stages, the docking between COX-1 and COX-2 with Fucoidan, alginate and aspirin (for comparison) and the analysis of the amount of interactions formed and the residues directly involved in the process of interaction. Our results showed that both Fucoidan and alginate had an excellent potential as inhibitors of COX-1 and COX-2. Fucoidan had a better potential as an inhibitor of COX than alginate. COX inhibition was expected to provide a more favorable effect on inflammation-related pathological conditions. The active compounds Fucoidan and alginate derived from Sargassum sp. were suspected to possess a good potential as inhibitors of COX-1 and COX-2.

  18. Role of cyclooxygenase in the vascular responses to extremity cooling in Caucasian and African males.

    PubMed

    Maley, Matthew J; House, James R; Tipton, Michael J; Eglin, Clare M

    2017-07-01

    What is the central question of this study? Compared with Caucasians, African individuals are more susceptible to non-freezing cold injury and experience greater cutaneous vasoconstriction and cooler finger skin temperatures upon hand cooling. We investigated whether the enzyme cyclooxygenase is, in part, responsible for the exaggerated response to local cooling. What is the main finding and its importance? During local hand cooling, individuals of African descent experienced significantly lower finger skin blood flow and skin temperature compared with Caucasians irrespective of cyclooxygenase inhibition. These data suggest that in young African males the cyclooxygenase pathway appears not to be the primary reason for the increased susceptibility to non-freezing cold injury. Individuals of African descent (AFD) are more susceptible to non-freezing cold injury (NFCI) and experience an exaggerated cutaneous vasoconstrictor response to hand cooling compared with Caucasians (CAU). Using a placebo-controlled, cross-over design, this study tested the hypothesis that cyclooxygenase (COX) may, in part, be responsible for the exaggerated vasoconstrictor response to local cooling in AFD. Twelve AFD and 12 CAU young healthy men completed foot cooling and hand cooling (separately, in 8°C water for 30 min) with spontaneous rewarming in 30°C air after placebo or aspirin (COX inhibition) treatment. Skin blood flow, expressed as cutaneous vascular conductance (as flux per millimetre of mercury), and skin temperature were measured throughout. Irrespective of COX inhibition, the responses to foot cooling, but not hand cooling, were similar between ethnicities. Specifically, during hand cooling after placebo, AFD experienced a lower minimal skin blood flow [mean (SD): 0.5 (0.1) versus 0.8 (0.2) flux mmHg -1 , P < 0.001] and a lower minimal finger skin temperature [9.5 (1.4) versus 10.7 (1.3)°C, P = 0.039] compared with CAU. During spontaneous rewarming, average skin blood

  19. Cyclooxygenase-2 deficiency impairs muscle-derived stem cell-mediated bone regeneration via cellular autonomous and non-autonomous mechanisms.

    PubMed

    Gao, Xueqin; Usas, Arvydas; Lu, Aiping; Kozemchak, Adam; Tang, Ying; Poddar, Minakshi; Sun, Xuying; Cummins, James H; Huard, Johnny

    2016-08-01

    This study investigated the role of cyclooxygenase-2 (COX-2) expression by donor and host cells in muscle-derived stem cell (MDSC)-mediated bone regeneration utilizing a critical size calvarial defect model. We found that BMP4/green fluorescent protein (GFP)-transduced MDSCs formed significantly less bone in COX-2 knock-out (Cox-2KO) than in COX-2 wild-type (WT) mice. BMP4/GFP-transduced Cox-2KO MDSCs also formed significantly less bone than transduced WT MDSCs when transplanted into calvarial defects created in CD-1 nude mice. The impaired bone regeneration in the Cox-2KO MDSCBMP4/GFP group is associated with downregulation of BMP4-pSMAD1/5 signaling, decreased osteogenic differentiation and lowered proliferation capacity after transplantation, compared with WT MDSCBMP4/GFP cells. The Cox-2KO MDSCBMP4/GFP group demonstrated a reduction in cell survival and direct osteogenic differentiation in vitro These effects were mediated in part by the downregulation of Igf1 and Igf2. In addition, the Cox-2KO MDSCBMP4/GFP cells recruited fewer macrophages than the WT MDSC/BMP4/GFP cells in the early phase after injury. We concluded that the bone regeneration capacity of Cox-2KO MDSCs was impaired because of a reduction in cell proliferation and survival capacities, reduction in osteogenic differentiation and a decrease in the ability of the cells to recruit host cells to the injury site. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Nitric Oxide Synthase and Cyclooxygenase Pathways: A Complex Interplay in Cellular Signaling.

    PubMed

    Sorokin, Andrey

    2016-01-01

    The cellular reaction to external challenges is a tightly regulated process consisting of integrated processes mediated by a variety of signaling molecules, generated as a result of modulation of corresponding biosynthetic systems. Both, nitric oxide synthase (NOS) and cyclooxygenase (COX) systems, consist of constitutive forms (NOS1, NOS3 and COX-1), which are mostly involved in housekeeping tasks, and inducible forms (NOS2 and COX-2), which shape the cellular response to stress and variety of bioactive agents. The complex interplay between NOS and COX pathways can be observed at least at three levels. Firstly, products of NOS and Cox systems can mediate the regulation and the expression of inducible forms (NOS2 and COX-2) in response of similar and dissimilar stimulus. Secondly, the reciprocal modulation of cyclooxygenase activity by nitric oxide and NOS activity by prostaglandins at the posttranslational level has been shown to occur. Mechanisms by which nitric oxide can modulate prostaglandin synthesis include direct S-nitrosylation of COX and inactivation of prostaglandin I synthase by peroxynitrite, product of superoxide reaction with nitric oxide. Prostaglandins, conversely, can promote an increased association of dynein light chain (DLC) (also known as protein inhibitor of neuronal nitric oxide synthase) with NOS1, thereby reducing its activity. The third level of interplay is provided by intracellular crosstalk of signaling pathways stimulated by products of NOS and COX which contributes significantly to the complexity of cellular signaling. Since modulation of COX and NOS pathways was shown to be principally involved in a variety of pathological conditions, the dissection of their complex relationship is needed for better understanding of possible therapeutic strategies. This review focuses on implications of interplay between NOS and COX for cellular function and signal integration.

  1. Temporal and pharmacological division of fibroblast cyclooxygenase expression into transcriptional and translational phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raz, A.; Wyche, A.; Needleman, P.

    1989-03-01

    The authors have recently shown that the synthesis of cyclooxygenase in human dermal fibroblasts is markedly stimulated by the cytokine interleukin 1 (IL-1). They now show that the temporal sequence of the induced synthesis of PG synthase can be separated into an early transcriptional (i.e., actinomycin D inhibitable) phase and a subsequent translational (cycloheximide but not actinomycin D inhibitable) phase and that IL-1 exerts its effect during the transcriptional phase. Phorbol 12-myristate 13-acetate also stimulates synthesis of PG synthase and, together with IL-1, produces a synergistic stimulatory effect. Inhibitors of protein kinase C activation abolished the stimulatory effect of IL-1,more » suggesting that protein kinase C activation is a critical event in the signal-transduction sequence of the IL-1-induced increase of PG synthase synthesis. The antiinflammatory glucocorticosteroids dexamethasone and triamcinolone, but not progesterone or testosterone, were potent inhibitors of PG synthase synthesis when added during the translational phase of the synthesis sequence. The glucocorticosteroid effect was blocked by RNA and protein synthesis inhibitors. This report suggests that glucocorticosteroids exert their effect via a newly synthesized protein, causing a profound translational control of PG synthase synthesis. This novel mechanism of suppression of arachidonate metabolism is distinct from any influence of steroids on phospholipase A{sub 2} activity.« less

  2. A specific pharmacophore model of sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors.

    PubMed

    Tang, Chunlei; Zhu, Xiaoyun; Huang, Dandan; Zan, Xin; Yang, Baowei; Li, Ying; Du, Xiaoyong; Qian, Hai; Huang, Wenlong

    2012-06-01

    Sodium-dependent glucose co-transporter 2 (SGLT2) plays a pivotal role in maintaining glucose equilibrium in the human body, emerging as one of the most promising targets for the treatment of diabetes mellitus type 2. Pharmacophore models of SGLT2 inhibitors have been generated with a training set of 25 SGLT2 inhibitors using Discovery Studio V2.1. The best hypothesis (Hypo1(SGLT2)) contains one hydrogen bond donor, five excluded volumes, one ring aromatic and three hydrophobic features, and has a correlation coefficient of 0.955, cost difference of 68.76, RMSD of 0.85. This model was validated by test set, Fischer randomization test and decoy set methods. The specificity of Hypo1(SGLT2) was evaluated. The pharmacophore features of Hypo1(SGLT2) were different from the best pharmacophore model (Hypo1(SGLT1)) of SGLT1 inhibitors we developed. Moreover, Hypo1(SGLT2) could effectively distinguish selective inhibitors of SGLT2 from those of SGLT1. These results indicate that a highly predictive and specific pharmacophore model of SGLT2 inhibitors has been successfully obtained. Then Hypo1(SGLT2) was used as a 3D query to screen databases including NCI and Maybridge for identifying new inhibitors of SGLT2. The hit compounds were subsequently subjected to filtering by Lipinski's rule of five. And several compounds selected from the top ranked hits have been suggested for further experimental assay studies.

