Science.gov

Sample records for cyclotron resonance molecular

  1. Ion cyclotron resonance cell

    DOEpatents

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  2. Ion cyclotron resonance cell

    DOEpatents

    Weller, Robert R.

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  3. Cyclotron resonance in graphene

    NASA Astrophysics Data System (ADS)

    Henriksen, Erik Alfred

    We present a study of cyclotron resonance in graphene. Graphene is a novel two-dimensional system consisting of a single sheet of atoms arranged in a honeycomb lattice, and exhibits a unique, linear low-energy dispersion. Bilayer graphene, two sheets stacked together, is an equally interesting system displaying a second unique, but hyperbolic, dispersion. In this work, we study the quantized Landau levels of these systems in strong magnetic fields, via Fourier-transform infrared spectroscopy. We have fabricated large area single layer and bilayer graphene devices on infrared-transparent Si/SiO2 substrates, using standard electron beam lithography and thin-film liftoff techniques. At cryogenic temperatures and high magnetic fields, we measure the infrared transmission through these devices as a function of the back gate voltage, which changes the Fermi level and hence the carrier density. We analyze the normalized transmission traces, assigning the observed minima to the cyclotron resonance wherein carriers are excited between Landau levels. In single layer graphene, we study Landau level transitions near the charge neutral Dirac point, and find a set of particle-hole symmetric transitions, both within the conduction and valence band, and between the bands. These experiments confirm the unusual B- and n -dependencies of the LL energies, where B is the magnetic field and n the LL index. The CR selection rule is determined to be Delta n = |nfinal| -- |n initial| = +/-1. The ratio of the observed interband and intraband transitions exceeds the expected value by 5%, and this excess is interpreted as an additional contribution to the transition energy from many-particle effects. We explore several higher LL transitions for both electron and hole doping of single layer graphene. The data are consistent with a renormalization of the carrier band velocity near the Dirac point, and suggest that impurity scattering strengthens at low energies. We also study the CR at the

  4. Breakdown of cyclotron resonance in semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Duffield, T.; Bhat, R.; Koza, M.; Hwang, D. M.; DeRosa, F.; Grabbe, P.; Allen, S. J.

    1988-03-01

    We have observed breakdown of cyclotron resonance in large magnetic fields oriented perpendicular to the growth direction in semiconductor superlattices. At small magnetic fields conventional cyclotron resonance is observed with the mass related to the miniband mass. At large magnetic fields, when the cyclotron diameter approaches the superlattice period, the resonance frequency appears to saturate and is determined by orbits impaled on the barrier. A model calculation gives good account of the magnetic field dependence of the resonance position and line width.

  5. Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Koch, Boris P.; Witt, Matthias; Engbrodt, Ralph; Dittmar, Thorsten; Kattner, Gerhard

    2005-07-01

    The chemical structure of refractory marine dissolved organic matter (DOM) is still largely unknown. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS) was used to resolve the complex mixtures of DOM and provide valuable information on elemental compositions on a molecular scale. We characterized and compared DOM from two sharply contrasting aquatic environments, algal-derived DOM from the Weddell Sea (Antarctica) and terrigenous DOM from pore water of a tropical mangrove area in northern Brazil. Several thousand molecular formulas in the mass range of 300-600 Da were identified and reproduced in element ratio plots. On the basis of molecular elemental composition and double-bond equivalents (DBE) we calculated an average composition for marine DOM. O/C ratios in the marine samples were lower (0.36 ± 0.01) than in the mangrove pore-water sample (0.42). A small proportion of chemical formulas with higher molecular mass in the marine samples were characterized by very low O/C and H/C ratios probably reflecting amphiphilic properties. The average number of unsaturations in the marine samples was surprisingly high (DBE = 9.9; mangrove pore water: DBE = 9.4) most likely due to a significant contribution of carbonyl carbon. There was no significant difference in elemental composition between surface and deep-water DOM in the Weddell Sea. Although there were some molecules with unique marine elemental composition, there was a conspicuous degree of similarity between the terrigenous and algal-derived end members. Approximately one third of the molecular formulas were present in all marine as well as in the mangrove samples. We infer that different forms of microbial degradation ultimately lead to similar structural features that are intrinsically refractory, independent of the source of the organic matter and the environmental conditions where degradation took place.

  6. Cyclotron Resonance in Accreting Pulsars

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Dipankar

    2016-07-01

    Cyclotron Resonance Absorption/Scattering features provide direct measurement of magnetic field strength in the line forming region. This has enabled the estimation of magnetic field strengths of nearly two dozen neutron stars in accreting high mass binary systems. With improved spectroscopic sensitivity, new X-ray observatories such as NuSTAR, Astrosat and Hitomi are opening the doors to studying detailed features such as the line shape and phase dependence with high significance. Such studies will help understand the nature of matter accumulation in, and outflow from, the magnetically confined accretion column on the neutron star. This talk will describe the results of MHD simulations of the matter flow in such systems, the diagnostics of such flows using cyclotron lines, and comparison with recent observations from NuSTAR and Astrosat.

  7. Molecular characterization of inhibiting biochar water-extractable substances using electrospray ionization fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Smith, Cameron R; Sleighter, Rachel L; Hatcher, Patrick G; Lee, James W

    2013-01-01

    Biochar has gained significant interest worldwide for its potential use as both a carbon sequestration technique and soil amendment. Recently, research has shown that pinewood-derived biochar water extracts inhibited the growth of aquatic photosynthetic microorganisms, both prokaryotic and eukaryotic algae, while chicken litter- and peanut shell-derived biochar water extracts showed no growth inhibition. With the use of electrodialysis, the pinewood-derived biochar water extract is separated into 3 fractions (anode-isolated, center chamber retained, and cathode-isolated substances) all with varying toxic effects. Because of its ultrahigh resolution and mass precision, electrospray ionization (ESI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is utilized in this study to analyze biochar water extracts at a molecular level to enhance our understanding of the toxic nature of pinewood-derived biochar water extracts as compared to benign peanut shell-derived biochar water extracts. The molecular composition of pinewood-derived biochar water extracts shows unique carbohydrate ligneous components and sulfur containing condensed ligneous components that are both absent from the peanut shell water extracts and more prevalent in the anode-isolated substances. Using Kendrick mass defect analysis, we also determine that the most likely inhibitor species contain carboxyl and hydroxyl homologous series, both of which are characteristic functional groups hypothesized in our previous research for the inhibitor species. We have suggested that inhibition of aquatic photosynthetic microorganism growth is most likely due to degraded lignin-like species rich in oxygen containing functionalities. From the study conducted here, we show the potential of ultrahigh resolution FTICR-MS as a valuable analytical technique for determining whether certain biochars are safe and benign for use as carbon sequestration and soil amendment. PMID:24180747

  8. Molecular and negative ion production by a standard electron cyclotron resonance ion source

    SciTech Connect

    Racz, R.; Biri, S.; Juhasz, Z.; Sulik, B.

    2012-02-15

    Molecular and negative ion beams, usually produced in special ion sources, play an increasingly important role in fundamental and applied atomic physics. The ATOMKI-ECRIS is a standard ECR ion source, designed to provide highly charged ion (HCI) plasmas and beams. In the present work, H{sup -}, O{sup -}, OH{sup -}, O{sub 2}{sup -}, C{sup -}, C{sub 60}{sup -} negative ions and H{sub 2}{sup +}, H{sub 3}{sup +}, OH{sup +}, H{sub 2}O{sup +}, H{sub 3}O{sup +}, O{sub 2}{sup +} positive molecular ions were generated in this HCI-ECRIS. Without any major modification in the source and without any commonly applied tricks (such as usage of cesium or magnetic filter), negative ion beams of several {mu}A and positive molecular ion beams in the mA range were successfully obtained.

  9. Electron cyclotron resonance plasma photos

    SciTech Connect

    Racz, R.; Palinkas, J.; Biri, S.

    2010-02-15

    In order to observe and study systematically the plasma of electron cyclotron resonance (ECR) ion sources (ECRIS) we made a high number of high-resolution visible light plasma photos and movies in the ATOMKI ECRIS Laboratory. This required building the ECR ion source into an open ECR plasma device, temporarily. An 8MP digital camera was used to record photos of plasmas made from Ne, Ar, and Kr gases and from their mixtures. We studied and recorded the effect of ion source setting parameters (gas pressure, gas composition, magnetic field, and microwave power) to the shape, color, and structure of the plasma. The analysis of the photo series gave us many qualitative and numerous valuable physical information on the nature of ECR plasmas.

  10. ECR (Electron Cyclotron Resonance) ion sources for cyclotrons

    SciTech Connect

    Lyneis, C.M.

    1986-10-01

    In the last decade ECR (Electron Cyclotron Resonance) ion sources have evolved from a single large, power consuming, complex prototype into a variety of compact, simple, reliable, efficient, high performance sources of high charge state ions for accelerators and atomic physics. The coupling of ECR sources to cyclotrons has resulted in significant performance gains in energy, intensity, reliability, and variety of ion species. Seven ECR sources are in regular operation with cyclotrons and numerous other projects are under development or in the planning stag. At least four laboratories have ECR sources dedicated for atomic physics research and other atomic physics programs share ECR sources with cyclotrons. An ECR source is now installed on the injector for the CERN SPS synchrotron to accelerate O/sup 8 +/ to relativistic energies. A project is underway at Argonne to couple an ECR source to a superconducting heavy-ion linac. Although tremendous progress has been made, the field of ECR sources is still a relatively young technology and there is still the potential for further advances both in source development and understanding of the plasma physics. The development of ECR sources is reviewed. The important physics mechanisms which come into play in the operation of ECR Sources are discussed, along with various models for charge state distributions (CSD). The design and performance of several ECR sources are compared. The 88-Inch Cyclotron and the LBL ECR is used as an example of cyclotron+ECR operation. The future of ECR sources is considered.

  11. Interpretive Experiments: An Interpretive Experiment in Ion Cyclotron Resonance Spectroscopy.

    ERIC Educational Resources Information Center

    Burnier, R. C.; Freiser, B. S.

    1979-01-01

    Provides a discussion which is intended for chemistry college students on the ion cyclotron resonance (ICR) spectroscopy, the physical basis for ion cyclotron resonance, and the experimental methodology employed by ICR spectroscopists. (HM)

  12. Structure and morphology characters of GaN grown by ECR-MBE using hydrogen-nitrogen mixed gas plasma[Electron Cyclotron Resonance-Molecular Beam Epitaxy

    SciTech Connect

    Araki, Tsutomu; Chiba, Yasuo; Nanishi, Yasushi

    2000-07-01

    GaN growth by electron-cyclotron-resonance plasma-excited molecular beam epitaxy using hydrogen-nitrogen mixed gas plasma were carried out on GaN templates with a different polar-surface. Structure and surface morphology of the GaN layers were characterized using transmission electron microscopy. The GaN layer grown with hydrogen on N-polar template showed a relatively flat morphology including hillocks. Columnar domain existed in the center of the hillock, which might be attributed to the existence of tiny inversion domain with Ga-polarity. On the other hand, columnar structure was formed in the GaN layer grown with hydrogen on Ga-polar template.

  13. Cyclotron resonance cooling by strong laser field

    SciTech Connect

    Tagcuhi, Toshihiro; Mima, Kunioka

    1995-12-31

    Reduction of energy spread of electron beam is very important to increase a total output radiation power in free electron lasers. Although several cooling systems of particle beams such as a stochastic cooling are successfully operated in the accelerator physics, these cooling mechanisms are very slow and they are only applicable to high energy charged particle beams of ring accelerators. We propose here a new concept of laser cooling system by means of cyclotron resonance. Electrons being in cyclotron motion under a strong magnetic field can resonate with circular polarized electromagnetic field, and the resonance take place selectively depending on the velocity of the electrons. If cyclotron frequency of electrons is equal to the frequency of the electromagnetic field, they absorb the electromagnetic field energy strongly, but the other electrons remain unchanged. The absorbed energy will be converted to transverse kinetic energy, and the energy will be dumped into the radiation energy through bremastrahlung. To build a cooling system, we must use two laser beams, where one of them is counter-propagating and the other is co-propagating with electron beam. When the frequency of the counter-propagating laser is tuned with the cyclotron frequency of fast electrons and the co-propagating laser is tuned with the cyclotron frequency of slow electrons, the energy of two groups will approach and the cooling will be achieved. We solve relativistic motions of electrons with relativistic radiation dumping force, and estimate the cooling rate of this mechanism. We will report optimum parameters for the electron beam cooling system for free electron lasers.

  14. Molecular evidence of heavy-oil weathering following the M/V Cosco Busan spill: insights from Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Lemkau, Karin L; McKenna, Amy M; Podgorski, David C; Rodgers, Ryan P; Reddy, Christopher M

    2014-04-01

    Recent studies have highlighted a critical need to investigate oil weathering beyond the analytical window afforded by conventional gas chromatography (GC). In particular, techniques capable of detecting polar and higher molecular weight (HMW; > 400 Da) components abundant in crude and heavy fuel oils (HFOs) as well as transformation products. Here, we used atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (APPI FT-ICR MS) to identify molecular transformations in oil-residue samples from the 2007 M/V Cosco Busan HFO spill (San Francisco, CA). Over 617 days, the abundance and diversity of oxygen-containing compounds increased relative to the parent HFO, likely from bio- and photodegradation. HMW, highly aromatic, alkylated compounds decreased in relative abundance concurrent with increased relative abundance of less alkylated stable aromatic structures. Combining these results with GC-based data yielded a more comprehensive understanding of oil spill weathering. For example, dealkylation trends and the overall loss of HMW species observed by FT-ICR MS has not previously been documented and is counterintuitive given losses of lower molecular weight species observed by GC. These results suggest a region of relative stability at the interface of these techniques, which provides new indicators for studying long-term weathering and identifying sources. PMID:24559181

  15. Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, C. M.; Furman, Miguel A.; Vay, J.-L.; Ng, J. S.T.; Grote, D. P.; Pivi, M. T. F.; Wang, L. F.

    2009-04-29

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where lb<< 2pi c/omega c (with lb = bunch length, omega c = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the electron cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor ~;;3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined vertical density"stripes" found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The existence of the resonances has been confirmed in experiments at PEP-II. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations and experimental observations, the reason for the bunch-length dependence, and details of the dynamics are discussed here.

  16. Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, C M; Furman, M A; Vay, J L; Grote, D P; Ng, J T; Pivi, M F; Wang, L F

    2009-05-05

    A new set of resonances for electron cloud dynamics in the presence of a magnetic field has been found. For short beam bunch lengths and low magnetic fields where l{sub b} << 2{pi}{omega}{sub c}, (l{sub b} = bunch duration, {omega}{sub c} = non-relativistic cyclotron frequency) resonances between the bunch frequency and harmonics of the cyclotron frequency cause an increase in the electron cloud density in narrow ranges of magnetic field near the resonances. For ILC parameters the increase in the density is up to a factor {approx} 3, and the spatial distribution of the electrons is broader near resonances, lacking the well-defined density 'stripes' of multipactoring found for non-resonant cases. Simulations with the 2D computer code POSINST, as well as a single-particle tracking code, were used to elucidate the physics of the dynamics. The resonances are expected to affect the electron cloud dynamics in the fringe fields of conventional lattice magnets and in wigglers, where the magnetic fields are low. Results of the simulations, the reason for the bunch-length dependence, and details of the dynamics will be discussed.

  17. Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level

    USGS Publications Warehouse

    Cho, Yunjo; Jin, Jang Mi; Witt, Matthias; Birdwell, Justin E.; Na, Jeong-Geol; Roh, Nam-Sun; Kim, Sunghwan

    2013-01-01

    Laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze shale oils. Previous work showed that LDI is a sensitive ionization technique for assessing aromatic nitrogen compounds, and oils generated from Green River Formation oil shales are well-documented as being rich in nitrogen. The data presented here demonstrate that LDI is effective in ionizing high-double-bond-equivalent (DBE) compounds and, therefore, is a suitable method for characterizing compounds with condensed structures. Additionally, LDI generates radical cations and protonated ions concurrently, the distribution of which depends upon the molecular structures and elemental compositions, and the basicity of compounds is closely related to the generation of protonated ions. This study demonstrates that LDI FT-ICR MS is an effective ionization technique for use in the study of shale oils at the molecular level. To the best of our knowledge, this is the first time that LDI FT-ICR MS has been applied to shale oils.

  18. Chemical cross-linking of the urease complex from Helicobacter pylori and analysis by Fourier transform ion cyclotron resonance mass spectrometry and molecular modeling

    NASA Astrophysics Data System (ADS)

    Carlsohn, Elisabet; Ångström, Jonas; Emmett, Mark R.; Marshall, Alan G.; Nilsson, Carol L.

    2004-05-01

    Chemical cross-linking of proteins is a well-established method for structural mapping of small protein complexes. When combined with mass spectrometry, cross-linking can reveal protein topology and identify contact sites between the peptide surfaces. When applied to surface-exposed proteins from pathogenic organisms, the method can reveal structural details that are useful in vaccine design. In order to investigate the possibilities of applying cross-linking on larger protein complexes, we selected the urease enzyme from Helicobacter pylori as a model. This membrane-associated protein complex consists of two subunits: [alpha] (26.5 kDa) and [beta] (61.7 kDa). Three ([alpha][beta]) heterodimers form a trimeric ([alpha][beta])3 assembly which further associates into a unique dodecameric 1.1 MDa complex composed of four ([alpha][beta])3 units. Cross-linked peptides from trypsin-digested urease complex were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and molecular modeling. Two potential cross-linked peptides (present in the cross-linked sample but undetectable in [alpha], [beta], and native complex) were assigned. Molecular modeling of urease [alpha][beta] complex and trimeric urease units ([alpha][beta])3 revealed a linkage site between the [alpha]-subunit and the [beta]-subunit, and an internal cross-linkage in the [beta]-subunit.

  19. Ion Cyclotron Resonance Heating System on EAST

    NASA Astrophysics Data System (ADS)

    Wang, Lei

    2009-08-01

    Ion cyclotron resonance heating (ICRH) system which will provide at least than 10 MW heating power, with a frequency range from 25 MHz to 100 MHz, is being built up for the EAST. The system includes high-power and wide-frequency radio amplifier, transmission line as well as resonant double loop (RDL) antenna. As a part of this system a sub-ICRH system unit with a ultimate output power of 2.5 MW was set up and employed for heating experiment. The maximum of the launched power reached 200 kW in 2008.

  20. Physics of Cyclotron Resonance Scattering Features

    NASA Astrophysics Data System (ADS)

    Sschoenherr, Gabriele; Schwarm, Fritz-Walter; Falkner, Sebastian; Dauser, Thomas; Pottschmidt, Katja; Kretschmar, Peter; Klochkov, Dmitry; Ferrigno, Carlo; Britton Hemphill, Paul; Wilms, Joern

    2016-04-01

    Cyclotron resonant scattering features (short: cyclotron lines) are sensitive tracers of the physics of the accretion columns and mounds of X-ray pulsars. They form by interaction of X-ray photons with magnetically quantized electrons in the accreted plasma close to the neutron star. Such lines have been observed as absorption-like features for about 20 X-ray pulsars. Their energies provide a direct measure of the magnetic field strength in the line-forming region. By detailed modelling of the lines and of their parameter dependencies we can further decipher the physical conditions in the accretion column. For instance the fact that the complex scattering cross sections have a strong angle-dependence relates the phase-resolved cyclotron line shapes to parameters that constrain the systems’ still poorly understood geometry. Modelling the physics of cyclotron lines to a degree that allows for detailed and solid comparison to data therefore provides a unique access also to a better understanding of the overall picture of magnetically accreting neutron star systems.

  1. Single-pass ion cyclotron resonance absorption

    SciTech Connect

    Breizman, Boris N.; Arefiev, Alexey V.

    2001-03-01

    The ion response to the rf-field during single-pass ion-cyclotron resonance heating (ICRH) can be essentially nonlinear. This paper presents a self-consistent theory of the rf-wave propagation and ion motion through the resonance. An important ingredient of the problem is the ion flow along the magnetic field. The flow velocity limits the time the ions spend at the resonance, which in turn limits the ion energy gain. A feature that makes the problem nonlinear is that the flow accelerates under the effect of the {nabla}B force and rf-pressure. This acceleration can produce a steep decrease in the plasma density at the resonance, resulting in partial reflection of the incident wave.

  2. Cyclotron resonance in plasma flow

    SciTech Connect

    Artemyev, A. V.; Agapitov, O. V.; Krasnoselskikh, V. V.

    2013-12-15

    This paper is devoted to the mechanism of particle acceleration via resonant interaction with the electromagnetic circular wave propagating along the inhomogeneous background magnetic field in the presence of a plasma flow. We consider the system where the plasma flow velocity is large enough to change the direction of wave propagation in the rest frame. This system mimics a magnetic field configuration typical for inner structure of a quasi-parallel shock wave. We consider conditions of gyroresonant interaction when the force corresponding to an inhomogeneity of the background magnetic field is compensated by the Lorentz force of the wave-magnetic field. The wave-amplitude is assumed to be about 10% of the background magnetic field. We show that particles can gain energy if kv{sub sw}>ω>kv{sub sw}−Ω{sub c} where k is the wave number, v{sub sw} is a plasma flow velocity, and ω and Ω{sub c} are the wave frequency and the particle gyrofrequency, respectively. This mechanism of acceleration resembles the gyrosurfing mechanism, but the effect of the electrostatic field is replaced by the effect of the magnetic field inhomogeneity.

  3. A low-temperature growth process of GaAs by electron-cyclotron-resonance plasma-excited molecular-beam-epitaxy (ECR-MBE)

    NASA Astrophysics Data System (ADS)

    Kondo, Naoto; Nanishi, Yasushi

    1988-09-01

    Taking advantage of plasma excitation, surface cleaning and growth process are realized at low temperatures by electron-cyclotron-resonance (ECR) plasma-excited molecular-beam-epitaxy (MBE). Prior to growth, substrates are cleaned by exposure to hydrogen plasma at temperatures ranging from 300 to 550°C. Arsine gas is introduced and cracked in an ECR plasma generation chamber. Gallium is supplied either as trimethylgallium (TMG) or as metallic Ga. Epitaxial films are successfully grown at substrate temperatures low as 430°C for the TMG-arsine system and 350°C for the metallic Ga-arsine system. The growth rate for the TMG-arsine system is found to be governed by a balance between TMG decomposition and surface atom desorption. By contrast, the metallic Ga-arsine system is only governed by the desorption process. Exposure to plasma is found to promote desorption of atoms migrating on the substrate surface. The interface between the substrate and the epitaxial layer produced by the ECR-MBE process is found to be clean without piling up of impurity.

  4. Formation of diatomic molecular radicals in reactive nitrogen-carbon plasma generated by electron cyclotron resonance discharge and pulsed laser ablation

    SciTech Connect

    Liang, Peipei; Li, Yanli; You, Qinghu; Cai, Hua; Yang, Xu; Sun, Jian; Xu, Ning; Wu, Jiada

    2014-04-15

    The reactive nitrogen-carbon plasma generated by electron cyclotron resonance (ECR) microwave discharge of N{sub 2} gas and pulsed laser ablation of a graphite target was characterized spectroscopically by time-integrated and time-resolved optical emission spectroscopy with space resolution for a study of gas-phase reactions and molecular radical formation in the plasma. The plasma exhibits very high reactivity compared with the plasma generated solely by ECR discharge or by pulsed laser ablation and contains highly excited species originally present in the ambient gaseous environment and directly ablated from the target as well as formed as the products of gas-phase reactions occurring in the plasma. The space distribution and the time evolution of the plasma emission give an access to the gas-phase reactions for the formation of C{sub 2} and CN radicals, revealing that C{sub 2} radicals are formed mainly in the region near the target while CN radicals can be formed in a much larger region not only in the vicinity of the target, but especially in the region near a substrate far away from the target.

  5. Electron Cyclotron Resonances in Electron Cloud Dynamics

    SciTech Connect

    Celata, Christine; Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Yu, Jennifer W.

    2008-06-25

    We report a previously unknown resonance for electron cloud dynamics. The 2D simulation code"POSINST" was used to study the electron cloud buildup at different z positions in the International Linear Collider positron damping ring wiggler. An electron equilibrium density enhancement of up to a factor of 3 was found at magnetic field values for which the bunch frequency is an integral multiple of the electron cyclotron frequency. At low magnetic fields the effects of the resonance are prominent, but when B exceeds ~;;(2 pi mec/(elb)), with lb = bunch length, effects of the resonance disappear. Thus short bunches and low B fields are required for observing the effect. The reason for the B field dependence, an explanation of the dynamics, and the results of the 2D simulations and of a single-particle tracking code used to elucidate details of the dynamics are discussed.

  6. Electron Cyclotron Resonance Heating on TEXTOR

    SciTech Connect

    Westerhof, E.; Hoekzema, J.A.; Hogeweij, G.M.D.

    2005-02-15

    TEXTOR is equipped with two gyrotrons at 110 and 140 GHz, respectively. Both share a single power supply and a confocal quasi-optical transmission line. They cannot be operated simultaneously. The 110-GHz gyrotron with limited power and pulse length (300 kW; 200 ms) has been used in a first series of experiments on electron cyclotron resonance heating (ECRH) and electron cyclotron current drive (ECCD) and for collective Thomson scattering (CTS) diagnostics of energetic ions. In the future the 110-GHz gyrotron will be operated exclusively for CTS diagnostics, while for ECRH and ECCD, the newly installed 140-GHz, high-power (800-kW), long-pulse (>3-s) gyrotron is now available. The highlights of first ECRH experiments with the 110-GHz gyrotron are reported. These include observations of internal transport barriers with ECRH on various target plasmas: in the current plateau phase of both ohmic and radiation improved mode (RI-mode) discharges. In addition, sawtooth control by localized ECRH is demonstrated. First results on CTS include the observation of the slowing down of energetic ions and of the redistribution of energetic ions in sawtooth crashes.

  7. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-01-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  8. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Astrophysics Data System (ADS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-09-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  9. Some calculations of the resonator in INR cyclotron

    SciTech Connect

    Zhang, J.; Liu, X.L.

    1985-10-01

    Some calculation methods of the resonator parameters with single dee and two coaxial transmission lines in INR variable-energy cyclotron were described. Also calculated and experimental results have been compared with the original one (two dee system).

  10. Fourth generation electron cyclotron resonance ion sources.

    PubMed

    Lyneis, Claude M; Leitner, D; Todd, D S; Sabbi, G; Prestemon, S; Caspi, S; Ferracin, P

    2008-02-01

    The concepts and technical challenges related to developing a fourth generation electron cyclotron resonance (ECR) ion source with a rf frequency greater than 40 GHz and magnetic confinement fields greater than twice B(ECR) will be explored in this article. Based on the semiempirical frequency scaling of ECR plasma density with the square of operating frequency, there should be significant gains in performance over current third generation ECR ion sources, which operate at rf frequencies between 20 and 30 GHz. While the third generation ECR ion sources use NbTi superconducting solenoid and sextupole coils, the new sources will need to use different superconducting materials, such as Nb(3)Sn, to reach the required magnetic confinement, which scales linearly with rf frequency. Additional technical challenges include increased bremsstrahlung production, which may increase faster than the plasma density, bremsstrahlung heating of the cold mass, and the availability of high power continuous wave microwave sources at these frequencies. With each generation of ECR ion sources, there are new challenges to be mastered, but the potential for higher performance and reduced cost of the associated accelerator continues to make this a promising avenue for development. PMID:18315111

  11. Nonlinear wave-particle resonant interaction in the radiation belts: Landau resonance vs. fundamental cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Krasnoselskikh, V.; Artemyev, A.; Agapitov, O. V.; Mourenas, D.

    2013-12-01

    We present selected THEMIS observations of highly-oblique and large amplitude chorus waves at medium latitudes. The major part of observed waves propagates at nearly-electrostatic mode with normal angles close to resonance cone. We use test particle simulations and analytical theory to estimate efficiency of nonlinear particle acceleration by these waves via Landau and fundamental cyclotron resonances. We show that trapping into the Landau resonance corresponds to a decrease of electron equatorial pitch-angles, while trapping into the first cyclotron resonance increases electron equatorial pitch-angles. For 100 keV electrons, the energy gain is larger for the trapping due to Landau resonance. Moreover, trapping into the Landau resonance is accessible for a wider range of initial pitch-angles in comparison with the fundamental resonance.

  12. Relativistic Cyclotron Resonance Shape in Magnetic Bottle Geonium

    NASA Astrophysics Data System (ADS)

    Dehmelt, Hans; Mittleman, Richard; Liu, Yuan

    1988-10-01

    The thermally excited axial oscillation of the electron through the weak magnetic bottle needed for the continuous Stern-Gerlach effect modulates the cyclotron frequency and produces a characteristic ≈ 12-kHz-wide vertical rise-exponential decline line shape of the cyclotron resonance. At the same time the relativistic mass shift decreases the frequency by ≈ 200 Hz per cyclotron motion quantum level n. Nevertheless, our analysis of the complex line shape shows that it should be possible to produce an abrupt rise in the cyclotron quantum number n from 0 to ≈ 20 over a small fraction of 200 Hz, when the 160-GHz microwave drive approaches the n = 0 → 1 transition, and a jump of 14 levels over a frequency increment of 200 Hz has already been observed in preliminary work. This realizes an earlier proposal to generate a very sharp cyclotron resonance feature by quasithermal excitation with a square noise band and should provide a way to detect spin flips when a weak bottle is used to reduce the broadening of the g - 2 resonance by a factor of 20.

  13. Suppression of cyclotron instability in Electron Cyclotron Resonance ion sources by two-frequency heating

    SciTech Connect

    Skalyga, V.; Izotov, I.; Mansfeld, D.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Tarvainen, O.

    2015-08-15

    Multiple frequency heating is one of the most effective techniques to improve the performance of Electron Cyclotron Resonance (ECR) ion sources. The method increases the beam current and average charge state of the extracted ions and enhances the temporal stability of the ion beams. It is demonstrated in this paper that the stabilizing effect of two-frequency heating is connected with the suppression of electron cyclotron instability. Experimental data show that the interaction between the secondary microwave radiation and the hot electron component of ECR ion source plasmas plays a crucial role in mitigation of the instabilities.

  14. Cyclotron Resonance of Electrons Trapped in a Microwave Cavity

    ERIC Educational Resources Information Center

    Elmore, W. C.

    1975-01-01

    Describes an experiment in which the free-electron cyclotron resonance of electrons trapped in a microwave cavity by a Penning trap is observed. The experiment constitutes an attractive alternative to one of the Gardner-Purcell variety. (Author/GS)

  15. Electron cyclotron resonance ion source DECRIS-4 for the U400 cyclotron

    SciTech Connect

    Leporis, M.; Bekhterev, V.; Bogomolov, S.; Efremov, A.; Gulbekian, G.; Kostyukhov, Yu.; Lebedev, A.; Loginov, V.; Yazvitsky, N.

    2006-03-15

    The electron cyclotron resonance ion source DECRIS-4 has been designed and constructed at the FLNR to be used as a second injector of heavy multiply charged ions for the U-400 cyclotron. After the modification of the injection side this source can be also used as a 'charge breeder' (the ''1{sup +}{yields}n{sup +}'' method) for the second phase of the Dubna radioactive ion beams project. The main feature of the ion source design is the creation of the extended resonance zone in a comparatively compact electron cyclotron resonance ion source. For this purpose the axial magnetic field is formed with a flat minimum. In this case the superposition of the axial magnetic field and the radial field of the permanent-magnet hexapole, made from NdFeB, allows one to create a larger resonance volume. For the plasma heating a microwave frequency of 14 GHz is used. In this paper we will present the basic design features of the ion source, including the results of the magnetic-field measurements. Some preliminary results of ion source tests are also reported.

  16. Cyclotron resonance in an inhomogeneous magnetic field

    SciTech Connect

    Albert, J.M. )

    1993-08-01

    Relativistic test particles interacting with a small monochromatic electromagnetic wave are studied in the presence of an inhomogeneous background magnetic field. A resonance-averaged Hamiltonian is derived which retains the effects of passage through resonance. Two distinct regimes are found. In the strongly inhomogeneous case, the resonant phase angle at successive resonances is random, and multiple resonant interactions lead to a random walk in phase space. In the other, adiabatic limit, the phase angle is determined by the phase portrait of the Hamiltonian and leads to a systematic change in the appropriate canonical action (and therefore in the energy and pitch angle), so that the cumulative effect increases directly with the number of resonances.

  17. Cyclotron-resonance maser in a magnetic mirror.

    PubMed

    Caspi, R; Jerby, E

    1999-08-01

    A cyclotron-resonance maser (CRM) experiment is performed in a high-gradient magnetic field using a low-energy electron beam ( approximately 10 keV/1 A). The magnetic field exceeds 1.63 T, which corresponds to a 45-GHz cyclotron frequency. The CRM radiation output is observed in much lower frequencies, between 6.6 and 20 GHz only. This discrepancy is explained by the finite penetration depth of the electrons into the growing magnetic field, as in a magnetic mirror. The electrons emit radiation at the local cyclotron frequency in their reflection point from that magnetic mirror; hence, the radiation frequency depends mostly on the initial electron energy. A conceptual reflex gyrotron scheme is proposed in this paper, as a CRM analogue for the known reflex klystron. PMID:11970042

  18. RF Heating in Electron Cyclotron Resonance Ion Sources

    NASA Astrophysics Data System (ADS)

    Mascali, D.; Gammino, S.; Celona, L.; Ciavola, G.

    2011-12-01

    ECRIS—Electron Cyclotron Resonance Ion Sources are able to feed accelerators with intense currents of highly charged ions. In ECRIS a high density—high temperature plasma is generated by means of the Electron Cyclotron Resonance Heating inside a B-min, MHD stable trap. The state of the art about the principal heating mechanisms will be given. The paper will specially discuss the most critical and still open issues concerning the influence of the magnetic field and of the RF frequency on the plasma heating, as well as the impact of possible non-linear pumping wave—to—plasma interactions. The contribution of INFN-LNS will be specifically underlined. A short review on the future perspectives for the design of new generation ion sources will be given in conclusion.

  19. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    DOE PAGESBeta

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less

  20. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    SciTech Connect

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motion of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.

  1. Nonlinear electron acceleration by oblique whistler waves: Landau resonance vs. cyclotron resonance

    SciTech Connect

    Artemyev, A. V.; Agapitov, O. V.; Krasnoselskikh, V. V.; Mourenas, D.

    2013-12-15

    This paper is devoted to the study of the nonlinear interaction of relativistic electrons and high amplitude strongly oblique whistler waves in the Earth's radiation belts. We consider electron trapping into Landau and fundamental cyclotron resonances in a simplified model of dipolar magnetic field. Trapping into the Landau resonance corresponds to a decrease of electron equatorial pitch-angles, while trapping into the first cyclotron resonance increases electron equatorial pitch-angles. For 100 keV electrons, the energy gained due to trapping is similar for both resonances. For electrons with smaller energy, acceleration is more effective when considering the Landau resonance. Moreover, trapping into the Landau resonance is accessible for a wider range of initial pitch-angles and initial energies in comparison with the fundamental resonance. Thus, we can conclude that for intense and strongly oblique waves propagating in the quasi-electrostatic mode, the Landau resonance is generally more important than the fundamental one.

  2. Ion Behavior in an Electrically Compensated Ion Cyclotron Resonance Trap

    PubMed Central

    Brustkern, Adam M.; Rempel, Don L.; Gross, Michael L.

    2010-01-01

    We recently described a new electrically compensated trap in FT ion cyclotron resonance mass spectrometry and developed a means of tuning traps of this general design. Here, we describe a continuation of that research by comparing the ion transient lifetimes and the resulting mass resolving powers and signal-to-noise (S/N) ratios that are achievable in the compensated vs. uncompensated modes of this trap. Transient lifetimes are ten times longer under the same conditions of pressure, providing improved mass resolving power and S/N ratios. The mass resolving power as a function of m/z is linear (log-log plot) and nearly equal to the theoretical maximum. Importantly, the ion cyclotron frequency as a function of ion number decreases linearly in accord with theory, unlike its behavior in the uncompensated mode. This linearity should lead to better control in mass calibration and increased mass accuracy than achievable in the uncompensated mode. PMID:21499521

  3. Sawtooth control in ITER using ion cyclotron resonance heating

    SciTech Connect

    Chapman, I. T.; Graves, J P; Johnson, T.; Asunta, O.; Bonoli, P.; Choi, M.; Jaeger, E. F.; Jucker, M.; Sauter, O.

    2011-01-01

    Numerical modeling of the effects of ion cyclotron resonance heating (ICRH) on the stability of the internal kink mode suggests that ICRH should be considered as an essential sawtooth control tool in ITER. Sawtooth control using ICRH is achieved by directly affecting the energy of the internal kink mode rather than through modification of the magnetic shear by driving localized currents. Consequently, ICRH can be seen as complementary to the planned electron cyclotron current drive actuator, and indeed will improve the efficacy of current drive schemes. Simulations of the ICRH distribution using independent RF codes give confidence in numerical predictions that the stabilizing influence of the fusion-born alphas can be negated by appropriately tailored minority (3)He ICRH heating in ITER. Finally, the effectiveness of all sawtooth actuators is shown to increase as the q = 1 surface moves towards the manetic axis, whilst the passive stabilization arising from the alpha and NBI particles decreases.

  4. Cyclotron resonance in topological insulators: non-relativistic effects

    NASA Astrophysics Data System (ADS)

    Tabert, C. J.; Carbotte, J. P.

    2015-09-01

    The low-energy Hamiltonian used to describe the dynamics of the helical Dirac fermions on the surface of a topological insulator contains a subdominant non-relativistic (Schrödinger) contribution. This term can have an important effect on some properties while having no effect on others. The Hall plateaus retain the same relativistic quantization as the pure Dirac case. The height of the universal interband background conductivity is unaltered, but its onset is changed. However, the non-relativistic term leads directly to particle-hole asymmetry. It also splits the interband magneto-optical lines into doublets. Here, we find that, while the shape of the semiclassical cyclotron resonance line is unaltered, the cyclotron frequency and its optical spectral weight are changed. There are significant differences in both of these quantities for a fixed value of chemical potential or fixed doping away from charge neutrality depending on whether the Fermi energy lies in the valence or conduction band.

  5. Observation of a high-confinement regime in a tokamak plasma with ion cyclotron resonance heating

    NASA Astrophysics Data System (ADS)

    Steinmetz, K.; Noterdaeme, J.-M.; Wagner, F.; Wesner, F.; Bäumler, J.; Becker, G.; Bosch, H. S.; Brambilla, M.; Braun, F.; Brocken, H.; Eberhagen, A.; Fritsch, R.; Fussmann, G.; Gehre, O.; Gernhardt, J.; v. Gierke, G.; Glock, E.; Gruber, O.; Haas, G.; Hofmann, J.; Hofmeister, F.; Izvozchikov, A.; Janeschitz, G.; Karger, F.; Keilhacker, M.; Klüber, O.; Kornherr, M.; Lackner, K.; Lisitano, G.; van Mark, E.; Mast, F.; Mayer, H. M.; McCormick, K.; Meisel, D.; Mertens, V.; Müller, E. R.; Murmann, H.; Niedermeyer, H.; Poschenrieder, W.; Puri, S.; Rapp, H.; Röhr, H.; Ryter, F.; Schmitter, K.-H.; Schneider, F.; Setzensack, C.; Siller, G.; Smeulders, P.; Söldner, F.; Speth, E.; Steuer, K.-H.; Vollmer, O.; Wedler, H.; Zasche, D.

    1987-01-01

    The H mode in ion cyclotron-resonance-heated plasmas has been investigated with and without additional neutral beam injection. Ion cyclotron-resonance heating can cause the transition into a high-confinement regime (H mode) in combination with beam heating. The H mode, however, has also been realized-for the first time-with ion cyclotron-resonance heating alone in the D (H)-hydrogen minority scheme at an absorbed rf power of 1.1 MW.

  6. Glow plasma trigger for electron cyclotron resonance ion sources.

    PubMed

    Vodopianov, A V; Golubev, S V; Izotov, I V; Nikolaev, A G; Oks, E M; Savkin, K P; Yushkov, G Yu

    2010-02-01

    Electron cyclotron resonance ion sources (ECRISs) are particularly useful for nuclear, atomic, and high energy physics, as unique high current generators of multicharged ion beams. Plasmas of gas discharges in an open magnetic trap heated by pulsed (100 micros and longer) high power (100 kW and higher) high-frequency (greater than 37.5 GHz) microwaves of gyrotrons is promising in the field of research in the development of electron cyclotron resonance sources for high charge state ion beams. Reaching high ion charge states requires a decrease in gas pressure in the magnetic trap, but this method leads to increases in time, in which the microwave discharge develops. The gas breakdown and microwave discharge duration becomes greater than or equal to the microwave pulse duration when the pressure is decreased. This makes reaching the critical plasma density initiate an electron cyclotron resonance (ECR) discharge during pulse of microwave gyrotron radiation with gas pressure lower than a certain threshold. In order to reduce losses of microwave power, it is necessary to shorten the time of development of the ECR discharge. For fast triggering of ECR discharge under low pressure in an ECRIS, we initially propose to fill the magnetic trap with the plasmas of auxiliary pulsed discharges in crossed ExB fields. The glow plasma trigger of ECR based on a Penning or magnetron discharge has made it possible not only to fill the trap with plasma with density of 10(12) cm(-3), required for a rapid increase in plasma density and finally for ECR discharge ignition, but also to initially heat the plasma electrons to T(e) approximately = 20 eV. PMID:20192326

  7. Glow plasma trigger for electron cyclotron resonance ion sources

    SciTech Connect

    Vodopianov, A. V.; Golubev, S. V.; Izotov, I. V.; Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Yushkov, G. Yu.

    2010-02-15

    Electron cyclotron resonance ion sources (ECRISs) are particularly useful for nuclear, atomic, and high energy physics, as unique high current generators of multicharged ion beams. Plasmas of gas discharges in an open magnetic trap heated by pulsed (100 {mu}s and longer) high power (100 kW and higher) high-frequency (greater than 37.5 GHz) microwaves of gyrotrons is promising in the field of research in the development of electron cyclotron resonance sources for high charge state ion beams. Reaching high ion charge states requires a decrease in gas pressure in the magnetic trap, but this method leads to increases in time, in which the microwave discharge develops. The gas breakdown and microwave discharge duration becomes greater than or equal to the microwave pulse duration when the pressure is decreased. This makes reaching the critical plasma density initiate an electron cyclotron resonance (ECR) discharge during pulse of microwave gyrotron radiation with gas pressure lower than a certain threshold. In order to reduce losses of microwave power, it is necessary to shorten the time of development of the ECR discharge. For fast triggering of ECR discharge under low pressure in an ECRIS, we initially propose to fill the magnetic trap with the plasmas of auxiliary pulsed discharges in crossed ExB fields. The glow plasma trigger of ECR based on a Penning or magnetron discharge has made it possible not only to fill the trap with plasma with density of 10{sup 12} cm{sup -3}, required for a rapid increase in plasma density and finally for ECR discharge ignition, but also to initially heat the plasma electrons to T{sub e}{approx_equal}20 eV.

  8. Electronuclear ion fusion in an ion cyclotron resonance reactor

    SciTech Connect

    Cowgill, Donald F.

    1996-12-01

    A method and apparatus for generating nuclear fusion by ion cyclotron resonance in an ion trap reactor. The reactor includes a cylindrical housing having an axial axis, an internal surface, and first and second ends. First and second end plates that are charged are respectively located at the first and second ends of the cylindrical housing. A gas layer is adsorbed on the internal surface of the cylindrical housing. Ions are desorbed from the gas layer, forming a plasma layer adjacent to the cylindrical housing that includes first ions that have a same charge sign as the first and second end plates. A uniform magnetic field is oriented along the axial axis of the cylindrical housing. Second ions, that are unlike the first ions, but have the same charge sign, are injected into the cylindrical housing along the axial axis of the cylindrical housing. A radio frequency field resonantly accelerates the injected second ions at the cyclotron resonance frequency of the second ions. The second ions circulate in increasing helical orbits and react with the first ions, at the optimum energy for nuclear fusion. The amplitude of the radio frequency field is adjusted to accelerate the second ions at a rate equal to the rate of tangential energy loss of the second ions by nuclear scattering in the first ions, causing the ions to continually interact until fusion occurs.

  9. Miniature cyclotron resonance ion source using small permanent magnet

    NASA Technical Reports Server (NTRS)

    Anicich, V. G.; Huntress, W. T., Jr. (Inventor)

    1980-01-01

    An ion source using the cyclotron resonance principle is described. A miniaturized ion source device is used in an air gap of a small permanent magnet with a substantially uniform field in the air gap of about 0.5 inch. The device and permanent magnet are placed in an enclosure which is maintained at a high vacuum (typically 10 to the minus 7th power) into which a sample gas can be introduced. The ion beam end of the device is placed very close to an aperture through which an ion beam can exit into the apparatus for an experiment.

  10. Prospects and limitations of cyclotron resonance laser acceleration

    SciTech Connect

    Chen, C. )

    1992-07-01

    The cyclotron resonance laser (CRL) accelerator is a novel concept of accelerating continuous charged-particle beams to moderately or highly relativistic energies. This paper discusses prospects and limitations of this concept. In particular, a three-dimensional, self-consistent theory is used to analyze the nonlinear interaction of an electron beam with an intense traveling electromagnetic wave in such an accelerator. The parameter regimes of experimental interest are identified on the basis of scaling calculations. The results of simulation modeling of a multimegavolt electron CRL accelerator are presented. The possibility of building continuous-wave (cw) CRL accelerators is discussed.

  11. Frequency-scanning marginal oscillator for ion cyclotron resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kemper, Paul R.; Bowers, Michael T.

    1982-07-01

    A number of ion cyclotron resonance applications have arisen in the past few years which require a frequency-scanned detection system. Since the traditional marginal oscillator detector has always been a fixed-frequency detector, alternative detection techniques such as bridge circuit detectors have become widely used. In this paper we present an alternative to the bridge detector, namely, a frequency-scanning marginal oscillator. Requirements and modifications necessary to convert a marginal oscillator to frequency scanning operation are discussed in detail and the necessary circuit diagrams presented. Finally, a theoretical comparison is made between bridge circuit and marginal oscillator sensitivities.

  12. Electron cyclotron resonance microwave ion sources for thin film processing

    SciTech Connect

    Berry, L.A.; Gorbatkin, S.M.

    1990-01-01

    Plasmas created by microwave absorption at the electron cyclotron resonance (ECR) are increasingly used for a variety of plasma processes, including both etching and deposition. ECR sources efficiently couple energy to electrons and use magnetic confinement to maximize the probability of an electron creating an ion or free radical in pressure regimes where the mean free path for ionization is comparable to the ECR source dimensions. The general operating principles of ECR sources are discussed with special emphasis on their use for thin film etching. Data on source performance during Cl base etching of Si using an ECR system are presented. 32 refs., 5 figs.

  13. Beam injection improvement for electron cyclotron resonance charge breeders

    SciTech Connect

    Lamy, T.; Angot, J.; Sortais, P.; Thuillier, T.

    2012-02-15

    The injection of a 1+ beam into an electron cyclotron resonance (ECR) charge breeder is classically performed through a grounded tube placed on its axis at the injection side. This tube presents various disadvantages for the operation of an ECR charge breeder. First experiments without a grounded tube show a better use of the microwave power and a better charge breeding efficiency. The optical acceptance of the charge breeder without decelerating tube allows the injection of high intensity 1+ ion beams at high energy, allowing metals sputtering inside the ion source. The use of this method for refractory metallic ion beams production is evaluated.

  14. Cyclotron line resonant transfer through neutron star atmospheres

    NASA Technical Reports Server (NTRS)

    Wang, John C. L.; Wasserman, Ira M.; Salpeter, Edwin E.

    1988-01-01

    Monte Carlo methods are used to study in detail the resonant radiative transfer of cyclotron line photons with recoil through a purely scattering neutron star atmosphere for both the polarized and unpolarized cases. For each case, the number of scatters, the path length traveled, the escape frequency shift, the escape direction cosine, the emergent frequency spectra, and the angular distribution of escaping photons are investigated. In the polarized case, transfer is calculated using both the cold plasma e- and o-modes and the magnetic vacuum perpendicular and parallel modes.

  15. Potential applications of an electron cyclotron resonance multicusp plasma source

    SciTech Connect

    Tsai, C.C.; Berry, L.A.; Gorbatkin, S.M.; Haselton, H.H.; Roberto, J.B.; Stirling, W.L.

    1989-01-01

    An electron cyclotron resonance (ECR) multicusp plasmatron has been developed by feeding a multicusp bucket arc chamber with a compact ECR plasma source. This novel source produced large (about 25-cm-diam), uniform (to within {plus minus}10%), dense (>10{sup 11}-cm{sup -3}) plasmas of argon, helium, hydrogen, and oxygen. It has been operated to produce an oxygen plasma for etching 12.7-cm (5-in.) positive photoresist-coated silicon wafers with uniformity within {plus minus}8%. Results and potential applications of this new ECR plasma source for plasma processing of thin films are discussed. 21 refs., 10 figs.

  16. Deposition of diamondlike films by electron cyclotron resonance microwave plasmas

    NASA Technical Reports Server (NTRS)

    Pool, F. S.; Shing, Y. H.

    1990-01-01

    Hard a-C:H films have been deposited through electron cyclotron resonance (ECR) microwave plasma decomposition of CH4 diluted with H2 gas. It has been found that hard diamondlike films could only be produced under a RF-induced negative self-bias of the substrate stage. Raman spectra indicate the deposition of two distinct film types: one film type exhibiting well-defined bands at 1360 and 1580/cm and another displaying a broad Raman peak centered at approximately 1500/cm. Variation of the mirror magnetic-field profile of the ECR system was examined, demonstrating the manipulation of film morphology through the extraction of different ion energies.

  17. A line-of-sight electron cyclotron emission receiver for electron cyclotron resonance heating feedback control of tearing modes.

    PubMed

    Oosterbeek, J W; Bürger, A; Westerhof, E; de Baar, M R; van den Berg, M A; Bongers, W A; Graswinckel, M F; Hennen, B A; Kruijt, O G; Thoen, J; Heidinger, R; Korsholm, S B; Leipold, F; Nielsen, S K

    2008-09-01

    An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) beam. ECE measurements are obtained during high power ECRH operation. This demonstrates the successful operation of the diagnostic and, in particular, a sufficient suppression of the gyrotron component preventing it from interfering with ECE measurements. When integrated into a feedback system for the control of plasma instabilities this line-of-sight ECE diagnostic removes the need to localize the instabilities in absolute coordinates. PMID:19044409

  18. Theory for broadband detection of ion cyclotron resonance signals

    NASA Astrophysics Data System (ADS)

    McIver, Robert T.; Ledford, Edward B.; Hunter, Richard L.

    1980-02-01

    A complete line shape theory is developed for the transient response of a new type of ion cyclotron resonance (ICR) detector circuit. The detector is basically a balanced capacitance bridge which is sensitive to the abundance of gaseous ions stored in a static magnetic ion trap. For the first time, the equations of motion of ions in the ICR analyzer cell are shown to be coupled to the circuit equations of the detector. Also, the effect of nonreactive ion-molecule collisions on line shapes and on the transient response of the detector are analyzed and shown to allow measurement of ion-molecule collisions frequencies as a function of ion translational energy. One of the most important features of the capacitance bridge detector is its broadband sensitivity to a wide range of ion cyclotron resonance frequencies. This allows a mass spectrum of ions stored in the ICR analyzer cell to be obtained by scanning the frequency ω1 of the irradiating rf electric field at a fixed magnetic field strength. The capacitance bridge circuit can serve not only as a direct replacement for marginal oscillator circuits traditionally used in ICR experiments, but also as the detector for recently developed Fourier Transform and Rapid Scan ICR experiments.

  19. Frequency-swept detector for ion cyclotron resonance mass spectrometers

    NASA Astrophysics Data System (ADS)

    Wronka, J.; Ridge, D. P.

    1982-04-01

    Design, construction, performance, and use of a frequency-swept bridge detector for ion cyclotron resonance mass spectrometry are described. Special features include characterization and simple automatic correction of phase shift to allow broadband detection. The result is a detection system that may be used either at constant field or constant frequency. Drift-mode operation is simplified in that it may be satisfactorily used without the various signal modulation schemes used in previous detectors. In the trapped mode the detector may be pulsed to control the timing of ion detection. This detector makes it possible to do frequency-swept double resonance experiments which provide spectra of all the product ions of a given reactant ion. Circuit schematics and typical frequency- and field-swept spectra are shown.

  20. Sawtooth-Control Mechanism using Toroidally Propagating Ion-Cyclotron-Resonance Waves in Tokamaks

    SciTech Connect

    Graves, J. P.; Coda, S.; Chapman, I.

    2009-02-13

    The sawtooth control mechanism in plasmas employing off-axis toroidally propagating ion cyclotron resonance waves in tokamaks is reinvestigated. The radial drift excursion of energetic passing ions distributed asymmetrically in the velocity parallel to the magnetic field determines stability when the rational q=1 surface resides within a narrow region centered about the shifted fundamental cyclotron resonance.

  1. Molecular Characterization and Reactivity of Dissolved Organic Matter by High Resolution Nanospray Ionization Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS)

    NASA Astrophysics Data System (ADS)

    Sleighter, R. L.; Hatcher, S. A.; Hatcher, P. G.

    2006-12-01

    The ultrahigh resolving power of FTICR-MS allows for the intense characterization of dissolved organic matter (DOM). DOM is the largest reactive component of the global carbon cycle, and an improved understanding of its composition is necessary to determine the transport and eventual fate of pollutants. The seasonal and spatial variations in DOM composition are investigated by taking surface water samples from five different sampling sites, four times a year. Water sampling begins at the Dismal Swamp in North Carolina, continues north up the Elizabeth River to the Chesapeake Bay, and concludes approximately ten miles off the coast in the Atlantic Ocean. DOM was extracted from the water samples using C18 extraction disks and were prepared in 50:50 methanol:water. Ammonium hydroxide was added prior to nanospray in order to solubilize the DOM as well as to increase the ionization efficiency. The samples were continuously infused into the Apollo II ion source with an Advion TriVersa NanoMate system of a Bruker 12 Tesla Apex QE FTICR-MS with resolving powers exceeding 400,000. All samples were analyzed in negative ion mode and were externally and internally calibrated prior to data analysis. Our DOM mass spectra consist of a multitude of peaks spanning the range of 200-850 m/z. Complexity is apparent from the detection of up to 20 peaks per nominal mass at nearly every mass throughout that range. A molecular formula calculator generated molecular formula matches from which van Krevelen plots were constructed for characterization purposes. A wide range of molecules were observed each containing oxygen, sulfur and nitrogen functional groups. We utilize the van Krevelen diagram to assist in clustering the molecules according to their functional group compositions. To test the hypothesis that formation of adducts to DOM serve to protect peptides from bacterial degradation, microcosm experiments were performed with a small isotopically enriched peptide, GGGR. This peptide

  2. Microwave field distribution and electron cyclotron resonance heating process

    SciTech Connect

    Consoli, F.; Celona, L.; Ciavola, G.; Gammino, S.; Maimone, F.; Barbarino, S.; Catalano, R. S.; Mascali, D.

    2008-02-15

    In an electron cyclotron resonance ion source, ions are produced from a plasma generated and sustained by microwaves with a proper frequency. Some experiments showed that the plasma formation, the consequent amount of particles extracted from the source, and the related beam shape strongly depend on the frequency of the electromagnetic wave feeding the cavity. In order to have a better understanding of these phenomena, in this work we deal with the description of the motion of a charged particle inside the plasma chamber model of the SERSE ion source operating at INFN-LNS in Catania, the analysis being applicable to any similar apparatus. The electromagnetic fields inside the vacuum filled chamber were determined theoretically and, together with proper simulations, their fundamental role on the particle motion, on their confinement, and on the energy transfer they are subjected to during their motion within the cavity is shown.

  3. Pulsed magnetic field-electron cyclotron resonance ion source operation

    SciTech Connect

    Muehle, C.; Ratzinger, U.; Joest, G.; Leible, K.; Schennach, S.; Wolf, B.H.

    1996-03-01

    The pulsed magnetic field (PuMa)-electron cyclotron resonance (ECR) ion source uses a pulsed coil to improve the peak current by opening the magnetic bottle along the beam axis. After demonstration of the principle of the pulsed magnetic extraction, the ion source was tested with different gases. We received promising results from helium to krypton. The influence of the current in the pulsed coil on the analyzed ion current was measured. With increased current levels within the pulsed coil not only the pulse height of the PuMa pulse, but the pulse length can also be controlled. By using the pulsed coil the maximum of the charge state distribution can be shifted to higher charge states. {copyright} {ital 1996 American Institute of Physics.}

  4. Theory of electron-cyclotron-resonance laser accelerators

    SciTech Connect

    Chen, C. )

    1992-11-15

    The cyclotron-resonance laser (CRL) accelerator is a novel concept of accelerating continuous charged-particle beams to moderately or highly relativistic energies. This paper discusses prospects and limitations of this concept. In particular, the nonlinear coupling of an intense traveling electromagnetic wave with an electron beam in a guide magnetic field is studied, and the effects of wave dispersion on particle acceleration are analyzed. For a tenuous beam, it is shown in a single-particle theory that the maximum energy gain and the maximum acceleration distance for the beam electrons in CRL accelerators with optimal magnetic taper exhibit power-law scaling on the degree of wave dispersion (measured by the parameter [omega]/[ital ck][sub [parallel

  5. Electromagnetic particle simulation of electron cyclotron resonance microwave discharge

    NASA Astrophysics Data System (ADS)

    Koh, Wook Hee; Choi, Nak Heon; Choi, Duk In; Oh, Yong Ho

    1993-05-01

    We present a numerical model to study the electron cyclotron resonance (ECR) microwave discharge using a one-dimensional electromagnetic particle-in-cell Monte Carlo collision method [C. K. Birdsall, IEEE Trans. Plasma Sci. 19, 65 (1991)]. In our model, the electromagnetic wave is polarized circularly and propagates along an external static magnetic field and elastic, excitational, and ionizing electron-neutral collisions and elastic and charge exchange ion-neutral collisions are included. The discharge for helium gas is simulated and the simulation results explain well the physical properties of the ECR discharge which include the energy absorption of electrons through ECR coupling, the propagation of microwave, the transports of the charged particles, and the effect of divergent external magnetic field.

  6. Ion cyclotron resonance bridge detector for frequency sweep

    NASA Astrophysics Data System (ADS)

    Pitsakis, Michael N.; Wobschall, Darold C.

    1983-11-01

    An electronic ion cyclotron resonance detection system was designed and constructed. The ions are excited by sweeping the frequency of the electric field (3-300 kHz) using a sweep frequency generator with a nonlinear sweep voltage in order to maintain an approximately constant mass resolution. Ion detection is accomplished by a bridge with a phase-sensitive detector as a demodulator. The required reference signal for the phase-sensitive detector is generated by a circuit with a transfer function which approximates that of the ICR signal in order to obtain an accurate phase match between the signal source and the detector. The device is capable of detecting a minimum concentration of 50 ions/cm3 over a mass range of 15 to 1500 amu.

  7. Characteristics of surface sterilization using electron cyclotron resonance plasma

    NASA Astrophysics Data System (ADS)

    Yonesu, Akira; Hara, Kazufumi; Nishikawa, Tatsuya; Hayashi, Nobuya

    2016-07-01

    The characteristics of surface sterilization using electron cyclotron resonance (ECR) plasma were investigated. High-energy electrons and oxygen radicals were observed in the ECR zone using electric probe and optical emission spectroscopic methods. A biological indicator (BI), Geobacillus stearothermophilus, containing 1 × 106 spores was sterilized in 120 s by exposure to oxygen discharges while maintaining a temperature of approximately 55 °C at the BI installation position. Oxygen radicals and high-energy electrons were found to be the sterilizing species in the ECR region. It was demonstrated that the ECR plasma could be produced in narrow tubes with an inner diameter of 5 mm. Moreover, sterilization tests confirmed that the spores present inside the narrow tube were successfully inactivated by ECR plasma irradiation.

  8. Application of compact electron cyclotron resonance ion source

    SciTech Connect

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Ogawa, H.; Hojo, S.; Kubo, T.; Kato, Y.; Biri, S.; Fekete, E.; Yoshida, Y.; Drentje, A. G.

    2008-02-15

    The compact electron cyclotron resonance (ECR) ion source with a permanent magnet configuration (Kei2 source) has been developed at National Institute of Radiological Sciences for a new carbon therapy facility. The Kei2 source was designed for production of C{sup 4+} ions; its performance such as beam intensity and stability has already reached the medical requirements. Therefore, the prototype development of the source for medical use is essentially finished. Recently, we have started a few studies on other applications of the source. One is the production of fullerenes in the ECR plasma and modified fullerenes with various atoms for new materials. A second application is the production of multiply charged ions (not only carbon) for ion implantation. In this paper, some basic experiments for these applications are reported.

  9. Low radio frequency biased electron cyclotron resonance plasma etching

    NASA Astrophysics Data System (ADS)

    Samukawa, Seiji; Toyosato, Tomohiko; Wani, Etsuo

    1991-03-01

    A radio frequency (rf) biased electron cyclotron resonance (ECR) plasma etching technology has been developed to realize an efficient ion acceleration in high density and uniform ECR plasma for accurate Al-Si-Cu alloy film etching. In this technology, the substrate is located at the ECR position (875 G position) and the etching is carried out with a 400 kHz rf bias power. This Al-Si-Cu etching technology achieves a high etching rate (more than 5000 A/min), excellent etching uniformity (within ±5%), highly anisotropic etching, and Cu residue-free etching in only Cl2 gas plasma. These etching characteristics are accomplished by the combination of the dense and uniform ECR plasma generation at the ECR position with the efficient accelerated ion flux at the ECR position by using 400 kHz rf bias.

