Sample records for cyp3a enzyme activity

  1. Identification of a CYP3A form (CYP3A126) in fathead minnow (Pimephales promelas) and characterisation of putative CYP3A enzyme activity.

    PubMed

    Christen, Verena; Caminada, Daniel; Arand, Michael; Fent, Karl

    2010-01-01

    Cytochrome P450-dependent monooxygenases (CYPs) are involved in the metabolic defence against xenobiotics. Human CYP3A enzymes metabolise about 50% of all pharmaceuticals in use today. Induction of CYPs and associated xenobiotic metabolism occurs also in fish and may serve as a useful tool for biomonitoring of environmental contamination. In this study we report on the cloning of a CYP3A family gene from fathead minnows (Pimephales promelas), which has been designated as CYP3A126 by the P450 nomenclature committee (GenBank no. EU332792). The cDNA was isolated, identified and characterised by extended inverse polymerase chain reaction (PCR), an alternative to the commonly used method of rapid amplification of cDNA ends. In a fathead minnow cell line we identified a full-length cDNA sequence (1,863 base pairs (bp)) consisting of a 1,536 bp open reading frame encoding a 512 amino acid protein. Genomic analysis of the identified CYP3A isoenzyme revealed a DNA sequence consisting of 13 exons and 12 introns. CYP3A126 is also expressed in fathead minnow liver as demonstrated by reverse transcription PCR. Exposure of fathead minnow (FHM) cells with the CYP3A inducer rifampicin leads to dose-dependent increase in putative CYP3A enzyme activity. In contrast, inhibitory effects of diazepam treatment were observed on putative CYP3A enzyme activity and additionally on CYP3A126 mRNA expression. This indicates that CYP3A is active in FHM cells and that CYP3A126 is at least in part responsible for this CYP3A activity. Further investigations will show whether CYP3A126 is involved in the metabolism of environmental chemicals.

  2. Increased activity of CYP3A enzyme in primary cultures of rat hepatocytes treated with docetaxel: comparative evaluation with paclitaxel.

    PubMed

    Nallani, S C; Genter, M B; Desai, P B

    2001-08-01

    Docetaxel, a potent antimicrotubule agent widely used in the treatment of ovarian, breast and lung cancer, is extensively metabolized in various animal species, including humans. The metabolism of docetaxel to its primary metabolite, hydroxydocetaxel, is mediated by cytochrome P450 isozymes CYP3A2 and CYP3A4 in rats and humans, respectively. Several substrates of enzymes belonging to the CYP3A subfamily are known to induce different CYP isozymes, including CYP3A enzymes. Recently, paclitaxel, a compound structurally related to docetaxel, has been shown to significantly elevate the expression of CYP3A in rat and human hepatocytes. In this study we investigated the influence of docetaxel, employed at clinically relevant concentrations, on the level and the activity of cytochrome P450 3A in primary cultures of rat hepatocytes. Rat hepatocytes were treated with different concentrations of docetaxel, paclitaxel and other CYP3A inducers. Testosterone 6beta-hydroxylase activity of intact hepatocytes was used as a marker for CYP3A. The immunoreactive CYP3A levels in the S-9 fractions were determined by Western blot analysis. We observed that by day 3 of drug treatment, docetaxel at concentration in the range of 2.5-10 microM increased the CYP3A enzymatic activity and the immunoreactive CYP3A levels in a concentration-dependent manner. At the 10 microM level, docetaxel caused a twofold increase in the CYP3A activity and a threefold increase in the immunoreactive CYP3A levels. However, the docetaxel-mediated CYP3A activity and enzyme level increase were significantly lower than those mediated by paclitaxel and dexamethasone. A comparison of the testosterone 6beta-hydroxylation activity in hepatocytes treated with these agents at a concentration of 5 microM each yielded the following rank order of induction capacity: dexamethasone > paclitaxel > docetaxel (15-fold, 5-fold, 2.2-fold, respectively). Taken together, our findings raise the possibility that docetaxel at clinically

  3. Polychlorinated biphenyl (PCB) induction of CYP3A4 enzyme activity in healthy Faroese adults.

    PubMed

    Petersen, Maria Skaalum; Halling, Jónrit; Damkier, Per; Nielsen, Flemming; Grandjean, Philippe; Weihe, Pál; Brøsen, Kim

    2007-10-15

    The CYP3A4 enzyme is, along with other cytochrome P450 enzymes, involved in the metabolism of environmental pollutants and is highly inducible by these substances. A commercial polychlorinated biphenyl (PCB) mixture, 1,1,1,-trichloro-2-(o-chlorophenyl), 2-(p'-chlorophenyl)ethane (o,p'-DDT) and 1,1,-dichloro-2,2-bis (p-chlorophenyl)ethene (p,p'-DDE) are known to induce CYP3A4 activity through activation of nuclear receptors, such as the pregnane X receptor. However, this induction of CYP3A4 has not yet been investigated in humans. Thus, the aim of the study was to determine the variability of the CYP3A4 phenotype in regard to increased concentrations of PCBs and other persistent organohalogen pollutants (POPs) in healthy Faroese adults. In 310 randomly selected Faroese residents aged 18-60 years, the CYP3A4 activity was determined based on the urinary 6beta-hydroxycortisol/cortisol (6beta-OHC/FC) ratio. POP exposures were assessed by measuring their concentrations in serum lipid. The results showed a unimodal distribution of the 6beta-OHC/FC ratio with values ranging from 0.58 to 27.38. Women had a slightly higher 6beta-OHC/FC ratio than men (p=0.07). Confounder-adjusted multiple regression analysis showed significant associations between 6beta-OHC/FC ratios and summation PCB, PCB-TEQ and p,p'-DDE, o,p'-DDT and HCB, respectively, but the associations were statistically significant for men only.

  4. Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers.

    PubMed

    Yeh, Rosa F; Gaver, Vincent E; Patterson, Kristine B; Rezk, Naser L; Baxter-Meheux, Faustina; Blake, Michael J; Eron, Joseph J; Klein, Cheri E; Rublein, John C; Kashuba, Angela D M

    2006-05-01

    The effect of lopinavir/ritonavir (LPV/r) administration on cytochrome P450 (CYP) enzyme activity was quantified using a phenotyping biomarker cocktail. Changes in CYP2C9, CYP2C19, CYP3A, CYP1A2, N-acetyltransferase-2 (NAT-2), and xanthine oxidase (XO) activities were evaluated using warfarin (WARF) + vitamin K, omeprazole (OMP), intravenous (IV) and oral (PO) midazolam (MDZ), and caffeine (CAF). : Open-label, multiple-dose, pharmacokinetic study in healthy volunteers. Subjects (n = 14) simultaneously received PO WARF 10 mg, vitamin K 10 mg, OMP 40 mg, CAF 2 mg/kg, and IV MDZ 0.025 mg/kg on days (D) 1 and 14, and PO MDZ 5 mg on D2 and D15. LPV/r (400/100 mg twice daily) was administered on D4-17. CYP2C9 and CYP2C19 activities were quantified by S-WARF AUC0-inf and OMP/5-hydroxy OMP ratio, respectively. CYP1A2, NAT-2, and XO activities were quantified by urinary CAF metabolite ratios. Hepatic and intestinal + hepatic CYP3A activities were quantified by IV (CL) and PO (CL/F) MDZ clearance, respectively. After LPV/r therapy, CYP2C9, CYP2C19, and CYP1A2 activity increased by 29%, 100%, and 43% (P = 0.001, 0.046, and 0.001), respectively. No changes were seen in NAT-2 or XO activity. Hepatic and intestinal + hepatic CYP3A activity decreased by 77% (P < 0.001) and 92% (P = 0.001), respectively. LPV/r therapy results in modest induction of CYP1A2 and CYP2C9 and potent induction of CYP2C19 activity. Increasing doses of concomitant medications metabolized by these enzymes may be necessary. LPV/r inhibited intestinal CYP3A to a greater extent than hepatic CYP3A activity. Doses of concomitant CYP3A substrates should be reduced when combined with LPV/r, although intravenously administered compounds may require less of a relative dose reduction than orally administered compounds.

  5. Effects of triazole fungicides on androgenic disruption and CYP3A4 enzyme activity.

    PubMed

    Lv, Xuan; Pan, Liumeng; Wang, Jiaying; Lu, Liping; Yan, Weilin; Zhu, Yanye; Xu, Yiwen; Guo, Ming; Zhuang, Shulin

    2017-03-01

    Triazole fungicides are widely used as broad-spectrum fungicides, non-steroidal antiestrogens and for various industrial applications. Their residues have been frequently detected in multiple environmental and human matrices. The increasingly reported toxicity incidents have led triazole fungicides as emerging contaminants of environmental and public health concern. However, whether triazole fungicides behave as endocrine disruptors by directly mimicking environmental androgens/antiandrogens or exerting potential androgenic disruption indirectly through the inhibition of cytochrome P450 (CYP450) enzyme activity is yet an unresolved question. We herein evaluated five commonly used triazole fungicides including bitertanol, hexaconazole, penconazole, tebuconazole and uniconazole for the androgenic and anti-androgenic activity using two-hybrid recombinant human androgen receptor (AR) yeast bioassay and comparatively evaluated their effects on enzymatic activity of CYP3A4 by P450-Glo™ CYP3A4 bioassay. All five fungicides showed moderate anti-androgenic activity toward human AR with the IC 50 ranging from 9.34 μM to 79.85 μM. The anti-androgenic activity remained no significant change after the metabolism mediated by human liver microsomes. These fungicides significantly inhibited the activity of CYP3A4 at the environmental relevant concentrations and the potency ranks as tebuconazole > uniconazole > hexaconazole > penconazole > bitertanol with the corresponding IC 50 of 0.81 μM, 0.93 μM, 1.27 μM, 2.22 μM, and 2.74 μM, respectively. We found that their anti-androgenic activity and the inhibition potency toward CYP3A4 inhibition was significantly correlated (R 2 between 0.83 and 0.97, p < 0.001). Our results indicated that the risk assessment of triazole pesticides and structurally similar chemicals should fully consider potential androgenic disrupting effects and the influences on the activity of CYP450s. Copyright © 2016 Elsevier Ltd. All rights

  6. Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4

    NASA Astrophysics Data System (ADS)

    El-Sayed, Ramy; Bhattacharya, Kunal; Gu, Zonglin; Yang, Zaixing; Weber, Jeffrey K.; Li, Hu; Leifer, Klaus; Zhao, Yichen; Toprak, Muhammet S.; Zhou, Ruhong; Fadeel, Bengt

    2016-02-01

    We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6β-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification.

  7. Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4

    PubMed Central

    El-Sayed, Ramy; Bhattacharya, Kunal; Gu, Zonglin; Yang, Zaixing; Weber, Jeffrey K.; Li, Hu; Leifer, Klaus; Zhao, Yichen; Toprak, Muhammet S.; Zhou, Ruhong; Fadeel, Bengt

    2016-01-01

    We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6β-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification. PMID:26899743

  8. Combination analysis in genetic polymorphisms of drug-metabolizing enzymes CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A5 in the Japanese population.

    PubMed

    Ota, Tomoko; Kamada, Yuka; Hayashida, Mariko; Iwao-Koizumi, Kyoko; Murata, Shigenori; Kinoshita, Kenji

    2015-01-01

    The Cytochrome P450 is the major enzyme involved in drug metabolism. CYP enzymes are responsible for the metabolism of most clinically used drugs. Individual variability in CYP activity is one important factor that contributes to drug therapy failure. We have developed a new straightforward TaqMan PCR genotyping assay to investigate the prevalence of the most common allelic variants of polymorphic CYP enzymes CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A5 in the Japanese population. Moreover, we focused on the combination of each genotype for clinical treatment. The genotype analysis identified a total of 139 out of 483 genotype combinations of five genes in the 1,003 Japanese subjects. According to our results, most of subjects seemed to require dose modification during clinical treatment. In the near future, modifications should be considered based on the individual patient genotype of each treatment.

  9. Novel triterpene oxidizing activity of Arabidopsis thaliana CYP716A subfamily enzymes.

    PubMed

    Yasumoto, Shuhei; Fukushima, Ery O; Seki, Hikaru; Muranaka, Toshiya

    2016-02-01

    Triterpenoids have diverse chemical structures and bioactivities. Cytochrome P450 monooxygenases play a key role in their structural diversification. In higher plants, CYP716A subfamily enzymes are triterpene oxidases. In this study, Arabidopsis thaliana CYP716A1 and CYP716A2 were characterized by heterologously expressing them in simple triterpene-producing yeast strains. In contrast to the C-28 oxidative activity of CYP716A1 shown in several CYP716A subfamily enzymes, remarkably, CYP716A2 displayed 22α-hydroxylation activity against α-amyrin that has not been previously reported, which produces the cytotoxic triterpenoid, 22α-hydroxy-α-amyrin. Our results contribute to the enrichment of the molecular toolbox that allows for the combinatorial biosynthesis of diverse triterpenoids. © 2016 Federation of European Biochemical Societies.

  10. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    PubMed

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  11. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casabar, Richard C.T.; Das, Parikshit C.; DeKrey, Gregory K.

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused significant induction of CYP2B6 (16-fold)more » and CYP3A4 (11-fold) promoter activities over control at 10 {mu}M. The metabolite endosulfan sulfate also induced CYP2B6 (12-fold) and CYP3A4 (6-fold) promoter activities over control at 10 {mu}M. In the presence of hCAR-3, endosulfan-alpha induced CYP2B6 (2-fold) promoter activity at 10 {mu}M, but not at lower concentrations. These data indicate that endosulfan-alpha significantly activates hPXR strongly and hCAR weakly. Using western blot analysis of human hepatocytes, the lowest concentrations at which CYP2B6 and CYP3A4 protein levels were found to be significantly elevated by endosulfan-alpha were 1.0 {mu}M and 10 {mu}M, respectively. In mPXR-null/hPXR-transgenic mice, endosulfan-alpha exposure (2.5 mg/kg/day) caused a significant reduction of tribromoethanol-induced sleep times by approximately 50%, whereas no significant change in sleep times was observed in PXR-null mice. These data support the role of endosulfan-alpha as a strong activator of PXR and inducer of CYP2B6 and CYP3A4, which may impact metabolism of CYP2B6 or CYP3A4 substrates.« less

  12. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor.

    PubMed

    Casabar, Richard C T; Das, Parikshit C; Dekrey, Gregory K; Gardiner, Catherine S; Cao, Yan; Rose, Randy L; Wallace, Andrew D

    2010-06-15

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused significant induction of CYP2B6 (16-fold) and CYP3A4 (11-fold) promoter activities over control at 10 microM. The metabolite endosulfan sulfate also induced CYP2B6 (12-fold) and CYP3A4 (6-fold) promoter activities over control at 10 microM. In the presence of hCAR-3, endosulfan-alpha induced CYP2B6 (2-fold) promoter activity at 10 microM, but not at lower concentrations. These data indicate that endosulfan-alpha significantly activates hPXR strongly and hCAR weakly. Using western blot analysis of human hepatocytes, the lowest concentrations at which CYP2B6 and CYP3A4 protein levels were found to be significantly elevated by endosulfan-alpha were 1.0 microM and 10 microM, respectively. In mPXR-null/hPXR-transgenic mice, endosulfan-alpha exposure (2.5mg/kg/day) caused a significant reduction of tribromoethanol-induced sleep times by approximately 50%, whereas no significant change in sleep times was observed in PXR-null mice. These data support the role of endosulfan-alpha as a strong activator of PXR and inducer of CYP2B6 and CYP3A4, which may impact metabolism of CYP2B6 or CYP3A4 substrates. Copyright 2010 Elsevier Inc. All rights reserved.

  13. A novel polymorphic cytochrome P450 formed by splicing of CYP3A7 and the pseudogene CYP3AP1.

    PubMed

    Rodriguez-Antona, Cristina; Axelson, Magnus; Otter, Charlotta; Rane, Anders; Ingelman-Sundberg, Magnus

    2005-08-05

    The cytochrome P450 3A7 (CYP3A7) is the most abundant CYP in human liver during fetal development and first months of postnatal age, playing an important role in the metabolism of endogenous hormones, drugs, differentiation factors, and potentially toxic and teratogenic substrates. Here we describe and characterize a novel enzyme, CYP3A7.1L, encompassing the CYP3A7.1 protein with the last four carboxyl-terminal amino acids replaced by a unique sequence of 36 amino acids, generated by splicing of CYP3A7 with CYP3AP1 RNA. The corresponding CYP3A7-3AP1 mRNA had a significant expression in liver, kidney, and gastrointestinal tract, and its presence was found to be tissue-specific and dependent on the developmental stage. Heterologous expression in yeast revealed that CYP3A7.1L was a functional enzyme with a specific activity similar to that of CYP3A7.1 and, in some conditions, a different hydroxylation specificity than CYP3A7.1 using dehydroepiandrosterone as a substrate. CYP3A7.1L was found to be polymorphic due to a mutation at position -6 of the first splicing site of CYP3AP1 (CYP3A7_39256T-->A), which abrogates the pseudogene splicing. This polymorphism had pronounced interethnic differences and was in linkage disequilibrium with other functional polymorphisms described in the CYP3A locus: CYP3A7*2 and CYP3A5*1. Therefore, the resulting CYP3A haplotypes express different sets of enzymes within the population. In conclusion, a novel mechanism, consisting of the splicing of the pseudogene CYP3AP1 to CYP3A7, causes the formation of the novel CYP3A7.1L having a different tissue distribution and functional properties than the parent CYP3A7 enzyme, with possible developmental, physiological, and toxicological consequences.

  14. CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide

    PubMed Central

    Bidstrup, Tanja Busk; Bjørnsdottir, Inga; Sidelmann, Ulla Grove; Thomsen, Mikael Søndergård; Hansen, Kristian Tage

    2003-01-01

    Aims To identify the principal human cytochrome P450 (CYP) enzyme(s) responsible for the human in vitro biotransformation of repaglinide. Previous experiments have identified CYP3A4 as being mainly responsible for the in vitro metabolism of repaglinide, but the results of clinical investigations have suggested that more than one enzyme may be involved in repaglinide biotransformation. Methods [14C]-Repaglinide was incubated with recombinant CYP and with human liver microsomes (HLM) from individual donors in the presence of inhibitory antibodies specific for individual CYP enzymes. Metabolites, measured by high-performance liquid chromatography (HPLC) with on-line radiochemical detection, were identified by liquid chromatography-mass spectrophotometry (LC-MS) and LC-MS coupled on-line to a nuclear magnetic resonance spectrometer (LC-MS-NMR). Results CYP3A4 and CYP2C8 were found to be responsible for the conversion of repaglinide into its two primary metabolites, M4 (resulting from hydroxylation on the piperidine ring system) and M1 (an aromatic amine). Specific inhibitory monoclonal antibodies against CYP3A4 and CYP2C8 significantly inhibited (> 71%) formation of M4 and M1 in HLM. In a panel of HLM from 12 individual donors formation of M4 and M1 varied from approximately 160–880 pmol min−1 mg−1 protein and from 100–1110 pmol min−1 mg−1 protein, respectively. The major metabolite generated by CYP2C8 was found to be M4. The rate of formation of this metabolite in HLM correlated significantly with paclitaxel 6α-hydroxylation (rs = 0.80; P = 0.0029). Two other minor metabolites were also detected. One of them was M1 and the other was repaglinide hydroxylated on the isopropyl moiety (M0-OH). The rate of formation of M4 in CYP2C8 Supersomes™ was 2.5 pmol min−1 pmol−1 CYP enzyme and only about 0.1 pmol min−1 pmol−1 CYP enzyme in CYP3A4 Supersomes™. The major metabolite generated by CYP3A4 was M1. The rate of formation of this metabolite in HLM

  15. In vitro metabolism of alectinib, a novel potent ALK inhibitor, in human: contribution of CYP3A enzymes.

    PubMed

    Nakagawa, Toshito; Fowler, Stephen; Takanashi, Kenji; Youdim, Kuresh; Yamauchi, Tsuyoshi; Kawashima, Kosuke; Sato-Nakai, Mika; Yu, Li; Ishigai, Masaki

    2018-06-01

    1. The in vitro metabolism of alectinib, a potent and highly selective oral anaplastic lymphoma kinase inhibitor, was investigated. 2. The main metabolite (M4) in primary human hepatocytes was identified, which is produced by deethylation at the morpholine ring. Three minor metabolites (M6, M1a, and M1b) were also identified, and a minor peak of hydroxylated alectinib (M5) was detected as a possible precursor of M4, M1a, and M1b. 3. M4, an important active major metabolite, was produced and further metabolized to M6 by CYP3A, indicating that CYP3A enzymes were the principal contributors to this route. M5 is possibly produced by CYP3A and other isoforms as the primary step in metabolism, followed by oxidation to M4 mainly by CYP3A. Alternatively, M5 could be oxidized to M1a and M1b via an NAD-dependent process. None of the non-CYP3A-mediated metabolism appeared to be major. 4. In conclusion, this study suggests that involvement of multiple enzymes in the metabolism of alectinib reduces its potential for drug-drug interactions.

  16. Effect of cranberry dietary supplements with different brands on human CYP3A4 enzyme

    PubMed Central

    Wanwimolruk, Sompon; Prachayasittikul, Supaluk; Prachayasittikul, Virapong; Bernichi, Bouchra

    2012-01-01

    The use of dietary supplements has increased dramatically, making drug interactions with those supplements a major concern. Because dietary supplements are not subject to the same regulations as prescription drugs, we hypothesize that the content of their active ingredients may vary among manufacturers, potentially causing a large variation in therapeutic outcome. The current study aimed to test this hypothesis on commonly used cranberry dietary supplements. Activity of human CYP3A4 enzyme was used as a parameter to determine the effect of cranberry supplement from nine manufacturers. The content of a cranberry product, equivalent to one capsule, was extracted with methanol. Aliquots of the extract were tested for their ability to inhibit the metabolism of the human CYP3A4 substrate quinine, using an in vitro liver microsomal technique. Human liver microsomes and quinine were incubated with or without (i.e. as control) cranberry extract. Formation of quinine's metabolite 3-hydroxyquinine, generated by the CYP3A4-mediated reaction was measured by a HPLC method. Of nine cranberry products tested, eight products had little or no effect but only one brand (Nature's Herbs 600 mg) caused very strong inhibition (67.2 %) of CYP3A4. The reason for this inhibition is unknown. The effect of cranberry was varied and ranged from 4.4 % activation by Ride Aid 800 mg to 67.2 % inhibition by Nature's Herbs 600 mg. Lack of effect on human CYP3A4 activity suggests that use of cranberry dietary supplement is unlikely to cause significant interactions with drugs metabolized by CYP3A4. PMID:27366135

  17. The relevance of chemical interactions with CYP17 enzyme activity: Assessment using a novel in vitro assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roelofs, Maarke J.E., E-mail: m.j.e.roelofs@uu.nl; Center for Health Protection, National Institute for Public Health and the Environment; Piersma, Aldert H.

    The steroidogenic cytochrome P450 17 (CYP17) enzyme produces dehydroepiandrosterone (DHEA), which is the most abundant circulating endogenous sex steroid precursor. DHEA plays a key role in e.g. sexual functioning and development. To date, no rapid screening assay for effects on CYP17 is available. In this study, a novel assay using porcine adrenal cortex microsomes (PACMs) was described. Effects of twenty-eight suggested endocrine disrupting compounds (EDCs) on CYP17 activity were compared with effects in the US EPA validated H295R (human adrenocorticocarcinoma cell line) steroidogenesis assay. In the PACM assay DHEA production was higher compared with the H295R assay (4.4 versus 2.2more » nmol/h/mg protein). To determine the additional value of a CYP17 assay, all compounds were also tested for interaction with CYP19 (aromatase) using human placental microsomes (HPMs) and H295R cells. 62.5% of the compounds showed enzyme inhibition in at least one of the microsomal assays. Only the cAMP inducer forskolin induced CYP17 activity, while CYP19 was induced by four test compounds in the H295R assay. These effects remained unnoticed in the PACM and HPM assays. Diethylstilbestrol and tetrabromobisphenol A inhibited CYP17 but not CYP19 activity, indicating different mechanisms for the inhibition of these enzymes. From our results it becomes apparent that CYP17 can be a target for EDCs and that this interaction differs from interactions with CYP19. Our data strongly suggest that research attention should focus on validating a specific assay for CYP17 activity, such as the PACM assay, that can be included in the EDC screening battery. - Highlights: ► DHEA, produced by CYP17, plays a key role in sexual functioning and development. ► No rapid screening assay for effects on CYP17 is available yet. ► A novel assay using porcine adrenal cortex microsomes (PACMs) was described. ► Endocrine disrupting compounds (EDCs) targeting CYP17 interact differently with CYP19. ► A

  18. Gender Difference of Hepatic and Intestinal CYP3A4 in CYP3AHumanized Mice Generated by a Human Chromosome-engineering Technique.

    PubMed

    Kobayashi, Kaoru; Abe, Chihiro; Endo, Mika; Kazuki, Yasuhiro; Oshimura, Mitsuo; Chiba, Kan

    2017-11-17

    Cytochrome P450 3A4 (CYP3A4) is an important drug-metabolizing enzyme that is expressed in the liver and small intestine of humans. Various factors influence the expression of CYP3A4, but gender difference in CYP3A4 expression remains debatable. To clarify gender difference of hepatic and intestinal CYP3A4 in CYP3A-humanized mice generated by a human artificial chromosome (HAC) vector system. The CYP3A-humanized (CYP3AHAC) mice have essential regulatory regions, including promoters and enhancers, and unknown elements affecting the expression of CYP3A4. We examined the expression and activity of hepatic and intestinal CYP3A4 in male and female CYP3A-HAC mice. CYP3A activity was determined as α- and 4-hydroxylation activity of triazolam in liver and intestinal microsomes. Expression level of CYP3A protein was determined by Western blot analysis. Expression level of CYP3A4 mRNA was measured by quantitative real-time PCR. The results showed that triazolam hydroxylation activities and protein levels of CYP3A in the liver were significantly higher in female than in male CYP3A-HAC mice, whereas those in the intestine were not significantly different between the genders. In addition, the expression of CYP3A4 mRNA showed a tendency similar to that found for the activity and expression of CYP3A protein in the liver and intestine of CYP3A-HAC mice. These findings suggest that the expression and activity levels of CYP3A4 in the liver are higher in females than in males, whereas there is no gender difference in the levels in the intestine of CYP3A-HAC mice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. CYP3A4 and CYP3A5 genotyping by Pyrosequencing

    PubMed Central

    Garsa, Adam A; McLeod, Howard L; Marsh, Sharon

    2005-01-01

    Background Human cytochrome P450 3A enzymes, particularly CYP3A4 and CYP3A5, play an important role in drug metabolism. CYP3A expression exhibits substantial interindividual variation, much of which may result from genetic variation. This study describes Pyrosequencing assays for key SNPs in CYP3A4 (CYP3A4*1B, CYP3A4*2, and CYP3A4*3) and CYP3A5 (CYP3A5*3C and CYP3A5*6). Methods Genotyping of 95 healthy European and 95 healthy African volunteers was performed using Pyrosequencing. Linkage disequilibrium, haplotype inference, Hardy-Weinberg equilibrium, and tag SNPs were also determined for these samples. Results CYP3A4*1B allele frequencies were 4% in Europeans and 82% in Africans. The CYP3A4*2 allele was found in neither population sample. CYP3A4*3 had an allele frequency of 2% in Europeans and 0% in Africans. The frequency of CYP3A5*3C was 94% in Europeans and 12% in Africans. No CYP3A5*6 variants were found in the European samples, but this allele had a frequency of 16% in the African samples. Allele frequencies and haplotypes show interethnic variation, highlighting the need to analyze clinically relevant SNPs and haplotypes in a variety of ethnic groups. Conclusion Pyrosequencing is a versatile technique that could improve the efficiency of SNP analysis for pharmacogenomic research with the ultimate goal of pre-screening patients for individual therapy selection. PMID:15882469

  20. CYP3A4 and CYP3A5 catalyse the conversion of the N-methyl-D-aspartate (NMDA) antagonist CJ-036878 to two novel dimers.

    PubMed

    Emoto, C; Nishida, H; Hirai, H; Iwasaki, K

    2007-12-01

    CJ-036878, N-(3-phenethoxybenzyl)-4-hydroxybenzamide, was developed as an antagonist of the N-methyl-D-aspartate receptor NR2B subunit. Two dimeric metabolites, CJ-047710 and CJ-047713, were identified from the incubation mixture with CJ-036878 in human liver microsomes (HLM). The identification of the enzymes involved in the formation of these dimeric metabolites was investigated in the current study. Inhibition of the formation of CJ-047710 and CJ-047713 in pooled HLM by 1-aminobenztriazole, SKF-525A, and ketoconazole were observed. Ketoconazole played a significant role in inhibiting formation of these two metabolites in a concentration-dependent manner. Recombinant CYP3A4 and CYP3A5 exhibited a markedly high activity toward the formation of CJ-047710 and CJ-047713 from CJ-036878, but the contribution of other CYP enzymes to these formations was at a very low level or negligible. The formation of CJ-047710 and CJ-047713 in pooled HLM, CYP3A4, and CYP3A5 showed sigmoid characteristics. S50 values for CJ-047710 and CJ-047713 formation in HLM were almost equivalent with those for CYP3A4 and CYP3A5. For the CYP3A enzymes, maximal clearance due to auto-activation values for CJ-047710 and CJ-047713 formation catalysed by CYP3A5 were 3.6- and 3.1-fold higher than those catalysed by CYP3A4. This is the first report that shows both CYP3A4 and CYP3A5 simultaneously contribute to dimerization through oxidative C-C and C-O coupling reactions.

  1. Hepatic monooxygenase (CYP1A and CYP3A) and UDPGT enzymatic activities as biomarkers for long-term carbofuran exposure in tench (Tinca tinca L).

    PubMed

    Hernández-Moreno, David; Soler-Rodríguez, Francisco; Míguez-Santiyán, M Prado; Pérez-López, Marcos

    2008-06-01

    The effect of a long-term exposure of tenchs to different concentrations (10 and 100 micro g/L) of the pesticide carbofuran has been evaluated. Microsomal hepatic cytochrome P450 subfamily 1A (CYP1A) and 3A (CYP3A) activities, as well as the phase II enzyme uridine diphospho-glucuronosyltransferase (UDPGT) activity were evaluated as adequate biomarkers of fish exposure to environmentally relevant concentrations of the pesticide carbofuran in freshwater ecosystems. A clear time-dependent inhibition of both CYP1A and UDPGT activities was observed in fish exposed to the highest dose of carbofuran with respect to controls, whereas in the case of CYP3A activity, values of exposed animals did not show a clear pattern of alteration during the experiment. The results of the present study demonstrated that hepatic CYP1A and UDPGT activities from tench could be considered as sensitive biomarkers for carbamate pesticides in polluted water, thus allowing future and ecologically relevant biomonitoring studies with this species.

  2. Roles of Human CYP2A6 and Monkey CYP2A24 and 2A26 Cytochrome P450 Enzymes in the Oxidation of 2,5,2',5'-Tetrachlorobiphenyl.

    PubMed

    Shimada, Tsutomu; Kakimoto, Kensaku; Takenaka, Shigeo; Koga, Nobuyuki; Uehara, Shotaro; Murayama, Norie; Yamazaki, Hiroshi; Kim, Donghak; Guengerich, F Peter; Komori, Masayuki

    2016-12-01

    2,5,2',5'-Tetrachlorobiphenyl (TCB) induced type I binding spectra with cytochrome P450 (P450) 2A6 and 2A13, with K s values of 9.4 and 0.51 µM, respectively. However, CYP2A6 oxidized 2,5,2',5'-TCB to form 4-hydroxylated products at a much higher rate (∼1.0 minute -1 ) than CYP2A13 (∼0.02 minute -1 ) based on analysis by liquid chromatography-tandem mass spectrometry. Formation of 4-hydroxy-2,5,2',5'-TCB by CYP2A6 was greater than that of 3-hydroxy-2,5,2',5'-TCB and three other hydroxylated products. Several human P450 enzymes, including CYP1A1, 1A2, 1B1, 2B6, 2D6, 2E1, 2C9, and 3A4, did not show any detectable activities in oxidizing 2,5,2',5'-TCB. Cynomolgus monkey CYP2A24, which shows 95% amino acid identity to human CYP2A6, catalyzed 4-hydroxylation of 2,5,2',5'-TCB at a higher rate (∼0.3 minute -1 ) than CYP2A26 (93% identity to CYP2A6, ∼0.13 minute -1 ) and CYP2A23 (94% identity to CYP2A13, ∼0.008 minute -1 ). None of these human and monkey CYP2A enzymes were catalytically active in oxidizing other TCB congeners, such as 2,4,3',4'-, 3,4,3',4'-, and 3,5,3',5'-TCB. Molecular docking analysis suggested that there are different orientations of interaction of 2,5,2',5'-TCB with the active sites (over the heme) of human and monkey CYP2A enzymes, and that ligand interaction energies (U values) of bound protein-ligand complexes show structural relationships of interaction of TCBs and other ligands with active sites of CYP2A enzymes. Catalytic differences in human and monkey CYP2A enzymes in the oxidation of 2,5,2',5'-TCB are suggested to be due to amino acid changes at substrate recognition sites, i.e., V110L, I209S, I300F, V365M, S369G, and R372H, based on the comparison of primary sequences. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Novel mutations of CYP3A4 in Chinese.

    PubMed

    Hsieh, K P; Lin, Y Y; Cheng, C L; Lai, M L; Lin, M S; Siest, J P; Huang, J D

    2001-03-01

    Human cytochrome P450 3A4 is a major P450 enzyme in the liver and gastrointestinal tract. It plays important roles in the metabolism of a wide variety of drugs, some endogenous steroids, and harmful environmental contaminants. CYP3A4 exhibits a remarkable interindividual activity variation as high as 20-fold. To investigate whether the interindividual variation in CYP3A4 levels can be partly explained by genetic polymorphism, we analyzed DNA samples from 102 Chinese subjects by polymerase chain reaction (PCR)-single-strand conformation polymorphism analysis for novel point mutation in the CYP3A4 coding sequence and promoter region. Using PCR and directed sequencing method to establish the complete intron sequence of CYP3A4 from leukocytes, the complete genomic sequence from exon 1 through 13 of CYP3A4 was determined and published in the GenBank database (accession no. AF209389). CYP3A4-specific primers were designed accordingly. After PCR-single-strand conformation polymorphism and restriction fragment length polymorphism screening, we found three novel mutations; two are point mutations and one is insertion. The first variant allele (CYP3A4*4), an Ile118Val change, was found in 3 of 102 Chinese subjects. The next allele (CYP3A4*5), which causes a Pro218Arg amino acid change, was found in 2 of 102 subjects. We found an insertion in A(17776), designated as CYP3A4*6, which causes frame shift and an early stop codon in exon 9, in one heterozygous subject. We also investigated the CYP3A4 activity in these mutant subjects by measuring the morning spot urinary 6beta-hydroxycortisol to free cortisol ratio with the enzyme-linked immunosorbent assay method. When compared with healthy Chinese population data, the 6beta-hydroxycortisol to free cortisol ratio data suggested that these alleles (CYP3A4*4, CYP3A4*5, and CYP3A4*6) may decrease the CYP3A4 activity. Incidences of these mutations in Chinese subjects are rare. The prevalence of these point mutations in other ethnic

  4. Beluga whale liver microsomal cytochrome P4501A (CYP1A) enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullock, P.L.; Addison, R.; Lockhart, L.

    1995-12-31

    Beluga whale (Delphinapterus leucas) liver from the Canadian arctic was analyzed for the presence of CYP1A enzymes, as part of current studies on biomarkers for environmental contamination. CYP1A1-associated 7-ethoxyresorufin O-dealkylase activity (EROD) varied 13 fold among sixteen male whale liver microsomal samples and 31 fold among five females. Similarly, the rate of 7-methoxyresorufin O-dealkylation (MROD) varied 7 fold and 3 fold in microsomal samples from males and females, respectively. Furthermore, 7-pentoxyresorufin O-dealkylase activity (PROD) varied 10 fold in both sexes. None of these enzyme activities were sexually differentiated, and EROD and MROD were inhibited by {alpha}-naphthoflavone. There was very goodmore » correlation between EROD and MROD (r{sup 2} = .894), EROD and PROD (r{sup 2} = .909), but MROD and PROD were not as well correlated (r{sup 2} = 785). On Western immunoblots, a single band was recognized in Beluga whale liver microsomes by a polygonal antibody raised against an oligopeptide related to trout CYP1A1. This antibody also recognized purified rat CYP1A1 (56 kDa) and stained only one band (56 kDa) in liver microsomes isolated from male rats treated with {beta}-naphthoflavone. The interindividual variation in EROD paralleled differences in the amount of whale liver microsomal protein that cross-reacted with the anti-peptide antibody. The results suggest that Beluga whale liver contains at least one CYP1A enzyme which catalyzes the 0-dealkylation of 7-ethoxy, 7-methoxy and 7-pentoxyresorufin and has a molecular weight less than that of rat CYP1A1, but similar to rat CYP1A2 (52 kDa).« less

  5. Tangeretin inhibits the proliferation of human breast cancer cells via CYP1A1/CYP1B1 enzyme induction and CYP1A1/CYP1B1-mediated metabolism to the product 4' hydroxy tangeretin.

    PubMed

    Surichan, Somchaiya; Arroo, Randolph R; Tsatsakis, Aristidis M; Androutsopoulos, Vasilis P

    2018-04-04

    Tangeretin is a polymethoxylated flavone with multifaceted anticancer activity. In the present study, the metabolism of tangeretin was evaluated in the CYP1 expressing human breast cancer cell lines MCF7 and MDA-MB-468 and in the normal breast cell line MCF10A. Tangeretin was converted to 4' OH tangeretin by recombinant CYP1 enzymes and by CYP1 enzymes expressed in MCF7 and MDA-MB-468 cells. This metabolite was absent in MCF10A cells that did not express CYP1 enzymes. Tangeretin exhibited submicromolar IC50 (0.25 ± 0.15 μM) in MDA-MB-468 cells, whereas it was less active in MCF7 cells (39.3 ± 1.5 μM) and completely inactive in MCF10A cells (>100 μM). In MDA-MB-468 cells that were coincubated with the CYP1 inhibitor acacetin, an approximately 70-fold increase was noted in the IC50 (18 ± 1.6 μM) of tangeretin. In the presence of the CYP1 inhibitor acacetin, the conversion of tangeretin to 4' OH tangeretin was significantly reduced in MDA-MB-468 cells (2.55 ± 0.19 μM vs. 6.33 ± 0.12 μM). The mechanism of antiproliferative action involved cell cycle arrest at the G1 phase for MCF7 and MDA-MB-468 cells. Tangeretin was further shown to induce CYP1 enzyme activity and CYP1A1/CYP1B1 protein expression in MCF7 and MDA-MB-468 cells. These results suggest that tangeretin inhibits the proliferation of breast cancer cells via CYP1A1/CYP1B1-mediated metabolism to the product 4' hydroxy tangeretin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Inhibition of Procarcinogen Activating Enzyme CYP1A2 Activity and Free Radical Formation by Caffeic Acid and its Amide Analogues.