  3. The design strategy of selective PTP1B inhibitors over TCPTP.

    PubMed

    Li, XiangQian; Wang, LiJun; Shi, DaYong

    2016-08-15

    Protein tyrosine phosphatase 1B (PTP1B) has already been well studied as a highly validated therapeutic target for diabetes and obesity. However, the lack of selectivity limited further studies and clinical applications of PTP1B inhibitors, especially over T-cell protein tyrosine phosphatase (TCPTP). In this review, we enumerate the published specific inhibitors of PTP1B, discuss the structure-activity relationships by analysis of their X-ray structures or docking results, and summarize the characteristic of selectivity related residues and groups. Furthermore, the design strategy of selective PTP1B inhibitors over TCPTP is also proposed. We hope our work could provide an effective way to gain specific PTP1B inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Radiation Therapy Overcomes Adverse Prognostic Role of Cyclooxygenase-2 Expression on Reed-Sternberg Cells in Early Hodgkin Lymphoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mestre, Francisco; Gutiérrez, Antonio, E-mail: antoniom.gutierrez@ssib.es; Rodriguez, Jose

    Purpose: To analyze the role of radiation therapy (RT) on the adverse prognostic influence of cyclooxygenase-2 (COX-2) expression on Reed-Sternberg (RS) cells, in the setting of early Hodgkin lymphoma (HL) treated with ABVD (adriamycin, vinblastine, bleomycin, dacarbazine). Methods and Materials: In the present study we retrospectively investigated the prognostic value of COX-2 expression in a large (n=143), uniformly treated early HL population from the Spanish Network of HL using tissue microarrays. Univariate and multivariate analyses were done, including the most recognized clinical variables and the potential role of administration of adjuvant RT. Results: Median age was 31 years; the expression of COX-2more » defined a subgroup with significantly worse prognosis. Considering COX-2{sup +} patients, those who received RT had significantly better 5-year progression-free survival (PFS) (80% vs 54% if no RT; P=.008). In contrast, COX-2{sup −} patients only had a modest, nonsignificant benefit from RT in terms of 5-year PFS (90% vs 79%; P=.13). When we compared the outcome of patients receiving RT considering the expression of COX-2 on RS cells, we found a nonsignificant 10% difference in terms of PFS between COX-2{sup +} and COX-2{sup −} patients (P=.09), whereas the difference between the 2 groups was important (25%) in patients not receiving RT (P=.04). Conclusions: Cyclooxygenase-2 RS cell expression is an adverse independent prognostic factor in early HL. Radiation therapy overcomes the worse prognosis associated with COX-2 expression on RS cells, acting in a chemotherapy-independent way. Cyclooxygenase-2 RS cell expression may be useful for determining patient candidates with early HL to receive consolidation with RT.« less

  5. Inhibitors of second messenger pathways and Ca(2+)-induced exposure of phosphatidylserine in red blood cells of patients with sickle cell disease.

    PubMed

    Gbotosho, O T; Cytlak, U M; Hannemann, A; Rees, D C; Tewari, S; Gibson, J S

    2014-07-01

    The present work investigates the contribution of various second messenger systems to Ca(2+)-induced phosphatidylserine (PS) exposure in red blood cells (RBCs) from sickle cell disease (SCD) patients. The Ca(2+) dependence of PS exposure was confirmed using the Ca(2+) ionophore bromo-A23187 to clamp intracellular Ca(2+) over 4 orders of magnitude in high or low potassium-containing (HK or LK) saline. The percentage of RBCs showing PS exposure was significantly increased in LK over HK saline. This effect was reduced by the Gardos channel inhibitors, clotrimazole and charybdotoxin. Nevertheless, although Ca(2+) loading in the presence of an outwardly directed electrochemical gradient for K(+) stimulated PS exposure, substantial exposure still occurred in HK saline. Under the conditions used inhibitors of other second messenger systems (ABT491, quinacrine, acetylsalicylic acid, 3,4-dichloroisocoumarin, GW4869 and zVAD-fmk) did not inhibit the relationship between [Ca(2+)] and PS exposure. Inhibitors of phospholipase A2, cyclooxygenase, platelet-activating factor, sphingomyelinase and caspases, therefore, were without effect on Ca(2+)-induced PS exposure in RBCs, incubated in either HK or LK saline.

  6. Discovery of a new series of imidazo[1,2-a]pyridine compounds as selective c-Met inhibitors.

    PubMed

    Liu, Tong-Chao; Peng, Xia; Ma, Yu-Chi; Ji, Yin-Chun; Chen, Dan-Qi; Zheng, Ming-Yue; Zhao, Dong-Mei; Cheng, Mao-Sheng; Geng, Mei-Yu; Shen, Jing-Kang; Ai, Jing; Xiong, Bing

    2016-05-01

    Aberrant c-Met activation plays a critical role in cancer formation, progression and dissemination, as well as in development of resistance to anticancer drugs. Therefore, c-Met has emerged as an attractive target for cancer therapy. The aim of this study was to develop new c-Met inhibitors and elaborate the structure-activity relationships of identified inhibitors. Based on the predicted binding modes of Compounds 5 and 14 in docking studies, a new series of c-Met inhibitor-harboring 3-((1H-pyrrolo[3,2-c]pyridin-1-yl)sulfonyl)imidazo[1,2-a]pyridine scaffolds was discovered. Potent inhibitors were identified through extensive optimizations combined with enzymatic and cellular assays. A promising compound was further investigated in regard to its selectivity, its effects on c-Met signaling, cell proliferation and cell scattering in vitro. The most potent Compound 31 inhibited c-Met kinase activity with an IC50 value of 12.8 nmol/L, which was >78-fold higher than those of a panel of 16 different tyrosine kinases. Compound 31 (8, 40, 200 nmol/L) dose-dependently inhibited the phosphorylation of c-Met and its key downstream Akt and ERK signaling cascades in c-Met aberrant human EBC-1 cancer cells. In 12 human cancer cell lines harboring different background levels of c-Met expression/activation, Compound 31 potently inhibited c-Met-driven cell proliferation. Furthermore, Compound 31 dose-dependently impaired c-Met-mediated cell scattering of MDCK cells. This series of c-Met inhibitors is a promising lead for development of novel anticancer drugs.

  7. Discovery of a new series of imidazo[1,2-a]pyridine compounds as selective c-Met inhibitors

    PubMed Central

    Liu, Tong-chao; Peng, Xia; Ma, Yu-chi; Ji, Yin-chun; Chen, Dan-qi; Zheng, Ming-yue; Zhao, Dong-mei; Cheng, Mao-sheng; Geng, Mei-yu; Shen, Jing-kang; Ai, Jing; Xiong, Bing

    2016-01-01

    Aim: Aberrant c-Met activation plays a critical role in cancer formation, progression and dissemination, as well as in development of resistance to anticancer drugs. Therefore, c-Met has emerged as an attractive target for cancer therapy. The aim of this study was to develop new c-Met inhibitors and elaborate the structure-activity relationships of identified inhibitors. Methods: Based on the predicted binding modes of Compounds 5 and 14 in docking studies, a new series of c-Met inhibitor-harboring 3-((1H-pyrrolo[3,2-c]pyridin-1-yl)sulfonyl)imidazo[1,2-a]pyridine scaffolds was discovered. Potent inhibitors were identified through extensive optimizations combined with enzymatic and cellular assays. A promising compound was further investigated in regard to its selectivity, its effects on c-Met signaling, cell proliferation and cell scattering in vitro. Results: The most potent Compound 31 inhibited c-Met kinase activity with an IC50 value of 12.8 nmol/L, which was >78-fold higher than those of a panel of 16 different tyrosine kinases. Compound 31 (8, 40, 200 nmol/L) dose-dependently inhibited the phosphorylation of c-Met and its key downstream Akt and ERK signaling cascades in c-Met aberrant human EBC-1 cancer cells. In 12 human cancer cell lines harboring different background levels of c-Met expression/activation, Compound 31 potently inhibited c-Met-driven cell proliferation. Furthermore, Compound 31 dose-dependently impaired c-Met-mediated cell scattering of MDCK cells. Conclusion: This series of c-Met inhibitors is a promising lead for development of novel anticancer drugs. PMID:27041462

  8. Identification of a new selective chemical inhibitor of mutant isocitrate dehydrogenase-1.

    PubMed

    Kim, Hyo-Joon; Choi, Bu Young; Keum, Young-Sam

    2015-03-01

    Recent genome-wide sequencing studies have identified unexpected genetic alterations in cancer. In particular, missense mutations in isocitrate dehydrogenase-1 (IDH1) at arginine 132, mostly substituted into histidine (IDH1-R132H) were observed to frequently occur in glioma patients. We have purified recombinant IDH1 and IDH1-R132H proteins and monitored their catalytic activities. In parallel experiments, we have attempted to find new selective IDH1-R132H chemical inhibitor(s) from a fragment-based chemical library. We have found that IDH1, but not IDH1-R132H, can catalyze the conversion of isocitrate into α-ketoglutarate (α-KG). In addition, we have observed that IDH1-R132H was more efficient than IDH1 in converting α-KG into (R)-2-hydroxyglutarate (R-2HG). Moreover, we have identified a new hit molecule, e.g., 2-(3-trifluoromethylphenyl)isothioazol-3(2H)-one as a new selective IDH1-R132H inhibitor. We have observed an underlying biochemical mechanism explaining how a heterozygous IDH1 mutation contributes to the generation of R-2HG and increases cellular histone H3 trimethylation levels. We have also identified a novel selective IDH1-R132H chemical hit molecule, e.g., 2-(3-trifluoromethylphenyl)isothioazol-3(2H)-one, which could be used for a future lead development against IDH1-R132H.