  10. Ion cyclotron range of frequency heating of a deuterium-tritium plasma via the second-harmonic tritium cyclotron resonance

    SciTech Connect

    Wilson, J.R.; Bush, C.E.; Darrow, D.; Hosea, J.C.; Jaeger, E.F.; Majeski, R.; Murakami, M.; Phillips, C.K.; Rogers, J.H.; Schilling, G.; Stevens, J.E.; Synakowski, E.; Taylor, G.

    1995-07-31

    Experiments have been performed on the TFTR to study rf wave heating of a D-T plasma by way of the second-harmonic tritium cyclotron resonance. The addition of tritium ions to a deuterium plasma allows for absorption of the rf waves at the tritium cyclotron harmonics and by electron damping of a mode converted ion Bernstein wave. Competing mechanisms include direct electron damping and damping at the fundamental cyclotron resonance of deuterium, {alpha} particles, and {sup 3}He ions. The contribution of each is estimated from a series of plasma discharges where various plasma parameters are varied. The majority of the rf power is found to damp on the tritium ions.

  11. Nonlinear THz absorption and cyclotron resonance in InSb

    NASA Astrophysics Data System (ADS)

    Heffernan, Kate; Yu, Shukai; Talbayev, Diyar

    The emergence of coherent high-field terahertz (THz) sources in the past decade has allowed the exploration of nonlinear light-matter interaction at THz frequencies. Nonlinear THz response of free electrons in semiconductors has received a great deal of attention. Such nonlinear phenomena as saturable absorption and self-phase modulation have been reported. InSb is a narrow-gap (bandgap 0.17 eV) semiconductor with a very low electron effective mass and high electron mobility. Previous high-field THz work on InSb reported the observation of ultrafast electron cascades via impact ionization. We study the transmission of an intense THz electric field pulse by an InSb wafer at different incident THz amplitudes and 10 K temperature. Contrary to previous reports, we observe an increased transmission at higher THz field. Our observation appears similar to the saturable THz absorption reported in other semiconductors. Along with the increased absorption, we observe a strong modulation of the THz phase at high incident fields, most likely due to the self-phase modulation of the THz pulse. We also study the dependence of the cyclotron resonance on the incident THz field amplitude. The cyclotron resonance exhibits a lower strength and frequency at the higher incident THz field. The work at Tulane was supported by the Louisiana Board of Regents through the Board of Regents Support Fund Contract No. LEQSF(2012-15)-RD-A-23 and through the Pilot Funding for New Research (PFund) Contract No. LEQSF-EPS(2014)-PFUND-378.

  12. Dynamic regimes of cyclotron instability in the afterglow mode of minimum-B electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Mansfeld, D.; Izotov, I.; Skalyga, V.; Tarvainen, O.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.

    2016-04-01

    The paper is concerned with the dynamic regimes of cyclotron instabilities in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source operated in pulsed mode. The instability appears in decaying ion source plasma shortly (1-10 ms) after switching off the microwave radiation of the klystron, and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high-energy electrons along the magnetic field lines. Recently it was shown that this plasma instability causes perturbations of the extracted ion current, which limits the performance of the ion source and generates strong bursts of bremsstrahlung emission. In this article we present time-resolved diagnostics of electromagnetic emission bursts related to cyclotron instability in the decaying plasma. The temporal resolution is sufficient to study the fine structure of the dynamic spectra of the electromagnetic emission at different operating regimes of the ion source. It was found that at different values of magnetic field and heating power the dynamic spectra demonstrate common features: Decreasing frequency from burst to burst and an always falling tone during a single burst of instability. The analysis has shown that the instability is driven by the resonant interaction of hot electrons, distributed between the electron cyclotron resonance (ECR) zone and the trap center, with slow extraordinary wave propagation quasi-parallel with respect to the external magnetic field.

  13. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, G.D.

    1998-11-24

    Microwave injection methods are disclosed for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant ``volume`` ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources. 5 figs.

  14. Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources

    DOEpatents

    Alton, Gerald D.

    1998-01-01

    Microwave injection methods for enhancing the performance of existing electron cyclotron resonance (ECR) ion sources. The methods are based on the use of high-power diverse frequency microwaves, including variable-frequency, multiple-discrete-frequency, and broadband microwaves. The methods effect large resonant "volume" ECR regions in the ion sources. The creation of these large ECR plasma volumes permits coupling of more microwave power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present ECR ion sources.

  15. A room temperature electron cyclotron resonance ion source for the DC-110 cyclotron

    SciTech Connect

    Efremov, A. Bogomolov, S.; Lebedev, A.; Loginov, V.; Yazvitsky, N.

    2014-02-15

    The project of the DC-110 cyclotron facility to provide applied research in the nanotechnologies (track pore membranes, surface modification of materials, etc.) has been designed by the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research (Dubna). The facility includes the isochronous cyclotron DC-110 for accelerating the intensive Ar, Kr, Xe ion beams with 2.5 MeV/nucleon fixed energy. The cyclotron is equipped with system of axial injection and ECR ion source DECRIS-5, operating at the frequency of 18 GHz. This article reviews the design and construction of DECRIS-5 ion source along with some initial commissioning results.

  16. Oxide film formation from Electron Cyclotron Resonance (ECR) plasmas

    SciTech Connect

    Barbour, J.C.; Apblett, C.A.; Sullivan, J.P.

    1997-06-01

    The formation of SiO{sub x} films and fluorine-doped SiO{sub x} films using electron cyclotron resonance (ECR) plasma deposition is described. Parametric studies of the film composition and hydrogen content as a function of feed gas composition and RF biasing are presented. By replacing SiH{sub 4} with SiF{sub 4} in the gas feed, samples with F content from 2 at.% F to 12 at.% F are deposited, and the dielectric constant of the deposited layers decrease linearly with increasing fluorine concentration. The stability of these low dielectric constant SiO{sub x}F{sub y} layers is examined under hydrating conditions, and conditions typically found for interlayer dielectric processing in microelectronics. The hydrogen content of the SiO{sub 2} and F-doped SiO{sub 2} is characterized as a function of deposition conditions, and a model is given to describe the thermal release of H from SiO{sub 2}.

  17. Gas breakdown in electron cyclotron resonance ion sources

    NASA Astrophysics Data System (ADS)

    Skalyga, V. A.; Zorin, V. G.; Izotov, I. V.; Sidorov, A. V.; Lamy, T.; Sortais, P.; Thuillier, T.

    2006-03-01

    The realization of the beta-beam project (http://beta-beam.web.cern.ch/beta-beam/) assumes the formation of a pulsed ion beam of helium and neon radioactive isotopes. A pulsed electron cyclotron resonance (ECR) source of multicharged ions has been proposed to produce such a beam [P. Sortais et al., Rev. Sci. Instrum. 75, 1610 (2004)]. The rising of plasma density up to a stationary level must be fast enough to actualize this approach. This condition is mandatory to avoid particle losses in the transmission line. In the presented work, the rising time of the plasma density in an ECR ion source from a background level up to 98% of a stationary level is calculated. A zero-dimensional model of plasma formation in a mirror trap [V. Semenov et al., Rev. Sci. Instrum. 73, 635 (2002)] is used, able to make calculation for a wide range of microwave frequencies. Plasma confinement regime can either be classic (Pastoukhov [Rev. Plasma Phys. 13, 203 (1987)]) or gas dynamic, depending on the plasma parameters. The calculations are in good agreement with the experimental results obtained at the SMIS'37 setup. Numerical calculations also show that particle losses can be significantly reduced by pumping effect; thanks to microwave frequency increase above 40GHz.

  18. Theory of High Power Electron Cyclotron Resonance Heating.

    NASA Astrophysics Data System (ADS)

    Taylor, Allan Watson

    1987-09-01

    Available from UMI in association with The British Library. Electron cyclotron resonance heating has been successfully used on a series of experiments in an attempt to raise plasma temperatures beyond the constraints of the resistive dissipation which occurs with ohmic heating. Recently progress in gyrotron design has allowed for significant increases in applied microwave power and for the first time a free electron laser will generate high power pulsed radio-frequency waves in the MTX experiment at Lawrence Livermore Laboratory in 1987. Classically the theory of ECRH has been considered by a Fokker-Planck approach and by a quasilinear approach. Both lead to a diffusion equation in velocity space for the distribution function but as the applied power increases the approximations made in these approaches are likely to become unsatisfactory. Adopting a test particle approach we firstly consider modifications to the velocity space diffusion co-efficient at high powers and then dispense with the diffusion equation completely. We begin by deriving averaged particle equations from a Lagrangian formulation which require less computer processor time to integrate than the exact Lorentz-force equations. These have been incorporated in a particle code to simulate ECRH in a tokamak. The results for this code are compared with analytic expressions derived for a modified diffusion coefficient and a probability function P(v,Deltav). We show that for low fields the diffusive form is correct but for higher fields nonlinear effects become important.

  19. Parallel Spectral Acquisition with an Ion Cyclotron Resonance Cell Array.

    PubMed

    Park, Sung-Gun; Anderson, Gordon A; Navare, Arti T; Bruce, James E

    2016-01-19

    Mass measurement accuracy is a critical analytical figure-of-merit in most areas of mass spectrometry application. However, the time required for acquisition of high-resolution, high mass accuracy data limits many applications and is an aspect under continual pressure for development. Current efforts target implementation of higher electrostatic and magnetic fields because ion oscillatory frequencies increase linearly with field strength. As such, the time required for spectral acquisition of a given resolving power and mass accuracy decreases linearly with increasing fields. Mass spectrometer developments to include multiple high-resolution detectors that can be operated in parallel could further decrease the acquisition time by a factor of n, the number of detectors. Efforts described here resulted in development of an instrument with a set of Fourier transform ion cyclotron resonance (ICR) cells as detectors that constitute the first MS array capable of parallel high-resolution spectral acquisition. ICR cell array systems consisting of three or five cells were constructed with printed circuit boards and installed within a single superconducting magnet and vacuum system. Independent ion populations were injected and trapped within each cell in the array. Upon filling the array, all ions in all cells were simultaneously excited and ICR signals from each cell were independently amplified and recorded in parallel. Presented here are the initial results of successful parallel spectral acquisition, parallel mass spectrometry (MS) and MS/MS measurements, and parallel high-resolution acquisition with the MS array system. PMID:26669509

  20. New method for comprehensive detection of chemical warfare agents using an electron-cyclotron-resonance ion-source mass spectrometer.

    PubMed

    Kidera, Masanori; Seto, Yasuo; Takahashi, Kazuya; Enomoto, Shuichi; Kishi, Shintaro; Makita, Mika; Nagamatsu, Tsuyoshi; Tanaka, Tatsuhiko; Toda, Masayoshi

    2011-03-01

    We developed a detection technology for vapor forms of chemical warfare agents (CWAs) with an element analysis system using an electron cyclotron resonance ion source. After the vapor sample was introduced directly into the ion source, the molecular material was decomposed into elements using electron cyclotron resonance plasma and ionized. The following CWAs and stimulants were examined: diisopropyl fluorophosphonate (DFP), 2-chloroethylethylsulfide (2CEES), cyanogen chloride (CNCl), and hydrogen cyanide (HCN). The type of chemical warfare agents, specifically, whether it was a nerve agent, blister agent, blood agent, or choking agent, could be determined by measuring the quantities of the monatomic ions or CN(+) using mass spectrometry. It was possible to detect gaseous CWAs that could not be detected by a conventional mass spectrometer. The distribution of electron temperature in the plasma could be closely controlled by adjusting the input power of the microwaves used to generate the electron cyclotron resonance plasma, and the target compounds could be detected as molecular ions or fragment ions, enabling identification of the target agents. PMID:21242103

  1. New method for comprehensive detection of chemical warfare agents using an electron-cyclotron-resonance ion-source mass spectrometer

    NASA Astrophysics Data System (ADS)

    Kidera, Masanori; Seto, Yasuo; Takahashi, Kazuya; Enomoto, Shuichi; Kishi, Shintaro; Makita, Mika; Nagamatsu, Tsuyoshi; Tanaka, Tatsuhiko; Toda, Masayoshi

    2011-03-01

    We developed a detection technology for vapor forms of chemical warfare agents (CWAs) with an element analysis system using an electron cyclotron resonance ion source. After the vapor sample was introduced directly into the ion source, the molecular material was decomposed into elements using electron cyclotron resonance plasma and ionized. The following CWAs and stimulants were examined: diisopropyl fluorophosphonate (DFP), 2-chloroethylethylsulfide (2CEES), cyanogen chloride (CNCl), and hydrogen cyanide (HCN). The type of chemical warfare agents, specifically, whether it was a nerve agent, blister agent, blood agent, or choking agent, could be determined by measuring the quantities of the monatomic ions or CN + using mass spectrometry. It was possible to detect gaseous CWAs that could not be detected by a conventional mass spectrometer. The distribution of electron temperature in the plasma could be closely controlled by adjusting the input power of the microwaves used to generate the electron cyclotron resonance plasma, and the target compounds could be detected as molecular ions or fragment ions, enabling identification of the target agents.

  2. Experiment study of an electron cyclotron resonant ion source based on a tapered resonance cavity

    SciTech Connect

    Yang, Juan; Shi, Feng; Jin, Yizhou; Wang, Yunmin; Komurasaki, Kimiya

    2013-12-15

    Electron cyclotron resonant plasma is one type of magnetised plasma generated by continuous microwave energy. It has the property of high degree of ionization and large volume at low gas pressure, which makes it useful for space propulsion and material processing. This article presents the experiment study of the plasma properties and ion beam extraction from an electron cyclotron resonant ion source based on a tapered resonance cavity. Optical emission spectroscopy based on a simple collisional radiation model was used for plasma diagnosis. Experiment results show that, at microwave power setting ranging from 7.06 to 17.40 W and mass flow rate ranging from 1 to 10 sccm, argon gas can be ionized. Ion beam of 109.1 mA from the ion source can be extracted at microwave power of 30 W, mass flow rate of 10 sccm, and accel voltage of 800 V. The diagnosed plasma temperature and density are 2.4–5.2 eV and 2 × 10{sup 16}–4.8 × 10{sup 17} m{sup −3}, respectively.

  3. Experiment study of an electron cyclotron resonant ion source based on a tapered resonance cavity

    NASA Astrophysics Data System (ADS)

    Yang, Juan; Shi, Feng; Jin, Yizhou; Wang, Yunmin; Komurasaki, Kimiya

    2013-12-01

    Electron cyclotron resonant plasma is one type of magnetised plasma generated by continuous microwave energy. It has the property of high degree of ionization and large volume at low gas pressure, which makes it useful for space propulsion and material processing. This article presents the experiment study of the plasma properties and ion beam extraction from an electron cyclotron resonant ion source based on a tapered resonance cavity. Optical emission spectroscopy based on a simple collisional radiation model was used for plasma diagnosis. Experiment results show that, at microwave power setting ranging from 7.06 to 17.40 W and mass flow rate ranging from 1 to 10 sccm, argon gas can be ionized. Ion beam of 109.1 mA from the ion source can be extracted at microwave power of 30 W, mass flow rate of 10 sccm, and accel voltage of 800 V. The diagnosed plasma temperature and density are 2.4-5.2 eV and 2 × 1016-4.8 × 1017 m-3, respectively.

  4. Electron cyclotron resonance heating in the microwave tokamak experiment

    SciTech Connect

    Allen, S.L.; Casper, T.A.; Fenstermacher, M.E.

    1992-09-01

    This paper presents the results from a series of Electron Cyclotron Resonance Heating (ECRH) experiments on the Microwave Tokamak Experiment (MTX). On-axis heating at B{sub T} = 5T (f{sub ce} = 140 GHz) has been performed at electron densities up to cutoff. We have used both a long-pulse gryotron ({approximately}200 kW, {approximately}0.1s) and a pulsed Free Electron Laser (FEL) as microwave sources. Gyrotron experiments with power densities corresponding to 4 MW m{sup {minus}3}. A far infrared (FIR) polarimeter measured peaking of plasma current profiles in some discharges during the ECRH pulse. During high-power single-pulse FEL experiments, single-pass microwave !transmission measurements show nonlinear effects; i.e., higher transmission than predicted by linear theory. A corrugated-wall duct was used in the tokamak port to increase the gradient of the parallel refractive index n{sub parallel} of the incident wave, and increased absorption was observed. Evidence of electron tail heating during FEL pulses was observed on soft x-ray and ECE diagnostics. These results are in agreement with predictions of nonlinear theory; extrapolation of this theory to reactor-like conditions indicates efficient absorption and heating. A Laser Assisted Particle Probe Spectroscopy (LAPPS) diagnostic provided estimates of the vacuum electric field of the FEL which were consistent with the measured power. Multiple pulse operation of the ETA-II accelerator for the FEL has also been demonstrated, indicating the feasibility of high-average power FEL operation.

  5. Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.

    1997-01-01

    Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low- frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.

  6. Multi-Species Test of Ion Cyclotron Resonance Heating at High Altitudes

    NASA Technical Reports Server (NTRS)

    Persoon, A. M.; Peterson, W. K.; Andre, M.; Chang, T.; Gurnett, D. A.; Retterer, J. M.; Crew, G. B.

    1997-01-01

    Observations of ion distributions and plasma waves obtained by the Dynamics Explorer 1 satellite in the high-altitude, nightside auroral zone are used to study ion energization for three ion species. A number of theoretical models have been proposed to account for the transverse heating of these ion populations. One of these, the ion cyclotron resonance heating (ICRH) mechanism, explains ion conic formation through ion cyclotron resonance with broadband electromagnetic wave turbulence in the vicinity of the characteristic ion cyclotron frequency. The cyclotron resonant heating of the ions by low-frequency electromagnetic waves is an important energy source for the transport of ions from the ionosphere to the magnetosphere. In this paper we test the applicability of the ICRH mechanism to three simultaneously heated and accelerated ion species by modelling the ion conic formation in terms of a resonant wave-particle interaction in which the ions extract energy from the portion of the broadband electromagnetic wave spectrum which includes the ion cyclotron frequency. Using a Monte Carlo technique we evaluate the ion heating produced by the electromagnetic turbulence at low frequencies and find that the wave amplitudes near the ion cyclotron frequencies are sufficient to explain the observed ion energies.

  7. Microwave emission related to cyclotron instabilities in a minimum-B electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Izotov, I.; Tarvainen, O.; Mansfeld, D.; Skalyga, V.; Koivisto, H.; Kalvas, T.; Komppula, J.; Kronholm, R.; Laulainen, J.

    2015-08-01

    Electron cyclotron resonance ion sources (ECRIS) have been essential in the research and applications of nuclear physics over the past 40 years. They are extensively used in a wide range of large-scale accelerator facilities for the production of highly charged heavy ion beams of stable and radioactive elements. ECRISs are susceptible to kinetic instabilities due to resonance heating mechanism leading to anisotropic electron velocity distribution function. Instabilities of cyclotron type are a proven cause of frequently observed periodic bursts of ‘hot’ electrons and bremsstrahlung, accompanied with emission of microwave radiation and followed by considerable drop of multiply charged ions current. Detailed studies of the microwave radiation associated with the instabilities have been performed with a minimum-B 14 GHz ECRIS operating on helium, oxygen and argon plasmas. It is demonstrated that during the development of cyclotron instability ‘hot’ electrons emit microwaves in sub-microsecond scale bursts at temporally descending frequencies in the 8-15 GHz range with two dominant frequencies of 11.09 and 12.59 GHz regardless of ECRIS settings i.e. magnetic field strength, neutral gas pressure or species and microwave power. The experimental data suggest that the most probable excited plasma wave is a slow extraordinary Z-mode propagating quasi-longitudinally with respect to the external magnetic field.

  8. Cyclotron resonance of figure-of-eight orbits in a type-II Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Koshino, Mikito

    2016-07-01

    We study the cyclotron resonance in the electron-hole joint Fermi surface of a type-II Weyl semimetal. In magnetic field, the electron and hole pockets touching at the Weyl node are hybridized to form quantized Landau levels corresponding to semiclassical 8-shaped orbits. We calculate the dynamical conductivities for the electric fields oscillating in x and y directions and find that the resonant frequencies in x and y differ by a factor of two, reflecting the figure-of-eight electron motion in real space. The peculiar anisotropy in the cyclotron resonance serves as a unique characteristic of the dumbbell-like Fermi surface.

  9. A new ion and electron detector for ion cyclotron resonance spectroscopy.

    NASA Technical Reports Server (NTRS)

    Huntress, W. T., Jr.; Simms, W. T.

    1973-01-01

    A new detector using an extremelly driven tuned circuit has been developed for use in ion cyclotron resonance spectroscopy experiments. Based on the Q-meter circuit, this detector will operate at frequencies greater than 1 MHz at rf levels less than 1 mV. Operation in the frequency range 1-15 MHz allows the use of higher magnetic fields for more efficient storage of low mass ions in the trapping mode of operation. In the frequency range 2-6 MHz electrons can be detected in the ion cyclotron resonance cell by their resonant motion in the trapping plane.

  10. The multi-ion, multi-event test of ion cyclotron resonance heating

    NASA Technical Reports Server (NTRS)

    Persoon, Ann M.

    1993-01-01

    The multi-ion, multi-event study of ion cyclotron resonance heating was funded to study ion energization through ion cyclotron resonance with low frequency broadband electromagnetic turbulence. The initial work on the ion cyclotron resonance heating (ICRH) of oxygen ions was presented in Crew et al. Crew and his co-authors developed a two-parameter representation of selected oxygen conic distributions and modeled the conic formation in terms of resonance heating. The first year seeks to extend the work of Crew and his co-authors by testing the applicability of the ICRH mechanism to helium ion conic distributions, using data obtained from the Energetic Ion Composition Spectrometer and the Plasma Wave Instrument on Dynamics Explorer 1.

  11. Multi-ion, multi-event test of ion cyclotron resonance heating

    NASA Technical Reports Server (NTRS)

    Persoon, Ann M.

    1993-01-01

    The multi-ion, multi-event study of ion cyclotron resonance heating has been funded to study ion energization through ion cyclotron resonance with low frequency broadband electromagnetic turbulence. The modeling algorithm for the ion cyclotron resonance heating (ICRH) of oxygen ions was presented in Crew et al. (1990). Crew and his co-authors developed a two-parameter representation of selected oxygen conic distributions and modelled the conic formation in terms of resonance heating. The first year of this study seeks to extend the work of Crew and his co-authors by testing the applicability of the ICRH mechanism to helium ion conic distributions, using data obtained from the Energetic Ion Composition Spectrometer and the Plasma Wave Instrument on Dynamics Explorer 1.

  12. Aging effects on macadamia nut oil studied by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Proschogo, Nicholas W; Albertson, Peter L; Bursle, Johanna; McConchie, Cameron A; Turner, Athol G; Willett, Gary D

    2012-02-29

    High-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry is successfully used in the detailed molecular analysis of aged macadamia nut oils. The results are consistent with peroxide values, the current industry measure for rancidity, and provide detailed molecular information on the oxidative and hydrolytic degeneration of such oils. Mass analysis of macadamia oil samples stored for extended periods at 6 °C revealed that oils obtained by the cold press method are more susceptible to aging than those obtained using modified Soxhlet or accelerated solvent extraction methods. PMID:22268609

  13. Characteristics of an Electron Cyclotron Resonance Plasma Source for the Production of Active Nitrogen Species in III-V Nitride Epitaxy

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    A simple analysis is provided to determine the characteristics of an electron cyclotron resonance (ECR) plasma source for the generation of active nitrogen species in the molecular beam epitaxy of III-V nitrides. The effects of reactor geometry, pressure, power, and flow rate on the dissociation efficiency and ion flux are presented. Pulsing the input power is proposed to reduce the ion flux.

  14. Status of a compact electron cyclotron resonance ion source for National Institute of Radiological Sciences-930 cyclotron

    NASA Astrophysics Data System (ADS)

    Hojo, S.; Katagiri, K.; Nakao, M.; Sugiura, A.; Muramatsu, M.; Noda, A.; Okada, T.; Takahashi, Y.; Komiyama, A.; Honma, T.; Noda, K.

    2014-02-01

    The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C4+ ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8-10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C4+, for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source.

  15. Status of a compact electron cyclotron resonance ion source for National Institute of Radiological Sciences-930 cyclotron.

    PubMed

    Hojo, S; Katagiri, K; Nakao, M; Sugiura, A; Muramatsu, M; Noda, A; Okada, T; Takahashi, Y; Komiyama, A; Honma, T; Noda, K

    2014-02-01

    The Kei-source is a compact electron cyclotron resonance ion source using only permanent magnets and a frequency of 10 GHz. It was developed at the National Institute of Radiological Sciences (NIRS) for producing C(4+) ions oriented for high-energy carbon therapy. It has also been used as an ion source for the NIRS-930 cyclotron. Its microwave band region for the traveling-wave-tube amplifier and maximum output power are 8-10 GHz and 350 W, respectively. Since 2006, it has provided various ion beams such as proton, deuteron, carbon, oxygen, and neon with sufficient intensity (200 μA for proton and deuteron, 50 μA for C(4+), for example) and good stability for radioisotope production, tests of radiation damage, and basic research experiments. Its horizontal and vertical emittances were measured using a screen monitor and waist-scan. The present paper reports the current status of the Kei-source. PMID:24593538

  16. Theory of high-field combined exciton-cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Dzyubenko, Alexander

    2003-03-01

    Optical manifestations of many-body effects in low-dimensional electron and electron-hole (e-h) systems in magnetic fields have been the focus of many experimental and theoretical studies during the past decade. An interesting manifestation of many-body effects are shake-up processes (Finkelstein et al. 1996) in the photoluminescence of a two-dimensional electron gas (2DEG): After the recombination of the e-h pair, one electron is excited to one of the higher Landau levels. A closely related phenomenon, combined exciton-cyclotron resonance (ExCR), has also been identified in low-density 2DEG systems: Here, an incident photon creates an exciton and simultaneously excites one electron to higher Landau levels (Yakovlev et al. 1997). These phenomena and the relation between them remain only partially understood. In this work, I develop a theory of ExCR in a low-density strictly-2D electron gas in high magnetic fields. Electrons are assumed to be spin-polarized and occupy zero Landau level. In the low-density limit, ExCR can be considered to be a three-particle resonance involving a charged system of two electrons and one hole, 2e-h, in the final state. Importantly, there is a coupling of the center-of-mass and internal motions for charged e-h complexes in magnetic fields. In order to describe the high-field ExCR, I obtain the complete spectra of the 2e-h eigenstates in higher Landau levels with a consistent treatment of the Coulomb correlations. I derive exact ExCR selection rules that follow from the existing dynamical symmetries, magnetic translations and rotations about the magnetic field axis. This allows one to establish the characteristic features of the high-field ExCR; in particular, the double-peak structure of the transitions to the first electron Landau level is predicted. I also consider combined hole-ExCR in a low-density 2DEG, a resonance in which the hole is excited to higher hole Lnadau levels. It is shown that the high-field hole-ExCR has different

  17. Suzaku observations of cyclotron resonances in binary X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Terada, Y.; Mihara, T.; Nagase, F.; Angelini, L.; Dotani, T.; Enoto, T.; Kitamoto, S.; Kohmura, T.; Kokubun, M.; Kotani, T.; Makishima, K.; Naik, S.; Nakajima, M.; Sugita, S.; Sudoh, K.; Suzuki, M.; Takahashi, H.; Yonetoku, D.; Yoshida, A.

    Since the typical magnetic field strengths of neutron stars reach 10 12 Gauss, the cyclotron resonance produced by a transition between Landau levels appears in the X-ray band. Systematic measurements of cyclotron absorption features in bright sources have been carried out extensively with Ginga, RXTE, BeppoSAX, and INTEGRAL. The cyclotron resonance phenomena can now be studied with a higher sensitivity over a wider hard X-ray band than before, thanks to the Hard X-ray Detector onboard the fifth Japanese X-ray satellite, Suzaku, launched in July, 2005. Suzaku observed Hercules X-1 mainly for calibration purposes, and successfully confirmed its well-known cyclotron absorption feature. Furthermore, the transient pulsar A0535+262 was observed with Suzaku on 14 September, 2005, in the decay phase of its minor outburst (Finger, M.F. Renewed Activity from A0535+26. The Astronomer's Telegram, vol. 595, 2005). The cyclotron resonance of A0535+262 was successfully detected in absorption at about 45 keV (Inoue, H., Kunieda, H., White, N., Kelley, R., Mihara, T., Terada, Y., Takahashi, H., Kokubun, M., Makishima, K. Suzaku detection of cyclotron line near 50 keV for A0535+26. The Astronomer's Telegram vol. 595, 2005; Terada, Y., Mihara, T., Nakajima, M., et al. Cyclotron resonance energies at a low X-ray luminosity: A0535+262 observed with Suzaku. ApJL 648, L139-L142, 2006), even though the object was as dim as 30 mCrab at 20 keV. Compared with previous measurements of the same feature achieved at much brighter phases (e.g., Kretschmar, P., Kreykenbohm, I., Pottschmidt, et al. Integral observes possible cyclotron line at 47 keV for 1A0535+262. The Astronomer's Telegram, vol. 601, 2005; Wilson, C.A., Finger, M.H. RXTE confirms cyclotron line near 50 keV for A0535+26. The Astronomer's Telegram 605, 2005), the Suzaku results give a new constraint to luminosity-related changes in the resonance energy that are observed in other binary pulsars (Nakajima, M., Mihara, T., Makishima

  18. Comparison of solar wind driving mechanisms: ion cyclotron resonance versus kinetic suprathermal electron effects

    NASA Astrophysics Data System (ADS)

    Tam, Sunny W. Y.; Chang, Tom

    2003-09-01

    The combined kinetic effects of two possible solar wind driving mechanisms, ion cyclotron resonance and suprathermal electrons, have been studied in the literature [1]. However, the individual contribution by these two mechanisms was unclear. We compare the two effects in the fast solar wind. Our basic model follows the global kinetic evolution of the solar wind under the influence of ion cyclotron resonance, while taking into account Coulomb collisions, and the ambipolar electric field that is consistent with the particle distributions themselves. The kinetic effects associated with the suprathermal electrons can be included in the model as an option. By comparing our results with and without this option, we conclude that, without considering any wave-particle interactions involving the electrons, the kinetic effects of the suprathermal electrons are relative insignificant in the presence of ion cyclotron resonance in terms of driving the solar wind.

  19. Generation of energetic electrons at second harmonic cyclotron resonance in ionospheric HF heating experiments

    NASA Astrophysics Data System (ADS)

    Kuo, S. P.; Rubinraut, M.

    2005-10-01

    The theory of electron acceleration by upper hybrid waves at second harmonic cyclotron resonance is presented. The results show that the meter-scale upper hybrid waves can incorporate the finite Larmour radius effect to make a second harmonic cyclotron resonance interaction effective. The finite Larmour radius effect provides a positive feedback to the interaction, thus the energies of the accelerated electrons increase in time exponentially, rather than linearly as in the case of fundamental cyclotron resonance. Consequently, energetic electrons (having energies larger than 10.7 eV) can be generated even at very low upper hybrid wave intensities. The threshold field for parametric excitation of meter-scale upper hybrid waves by O-mode HF heating wave is shown to be very low. The theory can be a reasonable basis for explaining the enhancement of airglow at 777.4 nm observed in recent low-heating-power experiment at HAARP.

  20. On the electrically detected cyclotron resonance of holes in silicon nanostructures

    SciTech Connect

    Bagraev, N. T. Gets, D. S.; Danilovsky, E. Yu.; Klyachkin, L. E.; Malyarenko, A. M.

    2013-04-15

    The cyclotron resonance in semiconductor nanostructures is electrically detected for the first time without an external cavity, a source, and a detector of microwave radiation. An ultranarrow p-Si quantum well on an n-Si (100) surface confined by superconducting heavily boron-doped {delta}-shaped barriers is used as the object of investigation and provides microwave generation within the framework of the nonstationary Josephson effect. The cyclotron resonance is detected upon the presence of a microcavity, which is incorporated into the quantum-well plane, by measuring the longitudinal magnetoresistance under conditions of stabilization of the source-drain current. The cyclotron-resonance spectra and their angular dependences measured in a low magnetic field identify small values of the effective mass of light and heavy holes in various 2D subbands due to the presence of edge channels with a high mobility of carriers.

  1. Cyclotron resonance in HgTe/CdTe-based heterostructures in high magnetic fields.

    PubMed

    Zholudev, Maxim S; Ikonnikov, Anton V; Teppe, Frederic; Orlita, Milan; Maremyanin, Kirill V; Spirin, Kirill E; Gavrilenko, Vladimir I; Knap, Wojciech; Dvoretskiy, Sergey A; Mihailov, Nikolay N

    2012-01-01

    : Cyclotron resonance study of HgTe/CdTe-based quantum wells with both inverted and normal band structures in quantizing magnetic fields was performed. In semimetallic HgTe quantum wells with inverted band structure, a hole cyclotron resonance line was observed for the first time. In the samples with normal band structure, interband transitions were observed with wide line width due to quantum well width fluctuations. In all samples, impurity-related magnetoabsorption lines were revealed. The obtained results were interpreted within the Kane 8·8 model, the valence band offset of CdTe and HgTe, and the Kane parameter EP being adjusted. PMID:23013642

  2. Cyclotron resonance in HgTe/CdTe-based heterostructures in high magnetic fields

    PubMed Central

    2012-01-01

    Cyclotron resonance study of HgTe/CdTe-based quantum wells with both inverted and normal band structures in quantizing magnetic fields was performed. In semimetallic HgTe quantum wells with inverted band structure, a hole cyclotron resonance line was observed for the first time. In the samples with normal band structure, interband transitions were observed with wide line width due to quantum well width fluctuations. In all samples, impurity-related magnetoabsorption lines were revealed. The obtained results were interpreted within the Kane 8·8 model, the valence band offset of CdTe and HgTe, and the Kane parameter EP being adjusted. PMID:23013642

  3. Excitation of low frequency waves by streaming ions via anomalous cyclotron resonance

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Dillenburg, D.; Gaffey, J. D., Jr.; Ziebell, L. F.; Goedert, J.; Freund, H. P.

    1978-01-01

    The effect of a small population of streaming ions on low-frequency waves with frequencies below the ion cyclotron frequency is analyzed for three modes of interest: Alfven waves, magnetosonic waves, and ion-cyclotron waves. The instability mechanism is the anomalous cyclotron resonance of the waves with the streaming ions. Conditions for excitation of the three types of waves are derived and expressions for the growth rates are obtained. Excitation of Alfven waves is possible even if the ratio of the densities of the streaming ions to the thermal ions is very small. For magnetosonic waves, excitation can easily occur if waves are propagating parallel or nearly parallel to the ambient magnetic field. As for ion-cyclotron waves, it is found that for the ion-whistler branch the excitation is suppressed over a broader range of wave frequencies than for the fast magnetosonic branch.

  4. A Tuning Method for Electrically Compensated Ion Cyclotron Resonance Mass Spectrometer Traps

    PubMed Central

    Brustkern, Adam M.; Rempel, Don L.; Gross, Michael L.

    2010-01-01

    We describe a method for tuning electrically compensated ion cyclotron resonance (ICR) traps by tracking the observed cyclotron frequency of an ion cloud at different oscillation mode amplitudes. Although we have used this method to tune the compensation voltages of a custom-built electrically compensated trap, the approach is applicable to other designs that incorporate electrical compensation. To evaluate the effectiveness of tuning, we examined the frequency shift as a function of cyclotron orbit size at different z-mode oscillation amplitudes. The cyclotron frequencies varied by ~ 12 ppm for ions with low z-mode oscillation amplitudes compared to those with high z-mode amplitudes. This frequency difference decreased to ~1 ppm by one iteration of trap tuning. PMID:20060743

  5. Influence of static electron beam`s self-fields on the cyclotron-undulator resonance

    SciTech Connect

    Rozanov, N.E.; Golub, Yu.Ya. |

    1995-12-31

    When undulators with a leading magnetic field B are used, the regime of double resonance is possible in which an undulator period is equal to an electron cyclotron wavelength. In the vicinity of this resonance an amplitude of particle oscillations in the undulator strongly depends on a difference between B and a resonant value of the leading magnetic field. Consequently, it is important to investigate a role of self-fields of the electron beam, in particular, due to its influence on the electron cyclotron wavelength. At the paper analytically and by numerical simulation the influence of the static fields of the annular electron beam on its dynamics in the axisymmetrical magnetic undulator with the leading magnetic field in the vicinity of the cyclotron-undulator resonance is investigated. It is shown that the value of the resonant magnetic field is changed with the rise of beam`s current. A shift of the resonant magnetic field may be both to larger values of B and to smaller ones, when different values of beam and waveguide radii, beam energy and undulator period are considered. A width of the resonance (on B - scale) is increased with the beam current.

  6. Observation of the parametric decay instability during electron cyclotron resonance heating on the Versator 2 Tokamak

    NASA Astrophysics Data System (ADS)

    McDermott, F. S.; Bekefi, G.; Porkolab, M.

    1982-03-01

    A nonlinear, three wave interaction process occurring during high power electron cyclotron heating in the Versator II Tokamak were observed. The measured spectra and the threshold power are consistent with a model in which the incident power in the extraordinary mode of polarization decays at the upper hybrid resonance layer into a lower hybrid wave and an electron Bernstein wave.

  7. Electron cyclotron harmonic resonances in high-frequency heating of the ionosphere

    SciTech Connect

    Kuo, Spencer P.

    2013-09-15

    Electron acceleration by upper hybrid waves under cyclotron harmonic resonance interaction is studied. Theory is formulated; the analytical solutions in the second and fourth harmonic cyclotron resonance cases are obtained, and in the third harmonic case, a first order differential equation governing the evolution of the electron energy is derived. The theory is applied for explaining the generation of artificial ionization layers observed in high-frequency (HF) ionospheric heating experiments. The upper hybrid waves are assumed to be excited parametrically by the O-mode HF heating wave. As the decay mode is the lower hybrid wave, the excited upper hybrid waves have wavelengths ranging from 0.25 to 0.5 m, which are short enough to effectively incorporate the finite Larmour radius effect for the harmonic cyclotron resonance interactions as well as have a frequency bandwidth of about 20 kHz, which provides an altitude region of about 10 km for continuous harmonic cyclotron resonance interaction between electrons and descending waves in the slightly inhomogeneous geomagnetic field. The numerical results on electron acceleration show that electron fluxes with energies larger than 14 eV are generated in the three harmonic cases. These energetic electrons cause impact ionizations, which are descending to form artificial ionization layers at the bottom of the ionospheric F region.

  8. Cyclotron resonant scattering in gamma-ray bursts - Line strengths and signature of neutron star rotation

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.; Wang, J. C. L.; Wasserman, I.

    1992-01-01

    We explain the relative line strengths in gamma-ray bursts in terms of cyclotron resonant scattering. We describe the line signature of neutron star rotation and discuss the possibility that variations seen in the strengths and widths of the lines in GB780325 and GB870303 are due to rotation.

  9. C60 Secondary Ion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    SciTech Connect

    Smith, Donald F.; Robinson, Errol W.; Tolmachev, Aleksey V.; Heeren, Ronald M.; Pasa-Tolic, Ljiljana

    2011-12-15

    Secondary ion mass spectrometry (SIMS) has seen increased application for high spatial chemical imaging of complex biological surfaces. The advent and commercial availability of cluster and polyatomic primary ion sources (e.g. Au and Bi cluster and buckminsterfullerene (C60)) provide improved secondary ion yield and decreased fragmentation of surface species, thus accessibility to intact molecular ions. Despite developments in primary ion sources, development of mass spectrometers to fully exploit their advantages has been limited. Tandem mass spectrometry for identification of secondary ions is highly desirable, but implementation has proven to be difficult. Similarly, high mass resolution and high mass measurement accuracy would greatly improve the chemical specificity of SIMS. Here we combine, for the first time, the advantages of a C60 primary ion source with the ultra-high mass resolving power and high mass measurement accuracy of Fourier transform ion cyclotron resonance mass spectrometry. Mass resolving power in excess of 100,000 (m/Δm50%) is demonstrated, with mass measurement accuracies below 3 parts-per-million. Imaging of mouse brain tissue at 40 μm pixel size is shown. Tandem mass spectrometry of ions from biological tissue is demonstrated and molecular formulae can be assigned to fragment ions.

  10. A 1D Model For Describing Ion Cyclotron Resonance Heating At Arbitrary Cyclotron Harmonics

    NASA Astrophysics Data System (ADS)

    Van Eester, Dirk; Lerche, Ernesto

    2011-12-01

    Both at low and higher cyclotron harmonics, properly accounting for finite Larmor radius effects is crucial in many ICRF heating scenario's creating high energy tails. The present paper discusses an extension of the 1D TOMCAT wave equation solver [1] to arbitrary harmonics and arbitrary wavelengths. Rather than adopting the particle position, the guiding center position is used as the independent variable when writing down an expression for the dielectric response that is suitable for numerical application. This choice of variable yields symmetric and intuitive expressions, and guarantees that a positive definite power absorption is obtained for any of the wave modes in the plasma. Rather than relying on a truncated Taylor series expansion of the dielectric response, an integro-differential approach is proposed. To keep the required computation time for this generalized description reasonable tabulation of integrals is intensively used. An example is provided to illustrate the potential of the new wave code.

  11. Calculation of the spontaneous cyclotron emissivity using the complete relativistic resonance condition

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Wu, C. S.; Gaffey, J. D., Jr.

    1984-01-01

    An expression for the spectral emissivity of spontaneous synchrotron radiation for a plasma which consists of both thermal and suprathermal electron components is derived using the complete relativistic cyclotron resonance condition. The expression is valid over all angles of propagation. The result is applied to the study of the emission of radiation from an energetic population of electrons with a loss-cone distribution in a relatively low-density plasma (i.e., the electron plasma frequency is less than the cyclotron frequency).

  12. Development of an 18 GHz superconducting electron cyclotron resonance ion source at RCNP.

    PubMed

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2008-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has recently been developed and installed in order to extend the variety and the intensity of ions at the RCNP coupled cyclotron facility. Production of several ions such as O, N, Ar, Kr, etc., is now under development and some of them have already been used for user experiments. For example, highly charged heavy ion beams like (86)Kr(21+,23+) and intense (16)O(5+,6+) and (15)N(6+) ion beams have been provided for experiments. The metal ion from volatile compounds method for boron ions has been developed as well. PMID:18315101

  13. Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus

    DOE PAGESBeta

    Fu, Xiangrong; Guo, Zehua; Dong, Chuanfei; Gary, S. Peter

    2015-05-14

    An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω ≃ 0.5Ωe, where Ωe is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ωe and 0.6Ωe. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.

  14. ECR (Electron Cyclotron Resonance) source for the HHIRF (Holifield Heavy Ion Research Facility) tandem accelerator

    SciTech Connect

    Olsen, D.K.; Alton, G.D.; Dowling, D.T.; Haynes, D.L.; Jones, C.M.; Juras, R.C.; Lane, S.N.; Meigs, M.J.; Mills, G.D.; Mosko, S.W.; Tatum, B.A.

    1990-01-01

    Electron Cyclotron Resonance, ECR, ion source technology has developed rapidly since the original pioneering work of R. Geller and his group at Grenoble in the early 1970s. These ion sources are capable of producing intense beams of highly charged positive ions and are used extensively for cyclotron injection, linac injection, and atomic physics research. In this paper, the advantages of using an ECR heavy-ion source in the terminal of the Holifield Heavy Ion Research Facility (HHIRF) 25-MV tandem accelerator is discussed. A possible ECR system for installation in the HHIRF tandem terminal is described.

  15. Optically detected cyclotron resonance in heavily boron-doped silicon nanostructures on n-Si (100)

    SciTech Connect

    Bagraev, N. T. Kuzmin, R. V.; Gurin, A. S.; Klyachkin, L. E.; Malyarenko, A. M.; Mashkov, V. A.

    2014-12-15

    Electron and hole cyclotron resonance at a frequency of 94 GHz is detected by a change in the intensity of photoluminescence lines whose positions are identical to those of dislocation luminescence lines D1 and D2 in single-crystal silicon and in heavily boron-doped silicon nanostructures on the Si (100) surface. The angular dependence of the spectrum of the optically detected cyclotron resonance corresponds to the tensor of the electron and hole effective mass in single-crystal silicon, and the resonance-line width indicates long carrier free-path times close to 100 ps. The results obtained are discussed within the framework of the interrelation of the electron-vibration coupling to charge and spin correlations in quasi-one-dimensional chains of dangling bonds in silicon.

  16. Results of RIKEN superconducting electron cyclotron resonance ion source with 28 GHz.

    PubMed

    Higurashi, Y; Ohnishi, J; Nakagawa, T; Haba, H; Tamura, M; Aihara, T; Fujimaki, M; Komiyama, M; Uchiyama, A; Kamigaito, O

    2012-02-01

    We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ∼ 0.65 T, which was ∼65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power. PMID:22380155

  17. Lorentz force in water: evidence that hydronium cyclotron resonance enhances polymorphism.

    PubMed

    D'Emilia, E; Giuliani, L; Lisi, A; Ledda, M; Grimaldi, S; Montagnier, L; Liboff, A R

    2015-01-01

    There is an ongoing question regarding the structure forming capabilities of water at ambient temperatures. To probe for different structures, we studied effects in pure water following magnetic field exposures corresponding to the ion cyclotron resonance of H3O(+). Included were measurements of conductivity and pH. We find that under ion cyclotron resonance (ICR) stimulation, water undergoes a transition to a form that is hydroxonium-like, with the subsequent emission of a transient 48.5 Hz magnetic signal, in the absence of any other measurable field. Our results indicate that hydronium resonance stimulation alters the structure of water, enhancing the concentration of EZ-water. These results are not only consistent with Del Giudice's model of electromagnetically coherent domains, but they can also be interpreted to show that these domains exist in quantized spin states. PMID:25020009

  18. The surface-state of the topological insulator Bi2Se3 revealed by cyclotron resonance

    SciTech Connect

    Mcdonald, Ross D; Ayala - Valenzuela, Oscar E; Altarawneh, Moaz M; Analytis, James G

    2011-01-14

    Transport measurements of topological insulators are dominated by the conductivity of the bulk, leading to substantial difficulties in resolving the properties of the surface. To this end, we use high magnetic field, rf- and microwave-spectroscopy to selectively couple to the surface conductivity of Bi2Se3 at high frequency. In the frequency range of a few GHz we observe a crossover from quantum oscillations indicative of a small 3D Fermi surface, to cyclotron resonance indicative of a 2D surface state. By probing the conductivity at reduced skin depths, we have observed a 2D cyclotron resonance from a material whose bulk Fermi-surface is 3D. The frequency-magnetic field scaling of this resonance is inconsistent with the bulk effective mass, but more consistent with the dispersion and band filling of a Dirac-like surface state as observed by ARPES, with substantial manybody renormalization.

  19. Grating monochromator for electron cyclotron resonance ion source operation.

    PubMed

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shouichi; Watanabe, Shin-ichi; Oyaizu, Michihiro; Kubono, Shigeru; Yamaguchi, Hidetoshi; Kase, Masayuki; Hattori, Toshiyuki; Shimoura, Susumu

    2013-07-01

    Recently, we started to observe optical line spectra from an ECR plasma using a grating monochromator with a photomultiplier. The light intensity of line spectrum from the ECR plasma had a strong correlation with ion beam intensity measured by a magnetic mass analyzer. This correlation is a significant information for beam tuning because it allows the extraction of the desired ion species from the ECR plasma. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process, but this research gives new insights into its simplification. In this paper, the grating monochromator method for beam tuning of a Hyper-ECR ion source as an injector for RIKEN azimuthal varying field (AVF) cyclotron is described. PMID:23902055

  20. Ion beam driven resonant ion-cyclotron instability in a magnetized dusty plasma

    SciTech Connect

    Prakash, Ved; Vijayshri; Sharma, Suresh C.; Gupta, Ruby

    2014-03-15

    Electrostatic ion cyclotron waves are excited by axial ion beam in a dusty plasma via Cerenkov and slow cyclotron interaction. The dispersion relation of the instability is derived in the presence of positively/negatively charged dust grains. The minimum beam velocity needed for the excitation is estimated for different values of relative density of negatively charged dust grains. It is shown that the minimum beam velocity needed for excitation increases as the charge density carried by dust increases. Temperature of electrons and ions, charge and mass of dust grains, external static magnetic field and finite boundary of dusty plasma significantly modify the dispersion properties of these waves and play a crucial role in the growth of resonant ion cyclotron instability. The ion cyclotron modes with phase velocity comparable to the beam velocity possess a large growth rate. The maximum value of growth rate increases with the beam density and scales as the one-third power of the beam density in Cerenkov interaction and is proportional to the square root of beam density in slow cyclotron interaction.

  1. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Hill, N.C.; Limbach, P.A.; Shomo, R.E. II; Marshall, A.G. ); Appelhans, A.D.; Delmore, J.E. )

    1991-11-01

    The coupling of an autoneutralizing SF{sup {minus}}{sub 6} fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis (e.g., production of abundant pseudomolecular (M+H){sup +} ions) of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with {ital tetra}-butylammonium bromide and a Tylenol{sup ( )} sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon{sup ( )}. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  2. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.

    1991-11-01

    The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  3. Theory of the perpendicular-field cyclotron-resonance anomaly in potassium

    NASA Astrophysics Data System (ADS)

    Lacueva, G.; Overhauser, A. W.

    1986-03-01

    A simple metal, having a spherical Fermi surface, should not exhibit cyclotron resonance when the magnetic field is perpendicular to the surface. Nevertheless, a sharp resonance was observed by Grimes in potassium. This phenomenon can be explained by a charge-density-wave (CDW) broken symmetry. A small cylindrical piece of Fermi surface, bounded by the CDW gap and the first minigap, contains electrons having very small velocity. These electrons provide a mechanism for the anomalous resonance even though their relative concentration is only ~4×10-4. This same group of electrons is responsible for the sharp photoemission peak (reported by Jensen and Plummer) from (110) surfaces of Na and K.

  4. Generation of plasma rotation by ion cyclotron resonance heating in tokamaks

    SciTech Connect

    Chang, C.S.; Phillips, C.K.; White, R.; Zweben, S.; Bonoli, P.T.; Rice, J.E.; Greenwald, M.J.; deGrassie, J.

    1999-05-01

    A physical mechanism for generation of a plasma rotation and radial electric field by ion cyclotron resonance heating (ICRH) is presented in a tokamak geometry. By breaking the omnigenity of resonant ion orbits, ICRH can induce a nonambipolar minor-radial transport of resonant ions. This yields a radial charge separation, a modification to radial electric field E{sub r}, and the generation of plasma rotation. It is estimated that the ICRH fast-wave power available in the present-day tokamak experiments can be large enough to give a significant modification to plasma rotation. {copyright} {ital 1999 American Institute of Physics.}

  5. Discovery of Cyclotron Resonance Features in the Soft Gamma Repeater SGR 1806-20

    NASA Technical Reports Server (NTRS)

    Ibrahim, Alaa I.; Safi-Harb, Samar; Swank, Jean H.; Parke, William; Zane, Silvia; Turolla, Roberto

    2002-01-01

    We report evidence of cyclotron resonance features from the Soft Gamma Repeater SGR 1806-20 in outburst, detected with the Rossi X-ray Timing Explorer in the spectrum of a long, complex precursor that preceded a strong burst. The features consist of a narrow 5.0 keV absorption line with modulation near its second and third harmonics (at 11.2 keV and 17.5 keV respectively). The line features are transient and are detected in the harder part of the precursor. The 5.0 keV feature is strong, with an equivalent width of approx. 500 eV and a narrow width of less than 0.4 keV. Interpreting the features as electron cyclotron lines in the context of accretion models leads to a large mass-radius ratio (M/R greater than 0.3 solar mass/km) that is inconsistent with neutron stars or that requires a low (5-7) x 10(exp 11) G magnetic field that is unlikely for SGRs. The line widths are also narrow compared with those of electron cyclotron resonances observed so far in X-ray pulsars. In the magnetar picture, the features are plausibly explained as ion cyclotron resonances in an ultra-strong magnetic field that have recently been predicted from magnetar candidates. In this view, the 5.0 keV feature is consistent with a proton cyclotron fundamental whose energy and width are close to model predictions. The line energy would correspond to a surface magnetic field of 1.0 x 10(exp 15) G for SGR 1806-20, in good agreement with that inferred from the spin-down measure in the source.

  6. Discovery of Cyclotron Resonance Features in the Soft Gamma Repeater SGR 1806-20

    NASA Technical Reports Server (NTRS)

    Ibrahim, A. I.; Safi-Harb, Samar; Swank, Jean H.; Parke, William; Zane, Silvia; Turolla, Roberto; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report evidence for cyclotron resonance features from the Soft Gamma Repeater SCR 1806-20 in outburst, detected with the Rossi X-ray Timing Explorer in the spectrum of a long, complex precursor that preceded a strong burst. The features consist of a narrow 5.0 keV absorption line with modulation near its second and third harmonics (at 11.2 keV and 17.5 keV respectively). The line features are transient and are detected in the harder part of the precursor. The 5.0 keV feature is strong, with an equivalent width of approx. 500 eV, and a narrow width of < 0.4 keV. Interpreting the features as electron cyclotron lines in the context of accretion models leads to a large mass-radius ratio (M/R > 0.3 Solar Mass/km) that is inconsistent with neutron stars, or requires a low (5 - 7) x 10(exp 11) G magnetic field that is unlikely for SGRs. The line widths are also narrow compared to those of electron cyclotron resonances observed so far in X-ray pulsars. In the magnetar picture, the features are plausibly explained as ion cyclotron resonances in an ultra-strong magnetic field, which have recently been predicted from magnetar candidates. In this view, the 5.0 keV feature is consistent with a proton cyclotron fundamental whose energy and width are close to model predictions. The line energy would correspond to a surface magnetic field of 1.0 x 10(exp 15) G for SGR 1806-20, in good agreement with that inferred from the spin-down measure in the source.

  7. Dynamic cyclotron resonance in relativistic microwave devices with linear electron beams

    SciTech Connect

    Vlasov, A.N.; Kornienko, V.N.; Cherepenin, V.A. |

    1995-12-31

    In the present work the authors analyze theoretically and by numerical simulation dependencies of output radiation versus magnitude of focusing magnetic field when magnetic field magnitude is sufficiently smaller than value corresponding to cyclotron absorption. The high frequency electromagnetic field amplitude is high for optimum regimes with high efficiency level. In this case some electrons are accelerated and different electrons are decelerated during interaction inside device. As a result, cyclotron resonance conditions are different for different electron groups. The authors have found theoretically condition of dynamic cyclotron resonance when it is possible to improve efficiency of interaction in devices with distributed interaction such as TWT, BWO, generator of diffractional radiation by combination of Cherenkov and cyclotron interactions in strong nonlinear regimes with optimum efficiency levels. The numerical simulation of the interaction between initially linear electron beam and electromagnetic field show that there are regions of efficiency improvement up to 50 and amplitude of high-frequency electromagnetic field. One of the important features of such combined interaction is dependence on relativistic factor. They have found optimum region of relativistic factors by numerical simulation. The results of numerical simulation were compared with experimental data refer to relativistic diffractional generators and multiwave Cherenkov generators. Good agreement in value of optimum magnitude of guiding magnetic field was obtained.

  8. Seventh Harmonic Co-Generation by Cyclotron Resonance Acceleration

    NASA Astrophysics Data System (ADS)

    Wang, Changbiao; Hirshfield, J. L.; Ganguly, Achintya K.

    1997-05-01

    The TE_72 mode in cylindrical waveguide has group velocity nearly equal to that of the TE_11 mode if the operating frequency of TE_72 is seven times of that of TE_11.(C. Wang, J. L. Hirshfield, and A. K. Ganguly, Phys. Rev. Lett. 77), 3819 (1996). This allows coherent radiation to be generated at the seventh harmonic while the TE_11 mode interacts with an electron beam via cyclotron autoresonance.(C. Wang and J. L. Hirshfield, Phys. Rev. E 51), 2456 (1995); M. A. LaPointe, R. B. Yoder, C. Wang, A. K. Ganguly, and J. L. Hirshfield, Phys. Rev. Lett. 76, 2718 (1996). For a 300 kV, 30 A warm beam pumped by 20 MW rf power at 2.856 GHz, simulations indicate that careful choice of the magnetic field profile and suppression of TE_11 mode after it is completely depleted can increase the seventh harmonic output up to 10 MW at 20 GHz. It is furthermore shown that injection can also benefit co-generation, both increasing harmonic output up to 16 MW and improving spent beam quality, which is helpful to beam energy recovery for efficiency enhancement.

  9. Cyclotron resonances of ions with obliquely propagating waves in coronal holes and the fast solar wind

    NASA Astrophysics Data System (ADS)

    Hollweg, Joseph V.; Markovskii, S. A.

    2002-06-01

    There is a growing consensus that cyclotron resonances play important roles in heating protons and ions in coronal holes where the fast solar wind originates and throughout interplanetary space as well. Most work on cyclotron resonant interactions has concentrated on the special, but unrealistic, case of propagation along the ambient magnetic field, B0, because of the great simplification it gives. This paper offers a physical discussion of how the cyclotron resonances behave when the waves propagate obliquely to B0. We show how resonances at harmonics of the cyclotron frequency come about, and how the physics can be different depending on whether E⊥ is in or perpendicular to the plane containing k and B0 (k is wave vector, and E⊥ is the component of the wave electric field perpendicular to B0). If E⊥ is in the k-B0 plane, the resonances are analogous to the Landau resonance and arise because the particle tends to stay in phase with the wave during the part of its orbit when it is interacting most strongly with E⊥. If E⊥ is perpendicular to the k-B0 plane, then the resonances depend on the fact that the particle is at different positions during the parts of its orbit when it is interacting most strongly with E⊥. Our main results are our equations (10), (11), and (13) for the secular rate of energy gain (or loss) by a resonant particle and the unfamiliar result that ions can resonate with a purely right-hand circularly polarized wave if the propagation is oblique. We conclude with some speculations about the origin of highly obliquely propagating ion resonant waves in the corona and solar wind. We point out that there are a number of instabilities that may generate such waves locally in the corona and solar wind.

  10. Vacuum Ultraviolet Photodissociation and Fourier Transform-Ion Cyclotron Resonance (FT-ICR) Mass Spectrometry: Revisited.

    PubMed

    Shaw, Jared B; Robinson, Errol W; Paša-Tolić, Ljiljana

    2016-03-15

    We revisited the implementation of 193 nm ultraviolet photodissociation (UVPD) within the ion cyclotron resonance (ICR) cell of a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer. UVPD performance characteristics were examined in the context of recent developments in the understanding of UVPD and in-cell tandem mass spectrometry. Efficient UVPD and photo-ECD of a model peptide and proteins within the ICR cell of a FT-ICR mass spectrometer are accomplished through appropriate modulation of laser pulse timing, relative to ion magnetron motion and the potential applied to an ion optical element upon which photons impinge. It is shown that UVPD yields efficient and extensive fragmentation, resulting in excellent sequence coverage for model peptide and protein cations. PMID:26882021

  11. MM-wave cyclotron auto-resonance maser for plasma heating

    SciTech Connect

    Ceccuzzi, S.; Ravera, G. L.; Tuccillo, A. A.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Spassovsky, I.; Surrenti, V.; Mirizzi, F.

    2014-02-12

    Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R and D development.

  12. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source

    SciTech Connect

    Yang, Y.; Sun, L. T.; Feng, Y. C.; Fang, X.; Lu, W.; Zhang, W. H.; Cao, Y.; Zhang, X. Z.; Zhao, H. W.

    2014-08-15

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  13. MM-wave cyclotron auto-resonance maser for plasma heating

    NASA Astrophysics Data System (ADS)

    Ceccuzzi, S.; Dattoli, G.; Di Palma, E.; Doria, A.; Gallerano, G. P.; Giovenale, E.; Mirizzi, F.; Spassovsky, I.; Ravera, G. L.; Surrenti, V.; Tuccillo, A. A.

    2014-02-01

    Heating and Current Drive systems are of outstanding relevance in fusion plasmas, magnetically confined in tokamak devices, as they provide the tools to reach, sustain and control burning conditions. Heating systems based on the electron cyclotron resonance (ECRH) have been extensively exploited on past and present machines DEMO, and the future reactor will require high frequencies. Therefore, high power (≥1MW) RF sources with output frequency in the 200 - 300 GHz range would be necessary. A promising source is the so called Cyclotron Auto-Resonance Maser (CARM). Preliminary results of the conceptual design of a CARM device for plasma heating, carried out at ENEA-Frascati will be presented together with the planned R&D development.

  14. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source.