    PubMed

    Narongchai, Paitoon; Niwatananun, Kanokporn; Narongchai, Siripun; Kusirisin, Winthana; Jaikang, Churdsak

    2016-01-01

    Caffeic acid (CAF) and its amide analogues, ethyl 1-(3',4'-dihydroxyphenyl) propen amide (EDPA), phenethyl 1-(3',4'-dihydroxyphenyl) propen amide (PEDPA), phenmethyl 1- (3',4'-dihydroxyphenyl) propen amide (PMDPA) and octyl 1-(3',4'-dihydroxyphenyl) propen amide (ODPA) were investigated for the inhibition of procarcinogen activating enzyme. CYP1A2 and scavenging activity on formation of nitric oxide, superoxide anion, DPPH radical and hydroxyl radical. It was found that they inhibited CYP1A2 enzyme by uncompetitive inhibition. Apparent Ki values of CAF, EDPA, PEDPA, PMDPA and ODPA were 0.59, 0.39, 0.45, 0.75 and 0.80 µM, respectively suggesting potent inhibitors of CYP1A2. Moreover, they potentially scavenged nitric oxide radical with IC 50 values of 0.12, 0.22, 0.28, 0.22 and 0.51 mM, respectively. The IC50 values of superoxide anion scavenging were 0.20, 0.22, 0.44, 2.18 and 2.50 mM, respectively. 1, 1- diphenyl-2- picrylhydrazyl (DPPH) radical-scavenging ability, shown as IC50 values, were 0.41, 0.29, 0.30, 0.89 and 0.84 mM, respectively. Moreover, the hydroxyl radical scavenging in vitro model was shown as IC50 values of 23.22, 21.06, 17.10, 17.21 and 15.81 µM, respectively. From our results, caffeic acid and its amide analogues are in vitro inhibitors of human CYP1A2 catalytic activity and free radical formation. They may be useful to be developed as potential chemopreventive agents that block CYP1A2-mediated chemical carcinogenesis.

  7. Assaying Oxidative Coupling Activity of CYP450 Enzymes.

    PubMed

    Agarwal, Vinayak

    2018-01-01

    Cytochrome P450 (CYP450) enzymes are ubiquitous catalysts in natural product biosynthetic schemes where they catalyze numerous different transformations using radical intermediates. In this protocol, we describe procedures to assay the activity of a marine bacterial CYP450 enzyme Bmp7 which catalyzes the oxidative radical coupling of polyhalogenated aromatic substrates. The broad substrate tolerance of Bmp7, together with rearrangements of the aryl radical intermediates leads to a large number of products to be generated by the enzymatic action of Bmp7. The complexity of the product pool generated by Bmp7 thus presents an analytical challenge for structural elucidation. To address this challenge, we describe mass spectrometry-based procedures to provide structural insights into aryl crosslinked products generated by Bmp7, which can complement subsequent spectroscopic experiments. Using the procedures described here, for the first time, we show that Bmp7 can efficiently accept polychlorinated aryl substrates, in addition to the physiological polybrominated substrates for the biosynthesis of polyhalogenated marine natural products. © 2018 Elsevier Inc. All rights reserved.

  8. Differential Regulation of CYP3A4 and CYP3A5 and Its Implication in Drug Discovery

    PubMed Central

    Lolodi, Ogheneochukome; Wang, Yue-Ming; Wright, William C.; Chen, Taosheng

    2017-01-01

    Cancer cells use several mechanisms to resist the cytotoxic effects of drugs, resulting in tumor progression and invasion. One such mechanism capitalizes on the body’s natural defense against xenobiotics by increasing the rate of xenobiotic efflux and metabolic inactivation. Xenobiotic metabolism typically involves conversion of parent molecules to more soluble and easily excreted derivatives in reactions catalyzed by Phase I and Phase II drug metabolizing enzymes. Recent reports indicate that components of the xenobiotic response system are upregulated in some diseases, including many cancers. Such components include the pregnane X receptor (PXR) and the cytochrome P450 (CYP) 3A4 and 3A5 enzymes. The CYP3A enzymes are a subset of the numerous enzymes that are transcriptionally activated following the interaction of PXR and many ligands. Intense research is ongoing to understand the functional ramifications of aberrant expression of these components in diseased states with the goal of designing novel drugs that can selectively target them. PMID:28558634

  9. Delineation of the interactions between the chemotherapeutic agent eribulin mesylate (E7389) and human CYP3A4.

    PubMed

    Zhang, Z-Y; King, B M; Pelletier, R D; Wong, Y N

    2008-09-01

    Eribulin mesylate (E7389), a structurally simplified, synthetic analog of the marine natural product halichondrin B, acts by inhibiting microtubule dynamics via mechanisms distinct from those of other tubulin-targeted agents. Eribulin is currently in Phase III clinical trials for the treatment of metastatic breast cancer. Since drug-induced modulation of cytochrome P450 enzymes, particularly CYP3A4, is a frequent cause of drug-drug interactions, we examined the effects of eribulin on the activity and expression of hepatic and recombinant CYP3A4 (rCYP3A4) in vitro. Identification of the enzyme(s) responsible for eribulin metabolism was based on compound depletion and metabolite formation in reaction mixtures containing subcellular liver fractions or primary human hepatocytes, plus recombinant Phases I and II metabolic enzymes. The role of the enzyme(s) identified was confirmed using enzyme-selective inhibitors and the correlation with prototypic enzyme activity. The effect of eribulin on enzymatic activity was characterized using both microsomal preparations and recombinant enzymes, while the possible modulation of protein expression was evaluated in primary cultures of human hepatocytes. Eribulin was primarily metabolized by CYP3A4, resulting in the formation of at least four monooxygenated metabolites. In human liver microsomal preparations, eribulin suppressed the activities of CYP3A4-mediated testosterone and midazolam hydroxylation with an apparent K (i) of approximately 20 microM. Eribulin competitively inhibited the testosterone 6beta-hydroxylation, nifedipine dehydration, and R-warfarin 10-hydroxylation activities of rCYP3A4, with an average apparent K (i) of approximately 10 microM. These inhibitions were reversible, with no apparent mechanism-based inactivation. Eribulin did not induce the expression or activities of CYP1A and CYP3A enzymes in human primary hepatocytes, and clinically relevant concentrations of eribulin did not inhibit CYP3A4-mediated

  10. Pharmacogenomics of CYP3A: considerations for HIV treatment

    PubMed Central

    Lakhman, Sukhwinder S; Ma, Qing

    2009-01-01

    The understanding of the cytochrome P450 3A SNP in antiretroviral therapy is important, because it is highly inducible, extremely polymorphic and metabolizes many of the drugs that are key components of highly active antiretroviral therapy regimens. This enzyme is prolific and promiscuous towards drug and xenobiotic substrate selection and it is also unpredictable among individuals, having a 5- to 20-fold variability in its ability to contribute to drug clearance. The importance of human CYP3A pharmacogenetics is also gaining attention in other established areas of pharmacotherapy as it may contribute to the goal of predicting efficacy and/or toxicity, specifically with the discovery of null allele CYP3A4*20. This review summarizes the current understanding, implications of genetic variation in the CYP3A enzymes, the central role of CYP3A in linking human genetics, the pharmacokinetics and resulting pharmacodynamic responses to certain antiretroviral drugs, and their eventual place in applied clinical pharmacotherapy. PMID:19663676

  11. Indirubin, a component of Ban-Lan-Gen, activates CYP3A4 gene transcription through the human pregnane X receptor.

    PubMed

    Kumagai, Takeshi; Aratsu, Yusuke; Sugawara, Ryosuke; Sasaki, Takamitsu; Miyairi, Shinichi; Nagata, Kiyoshi

    2016-04-01

    Ban-Lan-Gen is the common name for the dried roots of indigo plants, including Polygonum tinctorium, Isatis indigotica, Isatis tinctoria, and Strobilanthes cusia. Ban-Lan-Gen is frequently used as an anti-inflammatory and an anti-viral for the treatment of hepatitis, influenza, and various types of inflammation. One of the cytochrome P450 (CYP) enzymes, CYP3A4, is responsible for the metabolism of a wide variety of xenobiotics, including an estimated 60% of all clinically used drugs. In this study, we investigated the effect of Ban-Lan-Gen on the transcriptional activation of the CYP3A4 gene. Ban-Lan-Gen extract increased CYP3A4 gene reporter activity in a dose-dependent manner. Indirubin, one of the biologically active ingredients in the Ban-Lan-Gen, also dose-dependently increased CYP3A4 gene reporter activity. Expression of short hairpin RNA for the human pregnane X receptor (hPXR-shRNA) inhibited CYP3A4 gene reporter activity, and overexpression of human PXR increased indirubin- and rifampicin-induced CYP3A4 gene reporter activity. Furthermore, indirubin induced CYP3A4 mRNA expression in HepG2 cells. Taken together, these results indicate that indirubin, a component of Ban-Lan-Gen, activated CYP3A4 gene transcription through the activation of the human PXR. Copyright © 2016. Published by Elsevier Ltd.

  12. Implications of intercorrelation between hepatic CYP3A4-CYP2C8 enzymes for the evaluation of drug-drug interactions: a case study with repaglinide.

    PubMed

    Doki, Kosuke; Darwich, Adam S; Achour, Brahim; Tornio, Aleksi; Backman, Janne T; Rostami-Hodjegan, Amin

    2018-05-01

    Statistically significant positive correlations are reported for the abundance of hepatic drug-metabolizing enzymes. We investigate, as an example, the impact of CYP3A4-CYP2C8 intercorrelation on the predicted interindividual variabilities of clearance and drug-drug interactions (DDIs) for repaglinide using physiologically based pharmacokinetic (PBPK) modelling. PBPK modelling and simulation were employed using Simcyp Simulator (v15.1). Virtual populations were generated assuming intercorrelations between hepatic CYP3A4-CYP2C8 abundances derived from observed values in 24 human livers. A repaglinide PBPK model was used to predict PK parameters in the presence and absence of gemfibrozil in virtual populations, and the results were compared with a clinical DDI study. Coefficient of variation (CV) of oral clearance was 52.5% in the absence of intercorrelation between CYP3A4-CYP2C8 abundances, which increased to 54.2% when incorporating intercorrelation. In contrast, CV for predicted DDI (as measured by AUC ratio before and after inhibition) was reduced from 46.0% in the absence of intercorrelation between enzymes to 43.8% when incorporating intercorrelation: these CVs were associated with 5th/95th percentiles (2.48-11.29 vs. 2.49-9.69). The range of predicted DDI was larger in the absence of intercorrelation (1.55-77.06) than when incorporating intercorrelation (1.79-25.15), which was closer to clinical observations (2.6-12). The present study demonstrates via a systematic investigation that population-based PBPK modelling incorporating intercorrelation led to more consistent estimation of extreme values than those observed in interindividual variabilities of clearance and DDI. As the intercorrelations more realistically reflect enzyme abundances, virtual population studies involving PBPK and DDI should avoid using Monte Carlo assignment of enzyme abundance. © 2018 The British Pharmacological Society.

  13. Expansion of a PBPK model to predict disposition in pregnant women of drugs cleared via multiple CYP enzymes, including CYP2B6, CYP2C9 and CYP2C19

    PubMed Central

    Ke, Alice Ban; Nallani, Srikanth C; Zhao, Ping; Rostami-Hodjegan, Amin; Unadkat, Jashvant D

    2014-01-01

    Aim Conducting PK studies in pregnant women is challenging. Therefore, we asked if a physiologically-based pharmacokinetic (PBPK) model could be used to predict the disposition in pregnant women of drugs cleared by multiple CYP enzymes. Methods We expanded and verified our previously published pregnancy PBPK model by incorporating hepatic CYP2B6 induction (based on in vitro data), CYP2C9 induction (based on phenytoin PK) and CYP2C19 suppression (based on proguanil PK), into the model. This model accounted for gestational age-dependent changes in maternal physiology and hepatic CYP3A, CYP1A2 and CYP2D6 activity. For verification, the pregnancy-related changes in the disposition of methadone (cleared by CYP2B6, 3A and 2C19) and glyburide (cleared by CYP3A, 2C9 and 2C19) were predicted. Results Predicted mean post-partum to second trimester (PP : T2) ratios of methadone AUC, Cmax and Cmin were 1.9, 1.7 and 2.0, vs. observed values 2.0, 2.0 and 2.6, respectively. Predicted mean post-partum to third trimester (PP : T3) ratios of methadone AUC, Cmax and Cmin were 2.1, 2.0 and 2.4, vs. observed values 1.7, 1.7 and 1.8, respectively. Predicted PP : T3 ratios of glyburide AUC, Cmax and Cmin were 2.6, 2.2 and 7.0 vs. observed values 2.1, 2.2 and 3.2, respectively. Conclusions Our PBPK model integrating prior physiological knowledge, in vitro and in vivo data, allowed successful prediction of methadone and glyburide disposition during pregnancy. We propose this expanded PBPK model can be used to evaluate different dosing scenarios, during pregnancy, of drugs cleared by single or multiple CYP enzymes. PMID:23834474

  14. Expansion of a PBPK model to predict disposition in pregnant women of drugs cleared via multiple CYP enzymes, including CYP2B6, CYP2C9 and CYP2C19.

    PubMed

    Ke, Alice Ban; Nallani, Srikanth C; Zhao, Ping; Rostami-Hodjegan, Amin; Unadkat, Jashvant D

    2014-03-01

    Conducting PK studies in pregnant women is challenging. Therefore, we asked if a physiologically-based pharmacokinetic (PBPK) model could be used to predict the disposition in pregnant women of drugs cleared by multiple CYP enzymes. We expanded and verified our previously published pregnancy PBPK model by incorporating hepatic CYP2B6 induction (based on in vitro data), CYP2C9 induction (based on phenytoin PK) and CYP2C19 suppression (based on proguanil PK), into the model. This model accounted for gestational age-dependent changes in maternal physiology and hepatic CYP3A, CYP1A2 and CYP2D6 activity. For verification, the pregnancy-related changes in the disposition of methadone (cleared by CYP2B6, 3A and 2C19) and glyburide (cleared by CYP3A, 2C9 and 2C19) were predicted. Predicted mean post-partum to second trimester (PP : T2 ) ratios of methadone AUC, Cmax and Cmin were 1.9, 1.7 and 2.0, vs. observed values 2.0, 2.0 and 2.6, respectively. Predicted mean post-partum to third trimester (PP : T3 ) ratios of methadone AUC, Cmax and Cmin were 2.1, 2.0 and 2.4, vs. observed values 1.7, 1.7 and 1.8, respectively. Predicted PP : T3 ratios of glyburide AUC, Cmax and Cmin were 2.6, 2.2 and 7.0 vs. observed values 2.1, 2.2 and 3.2, respectively. Our PBPK model integrating prior physiological knowledge, in vitro and in vivo data, allowed successful prediction of methadone and glyburide disposition during pregnancy. We propose this expanded PBPK model can be used to evaluate different dosing scenarios, during pregnancy, of drugs cleared by single or multiple CYP enzymes. © 2013 The British Pharmacological Society.

  15. The Making of a CYP3A Biomarker Panel for Guiding Drug Therapy

    PubMed Central

    Wang, Danxin; Sadee, Wolfgang

    2012-01-01

    CYP3A ranks among the most abundant cytochrome P450 enzymes in the liver, playing a dominant role in metabolic elimination of clinically used drugs. A main member in CYP3A family, CYP3A4 expression and activity vary considerably among individuals, attributable to genetic and non-genetic factors, affecting drug dosage and efficacy. However, the extent of genetic influence has remained unclear. This review assesses current knowledge on the genetic factors influencing CYP3A4 activity. Coding region CYP3A4 polymorphisms are rare and account for only a small portion of inter-person variability in CYP3A metabolism. Except for the promoter allele CYP3A4*1B with ambiguous effect on expression, common CYP3A4 regulatory polymorphisms were thought to be lacking. Recent studies have identified a relatively common regulatory polymorphism, designated CYP3A4*22 with robust effects on hepatic CYP3A4 expression. Combining CYP3A4*22 with CYP3A5 alleles *1, *3 and *7 has promise as a biomarker predicting overall CYP3A activity. Also contributing to variable expression, the role of polymorphisms in transcription factors and microRNAs is discussed. PMID:24466438

  16. Allosteric activation of midazolam CYP3A5 hydroxylase activity by icotinib - Enhancement by ketoconazole.

    PubMed

    Zhuang, XiaoMei; Zhang, TianHong; Yue, SiJia; Wang, Juan; Luo, Huan; Zhang, YunXia; Li, Zheng; Che, JinJing; Yang, HaiYing; Li, Hua; Zhu, MingShe; Lu, Chuang

    2016-12-01

    Icotinib (ICO), a novel small molecule and a tyrosine kinase inhibitor, was developed and approved recently in China for non-small cell lung cancer. During screening for CYP inhibition potential in human liver microsomes (HLM), heterotropic activation toward CYP3A5 was revealed. Activation by icotinib was observed with CYP3A-mediated midazolam hydroxylase activity in HLM (∼40% over the baseline) or recombinant human CYP3A5 (rhCYP3A5) (∼70% over the baseline), but not in the other major CYPs including rhCYP3A4. When co-incubated with selective CYP3A4 inhibitor CYP3cide or monoclonal human CYP3A4 inhibitory antibody in HLM, the activation was extended to ∼60%, suggesting CYP3A5 might be the isozyme involved. Further, the relative activation was enhanced to ∼270% in rhCYP3A5 in the presence of ketoconazole. The activation was substrate and pathway dependent and observed only in the formation of 1'-OH-midazolam, and not 4-OH-midazolam, 6β-OH-testosterone, or oxidized nifedipine. The activation requires the presence of cytochrome b5 and it is only observed in the liver microsomes of dogs, monkeys, and humans, but not in rats and mice. Kinetic analyses of 1'-OH-midazolam formation showed that ICO increased the V max values in HLM and rhCYP3A5 with no significant changes in K m values. By adding CYP3cide with ICO to the incubation, the V max values increased 2-fold over the CYP3cide control. Addition of ketoconazole with ICO alone or ICO plus CYP3cide resulted in an increase in V max values and decrease in K m values compared to their controls. This phenomenon may be attributed to a new mechanism of CYP3A5 heterotropic activation, which warrants further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Population pharmacokinetic modelling to assess the impact of CYP2D6 and CYP3A metabolic phenotypes on the pharmacokinetics of tamoxifen and endoxifen

    PubMed Central

    ter Heine, Rob; Binkhorst, Lisette; de Graan, Anne Joy M; de Bruijn, Peter; Beijnen, Jos H; Mathijssen, Ron H J; Huitema, Alwin D R

    2014-01-01

    Aims Tamoxifen is considered a pro-drug of its active metabolite endoxifen. The major metabolic enzymes involved in endoxifen formation are CYP2D6 and CYP3A. There is considerable evidence that variability in activity of these enzymes influences endoxifen exposure and thereby may influence the clinical outcome of tamoxifen treatment. We aimed to quantify the impact of metabolic phenotype on the pharmacokinetics of tamoxifen and endoxifen. Methods We assessed the CYP2D6 and CYP3A metabolic phenotypes in 40 breast cancer patients on tamoxifen treatment with a single dose of dextromethorphan as a dual phenotypic probe for CYP2D6 and CYP3A. The pharmacokinetics of dextromethorphan, tamoxifen and their relevant metabolites were analyzed using non-linear mixed effects modelling. Results Population pharmacokinetic models were developed for dextromethorphan, tamoxifen and their metabolites. In the final model for tamoxifen, the dextromethorphan derived metabolic phenotypes for CYP2D6 as well as CYP3A significantly (P < 0.0001) explained 54% of the observed variability in endoxifen formation (inter-individual variability reduced from 55% to 25%). Conclusions We have shown that not only CYP2D6, but also CYP3A enzyme activity influences the tamoxifen to endoxifen conversion in breast cancer patients. Our developed model may be used to assess separately the impact of CYP2D6 and CYP3A mediated drug–drug interactions with tamoxifen without the necessity of administering this anti-oestrogenic drug and to support Bayesian guided therapeutic drug monitoring of tamoxifen in routine clinical practice. PMID:24697814

  18. Differential gene expression of CYP3A isoforms in equine liver and intestines.

    PubMed

    Tydén, E; Löfgren, M; Pegolo, S; Capolongo, F; Tjälve, H; Larsson, P

    2012-12-01

    Recently, seven CYP3A isoforms - CYP3A89, CYP3A93, CYP3A94, CYP3A95, CYP3A96, CYP3A97 and CYP129 - have been isolated from the horse genome. In this study, we have examined the hepatic and intestinal gene expression of these CYP3A isoforms using TaqMan probes. We have also studied the enzyme activity using luciferin-isopropyl acetal (LIPA) as a substrate. The results show a differential gene expression of the CYP3A isoforms in the liver and intestines in horses. In the liver, CYP3A89, CYP3A94, CYP3A96 and CYP3A97 were highly expressed, while in the intestine there were only two dominating isoforms, CYP3A93 and CYP3A96. The isoform CYP3A129 was not detected in the liver or the intestine, although this gene consists of a complete set of exons and should therefore code for a functional protein. It is possible that this gene is expressed in tissues other than the liver and intestines. In the intestine, both CYP3A96 and CYP3A93 showed the highest gene expression in the duodenum and the proximal parts of the jejunum. This correlated with a high protein expression in these tissues. Studies of the enzyme activity showed the same K(m) for the LIPA substrate in the liver and the intestine, while the maximum velocity (V(max)) in the liver was higher than in the intestine. Our finding of a differential gene expression of the CYP3A isoforms in the liver and the intestines contributes to a better understanding of drug metabolism in horses. © 2012 Blackwell Publishing Ltd.

  19. Polymorphisms of drug-metabolizing enzymes (GST, CYP2B6 and CYP3A) affect the pharmacokinetics of thiotepa and tepa

    PubMed Central

    Ekhart, Corine; Doodeman, Valerie D; Rodenhuis, Sjoerd; Smits, Paul H M; Beijnen, Jos H; Huitema, Alwin D R

    2009-01-01

    AIMS Thiotepa is widely used in high-dose chemotherapy. Previous studies have shown relations between exposure and severe organ toxicity. Thiotepa is metabolized by cytochrome P450 and glutathione S-transferase enzymes. Polymorphisms of these enzymes may affect elimination of thiotepa and tepa, its main metabolite. The purpose of this study was to evaluate effects of known allelic variants in CYP2B6, CYP3A4, CYP3A5, GSTA1 and GSTP1 genes on pharmacokinetics of thiotepa and tepa. METHODS White patients (n = 124) received a high-dose regimen consisting of cyclophosphamide, thiotepa and carboplatin as intravenous infusions. Genomic DNA was analysed using polymerase chain reaction and sequencing. Plasma concentrations of thiotepa and tepa were determined using validated GC and LC-MS/MS methods. Relations between allelic variants and elimination pharmacokinetic parameters were evaluated using nonlinear mixed effects modelling (nonmem). RESULTS The polymorphisms CYP2B6 C1459T, CYP3A4*1B, CYP3A5*3, GSTA1 (C-69T, G-52A) and GSTP1 C341T had a significant effect on clearance of thiotepa or tepa. Although significant, most effects were generally not large. Clearance of thiotepa and tepa was predominantly affected by GSTP1 C341T polymorphism, which had a frequency of 9.3%. This polymorphism increased non-inducible thiotepa clearance by 52% [95% confidence interval (CI) 41, 64, P < 0.001] and decreased tepa clearance by 32% (95% CI 29, 35, P < 0.001) in heterozygous patients, which resulted in an increase in combined exposure to thiotepa and tepa of 45% in homozygous patients. CONCLUSIONS This study indicates that the presently evaluated variant alleles explain only a small part of the substantial interindividual variability in thiotepa and tepa pharmacokinetics. Patients homozygous for the GSTP1 C341T allele may have enhanced exposure to thiotepa and tepa. PMID:19076156

  20. Regioselective alkane hydroxylation with a mutant CYP153A6 enzyme

    DOEpatents

    Koch, Daniel J.; Arnold, Frances H.

    2013-01-29

    Cytochrome P450 CYP153A6 from Myobacterium sp. strain HXN1500 was engineered using in-vivo directed evolution to hydroxylate small-chain alkanes regioselectively. Mutant CYP153A6-BMO1 selectively hydroxylates butane and pentane at the terminal carbon to form 1-butanol and 1-pentanol, respectively, at rates greater than wild-type CYP153A6 enzymes. This biocatalyst is highly active for small-chain alkane substrates and the regioselectivity is retained in whole-cell biotransformations.

  1. Access channels to the buried active site control substrate specificity in CYP1A P450 enzymes.

    PubMed

    Urban, Philippe; Truan, Gilles; Pompon, Denis

    2015-04-01

    A cytochrome P450 active site is buried within the protein molecule and several channels connect the catalytic cavity to the protein surface. Their role in P450 catalysis is still matter of debate. The aim of this study was to understand the possible relations existing between channels and substrate specificity. Time course studies were carried out with a collection of polycyclic substrates of increasing sizes assayed with a library of wild-type and chimeric CYP1A enzymes. This resulted in a matrix of activities sufficiently large to allow statistical analysis. Multivariate statistical tools were used to decipher the correlation between observed activity shifts and sequence segment swaps. The global kinetic behavior of CYP1A enzymes toward polycyclic substrates is significantly different depending on the size of the substrate. Mutations which are close or lining the P450 channels significantly affect this discrimination, whereas mutations distant from the P450 channels do not. Size discrimination is taking place for polycyclic substrates at the entrance of the different P450 access channels. It is thus hypothesized that channels differentiate small from large substrates in CYP1A enzymes, implying that residues located at the surface of the protein may be implied in this differential recognition. Catalysis thus occurs after a two-step recognition process, one at the surface of the protein and the second within the catalytic cavity in enzymes with a buried active site. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. CYP1A1, CYP3A5 and CYP3A7 polymorphisms and testicular cancer susceptibility.

    PubMed

    Kristiansen, W; Haugen, T B; Witczak, O; Andersen, J M; Fosså, S D; Aschim, E L

    2011-02-01

    Testicular cancer (TC) incidence is increasing worldwide, but the aetiology remains largely unknown. An unbalanced level of oestrogens and androgens in utero is hypothesized to influence TC risk. Polymorphisms in genes encoding cytochrome P450 (CYP) enzymes involved in metabolism of reproductive hormones, such as CYP1A1, CYP3A5 and CYP3A7, may contribute to variability of an individual's susceptibility to TC. The aim of this case-control study was to investigate possible associations between different CYP genotypes and TC, as well as histological type of TC. The study comprised 652 TC cases and 199 controls of Norwegian Caucasian origin. Genotyping of the CYP1A1*2A (MspI), CYP1A1*2C (I462V), CYP1A1*4 (T461N), CYP3A5*3C (A6986G) and CYP3A7*2 (T409R) polymorphisms was performed using TaqMan allelic discrimination or sequencing. The CYP1A1*2A allele was associated with 44% reduced risk of TC with each polymorphic allele [odds ratio (OR) = 0.56, 95% confidence interval (CI) = 0.40-0.78, p(trend) = 0.001], whereas the CYP1A1*2C allele was associated with 56% reduced risk of TC with each polymorphic allele (OR = 0.44, 95% CI = 0.25-0.75, p(trend) = 0.003). The decreased risk per allele was significant for seminomas (OR = 0.46, 95% CI, 0.31-0.70, p(trend) < 0.001 and OR = 0.31, 95% CI = 0.14-0.66, p(trend) = 0.002, respectively), but only borderline significant for non-seminomas (OR = 0.65, 95% CI = 0.45-0.95, p(trend) = 0.027 and OR = 0.55, 95% CI = 0.30-1.01, p(trend) = 0.052, respectively). There were no statistically significant differences in the distribution of the CYP3A5*3C and CYP3A7*2 polymorphic alleles between TC cases and controls. This study suggests that polymorphisms in the CYP1A1 gene may contribute to variability of individual susceptibility to TC. © 2010 The Authors. International Journal of Andrology © 2010 European Academy of Andrology.

  3. Polymorphisms of CYP1A2 and CYP2A6 activity: phenotypes and the effect of age and sex in a Nigerian population.

    PubMed

    Adehin, Ayorinde; Bolaji, Oluseye O

    2015-09-01

    CYP1A2 and CYP2A6 are polymorphic enzymes that metabolise several compounds of clinical importance. This study investigated the prevalent phenotypes of these enzymes and the influence of age and sex on enzyme activity in a Nigerian population. Caffeine (110 mg) was administered to each of 129 healthy, unrelated subjects (85 males and 44 females) who were non-smokers. Urine voided within 7 h after caffeine administration was collected for a high performance liquid chromatographic assay of caffeine (137X), 1,7-dimethyluric acid (17U) and 1,7-dimethylxanthine (17X). CYP1A2 activity was measured as a ratio of (17U+17X) to 137X, while 17U/17X served as marker for CYP2A6. Transformed data were analysed and the influences of age and sex on activity were also determined. Distribution of CYP1A2 activity in the population was bimodal with a mean±SD of 0.82±0.41, while that of CYP2A6 was trimodal with a mean±SD activity of 0.27±0.42 of the log-transformed urinary molar ratio of metabolites. The influences of age and sex on enzyme activity for both CYP1A2 and CYP2A6 were not significant (p>0.05). The study established the prevalence of polymorphism in phenotypes of CYP1A2 and CYP2A6 activity in the Nigerian population, but no influence of age and sex on enzyme activity was observed in this population.

  4. Relationship of CYP2D6, CYP3A, POR, and ABCB1 genotypes with galantamine plasma concentrations.

    PubMed

    Noetzli, Muriel; Guidi, Monia; Ebbing, Karsten; Eyer, Stephan; Zumbach, Serge; Giannakopoulos, Panteleimon; von Gunten, Armin; Csajka, Chantal; Eap, Chin B

    2013-04-01

    The frequently prescribed antidementia drug galantamine is extensively metabolized by the enzymes cytochrome P450 (CYP) 2D6 and CYP3A and is a substrate of the P-glycoprotein. We aimed to study the relationship between genetic variants influencing the activity of these enzymes and transporters with galantamine steady state plasma concentrations. In this naturalistic cross-sectional study, 27 older patients treated with galantamine were included. The patients were genotyped for common polymorphisms in CYP2D6, CYP3A4/5, POR, and ABCB1, and galantamine steady state plasma concentrations were determined. The CYP2D6 genotype seemed to be an important determinant of galantamine pharmacokinetics, with CYP2D6 poor metabolizers presenting 45% and 61% higher dose-adjusted galantamine plasma concentrations than heterozygous and homozygous CYP2D6 extensive metabolizers (median 2.9 versus 2.0 ng/mL · mg, P = 0.025, and 1.8 ng/mL · mg, P = 0.004), respectively. The CYP2D6 genotype significantly influenced galantamine plasma concentrations. The influence of CYP2D6 polymorphisms on the treatment efficacy and tolerability should be further investigated.

  5. Competitive inhibition of carcinogen-activating CYP1A1 and CYP1B1 enzymes by a standardized complex mixture of PAH extracted from coal tar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahadevan, B.; Marston, C.P.; Luch, A.

    2007-03-15

    A complex mixture of polycyclic aromatic hydrocarbons (PAH) extracted from coal tar, the Standard Reference Material (SRM) 1597, was recently shown to decrease the levels of DNA binding of the 2 strong carcinogens benzo(a)pyrene (BP) and dibenzo(a,l)pyrene (DBP) in the human mammary carcinoma-derived cell line MCF-7. The present study was designed to further elucidate the biochemical mechanisms involved in this inhibition process. We examined the effects of SRM 1597 on the metabolic activation of BP and DBP toward DNA-binding derivatives in Chinese hamster cells expressing either human cytochrome P450 (CYP) 1A1 or CYP1B1. The data obtained from biochemical experiments revealedmore » that SRM 1597 competitively inhibited the activity of both human enzymes as analyzed by 7-ethoxyresorufin O-deethylation assays. While the Michaelis-Menten constant (K-M) was {lt} 0.4 {mu}M in the absence of SRM 1597, this value increased up to 1.12 (CYP1A1) or 4.45 {mu}M (CYP1B1) in the presence of 0.1 {mu} g/ml SRM 1597. Hence the inhibitory effects of the complex mixture on human CYP1B1 were much stronger when compared to human CYP1A1 Taken together, the decreases in PAH-DNA adduct formation on co-treatment with SRM 1597 revealed inhibitory effects on the CYP enzymes that convert carcinogenic PAH into DNA-binding metabolites. The implications for the tumorigenicity of complex environmental PAR mixtures are discussed.« less

  6. Expression of paclitaxel-inactivating CYP3A activity in human colorectal cancer: implications for drug therapy

    PubMed Central

    Martínez, C; García-Martín, E; Pizarro, R M; García-Gamito, F J; Agúndez, J A G

    2002-01-01

    Cytochrome P450 3A is a drug-metabolising enzyme activity due to CYP3A4 and CYP3A5 gene products, that is involved in the inactivation of anticancer drugs. This study analyses the potential of cytochrome P450 3A enzyme in human colorectal cancer to impact anticancer therapy with drugs that are cytochrome P450 3A substrates. Enzyme activity, variability and properties, and the ability to inactivate paclitaxel (taxol) were analysed in human colorectal cancer and healthy colorectal epithelium. Cytochrome P450 3A enzyme activity is present in healthy and tumoral samples, with a nearly 10-fold interindividual variability. Nifedipine oxidation activity±s.d. for colorectal cancer microsomes was 67.8±36.6 pmol min−1 mg−1. The Km of the tumoral enzyme (42±8 μM) is similar to that in healthy colorectal epithelium (36±8 μM) and the human liver enzyme. Colorectal cancer microsomes metabolised the anticancer drug paclitaxel with a mean activity was 3.1±1.2 pmol min−1 mg−1. The main metabolic pathway is carried out by cytochrome P450 3A, and it is inhibited by the cytochrome P450 3A-specific inhibitor ketoconazole with a KI value of 31 nM. This study demonstrates the occurrence of cytochrome P450 3A-dependent metabolism in colorectal cancer tissue. The metabolic activity confers to cancer cells the ability to inactivate cytochrome P450 3A substrates and may modulate tumour sensitivity to anticancer drugs. British Journal of Cancer (2002) 87, 681–686. doi:10.1038/sj.bjc.6600494 www.bjcancer.com © 2002 Cancer Research UK PMID:12237780

  7. Effects of alkylphenols on CYP1A and CYP3A expression in first spawning Atlantic cod (Gadus morhua).

    PubMed

    Hasselberg, Linda; Meier, Sonnich; Svardal, Asbjørn; Hegelund, Tove; Celander, Malin C

    2004-05-12

    Alkylphenols are continuously released into the ocean as a result of offshore oil production. Alkylphenols, including 4-tert-butylphenol (C4), 4n-pentylphenol (C5), 4n-hexylphenol (C6), and 4n-heptylphenol (C7), up to 237 ppb concentrations, have been detected in produced water from oil platforms. Previous studies have shown that alkylphenols induce vitellogenesis in fish. Atlantic cod (Gadus morhua) of both sexes were force-fed with various doses ranging between 0.02 and 80 ppm of a mixture of alkylphenols (C4:C5:C6:C7 ratio 1:1:1:1) or 5 ppm 17 beta-estradiol. We investigated effects on hepatic CYP1A and CYP3A protein expression in protein blots, using antibodies against scup (Stenotomus chrysops) CYP1A1 and rainbow trout (Oncorhynchus mykiss) CYP3A. There was a sexually dimorphic expression of CYP1A and CYP3A protein levels, with females expressing higher levels than males. Treatment of male Atlantic cod with 17 beta-estradiol resulted in increased CYP1A and CYP3A protein levels. Exposure to alkylphenols resulted in a dose-dependent increase of CYP1A and CYP3A protein expression in males, but not in females. However, this increase of CYP1A protein levels was not reflected on the CYP1A-mediated ethoxyresorufin-O-deethylase (EROD) activity, implying that alkylphenols inhibited the CYP1A enzyme activity in vivo. In vitro inhibition studies with pooled liver microsomes from Atlantic cod confirmed that the alkylphenols mixture efficiently inhibited the CYP1A activity (IC50=10 microM), although the inhibitory effect of each individual alkylphenol varied. The IC50 values for each individual alkylphenol on the CYP1A activity were, in a descending order of magnitude: [C7>C6>C5>C4], ranging from 12 to 300 microM with decreased length of the 4-alkyl chain. The effect of alkylphenols on the CYP3A activity in vitro in liver microsomes also was investigated, using the fluorescent 7-benzyloxy-4-[trifluoromethyl]-coumarin (BFC) as a diagnostic CYP3A substrate. The alkylphenol

  8. Effects of salinity acclimation on the expression and activity of Phase I enzymes (CYP450 and FMOs) in coho salmon (Oncorhynchus kisutch)

    PubMed Central

    Lavado, Ramon; Aparicio-Fabre, Rosaura; Schlenk, Daniel

    2013-01-01

    Phase I biotransformation enzymes are critically important in the disposition of xenobiotics within biota and are regulated by multiple environmental cues, particularly in anadromous fish species. Given the importance of these enzyme systems in xenobiotic/endogenous chemical bioactivation and detoxification, the current study was designed to better characterize the expression of Phase I biotransformation enzymes in coho salmon (Oncorhynchus kisutch) and the effects of salinity acclimation on those enzymes. Livers, gills and olfactory tissues were collected from coho salmon (Oncorhynchus kisutch) after they had undergone acclimation from freshwater to various salinity regimes of seawater (8, 16 and 32 g/L). Using immunoblot techniques coupled with testosterone hydroxylase catalytic activities, 4 orthologs of cytochrome P450 (CYP1A, CYP2K1, CYP2M1 and CYP3A27) were measured in each tissue. Also the expression of 2 transcripts of flavin-containing monooxygenases (FMO A and B) and associated activities were measured. With the exception of CYP1A, which was down-regulated in liver, protein expression of the other 3 enzymes was induced at higher salinity, with the greatest increase observed in CYP2M1 from olfactory tissues. In liver and gills, 6 - and 16 -hydroxylation of testosterone was also significantly increased after hypersaline acclimation. Similarly, FMO A was up-regulated in all 3 tissues in a salinity-dependent pattern, whereas FMO B mRNA was down-regulated. FMO-catalyzed benzydamine N-oxygenase and methyl p-tolyl sulfoxidation were significantly induced in liver and gills by hypersalinity, but was either unchanged or not detected in olfactory tissues. These data demonstrate thatenvironmental conditions may significantly alter the toxicity of environmental chemicals in salmon during freshwater/saltwater acclimation. PMID:23925894

  9. Delayed de-induction of CYP2C9 compared to CYP3A after discontinuation of rifampicin: Report of two cases
.

    PubMed

    Shibata, Soichi; Takahashi, Harumi; Baba, Akiyasu; Takeshita, Kei; Atsuda, Koichiro; Matsubara, Hajime; Echizen, Hirotoshi

    2017-05-01

    Timely dose reduction of concomitant medications is important after withdrawal of rifampicin, a CYP inducer. However, little is known about the differences in the time course of deinduction for various CYP isoforms. To clarify the time courses of deinduction of CYP2C9 and -CYP3A activities after rifampicin withdrawal, we monitored these enzyme activities in 2 patients over time after discontinuing rifampicin. Two patients (aged 70 and 80 years) received warfarin and rifampicin for anticoagulation and antituberculosis therapy, respectively. Warfarin doses were increased due to rifampicin-induced CYP activity. Upon completion of antituberculosis therapy, rifampicin was discontinued and warfarin doses were titrated downward according to prothrombin time. We monitored CYP2C9 and CYP3A activities over their clinical courses by measuring the metabolic clearance of S-warfarin to S-7-hydroxywarfarin and that of cortisol to 6β-hydroxycortisol, respectively. In both patients, the time courses of CYP2C9 deinduction appeared to be delayed compared to CYP3A. Our findings suggest that a uniform dose reduction protocol for drugs metabolized by different CYP isoforms may be unsafe after rifampicin withdrawal.
.