  9. Identification of a New Selective Chemical Inhibitor of Mutant Isocitrate Dehydrogenase-1

    PubMed Central

    Kim, Hyo-Joon; Choi, Bu Young; Keum, Young-Sam

    2015-01-01

    Background: Recent genome-wide sequencing studies have identified unexpected genetic alterations in cancer. In particular, missense mutations in isocitrate dehydrogenase-1 (IDH1) at arginine 132, mostly substituted into histidine (IDH1-R132H) were observed to frequently occur in glioma patients. Methods: We have purified recombinant IDH1 and IDH1-R132H proteins and monitored their catalytic activities. In parallel experiments, we have attempted to find new selective IDH1-R132H chemical inhibitor(s) from a fragment-based chemical library. Results: We have found that IDH1, but not IDH1-R132H, can catalyze the conversion of isocitrate into α-ketoglutarate (α-KG). In addition, we have observed that IDH1-R132H was more efficient than IDH1 in converting α-KG into (R)-2-hydroxyglutarate (R-2HG). Moreover, we have identified a new hit molecule, e.g., 2-(3-trifluoromethylphenyl)isothioazol-3(2H)-one as a new selective IDH1-R132H inhibitor. Conclusions: We have observed an underlying biochemical mechanism explaining how a heterozygous IDH1 mutation contributes to the generation of R-2HG and increases cellular histone H3 trimethylation levels. We have also identified a novel selective IDH1-R132H chemical hit molecule, e.g., 2-(3-trifluoromethylphenyl)isothioazol-3(2H)-one, which could be used for a future lead development against IDH1-R132H. PMID:25853107

  10. Evaluation of P1'-diversified phosphinic peptides leads to the development of highly selective inhibitors of MMP-11.

    PubMed

    Matziari, Magdalini; Beau, Fabrice; Cuniasse, Philippe; Dive, Vincent; Yiotakis, Athanasios

    2004-01-15

    Phosphinic peptides were previously reported to be potent inhibitors of several matrixins (MMPs). To identify more selective inhibitors of MMP-11, a matrixin overexpressed in breast cancer, a series of phosphinic pseudopeptides bearing a variety of P(1)'-side chains has been synthesized, by parallel diversification of a phosphinic template. The potencies of these compounds were evaluated against a set of seven MMPs (MMP-2, MMP-7, MMP-8, MMP-9, MMP-11, MMP-13, and MMP-14). The chemical strategy applied led to the identification of several phosphinic inhibitors displaying high selectivity toward MMP-11. One of the most selective inhibitors of MMP-11 in this series, compound 22, exhibits a K(i) value of 0.23 microM toward MMP-11, while its potency toward the other MMPs tested is 2 orders of magnitude lower. This remarkable selectivity may rely on interactions of the P(1)'-side chain atoms of these inhibitors with residues located at the entrance of the S(1)'-cavity of MMP-11. The design of inhibitors able to interact with residues located at the entrance of MMPs' S(1)'-cavity might represent an alternative strategy to identify selective inhibitors that will fully differentiate one MMP among the others.

  11. No influence of the CYP2C19-selective inhibitor omeprazole on the pharmacokinetics of the dopamine receptor agonist rotigotine.

    PubMed

    Elshoff, Jan-Peer; Cawello, Willi; Andreas, Jens-Otto; Braun, Marina

    2014-05-01

    Rotigotine, a non-ergolinic dopamine receptor agonist administered transdermally via a patch, is metabolized by several cytochrome P-450 (CYP450) isoenzymes, including CYP2C19. This open-label, multiple-dose study evaluated the effect of omeprazole, a competitive inhibitor of CYP2C19, on the pharmacokinetics of rotigotine and its metabolites under steady-state conditions in healthy male subjects (of the extensive metabolizer phenotype, CYP2C19). Subjects received rotigotine 2 mg/24 hours on days 1-3, 4 mg/24 hours on days 4-12, and omeprazole 40 mg once daily on days 7-12 immediately after patch application. Blood and urine samples were collected on days 6 and 12 to evaluate rotigotine pharmacokinetic parameters alone and in the presence of omeprazole. Data from 37 subjects were available for pharmacokinetic analysis. Point estimates (90% confidence intervals, CI) for the ratios of AUC(0-24)SS and Cmax,SS of unconjugated rotigotine for the comparison rotigotine + omeprazole:rotigotine alone were close to 1 (0.9853 [0.9024, 1.0757] for AUC(0-24)SS and 1.0613 [0.9723, 1.1585] for Cmax,SS ) with 90% CIs within the acceptance range for bioequivalence (0.80, 1.25). Selective inhibition of CYP2C19 by omeprazole did not alter the steady-state pharmacokinetic profile of rotigotine or its metabolites. Thus, rotigotine dose adjustment is not required in patients receiving omeprazole, or other CYP2C19 inhibitors. © 2014, The American College of Clinical Pharmacology.

  12. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts.

    PubMed

    Lee, Tsung-Ming; Chang, Nen-Chung; Lin, Shinn-Zong

    2017-03-01

    During myocardial infarction, infiltrated macrophages have pivotal roles in cardiac remodeling and delayed M1 toward M2 macrophage phenotype transition is considered one of the major factors for adverse ventricular remodeling. We investigated whether dapagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, attenuates cardiac fibrosis via regulating macrophage phenotype by a reactive oxygen and nitrogen species (RONS)/STAT3-dependent pathway in postinfarcted rats. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline, dapagliflozin (a specific SGLT2 inhibitor), phlorizin (a nonspecific SGLT1/2 inhibitor), dapagliflozin + S3I-201 (a STAT3 inhibitor), or phlorizin + S3I-201 for 4 weeks. There were similar infarct sizes among the infarcted groups at the acute and chronic stages of infarction. At day 3 after infarction, post-infarction was associated with increased levels of superoxide and nitrotyrosine, which can be inhibited by administering either dapagliflozin or phlorizin. SGLT2 inhibitors significantly increased STAT3 activity, STAT3 nuclear translocation, myocardial IL-10 levels and the percentage of M2 macrophage infiltration. At day 28 after infarction, SGLT2 inhibitors were associated with attenuated myofibroblast infiltration and cardiac fibrosis. Although phlorizin decreased myofibroblast infiltration, the effect of dapagliflozin on attenuated myofibroblast infiltration was significantly higher than phlorizin. The effects of SGLT2 inhibitors on cardiac fibrosis were nullified by adding S3I-201. Furthermore, the effects of dapagliflozin on STAT3 activity and myocardial IL-10 levels can be reversed by 3-morpholinosydnonimine, a peroxynitrite generator. Taken together, these observations provide a novel mechanism of SGLT2 inhibitors-mediated M2 polarization through a RONS-dependent STAT3-mediated pathway and selective SGLT2 inhibitors are more effective in attenuating myofibroblast infiltration during

  13. Cyanidin-3-glucoside suppresses B[a]PDE-induced cyclooxygenase-2 expression by directly inhibiting Fyn kinase activity.

    PubMed

    Lim, Tae-Gyu; Kwon, Jung Yeon; Kim, Jiyoung; Song, Nu Ry; Lee, Kyung Mi; Heo, Yong-Seok; Lee, Hyong Joo; Lee, Ki Won

    2011-07-15

    Benzo[a]pyrene-7,8-diol-9,10-epoxide (B[a]PDE) is a well-known carcinogen that is associated with skin cancer. Abnormal expression of cyclooxygenase-2 (COX-2) is an important mediator in inflammation and tumor promotion. We investigated the inhibitory effect of cyanidin-3-glucoside (C3G), an anthocyanin present in fruits, on B[a]PDE-induced COX-2 expression in mouse epidermal JB6 P+ cells. Pretreatment with C3G resulted in the reduction of B[a]PDE-induced expression of COX-2 and COX-2 promoter activity. The activation of activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) induced by B[a]PDE was also attenuated by C3G. C3G attenuated the B[a]PDE-induced phosphorylation of MEK, MKK4, Akt, and mitogen-activated protein kinases (MAPKs), but no effect on the phosphorylation of the upstream MAPK regulator Fyn. However, kinase assays demonstrated that C3G suppressed Fyn kinase activity and C3G directly binds Fyn kinase noncompetitively with ATP. By using PP2, a pharmacological inhibitor for SFKs, we showed that Fyn kinase regulates B[a]PDE-induced COX-2 expression by activating MAPKs, AP-1 and NF-κB. These results suggest that C3G suppresses B[a]PDE-induced COX-2 expression mainly by blocking the activation of the Fyn signaling pathway, which may contribute to its chemopreventive potential. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Kinetics and docking studies of a COX-2 inhibitor isolated from Terminalia bellerica fruits.