    PubMed

    Yang, Y; Sun, L T; Feng, Y C; Fang, X; Lu, W; Zhang, W H; Cao, Y; Zhang, X Z; Zhao, H W

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented. PMID:25173256

  15. Structural characterization of phospholipids by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Marto, J A; White, F M; Seldomridge, S; Marshall, A G

    1995-11-01

    Matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry provides for structural analysis of the principal biological phospholipids: glycerophosphatidylcholine, -ethanolamine, -serine, and -inositol. Both positive and negative molecular or quasimolecular ions are generated in high abundance. Isolated molecular ions may be collisionally activated in the source side of a dual trap mass analyzer, yielding fragments serving to identify the polar head group (positive ion mode) and fatty acid side chains (negative ion mode). Azimuthal quadrupolar excitation following collisionally activated dissociation refocuses productions close to the solenoid axis; subsequent transfer of product ions to the analyzer ion trap allows for high-resolution mass analysis. Cyro-cooling of the sample probe with liquid nitrogen greatly reduces matrix adduction encountered in the negative ion mode. PMID:8633761

  16. A 1D model for describing ion cyclotron resonance heating at arbitrary cyclotron harmonics in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Van Eester, Dirk; Lerche, Ernesto

    2013-05-01

    Both at low and higher cyclotron harmonics, properly accounting for finite Larmor radius effects is crucial in many ion cyclotron resonance frequency heating scenario's creating high energy tails. This paper discusses an extension TOMCAT-U of the 1D TOMCAT tokamak plasma wave equation solver (Van Eester and Koch 1998 Plasma Phys. Control. Fusion 40 1949) to arbitrary harmonics and arbitrary wavelengths while only keeping leading order terms in equilibrium variation terms. Rather than adopting the particle position, the guiding center position is used as the independent variable when writing down an expression for the dielectric response that is suitable for numerical application. This choice of independent variable yields intuitive expressions involving the Kennel-Engelmann operator which can directly be linked to the corresponding expressions in the RF diffusion operator appearing in the Fokker-Planck equation. It also guarantees that a positive definite power transfer from waves to particles is ensured for any of the wave modes in a plasma in which all populations have a Maxwellian distribution, as is expected from first principles. Rather than relying on a truncated Taylor series expansion of the dielectric response, an integrodifferential approach that retains all finite Larmor radius effects is proposed. To keep the required computation time for this generalized description reasonable, tabulation of integrals is intensively used. Although the accent is on the presentation of the upgraded formalism as well as the adopted recursions and tabulations, a few examples are provided to illustrate the potential of the new wave code that relies on these tabulations.

  17. The mass multiplet in Penning trap ion cyclotron resonance mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Barlow, S. E.

    2007-01-01

    A model for the behavior of closely spaced masses—the "mass multiplet"—in a Penning trap mass spectrometer is developed. The model shows how these species separate from each other (or not) following resonant excitation, and gives quantitative criteria for mass separation. More surprisingly, the model shows the species tend to drift to different mean cyclotron radii. This latter effect undoubtedly plays a role in the problem of abundance determinations in Penning trap mass spectrometers.

  18. Note: Production of a mercury beam with an electron cyclotron resonance ion source

    SciTech Connect

    Vondrasek, R.; Pardo, R.; Scott, R.

    2013-11-15

    An electron cyclotron resonance ion source has been utilized to produce mercury beams with intensities of 4.5 eμA of {sup 202}Hg{sup 29+} and 3.0 eμA of {sup 202}Hg{sup 31+} from natural abundance mercury metal. The production technique relies on the evaporation of liquid mercury into the source plasma vacuum region and utilizes elemental mercury instead of a volatile organic compound as the neutral feed material.

  19. Experimental Research on the Laser Cyclotron Auto-Resonance Accelerator “LACARA”

    SciTech Connect

    Marshall, T C

    2008-11-11

    The Laser Cyclotron Auto-Resonant Accelerator LACARA has successfully operated this year. Results are summarized, an interpretation of operating data is provided in the body of the report, and recommendations are made how the experiment should be carried forward. The Appendix A contains a description of the LACARA apparatus, currently installed at the Accelerator Test Facility, Brookhaven National Laboratory. This report summarizes the project, extending over three grant-years.

  20. INSTRUMENTS AND METHODS OF INVESTIGATION: Plasma isotope separation based on ion cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Dolgolenko, Dmitrii A.; Muromkin, Yurii A.

    2009-04-01

    Experiments that have been conducted in the USA, France, and Russia to investigate isotopically selective ion cyclotron resonance (ICR) as a tool for plasma isotope separation are analyzed. Because this method runs into difficulties at low values of the relative isotope mass difference ΔM/M, for some elements (for gadolinium, as an example) isotope separation still remains a problem. There are ways to solve it, however, as experimental results and theoretical calculations suggest.

  1. Validation of the load-resilient ion cyclotron resonance frequency antenna concept on Tore Supra plasmas

    NASA Astrophysics Data System (ADS)

    Vulliez, K.; Argouarch, A.; Bosia, G.; Berger-By, G.; Bremond, S.; Colas, L.; Lombard, G.; Mendes, A.; Millon, L.; Mollard, P.; Volpe, D.; Beaumont, B.; Bécoulet, A.; Clairet, F.; Ekedahl, A.; Elkhaldi, M.; Gunn, J.; Hoang, G. T.; Tore Supra Team

    2008-06-01

    In the framework of the ion cyclotron resonance frequency heating development at CEA Cadarache, a prototype antenna based on the load-resilient electrical layout foreseen for ITER has been built. This prototype was recently tested in Tore Supra. The ITER-like electrical scheme has been validated during fast perturbations at the edge plasma. Clear load resilience properties are reported. The main conclusions and consequences learned from the development of the ITER antenna are discussed.

  2. An ion cyclotron resonance study of reactions of some atomic and simple polyatomic ions with water

    NASA Technical Reports Server (NTRS)

    Karpas, Z.; Anicich, V. G.; Huntress, W. T., Jr.

    1978-01-01

    Reactions of various positive ions with water vapor were studied by ion cyclotron resonance mass spectrometric techniques. Rate constants and product distributions were determined for reactions of the ions: Ar(+), Co(+), N2(+), and CO2(+), CH2(+), and CH4(+), CH2Cl(+), HCO(+), H2CO(+), H2COH(+), H2S(+) and HS(+). The results obtained in this work are compared with earlier reported data where available.

  3. Production of a large diameter hot-electron plasma by electron cyclotron resonance heating

    SciTech Connect

    Kawai, Y.; Sakamoto, K.

    1982-05-01

    A large diameter hot-electron plasma is produced by electron cyclotron resonance heating, using a slotted Lisitano coil as a launcher. It is found from detailed measurements of the plasma parameters that n/sub e/< or approx. =3 x 10/sup 11/ cm/sup -3/ and T/sub e/< or approx. =40 eV, with a diameter roughly-equal14 cm. High-energy tails with temperatures of more than 100 eV are observed.

  4. Production of a large diameter hot-electron plasma by electron cyclotron resonance heating

    NASA Astrophysics Data System (ADS)

    Kawai, Y.; Sakamoto, K.

    1982-05-01

    A large diameter hot-electron plasma is produced by electron cyclotron resonance heating, using a slotted Lisitano coil as a launcher. It is found from detailed measurements of the plasma parameters that ne≲3×1011 cm-3 and Te≲40 eV, with a diameter ≊14 cm. High-energy tails with temperatures of more than 100 eV are observed.

  5. ENSEMBLE SIMULATIONS OF PROTON HEATING IN THE SOLAR WIND VIA TURBULENCE AND ION CYCLOTRON RESONANCE

    SciTech Connect

    Cranmer, Steven R.

    2014-07-01

    Protons in the solar corona and heliosphere exhibit anisotropic velocity distributions, violation of magnetic moment conservation, and a general lack of thermal equilibrium with the other particle species. There is no agreement about the identity of the physical processes that energize non-Maxwellian protons in the solar wind, but a traditional favorite has been the dissipation of ion cyclotron resonant Alfvén waves. This paper presents kinetic models of how ion cyclotron waves heat protons on their journey from the corona to interplanetary space. It also derives a wide range of new solutions for the relevant dispersion relations, marginal stability boundaries, and nonresonant velocity-space diffusion rates. A phenomenological model containing both cyclotron damping and turbulent cascade is constructed to explain the suppression of proton heating at low alpha-proton differential flow speeds. These effects are implemented in a large-scale model of proton thermal evolution from the corona to 1 AU. A Monte Carlo ensemble of realistic wind speeds, densities, magnetic field strengths, and heating rates produces a filled region of parameter space (in a plane described by the parallel plasma beta and the proton temperature anisotropy ratio) similar to what is measured. The high-beta edges of this filled region are governed by plasma instabilities and strong heating rates. The low-beta edges correspond to weaker proton heating and a range of relative contributions from cyclotron resonance. On balance, the models are consistent with other studies that find only a small fraction of the turbulent power spectrum needs to consist of ion cyclotron waves.

  6. Cyclotron resonance in InAs/AlSb quantum wells in magnetic fields up to 45 T

    SciTech Connect

    Spirin, K. E. Krishtopenko, S. S.; Sadofyev, Yu. G.; Drachenko, O.; Helm, M.; Teppe, F.; Knap, W.; Gavrilenko, V. I.

    2015-12-15

    Electron cyclotron resonance in InAs/AlSb heterostructures with quantum wells of various widths in pulsed magnetic fields up to 45 T are investigated. Our experimental cyclotron energies are in satisfactory agreement with the results of theoretical calculations performed using the eight-band kp Hamiltonian. The shift of the cyclotron resonance (CR) line, which corresponds to the transition from the lowest Landau level to the low magnetic-field region, is found upon varying the electron concentration due to the negative persistent photoconductivity effect. It is shown that the observed shift of the CR lines is associated with the finite width of the density of states at the Landau levels.

  7. Power requirements for electron cyclotron current drive and ion cyclotron resonance heating for sawtooth control in ITER

    NASA Astrophysics Data System (ADS)

    Chapman, I. T.; Graves, J. P.; Sauter, O.; Zucca, C.; Asunta, O.; Buttery, R. J.; Coda, S.; Goodman, T.; Igochine, V.; Johnson, T.; Jucker, M.; La Haye, R. J.; Lennholm, M.; Contributors, JET-EFDA

    2013-06-01

    13 MW of electron cyclotron current drive (ECCD) power deposited inside the q = 1 surface is likely to reduce the sawtooth period in ITER baseline scenario below the level empirically predicted to trigger neoclassical tearing modes (NTMs). However, since the ECCD control scheme is solely predicated upon changing the local magnetic shear, it is prudent to plan to use a complementary scheme which directly decreases the potential energy of the kink mode in order to reduce the sawtooth period. In the event that the natural sawtooth period is longer than expected, due to enhanced α particle stabilization for instance, this ancillary sawtooth control can be provided from >10MW of ion cyclotron resonance heating (ICRH) power with a resonance just inside the q = 1 surface. Both ECCD and ICRH control schemes would benefit greatly from active feedback of the deposition with respect to the rational surface. If the q = 1 surface can be maintained closer to the magnetic axis, the efficacy of ECCD and ICRH schemes significantly increases, the negative effect on the fusion gain is reduced, and off-axis negative-ion neutral beam injection (NNBI) can also be considered for sawtooth control. Consequently, schemes to reduce the q = 1 radius are highly desirable, such as early heating to delay the current penetration and, of course, active sawtooth destabilization to mediate small frequent sawteeth and retain a small q = 1 radius. Finally, there remains a residual risk that the ECCD + ICRH control actuators cannot keep the sawtooth period below the threshold for triggering NTMs (since this is derived only from empirical scaling and the control modelling has numerous caveats). If this is the case, a secondary control scheme of sawtooth stabilization via ECCD + ICRH + NNBI, interspersed with deliberate triggering of a crash through auxiliary power reduction and simultaneous pre-emptive NTM control by off-axis ECCD has been considered, permitting long transient periods with high fusion

  8. First operation of the charge-breeder electron-cyclotron-resonance ion source at the Texas A and M Cyclotron Institute

    SciTech Connect

    May, D. P.; Tabacaru, G.; Abegglen, F. P.; Cornelius, W. D.

    2010-02-15

    The 14.5 GHz electron-cyclotron-resonance ion source (ECRIS) designed and fabricated specifically for charge breeding has been installed at the Texas A and M University Cyclotron Institute for use in the institute's ongoing radioactive-ion-beam upgrade. The initial testing of the source has just begun with magnetic analysis of the ECRIS beam. The source has only been conditioning for a brief time at low microwave power, and it is continuing to improve. After the source has been conditioned and characterized, charge-breeding trials with stable beams from a singly ionizing source will begin.

  9. Propagation and absorption of ion cyclotron resonant waves in an FRC configuration

    NASA Astrophysics Data System (ADS)

    Ceccherini, Francesco; Galeotti, Laura; Brambilla, Marco; Barnes, Daniel C.; Yang, Xiaokang; TAE Team

    2013-10-01

    The generation and propagation of an ion cyclotron resonant wave is studied in a Field Reversed Configuration (FRC) plasma which includes at least two different ion species. We consider minority heating as the main process through which energy is transferred to the ions and we take two scenarios into account. In the first scenario the charge/mass ratio of the minority species is higher than the corresponding ratio of the majority species and in the second scenario the opposite is considered. The first case is particularly interesting because it allows the study of absorption rates of ions for frequency values higher than the maximun cyclotron frequency of the majority species and lower than the maximum cyclotron frequency of the minority species. In such a frequency range the majority species can absorb energy through second or higher harmonic processes only. Because of the very peculiar magnetic field structure of FRCs, the second scenario may be required in case the resonance process must take place in the very inner regions of the plasma. In this latter case the electron absorption may play a very significant role and we give a preliminary description of the key parameters in the antenna configuration, which can reduce or enhance such an effect.

  10. Electron Cloud Cyclotron Resonances in the Presence of a Short-bunch-length Relativistic Beam

    SciTech Connect

    Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Yu, Jennifer W.

    2008-09-02

    Computer simulations using the 2D code"POSINST" were used to study the formation of the electron cloud in the wiggler section of the positron damping ring of the International Linear Collider. In order to simulate an x-y slice of the wiggler (i.e., a slice perpendicular to the beam velocity), each simulation assumed a constant vertical magnetic field. At values of the magnetic field where the cyclotron frequency was an integral multiple of the bunch frequency, and where the field strength was less than approximately 0.6 T, equilibrium average electron densities were up to three times the density found at other neighboring field values. Effects of this resonance between the bunch and cyclotron frequency are expected to be non-negligible when the beam bunch length is much less than the product of the electron cyclotron period and the beam velocity, for a beam moving at v~;;c. Details of the dynamics of the resonance are described.

  11. Sensitive test for ion-cyclotron resonant heating in the solar wind.

    PubMed

    Kasper, Justin C; Maruca, Bennett A; Stevens, Michael L; Zaslavsky, Arnaud

    2013-03-01

    Plasma carrying a spectrum of counterpropagating field-aligned ion-cyclotron waves can strongly and preferentially heat ions through a stochastic Fermi mechanism. Such a process has been proposed to explain the extreme temperatures, temperature anisotropies, and speeds of ions in the solar corona and solar wind. We quantify how differential flow between ion species results in a Doppler shift in the wave spectrum that can prevent this strong heating. Two critical values of differential flow are derived for strong heating of the core and tail of a given ion distribution function. Our comparison of these predictions to observations from the Wind spacecraft reveals excellent agreement. Solar wind helium that meets the condition for strong core heating is nearly 7 times hotter than hydrogen on average. Ion-cyclotron resonance contributes to heating in the solar wind, and there is a close link between heating, differential flow, and temperature anisotropy. PMID:23496700

  12. Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus

    SciTech Connect

    Fu, Xiangrong; Guo, Zehua; Dong, Chuanfei; Gary, S. Peter

    2015-05-14

    An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω ≃ 0.5Ωe, where Ωe is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ωe and 0.6Ωe. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.

  13. A heterodyne receiver for the submillimeter wavelength region based on cyclotron resonance in InSb at low temperatures

    NASA Technical Reports Server (NTRS)

    Brown, E. R.; Keene, J.; Phillips, T. G.

    1985-01-01

    A heterodyne receiver has been developed for observation of interstellar atomic and molecular lines in the submillimeter wavelength region. The main detection mechanism of the device is cyclotron resonance in bulk n-InSb due to a quantized magnetic field. Measurements were carried out between 492 and 812 GHz in order to determine the sensitivity of the device for astrophysical applications. Double sideband receiver noise temperatures of 250 K at 492 GHz; 350 K at 625 GHz; and 510 K at 812 GHz were obtained. The magnetic induction for the laboratory tests was about 2.5 KG and the mixer operating temperature was about 1.6 K. It is shown that the receiver is sensitive enough to identify the narrow rotation lines of diatomic hydrides in dark-cloud regions of the interstellar medium.

  14. Electron cyclotron resonance near the axis of the gas-dynamic trap

    SciTech Connect

    Bagulov, D. S.; Kotelnikov, I. A.

    2012-08-15

    Propagation of an extraordinary electromagnetic wave in the vicinity of electron cyclotron resonance surface in an open linear trap is studied analytically, taking into account inhomogeneity of the magnetic field in paraxial approximation. Ray trajectories are derived from a reduced dispersion equation that makes it possible to avoid the difficulty associated with a transition from large propagation angles to the case of strictly longitudinal propagation. Our approach is based on the theory, originally developed by Zvonkov and Timofeev [Sov. J. Plasma Phys. 14, 743 (1988)], who used the paraxial approximation for the magnetic field strength, but did not consider the slope of the magnetic field lines, which led to considerable error, as has been recently noted by Gospodchikov and Smolyakova [Plasma Phys. Rep. 37, 768-774 (2011)]. We have found ray trajectories in analytic form and demonstrated that the inhomogeneity of both the magnetic field strength and the field direction can qualitatively change the picture of wave propagation and significantly affect the efficiency of electron cyclotron heating of a plasma in a linear magnetic trap. Analysis of the ray trajectories has revealed a criterion for the resonance point on the axis of the trap to be an attractor for the ray trajectories. It is also shown that a family of ray trajectories can still reach the resonance point on the axis if the latter generally repels the ray trajectories. As an example, results of general theory are applied to the electron cyclotron resonance heating experiment which is under preparation on the gas dynamic trap in the Budker Institute of Nuclear Physics [Shalashov et al., Phys. Plasmas 19, 052503 (2012)].

  15. First results of ion cyclotron resonance heating on ASDEX upgrade

    SciTech Connect

    Noterdaeme, J.; Hoffmann, C.; Brambilla, M.; Buechl, K.; Eberhagen, A.; Field, A.; Fuchs, C.; Gehre, O.; Gernhardt, J.; Gruber, O.; Haas, G.; Hermann, A.; Hofmeister, F.; Kallenbach, A.; Lieder, G.; Mertens, V.; Murmann, H.; de Pena Hempel, S.; Poschenrieder, W.; Richter, T.; Ryter, F.; Salmon, N.; Salzmann, H.; Schneider, W.; Wesner, F.; Zehrfeld, H.; Zohm, H. ); ASDEX Upgrade Team

    1994-10-15

    ASDEX Upgrade is equipped with an ICRH system consisting of 4 generators of 2 MW power each and 4 double loop antennas. The generators, tuneable in frequency from 30 to 120 MHz, cover several heating scenarios over a wide range of magnetic fields (1 T[lt]B[sub t][lt]3.9 T): minority heating of H and He[sub 3] and second harmonic heating of H and D. ICRH-heated discharges in ASDEX Upgrade were so far carried out mainly at 30 MHz and a magnetic field of 2 T (H minority in D and He). Peak powers of 2.4 MW and pulse length up to 2.5 s were achieved (total energy 3.75 MJ). In L-mode, the density on turn-on of the ICRH stays constant, or even decreases. The ratio of radiated power to total input power is unchanged (60% in an unboronized machine, 30% in a freshly boronized machine) between Ohmic and ICRH phases. The electron temperature increases with 0.9 MW from 1 to 1.25 keV, the loop voltage drops. Transitions to the H-mode were easily and reliably achieved with ICRH alone (necessary ICRH power as low as 0.9 MW) and the length of the ELMy H-mode phases was limited only by the applied ICRH pulse length (ELMy H-mode phases of up to 2 s were achieved). The paper presents further results on heating and confinement in L and H-mode, antenna and edge studies and on divertor measurements. Preliminary experiments, performed with a combination of H minority heating (30 MHz) and H second harmonic (60 MHz) in 600 kA He and D discharges (H minority in the 5 to 20% range) at 2 T, and with non-resonant heating (30 MHz and 60 MHz at 1.35 T) are briefly discussed.

  16. Design study of a 17.3 GHz electron cyclotron resonance (ECR) ion source at Louvain-la-Neuve

    SciTech Connect

    Standaert, L. Davin, F.; Loiselet, M.

    2014-02-15

    The Cyclotron Resources Center of the Louvain-la-Neuve University is developing a new electron cyclotron resonance ion source to increase the energy of the accelerated beam by injection of higher charge state ions into the cyclotron. The design of the source is based on a 17.3 GHz frequency and classical coils to produce the axial field. The field reaches 2 T at the injection side and 1.2 T at extraction. The total power consumption for the coils is limited to 80 kW. The design features of the source are presented.

  17. Limitations of electron cyclotron resonance ion source performances set by kinetic plasma instabilities

    SciTech Connect

    Tarvainen, O. Laulainen, J.; Komppula, J.; Kronholm, R.; Kalvas, T.; Koivisto, H.; Izotov, I.; Mansfeld, D.; Skalyga, V.

    2015-02-15

    Electron cyclotron resonance ion source (ECRIS) plasmas are prone to kinetic instabilities due to anisotropy of the electron energy distribution function stemming from the resonant nature of the electron heating process. Electron cyclotron plasma instabilities are related to non-linear interaction between plasma waves and energetic electrons resulting to strong microwave emission and a burst of energetic electrons escaping the plasma, and explain the periodic oscillations of the extracted beam currents observed in several laboratories. It is demonstrated with a minimum-B 14 GHz ECRIS operating on helium, oxygen, and argon plasmas that kinetic instabilities restrict the parameter space available for the optimization of high charge state ion currents. The most critical parameter in terms of plasma stability is the strength of the solenoid magnetic field. It is demonstrated that due to the instabilities the optimum B{sub min}-field in single frequency heating mode is often ≤0.8B{sub ECR}, which is the value suggested by the semiempirical scaling laws guiding the design of modern ECRISs. It is argued that the effect can be attributed not only to the absolute magnitude of the magnetic field but also to the variation of the average magnetic field gradient on the resonance surface.

  18. High Throughput Proteomics Using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    SciTech Connect

    Qian, Weijun; Camp, David G.; Smith, Richard D.

    2004-06-01

    The advent of high throughput proteomics technology for global detection and quantitation of proteins creates new opportunities and challenges for those seeking to gain greater understanding of cellular machinery. Here, we review recent advances in high-resolution capillary liquid chromatography coupled to Fourier transform ion cyclotron resonance (FTICR) mass spectrometry along with its potential application to high throughput proteomics. These technological advances combined with quantitative stable isotope labeling methodologies provide powerful tools for expanding our understanding of biology at the system-level.

  19. Development of DRAGON electron cyclotron resonance ion source at Institute of Modern Physics

    SciTech Connect

    Lu, W.; Lin, S. H.; Xie, D. Z.; Zhang, X. Z.; Sha, S.; Zhang, W. H.; Cao, Y.; Guo, J. W.; Fang, X.; Guo, X. H.; Li, X. X.; Ma, H. Y.; Wu, Q.; Zhao, H. Y.; Ma, B. H.; Wang, H.; Zhu, Y. H.; Feng, Y. C.; Li, J. Y.; Li, J. Q.; and others

    2012-02-15

    A new room temperature electron cyclotron resonance (ECR) ion source, DRAGON, is under construction at IMP. DRAGON is designed to operate at microwaves of frequencies of 14.5-18 GHz. Its axial solenoid coils are cooled with evaporative medium to provide an axial magnetic mirror field of 2.5 T at the injection and 1.4 T at the extraction, respectively. In comparison to other conventional room temperature ECR ion sources, DRAGON has so far the largest bore plasma chamber of inner diameter of 126 mm with maximum radial fields of 1.4-1.5 T produced by a non-Halbach permanent sextupole magnet.

  20. Atmospheric Pressure Ionization Permanent Magnet Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Vilkov, Andrey N.; Gamage, Chaminda M.; Misharin, Alexander S.; Doroshenko, Vladimir M.; Tolmachev, Dmitry A.; Tarasova, Irina A.; Kharybin, Oleg N.; Novoselov, Konstantin P.; Gorshkov, Michael V.

    2007-01-01

    A new Fourier Transform Ion Cyclotron Resonance mass spectrometer based on a permanent magnet with an atmospheric pressure ionization source was designed and constructed. A mass resolving power (full-width-at-half-maximum) of up to 80,000 in the electron ionization mode and 25,000 in the electrospray mode was obtained. Also, a mass measurement accuracy at low-ppm level has been demonstrated for peptide mixtures in a mass range of up to 1,200 m/z in the isotopically resolved mass spectra. PMID:17587594

  1. An electron cyclotron resonance plasma process for InP passivation

    NASA Astrophysics Data System (ADS)

    Hu, Y. Z.; Li, M.; Wang, Y.; Irene, E. A.

    1993-05-01

    In-situ ellipsometry has been used to monitor electron cyclotron resonance (ECR) plasma oxidation of InP at room temperature in the shadow plasma between a shutter and the sample. This process leaves no detectable excess P at the InP-oxide interface. A capping layer of SiO2 was grown by ECR chemical-vapor deposition at a substrate temperature of 150 deg C. The samples were rapid-thermal annealed at 500 deg C for 1 min in an oxygen ambient. The dielectric layers were evaluated by current-voltage and capacitance-voltage measurements on metal-oxide n-type InP capacitors.

  2. Phase-resolved optical emission spectroscopy for an electron cyclotron resonance etcher

    SciTech Connect

    Milosavljevic, Vladimir; MacGearailt, Niall; Daniels, Stephen; Turner, Miles M.; Cullen, P. J.

    2013-04-28

    Phase-resolved optical emission spectroscopy (PROES) is used for the measurement of plasma products in a typical industrial electron cyclotron resonance (ECR) plasma etcher. In this paper, the PROES of oxygen and argon atoms spectral lines are investigated over a wide range of process parameters. The PROES shows a discrimination between the plasma species from gas phase and those which come from the solid phase due to surface etching. The relationship between the micro-wave and radio-frequency generators for plasma creation in the ECR can be better understood by the use of PROES.

  3. Progress in high-temperature oven development for 28 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Ohnishi, J.; Higurashi, Y.; Nakagawa, T.

    2016-02-01

    We have been developing a high-temperature oven using UO2 in the 28 GHz superconducting electron cyclotron resonance ion source at RIKEN since 2013. A total of eleven on-line tests were performed. The longest operation time in a single test was 411 h, and the consumption rate of UO2 was approximately 2.4 mg/h. In these tests, we experienced several problems: the ejection hole of a crucible was blocked with UO2 and a crucible was damaged because of the reduction of tungsten strength at high temperature. In order to solve these problems, improvements to the crucible shape were made by simulations using ANSYS.

  4. Study of pulsed electron cyclotron resonance ion source plasma near breakdown: The preglow

    SciTech Connect

    Thuillier, T.; Lamy, T.; Latrasse, L.; Izotov, I. V.; Sidorov, A. V.; Skalyga, V. A.; Zorin, V. G.; Marie-Jeanne, M.

    2008-02-15

    A careful study of pulsed mode operation of the PHOENIX electron cyclotron resonance (ECR) ion source has clearly demonstrated the reality of an unexpected transient current peak, occurring at the very beginning of the plasma breakdown. This regime was named the preglow, as an explicit reference to the afterglow occurring at the microwave pulse end. After the transient preglow peak, the plasma regime relaxes to the classical steady state one. Argon preglow experiments performed at LPSC are presented. A theoretical model of ECR gas breakdown in a magnetic trap, developed at IAP, showing satisfactory agreement with the experimental results is suggested.

  5. X-ray-spectroscopy analysis of electron-cyclotron-resonance ion-source plasmas

    SciTech Connect

    Santos, J. P.; Martins, M. C.; Parente, F.; Costa, A. M.; Marques, J. P.; Indelicato, P.

    2010-12-15

    Analysis of x-ray spectra emitted by highly charged ions in an electron-cyclotron-resonance ion source (ECRIS) may be used as a tool to estimate the charge-state distribution (CSD) in the source plasma. For that purpose, knowledge of the electron energy distribution in the plasma, as well as the most important processes leading to the creation and de-excitation of ionic excited states are needed. In this work we present a method to estimate the ion CSD in an ECRIS through the analysis of the x-ray spectra emitted by the plasma. The method is applied to the analysis of a sulfur ECRIS plasma.

  6. Status of the Bio-Nano electron cyclotron resonance ion source at Toyo University

    SciTech Connect

    Uchida, T.; Minezaki, H.; Ishihara, S.; Muramatsu, M.; Kitagawa, A.; Drentje, A. G.; Rácz, R.; Biri, S.; Asaji, T.; Kato, Y.; Yoshida, Y.

    2014-02-15

    In the paper, the material science experiments, carried out recently using the Bio-Nano electron cyclotron resonance ion source (ECRIS) at Toyo University, are reported. We have investigated several methods to synthesize endohedral C{sub 60} using ion-ion and ion-molecule collision reaction in the ECRIS. Because of the simplicity of the configuration, we can install a large choice of additional equipment in the ECRIS. The Bio-Nano ECRIS is suitable not only to test the materials production but also to test technical developments to improve or understand the performance of an ECRIS.

  7. Deposition of diamond-like carbon film using electron cyclotron resonance plasma

    NASA Astrophysics Data System (ADS)

    Kuo, S. C.; Kunhardt, E. E.; Srivatsa, A. R.

    1991-11-01

    Hard diamond-like carbon films were deposited on Si(100) substrates using a CH4 plasma created through electron cyclotron resonance (ECR) heating. The ECR plasma was excited by a Lisitano coil. These films could be deposited with a negative dc bias (-200 V) or a RF-induced negative self-bias (-100 V) on the substrates. The deposition rate of the film was about 2.3 A/s. The deposited films were characterized by Raman spectroscopy and near-edge X-ray absorption fine structure analysis.

  8. Deposition of diamond-like carbon film using electron cyclotron resonance plasma

    SciTech Connect

    Kuo, S.C.; Kunhardt, E.E. ); Srivatsa, A.R. )

    1991-11-11

    Hard diamond-like carbon films were deposited on Si(100) substrates using a CH{sub 4} plasma created through electron cyclotron resonance (ECR) heating. The ECR plasma was excited by a Lisitano coil. These films could be deposited with a negative dc bias ({minus}200 V) or a rf-induced negative self-bias ({minus}100 V) on the substrates. The deposition rate of the film was about 2.3 A/s. The deposited films were characterized by Raman spectroscopy and near-edge x-ray absorption fine structure analysis.

  9. Multicusp type machine for electron cyclotron resonance plasma with reduced dimensions

    NASA Astrophysics Data System (ADS)

    Amemiya, H.; Maeda, M.

    1996-03-01

    Plasmas are created in a cusp type magnetic trap using electron cyclotron resonance heating. The magnetic field is generated with permanent magnets forming a 12-pole, whereby the polarity at the ends of the rods has been reversed in order to obtain end plugs and to improve the plasma confinement. In this way, the plasma volume could be reduced such that the cross section was close to or smaller than the cutoff width of a circular waveguide. This increases the microwave power absorbed and gives a high plasma density even above the cutoff value.

  10. Performance of the Argonne National Laboratory electron cyclotron resonance charge breeder

    SciTech Connect

    Vondrasek, R.; Kolomiets, A.; Levand, A.; Pardo, R.; Savard, G.; Scott, R.

    2011-05-15

    An electron cyclotron resonance charge breeder for the Californium rare ion breeder upgrade (CARIBU), a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS), has been constructed and commissioned. Charge breeding efficiencies up to 15.6% have been realized for stable beams with a typical breeding time of 10 ms/charge state. The CARIBU system has been undergoing commissioning tests utilizing a 100 mCi {sup 252}Cf fission source. A charge breeding efficiency of 14.8 {+-} 5% has been achieved for the first radioactive beam of {sup 143}Cs{sup 27+}.

  11. Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source

    SciTech Connect

    Jeong, S. C.; Oyaizu, M.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Miyatake, H.; Niki, K.; Okada, M.; Watanabe, Y. X.; Otokawa, Y.; Osa, A.; Ichikawa, S.

    2012-02-15

    We investigated the ion-loss distribution on the sidewall of an electron cyclotron resonance (ECR) plasma chamber using the 18-GHz ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex (TRIAC). Similarities and differences between the ion-loss distributions (longitudinal and azimuthal) of different ion species (i.e., radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions that are typical volatile and nonvolatile elements) was qualitatively discussed to understand the element dependence of the charge breeding efficiency. Especially, the similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.

  12. Circular waveguide systems for electron-cyclotron-resonant heating of the tandem mirror experiment-upgrade

    SciTech Connect

    Felker, B.; Calderon, M.O.; Chargin, A.K.; Coffield, F.E.; Gallagher, N.C. Jr.; Lang, D.D.; Pedrotti, L.R.; Rubert, R.R.; Stallard, B.W.; Sweeney, D.W.

    1983-11-18

    Extensive use of electron cyclotron resonant heating (ECRH) in the Tandem Mirror Experiment-Upgrade (TMX-U) requires continuous development of components to improve efficiency, increase reliability, and deliver power to new locations with respect to the plasma. We have used rectangular waveguide components on the experiment and have developed, tested, and installed circular waveguide components. We replaced the rectangular with the circular components because of the greater transmission efficiency and power-handling capability of the circular ones. Design, fabrication, and testing of all components are complete for all systems. In this paper we describe the design criteria for the system.

  13. Electron cyclotron resonance plasma etching of native TiO{sub 2} on TiN

    SciTech Connect

    Day, M.E.; Delfino, M.

    1996-01-01

    Thin-film polycrystalline Tin with an approximate 2 nm thick native TiO{sub 2} overlayer is bombarded with 50 to 200 eV Ar ions in an electron cyclotron resonance plasma. In situ X-ray photoelectron spectroscopy and static secondary ion mass spectrometry suggest complete removal of oxygen from the planar surface, independent of ion energy, with TiO{sub 2} remaining on the columnar grain boundaries. The TiN etching rate increases from 6 to 14 nm/min as the ion energy is raised from 100 to 200 eV. The TiN stoichiometry does not change with ion bombardment.

  14. A 250-GHz CARM (Cyclotron Auto Resonance Maser) oscillator experiment driven by an induction linac

    SciTech Connect

    Caplan, M.; Kulke, B.; Bubp, D.G. ); McDermott, D.; Luhmann, N. )

    1990-09-14

    A 250-GHz Cyclotron Auto Resonance Maser (CARM) oscillator has been designed and constructed and will be tested using a 1-kA, 2-MeV electron beam produced by the induction linac at the Accelerator Research Center (ARC) facility of Lawrence Livermore National Laboratory (LLNL). The oscillator circuit was made to operate in the TE{sub 11} mode at ten times cutoff using waveguide Bragg reflectors to create an external cavity Q of 8000. Theory predicts cavity fill times of less than 30 ns (pulse length) and efficiencies approaching 20% is sufficiently low transverse electron velocity spreads are maintained (2%).

  15. Design of an induction linac driven CARM (Cyclotron Auto Resonance Maser) oscillator at 250 GHz

    SciTech Connect

    Caplan, M.; Kulke, B.

    1990-01-24

    We present the design of a 250 GHz, 400 MW Cyclotron Auto Resonance Maser (CARM) oscillator driven by a 1 KA, 2 MeV electron beam produced by the induction linac at the ARC facility of LLNL. The oscillator circuit is designed as a feedback amplifier operating in the TE{sub 11} mode at ten times cutoff terminated at each end with Bragg reflectors. Theory and cold test results are in good agreement for a manufactured Bragg reflector using 50 {mu}m corrugations to ensure mode purity. The CARM is to be operational by February 1990. 3 figs., 2 tabs.

  16. The Spontaneous Loss of Coherence Catastrophe in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Aizikov, Konstantin; Mathur, Raman; O’Connor, Peter B.

    2009-01-01

    The spontaneous loss of coherence catastrophe (SLCC) is a frequently observed, yet poorly studied, space-charge related effect in Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). This manuscript presents an application of the filter diagonalization method (FDM) in the analysis of this phenomenon. The temporal frequency behavior reproduced by frequency shift analysis using the FDM shows the complex nature of the SLCC, which can be explained by a combination of factors occurring concurrently, governed by electrostatics and ion packet trajectories inside the ICR cell. PMID:19013078

  17. Production of a highly charged uranium ion beam with RIKEN superconducting electron cyclotron resonance ion source

    SciTech Connect

    Higurashi, Y.; Ohnishi, J.; Nakagawa, T.; Haba, H.; Fujimaki, M.; Komiyama, M.; Kamigaito, O.; Tamura, M.; Aihara, T.; Uchiyama, A.

    2012-02-15

    A highly charged uranium (U) ion beam is produced from the RIKEN superconducting electron cyclotron resonance ion source using 18 and 28 GHz microwaves. The sputtering method is used to produce this U ion beam. The beam intensity is strongly dependent on the rod position and sputtering voltage. We observe that the emittance of U{sup 35+} for 28 GHz microwaves is almost the same as that for 18 GHz microwaves. It seems that the beam intensity of U ions produced using 28 GHz microwaves is higher than that produced using 18 GHz microwaves at the same Radio Frequency (RF) power.

  18. Monte Carlo modeling of ionospheric oxygen acceleration by cyclotron resonance with broad-band electromagnetic turbulence

    NASA Technical Reports Server (NTRS)

    Retterer, John M.; Chang, Tom; Crew, G. B.; Jasperse, J. R.; Winningham, J. D.

    1987-01-01

    It is demonstrated that cyclotron resonance with observed electric field fluctuations is responsible for production of the oxygen-ion conics that are observed by the Dynamics Explorer 1 satellite in the central plasma-sheet region of the earth's magnetosphere. The ion-velocity distribution is described by a quasi-linear diffusion equation which is solved by the Monte Carlo technique. The acceleration produced by the observed wave spectrum agrees well with the ion observations, in both form and magnitude. This is believed to represent the first successful comparison of an observed conic with any theoretical model.

  19. Experimental electron energy distribution function investigation at initial stage of electron cyclotron resonance discharge

    SciTech Connect

    Golubev, S. V.; Izotov, I. V.; Mansfeld, D. A.; Semenov, V. E.

    2012-02-15

    Experimental investigation is undertaken to study formation of electron energy distribution function (EEDF) at the initial stage of electron cyclotron resonance (ECR) discharge inside magnetic mirror trap. In experiment, where discharge was initiated by high power radiation of gyrotron operated in the mm-wavelength range, electrons were revealed to leave the trap having EEDF be quite different from Maxwellian one. Specifically, the EEDF was found to decrease slowly with energy up to 400-500 keV and drops abruptly further. The possible physical mechanisms are discussed to explain losses of high energy electrons from the trap and a limitation of their energy.

  20. Experimental electron energy distribution function investigation at initial stage of electron cyclotron resonance discharge.

    PubMed

    Golubev, S V; Izotov, I V; Mansfeld, D A; Semenov, V E

    2012-02-01

    Experimental investigation is undertaken to study formation of electron energy distribution function (EEDF) at the initial stage of electron cyclotron resonance (ECR) discharge inside magnetic mirror trap. In experiment, where discharge was initiated by high power radiation of gyrotron operated in the mm-wavelength range, electrons were revealed to leave the trap having EEDF be quite different from Maxwellian one. Specifically, the EEDF was found to decrease slowly with energy up to 400-500 keV and drops abruptly further. The possible physical mechanisms are discussed to explain losses of high energy electrons from the trap and a limitation of their energy. PMID:22380303

  1. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    SciTech Connect

    Asaji, T. Ohba, T.; Uchida, T.; Yoshida, Y.; Minezaki, H.; Ishihara, S.; Racz, R.; Biri, S.; Kato, Y.

    2014-02-15

    A synthesis technology of endohedral fullerenes such as Fe@C{sub 60} has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C{sub 60} was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  2. Design of a new electron cyclotron resonance ion source at Oshima National College of Maritime Technology

    SciTech Connect

    Asaji, T. Hirabara, N.; Izumihara, T.; Nakamizu, T.; Ohba, T.; Nakamura, T.; Furuse, M.; Hitobo, T.; Kato, Y.

    2014-02-15

    A new electron cyclotron resonance ion/plasma source has been designed and will be built at Oshima National College of Maritime Technology by early 2014. We have developed an ion source that allows the control of the plasma parameters over a wide range of electron temperatures for material research. A minimum-B magnetic field composed of axial mirror fields and radial cusp fields was designed using mainly Nd-Fe-B permanent magnets. The axial magnetic field can be varied by three solenoid coils. The apparatus has 2.45 GHz magnetron and 2.5–6.0 GHz solid-state microwave sources.

  3. Development of a miniature microwave electron cyclotron resonance plasma ion thruster for exospheric micro-propulsion

    NASA Astrophysics Data System (ADS)

    Dey, Indranuj; Toyoda, Yuji; Yamamoto, Naoji; Nakashima, Hideki

    2015-12-01

    A miniature microwave electron cyclotron resonance plasma source [(discharge diameter)/(microwave cutoff diameter) < 0.3] has been developed at Kyushu University to be used as an ion thruster in micro-propulsion applications in the exosphere. The discharge source uses both radial and axial magnetostatic field confinement to facilitate electron cyclotron resonance and increase the electron dwell time in the volume, thereby enhancing plasma production efficiency. Performance of the ion thruster is studied at 3 microwave frequencies (1.2 GHz, 1.6 GHz, and 2.45 GHz), for low input powers (<15 W) and small xenon mass flow rates (<40 μg/s), by experimentally measuring the extracted ion beam current through a potential difference of ≅1200 V. The discharge geometry is found to operate most efficiently at an input microwave frequency of 1.6 GHz. At this frequency, for an input power of 8 W, and propellant (xenon) mass flow rate of 21 μg/s, 13.7 mA of ion beam current is obtained, equivalent to an calculated thrust of 0.74 mN.

  4. New Evidence For Proton Cyclotron Resonance In a Magnetar Strength Field From SGR 1806-20

    NASA Technical Reports Server (NTRS)

    Parke, William; Ibrahim, Alaa I.; Swank, Jean H.

    2002-01-01

    A great deal of evidence has recently been gathered in favor of the picture that Soft Gamma Repeaters and Anomalous X-Ray Pulsars are powered by ultra-strong magnetic fields (B greater than 10(exp 14) G; i.e. magnetars). Nevertheless, present determination of the magnetic field in such magnetar candidates has been indirect and model dependent. A key prediction concerning magnetars is the detection of ion cyclotron resonance features, which would offer a decisive diagnostic of the field strength. Here we present the detection of a 5 keV absorption feature in a variety of bursts from the Soft Gamma Repeater SGR 1806-20, confirming our initial discovery and establishing the presence of the feature in the source's burst spectra. The line feature is well explained as proton cyclotron resonance in an ultra-strong magnetic field, offering a direct measurement of SGR 1806-20's magnetic field (B approx. 10(exp 15) G) and a clear evidence of a magnetar. Together with the source's spin-down rate, the feature also provides the first measurement of the gravitational redshift, mass and radius of a magnetar.

  5. Development of a miniature microwave electron cyclotron resonance plasma ion thruster for exospheric micro-propulsion

    SciTech Connect

    Dey, Indranuj; Toyoda, Yuji; Yamamoto, Naoji; Nakashima, Hideki

    2015-12-15

    A miniature microwave electron cyclotron resonance plasma source [(discharge diameter)/(microwave cutoff diameter) < 0.3] has been developed at Kyushu University to be used as an ion thruster in micro-propulsion applications in the exosphere. The discharge source uses both radial and axial magnetostatic field confinement to facilitate electron cyclotron resonance and increase the electron dwell time in the volume, thereby enhancing plasma production efficiency. Performance of the ion thruster is studied at 3 microwave frequencies (1.2 GHz, 1.6 GHz, and 2.45 GHz), for low input powers (<15 W) and small xenon mass flow rates (<40 μg/s), by experimentally measuring the extracted ion beam current through a potential difference of ≅1200 V. The discharge geometry is found to operate most efficiently at an input microwave frequency of 1.6 GHz. At this frequency, for an input power of 8 W, and propellant (xenon) mass flow rate of 21 μg/s, 13.7 mA of ion beam current is obtained, equivalent to an calculated thrust of 0.74 mN.

  6. Development of a miniature microwave electron cyclotron resonance plasma ion thruster for exospheric micro-propulsion.

    PubMed

    Dey, Indranuj; Toyoda, Yuji; Yamamoto, Naoji; Nakashima, Hideki

    2015-12-01

    A miniature microwave electron cyclotron resonance plasma source [(discharge diameter)/(microwave cutoff diameter) < 0.3] has been developed at Kyushu University to be used as an ion thruster in micro-propulsion applications in the exosphere. The discharge source uses both radial and axial magnetostatic field confinement to facilitate electron cyclotron resonance and increase the electron dwell time in the volume, thereby enhancing plasma production efficiency. Performance of the ion thruster is studied at 3 microwave frequencies (1.2 GHz, 1.6 GHz, and 2.45 GHz), for low input powers (<15 W) and small xenon mass flow rates (<40 μg/s), by experimentally measuring the extracted ion beam current through a potential difference of ≅1200 V. The discharge geometry is found to operate most efficiently at an input microwave frequency of 1.6 GHz. At this frequency, for an input power of 8 W, and propellant (xenon) mass flow rate of 21 μg/s, 13.7 mA of ion beam current is obtained, equivalent to an calculated thrust of 0.74 mN. PMID:26724025

  7. Wall-loss distribution of charge breeding ions in an electron cyclotron resonance ion source

    SciTech Connect

    Jeong, S. C.; Oyaizu, M.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Miyatake, H.; Niki, K.; Okada, M.; Watanabe, Y. X.; Otokawa, Y.; Osa, A.; Ichikawa, S.

    2011-03-15

    The ion loss distribution in an electron cyclotron resonance ion source (ECRIS) was investigated to understand the element dependence of the charge breeding efficiency in an electron cyclotron resonance (ECR) charge breeder. The radioactive {sup 111}In{sup 1+} and {sup 140}Xe{sup 1+} ions (typical nonvolatile and volatile elements, respectively) were injected into the ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex to breed their charge states. Their respective residual activities on the sidewall of the cylindrical plasma chamber of the source were measured after charge breeding as functions of the azimuthal angle and longitudinal position and two-dimensional distributions of ions lost during charge breeding in the ECRIS were obtained. These distributions had different azimuthal symmetries. The origins of these different azimuthal symmetries are qualitatively discussed by analyzing the differences and similarities in the observed wall-loss patterns. The implications for improving the charge breeding efficiencies of nonvolatile elements in ECR charge breeders are described. The similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.

  8. Electron Cyclotron Resonance Based Chemically Assisted Plasma Etching Of Silicon in CF4/Ar Plasma

    SciTech Connect

    Bhardwaj, R.K.; Angra, S.K.; Bajpai, R.P.; Lal, Madan; Bharadwaj, Lalit M.

    2005-09-09

    Etching of silicon in Chemical Assisted Plasma Etching mode with CF4 gas being sprayed on the surface of wafer in process chamber and Ar fed to ECR cavity in Electron Cyclotron Resonance (ECR) source was carried out. The plasma source was 2.45 GHz microwave source superimposed with mirror type magnetic field configuration to have resonance. Effect of CF4/Ar ratio and substrate bias on etching rate of silicon and anisotropy of etched profile has been investigated. The variation of etch rate and anisotropy has been correlated to the availability of fluorine atoms and other radicals available for etching. Optimum parameters required for etching of silicon in chemical assisted plasma etching with self-assembled ECR plasma source has been established.

  9. Self-consistent simulation of a planar electron-cyclotron-wave-resonance discharge

    SciTech Connect

    Krimke, R.; Urbassek, H.M.

    1997-06-01

    A discharge heated inductively by resonant absorption of electron cyclotron waves discharge is modeled in a planar geometry. The simulation algorithm is based on a kinetic particle-in-cell (PIC/MC) simulation of the plasma properties; the electromagnetic field is calculated macroscopically using the Appleton{endash}Hartree theory for the dielectric tensor. The results are checked against a simplified analytical theory and experimental data by B. Pfeiffer [J. Appl. Phys. {bold 37}, 1624,1628 (1966)] for a 15 mTorr argon discharge. As a result, we show that an inhomogeneous density profile in the discharge strongly affects the electromagnetic fields in the plasma. Power deposition is calculated both in and outside of the resonance. {copyright} {ital 1997 American Institute of Physics.}

  10. Anisotropic distribution function of minority tail ions generated by strong ion-cyclotron resonance heating

    SciTech Connect

    Chang, C.S.; Colestock, P.

    1989-05-01

    The highly anisotropic particle distribution function of minority tail ions driven by ion-cyclotron resonance heating at the fundamental harmonic is calculated in a two-dimensional velocity space. It is assumed that the heating is strong enough to drive most of the resonant ions above the in-electron critical slowing-down energy. Simple analytic expressions for the tail distribution are obtained fro the case when the Doppler effect is sufficiently large to flatten the sharp pitch angle dependence in the bounce averaged qualilinear heating coefficient, D/sub b/, and for the case when D/sub b/ is assumed to be constant in pitch angle and energy. It is found that a simple constant-D/sub b/ solution can be used instead of the more complicated sharp-D/sub b/ solution for many analytic purposes. 4 refs., 4 figs.

  11. Confined optical-phonon-assisted cyclotron resonance in quantum wells via two-photon absorption process

    NASA Astrophysics Data System (ADS)

    Phuc, Huynh Vinh; Hien, Nguyen Dinh; Dinh, Le; Phong, Tran Cong

    2016-06-01

    The effect of confined phonons on the phonon-assisted cyclotron resonance (PACR) via both one and two photon absorption processes in a quantum well is theoretically studied. We consider cases when electrons are scattered by confined optical phonons described by the Fuchs-Kliewer slab, Ridley's guided, and Huang-Zhu models. The analytical expression of the magneto-optical absorption coefficient (MOAC) is obtained by relating it to the transition probability for the absorption of photons. It predicts resonant peaks caused by transitions between Landau levels and electric subband accompanied by confined phonons emission in the absorption spectrum. The MOAC and the full-width at half-maximum (FWHM) for the intra- and inter-subband transitions are given as functions of the magnetic field, temperature, and quantum well width. In narrow quantum wells, the phonon confinement becomes more important and should be taken into account in studying FWHM.

  12. Electron Cyclotron Resonance Based Chemically Assisted Plasma Etching Of Silicon in CF4/Ar Plasma

    NASA Astrophysics Data System (ADS)

    Bhardwaj, R. K.; Angra, S. K.; Bajpai, R. P.; Lal, Madan; Bharadwaj, Lalit M.

    2005-09-01

    Etching of silicon in Chemical Assisted Plasma Etching mode with CF4 gas being sprayed on the surface of wafer in process chamber and Ar fed to ECR cavity in Electron Cyclotron Resonance (ECR) source was carried out. The plasma source was 2.45 GHz microwave source superimposed with mirror type magnetic field configuration to have resonance. Effect of CF4/Ar ratio and substrate bias on etching rate of silicon and anisotropy of etched profile has been investigated. The variation of etch rate and anisotropy has been correlated to the availability of fluorine atoms and other radicals available for etching. Optimum parameters required for etching of silicon in chemical assisted plasma etching with self-assembled ECR plasma source has been established.

  13. Electron cyclotron resonance near the axis of a quadrupole linear trap

    NASA Astrophysics Data System (ADS)

    Kotelnikov, I. A.; Romé, M.

    2012-12-01

    The quasi-longitudinal propagation of an extraordinary electromagnetic wave in the vicinity of the electron cyclotron resonance layer in an open linear trap with a quadrupole magnetic field is studied analytically, taking into account the inhomogeneity of the magnetic field in a paraxial approximation. The ray trajectories are derived from a simplified dispersion equation, that is, nonetheless able to accurately describe the transition from finite to zero perpendicular refractive index. A criterion for an on-axis resonance point to be an attractor for the ray trajectories is formulated, which generalizes a similar criterion for axisymmetric linear traps derived in a recent paper [D. S. Bagulov and I. A. Kotelnikov, Phys. Plasmas 19, 082502 (2012)].

  14. Electron cyclotron resonance near the axis of a quadrupole linear trap

    SciTech Connect

    Kotelnikov, I. A.; Rome, M.

    2012-12-15

    The quasi-longitudinal propagation of an extraordinary electromagnetic wave in the vicinity of the electron cyclotron resonance layer in an open linear trap with a quadrupole magnetic field is studied analytically, taking into account the inhomogeneity of the magnetic field in a paraxial approximation. The ray trajectories are derived from a simplified dispersion equation, that is, nonetheless able to accurately describe the transition from finite to zero perpendicular refractive index. A criterion for an on-axis resonance point to be an attractor for the ray trajectories is formulated, which generalizes a similar criterion for axisymmetric linear traps derived in a recent paper [D. S. Bagulov and I. A. Kotelnikov, Phys. Plasmas 19, 082502 (2012)].

  15. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results

    NASA Astrophysics Data System (ADS)

    Anupriya; Jones, Chad A.; Dearden, David V.

    2016-08-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy.

  16. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results.

    PubMed

    Anupriya; Jones, Chad A; Dearden, David V

    2016-08-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy. Graphical Abstract ᅟ. PMID:27220844

  17. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results

    NASA Astrophysics Data System (ADS)

    Anupriya; Jones, Chad A.; Dearden, David V.

    2016-05-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy.

  18. Polariton-impurity interactions and photoconductivity in CdTe studied by cyclotron-resonance-excitation spectroscopy

    NASA Astrophysics Data System (ADS)

    Lavigne, B.; Cox, R. T.

    1991-05-01

    A technique called cyclotron-resonance-excitation spectroscopy has been used to obtain photoconductivity spectra for crystals of the II-VI compound semiconductor CdTe. A 35-GHz electron-spin-resonance spectrometer is used to detect the cyclotron resonance of free carriers created by 680-785-nm laser excitation at 2 K. The cyclotron-resonance signal consists of two major components, attributed to high-mobility electrons (μ>105 cm2/V s) in n-type regions and to lower-mobility electrons (or possibly light holes) in compensated regions of the sample. Persistent photoconductivity effects are observed. The excitation spectrum (i.e., the laser wavelength dependence of the cyclotron-resonance signal) is studied with emphasis on the ~=15-meV-wide excitonic region just below the band-gap energy (1.606 eV). Strong peaks in this region of the spectrum demonstrate that carriers are generated more efficiently just below the band gap than above it. Dips occur in the spectrum at the 1s and 2s exciton energies. Two carrier-generation mechanisms are proposed for the excitonic region: (a) inelastic polariton scattering off neutral donors, ionizing the donors and (b) annihilation of polaritons by ionized acceptors, neutralizing the acceptors. Properties of importance in determining the polariton-impurity interactions are the two-branch polariton dispersion relation, the excitonic content of the polariton wave function, and the polariton group velocity and kinetic energy.

  19. The development of a room temperature electron cyclotron resonance ion source (Lanzhou electron cyclotron resonance ion source No. 4) with evaporative cooling technology at Institute of Modern Physics

    SciTech Connect

    Lu, W. Sun, L. T.; Qian, C.; Feng, Y. C.; Ma, H. Y.; Zhang, X. Z.; Ma, B. H.; Zhao, H. W.; Guo, J. W.; Fang, X.; Yang, Y.; Xiong, B.; Guo, S. Q.; Ruan, L.

    2015-04-15

    LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector project SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months’ commissioning, some outstanding results have been achieved, such as 1.97 emA of O{sup 6+}, 1.7 emA of Ar{sup 8+}, 1.07 emA of Ar{sup 9+}, and 118 euA of Bi{sup 28+}. The source has also successfully delivered O{sup 5+} and Ar{sup 8+} ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.

  20. The development of a room temperature electron cyclotron resonance ion source (Lanzhou electron cyclotron resonance ion source No. 4) with evaporative cooling technology at Institute of Modern Physics.

    PubMed

    Lu, W; Sun, L T; Qian, C; Guo, J W; Fang, X; Feng, Y C; Yang, Y; Ma, H Y; Zhang, X Z; Ma, B H; Xiong, B; Guo, S Q; Ruan, L; Zhao, H W

    2015-04-01

    LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector project SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months' commissioning, some outstanding results have been achieved, such as 1.97 emA of O(6+), 1.7 emA of Ar(8+), 1.07 emA of Ar(9+), and 118 euA of Bi(28+). The source has also successfully delivered O(5+) and Ar(8+) ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented. PMID:25933849

  1. Comprehensive characterization of natural organic matter by MALDI- and ESI-Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Cao, Dong; Huang, Huogao; Hu, Ming; Cui, Lin; Geng, Fanglan; Rao, Ziyu; Niu, Hongyun; Cai, Yaqi; Kang, Yuehui

    2015-03-25

    Natural organic matter (NOM) is a complex and non-uniform mixture of organic compounds which plays an important role in environmental processes. Due to the complexity, it is challenging to obtain fully detailed structural information about NOM. Although Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) has been demonstrated to be a powerful tool for providing molecular information about NOM, multiple ionization methods are needed for comprehensive characterization of NOM at the molecular level considering the ionizing selectivity of different ionization methods. This paper reports the first use of matrix assisted laser desorption/ionization (MALDI) method coupled with FT-ICR-MS for molecular characterization of NOM within a mass range of 200-800 Da. The mass spectral data obtained by MALDI were systematically compared with data generated by electrospray ionization (ESI). It showed that complementary molecular information about NOM which could not be detected by ESI, were provided by MALDI. More unsaturated and aromatic constituents of NOM with lower O/C ratio (O/C ratio<0.5) were preferentially ionized in MALDI negative mode, whereas more polar constituents of NOM with higher O/C ratio were preferentially ionized in ESI negative mode. Molecular anions of NOM appearing at even m/z in MALDI negative ion mode were detected. The results show that NOM molecules with aromatic structures, moderate O/C ratio (0.7>O/C ratio>0.25) and lower H/C ratio were liable to form molecular anions at even m/z, whereas those with higher H/C ratio are more likely to form deprotonated ions at odd m/z. It is speculated that almost half of the NOM molecules identified by MALDI may be aromatic or condensed aromatic compounds with special groups which are liable to absorb electron from other molecules to generate free radical anions during MALDI ionization. PMID:25732692

  2. Direct growth of AlGaAs/GaAs single quantum wells on GaAs substrates cleaned by Electron Cyclotron Resonance (ECR) hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Kondo, Naoto; Nanishi, Yasushi; Fujimoto, Masatomo

    1994-01-01

    Direct growth of AlGaAs/GaAs single quantum wells (SQWs) on GaAs substrates without growing buffer layers is carried out by using electron cyclotron resonance (ECR) hydrogen plasma cleaning. SQW structures are successively grown by molecular beam epitaxy (MBE) after the cleaning process without breaking the vacuum. Photoluminescence shows intense and narrow spectra, in clear contrast to that of conventional thermal cleaning. Atomic force microscopy (AFM) and secondary ion mass spectroscopy (SIMS) analyses show that surface roughness and interface impurity accumulations are significantly reduced as well. A flat and clean surface obtained by plasma cleaning improves the quality of grown layers.

  3. Direct Growth of AlGaAs/GaAs Single Quantum Wells on GaAs Substrates Cleaned by Electron Cyclotron Resonance (ECR) Hydrogen Plasma

    NASA Astrophysics Data System (ADS)

    Kondo, Naoto; Nanishi, Yasushi; Fujimoto, Masatomo

    1994-01-01

    Direct growth of AlGaAs/GaAs single quantum wells (SQWs) on GaAs substrates without growing buffer layers is carried out by using electron cyclotron resonance (ECR) hydrogen plasma cleaning. SQW structures are successively grown by molecular beam expitaxy (MBE) after the cleaning process without breaking the vacuum. Photoluminescence shows intense and narrow spectra, in clear contrast to that of conventional thermal cleaning. Atomic force microscopy (AFM) and secondary ion mass spectroscopy (SIMS) analyses show that surface roughness and interface impurity accumulations are significantly reduced as well. A flat and clean surface obtained by plasma cleaning improves the quality of grown layers.

  4. Sawtooth control in JET with ITER relevant low field side resonance ion cyclotron resonance heating and ITER-like wall

    NASA Astrophysics Data System (ADS)

    Graves, J. P.; Lennholm, M.; Chapman, I. T.; Lerche, E.; Reich, M.; Alper, B.; Bobkov, V.; Dumont, R.; Faustin, J. M.; Jacquet, P.; Jaulmes, F.; Johnson, T.; Keeling, D. L.; Liu, Yueqiang; Nicolas, T.; Tholerus, S.; Blackman, T.; Carvalho, I. S.; Coelho, R.; Van Eester, D.; Felton, R.; Goniche, M.; Kiptily, V.; Monakhov, I.; Nave, M. F. F.; Perez von Thun, C.; Sabot, R.; Sozzi, C.; Tsalas, M.

    2015-01-01

    New experiments at JET with the ITER-like wall show for the first time that ITER-relevant low field side resonance first harmonic ion cyclotron resonance heating (ICRH) can be used to control sawteeth that have been initially lengthened by fast particles. In contrast to previous (Graves et al 2012 Nat. Commun. 3 624) high field side resonance sawtooth control experiments undertaken at JET, it is found that the sawteeth of L-mode plasmas can be controlled with less accurate alignment between the resonance layer and the sawtooth inversion radius. This advantage, as well as the discovery that sawteeth can be shortened with various antenna phasings, including dipole, indicates that ICRH is a particularly effective and versatile tool that can be used in future fusion machines for controlling sawteeth. Without sawtooth control, neoclassical tearing modes (NTMs) and locked modes were triggered at very low normalised beta. High power H-mode experiments show the extent to which ICRH can be tuned to control sawteeth and NTMs while simultaneously providing effective electron heating with improved flushing of high Z core impurities. Dedicated ICRH simulations using SELFO, SCENIC and EVE, including wide drift orbit effects, explain why sawtooth control is effective with various antenna phasings and show that the sawtooth control mechanism cannot be explained by enhancement of the magnetic shear. Hybrid kinetic-magnetohydrodynamic stability calculations using MISHKA and HAGIS unravel the optimal sawtooth control regimes in these ITER relevant plasma conditions.

  5. Compton scattering in strong magnetic fields: Spin-dependent influences at the cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Gonthier, Peter L.; Baring, Matthew G.; Eiles, Matthew T.; Wadiasingh, Zorawar; Taylor, Caitlin A.; Fitch, Catherine J.