  10. An enlarged, adaptable active site in CYP164 family P450 enzymes, the sole P450 in Mycobacterium leprae.

    PubMed

    Agnew, Christopher R J; Warrilow, Andrew G S; Burton, Nicholas M; Lamb, David C; Kelly, Steven L; Brady, R Leo

    2012-01-01

    CYP164 family P450 enzymes are found in only a subset of mycobacteria and include CYP164A1, which is the sole P450 found in Mycobacterium leprae, the causative agent of leprosy. This has previously led to interest in this enzyme as a potential drug target. Here we describe the first crystal structure of a CYP164 enzyme, CYP164A2 from Mycobacterium smegmatis. CYP164A2 has a distinctive, enlarged hydrophobic active site that extends above the porphyrin ring toward the access channels. Unusually, we find that CYP164A2 can simultaneously bind two econazole molecules in different regions of the enlarged active site and is accompanied by the rearrangement and ordering of the BC loop. The primary location is through a classic interaction of the azole group with the porphyrin iron. The second econazole molecule is bound to a unique site and is linked to a tetracoordinated metal ion complexed to one of the heme carboxylates and to the side chains of His 105 and His 364. All of these features are preserved in the closely homologous M. leprae CYP164A1. The computational docking of azole compounds to a homology model of CYP164A1 suggests that these compounds will form effective inhibitors and is supported by the correlation of parallel docking with experimental binding studies of CYP164A2. The binding of econazole to CYP164A2 occurs primarily through the high-spin "open" conformation of the enzyme (K(d) [dissociation constant] of 0.1 μM), with binding to the low-spin "closed" form being significantly hindered (K(d) of 338 μM). These studies support previous suggestions that azole derivatives may provide an effective strategy to improve the treatment of leprosy.

  11. An Enlarged, Adaptable Active Site in CYP164 Family P450 Enzymes, the Sole P450 in Mycobacterium leprae

    PubMed Central

    Agnew, Christopher R. J.; Warrilow, Andrew G. S.; Burton, Nicholas M.; Lamb, David C.; Kelly, Steven L.

    2012-01-01

    CYP164 family P450 enzymes are found in only a subset of mycobacteria and include CYP164A1, which is the sole P450 found in Mycobacterium leprae, the causative agent of leprosy. This has previously led to interest in this enzyme as a potential drug target. Here we describe the first crystal structure of a CYP164 enzyme, CYP164A2 from Mycobacterium smegmatis. CYP164A2 has a distinctive, enlarged hydrophobic active site that extends above the porphyrin ring toward the access channels. Unusually, we find that CYP164A2 can simultaneously bind two econazole molecules in different regions of the enlarged active site and is accompanied by the rearrangement and ordering of the BC loop. The primary location is through a classic interaction of the azole group with the porphyrin iron. The second econazole molecule is bound to a unique site and is linked to a tetracoordinated metal ion complexed to one of the heme carboxylates and to the side chains of His 105 and His 364. All of these features are preserved in the closely homologous M. leprae CYP164A1. The computational docking of azole compounds to a homology model of CYP164A1 suggests that these compounds will form effective inhibitors and is supported by the correlation of parallel docking with experimental binding studies of CYP164A2. The binding of econazole to CYP164A2 occurs primarily through the high-spin “open” conformation of the enzyme (Kd [dissociation constant] of 0.1 μM), with binding to the low-spin “closed” form being significantly hindered (Kd of 338 μM). These studies support previous suggestions that azole derivatives may provide an effective strategy to improve the treatment of leprosy. PMID:22037849

  12. Effect of Ginkgo biloba extract on procarcinogen-bioactivating human CYP1 enzymes: Identification of isorhamnetin, kaempferol, and quercetin as potent inhibitors of CYP1B1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Thomas K.H.; Chen Jie; Yeung, Eugene Y.H.

    2006-05-15

    In the present study, we investigated the effect of Ginkgo biloba extracts and some of its individual constituents on the catalytic activity of human cytochrome P450 enzymes CYP1B1, CYP1A1, and CYP1A2. G. biloba extract of known abundance of terpene trilactones and flavonol glycosides inhibited 7-ethoxyresorufin O-dealkylation catalyzed by human recombinant CYP1B1, CYP1A1, and CYP1A2, and human liver microsomes, with apparent K {sub i} values of 2 {+-} 0.3, 5 {+-} 0.5, 16 {+-} 1.4, and 39 {+-} 1.2 {mu}g/ml (mean {+-} SE), respectively. In each case, the mode of inhibition was of the mixed type. Bilobalide, ginkgolides A, B, C,more » and J, quercetin 3-O-rutinoside, kaempferol 3-O-rutinoside, and isorhamentin 3-O-rutinoside were not responsible for the inhibition of CYP1 enzymes by G. biloba extract, as determined by experiments with these individual chemicals at the levels present in the extract. In contrast, the aglycones of quercetin, kaempferol, and isorhamentin inhibited CYP1B1, CYP1A1, and CYP1A2. Among the three flavonol aglycones, isorhamentin was the most potent in inhibiting CYP1B1 (apparent K {sub i} = 3 {+-} 0.1 nM), whereas quercetin was the least potent in inhibiting CYP1A2 (apparent K {sub i} 418 {+-} 50 nM). The mode of inhibition was competitive, noncompetitive, or mixed, depending on the enzyme and the flavonol. G. biloba extract also reduced benzo[a]pyrene hydroxylation, and the effect was greater with CYP1B1 than with CYP1A1 as the catalyst. Overall, our novel findings indicate that G. biloba extract and the flavonol aglycones isorhamnetin, kaempferol, and quercetin preferentially inhibit the in vitro catalytic activity of human CYP1B1.« less

  13. Genetic analysis of drug metabolizing phase-I enzymes CYP3A4 in Tibetan populations.

    PubMed

    Liu, Lijun; Chang, Yu; Du, Shuli; Shi, Xugang; Yang, Hua; Kang, Longli; Jin, Tianbo; Yuan, Dongya; He, Yongjun

    2017-06-01

    The enzymatic activity of CYP3A4 results in broad interindividual variability in response to certain pharmacotherapies. The present study aimed to screen Tibetan volunteers for CYP3A4 genetic polymorphisms. Previous research has focussed on Han Chinese patients, while little is known about the genetic variation of CYP3A4 in the Tibetan populations. Here, we adopted DNA sequencing to investigate the promoter, exons and surrounding introns, and 3'-untranslated region of the CYP3A4 gene in 96 unrelated healthy Tibetan individuals.We identified 20 different CYP3A4 polymorphisms in the Tibetan population, including two novel variants (21824 A>G and 15580 G>C). In addition, we also determined the allele frequencies of CYP3A4*1A and CYP3A4*1H were 82.29% and 28.13%, respectively. CYP3A4*1P and *1G were relatively rare with frequencies of only 1.04% and 0.52%, respectively. Our results provide information on CYP3A4 polymorphisms in Tibetan individuals which may help to optimize pharmacotherapy effectiveness by providing personalized medicine to this ethnic group.

  14. Determination of a quantitative relationship between hepatic CYP3A5*1/*3 and CYP3A4 expression for use in the prediction of metabolic clearance in virtual populations.

    PubMed

    Barter, Z E; Perrett, H F; Yeo, K Rowland; Allorge, D; Lennard, M S; Rostami-Hodjegan, A

    2010-11-01

    The creation of virtual populations allows the estimation of pharmacokinetic parameters, such as metabolic clearance in extreme individuals rather than the 'average human'. Prediction of variability in metabolic clearance within genetically diverse populations relies on understanding the covariation in the expression of enzymes. A number of statistically significant positive correlations have been observed in the hepatic expression of cytochrome P450 drug metabolising enzymes. However, these rarely provided a quantitative description of the relationships which is required in creating virtual populations. Collation of data from 40 human liver microsomal samples in the current study indicated a significant positive relationship between hepatic microsomal CYP3A5*1/*3 and CYP3A4 content. Having developed a model describing the relationship between hepatic CYP3A4 and CYP3A5*1/*3, the Simcyp Population-based Simulator(®) was used to investigate the consequences of either incorporating or ignoring the relationship between the two enzymes on estimates of drug clearance. Simulations indicated that for a compound with greater metabolism by CYP3A5 than CYP3A4, such as tacrolimus, incorporation of the correlation between CYP3A4 and CYP3A5 does have an impact on the prediction of oral clearance. Failure to consider the relationship between CYP3A4 and CYP3A5 when creating the virtual population led to a 32% lower estimate of oral clearance in individuals possessing both the CYP3A5*1/*3 genotype and high basal concentrations of CYP3A4. Potential clinical implications may include an inadequate dose estimation during clinical study design, the consequences of which may include organ rejection in transplant recipients using immunosuppressants such as tacrolimus or toxicity due to elevated concentrations of circulating metabolites. Copyright © 2010 John Wiley & Sons, Ltd.

  15. Effect of Curcuma longa on CYP2D6- and CYP3A4-mediated metabolism of dextromethorphan in human liver microsomes and healthy human subjects.

    PubMed

    Al-Jenoobi, Fahad Ibrahim; Al-Thukair, Areej A; Alam, Mohd Aftab; Abbas, Fawkeya A; Al-Mohizea, Abdullah M; Alkharfy, Khalid M; Al-Suwayeh, Saleh A

    2015-03-01

    Effect of Curcuma longa rhizome powder and its ethanolic extract on CYP2D6 and CYP3A4 metabolic activity was investigated in vitro using human liver microsomes and clinically in healthy human subjects. Dextromethorphan (DEX) was used as common probe for CYP2D6 and CYP3A4 enzymes. Metabolic activity of CYP2D6 and CYP3A4 was evaluated through in vitro study; where microsomes were incubated with NADPH in presence and absence of Curcuma extract. In clinical study phase-I, six healthy human subjects received a single dose (30 mg) of DEX syrup, and in phase-II DEX syrup was administered with Curcuma powder. The enzyme CYP2D6 and CYP3A4 mediated O- and N-demethylation of dextromethorphan into dextrorphan (DOR) and 3-methoxymorphinan (3-MM), respectively. Curcuma extract significantly inhibited the formation of DOR and 3-MM, in a dose-dependent and linear fashion. The 100 μg/ml dose of curcuma extract produced highest inhibition, which was about 70 % for DOR and 80 % for 3-MM. Curcuma significantly increases the urine metabolic ratio of DEX/DOR but the change in DEX/3-MM ratio was statistically insignificant. Present findings suggested that curcuma significantly inhibits the activity of CYP2D6 in in vitro as well as in vivo; which indicates that curcuma has potential to interact with CYP2D6 substrates.

  16. Evidence for communality in the primary determinants of CYP74 catalysis and of structural similarities between CYP74 and classical mammalian P450 enzymes.

    PubMed

    Hughes, Richard K; Yousafzai, Faridoon K; Ashton, Ruth; Chechetkin, Ivan R; Fairhurst, Shirley A; Hamberg, Mats; Casey, Rod

    2008-09-01

    In silico structural analysis of CYP74C3, a membrane-associated P450 enzyme from the plant Medicago truncatula (barrel medic) with hydroperoxide lyase (HPL) specificity, showed that it had strong similarities to the structural folds of the classical microsomal P450 enzyme from rabbits (CYP2C5). It was not only the secondary structure predictions that supported the analysis but site directed mutagenesis of the substrate interacting residues was also consistent with it. This led us to develop a substrate-binding model of CYP74C3 which predicted three amino acid residues, N285, F287, and G288 located in the putative I-helix and distal haem pocket of CYP74C3 to be in close proximity to the preferred substrate 13-HPOTE. These residues were judged to be in equivalent positions to those identified in SRS-4 of CYP2C5. Significance of the residues and their relevance to the model were further assessed by site directed mutagenesis of the three residues followed by EPR spectroscopic and detailed kinetic investigations of the mutated proteins in the presence and absence of detergent. Although point mutation of the residues had no effect on the haem content of the mutated proteins, significant effects on the spin state equilibrium of the haem iron were noted. Kinetic effects of the mutations, which were investigated using three different substrates, were dramatic in nature. In the presence of detergent with the preferred substrate (13-HPOTE), the catalytic center activities and substrate binding affinities of the mutant proteins were reduced by a factor of 8-32 and 4-12, respectively, compared with wild-type--a two orders of magnitude reduction in catalytic efficiencies. We believe this is the first report where primary determinants of catalysis for any CYP74 enzyme, which are fully consistent with our model, have been identified. Our working model predicts that N285 is close enough to suggest that a hydrogen bond with the peroxy group of the enzyme substrate 13-HPOTE is

  17. Characterization of the active site properties of CYP4F12.

    PubMed

    Eksterowicz, John; Rock, Dan A; Rock, Brooke M; Wienkers, Larry C; Foti, Robert S

    2014-10-01

    Cytochrome P450 4F12 is a drug-metabolizing enzyme that is primarily expressed in the liver, kidney, colon, small intestine, and heart. The properties of CYP4F12 that may impart an increased catalytic selectivity (decreased promiscuity) were explored through in vitro metabolite elucidation, kinetic isotope effect experiments, and computational modeling of the CYP4F12 active site. By using astemizole as a probe substrate for CYP4F12 and CYP3A4, it was observed that although CYP4F12 favored astemizole O-demethylation as the primary route of metabolism, CYP3A4 was capable of metabolizing astemizole at multiple sites on the molecule. Deuteration of astemizole at the site of O-demethylation resulted in an isotope effect of 7.1 as well as an 8.3-fold decrease in the rate of clearance for astemizole by CYP4F12. Conversely, although an isotope effect of 3.8 was observed for the formation of the O-desmethyl metabolite when deuterated astemizole was metabolized by CYP3A4, there was no decrease in the clearance of astemizole. Development of a homology model of CYP4F12 based on the crystal structure of cytochrome P450 BM3 predicted an active site volume for CYP4F12 that was approximately 76% of the active site volume of CYP3A4. As predicted, multiple favorable binding orientations were available for astemizole docked into the active site of CYP3A4, but only a single binding orientation with the site of O-demethylation oriented toward the heme was identified for CYP4F12. Overall, it appears that although CYP4F12 may be capable of binding similar ligands to other cytochrome P450 enzymes such as CYP3A4, the ability to achieve catalytically favorable orientations may be inherently more difficult because of the increased steric constraints of the CYP4F12 active site. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Inhibition of Cytochrome P450 (CYP3A4) Activity by Extracts from 57 Plants Used in Traditional Chinese Medicine (TCM)

    PubMed Central

    Ashour, Mohamed L; Youssef, Fadia S; Gad, Haidy A; Wink, Michael

    2017-01-01

    Background: Herbal medicine is widely used all over the world for treating various health disorders. It is employed either alone or in combination with synthetic drugs or plants to be more effective. Objective: The assessment of the effect of both water and methanol extracts of 57 widely used plants from Traditional Chinese Medicine (TCM) against the main phase I metabolizing enzyme CYP3A4 in vitro for the first time. Materials and Methods: The inhibition of cytochrome P450 activity was evaluated using a luminescence assay. The principal component analysis (PCA) was used to correlate the inhibitory activity with the main secondary metabolites present in the plant extracts. Molecular modeling studies on CYP3A4 (PDB ID 4NY4) were carried out with 38 major compounds present in the most active plant extracts to validate the observed inhibitory effect. Results: Aqueous extracts of Acacia catechu, Andrographis paniculata, Arctium lappa, Areca catechu, Bupleurum marginatum, Chrysanthemum indicum, Dysosma versipellis, and Spatholobus suberectus inhibited CYP3A4 is more than 85% (at a dose of 100 μg/mL). The corresponding methanol extracts of A. catechu, A. paniculata, A. catechu, Mahonia bealei, and Sanguisorba officinalis inhibited the enzyme by more than 50%. Molecular modeling studies revealed that two polyphenols, namely hesperidin and rutin, revealed the highest fitting scores in the active sites of the CYP3A4 with binding energies equal to -74.09 and -71.34 kcal/mol, respectively. Conclusion: These results provide evidence that many TCM plants can inhibit CYP3A4, which might cause a potential interference with the metabolism of other concomitantly administered herbs or drugs. SUMMARY In this study, the inhibitory activity of the aqueous and methanol extracts of 57 widely used plants from Traditional Chinese Medicine (TCM) against the main phase I metabolizing enzyme CYP3A4 was tested in vitro for the first time.Aqueous extracts of Acacia catechu, Andrographis

  19. The Role of Human Cytochrome P450 Enzymes in the Formation of 2-Hydroxymetronidazole: CYP2A6 is the High Affinity (Low Km) Catalyst

    PubMed Central

    Cohen-Wolkowiez, Michael; Sampson, Mario R.; Kearns, Gregory L.

    2013-01-01

    Despite metronidazole’s widespread clinical use since the 1960s, the specific enzymes involved in its biotransformation have not been previously identified. Hence, in vitro studies were conducted to identify and characterize the cytochrome P450 enzymes involved in the formation of the major metabolite, 2-hydroxymetronidazole. Formation of 2-hydroxymetronidazole in human liver microsomes was consistent with biphasic, Michaelis-Menten kinetics. Although several cDNA-expressed P450 enzymes catalyzed 2-hydroxymetronidazole formation at a supratherapeutic concentration of metronidazole (2000 μM), at a “therapeutic concentration” of 100 μM only CYPs 2A6, 3A4, 3A5, and 3A7 catalyzed metronidazole 2-hydroxylation at rates substantially greater than control vector, and CYP2A6 catalyzed 2-hydroxymetronidazole formation at rates 6-fold higher than the next most active enzyme. Kinetic studies with these recombinant enzymes revealed that CYP2A6 has a Km = 289 μM which is comparable to the Km for the high-affinity (low-Km) enzyme in human liver microsomes, whereas the Km values for the CYP3A enzymes corresponded with the low-affinity (high-Km) component. The sample-to-sample variation in 2-hydroxymetronidazole formation correlated significantly with CYP2A6 activity (r ≥ 0.970, P < 0.001) at substrate concentrations of 100 and 300 μM. Selective chemical inhibitors of CYP2A6 inhibited metronidazole 2-hydroxylation in a concentration-dependent manner and inhibitory antibodies against CYP2A6 virtually eliminated metronidazole 2-hydroxylation (>99%). Chemical and antibody inhibitors of other P450 enzymes had little or no effect on metronidazole 2-hydroxylation. These results suggest that CYP2A6 is the primary catalyst responsible for the 2-hydroxylation of metronidazole, a reaction that may function as a marker of CYP2A6 activity both in vitro and in vivo. PMID:23813797

  20. Potent inhibition by star fruit of human cytochrome P450 3A (CYP3A) activity.

    PubMed

    Hidaka, Muneaki; Fujita, Ken-ichi; Ogikubo, Tetsuya; Yamasaki, Keishi; Iwakiri, Tomomi; Okumura, Manabu; Kodama, Hirofumi; Arimori, Kazuhiko

    2004-06-01

    There has been very limited information on the capacities of tropical fruits to inhibit human cytochrome P450 3A (CYP3A) activity. Thus, the inhibitory effects of tropical fruits on midazolam 1'-hydroxylase activity of CYP3A in human liver microsomes were evaluated. Eight tropical fruits such as common papaw, dragon fruit, kiwi fruit, mango, passion fruit, pomegranate, rambutan, and star fruit were tested. We also examined the inhibition of CYP3A activity by grapefruit (white) and Valencia orange as controls. The juice of star fruit showed the most potent inhibition of CYP3A. The addition of a star fruit juice (5.0%, v/v) resulted in the almost complete inhibition of midazolam 1'-hydroxylase activity (residual activity of 0.1%). In the case of grape-fruit, the residual activity was 14.7%. The inhibition depended on the amount of fruit juice added to the incubation mixture (0.2-6.0%, v/v). The elongation of the preincubation period of a juice from star fruit (1.25 or 2.5%, v/v) with the microsomal fraction did not alter the CYP3A inhibition, suggesting that the star fruit did not contain a mechanism-based inhibitor. Thus, we discovered filtered extracts of star fruit juice to be inhibitors of human CYP3A activity in vitro.

  1. CYP2J2 and CYP2C19 Are the Major Enzymes Responsible for Metabolism of Albendazole and Fenbendazole in Human Liver Microsomes and Recombinant P450 Assay Systems

    PubMed Central

    Wu, Zhexue; Lee, Doohyun; Joo, Jeongmin; Shin, Jung-Hoon; Kang, Wonku; Oh, Sangtaek; Lee, Do Yup; Lee, Su-Jun; Yea, Sung Su; Lee, Hye Suk

    2013-01-01

    Albendazole and fenbendazole are broad-spectrum anthelmintics that undergo extensive metabolism to form hydroxyl and sulfoxide metabolites. Although CYP3A and flavin-containing monooxygenase have been implicated in sulfoxide metabolite formation, the enzymes responsible for hydroxyl metabolite formation have not been identified. In this study, we used human liver microsomes and recombinant cytochrome P450s (P450s) to characterize the enzymes involved in the formation of hydroxyalbendazole and hydroxyfenbendazole from albendazole and fenbendazole, respectively. Of the 10 recombinant P450s, CYP2J2 and/or CYP2C19 was the predominant enzyme catalyzing the hydroxylation of albendazole and fenbendazole. Albendazole hydroxylation to hydroxyalbendazole is primarily mediated by CYP2J2 (0.34 μl/min/pmol P450, which is a rate 3.9- and 8.1-fold higher than the rates for CYP2C19 and CYP2E1, respectively), whereas CYP2C19 and CYP2J2 contributed to the formation of hydroxyfenbendazole from fenbendazole (2.68 and 1.94 μl/min/pmol P450 for CYP2C19 and CYP2J2, respectively, which are rates 11.7- and 8.4-fold higher than the rate for CYP2D6). Correlation analysis between the known P450 enzyme activities and the rate of hydroxyalbendazole and hydroxyfenbendazole formation in samples from 14 human liver microsomes showed that albendazole hydroxylation correlates with CYP2J2 activity and fenbendazole hydroxylation correlates with CYP2C19 and CYP2J2 activities. These findings were supported by a P450 isoform-selective inhibition study in human liver microsomes. In conclusion, our data for the first time suggest that albendazole hydroxylation is primarily catalyzed by CYP2J2, whereas fenbendazole hydroxylation is preferentially catalyzed by CYP2C19 and CYP2J2. The present data will be useful in understanding the pharmacokinetics and drug interactions of albendazole and fenbendazole in vivo. PMID:23959307

  2. CYP2J2 and CYP2C19 are the major enzymes responsible for metabolism of albendazole and fenbendazole in human liver microsomes and recombinant P450 assay systems.

    PubMed

    Wu, Zhexue; Lee, Doohyun; Joo, Jeongmin; Shin, Jung-Hoon; Kang, Wonku; Oh, Sangtaek; Lee, Do Yup; Lee, Su-Jun; Yea, Sung Su; Lee, Hye Suk; Lee, Taeho; Liu, Kwang-Hyeon

    2013-11-01

    Albendazole and fenbendazole are broad-spectrum anthelmintics that undergo extensive metabolism to form hydroxyl and sulfoxide metabolites. Although CYP3A and flavin-containing monooxygenase have been implicated in sulfoxide metabolite formation, the enzymes responsible for hydroxyl metabolite formation have not been identified. In this study, we used human liver microsomes and recombinant cytochrome P450s (P450s) to characterize the enzymes involved in the formation of hydroxyalbendazole and hydroxyfenbendazole from albendazole and fenbendazole, respectively. Of the 10 recombinant P450s, CYP2J2 and/or CYP2C19 was the predominant enzyme catalyzing the hydroxylation of albendazole and fenbendazole. Albendazole hydroxylation to hydroxyalbendazole is primarily mediated by CYP2J2 (0.34 μl/min/pmol P450, which is a rate 3.9- and 8.1-fold higher than the rates for CYP2C19 and CYP2E1, respectively), whereas CYP2C19 and CYP2J2 contributed to the formation of hydroxyfenbendazole from fenbendazole (2.68 and 1.94 μl/min/pmol P450 for CYP2C19 and CYP2J2, respectively, which are rates 11.7- and 8.4-fold higher than the rate for CYP2D6). Correlation analysis between the known P450 enzyme activities and the rate of hydroxyalbendazole and hydroxyfenbendazole formation in samples from 14 human liver microsomes showed that albendazole hydroxylation correlates with CYP2J2 activity and fenbendazole hydroxylation correlates with CYP2C19 and CYP2J2 activities. These findings were supported by a P450 isoform-selective inhibition study in human liver microsomes. In conclusion, our data for the first time suggest that albendazole hydroxylation is primarily catalyzed by CYP2J2, whereas fenbendazole hydroxylation is preferentially catalyzed by CYP2C19 and CYP2J2. The present data will be useful in understanding the pharmacokinetics and drug interactions of albendazole and fenbendazole in vivo.

  3. Pharmacogenetics in American Indian populations: analysis of CYP2D6, CYP3A4, CYP3A5, and CYP2C9 in the Confederated Salish and Kootenai Tribes.

    PubMed

    Fohner, Alison; Muzquiz, LeeAnna I; Austin, Melissa A; Gaedigk, Andrea; Gordon, Adam; Thornton, Timothy; Rieder, Mark J; Pershouse, Mark A; Putnam, Elizabeth A; Howlett, Kevin; Beatty, Patrick; Thummel, Kenneth E; Woodahl, Erica L

    2013-08-01

    Cytochrome P450 enzymes play a dominant role in drug elimination and variation in these genes is a major source of interindividual differences in drug response. Little is known, however, about pharmacogenetic variation in American Indian and Alaska Native (AI/AN) populations. We have developed a partnership with the Confederated Salish and Kootenai Tribes (CSKT) in northwestern Montana to address this knowledge gap. We resequenced CYP2D6 in 187 CSKT individuals and CYP3A4, CYP3A5, and CYP2C9 in 94 CSKT individuals. We identified 67 variants in CYP2D6, 15 in CYP3A4, 10 in CYP3A5, and 41 in CYP2C9. The most common CYP2D6 alleles were CYP2D6*4 and *41 (20.86 and 11.23%, respectively). CYP2D6*3, *5, *6, *9, *10, *17, *28, *33, *35, *49, *1xN, *2xN, and *4xN frequencies were less than 2%. CYP3A5*3, CYP3A4*1G, and *1B were detected with frequencies of 92.47, 26.81, and 2.20%, respectively. Allelic variation in CYP2C9 was low: CYP2C9*2 (5.17%) and *3 (2.69%). In general, allele frequencies in CYP2D6, CYP2C9, and CYP3A5 were similar to those observed in European Americans. There was, however, a marked divergence in CYP3A4 for the CYP3A4*1G allele. We also observed low levels of linkage between CYP3A4*1G and CYP3A5*1 in the CSKT. The combination of nonfunctional CYP3A5*3 and putative reduced function CYP3A4*1G alleles may predict diminished clearance of CYP3A substrates. These results highlight the importance of carrying out pharmacogenomic research in AI/AN populations and show that extrapolation from other populations is not appropriate. This information could help optimize drug therapy for the CSKT population.

  4. Pharmacogenetics in American Indian Populations: Analysis of CYP2D6, CYP3A4, CYP3A5, and CYP2C9 in the Confederated Salish and Kootenai Tribes

    PubMed Central

    Fohner, Alison; Muzquiz, LeeAnna I.; Austin, Melissa A.; Gaedigk, Andrea; Gordon, Adam; Thornton, Timothy; Rieder, Mark J.; Pershouse, Mark A.; Putnam, Elizabeth A.; Howlett, Kevin; Beatty, Patrick; Thummel, Kenneth E.; Woodahl, Erica L.

    2014-01-01

    Objectives Cytochrome P450 enzymes play a dominant role in drug elimination and variation in these genes is a major source of interindividual differences in drug response. Little is known, however, about pharmacogenetic variation in American Indian and Alaska Native (AI/AN) populations. We have developed a partnership with the Confederated Salish and Kootenai Tribes (CSKT) in northwestern Montana to address this knowledge gap. Methods We resequenced CYP2D6 in 187 CSKT subjects and CYP3A4, CYP3A5, and CYP2C9 in 94 CSKT subjects. Results We identified 67 variants in CYP2D6, 15 in CYP3A4, 10 in CYP3A5, and 41 in CYP2C9. The most common CYP2D6 alleles were CYP2D6*4 and *41 (20.86 and 11.23%, respectively). CYP2D6*3, *5, *6, *9, *10, *17, *28, *33, *35, *49, *1xN, *2xN, and *4xN frequencies were less than 2%. CYP3A5*3, CYP3A4*1G, and *1B were detected with frequencies of 92.47, 26.81, and 2.20%, respectively. Allelic variation in CYP2C9 was low: CYP2C9*2 (5.17%) and *3 (2.69%). In general, allele frequencies in CYP2D6, CYP2C9 and CYP3A5 were similar to those observed in European Americans. There was, however, a marked divergence in CYP3A4 for the CYP3A4*1G allele. We also observed low levels of linkage between CYP3A4*1G and CYP3A5*1 in the CSKT. The combination of nonfunctional CYP3A5*3 and putative reduced function CYP3A4*1G alleles may predict diminished clearance of CYP3A substrates. Conclusions These results highlight the importance of conducting pharmacogenomic research in AI/AN populations and demonstrate that extrapolation from other populations is not appropriate. This information could help to optimize drug therapy for the CSKT population. PMID:23778323

  5. Contribution of three CYP3A isoforms to metabolism of R- and S-warfarin.

    PubMed

    Jones, Drew R; Kim, So-Young; Boysen, Gunnar; Yun, Chul-Ho; Miller, Grover P

    2010-12-01

    Effective coumadin (R/S-warfarin) therapy is complicated by inter-individual variability in metabolism. Recent studies have demonstrated that CYP3A isoforms likely contribute to patient responses and clinical outcomes. Despite a significant focus on CYP3A4, little is known about CYP3A5 and CYP3A7 metabolism of warfarin. Based on our studies, recombinant CYP3A4, CYP3A5 and CYP3A7 metabolized R- and S-warfarin to 10- and 4'-hydroxywarfarin with efficiencies that depended on the individual enzymes. For R-warfarin, CYP3A4, CYP3A7, and CYP3A5 demonstrated decreasing preference for 10-hydroxylation over 4'-hydroxylation. By contrast, there was no regioselectivity toward S-warfarin. While all enzymes preferentially metabolized R-warfarin, CYP3A4 was the most efficient at metabolizing all reactions. Individuals, namely African-Americans and children, with higher relative levels of CYP3A5 and/or CYP3A7, respectively, compared to CYP3A4 may metabolize warfarin less efficiently and thus may require lower doses and be at risk for adverse drug-drug interactions related to the contributions of the respective enzymes.

  6. Human variation and CYP enzyme contribution in benfuracarb metabolism in human in vitro hepatic models.

    PubMed

    Abass, Khaled; Reponen, Petri; Mattila, Sampo; Rautio, Arja; Pelkonen, Olavi

    2014-01-13

    Human responses to the toxicological effects of chemicals are often complicated by a substantial interindividual variability in toxicokinetics, of which metabolism is often the most important factor. Therefore, we investigated human variation and the contributions of human-CYP isoforms to in vitro metabolism of benfuracarb. The primary metabolic pathways were the initial sulfur oxidation to benfuracarb-sulfoxide and the nitrogen-sulfur bond cleavage to carbofuran (activation). The Km, Vmax, and CL(int) values of carbofuran production in ten individual hepatic samples varied 7.3-, 3.4-, and 5.4-fold, respectively. CYP2C9 and CYP2C19 catalyzed benfuracarb sulphur oxidation. Carbofuran formation, representing from 79% to 98% of the total metabolism, was catalyzed predominantly by CYP3A4. The calculated relative contribution of CYP3A4 to carbofuran formation was 93%, while it was 4.4% for CYP2C9. The major contribution of CYP3A4 in benfuracarb metabolism was further substantiated by showing a strong correlation with CYP3A4-selective markers midazolam-1'-hydroxylation and omeprazole-sulfoxidation (r=0.885 and 0.772, respectively). Carbofuran formation was highly inhibited by the CYP3A inhibitor ketoconazole. Moreover, CYP3A4 marker activities were relatively inhibited by benfuracarb. These results confirm that human CYP3A4 is the major enzyme involved in the in vitro activation of benfuracarb and that CYP3A4-catalyzed metabolism is the primary source of interindividual differences. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Cytochrome P450 CYP3A in marsupials: cloning and identification of the first CYP3A subfamily member, isoform 3A70 from Eastern gray kangaroo (Macropus giganteus).

    PubMed

    El-Merhibi, Adaweyah; Ngo, Suong N T; Marchant, Ceilidh L; Height, Tamara A; Stupans, Ieva; McKinnon, Ross A

    2012-09-15

    Australian marsupials are unique fauna that have evolved and adapted to unique environments and thus it is likely that their detoxification systems differ considerably from those of well-studied eutherian mammals. Knowledge of these processes in marsupials is therefore vital to understanding the consequences of exposure to xenobiotics. Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of both xenobiotics and endogenous substrates. In this study we have cloned and characterized CYP3A70, the first identified member of the CYP3A gene subfamily from Eastern gray kangaroo (Macropus giganteus). A 1665 base pair kangaroo hepatic CYP3A complete cDNA, designated CYP3A70, was cloned by reverse transcription-polymerase chain reaction approaches, which encodes a protein of 506 amino acids. The CYP3A70 cDNA shares approximately 71% nucleotide and 65% amino acid sequence homology to human CYP3A4 and displays high sequence similarity to other published mammalian CYP3As from human, monkey, cow, pig, dog, rat, rabbit, mouse, hamster, and guinea pig. Transfection of the CYP3A70 cDNAs into 293T cells resulted in stable cell lines expressing a CYP3A immuno-reactive protein that was recognized by a goat anti-human CYP3A4 polyclonal antibody. The anti-human CYP3A4 antibody also detected immunoreactive proteins in liver microsomes from all test marsupials, including the kangaroo, koala, wallaby, and wombat, with multiple CYP3A immunoreactive bands observed in kangaroo and wallaby tissues. Relatively, very low CYP catalytic activity was detected for the kangaroo CYP3A70 cDNA-expressed proteins (19.6 relative luminescent units/μg protein), which may be due to low protein expression levels. Collectively, this study provides primary molecular data regarding the Eastern kangaroo hepatic CYP3A70 gene and enables further functional analyses of CYP3A enzymes in marsupials. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Investigation of drug-drug interactions caused by human pregnane X receptor-mediated induction of CYP3A4 and CYP2C subfamilies in chimeric mice with a humanized liver.

    PubMed

    Hasegawa, Maki; Tahara, Harunobu; Inoue, Ryo; Kakuni, Masakazu; Tateno, Chise; Ushiki, Junko

    2012-03-01

    The induction of cytochrome P450 (P450) enzymes is one of the risk factors for drug-drug interactions (DDIs). To date, the human pregnane X receptor (PXR)-mediated CYP3A4 induction has been well studied. In addition to CYP3A4, the expression of CYP2C subfamily is also regulated by PXR, and the DDIs caused by the induction of CYP2C enzymes have been reported to have a major clinical impact. The purpose of the present study was to investigate whether chimeric mice with a humanized liver (PXB mice) can be a suitable animal model for investigating the PXR-mediated induction of CYP2C subfamily, together with CYP3A4. We evaluated the inductive effect of rifampicin (RIF), a typical human PXR ligand, on the plasma exposure to the four P450 substrate drugs (triazolam/CYP3A4, pioglitazone/CYP2C8, (S)-warfarin/CYP2C9, and (S)-(-)-mephenytoin/CYP2C19) by cassette dosing in PXB mice. The induction of several drug-metabolizing enzymes and transporters in the liver was also examined by measuring the enzyme activity and mRNA expression levels. Significant reductions in the exposure to triazolam, pioglitazone, and (S)-(-)-mephenytoin, but not to (S)-warfarin, were observed. In contrast to the in vivo results, all the four P450 isoforms, including CYP2C9, were elevated by RIF treatment. The discrepancy in the (S)-warfarin results between in vivo and in vitro studies may be attributed to the relatively small contribution of CYP2C9 to (S)-warfarin elimination in the PXB mice used in this study. In summary, PXB mice are a useful animal model to examine DDIs caused by PXR-mediated induction of CYP2C and CYP3A4.

  9. Dual-Color Fluorescence Imaging to Monitor CYP3A4 and CYP3A7 Expression in Human Hepatic Carcinoma HepG2 and HepaRG Cells

    PubMed Central

    Kubiura, Musashi; Hayashi, Ayaka; Ohbayashi, Tetsuya; Kazuki, Yasuhiro; Chesné, Christophe; Oshimura, Mitsuo; Tada, Masako

    2014-01-01

    Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP) and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps. PMID:25101946

  10. Dual-color fluorescence imaging to monitor CYP3A4 and CYP3A7 expression in human hepatic carcinoma HepG2 and HepaRG cells.

    PubMed

    Tsuji, Saori; Kawamura, Fumihiko; Kubiura, Musashi; Hayashi, Ayaka; Ohbayashi, Tetsuya; Kazuki, Yasuhiro; Chesné, Christophe; Oshimura, Mitsuo; Tada, Masako

    2014-01-01

    Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP) and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps.

  11. Development of Murine Cyp3a Knockout Chimeric Mice with Humanized Liver.

    PubMed

    Kato, Kota; Ohbuchi, Masato; Hamamura, Satoko; Ohshita, Hiroki; Kazuki, Yasuhiro; Oshimura, Mitsuo; Sato, Koya; Nakada, Naoyuki; Kawamura, Akio; Usui, Takashi; Kamimura, Hidetaka; Tateno, Chise

    2015-08-01

    We developed murine CYP3A knockout ko chimeric mice with humanized liver expressing human P450S similar to those in humans and whose livers and small intestines do not express murine CYP3A this: approach may overcome effects of residual mouse metabolic enzymes like Cyp3a in conventional chimeric mice with humanized liver, such as PXB-mice [urokinase plasminogen activator/severe combined immunodeficiency (uPA/SCID) mice repopulated with over 70% human hepatocytes] to improve the prediction of drug metabolism and pharmacokinetics in humans. After human hepatocytes were transplanted into Cyp3a KO/uPA/SCID host mice, human albumin levels logarithmically increased until approximately 60 days after transplantation, findings similar to those in PXB-mice. Quantitative real-time-polymerase chain reaction analyses showed that hepatic human P450s, UGTs, SULTs, and transporters mRNA expression levels in Cyp3a KO chimeric mice were also similar to those in PXB-mice and confirmed the absence of Cyp3a11 mRNA expression in mouse liver and intestine. Findings for midazolam and triazolam metabolic activities in liver microsomes were comparable between Cyp3a KO chimeric mice and PXB-mice. In contrast, these activities in the intestine of Cyp3a KO chimeric mice were attenuated compared with PXB-mice. Owing to the knockout of murine Cyp3a, hepatic Cyp2b10 and 2c55 mRNA levels in Cyp3a KO/uPA/SCID mice (without hepatocyte transplants) were 8.4- and 61-fold upregulated compared with PXB-mice, respectively. However, human hepatocyte transplantation successfully restored Cyp2b10 level nearly fully and Cyp2c55 level partly (still 13-fold upregulated) compared with those in PXB-mice. Intestinal Cyp2b10 and 2c55 were also repressed by human hepatocyte transplantation in Cyp3a KO chimeric mice. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Alprazolam as an in vivo probe for studying induction of CYP3A in cynomolgus monkeys.

    PubMed

    Ohtsuka, Tatsuyuki; Yoshikawa, Takahiro; Kozakai, Kazumasa; Tsuneto, Yumi; Uno, Yasuhiro; Utoh, Masahiro; Yamazaki, Hiroshi; Kume, Toshiyuki

    2010-10-01

    Induction of the cytochrome P450 (P450) enzyme is a major concern in the drug discovery processes. To predict the clinical significance of enzyme induction, it is helpful to investigate pharmacokinetic alterations of a coadministered drug in a suitable animal model. In this study, we focus on the induction of CYP3A, which is involved in the metabolism of approximately 50% of marketed drugs and is inducible in both the liver and intestine. As a marker substrate for CYP3A activity, alprazolam (APZ) was selected and characterized using recombinant CYP3A enzymes expressed in Escherichia coli. Both human CYP3A4 and its cynomolgus P450 ortholog predominantly catalyzed APZ 4-hydroxylation with sigmoidal kinetics. When administered intravenously and orally to cynomolgus monkeys, APZ had moderate clearance; its first-pass extraction ratio after oral dosing was estimated to be 0.09 in the liver and 0.45 in the intestine. Pretreatment with multiple doses of rifampicin (20 mg/kg p.o. for 5 days), a known CYP3A inducer, significantly decreased plasma concentrations of APZ after intravenous and oral administrations (0.5 mg/kg), and first-pass extraction ratios were increased to 0.39 in the liver and 0.63 in the intestine. The results were comparable to those obtained in clinical drug-drug interaction (DDI) reports related to CYP3A induction, although the rate of recovery of CYP3A activity seemed to be slower than rates estimated in clinical studies. In conclusion, pharmacokinetic studies using APZ as a probe in monkeys may provide useful information regarding the prediction of clinical DDIs due to CYP3A induction.