    PubMed

    Reddy, Tamatam Chandramohan; Aparoy, Polamarasetty; Babu, Neela Kishore; Kumar, Kotha Anil; Kalangi, Suresh Kumar; Reddanna, Pallu

    2010-10-01

    Triphala is an Ayurvedic herbal formulation consisting of equal parts of three myrobalans: Terminalia chebula, Terminalia bellerica and Emblica officinalis. We recently reported that chebulagic acid (CA) isolated from Terminalia chebula is a potent COX-2/5-LOX dual inhibitor. In this study, compounds isolated from Terminalia bellerica were tested for inhibition against COX and 5-LOX. One of the fractionated compounds showed potent inhibition against COX enzymes with no inhibition against 5-LOX. It was identified as gallic acid (GA) by LC-MS, NMR and IR analyses. We report here the inhibitory effects of GA, with an IC(50) value of 74 nM against COX-2 and 1500 nM for COX-1, showing ≈20 fold preference towards COX-2. Further docking studies revealed that GA binds in the active site of COX-2 at the non-steroidal anti-inflammatory drug (NSAID) binding site. The carboxylate moiety of GA interacts with Arg120 and Glu524. Based on substrate dependent kinetics, GA was found to be a competitive inhibitor of both COX-1 and COX-2, with more affinity towards COX-2. Taken together, our studies indicate that GA is a selective inhibitor of COX-2. Being a small natural product with selective and reversible inhibition of COX-2, GA would form a lead molecule for developing potent anti-inflammatory drug candidates.

  15. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguado, Andrea; Galán, María; Zhenyukh, Olha

    2013-04-15

    Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl{sub 2} affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl{sub 2} (first dose 4.6 mg kg{sup −1}, subsequent doses 0.07 mg kg{sup −1} day{sup −1}, 30 days) and cultured aortic VSMC stimulated with HgCl{sub 2} (0.05–5 μg/ml) were used. Treatment of rats with HgCl{sub 2} decreased wall thickness of the resistance and conductance vasculature, increased the number ofmore » SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl{sub 2}: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl{sub 2}. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl{sub 2}-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl{sub 2} exposure induces vascular remodeling. ► HgCl{sub 2} induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl{sub 2

  16. The selectivity and promiscuity of brain-neuroregenerative inhibitors between ROCK1 and ROCK2 isoforms: An integration of SB-QSSR modelling, QM/MM analysis and in vitro kinase assay.

    PubMed

    Zhu, L; Yang, Y; Lu, X

    2016-01-01

    The Rho-associated kinases (ROCKs) have long been recognized as an attractive therapeutic target for various neurological diseases; selective inhibition of ROCK1 and ROCK2 isoforms would result in distinct biological effects on neurogenesis, neuroplasticity and neuroregeneration after brain surgery and traumatic brain injury. However, the discovery and design of isoform-selective inhibitors remain a great challenge due to the high conservation and similarity between the kinase domains of ROCK1 and ROCK2. Here, a structure-based quantitative structure-selectivity relationship (SB-QSSR) approach was used to correlate experimentally measured selectivity with the difference in inhibitor binding to the two kinase isoforms. The resulting regression models were examined rigorously through both internal cross-validation and external blind validation; a nonlinear predictor was found to have high fitting stability and strong generalization ability, which was then employed to perform virtual screening against a structurally diverse, drug-like compound library. Consequently, five and seven hits were identified as promising candidates of 1-o-2 and 2-o-1 selective inhibitors, respectively, from which seven purchasable compounds were tested in vitro using a standard kinase assay protocol to determine their inhibitory activity against and selectivity between ROCK1 and ROCK2. The structural basis, energetic property and biological implication underlying inhibitor selectivity and promiscuity were also investigated systematically using a hybrid quantum mechanics/molecular mechanics (QM/MM) scheme.

  17. Covalent inhibitors: an opportunity for rational target selectivity.

    PubMed

    Lagoutte, Roman; Patouret, Remi; Winssinger, Nicolas

    2017-08-01

    There is a resurging interest in compounds that engage their target through covalent interactions. Cysteine's thiol is endowed with enhanced reactivity, making it the nucleophile of choice for covalent engagement with a ligand aligning an electrophilic trap with a cysteine residue in a target of interest. The paucity of cysteine in the proteome coupled to the fact that closely related proteins do not necessarily share a given cysteine residue enable a level of unprecedented rational target selectivity. The recent demonstration that a lysine's amine can also be engaged covalently with a mild electrophile extends the potential of covalent inhibitors. The growing database of protein structures facilitates the discovery of covalent inhibitors while the advent of proteomic technologies enables a finer resolution in the selectivity of covalently engaged proteins. Here, we discuss recent examples of discovery and design of covalent inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. [Effect of paracetamol (acetaminophen) on blood pressure in patients with coronary heart disease].

    PubMed

    Sudano, I; Roas, S; Flammer, A J; Noll, G; Ruschitzka, F

    2012-06-06

    Analgesic drugs, non-steroidal anti-inflammatory drugs and paracetamol (acetaminophen) in particular, belong to the most widely prescribed therapeutic agents. Beside their efficacy in pain relief, these drugs were recently linked to increased cardiovascular risk. Indeed, epidemiological and clinical studies showed that non-selective non-steroidal anti-inflammatory drugs, as well as selective cyclooxygenase-2 inhibitors both may increase blood pressure and cardiovascular events. However, the effect of paracetamol (acetaminophen) on blood pressure and cardiovascular health should not be neglected, too. Unfortunately, long-term randomized controlled trials appropriately powered to evaluate cardiovascular outcomes are lacking. This review summarizes the available data about the effect of paracetamol in particular, on blood pressure and other cardiovascular outcomes.

  19. Design, synthesis, and structure-activity relationship study of glycyrrhetinic acid derivatives as potent and selective inhibitors against human carboxylesterase 2.

    PubMed

    Zou, Li-Wei; Li, Yao-Guang; Wang, Ping; Zhou, Kun; Hou, Jie; Jin, Qiang; Hao, Da-Cheng; Ge, Guang-Bo; Yang, Ling

    2016-04-13

    Human carboxylesterase 2 (hCE2), one of the major carboxylesterases in the human intestine and various tumour tissues, plays important roles in the oral bioavailability and treatment outcomes of ester- or amide-containing drugs or prodrugs, such as anticancer agents CPT-11 (irinotecan) and LY2334737 (gemcitabine). In this study, 18β-glycyrrhetinic acid (GA), the most abundant pentacyclic triterpenoid from natural source, was selected as a reference compound for the development of potent and specific inhibitors against hCE2. Simple semi-synthetic modulation on GA was performed to obtain a series of GA derivatives. Structure-activity relationship analysis brought novel insights into the structure modification of GA. Converting the 11-oxo-12-ene of GA to 12-diene moiety, and C-3 hydroxyl and C-30 carboxyl group to 3-O-β-carboxypropionyl and ethyl ester respectively, led to a significant enhancement of the inhibitory effect on hCE2 and the selectivity over hCE1. These exciting findings inspired us to design and synthesize the more potent compound 15 (IC50 0.02 μM) as a novel and highly selective inhibitor against hCE2, which was 3463-fold more potent than the parent compound GA and demonstrated excellent selectivity (>1000-fold over hCE1). The molecular docking study of compound 15 and the active site of hCE1 and hCE2 demonstrated that the potent and selective inhibition of compound 15 toward hCE2 could partially be attributed to its relatively stronger interactions with hCE2 than with hCE1. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Novel nonnucleoside inhibitors that select nucleoside inhibitor resistance mutations in human immunodeficiency virus type 1 reverse transcriptase.

    PubMed

    Zhang, Zhijun; Walker, Michelle; Xu, Wen; Shim, Jae Hoon; Girardet, Jean-Luc; Hamatake, Robert K; Hong, Zhi

    2006-08-01

    Mutations in and around the catalytic site of the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) are associated with resistance to nucleoside RT inhibitors (NRTIs), whereas changes in the hydrophobic pocket of the RT are attributed to nonnucleoside RT inhibitor (NNRTI) resistance. In this study, we report a novel series of nonnucleoside inhibitors of HIV-1, exemplified by VRX-329747 and VRX-413638, which inhibit both NNRTI- and NRTI-resistant HIV-1 isolates. Enzymatic studies indicated that these compounds are HIV-1 RT inhibitors. Surprisingly, however, following prolonged (6 months) tissue culture selection, this series of nonnucleoside inhibitors did not select NNRTI-resistant mutations in HIV-1 RT. Rather, four mutations (M41L, A62T/V, V118I, and M184V) known to cause resistance to NRTIs and two additional novel mutations (S68N and G112S) adjacent to the catalytic site of the enzyme were selected. Although the M184V mutation appears to be the initial mutation to establish resistance, this mutation alone confers only a two- to fourfold decrease in susceptibility to VRX-329747 and VRX-413638. At least two additional mutations must accumulate for significant resistance. Moreover, while VRX-329747-selected viruses are resistant to lamivudine and emtricitabine due to the M184V mutation, they remain susceptible to zidovudine, stavudine, dideoxyinosine, abacavir, tenofovir, and efavirenz. These results directly demonstrate that VRX-329747 and VRX-413638 are novel nonnucleoside inhibitors of HIV-1 RT with the potential to augment current therapies.