    2014-08-01

    The quantum electrodynamical (QED) process of Compton scattering in strong magnetic fields is commonly invoked in atmospheric and inner magnetospheric models of x-ray and soft gamma-ray emission in high-field pulsars and magnetars. A major influence of the field is to introduce resonances at the cyclotron frequency and its harmonics, where the incoming photon accesses thresholds for the creation of virtual electrons or positrons in intermediate states with excited Landau levels. At these resonances, the effective cross section typically exceeds the classical Thomson value by over 2 orders of magnitude. Near and above the quantum critical magnetic field of 44.13 TeraGauss, relativistic corrections must be incorporated when computing this cross section. This profound enhancement underpins the anticipation that resonant Compton scattering is a very efficient process in the environs of highly magnetized neutron stars. This paper presents formalism for the QED magnetic Compton differential cross section valid for both subcritical and supercritical fields, yet restricted to scattered photons that are below pair creation threshold. Calculations are developed for the particular case of photons initially propagating along the field, and in the limit of zero vacuum dispersion, mathematically simple specializations that are germane to interactions involving relativistic electrons frequently found in neutron star magnetospheres. This exposition of relativistic, quantum, magnetic Compton cross sections treats electron spin dependence fully, since this is a critical feature for describing the finite decay lifetimes of the intermediate states. Such lifetimes are introduced to truncate the resonant cyclotronic divergences via standard Lorentz profiles. The formalism employs both the traditional Johnson and Lippmann (JL) wave functions and the Sokolov and Ternov (ST) electron eigenfunctions of the magnetic Dirac equation. The ST states are formally correct for self

  6. Electron cyclotron resonance ion source related development work for heavy-ion irradiation tests

    SciTech Connect

    Koivisto, H.; Suominen, P.; Tarvainen, O.; Virtanen, A.; Parkkinen, A.

    2006-03-15

    The European Space Agency (ESA) uses the facilities at the Accelerator Laboratory (Department of Physics, University of Jyvaeskylae: JYFL) for heavy-ion irradiation tests of electronic components. Electron cyclotron resonance ion source related development work has been carried out in order to meet the requirements set by the project. During the irradiation tests several beam changes are performed during the day. Therefore, the time needed for the beam changes has to be minimized. As a consequence, a beam cocktail having nearly the same m/q ratio is used. This makes it possible a quick tuning of the cyclotron to select the required ion for the irradiation. In addition to this requirement, very high charge states for the heavy elements are needed to reach a penetration depth of 100 {mu}m in silicon. In this article we present some procedures to optimize the ion source operation. We also present results of the first three-frequency heating tests. The main frequency of 14 GHz was fed from a klystron and both secondary frequencies were launched from a traveling-wave tube amplifier (TWTA). Two separate frequency generators were used simultaneously to provide different signals for the TWTA. During the test an improvement of about 20% was observed for {sup 84}Kr{sup 25+} and {sup 129}Xe{sup 30+} ion beams when the third frequency was applied.

  7. Characterization of the chemical composition of soil humic acids using Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ikeya, Kosuke; Sleighter, Rachel L.; Hatcher, Patrick G.; Watanabe, Akira

    2015-03-01

    The composition of humic acids (HAs) with varying degrees of humification isolated from 10 common Japanese soils was characterized using negative ion mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry at 12 T. In particular, attention was paid to polynuclear aromatic components, which are more associated with the refractory nature of HAs and their resistance to biodegradation in soil than single C ring aromatic entities, such as lignin-like components, and aliphatic functionalities. Thousands of peaks were observed in the m/z range of 200-700, and molecular formulas were assigned to 817-2457 peaks in each sample. The molecular formulas having H/C and O/C ratios similar to those of lipid, protein, and other aliphatics with low double bond equivalents (DBE) of 0-7 were generally observed across the m/z range of 200-700. Although there were a number of molecular formulas having H/C and O/C values similar to those of lignin across the wide m/z range in the HAs with a low degree of humification, most lignin-like molecular formulas in the larger m/z range (450-650) or irrespective of m/z were lacking in the HAs with middle and high degrees of humification, respectively. These observations suggest a longer residence time for lignin monomers/dimers (and their derivatives; m/z 200-400) than larger lignin oligomers (m/z 450-650) in HA structural domains. The number of molecular formulas having H/C and O/C values similar to condensed aromatics increased with increasing degree of humification. The m/z and DBE values of condensed aromatic-like molecular formulas in the HAs with a lower degree of humification were <500 and 10-25, respectively, whilst the ranges expanded to 600 and 30-33, respectively, in the highly-humified black HAs. Kendrick mass defect analysis using a carboxyl group as the characteristic functional group found that 31, 73, and 39 molecular formulas had chain-type, net-type, and biphenyl-type condensed aromatic acids

  8. Simulating Electron Cyclotron Resonance Heating in Kinetic and Dielectric Plasma Models with VORPAL

    NASA Astrophysics Data System (ADS)

    Roark, Christine; Smithe, David; Stoltz, Peter; Tech-X Corporation Team

    2011-10-01

    We present results of electron cyclotron resonance heating (ECRH) in a plasma sustained by microwaves using VORPAL. Specifically, we look at the electron temperature, sheath size, rate of plasma formation and power absorbed for simulations with an argon gas at 10s of mTorr pressure and 2.45 GHz. We look at the effects of including elastic, inelastic and ionizing Monte Carlo collisions on the formation of the kinetic plasma. We also discuss the use of higher-order particle algorithms for smoothing out the particle current and charge which can help reduce unphysical heating in PIC simulations of high pressure, low temperature plasmas and the effect this has on sheath size and electron temperature. We then compare these simulations to a method replacing the kinetic particles with an equivalent plasma dielectric model.

  9. First plasma of the A-PHOENIX electron cyclotron resonance ion source

    SciTech Connect

    Thuillier, T.; Lamy, T.; Latrasse, L.; Angot, J.

    2008-02-15

    A-PHOENIX is a new compact hybrid electron cyclotron resonance ion source using a large permanent magnet hexapole (1.92 T at the magnet surface) and high temperature superconducting Solenoids (3 T) to make min-vertical bar B vertical bar structure suitable for 28 GHz cw operation. The final assembly of the source was achieved at the end of June 2007. The first plasma of A-PHOENIX at 18 GHz was done on the 16th of August, 2007. The technological specificities of A-PHOENIX are presented. The large hexapole built is presented and experimental magnetic measurements show that it is nominal with respect to simulation. A fake plasma chamber prototype including thin iron inserts showed that the predicted radial magnetic confinement can be fulfilled up to 2.15 T at the plasma chamber wall. Scheduled planning of experiments until the end of 2008 is presented.

  10. Development of Electron Cyclotron Resonance Ion Source for Synthesis of Endohedral Metallofullerenes

    SciTech Connect

    Tanaka, K.; Muramatsu, M.; Uchida, T.; Hanajiri, T.; Yoshida, Y.; Biri, S.; Kitagawa, A.; Kato, Y.

    2008-11-03

    A new electron cyclotron resonance ion source (ECRIS) has been constructed for synthesis of endohedral metallofullerenes. The main purpose of the ion source is to produce new biological and medical materials. The design is based on ECRIS for production of multicharged ion beams with a traditional minimum-B magnetic field. An 8-10 GHz traveling wave tube (TWT) amplifier and a 2.45 GHz magnetron have been applied as microwave sources. Fullerene and metal vapor are introduced with a filament heating micro-oven and an induction heating oven, respectively. In preliminary ion-extraction test, Ar{sup +} is 54 {mu}A. Many broken fullerenes such as C{sub 58} and C{sub 56} are observed in fullerene ion beams.

  11. Multiaperture ion beam extraction from gas-dynamic electron cyclotron resonance source of multicharged ions

    SciTech Connect

    Sidorov, A.; Dorf, M.; Zorin, V.; Bokhanov, A.; Izotov, I.; Razin, S.; Skalyga, V.; Rossbach, J.; Spaedtke, P.; Balabaev, A.

    2008-02-15

    Electron cyclotron resonance ion source with quasi-gas-dynamic regime of plasma confinement (ReGIS), constructed at the Institute of Applied Physics, Russia, provides opportunities for extracting intense and high-brightness multicharged ion beams. Despite the short plasma lifetime in a magnetic trap of a ReGIS, the degree of multiple ionization may be significantly enhanced by the increase in power and frequency of the applied microwave radiation. The present work is focused on studying the intense beam quality of this source by the pepper-pot method. A single beamlet emittance measured by the pepper-pot method was found to be {approx}70 {pi} mm mrad, and the total extracted beam current obtained at 14 kV extraction voltage was {approx}25 mA. The results of the numerical simulations of ion beam extraction are found to be in good agreement with experimental data.

  12. Investigations on the structure of the extracted ion beam from an electron cyclotron resonance ion source

    SciTech Connect

    Spaedtke, P.; Lang, R.; Maeder, J.; Rossbach, J.; Tinschert, K.; Maimone, F.

    2012-02-15

    Using improved beam diagnostic tools, the structure of an ion beam extracted from an electron cyclotron resonance ion source (ECRIS) becomes visible. Especially viewing targets to display the beam profile and pepper pot devices for emittance measurements turned out to be very useful. On the contrary, diagnostic tools integrating over one space coordinate like wire harps for profile measurements or slit-slit devices, respectively slit-grid devices to measure the emittance might be applicable for beam transport investigations in a quadrupole channel, but are not very meaningful for investigations regarding the given ECRIS symmetry. Here we try to reproduce the experimentally found structure on the ion beam by simulation. For the simulation, a certain model has to be used to reproduce the experimental results. The model is also described in this paper.

  13. Electron energy distribution function by using probe method in electron cyclotron resonance multicharged ion source

    SciTech Connect

    Kumakura, Sho Kurisu, Yosuke; Kimura, Daiju; Yano, Keisuke; Imai, Youta; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2014-02-15

    We are constructing a tandem type electron cyclotron resonance (ECR) ion source (ECRIS). High-energy electrons in ECRIS plasma affect electron energy distribution and generate multicharged ion. In this study, we measure electron energy distribution function (EEDF) of low energy region (≦100 eV) in ECRIS plasma at extremely low pressures (10{sup −3}–10{sup −5} Pa) by using cylindrical Langmuir probe. From the result, it is found that the EEDF correlates with the electron density and the temperature from the conventional probe analysis. In addition, we confirm that the tail of EEDF spreads to high energy region as the pressure rises and that there are electrons with high energy in ECR multicharged ion source plasma. The effective temperature estimated from the experimentally obtained EEDF is larger than the electron temperature obtained from the conventional method.

  14. A glow discharge ion source with fourier transform ion cyclotron resonance mass spectrometric detection.

    PubMed

    Barhick, C M; Eyler, J R

    1992-02-01

    A glow discharge (CD) ion source has been coupled to a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer using a four-element electrostatic lens to accelerate and focus ions generated external to the instrument's high magnetic field into its analyzer cell. Like other CD mass spectrometers, GD-FT-ICR can provide a quantitative measure of bulk analyte concentration with good precision and accuracy. Although detection limits currently attainable are several orders of magnitude higher than the commercially available magnetic sector-based instrument, CD-FT-ICR holds promise for ultrahigh resolving power elemental mass analysis. Several schemes are proposed to lower the detection limits of the technique while still providing high enough resolution to resolve isobaric interferences. PMID:24242880

  15. Superradiant decay of cyclotron resonance of two-dimensional electron gases.

    PubMed

    Zhang, Qi; Arikawa, Takashi; Kato, Eiji; Reno, John L; Pan, Wei; Watson, John D; Manfra, Michael J; Zudov, Michael A; Tokman, Mikhail; Erukhimova, Maria; Belyanin, Alexey; Kono, Junichiro

    2014-07-25

    We report on the observation of collective radiative decay, or superradiance, of cyclotron resonance (CR) in high-mobility two-dimensional electron gases in GaAs quantum wells using time-domain terahertz magnetospectroscopy. The decay rate of coherent CR oscillations increases linearly with the electron density in a wide range, which is a hallmark of superradiant damping. Our fully quantum mechanical theory provides a universal formula for the decay rate, which reproduces our experimental data without any adjustable parameter. These results firmly establish the many-body nature of CR decoherence in this system, despite the fact that the CR frequency is immune to electron-electron interactions due to Kohn's theorem. PMID:25105654

  16. Superradiant Decay of Cyclotron Resonance of Two-Dimensional Electron Gases

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Arikawa, Takashi; Kato, Eiji; Reno, John L.; Pan, Wei; Watson, John D.; Manfra, Michael J.; Zudov, Michael A.; Tokman, Mikhail; Erukhimova, Maria; Belyanin, Alexey; Kono, Junichiro

    2014-07-01

    We report on the observation of collective radiative decay, or superradiance, of cyclotron resonance (CR) in high-mobility two-dimensional electron gases in GaAs quantum wells using time-domain terahertz magnetospectroscopy. The decay rate of coherent CR oscillations increases linearly with the electron density in a wide range, which is a hallmark of superradiant damping. Our fully quantum mechanical theory provides a universal formula for the decay rate, which reproduces our experimental data without any adjustable parameter. These results firmly establish the many-body nature of CR decoherence in this system, despite the fact that the CR frequency is immune to electron-electron interactions due to Kohn's theorem.

  17. Fourier transform ion cyclotron resonance (FT ICR) mass spectrometry: Theory and simulations.

    PubMed

    Nikolaev, Eugene N; Kostyukevich, Yury I; Vladimirov, Gleb N

    2016-01-01

    Fourier transform ion cyclotron resonance (FT ICR) mass spectrometer offers highest resolving power and mass accuracy among all types of mass spectrometers. Its unique analytical characteristics made FT ICR important tool for proteomics, metabolomics, petroleomics, and investigation of complex mixtures. Signal acquisition in FT ICR MS takes long time (up to minutes). During this time ion-ion interaction considerably affects ion motion and result in decreasing of the resolving power. Understanding of those effects required complicated theory and supercomputer simulations but culminated in the invention of the ion trap with dynamic harmonization which demonstrated the highest resolving power ever achieved. In this review we summarize latest achievements in theory and simulation of FT ICR mass spectrometers. PMID:24515872

  18. Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model

    SciTech Connect

    Cannat, F. E-mail: felix.cannat@gmail.com; Lafleur, T.; Jarrige, J.; Elias, P.-Q.; Packan, D.; Chabert, P.

    2015-05-15

    A new cathodeless plasma thruster currently under development at Onera is presented and characterized experimentally and analytically. The coaxial thruster consists of a microwave antenna immersed in a magnetic field, which allows electron heating via cyclotron resonance. The magnetic field diverges at the thruster exit and forms a nozzle that accelerates the quasi-neutral plasma to generate a thrust. Different thruster configurations are tested, and in particular, the influence of the source diameter on the thruster performance is investigated. At microwave powers of about 30 W and a xenon flow rate of 0.1 mg/s (1 SCCM), a mass utilization of 60% and a thrust of 1 mN are estimated based on angular electrostatic probe measurements performed downstream of the thruster in the exhaust plume. Results are found to be in fair agreement with a recent analytical helicon thruster model that has been adapted for the coaxial geometry used here.

  19. ECR (electron cyclotron resonance) ion sources and applications with heavy-ion linacs

    SciTech Connect

    Pardo, R.C.

    1990-01-01

    The electron cyclotron resonance (ECR) ion source has been developed in the last few years into a reliable source of high charge-state heavy ions. The availability of heavy ions with relatively large charge-to-mass ratios (0.1--0.5) has made it possible to contemplate essentially new classes of heavy-ion linear accelerators. In this talk, I shall review the state-of-the-art in ECR source performance and describe some of the implications this performance level has for heavy-ion linear accelerator design. The present linear accelerator projects using ECR ion sources will be noted and the performance requirements of the ECR source for these projects will be reviewed. 30 refs., 3 figs.

  20. Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model

    NASA Astrophysics Data System (ADS)

    Cannat, F.; Lafleur, T.; Jarrige, J.; Chabert, P.; Elias, P.-Q.; Packan, D.

    2015-05-01

    A new cathodeless plasma thruster currently under development at Onera is presented and characterized experimentally and analytically. The coaxial thruster consists of a microwave antenna immersed in a magnetic field, which allows electron heating via cyclotron resonance. The magnetic field diverges at the thruster exit and forms a nozzle that accelerates the quasi-neutral plasma to generate a thrust. Different thruster configurations are tested, and in particular, the influence of the source diameter on the thruster performance is investigated. At microwave powers of about 30 W and a xenon flow rate of 0.1 mg/s (1 SCCM), a mass utilization of 60% and a thrust of 1 mN are estimated based on angular electrostatic probe measurements performed downstream of the thruster in the exhaust plume. Results are found to be in fair agreement with a recent analytical helicon thruster model that has been adapted for the coaxial geometry used here.

  1. Potential applications of a new microwave ECR (electron cyclotron resonance) multicusp plasma ion source

    SciTech Connect

    Tsai, C.C.

    1990-01-01

    A new microwave electron cyclotron resonance (ECR) multicusp plasma ion source using two ECR plasma production regions and multicusp plasma confinement has been developed at Oak Ridge National Laboratory. This source has been operated to produce uniform and dense plasmas over large areas of 300 to 400 cm{sup 2}. The plasma source has been operated with continuous argon gas feed and pulsed microwave power. The discharge initiation phenomena and plasma properties have been investigated and studied as functions of discharge parameters. Together with the discharge characteristics observed, a hypothetical discharge mechanism for this plasma source is reported and discussed. Potential applications, including plasma and ion-beam processing for manufacturing advanced microelectronics and for space electric propulsion, are discussed. 7 refs., 6 figs.

  2. Low-distortion detection system for frequency-swept ion cyclotron resonance spectrometry

    NASA Astrophysics Data System (ADS)

    Wise, M. B.; Freiser, B. S.

    1986-07-01

    A high-performance frequency-swept capacitance bridge detector for ion cyclotron resonance (ICR) spectrometry has been constructed in our laboratory. Although the basic design of the system is similar to that of previously reported bridge circuits, careful design, layout, construction, and component selection have resulted in excellent frequency-swept performance over a bandwidth of 15 kHz to 1 MHz. At a magnetic field strength of 1.0 T, this corresponds to a mass range of 15-1000 Daltons. Problems with base-line drift and frequency-dependent signal distortion common to many other designs have been significantly reduced. Circuit diagrams are included for all parts of the detector and frequency response curves have been included where appropriate. In addition, several simple circuit diagrams for support devices have also been included.

  3. In situ investigation of silicon surface cleaning and damage by argon electron cyclotron resonance plasmas

    NASA Astrophysics Data System (ADS)

    Hu, Y. Z.; Buaud, P. P.; Wang, Y.; Spanos, L.; Irene, E. A.

    1994-03-01

    An argon electron cyclotron resonance (ECR) plasma process has been optimized to successfully remove oxide films from a silicon surface at elevated temperatures leaving smooth Si surfaces devoid of an amorphized silicon damage layer. Etch rates of over 10 nm/min have been achieved at ion energies below 100 eV. The low ion energy (-50 V dc bias) and high ion fluxes (1×1016 ions/cm2 s) represent a significant improvement from conventional Ar ion sputter cleaning processes. In situ spectroscopic ellipsometry and ex situ atomic force microscopy were used to characterize the surface condition during and after cleaning to establish a 700 °C argon plasma cleaning process for silicon. Real-time single wavelength ellipsometry was used to study the cleaning kinetics, determine the optimal end point, and elucidate a controversy about the level of damage in the argon ECR plasma cleaning process.

  4. Time evolution of bremsstrahlung and ion production of an electron cyclotron resonance ion source

    SciTech Connect

    Tarvainen, Ollie; Ropponen, Tommi; Jones, Peter; Peura, Pauli

    2008-01-01

    Bremsstrahlung radiation measurement is one of the most commonly used plasma diagnostics methods. Most of the bremsstrahlung measurements with electron cyclotron resonance (ECR) ion sources have been performed in continuous operation mode yielding information only on the steady state bremsstrahlung emission. This article describes the results of bremsstrahlung and ion current measurement with the JYFL 14 GHz ECRIS operated in pulsed mode. The experiments reveal information about the bremsstrahlung radiation in plasma conditions before reaching the equilibrium. The time scale of bremsstrahlung production is compared to ion production time scale for different charge states. The bremsstrahlung data is presented with 2 millisecond time intervals as a function of neutral gas pressure and microwave power. Data from hundreds of microwave pulses is combined in order to have a sufficient amount of events at each time step. The relevant plasma physics phenomena during both, the leading and the trailing edge of the RF pulse, are discussed.

  5. Roadmap for the design of a superconducting electron cyclotron resonance ion source for Spiral2

    SciTech Connect

    Thuillier, T.; Angot, J.; Lamy, T.; Peaucelle, C.

    2012-02-15

    A review of today achieved A/Q = 3 heavy ions beams is proposed. The daily operation A/Q = 3 ion beam intensities expected at Spiral2 are at the limit or above best record 3rd generation electron cyclotron resonance ion source (ECRIS) intensities. The necessity to build a new fully superconducting to fulfill these requirements is outlined. A discussion on the volume of the future source is proposed and the minimum value of 12 liters is derived. An analysis of the x-ray absorption superconducting ECRIS is presented based on VENUS experimental data and geometry. This study underlines the necessity to include a complete x-ray study at the time of source conception. The specifications foreseen for the new ECRIS are presented, followed with the roadmap for the design.

  6. Materials tests and analyses of Faraday shield tubes for ICRF (ion cyclotron resonant frequency) antennas

    SciTech Connect

    King, J.F.; Baity, F.W.; Hoffman, D.J.; Walls, J.C.; Taylor, D.J.

    1988-01-01

    The ion cyclotron resonant frequency (ICRF) antennas for heating fusion plasmas require careful analysis of the materials selected for the design and the successful fabrication of high integrity braze bonds. Graphite tiles are brazed to Inconel 625 Faraday shield tubes to protect the antenna from the plasma. The bond between the graphite and Inconel tube is difficult to achieve due to the different coefficients of thermal expansion. A 2-D stress analysis showed the graphite could be bonded to Inconel with a Ag-Cu-Ti braze alloy without cracking the graphite. Brazing procedures and nondestructive examination methods have been developed for these joints. This paper presents the results of our joining development and proof testing. 2 refs., 3 figs.

  7. Heterogeneously catalyzed hydrolysis of chlorine nitrate: Fourier-transform ion cyclotron resonance investigations of stratospheric chemistry

    NASA Astrophysics Data System (ADS)

    Schindler, Thomas; Berg, Christian; Niedner-Schatteburg, Gereon; Bondybey, Vladimir E.

    1996-03-01

    High resolution Fourier-transform ion cyclotron resonance (FT-ICR) mass spectroscopy is used to investigate reactions of large ionic water clusters H+(H2O)n and X-(H2O)n (n=1-100, X=O or OH). Reactions of the clusters with chlorine nitrate, important ``reservoir compound'' involved in the stratospheric ozone chemistry, are investigated to evaluate the importance of heterogeneously catalyzed reactions for ozone depletion. It is found that reactions of both cationic and anionic clusters result in effective hydrolysis of chlorine nitrate and return of the more active hypochlorous acid, HOCl into the gas phase. The chemistry of clusters is discussed, and its validity and relevance as a model for ``real life'' processes in the so-called polar stratospheric clouds (PSC's) is assessed.

  8. Modelling of the ion cyclotron resonance heating scenarios for W7-X stellarator

    SciTech Connect

    Kazakov, Ye. O.

    2014-02-12

    The construction of the world largest superconducting stellarator Wendelstein 7-X (W7-X) has reached the final stage. One of the main scientific objectives of the W7-X project is to prove experimentally the predicted good confinement of high-energy ions. Ion cyclotron resonance heating (ICRH) system is considered to be installed in W7-X to serve as a localized source of high energy ions. ICRH heating scenarios relevant for hydrogen and deuterium phases of W7-X operation are summarized. The heating efficiency in ({sup 3}He)-H plasmas is qualitatively analyzed using a modified version of the 1D TOMCAT code able to account for stellarator geometry. The minority ion absorption is shown to be maximized at the helium-3 concentration ∼2% for the typical plasma and ICRH parameters to be available during the initial phase of W7-X.

  9. Simulations of peeling-ballooning modes with electron cyclotron resonance heating

    NASA Astrophysics Data System (ADS)

    Huang, J.; Chen, S. Y.; Tang, C. J.

    2016-05-01

    The effects of the deposited power and deposited position of Electron Cyclotron Resonance Heating (ECRH) on Peeling-Ballooning (P-B) modes are simulated using BOUT++ code in this paper. The simulation results show that as the deposited position moves from the top to the bottom of the pedestal, the edge localized mode (ELM) size decreases first and then increases, finally decreases again. For ECRH with different deposited power, the effects on P-B modes are similar if they have the same peak value of the power deposition profile. These results show that the effects of ECRH on P-B modes are primarily determined by the change in pressure profile caused by ECRH. As long as ECRH can lead to large enough change in pressure profile, ECRH can efficiently affect the dynamics of P-B modes.

  10. Impurity Ions in a Plasma Produced by Electron Cyclotron Resonance Heating

    NASA Astrophysics Data System (ADS)

    Yonesu, Akira; Komori, Akio; Kawai, Yoshinobu

    1988-08-01

    The mechanism of the generation of impurity ions is experimentally evidenced in an electron cyclotron resonance (ECR) plasma produced with a copper Lisitano coil. It is shown that neutral copper particles are sputtered from the Lisitano coil by argon ions and are ionized by the collisions with electrons. The argon ions are accelerated by the ion sheath formed on the Lisitano coil surface, so that the plasma space potential plays an important role in producing the impurities. The impurity flux calculated by using plasma parameters and the sputtering yield of copper is found to be consistent with the observed value. The production of a pure ECR plasma is also attempted with an aluminum Lisitano coil which has a smaller sputtering yield than that of the copper Lisitano coil.

  11. Control system renewal for efficient operation in RIKEN 18 GHz electron cyclotron resonance ion source.

    PubMed

    Uchiyama, A; Ozeki, K; Higurashi, Y; Kidera, M; Komiyama, M; Nakagawa, T

    2016-02-01

    A RIKEN 18 GHz electron cyclotron resonance ion source (18 GHz ECRIS) is used as an external ion source at the Radioactive Ion Beam Factory (RIBF) accelerator complex to produce an intense beam of medium-mass heavy ions (e.g., Ca and Ar). In most components that comprise the RIBF, the control systems (CSs) are integrated by the Experimental Physics and Industrial Control System (EPICS). On the other hand, a non-EPICS-based system has hardwired controllers, and it is used in the 18 GHz ECRIS CS as an independent system. In terms of efficient and effective operation, the 18 GHz ECRIS CS as well as the RIBF CS should be renewed using EPICS. Therefore, we constructed an 18 GHz ECRIS CS by using programmable logic controllers with embedded EPICS technology. In the renewed system, an operational log system was developed as a new feature, for supporting of the 18 GHz ECRIS operation. PMID:26931940

  12. First results of the 2.45 GHz Oshima electron cyclotron resonance ion source.

    PubMed

    Asaji, T; Nakamura, T; Furuse, M; Hitobo, T; Uchida, T; Muramatsu, M; Kato, Y

    2016-02-01

    A new electron cyclotron resonance ion source has been constructed at Oshima College with a 2.45 GHz magnetron microwave source and permanent magnets employed as the main components. In addition, a solid-state power amplifier with a frequency range of 2.5-6.0 GHz was installed to study two-frequency plasma heating. Three solenoid coils were set up for adjusting the axial magnetic fields. Argon plasma generation and ion beam production have been conducted during the first year of operation. Ion current densities in the ECR plasma were measured using a biased disk. For 2.45 and 4.65 GHz two-frequency plasma heating, the ion density was approximately 1.5 times higher than that of 2.45 GHz single-frequency heating. PMID:26931948

  13. First results of the 2.45 GHz Oshima electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Asaji, T.; Nakamura, T.; Furuse, M.; Hitobo, T.; Uchida, T.; Muramatsu, M.; Kato, Y.

    2016-02-01

    A new electron cyclotron resonance ion source has been constructed at Oshima College with a 2.45 GHz magnetron microwave source and permanent magnets employed as the main components. In addition, a solid-state power amplifier with a frequency range of 2.5-6.0 GHz was installed to study two-frequency plasma heating. Three solenoid coils were set up for adjusting the axial magnetic fields. Argon plasma generation and ion beam production have been conducted during the first year of operation. Ion current densities in the ECR plasma were measured using a biased disk. For 2.45 and 4.65 GHz two-frequency plasma heating, the ion density was approximately 1.5 times higher than that of 2.45 GHz single-frequency heating.

  14. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Rácz, R.; Muramatsu, M.; Kato, Y.; Kitagawa, A.; Biri, S.; Yoshida, Y.

    2016-02-01

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  15. Control system renewal for efficient operation in RIKEN 18 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Uchiyama, A.; Ozeki, K.; Higurashi, Y.; Kidera, M.; Komiyama, M.; Nakagawa, T.

    2016-02-01

    A RIKEN 18 GHz electron cyclotron resonance ion source (18 GHz ECRIS) is used as an external ion source at the Radioactive Ion Beam Factory (RIBF) accelerator complex to produce an intense beam of medium-mass heavy ions (e.g., Ca and Ar). In most components that comprise the RIBF, the control systems (CSs) are integrated by the Experimental Physics and Industrial Control System (EPICS). On the other hand, a non-EPICS-based system has hardwired controllers, and it is used in the 18 GHz ECRIS CS as an independent system. In terms of efficient and effective operation, the 18 GHz ECRIS CS as well as the RIBF CS should be renewed using EPICS. Therefore, we constructed an 18 GHz ECRIS CS by using programmable logic controllers with embedded EPICS technology. In the renewed system, an operational log system was developed as a new feature, for supporting of the 18 GHz ECRIS operation.

  16. Prospects for advanced electron cyclotron resonance and electron beam ion source charge breeding methods for EURISOL

    SciTech Connect

    Delahaye, P.; Jardin, P.; Maunoury, L.; Traykov, E.; Varenne, F.; Angot, J.; Lamy, T.; Sortais, P.; Thuillier, T.; Ban, G.; Celona, L.; Lunney, D.; Choinski, J.; Gmaj, P.; Jakubowski, A.; Steckiewicz, O.; Kalvas, T.; and others

    2012-02-15

    As the most ambitious concept of isotope separation on line (ISOL) facility, EURISOL aims at producing unprecedented intensities of post-accelerated radioactive isotopes. Charge breeding, which transforms the charge state of radioactive beams from 1+ to an n+ charge state prior to post-acceleration, is a key technology which has to overcome the following challenges: high charge states for high energies, efficiency, rapidity and purity. On the roadmap to EURISOL, a dedicated R and D is being undertaken to push forward the frontiers of the present state-of-the-art techniques which use either electron cyclotron resonance or electron beam ion sources. We describe here the guidelines of this R and D.

  17. Progress in high-temperature oven development for 28 GHz electron cyclotron resonance ion source.

    PubMed

    Ohnishi, J; Higurashi, Y; Nakagawa, T

    2016-02-01

    We have been developing a high-temperature oven using UO2 in the 28 GHz superconducting electron cyclotron resonance ion source at RIKEN since 2013. A total of eleven on-line tests were performed. The longest operation time in a single test was 411 h, and the consumption rate of UO2 was approximately 2.4 mg/h. In these tests, we experienced several problems: the ejection hole of a crucible was blocked with UO2 and a crucible was damaged because of the reduction of tungsten strength at high temperature. In order to solve these problems, improvements to the crucible shape were made by simulations using ANSYS. PMID:26931927

  18. Cyclotron resonant scattering in the spectra of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.; Wang, J. C. L.; Loredo, T. J.; Wasserman, I.; Fenimore, E. E.

    1989-01-01

    Data on the GB880205 gamma-ray bursts are presented that have implications for the nature of gamma-ray burst sources. It is shown that cyclotron resonant scattering and Raman scattering account well for the positions, strengths, and shapes of the relative strengths of the first and second harmonics and their narrow widths. These results imply the existence of a superstrong (B of about 2 x 10 to the 12th G) magnetic field in the vicinity of the X-ray emission region of GB880205. Such a superstrong magnetic field points to a strongly magnetic neutron star as the origin of gamma-ray bursts, and to the fact that the gamma-ray sources belong to the Galaxy.

  19. Operational upgrades to the DIII-D 60 GHz electron cyclotron resonant heating system

    SciTech Connect

    Harris, T.E.; Cary, W.P.

    1993-10-01

    One of the primary components of the DIII-D radio frequency (rf) program over the past seven years has been the 60 GHz electron cyclotron resonant heating (ECRH) system. The system now consists of eight units capable of operating and controlling eight Varian VGE-8006 60 GHz, 200 kW gyrotrons along with their associated waveguide components. This paper will discuss the operational upgrades and the overall system performance. Many modifications were instituted to enhance the system operation and performance. Modifications discussed in this paper include an improved gyrotron tube-fault response network, a computer controlled pulse-timing and sequencing system, and an improved high-voltage power supply control interface. The discussion on overall system performance will include operating techniques used to improve system operations and reliability. The techniques discussed apply to system start-up procedures, operating the system in a conditioning mode, and operating the system during DIII-D plasma operations.

  20. High carrier mobility in ultrapure diamond measured by time-resolved cyclotron resonance

    SciTech Connect

    Akimoto, Ikuko Handa, Yushi; Fukai, Katsuyuki; Naka, Nobuko

    2014-07-21

    We have performed time-resolved cyclotron resonance measurements in ultrapure diamond crystals for the temperature range of T=7.3–40 K and obtained the temperature-dependent momentum relaxation times based on the cyclotron resonance widths for optically generated electrons and holes. The relaxation time follows a T{sup −3/2} law down to 12 K, which is expected for acoustic-phonon scattering without impurity effect because of the high purity of our samples. The deviation from the law at lower temperatures is explained by the impurity scattering and the breakdown of the high-temperature approximation for the phonon scattering. We extract the carrier drift mobility by using the directly measured effective masses and the relaxation times. The mobility at 10 K for 600 ns delay time after optical injection is found to be μ{sub e}=1.5×10{sup 6} cm{sup 2}/V s for the electrons, and μ{sub lh}=2.3×10{sup 6} cm{sup 2}/V s and  μ{sub hh}=2.4×10{sup 5} cm{sup 2}/V s for the light and heavy holes, respectively. These high values are achieved by our high-sensitivity detection for low-density carriers (at <10{sup 11} cm{sup −3}) free from the carrier-carrier scattering as well as by the suppression of the impurity scattering in the high-purity samples.

  1. Microwave-Excited Microplasma Thrusters Using Surface Wave and Electron Cyclotron Resonance Discharges

    NASA Astrophysics Data System (ADS)

    Mori, Daisuke; Kawanabe, Tetsuo; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2012-10-01

    Downsizing spacecrafts has recently been focused on to decrease mission costs and to increase launch rates, and missions with small satellites would bring a great advantage of reducing their risks. Such a concept supports a new approach to developing precise, reliable, and low-cost micropropulsion systems. We have studied two types of microwave-excited microplasma thrusters, using surface wave-excited and electron cyclotron resonance-excited discharges. Microwaves of S-band (4 GHz) and X-band (11 GHz) were employed to excite the plasma in these experiments, with the feed or propellant gases of Ar and He. A microplasma thruster of electrothermal type consisted of a surface wave-excited microplasma source, and a converging-diverging micronozzle to obtain the thrust. For 11-GHz microwaves at a power of 6 W, a thrust of 1.1 mN and a specific impulse of 90 s were obtained at an Ar gas flow rate of 40 sccm, where the plasma electron density was 1.2x10^20 m-3, and the gas temperature was 1.5x10^3 K; under the same conditions for 4-GHz microwaves, the thrust, specific impulse, electron density, and gas temperature were 0.93 mN, 80 s, 7.0x10^19 m-3, and 8.0x10^2 K, respectively. A microplasma thruster of electromagnetic type had a microplasma source excited by electron cyclotron resonance with external magnetic fields, to obtain the thrust through accelerating ions by ambipolar electric fields. Optical emission spectrum was dominated by Ar^+ ion lines in the microplasma thruster of electromagnetic type, owing to higher electron temperatures at lower feed-gas pressures.

  2. Ion heating and acceleration by magnetosonic waves via cyclotron subharmonic resonance

    SciTech Connect

    Terasawa, Toshio ); Nambu, Mitsuhiro )

    1989-05-01

    The authors investigate a subharmonic-resonant interaction between ions and magnetohydrodynamic waves propagating perpendicular to the background magnetic field, B{sub 0}. This interaction occurs at frequencies which are subharmonics of the cyclotron frequency of ions ({Omega}{sub i}/n, where n is an integer, 2,3,4,..). They have found that this interaction becomes quite effective if the wave magnetic field {delta}B exceeds {approximately}10% of B{sub 0}. Further, when {delta}B exceeds {approximately}50% of B{sub 0}, ions have stochastic orbits in the wave and are accelerated with quite high efficiency. This subharmonic resonant interaction can play quite significant roles in the ion heating/acceleration processes in space plasmas, where large amplitude waves ({delta}B/B{sub 0}{approx gt}0.1) are not unusual. Possible observational features of the subharmonic resonance which they suggest are: (1) absorption lines in the broad background spectrum of compressible geomagnetic pulsations, and (2) enhancement of energetic ion fluxes relating to the large fluctuation of magnetic field magnitude.

  3. Temperature and density evolution during decay in a 2.45 GHz hydrogen electron cyclotron resonance plasma: Off-resonant and resonant cases

    NASA Astrophysics Data System (ADS)

    Cortázar, O. D.; Megía-Macías, A.; Vizcaíno-de-Julián, A.

    2013-09-01

    Time resolved electron temperature and density measurements during the decay stage in a hydrogen electron cyclotron resonance (ECR) plasma are presented for a resonance and off-resonance magnetic field configurations. The measurements are conducted on a ECR plasma generator excited at 2.45 GHz denominated test-bench for ion-sources plasma studies at ESS Bilbao. The plasma parameters evolution is studied by Langmuir probe diagnostic with synchronized sample technique developed for repetitive pulsed plasmas with a temporal resolution of 200 ns in typical decay processes of about 40 μs. An afterglow transient is clearly observed in the reflected microwave power signal from the plasma. Simultaneously, the electron temperature evolution shows rebounding peaks that may be related to the interplay between density drop and microwave coupling with deep impact on the Electron Energy Distribution Function. The correlation of such structures with the plasma absorbed power and the coupling quality is also reported.

  4. Cyclotron-resonance transmission through potassium in a perpendicular magnetic field: Effects of the charge-density wave

    NASA Astrophysics Data System (ADS)

    Park, Mi-Ae; Overhauser, A. W.

    1997-01-01

    Microwave transmission through potassium by Dunifer, Sambles, and Mace [J. Phys. Condens. Matter 1, 875 (1989)] in a perpendicular magnetic field shows five signals. They are Gantmakher-Kaner (GK) oscillations, conduction-electron-spin resonance, high-frequency oscillations, cyclotron resonance, and cyclotron-resonance subharmonics. Only the spin resonance has been successfully explained using a free-electron model. However, such a model predicts GK oscillations which are too large by several orders of magnitude. Lacueva and Overhauser [Phys. Rev. B 48, 16t935 (1993)] have shown that charge-density-wave (CDW) energy gaps which cut through the Fermi surface reduce the GK signal. CDW gaps also create a small Fermi-surface cylinder. The high-frequency oscillations were shown to result from Landau-level quantization in the cylinder. Recently we found that the anomalous microwave surface resistance, observed by Grimes and Kip [Phys. Rev. 132, 1991 (1963)], can be explained only if the cylinder axis is tilted ~45° with respect to the [110] crystal direction perpendicular to the surface. (Such a tilt was predicted by Giuliani and Overhauser [Phys. Rev. B 20, 1328 (1979)].) In this study we show that oscillatory motions, parallel to the field, of electrons in the tilted cylinder cause the cyclotron-resonance transmission. This signal and its subharmonics would be completely absent without the tilt. Consequently, four of the five transmission signals require a CDW broken symmetry.

  5. Measurement of cyclotron resonance relaxation time in the two-dimensional electron system

    SciTech Connect

    Andreev, I. V. Muravev, V. M.; Kukushkin, I. V.; Belyanin, V. N.

    2014-11-17

    Dependence of cyclotron magneto-plasma mode relaxation time on electron concentration and temperature in the two-dimensional electron system in GaAs/AlGaAs quantum wells has been studied. Comparative analysis of cyclotron and transport relaxation time has been carried out. It was demonstrated that with the temperature increase transport relaxation time tends to cyclotron relaxation time. It was also shown that cyclotron relaxation time, as opposed to transport relaxation time, has a weak electron density dependence. The cyclotron time can exceed transport relaxation time by an order of magnitude in a low-density range.

  6. On RF heating of inhomogeneous collisional plasma under ion-cyclotron resonance conditions

    SciTech Connect

    Timofeev, A. V.

    2015-11-15

    During ion-cyclotron resonance (ICR) heating of plasma by the magnetic beach method, as well as in some other versions of ICR heating, it is necessary to excite Alfvén oscillations. In this case, it is difficult to avoid the phenomenon of the Alfvén resonance, in which Alfvén oscillations transform into lower hybrid oscillations. The latter efficiently interact with electrons, due to which most of the deposited RF energy is spent on electron (rather than ion) heating. The Alfvén resonance takes place due to plasma inhomogeneity across the external magnetic field. Therefore, it could be expected that variations in the plasma density profile would substantially affect the efficiency of the interaction of RF fields with charged particles. However, the results obtained for different plasma density profiles proved to be nearly the same. In the present work, a plasma is considered the parameters of which correspond to those planned in future ICR plasma heating experiments on the PS-1 facility at the Kurchatov Institute. When analyzing the interaction of RF fields with charged particles, both the collisionless resonance interaction and the interaction caused by Coulomb collisions are taken into account, because, in those experiments, the Coulomb collision frequency will be comparable with the frequency of the heating field. Antennas used for ICR heating excite RF oscillations with a wide spectrum of wavenumbers along the magnetic field. After averaging over the spectrum, the absorbed RF energy calculated with allowance for collisions turns out to be close to that absorbed in collisionless plasma, the energy fraction absorbed by electrons being substantially larger than that absorbed by ions.

  7. Ion cyclotron resonance heating systems upgrade toward high power and CW operations in WEST

    NASA Astrophysics Data System (ADS)

    Hillairet, Julien; Mollard, Patrick; Zhao, Yanping; Bernard, Jean-Michel; Song, Yuntao; Argouarch, Arnaud; Berger-By, Gilles; Charabot, Nicolas; Chen, Gen; Chen, Zhaoxi; Colas, Laurent; Delaplanche, Jean-Marc; Dumortier, Pierre; Durodié, Frédéric; Ekedahl, Annika; Fedorczak, Nicolas; Ferlay, Fabien; Goniche, Marc; Hatchressian, Jean-Claude; Helou, Walid; Jacquot, Jonathan; Joffrin, Emmanuel; Litaudon, Xavier; Lombard, Gilles; Maggiora, Riccardo; Magne, Roland; Milanesio, Daniele; Patterlini, Jean-Claude; Prou, Marc; Verger, Jean-Marc; Volpe, Robert; Vulliez, Karl; Wang, Yongsheng; Winkler, Konstantin; Yang, Qingxi; Yuan, Shuai

    2015-12-01

    The design of the WEST (Tungsten-W Environment in Steady-state Tokamak) Ion cyclotron resonance heating antennas is based on a previously tested conjugate-T Resonant Double Loops prototype equipped with internal vacuum matching capacitors. The design and construction of three new WEST ICRH antennas are being carried out in close collaboration with ASIPP, within the framework of the Associated Laboratory in the fusion field between IRFM and ASIPP. The coupling performance to the plasma and the load-tolerance have been improved, while adding Continuous Wave operation capability by introducing water cooling in the entire antenna. On the generator side, the operation class of the high power tetrodes is changed from AB to B in order to allow high power operation (up to 3 MW per antenna) under higher VSWR (up to 2:1). Reliability of the generators is also improved by increasing the cavity breakdown voltage. The control and data acquisition system is also upgraded in order to resolve and react on fast events, such as ELMs. A new optical arc detection system comes in reinforcement of the Vr/Vf and SHAD systems.

  8. Study and design of the ion cyclotron resonance heating system for the stellarator Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Ongena, J.; Messiaen, A.; Van Eester, D.; Schweer, B.; Dumortier, P.; Durodie, F.; Kazakov, Ye. O.; Louche, F.; Vervier, M.; Koch, R.; Krivska, A.; Lyssoivan, A.; Van Schoor, M.; Wauters, T.; Borsuk, V.; Neubauer, O.; Schmitz, O.; Offermans, G.; Altenburg, Y.; Baylard, C.; Birus, D.; Bozhenkov, S.; Hartmann, D. A.; Kallmeyer, J. P.; Renard, S.; Wolf, R. C.; Fülöp, T.

    2014-06-01

    The current status of the mechanical and electromagnetic design for the ICRF antenna system for W7-X is presented. Two antenna plugins are discussed: one consisting of a pair of straps with pre-matching to cover the first frequency band, 25-38 MHz, and a second one consisting of two short strap triplets to cover a frequency band around 76 MHz. This paper focusses on the two strap antenna for the lower frequency band. Power coupling of the antenna to a reference plasma profile is studied with the help of the codes TOPICA and Microwave Studio that deliver the scattering matrix needed for the optimization of the geometric parameters of the straps and antenna box. Radiation power spectra for different phasings of the two straps are obtained using the code ANTITER II and different heating scenario are discussed. The potential for heating, fast particle generation, and current drive is discussed. The problem of RF coupling through the plasma edge and of edge power deposition is summarized. Important elements of the complete ion cyclotron resonance heating system are discussed: a resonator circuit with tap feed to limit the maximum voltage in the system, and a decoupler to counterbalance the large mutual coupling between the 2 straps. The mechanical design highlights the challenges encountered with this antenna: adaptation to a large variety of plasma configurations, the limited space within the port to accommodate the necessary matching components and the watercooling needed for long pulse operation.

  9. Cyclotron Resonance in InMnAs and InMnSb Ferromagnetic Films

    NASA Astrophysics Data System (ADS)

    Khodaparast, Giti; Matsuda, Y. H.; Shen, R.; Takeyama, S.; Liu, X.; Furdyna, J.; Wessels, B. W.

    2011-03-01

    Ferromagnetic semiconductors are important materials for development of spintronic devices. While effort in this area was made primarily on GaMnAs, other ferromagnetic III-Mn-V alloys have also been developed, including the narrow gap ferromagnetic alloys such as InMnAs and InMnSb. Investigation of the electronic structure of III-Mn-V alloys by techniques such as the cyclotron resonance (CR) can shed important light on the origin of ferromagnetism and the p-d exchange interaction in III-Mn-V systems. In this work we report on CR experiments carried out on the ferromagnetic InMnAs and InMnSb films, on which clear resonance signals have been successfully observed in high magnetic fields generated by a single turn coil technique. The CR in ferromagnetic InMnSb was observed for the first time and we compare our observations with the Landau levels calculations on the basis of an 8-band k . . p model. Supported by: NSF-DMR-0507866, AFOSR YIP 06NE231, NSF-Career Award DMR-0846834, NSF DMR 0804479, NSF DMR-1005851.

  10. Ion cyclotron resonance heating systems upgrade toward high power and CW operations in WEST

    SciTech Connect

    Hillairet, Julien Mollard, Patrick; Bernard, Jean-Michel; Argouarch, Arnaud; Berger-By, Gilles; Charabot, Nicolas; Colas, Laurent; Delaplanche, Jean-Marc; Ekedahl, Annika; Fedorczak, Nicolas; Ferlay, Fabien; Goniche, Marc; Hatchressian, Jean-Claude; Helou, Walid; Jacquot, Jonathan; Joffrin, Emmanuel; Litaudon, Xavier; Lombard, Gilles; Magne, Roland; Patterlini, Jean-Claude; and others

    2015-12-10

    The design of the WEST (Tungsten-W Environment in Steady-state Tokamak) Ion cyclotron resonance heating antennas is based on a previously tested conjugate-T Resonant Double Loops prototype equipped with internal vacuum matching capacitors. The design and construction of three new WEST ICRH antennas are being carried out in close collaboration with ASIPP, within the framework of the Associated Laboratory in the fusion field between IRFM and ASIPP. The coupling performance to the plasma and the load-tolerance have been improved, while adding Continuous Wave operation capability by introducing water cooling in the entire antenna. On the generator side, the operation class of the high power tetrodes is changed from AB to B in order to allow high power operation (up to 3 MW per antenna) under higher VSWR (up to 2:1). Reliability of the generators is also improved by increasing the cavity breakdown voltage. The control and data acquisition system is also upgraded in order to resolve and react on fast events, such as ELMs. A new optical arc detection system comes in reinforcement of the V{sub r}/V{sub f} and SHAD systems.

  11. Study and design of the ion cyclotron resonance heating system for the stellarator Wendelstein 7-X

    SciTech Connect

    Ongena, J.; Messiaen, A.; Van Eester, D.; Schweer, B.; Dumortier, P.; Durodie, F.; Kazakov, Ye. O.; Louche, F.; Vervier, M.; Koch, R.; Krivska, A.; Lyssoivan, A.; Van Schoor, M.; Wauters, T.; Borsuk, V.; Neubauer, O.; Schmitz, O.; Altenburg, Y.; Baylard, C.; and others

    2014-06-15

    The current status of the mechanical and electromagnetic design for the ICRF antenna system for W7-X is presented. Two antenna plugins are discussed: one consisting of a pair of straps with pre-matching to cover the first frequency band, 25–38 MHz, and a second one consisting of two short strap triplets to cover a frequency band around 76 MHz. This paper focusses on the two strap antenna for the lower frequency band. Power coupling of the antenna to a reference plasma profile is studied with the help of the codes TOPICA and Microwave Studio that deliver the scattering matrix needed for the optimization of the geometric parameters of the straps and antenna box. Radiation power spectra for different phasings of the two straps are obtained using the code ANTITER II and different heating scenario are discussed. The potential for heating, fast particle generation, and current drive is discussed. The problem of RF coupling through the plasma edge and of edge power deposition is summarized. Important elements of the complete ion cyclotron resonance heating system are discussed: a resonator circuit with tap feed to limit the maximum voltage in the system, and a decoupler to counterbalance the large mutual coupling between the 2 straps. The mechanical design highlights the challenges encountered with this antenna: adaptation to a large variety of plasma configurations, the limited space within the port to accommodate the necessary matching components and the watercooling needed for long pulse operation.

  12. Vacuum compatible sample positioning device for matrix assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging

    PubMed Central

    Aizikov, Konstantin; Smith, Donald F.; Chargin, David A.; Ivanov, Sergei; Lin, Tzu-Yung; Heeren, Ron M. A.; O’Connor, Peter B.

    2011-01-01

    The high mass accuracy and resolving power of Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS) make them ideal mass detectors for mass spectrometry imaging (MSI), promising to provide unmatched molecular resolution capabilities. The intrinsic low tolerance of FT-ICR MS to RF interference, however, along with typically vertical positioning of the sample, and MSI acquisition speed requirements present numerous engineering challenges in creating robotics capable of achieving the spatial resolution to match. This work discusses a two-dimensional positioning stage designed to address these issues. The stage is capable of operating in ∼1 × 10–8 mbar vacuum. The range of motion is set to 100 mm × 100 mm to accommodate large samples, while the positioning accuracy is demonstrated to be less than 0.4 micron in both directions under vertical load over the entire range. This device was integrated into three different matrix assisted laser desorption/ionization (MALDI) FT-ICR instruments and showed no detectable RF noise. The “oversampling” MALDI-MSI experiments, under which the sample is completely ablated at each position, followed by the target movement of the distance smaller than the laser beam, conducted on the custom-built 7T FT-ICR MS demonstrate the stability and positional accuracy of the stage robotics which delivers high spatial resolution mass spectral images at a fraction of the laser spot diameter. PMID:21639522

  13. Vacuum compatible sample positioning device for matrix assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging

    SciTech Connect

    Aizikov, Konstantin; Lin, Tzu-Yung; Smith, Donald F.; Heeren, Ron M. A.; Chargin, David A.; Ivanov, Sergei; O'Connor, Peter B.

    2011-05-15

    The high mass accuracy and resolving power of Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS) make them ideal mass detectors for mass spectrometry imaging (MSI), promising to provide unmatched molecular resolution capabilities. The intrinsic low tolerance of FT-ICR MS to RF interference, however, along with typically vertical positioning of the sample, and MSI acquisition speed requirements present numerous engineering challenges in creating robotics capable of achieving the spatial resolution to match. This work discusses a two-dimensional positioning stage designed to address these issues. The stage is capable of operating in {approx}1 x 10{sup -8} mbar vacuum. The range of motion is set to 100 mm x 100 mm to accommodate large samples, while the positioning accuracy is demonstrated to be less than 0.4 micron in both directions under vertical load over the entire range. This device was integrated into three different matrix assisted laser desorption/ionization (MALDI) FT-ICR instruments and showed no detectable RF noise. The ''oversampling'' MALDI-MSI experiments, under which the sample is completely ablated at each position, followed by the target movement of the distance smaller than the laser beam, conducted on the custom-built 7T FT-ICR MS demonstrate the stability and positional accuracy of the stage robotics which delivers high spatial resolution mass spectral images at a fraction of the laser spot diameter.

  14. Electrically compensated Fourier transform ion cyclotron resonance cell for complex mixture mass analysis.

    PubMed

    Kaiser, Nathan K; Savory, Joshua J; McKenna, Amy M; Quinn, John P; Hendrickson, Christopher L; Marshall, Alan G

    2011-09-01

    Complex natural organic mixtures such as petroleum require ultrahigh mass spectral resolution to separate and identify thousands of elemental compositions. Here, we incorporate a custom-built, voltage-compensated ICR cell for Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS), based on a prior design by Tolmachev to produce optimal mass resolution. The compensated ICR cell installed in a custom-built 9.4 T FTICR mass spectrometer consists of seven cylindrical segments with axial proportions designed to generate a dc trapping potential that approaches an ideal three-dimensional axial quadrupolar potential. However, the empirically optimized compensation voltages do not correspond to the most quadrupolar trapping field. The compensation electrodes minimize variation in the reduced cyclotron frequency by balancing imperfections in the magnetic and electric field. The optimized voltages applied to compensation electrodes preserve ion cloud coherence for longer transient duration by approximately a factor of 2, enabling separation and identification of isobaric species (compounds with the same nominal mass but different exact mass) common in petroleum, such as C(3) vs SH(4) (separated by 3.4 mDa) and SH(3)(13)C vs (12)C(4) (separated by 1.1 mDa). The improved performance of the ICR cell provides more symmetric peak shape and better mass measurement accuracy. A positive ion atmospheric pressure photoionization (APPI) petroleum spectrum yields more than 26,000 assigned peaks, Fourier-limited resolving power of 800,000 at m/z 500 (6.6 s transient duration), and 124 part per billion root mean square (rms) error. The tunability of the compensation electrodes is critical for optimal performance. PMID:21838231

  15. Results with the superconducting electron cyclotron resonance ion source VENUS (invited)

    NASA Astrophysics Data System (ADS)

    Lyneis, C. M.; Leitner, D.; Abbott, S. R.; Dwinell, R. D.; Leitner, M.; Silver, C. S.; Taylor, C.

    2004-05-01

    During the last year, the VENUS electron cyclotron resonance (ECR) ion source was commissioned at 18 GHz and preparations for 28 GHz operation, which is set to begin early in 2004, are now underway. The goal of the VENUS ECR ion source project as the RIA research and development injector is the production of 240 eμA of U30+, a high current medium charge state beam. On the other hand, as an injector ion source for the 88-Inch Cyclotron the design objective is the production of 5 eμA of U48+, a low current, very high charge state beam. During the commissioning phase with 18 GHz, tests with various gases and recently metals have been performed with up to 2000 W rf power and the performance is very promising. For example, 1100 eμA of O6+, 180 eμA of Ar12+, 150 eμA of Xe20+, and 100 eμA of Bi24+ were produced in the early commissioning phase, ranking VENUS among the currently highest performance 18 GHz ECR ion sources. The emittance of the beams produced at 18 GHz was measured with a two axis emittance scanner. In FY04 a 10 kW, 28 GHz gyrotron system will be added, which will enable VENUS to reach full performance. The performance of the VENUS ion source, low energy beam transport and its closed loop cryogenic system are described in the article. Recently, a high temperature axial oven has been installed in the source and the first results on metal beams such as bismuth are given. The design of the 28 GHz, 10 kW gyrotron system will also be described.

  16. Characterization of pyrogenic black carbon by desorption atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Podgorski, David C; Hamdan, Rasha; McKenna, Amy M; Nyadong, Leonard; Rodgers, Ryan P; Marshall, Alan G; Cooper, William T

    2012-02-01

    We present a new method for molecular characterization of intact biochar directly, without sample preparation or pretreatment, on the basis of desorption atmospheric pressure photoionization (DAPPI) coupled to Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. Conventional ionization methods (e.g., electrospray or atmospheric pressure photoionization) for characterization of natural organic matter have limited utility for the characterization of chars due to incomplete solubility in common solvents. Therefore, direct ionization techniques that do not require sample dissolution prior to analysis are ideal. Here, we apply DAPPI FTICR mass spectrometry to enable the first molecular characterization of uncharred parent oak biomass and after combustion (250 °C) or pyrolysis (400 °C). Parent oak is primarily composed of cellulose-, lignin-, and resin-like compounds. Oak combusted at 250 °C contains condensed aromatic compounds with low H/C and O/C ratios while retaining compounds with high H/C and O/C ratios. The bimodal distribution of aromatic and aliphatic compounds observed in the combusted oak sample is attributed to incomplete thermal degradation of lignin and hemicellulose. Pyrolyzed oak constituents exhibit lower H/C and O/C ratios: approximately three-quarters of the identified species are aromatic. DAPPI FTICR MS results agree with bulk elemental composition as well as functional group distributions determined by elemental analysis and solid state (13)C NMR spectroscopy. Complete molecular characterization of biomass upon thermal transformation may provide insight into the biogeochemical cycles of biochar and future renewable energy sources, particularly for samples currently limited by solubility, separation, and sample preparation. PMID:22242739

  17. Production of a large-diameter uniform plasma by electron cyclotron resonance heating with a small-diameter Lisitano coil

    NASA Astrophysics Data System (ADS)

    Komori, A.; Takada, Y.; Yonesu, A.; Kawai, Y.

    1991-02-01

    A large-diameter uniform plasma is produced by electron cyclotron resonance heating with a slotted Lisitano coil of 9 cm in diameter by locating the resonance apart from the Lisitano coil. Although the plasma production with a Lisitano coil has been performed extensively by placing the resonance near the Lisitano coil, the influence of the resonance location has not received as much attention. When the resonance is located further than 8 cm from the Lisitano coil, the uniform plasma of ˜40 cm in diameter at densities of ˜1.2×1011 cm-3 is produced over the vacuum chamber with an inner radius of 46 cm. The microwave is propagated in the whole space between the resonance and the Lisitano coil, and spatial electric-field distributions of the microwave play an important role on forming the radially uniform plasma.

  18. New development of advanced superconducting electron cyclotron resonance ion source SECRAL (invited)

    SciTech Connect

    Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Guo, X. H.; Zhao, H. Y.; Feng, Y. C.; Li, J. Y.; Ma, H. Y.; Ma, B. H.; Wang, H.; Li, X. X.; Xie, D. Z.; Lu, W.; Cao, Y.; Shang, Y.

    2010-02-15

    Superconducting electron cyclotron resonance ion source with advance design in Lanzhou (SECRAL) is an 18-28 GHz fully superconducting electron cyclotron resonance (ECR) ion source dedicated for highly charged heavy ion beam production. SECRAL, with an innovative superconducting magnet structure of solenoid-inside-sextupole and at lower frequency and lower rf power operation, may open a new way for developing compact and reliable high performance superconducting ECR ion source. One of the recent highlights achieved at SECRAL is that some new record beam currents for very high charge states were produced by 18 GHz or 18+14.5 GHz double frequency heating, such as 1 e {mu}A of {sup 129}Xe{sup 43+}, 22 e {mu}A of {sup 209}Bi{sup 41+}, and 1.5 e {mu}A of {sup 209}Bi{sup 50+}. To further enhance the performance of SECRAL, a 24 GHz/7 kW gyrotron microwave generator was installed and SECRAL was tested at 24 GHz. Some promising and exciting results at 24 GHz with new record highly charged ion beam intensities were produced, such as 455 e {mu}A of {sup 129}Xe{sup 27+} and 152 e {mu}A of {sup 129}Xe{sup 30+}, although the commissioning time was limited within 3-4 weeks and rf power only 3-4 kW. Bremsstrahlung measurements at 24 GHz show that x-ray is much stronger with higher rf frequency, higher rf power. and higher minimum mirror magnetic field (minimum B). Preliminary emittance measurements indicate that SECRAL emittance at 24 GHz is slightly higher that at 18 GHz. SECRAL has been put into routine operation at 18 GHz for heavy ion research facility in Lanzhou (HIRFL) accelerator complex since May 2007. The total operation beam time from SECRAL for HIRFL accelerator has been more than 2000 h, and {sup 129}Xe{sup 27+}, {sup 78}Kr{sup 19+}, {sup 209}Bi{sup 31+}, and {sup 58}Ni{sup 19+} beams were delivered. All of these new developments, the latest results, and long-term operation for the accelerator have again demonstrated that SECRAL is one of the best in the performance of

  19. Status report of the 28 GHz superconducting electron cyclotron resonance ion source VENUS (invited)

    SciTech Connect

    Leitner, D.; Lyneis, C.M.; Loew, T.; Todd, D.S.; Virostek, S.; Tarvainen, O.