  13. Predictors of Variation in CYP2A6 mRNA, Protein, and Enzyme Activity in a Human Liver Bank: Influence of Genetic and Nongenetic Factors.

    PubMed

    Tanner, Julie-Anne; Prasad, Bhagwat; Claw, Katrina G; Stapleton, Patricia; Chaudhry, Amarjit; Schuetz, Erin G; Thummel, Kenneth E; Tyndale, Rachel F

    2017-01-01

    Cytochrome P450 2A6 CYP2A6: metabolizes several clinically relevant substrates, including nicotine, the primary psychoactive component in cigarette smoke. Smokers vary widely in their rate of inactivation and clearance of nicotine, altering numerous smoking phenotypes. We aimed to characterize independent and shared impact of genetic and nongenetic sources of variation in CYP2A6 mRNA, protein, and enzyme activity in a human liver bank (n = 360). For the assessment of genetic factors, we quantified levels of CYP2A6, cytochrome P450 oxidoreductase (POR), and aldo-keto reductase 1D1 (AKR1D1) mRNA, and CYP2A6 and POR proteins. CYP2A6 enzyme activity was determined through measurement of cotinine formation from nicotine and 7-hydroxycoumarin formation from coumarin. Donor DNA was genotyped for CYP2A6, POR, and AKR1D1 genetic variants. Nongenetic factors assessed included gender, age, and liver disease. CYP2A6 phenotype measures were positively correlated to each other (r values ranging from 0.47-0.88, P < 0.001). Female donors exhibited higher CYP2A6 mRNA expression relative to males (P < 0.05). Donor age was weakly positively correlated with CYP2A6 protein (r = 0.12, P < 0.05) and activity (r = 0.20, P < 0.001). CYP2A6 reduced-function genotypes, but not POR or AKR1D1 genotypes, were associated with lower CYP2A6 protein (P < 0.001) and activity (P < 0.01). AKR1D1 mRNA was correlated with CYP2A6 mRNA (r = 0.57, P < 0.001), protein (r = 0.30, P < 0.001), and activity (r = 0.34, P < 0.001). POR protein was correlated with CYP2A6 activity (r = 0.45, P < 0.001). Through regression analyses, we accounted for 17% (P < 0.001), 37% (P < 0.001), and 77% (P < 0.001) of the variation in CYP2A6 mRNA, protein, and activity, respectively. Overall, several independent and shared sources of variation in CYP2A6 activity in vitro have been identified, which could translate to variable hepatic clearance of nicotine. Copyright © 2016 by The American Society for Pharmacology and

  14. Exploration of enzyme-ligand interactions in CYP2D6 & 3A4 homology models and crystal structures using a novel computational approach.

    PubMed

    Kjellander, Britta; Masimirembwa, Collen M; Zamora, Ismael

    2007-01-01

    New crystal structures of human CYP2D6 and CYP3A4 have recently been reported, and in this study, we wanted to compare them with previously used homology models with respect to predictions of site of metabolism and ligand-enzyme interactions. The data set consisted of a family of synthetic opioid analgesics with the aim to cover both CYP2D6 and CYP3A4, as most of these compounds are metabolized by both isoforms. The program MetaSite was used for the site of metabolism predictions, and the results were validated by experimental assessment of the major metabolites formed with recombinant CYP450s. This was made on a selection of 14 compounds in the data set. The prediction rates for MetaSite were 79-100% except for the CYP3A4 homology model, which picked the correct site in half of the cases. Despite differences in orientation of some important amino acids in the active sites, the MetaSite-predicted sites were the same for the different structures, with the exception of the CYP3A4 homology model. Further exploration of interactions with ligands was done by docking substrates/inhibitors in the different structures with the docking program GLUE. To address the challenge in interpreting patterns of enzyme-ligand interactions for the large number of different docking poses, a new computational tool to handle the results from the dockings was developed, in which the output highlights the relative importance of amino acids in CYP450-substrate/inhibitor interactions. The method is based on calculations of the interaction energies for each pose with the surrounding amino acids. For the CYP3A4 structures, this method was compared with consensus principal component analysis (CPCA), a commonly used method for structural comparison to evaluate the usefulness of the new method. The results from the two methods were comparable with each other, and the highlighted amino acids resemble those that were identified to have a different orientation in the compared structures. The new

  15. Multiple night-time doses of valerian (Valeriana officinalis) had minimal effects on CYP3A4 activity and no effect on CYP2D6 activity in healthy volunteers.

    PubMed

    Donovan, Jennifer L; DeVane, C Lindsay; Chavin, Kenneth D; Wang, Jun-Sheng; Gibson, Bryan B; Gefroh, Holly A; Markowitz, John S

    2004-12-01

    Valerian (Valeriana officinalis) is a popular dietary supplement. The objective of this study was to assess the influence of a valerian extract on the activity of the drug-metabolizing enzymes cytochrome P450 2D6 (CYP2D6) and 3A4. Probe drugs dextromethorphan (30 mg; CYP2D6 activity) and alprazolam (2 mg; CYP3A4 activity) were administered orally to healthy volunteers (n = 12) at baseline and again after exposure to two 500-mg valerian tablets (1000 mg) nightly for 14 days. The valerian supplement contained a total valerenic acid content of 5.51 mg/tablet. Dextromethorphan to dextorphan metabolic ratios (DMRs) and alprazolam pharmacokinetics were determined at baseline and after valerian treatment. The DMR was 0.214 +/- 0.025 at baseline and 0.254 +/- 0.026 after valerian supplementation (p > 0.05). For alprazolam, the maximum concentration in plasma was significantly increased after treatment with valerian (25 +/- 7 ng/ml versus 31 +/- 8 ng/ml; p < 0.05). There were no significant differences in other pharmacokinetic parameters at baseline and after valerian exposure (all p values > or = 0.05; time to reach maximum concentration in plasma, 3.0 +/- 3.2 versus 3.1 +/- 2.1 h; area under the plasma concentration versus time curve, 471 +/- 183 versus 539 +/- 240 hx ng x ml(-1); half-life of elimination, 13.5 +/- 4.3 versus 12.2 +/- 5.6 h). Our results indicate that although a modest increase was observed in the alprazolam Cmax, typical doses of valerian are unlikely to produce clinically significant effects on the disposition of medications dependent on the CYP2D6 or CYP3A4 pathways of metabolism.

  16. Influences of Realgar-Indigo naturalis, A Traditional Chinese Medicine Formula, on the Main CYP450 Activities in Rats Using a Cocktail Method

    PubMed Central

    Xu, Huan-Hua; Hao, Fei-Ran; Wang, Mei-Xi; Ren, Si-Jia; Li, Ming; Tan, Hong-Ling; Wang, Yu-Guang; Tang, Xiang-Lin; Xiao, Cheng-Rong; Liang, Qian-De

    2017-01-01

    The purpose of this work was to study the influences of Realgar-Indigo naturalis (RIF) and its principal element realgar on 4 main cytochrome P450 enzymes activities in rats. A simple and efficient cocktail method was developed to detect the four probe drugs simultaneously. In this study, Wistar rats were administered intragastric RIF and realgar for 14 days; mixed probe drugs were injected into rats by caudal vein. Through analyzing the pharmacokinetic parameter of mixed probe drugs in rats, we can calculate the CYPs activities. The results showed that RIF could inhibit CYP1A2 enzyme activity and induce CYP2C11 enzyme activity significantly. Interestingly, in realgar high dosage group, CYP3A1/2 enzyme activity was inhibited significantly, and different dosage of realgar manifested a good dose-dependent manner. The RIF results indicated that drug coadministrated with RIF may need to be paid attention in relation to drug-drug interactions (DDIs). Realgar, a toxic traditional Chinese medicine (TCM), does have curative effect on acute promyelocytic leukemia (APL). Its toxicity studies should be focused on. We found that, in realgar high dosage group, CYP3A1/2 enzymes activity was inhibited. This phenomenon may explain its potential toxicity mechanism. PMID:28421119

  17. Influences of Realgar-Indigo naturalis, A Traditional Chinese Medicine Formula, on the Main CYP450 Activities in Rats Using a Cocktail Method.

    PubMed

    Xu, Huan-Hua; Hao, Fei-Ran; Wang, Mei-Xi; Ren, Si-Jia; Li, Ming; Tan, Hong-Ling; Wang, Yu-Guang; Tang, Xiang-Lin; Xiao, Cheng-Rong; Liang, Qian-De; Gao, Yue; Ma, Zeng-Chun

    2017-01-01

    The purpose of this work was to study the influences of Realgar- Indigo naturalis (RIF) and its principal element realgar on 4 main cytochrome P450 enzymes activities in rats. A simple and efficient cocktail method was developed to detect the four probe drugs simultaneously. In this study, Wistar rats were administered intragastric RIF and realgar for 14 days; mixed probe drugs were injected into rats by caudal vein. Through analyzing the pharmacokinetic parameter of mixed probe drugs in rats, we can calculate the CYPs activities. The results showed that RIF could inhibit CYP1A2 enzyme activity and induce CYP2C11 enzyme activity significantly. Interestingly, in realgar high dosage group, CYP3A1/2 enzyme activity was inhibited significantly, and different dosage of realgar manifested a good dose-dependent manner. The RIF results indicated that drug coadministrated with RIF may need to be paid attention in relation to drug-drug interactions (DDIs). Realgar, a toxic traditional Chinese medicine (TCM), does have curative effect on acute promyelocytic leukemia (APL). Its toxicity studies should be focused on. We found that, in realgar high dosage group, CYP3A1/2 enzymes activity was inhibited. This phenomenon may explain its potential toxicity mechanism.

  18. CAR/PXR provide directives for Cyp3a41 gene regulation differently from Cyp3a11.

    PubMed

    Anakk, S; Kalsotra, A; Kikuta, Y; Huang, W; Zhang, J; Staudinger, J L; Moore, D D; Strobel, H W

    2004-01-01

    This study reports that Cyp3a41 gene contains 13 exons and is localized on the chromosome 5. CYP3A41 is a female-specific isoform that is predominantly expressed in the liver. Estrogen signaling is not responsible for its female specificity. CYP3A41 expression in kidney and brain is observed only in 50% of mice examined. PXR mediates dexamethasone-dependent suppression of CYP3A41. In contrast to CYP3A11, CYP3A41 expression is not induced by pregnenolone-16alpha-carbonitrile (PCN) in wild-type mice, but is significantly suppressed by PCN in PXR(-/-) mice. Phenobarbital and TCPOBOP induce CYP3A11 expression only in the presence of CAR, but have no effect on CYP3A41 expression. Immunoblot and erythromycin demethylase activity analysis reveal robust CYP3A induction after PCN treatment, which is poorly correlated to CYP3A41. These findings suggest a differential role for CAR/PXR in regulating individual CYP3A isoforms by previously characterized CYP3A inducers.

  19. Estimation of the Contribution of CYP2C8 and CYP3A4 in Repaglinide Metabolism by Human Liver Microsomes Under Various Buffer Conditions.

    PubMed

    Kudo, Toshiyuki; Goda, Hitomi; Yokosuka, Yuki; Tanaka, Ryo; Komatsu, Seina; Ito, Kiyomi

    2017-09-01

    We have previously reported that the microsomal activities of CYP2C8 and CYP3A4 largely depend on the buffer condition used in in vitro metabolic studies, with different patterns observed between the 2 isozymes. In the present study, therefore, the possibility of buffer condition dependence of the fraction metabolized by CYP2C8 (fm2C8) for repaglinide, a dual substrate of CYP2C8 and CYP3A4, was estimated using human liver microsomes under various buffer conditions. Montelukast and ketoconazole showed a potent and concentration-dependent inhibition of CYP2C8-mediated paclitaxel 6α-hydroxylation and CYP3A4-mediated triazolam α-hydroxylation, respectively, without dependence on the buffer condition. Repaglinide depletion was inhibited by both inhibitors, but the degree of inhibition depended on buffer conditions. Based on these results, the contribution of CYP2C8 in repaglinide metabolism was estimated to be larger than that of CYP3A4 under each buffer condition, and the fm2C8 value of 0.760, estimated in 50 mM phosphate buffer, was the closest to the value (0.801) estimated in our previous modeling analysis based on its concentration increase in a clinical drug interaction study. Researchers should be aware of the possibility of buffer condition affecting the estimated contribution of enzyme(s) in drug metabolism processes involving multiple enzymes. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Expression and inducibility of CYP1A1, 1A2, 1B1 by β-naphthoflavone and CYP2B22, CYP3As by rifampicin in heart regions and coronary arteries of pig.

    PubMed

    Messina, Andrea; Puccinelli, Emanuela; Gervasi, Pier Giovanni; Longo, Vincenzo

    2013-02-01

    In this study, the constitutive and inducible expression of the CYP genes (1A1, 1A2, 1B1, 2B22, 3A22, 3A29 and 3A46), related transcriptional factors (AhR, CAR, PXR, and Nrf2) and the antioxidant enzymes SOD, catalase, GSSH-reductase and GSH-peroxidase were investigated in the liver, heart regions and coronary arteries of control pigs and pigs treated with β-naphthoflavone (βNF) or with rifampicin (RIF). Real-time PCR experiments and enzymatic or immunoblot assays showed that CYP1A1 was predominantly enhanced by βNF in a similar manner in all the heart regions, whereas antioxidant enzyme activity was not affected. The rifampicin treatment resulted in an induction of CYP2B22 and CYP3As, at the transcriptional, activity and protein level in liver but not in heart nor in the coronary arteries, despite the expression of CAR and PXR in the cardiac tissues. These results obtained in vivo suggest that pig cardiac tissues may represent a useful model for humans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Effects of dietary probiotic supplementation on LXRα and CYP7α1 gene expression, liver enzyme activities and fat metabolism in ducks.

    PubMed

    Huang, Z; Mu, C; Chen, Y; Zhu, Z; Chen, C; Lan, L; Xu, Q; Zhao, W; Chen, G

    2015-04-01

    1. The objective of this study was to investigate the effects of dietary probiotic supplementation on liver X receptor alpha (LXRα) and cholesterol 7α-hydroxylase (CYP7α1) mRNA levels, protein enzymatic activities and fat metabolism in Cherry Valley Pekin ducks. 2. A total of 750 one-day-old Cherry Valley Pekin ducks were randomly divided into 5 groups with three replicates of 50 ducks each in a completely randomised experiment. Each group was fed on a basal diet supplemented with 0, 500, 1000, 1500 or 2000 mg probiotics/kg. 3. Body rate and feed conversion ratio were highest and abdominal subcutaneous fat % was lowest at 1000 mg probiotic/kg. 4. The mRNA levels of LXRα and CYP7α1 in liver tissue was estimated by RT-PCR; serum triglyceride (TG) and total cholesterol (TC) concentrations were measured by ELISA. 5. The expression levels and enzyme activity of LXRα and CYP7α1 increased in conjunction with decreases in TG and TC concentrations following probiotic supplementation to a maximum at 1000 mg probiotics/kg and decreased thereafter. 6. It is concluded that dietary probiotics can enhance LXRα and CYP7α1 enzyme activities in the liver and reduce lipid concentrations and fat deposition in ducks.

  2. CYP101J2, CYP101J3, and CYP101J4, 1,8-Cineole-Hydroxylating Cytochrome P450 Monooxygenases from Sphingobium yanoikuyae Strain B2

    PubMed Central

    Unterweger, Birgit; Bulach, Dieter M.; Scoble, Judith; Midgley, David J.; Greenfield, Paul; Lyras, Dena; Johanesen, Priscilla

    2016-01-01

    ABSTRACT We report the isolation and characterization of three new cytochrome P450 monooxygenases: CYP101J2, CYP101J3, and CYP101J4. These P450s were derived from Sphingobium yanoikuyae B2, a strain that was isolated from activated sludge based on its ability to fully mineralize 1,8-cineole. Genome sequencing of this strain in combination with purification of native 1,8-cineole-binding proteins enabled identification of 1,8-cineole-binding P450s. The P450 enzymes were cloned, heterologously expressed (N-terminally His6 tagged) in Escherichia coli BL21(DE3), purified, and spectroscopically characterized. Recombinant whole-cell biotransformation in E. coli demonstrated that all three P450s hydroxylate 1,8-cineole using electron transport partners from E. coli to yield a product putatively identified as (1S)-2α-hydroxy-1,8-cineole or (1R)-6α-hydroxy-1,8-cineole. The new P450s belong to the CYP101 family and share 47% and 44% identity with other 1,8-cineole-hydroxylating members found in Novosphingobium aromaticivorans and Pseudomonas putida. Compared to P450cin (CYP176A1), a 1,8-cineole-hydroxylating P450 from Citrobacter braakii, these enzymes share less than 30% amino acid sequence identity and hydroxylate 1,8-cineole in a different orientation. Expansion of the enzyme toolbox for modification of 1,8-cineole creates a starting point for use of hydroxylated derivatives in a range of industrial applications. IMPORTANCE CYP101J2, CYP101J3, and CYP101J4 are cytochrome P450 monooxygenases from S. yanoikuyae B2 that hydroxylate the monoterpenoid 1,8-cineole. These enzymes not only play an important role in microbial degradation of this plant-based chemical but also provide an interesting route to synthesize oxygenated 1,8-cineole derivatives for applications as natural flavor and fragrance precursors or incorporation into polymers. The P450 cytochromes also provide an interesting basis from which to compare other enzymes with a similar function and expand the CYP101

  3. Foetal and adult human CYP3A isoforms in the bioactivation of organophosphorothionate insecticides.

    PubMed

    Buratti, Franca M; Leoni, Claudia; Testai, Emanuela

    2006-12-15

    In humans organophosphorothionate pesticides (OPT) prenatal exposure has been demonstrated. Since OPT-induced neurodevelopmental effects may be due to in situ bioactivation by foetal enzymes, the catalytic activity of the foetal CYP3A7 toward chlorpyrifos (CPF), parathion (PAR), malathion (MAL) and fenthion (FEN) has been assessed by using recombinant enzymes. A comparison with the adult isoforms CYP3A4 and CYP3A5 has been also carried out. CYP3A7 was able to produce significant levels of oxon or sulfoxide from the four OPTs in the range of tested concentrations (0.05-200 microM). When the efficiencies of CYP3A isoforms were compared, the ranking, expressed as CLi values, were: CPF=3A4>3A5>3A7; PAR=3A4>3A7>3A5; MAL=3A4>3A7>3A5; FEN (sulfoxide formation)=3A4>3A5>3A7. The CYP3A5 efficiency appeared to be more dependent on the single insecticide than its related isozyme CYP3A4. Our results indicate that the levels of toxic metabolite formed in situ by CYP3A7 from CPF, MAL and PAR but not from FEN have the chance to inhibit acetylcholinesterase, following prenatal exposure to OPTs. However, due to the smaller weight of foetal liver, the contribution to total OPT biotransformation is relatively low. On the other hand, our results clearly indicate that at low CPF concentrations, the formation of the non-toxic metabolites is highly favoured in the foetus.

  4. Assessment of human pregnane X receptor involvement in pesticide-mediated activation of CYP3A4 gene.

    PubMed

    Matsubara, Tsutomu; Noracharttiyapot, Wachiraporn; Toriyabe, Takayoshi; Yoshinari, Kouichi; Nagata, Kiyoshi; Yamazoe, Yasushi

    2007-05-01

    Assessment of foreign chemical inducibility on CYP3A4 is necessary to optimize drug therapies. The properties of chemicals such as pesticides, however, are not well investigated. In the present study, properties of various pesticides on human CYP3A4 induction have been tested using HepG2-derived cells stably expressing the CYP3A4 promoter/enhancer (3-1-10 cells) and the human pregnane X receptor (hPXR)-small interfering RNA (siRNA) system. Among the examined pesticides, 13 pesticides were observed to activate the CYP3A4 gene. Surprisingly, pyributicarb was found to increase the CYP3A4 reporter activity at 0.1 to 1 microM more strongly than typical CYP3A4 inducer rifampicin. Expression of hPXR-siRNA clearly diminished the pyributicarb-stimulated CYP3A4 reporter activity in 3-1-10 cells and decreased the endogenous CYP3A4 mRNA levels in HepG2 cells. Pyributicarb caused enhancement of CYP3A4-derived reporter activity in mouse livers introduced with hPXR by adenovirus. These results indicate pyributicarb as a potent activator of CYP3A4 gene, suggesting the existence of pesticides leading to CYP3A4 induction in our environment.

  5. Within-subject variation of the salivary 3HC/COT ratio in regular daily smokers: prospects for estimating CYP2A6 enzyme activity in large-scale surveys of nicotine metabolic rate.

    PubMed

    Lea, Rod A; Dickson, Stuart; Benowitz, Neal L

    2006-01-01

    Nicotine is the major addictive compound in tobacco and is responsible for tobacco dependence. It is primarily metabolized to cotinine (COT) and trans-3'-hydroxycotinine (3HC) by the liver enzyme cytochrome P-450 2A6 (CYP2A6). The 3HC/COT ratio measured in the saliva of smokers is highly correlated with the intrinsic hepatic clearance of nicotine and, therefore, may be a useful non-invasive marker of CYP2A6 activity and metabolic rate of nicotine. This study assessed within-subject variation in salivary 3HC/COT ratios in six regular daily smokers. Our data provide evidence that 1. variation in the 3HC/COT ratio is not dependent on the time of sampling during the day (i.e., morning vs. night ) (P > 0.1) and 2. the average within-subject biological variation in the 3HC/COT ratio is approximately 26%. These findings should be useful for designing large-scale population surveys to assess the variation in the metabolic rate of nicotine (via CYP2A6) in smokers.

  6. Harman induces CYP1A1 enzyme through an aryl hydrocarbon receptor mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Gendy, Mohamed A.M.; El-Kadi, Ayman O.S., E-mail: aelkadi@pharmacy.ualberta.c

    Harman is a common compound in several foods, plants and beverages. Numerous studies have demonstrated its mutagenic, co-mutagenic and carcinogenic effects; however, the exact mechanism has not been fully identified. Aryl hydrocarbon receptor (AhR) is a transcription factor regulating the expression of the carcinogen-activating enzyme; cytochrome P450 1A1 (CYP1A1). In the present study, we examined the ability of harman to induce AhR-mediated signal transduction in human and rat hepatoma cells; HepG2 and H4IIE cells. Our results showed that harman significantly induced CYP1A1 mRNA in a time- and concentration-dependent manner. Similarly, harman significantly induced CYP1A1 at protein and activity levels inmore » a concentration-dependent manner. Moreover, the AhR antagonist, resveratrol, inhibited the increase in CYP1A1 activity by harman. The RNA polymerase inhibitor, actinomycin D, completely abolished the CYP1A1 mRNA induction by harman, indicating a transcriptional activation. The role of AhR in CYP1A1 induction by harman was confirmed by using siRNA specific for human AhR. The ability of harman to induce CYP1A1 was strongly correlated with its ability to stimulate AhR-dependent luciferase activity and electrophoretic mobility shift assay. At post-transcriptional and post-translational levels, harman did not affect the stability of CYP1A1 at the mRNA and the protein levels, excluding other mechanisms participating in the obtained effects. We concluded that harman can directly induce CYP1A1 gene expression in an AhR-dependent manner and may represent a novel mechanism by which harman promotes mutagenicity, co-mutagenicity and carcinogenicity.« less

  7. Characterization of the genetic variation present in CYP3A4 in three South African populations.

    PubMed

    Drögemöller, Britt; Plummer, Marieth; Korkie, Lundi; Agenbag, Gloudi; Dunaiski, Anke; Niehaus, Dana; Koen, Liezl; Gebhardt, Stefan; Schneider, Nicol; Olckers, Antonel; Wright, Galen; Warnich, Louise

    2013-01-01

    The CYP3A4 enzyme is the most abundant human cytochrome P450 (CYP) and is regarded as the most important enzyme involved in drug metabolism. Inter-individual and inter-population variability in gene expression and enzyme activity are thought to be influenced, in part, by genetic variation. Although Southern African individuals have been shown to exhibit the highest levels of genetic diversity, they have been under-represented in pharmacogenetic research to date. Therefore, the aim of this study was to identify genetic variation within CYP3A4 in three South African population groups comprising of 29 Khoisan, 65 Xhosa and 65 Mixed Ancestry (MA) individuals. To identify known and novel CYP3A4 variants, 15 individuals were randomly selected from each of the population groups for bi-directional Sanger sequencing of ~600 bp of the 5'-upstream region and all thirteen exons including flanking intronic regions. Genetic variants detected were genotyped in the rest of the cohort. In total, 24 SNPs were detected, including CYP3A4(*)12, CYP3A4(*)15, and the reportedly functional CYP3A4(*)1B promoter polymorphism, as well as two novel non-synonymous variants. These putatively functional variants, p.R162W and p.Q200H, were present in two of the three populations and all three populations, respectively, and in silico analysis predicted that the former would damage the protein product. Furthermore, the three populations were shown to exhibit distinct genetic profiles. These results confirm that South African populations show unique patterns of variation in the genes encoding xenobiotic metabolizing enzymes. This research suggests that population-specific genetic profiles for CYP3A4 and other drug metabolizing genes would be essential to make full use of pharmacogenetics in Southern Africa. Further investigation is needed to determine if the identified genetic variants influence CYP3A4 metabolism phenotype in these populations.

  8. Expression of Vitamin D-Activating Enzyme 1α-Hydroxylase (CYP27B1) Decreases during Melanoma Progression**

    PubMed Central

    Brożyna, Anna A.; Jóźwicki, Wojciech; Janjetovic, Zorica; Slominski, Andrzej T.

    2012-01-01

    Summary 1α-Hydroxylase (CYP27B1), the enzyme responsible for the synthesis of the biologically active form of vitamin D (1,25(OH)2D3), is expressed in the skin. To assess the correlation between progression of melanocytic tumors and CYP27B1, we analyzed its expression in 29 benign nevi, 75 primary cutaneous melanomas, 40 metastases, and 4 re-excision and 6 normal skin biopsies. Immunoreactivity for CYP27B1 was significantly lower in the vertical growth phase (VGP) and metastatic melanomas (0.6 and 0.5 arbitrary units [AU], respectively) in comparison with nevi and radial growth phase (RGP) tumors (1.2 and 1.1 AU, respectively); and expression was reduced in more advanced lesions (Clark levels III–V, Breslow thickness ≥2.1 mm; 0.8 and 0.7 AU, respectively). There was an inverse correlation between CYP27B1 and Ki-67 expression. Furthermore, CYP27B1 expression was reduced in primary melanomas that created metastases in comparison with non-metastasizing melanomas. Reduced CYP27B1 expression in RGP was related to shorter overall survival (810 vs 982 vs 1151 days in melanomas with absent, low, and high CYP27B1 immunoreactivity), and low CYP27B1 expression in RGP and VGP was related to shorter disease-free survival (114 vs 339 vs 737 days and 129 vs 307 vs 737 days, respectively, in melanomas with absent, low, and high CYP27B1). Also, CYP27B1 expression was inversely related to melanin in melanoma cells in vivo and melanoma cells cultured in vitro. Thus, reduction of CYP27B1 correlates with melanoma phenotype and behavior, and its lack affects the survival of melanoma patients, indicating a role in the pathogenesis and progression of this cancer. PMID:22995334

  9. Heterologous expression of equine CYP3A94 and investigation of a tunable system to regulate co-expressed NADPH P450 oxidoreductase levels.

    PubMed

    Dettwiler, Ramona; Schmitz, Andrea L; Plattet, Philippe; Zielinski, Jana; Mevissen, Meike

    2014-01-01

    The activity of cytochrome P450 enzymes depends on the enzyme NADPH P450 oxidoreductase (POR). The aim of this study was to investigate the activity of the equine CYP3A94 using a system that allows to regulate the POR protein levels in mammalian cells. CYP3A94 and the equine POR were heterologously expressed in V79 cells. In the system used, the POR protein regulation is based on a destabilizing domain (DD) that transfers its instability to a fused protein. The resulting fusion protein is therefore degraded by the ubiquitin-proteasome system (UPS). Addition of "Shield-1" prevents the DD fusion protein from degradation. The change of POR levels at different Shield-1 concentrations was demonstrated by cytochrome c reduction, Western immunoblot analysis, and immunocytochemistry. The alteration of CYP3A94 activity was investigated using a substrate (BFC) known to detect CYP3A4 activity. Equine CYP3A94 was demonstrated to be metabolically active and its activity could be significantly elevated by co-expression of POR. Cytochrome c reduction was significantly increased in V79-CYP3A94/DD-POR cells compared to V79-CYP3A94 cells. Surprisingly, incubation with different Shield-1 concentrations resulted in a decrease in POR protein shown by Western immunoblot analysis. Cytochrome c reduction did not change significantly, but the CYP3A94 activity decreased more than 4-fold after incubation with 500 nM and 1 µM Shield-1 for 24 hours. No differences were obtained when V79-CYP3A94 POR cells with and without Shield-1 were compared. The basal activity levels of V79-CYP3A94/DD-POR cells were unexpectedly high, indicating that DD/POR is not degraded without Shield-1. Shield-1 decreased POR protein levels and CYP3A94 activity suggesting that Shield-1 might impair POR activity by an unknown mechanism. Although regulation of POR with the pPTuner system could not be obtained, the cell line V79-CYP3A94/DD-POR system can be used for further experiments to characterize the equine CYP3A94

  10. Evaluating the impact of type 2 diabetes mellitus on CYP450 metabolic activities: protocol for a case-control pharmacokinetic study.

    PubMed

    Gravel, Sophie; Chiasson, Jean-Louis; Dallaire, Suzanne; Turgeon, Jacques; Michaud, Veronique

    2018-02-08

    Diabetes affects more than 9% of the adult population worldwide. Patients with type 2 diabetes mellitus (T2DM) show variable responses to some drugs which may be due, in part, to variability in the functional activity of drug-metabolising enzymes including cytochromes P450 (CYP450s). CYP450 is a superfamily of enzymes responsible for xenobiotic metabolism. Knowledge must be gained on the impact of T2DM and related inflammatory processes on drug metabolism and its consequences on drug response. The aim of this study is to characterise the activity of CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4/5 in T2DM versus non-T2DM subjects following the administration of a cocktail of probe drug substrates. This single-centre clinical study proposes the first detailed characterisation of T2DM impacts on major CYP450 drug-metabolising enzyme activities. We intend to recruit 42 patients with controlled T2DM (A1C≤7%), 42 patients with uncontrolled T2DM (A1C>7%) and 42 non-diabetic control subjects. The primary objective is to determine and compare major CYP450 activities in patients with T2DM versus non-diabetic subjects by dosing in plasma and urine probe drug substrates and metabolites following the oral administration of a drug cocktail: caffeine (CYP1A2), bupropion (CYP2B6), tolbutamide (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), chlorzoxazone (CYP2E1) and midazolam (CYP3A4/5). Secondary objectives will evaluate the influence of variables such as glycaemia, insulinaemia, genetic polymorphisms and inflammation. The value of an endogenous biomarker of CYP3A activity is also evaluated. The first patient was recruited in May 2015 and patients will be enrolled up to completion of study groups. Approval was obtained from the ethic review board of the CHUM research centre (Montreal, Canada). NCT02291666. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is

  11. Bioengineering Anabolic Vitamin D-25-Hydroxylase Activity into the Human Vitamin D Catabolic Enzyme, Cytochrome P450 CYP24A1, by a V391L Mutation*

    PubMed Central

    Kaufmann, Martin; Prosser, David E.; Jones, Glenville

    2011-01-01

    CYP24A1 is a mitochondrial cytochrome P450 (CYP) that catabolizes 1α,25-dihydroxyvitamin D3 (1α,25-(OH)2D3) to different products: calcitroic acid or 1α,25-(OH)2D3-26,23-lactone via multistep pathways commencing with C24 and C23 hydroxylation, respectively. Despite the ability of CYP24A1 to catabolize a wide range of 25-hydroxylated analogs including 25-hydroxyvitamin D3, the enzyme is unable to metabolize the synthetic prodrug, 1α-hydroxyvitamin D3 (1α-OH-D3), presumably because it lacks a C25-hydroxyl. In the current study we show that a single V391L amino acid substitution in the β3a-strand of human CYP24A1 converts this enzyme from a catabolic 1α,25-(OH)2D3-24-hydroxylase into an anabolic 1α-OH-D3-25-hydroxylase, thereby forming the hormone, 1α,25-(OH)2D3. Furthermore, because the mutant enzyme retains its basal ability to catabolize 1α,25-(OH)2D3 via C24 hydroxylation, it can also make calcitroic acid. Previous work has shown that an A326G mutation is responsible for the regioselectivity differences observed between human (primarily C24-hydroxylating) and opossum (C23-hydroxylating) CYP24A1. When the V391L and A326G mutations were combined (V391L/A326G), the mutant enzyme continued to form 1α,25-(OH)2D3 from 1α-OH-D3, but this initial product was diverted via the C23 hydroxylation pathway into the 26,23-lactone. The relative position of Val-391 in the β3a-strand of a homology model and the crystal structure of rat CYP24A1 is consistent with hydrophobic contact of Val-391 and the substrate side chain near C21. We interpret that the substrate specificity of V391L-modified human CYP24A1 toward 1α-OH-D3 is enabled by an altered contact with the substrate side chain that optimally positions C25 of the 1α-OH-D3 above the heme for hydroxylation. PMID:21697097

  12. An in vitro system for measuring genotoxicity mediated by human CYP3A4 in Saccharomyces cerevisiae.

    PubMed

    Fasullo, Michael; Freedland, Julian; St John, Nicholas; Cera, Cinzia; Egner, Patricia; Hartog, Matthew; Ding, Xinxin

    2017-05-01

    P450 activity is required to metabolically activate many chemical carcinogens, rendering them highly genotoxic. CYP3A4 is the most abundantly expressed P450 enzyme in the liver, accounting for most drug metabolism and constituting 50% of all hepatic P450 activity. CYP3A4 is also expressed in extrahepatic tissues, including the intestine. However, the role of CYP3A4 in activating chemical carcinogens into potent genotoxins is unclear. To facilitate efforts to determine whether CYP3A4, per se, can activate carcinogens into potent genotoxins, we expressed human CYP3A4 in the DNA-repair mutant (rad4 rad51) strain of budding yeast Saccharomyces cerevisiae and tested the novel, recombinant yeast strain for ability to report CYP3A4-mediated genotoxicity of a well-known genotoxin, aflatoxin B1 (AFB 1 ). Yeast microsomes containing human CYP3A4, but not those that do not contain CYP3A4, were active in hydroxylation of diclofenac, a known CYP3A4 substrate drug, a result confirming CYP3A4 activity in the recombinant yeast strain. In cells exposed to AFB 1 , the expression of CYP3A4 supported DNA adduct formation, chromosome rearrangements, cell death, and expression of the large subunit of ribonucleotide reductase, Rnr3, a marker of DNA damage. Expression of CYP3A4 also conferred sensitivity in rad4 rad51 mutants exposed to colon carcinogen, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx). These data confirm the ability of human CYP3A4 to mediate the genotoxicity of AFB 1 , and illustrate the usefulness of the CYP3A4-expressing, DNA-repair mutant yeast strain for screening other chemical compounds that are CYP3A4 substrates, for potential genotoxicity. Environ. Mol. Mutagen. 58:217-227, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. In vitro metabolism of testosterone in the horse liver and involvement of equine CYPs 3A89, 3A94 and 3A95.

    PubMed

    Schmitz, A; Zielinski, J; Dick, B; Mevissen, M

    2014-08-01

    Testosterone (TES) 6-β-hydroxylation is a significant metabolic step in the biotransformation of TES in human liver microsomes and reflects cytochrome P450 (CYP) 3A4/5 specific metabolic activity. Several CYP3A enzymes have been annotated in the horse genome, but functional characterization is missing. This descriptive study investigates TES metabolism in the horse liver in vitro and the qualitative contribution of three CYP3A isoforms of the horse. Metabolism of TES was investigated by using equine hepatocyte primary cultures and liver microsomes. Chemical inhibitors were used to determine the CYPs involved in TES biotransformation in equine microsomes. Single CYPs 3A89, 3A94, and 3A95, recombinantly expressed in V79 hamster lung fibroblasts, were incubated with TES and the fluorescent metabolite 7-benzyloxy-4-trifluoromethylcoumarin (BFC). The effect of ketoconazole and troleandomycin was evaluated on single CYPs. Testosterone metabolites were analyzed by HPLC and confirmed by GC/MS. In hepatocyte primary cultures, the most abundant metabolite was androstenedione (AS), whereas in liver microsomes, 6-β-hydroxytestosterone showed the largest peak. Formation of 6-β-hydroxytestosterone and 11-β-hydroxytestosterone in liver microsomes was inhibited by ketoconazole, troleandomycin, and quercetin. Equine recombinant CYP3A95 catalyzed 11-β-hydroxylation of testosterone (TES). Metabolism of BFC was significantly inhibited by ketoconazole in CYP3A95, whereas troleandomycin affected the activities of CYP3A94 and CYP3A95. Both inhibitors had no significant effect on CYP3A89. Metabolic reactions and effects of inhibitors differed between the equine CYP3A isoforms investigated. This has to be considered in future in vitro studies. © 2014 John Wiley & Sons Ltd.

  14. CYP3A4 Mediates Oxidative Metabolism of the Synthetic Cannabinoid AKB-48.

    PubMed

    Holm, Niels Bjerre; Nielsen, Line Marie; Linnet, Kristian

    2015-09-01

    Synthetic cannabinoid designer drugs have emerged as drugs of abuse during the last decade, and acute intoxication cases are documented in the scientific literature. Synthetic cannabinoids are extensively metabolized, but our knowledge of the involved enzymes is limited. Here, we investigated the metabolism of N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (AKB-48), a compound identified in herbal blends from 2012 and onwards. We screened for metabolite formation using a panel of nine recombinant cytochrome P450 (CYP) enzymes (CYP1A2, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, and 3A4) and compared the formed metabolites to human liver microsomal (HLM) incubations with specific inhibitors against CYP2D6, 2C19, and 3A4, respectively. The data reported here demonstrate CYP3A4 to be the major CYP enzyme responsible for the oxidative metabolism of AKB-48, preferentially performing the oxidation on the adamantyl moiety. Genetic polymorphisms are likely not important with regard to toxicity given the major involvement of CYP3A4. Adverse drug-drug interactions (DDIs) could potentially occur in cases with co-intake of strong CYP3A4 inhibitors, e.g., HIV antivirals and azole antifungal agents.

  15. Identification and in silico prediction of metabolites of the model compound, tebufenozide by human CYP3A4 and CYP2C19.