  1. Novel Nonnucleoside Inhibitors That Select Nucleoside Inhibitor Resistance Mutations in Human Immunodeficiency Virus Type 1 Reverse Transcriptase

    PubMed Central

    Zhang, Zhijun; Walker, Michelle; Xu, Wen; Shim, Jae Hoon; Girardet, Jean-Luc; Hamatake, Robert K.; Hong, Zhi

    2006-01-01

    Mutations in and around the catalytic site of the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) are associated with resistance to nucleoside RT inhibitors (NRTIs), whereas changes in the hydrophobic pocket of the RT are attributed to nonnucleoside RT inhibitor (NNRTI) resistance. In this study, we report a novel series of nonnucleoside inhibitors of HIV-1, exemplified by VRX-329747 and VRX-413638, which inhibit both NNRTI- and NRTI-resistant HIV-1 isolates. Enzymatic studies indicated that these compounds are HIV-1 RT inhibitors. Surprisingly, however, following prolonged (6 months) tissue culture selection, this series of nonnucleoside inhibitors did not select NNRTI-resistant mutations in HIV-1 RT. Rather, four mutations (M41L, A62T/V, V118I, and M184V) known to cause resistance to NRTIs and two additional novel mutations (S68N and G112S) adjacent to the catalytic site of the enzyme were selected. Although the M184V mutation appears to be the initial mutation to establish resistance, this mutation alone confers only a two- to fourfold decrease in susceptibility to VRX-329747 and VRX-413638. At least two additional mutations must accumulate for significant resistance. Moreover, while VRX-329747-selected viruses are resistant to lamivudine and emtricitabine due to the M184V mutation, they remain susceptible to zidovudine, stavudine, dideoxyinosine, abacavir, tenofovir, and efavirenz. These results directly demonstrate that VRX-329747 and VRX-413638 are novel nonnucleoside inhibitors of HIV-1 RT with the potential to augment current therapies. PMID:16870771

  2. Cyclooxygenase inhibition improves endothelial vasomotor dysfunction of visceral adipose arterioles in human obesity

    PubMed Central

    Farb, Melissa G.; Tiwari, Stephanie; Karki, Shakun; Ngo, Doan TM; Carmine, Brian; Hess, Donald T.; Zuriaga, Maria A.; Walsh, Kenneth; Fetterman, Jessica L.; Hamburg, Naomi M.; Vita, Joseph A.; Apovian, Caroline M.; Gokce, Noyan

    2013-01-01

    Objective The purpose of this study was to determine whether cyclooxygenase inhibition improves vascular dysfunction of adipose microvessels from obese humans. Design and Methods In 20 obese subjects (age 37±12 yrs, BMI 47±8 kg/m2) we collected subcutaneous and visceral fat during bariatric surgery and characterized adipose depot-specific gene expression, endothelial cell phenotype, and microvascular function. Vasomotor function was assessed in response to endothelium-dependent agonists using videomicroscopy of small arterioles from fat. Results Arterioles from visceral fat exhibited impaired endothelium-dependent, acetylcholine-mediated vasodilation, compared to the subcutaneous depot (p<0.001). Expression of mRNA transcripts relevant to the cyclooxygenase pathway were upregulated in visceral compared to subcutaneous fat. Pharmacological inhibition of cyclooxygenase with indomethacin improved endothelium-dependent vasodilator function of arterioles from visceral fat by 2-fold (p=0.01), whereas indomethacin had no effect in the subcutaneous depot. Indomethacin increased activation via serine-1177 phosphorylation of endothelial nitric oxide synthase in response to acetylcholine in endothelial cells from visceral fat. Inhibition of endothelial nitric oxide synthase with Nω-nitro-L-arginine methyl ester abrogated the effects of cyclooxygenase-inhibition suggesting that vascular actions of indomethacin were related to increased nitric oxide bioavailability. Conclusions Our findings suggest that cyclooxygenase-mediated vasoconstrictor prostanoids partly contribute to endothelial dysfunction of visceral adipose arterioles in human obesity. PMID:23640904

  3. [Recommendation for the prevention and treatment of non-steroidal anti-inflammatory drug-induced gastrointestinal ulcers and its complications].

    PubMed

    2017-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are a broad class of non glucocorticoid drugs which are extensively used in anti-inflammatory, analgesic, and antipyretic therapies. However, NSAIDs may cause many side effects, most commonly in gastrointestinal(GI) tract. Cardiovascular system, kidney, liver, central nervous system and hematopoietic system are also involved. NSAID-induced GI side effects not only endanger the patients' health, increase mortality, but also greatly increase the cost of medical care. Therefore, how to reduce GI side effects is of particular concern to clinicians. The Chinese Rheumatism Data Center(CRDC) and Chinese Systemic Lupus Erythematosus Treatment and Research Group(CSTAR) compose a "Recommendation for the prevention and treatment of non-steroidal anti-inflammatory drug-induced gastrointestinal ulcers and its complications" , as following: (1) GI lesions are the most common side effects of NSAIDs. (2) NSAID-induced GI side effects include gastritis, esophagitis, gastric and duodenal ulcers, bleeding, perforation and obstruction. (3) With the application of capsule endoscopy and small intestinal endoscopy, growing attention is being paid to the NASID-induced small intestine mucosa damage, which is mainly erosion and ulcer. (4) Risk factors related to NSAID-induced GI ulcers include: Helicobacter pylori (Hp) infection, age> 65 years, past history of GI ulcers, high doses of NSAIDs, multiple-drug combination therapy, and comorbidities, such as cardiovascular disease and nephropathy.(5) GI and cardiovascular function should be evaluated before using NSAIDs and gastric mucosal protective agents. (6) The risk of GI ulcers and complications caused by selective cyclooxygenase-2 (COX-2) inhibitors is less than that of non-selective COX-2 inhibitors. (7)Hp eradication therapy helps to cure GI ulcers and prevent recurrence when Hp infection is positive in NSAID-induced ulcers. (8) Proton pump inhibitor (PPI) is the first choice for the

  4. Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase

    PubMed Central

    Garcin, Elsa D.; Arvai, Andrew S.; Rosenfeld, Robin J.; Kroeger, Matt D.; Crane, Brian R.; Andersson, Gunilla; Andrews, Glen; Hamley, Peter J.; Mallinder, Philip R.; Nicholls, David J.; St-Gallay, Stephen A.; Tinker, Alan C.; Gensmantel, Nigel P.; Mete, Antonio; Cheshire, David R.; Connolly, Stephen; Stuehr, Dennis J.; Åberg, Anders; Wallace, Alan V.; Tainer, John A.; Getzoff, Elizabeth D.

    2008-01-01

    Nitric oxide synthase (NOS) enzymes synthesize nitric oxide, a signal for vasodilatation and neurotransmission at low levels, and a defensive cytotoxin at higher levels. The high active-site conservation among all three NOS isozymes hinders the design of selective NOS inhibitors to treat inflammation, arthritis, stroke, septic shock, and cancer. Our structural and mutagenesis results identified an isozyme-specific induced-fit binding mode linking a cascade of conformational changes to a novel specificity pocket. Plasticity of an isozyme-specific triad of distant second- and third-shell residues modulates conformational changes of invariant first-shell residues to determine inhibitor selectivity. To design potent and selective NOS inhibitors, we developed the anchored plasticity approach: anchor an inhibitor core in a conserved binding pocket, then extend rigid bulky substituents towards remote specificity pockets, accessible upon conformational changes of flexible residues. This approach exemplifies general principles for the design of selective enzyme inhibitors that overcome strong active-site conservation. PMID:18849972

  5. Flavocoxid, a dual inhibitor of cyclooxygenase and 5-lipoxygenase, blunts pro-inflammatory phenotype activation in endotoxin-stimulated macrophages

    PubMed Central

    Altavilla, D; Squadrito, F; Bitto, A; Polito, F; Burnett, BP; Di Stefano, V; Minutoli, L

    2009-01-01

    Background and purpose: The flavonoids, baicalin and catechin, from Scutellaria baicalensis and Acacia catechu, respectively, have been used for various clinical applications. Flavocoxid is a mixed extract containing baicalin and catechin, and acts as a dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (LOX) enzymes. The anti-inflammatory activity, measured by protein and gene expression of inflammatory markers, of flavocoxid in rat peritoneal macrophages stimulated with Salmonella enteritidis lipopolysaccharide (LPS) was investigated. Experimental approach: LPS-stimulated (1 µg·mL−1) peritoneal rat macrophages were co-incubated with different concentrations of flavocoxid (32–128 µg·mL−1) or RPMI medium for different incubation times. Inducible COX-2, 5-LOX, inducible nitric oxide synthase (iNOS) and inhibitory protein κB-α (IκB-α) levels were evaluated by Western blot analysis. Nuclear factor κB (NF-κB) binding activity was investigated by electrophoretic mobility shift assay. Tumour necrosis factor-α (TNF-α) gene and protein expression were measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay respectively. Finally, malondialdehyde (MDA) and nitrite levels in macrophage supernatants were evaluated. Key results: LPS stimulation induced a pro-inflammatory phenotype in rat peritoneal macrophages. Flavocoxid (128 µg·mL−1) significantly inhibited COX-2 (LPS = 18 ± 2.1; flavocoxid = 3.8 ± 0.9 integrated intensity), 5-LOX (LPS = 20 ± 3.8; flavocoxid = 3.1 ± 0.8 integrated intensity) and iNOS expression (LPS = 15 ± 1.1; flavocoxid = 4.1 ± 0.4 integrated intensity), but did not modify COX-1 expression. PGE2 and LTB4 levels in culture supernatants were consequently decreased. Flavocoxid also prevented the loss of IκB-α protein (LPS = 1.9 ± 0.2; flavocoxid = 7.2 ± 1.6 integrated intensity), blunted increased NF-κB binding activity (LPS = 9.2 ± 2; flavocoxid = 2.4 ± 0.7 integrated intensity) and the

  6. Intensity of factor VIII treatment and the development of inhibitors in non-severe hemophilia A patients: results of the INSIGHT case-control study.