    2006-03-15

    The superconducting versatile electron cyclotron resonance (ECR) ion source for nuclear science (VENUS) is a next generation superconducting ECR ion source designed to produce high-current, high-charge-state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the rare isotope accelerator (RIA) front end, where the goal is to produce intense beams of medium-charge-state ions. Example beams for the RIA accelerator are 15 p {mu}A of Kr{sup 17+}(260 e {mu}A), 12 p {mu}A of Xe{sup 20+} (240 e {mu}A of Xe{sup 20+}), and 8 p {mu}A of U{sup 28+}(230 e {mu}A). To achieve these high currents, VENUS has been optimized for operation at 28 GHz, reaching maximal confinement fields of 4 and 3 T axially and over 2.2 T on the plasma chamber wall radially. After a commissioning phase at 18 GHz, the source started the 28 GHz operation in the summer of 2004. During that ongoing 28 GHz commissioning process, record ion-beam intensities have been extracted. For instance, measured extracted currents for the low to medium charge states were 270 e {mu}A of Xe{sup 27+} and 245 e {mu}A of Bi{sup 29+}, while for the higher charge states 15 e {mu}A of Xe{sup 34+}, 15 e {mu}A of Bi{sup 41+}, and 0.5 e {mu}A of Bi{sup 50+} could be produced. Results from the ongoing 28 GHz commissioning as well as results using double-frequency heating with 18 and 28 GHz for oxygen and xenon are presented. The effect of the minimum B field on the ion source performance has been systematically measured for 18 and 28 GHz. In both cases the performance peaked at a minimum B field of about 80% of the resonance field. In addition, a strong dependence of the x-ray flux and energy on the minimum B field value was found.

  20. Status report of the 28 GHz superconducting electron cyclotron resonance ion source VENUS (invited)

    NASA Astrophysics Data System (ADS)

    Leitner, D.; Lyneis, C. M.; Loew, T.; Todd, D. S.; Virostek, S.; Tarvainen, O.

    2006-03-01

    The superconducting versatile electron cyclotron resonance (ECR) ion source for nuclear science (VENUS) is a next generation superconducting ECR ion source designed to produce high-current, high-charge-state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the rare isotope accelerator (RIA) front end, where the goal is to produce intense beams of medium-charge-state ions. Example beams for the RIA accelerator are 15 p μA of Kr17+(260 e μA), 12 p μA of Xe20+ (240 e μA of Xe20+), and 8 p μA of U28+(230 e μA). To achieve these high currents, VENUS has been optimized for operation at 28 GHz, reaching maximal confinement fields of 4 and 3 T axially and over 2.2 T on the plasma chamber wall radially. After a commissioning phase at 18 GHz, the source started the 28 GHz operation in the summer of 2004. During that ongoing 28 GHz commissioning process, record ion-beam intensities have been extracted. For instance, measured extracted currents for the low to medium charge states were 270 e μA of Xe27+ and 245 e μA of Bi29+, while for the higher charge states 15 e μA of Xe34+, 15 e μA of Bi41+, and 0.5 e μA of Bi50+ could be produced. Results from the ongoing 28 GHz commissioning as well as results using double-frequency heating with 18 and 28 GHz for oxygen and xenon are presented. The effect of the minimum B field on the ion source performance has been systematically measured for 18 and 28 GHz. In both cases the performance peaked at a minimum B field of about 80% of the resonance field. In addition, a strong dependence of the x-ray flux and energy on the minimum B field value was found.

  1. New development of advanced superconducting electron cyclotron resonance ion source SECRAL (invited).

    PubMed

    Zhao, H W; Sun, L T; Lu, W; Zhang, X Z; Guo, X H; Cao, Y; Zhao, H Y; Feng, Y C; Li, J Y; Ma, H Y; Shang, Y; Ma, B H; Wang, H; Li, X X; Xie, D Z

    2010-02-01

    Superconducting electron cyclotron resonance ion source with advance design in Lanzhou (SECRAL) is an 18-28 GHz fully superconducting electron cyclotron resonance (ECR) ion source dedicated for highly charged heavy ion beam production. SECRAL, with an innovative superconducting magnet structure of solenoid-inside-sextupole and at lower frequency and lower rf power operation, may open a new way for developing compact and reliable high performance superconducting ECR ion source. One of the recent highlights achieved at SECRAL is that some new record beam currents for very high charge states were produced by 18 GHz or 18+14.5 GHz double frequency heating, such as 1 e microA of (129)Xe(43+), 22 e microA of (209)Bi(41+), and 1.5 e microA of (209)Bi(50+). To further enhance the performance of SECRAL, a 24 GHz/7 kW gyrotron microwave generator was installed and SECRAL was tested at 24 GHz. Some promising and exciting results at 24 GHz with new record highly charged ion beam intensities were produced, such as 455 e microA of (129)Xe(27+) and 152 e microA of (129)Xe(30+), although the commissioning time was limited within 3-4 weeks and rf power only 3-4 kW. Bremsstrahlung measurements at 24 GHz show that x-ray is much stronger with higher rf frequency, higher rf power. and higher minimum mirror magnetic field (minimum B). Preliminary emittance measurements indicate that SECRAL emittance at 24 GHz is slightly higher that at 18 GHz. SECRAL has been put into routine operation at 18 GHz for heavy ion research facility in Lanzhou (HIRFL) accelerator complex since May 2007. The total operation beam time from SECRAL for HIRFL accelerator has been more than 2000 h, and (129)Xe(27+), (78)Kr(19+), (209)Bi(31+), and (58)Ni(19+) beams were delivered. All of these new developments, the latest results, and long-term operation for the accelerator have again demonstrated that SECRAL is one of the best in the performance of ECR ion source for highly charged heavy ion beam production

  2. Surface-Induced Dissociation of Ions Produced by Matrix-Assisted Laser Desorption Ionization in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    SciTech Connect

    Laskin, Julia; Beck, Kenneth M.; Hache, John J.; Futrell, Jean H.

    2004-01-15

    Intermediate pressure matrix assisted laser ionization (MALDI) source was constructed and interfaced with a 6T Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially configured for surface-induced dissociation (SID) studies.

  3. A proposal for a novel H ion source based on electron cyclotron resonance heating and surface ionization

    SciTech Connect

    Tarvainen, Ollie A; Kurennoy, Sergey

    2008-01-01

    A design for a novel H{sup -} ion source based on electron cyclotron resonance plasma heating and surface ionization is presented. The plasma chamber of the source is an rf-cavity designed for TE{sub 111} eigenmode at 2.45 GHz. The desired mode is excited with a loop antenna. The ionization process takes place on a cesiated surface of a biased converter electrode. The H{sup -} ion beam is further 'self-extracted' through the plasma region. The magnetic field of the source is optimized for plasma generation by electron cyclotron resonance heating, and beam extraction. The design features of the source are discussed in detail and the attainable H{sup -} ion current, beam emittance and duty factor of the novel source are estimated.

  4. Evidence for a resonant cyclotron interaction between runaway electrons and MHD modes in the experimental advanced superconducting tokamak

    SciTech Connect

    Li Erzhong; Zhou Ruijie; Hu Liqun

    2011-09-15

    In the past, the resonant cyclotron interaction between runaway electrons and lower hybrid waves via anomalous Doppler broadening was experimentally investigated, and it was shown to be able to create a barrier to the energy that could be reached by the runaway electrons [E. Li et al., Nucl. Instrum. Methods Phys. Res. A 621, 566 (2010)]. In this paper, to our knowledge for the first time, experimental evidence will be provided for a resonant cyclotron interaction between runaway electrons and magnetohydrodynamics modes in a stochastic magnetic field in the experimental advanced superconducting tokamak (EAST), which has been theoretically proposed as a mechanism able to limit the maximum attainable energy by runaway electrons in tokamak plasmas [J. R. Martin-Solis and R. Sanchez, Phys. Plasmas 15, 112505 (2008)].

  5. Reconstruction of high temporal resolution Thomson scattering data during a modulated electron cyclotron resonance heating using conditional averaging

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Ida, K.; Itoh, K.; Yoshinuma, M.; Moon, C.; Inagaki, S.; Yamada, I.; Funaba, H.; Yasuhara, R.; Tsuchiya, H.; Ohdachi, S.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Kubo, S.; Tsujimura, T. I.

    2016-04-01

    This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.

  6. Reconstruction of high temporal resolution Thomson scattering data during a modulated electron cyclotron resonance heating using conditional averaging.

    PubMed

    Kobayashi, T; Ida, K; Itoh, K; Yoshinuma, M; Moon, C; Inagaki, S; Yamada, I; Funaba, H; Yasuhara, R; Tsuchiya, H; Ohdachi, S; Yoshimura, Y; Igami, H; Shimozuma, T; Kubo, S; Tsujimura, T I

    2016-04-01

    This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition. PMID:27131672

  7. Investigation of relativistic runaway electrons in electron cyclotron resonance heating discharges on Korea Superconducting Tokamak Advanced Research

    SciTech Connect

    Kang, C. S.; Lee, S. G.

    2014-07-15

    The behavior of relativistic runaway electrons during Electron Cyclotron Resonance Heating (ECRH) discharges is investigated in the Korea Superconducting Tokamak Advanced Research device. The effect of the ECRH on the runaway electron population is discussed. Observations on the generation of superthermal electrons during ECRH will be reported, which will be shown to be consistent with existing theory for the development of a superthermal electron avalanche during ECRH [A. Lazaros, Phys. Plasmas 8, 1263 (2001)].

  8. Observations of the dissipative trapped electron instability in a mirror plasma produced by electron-cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Suetsugu, Y.; Kawai, Y.

    1986-02-01

    The dissipative trapped electron instability driven by the finite Larmor radius effects is observed in a mirror plasma produced by electron-cyclotron resonance using the Lisitano coil. The effect of the radial electron temperature gradient on the excitation of this mode is studied theoretically and experimentally. It is found that the electron temperature gradient opposite to the density gradient tends to stabilize this mode.

  9. Silicon carbon alloy thin film depositions using electron cyclotron resonance microwave plasmas

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Pool, F. S.

    1990-01-01

    Amorphous and microcrystalline silicon carbon films (a-SiC:H, micro-c-SiC:H) have been deposited using SiH4, CH4 and H2 mixed gas ECR (electron cyclotron resonance) plasmas. The optical bandgap of a-SiC:H films is not dependent on the hydrogen dilution in the ECR plasma. The deposition rate of a-SiC:H films is found to be strongly dependent on the ECR magnetic field and the hydrogen dilution. The hydrogen dilution effect on the deposition rate indicates that the etching in ECR hydrogen plasmas plays an important role in the deposition of a-SiC:H films. The optical constants n and k of ECR-deposited a-SiC:H films in the wavelength region of 0.4 to 1.0 micron are determined to be 2.03-1.90 and 0.04-0.00, respectively. The microstructures of ECR-deposited micro-c-SiC:H films are shown by X-ray diffraction and SEM (scanning electron microscopy) to be composed of 1000-A alpha-SiC microcrystallites and amorphous network structures.

  10. Recent development of RIKEN 28 GHz superconducting electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Higurashi, Y.; Ohnishi, J.; Ozeki, K.; Kidera, M.; Nakagawa, T.

    2014-02-01

    Over the past two years, we have tried to improve the performance of the RIKEN superconducting electron cyclotron resonance ion source using several methods. For the production of U vapor, we chose the sputtering method because it is possible to install a large amount of material inside the plasma chamber and thus achieve long-term operation without a break, although it is assumed that the beam intensity is weaker than in the oven technique. We also used an aluminum chamber instead of a stainless steel one. Using these methods, we successfully produced ˜180 eμA of U35+ and ˜230 eμA of U33+ at the injected radio frequency (RF) power of ˜4 kW (28 GHz). Very recently, to further increase the beam intensity of U35+, we have started to develop a high temperature oven and have successfully produced a highly charged U ion beam. In this contribution, we report on the beam intensity of highly charged U ions as a function of various parameters (RF power and sputtering voltage) and discuss the effects of these parameters on the beam stability in detail.

  11. Fluctuations in electron cyclotron resonance plasma in a divergent magnetic field

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sudeep; Fredriksen, Åshild; Chandra, Sayan

    2016-02-01

    The dependence of fluctuations on electron-neutral collision frequency (νen) and the radial location is investigated in an electron cyclotron resonance plasma in a divergent magnetic field region for a set of magnetic fields. Results indicate that the fluctuations depend strongly on the collision frequency. At lower magnetic fields and νen, the fluctuation levels are small and are observed to peak around 3-5 cm from the central plasma region. Coherent wave modes are found to contribute up to about 30% of the total fluctuation power, and two to three harmonics are present in the power spectra. There are two principal modes present in the discharge: one appears to be a dissipative mode associated with a collisional drift wave instability initiated at a lower pressure (collision frequencies) (˜0.5 mTorr) and is stabilized at a higher pressure (≳3 mTorr). The other mode appears at intermediate pressure (≳1.75 mTorr) and possesses the signature of a flute instability. The fluctuation levels indicate that flute modes are predominant in the discharge at higher pressures ( >1.75 mTorr) and at higher values of the magnetic field (˜540 Gauss).

  12. Recondensation performance of liquid helium cryostat for a 28 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Choi, Seyong; Lee, Byoung-Seob; Park, Jin Yong; Ok, Jung-Woo; Shin, Chang Seouk; Yoon, Jang-Hee; Won, Mi-Sook; Kim, Byoung-Chul

    2014-02-01

    Cryostat performance is essential for the stable operation of a superconducting magnet. A closed-cycle liquid helium cryostat was adopted for use for a superconducting electron cyclotron resonance (ECR) ion source by recondensing liquid helium vapor. The goal was to maintain the liquid helium filled reservoir at a constant level without transferring any liquid helium during the normal operation of the ECR ion source. To accomplish this, Gifford-McMahon (GM) refrigerators, which have two cold heads, were installed on the top of the cryostat. The cooling power of the GM cryocooler is 1.5 W at the second stage and 50 W at the first stage. Each stage was connected to the liquid helium reservoir, a radiation shield including high-Tc current lead, and related items. Before commissioning the ECR ion source, a preliminary evaluation of the recondensation performance was carried out with the magnet in partial operation. The design of the cryostat, its fabrication, and the experimental results are reported.

  13. Electron cyclotron resonance 140 mA D(+) beam extraction optimization for IFMIF EVEDA accelerator.

    PubMed

    Delferrière, O; De Menezes, D; Gobin, R; Harrault, F; Tuske, O

    2008-02-01

    Based on the experience of the SILHI electron cyclotron resonance (ECR) ion source for the IPHI accelerator, which produces routinely 100-120 mA H(+) beam, the CEA-Saclay is in charge of the design and realization of the 140 mA cw deuteron source for the IFMIF project (International Fusion Materials Irradiation Facility). IFMIF is an accelerator-based neutron irradiation facility consisting of two accelerators of 125 mA D(+) beam at 40 MeV that hit in parallel a lithium target. IFMIF utilizes the deuteron-lithium (d-Li) neutron, producing a reaction to simulate the 14 MeV neutron environment in deuterium-tritium (D-T) fusion reactors. In the framework of the IFMIF EVEDA phase (Engineering Validation and Engineering Design Activities), we are studying a cw ECR ion source with a new extraction system to allow high current extraction while keeping a low divergence as well as a small emittance. Starting from SILHI five-electrode system with H(+) ions, the extracted beam characteristics as well as electric field conditions are compared with the cases of four- and three-electrode extraction systems. Experimental results made on the SILHI source with H(+) ions are briefly discussed. Extensive experimental results on the new source test bench BETSI are expected as soon as the design and fabrication of a dedicated extraction system with a new set of electrodes will be finished. PMID:18315214

  14. DE-1 observations of hole electron distribution functions and the cyclotron maser resonance

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Burch, J. L.; Gurgiolo, C.; Wu, C. S.

    1986-01-01

    The hole electron distribution functions observed by the DE-1 satellite within inverted-V events at altitudes of between 9000 km and 15,000 km are examined as a possible free energy source for exciting Z-mode radiation through cyclotron maser resonance. In the DE-1 observations the hole distribution function had center velocities varying between 8000 km/s and 20,000 km/s, with the radii varying between 2000 km/s and 10,000 km/s. The observed distribution function is fitted by an exponential function around the center of the hole, and is used to calculate growth rates of Z-mode radiation. Growth rates as high as 0.001 of the electron gyrofrequency are obtained. It is also shown that the observed hole distribution functions can excite Z-mode radiation at wave frequencies slightly above the gyrofrequency, and wave propagation angles slightly below 90 deg in the source region. The results suggest that the hole distribution function could provide additional amplification for Z-mode waves in the auroral zone.

  15. Electron cyclotron resonance heating by magnetic filter field in a negative hydrogen ion source.

    PubMed

    Kim, June Young; Cho, Won-Hwi; Dang, Jeong-Jeung; Chung, Kyoung-Jae; Hwang, Y S

    2016-02-01

    The influence of magnetic filter field on plasma properties in the heating region has been investigated in a planar-type inductively coupled radio-frequency (RF) H(-) ion source. Besides filtering high energy electrons near the extraction region, the magnetic filter field is clearly observed to increase the electron temperature in the heating region at low pressure discharge. With increasing the operating pressure, enhancement of electron temperature in the heating region is reduced. The possibility of electron cyclotron resonance (ECR) heating in the heating region due to stray magnetic field generated by a filter magnet located at the extraction region is examined. It is found that ECR heating by RF wave field in the discharge region, where the strength of an axial magnetic field is approximately ∼4.8 G, can effectively heat low energy electrons. Depletion of low energy electrons in the electron energy distribution function measured at the heating region supports the occurrence of ECR heating. The present study suggests that addition of axial magnetic field as small as several G by an external electromagnet or permanent magnets can greatly increase the generation of highly ro-vibrationally excited hydrogen molecules in the heating region, thus improving the performance of H(-) ion generation in volume-produced negative hydrogen ion sources. PMID:26931999

  16. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source.

    PubMed

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm(2). The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research. PMID:26931931

  17. An electron cyclotron resonance ion source based low energy ion beam platform.

    PubMed

    Sun, L T; Shang, Y; Ma, B H; Zhang, X Z; Feng, Y C; Li, X X; Wang, H; Guo, X H; Song, M T; Zhao, H Y; Zhang, Z M; Zhao, H W; Xie, D Z

    2008-02-01

    To satisfy the requirements of surface and atomic physics study in the field of low energy multiple charge state ion incident experiments, a low energy (10 eV/q-20 keV/q) ion beam platform is under design at IMP. A simple test bench has been set up to test the ion beam deceleration systems. Considering virtues such as structure simplicity, easy handling, compactness, cost saving, etc., an all-permanent magnet ECRIS LAPECR1 [Lanzhou all-permanent magnet electron cyclotron resonance (ECR) ion source No. 1] working at 14.5 GHz has been adopted to produce intense medium and low charge state ion beams. LAPECR1 source has already been ignited. Some intense low charge state ion beams have been produced on it, but the first test also reveals that many problems are existing on the ion beam transmission line. The ion beam transmission mismatches result in the depressed performance of LAPECR1, which will be discussed in this paper. To obtain ultralow energy ion beam, after being analyzed by a double-focusing analyzer magnet, the selected ion beam will be further decelerated by two afocal deceleration lens systems, which is still under design. This design has taken into consideration both ions slowing down and also ion beam focusing. In this paper, the conceptual design of deceleration system will be discussed. PMID:18315202

  18. Bias voltage and corrosion effects in rf ovens in electron cyclotron resonance ion source

    SciTech Connect

    Cavenago, M.; Galata, A.; Kulevoy, T.; Petrenko, S.

    2006-03-15

    Induction-heated miniaturized ovens were successfully coupled to electron cyclotron resonance ion sources for the production of copper and silver ion beams. Experiments with tin and praseodymium ion beams are here presented; some preliminary tests for titanium are also described. In the latter case (and in general over a 1800 K temperature) a molybdenum rf coil is used. The results with tin show currents comparable to silver (after obvious correction for isotopic abundance), with some operational difficulty due to frequent pouring of liquid sample out of crucible. The effects of a bias voltage V{sub b} applied to the Sn sample are reported. Cold sputter probes are compared. The results with praseodymium show lower currents than tin and large sensitivity to mixing gas used: nitrogen emerged as the best compromise against oxygen (possibly because this oxidizes the sample) and against inert noble gases. Optimal bias voltage for Pr (V{sub b} from -50 to -300 V) is much smaller than for silver (V{sub b} congruent with -1 kV)

  19. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm2. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  20. A fluid description for the discharge equilibrium of a divergent electron cyclotron resonance plasma source

    SciTech Connect

    Guan, G.; Mauel, M.E. ); Holber, W.M.; Caughman, J.B.O. )

    1992-12-01

    A fluid description of the presheath of a magnetized plasma is used to model a divergent electron cyclotron resonance (ECR) plasma source. The fluid equations are moments of the time-independent Boltzman equation when cross-field particle motion occurs only through a static {bold E}{times}{bold B} drift. Closure is obtained by neglecting third-order moments. The electrons are assumed to have constant temperature along the magnetic field, to obey a Maxwell--Boltzmann potential-density relationship, and to be warmer than the ions. Interactions between plasma and neutral gas are included by specifying the profile of the gas density along the magnetic field and collision cross sections. A form of the equations is derived that can be used to study ions with anisotropic temperatures. The model is used to estimate the axial profiles of the density, ion flow, and ion temperature of an ECR plasma source. The calculated global relationships between (1) the electron temperature and the equilibrium neutral gas density, and (2) the absorbed microwave power and the equilibrium plasma density are comparable with experimental measurements. Furthermore, the calculated ion temperature is comparable to recently reported measurements (Appl. Phys. Lett. {bold 57}, 661 (1990) and Appl. Phys. Lett. {bold 58}, 458 (1991)).

  1. Ion Trap with Narrow Aperture Detection Electrodes for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Nagornov, Konstantin O.; Kozhinov, Anton N.; Tsybin, Oleg Y.; Tsybin, Yury O.

    2015-05-01

    The current paradigm in ion trap (cell) design for Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is the ion detection with wide aperture detection electrodes. Specifically, excitation and detection electrodes are typically 90° wide and positioned radially at a similar distance from the ICR cell axis. Here, we demonstrate that ion detection with narrow aperture detection electrodes (NADEL) positioned radially inward of the cell's axis is feasible and advantageous for FT-ICR MS. We describe design details and performance characteristics of a 10 T FT-ICR MS equipped with a NADEL ICR cell having a pair of narrow aperture (flat) detection electrodes and a pair of standard 90° excitation electrodes. Despite a smaller surface area of the detection electrodes, the sensitivity of the NADEL ICR cell is not reduced attributable to improved excite field distribution, reduced capacitance of the detection electrodes, and their closer positioning to the orbits of excited ions. The performance characteristics of the NADEL ICR cell are comparable with the state-of-the-art FT-ICR MS implementations for small molecule, peptide, protein, and petroleomics analyses. In addition, the NADEL ICR cell's design improves the flexibility of ICR cells and facilitates implementation of advanced capabilities (e.g., quadrupolar ion detection for improved mainstream applications). It also creates an intriguing opportunity for addressing the major bottleneck in FTMS—increasing its throughput via simultaneous acquisition of multiple transients or via generation of periodic non-sinusoidal transient signals.

  2. An inverted cylindrical sputter magnetron as metal vapor supply for electron cyclotron resonance ion sources.

    PubMed

    Weichsel, T; Hartung, U; Kopte, T; Zschornack, G; Kreller, M; Silze, A

    2014-05-01

    An inverted cylindrical sputter magnetron device has been developed. The magnetron is acting as a metal vapor supply for an electron cyclotron resonance (ECR) ion source. FEM simulation of magnetic flux density was used to ensure that there is no critical interaction between both magnetic fields of magnetron and ECR ion source. Spatially resolved double Langmuir probe and optical emission spectroscopy measurements show an increase in electron density by one order of magnitude from 1 × 10(10) cm(-3) to 1 × 10(11) cm(-3), when the magnetron plasma is exposed to the magnetic mirror field of the ECR ion source. Electron density enhancement is also indicated by magnetron plasma emission photography with a CCD camera. Furthermore, photographs visualize the formation of a localized loss-cone - area, when the magnetron is operated at magnetic mirror field conditions. The inverted cylindrical magnetron supplies a metal atom load rate of R > 1 × 10(18) atoms/s for aluminum, which meets the demand for the production of a milliampere Al(+) ion beam. PMID:24880358

  3. Model for the description of ion beam extraction from electron cyclotron resonance ion sources

    SciTech Connect

    Spaedtke, P.

    2010-02-15

    The finite difference method trajectory code KOBRA3-INP has been developed now for 25 years to perform the simulation of ion beam extraction in three dimensions. Meanwhile, the code has been validated for different applications: high current ion beam extraction from plasma sources for ion implantation technology, neutral gas heating in fusion devices, or ion thrusters for space propulsion. One major issue of the development of this code was to improve the flexibility of the applied model for the simulation of different types of particle sources. Fixed emitter sources might be simulated with that code as well as laser ion sources, Penning ion sources, electron cyclotron resonance ion sources (ECRISs), or H{sup -} sources, which require the simulation of negative ions, negative electrons, and positive charges simultaneously. The model which has been developed for ECRIS has now been used to explore the conditions for the ion beam extraction from a still nonexisting ion source, a so called ARC-ECRIS [P. Suominen and F. Wenander, Rev. Sci. Instrum. 79, 02A305 (2008)]. It has to be shown whether the plasma generator has similar properties like regular ECRIS. However, the emittance of the extracted beam seems to be much better compared to an ECRIS equipped with a hexapole.

  4. A gain and bandwidth enhanced transimpedance preamplifier for Fourier-transform ion cyclotron resonance mass spectrometry

    SciTech Connect

    Lin, Tzu-Yung; Green, Roger J.; O'Connor, Peter B.

    2011-12-15

    The nature of the ion signal from a 12-T Fourier-transform ion cyclotron resonance mass spectrometer and the electronic noise were studied to further understand the electronic detection limit. At minimal cost, a new transimpedance preamplifier was designed, computer simulated, built, and tested. The preamplifier design pushes the electronic signal-to-noise performance at room temperature to the limit, because of its enhanced tolerance of the capacitance of the detection device, lower intrinsic noise, and larger flat mid-band gain (input current noise spectral density of around 1 pA/{radical}(Hz) when the transimpedance is about 85 dB{Omega}). The designed preamplifier has a bandwidth of {approx}3 kHz to 10 MHz, which corresponds to the mass-to-charge ratio, m/z, of approximately 18 to 61 k at 12 T. The transimpedance and the bandwidth can be easily adjusted by changing the value of passive components. The feedback limitation of the circuit is discussed. With the maximum possible transimpedance of 5.3 M{Omega} when using an 0402 surface mount resistor, the preamplifier was estimated to be able to detect {approx}110 charges in a single scan.

  5. Project of electro-cyclotron resonance ion source test-bench for material investigation.

    PubMed

    Kulevoy, T V; Chalykh, B B; Kuibeda, R P; Kropachev, G N; Ziiatdinova, A V

    2014-02-01

    Development of new materials for future energy facilities with higher operating efficiency is a challenging and crucial task. However, full-scale testing of radiation hardness for reactor materials is quite sophisticated and difficult as it requires long session of reactor irradiation; moreover, induced radioactivity considerably complicates further investigation. Ion beam irradiation does not have such a drawback; on the contrary, it has certain advantages. One of them is high speed of defect formation. Therefore, it provides a useful tool for modeling of different radiation damages. Improved understanding of material behavior under high dose irradiation will probably allow to simulate reactor irradiation close to real conditions and to make an adequate estimation of material radiation hardness. Since 2008 in Institute for Theoretical and Experimental Physics, the ion beam irradiation experiments are under development at the heavy ion radio frequency quadrupole linac and very important results are obtained already [T. V. Kulevoy et al., in Proceedings of the International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators, IAEA Vienna, Austria, 2009, http://www.pub.iaea.org/MTCD/publications/PDF/P1433_CD/darasets/papers/ap_p5_07.pdf]. Nevertheless, the new test bench based on electro-cyclotron resonance ion source and high voltage platform is developed. The project of the test bench is presented and discussed. PMID:24593489

  6. Electron cyclotron resonance ion source experience at the Heidelberg Ion Beam Therapy Center.

    PubMed

    Winkelmann, T; Cee, R; Haberer, T; Naas, B; Peters, A; Scheloske, S; Spädtke, P; Tinschert, K

    2008-02-01

    Radiotherapy with heavy ions is an upcoming cancer treatment method with to date unparalleled precision. It associates higher control rates particularly for radiation resistant tumor species with reduced adverse effects compared to conventional photon therapy. The accelerator beam lines and structures of the Heidelberg Ion Beam Therapy Center (HIT) have been designed under the leadership of GSI, Darmstadt with contributions of the IAP Frankfurt. Currently, the accelerator is under commissioning, while the injector linac has been completed. When the patient treatment begins in 2008, HIT will be the first medical heavy ion accelerator in Europe. This presentation will provide an overview about the project, with special attention given to the 14.5 GHz electron cyclotron resonance (ECR) ion sources in operation with carbon, hydrogen, helium, and oxygen, and the experience of one year of continuous operation. It also displays examples for beam emittances, measured in the low energy beam transport. In addition to the outlook of further developments at the ECR ion sources for a continuously stable operation, this paper focuses on some of the technical processings of the past year. PMID:18315121

  7. Project of electro-cyclotron resonance ion source test-bench for material investigation

    NASA Astrophysics Data System (ADS)

    Kulevoy, T. V.; Chalykh, B. B.; Kuibeda, R. P.; Kropachev, G. N.; Ziiatdinova, A. V.

    2014-02-01

    Development of new materials for future energy facilities with higher operating efficiency is a challenging and crucial task. However, full-scale testing of radiation hardness for reactor materials is quite sophisticated and difficult as it requires long session of reactor irradiation; moreover, induced radioactivity considerably complicates further investigation. Ion beam irradiation does not have such a drawback; on the contrary, it has certain advantages. One of them is high speed of defect formation. Therefore, it provides a useful tool for modeling of different radiation damages. Improved understanding of material behavior under high dose irradiation will probably allow to simulate reactor irradiation close to real conditions and to make an adequate estimation of material radiation hardness. Since 2008 in Institute for Theoretical and Experimental Physics, the ion beam irradiation experiments are under development at the heavy ion radio frequency quadrupole linac and very important results are obtained already [T. V. Kulevoy et al., in Proceedings of the International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators, IAEA Vienna, Austria, 2009, http://www.pub.iaea.org/MTCD/publications/PDF/P1433_CD/darasets/papers/ap_p5_07.pdf]. Nevertheless, the new test bench based on electro-cyclotron resonance ion source and high voltage platform is developed. The project of the test bench is presented and discussed.

  8. The electron cyclotron resonance ion source with arc-shaped coils concept (invited).

    PubMed

    Koivisto, H; Suominen, P; Tarvainen, O; Spädtke, P

    2012-02-01

    The main limitation to further improve the performance of ECR ion sources is set by the magnet technology related to the multipole magnet field used for the closed minimum-B structure. The JYFL ion source group has sought different approaches to improve the strength of the minimum-B structure required for the production of highly charged ion beams. It was found out that such a configuration can be realized with arc shaped coils. The first prototype, electron cyclotron resonance ion source with arc-shaped coils (ARC-ECRIS), was constructed and tested at JYFL in 2006. It was confirmed that such an ion source can be used for the production of highly charged ion beams. Regardless of several cost-driven compromises such as extraction mirror ratio of 1.05-1.2, microwave frequency of 6.4 GHz, and beam line with limited capacity, Ar(4+) beam intensity of up to 2 μA was measured. Subsequent design study has shown that the ARC-ECRIS operating at the microwave frequency above 40 GHz could be constructed. This specific design would be based on NbTi-wires and it fulfills the experimental magnetic field scaling laws. In this article, the ARC-ECRIS concept and its potential applications will be described. PMID:22380159

  9. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy

    SciTech Connect

    Cao, Yun Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-15

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C{sup 5+} ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C{sup 5+} ion beam was got when work gas was CH{sub 4} while about 262 eμA of C{sup 5+} ion beam was obtained when work gas was C{sub 2}H{sub 2} gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  10. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Skalyga, V.; Izotov, I.; Golubev, S.; Sidorov, A.; Razin, S.; Strelkov, A.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2015-09-01

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm2 are demonstrated. Neutron yield from D2O and TiD2 targets was measured in case of its bombardment by pulsed 300 mA D+ beam with 45 keV energy. Neutron yield density at target surface of 109 s-1 cm-2 was detected with a system of two 3He proportional counters. Estimations based on obtained experimental results show that neutron yield from a high quality TiD2 target bombarded by D+ beam demonstrated in present work accelerated to 100 keV could reach 6 × 1010 s-1 cm-2. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.

  11. An inverted cylindrical sputter magnetron as metal vapor supply for electron cyclotron resonance ion sources

    SciTech Connect

    Weichsel, T. Hartung, U.; Kopte, T.; Zschornack, G.; Kreller, M.; Silze, A.

    2014-05-15

    An inverted cylindrical sputter magnetron device has been developed. The magnetron is acting as a metal vapor supply for an electron cyclotron resonance (ECR) ion source. FEM simulation of magnetic flux density was used to ensure that there is no critical interaction between both magnetic fields of magnetron and ECR ion source. Spatially resolved double Langmuir probe and optical emission spectroscopy measurements show an increase in electron density by one order of magnitude from 1 × 10{sup 10} cm{sup −3} to 1 × 10{sup 11} cm{sup −3}, when the magnetron plasma is exposed to the magnetic mirror field of the ECR ion source. Electron density enhancement is also indicated by magnetron plasma emission photography with a CCD camera. Furthermore, photographs visualize the formation of a localized loss-cone - area, when the magnetron is operated at magnetic mirror field conditions. The inverted cylindrical magnetron supplies a metal atom load rate of R > 1 × 10{sup 18} atoms/s for aluminum, which meets the demand for the production of a milliampere Al{sup +} ion beam.

  12. Langmuir probe diagnostics of plasma in high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P.; Kewlani, H.; Mishra, L.; Mittal, K. C.; Patil, D. S.

    2013-07-15

    A high current Electron Cyclotron Resonance (ECR) proton ion source has been developed for low energy high intensity proton accelerator at Bhabha Atomic Research Centre. Langmuir probe diagnostics of the plasma generated in this proton ion source is performed using Langmuir probe. The diagnostics of plasma in the ion source is important as it determines beam parameters of the ion source, i.e., beam current, emittance, and available species. The plasma parameter measurement in the ion source is performed in continuously working and pulsed mode using hydrogen as plasma generation gas. The measurement is performed in the ECR zone for operating pressure and microwave power range of 10{sup −4}–10{sup −3} mbar and 400–1000 W. An automated Langmuir probe diagnostics unit with data acquisition system is developed to measure these parameters. The diagnostics studies indicate that the plasma density and plasma electron temperature measured are in the range 5.6 × 10{sup 10} cm{sup −3} to 3.8 × 10{sup 11} cm{sup −3} and 4–14 eV, respectively. Using this plasma, ion beam current of tens of mA is extracted. The variations of plasma parameters with microwave power, gas pressure, and radial location of the probe have been studied.

  13. Inert gas purgebox for Fourier transform ion cyclotron resonance mass spectrometry of air-sensitive solids

    NASA Astrophysics Data System (ADS)

    May, Michael A.; Marshall, Alan G.

    1994-03-01

    A sealed rigid ``purgebox'' makes it possible to load air- and/or moisture-sensitive solids into the solids probe inlet of a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer. A pelletized sample is transferred (in a sealed canister) from a commercial drybox to a Lucite(R) purgebox. After the box is purged with inert gas, an attached glove manipulator is used to transfer the sample from the canister to the solids probe of the mass spectrometer. Once sealed inside the inlet, the sample is pre-evacuated and then passed into the high vacuum region of the instrument at ˜10-7 Torr. The purgebox is transparent, portable, and readily assembled/disassembled. Laser desorption FT/ICR mass spectra of the air- and moisture-sensitive solids, NbCl5. NbCl2(C5H5)2, and Zr(CH3)2(C5H5)2 are obtained without significant oxidation. The residual water vapor concentration inside the purgebox was measured as 100±20 ppm after a 90-min purge with dry nitrogen gas. High-resolution laser desorption/ionization mass spectrometry of air-sensitive solids becomes feasible with the present purgebox interface. With minor modification of the purgebox geometry, the present method could be adapted to any mass spectrometer equipped with a solid sample inlet.

  14. Method for calibrating a Fourier transform ion cyclotron resonance mass spectrometer

    DOEpatents

    Smith, Richard D.; Masselon, Christophe D.; Tolmachev, Aleksey

    2003-08-19

    A method for improving the calibration of a Fourier transform ion cyclotron resonance mass spectrometer wherein the frequency spectrum of a sample has been measured and the frequency (f) and intensity (I) of at least three species having known mass to charge (m/z) ratios and one specie having an unknown (m/z) ratio have been identified. The method uses the known (m/z) ratios, frequencies, and intensities at least three species to calculate coefficients A, B, and C, wherein the mass to charge ratio of a least one of the three species (m/z).sub.i is equal to ##EQU1## wherein f.sub.i is the detected frequency of the specie, G(I.sub.i) is a predetermined function of the intensity of the species, and Q is a predetermined exponent. Using the calculated values for A, B, and C, the mass to charge ratio of the unknown specie (m/z).sub.ii is calculated as the sum of ##EQU2## wherein f.sub.ii is the measured frequency of the unknown specie, and (I.sub.ii) is the measured intensity of the unknown specie.

  15. Contamination by sputtering in mirror field electron cyclotron resonance microwave plasma sources

    SciTech Connect

    Gorbatkin, S.M.; Berry, L.A. )

    1992-09-01

    Langmuir probe measurements, visual observation, and Rutherford backscattering spectrometry have been used to investigate source chamber sputtering for electron cyclotron resonance plasma systems operated with Ar, N{sub 2}, and Cl{sub 2}. Potentials in the source {gt}20 eV combined with high plasma densities ({approx gt}10{sup 12} cm{sup {minus}3}) led to source chamber sputtering and coating of the microwave entrance window. The microwave entrance window coating caused significant absorption of incident microwave power and decreased source efficiency by as much as 50% within 5 min. Operation of the source with an anodized aluminum liner was effective in reducing microwave entrance window coating but resulted in some heavy metal contamination due to sputtering of impurities in the liner itself. Also, checks with secondary ion mass spectrometry indicated some Al contamination from sputtering of the anodized aluminum liner material. Finally, a technique for {ital in} {ital situ} cleaning of the microwave entrance window was developed and is described in detail.

  16. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator

    NASA Astrophysics Data System (ADS)

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook

    2016-02-01

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project.

  17. First results from the new RIKEN superconducting electron cyclotron resonance ion source (invited).

    PubMed

    Nakagawa, T; Higurashi, Y; Ohnishi, J; Aihara, T; Tamura, M; Uchiyama, A; Okuno, H; Kusaka, K; Kidera, M; Ikezawa, E; Fujimaki, M; Sato, Y; Watanabe, Y; Komiyama, M; Kase, M; Goto, A; Kamigaito, O; Yano, Y

    2010-02-01

    The next generation heavy ion accelerator facility, such as the RIKEN radio isotope (RI) beam factory, requires an intense beam of high charged heavy ions. In the past decade, performance of the electron cyclotron resonance (ECR) ion sources has been dramatically improved with increasing the magnetic field and rf frequency to enhance the density and confinement time of plasma. Furthermore, the effects of the key parameters (magnetic field configuration, gas pressure, etc.) on the ECR plasma have been revealed. Such basic studies give us how to optimize the ion source structure. Based on these studies and modern superconducting (SC) technology, we successfully constructed the new 28 GHz SC-ECRIS, which has a flexible magnetic field configuration to enlarge the ECR zone and to optimize the field gradient at ECR point. Using it, we investigated the effect of ECR zone size, magnetic field configuration, and biased disk on the beam intensity of the highly charged heavy ions with 18 GHz microwaves. In this article, we present the structure of the ion source and first experimental results with 18 GHz microwave in detail. PMID:20192341

  18. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator.

    PubMed

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook

    2016-02-01

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project. PMID:26931935

  19. Microgan electron cyclotron resonance ion source in a Van de Graaff accelerator terminala)

    NASA Astrophysics Data System (ADS)

    Gaubert, G.; Bieth, C.; Bougy, W.; Brionne, N.; Donzel, X.; Sineau, A.; Vallerand, C.; Villari, A. C. C.; Chaves, C.; Gamboni, T.; Geerts, W.; Giorginis, G.; Lövestam, G.; Mondelaers, W.

    2012-02-01

    The Van de Graaff accelerator at IRMM works since many years providing proton, deuteron, and helium beams for nuclear data measurements. The original ion source was of RF type with quartz bottle. This kind of source, as well known, needs regular maintenance for which the accelerator tank must be completely opened. The heavy usage at high currents of the IRMM accelerator necessitated an opening about once every month. In 2010, the full permanent magnet Microgan electron cyclotron resonance (ECR) ion source from PANTECHNIK was installed into a new terminal platform together with a solid state amplifier of 50 W, a dedicated dosing system for 4 gases (with respective gas bottles H2, D2, He, and Ar), and a set of dedicated power supplies and electronic devices for the remote tuning of the source. The new system shows a very stable behaviour of the produced beam allowing running the Van de Graaf without maintenance for several months. This contribution will describe the full installed system in details (working at high pressure in the terminal, spark effects, and optic of the extraction), as well as beam results in dc or pulsed mode.

  20. Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source

    SciTech Connect

    Vondrasek, R.; Kutsaev, Sergey; Delahaye, P.; Maunoury, L.

    2012-11-15

    The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a {sup 252}Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies of both gaseous and solid species including 14.7% for the radioactive species {sup 143}Ba{sup 27+}. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for {sup 23}Na{sup 7+} and 17.9% for {sup 39}K{sup 10+} were obtained injecting stable Na{sup +} and K{sup +} beams from a surface ionization source.

  1. Use of electron cyclotron resonance x-ray source for nondestructive testing application

    NASA Astrophysics Data System (ADS)

    Baskaran, R.; Selvakumaran, T. S.

    2006-03-01

    Electron cyclotron resonance (ECR) technique is being used for generating x rays in the low-energy region (<150keV). Recently, the source is used for the calibration of thermoluminescent dosimetry (TLD) badges. In order to qualify the ECR x-ray source for imaging application, the source should give uniform flux over the area under study. Lead collimation arrangement is made to get uniform flux. The flux profile is measured using a teletector at different distance from the port and uniform field region of 10×10cm2 has been marked at 20cm from the x-ray exit port. A digital-to-analog converter (DAC) circuit pack is used for examining the source performance. The required dose for nondestructive testing examination has been estimated using a hospital x-ray machine and it is found to be 0.05mSv. Our source experimental parameters are tuned and the DAC circuit pack was exposed for nearly 7min to get the required dose value. The ECR x-ray source operating parameters are argon pressure: 10-5Torr, microwave power: 350W, and coil current: 0A. The effective energy of the x-ray spectrum is nearly 40keV. The x-ray images obtained from ECR x-ray source and hospital medical radiography machine are compared. It is found that the image obtained from ECR x-ray source is suitable for NDT application.

  2. Use of electron cyclotron resonance x-ray source for nondestructive testing application

    SciTech Connect

    Baskaran, R.; Selvakumaran, T.S.

    2006-03-15

    Electron cyclotron resonance (ECR) technique is being used for generating x rays in the low-energy region (<150 keV). Recently, the source is used for the calibration of thermoluminescent dosimetry (TLD) badges. In order to qualify the ECR x-ray source for imaging application, the source should give uniform flux over the area under study. Lead collimation arrangement is made to get uniform flux. The flux profile is measured using a teletector at different distance from the port and uniform field region of 10x10 cm{sup 2} has been marked at 20 cm from the x-ray exit port. A digital-to-analog converter (DAC) circuit pack is used for examining the source performance. The required dose for nondestructive testing examination has been estimated using a hospital x-ray machine and it is found to be 0.05 mSv. Our source experimental parameters are tuned and the DAC circuit pack was exposed for nearly 7 min to get the required dose value. The ECR x-ray source operating parameters are argon pressure: 10{sup -5} Torr, microwave power: 350 W, and coil current: 0 A. The effective energy of the x-ray spectrum is nearly 40 keV. The x-ray images obtained from ECR x-ray source and hospital medical radiography machine are compared. It is found that the image obtained from ECR x-ray source is suitable for NDT application.

  3. Electron cyclotron resonance heating by magnetic filter field in a negative hydrogen ion source

    NASA Astrophysics Data System (ADS)

    Kim, June Young; Cho, Won-Hwi; Dang, Jeong-Jeung; Chung, Kyoung-Jae; Hwang, Y. S.

    2016-02-01

    The influence of magnetic filter field on plasma properties in the heating region has been investigated in a planar-type inductively coupled radio-frequency (RF) H- ion source. Besides filtering high energy electrons near the extraction region, the magnetic filter field is clearly observed to increase the electron temperature in the heating region at low pressure discharge. With increasing the operating pressure, enhancement of electron temperature in the heating region is reduced. The possibility of electron cyclotron resonance (ECR) heating in the heating region due to stray magnetic field generated by a filter magnet located at the extraction region is examined. It is found that ECR heating by RF wave field in the discharge region, where the strength of an axial magnetic field is approximately ˜4.8 G, can effectively heat low energy electrons. Depletion of low energy electrons in the electron energy distribution function measured at the heating region supports the occurrence of ECR heating. The present study suggests that addition of axial magnetic field as small as several G by an external electromagnet or permanent magnets can greatly increase the generation of highly ro-vibrationally excited hydrogen molecules in the heating region, thus improving the performance of H- ion generation in volume-produced negative hydrogen ion sources.

  4. High-Throughput Metabolic Profiling of Soybean Leaves by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    Yilmaz, Ali; Rudolph, Heather L; Hurst, Jerod J; Wood, Troy D

    2016-01-19

    As a relatively recent research field, plant metabolomics has gained increasing interest in the past few years and has been applied to answer biological questions through large-scale qualitative and quantitative analyses of the plant metabolome. The combination of sensitivity and selectivity offered by mass spectrometry (MS) for measurement of many metabolites in a single shot makes it an indispensable platform in metabolomics. In this regard, Fourier-transform ion cyclotron resonance (FTICR) has the unique advantage of delivering high mass resolving power and mass accuracy simultaneously, making it ideal for the study of complex mixtures such as plant extracts. Here we optimize soybean leaf extraction methods compatible with high-throughput reproducible MS-based metabolomics. In addition, matrix-assisted laser desorption ionization (MALDI) and direct LDI of soybean leaves are compared for metabolite profiling. The extraction method combined with electrospray (ESI)-FTICR is supported by the significant reduction of chlorophyll and its related metabolites as the growing season moves from midsummer to the autumn harvest day. To our knowledge for the first time, the use of ESI-FTICR MS and MALDI-FTICR MS is described in a complementary manner with the aim of metabolic profiling of plant leaves that have been collected at different time points during the growing season. PMID:26651857

  5. Cyclotron resonant scattering in the spectra of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Wang, J. C. L.; Lamb, D. Q.; Loredo, T. J.; Wasserman, I. M.; Salpeter, E. E.

    1989-01-01

    Fits of theoretical spectra from Monte Carlo radiation-transfer calculations to dips at approximately 20 and 40 keV in a spectrum of the gamma-ray burst source GB 880 205 give best-fit values and 68 percent-confidence intervals for the magnetic field of (1.71 + or - 0.07) x 10 to the 12th G, the electron density of (1.2 + or - 0.6) x 10 to the 21st electrons/cm-squared, and the cosine of the viewing angle relative to the field of 0.31 + or - 0.05. The dips observed at approximately 20 keV in the spectra are interpreted as cyclotron resonant scattering, in which electrons undergo radiative 0 to 1 to 0 Landau transitions initiated by photons near the first harmonic. Physical self-consistency fixes the temperature, and the equilibrium temperature equals 5.3 + 0.3 or - 0.2 keV. These results suggest that this gamma-ray burst and many others which exhibit a low-energy dip originate from strongly magnetic neutron stars and are galactic in origin.

  6. A gain and bandwidth enhanced transimpedance preamplifier for Fourier-transform ion cyclotron resonance mass spectrometry

    PubMed Central

    Lin, Tzu-Yung; Green, Roger J.; O'Connor, Peter B.

    2011-01-01

    The nature of the ion signal from a 12-T Fourier-transform ion cyclotron resonance mass spectrometer and the electronic noise were studied to further understand the electronic detection limit. At minimal cost, a new transimpedance preamplifier was designed, computer simulated, built, and tested. The preamplifier design pushes the electronic signal-to-noise performance at room temperature to the limit, because of its enhanced tolerance of the capacitance of the detection device, lower intrinsic noise, and larger flat mid-band gain (input current noise spectral density of around 1 pA/\\documentclass[12pt]{minimal}\\begin{document}$\\sqrt{\\mbox{Hz}}$\\end{document}Hz when the transimpedance is about 85 dBΩ). The designed preamplifier has a bandwidth of ∼3 kHz to 10 MHz, which corresponds to the mass-to-charge ratio, m/z, of approximately 18 to 61 k at 12 T. The transimpedance and the bandwidth can be easily adjusted by changing the value of passive components. The feedback limitation of the circuit is discussed. With the maximum possible transimpedance of 5.3 MΩ when using an 0402 surface mount resistor, the preamplifier was estimated to be able to detect ∼110 charges in a single scan. PMID:22225232

  7. First Signal on the Cryogenic Fourier-Transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Lin, Cheng; Mathur, Raman; Aizikov, Kostantin; O'Connor, Peter B.

    2009-01-01

    The construction and achievement of the first signal on a cryogenic Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR-MS) are reported here, demonstrating proof-of-concept of this new instrument design. Building the FTICR cell into the cold bore of a superconducting magnet provided advantages over conventional warm bore design. At 4.2 K, the vacuum system cryopumps itself, thus removing the requirement for a large bore to achieve the desired pumping speed for maintaining base pressure. Furthermore, because the bore diameter has been reduced, the amount of magnet wire needed to achieve high field and homogeneity was also reduced, greatly decreasing the cost/Tesla of the magnet. The current instrument implements an actively shielded 14-Tesla magnet of vertical design with an external matrix assisted laser desorption/ionization (MALDI) source. The first signal was obtained by detecting the laser desorbed/ionized (LDI) C60+• ions, with the magnet at 7 Tesla, unshimmed, and the preamplifier mounted outside of the vacuum chamber at room temperature. A subsequent experiment done with the magnet at 14 Tesla and properly shimmed produced a C60 spectrum showing ∼350,000 resolving power at m/z ∼720. Increased magnetic field strength improves many FTMS performance parameters simultaneously, particularly mass resolving power and accuracy. PMID:17931882

  8. Observation of plasma instabilities related to dust particle growth mechanisms in electron cyclotron resonance plasmas

    SciTech Connect

    Drenik, A.; CNRS, LAPLACE, 31062 Toulouse Yuryev, P.; Clergereaux, R.; Margot, J.

    2013-10-15

    Instabilities are observed in the self-bias voltage measured on a probe immersed in microwave plasma excited at Electron Cyclotron Resonance (ECR). Observed in the MHz range, they were systematically measured in dust-free or dusty plasmas (obtained for different conditions of applied microwave powers and acetylene flow rates). Two characteristic frequencies, well described as lower hybrid oscillations, can be defined. The first one, in the 60–70 MHz range, appears as a sharp peak in the frequency spectra and is observed in every case. Attributed to ions, its position shift observed with the output power highlights that nucleation process takes place in the dusty plasma. Attributed to lower hybrid oscillation of powders, the second broad peak in the 10–20 MHz range leads to the characterization of dust particles growth mechanisms: in the same way as in capacitively coupled plasmas, accumulation of nucleus confined near the probe in the magnetic field followed by aggregation takes place. Then, the measure of electrical instabilities on the self-bias voltage allows characterizing the discharge as well as the chemical processes that take place in the magnetic field region and their kinetics.

  9. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    SciTech Connect

    Skalyga, V.; Sidorov, A.; Izotov, I.; Golubev, S.; Razin, S.; Strelkov, A.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2015-09-07

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental results show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.

  10. Nanometer fabrication in mercury cadmium telluride by electron cyclotron resonance microwave plasma reactive ion etching

    NASA Astrophysics Data System (ADS)

    Eddy, C. R.; Hoffman, C. A.; Meyer, J. R.; Dobisz, E. A.

    1993-08-01

    It has been recently reported (J.R. Meyer, F.J. Bartoli, C.A. Hoffman, and L.R. Ram-Mohan, Phys. Rev. Lett. 64, 1963 [1990]) that novel electronic and optical effects are anticipated in nanometer scale features of narrow band gap semiconductors such as mercury cadmium telluride (MCT). These efforts could lead to the creation of non-linear optical switches, high efficiency infrared lasers, and unique nanoelectronic devices. This work reports on the first realization of MCT nanostructures through the application of e-beam lithography and reactive ion etching with an electron cyclotron resonance (ECR) microwave plasma source. It is shown that the low energy ions produced by an ECR system can etch MCT with good selectivity over an e-beam resist mask and with high resolution. Using these fabrication methods, 40 70 nm features with aspect ratios of 3 5∶1 and sidewall angles greater than 88° have been demonstrated. Qualitative investigations of some of the etch mechanisms of this technique are made, and results suggest a desorption limited process.

  11. A simulation of X-ray shielding for a superconducting electron cyclotron resonance ion source

    SciTech Connect

    Park, Jin Yong; Won, Mi-Sook; Lee, Byoung-Seob; Yoon, Jang-Hee; Choi, Seyong; Ok, Jung-Woo; Choi, Jeong-Sik; Kim, Byoung-Chul

    2014-02-15

    It is generally assumed that large amounts of x-rays are emitted from the ion source of an Electron Cyclotron Resonance (ECR) instrument. The total amount of x-rays should be strictly limited to avoid the extra heat load to the cryostat of the superconducting ECR ion source, since they are partly absorbed by the cold mass into the cryostat. A simulation of x-ray shielding was carried out to determine the effective thickness of the x-ray shield needed via the use of Geant4. X-ray spectra of the 10 GHz Nanogan ECR ion source were measured as a function of the thickness variation in the x-ray shield. The experimental results were compared with Geant4 results to verify the effectiveness of the x-ray shield. Based on the validity in the case of the 10 GHz ECR ion source, the x-ray shielding results are presented by assuming the spectral temperature of the 28 GHz ECR ion source.

  12. Microgan electron cyclotron resonance ion source in a Van de Graaff accelerator terminal.

    PubMed

    Gaubert, G; Bieth, C; Bougy, W; Brionne, N; Donzel, X; Sineau, A; Vallerand, C; Villari, A C C; Chaves, C; Gamboni, T; Geerts, W; Giorginis, G; Lövestam, G; Mondelaers, W

    2012-02-01

    The Van de Graaff accelerator at IRMM works since many years providing proton, deuteron, and helium beams for nuclear data measurements. The original ion source was of RF type with quartz bottle. This kind of source, as well known, needs regular maintenance for which the accelerator tank must be completely opened. The heavy usage at high currents of the IRMM accelerator necessitated an opening about once every month. In 2010, the full permanent magnet Microgan electron cyclotron resonance (ECR) ion source from PANTECHNIK was installed into a new terminal platform together with a solid state amplifier of 50 W, a dedicated dosing system for 4 gases (with respective gas bottles H(2), D(2), He, and Ar), and a set of dedicated power supplies and electronic devices for the remote tuning of the source. The new system shows a very stable behaviour of the produced beam allowing running the Van de Graaf without maintenance for several months. This contribution will describe the full installed system in details (working at high pressure in the terminal, spark effects, and optic of the extraction), as well as beam results in dc or pulsed mode. PMID:22380187

  13. Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source.

    PubMed

    Vondrasek, R; Delahaye, P; Kutsaev, Sergey; Maunoury, L

    2012-11-01

    The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a (252)Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies of both gaseous and solid species including 14.7% for the radioactive species (143)Ba(27+). In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for (23)Na(7+) and 17.9% for (39)K(10+) were obtained injecting stable Na(+) and K(+) beams from a surface ionization source. PMID:23206054

  14. A study on vacuum aspects of electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Taki, G. S.; Mallick, C.; Bhandari, R. K.

    2008-05-01

    The electron cyclotron resonance (ECR) ion source is special type hot plasma machine where the high temperature electrons co-exist with multiply charge state ions and neutrals. A few years ago 6.4 GHz. ECR ion source (VEC-ECR) was developed indigenously at VECC. This multiply charged ion source is being used continuously to inject heavy ion beams into the cyclotron. Vacuum plays the major role in ECR ion source. The water cooled plasma chamber is made from an oxygen free high conductivity copper billet to meet the suitable surface condition for vacuum purpose. The entire volume of the ion source is pumped by two 900 1/s special type oil diffusion pumps to achieve 5×10-8 Torr. Usually main plasma chamber is pumped by the plasma itself. Moreover a few 1/s additional pumping speed is provided through extraction hole and pumping slot on the extraction electrode. A study has been carried out to understand the role of vacuum on the multiply charged heavy ion production process. Considering the ion production and loss criteria, it is seen that for getting Ar18+ better vacuum is essential for lower frequency operation. So, an ECR ion source can give better charge state current output operating at higher frequency and stronger confining magnetic field under a specific vacuum condition. The low pressure condition is essential to minimize charge exchange loss due to recombination of multiply charged ions with the neutral atoms. A fixed ratio of neutral to electron density must be maintained for optimizing a particular charge state in the steady state condition. As the electron density is proportional to square of the injected microwave frequency (nevpropf2) a particular operating pressure is essential for a specific charge state. From the study, it has been obtained that the production of Ar18+ ions needs a pressure ~ 9.6×10-8 Torr for 6.4 GHz. ECR ion source. It is also obtained that an ECR ion source, works at a particular vacuum level, can give better charge state

  15. Ray Tracing Technique for Modeling of Power Deposition into Electron Cyclotron Resonance Discharge of a Simple Mirror Trap with Longitudinal Launch of Microwave Radiation

    SciTech Connect

    Gospodchikov, E.D.; Smolyakova, O.B.; Suvorov, E.V.

    2005-01-15

    The ray-tracing procedure for modeling the power deposition into electron cyclotron resonance (ECR) discharge in an axisymmetric mirror trap with longitudinal launch of microwave power is presented. To deal with cyclotron absorption for normal waves of magnetized plasma propagating nearly along the magnetic field in the vicinity of electron cyclotron frequency approximate dispersion relation has been derived using Stix components for microwave electric field. Calculations have been performed for parameters corresponding to ECR multicharge ion (MCI) source (IAP RAS) as example. It is shown that the efficient power deposition into ECR discharge within single pass of radiation through the plasma column may be provided under conditions that parasitic cyclotron resonance (before the plug) is outside the plasma volume and the electron density in the vicinity of the main resonance is undercritical. This is in a qualitative agreement with experimental results.

  16. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    PubMed

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future. PMID:24211802

  17. High-resolution accurate mass measurements of biomolecules using a new electrospray ionization ion cyclotron resonance mass spectrometer.

    PubMed

    Winger, B E; Hofstadler, S A; Bruce, J E; Udseth, H R; Smith, R D

    1993-07-01

    A novel electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer based on a 7-T superconducting magnet was developed for high-resolution accurate mass measurements of large biomolecules. Ions formed at atmospheric pressure using electrospray ionization (ESI) were transmitted (through six differential pumping stages) to the trapped ion cell maintained below 10(-9) torr. The increased pumping speed attainable with cryopumping (> 10(5) L/s) allowed brief pressure excursions to above 10(-4) torr, with greatly enhanced trapping efficiencies and subsequent short pumpdown times, facilitating high-resolution mass measurements. A set of electromechanical shutters were also used to minimize the effect of the directed molecular beam produced by the ES1 source and were open only during ion injection. Coupled with the use of the pulsed-valve gas inlet, the trapped ion cell was generally filled to the space charge limit within 100 ms. The use of 10-25 ms ion injection times allowed mass spectra to be obtained from 4 fmol of bovine insulin (Mr 5734) and ubiquitin (Mr 8565, with resolution sufficient to easily resolve the isotopic envelopes and determine the charge states. The microheterogeneity of the glycoprotein ribonuclease B was examined, giving a measured mass of 14,898.74 Da for the most abundant peak in the isotopic envelope of the normally glycosylated protein (i.e., with five mannose and two N-acetylglucosamine residues (an error of approximately 2 ppm) and an average error of approximately 1 ppm for the higher glycosylated and various H3PO4 adducted forms of the protein. Time-domain signals lasting in excess of 80 s were obtained for smaller proteins, producing, for example, a mass resolution of more than 700,000 for the 4(+) charge state (m/z 1434) of insulin. PMID:24227643

  18. Observations of compound sawteeth in ion cyclotron resonant heating plasma using ECE imaging on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Hussain, Azam; Zhao, Zhenling; Xie, Jinlin; Zhu, Ping; Liu, Wandong; Ti, Ang

    2016-04-01

    The spatial and temporal evolutions of compound sawteeth were directly observed using 2D electron cyclotron emission imaging on experimental advanced superconducting tokamak. The compound sawtooth consists of partial and full collapses. After partial collapse, the hot core survives as only a small amount of heat disperses outwards, whereas in the following full collapse a large amount of heat is released and the hot core dissipates. The presence of two q = 1 surfaces was not observed. Instead, the compound sawtooth occurs mainly at the beginning of an ion cyclotron resonant frequency heating pulse and during the L-H transition phase, which may be related to heat transport suppression caused by a decrease in electron heat diffusivity.

  19. Self-Induced Transparency and Electromagnetic Pulse Compression in a Plasma or an Electron Beam under Cyclotron Resonance Conditions

    SciTech Connect

    Ginzburg, N. S.; Zotova, I. V.; Sergeev, A. S.