    PubMed

    Shirotani, Naoki; Togawa, Moe; Ikushiro, Shinichi; Sakaki, Toshiyuki; Harada, Toshiyuki; Miyagawa, Hisashi; Matsui, Masayoshi; Nagahori, Hirohisa; Mikata, Kazuki; Nishioka, Kazuhiko; Hirai, Nobuhiro; Akamatsu, Miki

    2015-10-15

    The metabolites of tebufenozide, a model compound, formed by the yeast-expressed human CYP3A4 and CYP2C19 were identified to clarify the substrate recognition mechanism of the human cytochrome P450 (CYP) isozymes. We then determined whether tebufenozide metabolites may be predicted in silico. Hydrogen abstraction energies were calculated with the density functional theory method B3LYP/6-31G(∗). A docking simulation was performed using FRED software. Several alkyl sites of tebufenozide were hydroxylated by CYP3A4 whereas only one site was modified by CYP2C19. The accessibility of each site of tebufenozide to the reaction center of CYP enzymes and the susceptibility of each hydrogen atom for metabolism by CYP enzymes were evaluated by a docking simulation and hydrogen abstraction energy estimation, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A Comprehensive in vitro and in silico Analysis of Antibiotics that Activate PXR and Induce CYP3A4 in Liver and Intestine

    PubMed Central

    Yasuda, Kazuto; Ranade, Aarati; Venkataramanan, Raman; Strom, Stephen; Chupka, Jonathan; Ekins, Sean; Schuetz, Erin; Bachmann, Kenneth

    2015-01-01

    We have investigated several in silico and in vitro methods in order to improve our ability to predict potential drug interactions of antibiotics. Our focus was to identify those antibiotics that activate PXR and induce CYP3A4 in human hepatocytes and intestinal cells. Human PXR activation was screened using reporter assays in HepG2 cells, kinetic measurements of PXR activation were made in DPX-2 cells, and induction of CYP3A4 expression and activity was verified by quantitative PCR, immunoblotting and testosterone 6β-hydroxylation in primary human hepatocytes and LS180 cells. We found that in HepG2 cells CYP3A4 transcription was activated strongly (>10-fold) by rifampin and troleandomycin; moderately (> 7-fold) by dicloxacillin, tetracycline, clindamycin, griseofulvin and (> 4-fold) by erythromycin; weakly (>2.4-fold) by nafcillin, cefaclor and sulfisoxazole; and (>2-fold) by cefadroxil and penicillin V. Similar though not identical results were obtained in DPX-2 cells. CYP3A4 mRNA and protein expression were induced by these antibiotics to differing extents in both liver and intestinal cells. CYP3A4 activity was significantly increased by rifampin (9.7-fold), nafcillin and dicloxacillin (5.9-fold), and weakly induced (2-fold) by tetracycline, sufisoxazole, troleandomycin and clindamycin. Multiple pharmacophore models and docking indicated a good fit for dicloxacillin and nafcillin in PXR. These results suggest that in vitro and in silico methods can help to prioritize and identify antibiotics that are most likely to reduce exposures of medications (such as oral contraceptive agents) which interact with enzymes and transporters regulated by PXR. In summary, nafcillin, dicloxacillin, cephradine, tetracycline, sulfixoxazole, erythromycin, clindamycin, and griseofulvin exhibit a clear propensity to induce CYP3A4 and warrant further clinical investigation. PMID:18505790

  17. To Genotype or Phenotype for Personalized Medicine? CYP450 Drug Metabolizing Enzyme Genotype-Phenotype Concordance and Discordance in the Ecuadorian Population.

    PubMed

    De Andrés, Fernando; Terán, Santiago; Hernández, Francisco; Terán, Enrique; LLerena, Adrián

    2016-12-01

    Genetic variations within the cytochrome P450 (CYP450) superfamily of drug metabolizing enzymes confer substantial person-to-person and between-population differences in pharmacokinetics, and by extension, highly variable clinical effects of medicines. In this context, "personalized medicine," "precision medicine," and "stratified medicine" are related concepts attributed to what is essentially targeted therapeutics and companion diagnostics, aimed at improving safety and effectiveness of health interventions. We report here, to the best of our knowledge, the first comparative clinical pharmacogenomics study, in an Ecuadorian population sample, of five key CYP450s involved in drug metabolism: CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4. In 139 unrelated, medication-free, and healthy Ecuadorian subjects, we measured the phenotypic activity of these drug metabolism pathways using the CEIBA multiplexed phenotyping cocktail. The subjects were genotyped for each CYP450 enzyme gene as well. Notably, based on the CYP450 metabolic phenotypes estimated by the genotype data, 0.75% and 3.10% of the subjects were genotypic poor metabolizers (gPMs) for CYP2C19 and CYP2D6, respectively. Additionally, on the other extreme, genotype-estimated ultrarapid metabolizer (gUMs) phenotype was represented by 15.79% of CYP2C19, and 5.43% of CYP2D6. There was, however, considerable discordance between directly measured phenotypes (mPMs and mUMs) and the above genotype-estimated enzyme phenotypes. For example, among individuals genotypically carrying enhanced activity alleles (gUMs), many showed a lower actual drug metabolism capacity than expected by their genotypes, even lower than individuals with reduced or no activity alleles. In conclusion, for personalized medicine in the Ecuadorian population, we recommend CYP450 multiplexed phenotyping, or genotyping and phenotyping in tandem, rather than CYP450 genotypic tests alone. Additionally, we recommend, in consideration of equity, ethical

  18. Metabolism of endosulfan-alpha by human liver microsomes and its utility as a simultaneous in vitro probe for CYP2B6 and CYP3A4.

    PubMed

    Casabar, Richard C T; Wallace, Andrew D; Hodgson, Ernest; Rose, Randy L

    2006-10-01

    Endosulfan-alpha is metabolized to a single metabolite, endosulfan sulfate, in pooled human liver microsomes (Km = 9.8 microM, Vmax = 178.5 pmol/mg/min). With the use of recombinant cytochrome P450 (P450) isoforms, we identified CYP2B6 (Km = 16.2 microM, Vmax = 11.4 nmol/nmol P450/min) and CYP3A4 (Km = 14.4 microM, Vmax = 1.3 nmol/nmol P450/min) as the primary enzymes catalyzing the metabolism of endosulfan-alpha, although CYP2B6 had an 8-fold higher intrinsic clearance rate (CL(int) = 0.70 microl/min/pmol P450) than CYP3A4 (CL(int) = 0.09 microl/min/pmol P450). Using 16 individual human liver microsomes (HLMs), a strong correlation was observed with endosulfan sulfate formation and S-mephenytoin N-demethylase activity of CYP2B6 (r(2) = 0.79), whereas a moderate correlation with testosterone 6 beta-hydroxylase activity of CYP3A4 (r(2) = 0.54) was observed. Ticlopidine (5 microM), a potent CYP2B6 inhibitor, and ketoconazole (10 microM), a selective CYP3A4 inhibitor, together inhibited approximately 90% of endosulfan-alpha metabolism in HLMs. Using six HLM samples, the percentage total normalized rate (% TNR) was calculated to estimate the contribution of each P450 in the total metabolism of endosulfan-alpha. In five of the six HLMs used, the percentage inhibition with ticlopidine and ketoconazole in the same incubation correlated with the combined % TNRs for CYP2B6 and CYP3A4. This study shows that endosulfan-alpha is metabolized by HLMs to a single metabolite, endosulfan sulfate, and that it has potential use, in combination with inhibitors, as an in vitro probe for CYP2B6 and 3A4 catalytic activities.

  19. Phylogenetic analysis of the cytochrome P450 3 (CYP3) gene family.

    PubMed

    McArthur, Andrew G; Hegelund, Tove; Cox, Rachel L; Stegeman, John J; Liljenberg, Mette; Olsson, Urban; Sundberg, Per; Celander, Malin C

    2003-08-01

    Cytochrome P450 genes (CYP) constitute a superfamily with members known from the Bacteria, Archaea, and Eukarya. The CYP3 gene family includes the CYP3A and CYP3B subfamilies. Members of the CYP3A subfamily represent the dominant CYP forms expressed in the digestive and respiratory tracts of vertebrates. The CYP3A enzymes metabolize a wide variety of chemically diverse lipophilic organic compounds. To understand vertebrate CYP3 diversity better, we determined the killifish (Fundulus heteroclitus) CYP3A30 and CYP3A56 and the ball python (Python regius) CYP3A42 sequences. We performed phylogenetic analyses of 45 vertebrate CYP3 amino acid sequences using a Bayesian approach. Our analyses indicate that teleost, diapsid, and mammalian CYP3A genes have undergone independent diversification and that the ancestral vertebrate genome contained a single CYP3A gene. Most CYP3A diversity is the product of recent gene duplication events. There is strong support for placement of the guinea pig CYP3A genes within the rodent CYP3A diversification. The rat, mouse, and hamster CYP3A genes are mixed among several rodent CYP3A subclades, indicative of a complex history involving speciation and gene duplication.

  20. Heterologous Expression of Equine CYP3A94 and Investigation of a Tunable System to Regulate Co-Expressed NADPH P450 Oxidoreductase Levels

    PubMed Central

    Dettwiler, Ramona; Schmitz, Andrea L.; Plattet, Philippe; Zielinski, Jana; Mevissen, Meike

    2014-01-01

    The activity of cytochrome P450 enzymes depends on the enzyme NADPH P450 oxidoreductase (POR). The aim of this study was to investigate the activity of the equine CYP3A94 using a system that allows to regulate the POR protein levels in mammalian cells. CYP3A94 and the equine POR were heterologously expressed in V79 cells. In the system used, the POR protein regulation is based on a destabilizing domain (DD) that transfers its instability to a fused protein. The resulting fusion protein is therefore degraded by the ubiquitin-proteasome system (UPS). Addition of “Shield-1” prevents the DD fusion protein from degradation. The change of POR levels at different Shield-1 concentrations was demonstrated by cytochrome c reduction, Western immunoblot analysis, and immunocytochemistry. The alteration of CYP3A94 activity was investigated using a substrate (BFC) known to detect CYP3A4 activity. Equine CYP3A94 was demonstrated to be metabolically active and its activity could be significantly elevated by co-expression of POR. Cytochrome c reduction was significantly increased in V79-CYP3A94/DD-POR cells compared to V79-CYP3A94 cells. Surprisingly, incubation with different Shield-1 concentrations resulted in a decrease in POR protein shown by Western immunoblot analysis. Cytochrome c reduction did not change significantly, but the CYP3A94 activity decreased more than 4-fold after incubation with 500 nM and 1 µM Shield-1 for 24 hours. No differences were obtained when V79-CYP3A94 POR cells with and without Shield-1 were compared. The basal activity levels of V79-CYP3A94/DD-POR cells were unexpectedly high, indicating that DD/POR is not degraded without Shield-1. Shield-1 decreased POR protein levels and CYP3A94 activity suggesting that Shield-1 might impair POR activity by an unknown mechanism. Although regulation of POR with the pPTuner system could not be obtained, the cell line V79-CYP3A94/DD-POR system can be used for further experiments to characterize the equine CYP3A

  1. CYP3A4 activity in four different animal species liver microsomes using 7-benzyloxyquinoline and HPLC/spectrofluorometric determination.

    PubMed

    Baririan, Narine; Desager, Jean-Pierre; Petit, Martine; Horsmans, Yves

    2006-01-23

    Some microplate-based direct assays with different fluorometric substrates have been developed, among which 7-benzyloxyquinoline (BOQ) has demonstrated the highest degree of selectivity for CYP3A subfamily. In our study, we firstly developed and validated an efficient, fast and cheap HPLC/spectrofluorometric analytical method to quantify 7-hydroxyquinoline (BOQ metabolite). Secondly, BOQ oxidation rate (1.95 +/- 0.24 microM/mg protein/min) was compared to that of midazolam (MDZ) (1.4 +/- 0.21 microM/mg protein/min), an other specific CYP3A probe. However, the difference did not reach statistically significance (test of Sign; p = 0.125, two tailed). Thirdly, the potential use of BOQ in other species than the rat (mouse, dog and monkey) was studied. The highest BOQ activity was observed in rat microsomes (3.75 micromol/mg protein/min) with lower P450 content (0.3 nmol/mg protein) compared to other species. Finally, the effect of CYP3A enzymes-selective inhibitor ketoconazole on the dealkylation of BOQ in control and dexamethasone (DM)-treated rat microsomes was studied. Ketoconazole inhibition potency was greater in control (IC(50) approximately 21.6 microM) compared to DM induced (IC(50) approximately 32.3 microM) microsomes. At concentrations greater than that considered to be enzyme-selective (e.g., 10-30 microM), ketoconazole inhibitory activity did not rise significantly, and at the maximal concentration tested (1,000 microM) a nearly similar inhibition (76%) was observed than that at 50 microM concentration (68.2%).

  2. CYP2B6, CYP2D6, and CYP3A4 catalyze the primary oxidative metabolism of perhexiline enantiomers by human liver microsomes.

    PubMed

    Davies, Benjamin J; Coller, Janet K; Somogyi, Andrew A; Milne, Robert W; Sallustio, Benedetta C

    2007-01-01

    The cytochrome P450 (P450)-mediated 4-monohydroxylations of the individual enantiomers of the racemic antianginal agent perhexiline (PHX) were investigated in human liver microsomes (HLMs) to identify stereoselective differences in metabolism and to determine the contribution of the polymorphic enzyme CYP2D6 and other P450s to the intrinsic clearance of each enantiomer. The cis-, trans1-, and trans2-4-monohydroxylation rates of (+)- and (-)-PHX by human liver microsomes from three extensive metabolizers (EMs), two intermediate metabolizers (IMs), and two poor metabolizers (PMs) of CYP2D6 were measured with a high-performance liquid chromatography assay. P450 isoform-specific inhibitors, monoclonal antibodies directed against P450 isoforms, and recombinantly expressed human P450 enzymes were used to define the P450 isoform profile of PHX 4-monohydroxylations. The total in vitro intrinsic clearance values (mean +/- S.D.) of (+)- and (-)-PHX were 1376 +/- 330 and 2475 +/- 321, 230 +/- 225 and 482 +/- 437, and 63.4 +/- 1.6 and 54.6 +/- 1.2 microl/min/mg for the EM, IM, and PM HLMs, respectively. CYP2D6 catalyzes the formation of cis-OH-(+)-PHX and trans1-OH-(+)-PHX from (+)-PHX and cis-OH-(-)-PHX from (-)-PHX with high affinity. CYP2B6 and CYP3A4 each catalyze the trans1- and trans2-4-monohydroxylation of both (+)- and (-)-PHX with low affinity. Both enantiomers of PHX are subject to significant polymorphic metabolism by CYP2D6, although this enzyme exhibits distinct stereoselectivity with respect to the conformation of metabolites and the rate at which they are formed. CYP2B6 and CYP3A4 are minor contributors to the intrinsic P450-mediated hepatic clearance of both enantiomers of PHX, except in CYP2D6 PMs.

  3. Modulation of CYP1A2 and CYP3A6 catalytic activities by serum from rabbits with a turpentine-induced inflammatory reaction and interleukin 6.

    PubMed

    Kourylko, Oksana; Fradette, Caroline; Arcand, Mathieu; du Souich, Patrick

    2006-01-01

    Inflammatory reactions reduce the activity of cytochrome P450 isoforms. The aim of the study was to determine the mechanisms underlying the decrease in CYP1A2 and CYP3A6 catalytic activities produced by serum from rabbits with a turpentine-induced inflammatory reaction (S(TIIR)) and interleukin 6 (IL-6). S(TIIR) and IL-6 were incubated with cultured primary hepatocytes from control rabbits (H(CONT)), and from rabbits with a turpentine-induced inflammatory reaction (H(TIIR)) in the absence or presence of pyrrolidine dithiocarbamate (PDTC), an antioxidant and inhibitor of nuclear factor kappaB transcription; 2'-amino-3'-methoxyflavone (PD98059), an inhibitor of extracellular signal-related kinase (Erk1/2); 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580), an inhibitor of p38MAPK; Nomega-nitro-L-arginine methyl ester, an inhibitor of nitric-oxide synthase 2 (NOS2); the combination of PDTC, PD98059, and SB203580; and genistein, an inhibitor of Janus-associated protein tyrosine kinase (JAK). After 4 and 24 h of incubation of H(CONT) with S(TIIR) and IL-6, CYP1A2 activity was reduced without changes in expression; the reduction in activity was partially prevented by the inhibition of JAK, Erk1/2, and NOS2. In H(CONT), S(TIIR) and IL-6 did not affect CYP3A6 activity; however, PDTC reduced CYP3A6 activity by 40 and 80% after 4 and 24 h of incubation. In H(TIIR), S(TIIR) and IL-6 reduced both CYP1A2 and CYP3A6 activities; this decrease is partially prevented by inhibitors of protein tyrosine kinases, Erk1/2, and NOS2. In H(TIIR), SB203580 increased CYP3A6 activity in a dose-dependent manner without changes in protein expression. These results show that the signal transduction pathways mediating the decrease in CYP1A2 and 3A6 activity, produced by S(TIIR) and IL-6, involve JAK, Erk1/2, and NOS2.

  4. Tributyltin modulates 3,3',4,4',5-pentachlorobiphenyl (PCB-126)-induced hepatic CYP1A activity in channel catfish, Ictalurus punctatus.

    PubMed

    Rice, C D; Roszell, L E

    1998-10-09

    Many harbor estuaries and their tributaries are contaminated with halogenated aromatic hydrocarbons (HAHs) and polycyclic aromatic hydrocarbons (PAHs). Planar congeners of these two classes initiate their toxic effects, including reproductive, developmental, and immunological dysfunction, primarily through the cytosolic arylhydrocabon receptor (Ahr). However, only rarely are aquatic environments contaminated with Ahr-binding contaminants alone. Instead, most are impacted by a variety of pollutants in mixture. Tributyltin (TBT), a common antifouling biocide, is also found in many harbor estuaries and their tributaries. Several reports indicate that TBT inhibits the cytochrome P-4501A system of fish, at least in vitro, and our recent studies with rodents indicate that TBT potentiates PCB-induced CYP1A. However, the effects of TBT on xenobiotic-induced CYP1A activity in aquatic organisms has been virtually unexplored. To this end, channel catfish, Ictalurus punctatus, were exposed to 3,3'4,4',5-pentachlorobiphenyl (PCB-126, PeCB), TBT, or both in combination, with corn oil (CO) serving as the carrier control. Immunoreactive CYP1A protein and ethoxyresorufin O-deethylase (EROD) activity were measured after (1) a single dose of 0.01, 0. 1, or 1 mg/kg of each or both in combination, and (2) 6 injections of 0.017, 1.7, or 17 microg/kg of each (or in combination) given every 3 d over a 16-d period to yield a cumulative dose of 0.01, 0.1, or 1 mg/kg. As expected, PeCB alone, but not TBT, greatly induced these two CYP1A parameters. Low and middle doses of TBT (0.01 and 0.1 mg/kg), but not the high dose, potentiated PeCB-induced activity at these same doses. This effect of TBT was even more pronounced in the repeated exposure study. Furthermore, EROD activity did not always reflect CYP1A protein induction; enzyme activity was inhibited by TBT at doses that potentiated protein induction (0.01 and 0.1 mg/kg). In summary, TBT potentiates PeCB-induced CYP1A in channel catfish at

  5. The effect of milk thistle (Silybum marianum) and its main flavonolignans on CYP2C8 enzyme activity in human liver microsomes.

    PubMed

    Albassam, Ahmed A; Frye, Reginald F; Markowitz, John S

    2017-06-01

    Milk thistle is a widely-consumed botanical used for an array of purported health benefits. The primary extract of milk thistle is termed silymarin, a complex mixture that contains a number of structurally-related flavonolignans, the flavonoid, taxifolin, and a number of other constituents. The major flavonolignans present in most extracts are silybin A, silybin B, isosilybin A and isosilybin B, silydianin, silychristin and isosilychristin. Silymarin itself has been reported to inhibit CYP2C8 activity in vitro, but the effect of the individual flavonolignans on this enzyme has not been studied. To investigate the effects of milk thistle extract and its main flavonolignans (silybin A, silybin B, isosilybin A and isosilybin B) on CYP2C8 activity at relevant concentrations, the effect of milk thistle extract and the flavonolignans on CYP2C8 enzyme activity was studied in vitro using human liver microsomes (HLM) incorporating an enzyme-selective substrate for CYP2C8, amodiaquine. Metabolite formation was analyzed using liquid chromatography-tandem mass spectrometry (LC/MS-MS). The concentration causing 50% inhibition of enzyme activity (IC 50 ) was used to express the degree of inhibition. Isosilibinin, a mixture of the diastereoisomers isosilybin A and isosilybin B, was found to be the most potent inhibitor, followed by isosilybin B with IC 50 values (mean ± SE) of 1.64 ± 0.66 μg/mL and 2.67 ± 1.18 μg/mL, respectively. The rank order of observed inhibitory potency after isosilibinin was silibinin > isosilybin A > silybin A > milk thistle extract > and silybin B. These in vitro results suggest a potentially significant inhibitory effect of isosilibinin and isosilybin B on CYP2C8 activity. However, the observed IC 50 values are unlikely to be achieved in humans supplemented with orally administered milk thistle extracts due to the poor bioavailability of flavonolignans documented with most commercially available formulations. Copyright © 2017

  6. CYP3A5 Contributes significantly to CYP3A-mediated drug oxidations in liver microsomes from Japanese subjects.

    PubMed

    Yamaori, Satoshi; Yamazaki, Hiroshi; Iwano, Shunsuke; Kiyotani, Kazuma; Matsumura, Keiko; Honda, Goro; Nakagawa, Kazuko; Ishizaki, Takashi; Kamataki, Tetsuya

    2004-04-01

    The purpose of this study was to evaluate a contribution of polymorphic cytochrome P450 (CYP) 3A5 to the oxidation of diltiazem, midazolam and testosterone by liver microsomes from Japanese subjects. Twenty-seven liver samples were classified into three groups according to the CYP3A5 genotypes; CYP3A5(*)1/(*)1 (n=3), (*)1/(*)3 (n=12) and (*)3/(*)3 (n=12). The results of genotyping and immunochemical quantitation of CYP3A5 protein showed a good accordance between the CYP3A5 genotype and CYP3A5 content but not CYP3A4 content in liver microsomes. The expression levels of hepatic CYP3A5 protein ranged from 20 to 60% of the sum of CYP3A4 and CYP3A5 contents in subjects with at least one wild type allele ((*)1). The CYP3A5 contents correlated well with liver microsomal activities of diltiazem N-demethylation, midazolam 1'- and 4-hydroxylations and testosterone 6beta-hydroxylation among subjects carrying at least one (*)1 allele. In addition, the correlation coefficients of CYP3A5 contents with the rates of diltiazem N-demethylation, midazolam 1'-hydroxylation and testosterone 6beta- hydroxylation were higher than those of CYP3A4, although the value of CYP3A5 with the midazolam 4-hydroxylation rate was similar to that of CYP3A4. Kinetic analyses revealed a biphasic diltiazem N-demethylation in liver microsomes from subjects carrying the (*)1 allele. The apparent V(max)/K(m) values for recombinant CYP3A5 indicated the greater contributions to diltiazem N-demethylation and midazolam 1'-hydroxylation as compared with CYP3A4. These results suggest that polymorphic CYP3A5 contributes markedly to the drug oxidations, particularly diltiazem N-demethylation, midazolam 1'- hydroxylation and testosterone 6beta-hydroxylation by liver microsomes from Japanese subjects.

  7. 1,3-Butadiene-Induced Mitochondrial Dysfunction is Correlated with Mitochondrial CYP2E1 Activity in Collaborative Cross Mice

    PubMed Central

    Hartman, Jessica H.; Miller, Grover P.; Caro, Andres A.; Byrum, Stephanie D.; Orr, Lisa M.; Mackintosh, Samuel G.; Tackett, Alan J.; MacMillan-Crow, Lee Ann; Hallberg, Lance M.; Ameredes, Bill T.; Boysen, Gunnar

    2017-01-01

    Cytochrome P450 2E1 (CYP2E1) metabolizes low molecular weight hydrophobic compounds, including 1,3-butadiene, which is converted by CYP2E1 to electrophilic epoxide metabolites that covalently modify cellular proteins and DNA. Previous CYP2E1 studies have mainly focused on the enzyme localized in the endoplasmic reticulum (erCYP2E1); however, active CYP2E1 also localizes in mitochondria (mtCYP2E1) and the distribution of CYP2E1 between organelles can influence an individual's response to exposure. Relatively few studies have focused on the contribution of mtCYP2E1 to activation of chemical toxicants. We hypothesized that CYP2E1 bioactivation of butadiene within mitochondria adversely affects mitochondrial respiratory complexes I-IV. A population of Collaborative Cross mice were exposed to air (control) or 200 ppm butadiene. Subcellular fractions (mitochondria, DNA, and microsomes) were collected from frozen livers and CYP2E1 activity was measured in microsomes and mitochondria. Individual activities of mitochondrial respiratory complexes I-IV were measured using in vitro assays with purified mitochondrial fractions. In air- and butadiene-exposed mouse samples, mtDNA copy numbers were assessed by RT-PCR, and mtDNA integrity was assessed through a PCR-based assay. No significant change in mtDNA copy number or integrity were observed; however, there was a decrease in overall activity of mitochondrial respiratory complexes I, II, and IV after butadiene exposure. Additionally, higher mtCYP2E1 (but not erCYP2E1) activity was correlated with decreased mitochondrial respiratory complex activity (in complexes I-IV) in the butadiene-exposed (not control) animals. Together, these results represent the first in vivo link between mitochondrial CYP2E1 activity and mitochondrial toxicity. PMID:28082109

  8. Identification of epoxybergamottin as a CYP3A4 inhibitor in grapefruit peel.

    PubMed

    Wangensteen, H; Molden, E; Christensen, H; Malterud, K E

    2003-02-01

    The oral availability of many drugs metabolised by the enzyme cytochrome P(450) 3A4 (CYP3A4) is increased if co-administered with grapefruit juice. Extracts from grapefruit peel have also demonstrated inhibitory activity and, during commercial manufacturing of grapefruit juice, inhibitory components might be squeezed into the juice from the peel. Thus, the aim of this in vitro study was to identify CYP3A4 inhibitors in grapefruit peel. Grapefruit peel was extracted with diethyl ether, and the extract was further fractionated by normal-phase chromatography. Fractions demonstrating significant CYP3A4 inhibitory activity, as measured by the relative reduction in N-demethylation of diltiazem in transfected human liver epithelial cells, were subsequently separated by preparative thin-layer chromatography. Constituents of the fractions and isolated compounds were identified by nuclear magnetic resonance spectroscopy. Analysis of diltiazem and N-demethyl-diltiazem was performed using high-performance liquid chromatography. Of the identified components in grapefruit peel, only epoxybergamottin demonstrated a concentration-dependent inhibition of the CYP3A4-mediated N-demethylation of diltiazem. The IC(50) value was calculated to be 4.2+/-1.1 micro M. Coumarins without the furan ring and flavonoids isolated from grapefruit peel did not interfere with the metabolism of diltiazem. The results indicated the presence of other CYP3A4 inhibitors in grapefruit peel, but these agents were lost during the purification process excluding their identification. The furanocoumarin epoxybergamottin, present in grapefruit peel, is an inhibitor of CYP3A4. In commercial manufacturing of grapefruit juice, epoxybergamottin is possibly distributed into the juice. During manufacturing, however, epoxybergamottin may be hydrolysed to 6',7'-dihydroxybergamottin, which has been suggested as an important CYP3A4 inhibitor in grapefruit juice.

  9. The role of CYP26 enzymes in retinoic acid clearance.

    PubMed

    Thatcher, Jayne E; Isoherranen, Nina

    2009-08-01

    Retinoic acid (RA) is a critical signaling molecule that regulates gene transcription and the cell cycle. Understanding of RA signaling has increased dramatically over the past decades, but the connection between whole body RA homeostasis and gene regulation in individual cells is still unclear. It has been proposed that cytochrome P450 family 26 (CYP26) enzymes have a role in determining the cellular exposure to RA by inactivating RA in cells that do not need RA. The CYP26 enzymes have been shown to metabolize RA efficiently and they are also inducible by RA in selected systems. However, their expression patterns in different cell types and a mechanistic understanding of their function is still lacking. Based on preliminary kinetic data and protein expression levels, one may predict that if CYP26A1 is expressed in the liver at even very low levels, it will be the major RA hydroxylase in this tissue. As such, it is an attractive pharmacological target for drug development when one aims to increase circulating or cellular RA concentrations. To further the understanding of how CYP26 enzymes contribute to the regulation of RA homeostasis, structural information of the CYP26s, commercially available recombinant enzymes and good specific and sensitive antibodies are needed.

  10. The role of CYP26 enzymes in retinoic acid clearance

    PubMed Central

    Thatcher, Jayne E.; Isoherranen, Nina

    2009-01-01

    Retinoic acid (RA) is a critical signaling molecule that regulates gene transcription and the cell cycle. Understanding of RA signaling has increased dramatically over the past decades, but the connection between whole body RA homeostasis and gene regulation in individual cells is still unclear. It has been proposed that cytochrome P450 family 26 (CYP26) enzymes have a role in determining the cellular exposure to RA by inactivating RA in cells that do not need RA. The CYP26 enzymes have been shown to metabolize RA efficiently and they are also inducible by RA in selected systems. However, their expression patterns in different cell types and a mechanistic understanding of their function is still lacking. Based on preliminary kinetic data and protein expression levels, one may predict that if CYP26A1 is expressed in the liver at even very low levels, it will be the major RA hydroxylase in this tissue. As such, it is an attractive pharmacological target for drug development when one aims to increase circulating or cellular RA concentrations. To further the understanding of how CYP26 enzymes contribute to the regulation of RA homeostasis, structural information of the CYP26’s, commercially available recombinant enzymes and good specific and sensitive antibodies are needed. PMID:19519282

  11. Metabolic Pathway of Icotinib In Vitro: The Differential Roles of CYP3A4, CYP3A5, and CYP1A2 on Potential Pharmacokinetic Drug-Drug Interaction.

    PubMed

    Zhang, TianHong; Zhang, KeRong; Ma, Li; Li, Zheng; Wang, Juan; Zhang, YunXia; Lu, Chuang; Zhu, Mingshe; Zhuang, XiaoMei

    2018-04-01

    Icotinib is the first self-developed small molecule drug in China for targeted therapy of non-small cell lung cancer. To date, systematic studies on the pharmacokinetic drug-drug interaction of icotinib were limited. By identifying metabolite generated in human liver microsomes and revealing the contributions of major cytochromes P450 (CYPs) in the formation of major metabolites, the aim of the present work was to understand the mechanisms underlying pharmacokinetic and pharmacological variability in clinic. A liquid chromatography/UV/high-resolution mass spectrometer method was developed to characterize the icotinib metabolites. The formation of 6 major metabolites was studied in recombinant CYP isozymes and human liver microsomes with specific inhibitors to identify the CYPs responsible for icotinib metabolism. The metabolic pathways observed in vitro are consistent with those observed in human. Results demonstrated that the metabolites are predominantly catalyzed by CYP3A4 (77%∼87%), with a moderate contribution from CYP3A5 (5%∼15%) and CYP1A2 (3.7%∼7.5%). The contribution of CYP2C8, 2C9, 2C19, and 2D6 is insignificant. Based on our observations, to minimize drug-drug interaction risk in clinic, coprescription of icotinib with strong CYP3A inhibitors or inducers must be weighed. CYP1A2, a highly inducible enzyme in the smoking population, may also represent a determinant of pharmacokinetic and pharmacological variability of icotinib, especially in lung cancer patients with smoking history. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Bromuconazole-induced hepatotoxicity is accompanied by upregulation of PXR/CYP3A1 and downregulation of CAR/CYP2B1 gene expression.

    PubMed

    Abdelhadya, Doaa H; El-Magd, Mohammed Abu; Elbialy, Zizy I; Saleh, Ayman A

    2017-09-01

    Despite widespread use of bromuconazole as a pesticide for food crops and fruits, limited studies have been done to evaluate its toxic effects. Here, we evaluated the hepatotoxic effect of bromuconazole using classical toxicological (biochemical analysis and histopathological examination) and gene-based molecular methods. Male rats were treated either orally or topically with bromuconazole at doses equal to no observed adverse effect level (NOAEL) and 1/10 LD50 for 90 d. Bromuconazole increased activities of liver enzymes (ALT, AST, ALP, and ACP), and levels of bilirubin. It also induced hepatic oxidative stress as evidenced by significant decrease in the activities of superoxide dismutase (SOD), and significant increase in levels of malondialdehyde (MDA) in liver. In addition, bromuconazole caused an increase in liver weights and necrobiotic changes (vacuolation and hepatocellular hypertrophy). It also strongly induced the expression of PXR and its downstream target CYP3A1 gene as well as the activity of CYP3A1. However, it inhibited the expression of CAR and its downstream target CYP2B1 gene without significant changing in CYP2B1 activity. Overall, the oral route showed higher hepatotoxic effect and molecular changes than the dermal route and all changes were dose dependent. This is the first investigation to report that bromuconazole-induced liver oxidative damage is accompanied by upregulation of PXR/CYP3A1 and downregulation of CAR/CYP2B1.

  13. Inhibition of protein kinase CK2 reduces CYP24A1 expression and enhances 1,25-dihydroxyvitamin D3 anti-tumor activity in human prostate cancer cells

    PubMed Central

    Luo, Wei; Yu, Wei-Dong; Ma, Yingyu; Chernov, Mikhail; Trump, Donald L.; Johnson, Candace S.

    2013-01-01

    Vitamin D has broad range of physiological functions and anti-tumor effects. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme for degrading many forms of vitamin D including the most active form, 1,25D3. Inhibition of CYP24A1 enhances 1,25D3 anti-tumor activity. In order to isolate regulators of CYP24A1 expression in prostate cancer cells, we established a stable prostate cancer cell line PC3 with CYP24A1 promoter driving luciferase expression to screen a small molecular library for compounds that inhibit CYP24A1 promoter activity. From this screening, we identified, 4,5,6,7-tetrabromobenzimidazole (TBBz), a protein kinase CK2 selective inhibitor as a disruptor of CYP24A1 promoter activity. We show that TBBz inhibits CYP24A1 promoter activity induced by 1,25D3 in prostate cancer cells. In addition, TBBz downregulates endogenous CYP24A1 mRNA level in TBBz treated PC3 cells. Furthermore, siRNA-mediated CK2 knockdown reduces 1,25D3 induced CYP24A1 mRNA expression in PC3 cells. These results suggest that CK2 contributes to 1,25D3 mediated target gene expression. Lastly, inhibition of CK2 by TBBz or CK2 siRNA significantly enhanced 1,25D3 mediated anti-proliferative effect in vitro and in vivo in a xenograft model. In summary, our findings reveal that protein kinase CK2 is involved in the regulation of CYP24A1 expression by 1,25D3 and CK2 inhibitor enhances 1,25D3 mediated anti-tumor effect. PMID:23358686

  14. Identification of CYP3A7 for Glyburide Metabolism in Human Fetal Livers

    PubMed Central

    Shuster, Diana L.; Risler, Linda J.; Prasad, Bhagwat; Calamia, Justina C.; Voellinger, Jenna L.; Kelly, Edward J.; Unadkat, Jashvant D.; Hebert, Mary F.; Shen, Danny D.; Thummel, Kenneth E.; Mao, Qingcheng

    2014-01-01

    Glyburide is commonly prescribed for the treatment of gestational diabetes mellitus; however, fetal exposure to glyburide is not well understood and may have short- and long-term consequences for the health of the child. Glyburide can cross the placenta; fetal concentrations at term are nearly comparable to maternal levels. Whether or not glyburide is metabolized in the fetus and by what mechanisms has yet to be determined. In this study, we determined the kinetic parameters for glyburide depletion by CYP3A isoenzymes; characterized glyburide metabolism by human fetal liver tissues collected during the first or early second trimester of pregnancy; and identified the major enzyme responsible for glyburide metabolism in human fetal livers. CYP3A4 had the highest metabolic capacity towards glyburide, followed by CYP3A7 and CYP3A5 (Clint,u = 37.1, 13.0, and 8.7 ml/min/nmol P450, respectively). M5 was the predominant metabolite generated by CYP3A7 and human fetal liver microsomes (HFLMs) with approximately 96% relative abundance. M5 was also the dominant metabolite generated by CYP3A4, CYP3A5, and adult liver microsomes; however, M1-M4 were also present, with up to 15% relative abundance. CYP3A7 protein levels in HFLMs were highly correlated with glyburide Clint, 16α-OH DHEA formation, and 4′-OH midazolam formation. Likewise, glyburide Clint was highly correlated with 16α-OH DHEA formation. Fetal demographics as well as CYP3A5 and CYP3A7 genotype did not alter CYP3A7 protein levels or glyburide Clint. These results indicate that human fetal livers metabolize glyburide predominantly to M5 and that CYP3A7 is the major enzyme responsible for glyburide metabolism in human fetal livers. PMID:25450675

  15. Identification of CYP3A7 for glyburide metabolism in human fetal livers.

    PubMed

    Shuster, Diana L; Risler, Linda J; Prasad, Bhagwat; Calamia, Justina C; Voellinger, Jenna L; Kelly, Edward J; Unadkat, Jashvant D; Hebert, Mary F; Shen, Danny D; Thummel, Kenneth E; Mao, Qingcheng

    2014-12-15

    Glyburide is commonly prescribed for the treatment of gestational diabetes mellitus; however, fetal exposure to glyburide is not well understood and may have short- and long-term consequences for the health of the child. Glyburide can cross the placenta; fetal concentrations at term are nearly comparable to maternal levels. Whether or not glyburide is metabolized in the fetus and by what mechanisms has yet to be determined. In this study, we determined the kinetic parameters for glyburide depletion by CYP3A isoenzymes; characterized glyburide metabolism by human fetal liver tissues collected during the first or early second trimester of pregnancy; and identified the major enzyme responsible for glyburide metabolism in human fetal livers. CYP3A4 had the highest metabolic capacity towards glyburide, followed by CYP3A7 and CYP3A5 (Clint,u=37.1, 13.0, and 8.7ml/min/nmol P450, respectively). M5 was the predominant metabolite generated by CYP3A7 and human fetal liver microsomes (HFLMs) with approximately 96% relative abundance. M5 was also the dominant metabolite generated by CYP3A4, CYP3A5, and adult liver microsomes; however, M1-M4 were also present, with up to 15% relative abundance. CYP3A7 protein levels in HFLMs were highly correlated with glyburide Clint, 16α-OH DHEA formation, and 4'-OH midazolam formation. Likewise, glyburide Clint was highly correlated with 16α-OH DHEA formation. Fetal demographics as well as CYP3A5 and CYP3A7 genotype did not alter CYP3A7 protein levels or glyburide Clint. These results indicate that human fetal livers metabolize glyburide predominantly to M5 and that CYP3A7 is the major enzyme responsible for glyburide metabolism in human fetal livers. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. CYP1A1 and CYP1A2 expression: Comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji

    2009-05-15

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how 'human-like' can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1{sub C}YP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carryingmore » humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+){sub s}evere-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.« less

  17. Effect of chondroitin sulfate on turpentine-induced down-regulation of CYP1A2 and CYP3A6.

    PubMed

    Iovu, Mirela-Onita; Héroux, Lucie; Vergés, Josep; Montell, Eulália; Paiement, Jacques; du Souich, Patrick

    2012-07-01

    This study aimed to assess whether chronic administration of chondroitin sulfate (CS) affects baseline expression of cytochrome P450 isoforms and impedes the decrease in expression and activity of CYP1A2 and CYP3A6 in rabbits with a turpentine-induced inflammatory reaction (TIIR). Seven groups of 5 rabbits, 3 control groups and 4 receiving 20 mg/kg/day of CS for 20 and 30 days, were used. The rabbits of 1 control group and 2 groups receiving CS had a TIIR; finally, the rabbits of one of the control groups remained in the animal facilities for 30 days to assess the effect of time and environment on cytochrome P450. In control rabbits, intake of CS for 20 and 30 days did not affect CYP3A6, CYP1A2 and NADPH cytochrome P450 reductase (CPR) mRNA, protein expression and activity. Compared with control rabbits, the TIIR not only reduced mRNA, protein expression and activity of CYP3A6 and CYP1A2 but also that of CPR. In rabbits with TIIR, CS prevented the decrease of CYP3A6 expression but not the reduction in activity. CS did not impede TIIR-induced down-regulation of CYP1A2. Hepatic NO() concentrations and NF-κB nuclear translocation were increased by the TIIR, effect reversed by CS. In vitro, in hepatocytes, CS did not alter the expression and activity of CYP3A6, CYP1A2, and CPR. In conclusion, oral CS elicits a systemic effect but does not affect CYP1A2, CYP3A6, and CPR in control rabbits, although in rabbits with TIIR, CS prevents CYP3A6 protein down-regulation but not that of CYP1A2. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Prilocaine- and lidocaine-induced methemoglobinemia is caused by human carboxylesterase-, CYP2E1-, and CYP3A4-mediated metabolic activation.