    PubMed

    van Velzen, A S; Eckhardt, C L; Peters, M; Leebeek, F W G; Escuriola-Ettingshausen, C; Hermans, C; Keenan, R; Astermark, J; Male, C; Peerlinck, K; le Cessie, S; van der Bom, J G; Fijnvandraat, K

    2017-07-01

    Essentials Research suggests that intensive treatment episodes may increase the risk to develop inhibitors. We performed an international nested case-control study with 298 non-severe hemophilia A patients. Surgery and a high dose of factor VIII concentrate were associated with increased inhibitor risk. Physicians need to review arguments for factor VIII dose and elective surgery extra critically. Background Inhibitor development is a major complication of treatment with factor VIII concentrates in hemophilia. Findings from studies among severe hemophilia A patients suggest that intensive treatment episodes increase the risk of developing inhibitors. Objectives We set out to assess whether intensive treatment is also associated with an increased risk of inhibitor development among non-severe hemophilia A patients. Patients/Methods We performed a nested case-control study. A total of 75 inhibitor patients (cases) and 223 control patients were selected from 2709 non-severe hemophilia A patients (FVIII:C, 2-40%) of the INSIGHT cohort study. Cases and controls were matched for date of birth and cumulative number of exposure days (EDs) to FVIII concentrates. Conditional logistic regression was used to calculate both unadjusted and adjusted odds ratios (aOR); the latter were adjusted for a priori specified confounders. Results Peak treatment of 5 or 10 consecutive EDs did not increase inhibitor risk (aOR, 1.0; 95% confidence interval (CI), 0.4-2.5; and aOR, 1.8; CI, 0.6-5.5, respectively). Both surgical intervention (aOR, 4.2; CI, 1.7-10.3) and a high mean dose (> 45 IU kg -1 /ED) of FVIII concentrate (aOR, 7.5; CI, 1.6-35.6) were associated with an increased inhibitor risk. Conclusions Our findings suggest that high-dose FVIII treatment and surgery increase the risk of inhibitor development in non-severe hemophilia A. Together with the notion that non-severe hemophilia A patients are at a lifelong risk of inhibitor development, we suggest that in the future physicians

  7. [Differential action of non-steroidal antiinflammatory drugs on human gallbladder cyclooxygenase and lipoxygenase].

    PubMed

    Franchi, A; Di Girolamo, G; Farina, M; de los Santos, A R; Martí, M L; Gimeno, M A

    2000-01-01

    Lysine clonixinate (LC) is a non-steroidal antiinflammatory agent (NSAID) with only few adverse effects. This characteristic has prompted us to suggest that its administration, at levels equivalent to those found in human plasma following therapeutic doses, slightly inhibits cyclooxygenase I (COX I). Three experiments were performed. Experiment 1: to study the in vitro effect of LC at concentrations of 4 and 6 micrograms/ml, comparable with those found in plasma following an oral therapeutic dose of 125 mg. Gallbladder tissue segments were incubated with 0.25 microCi of 14C-arachidonic acid and the production of prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2 alpha) and 6-keto prostaglandin F1 alpha (6-keto PGF1 alpha) was measured. LC did not affect basal production of any of the 3 prostaglandins (PGs) but at 6 micrograms/ml slightly reduced the levels of 5-hidroxyeicosatetraenoic acid (5-HETE). Experiment 2: LC was administered preoperatively to 6 patients by continuous perfusion, to achieve a steady-state concentration between 4 and 6 micrograms/ml. Gallbladder segments from the 6 treated and another 6 control patients were incubated in 14C-arachidonic acid. Gallbladder segments treated with LC did not show a decreased production of any of the three PGs whereas 5-HETE released to the medium was significantly lower. Experiment 3: 18 patients received an i.v. bolus of LC 100 mg (n1 = 6) or LC 200 mg (n2 = 6) or indomethacin (INDO) 50 mg (n3 = 6). Unlike the administration of INDO bolus, LC in the above doses did not inhibit PG synthesis. Both NSAIDs showed different effects when the production of 5-HETE synthesis was assessed. Treatment with INDO did not alter the production of 5-HETE while LC elicited significant inhibition. The three studies conducted, namely in vitro and in vivo continuous perfusion and i.v. bolus, revealed that LC had no effect on prostaglandin synthesis while reducing significantly the levels of 5-HETE.

  8. Autoxidative and Cyclooxygenase-2 Catalyzed Transformation of the Dietary Chemopreventive Agent Curcumin*

    PubMed Central

    Griesser, Markus; Pistis, Valentina; Suzuki, Takashi; Tejera, Noemi; Pratt, Derek A.; Schneider, Claus

    2011-01-01

    The efficacy of the diphenol curcumin as a cancer chemopreventive agent is limited by its chemical and metabolic instability. Non-enzymatic degradation has been described to yield vanillin, ferulic acid, and feruloylmethane through cleavage of the heptadienone chain connecting the phenolic rings. Here we provide evidence for an alternative mechanism, resulting in autoxidative cyclization of the heptadienone moiety as a major pathway of degradation. Autoxidative transformation of curcumin was pH-dependent with the highest rate at pH 8 (2.2 μm/min) and associated with stoichiometric uptake of O2. Oxidation was also catalyzed by recombinant cyclooxygenase-2 (COX-2) (50 nm; 7.5 μm/min), and the rate was increased ≈10-fold by the addition of 300 μm H2O2. The COX-2 catalyzed transformation was inhibited by acetaminophen but not indomethacin, suggesting catalysis occurred by the peroxidase activity. We propose a mechanism of enzymatic or autoxidative hydrogen abstraction from a phenolic hydroxyl to give a quinone methide and a delocalized radical in the heptadienone chain that undergoes 5-exo cyclization and oxygenation. Hydration of the quinone methide (measured by the incorporation of O-18 from H218O) and rearrangement under loss of water gives the final dioxygenated bicyclopentadione product. When curcumin was added to RAW264.7 cells, the bicyclopentadione was increased 1.8-fold in cells activated by LPS; vanillin and other putative cleavage products were negligible. Oxidation to a reactive quinone methide is the mechanistic basis of many phenolic anti-cancer drugs. It is possible, therefore, that oxidative transformation of curcumin, a prominent but previously unrecognized reaction, contributes to its cancer chemopreventive activity. PMID:21071447

  9. Molecular docking, molecular modeling, and molecular dynamics studies of azaisoflavone as dual COX-2 inhibitors and TP receptor antagonists.

    PubMed

    Hadianawala, Murtuza; Mahapatra, Amarjyoti Das; Yadav, Jitender K; Datta, Bhaskar

    2018-02-26

    Designed multi-target ligand (DML) is an emerging strategy for the development of new drugs and involves the engagement of multiple targets with the same moiety. In the context of NSAIDs it has been suggested that targeting the thromboxane prostanoid (TP) receptor along with cyclooxygenase-2 (COX-2) may help to overcome cardiovascular (CVS) complications associated with COXIBs. In the present work, azaisoflavones were studied for their COX-2 and TP receptor binding activities using structure based drug design (SBDD) techniques. Flavonoids were selected as a starting point based on their known COX-2 inhibitory and TP receptor antagonist activity. Iterative design and docking studies resulted in the evolution of a new class scaffold replacing the benzopyran-4-one ring of flavonoids with quinolin-4-one. The docking and binding parameters of these new compounds are found to be promising in comparison to those of selective COX-2 inhibitors, such as SC-558 and celecoxib. Owing to the lack of structural information, a model for the TP receptor was generated using a threading base alignment method with loop optimization performed using an ab initio method. The model generated was validated against known antagonists for TP receptor using docking/MMGBSA. Finally, the molecules that were designed for selective COX-2 inhibition were docked into the active site of the TP receptor. Iterative structural modifications and docking on these molecules generated a series which displays optimum docking scores and binding interaction for both targets. Molecular dynamics studies on a known TP receptor antagonist and a designed molecule show that both molecules remain in contact with protein throughout the simulation and interact in similar binding modes. Graphical abstract ᅟ.