    2010-12-30

    Based on analogy to the well-known process of the self-induced transparency of an optical pulse propagating through a passive two-level medium we describe similar effects for a microwave pulse interacting with a cold plasma or rectilinear electron beam under cyclotron resonance condition. It is shown that with increasing amplitude and duration of an incident pulse the linear cyclotron absorption is replaced by the self-induced transparency when the pulse propagates without damping. In fact, the initial pulse decomposes to one or several solitons with amplitude and duration defined by its velocity. In a certain parameter range, the single soliton formation is accompanied by significant compression of the initial electromagnetic pulse. We suggest using the effect of self-compression for producing multigigawatt picosecond microwave pulses.

  20. Current density distributions and sputter marks in electron cyclotron resonance ion sources

    SciTech Connect

    Panitzsch, Lauri; Peleikis, Thies; Boettcher, Stephan; Stalder, Michael; Wimmer-Schweingruber, Robert F.

    2013-01-15

    Most electron cyclotron resonance ion sources use hexapolar magnetic fields for the radial confinement of the plasma. The geometry of this magnetic structure is then-induced by charged particles-mapped onto the inner side of the plasma electrode via sputtering and deposition. The resulting structures usually show two different patterns: a sharp triangular one in the central region which in some cases is even sputtered deep into the material (referred to as thin groove or sharp structure), and a blurred but still triangular-like one in the surroundings (referred to as broad halo). Therefore, both patterns seem to have different sources. To investigate their origins we replaced the standard plasma electrode by a custom-built plasma electrode acting as a planar, multi-segment current-detector. For different biased disc voltages, detector positions, and source biases (referred to the detector) we measured the electrical current density distributions in the plane of the plasma electrode. The results show a strong and sharply confined electron population with triangular shape surrounded by less intense and spatially less confined ions. Observed sputter- and deposition marks are related to the analysis of the results. Our measurements suggest that the two different patterns (thin and broad) indeed originate from different particle populations. The thin structures seem to be caused by the hot electron population while the broad marks seem to stem from the medium to highly charged ions. In this paper we present our measurements together with theoretical considerations and substantiate the conclusions drawn above. The validity of these results is also discussed.

  1. Variations in the cyclotron resonant scattering features during 2011 outburst of 4U 0115+63

    NASA Astrophysics Data System (ADS)

    Iyer, N.; Mukherjee, D.; Dewangan, G. C.; Bhattacharya, D.; Seetha, S.

    2015-11-01

    We study the variations in the Cyclotron Resonant Scattering Feature (CRSF) during 2011 outburst of the high mass X-ray binary 4U 0115+63 using observations performed with Suzaku, RXTE, Swift and INTEGRAL satellites. The wide-band spectral data with low-energy coverage allowed us to characterize the broad-band continuum and detect the CRSFs. We find that the broad-band continuum is adequately described by a combination of a low temperature (kT ˜ 0.8 keV) blackbody and a power law with high energy cutoff (Ecut ˜ 5.4 keV) without the need for a broad Gaussian at ˜10 keV as used in some earlier studies. Though winds from the companion can affect the emission from the neutron star at low energies (<3 keV), the blackbody component shows a significant presence in our continuum model. We report evidence for the possible presence of two independent sets of CRSFs with fundamentals at ˜11 and ˜15 keV. These two sets of CRSFs could arise from spatially distinct emitting regions. We also find evidence for variations in the line equivalent widths, with the 11 keV CRSF weakening and the 15 keV line strengthening with decreasing luminosity. Finally, we propose that the reason for the earlier observed anticorrelation of line energy with luminosity could be due to modelling of these two independent line sets (˜11 and ˜15 keV) as a single CRSF.

  2. Measurements of radial profiles of ion cyclotron resonance heating on the Tandem Mirror Experiment-Upgrade

    SciTech Connect

    Falabella, S.

    1988-05-11

    A small Radial Energy Analyzer (REA) was used on the Tandem Mirror Experiment-Upgrade (TMX-U), at Lawerence Livermore National Laboratory, to investigate the radial profiles of ion temperature, density, and plasma potential during Ion Cyclotron Resonance Heating (ICRH). The probe has been inserted into the central-cell plasma at temperatures of 200 eV and densities of 3 x 10/sup 12/cm/sup /minus 3// without damage to the probe, or major degradation of the plasma. This analyzer has indicated an increase in ion temperature from near 20 eV before ICRH to near 150 eV during ICRH, with about 60 kW of broadcast power. The REA measurements were cross-checked against other diagnostics on TMX-U and found to be consistent. The ion density measurement was compared to the line-density measured by microwave interferometry and found to agree within 10 to 20%. A radial intergral of n/sub i/T/sub i/ as measured by the REA shows good agreement with the diamagnetic loop measurement of plasma energy. The radial density profile is observed to broaden during the RF heating pulses, without inducing additional radial losses in the core plasma. The radial profile of plasma is seen to vary from axially peaked, to nearly flat as the plasma conditions carried over the series of experiments. To relate the increase in ion temperature to power absorbed by the plasma, a power balance as a function of radius was performed. The RF power absorbed is set equal to the sum of the losses during ICRH, minus those without ICRH. This method accounts for more than 70% of the broadcast power using a simple power balance model. The measured radial profile of the RF heating was compared to the calculations of two codes, ANTENA and GARFIELD, to test their effectiveness as predictors of power absorption profiles for TMX-U. 62 refs., 63 figs., 7 tabs.

  3. Development and studies on a compact electron cyclotron resonance plasma source

    NASA Astrophysics Data System (ADS)

    Ganguli, A.; Tarey, R. D.; Arora, N.; Narayanan, R.

    2016-04-01

    It is well known that electron cyclotron resonance (ECR) produced plasmas are efficient, high-density plasma sources and have many industrial applications. The concept of a portable compact ECR plasma source (CEPS) would thus become important from an application point of view. This paper gives details of such a CEPS that is both portable and easily mountable on a chamber of any size. It uses a fully integrated microwave line operating at 2.45 GHz, up to 800 W, cw. The required magnetic field is produced by a set of suitably designed NdFeB ring magnets; the device has an overall length of  ≈60 cm and weighs  ≈14 kg including the permanent magnets. The CEPS was attached to a small experimental chamber to judge its efficacy for plasma production. In the pressure range of 0.5-10 mTorr and microwave power of  ≈400-500 W the experiments indicate that the CEPS is capable of producing high-density plasma (≈9  ×  1011-1012 cm-3) with bulk electron temperature in the range  ≈2-3 eV. In addition, a warm electron population with density and temperature in the range ≈7  ×  108-109 cm-3 and  ≈45-80 eV, respectively has been detected. This warm population plays an important role at high pressures in maintaining the high-density plasma, when plasma flow from the CEPS into the test chamber is strongly affected.

  4. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P. Mishra, L.; Kewlani, H.; Mittal, K. C.; Patil, D. S.

    2014-03-15

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, −2 to −4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10{sup −3} mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  5. Towards analytically useful two-dimensional Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    van Agthoven, Maria A; Delsuc, Marc-André; Bodenhausen, Geoffrey; Rolando, Christian

    2013-01-01

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) achieves high resolution and mass accuracy, allowing the identification of the raw chemical formulae of ions in complex samples. Using ion isolation and fragmentation (MS/MS), we can obtain more structural information, but MS/MS is time- and sample-consuming because each ion must be isolated before fragmentation. In 1987, Pfändler et al. proposed an experiment for 2D FT-ICR MS in order to fragment ions without isolating them and to visualize the fragmentations of complex samples in a single 2D mass spectrum, like 2D NMR spectroscopy. Because of limitations of electronics and computers, few studies have been conducted with this technique. The improvement of modern computers and the use of digital electronics for FT-ICR hardware now make it possible to acquire 2D mass spectra over a broad mass range. The original experiments used in-cell collision-induced dissociation, which caused a loss of resolution. Gas-free fragmentation modes such as infrared multiphoton dissociation and electron capture dissociation allow one to measure high-resolution 2D mass spectra. Consequently, there is renewed interest to develop 2D FT-ICR MS into an efficient analytical method. Improvements introduced in 2D NMR spectroscopy can also be transposed to 2D FT-ICR MS. We describe the history of 2D FT-ICR MS, introduce recent improvements, and present analytical applications to map the fragmentation of peptides. Finally, we provide a glossary which defines a few keywords for the 2D FT-ICR MS field. PMID:23076397

  6. Characterization of oligodeoxynucleotides by electron detachment dissociation fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Yang, Jiong; Mo, Jingjie; Adamson, Julie T; Håkansson, Kristina

    2005-03-15

    Electron detachment dissociation (EDD), recently introduced by Zubarev and co-workers for the dissociation of multiply charged biomolecular anions via a radical ion intermediate, has been shown to be analogous to electron capture dissociation (ECD) in several respects, including more random peptide fragmentation and retention of labile posttranslational modifications. We have previously demonstrated unique fragmentation behavior in ECD compared to vibrational excitation for oligodeoxynucleotide cations. However, that approach is limited by the poor sensitivity for oligonucleotide ionization in positive ion mode. Here, we show implementation of EDD on a commercial Fourier transform ion cyclotron resonance mass spectrometer utilizing two different configurations: a heated filament electron source and an indirectly heated hollow dispenser cathode electron source. The dispenser cathode configuration provides higher EDD efficiency and additional fragmentation channels for hexamer oligodeoxynucleotides. As in ECD, even-electron d/w ion series dominate the spectra, but we also detect numerous a/z (both even-electron and radical species), (a/z - B), c/x, (c/x - B), and (d/w - B) ions with minimal nucleobase loss from the precursor ions. In contrast to previous high-energy collision-activated dissociation (CAD) and ion trap CAD of radical oligonucleotide anions, we only observe minimum sugar cross-ring cleavage, possibly due to the short time scale of EDD, which limits secondary fragmentation. Thus, EDD provides fragmentation similar to ECD for oligodeoxynucleotides but at enhanced sensitivity. Finally, we show that noncovalent bonding in a DNA duplex can be preserved following EDD, illustrating another analogy with ECD. We believe the latter finding implies EDD has promise for characterization of nucleic acid structure and folding. PMID:15762599

  7. Incorporation of a Flared Inlet Capillary Tube on a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer.

    SciTech Connect

    Wu, Si; Zhang, Kai; Kaiser, Nathan K.; Bruce, James E.; Prior, David C.; Anderson, Gordon A.

    2006-04-17

    Atmospheric pressure ion sources such as electrospray ionization (ESI) and atmospheric pressure matrix assisted laser desorption ionization (AP-MALDI) are widely used with mass spectrometry for proteomics studies. Other newly developed atmospheric ion sources include desorption electrospray ionization (DESI). For these ionization methods, analyte ions created at atmospheric pressure are transferred to the high vacuum region for mass analysis after several stages of differential pumping. It has been reported that overall charge transmission between the ion source and the first vacuum stage is primarily dependent upon the proximity of the emitter and gas conductance of the interface inlet. We therefore developed an atmospheric pressure interface using flared inlet tubes. This report highlights our results obtained by coupling the customized flared inlet tubes with a Fourier transfer ion cyclotron resonance mass spectrometer (FT-ICRMS). We have also investigated the new interface with different types of atmospheric pressure ionization methods. For most of the ionization methods we investigated, such as ESI and DESI, increased ion current transmitted from the atmospheric pressure ion source to the first stage vacuum system was observed with the use of our enhanced ion inlet designs. The ion intensity that was detected with the flared inlet tube on a FT-ICRMS was also observed to increase {approx} 2-5 fold using ESI or DESI with the flared tube inlet. Moreover, increased spray tip positional tolerance was observed with implementation of the flared inlet tube. We also include our preliminary results obtained by coupling APMALDI with flared inlet tube in this paper. For AP-MALDI, the measured ion current transferred through the flared inlet tube was about 3 times larger than the ion current through the control non-flared inlet tube.

  8. Characterization of nitrogen-rich silicon nitride films grown by the electron cyclotron resonance plasma technique

    NASA Astrophysics Data System (ADS)

    Wang, L.; Reehal, H. S.; Martínez, F. L.; San Andrés, E.; del Prado, A.

    2003-07-01

    Amorphous hydrogenated silicon nitride films have been deposited by the electron cyclotron resonance plasma technique, using N2 and SiH4 as precursor gases. The gas flow ratio, deposition temperature and microwave power have been varied in order to study their effect on the properties of the films, which were characterized by Rutherford back-scattering spectrometry, elastic recoil detection analysis (ERDA), Fourier transform infrared spectroscopy and ellipsometry. All samples show N/Si ratios near or above the stoichiometric value (N/Si = 1.33). The hydrogen content determined from ERDA measurements is significantly higher than the amount detected by infrared spectroscopy, evidencing the presence of non-bonded H. As the N2/SiH4 gas flow ratio is increased (by decreasing the SiH4 partial pressure), the Si content decreases and the N-H concentration increases, while the N content remains constant, resulting in an increase of the N/Si ratio. The decrease of the Si content causes a decrease of the refractive index and the density of the film, while the growth ratio also decreases due to the limiting factor of the SiH4 partial pressure. The infrared Si-N stretching band shifts to higher wavenumbers as the N-H concentration increases. The increase of deposition temperature promotes the release of H, resulting in a higher incorporation of N and Si into the film and a decrease of the N/Si ratio. The effect of increasing the microwave power is analogous to increasing the N2/SiH4 ratio, due to the increase in the proportion of nitrogen activated species.

  9. Direct Analysis in Real Time (DART) of an Organothiophosphate at Ultrahigh Resolution by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Tandem Mass Spectrometry

    PubMed Central

    Prokai, Laszlo; Stevens, Stanley M.

    2016-01-01

    Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass resolution was documented to be over 800,000 in full-scan MS mode and over 1,000,000 for an MS/MS product ion produced by collision-induced dissociation of the protonated analyte. Mass measurement accuracy below 1 ppm was obtained for all DART-generated ions that belonged to the test compound in the mass spectra acquired using only external mass calibration. This high mass measurement accuracy, achievable at present only through FTMS, was required for unequivocal identification of the corresponding molecular formulae. PMID:26784186

  10. Direct Analysis in Real Time (DART) of an Organothiophosphate at Ultrahigh Resolution by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Tandem Mass Spectrometry.

    PubMed

    Prokai, Laszlo; Stevens, Stanley M

    2016-01-01

    Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass resolution was documented to be over 800,000 in full-scan MS mode and over 1,000,000 for an MS/MS product ion produced by collision-induced dissociation of the protonated analyte. Mass measurement accuracy below 1 ppm was obtained for all DART-generated ions that belonged to the test compound in the mass spectra acquired using only external mass calibration. This high mass measurement accuracy, achievable at present only through FTMS, was required for unequivocal identification of the corresponding molecular formulae. PMID:26784186

  11. Molecular magnetic resonance imaging in cancer.

    PubMed

    Haris, Mohammad; Yadav, Santosh K; Rizwan, Arshi; Singh, Anup; Wang, Ena; Hariharan, Hari; Reddy, Ravinder; Marincola, Francesco M

    2015-01-01

    The ability to identify key biomolecules and molecular changes associated with cancer malignancy and the capacity to monitor the therapeutic outcome against these targets is critically important for cancer treatment. Recent developments in molecular imaging based on magnetic resonance (MR) techniques have provided researchers and clinicians with new tools to improve most facets of cancer care. Molecular imaging is broadly described as imaging techniques used to detect molecular signature at the cellular and gene expression levels. This article reviews both established and emerging molecular MR techniques in oncology and discusses the potential of these techniques in improving the clinical cancer care. It also discusses how molecular MR, in conjunction with other structural and functional MR imaging techniques, paves the way for developing tailored treatment strategies to enhance cancer care. PMID:26394751

  12. A new sawtooth control mechanism relying on toroidally propagating ion cyclotron resonance frequency waves: Theory and Joint European Torus tokamak experimental evidence

    SciTech Connect

    Graves, J. P.; Coda, S.; Chapman, I. T.; Lennholm, M.

    2010-05-15

    The sawtooth control mechanism in plasmas employing toroidally propagating ion cyclotron resonance waves is extended. The asymmetrically distributed energetic passing ions are shown to modify the ideal internal kink mode when the position of the minority ion cyclotron resonance resides within a narrow region close to the q=1 surface. An analytical treatment of the internal kink mode in the presence of model distribution function with parallel velocity asymmetry is developed. The fast ion mechanism explains the strong sensitivity of sawteeth to resonance position, and moreover is consistent with dedicated Joint European Torus [F. Romanelli, Nucl. Fusion 49, 104006 (2009)] experiments which controlled sawteeth despite negligible current drive.

  13. Compton Gamma Ray Observatory/BATSE observations of energetic electrons scattered by cyclotron resonance with waves from powerful VLF transmitters

    NASA Technical Reports Server (NTRS)

    Datlowe, Dayton W.; Imhof, William L.

    1994-01-01

    To obtain a better understanding of the wave-particle mechanisms responsible for the loss of electrons from the radiation belts, energetic electron data from the Burst and Transient Source Experiment (BATSE) on the NASA's Compton Gamma Ray Observatory (GRO) was studied. Powerful ground-based VLF transmitters resonantly scatter electrons from the inner radiation belt onto trajectories from which they precipitate into the atmosphere as they drift eastward. 563 instances in which the satellite traversed a cloud of energetic electrons which had been scattered into quasi-trapped trajectories were identified. From the longitude distribution, it was concluded that waves from the VLF transmitter NWC at 114 deg E are the origin of 257 of the events, and waves from UMSat 44 deg E related to 45 more. In another 177 cases the electrons had drifted from the longitude of these transmitters to a location in the western hemisphere. The previously reported seasonal variation in the frequency of occurrence of cyclotron resonance interaction is confirmed with the continuous coverage provided by GRO. The frequency of occurrence of the cyclotron resonance interactions is largest before sunrise, which we attribute to the diurnal variations in the transmission VLF waves through the ionosphere. For the first time, unique very narrow sheets of electrons occurring in the aftermath of a large geomagnetic storm are reported.

  14. Production of highly charged heavy ions by 18 GHz superconducting electron cyclotron resonance at Research Center for Nuclear Physics.

    PubMed

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2010-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has been installed as a subject of the azimuthally varying field cyclotron upgrade project (K. Hatanaka et al., in Proceedings of the 17th International Conference on Cyclotrons and Their Applications, Tokyo, Japan, 18-22 October 2004, pp. 115-117), in order to increase beam currents and to extend the variety of ions. The production development of several ions has been performed since 2006 and some of them have already been used for user experiments [T. Yorita et al., Rev. Sci. Instrum. 79, 02A311 (2008)]. Further optimizations for each component such as the material of plasma electrode, material, and shape of bias probe and mirror field have been continued and more intense ion beams have been obtained for O, N, and Ar. For the purpose of obtaining highly charged Xe with several microamperes, the optimization of position and shape of plasma electrode and bias disk has also been done and highly charged Xe(32+) beam has been obtained successfully. PMID:20192353

  15. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Chen, Yu; Leach, Franklin E; Kaiser, Nathan K; Dang, Xibei; Ibrahim, Yehia M; Norheim, Randolph V; Anderson, Gordon A; Smith, Richard D; Marshall, Alan G

    2015-01-01

    Enhancements to the ion source and transfer optics of our 9.4 T Fourier transform ion cyclotron resonance (ICR) mass spectrometer have resulted in improved ion transmission efficiency for more sensitive mass measurement of complex mixtures at the MS and MS/MS levels. The tube lens/skimmer has been replaced by a dual ion funnel and the following octopole by a quadrupole for reduced ion cloud radial expansion before transmission into a mass-selective quadrupole. The number of ions that reach the ICR cell is increased by an order of magnitude for the funnel/quadrupole relative to the tube lens/skimmer/octopole. PMID:25601704

  16. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.

    2015-01-19

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry provides unparalleled mass accuracy and resolving power.[1],[2] With electrospray ionization (ESI), ions are typically transferred into the mass spectrometer through a skimmer, which serves as a conductance-limiting orifice. However, the skimmer allows only a small fraction of incoming ions to enter the mass spectrometer. An ion funnel, originally developed by Smith and coworkers at Pacific Northwest National Laboratory (PNNL)[3-5] provides much more efficient ion focusing and transfer. The large entrance aperture of the ion funnel allows almost all ions emanating from a heated capillary to be efficiently captured and transferred, resulting in nearly lossless transmission.

  17. Multiphoton processes at cyclotron resonance subharmonics in a two-dimensional electron system under dc and microwave excitation

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Hatke, A. T.; Engel, L. W.; Watson, J. D.; Manfra, M. J.

    2014-11-01

    We investigate a two-dimensional electron system (2DES) under microwave illumination at cyclotron resonance subharmonics. The 2DES carries sufficient direct current, I , that the differential resistivity oscillates as I is swept. At magnetic fields sufficient to resolve individual Landau levels, we find the number of oscillations within an I range systematically changes with increasing microwave power. Microwave absorption and emission of N photons, where N is controlled by the microwave power, describes our observations in the framework of the displacement mechanism of impurity scattering between Hall-field tilted Landau levels.

  18. Effect of microwave reflection from the region of electron cyclotron resonance heating in the L-2M stellarator

    SciTech Connect

    Batanov, G. M.; Borzosekov, V. D.; Kolik, L. V.; Konchekov, E. M.; Malakhov, D. V.; Petrov, A. E.; Sarksyan, K. A.; Sakharov, A. S. Skvortsova, N. N.; Stepakhin, V. D.; Kharchev, N. K.

    2013-11-15

    In experiments on electron cyclotron resonance (ECR) heating of plasma at the second harmonic of the electron gyrofrequency in the L-2M stellarator, the effect of partial reflection of high-power gyrotron radiation from the ECR heating region located in the center of the plasma column was revealed. The reflection coefficient is found to be on the order of 10{sup −3}. The coefficient of reflection of an extraordinary wave from the second-harmonic ECR region is calculated in the one-dimensional full-wave model. The calculated and measured values of the reflection coefficient are found to coincide in order of magnitude.

  19. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator.

    PubMed

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper. PMID:26931953

  20. Electron-beam-assisted dry etching for GaAs using electron cyclotron resonance plasma electron source

    NASA Astrophysics Data System (ADS)

    Watanabe, Heiji; Matsui, Shinji

    1992-12-01

    Electron-beam (EB)-assisted dry etching of GaAs using Ar electron cyclotron resonance (ECR) plasma as an electron shower source is developed to achieve a low energy and high current density electron beam (EB). The rate of EB-assisted dry etching is more than ten times larger than for Cl2 gas etching.It is confirmed, through photoluminescence measurement, that this etching method causes less damage than ion beam techniques and is very effective for damaged layer removal. Using this technique, a 0.4 μm linewidth low-damage fine structure of GaAs was fabricated.

  1. Cyclotron resonance excitation spectroscopy of CdTe and of CdTe/CdZnTe quantum wells

    NASA Astrophysics Data System (ADS)

    Lavigne, B.; Cox, R. T.

    1990-04-01

    Photoconductivity spectra for II-VI semiconductor samples were obtained without any need for electrical contacts by measuring the wavelength dependence of free-carrier cyclotron resonance at 35 GHz. For bulk CdTe, the surprisingly efficient creation of free electrons for h v below the bandgap energy is attributed to exciton-impurity interactions. Auger recombination and inelastic polariton-donor scattering are considered. Preliminary results for CdTe.CdZnTe quantum wells show sharp peaks corresponding to quantized states of free excitons in the well.

  2. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator

    NASA Astrophysics Data System (ADS)

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.

  3. Microwave electron cyclotron electron resonance (ECR) ion source with a large, uniformly distributed, axially symmetric, ECR plasma volume

    DOEpatents

    Alton, Gerald D.

    1996-01-01

    An electron cyclotron resonance (ECR) ion source includes a primary mirror coil disposed coaxially around a vacuum vessel in which a plasma is induced and introducing a solenoidal ECR-producing field throughout the length of the vacuum vessel. Radial plasma confinement is provided by a multi-cusp, multi-polar permanent magnet array disposed azimuthally around the vessel and within the primary mirror coil. Axial confinement is provided either by multi-cusp permanent magnets at the opposite axial ends of the vessel, or by secondary mirror coils disposed on opposite sides of the primary coil.

  4. Pulsed-gas glow discharge for ultrahigh mass resolution measurements with Fourier transform ion cyclotron resonance mass spectrometry

    SciTech Connect

    Watson, C.H.; Eyler, J.R.; Barshick, C.M.; Wronka, J.; Laukien, F.H.

    1996-02-01

    A new pulsed-gas glow discharge (GD) source has been developed for use with an external ion source Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. With pulsed argon gas introduction into the GD source, the gas load and pressure in the mass analyzer region were greatly reduced; this resulted in improved mass resolution. Mass resolution of greater than 145000 (fwhm) has been achieved for Cu{sup +} ions from a brass sample, the highest reported for any type of GD mass spectrometer. The pulsed-gas GD source promises analytical usefulness for ultrahigh resolution measurements in GD mass spectrometry. 16 refs., 3 figs.

  5. Multicharged ion source based on Penning-type discharge with electron cyclotron resonance heating by millimeter waves.

    PubMed

    Vodopyanov, A V; Izotov, I V; Mansfeld, D A; Yushkov, G Yu

    2012-02-01

    We suggest a Penning-type discharge as a trigger discharge for fast development of pulsed electron cyclotron resonance plasma. The Penning-type discharge glows at a low pressure as needed. Gyrotron radiation (75 GHz, 200 kW, 1 ms) was used for plasma heating. Fully striped helium ions were demonstrated, average charge of ions in the plasma was ≈ 2. Experiment and calculations show that high charge states of heavier gases require lower initial pressure and longer development time. Only moderate charge states are achievable in this pulsed scheme. PMID:22380172

  6. Multicharged ion source based on Penning-type discharge with electron cyclotron resonance heating by millimeter waves

    SciTech Connect

    Vodopyanov, A. V.; Izotov, I. V.; Mansfeld, D. A.; Yushkov, G. Yu.

    2012-02-15

    We suggest a Penning-type discharge as a trigger discharge for fast development of pulsed electron cyclotron resonance plasma. The Penning-type discharge glows at a low pressure as needed. Gyrotron radiation (75 GHz, 200 kW, 1 ms) was used for plasma heating. Fully striped helium ions were demonstrated, average charge of ions in the plasma was {approx_equal} 2. Experiment and calculations show that high charge states of heavier gases require lower initial pressure and longer development time. Only moderate charge states are achievable in this pulsed scheme.

  7. Ultracompact/ultralow power electron cyclotron resonance ion source for multipurpose applicationsa)

    NASA Astrophysics Data System (ADS)

    Sortais, P.; Lamy, T.; Médard, J.; Angot, J.; Latrasse, L.; Thuillier, T.

    2010-02-01

    In order to drastically reduce the power consumption of a microwave ion source, we have studied some specific discharge cavity geometries in order to reduce the operating point below 1 W of microwave power (at 2.45 GHz). We show that it is possible to drive an electron cyclotron resonance ion source with a transmitter technology similar to those used for cellular phones. By the reduction in the size and of the required microwave power, we have developed a new type of ultralow cost ion sources. This microwave discharge system (called COMIC, for COmpact MIcrowave and Coaxial) can be used as a source of light, plasma or ions. We will show geometries of conductive cavities where it is possible, in a 20 mm diameter chamber, to reduce the ignition of the plasma below 100 mW and define typical operating points around 5 W. Inside a simple vacuum chamber it is easy to place the source and its extraction system anywhere and fully under vacuum. In that case, current densities from 0.1 to 10 mA/cm2 (Ar, extraction 4 mm, 1 mAe, 20 kV) have been observed. Preliminary measurements and calculations show the possibility, with a two electrodes system, to extract beams within a low emittance. The first application for these ion sources is the ion injection for charge breeding, surface analyzing system and surface treatment. For this purpose, a very small extraction hole is used (typically 3/10 mm for a 3 μA extracted current with 2 W of HF power). Mass spectrum and emittance measurements will be presented. In these conditions, values down to 1 π mm mrad at 15 kV (1σ) are observed, thus very close to the ones currently observed for a surface ionization source. A major interest of this approach is the possibility to connect together several COMIC devices. We will introduce some new on-going developments such as sources for high voltage implantation platforms, fully quartz radioactive ion source at ISOLDE or large plasma generators for plasma immersion, broad or ribbon beams

  8. Ion cyclotron resonance frequency heating in JET during initial operations with the ITER-like wall

    SciTech Connect

    Jacquet, P. Monakhov, I.; Arnoux, G.; Brix, M.; Graham, M.; Meigs, A.; Sirinelli, A.; Colas, L.; Czarnecka, A.; Lerche, E.; Van-Eester, D.; Mayoral, M.-L.; Brezinsek, S.; Campergue, A.-L.; Klepper, C. C.; Milanesio, D.; and others

    2014-06-15

    In 2011/12, JET started operation with its new ITER-Like Wall (ILW) made of a tungsten (W) divertor and a beryllium (Be) main chamber wall. The impact of the new wall materials on the JET Ion Cyclotron Resonance Frequency (ICRF) operation is assessed and some important properties of JET plasmas heated with ICRF are highlighted. A ∼ 20% reduction of the antenna coupling resistance is observed with the ILW as compared with the JET carbon (JET-C) wall. Heat-fluxes on the protecting limiters close the antennas, quantified using Infra-Red thermography (maximum 4.5 MW/m{sup 2} in current drive phasing), are within the wall power load handling capabilities. A simple RF sheath rectification model using the antenna near-fields calculated with the TOPICA code can reproduce the heat-flux pattern around the antennas. ICRF heating results in larger tungsten and nickel (Ni) contents in the plasma and in a larger core radiation when compared to Neutral Beam Injection (NBI) heating. The location of the tungsten ICRF specific source could not be identified but some experimental observations indicate that main-chamber W components could be an important impurity source: for example, the divertor W influx deduced from spectroscopy is comparable when using RF or NBI at same power and comparable divertor conditions, and Be evaporation in the main chamber results in a strong reduction of the impurity level. In L-mode plasmas, the ICRF specific high-Z impurity content decreased when operating at higher plasma density and when increasing the hydrogen concentration from 5% to 15%. Despite the higher plasma bulk radiation, ICRF exhibited overall good plasma heating performance; the power is typically deposited at the plasma centre while the radiation is mainly from the outer part of the plasma bulk. Application of ICRF heating in H-mode plasmas has started, and the beneficial effect of ICRF central electron heating to prevent W accumulation in the plasma core has been observed.

  9. Ion cyclotron resonance frequency heating in JET during initial operations with the ITER-like walla)

    NASA Astrophysics Data System (ADS)

    Jacquet, P.; Bobkov, V.; Colas, L.; Czarnecka, A.; Lerche, E.; Mayoral, M.-L.; Monakhov, I.; Van-Eester, D.; Arnoux, G.; Brezinsek, S.; Brix, M.; Campergue, A.-L.; Devaux, S.; Drewelow, P.; Graham, M.; Klepper, C. C.; Meigs, A.; Milanesio, D.; Mlynar, J.; Pütterich, T.; Sirinelli, A.

    2014-06-01

    In 2011/12, JET started operation with its new ITER-Like Wall (ILW) made of a tungsten (W) divertor and a beryllium (Be) main chamber wall. The impact of the new wall materials on the JET Ion Cyclotron Resonance Frequency (ICRF) operation is assessed and some important properties of JET plasmas heated with ICRF are highlighted. A ˜ 20% reduction of the antenna coupling resistance is observed with the ILW as compared with the JET carbon (JET-C) wall. Heat-fluxes on the protecting limiters close the antennas, quantified using Infra-Red thermography (maximum 4.5 MW/m2 in current drive phasing), are within the wall power load handling capabilities. A simple RF sheath rectification model using the antenna near-fields calculated with the TOPICA code can reproduce the heat-flux pattern around the antennas. ICRF heating results in larger tungsten and nickel (Ni) contents in the plasma and in a larger core radiation when compared to Neutral Beam Injection (NBI) heating. The location of the tungsten ICRF specific source could not be identified but some experimental observations indicate that main-chamber W components could be an important impurity source: for example, the divertor W influx deduced from spectroscopy is comparable when using RF or NBI at same power and comparable divertor conditions, and Be evaporation in the main chamber results in a strong reduction of the impurity level. In L-mode plasmas, the ICRF specific high-Z impurity content decreased when operating at higher plasma density and when increasing the hydrogen concentration from 5% to 15%. Despite the higher plasma bulk radiation, ICRF exhibited overall good plasma heating performance; the power is typically deposited at the plasma centre while the radiation is mainly from the outer part of the plasma bulk. Application of ICRF heating in H-mode plasmas has started, and the beneficial effect of ICRF central electron heating to prevent W accumulation in the plasma core has been observed.

  10. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources

    SciTech Connect

    Ferracin, P.; Caspi, S.; Felice, H.; Leitner, D.; Lyneis, C. M.; Prestemon, S.; Sabbi, G. L.; Todd, D. S.

    2009-05-04

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb{sub 3}Sn superconducting technology for several years. At the moment, Nb{sub 3}Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb{sub 3}Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb{sub 3}Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb{sub 3}Sn- , particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell

  11. Nb3Sn superconducting magnets for electron cyclotron resonance ion sources.

    PubMed

    Ferracin, P; Caspi, S; Felice, H; Leitner, D; Lyneis, C M; Prestemon, S; Sabbi, G L; Todd, D S

    2010-02-01

    Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb(3)Sn superconducting technology for several years. At the moment, Nb(3)Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb(3)Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb(3)Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb(3)Sn, particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell pretensioned with water

  12. Ultracompact/ultralow power electron cyclotron resonance ion source for multipurpose applications

    SciTech Connect

    Sortais, P.; Lamy, T.; Medard, J.; Angot, J.; Latrasse, L.; Thuillier, T.

    2010-02-15

    In order to drastically reduce the power consumption of a microwave ion source, we have studied some specific discharge cavity geometries in order to reduce the operating point below 1 W of microwave power (at 2.45 GHz). We show that it is possible to drive an electron cyclotron resonance ion source with a transmitter technology similar to those used for cellular phones. By the reduction in the size and of the required microwave power, we have developed a new type of ultralow cost ion sources. This microwave discharge system (called COMIC, for COmpact MIcrowave and Coaxial) can be used as a source of light, plasma or ions. We will show geometries of conductive cavities where it is possible, in a 20 mm diameter chamber, to reduce the ignition of the plasma below 100 mW and define typical operating points around 5 W. Inside a simple vacuum chamber it is easy to place the source and its extraction system anywhere and fully under vacuum. In that case, current densities from 0.1 to 10 mA/cm{sup 2} (Ar, extraction 4 mm, 1 mAe, 20 kV) have been observed. Preliminary measurements and calculations show the possibility, with a two electrodes system, to extract beams within a low emittance. The first application for these ion sources is the ion injection for charge breeding, surface analyzing system and surface treatment. For this purpose, a very small extraction hole is used (typically 3/10 mm for a 3 {mu}A extracted current with 2 W of HF power). Mass spectrum and emittance measurements will be presented. In these conditions, values down to 1 {pi} mm mrad at 15 kV (1{sigma}) are observed, thus very close to the ones currently observed for a surface ionization source. A major interest of this approach is the possibility to connect together several COMIC devices. We will introduce some new on-going developments such as sources for high voltage implantation platforms, fully quartz radioactive ion source at ISOLDE or large plasma generators for plasma immersion, broad or ribbon

  13. Production of multicharged ions and behavior of microwave modes in an electron cyclotron resonance ion source directly excited in a circular cavity resonator

    SciTech Connect

    Kato, Yushi; Furuki, Hideyuki; Asaji, Toyohisa; Sato, Fuminobu; Iida, Toshiyuki

    2006-03-15

    Electron cyclotron resonance ion sources (ECRIS) have been widely used for production of high-intensity multicharged ion beams. Making good use of microwave modes is proposed for enhancing the efficiency of ECR for production of multicharged ions (TAIKO II). We can assign the peak position of the electric field of the standing waves to the ECR zone in the directly excited cavity resonator, i.e., the vacuum chamber with the fixed and the mobile plates for selecting and tuning the modes. Periodicity of the extracted multicharged ion currents and plasma parameters is observed as the position of the mobile plate moves. We measure the intensity of the electric field in the ECR plasma by using the insulated semidipole probe and the standing waves are observed. The correlation between the production of multicharged ions and the microwave modes is clarified by measuring the electric field and plasma parameters in the circular cavity resonator.

  14. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging.

    PubMed

    Mascali, David; Castro, Giuseppe; Biri, Sándor; Rácz, Richárd; Pálinkás, József; Caliri, Claudia; Celona, Luigi; Neri, Lorenzo; Romano, Francesco Paolo; Torrisi, Giuseppe; Gammino, Santo

    2016-02-01

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs-Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed "on-line" during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure. PMID:26931918

  15. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    NASA Astrophysics Data System (ADS)

    Mascali, David; Castro, Giuseppe; Biri, Sándor; Rácz, Richárd; Pálinkás, József; Caliri, Claudia; Celona, Luigi; Neri, Lorenzo; Romano, Francesco Paolo; Torrisi, Giuseppe; Gammino, Santo

    2016-02-01

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed "on-line" during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  16. First operation and effect of a new tandem-type ion source based on electron cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Kato, Yushi; Kimura, Daiju; Yano, Keisuke; Kumakura, Sho; Imai, Youta; Nishiokada, Takuya; Nagaya, Tomoki; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-01

    A new tandem type source has been constructed on the basis of electron cyclotron resonance plasma for producing synthesized ion beams in Osaka University. Magnetic field in the first stage consists of all permanent magnets, i.e., cylindrically comb shaped one, and that of the second stage consists of a pair of mirror coil, a supplemental coil and the octupole magnets. Both stage plasmas can be individually operated, and produced ions in which is energy controlled by large bore extractor also can be transported from the first to the second stage. We investigate the basic operation and effects of the tandem type electron cyclotron resonance ion source (ECRIS). Analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas in dual plasmas operation as well as each single operation. We describe construction and initial experimental results of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source in future.

  17. First operation and effect of a new tandem-type ion source based on electron cyclotron resonance.

    PubMed

    Kato, Yushi; Kimura, Daiju; Yano, Keisuke; Kumakura, Sho; Imai, Youta; Nishiokada, Takuya; Nagaya, Tomoki; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-01

    A new tandem type source has been constructed on the basis of electron cyclotron resonance plasma for producing synthesized ion beams in Osaka University. Magnetic field in the first stage consists of all permanent magnets, i.e., cylindrically comb shaped one, and that of the second stage consists of a pair of mirror coil, a supplemental coil and the octupole magnets. Both stage plasmas can be individually operated, and produced ions in which is energy controlled by large bore extractor also can be transported from the first to the second stage. We investigate the basic operation and effects of the tandem type electron cyclotron resonance ion source (ECRIS). Analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas in dual plasmas operation as well as each single operation. We describe construction and initial experimental results of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source in future. PMID:26931929

  18. THz Magneto-photoresponse of an InAs-based quantum point contact in the region of cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Pakmehr, M.; Whiteside, V. R.; Bhandari, N.; Newrock, R.; Cahay, M.; McCombe, B. D.

    2013-08-01

    We have studied the THz magneto-photoresponse of a 2DEG in an InAs quantum well with an embedded Quantum Point Contact in the frequency/field region where electron cyclotron resonance (CR) dominates the response. The photoresponse near CR is manifested as an envelope of the amplitude of the Shubnikov-de Haas oscillations of the 2DEG with a peak near the CR field. Clear spin-splitting of the quantum oscillations is observed for B > 4 T. Data were simulated by a model of resonant carrier heating, and from the simulations the carrier density, the CR effective mass, scattering times and the g-factor were obtained. We find a significantly enhanced g-factor apparently due to exchange interaction.

  19. On the role of electron energy distribution function in double frequency heating of electron cyclotron resonance ion source plasmas

    SciTech Connect

    Schachter, L. Dobrescu, S.; Stiebing, K. E.

    2014-02-15

    Double frequency heating (DFH) is a tool to improve the output of highly charged ions particularly from modern electron cyclotron resonance ion source installations with very high RF-frequencies. In order to gain information on the DFH-mechanism and on the role of the lower injected frequency we have carried out a series of dedicated experiments where we have put emphasis on the creation of a discrete resonance surface also for this lower frequency. Our well-established method of inserting an emissive MD (metal-dielectric) liner into the plasma chamber of the source is used in these experiments as a tool of investigation. In this way, the electron temperature and density for both ECR zones is increased in a controlled manner, allowing conclusions on the role of the change of the electron-energy-distribution function with and without DFH.

  20. Growth of etiolated barley plants in weak static and 50 Hz electromagnetic fields tuned to calcium ion cyclotron resonance

    PubMed Central

    Pazur, Alexander; Rassadina, Valentina; Dandler, Jörg; Zoller, Jutta

    2006-01-01

    Background The effects of weak magnetic and electromagnetic fields in biology have been intensively studied on animals, microorganisms and humans, but comparably less on plants. Perception mechanisms were attributed originally to ferrimagnetism, but later discoveries required additional explanations like the "radical pair mechanism" and the "Ion cyclotron resonance" (ICR), primarily considered by Liboff. The latter predicts effects by small ions involved in biological processes, that occur in definite frequency- and intensity ranges ("windows") of simultaneously impacting magnetic and electromagnetic fields related by a linear equation, which meanwhile is proven by a number of in vivo and in vitro experiments. Methods Barley seedlings (Hordeum vulgare, L. var. Steffi) were grown in the dark for 5 and 6 days under static magnetic and 50 Hz electromagnetic fields matching the ICR conditions of Ca2+. Control cultures were grown under normal geomagnetic conditions, not matching this ICR. Morphology, pigmentation and long-term development of the adult plants were subsequently investigated. Results The shoots of plants exposed to Ca2+-ICR exposed grew 15–20% shorter compared to the controls, the plant weight was 10–12% lower, and they had longer coleoptiles that were adhering stronger to the primary leaf tissue. The total pigment contents of protochlorophyllide (PChlide) and carotenoids were significantly decreased. The rate of PChlide regeneration after light irradiation was reduced for the Ca2+-ICR exposed plants, also the Shibata shift was slightly delayed. Even a longer subsequent natural growing phase without any additional fields could only partially eliminate these effects: the plants initially exposed to Ca2+-ICR were still significantly shorter and had a lower chlorophyll (a+b) content compared to the controls. A continued cultivation and observation of the adult plants under natural conditions without any artificial electromagnetic fields showed a

  1. Insights into dissolved organic matter complexity in rainwater from continental and coastal storms by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Mead, R. N.; Mullaugh, K. M.; Avery, G. Brooks; Kieber, R. J.; Willey, J. D.; Podgorski, D. C.

    2013-05-01

    A series of seven rainwater samples were collected in Wilmington, North Carolina USA originating from both continental and coastal storms and analyzed by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). This data set is unique in that it represents a detailed comparison of the molecular level composition of DOM in rainwater collected from distinctly different air mass back trajectories by FT-ICR MS. Approximately 25% of the roughly 2000 assigned CHO molecular formulas are unique to a single storm classification indicating the importance of air mass back trajectory on the composition of rainwater dissolved organic matter (DOM). Analysis of the unique molecular formula assignments highlighted distinct groupings of various bio- and geo-molecule classes with coastal storms containing unique formulas representative of lignin and cellulose-like formulas while continental storms had lipid-like formulas. A series of 18 distinct methylene oligomers were identified in coastal storms and 13 unique methylene oligomers in continental storms, suggesting oligomer formation is ubiquitous in rainwater albeit different for each storm classification. Oligomers of small acids and C3H4O2 were detected in both storm types indicating their processing may be similar in both back trajectories. Condensed aromatic hydrocarbons were detected in continental storms with phenol moieties that are not as oxidized as similar compounds detected in aquatic DOM.

  2. Insights into dissolved organic matter complexity in rainwater from continental and coastal storms by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Mead, R. N.; Mullaugh, K. M.; Avery, G. B.; Kieber, R. J.; Willey, J. D.; Podgorski, D. C.

    2012-12-01

    A series of seven rainwater samples were collected in Wilmington, North Carolina (USA), originating from both continental and coastal storms and analyzed by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). This data set is unique in that it represents a detailed comparison of the molecular level composition of DOM in rainwater collected from distinctly different air mass back trajectories by FTICR-MS. Approximately 25% of the roughly 2000 assigned CHO molecular formulas are unique to each storm classification indicating the importance of air mass back trajectory on the composition of rainwater dissolved organic matter (DOM). Analysis of the unique molecular formula assignments highlighted distinct groupings of various bio- and geo-molecule classes with coastal storms containing unique formulas representative of lignin and cellulose-like formulas, while continental storms had lipid-like formulas. A series of 18 distinct methylene oligomers were identified in coastal storms with 13 unique methylene oligomers in continental storms suggesting oligomer formation is ubiquitous in rainwater albeit different for each storm classification. Oligomers of small acids and C3H4O2 were detected in both storm types indicating their processing may be similar in both back trajectories. Black carbon (BC) was detected in continental storms with phenol moieties that are not as oxidized as aquatic DOM black carbon. The discovery of BC in continental rainwater has significant ramifications towards climate change, because atmospheric BC is such a potent chromophore that reemits absorbed sunlight at longer wavelengths thereby warming the lower atmosphere.

  3. Toroidal rotation induced by asymmetric cyclotron resonance absorption in minority ICRF-heated tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Wang, S.; Zhang, D.

    2016-04-01

    A new mechanism of ion cyclotron range of frequency (ICRF)-induced rotation is proposed to explain the toroidal rotation with minority ICRF heating without net momentum injection. For ICRF waves launched with the symmetric spectrum, a nonlinear toroidal force can be generated through the asymmetric absorption of the toroidal wave momentum, which is due to the finite toroidal rotation of minority ions. This ICRF-induced toroidal force can drive a significant toroidal rotation of bulk ions.

  4. Cyclotron mode frequencies and resonant absorption in multi-species ion plasmas

    SciTech Connect

    Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.

    2015-05-15

    Cyclotron mode frequencies are studied on trapped rigid-rotor multi-species ion plasmas. Collective effects and radial electric fields shift the mode frequencies away from the “bare” cyclotron frequencies 2πF{sub c}{sup (s)}≡(q{sub s}B/M{sub s}c) for each species s. These frequency shifts are measured on the distinct cyclotron modes (m=0,1, and 2) with cos(mθ) azimuthal dependence. We find that for radially uniform plasmas the frequency shifts corroborate a simple theory expression, in which collective effects enter only through the E × B rotation frequency f{sub E} and the species fraction δ{sub s}. The m = 1 center-of-mass mode is in agreement with a simple “clump” model. Additionally, ultra-cold ion plasmas exhibit centrifugal separation by mass, and additional frequency shifts are observed, in agreement with a more general theory.

  5. Transverse acceleration of oxygen ions by electromagnetic ion cyclotron resonance with broad band left-hand polarized waves

    NASA Technical Reports Server (NTRS)

    Chang, T.; Crew, G. B.; Hershkowitz, N.; Jasperse, J. R.; Retterer, J. M.

    1986-01-01

    Central plasma sheet (CPS) ion conics are oxygen-dominated, with peak energies ranging from tens to hundreds of eV centered around pitch-angles between 115 and 130 degrees. Because of the lack of correlation between the CPS conics and the observed currents and/or electron beam-like structures, it is not likely that all of these conics are generated by interactions with electrostatic ion cyclotron waves or lower hybrid waves. Instead, it is suggested that the observed intense broad band electric field fluctuations in the frequency range between 0 and 100 Hz can be responsible for the transverse energization of the ions through cyclotron resonance heating with the left-hand polarized electromagnetic waves. This process is much more efficient for heating the oxygen ions than hydrogen ions, thus providing a plausible explanation of the oxygen dominance in CPS conics. Simple algebraic expressions are given from which estimates of conic energy and pitch angle can be easily calculated. This suggested mechanism can also provide some preheating of the oxygen ions in the boundary plasma sheet (BPS) where discrete aurorae form.

  6. An ICR study of ion-molecule reactions of PH(n)+ ions. [of importance to interstellar chemistry, using ion cyclotron resonance techniques

    NASA Technical Reports Server (NTRS)

    Thorne, L. R.; Anicich, V. G.; Huntress, W. T.

    1983-01-01

    The reactions of PH(n)+ ions (n = 0-3) were examined with a number of neutrals using ion-cyclotron-resonance techniques. The reactions examined have significance for the distribution of phosphorus in interstellar molecules. The results indicate that interstellar molecules containing the P-O bond are likely to be more abundant than those containing the P-H bond.

  7. Characterization of organic material in ice core samples from North America, Greenland, and Antarctica using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Catanzano, V.; Grannas, A. M.; Sleighter, R. L.; Hatcher, P. G.

    2013-12-01

    Historically, it has been an analytical challenge to detect and identify the organic components present in ice cores, due to the low abundance of organic carbon. In order to detect and characterize the small amounts of organic matter in ice cores, ultra high resolution instrumentation is required. Here we report the use of ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry, coupled with electrospray ionization, to identify the molecular formulas and compound classes of organic matter in both modern and ancient ice core and glacial samples from Wyoming, Greenland, and Antarctica. A suite of 21 samples were analyzed and thousands of distinct molecular species were identified in each sample, providing clues to the nature and sources of organic matter in these regions. Major biochemical classes of compounds were detected such as lignins, tannins, carbohydrates, proteins, lipids, unsaturated hydrocarbons, and condensed aromatic compounds. We will compare the nature of the organic matter present in the samples in order to determine the differences in dominant organic compound classes and in heteroatom (nitrogen and sulfur) abundance. By analyzing these differences, it is possible to investigate the historical patterns of organic matter deposition/source, and begin to investigate the influence of climate change, volcanism, and onset of the industrial revolution on the nature of organic matter preserved in ice cores.

  8. Laser-induced fluorescence of Ba+ ions trapped and mass-selected in a Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Li, G Z; Vining, B A; Guan, S; Marshall, A G

    1996-01-01

    We present the design and preliminary results from a Fourier transform ion cyclotron resonance (ICR) mass spectrometer developed for the direct detection of UV/visible laser-induced fluorescence of trapped, mass-selected, gas-phase ions. A 3 T superconducting magnet and an open-ended multi-section cylindrical Penning trap capture and confine ions created by electron impact or laser desorption. Azimuthal quadrupolar excitation in the presence of ion/neutral collisions cools, axializes and mass selects ions as they fill the trap. A pulsed dye laser pumped by an Nd:YAG laser provides electronic energy excitation. A Brewster window and baffles on each side of the vacuum chamber reduce the scattered light from the excitation laser. Laser-induced fluorescence is collected from mirrors and lenses and directed through a quartz window and fiber-optic bundle to a photomultiplier. The ICR and optical events are controlled by a modular ICR data station and GPIB and RS-232 interfaces. An excitation spectrum is demonstrated for atomic Ba+ ions, and should extend to laser-induced fluorescence of virtually any stable positive or negative gas-phase ions of arbitrary molecular weight: molecular or quasimolecular ions, fragment ions, adduct ions, and ions formed from ion/molecule reactions. PMID:8953788

  9. Two dimensional correlation analysis of Fourier transform ion cyclotron resonance mass spectra of dissolved organic matter: a new graphical analysis of trends.

    PubMed

    Abdulla, Hussain A N; Sleighter, Rachel L; Hatcher, Patrick G

    2013-04-16

    Two-dimensional (2D) correlation analysis was applied to 20 Fourier transform ion cyclotron resonance mass spectra (FTICR-MS) of ultrafiltered dissolved organic matter samples from a salinity transect of the lower Chesapeake Bay. We were able to investigate the chemical changes in the dissolved organic matter pool at the molecular level and classify the individual peaks based on their biogeochemical reactivity. The power of this technique is its ability to be used on either the presence/absence of the individual peaks or their normalized magnitudes. The presence or absence of the peaks are utilized to identify the reactivity and correlation between peaks that plot in different regions of the van Krevelen diagram, whereas the normalized magnitudes are used to correlate the changes among individual peaks. One of the promising advantages of 2D correlation of FTICR-MS data is the ability to associate the variations of the individual peaks with the changes in the functional groups that are measured by other spectroscopic techniques. This approach takes us one step further from identifying molecular formulas to proposing chemical structures. PMID:23472832

  10. The coordinate transformation method for design of polarizers on HL-2A electron cyclotron resonance heating and current drive systems

    SciTech Connect

    Xia, D. H.; Huang, M.; Zhou, J.; Rao, J.; Zhuang, G.

    2013-10-15

    Polarizers are widely used to change the polarization of millimeter waves on the electron cyclotron resonance heating and current drive (ECRH and CD) systems. A new method based on the coordinate transformation and the Fourier expansion (the so-called C-method) has been developed for design of polarizers on the HL-2A ECRH and CD systems. This method transforms the grating problem to an eigenvalue problem, making it easy and clear to understand and solve. The comparison between the C-method, the integral method, and the low power test results is presented. It indicates that the C-method can be considered as a rigorous numerical method for the design of polarizers. Finally, two polarizers were designed based on the C-method which can be used together to achieve almost arbitrary polarization.

  11. Detection of electron energy distribution function anisotropy in a magnetized electron cyclotron resonance plasma by using a directional Langmuir probe

    SciTech Connect

    Shikama, T. Hasuo, M.; Kitaoka, H.

    2014-07-15

    Anisotropy in the electron energy distribution function (EEDF) in an electron cyclotron resonance plasma with magnetized electrons and weakly magnetized ions is experimentally investigated using a directional Langmuir probe. Under an assumption of independent EEDFs in the directions parallel and perpendicular to the magnetic field, the directional variation of the EEDF is evaluated. In the measured EEDFs, a significantly large population density of electrons with energies larger than 30 eV is found in one of the cross-field directions depending on the magnetic field direction. With the aid of an electron trajectory calculation, it is suggested that the observed anisotropic electrons originate from the EEDF anisotropy and the cross-field electron drift.

  12. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer

    DOE PAGESBeta

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.

    2015-01-19

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry provides unparalleled mass accuracy and resolving power.[1],[2] With electrospray ionization (ESI), ions are typically transferred into the mass spectrometer through a skimmer, which serves as a conductance-limiting orifice. However, the skimmer allows only a small fraction of incoming ions to enter the mass spectrometer. An ion funnel, originally developed by Smith and coworkers at Pacific Northwest National Laboratory (PNNL)[3-5] provides much more efficient ion focusing and transfer. The large entrance aperture of the ion funnel allows almost all ions emanating from a heated capillary to be efficiently captured and transferred, resulting inmore » nearly lossless transmission.« less

  13. Reversible Resistive Switching in Bi4Ti3O12 Thin Films Deposited by Electron Cyclotron Resonance Sputtering

    NASA Astrophysics Data System (ADS)

    Jin, Yoshito; Sakai, Hideaki; Shimada, Masaru

    2006-04-01

    We have newly found that reversible resistive switching occurs at room temperature in a Bi4Ti3O12 thin film deposited by electron cyclotron resonance sputtering. The resistive switching was observed in several stacked capacitor structures regardless of the combination of top and bottom electrodes, such as Au, Pt/Ti, and Ru, though the details of current-voltage characteristics were slightly different. The large magnitude of the resistance ratio in low-resistance and high-resistance states, reversible switching with voltage pulses, and long-term retention characteristics are described. Resistance in the low-resistance state hardly depended on neither the area of the electrode pad nor the thickness of bismuth titanate films. We speculate that reversible resistive switching is caused by the creation and annihilation of a conducting path.

  14. A multi-sample changer coupled to an electron cyclotron resonance source for accelerator mass spectrometry experiments

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Palchan, T.; Pardo, R.; Peters, C.; Power, M.; Scott, R.

    2014-02-01

    A new multi-sample changer has been constructed allowing rapid changes between samples. The sample changer has 20 positions and is capable of moving between samples in 1 min. The sample changer is part of a project using Accelerator Mass Spectrometry (AMS) at the Argonne Tandem Linac Accelerator System (ATLAS) facility to measure neutron capture rates on a wide range of actinides in a reactor environment. This project will require the measurement of a large number of samples previously irradiated in the Advanced Test Reactor at Idaho National Laboratory. The AMS technique at ATLAS is based on production of highly charged positive ions in an electron cyclotron resonance ion source followed by acceleration in the ATLAS linac. The sample material is introduced into the plasma via laser ablation chosen to limit the dependency of material feed rates upon the source material composition as well as minimize cross-talk between samples.

  15. Formation of multi-charged ion beams by focusing effect of mid-electrode on electron cyclotron resonance ion source

    SciTech Connect

    Imai, Youta Kimura, Daiju; Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Kumakura, Sho; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2014-02-15

    We are constructing a tandem type electron cyclotron resonance ion source (ECRIS) and a beam line for extracting ion beams. The ion beam is extracted from the second stage by an accel-decel extraction system with a single-hole and the ion beam current on each electrode is measured. The total ion beam current is measured by a faraday cup downstream the extraction electrodes. We measure these currents as a function of the mid-electrode potential. We also change the gap length between electrodes and perform similar measurement. The behaviors of these currents obtained experimentally against the mid-electrode potential show qualitatively good agreement with a simple theoretical consideration including sheath potential effects. The effect of mid-electrode potential is very useful for decreasing the beam loss for enhancing ion beam current extracted from ECRIS.

  16. New tandem type ion source based on electron cyclotron resonance for universal source of synthesized ion beams

    SciTech Connect

    Kato, Yushi Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Nishiokada, Takuya; Sato, Fuminobu; Iida, Toshiyuki

    2014-02-15

    A new tandem type source has been constructed on the basis of electron cyclotron resonance (ECR) plasma for producing synthesized ion beams. We investigate feasibility and hope to realize the device which has wide range operation window in a single device to produce many kinds of ion beams based on ECR ion source (ECRIS). It is considered that ECR plasmas are necessary to be available to individual operations with different plasma parameters. Both of analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas. We describe construction of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source.

  17. Direct determination of the electron effective mass of GaAsN by terahertz cyclotron resonance spectroscopy

    SciTech Connect

    Eßer, F.; Helm, M.; Drachenko, O.; Winnerl, S.; Schneider, H.; Patanè, A.; Ozerov, M.

    2015-08-10

    We use cyclotron resonance THz-spectroscopy in pulsed magnetic fields up to 63 T to measure the electron effective mass in Si-doped GaAsN semiconductor alloys with nitrogen content up to 0.2%. This technique directly probes the transport properties of the N-modified conduction band, particularly the electron effective mass, which has been discussed controversially in the experimental and theoretical literature. We report a slight increase of the electron effective mass and nonparabolicity with N-content for different photon energies in agreement with the two-level band anticrossing model calculations. Furthermore, we show a pronounced electron mobility drop with increasing N-content.

  18. The impact of UVCS/SOHO observations on models of ion-cyclotron resonance heating of the solar corona

    NASA Technical Reports Server (NTRS)

    Cranmer, S. R.; Field, G. B.; Noci, G.; Kohl, J. L.

    1997-01-01

    The compatibility between theoretical models and observations of the temperatures and anisotropic distributions of hydrogen and minor ions in the solar corona is examined. The ultraviolet coronagraph spectrometer (UVCS) instrument onboard SOHO measured hydrogen kinetic temperatures along lines of sight in coronal holes in excess of 3 x 10(exp 6) K and O(+5) ion kinetic temperatures of at least 2 x 10(exp 8) K. Various features of plasma heating by the dissipation of high-frequency ion-cyclotron resonance Alfven waves, which may be the most natural physical mechanism to produce certain plasma conditions, are examined. Preliminary quantitative models of the ion motion in polar coronal holes are presented, and it is shown that such models can be used to predict the spectrum of waves required to reproduce the observations. Indeed, the more ionic species that are observed spectroscopically, the greater the extent in frequency space the wave spectrum can be inferred.

  19. Effects of electron-cyclotron-resonance-heating-induced internal kink mode on the toroidal rotation in the KSTAR Tokamak.

    PubMed

    Seol, J; Lee, S G; Park, B H; Lee, H H; Terzolo, L; Shaing, K C; You, K I; Yun, G S; Kim, C C; Lee, K D; Ko, W H; Kwak, J G; Kim, W C; Oh, Y K; Kim, J Y; Kim, S S; Ida, K

    2012-11-01

    It is observed that the magnitude of the toroidal rotation speed is reduced by the central electron cyclotron resonance heating (ECRH) regardless of the direction of the toroidal rotation. The magnetohydrodynamics activities generally appear with the rotation change due to ECRH. It is shown that the internal kink mode is induced by the central ECRH and breaks the toroidal symmetry. When the magnetohydrodynamics activities are present, the toroidal plasma viscosity is not negligible. The observed effects of ECRH on the toroidal plasma rotation are explained by the neoclassical toroidal viscosity in this Letter. It is found that the neoclassical toroidal viscosity torque caused by the internal kink mode damps the toroidal rotation. PMID:23215391

  20. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work. PMID:26932095

  1. Neutron emission spectroscopy results for internal transport barrier and mode conversion ion cyclotron resonance heating experiments at JET

    SciTech Connect

    Giacomelli, L.; Hjalmarsson, A.; Hellesen, C.; Conroy, S.; Sunden, E. Andersson; Ericsson, G.; Johnson, M. Gatu; Sjoestrand, H.; Weiszflog, M.; Kaellne, J.; Tardocchi, M.; Gorini, G.

    2008-10-15

    The effect of ion cyclotron resonance heating (ICRH) on ({sup 3}He)D plasmas at JET was studied with the time of flight optimized rate (TOFOR) spectrometer dedicated to 2.5 MeV dd neutron measurements. In internal transport barrier (ITB) plasma experiments with large {sup 3}He concentrations (X({sup 3}He)>15%) an increase in neutron yield was observed after the ITB disappeared but with the auxiliary neutral beam injection and ICRH power still applied. The analysis of the TOFOR data revealed the formation of a high energy (fast) D population in this regime. The results were compared to other mode conversion experiments with similar X({sup 3}He) but slightly different heating conditions. In this study we report on the high energy neutron tails originating from the fast D ions and their correlation with X({sup 3}He) and discuss the light it can shed on ICRH-plasma power coupling mechanisms.