    PubMed

    Higuchi, Ryota; Fukami, Tatsuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2013-06-01

    Prilocaine and lidocaine are classified as amide-type local anesthetics for which serious adverse effects include methemoglobinemia. Although the hydrolyzed metabolites of prilocaine (o-toluidine) and lidocaine (2,6-xylidine) have been suspected to induce methemoglobinemia, the metabolic enzymes that are involved remain uncharacterized. In the present study, we aimed to identify the human enzymes that are responsible for prilocaine- and lidocaine-induced methemoglobinemia. Our experiments revealed that prilocaine was hydrolyzed by recombinant human carboxylesterase (CES) 1A and CES2, whereas lidocaine was hydrolyzed by only human CES1A. When the parent compounds (prilocaine and lidocaine) were incubated with human liver microsomes (HLM), methemoglobin (Met-Hb) formation was lower than when the hydrolyzed metabolites were incubated with HLM. In addition, Met-Hb formation when prilocaine and o-toluidine were incubated with HLM was higher than that when lidocaine and 2,6-xylidine were incubated with HLM. Incubation with diisopropyl fluorophosphate and bis-(4-nitrophenyl) phosphate, which are general inhibitors of CES, significantly decreased Met-Hb formation when prilocaine and lidocaine were incubated with HLM. An anti-CYP3A4 antibody further decreased the residual formation of Met-Hb. Met-Hb formation after the incubation of o-toluidine and 2,6-xylidine with HLM was only markedly decreased by incubation with an anti-CYP2E1 antibody. o-Toluidine and 2,6-xylidine were further metabolized by CYP2E1 to 4- and 6-hydroxy-o-toluidine and 4-hydroxy-2,6-xylidine, respectively, and these metabolites were shown to more efficiently induce Met-Hb formation than the parent compounds. Collectively, we found that the metabolites produced by human CES-, CYP2E1-, and CYP3A4-mediated metabolism were involved in prilocaine- and lidocaine-induced methemoglobinemia.

  19. [Effect of Panax notoginseng saponins on liver drug metablic enzyme activity, mRNA and protein expressions in rats].

    PubMed

    Chen, Yan-Jin; Wang, Yu-Guang; Ma, Zeng-Chun; Xiao, Cheng-Rong; Tan, Hong-Ling; Liang, Qian-De; Tang, Xiang-Lin; Zhao, Yong-Hong; Wang, Dong-Gen; Gao, Yue

    2014-10-01

    To study the effect of Panax notoginseng saponins (PNS) on liver drug metabolic enzyme activity, mRNA and protein expressions in rats. Male Wistar rats were randomly divided into nine groups. After administration of the test drugs, their liver microsomes, liver total RNA and total protein were extracted to detect the regulating effect of PNS on liver drug metabolic enzyme activity-related subtype enzymatic activity, mRNA and protein expression by substrate probe, quantitative PCR and Western Blot technology. The result of this experiment was that PNS could significantly induce CYP1A2 and CYP2E1 enzyme activity, mRNA expression, CYP2E1 protein expression level. PNS significantly induced CYP3A mRNA expression, but with no significant effect in CYP3A enzyme activity level. PNS had no significant effect CYP1A1 and CYP2B mRNA expressions and enzyme activity levels. PNS had selective regulations on different P450 subtypes, and the major subtypes were CYP1A2 and CYP2E1. In clinical practice, particularly in the combination with CYP1A2 and CYP2E1 metabolism-related drugs, full consideration shall be given to the possible drug interactions in order to avoid potential toxic and side effects. Meanwhile, whether the induction effect of CYP2E1 gets involved in ginsenoside's effect incavenging free radicals deserves further studies.

  20. Information theory-based analysis of CYP2C19, CYP2D6 and CYP3A5 splicing mutations.

    PubMed

    Rogan, Peter K; Svojanovsky, Stan; Leeder, J Steven

    2003-04-01

    Several mutations are known or suspected to affect mRNA splicing of CYP2C19, CYP2D6 and CYP3A5 genes; however, little experimental evidence exists to support these conclusions. The present study applies mathematical models that measure changes in information content of splice sites in these genes to demonstrate the relationship between the predicted phenotypes of these variants to the corresponding genotypes. Based on information analysis, the CYP2C19*2 variant activates a new cryptic site 40 nucleotides downstream of the natural splice site. CYP2C19*7 abolishes splicing at the exon 5 donor site. The CYP2D6*4 allele similarly inactivates splicing at the acceptor site of exon 4 and activates a new cryptic site one nucleotide downstream of the natural acceptor. CYP2D6*11 inactivates the acceptor site of exon 2. The CYP3A5*3 allele activates a new cryptic site 236 nucleotides upstream of the exon 4 natural acceptor site. CYP3A5*5 inactivates the exon 5 donor site and CYP3A5*6 strengthens a site upstream of the natural donor site, resulting in skipping of exon 7. Other previously described missense and nonsense mutations at terminal codons of exons in these genes affected splicing. CYP2D6*8 and CYP2D6*14 both decrease the strength of the exon 3 donor site, producing transcripts lacking this exon. The results of information analysis are consistent with the poor metabolizer phenotypes observed in patients with these mutations, and illustrate the potential value of these mathematical models to quantitatively evaluate the functional consequences of new mutations suspected of altering mRNA splicing.

  1. Tissue Specific Modulation of cyp2c and cyp3a mRNA Levels and Activities by Diet-Induced Obesity in Mice: The Impact of Type 2 Diabetes on Drug Metabolizing Enzymes in Liver and Extra-Hepatic Tissues

    PubMed Central

    Chamoun, Michel; Gravel, Sophie; Turgeon, Jacques; Michaud, Veronique

    2017-01-01

    Various diseases such as type 2 diabetes (T2D) may alter drug clearance. The objective of this study was to evaluate the effects of T2D on CYP450 expressions and activities using high-fat diet (HFD) as a model of obesity-dependent diabetes in C57BL6 mice. The cyp450 mRNA expression levels for 15 different isoforms were determined in the liver and extra-hepatic tissues (kidneys, lungs and heart) of HFD-treated animals (n = 45). Modulation of cyp450 metabolic activities by HFD was assessed using eight known substrates for specific human ortholog CYP450 isoforms: in vitro incubations were conducted with liver and extra-hepatic microsomes. Expression levels of cyp3a11 and cyp3a25 mRNA were decreased in the liver (>2–14-fold) and kidneys (>2-fold) of HFD groups which correlated with a significant reduction in midazolam metabolism (by 21- and 5-fold in hepatic and kidney microsomes, respectively, p < 0.001). HFD was associated with decreased activities of cyp2b and cyp2c subfamilies in all organs tested except in the kidneys (for tolbutamide). Other cyp450 hepatic activities were minimally or not affected by HFD. Taken together, our data suggest that substrate-dependent and tissue-dependent modulation of cyp450 metabolic capacities by early phases of T2D are observed, which could modulate drug disposition and pharmacological effects in various tissues. PMID:28954402

  2. Application of homology modeling to generate CYP1A1 mutants with enhanced activation of the cancer chemotherapeutic prodrug dacarbazine.

    PubMed

    Lewis, Benjamin C; Mackenzie, Peter I; Miners, John O

    2011-11-01

    The chemotherapeutic prodrug dacarbazine (DTIC) has limited efficacy in human malignancies and exhibits numerous adverse effects that arise from systemic exposure to the cytotoxic metabolite. DTIC is activated by CYP1A1 and CYP1A2 catalyzed N-demethylation. However, structural features of these enzymes that confer DTIC N-demethylation have not been characterized. A validated homology model of CYP1A1 was employed to elucidate structure-activity relationships and to engineer CYP1A1 enzymes with altered DTIC activation. In silico docking demonstrated that DTIC orientates proximally to Ser122, Phe123, Asp313, Ala317, Ile386, Tyr259, and Leu496 of human CYP1A1. The site of metabolism is positioned 5.6 Å from the heme iron at an angle of 105.3°. Binding in the active site is stabilized by H-bonding between Tyr259 and the N(2) position of the imidazole ring. Twenty-seven CYP1A1 mutants were generated and expressed in Escherichia coli in yields ranging from 9 to 225 pmol P450/mg. DTIC N-demethylation by the E161K, E256K, and I458V mutants exhibited Michaelis-Menten kinetics, with decreases in K(m) (183-249 μM) that doubled the catalytic efficiency (p < 0.05) relative to wild-type CYP1A1 (K(m), 408 ± 43 μM; V(max), 28 ± 4 pmol · min(-1) · pmol of P450(-1)). The generation of enzymes with catalytically enhanced DTIC activation highlights the potential use of mutant CYP1A1 proteins in P450-based gene-directed enzyme prodrug therapy for the treatment of metastatic malignant melanoma.

  3. CYP1A1 and CYP1A2 expression: Comparing ‘humanized’ mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    PubMed Central

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji; Tateno, Chise; Makishima, Makoto; Yoshizato, Katsutoshi; Nebert, Daniel W.

    2009-01-01

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how “human-like” can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1_CYP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+)_severe-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs. PMID:19285097

  4. Cytotoxicity of chloroacetanilide herbicide alachlor in HepG2 cells independent of CYP3A4 and CYP3A7.

    PubMed

    Miranda, Sonia R; Meyer, Sharon A

    2007-05-01

    Alachlor is cytotoxic to human hepatoblastoma HepG2s, a cell line that expresses constitutive CYP3A7 and dexamethasone (DEX)-inducible CYP3A4 and CYP3A7. CYP3A4 catalyzes alachlor N-dealkylation to 2-chloro-N-(2,6-diethylphenyl)acetamide (CDEPA), precursor of 2,6-diethylbenzoquinoneimine, putative reactive metabolite for rat nasal carcinogenicity. We hypothesized that HepG2 alachlor cytotoxicity would be mediated by CYP3A4/7 and increased with DEX. Here, we report time-dependent alachlor cytotoxicity (EC(50) approximately 500 microM and 264+/-17 microM at 6 and 24h, respectively) as assessed by lactate dehydrogenase leakage. DEX pretreatment (25 microM, 48 h) significantly increased CYP3A7-catalyzed luciferin 6' benzylether O-debenzylation, but had no effect on alachlor toxicity. Further, CYP3A4/7 inhibitor triacetyloleandomycin did not prevent, but rather potentiated, alachlor cytotoxicity. In agreement, CDEPA was less toxic than parent alachlor. HepG2 CYP3A4 activity was unaffected by 48 h DEX pretreatment; therefore, studies were done in DPX-2 cells, a HepG2 derivative engineered to overexpress pregnane-X receptor (PXR) that exhibits rifampicin (RIF)-inducible endogenous CYP3A4. Alachlor cytotoxicity in DPX-2 cells occurred over a concentration range equivalent to that in HepG2. CYP3A4 activity of DPX-2 cells treated with RIF (10 microM, 48 h) was twice that of untreated cells, but RIF did not increase alachlor toxicity. These results demonstrate that neither CYP3A4 nor CYP3A7 initiate a pathway leading to a toxic alachlor metabolite.

  5. The effect of proton pump inhibitors on the CYP2C19 enzyme activity evaluated by the pantoprazole-13C breath test in GERD patients: clinical relevance for personalized medicine.

    PubMed

    Modak, Anil S; Klyarytska, Iryna; Kriviy, Valerij; Tsapyak, Tatjana; Rabotyagova, Yliya

    2016-12-17

    Patients with gastroesophageal reflux disease (GERD) are routinely prescribed one of the six FDA approved proton pump inhibitors (PPI). All of these PPI are inhibitors of CYP2C19 enzyme to varying degrees. The phenotype pantoprazole- 13 C breath test (Ptz-BT) was used to identify patients who are poor metabolizers (PM) and the extent of phenoconversion of CYP2C19 enzyme activity caused by four PPI (omeprazole, esomprazole pantoprazole and rabeprazole) in 54 newly diagnosed GERD patients prior to initiating randomly selected PPI therapy and 30 d after PPI therapy. The phenoconversion after 30 d of PPI therapy in GERD patients was statistically significant (p  =0.001) with omeprazole/esomeprazole (n  =  27) strong CYP2C19 inhibitors, while there was no change in CYP2C19 enzyme activity (p  =  0.8) with pantoprazole/ rabeprazole (n  =  27), weak CYP2C19 inhibitors. The concommitant use of omeprazole/esomeprazole, therefore, could have critical clinical relevance in individualizing medications metabolized primarily by CYP2C19 such as PPI, clopidogrel, phenytoin, cyclophosphamide, thalidomide, citalopram, clonazepam, diazepam, proguanil, tivantinib etc. The rapid (30 min), in vivo, and non-invasive phenotype Ptz-BT can evaluate CYP2C19 enzyme activity. More importantly, it can identify GERD patients with low CYP2C19 enzyme activity (PM), caused by PPI or other concomitant medications, who would benefit from dose adjustments to maintain efficacy and avoid toxicity. The existing CYP2C19 genotype tests cannot predict the phenotype nor can it detect phenoconversion due to non genetic factors.

  6. Characterization CYP1A2, CYP2C9, CYP2C19 and CYP2D6 polymorphisms using HRMA in Psychiatry patients with schizophrenia and bipolar disease for personalized medicine.

    PubMed

    Yenilmez, Ebru Dundar; Tamam, Lut; Karaytug, Onur; Tuli, Abdullah

    2018-06-19

    The interindividual genetic variations in drug metabolizing enzymes effects the impact and toxicity in plenty of drugs. The CYP1A2, CYP2C9, CYP2C19 and CYP2D6 gene polymorphisms characterized using high resolution melting analysis (HRMA) in follow-up patients in psychiatry clinic as a preliminary preparation for personalized medicine. Genotyping of CYP1A2*1F, CYP2C9 *2, *3, CYP2C19 *2, *3 and *17 and CYP2D6 *3, *4 was conducted in 101 patients using HRMA. Genotype and allele frequencies of the CYP variants were found to be in equilibrium with the Hardy-Weinberg equation. The frequency of the CYP1A2*1F allele in schizophrenia and bipolar disease was 0.694 and 0.255, respectively. The CYP2C9 allele frequencies were 0.087 (CYP2C9*2), and 0.549 (CYP2C9*3) for bipolar; 0.278 (CYP2C9*2) and 0.648 (CYP2C9*3) in schizophrenias. The CYP2C19*2 and *17 allele frequencies was 0.111 and 0.185 in schizophrenia and variant *2 was 0.117 and variant *17 was 0.255 in bipolar group. The frequency of the CYP2D6*3 allele was 0.027 in schizophrenias. The frequencies for the CYP2D6*4 variant was 0.092 and 0.096 in schizophrenia and bipolar groups, respectively. The knowledge in pharmacogenomics and also the developments in molecular genetics are growing rapidly. In the future this can be expected to provide new methodologies in the prediction of the activity in drug metabolizing enzymes. The HRMA is a rapid and useful technique to identify the genotypes for drug dosage adjustment before therapy in psychiatry patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Effect of anti-tuberculosis therapy on polymorphic drug metabolizing enzyme CYP2C9 using phenytoin as a probe drug

    PubMed Central

    George, Melvin; Shewade, Deepak Gopal; Kumar, Saka Vinod; Adithan, Chandrasekaran

    2012-01-01

    Objectives: Patients on anti-tuberculosis therapy (ATT) are more prone to drug interactions in the presence of coexisting illnesses which warrant drug therapy. Rifampicin is a strong CYP enzyme inducer while isoniazid is a potent CYP inhibitor. The objective of the study was to find the net effect of one month ATT on CYP2C9 enzyme and to correlate it with respect to the CYP2C9 genetic polymorphisms. Materials and Methods: Forty eight newly diagnosed tuberculosis patients were included in the study based on the inclusion-exclusion criteria. Before commencing ATT, they were given a single dose of phenytoin 300 mg as a probe drug for CYP2C9. Blood sample was collected after three hours to carry out CYP2C9 genotyping by PCR-RFLP method. Phenotyping for CYP2C9 enzyme was done by measuring the ratio of phenytoin and its metabolite p-HPPH (para hydroxy phenyl hydantoin) by reverse phase HPLC (high performance liquid chromatography) method before and after one month of ATT. Results: In the CYP2C9*1*1 genotype, the mean plasma concentrations of phenytoin before and after one month of ATT were 5.2 ± 0.3 μg/ml and 3.5 ± 0.4 μg/ml respectively, a reduction by 33% showing significant induction (P < 0.001). There was also significant decrease in the metabolic ratio after one month of ATT from 23.2 ± 4.8 to 10.1 ± 1.9 (P < 0.001). The metabolic ratio was also observed to reduce significantly (P < 0.05) when the CYP2C9*1*2, CYP2C9*1*3, and CYP2C9*3*3 data were pooled together. Conclusion: The presence of polymorphisms in the CYP2C9 gene does not affect the induction potential of ATT. PMID:23087510

  8. [Effects of acute exposure to high altitude on hepatic function and CYP1A2 and CYP3A4 activities in rats].

    PubMed

    Li, Wenbin; Jia, Zhengping; Xie, Hua; Zhang, Juanhong; Wang, Yanling; Hao, Ying; Wang, Rong

    2014-07-01

    To investigate the changes in hepatic functions and activities of CYP1A2 and CYP3A4 in rats after acute exposure to high altitude. Twelve healthy male Wistar rats were randomly divided into control group and exposure group for acute exposure to normal and high altitude (4010 m) environment. Blood samples were collected from the vena orbitalis posterior for detection of the hepatic function. Hepatic pathologies of the rats were examined microscopically with HE staining. Liver microsomes were extracted by differential centrifugation to assess the activities of CYP1A2 and 3A4 using P450-GloTM kit. In rats with acute exposure to high altitude, AST, ALT, and ALP all increased significantly by 48.50%, 47.90%, and 103.02%, respectively, and TP decreased significantly by 17.80% as compared with those in rats maintained in normal altitude environment (P<0.05). Pathological examination of the liver revealed edema of the central vein of the liver and hepatocyte karyopyknosis in rats after acute exposure to high altitude, which also resulted in significantly lowered activities of CYP1A2 and 3A4 in the liver (by 96.56% and 43.53%, respectively). Acute exposure to high altitude can cause obvious liver injuries and lowered activities of CYP1A2 and 3A4 in rats to severely affect drug metabolism in the liver and result in increased concentration, prolonged half-life and reduced clearance of drugs.

  9. In vitro effect of important herbal active constituents on human cytochrome P450 1A2 (CYP1A2) activity.

    PubMed

    Pan, Yan; Tiong, Kai Hung; Abd-Rashid, Badrul Amini; Ismail, Zakiah; Ismail, Rusli; Mak, Joon Wah; Ong, Chin Eng

    2014-10-15

    This study was designed to investigate eight herbal active constituents (andrographolide, asiaticoside, asiatic acid, madecassic acid, eupatorin, sinensetin, caffeic acid, and rosmarinic acid) on their potential inhibitory effects on human cytochrome P450 1A2 (CYP1A2) activity. A fluorescence-based enzyme assay was performed by co-incubating human cDNA-expressed CYP1A2 with its selective probe substrate, 3-cyano-7-ethoxycoumarin (CEC), in the absence or presence of various concentrations of herbal active constituents. The metabolite (cyano-hydroxycoumarin) formed was subsequently measured in order to obtain IC50 values. The results indicated that only eupatorin and sinensetin moderately inhibited CYP1A2 with IC50 values of 50.8 and 40.2 μM, while the other active compounds did not significantly affect CYP1A2 activity with IC50 values more than 100 μM. Ki values further determined for eupatorin and sinensetin were 46.4 and 35.2 μM, respectively. Our data indicated that most of the investigated herbal constituents have negligible CYP1A2 inhibitory effect. In vivo studies however may be warranted to ascertain the inhibitory effect of eupatorin and sinensetin on CYP1A2 activity in clinical situations. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. CYP24A1 inhibition facilitates the anti-tumor effect of vitamin D3 on colorectal cancer cells

    PubMed Central

    Kósa, János P; Horváth, Péter; Wölfling, János; Kovács, Dóra; Balla, Bernadett; Mátyus, Péter; Horváth, Evelin; Speer, Gábor; Takács, István; Nagy, Zsolt; Horváth, Henrik; Lakatos, Péter

    2013-01-01

    AIM: The effects of vitamin D3 have been investigated on various tumors, including colorectal cancer (CRC). 25-hydroxyvitamin-D3-24-hydroxylase (CYP24A1), the enzyme that inactivates the active vitamin D3 metabolite 1,25-dihydroxyvitamin D3 (1,25-D3), is considered to be the main enzyme determining the biological half-life of 1,25-D3. During colorectal carcinogenesis, the expression and concentration of CYP24A1 increases significantly, suggesting that this phenomenon could be responsible for the proposed efficacy of 1,25-D3 in the treatment of CRC. The aim of this study was to investigate the anti-tumor effects of vitamin D3 on the human CRC cell line Caco-2 after inhibition of the cytochrome P450 component of CYP24A1 activity. METHODS: We examined the expression of CYP24A1 mRNA and the effects of 1,25-D3 on the cell line Caco-2 after inhibition of CYP24A1. Cell viability and proliferation were determined by means of sulforhodamine-B staining and bromodeoxyuridine incorporation, respectively, while cytotoxicity was estimated via the lactate dehydrogenase content of the cell culture supernatant. CYP24A1 expression was measured by real-time reverse transcription polymerase chain reaction. A number of tetralone compounds were synthesized to investigate their CP24A1 inhibitory activity. RESULTS: In response to 1,25-D3, CYP24A1 mRNA expression was enhanced significantly, in a time- and dose-dependent manner. Caco-2 cell viability and proliferation were not influenced by the administration of 1,25-D3 alone, but were markedly reduced by co-administration of 1,25-D3 and KD-35, a CYP24A1-inhibiting tetralone. Our data suggest that the mechanism of action of co-administered KD-35 and 1,25-D3 does not involve a direct cytotoxic effect, but rather the inhibition of cell proliferation. CONCLUSION: These findings demonstrate that the selective inhibition of CYP24A1 by compounds such as KD-35 may be a new approach for enhancement of the anti-tumor effect of 1,25-D3 on CRC. PMID

  11. Differential protein expression and localization of CYP450 enzymes in three species of earthworm; is this a reflection of environmental adaptation?

    PubMed

    Lu, Xiaoxu; Li, Yinsheng; Thunders, Michelle; Cavanagh, Jo; Matthew, Cory; Wang, Xiuhong; Zhou, Xinchu; Qiu, Jiangping

    2017-03-01

    Cytochrome P450 (CYP450) is a hemoprotein superfamily, among which CYP1, CYP2 and CYP3 play a major role in the metabolism of vast array of xenobiotics and endobiotics. This paper reports on three CYP enzyme variants (CYP1A2, CYP2E1 and CYP3A4) in three species of earthworm (Eisenia fetida, Metaphire guillelmi and Amynthas carnosus). The relative expression levels and localization of the three associated proteins were investigated at three life-cycle points (juvenile, sub-adult and adult), through comparison of anterior and posterior body tissue and between specific organs (body wall, intestine and reproductive tissues) using western blot analysis. This study confirmed the presence of CYP3A4, CYP1A2 and CYP2E1 in all three species of earthworm tested. The levels of expression varied with earthworm species, age, and body location. These differences in occurrence of the three CYP enzymes appeared to reflect the ecological niche (the spatial and temporal location and functional relationship of each individual or population in populations or communities), and the likelihood of contact with soil contaminants of the respective species. These results may help to explain why earthworms are capable of adapting to very different and extensively polluted soil environments and provide important data for subsequent ecotoxicology and ecological adaptability studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Model based on GRID-derived descriptors for estimating CYP3A4 enzyme stability of potential drug candidates

    NASA Astrophysics Data System (ADS)

    Crivori, Patrizia; Zamora, Ismael; Speed, Bill; Orrenius, Christian; Poggesi, Italo

    2004-03-01

    A number of computational approaches are being proposed for an early optimization of ADME (absorption, distribution, metabolism and excretion) properties to increase the success rate in drug discovery. The present study describes the development of an in silico model able to estimate, from the three-dimensional structure of a molecule, the stability of a compound with respect to the human cytochrome P450 (CYP) 3A4 enzyme activity. Stability data were obtained by measuring the amount of unchanged compound remaining after a standardized incubation with human cDNA-expressed CYP3A4. The computational method transforms the three-dimensional molecular interaction fields (MIFs) generated from the molecular structure into descriptors (VolSurf and Almond procedures). The descriptors were correlated to the experimental metabolic stability classes by a partial least squares discriminant procedure. The model was trained using a set of 1800 compounds from the Pharmacia collection and was validated using two test sets: the first one including 825 compounds from the Pharmacia collection and the second one consisting of 20 known drugs. This model correctly predicted 75% of the first and 85% of the second test set and showed a precision above 86% to correctly select metabolically stable compounds. The model appears a valuable tool in the design of virtual libraries to bias the selection toward more stable compounds. Abbreviations: ADME - absorption, distribution, metabolism and excretion; CYP - cytochrome P450; MIFs - molecular interaction fields; HTS - high throughput screening; DDI - drug-drug interactions; 3D - three-dimensional; PCA - principal components analysis; CPCA - consensus principal components analysis; PLS - partial least squares; PLSD - partial least squares discriminant; GRIND - grid independent descriptors; GRID - software originally created and developed by Professor Peter Goodford.

  13. Structure and function of CYP108D1 from Novosphingobium aromaticivorans DSM12444: an aromatic hydrocarbon-binding P450 enzyme.

    PubMed

    Bell, Stephen G; Yang, Wen; Yorke, Jake A; Zhou, Weihong; Wang, Hui; Harmer, Jeffrey; Copley, Rachel; Zhang, Aili; Zhou, Ruimin; Bartlam, Mark; Rao, Zihe; Wong, Luet Lok

    2012-03-01

    CYP108D1 from Novosphingobium aromaticivorans DSM12444 binds a range of aromatic hydrocarbons such as phenanthrene, biphenyl and phenylcyclohexane. Its structure, which is reported here at 2.2 Å resolution, is closely related to that of CYP108A1 (P450terp), an α-terpineol-oxidizing enzyme. The compositions and structures of the active sites of these two enzymes are very similar; the most significant changes are the replacement of Glu77 and Thr103 in CYP108A1 by Thr79 and Val105 in CYP108D1. Other residue differences lead to a larger and more hydrophobic access channel in CYP108D1. These structural features are likely to account for the weaker α-terpineol binding by CYP108D1 and, when combined with the presence of three hydrophobic phenylalanine residues in the active site, promote the binding of aromatic hydrocarbons. The haem-proximal surface of CYP108D1 shows a different charge distribution and topology to those of CYP101D1, CYP101A1 and CYP108A1, including a pronounced kink in the proximal loop of CYP108D1, which may result in poor complementarity with the [2Fe-2S] ferredoxins Arx, putidaredoxin and terpredoxin that are the respective redox partners of these three P450 enzymes. The unexpectedly low reduction potential of phenylcyclohexane-bound CYP108D1 (-401 mV) may also contribute to the low activity observed with these ferredoxins. CYP108D1 appears to function as an aromatic hydrocarbon hydroxylase that requires a different electron-transfer cofactor protein.

  14. Diindolylmethane, a naturally occurring compound, induces CYP3A4 and MDR1 gene expression by activating human PXR

    PubMed Central

    Pondugula, Satyanarayana R.; Flannery, Patrick C.; Abbott, Kodye L.; Coleman, Elaine S.; Mani, Sridhar; Samuel, Temesgen; Xie, Wen

    2015-01-01

    Activation of human pregnane X receptor (hPXR)-regulated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1) plays an important role in mediating adverse drug interactions. Given the common use of natural products as part of adjunct human health behavior, there is a growing concern about natural products for their potential to induce undesired drug interactions through the activation of hPXR-regulated CYP3A4 and MDR1. Here, we studied whether 3,3′-diindolylmethane (DIM), a natural health supplement, could induce hPXR-mediated regulation of CYP3A4 and MDR1 in human hepatocytes and intestinal cells. DIM, at its physiologically relevant concentrations, not only induced hPXR transactivation of CYP3A4 promoter activity but also induced gene expression of CYP3A4 and MDR1. DIM decreased intracellular accumulation of MDR1 substrate rhodamine 123, suggesting that DIM induces the functional expression of MDR1. Pharmacologic inhibition or genetic knockdown of hPXR resulted in attenuation of DIM induced CYP3A4 and MDR1 gene expression, suggesting that DIM induces CYP3A4 and MDR1 in an hPXR-dependent manner. Together, these results support our conclusion that DIM induces hPXR-regulated CYP3A4 and MDR1 gene expression. The inductive effects of DIM on CYP3A4 and MDR1 expression caution the use of DIM in conjunction with other medications metabolized and transported via CYP3A4 and MDR1, respectively. PMID:25542144

  15. Impact of CYP2C8*3 polymorphism on in vitro metabolism of imatinib to N-desmethyl imatinib.

    PubMed

    Khan, Muhammad Suleman; Barratt, Daniel T; Somogyi, Andrew A

    2016-01-01

    1. Imatinib is metabolized to N-desmethyl imatinib by CYPs 3A4 and 2C8. The effect of CYP2C8*3 genotype on N-desmethyl imatinib formation was unknown. 2. We examined imatinib N-demethylation in human liver microsomes (HLMs) genotyped for CYP2C8*3, in CYP2C8*3/*3 pooled HLMs and in recombinant CYP2C8 and CYP3A4 enzymes. Effects of CYP-selective inhibitors on N-demethylation were also determined. 3. A single-enzyme Michaelis-Menten model with autoinhibition best fitted CYP2C8*1/*1 HLM (n = 5) and recombinant CYP2C8 kinetic data (median ± SD Ki = 139 ± 61 µM and 149 µM, respectively). Recombinant CYP3A4 showed two-site enzyme kinetics with no autoinhibition. Three of four CYP2C8*1/*3 HLMs showed single-enzyme kinetics with no autoinhibition. Binding affinity was higher in CYP2C8*1/*3 than CYP2C8*1/*1 HLM (median ± SD Km = 6 ± 2 versus 11 ± 2 µM, P=0.04). CYP2C8*3/*3 (pooled HLM) also showed high binding affinity (Km = 4 µM) and single-enzyme weak autoinhibition (Ki = 449 µM) kinetics. CYP2C8 inhibitors reduced HLM N-demethylation by 47-75%, compared to 0-30% for CYP3A4 inhibitors. 4. In conclusion, CYP2C8*3 is a gain-of-function polymorphism for imatinib N-demethylation, which appears to be mainly mediated by CYP2C8 and not CYP3A4 in vitro in HLM.

  16. New potent and selective cytochrome P450 2B6 (CYP2B6) inhibitors based on three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis

    PubMed Central

    Korhonen, L E; Turpeinen, M; Rahnasto, M; Wittekindt, C; Poso, A; Pelkonen, O; Raunio, H; Juvonen, R O

    2007-01-01

    Background and purpose: The cytochrome P450 2B6 (CYP2B6) enzyme metabolises a number of clinically important drugs. Drug-drug interactions resulting from inhibition or induction of CYP2B6 activity may cause serious adverse effects. The aims of this study were to construct a three-dimensional structure-activity relationship (3D-QSAR) model of the CYP2B6 protein and to identify novel potent and selective inhibitors of CYP2B6 for in vitro research purposes. Experimental approach: The inhibition potencies (IC50 values) of structurally diverse chemicals were determined with recombinant human CYP2B6 enzyme. Two successive models were constructed using Comparative Molecular Field Analysis (CoMFA). Key results: Three compounds proved to be very potent and selective competitive inhibitors of CYP2B6 in vitro (IC50<1 μM): 4-(4-chlorobenzyl)pyridine (CBP), 4-(4-nitrobenzyl)pyridine (NBP), and 4-benzylpyridine (BP). A complete inhibition of CYP2B6 activity was achieved with 0.1 μM CBP, whereas other CYP-related activities were not affected. Forty-one compounds were selected for further testing and construction of the final CoMFA model. The created CoMFA model was of high quality and predicted accurately the inhibition potency of a test set (n=7) of structurally diverse compounds. Conclusions and implications: Two CoMFA models were created which revealed the key molecular characteristics of inhibitors of the CYP2B6 enzyme. The final model accurately predicted the inhibitory potencies of several structurally unrelated compounds. CBP, BP and NBP were identified as novel potent and selective inhibitors of CYP2B6 and CBP especially is a suitable inhibitor for in vitro screening studies. PMID:17325652

  17. The Ontogeny of Cytochrome P450 Enzyme Activity and Protein Abundance in Conventional Pigs in Support of Preclinical Pediatric Drug Research.

    PubMed

    Millecam, Joske; De Clerck, Laura; Govaert, Elisabeth; Devreese, Mathias; Gasthuys, Elke; Schelstraete, Wim; Deforce, Dieter; De Bock, Lies; Van Bocxlaer, Jan; Sys, Stanislas; Croubels, Siska

    2018-01-01

    Since the implementation of several legislations to improve pediatric drug research, more pediatric clinical trials are being performed. In order to optimize these pediatric trials, adequate preclinical data are necessary, which are usually obtained by juvenile animal models. The growing piglet has been increasingly suggested as a potential animal model due to a high degree of anatomical and physiological similarities with humans. However, physiological data in pigs on the ontogeny of major organs involved in absorption, distribution, metabolism, and excretion of drugs are largely lacking. The aim of this study was to unravel the ontogeny of porcine hepatic drug metabolizing cytochrome P450 enzyme (CYP450) activities as well as protein abundances. Liver microsomes from 16 conventional pigs (8 males and 8 females) per age group: 2 days, 4 weeks, 8 weeks, and 6-7 months were prepared. Activity measurements were performed with substrates of major human CYP450 enzymes: midazolam (CYP3A), tolbutamide (CYP2C), and chlorzoxazone (CYP2E). Next, the hepatic scaling factor, microsomal protein per gram liver (MPPGL), was determined to correct for enzyme losses during the fractionation process. Finally, protein abundance was determined using proteomics and correlated with enzyme activity. No significant sex differences within each age category were observed in enzyme activity or MPPGL. The biotransformation rate of all three substrates increased with age, comparable with human maturation of CYP450 enzymes. The MPPGL decreased from birth till 8 weeks of age followed by an increase till 6-7 months of age. Significant sex differences in protein abundance were observed for CYP1A2, CYP2A19, CYP3A22, CYP4V2, CYP2C36, CYP2E_1, and CYP2E_2. Midazolam and tolbutamide are considered good substrates to evaluate porcine CYP3A/2C enzymes, respectively. However, chlorzoxazone is not advised to evaluate porcine CYP2E enzyme activity. The increase in biotransformation rate with age can be

  18. CYP2C8 but not CYP3A4 is important in the pharmacokinetics of montelukast

    PubMed Central

    Karonen, Tiina; Neuvonen, Pertti J; Backman, Janne T

    2012-01-01

    AIM According to product information, montelukast is extensively metabolized by CYP3A4 and CYP2C9. However, CYP2C8 was also recently found to be involved. Our aim was to study the effects of selective CYP2C8 and CYP3A4 inhibitors on the pharmacokinetics of montelukast. METHODS In a randomized crossover study, 11 healthy subjects ingested gemfibrozil 600 mg, itraconazole 100 mg (first dose 200 mg) or both, or placebo twice daily for 5 days, and on day 3, 10 mg montelukast. Plasma concentrations of montelukast, gemfibrozil, itraconazole and their metabolites were measured up to 72 h. RESULTS The CYP2C8 inhibitor gemfibrozil increased the AUC(0,∞) of montelukast 4.3-fold and its t1/2 2.1-fold (P < 0.001). Gemfibrozil impaired the formation of the montelukast primary metabolite M6, reduced the AUC and Cmax of the secondary (major) metabolite M4 by more than 90% (P < 0.05) and increased those of M5a and M5b (P < 0.05). The CYP3A4 inhibitor itraconazole had no significant effect on the pharmacokinetic variables of montelukast or its M6 and M4 metabolites, but markedly reduced the AUC and Cmax of M5a and M5b (P < 0.05). The effects of the gemfibrozil-itraconazole combination on the pharmacokinetics of montelukast did not differ from those of gemfibrozil alone. CONCLUSIONS CYP2C8 is the dominant enzyme in the biotransformation of montelukast in humans, accounting for about 80% of its metabolism. CYP3A4 only mediates the formation of the minor metabolite M5a/b, and is not important in the elimination of montelukast. Montelukast may serve as a safe and useful CYP2C8 probe drug. PMID:21838784

  19. Role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to organophosphate pesticides.

    PubMed

    Singh, Satyender; Kumar, Vivek; Vashisht, Kapil; Singh, Priyanka; Banerjee, Basu Dev; Rautela, Rajender Singh; Grover, Shyam Sunder; Rawat, Devendra Singh; Pasha, Syed Tazeen; Jain, Sudhir Kumar; Rai, Arvind

    2011-11-15

    Organophosphate pesticides (OPs) are primarily metabolized by several xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticide-exposed workers. The present study was designed to determine the role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to OPs. We examined 284 subjects including 150 workers occupationally exposed to OPs and 134 normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using PCR-RFLP. The results revealed that the PONase activity toward paraoxonase and AChE activity was found significantly lowered in workers as compared to control subjects (p<0.001). Workers showed significantly higher DNA damage compared to control subjects (14.37±2.15 vs. 6.24±1.37 tail% DNA, p<0.001). Further, the workers with CYP2D6*3PM and PON1 (QQ and MM) genotypes were found to have significantly higher DNA damage when compared to other genotypes (p<0.05). In addition, significant increase in DNA damage was also observed in workers with concomitant presence of certain CYP2D6 and PON1 (Q192R and L55M) genotypes which need further extensive studies. In conclusion, the results indicate that the PON1 and CYP2D6 genotypes can modulate DNA damage elicited by some OPs possibly through gene-environment interactions. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. A kidney-specific genetic control module in mice governs endocrine regulation of the cytochrome P450 gene Cyp27b1 essential for vitamin D3 activation.