  10. Synthesis and Biological Evaluation of Non-Hydrolizable 1,2,3-Triazole Linked Sialic Acid Derivatives as Neuraminidase Inhibitors

    PubMed Central

    Weïwer, Michel; Chen, Chi-Chang; Kemp, Melissa M.; Linhardt, Robert J.

    2013-01-01

    α-Sialic acid azide 1 has been used as a substrate for the efficient preparation of 1,2,3-triazole derivatives of sialic acid using the copper-catalyzed azide-alkyne Huisgen cycloaddition (“click chemistry”). Our approach is to generate non-natural N-glycosides of sialic acid that are resistant to neuraminidase catalyzed hydrolysis as opposed to the natural O-glycosides. These N-glycosides would act as neuraminidase inhibitors to prevent the release of new virions. As a preliminary study, a small library of 1,2,3-triazole-linked sialic acid derivatives has been synthesized in 71-89% yield. A disaccharide mimic of sialic acid has also been prepared using the α-sialic acid azide 1 and a C-8 propargyl sialic acid acceptor in 68% yield. A model sialic acid coated dendrimer was also synthesized from a per-propargylated pentaerythritol acceptor. These novel sialic acid derivatives were then evaluated as potential neuraminidase inhibitors using a 96-well plate fluorescence assay; micromolar IC50 values were observed, comparable to the known sialidase inhibitor Neu5Ac2en. PMID:24223493

  11. Design, synthesis, and biological evaluation of 3,4-dihydroquinolin-2(1H)-one and 1,2,3,4-tetrahydroquinoline-based selective human neuronal nitric oxide synthase (nNOS) inhibitors.

    PubMed

    Ramnauth, Jailall; Speed, Joanne; Maddaford, Shawn P; Dove, Peter; Annedi, Subhash C; Renton, Paul; Rakhit, Suman; Andrews, John; Silverman, Sarah; Mladenova, Gabriela; Zinghini, Salvatore; Nair, Sheela; Catalano, Concettina; Lee, David K H; De Felice, Milena; Porreca, Frank

    2011-08-11

    Neuronal nitric oxide synthase (nNOS) inhibitors are effective in preclinical models of many neurological disorders. In this study, two related series of compounds, 3,4-dihydroquinolin-2(1H)-one and 1,2,3,4-tetrahydroquinoline, containing a 6-substituted thiophene amidine group were synthesized and evaluated as inhibitors of human nitric oxide synthase (NOS). A structure-activity relationship (SAR) study led to the identification of a number of potent and selective nNOS inhibitors. Furthermore, a few representative compounds were shown to possess druglike properties, features that are often difficult to achieve when designing nNOS inhibitors. Compound (S)-35, with excellent potency and selectivity for nNOS, was shown to fully reverse thermal hyperalgesia when given to rats at a dose of 30 mg/kg intraperitonieally (ip) in the L5/L6 spinal nerve ligation model of neuropathic pain (Chung model). In addition, this compound reduced tactile hyperesthesia (allodynia) after oral administration (30 mg/kg) in a rat model of dural inflammation relevant to migraine pain.

  12. Comparison between SGLT2 inhibitors and DPP4 inhibitors added to insulin therapy in type 2 diabetes: a systematic review with indirect comparison meta-analysis.

    PubMed

    Min, Se Hee; Yoon, Jeong-Hwa; Hahn, Seokyung; Cho, Young Min

    2017-01-01

    Both sodium glucose cotransporter 2 (SGLT2) inhibitors and dipeptidyl peptidase-4 (DPP4) inhibitors can be used to treat patients with type 2 diabetes mellitus (T2DM) that is inadequately controlled with insulin therapy, and yet there has been no direct comparison of these two inhibitors. We searched MEDLINE, EMBASE, LILACS, the Cochrane Central Register of Controlled Trials and ClinicalTrials.gov through June 2015. Randomized controlled trials published in English that compare SGLT2 inhibitor plus insulin (SGLT2i/INS) with placebo plus insulin or DPP4 inhibitor plus insulin (DPP4i/INS) with placebo plus insulin in patients with T2DM were selected. Data on the study characteristics, efficacy and safety outcomes were extracted. We compared the efficacy and safety between SGLT2i/INS and DPP4i/INS indirectly with covariates adjustment. Risk of potential bias was assessed. Fourteen eligible randomized controlled trials comprising 6980 patients were included (five SGLT2 inhibitor studies and nine DPP4 inhibitor studies). Covariate-adjusted indirect comparison using meta-regression analyses revealed that SGLT2i/INS achieved greater reduction in HbA 1c [weighted mean difference (WMD) -0.24%, 95% confidence interval (CI) -0.43 to -0.05%], fasting plasma glucose (WMD -18.0 mg/dL, 95% CI -28.5 to -7.6 mg/dL) and body weight (WMD -2.38 kg, 95% CI -3.18 to -1.58 kg) from baseline than DPP4i/INS without increasing the risk of hypoglycaemia (relative risks 1.19, 95% CI 0.78 to 1.82). Sodium glucose cotransporter 2 inhibitors achieved better glycaemic control and greater weight reduction than DPP4 inhibitors without increasing the risk of hypoglycaemia in patients with T2DM that is inadequately controlled with insulin. There has been no direct comparison of SGLT2 inhibitors and DPP4 inhibitors in patients with T2DM inadequately controlled with insulin therapy. In this study, we performed indirect meta-analysis comparing SGLT2 inhibitors and DPP4 inhibitors added to insulin

  13. Discovery and Mechanistic Characterization of Selective Inhibitors of H2S-producing Enzyme: 3-Mercaptopyruvate Sulfurtransferase (3MST) Targeting Active-site Cysteine Persulfide

    PubMed Central

    Hanaoka, Kenjiro; Sasakura, Kiyoshi; Suwanai, Yusuke; Toma-Fukai, Sachiko; Shimamoto, Kazuhito; Takano, Yoko; Shibuya, Norihiro; Terai, Takuya; Komatsu, Toru; Ueno, Tasuku; Ogasawara, Yuki; Tsuchiya, Yukihiro; Watanabe, Yasuo; Kimura, Hideo; Wang, Chao; Uchiyama, Masanobu; Kojima, Hirotatsu; Okabe, Takayoshi; Urano, Yasuteru; Shimizu, Toshiyuki; Nagano, Tetsuo

    2017-01-01

    Very recent studies indicate that sulfur atoms with oxidation state 0 or −1, called sulfane sulfurs, are the actual mediators of some physiological processes previously considered to be regulated by hydrogen sulfide (H2S). 3-Mercaptopyruvate sulfurtransferase (3MST), one of three H2S-producing enzymes, was also recently shown to produce sulfane sulfur (H2Sn). Here, we report the discovery of several potent 3MST inhibitors by means of high-throughput screening (HTS) of a large chemical library (174,118 compounds) with our H2S-selective fluorescent probe, HSip-1. Most of the identified inhibitors had similar aromatic ring-carbonyl-S-pyrimidone structures. Among them, compound 3 showed very high selectivity for 3MST over other H2S/sulfane sulfur-producing enzymes and rhodanese. The X-ray crystal structures of 3MST complexes with two of the inhibitors revealed that their target is a persulfurated cysteine residue located in the active site of 3MST. Precise theoretical calculations indicated the presence of a strong long-range electrostatic interaction between the persulfur anion of the persulfurated cysteine residue and the positively charged carbonyl carbon of the pyrimidone moiety of the inhibitor. Our results also provide the experimental support for the idea that the 3MST-catalyzed reaction with 3-mercaptopyruvate proceeds via a ping-pong mechanism. PMID:28079151

  14. Microwave-assisted synthesis of novel purine nucleosides as selective cholinesterase inhibitors.

    PubMed

    Schwarz, S; Csuk, R; Rauter, A P

    2014-04-21

    Alzheimer's disease (AD), the most common form of senile dementia, is characterized by high butyrylcholinesterase (BChE) levels in the brain in later AD stages, for which no treatment is available. Pursuing our studies on selective BChE inhibitors, that may contribute to understand the role of this enzyme in disease progression, we present now microwave-assisted synthesis and anticholinesterase activity of a new nucleoside series embodying 6-chloropurine or 2-acetamido-6-chloropurine linked to D-glucosyl, D-galactosyl and D-mannosyl residues. It was designed to assess the contribution of sugar stereochemistry, purine structure and linkage to the sugar for cholinesterase inhibition efficiency and selectivity. Compounds were subjected to Ellman's assay and their inhibition constants determined. The α-anomers were the most active compounds, while selectivity for BChE or acetylcholinesterase (AChE) inhibition could be tuned by the purine base, by the glycosyl moiety and by N(7)-ligation. Some of the nucleosides were far more potent than the drug galantamine, and the most promising competitive and selective BChE inhibitor, the N(7)-linked 2-acetamido-α-D-mannosylpurine, showed a Ki of 50 nM and a selectivity factor of 340 fold for BChE over AChE.

  15. Chronic inhibition of nitric-oxide synthase potentiates endothelium-dependent contractions in the rat aorta by augmenting the expression of cyclooxygenase-2.