  2. Plasma diagnostics of low pressure high power impulse magnetron sputtering assisted by electron cyclotron wave resonance plasma

    SciTech Connect

    Stranak, Vitezslav; Herrendorf, Ann-Pierra; Drache, Steffen; Bogdanowicz, Robert; Hippler, Rainer; Cada, Martin; Hubicka, Zdenek; Tichy, Milan

    2012-11-01

    This paper reports on an investigation of the hybrid pulsed sputtering source based on the combination of electron cyclotron wave resonance (ECWR) inductively coupled plasma and high power impulse magnetron sputtering (HiPIMS) of a Ti target. The plasma source, operated in an Ar atmosphere at a very low pressure of 0.03 Pa, provides plasma where the major fraction of sputtered particles is ionized. It was found that ECWR assistance increases the electron temperature during the HiPIMS pulse. The discharge current and electron density can achieve their stable maximum 10 {mu}s after the onset of the HiPIMS pulse. Further, a high concentration of double charged Ti{sup ++} with energies of up to 160 eV was detected. All of these facts were verified experimentally by time-resolved emission spectroscopy, retarding field analyzer measurement, Langmuir probe, and energy-resolved mass spectrometry.

  3. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    NASA Astrophysics Data System (ADS)

    Toivanen, V.; Küchler, D.

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  4. Implementation of an operator intervention system for remote control of the RIKEN 28 GHz superconducting electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Uchiyama, A.; Furukawa, K.; Higurashi, Y.; Nakagawa, T.

    2014-02-01

    The control system for the RIKEN 28 GHz superconducting electron cyclotron resonance ion source (28 GHz SC-ECRIS) consists of a distributed control system based on the experimental physics and industrial control system. To maintain the beam quality for the long beam-service time at the radioactive isotope beam factory, beam tuning to prevent subtle changes in the 28 GHz SC-ECRIS conditions is required. Once this is achieved, it should then be possible to check conditions and operate the ion source at any time. We have designed a web-based operational interface to remotely control the ion source, but for access and control from several locations, suitable access security, policies, and methods are required. We thus implemented an operator intervention system that makes it possible to safely access the network externally with the permission of on-site accelerator operators in the control room.

  5. Superconducting magnet performance for 28 GHz electron cyclotron resonance ion source developed at the Korea Basic Science Institute

    SciTech Connect

    Park, Jin Yong; Choi, Seyong; Lee, Byoung-Seob; Yoon, Jang-Hee; Ok, Jung-Woo; Shin, Chang Seouk; Won, Mi-Sook; Kim, Byoung Chul; Ahn, Jung Keun

    2014-02-15

    A superconducting magnet for use in an electron cyclotron resonance ion source was developed at the Korea Basic Science Institute. The superconducting magnet is comprised of three solenoids and a hexapole magnet. According to the design value, the solenoid magnets can generate a mirror field, resulting in axial magnetic fields of 3.6 T at the injection area and 2.2 T at the extraction region. A radial field strength of 2.1 T can also be achieved by hexapole magnet on the plasma chamber wall. NbTi superconducting wire was used in the winding process following appropriate techniques for magnet structure. The final assembly of the each magnet involved it being vertically inserted into the cryostat to cool down the temperature using liquid helium. The performance of each solenoid and hexapole magnet was separately verified experimentally. The construction of the superconducting coil, the entire magnet assembly for performance testing and experimental results are reported herein.

  6. Ohm's law at strong coupling: S duality and the cyclotron resonance

    SciTech Connect

    Hartnoll, Sean A.; Herzog, Christopher P.

    2007-11-15

    We calculate the electrical and thermal conductivities and the thermoelectric coefficient of a class of strongly interacting 2+1-dimensional conformal field theories with anti-de Sitter space duals. We obtain these transport coefficients as a function of charge density, background magnetic field, temperature, and frequency. We show that the thermal conductivity and thermoelectric coefficient are determined by the electrical conductivity alone. At small frequency, in the hydrodynamic limit, we are able to provide a number of analytic formulas for the electrical conductivity. A dominant feature of the conductivity is the presence of a cyclotron pole. We show how bulk electromagnetic duality acts on the transport coefficients.

  7. Possible Detection of an Emission Cyclotron Resonance Scattering Feature from the Accretion-Powered Pulsar 4U 1626-67

    NASA Technical Reports Server (NTRS)

    Iwakiri, W. B.; Terada, Y.; Tashiro, M. S.; Mihara, T.; Angelini, L.; Yamada, S.; Enoto, T.; Makishima, K.; Nakajima, M.; Yoshida, A.

    2012-01-01

    We present analysis of 4U 1626-67, a 7.7 s pulsar in a low-mass X-ray binary system, observed with the hard X-ray detector of the Japanese X-ray satellite Suzaku in 2006 March for a net exposure of 88 ks. The source was detected at an average 10-60 keY flux of approx 4 x 10-10 erg / sq cm/ s. The phase-averaged spectrum is reproduced well by combining a negative and positive power-law times exponential cutoff (NPEX) model modified at approx 37 keY by a cyclotron resonance scattering feature (CRSF). The phase-resolved analysis shows that the spectra at the bright phases are well fit by the NPEX with CRSF model. On the other hand. the spectrum in the dim phase lacks the NPEX high-energy cutoff component, and the CRSF can be reproduced by either an emission or an absorption profile. When fitting the dim phase spectrum with the NPEX plus Gaussian model. we find that the feature is better described in terms of an emission rather than an absorption profile. The statistical significance of this result, evaluated by means of an F test, is between 2.91 x 10(exp -3) and 1.53 x 10(exp -5), taking into account the systematic errors in the background evaluation of HXD-PIN. We find that the emission profile is more feasible than the absorption one for comparing the physical parameters in other phases. Therefore, we have possibly detected an emission line at the cyclotron resonance energy in the dim phase.

  8. Note: Optimized circuit for excitation and detection with one pair of electrodes for improved Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Chen, T; Beu, S C; Kaiser, N K; Hendrickson, C L

    2014-06-01

    A conventional Fourier transform-Ion Cyclotron Resonance (ICR) detection cell is azimuthally divided into four equal sections. One pair of opposed electrodes is used for ion cyclotron excitation, and the other pair for ion image charge detection. In this work, we demonstrate that an appropriate electrical circuit facilitates excitation and detection on one pair of opposed electrodes. The new scheme can be used to minimize the number of electrically independent ICR cell electrodes and/or improve the electrode geometry for simultaneously increased ICR signal magnitude and optimal post-excitation radius, which results in higher signal-to-noise ratio and decreased space-charge effects. PMID:24985871

  9. Electron Spin Resonance Study of Electrons Trapped in Solid Molecular Hydrogen Films

    NASA Astrophysics Data System (ADS)

    Sheludiakov, S.; Ahokas, J.; Järvinen, J.; Vainio, O.; Lehtonen, L.; Zvezdov, D.; Khmelenko, V.; Lee, D. M.; Vasiliev, S.

    2016-05-01

    We report on the measurements of electrons trapped in solid molecular films of H2, HD, and D2. A narrow ESR line associated with the trapped electrons was detected with g=2.00233(5), which turned out to be shifted by -0.3 G from the free electron resonance. Comparison is made with earlier measurements where a similar line has been seen. In addition, for a text {D}2{:}text {H}2 mixture, after raising the temperature above 1 K, we observe a strong line at the location of the electron cyclotron resonance. The line amplitude is dependent on temperature and has an activation energy of 26 K. We believe that at elevated temperatures, electrons diffuse from the bulk of the film to the surface.

  10. Rashba spin splitting and cyclotron resonance in strained InGaAs/InP heterostructures with a two-dimensional electron gas

    SciTech Connect

    Kalinin, K. P. Krishtopenko, S. S.; Maremyanin, K. V.; Spirin, K. E.; Gavrilenko, V. I.; Biryukov, A. A.; Baidus, N. V.; Zvonkov, B. N.

    2013-11-15

    Cyclotron resonance and magnetic transport in InP/InGaAs/InP heterostructures with axially symmetric quantum wells are studied experimentally at 4.2 K. An increase in the cyclotron mass at the Fermi level from 0.047m{sub 0} to 0.057m{sub 0} with an increase in the concentration of two-dimensional electrons from 5.5 Multiplication-Sign 10{sup 11} to 2.1 Multiplication-Sign 10{sup 12} cm{sup -3} is shown. The values of the Rashba spin splitting at the Fermi level are determined from Fourier analysis of the beats of Shubnikov-de Haas oscillations. The obtained experimental data are compared with the theoretical results of self-consistent calculations of the energy spectrum and cyclotron masses of 2D electrons performed using the eight-band k {center_dot} p Hamiltonian.

  11. Production of beams from solid materials at Center for Nuclear Study electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Ohshiro, Y.; Yamaka, S.; Watanabe, S.; Kobayashi, K.; Kotaka, Y.; Nishimura, M.; Kase, M.; Muto, H.; Yamaguchi, H.; Shimoura, S.

    2014-02-01

    Two methods for the feed of vapor from solid materials in the Center for Nuclear Study ECR ion source are described. A rod placed near the wall of the plasma chamber, operating up to a melting point of 2600 °C, has been used for CaO, SiO2, and FeO. An oven with a number of openings, operating up to 800 °C, has been used for P2O5, Li, and S. Typical ion beam intensities of 7Li2+, 6Li3+, 40Ca12+, and 56Fe15+ are achieved 280, 75, 28, and 7 eμA, respectively. High intensity heavy ion beams are stably supplied into the azimuthally varying field cyclotron.

  12. Transverse distribution of beam current oscillations of a 14 GHz electron cyclotron resonance ion source.

    PubMed

    Tarvainen, O; Toivanen, V; Komppula, J; Kalvas, T; Koivisto, H

    2014-02-01

    The temporal stability of oxygen ion beams has been studied with the 14 GHz A-ECR at JYFL (University of Jyvaskyla, Department of Physics). A sector Faraday cup was employed to measure the distribution of the beam current oscillations across the beam profile. The spatial and temporal characteristics of two different oscillation "modes" often observed with the JYFL 14 GHz ECRIS are discussed. It was observed that the low frequency oscillations below 200 Hz are distributed almost uniformly. In the high frequency oscillation "mode," with frequencies >300 Hz at the core of the beam, carrying most of the current, oscillates with smaller amplitude than the peripheral parts of the beam. The results help to explain differences observed between the two oscillation modes in terms of the transport efficiency through the JYFL K-130 cyclotron. The dependence of the oscillation pattern on ion source parameters is a strong indication that the mechanisms driving the fluctuations are plasma effects. PMID:24593488

  13. The preliminary tests of the superconducting electron cyclotron resonance ion source DECRIS-SC2

    SciTech Connect

    Efremov, A.; Bekhterev, V.; Bogomolov, S.; Loginov, V.; Lebedev, A.; Yazvitsky, N.; Yakovlev, B.; Drobin, V.

    2012-02-15

    A new compact version of the ''liquid He-free'' superconducting ECR ion source, to be used as an injector of highly charged heavy ions for the MC-400 cyclotron, is designed and built at the Flerov Laboratory of Nuclear Reactions in collaboration with the Laboratory of High Energy Physics of JINR. The axial magnetic field of the source is created by the superconducting magnet and the NdFeB hexapole is used for the radial plasma confinement. The microwave frequency of 14 GHz is used for ECR plasma heating. During the first tests, the source shows a good enough performance for the production of medium charge state ions. In this paper, we will present the design parameters and the preliminary results with gaseous ions.

  14. The preliminary tests of the superconducting electron cyclotron resonance ion source DECRIS-SC2.

    PubMed

    Efremov, A; Bekhterev, V; Bogomolov, S; Drobin, V; Loginov, V; Lebedev, A; Yazvitsky, N; Yakovlev, B

    2012-02-01

    A new compact version of the "liquid He-free" superconducting ECR ion source, to be used as an injector of highly charged heavy ions for the MC-400 cyclotron, is designed and built at the Flerov Laboratory of Nuclear Reactions in collaboration with the Laboratory of High Energy Physics of JINR. The axial magnetic field of the source is created by the superconducting magnet and the NdFeB hexapole is used for the radial plasma confinement. The microwave frequency of 14 GHz is used for ECR plasma heating. During the first tests, the source shows a good enough performance for the production of medium charge state ions. In this paper, we will present the design parameters and the preliminary results with gaseous ions. PMID:22380181

  15. Plasma spectroscopy of metal ions for hyper-electron cyclotron resonance ion source.

    PubMed

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shoichi; Watanabe, Shin-ichi; Oyaizu, Michihiro; Kubono, Shigeru; Yamaguchi, Hidetoshi; Kase, Masayuki; Hattori, Toshiyuki; Shimoura, Susumu

    2014-02-01

    In this research, the optical line spectra of metal ions from ECR plasma were observed using a grating monochromator with a photomultiplier. The light intensity of line spectrum from the ECR plasma had a strong correlation with ion beam intensity measured by a magnetic mass analyzer. This correlation is a significant information for the beam tuning process, because it allows to conduct the extraction of the desired metal ion species from the ECR plasma. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process, but this research provides a new approach for its simplification. In this paper the grating monochromator method for metal ion beam tuning such as (40)Ca(12+), (56)Fe(15+), and (85)Rb(20+) of hyper-ECR ion source as an injector for RIKEN Azimuthal Varying Field cyclotron is described. PMID:24593484

  16. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS.

    PubMed

    Thomae, R; Conradie, J; Fourie, D; Mira, J; Nemulodi, F; Kuechler, D; Toivanen, V

    2016-02-01

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented. PMID:26931949

  17. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    NASA Astrophysics Data System (ADS)

    Thomae, R.; Conradie, J.; Fourie, D.; Mira, J.; Nemulodi, F.; Kuechler, D.; Toivanen, V.

    2016-02-01

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  18. Experimental observation of left polarized wave absorption near electron cyclotron resonance frequency in helicon antenna produced plasma

    SciTech Connect

    Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.; Kumar, Sunil; Saxena, Y. C.

    2013-01-15

    Asymmetry in density peaks on either side of an m = +1 half helical antenna is observed both in terms of peak position and its magnitude with respect to magnetic field variation in a linear helicon plasma device [Barada et al., Rev. Sci. Instrum. 83, 063501 (2012)]. The plasma is produced by powering the m = +1 half helical antenna with a 2.5 kW, 13.56 MHz radio frequency source. During low magnetic field (B < 100 G) operation, plasma density peaks are observed at critical magnetic fields on either side of the antenna. However, the density peaks occurred at different critical magnetic fields on both sides of antenna. Depending upon the direction of the magnetic field, in the m = +1 propagation side, the main density peak has been observed around 30 G of magnetic field. On this side, the density peak around 5 G corresponding to electron cyclotron resonance (ECR) is not very pronounced, whereas in the m = -1 propagation side, very pronounced ECR peak has been observed around 5 G. Another prominent density peak around 12 G has also been observed in m = -1 side. However, no peak has been observed around 30 G on this m = -1 side. This asymmetry in the results on both sides is explained on the basis of polarization reversal of left hand polarized waves to right hand polarized waves and vice versa in a bounded plasma system. The density peaking phenomena are likely to be caused by obliquely propagating helicon waves at the resonance cone boundary.

  19. Spectroscopic Constraints on Models of Ion-Cyclotron Resonance Heating in the Polar Solar Corona and Fast Solar Wind

    NASA Astrophysics Data System (ADS)

    Cranmer, S. R.; Field, G. B.; Kohl, J. L.

    1998-12-01

    We present preliminary results from a theoretical model of the heating of minor ions in the fast solar wind. We examine the compatibility between these models and spectroscopic determinations of velocity distribution functions from the UVCS and SUMER instruments aboard SOHO. By examining the dependence of line shapes (which probe the perpendicular velocity distribution) on ion charge and mass, detailed information can be extracted about the preferential heating and the Coulomb collisional coupling. The primary momentum and energy deposition mechanism we investigate is the dissipation of high-frequency (ion-cyclotron resonant) Alfven waves, which can accelerate and heat ions differently depending on their charge and mass. Minor ions which do not appreciably damp the resonant wave amplitudes can be used to constrain the slope of the fluctuation spectrum. SUMER measurements of several ions at heliocentric heights between 1.02 and 1.07 solar radii allow the ``base'' spectrum to be analyzed, and UVCS O VI line widths measured between 1.5 and 3.5 solar radii provide information about the radial evolution of the spectrum. This work is supported by the National Aeronautics and Space Administration under grant NAG5-3192 to the Smithsonian Astrophysical Observatory, by Agenzia Spaziale Italiana, and by the ESA PRODEX program (Swiss contribution).

  20. THz Magneto-photoresponse of an InAs-based Quantum Point Contact Structure in the Region of Cyclotron Resonance

    NASA Astrophysics Data System (ADS)

    Pakmehr, Mehdi; Whiteside, Vincent; Bhandari, Nikhil; Cahay, Marc; Newrock, Richard; McCombe, Bruce

    2013-03-01

    We have studied the THz magneto-photoresponse of a 2DEG in an InAs quantum well with an embedded Quantum Point Contact in the frequency/field region where electron cyclotron resonance (CR) dominates the response suing several lines from an optically pumped THz laser. The photoresponse near CR is manifested as an envelope of the amplitude of the Shubnikov-de Haas oscillations of the 2DEG with a peak near the CR field. Clear spin-splitting of the quantum oscillations is observed for B > 4, while the SdH oscillations do not show resolved spin-splitting up to 10 T. Data were simulated by a model of resonant carrier heating (due to CR), and from the simulations the carrier density, the CR effective mass, scattering times and the g-factor were obtained. We find a significantly enhanced g-factor, apparently due to many-electron exchange interaction effects. The g-factor determined from fitting spin-split Landau level peaks increases with magnetic field. Work at UB was supported by NSF DMR 1008138 and the Office of the Provost; work at the University of Cincinnati was supported by NSF ECCE 1028483.

  1. Dithranol as a Matrix for Matrix Assisted Laser Desorption/Ionization Imaging on a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Le, Cuong H.; Han, Jun; Borchers, Christoph H.

    2013-01-01

    Mass spectrometry imaging (MSI) determines the spatial localization and distribution patterns of compounds on the surface of a tissue section, mainly using MALDI (matrix assisted laser desorption/ionization)-based analytical techniques. New matrices for small-molecule MSI, which can improve the analysis of low-molecular weight (MW) compounds, are needed. These matrices should provide increased analyte signals while decreasing MALDI background signals. In addition, the use of ultrahigh-resolution instruments, such as Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, has the ability to resolve analyte signals from matrix signals, and this can partially overcome many problems associated with the background originating from the MALDI matrix. The reduction in the intensities of the metastable matrix clusters by FTICR MS can also help to overcome some of the interferences associated with matrix peaks on other instruments. High-resolution instruments such as the FTICR mass spectrometers are advantageous as they can produce distribution patterns of many compounds simultaneously while still providing confidence in chemical identifications. Dithranol (DT; 1,8-dihydroxy-9,10-dihydroanthracen-9-one) has previously been reported as a MALDI matrix for tissue imaging. In this work, a protocol for the use of DT for MALDI imaging of endogenous lipids from the surfaces of mammalian tissue sections, by positive-ion MALDI-MS, on an ultrahigh-resolution hybrid quadrupole FTICR instrument has been provided. PMID:24300588

  2. Structural characterisation of tyrosine-nitrated peptides by ultraviolet and infrared matrix-assisted laser desorption/ionisation Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Petre, Brínduşa-Alina; Youhnovski, Nikolay; Lukkari, Juho; Weber, Reinhold; Przybylski, Michael

    2005-01-01

    Nitration of tyrosine residues in proteins may occur in cells upon oxidative stress and inflammation processes mediated through generation of reactive nitroxyl from peroxynitrite. Tyrosine nitration from oxidative pathways may generate cytotoxic species that cause protein dysfunction and pathogenesis. A number of protein nitrations in vivo have been reported and some specific Tyrosine nitration sites have been recently identified using mass spectrometric methods. High-resolution Fourier transform ion cyclotron resonance mass spectrometry (MALDI) FT-ICR-MS) is shown here to be a highly efficient method in the determination of protein nitrations. Following the identification of nitration of the catalytic site Tyr-430 residue of bovine prostacyclin synthase, we synthesised several model peptides containing both unmodified tyrosine and 3-nitro-tyrosine residues, using solid-phase peptide synthesis (SPPS). The structures of the nitrotyrosine peptides were characterised both by ESI- and by matrix-assisted laser desorption/ionisation (MALDI)-FT-ICR-MS, using a standard ultraviolet (UV) nitrogen nitrogen laser and a 2.97 microm Nd-YAG infrared laser. Using UV-MALDI-MS, 3-nitrotyrosyl-peptides were found to undergo extensive photochemical fragmentation at the nitrophenyl group, which may hamper or prevent the unequivocal identification of Tyr-nitrations in cellular proteins. In contrast, infrared-MALDI-FT-ICR-MS did not produce fragmentation of molecular ions of Tyr-nitrated peptides. PMID:16322657

  3. Dithranol as a matrix for matrix assisted laser desorption/ionization imaging on a fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Le, Cuong H; Han, Jun; Borchers, Christoph H

    2013-01-01

    Mass spectrometry imaging (MSI) determines the spatial localization and distribution patterns of compounds on the surface of a tissue section, mainly using MALDI (matrix assisted laser desorption/ionization)-based analytical techniques. New matrices for small-molecule MSI, which can improve the analysis of low-molecular weight (MW) compounds, are needed. These matrices should provide increased analyte signals while decreasing MALDI background signals. In addition, the use of ultrahigh-resolution instruments, such as Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, has the ability to resolve analyte signals from matrix signals, and this can partially overcome many problems associated with the background originating from the MALDI matrix. The reduction in the intensities of the metastable matrix clusters by FTICR MS can also help to overcome some of the interferences associated with matrix peaks on other instruments. High-resolution instruments such as the FTICR mass spectrometers are advantageous as they can produce distribution patterns of many compounds simultaneously while still providing confidence in chemical identifications. Dithranol (DT; 1,8-dihydroxy-9,10-dihydroanthracen-9-one) has previously been reported as a MALDI matrix for tissue imaging. In this work, a protocol for the use of DT for MALDI imaging of endogenous lipids from the surfaces of mammalian tissue sections, by positive-ion MALDI-MS, on an ultrahigh-resolution hybrid quadrupole FTICR instrument has been provided. PMID:24300588

  4. Sample handling and contamination encountered when coupling offline normal phase high performance liquid chromatography fraction collection of petroleum samples to Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Oro, Nicole E; Whittal, Randy M; Lucy, Charles A

    2012-09-01

    Normal phase high performance liquid chromatography (HPLC) is used to separate a gas oil petroleum sample, and the fractions are collected offline and analyzed on a high resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR MS). The separation prior to MS analysis dilutes the sample significantly; therefore the fractions need to be prepared properly to achieve the best signal possible. The methods used to prepare the HPLC fractions for MS analysis are described, with emphasis placed on increasing the concentration of analyte species. The dilution effect also means that contamination in the MS spectra needs to be minimized. The contamination from molecular sieves, plastics, soap, etc. and interferences encountered during the offline fraction collection process are described and eliminated. A previously unreported MS contamination of iron formate clusters with a 0.8 mass defect in positive mode electrospray is also described. This interference resulted from the stainless steel tubing in the HPLC system. Contamination resulting from what has tentatively been assigned as palmitoylglycerol and stearoylglycerol was also observed; these compounds have not previously been reported as contaminant peaks. PMID:22840706

  5. Development of a new superconducting Electron Cyclotron Resonance Ion Source for operations up to 18 GHz at LBNL.

    PubMed

    Xie, D Z; Benitez, J Y; Caspi, S; Hodgkinson, A; Lyneis, C M; Phair, L W; Prestemon, S O; Strohmeier, M M; Thuillier, T P; Todd, D S

    2014-02-01

    A new superconducting Electron Cyclotron Resonance Ion Source (ECRIS) is under development at LBNL to harness the winding techniques of a closed-loop sextupole coil for the next generation ECRIS and to enhance the capability of the 88-in. cyclotron facility. The proposed ECRIS will use a superconducting closed-loop sextupole coil to produce the radial field and a substantial portion of the axial field. The field strengths of the injection, central and extraction regions are adjusted by a three solenoids outside the closed-loop sextupole coil. In addition to maintaining the typical ECRIS magnetic field configuration, this new source will also be able to produce a dustpan-like minimum-B field to explore possible ECRIS performance enhancement. The dustpan-like minimum-B field configuration has about the same strengths for the maximum axial field at the injection region and the maximum radial pole fields at the plasma chamber walls but it can be substantially lower at the extraction region. The dustpan-like minimum-B will have a field maximum Bmax ≥ 2.6 T for operations up to 18 GHz with a ratio of Bmax/Bres ≥ 4 and higher ratios for lower frequencies. The field maxima of this new source can reach over 3 T both at the injection and the plasma chamber walls which could also support operation at 28 GHz. The source will be built of cryogen-free with the magnets directly cooled by cryo-coolers to simplify the cryostat structure. The source design features will be presented and discussed. PMID:24593501

  6. On the second harmonic electron cyclotron resonance heating and current drive experiments on T-10 and DIII-D

    SciTech Connect

    Lohr, J.; Forest, C.B.; Lin-Liu, Y.R.; Luce, T.C.; Harvey, R.W. ); Downs, E.A. Cornell Univ., Ithaca, NY ); James, R.A. Lawrence Livermore National Lab., CA ); Bagdasarov, A.A.; Borshegovskii, A.A.; Chistyakov, V.V.; Dremin, M.M.; Gors

    1993-02-01

    Studies of electron cyclotron current drive at the second harmonic resonance have been performed both on the DIII-D and T-10 tokamaks at injected power levels of approximately 0.5 MW. The DIII-D experiment used high held launch of the extraordinary mode at an angle of 15[degree] to the radial. In this experiment, with pulse lengths [approx equal] 500 msec, a loop voltage difference, compared to the value expected from the measured profiles, of [approx equal] 50 mV was ascribed to approximately 50 kA of rf-driven current. When dc electric field and trapped particle effects were considered, this was consistent with theoretical predictions. T-10 experiments planned for the fall of 1992 will use low field launch of the extraordinary mode and an injection angle of 21[degree] off-radial. In preliminary experiments with relatively poor machine conditions and pulse lengths [approx equal] 400 msec, rf current drive was not observed despite the fact that driven currents as low as 10 kA, corresponding to a loop voltage difference for co- versus counter-injection of 20 mV, could have been detected. In this paper we examine the T-10 experiments using ray tracing and transport calculations in an attempt to understand the results. The dependence of the current drive efficiency on discharge parameters, flux penetration, and non-linear effects will be discussed. The results show that the launching geometry can have a significant effect on the observation of electron cyclotron current drive using the loop voltage as a diagnostic. In addition, predictions for the next series of experiments on T-10, for which greater than 2 MW of high frequency power should be available, will be presented.

  7. On the second harmonic electron cyclotron resonance heating and current drive experiments on T-10 and DIII-D

    SciTech Connect

    Lohr, J.; Forest, C.B.; Lin-Liu, Y.R.; Luce, T.C.; Harvey, R.W.; Downs, E.A. |; James, R.A. |; Bagdasarov, A.A.; Borshegovskii, A.A.; Chistyakov, V.V.; Dremin, M.M.; Gorshkov, A.V.; Gorelov, Y.A.; Esipchuk, Y.V.; Ivanov, N.V.; Kislov, A.Y.; Kislov, D.A.; Lysenko, S.E.; Medvedev, A.A.; Mirenskii, V.Y.; Notkin, G.E.; Parail, V.V.; Pavlov, Y.D.; Razumova, K.A.; Roi, I.N.; Savrukhin, P.V.; Sannikov, V.V.; Sushkov, A.V.; Trukhin, V.M.; Vasin, N.L.; Volkov, V.V.; Denisov, G.G.; Petelin, M.I.; Flyagin, V.A.

    1993-02-01

    Studies of electron cyclotron current drive at the second harmonic resonance have been performed both on the DIII-D and T-10 tokamaks at injected power levels of approximately 0.5 MW. The DIII-D experiment used high held launch of the extraordinary mode at an angle of 15{degree} to the radial. In this experiment, with pulse lengths {approx_equal} 500 msec, a loop voltage difference, compared to the value expected from the measured profiles, of {approx_equal} 50 mV was ascribed to approximately 50 kA of rf-driven current. When dc electric field and trapped particle effects were considered, this was consistent with theoretical predictions. T-10 experiments planned for the fall of 1992 will use low field launch of the extraordinary mode and an injection angle of 21{degree} off-radial. In preliminary experiments with relatively poor machine conditions and pulse lengths {approx_equal} 400 msec, rf current drive was not observed despite the fact that driven currents as low as 10 kA, corresponding to a loop voltage difference for co- versus counter-injection of 20 mV, could have been detected. In this paper we examine the T-10 experiments using ray tracing and transport calculations in an attempt to understand the results. The dependence of the current drive efficiency on discharge parameters, flux penetration, and non-linear effects will be discussed. The results show that the launching geometry can have a significant effect on the observation of electron cyclotron current drive using the loop voltage as a diagnostic. In addition, predictions for the next series of experiments on T-10, for which greater than 2 MW of high frequency power should be available, will be presented.

  8. Molecular structure and motion in zero field magnetic resonance

    SciTech Connect

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed.

  9. Millimeter-wave, megawatt gyrotron development for ECR (electron cyclotron resonance) heating applications

    SciTech Connect

    Jory, H.; Felch, K.; Hess, C.; Huey, H.; Jongewaard, E.; Neilson, J.; Pendleton, R.; Tsirulnikov, M. )

    1990-09-17

    To address the electron cyclotron heating requirements of planned fusion experiments such as the International Thermonuclear Experimental Reactor (ITER) and the Compact Ignition Tokamak (CIT), Varian is developing gyrotrons at frequencies ranging from 100--300 GHz with output power capabilities up to 1 MW CW. Experimental gyrotrons have been built at frequencies between 100--140 GHz, and a study program has addressed the critical elements of designing 280--300 GHz gyrotrons capable of generating CW power levels up to 1 MW. Initial test vehicles at 140 GHz have utilized TE{sub 15,2,1} interaction cavities, and have been designed to generate short-pulse (up to 20 ms) power levels of 1 MW and up to 400 kW CW. Recently, short-pulse power levels of 1040 kW at 38% efficiency have been obtained and average powers of 200 kW have been achieved. Long-pulse operation has been extended to pulse durations of 0.5 seconds at power levels of 400 kW. Gyrotron oscillators capable of generating output powers of 500 kW CW at a frequency of 110 GHz have recently been designed and a prototype is currently being tested. Design work for a 1 MW CW gyrotron at 110 GHz, is in progress. The 1 MW CW tube will employ an output coupling approach where the microwave output is separated from the microwave output. 15 refs., 10 figs., 3 tabs.

  10. Calculation of plasma dielectric response in inhomogeneous magnetic field near electron cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Evstatiev, Evstati; Svidzinski, Vladimir; Spencer, Andy; Galkin, Sergei

    2014-10-01

    Full wave 3-D modeling of RF fields in hot magnetized nonuniform plasma requires calculation of nonlocal conductivity kernel describing the dielectric response of such plasma to the RF field. In many cases, the conductivity kernel is a localized function near the test point which significantly simplifies numerical solution of the full wave 3-D problem. Preliminary results of feasibility analysis of numerical calculation of the conductivity kernel in a 3-D hot nonuniform magnetized plasma in the electron cyclotron frequency range will be reported. This case is relevant to modeling of ECRH in ITER. The kernel is calculated by integrating the linearized Vlasov equation along the unperturbed particle's orbits. Particle's orbits in the nonuniform equilibrium magnetic field are calculated numerically by one of the Runge-Kutta methods. RF electric field is interpolated on a specified grid on which the conductivity kernel is discretized. The resulting integrals in the particle's initial velocity and time are then calculated numerically. Different optimization approaches of the integration are tested in this feasibility analysis. Work is supported by the U.S. DOE SBIR program.

  11. High-Power Arctic Lidar for observations of Sodium layer and Calcium Ion Cyclotron Resonance Heating

    NASA Astrophysics Data System (ADS)

    Wuerker, R. F.; Foley, J.; Kidd, P.; Wong, A. Y.

    1998-11-01

    The UCLA HIPAS Observatory is located at 64o 54' 22"N, 146o 50' 33" W. It passes under the auroral oval, has a 2.7 m diameter liquid mirror collector (LMT), and two bistatic laser illuminators; a Doubled YAG pumped dye laser and a Doubled (tunable) Alexandrite laser. The first emits 0.1 J - 10 ns pulses at 590nm (Na) at 20 Hz. The second laser emits 0.15 J -10 ns pulses at 393 nm (Ca+) and 391.4 nm (N2) at 10 Hz. New sporadic sodium layers have been observed during the passage of the electrojet and auroras in periods of 20-30 seconds, indicating that sodium is liberated from micrometeors during auroral precipitations. The Laser Induced Fluorescence techniques will be used to observe the acceleration of the Ca+ ions when they are driven by the 80 MW (ERP) 2.85MHz RF array, modulated at the Ca+ ion Cyclotron Frequency. 1. Ionospheric Modifaction and Enviromental Research in the Auroral Region in Plasma Science and the Environment. Publisher: AIP Press, Woodbury, NY. Editors: W. Manheimer, L. Sugiyama, T. Stix; Chapter 3, pgs. 41-75, 1997. Research supported by ONR N00014-96-C-0040

  12. Development of a pepper-pot device to determine the emittance of an ion beam generated by electron cyclotron resonance ion sources

    SciTech Connect

    Strohmeier, M.; Benitez, J. Y.; Leitner, D.; Lyneis, C. M.; Todd, D. S.; Bantel, M.

    2010-02-15

    This paper describes the recent development and commissioning of a pepper-pot emittance meter at the Lawrence Berkeley National Laboratory (LBNL). It is based on a potassium bromide (KBr) scintillator screen in combination with a charged coupled device camera. Pepper-pot scanners record the full four-dimensional transverse phase space emittances which are particularly interesting for electron cyclotron resonance ion sources. The strengths and limitations of evaluating emittances using optical pepper-pot scanners are described and systematic errors induced by the optical data acquisition system will be presented. Light yield tests of KBr exposed to different ion species and first emittance measurement data using ion beams extracted from the 6.4 GHz LBNL electron cyclotron resonance ion source are presented and discussed.

  13. Terahertz cyclotron resonance spectroscopy of an AlGaN/GaN heterostructure using a high-field pulsed magnet and an asynchronous optical sampling technique

    NASA Astrophysics Data System (ADS)

    Spencer, B. F.; Smith, W. F.; Hibberd, M. T.; Dawson, P.; Beck, M.; Bartels, A.; Guiney, I.; Humphreys, C. J.; Graham, D. M.

    2016-05-01

    The effective mass, sheet carrier concentration, and mobility of electrons within a two-dimensional electron gas in an AlGaN/GaN heterostructure were determined using a laboratory-based terahertz cyclotron resonance spectrometer. The ability to perform terahertz cyclotron resonance spectroscopy with magnetic fields of up to 31 T was enabled by combining a high-field pulsed magnet with a modified asynchronous optical sampling terahertz detection scheme. This scheme allowed around 100 transmitted terahertz waveforms to be recorded over the 14 ms magnetic field pulse duration. The sheet density and mobility were measured to be 8.0 × 1012 cm-2 and 9000 cm2 V-1 s-1 at 77 K. The in-plane electron effective mass at the band edge was determined to be 0.228 ± 0.002m0.

  14. Development of a pepper-pot device to determine the emittance of an ion beam generated by electron cyclotron resonance ion sources.

    PubMed

    Strohmeier, M; Benitez, J Y; Leitner, D; Lyneis, C M; Todd, D S; Bantel, M

    2010-02-01

    This paper describes the recent development and commissioning of a pepper-pot emittance meter at the Lawrence Berkeley National Laboratory (LBNL). It is based on a potassium bromide (KBr) scintillator screen in combination with a charged coupled device camera. Pepper-pot scanners record the full four-dimensional transverse phase space emittances which are particularly interesting for electron cyclotron resonance ion sources. The strengths and limitations of evaluating emittances using optical pepper-pot scanners are described and systematic errors induced by the optical data acquisition system will be presented. Light yield tests of KBr exposed to different ion species and first emittance measurement data using ion beams extracted from the 6.4 GHz LBNL electron cyclotron resonance ion source are presented and discussed. PMID:20192450

  15. Effect of electron-cyclotron resonance plasma heating conditions on the low-frequency modulation of the gyrotron power at the L-2M stellarator

    SciTech Connect

    Batanov, G. M.; Borzosekov, V. D.; Kolik, L. V.; Konchekov, E. M. Malakhov, D. V.; Petelin, M. I.; Petrov, A. E.; Sarksyan, K. A.; Skvortsova, N. N.; Stepakhin, V. D.; Kharchev, N. K.

    2015-08-15

    Low-frequency modulation of the gyrotron power at the L-2M stellarator was studied at different modes of plasma confinement. The plasma was heated at the second harmonic of the electron gyrofrequency. The effect of reflection of gyrotron radiation from the region of electron-cyclotron resonance plasma heating, as well as of backscattering of gyrotron radiation from fluctuations of the plasma density, on the modulation of the gyrotron power was investigated.

  16. Spectra of low-frequency modulation of gyrotron radiation during electron-cyclotron resonance heating of plasma in the L-2M stellarator

    SciTech Connect

    Batanov, G. M.; Kolik, L. V.; Konchekov, E. M.; Malakhov, D. V.; Novozhilova, Yu. V.; Petelin, M. I.; Petrov, A. E.; Pshenichnikov, A. A.; Sarksyan, K. A.; Skvortsova, N. N.; Kharchev, N. K.

    2011-05-15

    Results from experimental studies of the modulation of the gyrotron power during electron cyclotron resonance heating of plasma L-2M stellarator are presented. It is shown that the modulation spectrum consists of separate spectral bands, among which a 20-kHz peak with a spectral density exceeding by one order of magnitude the spectral density of the other peaks is observed. This can be explained by the gyrotron operation being affected by the wave reflected from long-wavelength plasma fluctuations.

  17. Effect of electron-cyclotron resonance plasma heating conditions on the low-frequency modulation of the gyrotron power at the L-2M stellarator

    NASA Astrophysics Data System (ADS)

    Batanov, G. M.; Borzosekov, V. D.; Kolik, L. V.; Konchekov, E. M.; Malakhov, D. V.; Petelin, M. I.; Petrov, A. E.; Sarksyan, K. A.; Skvortsova, N. N.; Stepakhin, V. D.; Kharchev, N. K.

    2015-08-01

    Low-frequency modulation of the gyrotron power at the L-2M stellarator was studied at different modes of plasma confinement. The plasma was heated at the second harmonic of the electron gyrofrequency. The effect of reflection of gyrotron radiation from the region of electron-cyclotron resonance plasma heating, as well as of backscattering of gyrotron radiation from fluctuations of the plasma density, on the modulation of the gyrotron power was investigated.

  18. Spectra of low-frequency modulation of gyrotron radiation during electron-cyclotron resonance heating of plasma in the L-2M stellarator

    NASA Astrophysics Data System (ADS)

    Batanov, G. M.; Kolik, L. V.; Konchekov, E. M.; Malakhov, D. V.; Novozhilova, Yu. V.; Petelin, M. I.; Petrov, A. E.; Pshenichnikov, A. A.; Sarksyan, K. A.; Skvortsova, N. N.; Kharchev, N. K.

    2011-05-01

    Results from experimental studies of the modulation of the gyrotron power during electron cyclotron resonance heating of plasma L-2M stellarator are presented. It is shown that the modulation spectrum consists of separate spectral bands, among which a 20-kHz peak with a spectral density exceeding by one order of magnitude the spectral density of the other peaks is observed. This can be explained by the gyrotron operation being affected by the wave reflected from long-wavelength plasma fluctuations.

  19. Capacitance bridge detector and signal lock for ion cyclotron resonance spectrometry

    NASA Astrophysics Data System (ADS)

    Marks, Jeffrey; Drzaic, Paul S.; Foster, Robert F.; Wetzel, Donna M.; Brauman, John I.; Uppal, Jack S.; Staley, Ralph H.

    1987-08-01

    The design and operational characteristics of a capacitance bridge detector and accompanying signal lock system are presented. The signal lock is especially well suited for the measurement of small changes in ion concentration during photochemical experiments, thereby alleviating problems caused by resonant frequency shifts.

  20. Impedance matched, high-power, rf antenna for ion cyclotron resonance heating of a plasma

    DOEpatents

    Baity, Jr., Frederick W.; Hoffman, Daniel J.; Owens, Thomas L.

    1988-01-01

    A resonant double loop radio frequency (rf) antenna for radiating high-power rf energy into a magnetically confined plasma. An inductive element in the form of a large current strap, forming the radiating element, is connected between two variable capacitors to form a resonant circuit. A real input impedance results from tapping into the resonant circuit along the inductive element, generally near the midpoint thereof. The impedance can be matched to the source impedance by adjusting the separate capacitors for a given tap arrangement or by keeping the two capacitances fixed and adjustng the tap position. This results in a substantial reduction in the voltage and current in the transmission system to the antenna compared to unmatched antennas. Because the complete circuit loop consisting of the two capacitors and the inductive element is resonant, current flows in the same direction along the entire length of the radiating element and is approximately equal in each branch of the circuit. Unidirectional current flow permits excitation of low order poloidal modes which penetrate more deeply into the plasma.

  1. Counting individual sulfur atoms in a protein by ultrahighresolution Fourier transform ion cyclotron resonance mass spectrometry: Experimental resolution of isotopic fine structure in proteins

    PubMed Central

    Shi, Stone D.-H.; Hendrickson, Christopher L.; Marshall, Alan G.

    1998-01-01

    A typical molecular ion mass spectrum consists of a sum of signals from species of various possible isotopic compositions. Only the monoisotopic peak (e.g., all carbons are 12C; all nitrogens are 14N, etc.) has a unique elemental composition. Every other isotope peak at approximately integer multiples of ∼1 Da higher in nominal mass represents a sum of contributions from isotope combinations differing by a few mDa (e.g., two 13C vs. two 15N vs. one 13C and one 15N vs. 34S, vs. 18O, etc., at ∼2 Da higher in mass than the monoisotopic mass). At sufficiently high mass resolving power, each of these nominal-mass peaks resolves into its isotopic fine structure. Here, we report resolution of the isotopic fine structure of proteins up to 15.8 kDa (isotopic 13C,15N doubly depleted tumor suppressor protein, p16), made possible by electrospray ionization followed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass analysis at 9.4 tesla. Further, a resolving power of m/Δm50% ≈8,000,000 has been achieved on bovine ubiquitin (8.6 kDa). These results represent a 10-fold increase in the highest mass at which isotopic fine structure previously had been observed. Finally, because isotopic fine structure reveals elemental composition directly, it can be used to confirm or determine molecular formula. For p16, for example, we were able to determine (5.1 ± 0.3) the correct number (five) of sulfur atoms solely from the abundance ratio of the resolved 34S peak to the monoisotopic peak. PMID:9751700

  2. Cyclotron Mode Frequency Shifts in Multi-Species Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Affolter, Matthew

    2014-10-01

    Plasmas exhibit a variety of cyclotron modes, which are used in a broad range of devices to manipulate and diagnose charged particles. Here we discuss cyclotron modes in trapped plasmas with a single sign of charge. Collective effects and electric fields shift these cyclotron mode frequencies away from the ``bare'' cyclotron frequencies Ωs ≡ qB /ms c for each species s. These electric fields may arise from applied trap potentials, from space charge including collective effects, and from image charge in the trap walls. We will describe a new laser-thermal cyclotron spectroscopy technique, applied to well-diagnosed pure ion plasmas. This technique enables detailed observations of cos (mθ) surface cyclotron modes with m = 0 , 1, and 2 in near rigid-rotor multi-species ion plasmas. For each species s, we observe cyclotron mode frequency shifts which are dependent on the plasma density through the E × B rotation frequency, and on the charge concentration of species s, in close agreement with recent theory. This includes the novel m = 0 radial ``breathing'' mode, which generates no external electric field except at the plasma ends. These cyclotron frequencies can be used to determine the plasma E × B rotation frequency and the species charge concentrations, in close agreement with our laser diagnostics. Here, this plasma characterization permits a determination of the ``bare'' cyclotron frequencies to an accuracy of 2 parts in 104. These new results give a physical basis for the ``space charge'' and ``amplitude'' calibration equations of cyclotron mass spectroscopy, widely used in molecular chemistry and biology. Also, at high temperatures there is preliminary evidence that radially-standing electrostatic Bernstein waves couple to the surface cyclotron modes, producing new resonant frequencies. Supported by NSF/DOE Partnership grants PHY-0903877 and DE-SC0002451.

  3. Estimation of the electron density and radiative energy losses in a calcium plasma source based on an electron cyclotron resonance discharge

    SciTech Connect

    Potanin, E. P. Ustinov, A. L.

    2013-06-15

    The parameters of a calcium plasma source based on an electron cyclotron resonance (ECR) discharge were calculated. The analysis was performed as applied to an ion cyclotron resonance system designed for separation of calcium isotopes. The plasma electrons in the source were heated by gyrotron microwave radiation in the zone of the inhomogeneous magnetic field. It was assumed that, in such a combined trap, the energy of the extraordinary microwave propagating from the high-field side was initially transferred to a small group of resonance electrons. As a result, two electron components with different transverse temperatures-the hot resonance component and the cold nonresonance component-were created in the plasma. The longitudinal temperatures of both components were assumed to be equal. The entire discharge space was divided into a narrow ECR zone, where resonance electrons acquired transverse energy, and the region of the discharge itself, where the gas was ionized. The transverse energy of resonance electrons was calculated by solving the equations for electron motion in an inhomogeneous magnetic field. Using the law of energy conservation and the balance condition for the number of hot electrons entering the discharge zone and cooled due to ionization and elastic collisions, the density of hot electrons was estimated and the dependence of the longitudinal temperature T{sub e Parallel-To} of the main (cold) electron component on the energy fraction {beta} lost for radiation was obtained.

  4. Dithranol as a MALDI matrix for tissue imaging of lipids by Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Le, Cuong H; Han, Jun; Borchers, Christoph H

    2012-10-01

    To fill the unmet need for improved matrixes for matrix-assisted laser desorption ionization (MALDI) tissue imaging of small molecules, dithranol (DT)--a matrix mainly used for the analysis of synthetic polymers--was evaluated for detection of lipids in rat liver and bovine calf lens, using MALDI Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). The use of DT resulted in better detection of endogenous lipids than did two other commonly used matrixes, α-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB), with >70 lipid entities (including phosphatidylcholines, phosphatidylethanolamines, sphingomyelins, phosphatidylserines, phosphatidylglycerol, phosphatidic acids, ceramide phosphates, sterol lipids, acyl carnitines, and glycerides) being detected in rat liver and bovine lens tissue sections, using positive-ion detection. Using saturated DT in chloroform/methanol (2:1, v/v), with 1% formic acid in the final mixture, 57 lipid entities were successfully imaged from bovine calf lens, with clear and distinct distribution patterns. In a section across the lens equatorial plane, all compounds showed concentric distributions around the lens nucleus and most showed specific abundance changes, which correlated with lens fiber cell age. As a novel finding, palmitoylcarnitine and oleoylcarnitine were found uniquely localized to the younger lens fiber cell cortex region. This work demonstrates the potential of DT as a new matrix for tissue imaging by MALDI-FTICR MS. PMID:22931516

  5. A mode converter to generate a Gaussian-like mode for injection into the VENUS electron cyclotron resonance ion source

    SciTech Connect

    Lyneis, C. Benitez, J.; Hodgkinson, A.; Strohmeier, M.; Todd, D.; Plaum, B.; Thuillier, T.

    2014-02-15

    A number of superconducting electron cyclotron resonance (ECR) ion sources use gyrotrons at either 24 or 28 GHz for ECR heating. In these systems, the microwave power is launched into the plasma using the TE{sub 01} circular waveguide mode. This is fundamentally different and may be less efficient than the typical rectangular, linearly polarized TE{sub 10} mode used for launching waves at lower frequencies. To improve the 28 GHz microwave coupling in VENUS, a TE{sub 01}-HE{sub 11} mode conversion system has been built to test launching HE{sub 11} microwave power into the plasma chamber. The HE{sub 11} mode is a quasi-Gaussian, linearly polarized mode, which should couple strongly to the plasma electrons. The mode conversion is done in two steps. First, a 0.66 m long “snake” converts the TE{sub 01} mode to the TE{sub 11} mode. Second, a corrugated circular waveguide excites the HE{sub 11} mode, which is launched directly into the plasma chamber. The design concept draws on the development of similar devices used in tokamaks and stellerators. The first tests of the new coupling system are described below.

  6. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: A National Resource for Ultrahigh Resolution Mass Analysis.

    PubMed

    Hendrickson, Christopher L; Quinn, John P; Kaiser, Nathan K; Smith, Donald F; Blakney, Greg T; Chen, Tong; Marshall, Alan G; Weisbrod, Chad R; Beu, Steven C

    2015-09-01

    We describe the design and initial performance of the first 21 tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The 21 tesla magnet is the highest field superconducting magnet ever used for FT-ICR and features high spatial homogeneity, high temporal stability, and negligible liquid helium consumption. The instrument includes a commercial dual linear quadrupole trap front end that features high sensitivity, precise control of trapped ion number, and collisional and electron transfer dissociation. A third linear quadrupole trap offers high ion capacity and ejection efficiency, and rf quadrupole ion injection optics deliver ions to a novel dynamically harmonized ICR cell. Mass resolving power of 150,000 (m/Δm(50%)) is achieved for bovine serum albumin (66 kDa) for a 0.38 s detection period, and greater than 2,000,000 resolving power is achieved for a 12 s detection period. Externally calibrated broadband mass measurement accuracy is typically less than 150 ppb rms, with resolving power greater than 300,000 at m/z 400 for a 0.76 s detection period. Combined analysis of electron transfer and collisional dissociation spectra results in 68% sequence coverage for carbonic anhydrase. The instrument is part of the NSF High-Field FT-ICR User Facility and is available free of charge to qualified users. PMID:26091892

  7. Analysis of saturated hydrocarbons by redox reaction with negative-ion electrospray Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Zhou, Xibin; Shi, Quan; Zhang, Yahe; Zhao, Suoqi; Zhang, Rui; Chung, Keng H; Xu, Chunming

    2012-04-01

    A novel technique was developed for characterization of saturated hydrocarbons. Linear alkanes were selectively oxidized to ketones by ruthenium ion catalyzed oxidation (RICO). Branched and cyclic alkanes were oxidized to alcohols and ketones. The ketones were then reduced to alcohols by lithium aluminum hydride (LiAlH(4)). The monohydric alcohols (O(1)) in the products obtained from the RICO and RICO-LiAlH(4) reduction reactions were characterized using negative-ion electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) for identification of iso-paraffins, acyclic paraffins and cyclic paraffins. Various model saturated compounds were used to determine the RICO reaction and ionization selectivity. The results from the FTICR MS analysis on the petroleum distillates derived saturated fraction were in agreement with those from field ionization gas chromatography time-of-flight mass spectrometry (FI GC-TOF MS) analysis. The technique was also used to characterize a petroleum vacuum residue (VR) derived saturates. The results showed that the saturated molecules in the VR contained up to 11 cyclic rings, and the maximum carbon number was up to 92. PMID:22424498

  8. Progress of a room temperature electron cyclotron resonance ion source using evaporative cooling technology at Institute of Modern Physics

    SciTech Connect

    Lu, W.; Xiong, B.; Guo, S. Q.; Cao, R.; Ruan, L.; Zhang, X. Z.; Sun, L. T.; Feng, Y. C.; Ma, B. H.; Zhao, H. W.

    2014-02-15

    A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0–1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.

  9. Progress of a room temperature electron cyclotron resonance ion source using evaporative cooling technology at Institute of Modern Physics.

    PubMed

    Lu, W; Xiong, B; Zhang, X Z; Sun, L T; Feng, Y C; Ma, B H; Guo, S Q; Cao, R; Ruan, L; Zhao, H W

    2014-02-01

    A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0-1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper. PMID:24593505

  10. Improved beta (local beta >1) and density in electron cyclotron resonance heating on the RT-1 magnetosphere plasma

    NASA Astrophysics Data System (ADS)

    Nishiura, M.; Yoshida, Z.; Saitoh, H.; Yano, Y.; Kawazura, Y.; Nogami, T.; Yamasaki, M.; Mushiake, T.; Kashyap, A.

    2015-05-01

    This study reports the recent progress in improved plasma parameters of the RT-1 device. Increased input power and the optimized polarization of electron cyclotron resonance heating (ECRH) with an 8.2 GHz klystron produce a significant increase in electron beta, which is evaluated by an equilibrium analysis of the Grad-Shafranov equation. The peak value of the local electron beta βe is found to exceed 1. In the high-beta and high-density regime, the density limit is observed for H, D and He plasmas. The line-averaged density is close to the cutoff density for 8.2 GHz ECRH. When the filling gas pressure is increased, the density limit still exists even in the low-beta region. This result indicates that the density limit is caused by the cutoff density rather than the beta limit. From the analysis of interferometer data, we found that inward diffusion causes a peaked density profile beyond the cutoff density.

  11. Spatially resolved charge-state and current-density distributions at the extraction of an electron cyclotron resonance ion source

    SciTech Connect

    Panitzsch, Lauri; Peleikis, Thies; Stalder, Michael; Wimmer-Schweingruber, Robert F.

    2011-09-15

    In this paper we present our measurements of charge-state and current-density distributions performed in very close vicinity (15 mm) of the extraction of our hexapole geometry electron cyclotron resonance ion source. We achieved a relatively high spatial resolution reducing the aperture of our 3D-movable extraction (puller) electrode to a diameter of only 0.5 mm. Thus, we are able to limit the source of the extracted ion beam to a very small region of the plasma electrode's hole (O = 4 mm) and therefore to a very small region of the neutral plasma sheath. The information about the charge-state distribution and the current density in the plane of the plasma electrode at each particular position is conserved in the ion beam. We determined the total current density distribution at a fixed coaxial distance of only 15 mm to the plasma electrode by remotely moving the small-aperture puller electrode which contained a dedicated Faraday cup (FC) across the aperture of the plasma electrode. In a second measurement we removed the FC and recorded m/q-spectra for the different positions using a sector magnet. From our results we can deduce that different ion charge-states can be grouped into bloated triangles of different sizes and same orientation at the extraction with the current density peaking at centre. This confirms observations from other groups based on simulations and emittance measurements. We present our measurements in detail and discuss possible systematic errors.

  12. Inductively Coupled Plasma and Electron Cyclotron Resonance Plasma Etching of InGaAlP Compound Semiconductor System

    SciTech Connect

    Abernathy, C.R.; Hobson, W.S.; Hong, J.; Lambers, E.S.; Pearton, S.J.; Shul, R.J.

    1998-11-04

    Current and future generations of sophisticated compound semiconductor devices require the ability for submicron scale patterning. The situation is being complicated since some of the new devices are based on a wider diversity of materials to be etched. Conventional IUE (Reactive Ion Etching) has been prevalent across the industry so far, but has limitations for materials with high bond strengths or multiple elements. IrI this paper, we suggest high density plasmas such as ECR (Electron Cyclotron Resonance) and ICP (Inductively Coupled Plasma), for the etching of ternary compound semiconductors (InGaP, AIInP, AlGaP) which are employed for electronic devices like heterojunction bipolar transistors (HBTs) or high electron mobility transistors (HEMTs), and photonic devices such as light-emitting diodes (LEDs) and lasers. High density plasma sources, opeiating at lower pressure, are expected to meet target goals determined in terms of etch rate, surface morphology, surface stoichiometry, selectivity, etc. The etching mechanisms, which are described in this paper, can also be applied to other III-V (GaAs-based, InP-based) as well as III-Nitride since the InGaAIP system shares many of the same properties.

  13. Microwave cyclotron resonance of two-dimensional holes in GaAs/AlGaAs quantum wells on (100) substrates

    NASA Astrophysics Data System (ADS)

    Zhu, Han; Lai, K.; Tsui, D. C.; Ong, N. P.; Manfra, M.; Pfeiffer, L.; West, K.

    2006-03-01

    Cyclotron resonance at microwave frequencies is used to measure the band mass (mb) of two-dimensional holes (2DH’s) in the GaAs/AlxGa1-xAs quantum wells grown on (100) GaAs substrates [1]. The measured mb shows strong dependences on both the 2DH density (p) and the well width (W). For a fixed W, in the density range (0.4x10^11 to 1.1x10^11cm-2) studied here, mb increases with p, consistent with previous studies of the 2DH’s on the (311)A surface [2]. However, the density dependence is significantly weaker on the (100) surface than that on the (311)A surface for the same well width of 30nm. For a fixed p = 1.1x10^11cm-2, mb increases from 0.22me at W = 10nm to 0.54 me at W = 20nm, and stays around 0.51me for W up to 1000nm. With the transport measurement at 0.3K in the dark, the DC scattering time τDC deduced for p = 1.1x10^11cm-2 shows a maximum of 0.6ns at W = 20nm. [1] M. J. Manfra et al., Appl. Phys. Lett. 86, 16 (2005). [2] W. Pan et al., Appl. Phys. Lett. 83, 3519 (2003).

  14. Time evolution of endpoint energy of Bremsstrahlung spectra and ion production from an electron cyclotron resonance ion source

    SciTech Connect

    Tarvainen, Ollie; Ropponen, Tommi; Jones, Peter; Kalvas, Taneli

    2008-01-01

    Electron cyclotron resonance ion sources (ECRIS) are used to produce high charge state heavy ion beams for the use of nuclear and materials science, for instance. The most powerful ECR ion sources today are superconducting. One of the problems with superconducting ECR ion sources is the use of high radio frequency (RF) power which results in bremsstrahlung radiation adding an extra heat load to the cryostat. In order to understand the electron heating process and timescales in the ECR plasma, time evolution measurement of ECR bremsstrahlung was carried out. In the measurements JYFL 14 GHz ECRIS was operated in a pulsed mode and bremsstrahlung data from several hundred RF pulses was recorded. Time evolution of ion production was also studied and compared to one of the electron heating theories. To analyze the measurement data at C++ program was developed. Endpoint energies of the bremsstrahlung spectra as a function of axial magnetic field strength, pressure and RF power are presented and ion production timescales obtained from the measurements are compared to bremsstrahlung emission timescales and one of the stochastic heating theories.

  15. Evidence of local power deposition and electron heating by a standing electromagnetic wave in electron-cyclotron-resonance plasma.

    PubMed

    Durocher-Jean, A; Stafford, L; Dap, S; Makasheva, K; Clergereaux, R

    2014-09-01

    Microwave plasmas excited at electron-cyclotron resonance were studied in the 0.5-15 mTorr pressure range. In contrast with low-limit pressure conditions where the plasma emission highlights a fairly homogeneous spatial structure, a periodic spatial modulation (period ∼6.2 cm) appeared as pressure increased. This feature is ascribed to a local power deposition (related to the electron density) due to the presence of a standing electromagnetic wave created by the feed electromagnetic field (2.45 GHz) in the cavity formed by the reactor walls. Analysis of the electron energy probability function by Langmuir probe and optical emission spectroscopy further revealed the presence of a high-energy tail that showed strong periodic spatial modulation at higher pressure. The spatial evolution of the electron density and of the characteristic temperature of these high-energy electrons coincides with the nodes (maximum) and antinodes (minimum) of the standing wave. These spatially-modulated power deposition and electron heating mechanisms are then discussed. PMID:25314546

  16. High intensity beams from electron cyclotron resonance ion sources: A study of efficient extraction and transport system (invited)

    NASA Astrophysics Data System (ADS)

    Gammino, S.; Ciavola, G.; Celona, L.; Andò, L.; Passarello, S.; Zhang, X. Zh.; Spädtke, P.; Winkler, M.

    2004-05-01

    A study of the design of extraction and transport system for high intensity beams that will be produced by the next generation electron cyclotron resonance ion source (ECRIS) was carried out in the frame of a European collaboration devoted to the definition of the main parameters of third generation ECRIS. High intensity production tests carried out in the previous years at INFN-LNS have shown evidence for the need to review the main concepts of the beam analysis and transport when high currents of low energy highly charged ions are extracted from the source. The transport of such low energy beams becomes critical as soon as the total current exceeds a few mA. The study reported here is based on the calculated parameters for the GyroSERSE source and the computer simulations have been carried out to obtain low emittance beams. The design of the extraction system was carried out by means of the KOBRA (three dimensional) code. The study of the beam line has been carried out with the codes GIOS, GICO, and TRANSPORT by taking into account both the phase space growth due to space charge and to the aberrations inside the magnets. The description of some different beam line options will be also given.

  17. Extension of high Te regime with upgraded electron cyclotron resonance heating system in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Takahashi, H.; Shimozuma, T.; Kubo, S.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Mutoh, T.; Nagaoka, K.; Murakami, S.; Osakabe, M.; Yamada, I.; Nakano, H.; Yokoyama, M.; Ido, T.; Shimizu, A.; Seki, R.; Ida, K.; Yoshinuma, M.; Kariya, T.; Minami, R.; Imai, T.; Marushchenko, N. B.; Turkin, Y.

    2014-06-01

    Enhancement of the output power per gyrotron has been planned in the Large Helical Device (LHD). Three 77-GHz gyrotrons with an output power of more than 1 MW have been operated. In addition, a high power gyrotron with the frequency of 154 GHz (1 MW/5 s, 0.5 MW/CW) was newly installed in 2012, and the total injection power of Electron cyclotron resonance heating (ECRH) reached 4.6 MW. The operational regime of ECRH plasma on the LHD has been extended due to the upgraded ECRH system such as the central electron temperature of 13.5 keV with the line-averaged electron density ne_fir = 1 × 1019 m-3. The electron thermal confinement clearly improved inside the electron internal transport barrier, and the electron thermal diffusivity reached neoclassical level. The global energy confinement time increased with increase of ne_fir. The plasma stored energy of 530 kJ with ne_fir = 3.2 × 1019 m-3, which is 1.7 times larger than the previous record in the ECRH plasma in the LHD, has been successfully achieved.