    PubMed

    Meyer, Mark B; Benkusky, Nancy A; Kaufmann, Martin; Lee, Seong Min; Onal, Melda; Jones, Glenville; Pike, J Wesley

    2017-10-20

    The vitamin D endocrine system regulates mineral homeostasis through its activities in the intestine, kidney, and bone. Terminal activation of vitamin D 3 to its hormonal form, 1α,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ), occurs in the kidney via the cytochrome P450 enzyme CYP27B1. Despite its importance in vitamin D metabolism, the molecular mechanisms underlying the regulation of the gene for this enzyme, Cyp27b1 , are unknown. Here, we identified a kidney-specific control module governed by a renal cell-specific chromatin structure located distal to Cyp27b1 that mediates unique basal and parathyroid hormone (PTH)-, fibroblast growth factor 23 (FGF23)-, and 1,25(OH) 2 D 3 -mediated regulation of Cyp27b1 expression. Selective genomic deletion of key components within this module in mice resulted in loss of either PTH induction or FGF23 and 1,25(OH) 2 D 3 suppression of Cyp27b1 gene expression; the former loss caused a debilitating skeletal phenotype, whereas the latter conferred a quasi-normal bone mineral phenotype through compensatory homeostatic mechanisms involving Cyp24a1 We found that Cyp27b1 is also expressed at low levels in non-renal cells, in which transcription was modulated exclusively by inflammatory factors via a process that was unaffected by deletion of the kidney-specific module. These results reveal that differential regulation of Cyp27b1 expression represents a mechanism whereby 1,25(OH) 2 D 3 can fulfill separate functional roles, first in the kidney to control mineral homeostasis and second in extra-renal cells to regulate target genes linked to specific biological responses. Furthermore, we conclude that these mouse models open new avenues for the study of vitamin D metabolism and its involvement in therapeutic strategies for human health and disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. A kidney-specific genetic control module in mice governs endocrine regulation of the cytochrome P450 gene Cyp27b1 essential for vitamin D3 activation

    PubMed Central

    Meyer, Mark B.; Benkusky, Nancy A.; Kaufmann, Martin; Lee, Seong Min; Onal, Melda; Jones, Glenville; Pike, J. Wesley

    2017-01-01

    The vitamin D endocrine system regulates mineral homeostasis through its activities in the intestine, kidney, and bone. Terminal activation of vitamin D3 to its hormonal form, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), occurs in the kidney via the cytochrome P450 enzyme CYP27B1. Despite its importance in vitamin D metabolism, the molecular mechanisms underlying the regulation of the gene for this enzyme, Cyp27b1, are unknown. Here, we identified a kidney-specific control module governed by a renal cell-specific chromatin structure located distal to Cyp27b1 that mediates unique basal and parathyroid hormone (PTH)-, fibroblast growth factor 23 (FGF23)-, and 1,25(OH)2D3-mediated regulation of Cyp27b1 expression. Selective genomic deletion of key components within this module in mice resulted in loss of either PTH induction or FGF23 and 1,25(OH)2D3 suppression of Cyp27b1 gene expression; the former loss caused a debilitating skeletal phenotype, whereas the latter conferred a quasi-normal bone mineral phenotype through compensatory homeostatic mechanisms involving Cyp24a1. We found that Cyp27b1 is also expressed at low levels in non-renal cells, in which transcription was modulated exclusively by inflammatory factors via a process that was unaffected by deletion of the kidney-specific module. These results reveal that differential regulation of Cyp27b1 expression represents a mechanism whereby 1,25(OH)2D3 can fulfill separate functional roles, first in the kidney to control mineral homeostasis and second in extra-renal cells to regulate target genes linked to specific biological responses. Furthermore, we conclude that these mouse models open new avenues for the study of vitamin D metabolism and its involvement in therapeutic strategies for human health and disease. PMID:28808057

  2. Analysis of single-nucleotide polymorphisms (SNPs) in human CYP3A4 and CYP3A5 genes: potential implications for the metabolism of HIV drugs

    PubMed Central

    2014-01-01

    Background Drug metabolism via the cytochrome P450 (CYP450) system has emerged as an important determinant in the occurrence of several drug interactions (adverse drug reactions, reduced pharmacological effect, drug toxicities). In particular, CYP3A4 and CYP3A5 (interacting with more than 60% of licensed drugs) exhibit the most individual variations of gene expression, mostly caused by single nucleotide polymorphisms (SNPs) within the regulatory region of the CYP3A4 and CYP3A5 genes which might affect the level of enzyme production. In this study, we sought to improve the performance of sensitive screening for CYP3A polymorphism detection in twenty HIV-1 infected patients undergoing lopinavir/ritonavir (LPV/r) monotherapy. Methods The study was performed by an effective, easy and inexpensive home-made Polymerase Chain Reaction Direct Sequencing approach for analyzing CYP3A4 and CYP3A5 genes which can detect both reported and unreported genetic variants potentially associated with altered or decreased functions of CYP3A4 and CYP3A5 proteins. Proportions and tests of association were used. Results Among the genetic variants considered, CYP3A4*1B (expression of altered function) was only found in 3 patients (15%) and CYP3A5*3 (expression of splicing defect) in 3 other patients (15%). CYP3A5*3 did not appear to be associated with decreased efficacy of LPV/r in any patient, since none of the patients carrying this variant showed virological rebound during LPV/r treatment or low levels of TDM. In contrast, low-level virological rebound was observed in one patient and a low TDM level was found in another; both were carrying CYP3A4*1B. Conclusions Our method exhibited an overall efficiency of 100% (DNA amplification and sequencing in our group of patients). This may contribute to producing innovative results for better understanding the inter-genotypic variability in gene coding for CYP3A, and investigating SNPs as biological markers of individual response to drugs

  3. Studying the Inhibitory Effect of Quercetin and Thymoquinone on Human Cytochrome P450 Enzyme Activities.

    PubMed

    Elbarbry, Fawzy; Ung, Aimy; Abdelkawy, Khaled

    2018-01-01

    Quercetin (QR) and thymoquinone (TQ) are herbal remedies that are currently extensively used by the general population to prevent and treat various chronic conditions. Therefore, investigating the potential of pharmacokinetic interactions caused by the concomitant use of these herbal remedies and conventional medicine is warranted to ensure patient safety. This study was conducted to determine the inhibitory effect of QR and TQ, two commonly used remedies, on the activities of selected cytochrome P450 (CYP) enzymes that play an important role in drug metabolism and/or toxicology. The in vitro studies were conducted using fluorescence-based high throughput assays using human c-DNA baculovirus expressed CYP enzymes. For measuring CYP2E1 activity, a validated High-performance liquid chromatography (HPLC) assay was utilized to measure the formation of 6-hydroxychlorzoxazone. The obtained half-maximum inhibitory concentration values with known positive control inhibitors of this study were comparable to the published values indicating accurate experimental techniques. Although QR did not show any significant effect on CYP1A2 and CYP2E1, it exhibited a strong inhibitory effect against CYP2D6 and a moderate effect against CYP2C19 and CYP3A4. On the other hand, TQ demonstrated a strong and a moderate inhibitory effect against CYP3A4 and CYP2C19, respectively. The findings of this study may indicate that consumption of QR or TQ, in the form of food or dietary supplements, with drugs that are metabolized by CYP2C19, CYP2D6, or CYP3A4 may cause significant herb-drug interactions. Neither QR nor TQ has any significant inhibitory effect on the activity of CYP1A2 or CYP2E1 enzymesBoth QR and TQ have a moderate to strong inhibitory effect on CYP3A4 activityQR has a moderate inhibitory effect on CYP2C19 and a strong inhibitory effect on CYP2D6Both QR and TQ are moderate inhibitors of the CYP2C9 activity. Abbreviations used: ABT: Aminobenztriazole, BZF: 7,8 Benzoflavone, CYP

  4. CYP1-mediated antiproliferative activity of dietary flavonoids in MDA-MB-468 breast cancer cells.

    PubMed

    Androutsopoulos, Vasilis P; Ruparelia, Ketan; Arroo, Randolph R J; Tsatsakis, Aristidis M; Spandidos, Demetrios A

    2009-10-29

    Among the different mechanisms proposed to explain the cancer-protecting effect of dietary flavonoids, substrate-like interactions with cytochrome P450 CYP1 enzymes have recently been explored. In the present study, the metabolism of the flavonoids chrysin, baicalein, scutellarein, sinensetin and genkwanin by recombinant CYP1A1, CYP1B1 and CYP1A2 enzymes, as well as their antiproliferative activity in MDA-MB-468 human breast adenocarcinoma and MCF-10A normal breast cell lines, were investigated. Baicalein and 6-hydroxyluteolin were the only conversion products of chrysin and scutellarein metabolism by CYP1 family enzymes, respectively, while baicalein itself was not metabolized further. Sinensetin and genkwanin produced a greater number of metabolites and were shown to inhibit strongly in vitro proliferation of MDA-MB-468 cells at submicromolar and micromolar concentrations, respectively, without essentially affecting the viability of MCF-10A cells. Cotreatment of the CYP1 family inhibitor acacetin reversed the antiproliferative activity noticed for the two flavones in MDA-MB-468 cells to 13 and 14 microM respectively. In contrast chrysin, baicalein and scutellarein inhibited proliferation of MDA-MB-468 cells to a lesser extent than sinensetin and genkwanin. The metabolism of genkwanin to apigenin and of chrysin to baicalein was favored by CYP1B1 and CYP1A1, respectively. Taken together the data suggests that CYP1 family enzymes enhance the antiproliferative activity of dietary flavonoids in breast cancer cells, through bioconversion to more active products.

  5. Compensatory changes in CYP expression in three different toxicology mouse models: CAR-null, Cyp3a-null, and Cyp2b9/10/13-null mice.

    PubMed

    Kumar, Ramiya; Mota, Linda C; Litoff, Elizabeth J; Rooney, John P; Boswell, W Tyler; Courter, Elliott; Henderson, Charles M; Hernandez, Juan P; Corton, J Christopher; Moore, David D; Baldwin, William S

    2017-01-01

    Targeted mutant models are common in mechanistic toxicology experiments investigating the absorption, metabolism, distribution, or elimination (ADME) of chemicals from individuals. Key models include those for xenosensing transcription factors and cytochrome P450s (CYP). Here we investigated changes in transcript levels, protein expression, and steroid hydroxylation of several xenobiotic detoxifying CYPs in constitutive androstane receptor (CAR)-null and two CYP-null mouse models that have subfamily members regulated by CAR; the Cyp3a-null and a newly described Cyp2b9/10/13-null mouse model. Compensatory changes in CYP expression that occur in these models may also occur in polymorphic humans, or may complicate interpretation of ADME studies performed using these models. The loss of CAR causes significant changes in several CYPs probably due to loss of CAR-mediated constitutive regulation of these CYPs. Expression and activity changes include significant repression of Cyp2a and Cyp2b members with corresponding drops in 6α- and 16β-testosterone hydroxylase activity. Further, the ratio of 6α-/15α-hydroxylase activity, a biomarker of sexual dimorphism in the liver, indicates masculinization of female CAR-null mice, suggesting a role for CAR in the regulation of sexually dimorphic liver CYP profiles. The loss of Cyp3a causes fewer changes than CAR. Nevertheless, there are compensatory changes including gender-specific increases in Cyp2a and Cyp2b. Cyp2a and Cyp2b were down-regulated in CAR-null mice, suggesting activation of CAR and potentially PXR following loss of the Cyp3a members. However, the loss of Cyp2b causes few changes in hepatic CYP transcript levels and almost no significant compensatory changes in protein expression or activity with the possible exception of 6α-hydroxylase activity. This lack of a compensatory response in the Cyp2b9/10/13-null mice is probably due to low CYP2B hepatic expression, especially in male mice. Overall, compensatory and

  6. Compensatory changes in CYP expression in three different toxicology mouse models: CAR-null, Cyp3a-null, and Cyp2b9/10/13-null mice

    PubMed Central

    Kumar, Ramiya; Mota, Linda C.; Litoff, Elizabeth J.; Rooney, John P.; Boswell, W. Tyler; Courter, Elliott; Henderson, Charles M.; Hernandez, Juan P.; Corton, J. Christopher; Moore, David D.

    2017-01-01

    Targeted mutant models are common in mechanistic toxicology experiments investigating the absorption, metabolism, distribution, or elimination (ADME) of chemicals from individuals. Key models include those for xenosensing transcription factors and cytochrome P450s (CYP). Here we investigated changes in transcript levels, protein expression, and steroid hydroxylation of several xenobiotic detoxifying CYPs in constitutive androstane receptor (CAR)-null and two CYP-null mouse models that have subfamily members regulated by CAR; the Cyp3a-null and a newly described Cyp2b9/10/13-null mouse model. Compensatory changes in CYP expression that occur in these models may also occur in polymorphic humans, or may complicate interpretation of ADME studies performed using these models. The loss of CAR causes significant changes in several CYPs probably due to loss of CAR-mediated constitutive regulation of these CYPs. Expression and activity changes include significant repression of Cyp2a and Cyp2b members with corresponding drops in 6α- and 16β-testosterone hydroxylase activity. Further, the ratio of 6α-/15α-hydroxylase activity, a biomarker of sexual dimorphism in the liver, indicates masculinization of female CAR-null mice, suggesting a role for CAR in the regulation of sexually dimorphic liver CYP profiles. The loss of Cyp3a causes fewer changes than CAR. Nevertheless, there are compensatory changes including gender-specific increases in Cyp2a and Cyp2b. Cyp2a and Cyp2b were down-regulated in CAR-null mice, suggesting activation of CAR and potentially PXR following loss of the Cyp3a members. However, the loss of Cyp2b causes few changes in hepatic CYP transcript levels and almost no significant compensatory changes in protein expression or activity with the possible exception of 6α-hydroxylase activity. This lack of a compensatory response in the Cyp2b9/10/13-null mice is probably due to low CYP2B hepatic expression, especially in male mice. Overall, compensatory and

  7. Geraniol hydroxylase and hydroxygeraniol oxidase activities of the CYP76 family of cytochrome P450 enzymes and potential for engineering the early steps of the (seco)iridoid pathway.

    PubMed

    Höfer, René; Dong, Lemeng; André, François; Ginglinger, Jean-François; Lugan, Raphael; Gavira, Carole; Grec, Sebastien; Lang, Gerhard; Memelink, Johan; Van der Krol, Sander; Bouwmeester, Harro; Werck-Reichhart, Danièle

    2013-11-01

    The geraniol-derived (seco)iridoid skeleton is a precursor for a large group of bioactive compounds with diverse therapeutic applications, including the widely used anticancer molecule vinblastine. Despite of this economic prospect, the pathway leading to iridoid biosynthesis from geraniol is still unclear. The first geraniol hydroxylation step has been reported to be catalyzed by cytochrome P450 enzymes such as CYP76B6 from Catharanthus roseus and CYP76C1 from Arabidopsis thaliana. In the present study, an extended functional analysis of CYP76 family members was carried-out to identify the most effective enzyme to be used for pathway reconstruction. This disproved CYP76C1 activity and led to the characterization of CYP76C4 from A. thaliana as a geraniol 9- or 8-hydroxylase. CYP76B6 emerged as a highly specialized multifunctional enzyme catalyzing two sequential oxidation steps leading to the formation of 8-oxogeraniol from geraniol. This dual function was confirmed in planta using a leaf-disc assay. The first step, geraniol hydroxylation, was very efficient and fast enough to outcompete geraniol conjugation in plant tissues. When the enzyme was expressed in leaf tissues, 8-oxogeraniol was converted into further oxidized and/or reduced compounds in the absence of the next enzyme of the iridoid pathway. Copyright © 2013 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to organophosphate pesticides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Satyender; Kumar, Vivek; Vashisht, Kapil

    2011-11-15

    Organophosphate pesticides (OPs) are primarily metabolized by several xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticide-exposed workers. The present study was designed to determine the role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to OPs. We examined 284 subjects including 150 workers occupationally exposed to OPs and 134 normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using PCR-RFLP. The results revealed that the PONase activitymore » toward paraoxonase and AChE activity was found significantly lowered in workers as compared to control subjects (p < 0.001). Workers showed significantly higher DNA damage compared to control subjects (14.37 {+-} 2.15 vs. 6.24 {+-} 1.37 tail% DNA, p < 0.001). Further, the workers with CYP2D6*3 PM and PON1 (QQ and MM) genotypes were found to have significantly higher DNA damage when compared to other genotypes (p < 0.05). In addition, significant increase in DNA damage was also observed in workers with concomitant presence of certain CYP2D6 and PON1 (Q192R and L55M) genotypes which need further extensive studies. In conclusion, the results indicate that the PON1 and CYP2D6 genotypes can modulate DNA damage elicited by some OPs possibly through gene-environment interactions. -- Highlights: Black-Right-Pointing-Pointer Role of CYP1A1, CYP3A5, CYP2C, CYP2D6 and PON1 genotypes on DNA damage. Black-Right-Pointing-Pointer Workers exposed to some OPs demonstrated increased DNA damage. Black-Right-Pointing-Pointer CYP2D6 *3 PM and PON1 (Q192R and L55M) genotypes are associated with DNA damage. Black-Right-Pointing-Pointer Concomitant presence of certain CYP2D6 and PON1 genotypes can increase DNA damage.« less

  9. CYP1A1 induction and CYP3A4 inhibition by the fungicide imazalil in the human intestinal Caco-2 cells-comparison with other conazole pesticides.

    PubMed

    Sergent, Thérèse; Dupont, Isabelle; Jassogne, Coralie; Ribonnet, Laurence; van der Heiden, Edwige; Scippo, Marie-Louise; Muller, Marc; McAlister, Dan; Pussemier, Luc; Larondelle, Yvan; Schneider, Yves-Jacques

    2009-02-10

    Imazalil (IMA) is a widely used imidazole-antifungal pesticide and, therefore, a food contaminant. This compound is also used as a drug (enilconazole). As intestine is the first site of exposure to ingested drugs and pollutants, we have investigated the effects of IMA, at realistic intestinal concentrations, on xenobiotic-metabolizing enzymes and efflux pumps by using Caco-2 cells, as a validated in vitro model of the human intestinal absorptive epithelium. For comparison, other conazole fungicides, i.e. ketoconazole, propiconazole and tebuconazole, were also studied. IMA induced cytochrome P450 (CYP) 1A1 activity to the same extent as benzo(a)pyrene (B(a)P) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), in a dose- and time-dependent manner. Cell-free aryl hydrocarbon receptor (AhR) binding assay and reporter gene assay suggested that IMA is not an AhR-ligand, implying that IMA-mediated induction should involve an AhR-independent pathway. Moreover, IMA strongly inhibited the CYP3A4 activity in 1,25-vitamin D(3)-induced Caco-2 cells. The other fungicides had weak or nil effects on CYP activities. Study of the apical efflux pump activities revealed that ketoconazole inhibited both P-glycoprotein (Pgp) and multidrug resistance-associated protein 2 (MRP-2) or breast cancer resistance protein (BCRP), whereas IMA and other fungicides did not. Our results imply that coingestion of IMA-contaminated food and CYP3A4- or CYP1A1-metabolizable drugs or chemicals could lead to drug bioavailability modulation or toxicological interactions, with possible adverse effects for human health.

  10. Detoxification enzyme activities (CYP1A1 and GST) in the skin of humpback whales as a function of organochlorine burdens and migration status.

    PubMed

    Bengtson Nash, S; Dawson, A; Burkhard, M; Waugh, C; Huston, W

    2014-10-01

    The activities of glutathione-s-transferase (GST) and cytochrome P-450 1A1 (CYP1A1) enzymes were measured in freshly extracted epidermis of live-biopsied, migrating, southern hemisphere humpback whales (Megaptera novaeangliae). The two quantified enzyme activities did not correlate strongly with each other. Similarly, neither correlated strongly with any of the organochlorine compound groups previously measured in the superficial blubber of the sample biopsy core, likely reflecting the anticipated low levels of typical aryl-hydrocarbon receptor ligands. GST activity did not differ significantly between genders or between northward (early migration) or southward (late migration) migrating cohorts. Indeed, the inter-individual variability in GST measurements was relatively low. This observation raises the possibility that measured activities were basal activities and that GST function was inherently impacted by the fasting state of the sampled animals, as seen in other species. These results do not support the implementation of CYP1A1 or GST as effective biomarkers of organochlorine contaminant burdens in southern hemisphere populations of humpback whales as advocated for other cetacean species. Further investigation of GST activity in feeding versus fasting cohorts may, however, provide some insight into the fasting metabolism of these behaviourally adapted populations. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Dose-dependent induction of cytochrome P450 (CYP) 3A4 and activation of pregnane X receptor by topiramate.

    PubMed

    Nallani, Srikanth C; Glauser, Tracy A; Hariparsad, Niresh; Setchell, Kenneth; Buckley, Donna J; Buckley, Arthur R; Desai, Pankaj B

    2003-12-01

    In clinical studies, topiramate (TPM) was shown to cause a dose-dependent increase in the clearance of ethinyl estradiol. We hypothesized that this interaction results from induction of hepatic cytochrome P450 (CYP) 3A4 by TPM. Accordingly, we investigated whether TPM induces CYP3A4 in primary human hepatocytes and activates the human pregnane X receptor (hPXR), a nuclear receptor that serves as a regulator of CYP3A4 transcription. Human hepatocytes were treated for 72 h with TPM (10, 25, 50, 100, 250, and 500 microM) and known inducers, phenobarbital (PB; 2 mM), and rifampicin (10 microM). The rate of testosterone 6beta-hydroxylation by hepatocytes served as a marker for CYP3A4 activity. The CYP3A4-specific protein and mRNA levels were determined by using Western and Northern blot analyses, respectively. The hPXR activation was assessed with cell-based reporter gene assay. Compared with controls, TPM (50-500 microM)-treated hepatocytes exhibited a considerable increase in the CYP3A4 activity (1. 6- to 8.2-fold), protein levels (4.6- to 17.3-fold), and mRNA levels (1.9- to 13.3-fold). Comparatively, rifampicin (10 microM) effected 14.5-, 25.3-, and a 20.3-fold increase in CYP3A4 activity, immunoreactive protein levels, and mRNA levels, respectively. TPM (50-500 microM) caused 1.3- to 3-fold activation of the hPXR, whereas rifampicin (10 microM) caused a 6-fold activation. The observed induction of CYP3A4 by TPM, especially at the higher concentrations, provides a potential mechanistic explanation of the reported increase in the ethinyl estradiol clearance by TPM. It also is suggestive of other potential interactions when high-dose TPM therapy is used.

  12. CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice.

    PubMed

    Magome, Hiroshi; Nomura, Takahito; Hanada, Atsushi; Takeda-Kamiya, Noriko; Ohnishi, Toshiyuki; Shinma, Yuko; Katsumata, Takumi; Kawaide, Hiroshi; Kamiya, Yuji; Yamaguchi, Shinjiro

    2013-01-29

    Bioactive gibberellins (GAs) control many aspects of growth and development in plants. GA(1) has been the most frequently found bioactive GA in various tissues of flowering plants, but the enzymes responsible for GA(1) biosynthesis have not been fully elucidated due to the enzymes catalyzing the 13-hydroxylation step not being identified. Because of the lack of mutants defective in this enzyme, biological significance of GA 13-hydroxylation has been unknown. Here, we report that two cytochrome P450 genes, CYP714B1 and CYP714B2, encode GA 13-oxidase in rice. Transgenic Arabidopsis plants that overexpress CYP714B1 or CYP714B2 show semidwarfism. There was a trend that the levels of 13-OH GAs including GA(1) were increased in these transgenic plants. Functional analysis using yeast or insect cells shows that recombinant CYP714B1 and CYP714B2 proteins can convert GA(12) into GA(53) (13-OH GA(12)) in vitro. Moreover, the levels of 13-OH GAs including GA(1) were decreased, whereas those of 13-H GAs including GA(4) (which is more active than GA(1)) were increased, in the rice cyp714b1 cyp714b2 double mutant. These results indicate that CYP714B1 and CYP714B2 play a predominant role in GA 13-hydroxylation in rice. The double mutant plants appear phenotypically normal until heading, but show elongated uppermost internode at the heading stage. Moreover, CYP714B1 and CYP714B2 expression was up-regulated by exogenous application of bioactive GAs. Our results suggest that GA 13-oxidases play a role in fine-tuning plant growth by decreasing GA bioactivity in rice and that they also participate in GA homeostasis.

  13. Effects of chlorpyrifos on the transcription of CYP3A cDNA, activity of acetylcholinesterase, and oxidative stress response of goldfish (Carassius auratus).

    PubMed

    Ma, Junguo; Liu, Yang; Niu, Daichun; Li, Xiaoyu

    2015-04-01

    Chlorpyrifos (CPF) is the widely used organophosphate pesticide in agriculture throughout the world. It has been found that CPF is relatively safe to human but highly toxic to fish. In this study, acute toxicity of CPF on goldfish was determined and then the transcription of goldfish cytochrome P450 (CYP) 3A was evaluated after 96 h of CPF exposure at concentrations of 15.3 [1/10 50% lethal concentration (LC50 )] or 51 μg L(-1) (1/3 LC50 ) of CPF. Meanwhile, the enzymatic activities of acetylcholinesterase (AChE), superoxide dismutase (SOD), and catalase (CAT), total antioxidant activity (T-AOC), and the contents of malondialdehyde (MDA) in the liver or brain of goldfish were also determined. The results of acute toxicity testing showed that the 96-h LC50 of CPF to the goldfish was 153 μg L(-1) . Moreover, a length sequence of 1243 bp CYP3A cDNA encoding for 413 amino acids from goldfish liver was cloned. Polymerase chain reaction results reveal that CPF exposure downregulates CYP 3A transcription in goldfish liver, suggesting that goldfish CYP 3A may be not involved in CPF bioactivation. Finally, the results of biochemical assays indicate that 96 h of CPF exposure remarkably inhibits AChE activity in fish liver or brain, alters hepatic antioxidant enzyme activities, decreases brain T-AOC, and causes lipid peroxidation in fish liver. These results suggest that oxidative stress might be involved in CPF toxicity on goldfish. Copyright © 2013 Wiley Periodicals, Inc.

  14. Single or Multiple Access Channels to the CYP450s Active Site? An Answer from Free Energy Simulations of the Human Aromatase Enzyme.

    PubMed

    Magistrato, Alessandra; Sgrignani, Jacopo; Krause, Rolf; Cavalli, Andrea

    2017-05-04

    Cytochromes P450 (CYP450s), in particular, CYP19A1 and CYP17A1, are key clinical targets of breast and prostate anticancer therapies, critical players in drug metabolism, and their overexpression in tumors is associated with drug resistance. In these enzymes, ligand (substrates, drugs) metabolism occurs in deeply buried active sites accessible only via several grueling channels, whose exact biological role remains unclear. Gaining direct insights on the mechanism by which ligands travel in and out is becoming increasingly important given that channels are involved in the modulation of binding/dissociation kinetics and the specificity of ligands toward a CYP450. This has profound implications for enzymatic efficiency and drug efficacy/toxicity. Here, by applying free energy methods, for a cumulative simulation time of 20 μs, we provide detailed atomistic characterization and free energy profiles of the entry/exit routes preferentially followed by a substrate (androstenedione) and a last-generation inhibitor (letrozole) to/from the catalytic site of CYP19A1 (the human aromatase (HA) enzyme), a key clinical target against breast cancer, studied here as prototypical CYP450. Despite the remarkably different size/shape/hydrophobicity of the ligands, two channels appear accessible to their entrance, while only one exit route appears to be preferential. Our study shows that the preferential paths may be conserved among different CYP450s. Moreover, our results highlight that, at least in the case of HA, ligand channeling is associated with large enzyme structural rearrangements. A wise choice of the computational method and very long simulations are, thus, required to obtain fully converged quantitative free energy profiles, which might be used to design novel biocatalysts or next-generation cytochrome inhibitors with an in silico tuned K m .

  15. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs

    PubMed Central

    Wang, D; Guo, Y; Wrighton, SA; Cooke, GE; Sadee, W

    2011-01-01

    Cytochrome P450 3A4 (CYP3A4) metabolizes ~50% of all clinically used drugs. Although CYP3A4 expression varies widely between individuals, the contribution of genetic factors remains uncertain. In this study, we measured allelic CYP3A4 heteronuclear RNA (hnRNA) and mRNA expression in 76 human liver samples heterozygous for at least one of eight marker SNPs and found marked allelic expression imbalance (1.6–6.3-fold) in 10/76 liver samples (13%). This was fully accounted for by an intron 6 SNP (rs35599367, C>T), which also affected mRNA expression in cell culture on minigene transfections. CYP3A4 mRNA level and enzyme activity in livers with CC genotype were 1.7- and 2.5-fold, respectively, greater than in CT and TT carriers. In 235 patients taking stable doses of atorvastatin, simvastatin, or lovastatin for lipid control, carriers of the T allele required significantly lower statin doses (0.2–0.6-fold, P=0.019) than non-T carriers for optimal lipid control. These results indicate that intron 6 SNP rs35599367 markedly affects expression of CYP3A4 and could serve as a biomarker for predicting response to CYP3A4-metabolized drugs. PMID:20386561

  16. Effects of salvianolic acid B and tanshinone IIA on the pharmacokinetics of losartan in rats by regulating the activities and expression of CYP3A4 and CYP2C9.

    PubMed

    Wang, Rong; Zhang, Hai; Wang, Yujie; Yu, Xiaoyan; Yuan, Yongfang

    2016-03-02

    Losartan (LST) is a common chemical drug used to treat high blood pressure and reduce the risk of stroke in certain people with heart disease. Danshen, prepared from the dried root and rhizome of Salvia miltiorrhiza Bunge, has been widely used for prevention and treatment of various cardiovascular and cerebrovascular diseases. There are more than 35 formulations containing Danshen indexed in the 2010 Chinese Pharmacopoeia, which are often combined with LST to treat cardiovascular and cerebrovascular diseases in the clinic. The effects of the two major components of Danshen, salvianolic acid B (SA-B) and tanshinone IIA (Tan IIA), on the pharmacokinetics of losartan and its metabolite, EXP3174, in rats were investigated by liquid chromatography coupled with mass spectrometry (LC-MS). Male Sprague-Dawley rats were randomly assigned to 3 groups: LST, LST+SA-B and LST+Tan IIA, and the main pharmacokinetic parameters were estimated after oral administration of LST, LST+SA-B and LST+Tan IIA. It was found that there are significant differences in the pharmacokinetic parameters among the three groups: Cmax, t1/2, AUC, AUMC in the LST+SA-B group was smaller than those in group LST, while larger in group LST+Tan IIA. Further, the effects of SA-B and Tan IIA on the metabolism of losartan was also investigated using rat liver microsomes in vitro. The results indicated that SA-B can induce the metabolism of LST, while Tan IIA can inhibit the metabolism of LST in rat liver microsomes in vitro by regulating activities of CYP450 enzymes. In addition, the effect of SA-B and Tan IIA on CYP3A4 and CYP2C9 expression was studied in Chang liver cells by western-blotting and Real-time PCR. It was concluded that the two components of Danshen, SA-B and Tan IIA have different influences on the metabolism of LST: SA-B can obviously speed up the metabolism of LST by inducing CYP3A4/CYP2C9 activities and expression, however, Tan IIA can slow down the metabolism of LST by inhibiting CYP3A4/CYP2C

  17. Role of the modulation of CYP1A1 expression and activity in chemoprevention.

    PubMed

    Badal, S; Delgoda, R

    2014-07-01

    As one of the main extra-hepatic cytochrome P450 (CYP) enzymes, CYP1A1 has been comprehensively investigated for its ability to metabolize both exogenous and endogenous compounds into their carcinogenic derivatives. These derivatives are linked to cancer initiation and progression. The compound benzo-a-pyrene (BaP), a copious and noxious compound present in coal tar, automobile exhaust fumes, cigarette smoke and charbroiled food, is metabolised by CYP1A1 and has been studied in great detail. Other compounds reliant on the same enzyme for their activation include 7,12 dimethylbenz(a)anthracene (DMBA) and heterocyclic amine, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). This review takes an in-depth look at a number of phytochemicals, plant extracts and a few synthetic compounds that have been researched and deemed potential chemopreventives via their interaction with the activity and expression of CYP1A1. It will also review a useful active site model of CYP1A1. Based on inhibitors of CYP1A1 that have demonstrated in vivo use as chemopreventors, CYP1A1 is a useful initial target for screening compounds with such potential, with the use of rapid in vitro and/or in silico assessments. Chemoprevention is a means by which healthy tissues are protected via the prevention, inhibition or reversal of carcinogenesis. This review focuses on one important pathway of carcinogenesis and identifies the important role that CYP1A1 plays in that pathway. It is hoped that highlighting the importance of such a key target, will help revive further research into and application of inhibitors of CYP1A1 towards generating improved chemopreventors. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Azole affinity of sterol 14α-demethylase (CYP51) enzymes from Candida albicans and Homo sapiens.

    PubMed

    Warrilow, Andrew G; Parker, Josie E; Kelly, Diane E; Kelly, Steven L

    2013-03-01

    Candida albicans CYP51 (CaCYP51) (Erg11), full-length Homo sapiens CYP51 (HsCYP51), and truncated Δ60HsCYP51 were expressed in Escherichia coli and purified to homogeneity. CaCYP51 and both HsCYP51 enzymes bound lanosterol (K(s), 14 to 18 μM) and catalyzed the 14α-demethylation of lanosterol using Homo sapiens cytochrome P450 reductase and NADPH as redox partners. Both HsCYP51 enzymes bound clotrimazole, itraconazole, and ketoconazole tightly (dissociation constants [K(d)s], 42 to 131 nM) but bound fluconazole (K(d), ~30,500 nM) and voriconazole (K(d), ~2,300 nM) weakly, whereas CaCYP51 bound all five medical azole drugs tightly (K(d)s, 10 to 56 nM). Selectivity for CaCYP51 over HsCYP51 ranged from 2-fold (clotrimazole) to 540-fold (fluconazole) among the medical azoles. In contrast, selectivity for CaCYP51 over Δ60HsCYP51 with agricultural azoles ranged from 3-fold (tebuconazole) to 9-fold (propiconazole). Prothioconazole bound extremely weakly to CaCYP51 and Δ60HsCYP51, producing atypical type I UV-visible difference spectra (K(d)s, 6,100 and 910 nM, respectively), indicating that binding was not accomplished through direct coordination with the heme ferric ion. Prothioconazole-desthio (the intracellular derivative of prothioconazole) bound tightly to both CaCYP51 and Δ60HsCYP51 (K(d), ~40 nM). These differences in binding affinities were reflected in the observed 50% inhibitory concentration (IC(50)) values, which were 9- to 2,000-fold higher for Δ60HsCYP51 than for CaCYP51, with the exception of tebuconazole, which strongly inhibited both CYP51 enzymes. In contrast, prothioconazole weakly inhibited CaCYP51 (IC(50), ~150 μM) and did not significantly inhibit Δ60HsCYP51.

  19. A PBPK Model to Predict Disposition of CYP3A-Metabolized Drugs in Pregnant Women: Verification and Discerning the Site of CYP3A Induction

    PubMed Central

    Ke, A B; Nallani, S C; Zhao, P; Rostami-Hodjegan, A; Unadkat, J D

    2012-01-01

    Besides logistical and ethical concerns, evaluation of safety and efficacy of medications in pregnant women is complicated by marked changes in pharmacokinetics (PK) of drugs. For example, CYP3A activity is induced during the third trimester (T3). We explored whether a previously published physiologically based pharmacokinetic (PBPK) model could quantitatively predict PK profiles of CYP3A-metabolized drugs during T3, and discern the site of CYP3A induction (i.e., liver, intestine, or both). The model accounted for gestational age-dependent changes in maternal physiological function and hepatic CYP3A activity. For model verification, mean plasma area under the curve (AUC), peak plasma concentration (Cmax), and trough plasma concentration (Cmin) of midazolam (MDZ), nifedipine (NIF), and indinavir (IDV) were predicted and compared with published studies. The PBPK model successfully predicted MDZ, NIF, and IDV disposition during T3. A sensitivity analysis suggested that CYP3A induction in T3 is most likely hepatic and not intestinal. Our PBPK model is a useful tool to evaluate different dosing regimens during T3 for drugs cleared primarily via CYP3A metabolism. PMID:23835883

  20. In Vitro Biotransformation of Two Human CYP3A Probe Substrates and Their Inhibition during Early Zebrafish Development.

    PubMed

    Verbueken, Evy; Alsop, Derek; Saad, Moayad A; Pype, Casper; Van Peer, Els M; Casteleyn, Christophe R; Van Ginneken, Chris J; Wilson, Joanna; Van Cruchten, Steven J

    2017-01-22

    At present, the zebrafish embryo is increasingly used as an alternative animal model to screen for developmental toxicity after exposure to xenobiotics. Since zebrafish embryos depend on their own drug-metabolizing capacity, knowledge of their intrinsic biotransformation is pivotal in order to correctly interpret the outcome of teratogenicity assays. Therefore, the aim of this in vitro study was to assess the activity of cytochrome P450 (CYP)-a group of drug-metabolizing enzymes-in microsomes from whole zebrafish embryos (ZEM) of 5, 24, 48, 72, 96 and 120 h post-fertilization (hpf) by means of a mammalian CYP substrate, i.e., benzyloxy-methyl-resorufin (BOMR). The same CYP activity assays were performed in adult zebrafish liver microsomes (ZLM) to serve as a reference for the embryos. In addition, activity assays with the human CYP3A4-specific Luciferin isopropyl acetal (Luciferin-IPA) as well as inhibition studies with ketoconazole and CYP3cide were carried out to identify CYP activity in ZLM. In the present study, biotransformation of BOMR was detected at 72 and 96 hpf; however, metabolite formation was low compared with ZLM. Furthermore, Luciferin-IPA was not metabolized by the zebrafish. In conclusion, the capacity of intrinsic biotransformation in zebrafish embryos appears to be lacking during a major part of organogenesis.

  1. Role of CYP2B6 and CYP3A4 in the in vitro N-dechloroethylation of (R)- and (S)-ifosfamide in human liver microsomes.

    PubMed

    Granvil, C P; Madan, A; Sharkawi, M; Parkinson, A; Wainer, I W

    1999-04-01

    The central nervous system toxicity of ifosfamide (IFF), a chiral antineoplastic agent, is thought to be dependent on its N-dechloroethylation by hepatic cytochrome P-450 (CYP) enzymes. The purpose of this study was to identify the human CYPs responsible for IFF-N-dechloroethylation and their corresponding regio- and enantioselectivities. IFF exists in two enantiomeric forms, (R) - and (S)-IFF, which can be dechloroethylated at either the N2 or N3 positions, producing the corresponding (R,S)-2-dechloroethyl-IFF [(R, S)-2-DCE-IFF] and (R,S)-3-dechloroethyl-IFF [(R,S)-3-DCE-IFF]. The results of the present study suggest that the production of (R)-2-DCE-IFF and (S)-3-DCE-IFF from (R)-IFF is catalyzed by different CYPs as is the production of (S)-2-DCE-IFF and (R)-3-DCE-IFF from (S)-IFF. In vitro studies with a bank of human liver microsomes revealed that the sample-to-sample variation in the production of (S)-3-DCE-IFF from (R)-IFF and (S)-2-DCE-IFF from (S)-IFF was highly correlated with the levels of (S)-mephenytoin N-demethylation (CYP2B6), whereas (R)-2-DCE-IFF production from (R)-IFF and (R)-3-DCE-IFF production from (S)-IFF were both correlated with the activity of testosterone 6beta-hydroxylation (CYP3A4/5). Experiments with cDNA-expressed P-450 and antibody and chemical inhibition studies supported the conclusion that the formation of (S)-3-DCE-IFF and (S)-2-DCE-IFF is catalyzed primarily by CYP2B6, whereas (R)-2-DCE-IFF and (R)-3-DCE-IFF are primarily the result of CYP3A4/5 activity.

  2. In vivo pharmacokinetic interaction by ethanolic extract of Gymnema sylvestre with CYP2C9 (Tolbutamide), CYP3A4 (Amlodipine) and CYP1A2 (Phenacetin) in rats.