    PubMed

    Qu, Chen; Leung, Susan W S; Vanhoutte, Paul M; Man, Ricky Y K

    2010-08-01

    Acute inhibition of nitric-oxide synthase (NOS) unmasks the release of endothelium-derived contracting factors (EDCFs). The present study investigated whether chronic inhibition of NOS modulates endothelium-dependent contractions. Eighteen-week-old male Sprague-Dawley rats were treated by daily gavage for 6 weeks with the NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) (60 mg/kg) or vehicle (distilled water; 1 ml/kg). Chronic treatment with L-NAME increased arterial blood pressure. Isometric tension was measured in aortic rings with or without endothelium. Endothelium-dependent relaxations to acetylcholine and the calcium ionophore 5-(methylamino)-2-[(2R,3R,6S,8S,9R,11R)-3,9,11-trimethyl-8-[(1S)-1-methyl-2-oxo-2-(1H-pyrrol-2-yl)-ethyl]-1,7-dioxaspiro[5.5]undec-2-yl]methyl]-4-benzoxazolecarboxylic acid (A23187) were reduced in preparations from L-NAME-treated rats. The reduction in relaxation to A23187 was partially reversed by L-arginine (1 mM). In quiescent aortic rings, A23187 caused contractions in the presence of L-NAME and intact endothelium. The A23187-induced contractions were greater in rings from the L-NAME-treated rats than in those from the control group. These contractions were abolished by the cyclooxygenase (COX)-2 inhibitor N-[2-cyclohexyloxy-4-nitrophenyl]methanesulfonamide (NS-398) and the thromboxane-prostanoid (TP) receptor antagonist 3-((6R)-6-{[(4-chlorophenyl)sulfonyl]amido}-2-methyl-5,6,7,8-tetrahydronaphthalen-1-yl)propanoate (S18886), but not by the COX-1 inhibitor 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole (SC-560). Chronic L-NAME treatment reduced the level of nitric oxide in the plasma but increased COX activity in the aortic rings. Western blotting and immunohistochemical staining showed that endothelial NOS expression was reduced in the aortae of the chronic L-NAME-treated group. COX-1 expression was augmented slightly, whereas COX-2 expression was up-regulated markedly. The TP receptor

  16. The G-765C promoter polymorphism in cyclooxygenase-2 (PTGS2), aspirin utilization and cardiovascular disease risk: the Atherosclerosis Risk in Communities (ARIC) study

    USDA-ARS?s Scientific Manuscript database

    Cyclooxygenase-2 derived prostaglandins modulate cardiovascular disease risk. We sought to determine if the reduced function G-765C promoter polymorphism in PTGS2 was associated with incident coronary heart disease (CHD) or ischemic stroke risk, and if this was modified by aspirin utilization. Usin...

  17. Recent Developments of C-Aryl Glucoside SGLT2 Inhibitors.

    PubMed

    Zhang, Yang; Liu, Zhao-Peng

    2016-01-01

    Sodium-glucose cotransporter 2 (SGLT2) is almost exclusively expressed in the proximal renal tubules. It is responsible for about 90% of the glucose reabsorption from tubular fluid. Selective inhibition of SGLT2 is expected to favor in the normalization of plasma glucose levels in T2DM patients through the prevention of renal glucose reabsorption and the promotion of glucose excretion from urine. Selective SGLT2 inhibitors have the merits to minimize the gastrointestinal side effects associated with SGLT1 inhibition, and selective SGLT2 inhibition may have a low risk of hypoglycemia. Since the C-aryl glucosides are metabolically more stable than the O-glucosides, numerous efforts have been made in the development of potent and selective C-aryl glucoside SGLT2 inhibitors, and a number of them are now used as anti-diabetes drugs in clinic or at various stages of clinical developments. Based on their structural features, in this review, these SGLT2 inhibitors are classified as three types: the phenyl/arylmethylphenyl C-glucosides, with an emphasis on the modifications on the proximal and/or the distal phenyl ring, and the spacer; the heteroarylmethylphenyl Cglucosides, with a replacement of the distal phenyl ring by a heterocycle like pyridazine, pyrimidine, thiophene and benzothiophene, thiazole, 1,3,4-thiadiazole, and triazolopyridinone; and the glucose-modified Caryl glucosides, including the glucose C-1 derived O-spiroketals, C-4 gem-difluoro analogues, C-5 and C-6 modified derivatives, dioxa-bicyclo[3.2.1]octane bridged ketals, the thioglucosides, and carbasugars. The structure-activity relationships (SARs) of each type along with their inhibitory potency against human SGLT2 and selectivity over human SGLT1 are discussed.

  18. Effect of endotoxin on ventilation and breath variability: role of cyclooxygenase pathway.

    PubMed

    Preas, H L; Jubran, A; Vandivier, R W; Reda, D; Godin, P J; Banks, S M; Tobin, M J; Suffredini, A F

    2001-08-15

    To evaluate the effects of endotoxemia on respiratory controller function, 12 subjects were randomized to receive endotoxin or saline; six also received ibuprofen, a cyclooxygenase inhibitor, and six received placebo. Administration of endotoxin produced fever, increased respiratory frequency, decreased inspiratory time, and widened alveolar-arterial oxygen tension gradient (all p < or = 0.001); these responses were blocked by ibuprofen. Independent of ibuprofen, endotoxin produced dyspnea, and it increased fractional inspiratory time, minute ventilation, and mean inspiratory flow (all p < or = 0.025). Endotoxin altered the autocorrelative behavior of respiratory frequency by increasing its autocorrelation coefficient at a lag of one breath, the number of breath lags with significant serial correlations, and its correlated fraction (all p < 0.05); these responses were blocked by ibuprofen. Changes in correlated behavior of respiratory frequency were related to changes in arterial carbon dioxide tension (r = 0.86; p < 0.03). Endotoxin decreased the oscillatory fraction of inspiratory time in both the placebo (p < 0.05) and ibuprofen groups (p = 0.06). In conclusion, endotoxin produced increases in respiratory motor output and dyspnea independent of fever and symptoms, and it curtailed the freedom to vary respiratory timing-a response that appears to be mediated by the cyclooxygenase pathway.

  19. Evaluating Fmoc-amino acids as selective inhibitors of butyrylcholinesterase

    PubMed Central

    Gonzalez, Jeannette; Ramirez, Jennifer

    2018-01-01

    Cholinesterases are involved in neuronal signal transduction, and perturbation of function has been implicated in diseases, such as Alzheimer’s and Huntington’s disease. For the two major classes of cholinesterases, such as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), previous studies reported BChE activity is elevated in patients with Alzheimer’s disease, while AChE levels remain the same or decrease. Thus, the development of potent and specific inhibitors of BChE have received much attention as a potential therapeutic in the alleviation of neurodegenerative diseases. In this study, we evaluated amino acid analogs as selective inhibitors of BChE. Amino acid analogs bearing a 9-fluorenylmethyloxycarbonyl (Fmoc) group were tested, as the Fmoc group has structural resemblance to previously described inhibitors. We identified leucine, lysine, and tryptophan analogs bearing the Fmoc group as selective inhibitors of BChE. The Fmoc group contributed to inhibition, as analogs bearing a carboxybenzyl group showed ~tenfold higher values for the inhibition constant (KI value). Inclusion of a t-butoxycarbonyl on the side chain of Fmoc tryptophan led to an eightfold lower KI value compared to Fmoc tryptophan alone suggesting that modifications of the amino acid side chains may be designed to create inhibitors with higher affinity. Our results identify Fmoc-amino acids as a scaffold upon which to design BChE-specific inhibitors and provide the foundation for further experimental and computational studies to dissect the interactions that contribute to inhibitor binding. PMID:27522651

  20. Evaluating Fmoc-amino acids as selective inhibitors of butyrylcholinesterase.

    PubMed

    Gonzalez, Jeannette; Ramirez, Jennifer; Schwans, Jason P

    2016-12-01

    Cholinesterases are involved in neuronal signal transduction, and perturbation of function has been implicated in diseases, such as Alzheimer's and Huntington's disease. For the two major classes of cholinesterases, such as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), previous studies reported BChE activity is elevated in patients with Alzheimer's disease, while AChE levels remain the same or decrease. Thus, the development of potent and specific inhibitors of BChE have received much attention as a potential therapeutic in the alleviation of neurodegenerative diseases. In this study, we evaluated amino acid analogs as selective inhibitors of BChE. Amino acid analogs bearing a 9-fluorenylmethyloxycarbonyl (Fmoc) group were tested, as the Fmoc group has structural resemblance to previously described inhibitors. We identified leucine, lysine, and tryptophan analogs bearing the Fmoc group as selective inhibitors of BChE. The Fmoc group contributed to inhibition, as analogs bearing a carboxybenzyl group showed ~tenfold higher values for the inhibition constant (K I value). Inclusion of a t-butoxycarbonyl on the side chain of Fmoc tryptophan led to an eightfold lower K I value compared to Fmoc tryptophan alone suggesting that modifications of the amino acid side chains may be designed to create inhibitors with higher affinity. Our results identify Fmoc-amino acids as a scaffold upon which to design BChE-specific inhibitors and provide the foundation for further experimental and computational studies to dissect the interactions that contribute to inhibitor binding.