  18. Matrix-free mass spectrometric imaging using laser desorption ionisation Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Goodwin, Richard J A; Pitt, Andrew R; Harrison, David; Weidt, Stefan K; Langridge-Smith, Pat R R; Barrett, Michael P; Logan Mackay, C

    2011-04-15

    Mass spectrometry imaging (MSI) is a powerful tool in metabolomics and proteomics for the spatial localization and identification of pharmaceuticals, metabolites, lipids, peptides and proteins in biological tissues. However, sample preparation remains a crucial variable in obtaining the most accurate distributions. Common washing steps used to remove salts, and solvent-based matrix application, allow analyte spreading to occur. Solvent-free matrix applications can reduce this risk, but increase the possibility of ionisation bias due to matrix adhesion to tissue sections. We report here the use of matrix-free MSI using laser desorption ionisation performed on a 12 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. We used unprocessed tissue with no post-processing following thaw-mounting on matrix-assisted laser desorption ionisation (MALDI) indium-tin oxide (ITO) target plates. The identification and distribution of a range of phospholipids in mouse brain and kidney sections are presented and compared with previously published MALDI time-of-flight (TOF) MSI distributions. PMID:21416534

  19. Neoclassical transport of energetic minority tail ions generated by ion-cyclotron resonance heating in tokamak geometry

    SciTech Connect

    Chang, C.S. . Courant Inst. of Mathematical Sciences); Hammett, G.W.; Goldston, R.J. . Plasma Physics Lab.)

    1990-01-01

    Neoclassical transport of energetic minority tail ions, which are generated by high powered electromagnetic waves of the Ion Cyclotron Range of Frequencies (ICRF) at the fundamental harmonic resonance, is studied analytically in tokamak geometry. The effect of Coulomb collisions on the tail ion transport is investigated in the present work. The total tail ion transport will be the sum of the present collision-driven transport and the wave-driven transport, which is due to the ICRF-wave scattering of the tail particles as reported in the literature. The transport coefficients have been calculated kinetically, and it is found that the large tail ion viscosity, driven by the localized ICRF-heating and Coulomb slowing-down collisions, induces purely convective particle transport of the tail species, while the energy transport is both convective and diffusive. The rate of radial particle transport is shown to be usually small, but the rate of radial energy transport is larger and may not be negligible compared to the Coulomb slowing-down rate. 18 refs., 2 figs.

  20. Operational experience with the Argonne National Laboratory Californium Rare Ion Breeder Upgrade facility and electron cyclotron resonance charge breeder

    NASA Astrophysics Data System (ADS)

    Vondrasek, R.; Clark, J.; Levand, A.; Palchan, T.; Pardo, R.; Savard, G.; Scott, R.

    2014-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory Argonne Tandem Linac Accelerator System (ATLAS) facility provides low-energy and accelerated neutron-rich radioactive beams to address key nuclear physics and astrophysics questions. A 350 mCi 252Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The ECR charge breeder has achieved stable beam charge breeding efficiencies of 10.1% for 23Na7+, 17.9% for 39K10+, 15.6% for 84Kr17+, and 12.4% for 133Cs27+. For the radioactive beams, a charge breeding efficiency of 11.7% has been achieved for 143Cs27+ and 14.7% for 143Ba27+. The typical breeding times are 10 ms/charge state, but the source can be tuned such that this value increases to 100 ms/charge state with the best breeding efficiency corresponding to the longest breeding times—the variation of efficiencies with breeding time will be discussed. Efforts have been made to characterize and reduce the background contaminants present in the ion beam through judicious choice of q/m combinations. Methods of background reduction are being investigated based upon plasma chamber cleaning and vacuum practices.

  1. Induction heating pure vapor source of high temperature melting point materials on electron cyclotron resonance ion source

    SciTech Connect

    Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Sato, Fuminobu; Iida, Toshiyuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu

    2010-02-15

    Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10{sup -4}-10{sup -3} Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.

  2. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap

    SciTech Connect

    Nikolaev, A. G.; Savkin, K. P.; Oks, E. M.; Vizir, A. V.; Yushkov, G. Yu.; Vodopyanov, A. V.; Izotov, I. V.; Mansfeld, D. A.

    2012-02-15

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent ''minimum-B'' structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap - axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 {mu}s) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  3. On-Line Desalting of Crude Oil in the Source Region of a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Chanthamontri, C. Ken; Stopford, Andrew P.; Snowdon, Ryan W.; Oldenburg, Thomas B. P.; Larter, Stephen R.

    2014-08-01

    The presence of dissolved metal ions in waters associated with crude oils has many negative implications for the transport, processing, and refining of petroleum. In addition, mass spectrometric analysis of sodium containing crude oil samples suffers from ionization suppression, unwanted adduct formation, and an increase in the complexity of data analysis. Here, we describe a method for the reduction/elimination of these adverse effects by modification of the source region gas-inlet system of a 12 T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Several acids were examined as part of this study, with the most suitable for on-line desalting found to have both high vapor pressure and low pKa; 12.1 M HCl showed the strongest desalting effect for crude oil samples with a sodium removal index (SRI) of 88%-100% ± 7% for the NaOS compound class. In comparison, a SRI of only 38% ± 9% was observed for a H2O/toluene solution-phase extraction of Oil 1. These results clearly demonstrate the increased efficacy of pseudo-vapor phase desalting with the additional advantages that initial sample solution conditions are preserved and no sample preparation is required prior to analysis.

  4. Top-Down Analysis of Highly Post-Translationally Modified Peptides by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Guerrero, Andres; Lerno, Larry; Barile, Daniela; Lebrilla, Carlito B.

    2015-03-01

    Bovine κ-caseinoglycomacropeptide (GMP) is a highly modified peptide from κ-casein produced during the cheese making process. The chemical nature of GMP makes analysis by traditional proteomic approaches difficult, as the peptide bears a strong net negative charge and a variety of post-translational modifications. In this work, we describe the use of electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) for the top-down analysis of GMP. The method allows the simultaneous detection of different GMP forms that result from the combination of amino acid genetic variations and post-translational modifications, specifically phosphorylation and O-glycosylation. The different GMP forms were identified by high resolution mass spectrometry in both negative and positive mode and confirmation was achieved by tandem MS. The results showed the predominance of two genetic variants of GMP that occur as either mono- or bi-phosphorylated species. Additionally, these four forms can be modified with up to two O-glycans generally sialylated. The results demonstrate the presence of glycosylated, bi-phosphorylated forms of GMP never described before.

  5. The effect of N{sub 2} flow rate on discharge characteristics of microwave electron cyclotron resonance plasma

    SciTech Connect

    Ding Wanyu; Xu Jun; Lu Wenqi; Deng Xinlu; Dong Chuang

    2009-05-15

    The properties of plasma in Ar/N{sub 2} microwave electron cyclotron resonance discharge with a percentage of N{sub 2} flow rate ranging from 5% to 50% have been studied in order to understand the effect of N{sub 2} flow rate on the mechanical properties of silicon nitride films. N{sub 2}{sup +} radicals as well as N{sub 2}, N{sup +} are found by optical emission spectroscopy analysis. The evolution of plasma density, electron kinetic energy, N{sub 2}{sup +}, N{sub 2}, and N{sup +} emission lines from mixed Ar/N{sub 2} plasma on changing mixture ratio has been studied. The mechanisms of their variations have been discussed. Moreover, an Ar/N{sub 2} flow ratio of 2/20 is considered to be the best condition for synthesizing a-Si{sub 3}N{sub 4}, which has been confirmed in the as-deposited silicon nitride films with quite good mechanical properties by nanoindentation analyses.

  6. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    PubMed

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented. PMID:26932084

  7. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: A National Resource for Ultrahigh Resolution Mass Analysis

    NASA Astrophysics Data System (ADS)

    Hendrickson, Christopher L.; Quinn, John P.; Kaiser, Nathan K.; Smith, Donald F.; Blakney, Greg T.; Chen, Tong; Marshall, Alan G.; Weisbrod, Chad R.; Beu, Steven C.

    2015-09-01

    We describe the design and initial performance of the first 21 tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The 21 tesla magnet is the highest field superconducting magnet ever used for FT-ICR and features high spatial homogeneity, high temporal stability, and negligible liquid helium consumption. The instrument includes a commercial dual linear quadrupole trap front end that features high sensitivity, precise control of trapped ion number, and collisional and electron transfer dissociation. A third linear quadrupole trap offers high ion capacity and ejection efficiency, and rf quadrupole ion injection optics deliver ions to a novel dynamically harmonized ICR cell. Mass resolving power of 150,000 ( m/Δm 50% ) is achieved for bovine serum albumin (66 kDa) for a 0.38 s detection period, and greater than 2,000,000 resolving power is achieved for a 12 s detection period. Externally calibrated broadband mass measurement accuracy is typically less than 150 ppb rms, with resolving power greater than 300,000 at m/z 400 for a 0.76 s detection period. Combined analysis of electron transfer and collisional dissociation spectra results in 68% sequence coverage for carbonic anhydrase. The instrument is part of the NSF High-Field FT-ICR User Facility and is available free of charge to qualified users.

  8. Diagnostics of a charge breeder electron cyclotron resonance ion source helium plasma with the injection of 23Na1+ ions

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Koivisto, H.; Galatà, A.; Angot, J.; Lamy, T.; Thuillier, T.; Delahaye, P.; Maunoury, L.; Mascali, D.; Neri, L.

    2016-05-01

    This work describes the utilization of an injected 23Na1+ ion beam as a diagnostics of the helium plasma of a charge breeder electron cyclotron resonance ion source. The obtained data allows estimating the upper limit for the ion-ion collision mean-free path of the incident sodium ions, the lower limit of ion-ion collision frequencies for all charge states of the sodium ions and the lower limit of the helium plasma density. The ion-ion collision frequencies of high charge state ions are shown to be at least on the order of 1-10 MHz and the plasma density is estimated to be on the order of 1011 cm-3 or higher. The experimental results are compared to simulations of the 23Na1+ capture into the helium plasma. The results indicate that the lower breeding efficiency of light ions in comparison to heavier elements is probably due to different capture efficiencies in which the in-flight ionization of the incident 1 + ions plays a vital role.

  9. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    NASA Astrophysics Data System (ADS)

    Toivanen, V.; Bellodi, G.; Dimov, V.; Küchler, D.; Lombardi, A. M.; Maintrot, M.

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  10. A new 14 GHz Electron-Cyclotron-Resonance Ion Source (ECRIS) for the heavy ion accelerator facility ATLAS

    SciTech Connect

    Schlapp, M.; Pardo, R.C.; Vondrasek, R.C.; Billquist, P.J.; Szczech, J.

    1997-11-01

    A 14 GHz Electron-Cyclotron-Resonance Ion Source (ECRIS) has been designed and built at Argonne National Laboratory. The source is a modification of the AECR at Berkeley and incorporates the latest results from ECR developments to produce intense beams of highly charged ions, including an improved magnetic confinement of the plasma electrons with an axial mirror ratio of 3.5. The aluminum plasma chamber and extraction electrode as well as a biased disk on axis at the microwave injection side donates additional electrons to the plasma, making use of the large secondary electron yield from aluminum oxide. The source is capable of ECR plasma heating using two different frequencies simultaneously to increase the electron energy gain for the production of high charge states. The main design goal is to produce several e{mu}A of at least {sup 238}U{sup 35+} in order to accelerate the beam to coulomb-barrier energies without further stripping. First charge state distributions for gaseous elements have been measured and 210 e{mu}A {sup 16}O{sup 7+} has been achieved. A normalized 90% emittance from 0.1 to 0.2 {pi} mm{sm_bullet}mrad for krypton and oxygen beam has been found.

  11. Effect of electron-electron interaction on cyclotron resonance in high-mobility InAs/AlSb quantum wells

    SciTech Connect

    Krishtopenko, S. S. Gavrilenko, V. I.; Ikonnikov, A. V.; Orlita, M.; Sadofyev, Yu. G.; Goiran, M.; Teppe, F.; Knap, W.

    2015-03-21

    We report observation of electron-electron (e-e) interaction effect on cyclotron resonance (CR) in InAs/AlSb quantum well heterostructures. High mobility values allow us to observe strongly pronounced triple splitting of CR line at noninteger filling factors of Landau levels ν. At magnetic fields, corresponding to ν > 4, experimental values of CR energies are in good agreement with single-electron calculations on the basis of eight-band k ⋅ p Hamiltonian. In the range of filling factors 3 < ν < 4 pronounced, splitting of CR line, exceeding significantly the difference in single-electron CR energies, is discovered. The strength of the splitting increases when occupation of the partially filled Landau level tends to a half, being in qualitative agreement with previous prediction by MacDonald and Kallin [Phys. Rev. B 40, 5795 (1989)]. We demonstrate that such behaviour of CR modes can be quantitatively described if one takes into account both electron correlations and the mixing between conduction and valence bands in the calculations of matrix elements of e-e interaction.

  12. Development of a compact electron-cyclotron-resonance ion source for high-energy carbon-ion therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Sakamoto, Y.; Sato, S.; Sato, Y.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Drentje, A. G.

    2005-11-01

    Ion sources for medical facilities should have characteristics of easy maintenance, low electric power consumption, good stability, and long operation time without problems (one year or longer). For this, a 10GHz compact electron-cyclotron-resonance ion source with all-permanent magnets (Kei2 source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59T at the extraction side and 0.87T at the gas-injection side, while the minimum B strength is 0.25T. These parameters have been optimized for the production of C4+ based on the experience at the 10GHz NIRS-ECR ion source and a previous prototype compact source (Kei source). The Kei2 source has a diameter of 320mm and a length of 295mm. The beam intensity of C4+ was obtained to be 530μA under an extraction voltage of 40kV. The beam stability was better than 6% at C4+ of 280μA during 90h with no adjustment of the operation parameters. The details of the design and beam tests of the source are described in this paper.

  13. Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source

    SciTech Connect

    Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Todd, D. S.; Ropponen, T.; Ropponen, J.; Koivisto, H.; Gammino, S.

    2008-03-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for NUclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet, adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different from that for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper, we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates depending on various ion source parameters, such as confinement fields, minimum B-field, rf power, and heating frequency.

  14. Design and investigations of the superconducting magnet system for the multipurpose superconducting electron cyclotron resonance ion source

    SciTech Connect

    Tinschert, K.; Lang, R.; Maeder, J.; Rossbach, J.; Spaedtke, P.; Komorowski, P.; Meyer-Reumers, M.; Krischel, D.; Fischer, B.; Ciavola, G.; Gammino, S.; Celona, L.

    2012-02-15

    The production of intense beams of heavy ions with electron cyclotron resonance ion sources (ECRIS) is an important request at many accelerators. According to the ECR condition and considering semi-empirical scaling laws, it is essential to increase the microwave frequency together with the magnetic flux density of the ECRIS magnet system. A useful frequency of 28 GHz, therefore, requires magnetic flux densities above 2.2 T implying the use of superconducting magnets. A cooperation of European institutions initiated a project to build a multipurpose superconducting ECRIS (MS-ECRIS) in order to achieve an increase of the performances in the order of a factor of ten. After a first design of the superconducting magnet system for the MS-ECRIS, the respective cold testing of the built magnet system reveals a lack of mechanical performance due to the strong interaction of the magnetic field of the three solenoids with the sextupole field and the magnetization of the magnetic iron collar. Comprehensive structural analysis, magnetic field calculations, and calculations of the force pattern confirm thereafter these strong interactions, especially of the iron collar with the solenoidal fields. The investigations on the structural analysis as well as suggestions for a possible mechanical design solution are given.

  15. Extension of high T{sub e} regime with upgraded electron cyclotron resonance heating system in the Large Helical Device

    SciTech Connect

    Takahashi, H. Shimozuma, T.; Kubo, S.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Mutoh, T.; Nagaoka, K.; Osakabe, M.; Yamada, I.; Nakano, H.; Yokoyama, M.; Ido, T.; Shimizu, A.; Seki, R.; Ida, K.; Yoshinuma, M.; and others

    2014-06-15

    Enhancement of the output power per gyrotron has been planned in the Large Helical Device (LHD). Three 77-GHz gyrotrons with an output power of more than 1 MW have been operated. In addition, a high power gyrotron with the frequency of 154 GHz (1 MW/5 s, 0.5 MW/CW) was newly installed in 2012, and the total injection power of Electron cyclotron resonance heating (ECRH) reached 4.6 MW. The operational regime of ECRH plasma on the LHD has been extended due to the upgraded ECRH system such as the central electron temperature of 13.5 keV with the line-averaged electron density n{sub e-fir} = 1 × 10{sup 19} m{sup −3}. The electron thermal confinement clearly improved inside the electron internal transport barrier, and the electron thermal diffusivity reached neoclassical level. The global energy confinement time increased with increase of n{sub e-fir}. The plasma stored energy of 530 kJ with n{sub e-fir} = 3.2 × 10{sup 19} m{sup −3}, which is 1.7 times larger than the previous record in the ECRH plasma in the LHD, has been successfully achieved.

  16. Design and fabrication of circular and rectangular components for electron-cyclotron-resonant heating of tandem mirror experiment-upgrade

    SciTech Connect

    Felker, B.; Calderon, M.O.; Chargin, A.K.; Coffield, F.E.; Lang, D.D.; Rubert, R.R.; Pedrotti, L.R.; Stallard, B.W.; Gallagher, N.C. Jr.; Sweeney, D.W.

    1983-11-18

    The electron-cyclotron-resonant heating (ECRH) systems of rectangular waveguides on Tandem Mirror Experiment-Upgrade (TMX-U) operated with a overall efficiency of 50%, each system using a 28-GHz, 200-kW pulsed gyrotron. We designed and built four circular-waveguide systems with greater efficiency and greater power-handling capabilities to replace the rectangular waveguides. Two of these circular systems, at the 5-kG second-harmonic heating locations, have a total transmission efficiency of >90%. The two systems at the 10-kG fundamental heating locations have a total transmission efficiency of 80%. The difference in efficiency is due to the additional components required to launch the microwaves in the desired orientation and polarization with respect to magnetic-field lines at the 10-kG points. These systems handle the total power available from each gyrotron but do not have the arcing limitation problem of the rectangular waveguide. Each system requires several complex components. The overall physical layout and the design considerations for the rectangular and circular waveguide components are described here.

  17. Athabasca oil sands process water: characterization by atmospheric pressure photoionization and electrospray ionization fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Barrow, Mark P; Witt, Matthias; Headley, John V; Peru, Kerry M

    2010-05-01

    The Athabasca oil sands in Canada are a less conventional source of oil which have seen rapid development. There are concerns about the environmental impact, with particular respect to components in oil sands process water which may enter the aquatic ecosystem. Naphthenic acids have been previously targeted for study, due to their implications in toxicity toward aquatic wildlife, but it is believed that other components, too, contribute toward the potential toxicity of the oil sands process water. When mass spectrometry is used, it is necessary to use instrumentation with a high resolving power and mass accuracy when studying complex mixtures, but the technique has previously been hindered by the range of compounds that have been accessible via common ionization techniques, such as electrospray ionization. The research described here applied Fourier transform ion cyclotron resonance mass spectrometry in conjunction with electrospray ionization and atmospheric pressure photoionization, in both positive-ion and negative-ion modes, to the characterization of oil sands process water for the first time. The results highlight the need for broader characterization when investigating toxic components within oil sands process water. PMID:20359201

  18. Ion trajectories in an electrostatic ion guide for external ion source fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Marto, J A; Marshall, A G; May, M A; Limbach, P A

    1995-10-01

    An electrostatic ion guide (EIG) that consists of concentric cylinder and central wire electrodes can transport ions efficiently from an external ion source to an ion cyclotron resonance (ICR) ion trap for mass analysis, with several advantages over current injection methods. Because the electrostatic force of the EIG captures ions in a stable orbit about the wire electrode, ions with initially divergent trajectories may be redirected toward the ICR ion trap for improved ion transmission efficiency. SIMION trajectory calculations (ion kinetic energy, 1-200 eV; elevation angle, 0.30 °; azimuthal angle, 0.360°) predict that ions of m/z 1000 may be transmitted through a strong (0.01 → 3.0-T) magnetic field gradient. Judicious choice of ion source position and EIG potential minimizes the spread in ion axial kinetic energy at the ICR ion trap. Advantages of the EIG include large acceptance angle, even for ions that have large initial kinetic energy and large radial displacement with respect to the central z-axis, low ion extraction voltage (5-20 V), and efficient trapping because ions need not be accelerated to high velocity to pass through the magnetic field gradient. PMID:24214038

  19. A mode converter to generate a Gaussian-like mode for injection into the VENUS electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Lyneis, C.; Benitez, J.; Hodgkinson, A.; Plaum, B.; Strohmeier, M.; Thuillier, T.; Todd, D.

    2014-02-01

    A number of superconducting electron cyclotron resonance (ECR) ion sources use gyrotrons at either 24 or 28 GHz for ECR heating. In these systems, the microwave power is launched into the plasma using the TE01 circular waveguide mode. This is fundamentally different and may be less efficient than the typical rectangular, linearly polarized TE10 mode used for launching waves at lower frequencies. To improve the 28 GHz microwave coupling in VENUS, a TE01-HE11 mode conversion system has been built to test launching HE11 microwave power into the plasma chamber. The HE11 mode is a quasi-Gaussian, linearly polarized mode, which should couple strongly to the plasma electrons. The mode conversion is done in two steps. First, a 0.66 m long "snake" converts the TE01 mode to the TE11 mode. Second, a corrugated circular waveguide excites the HE11 mode, which is launched directly into the plasma chamber. The design concept draws on the development of similar devices used in tokamaks and stellerators. The first tests of the new coupling system are described below.

  20. He2+ source based on Penning-type discharge with electron cyclotron resonant heating by millimeter waves

    NASA Astrophysics Data System (ADS)

    Vodopyanov, A. V.; Golubev, S. V.; Izotov, I. V.; Mansfeld, D. A.; Yushkov, G. Yu

    2011-06-01

    Electron cyclotron resonance (ECR) ion sources are particularly useful for nuclear, atomic and high energy physics, as unique high current generators of multicharged ion beams. Plasmas of gas discharges in open magnetic traps heated by pulsed high power high-frequency microwaves of gyrotrons are promising in the field of research in the development of ECR sources for high charge state ion beams. It is necessary to decrease pressure and increase plasma density to reach higher average charge of ions in the plasma. The ECR discharge could be ignited at very low gas pressure, but it takes longer time for the discharge start-up. Hence, it is impossible to realize the ECR discharge with limited microwave heating pulse duration at gas pressure below a certain threshold value. We suggest a Penning-type discharge as a trigger discharge for fast development of pulsed-ECR plasma. The Penning-type discharge glows at a low pressure as needed. Gyrotron radiation (75 GHz, 200 kW, 1 ms) was used for plasma heating. Fully striped helium ions were demonstrated, average charge of ions in the plasma was ≈2. Temporal evolution of charge state distribution as a function of helium pressure and microwave power was investigated.

  1. Profiles of ion beams and plasma parameters on a multi-frequencies microwaves large bore electron cyclotron resonance ion source with permanent magnets

    SciTech Connect

    Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yosuke; Nozaki, Dai; Sato, Fuminobu; Iida, Toshiyuki

    2012-02-15

    In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them in detail.

  2. Dynamic nuclear polarization with a cyclotron resonance maser at 5 T

    NASA Astrophysics Data System (ADS)

    Becerra, Lino R.; Gerfen, Gary J.; Temkin, Richard J.; Singel, David J.; Griffin, Robert G.

    1993-11-01

    DNP (dynamic nuclear polarization) experiments at 5 T are reported, in which a cycoltron resonance maser (gyrotron) is utilized as a 20 W, 140 GHz microwave source to perform the polarization. MAS (magic angle spinning) NMR spectroscopy with DNP has been performed on samples of polystyrene doped with the free radical BDPA (α,γ-bisdiphenylene-β-phenylallyl) at room temperature. Maximal DNP enhancements of ~10 for 1H and ~40 for 13C are observed and are considerably larger than expected. The DNP and spin relaxation mechanisms that lead to these enhancements at 5 T are discussed.

  3. Mechanical design proposal of an Ions Cyclotron Resonant Heating antenna for ITER

    SciTech Connect

    Agarici, G.; Argouarch, A.; Brun, C.; Mitteau, R.; Mollard, P.; Patterlini, J. C.; Vulliez, K.; Testoni, P.; Maggiora, R.; Milanesio, D.

    2007-09-28

    The antenna design proposed here is based on the resonant double loop concept with conjugate T matching to make the circuit resilient to strong plasma load variations as ELMs. The antenna is constituted of two main parts; the in-vessel launcher which is inside the primary torus vacuum and the Compact Vacuum Tuners (CVT) that is located after the first barrier in a private vacuum. This CVT allows to match at the strap location, the antenna impedance with the plasma load, over the 45 to 55 MHz frequency range. It has been designed to ease its repair and maintenance, and can be easily removed from the rear without breaking the primary vacuum. Apart from the Faradays screens fit to shape the plasma edge, the in-vessel launcher and CVT are made out of 6 identical modules, to allow the best economical approach for the manufacture, the assembly and the maintenance of the antenna.

  4. Design and Characterization of a High-power Laser-induced Acoustic Desorption (LIAD) Probe Coupled with a Fourier-transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Shea, Ryan C.; Habicht, Steven C.; Vaughn, Weldon E.; Kenttämaa, Hilkka I.

    2008-01-01

    We report here the construction and characterization of a high-power laser-induced acoustic desorption (LIAD) probe designed for Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometers to facilitate analysis of non-volatile, thermally labile compounds. This “next generation” LIAD probe offers significant improvements in sensitivity and desorption efficiency for analytes with larger molecular weights via the use of higher laser irradiances. Unlike the previous probes which utilized a power limiting optical fiber to transmit the laser pulses through the probe, this probe employs a set of mirrors and a focusing lens. At the end of the probe, the energy from the laser pulses propagates through a thin metal foil as an acoustic wave, resulting in desorption of neutral molecules from the opposite side of the foil. Following desorption, the molecules can be ionized by electron impact or chemical ionization. Almost an order of magnitude greater power density (up to 5.0 × 109 W/cm2) is achievable on the backside of the foil with the high-power LIAD probe compared to the earlier LIAD probes (maximum power density ~9.0 × 108 W/cm2). The use of higher laser irradiances is demonstrated not to cause fragmentation of the analyte. The use of higher laser irradiances increases sensitivity since it results in the evaporation of a greater number of molecules per laser pulse. Measurement of the average velocities of LIAD evaporated molecules demonstrates that higher laser irradiances do not correlate with higher velocities of the gaseous analyte molecules. PMID:17319645

  5. Note: {sup 6}Li III light intensity observation for {sup 6}Li{sup 3+} ion beam operation at Hyper-Electron Cyclotron Resonance ion source

    SciTech Connect

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shoichi; Yamaguchi, Hidetoshi; Shimoura, Susumu; Watanabe, Shin-ichi; Oyaizu, Michihiro; Kobayashi, Kiyoshi; Kotaka, Yasuteru; Nishimura, Makoto; Kase, Masayuki; Kubono, Shigeru; Hattori, Toshiyuki

    2014-12-15

    The light intensity of {sup 6}Li III line spectrum at λ = 516.7 nm was observed during {sup 6}Li{sup 3+} beam tuning at the Hyper-Electron Cyclotron Resonance (ECR) ion source. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process. However, {sup 6}Li III line intensity observation conducted in this study gives new insights into its simplification of this process. The light intensity of {sup 6}Li III line spectrum from the ECR plasma was found to have a strong correlation with the extracted {sup 6}Li{sup 3+} beam intensity from the RIKEN Azimuthal Varying Field cyclotron.

  6. Oil spill source identification by principal component analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra.

    PubMed

    Corilo, Yuri E; Podgorski, David C; McKenna, Amy M; Lemkau, Karin L; Reddy, Christopher M; Marshall, Alan G; Rodgers, Ryan P

    2013-10-01

    One fundamental challenge with either acute or chronic oil spills is to identify the source, especially in highly polluted areas, near natural oil seeps, when the source contains more than one petroleum product or when extensive weathering has occurred. Here we focus on heavy fuel oil that spilled (~200,000 L) from two suspected fuel tanks that were ruptured on the motor vessel (M/V) Cosco Busan when it struck the San Francisco-Oakland Bay Bridge in November 2007. We highlight the utility of principal component analysis (PCA) of elemental composition data obtained by high resolution FT-ICR mass spectrometry to correctly identify the source of environmental contamination caused by the unintended release of heavy fuel oil (HFO). Using ultrahigh resolution electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry, we uniquely assigned thousands of elemental compositions of heteroatom-containing species in neat samples from both tanks and then applied principal component analysis. The components were based on double bond equivalents for constituents of elemental composition, CcHhN1S1. To determine if the fidelity of our source identification was affected by weathering, field samples were collected at various intervals up to two years after the spill. We are able to identify a suite of polar petroleum markers that are environmentally persistent, enabling us to confidently identify that only one tank was the source of the spilled oil: in fact, a single principal component could account for 98% of the variance. Although identification is unaffected by the presence of higher polarity, petrogenic oxidation (weathering) products, future studies may require removal of such species by anion exchange chromatography prior to mass spectral analysis due to their preferential ionization by ESI. PMID:24033143

  7. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL (invited)a)

    NASA Astrophysics Data System (ADS)

    Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Guo, X. H.; Cao, Y.; Lu, W.; Zhang, Z. M.; Yuan, P.; Song, M. T.; Zhao, H. Y.; Jin, T.; Shang, Y.; Zhan, W. L.; Wei, B. W.; Xie, D. Z.

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6T at injection, 2.2T at extraction, and a radial sextupole field of 2.0T at plasma chamber wall. During the commissioning phase at 18GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5kW by two 18GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810eμA of O7+, 505eμA of Xe20+, 306eμA of Xe27+, and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  8. Automated ambient desorption-ionization platform for surface imaging integrated with a commercial Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Pól, Jaroslav; Vidová, Veronika; Kruppa, Gary; Kobliha, Václav; Novák, Petr; Lemr, Karel; Kotiaho, Tapio; Kostiainen, Risto; Havlícek, Vladimír; Volný, Michael

    2009-10-15

    A fully automated atmospheric pressure ionization platform has been built and coupled with a commercial high-resolution Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) instrument. The outstanding performance of this instrument allowed screening on the basis of exact masses in imaging mode. The main novel aspect was in the integration of the atmospheric pressure ionization imaging into the current software for matrix-assisted laser desorption ionization (MALDI) imaging, which allows the user of this commercial dual-source mass spectrometer to perform MALDI-MS and different ambient MS imaging from the same user interface and to utilize the same software tools. Desorption electrospray ionization (DESI) and desorption atmospheric pressure photoionization (DAPPI) were chosen to test the ambient surface imaging capabilities of this new ionization platform. Results of DESI imaging experiments performed on brain tissue sections are in agreement with previous MS imaging reports obtained by DESI imaging, but due to the high resolution and mass accuracy of the FTICR instrument it was possible to resolve several ions at the same nominal mass in the DESI-MS spectra of brain tissue. These isobaric interferences at low resolution are due to the overlap of ions from different lipid classes with different biological relevance. It was demonstrated that with the use of high-resolution MS fast imaging screening of lipids can be achieved without any preseparation steps. DAPPI, which is a relatively new and less developed ambient ionization technique compared to DESI, was used in imaging mode for the first time ever. It showed promise in imaging of phytocompounds from plant leaves, and selective ionization of a sterol lipid was achieved by DAPPI from a brain tissue sample. PMID:19761221

  9. Compositional study of silicon oxynitride thin films deposited using electron cyclotron resonance plasma-enhanced chemical vapor deposition technique

    SciTech Connect

    Baumann, H.; Sah, R.E.

    2005-05-01

    We have used backscattering spectrometry and {sup 15}N({sup 1}H,{alpha},{gamma}){sup 12}C nuclear reaction analysis techniques to study in detail the variation in the composition of silicon oxynitride films with deposition parameters. The films were deposited using 2.45 GHz electron cyclotron resonance plasma-enhanced chemical vapor deposition (PECVD) technique from mixtures of precursors argon, nitrous oxide, and silane at deposition temperature 90 deg. C. The deposition pressure and nitrous oxide-to-silane gas flow rates ratio have been found to have a pronounced influence on the composition of the films. When the deposition pressure was varied for a given nitrous oxide-to-silane gas flow ratio, the amount of silicon and nitrogen increased with the deposition pressure, while the amount of oxygen decreased. For a given deposition pressure, the amount of incorporated nitrogen and hydrogen decreased while that of oxygen increased with increasing nitrous oxide-to-silane gas flow rates ratio. For nitrous oxide-to-silane gas flow ratio of 5, we obtained films which contained neither chemically bonded nor nonbonded nitrogen atoms as revealed by the results of infrared spectroscopy, backscattering spectrometry, and nuclear reaction analysis. Our results demonstrate the nitrogen-free nearly stoichiometric silicon dioxide films can be prepared from a mixture of precursors argon, nitrous oxide, and silane at low substrate temperature using high-density PECVD technique. This avoids the use of a hazardous and an often forbidden pair of silane and oxygen gases in a plasma reactor.

  10. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited).

    PubMed

    Vondrasek, R; Levand, A; Pardo, R; Savard, G; Scott, R

    2012-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi (252)Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci (252)Cf source to produce radioactive beams with intensities up to 10(6) ions∕s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for (23)Na(8+), 15.6% for (84)Kr(17+), and 13.7% for (85)Rb(19+) with typical breeding times of 10 ms∕charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for (143)Cs(27+) and 14.7% for (143)Ba(27+). The project has been commissioned with a radioactive beam of (143)Ba(27+) accelerated to 6.1 MeV∕u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities. PMID:22380254

  11. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    PubMed

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007. PMID:18315105

  12. a Study of Diamond Thin Film and Diamondlike Carbon Film Deposition Using Electron Cyclotron Resonance Microwave Discharges

    NASA Astrophysics Data System (ADS)

    Kuo, Szu-Cherng

    1991-02-01

    The electron cyclotron resonance (ECR) plasma is very useful for thin film technologies since it enables: (1) generation of a very dense plasma with n_ {rm e} > 10 ^{11}/cm^3 at f = 2.45 GHz; (2) generation of a highly ionized plasma (ionization degree > 1%); (3) generation of a plasma in the low pressure regime (10^ {-4} - 10^{-2} Torr); (4) generation of a radically homogeneous plasma column with large diameters; and (5) acceleration of the plasma in an inhomogeneous magnetic field. A large variety of deposition techniques have been used to prepare diamond thin films and diamondlike carbon (DLC) films. ECR plasma-assisted chemical vapor deposition (PACVD) is a new technique currently receiving much interest. The ECR plasma system offers a more complex parameter space than the more conventional PACVD processes. These include magnetic confinement of the plasma, independent source control over the dissociation of reaction gases, independent substrate bias of DC or RF voltage, independent substrate temperature control, downstream plasma operation and the magnetic mirror configuration which allows for the extraction of specific ion energies from the plasma chamber. In this work we have set up an ECR plasma-assisted materials processing system. A Lisitano coil is used to effectively couple microwave energy into the plasma, and a divergent magnetic field configuration is used to push the plasma out of the Lisitano coil. Langmuir probe measurements and optical emission spectroscopy were performed to characterize the ECR plasma. We have deposited hard DLC films on silicon substrates using this ECR plasma system. The deposition was operated at a -200 V DC bias, substrate temperature T = 200^circC, pressure P= 5*10^{-4} Torr using CH _4 as the reaction gas. The diamond thin film deposition using ECR PACVD technique has produced some initial results. Further studies into the effects of dense ion flux in the ECR plasma on diamond formation is needed.

  13. Development of Compact Electron Cyclotron Resonance Ion Source with Permanent Magnets for High-Energy Carbon-Ion Therapy

    SciTech Connect

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Hojo, S.; Sakamoto, Y.; Sato, S.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Ueda, T.; Miyazaki, H.; Drentje, A. G.

    2008-11-03

    Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C{sup 4+} based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C{sup 4+} was obtained to be 618 e{mu}A under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.

  14. Preparation and in situ Characterization of Surfaces Using Soft-Landing in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    SciTech Connect

    Alvarez, Jormarie; Cooks, Robert G.; Barlow, Stephan E.; Gaspar, Dan J.; Futrell, Jean H.; Laskin, Julia

    2005-06-01

    Mass-selected peptide ions produced by electrospray ionization were deposited onto fluorinated self-assembled monolayer surfaces (FSAM) surfaces by soft-landing using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially designed for studying interactions of large ions with surfaces. Analysis of the modified surface was performed in situ by combining 2 keV Cs+ secondary ion mass spectrometry with FT-ICR detection of the sputtered ions (FT-ICR-SIMS). Regardless of the initial charge state of the precursor ion, the SIMS mass spectra included singly-protonated peptide fragment ions and peaks characteristic of the surfaces in all cases. In some experiments multiply-protonated peptide ions and [M+Au]+ ions were also observed upon SIMS analysis of modified surfaces. For comparison with the in situ analysis of the modified surfaces, ex situ analysis of some of the modified surfaces was performed by 25 kV Ga+ time of flight ? secondary ion mass spectrometry (ToF-SIMS). The ex situ analysis demonstrated that a significant number of soft-landed peptide ions remain charged on the surface even when exposed to air for several hours after deposition. Charge retention of soft-landed ions dramatically increases the ion yields obtained during SIMS analysis very sensitive detection of deposited material at less than 1% of monolayer coverage. Accumulation of charged species on the surface undergoes saturation due to Coulomb repulsion between charges at close to 30% coverage. We estimated that close to 1 ng of peptide could be deposited on the spot area of 4 mm2 of the FSAM surface without reaching saturation.

  15. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited)

    SciTech Connect

    Vondrasek, R.; Levand, A.; Pardo, R.; Savard, G.; Scott, R.

    2012-02-15

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi {sup 252}Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci {sup 252}Cf source to produce radioactive beams with intensities up to 10{sup 6} ions/s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for {sup 23}Na{sup 8+}, 15.6% for {sup 84}Kr{sup 17+}, and 13.7% for {sup 85}Rb{sup 19+} with typical breeding times of 10 ms/charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for {sup 143}Cs{sup 27+} and 14.7% for {sup 143}Ba{sup 27+}. The project has been commissioned with a radioactive beam of {sup 143}Ba{sup 27+} accelerated to 6.1 MeV/u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.

  16. Development of Compact Electron Cyclotron Resonance Ion Source with Permanent Magnets for High-Energy Carbon-Ion Therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Hojo, S.; Sakamoto, Y.; Sato, S.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Ueda, T.; Miyazaki, H.; Drentje, A. G.

    2008-11-01

    Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C4+ based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C4+ was obtained to be 618 eμA under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.

  17. Attenuation of wall disturbances in an electron cyclotron resonance oxygen–argon plasma using real time control

    SciTech Connect

    Keville, Bernard Gaman, Cezar; Turner, Miles M.; Zhang, Yang; Daniels, Stephen; Holohan, Anthony M.

    2014-07-01

    Present practice in plasma-assisted semiconductor manufacturing specifies recipes in terms of inputs such as gas flow rates, power and pressure. However, ostensibly identical chambers running identical recipes may produce very different results. Extensive chamber matching, i.e., initial iterative, empirical tuning of the process recipe, which entails time-consuming, ex situ statistical analysis of process metrics such as etch depth, uniformity, anisotropy and selectivity, is required to ensure acceptable results. Once matched, chambers are run open loop and are thus sensitive to disturbances such as actuator drift, wall seasoning and substrate loading, which may impact negatively on process reproducibility. An alternative approach, which may obviate the need for chamber matching and reduce the sensitivity of process metrics to exogenous disturbances, would be to specify a recipe in terms of quantities such as active species densities, and to regulate these in real time by adjusting the inputs with a suitable control algorithm. In this work, real time control of an electron cyclotron resonance O{sub 2}/Ar plasma used for photoresist ashing has been implemented. The design of elementary, model-based algorithms for the control of the argon 750 and oxygen 844 line intensities measured by optical emission spectroscopy is described. Fluorination of the chamber walls by means of an SF{sub 6} plasma prior to ashing inhibits wall recombination of oxygen radicals resulting in an approximately 20% increase in ash rate in the open loop case. However, closed loop control almost completely attenuates the effect of fluorination, thus demonstrating the efficacy of the control algorithms in ensuring a reproducible ash rate in the face of a wall disturbance.

  18. Possible detection of a cyclotron resonance scattering feature in the X-ray pulsar 4U 1909+07

    SciTech Connect

    Jaisawal, Gaurava K.; Naik, Sachindra; Paul, Biswajit

    2013-12-10

    We present timing and broad band spectral studies of the high-mass X-ray binary pulsar 4U 1909+07 using data from Suzaku observations during 2010 November 2-3. The pulse period of the pulsar is estimated to be 604.11 ± 0.14 s. Pulsations are seen in the X-ray light curve up to ∼70 keV. The pulse profile is found to be strongly energy-dependent: a complex, multi-peaked structure at low energy becomes a simple single peak at higher energy. We found that the 1-70 keV pulse-averaged continuum can be fit by the sum of a blackbody and a partial covering Negative and Positive power law with Exponential cutoff model. A weak iron fluorescence emission line at 6.4 keV was detected in the spectrum. An absorption-like feature at ∼44 keV was clearly seen in the residuals of the spectral fitting, independent of the continuum model adopted. To check the possible presence of a cyclotron resonance scattering feature (CRSF) in the spectrum, we normalized the pulsar spectrum with the spectrum of the Crab Nebula. The resulting Crab ratio also showed a clear dip centered at ∼44 keV. We performed statistical tests on the residuals of the spectral fitting and also on the Crab spectral ratio to determine the significance of the absorption-like feature and identified it as a CRSF of the pulsar. We estimated the corresponding surface magnetic field of the pulsar to be 3.8 × 10{sup 12} G.

  19. Progress of superconducting electron cyclotron resonance ion sources at Institute of Modern Physics (IMP)

    SciTech Connect

    Sun, L. Feng, Y. C.; Zhang, W. H.; Zhang, X. Z.; Cao, Y.; Wu, W.; Yang, T. J.; Zhao, B.; Zhao, H. W.; Ma, L. Z.; Xia, J. W.; Lu, W.; Zhao, Y. Y.; Xie, D.

    2014-02-15

    Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R and D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 eμA Xe{sup 27+}, 236 eμA Xe{sup 30+}, and 64 eμA Xe{sup 35+}. Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 eμA Bi{sup 30+} and 202 eμA U{sup 33+} have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation.

  20. Progress of superconducting electron cyclotron resonance ion sources at Institute of Modern Physics (IMP).

    PubMed

    Sun, L; Lu, W; Feng, Y C; Zhang, W H; Zhang, X Z; Cao, Y; Zhao, Y Y; Wu, W; Yang, T J; Zhao, B; Zhao, H W; Ma, L Z; Xia, J W; Xie, D

    2014-02-01

    Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R&D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 eμA Xe(27+), 236 eμA Xe(30+), and 64 eμA Xe(35+). Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 eμA Bi(30+) and 202 eμA U(33+) have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation. PMID:24593521

  1. Cyclotron Institute Upgrade Project

    SciTech Connect

    Clark, Henry; Yennello, Sherry; Tribble, Robert

    2014-08-26

    The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88”) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

  2. Tailored Noise Waveform/ Collision-Induced Dissociation of Ions Stored in a Linear Ion Trap Combined with Liquid Chromatography/Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    SciTech Connect

    Vilkov, Andrey N.; Bogdanov, Bogdan; Pasa-Tolic, Liljiana; Prior, David C.; Anderson, Gordon A.; Masselon, Christophe D.; Moore, Ronald J.; Smith, Richard D.

    2004-11-01

    A new collision-induced dissociation (CID) technique based on broadband tailored noise waveform (TNW) excitation of ions stored in a linear ion trap has been developed. In comparison with the conventional sustained off-resonance irradiation (SORI) CID method commonly used in Fourier transform ion cyclotron resonance mass spectrometry, this MS/MS technique increases throughput by eliminating the long pump-down delay associated with gas introduction into the high vacuum ICR cell region. In addition, the TNW-CID method speeds spectrum acquisition since it does not require Fourier transformation, calculation of resonant frequencies and generation of the excitation waveforms. We demonstrate TNW-CID coupled with on-line capillary reverse phase liquid chromatography separations for identification of peptides. The experimental results are compared with data obtained using conventional quadrupole ion trap MS/MS and SORI-CID MS/MS in an ICR cell.

  3. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    PubMed

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP. PMID:24593475

  4. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    SciTech Connect

    Yorita, T. Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K.

    2014-02-15

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  5. Note: Effect of hot liner in producing 40,48Ca beam from RIKEN 18-GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Ozeki, K.; Higurashi, Y.; Kidera, M.; Nakagawa, T.

    2015-01-01

    In order to produce a high-intensity and stable 48Ca beam from the RIKEN 18-GHz electron cyclotron resonance ion source, we have begun testing the production of a calcium beam using a micro-oven. To minimize the consumption rate of the material (48Ca), we introduced the "hot liner" method and investigated the effect of the liner on the material consumption rate. The micro-oven was first used to produce the 48Ca beam for experiments in the RIKEN radioisotope beam factory, and a stable beam could be supplied for a long time with low consumption rate.

  6. Note: Easy-to-maintain electron cyclotron resonance (ECR) plasma sputtering apparatus featuring hybrid waveguide and coaxial cables for microwave delivery

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei

    2016-06-01

    The branched-waveguide electron cyclotron resonance plasma sputtering apparatus places quartz windows for transmitting microwaves into the plasma source not in the line of sight of the target. However, the quartz windows must be replaced after some time of operation. For maintenance, the loop waveguide branching from the T-junction must be dismounted and re-assembled accurately, which is a time-consuming job. We investigated substituting the waveguide branches with two sets of coaxial cables and waveguide/coaxial cable converters to simplify assembly as far as connection and disconnection go. The resulting hybrid system worked well for the purposes of plasma generation and film deposition.

  7. Deposition temperature dependence of the deep defect density for a-Si:H films grown by electron cyclotron resonance microwave plasma

    NASA Technical Reports Server (NTRS)

    Essick, J. M.; Pool, F. S.; Shing, Y. H.

    1992-01-01

    The dependence on deposition temperature of the mobility gap density of states has been determined for hydrogenated amorphous silicon (a-Si:H) films grown by electron cyclotron resonance (ECR) microwave plasma CVD. A minimum in the integrated deep defect density of 1 x 10 exp 16/cu cm was found to occur at a temperature of approximately 250 C, while an Urbach slope minimum of 52 meV was observed at 175 C under our deposition conditions. Based on these measurements the ECR-grown films were found to be of excellent device quality and comparable to a-Si:H films grown by RF plasma-enhanced CVD.

  8. Preparation of epitaxial AlN films by electron cyclotron resonance plasma-assisted chemical vapor deposition on Ir- and Pt-coated sapphire substrates

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Vargas, Roberto; Goto, Takashi; Someno, Yoshihiro; Hirai, Toshio

    1994-03-01

    AlN epitaxial films have been fabricated on Ir- and Pt-coated α-Al2O3 substrates via electron cyclotron resonance plasma-assisted chemical vapor deposition (ECRPACVD) using an AlBr3-N2-H2-Ar gas system at substrate temperatures ranging from 500 to 700 °C. The epitaxial relationships between AlN films and substrates were determined by x-ray diffraction, x-ray pole figure, and reflection high-energy electron diffraction. The results are useful in practical applications, such as AlN/metal/α-Al2O3 structure in surface acoustic wave (SAW) devices.

  9. Resonant and Nonresonant Electron Cyclotron Heating at Densities above the Plasma Cutoff by O-X-B Mode Conversion at the W7-As Stellarator

    SciTech Connect

    Laqua, H.; Erckmann, V.; Hartfuss, H.; Laqua, H.; ECRH Group, W.T.

    1997-05-01

    The extension of the experimentally accessible plasma densities with electron cyclotron heating beyond the plasma cutoff density and the removal of the restriction to a resonant magnetic field, both via mode conversion heating from an O-wave to an X-wave and, finally, to an electron Bernstein (O-X-B) wave, was investigated and successfully demonstrated at the W7-AS stellarator. In addition to the heating effect, clear evidence for both mode conversion steps was detected for the first time. {copyright} {ital 1997} {ital The American Physical Society}

  10. Note: Easy-to-maintain electron cyclotron resonance (ECR) plasma sputtering apparatus featuring hybrid waveguide and coaxial cables for microwave delivery.

    PubMed

    Akazawa, Housei

    2016-06-01

    The branched-waveguide electron cyclotron resonance plasma sputtering apparatus places quartz windows for transmitting microwaves into the plasma source not in the line of sight of the target. However, the quartz windows must be replaced after some time of operation. For maintenance, the loop waveguide branching from the T-junction must be dismounted and re-assembled accurately, which is a time-consuming job. We investigated substituting the waveguide branches with two sets of coaxial cables and waveguide/coaxial cable converters to simplify assembly as far as connection and disconnection go. The resulting hybrid system worked well for the purposes of plasma generation and film deposition. PMID:27370505

  11. Note: Effect of hot liner in producing {sup 40,48}Ca beam from RIKEN 18-GHz electron cyclotron resonance ion source

    SciTech Connect

    Ozeki, K. Higurashi, Y.; Kidera, M.; Nakagawa, T.

    2015-01-15

    In order to produce a high-intensity and stable {sup 48}Ca beam from the RIKEN 18-GHz electron cyclotron resonance ion source, we have begun testing the production of a calcium beam using a micro-oven. To minimize the consumption rate of the material ({sup 48}Ca), we introduced the “hot liner” method and investigated the effect of the liner on the material consumption rate. The micro-oven was first used to produce the {sup 48}Ca beam for experiments in the RIKEN radioisotope beam factory, and a stable beam could be supplied for a long time with low consumption rate.

  12. HELIOS: A helium line-ratio spectral-monitoring diagnostic used to generate high resolution profiles near the ion cyclotron resonant heating antenna on TEXTOR

    SciTech Connect

    Unterberg, E. A.; Fehling, D. H.; Klepper, C. C.; Hillis, D. L.; Schmitz, O.; Stoschus, H.; Munoz-Burgos, J. M.; Van Wassenhove, G.

    2012-10-15

    Radial profiles of electron temperature and density are measured at high spatial ({approx}1 mm) and temporal ( Greater-Than-Or-Slanted-Equal-To 10 {mu}s) resolution using a thermal supersonic helium jet. A highly accurate detection system is applied to well-developed collisional-radiative model codes to produce the profiles. Agreement between this measurement and an edge Thomson scattering measurement is found to be within the error bars ( Less-Than-Or-Equivalent-To 20%). The diagnostic is being used to give profiles near the ion cyclotron resonant heating antenna on TEXTOR to better understand RF coupling to the core.

  13. Enhancing the performances of traditional electron cyclotron resonance ion sources with multiple-discrete-frequency microwave radiation

    SciTech Connect

    Alton, G.D.; Meyer, F.W.; Liu, Y.; Beene, J.R.; Tucker, D.

    1998-06-01

    The performances of electron cyclotron resonance (ECR) ion sources, in terms of high-charge-state yields and intensities within a particular charge state, can be enhanced by increasing the physical sizes of the ECR zones in relation to the sizes of their plasma volumes. The creation of a large ECR plasma {open_quotes}volume{close_quotes} permits coupling of more power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge-state distributions and higher intensities within a particular charge state than possible in present forms of the ECR source. The ECR plasma {open_quotes}volumes{close_quotes} of traditional B-minimum ECR sources can be increased by injecting broadband microwave radiation (multiple-discrete-frequency, variable frequency, or broad-band-width frequency microwave radiation) derived from standard klystron, gyrotron, or traveling-wave-tube (TWT) technologies (frequency domain). To demonstrate that the frequency domain technique can be used to enhance the performance of a traditional B-minimum ECR ion source, comparative studies were made to assess the relative performances of the Oak Ridge National Laboratory Caprice ECR ion source, in terms of multiply charged ion-beam generation capabilities, when excited with high-power, single-frequency, or multiple-discrete-frequency microwave radiation, derived from standard klystron and/or TWT technologies. These studies demonstrate that the charge-state populations for Arthinsp{sup q+} and Xe{sup q+} move toward higher values when excited with two and three discrete-frequency, microwave power compared to those observed when single-frequency microwave power is used. For example, the most probable charge state for Xe is increased by one charge-state unit while the beam intensities for charge states higher than the most probable are increased by factors of {approximately}3 compared to those observed for single

  14. Characterization of heavy masses of two-dimensional conduction subband in InGaAs/InAlAs MQW structures by pulsed cyclotron resonance technology

    SciTech Connect

    Kotera, N.; Tanaka, K.; Arimoto, H.; Miura, N.; Jones, E.D.; Mishima, T.; Washima, M.

    1998-05-01

    Conduction-band effective masses in a direction parallel to the quantum well plane were investigated in n-type-modulation-doped InGaAs/InAlAs multiquantum well system. Thicknesses of well and barrier were 5 and 10 nm. Three highly-doped specimens having about 1 {times} 10{sup 12} cm{sup {minus}2} per one quantum well were prepared by MBE. Double-crystal X-ray diffraction was used to check the crystal quality. Heavy electron effective masses, almost 50% bigger than the band edge mass of 0.041m{sub 0}, were measured by far-infrared and infrared cyclotron resonances under pulse high magnetic fields up to 100 T. Nonparabolicity of this subband was less than 12% by comparing the two cyclotron resonances. Observed two-dimensional subband structure was quite different from conduction-band effective mass in a direction perpendicular to the same quantum well and from GaAs/GaAlAs quantum well system.

  15. Dependence of ion beam current on position of mobile plate tuner in multi-frequencies microwaves electron cyclotron resonance ion source.

    PubMed

    Kurisu, Yosuke; Kiriyama, Ryutaro; Takenaka, Tomoya; Nozaki, Dai; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-02-01

    We are constructing a tandem-type electron cyclotron resonance ion source (ECRIS). The first stage of this can supply 2.45 GHz and 11-13 GHz microwaves to plasma chamber individually and simultaneously. We optimize the beam current I(FC) by the mobile plate tuner. The I(FC) is affected by the position of the mobile plate tuner in the chamber as like a circular cavity resonator. We aim to clarify the relation between the I(FC) and the ion saturation current in the ECRIS against the position of the mobile plate tuner. We obtained the result that the variation of the plasma density contributes largely to the variation of the I(FC) when we change the position of the mobile plate tuner. PMID:22380157

  16. Dependence of ion beam current on position of mobile plate tuner in multi-frequencies microwaves electron cyclotron resonance ion source

    SciTech Connect

    Kurisu, Yosuke; Kiriyama, Ryutaro; Takenaka, Tomoya; Nozaki, Dai; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-02-15

    We are constructing a tandem-type electron cyclotron resonance ion source (ECRIS). The first stage of this can supply 2.45 GHz and 11-13 GHz microwaves to plasma chamber individually and simultaneously. We optimize the beam current I{sub FC} by the mobile plate tuner. The I{sub FC} is affected by the position of the mobile plate tuner in the chamber as like a circular cavity resonator. We aim to clarify the relation between the I{sub FC} and the ion saturation current in the ECRIS against the position of the mobile plate tuner. We obtained the result that the variation of the plasma density contributes largely to the variation of the I{sub FC} when we change the position of the mobile plate tuner.

  17. Effect of inhomogeneous charge distribution on the cyclotron resonance in an inverted GaAs/Ga1-xAlxAs interface

    NASA Astrophysics Data System (ADS)

    Pastor, K.; Goiran, M.; Kim, D. J.; Madhukar, A.; Leotin, J.; Bouchelaghem, M.; Askenazy, S.

    1990-12-01

    Cyclotron resonance in an inverted GaAs/Ga1-xAlxAs heterostructure and/or single quantum well (GaAs is grown on a Ga1-xAlxAs-doped layer rather than vice versa) was studied in the far infrared. A large splitting was found and is attributed to inhomogeneous charge-distribution-induced coupling to the intersubband resonance. A simple model accounting for the coupling in the presence of the inhomogeneous charge at the interface has been developed. From the fit to the experimental data, the value of the average electric field gradients at the inverted interface G=1.2×109 V/cm2 was obtained.

  18. New Vanadium Compounds in Venezuela Heavy Crude Oil Detected by Positive-ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Zhao, Xu; Shi, Quan; Gray, Murray R.; Xu, Chunming

    2014-01-01

    Metalloporphyrins are ubiquitous in nature, particularly iron porphyrins (hemes) and magnesium dihydroporphyrins or chlorophylls. Oxovanadium (IV) complexes of alkyl porphyrins are widely distributed in petroleum, oil shales and maturing sedimentary bitumen. Here we identify new vanadium compounds in Venezuela Orinoco heavy crude oil detected by Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). These compounds likely have the main structure of porphyrin, with the addition of more aromatic rings, thiophene and amino functional groups, corresponding to molecular series of CnH2n-40N4V1O1 (36 ≤ n ≤ 58),CnH2n-42N4V1O1 (37 ≤ n ≤ 57),CnH2n-44N4V1O1 (38 ≤ n ≤ 59),CnH2n-46N4V1O1 (43 ≤ n ≤ 54),CnH2n-48N4V1O1 (45 ≤ n ≤ 55),CnH2n-38N4V1S1O1 (36 ≤ n ≤ 41),CnH2n-40N4V1S1O1 (35 ≤ n ≤ 51),CnH2n-42N4V1S1O1 (36 ≤ n ≤ 54),CnH2n-44N4V1S1O1 (41 ≤ n ≤ 55),CnH2n-46N4V1S1O1 (39 ≤ n ≤ 55),CnH2n-27N5V1O1 (29 ≤ n ≤ 40),CnH2n-29N5V1O1 (34 ≤ n ≤ 42),CnH2n-33N5V1O1 (31 ≤ n ≤ 38),CnH2n-35N5V1O1 (32 ≤ n ≤ 41),CnH2n-27N5V1O2 (32 ≤ n ≤ 41) and CnH2n-29N5V1O2 (33 ≤ n ≤ 42). These findings are significant for the understanding of the existing form of vanadium species in nature, and are helpful for enhancing the amount of information on palaeoenvironments and improving the level of applied basic theory for the processing technologies of heavy oils. PMID:24948028

  19. Rapid Profiling of Bovine and Human Milk Gangliosides by Matrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Lee, Hyeyoung; An, Hyun Joo; Lerno, Larry A.; German, J. Bruce; Lebrilla, Carlito B.

    2010-01-01

    Gangliosides are anionic glycosphingolipids widely distributed in vertebrate tissues and fluids. Their structural and quantitative expression patterns depend on phylogeny and are distinct down to the species level. In milk, gangliosides are exclusively associated with the milk fat globule membrane. They may participate in diverse biological processes but more specifically to host-pathogen interactions. However, due to the molecular complexities, the analysis needs extensive sample preparation, chromatographic separation, and even chemical reaction, which makes the process very complex and time-consuming. Here, we describe a rapid profiling method for bovine and human milk gangliosides employing matrix-assisted desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS). Prior to the analyses of biological samples, milk ganglioside standards GM3 and GD3 fractions were first analyzed in order to validate this method. High mass accuracy and high resolution obtained from MALDI FTICR MS allow for the confident assignment of chain length and degree of unsaturation of the ceramide. For the structural elucidation, tandem mass spectrometry (MS/MS), specifically as collision-induced dissociation (CID) and infrared multiphoton dissociation (IRMPD) were employed. Complex ganglioside mixtures from bovine and human milk were further analyzed with this method. The samples were prepared by two consecutive chloroform/methanol extraction and solid phase extraction. We observed a number of differences between bovine milk and human milk. The common gangliosides in bovine and human milk are NeuAc-NeuAc-Hex-Hex-Cer (GD3) and NeuAc-Hex-Hex-Cer (GM3); whereas, the ion intensities of ganglioside species are different between two milk samples. Kendrick mass defect plot yields grouping of ganglioside peaks according to their structural similarities. Gangliosides were further probed by tandem MS to confirm the compositional and structural assignments

  20. New Vanadium Compounds in Venezuela Heavy Crude Oil Detected by Positive-ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhao, Xu; Shi, Quan; Gray, Murray R.; Xu, Chunming

    2014-06-01

    Metalloporphyrins are ubiquitous in nature, particularly iron porphyrins (hemes) and magnesium dihydroporphyrins or chlorophylls. Oxovanadium (IV) complexes of alkyl porphyrins are widely distributed in petroleum, oil shales and maturing sedimentary bitumen. Here we identify new vanadium compounds in Venezuela Orinoco heavy crude oil detected by Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). These compounds likely have the main structure of porphyrin, with the addition of more aromatic rings, thiophene and amino functional groups, corresponding to molecular series of CnH2n-40N4V1O1 (36 <= n <= 58),CnH2n-42N4V1O1 (37 <= n <= 57),CnH2n-44N4V1O1 (38 <= n <= 59),CnH2n-46N4V1O1 (43 <= n <= 54),CnH2n-48N4V1O1 (45 <= n <= 55),CnH2n-38N4V1S1O1 (36 <= n <= 41),CnH2n-40N4V1S1O1 (35 <= n <= 51),CnH2n-42N4V1S1O1 (36 <= n <= 54),CnH2n-44N4V1S1O1 (41 <= n <= 55),CnH2n-46N4V1S1O1 (39 <= n <= 55),CnH2n-27N5V1O1 (29 <= n <= 40),CnH2n-29N5V1O1 (34 <= n <= 42),CnH2n-33N5V1O1 (31 <= n <= 38),CnH2n-35N5V1O1 (32 <= n <= 41),CnH2n-27N5V1O2 (32 <= n <= 41) and CnH2n-29N5V1O2 (33 <= n <= 42). These findings are significant for the understanding of the existing form of vanadium species in nature, and are helpful for enhancing the amount of information on palaeoenvironments and improving the level of applied basic theory for the processing technologies of heavy oils.