    PubMed

    Vaghela, Madhuri; Sahu, Niteshkumar; Kharkar, Prashant; Pandita, Nancy

    2017-12-25

    Gymnema sylvestre (GS) is a medicinal herb used for diabetes mellitus (DM). Herbs are gaining popularity as medicines in DM for its safety purpose. The aim of the present study was to evaluate in vivo pharmacokinetic (PK) interaction between allopathic drugs tolbutamide (TOLBU), amlodipine (AMLO), and phenacetin (PHENA) at low (L) and high (H) doses with ethanolic extract (EL) from GS. EL was extracted and subjected to TLC, total triterpenoid content (19.76 ± 0.02 W/W) and sterol content (0.1837 ± 0.0046 W/W) estimation followed by identification of phytoconstituents using HRLC-MS and GC-MS. PK interaction study with CYP2C9, CYP3A4 and CYP1A2 enzymes were assessed using TOLBU, AMLO and PHENA respectively to index cytochrome (CYP) mediated interaction in rats after concomitant administration of EL extract (400 mg/kg) from GS for 7 days. The rats were divided into four groups for each PK study where, group I and II were positive control for low and high dose of test drugs (CYP substrates) while group II and IV were orally administered EL. The PK study result of PHENA indicated that area under the plasma concentration-time curve (AUC 0-24 ) was significantly (P < 0.0001) increased by 1.4 (L) and 1.3-fold (H), plasma concentration (C max ) was significantly (P < 0.001) increased by 1.6 (L) and 1.4-fold (H). Whereas for TOLBU; clearance rate (CL) was significantly (P < 0.0001) decreased by 2.4 (L) and 2.3-fold (H), C max, was significantly (P < 0.001) decreased by 26.5% (L) and 50.4% (H) and AUC 0-24 was significantly (P < 0.0001) decreased by 59.8% (L) and 57.5% (H). Thus, EL is seen to be interacting with CYP1A2 by inhibiting its metabolic activity. HRLC-MS and GC-MS helped identify the presence of gymnemic acid (GA), triterpenoids and steroids in EL which could be the reason for PK interaction of CYP1A2 and CYP2C9. Also, in silico structure based site of metabolism study showed Fe accessibility and intrinsic activity for GA-IV, GA-VI, GA-VII and GA

  3. A PBPK Model to Predict Disposition of CYP3A-Metabolized Drugs in Pregnant Women: Verification and Discerning the Site of CYP3A Induction.

    PubMed

    Ke, A B; Nallani, S C; Zhao, P; Rostami-Hodjegan, A; Unadkat, J D

    2012-09-26

    Besides logistical and ethical concerns, evaluation of safety and efficacy of medications in pregnant women is complicated by marked changes in pharmacokinetics (PK) of drugs. For example, CYP3A activity is induced during the third trimester (T3). We explored whether a previously published physiologically based pharmacokinetic (PBPK) model could quantitatively predict PK profiles of CYP3A-metabolized drugs during T3, and discern the site of CYP3A induction (i.e., liver, intestine, or both). The model accounted for gestational age-dependent changes in maternal physiological function and hepatic CYP3A activity. For model verification, mean plasma area under the curve (AUC), peak plasma concentration (Cmax), and trough plasma concentration (Cmin) of midazolam (MDZ), nifedipine (NIF), and indinavir (IDV) were predicted and compared with published studies. The PBPK model successfully predicted MDZ, NIF, and IDV disposition during T3. A sensitivity analysis suggested that CYP3A induction in T3 is most likely hepatic and not intestinal. Our PBPK model is a useful tool to evaluate different dosing regimens during T3 for drugs cleared primarily via CYP3A metabolism.CPT: Pharmacometrics & Systems Pharmacology (2012) 1, e3; doi:10.1038/psp.2012.2; advance online publication 26 September 2012.

  4. Pioglitazone, an in vitro inhibitor of CYP2C8 and CYP3A4, does not increase the plasma concentrations of the CYP2C8 and CYP3A4 substrate repaglinide.

    PubMed

    Kajosaari, Lauri I; Jaakkola, Tiina; Neuvonen, Pertti J; Backman, Janne T

    2006-03-01

    Pioglitazone, a thiazolidinedione antidiabetic, inhibits cytochrome P450 (CYP) 2C8 and CYP3A4 enzymes in vitro. Repaglinide, a meglitinide analogue antidiabetic, is metabolised by CYP2C8 and CYP3A4. In patients with type 2 diabetes, the pioglitazone-repaglinide combination has acted synergistically on glycaemic parameters. Our aim was to determine whether pioglitazone increases the plasma concentrations of repaglinide. In a randomized, 2-phase cross-over study, 12 healthy volunteers received 30 mg pioglitazone or placebo once daily for 5 days. On day 5, they ingested a single 0.25 mg dose of repaglinide 1 h after the last pretreatment dose. Plasma repaglinide and pioglitazone, and blood glucose concentrations were measured for 12 h. During the pioglitazone phase, the mean peak plasma repaglinide concentration (C(max)) and the total area under the concentration-time curve [AUC(0-infinity)] of repaglinide were 100% (range 53-157%, P=0.99) and 90% (range 63-120%, P=0.22), respectively, of those during the placebo phase. Also the half-life of repaglinide was unaffected, but the median peak time of repaglinide was shortened from 40 min to 20 min by pioglitazone (P=0.014). The short-term pioglitazone administration did not modify the blood glucose-lowering effect of a single dose of repaglinide. Pioglitazone does not increase the plasma concentrations of repaglinide, indicating that the inhibitory effect of pioglitazone on CYP2C8 and CYP3A4 is very weak in vivo, probably due to its extensive plasma protein binding. The synergistic effect of repaglinide and pioglitazone on the glycaemic parameters, seen in patients with type 2 diabetes during their long-term use, is unlikely to be caused by inhibition of repaglinide metabolism by pioglitazone.

  5. Common CYP2D6 polymorphisms affecting alternative splicing and transcription: long-range haplotypes with two regulatory variants modulate CYP2D6 activity

    PubMed Central

    Wang, Danxin; Poi, Ming J.; Sun, Xiaochun; Gaedigk, Andrea; Leeder, J. Steven; Sadee, Wolfgang

    2014-01-01

    Cytochrome P450 2D6 (CYP2D6) is involved in the metabolism of 25% of clinically used drugs. Genetic polymorphisms cause substantial variation in CYP2D6 activity and serve as biomarkers guiding drug therapy. However, genotype–phenotype relationships remain ambiguous except for poor metabolizers carrying null alleles, suggesting the presence of yet unknown genetic variants. Searching for regulatory CYP2D6 polymorphisms, we find that a SNP defining the CYP2D6*2 allele, rs16947 [R296C, 17–60% minor allele frequency (MAF)], previously thought to convey normal activity, alters exon 6 splicing, thereby reducing CYP2D6 expression at least 2-fold. In addition, two completely linked SNPs (rs5758550/rs133333, MAF 13–42%) increase CYP2D6 transcription more than 2-fold, located in a distant downstream enhancer region (>100 kb) that interacts with the CYP2D6 promoter. In high linkage disequilibrium (LD) with each other, rs16947 and the enhancer SNPs form haplotypes that affect CYP2D6 enzyme activity in vivo. In a pediatric cohort of 164 individuals, rs16947 alone (minor haplotype frequency 28%) was associated with reduced CYP2D6 metabolic activity (measured as dextromethorphan/metabolite ratios), whereas rs5758550/rs133333 alone (frequency 3%) resulted in increased CYP2D6 activity, while haplotypes containing both rs16947 and rs5758550/rs133333 were similar to the wild-type. Other alleles used in biomarker panels carrying these variants such as CYP2D6*41 require re-evaluation of independent effects on CYP2D6 activity. The occurrence of two regulatory variants of high frequency and in high LD, residing on a long haplotype, highlights the importance of gene architecture, likely shaped by evolutionary selection pressures, in determining activity of encoded proteins. PMID:23985325

  6. A PXR reporter gene assay in a stable cell culture system: CYP3A4 and CYP2B6 induction by pesticides.

    PubMed

    Lemaire, Géraldine; de Sousa, Georges; Rahmani, Roger

    2004-12-15

    A stable hepatoma cell line expressing the human pregnane X receptor (hPXR) and the cytochrome P4503A4 (CYP3A4) distal and proximal promoters plus the luciferase reporter gene was developed to assess the ability of several xenobiotic agents to induce CYP3A4 and CYP2B6. After selection for neomycin resistance, one clone, displaying high luciferase activity in response to rifampicin (RIF), was isolated and the stable expression of hPXR was confirmed by reverse transcription polymerase chain reaction (RT-PCR). Dose-response curves were generated by treating these cells with increasing concentrations of RIF, phenobarbital (PB), clotrimazole (CLOT) or 5beta-pregnane-3,20-dione (5beta-PREGN). The effective concentrations for half maximal response (EC50) were determined for each of these compounds. RIF was the most effective compound, with maximal luciferase activity induced at 10 microM. The agonist activities of PXR-specific inducers measured using our stable model were consistent with those measured in transient transfectants. The abilities of organochlorine (OC), organophosphate (OP) and pyrethroid pesticides (PY) to activate hPXR were also assessed and found to be consistent with the abilities of these compounds to induce CYP3A4 and CYP2B6 in primary culture of human hepatocytes. These results suggest that CYP3A4 and CYP2B6 regulation through PXR activation by persistent pesticides may have an impact on the metabolism of xenobiotic agents and endogenous steroid hormones. Our model provides a useful tool for studying hPXR activation and for identifying agents capable of inducing CYP3A4 and CYP2B6.

  7. Cytochrome P450 1A2 (CYP1A2) activity, mammographic density, and oxidative stress: a cross-sectional study

    PubMed Central

    Hong, Chi-Chen; Tang, Bing-Kou; Rao, Venketeshwer; Agarwal, Sanjiv; Martin, Lisa; Tritchler, David; Yaffe, Martin; Boyd, Norman F

    2004-01-01

    Introduction Mammographically dense breast tissue is a strong predictor of breast cancer risk, and is influenced by both mitogens and mutagens. One enzyme that is able to affect both the mitogenic and mutagenic characteristics of estrogens is cytochrome P450 1A2 (CYP1A2), which is principally responsible for the metabolism of 17β-estradiol. Methods In a cross-sectional study of 146 premenopausal and 149 postmenopausal women, we examined the relationships between CYP1A2 activity, malondialdehyde (MDA) levels, and mammographic density. In vivo CYP1A2 activity was assessed by measuring caffeine metabolites in urine. Levels of serum and urinary MDA, and MDA–deoxyguanosine adducts in DNA were measured. Mammograms were digitized and measured using a computer-assisted method. Results CYP1A2 activity in postmenopausal women, but not in premenopausal women, was positively associated with mammographic density, suggesting that increased CYP1A2 activity after the menopause is a risk factor for breast cancer. In premenopausal women, but not in postmenopausal women, CYP1A2 activity was positively associated with serum and urinary MDA levels; there was also some evidence that CYP1A2 activity was more positively associated with percentage breast density when MDA levels were high, and more negatively associated with percentage breast density when MDA levels were low. Conclusion These findings provide further evidence that variation in the activity level of enzymes involved in estrogen metabolism is related to levels of mammographic density and potentially to breast cancer risk. PMID:15217501

  8. Structural characterization of CYP144A1 - a cytochrome P450 enzyme expressed from alternative transcripts in Mycobacterium tuberculosis

    NASA Astrophysics Data System (ADS)

    Chenge, Jude; Kavanagh, Madeline E.; Driscoll, Max D.; McLean, Kirsty J.; Young, Douglas B.; Cortes, Teresa; Matak-Vinkovic, Dijana; Levy, Colin W.; Rigby, Stephen E. J.; Leys, David; Abell, Chris; Munro, Andrew W.

    2016-05-01

    Mycobacterium tuberculosis (Mtb) causes the disease tuberculosis (TB). The virulent Mtb H37Rv strain encodes 20 cytochrome P450 (CYP) enzymes, many of which are implicated in Mtb survival and pathogenicity in the human host. Bioinformatics analysis revealed that CYP144A1 is retained exclusively within the Mycobacterium genus, particularly in species causing human and animal disease. Transcriptomic annotation revealed two possible CYP144A1 start codons, leading to expression of (i) a “full-length” 434 amino acid version (CYP144A1-FLV) and (ii) a “truncated” 404 amino acid version (CYP144A1-TRV). Computational analysis predicted that the extended N-terminal region of CYP144A1-FLV is largely unstructured. CYP144A1 FLV and TRV forms were purified in heme-bound states. Mass spectrometry confirmed production of intact, His6-tagged forms of CYP144A1-FLV and -TRV, with EPR demonstrating cysteine thiolate coordination of heme iron in both cases. Hydrodynamic analysis indicated that both CYP144A1 forms are monomeric. CYP144A1-TRV was crystallized and the first structure of a CYP144 family P450 protein determined. CYP144A1-TRV has an open structure primed for substrate binding, with a large active site cavity. Our data provide the first evidence that Mtb produces two different forms of CYP144A1 from alternative transcripts, with CYP144A1-TRV generated from a leaderless transcript lacking a 5‧-untranslated region and Shine-Dalgarno ribosome binding site.

  9. Interactions of endosulfan and methoxychlor involving CYP3A4 and CYP2B6 in human HepaRG cells.

    PubMed

    Savary, Camille C; Jossé, Rozenn; Bruyère, Arnaud; Guillet, Fabrice; Robin, Marie-Anne; Guillouzo, André

    2014-08-01

    Humans are usually exposed to several pesticides simultaneously; consequently, combined actions between pesticides themselves or between pesticides and other chemicals need to be addressed in the risk assessment. Many pesticides are efficient activators of pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR), two major nuclear receptors that are also activated by other substrates. In the present work, we searched for interactions between endosulfan and methoxychlor, two organochlorine pesticides whose major routes of metabolism involve CAR- and PXR-regulated CYP3A4 and CYP2B6, and whose mechanisms of action in humans remain poorly understood. For this purpose, HepaRG cells were treated with both pesticides separately or in mixture for 24 hours or 2 weeks at concentrations relevant to human exposure levels. In combination they exerted synergistic cytotoxic effects. Whatever the duration of treatment, both compounds increased CYP3A4 and CYP2B6 mRNA levels while differently affecting their corresponding activities. Endosulfan exerted a direct reversible inhibition of CYP3A4 activity that was confirmed in human liver microsomes. By contrast, methoxychlor induced this activity. The effects of the mixture on CYP3A4 activity were equal to the sum of those of each individual compound, suggesting an additive effect of each pesticide. Despite CYP2B6 activity being unchanged and increased with endosulfan and methoxychlor, respectively, no change was observed with their mixture, supporting an antagonistic effect. Altogether, our data suggest that CAR and PXR activators endosulfan and methoxychlor can interact together and with other exogenous substrates in human hepatocytes. Their effects on CYP3A4 and CYP2B6 activities could have important consequences if extrapolated to the in vivo situation. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  10. The formation of estrogen-like tamoxifen metabolites and their influence on enzyme activity and gene expression of ADME genes.

    PubMed

    Johänning, Janina; Kröner, Patrick; Thomas, Maria; Zanger, Ulrich M; Nörenberg, Astrid; Eichelbaum, Michel; Schwab, Matthias; Brauch, Hiltrud; Schroth, Werner; Mürdter, Thomas E

    2018-03-01

    Tamoxifen, a standard therapy for breast cancer, is metabolized to compounds with anti-estrogenic as well as estrogen-like action at the estrogen receptor. Little is known about the formation of estrogen-like metabolites and their biological impact. Thus, we characterized the estrogen-like metabolites tamoxifen bisphenol and metabolite E for their metabolic pathway and their influence on cytochrome P450 activity and ADME gene expression. The formation of tamoxifen bisphenol and metabolite E was studied in human liver microsomes and Supersomes™. Cellular metabolism and impact on CYP enzymes was analyzed in upcyte® hepatocytes. The influence of 5 µM of tamoxifen, anti-estrogenic and estrogen-like metabolites on CYP activity was measured by HPLC MS/MS and on ADME gene expression using RT-PCR analyses. Metabolite E was formed from tamoxifen by CYP2C19, 3A and 1A2 and from desmethyltamoxifen by CYP2D6, 1A2 and 3A. Tamoxifen bisphenol was mainly formed from (E)- and (Z)-metabolite E by CYP2B6 and CYP2C19, respectively. Regarding phase II metabolism, UGT2B7, 1A8 and 1A3 showed highest activity in glucuronidation of tamoxifen bisphenol and metabolite E. Anti-estrogenic metabolites (Z)-4-hydroxytamoxifen, (Z)-endoxifen and (Z)-norendoxifen inhibited the activity of CYP2C enzymes while tamoxifen bisphenol consistently induced CYPs similar to rifampicin and phenobarbital. On the transcript level, highest induction up to 5.6-fold was observed for CYP3A4 by tamoxifen, (Z)-4-hydroxytamoxifen, tamoxifen bisphenol and (E)-metabolite E. Estrogen-like tamoxifen metabolites are formed in CYP-dependent reactions and are further metabolized by glucuronidation. The induction of CYP activity by tamoxifen bisphenol and the inhibition of CYP2C enzymes by anti-estrogenic metabolites may lead to drug-drug-interactions.

  11. Association between cytochrome CYP17A1, CYP3A4, and CYP3A43 polymorphisms and prostate cancer risk and aggressiveness in a Korean study population

    PubMed Central

    Han, Jun Hyun; Lee, Yong Seong; Kim, Hae Jong; Lee, Shin Young; Myung, Soon Chul

    2015-01-01

    In this study, we evaluated genetic variants of the androgen metabolism genes CYP17A1, CYP3A4, and CYP3A43 to determine whether they play a role in the development of prostate cancer (PCa) in Korean men. The study population included 240 pathologically diagnosed cases of PCa and 223 age-matched controls. Among the 789 single-nucleotide polymorphism (SNP) database variants detected, 129 were reported in two Asian groups (Han Chinese and Japanese) in the HapMap database. Only 21 polymorphisms of CYP17A1, CYP3A4, and CYP3A43 were selected based on linkage disequilibrium in Asians (r2 = 1), locations (SNPs in exons were preferred), and amino acid changes and were assessed. In addition, we performed haplotype analysis for the 21 SNPs in CYP17A1, CYP3A4, and CYP3A43 genes. To determine the association between genotype and haplotype distributions of patients and controls, logistic analyses were carried out, controlling for age. Twelve sequence variants and five major haplotypes were identified in CYP17A1. Five sequence variants and two major haplotypes were identified in CYP3A4. Four sequence variants and four major haplotypes were observed in CYP3A43. CYP17A1 haplotype-2 (Ht-2) (odds ratio [OR], 1.51; 95% confidence interval [CI], 1.04–2.18) was associated with PCa susceptibility. CYP3A4 Ht-2 (OR: 1.87; 95% CI: 1.02–3.43) was associated with PCa metastatic potential according to tumor stage. rs17115149 (OR: 1.96; 95% CI: 1.04–3.68) and CYP17A1 Ht-4 (OR: 2.01; 95% CI: 1.07–4.11) showed a significant association with histologic aggressiveness according to Gleason score. Genetic variants of CYP17A1 and CYP3A4 may play a role in the development of PCa in Korean men. PMID:25337833

  12. Association between cytochrome CYP17A1, CYP3A4, and CYP3A43 polymorphisms and prostate cancer risk and aggressiveness in a Korean study population.

    PubMed

    Han, Jun Hyun; Lee, Yong Seong; Kim, Hae Jong; Lee, Shin Young; Myung, Soon Chul

    2015-01-01

    In this study, we evaluated genetic variants of the androgen metabolism genes CYP17A1, CYP3A4, and CYP3A43 to determine whether they play a role in the development of prostate cancer (PCa) in Korean men. The study population included 240 pathologically diagnosed cases of PCa and 223 age-matched controls. Among the 789 single-nucleotide polymorphism (SNP) database variants detected, 129 were reported in two Asian groups (Han Chinese and Japanese) in the HapMap database. Only 21 polymorphisms of CYP17A1, CYP3A4, and CYP3A43 were selected based on linkage disequilibrium in Asians (r2 = 1), locations (SNPs in exons were preferred), and amino acid changes and were assessed. In addition, we performed haplotype analysis for the 21 SNPs in CYP17A1, CYP3A4, and CYP3A43 genes. To determine the association between genotype and haplotype distributions of patients and controls, logistic analyses were carried out, controlling for age. Twelve sequence variants and five major haplotypes were identified in CYP17A1. Five sequence variants and two major haplotypes were identified in CYP3A4. Four sequence variants and four major haplotypes were observed in CYP3A43. CYP17A1 haplotype-2 (Ht-2) (odds ratio [OR], 1.51; 95% confidence interval [CI], 1.04-2.18) was associated with PCa susceptibility. CYP3A4 Ht-2 (OR: 1.87; 95% CI: 1.02-3.43) was associated with PCa metastatic potential according to tumor stage. rs17115149 (OR: 1.96; 95% CI: 1.04-3.68) and CYP17A1 Ht-4 (OR: 2.01; 95% CI: 1.07-4.11) showed a significant association with histologic aggressiveness according to Gleason score. Genetic variants of CYP17A1 and CYP3A4 may play a role in the development of PCa in Korean men.

  13. Demethylation of neferine in human liver microsomes and formation of quinone methide metabolites mediated by CYP3A4 accentuates its cytotoxicity.

    PubMed

    Shen, Qi; Zuo, Minjuan; Ma, Li; Tian, Ye; Wang, Lu; Jiang, Huidi; Zhou, Quan; Zhou, Hui; Yu, Lushan; Zeng, Su

    2014-12-05

    Neferine is a bisbenzylisoquinoline alkaloid isolated from the seed embryos of Nelumbonucifera Gaertn (Lotus) with various potent pharmacological effects. Recently, neferine has attracted attention for its anti-tumor activities. Our study explored its metabolism and cytotoxicity mechanism. Approaches using chemical inhibitors and recombinant human enzymes to characterize the involved enzymes and kinetic studies indicated that the demethylation of neferine by cytochrome P450 (CYP) 2D6 and CYP3A4 fitted a biphasic kinetic profile. Glutathione (GSH) was used as a trapping agent to identify reactive metabolites of neferine, and four novel GSH conjugates were detected with [M+H](+) ions at m/z 902.4, 916.2, 916.1, and 930.4. Based on its structure containing para-methylene phenol and results from a product ion scan, GSH tends to conjugate with C9' after undergoing oxidative metabolism to form the binding site predominated by CYP3A4. Furthermore, the addition of recombinant human GSTA1, GSTT1, and GSTP1 had little effect on the production of the GSH conjugates. In a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide assay, combined with the GSH modulators l-buthionine sulfoximine or N-acetyl-l-cysteine, neferine treatment of MDCK-hCYP3A4 and HepG2 cells revealed that CYP3A4 expression and cellular GSH content could cause an EC50 shift. Metabolic activation mediated by CYP3A4 and GSH depletion significantly enhanced neferine-induced cytotoxicity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Epoxidation of the methamphetamine pyrolysis product, trans-phenylpropene, to trans-phenylpropylene oxide by CYP enzymes and stereoselective glutathione adduct formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanga, Madhu; Younis, Islam R.; Tirumalai, Padma S.

    2006-03-01

    Pyrolytic products of smoked methamphetamine hydrochloride are well established. Among the various degradation products formed, trans-phenylpropene (trans-{beta}-methylstyrene) is structurally similar to styrene analogues known to be bioactivated by CYP enzymes. In human liver microsomes, trans-phenylpropene was converted to the epoxide trans-phenylpropylene oxide (trans-2-methyl-3-phenyloxirane) and cinnamyl alcohol. Incubation of trans-phenylpropene with microsomes in the presence of enzyme-specific P450 enzyme inhibitors indicated the involvement of CYP2E1, CYP1A2, and CYP3A4 enzymes. Both (R,R)-phenylpropylene oxide and (S,S)-phenylpropylene oxide were formed in human liver microsomal preparations. Enantiomers of trans-phenylpropylene oxide were stereoselectively and regioselectively conjugated in a Phase II drug metabolism reaction catalyzed by humanmore » liver cytosolic enzymes consisting of conjugation with glutathione. The structure of the phenylpropylene oxide-glutathione adduct is consistent with nucleophilic ring-opening by attack at the benzylic carbon. Exposure of cultured C6 glial cells to (S,S)-phenylpropylene oxide produced a cytotoxic response in a concentration-dependent manner based on cell degeneration and death.« less

  15. Human induced pluripotent stem cell line with cytochrome P450 enzyme polymorphism (CYP2C19*2/CYP3A5*3C) generated from lymphoblastoid cells.

    PubMed

    Lee, Jaehun; Woo, Dong-Hun; Park, Han-Jin; Park, Kijung; Ko, Duck Sung; Kim, Jong-Hoon

    2018-03-01

    Cytochrome P450 (CYP) comprises a superfamily of monooxygenase responsible for the metabolism of xenobiotics and approximately 75% of drugs in use today. Thus, genetic polymorphisms in CYP genes contribute to interindividual differences in hepatic metabolism of drugs, affecting on individual drug efficacy and may cause adverse effects. Here, we generated a human induced pluripotent stem cell (hiPSC) line with pharmacologically important traits (CYP2C19*2/CYP3A5*3C), which are highly polymorphic in Asian from lymphoblastoid cells. This hiPSC line could be a valuable source for predicting individual drug responses in the drug screening process that uses hiPSC-derived somatic cells, including hepatocytes. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Consequences of daily corticosteroid dosing with or without pre-treatment with quinidine on the in vivo cytochrome P450 2D (CYP2D) enzyme in rats: effect on O-demethylation activity of dextromethorphan and expression levels of CYP2D1 mRNA.

    PubMed

    Giri, Poonam; Delvadia, Prashant; Gupta, Laxmikant; Patel, Nirmal; Trivedi, Priyal; Lad, Krishna; Patel, Hiren M; Srinivas, Nuggehally R

    2018-01-01

    1. Present investigation was carried out in rats to study influence of corticosteroids after repeated dosing with/without pre-treatment with CYP2D inhibitor quinidine on the CYP2D1 mRNA levels and CYP2D enzyme activity using dextromethorphan as probe substrate. 2. CYP2D1 mRNA was measured in liver homogenate using quantitative real-time polymerase chain reaction [qRT-PCR] and enzymatic reaction was studied ex vivo in liver S-9 fractions of rats treated with oral 10 mg/kg dexamethasone or prednisolone for five days or pre-treated with quinidine and followed by treatment with oral 10 mg/kg corticosteroids for five days. 3. Five days repeat dosing of dexamethasone or prednisolone decreased the activity of the rat liver CYP2D by 37% and 34%, at 30 min incubation and decreased CYP2D1 mRNA levels by 62% and 61%, respectively. 4. Pre-treatment of quinidine decreased the enzymatic activity of rat CYP2D by 58% and did not potentiate CYP2D inhibition by corticosteroids. This observation was further complemented by qRT-PCR data. 5. Corticosteroids caused CYP2D inhibition in rats vs. literature evidence of CYP2D induction in human hepatocytes/pregnant humans demonstrating lack of concordance. In vivo inhibition should be factored for interpretation of pharmacokinetic data of CYP2D substrates when treated with corticosteroids in rats.

  17. Engineering a self-sufficient Mycobacterium tuberculosis CYP130 by gene fusion with the reductase-domain of CYP102A1 from Bacillus megaterium.

    PubMed

    Ortega Ugalde, Sandra; Luirink, Rosa A; Geerke, Daan P; Vermeulen, Nico P E; Bitter, Wilbert; Commandeur, Jan N M

    2018-03-01

    CYP130 belongs to the subset of cytochrome P450s from Mycobacterium tuberculosis (Mtb) that have been structurally characterized. Despite several efforts for its functional characterization, CYP130 is still considered an orphan enzyme for which no endogenous or exogenous substrate has been identified. In addition, functional redox-partners for CYP130 have not been clearly established yet, hampering the elucidation of its physiological role. In the present study, a catalytically active fusion protein involving CYP130 and the NADPH reductase-domain of CYP102A1 from Bacillus megaterium was created. By screening a panel of known substrates of human P450s, dextromethorphan N-demethylation was identified as a reaction catalyzed by CYP130. The fusion enzyme showed higher catalytic activity, when compared to CYP130 reconstituted with a selection of non-native redox-partners. Molecular dynamics simulation studies based on the crystal structure of CYP130 revealed two primary docking poses of dextromethorphan within the active site consistent with the experimentally observed N-demethylation reaction during the entire molecular dynamics simulation. The dextromethorphan N-demethylation reaction was strongly inhibited by azole-drugs and maybe applied to identify mechanism-based inhibitors of CYP130. Furthermore, the present active CYP130-fusion protein may facilitate the identification of endogenous substrates from Mtb. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Oral intake of curcumin markedly activated CYP 3A4: in vivo and ex-vivo studies

    PubMed Central

    Hsieh, Yow-Wen; Huang, Ching-Ya; Yang, Shih-Ying; Peng, Yu-Hsuan; Yu, Chung-Ping; Chao, Pei-Dawn Lee; Hou, Yu-Chi

    2014-01-01

    Curcumin, a specific secondary metabolite of Curcuma species, has potentials for a variety of beneficial health effects. It is nowadays used as a dietary supplement. Everolimus (EVL) is an immunosuppressant indicated for allograft rejection and cancer therapy, but with narrow therapeutic window. EVL is a substrate of P-glycoprotein (P-gp) and cytochrome P450 3A4 (CYP3A4). This study investigated the effect of coadministration of curcumin on the pharmacokinetics of EVL in rats and the underlying mechanisms. EVL (0.5 mg/kg) was orally administered without and with 50 and 100 mg/kg of curcumin, respectively, in rats. Blood samples were collected at specific time points and EVL concentrations in blood were determined by QMS® immunoassay. The underlying mechanisms were evaluated using cell model and recombinant CYP 3A4 isozyme. The results indicated that 50 and 100 mg/kg of curcumin significantly decreased the AUC0-540 of EVL by 70.6% and 71.5%, respectively, and both dosages reduced the Cmax of EVL by 76.7%. Mechanism studies revealed that CYP3A4 was markedly activated by curcumin metabolites, which apparently overrode the inhibition effects of curcumin on P-gp. In conclusion, oral intake of curcumin significantly decreased the bioavailability of EVL, a probe substrate of P-gp/CYP 3A4, mainly through marked activation on CYP 3A4. PMID:25300360

  19. Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population.

    PubMed

    Fukushima-Uesaka, Hiromi; Saito, Yoshiro; Watanabe, Hidemi; Shiseki, Kisho; Saeki, Mayumi; Nakamura, Takahiro; Kurose, Kouichi; Sai, Kimie; Komamura, Kazuo; Ueno, Kazuyuki; Kamakura, Shiro; Kitakaze, Masafumi; Hanai, Sotaro; Nakajima, Toshiharu; Matsumoto, Kenji; Saito, Hirohisa; Goto, Yu-ichi; Kimura, Hideo; Katoh, Masaaki; Sugai, Kenji; Minami, Narihiro; Shirao, Kuniaki; Tamura, Tomohide; Yamamoto, Noboru; Minami, Hironobu; Ohtsu, Atsushi; Yoshida, Teruhiko; Saijo, Nagahiro; Kitamura, Yutaka; Kamatani, Naoyuki; Ozawa, Shogo; Sawada, Jun-ichi

    2004-01-01

    In order to identify single nucleotide polymorphisms (SNPs) and haplotype frequencies of CYP3A4 in a Japanese population, the distal enhancer and proximal promoter regions, all exons, and the surrounding introns were sequenced from genomic DNA of 416 Japanese subjects. We found 24 SNPs, including 17 novel ones: two in the distal enhancer, four in the proximal promoter, one in the 5'-untranslated region (UTR), seven in the introns, and three in the 3'-UTR. The most common SNP was c.1026+12G>A (IVS10+12G>A), with a 0.249 frequency. Four non-synonymous SNPs, c.554C>G (p.T185S, CYP3A4(*)16), c.830_831insA (p.E277fsX8, (*)6), c.878T>C (p.L293P, (*)18), and c.1088 C>T (p.T363M, (*)11) were found with frequencies of 0.014, 0.001, 0.028, and 0.002, respectively. No SNP was found in the known nuclear transcriptional factor-binding sites in the enhancer and promoter regions. Using these 24 SNPs, 16 haplotypes were unambiguously identified, and nine haplotypes were inferred by aid of an expectation-maximization-based program. In addition, using data from 186 subjects enabled a close linkage to be found between CYP3A4 and CYP3A5 SNPs, especially among the SNPs at c.1026+12 in CYP3A4 and c.219-237 (IVS3-237, a key SNP site for CYP3A5(*)3), c.865+77 (IVS9+77) and c.1523 in CYP3A5. This result suggested that CYP3A4 and CYP3A5 are within the same gene block. Haplotype analysis between CYP3A4 and CYP3A5 revealed several major haplotype combinations in the CYP3A4-CYP3A5 block. Our findings provide fundamental and useful information for genotyping CYP3A4 (and CYP3A5) in the Japanese, and probably Asian populations. Copyright 2003 Wiley-Liss, Inc.

  20. Investigation of the in vivo activity of CYP3A in Brazilian volunteers: comparison of midazolam and omeprazole as drug markers.

    PubMed

    Rocha, Adriana; Coelho, Eduardo B; Moussa, Soraia A P; Lanchote, Vera L

    2008-09-01

    This study compares midazolam with omeprazole as marker drugs for the evaluation of CYP3A activity in nine healthy self-reported white Brazilian volunteers. Omeprazole was also used to evaluate the CYP2C19 phenotype. The volunteers received p.o. 20 mg omeprazole, and blood samples were collected 3.5 h after drug administration. After a washout period of 10 days, the volunteers received p.o. 15 mg midazolam maleate, and serial blood samples were collected up to 6 h after administration of the drug. CYP2C19 was genotyped for the allelic variants CYP2C19*1, CYP2C19*2, CYP2C19*3, and CYP2C19*17. Analysis of omeprazole, hydroxyomeprazole, omeprazole sulfone, and midazolam in plasma was carried out by LC-MS/MS. The volunteers genotyped as CYP2C19*1*17, CYP2C19*17*17, CYP2C19*1*1 (n = 8), or CYP2C19*17*2 (n = 1) presented a median hydroxylation index (omeprazole/hydroxyomeprazole) of 1.35, indicating that all of them were extensive metabolizers of CYP2C19. The volunteers (n = 9) presented a 0.12 log of the omeprazole/sulfone ratio and a median oral clearance of midazolam of 17.89 ml min(-1) kg(-1), suggesting normal CYP3A activity. Orthogonal regression analysis between midazolam clearance and log of the plasma concentrations of the omeprazole/omeprazole sulfone ratio (R = -0.7544, P < 0.05) suggests that both midazolam and omeprazole can be used as markers of CYP3A activity in the population investigated.

  1. Fatal Methadone Toxicity: Potential Role of CYP3A4 Genetic Polymorphism

    PubMed Central

    Richards-Waugh, Lauren L.; Primerano, Donald A.; Dementieva, Yulia; Kraner, James C.; Rankin, Gary O.

    2014-01-01

    Methadone is difficult to administer as a therapeutic agent because of a wide range of interindividual pharmacokinetics, likely due to genetic variability of the CYP450 enzymes responsible for metabolism to its principal metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP). CYP3A4 is one of the primary CYP450 isoforms responsible for the metabolism of methadone to EDDP in humans. The purpose of this study was to evaluate the role of CYP3A4 genetic polymorphisms in accidental methadone fatalities. A study cohort consisting of 136 methadone-only and 92 combined methadone/benzodiazepine fatalities was selected from cases investigated at the West Virginia and Kentucky Offices of the Chief Medical Examiner. Seven single nucleotide polymorphisms (SNPs) were genotyped within the CYP3A4 gene. Observed allelic and genotypic frequencies were compared with expected frequencies obtained from The National Center for Biotechnology Information dbSNP database. SNPs rs2242480 and rs2740574 demonstrated an apparent enrichment within the methadone-only overdose fatalities compared with the control group and the general population. This enrichment was not apparent in the methadone/benzodiazepine cases for these two SNPs. Our findings indicate that there may be two or more SNPs on the CYP3A4 gene that cause or contribute to the methadone poor metabolizer phenotype. PMID:25217544

  2. Impact of fraction unbound, CYP3A, and CYP2D6 in vivo activities, and other potential covariates to the clearance of tramadol enantiomers in patients with neuropathic pain.

    PubMed

    de Moraes, Natália V; Lauretti, Gabriela R; Coelho, Eduardo B; Godoy, Ana Leonor P C; Neves, Daniel V; Lanchote, Vera L

    2016-04-01

    The pharmacokinetics of tramadol is characterized by a large interindividual variability, which is partially attributed to polymorphic CYP2D6 metabolism. The contribution of CYP3A, CYP2B6, fraction unbound, and other potential covariates remains unknown. This study aimed to investigate the contribution of in vivo activities of cytochrome P450 (CYP) 2D6 and 3A as well as other potential covariates (CYP2B6 genotype to the SNP g.15631G>T, fraction unbound, age, body weight, creatinine clearance) to the enantioselective pharmacokinetics of tramadol. Thirty patients with neuropathic pain and phenotyped as CYP2D6 extensive metabolizers were treated with a single oral dose of 100 mg tramadol. Multiple linear regressions were performed to determine the contribution of CYP activities and other potential covariates to the clearance of tramadol enantiomers. The apparent total clearances were 44.9 (19.1-102-2) L/h and 55.2 (14.8-126.0) L/h for (+)- and (-)-tramadol, respectively [data presented as median (minimum-maximum)]. Between 79 and 83% of the overall variation in apparent clearance of tramadol enantiomers was explained by fraction unbound, CYP2D6, and CYP3A in vivo activities and body weight. Fraction unbound explained 47 and 41% of the variation in clearance of (+)-tramadol and (-)-tramadol, respectively. Individually, CYP2D6 and CYP3A activities were shown to have moderate contribution on clearance of tramadol enantiomers (11-16% and 11-18%, respectively). In conclusion, factors affecting fraction unbound of drugs (such as hyperglycemia or co-administration of drugs highly bound to plasma proteins) should be monitored, because this parameter dominates the elimination of tramadol enantiomers. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  3. Optical Isomers of Atorvastatin, Rosuvastatin and Fluvastatin Enantiospecifically Activate Pregnane X Receptor PXR and Induce CYP2A6, CYP2B6 and CYP3A4 in Human Hepatocytes

    PubMed Central

    Korhonova, Martina; Doricakova, Aneta; Dvorak, Zdenek

    2015-01-01

    Atorvastatin, fluvastatin and rosuvastatin are drugs used for treatment of hypercholesterolemia. They cause numerous drug-drug interactions by inhibiting and inducing drug-metabolizing cytochromes P450. These three statins exist in four optical forms, but they are currently used as enantiopure drugs, i.e., only one single enantiomer. There are numerous evidences that efficacy, adverse effects and toxicity of drugs may be enantiospecific. Therefore, we investigated the effects of optical isomers of atorvastatin, fluvastatin and rosuvastatin on the expression of drug-metabolizing P450s in primary human hepatocytes, using western blots and RT-PCR for measurement of proteins and mRNAs, respectively. The activity of P450 transcriptional regulators, including pregnane X receptor (PXR), aryl hydrocarbon receptor (AhR) and glucocorticoid receptor (GR), was assessed by gene reporter assays and EMSA. Transcriptional activity of AhR was not influenced by any statin tested. Basal transcriptional activity of GR was not affected by tested statins, but dexamethasone-inducible activity of GR was dose-dependently and enantioselectively inhibited by fluvastatin. Basal and ligand-inducible transcriptional activity of PXR was dose-dependently influenced by all tested statins, and the potency and efficacy between individual optical isomers varied depending on statin and optical isomer. The expression of CYP1A1 and CYP1A2 in human hepatocytes was not influenced by tested statins. All statins induced CYP2A6, CYP2B6 and CYP3A4, and the effects on CYP2C9 were rather modulatory. The effects varied between statins and enantiomers and induction potency decreased in order: atorvastatin (RR>RS = SR>SS) > fluvastatin (SR>RS = SS>RR) >> rosuvastatin (only RS active). The data presented here might be of toxicological and clinical importance. PMID:26366873

  4. Milk thistle, a herbal supplement, decreases the activity of CYP3A4 and uridine diphosphoglucuronosyl transferase in human hepatocyte cultures.

    PubMed

    Venkataramanan, R; Ramachandran, V; Komoroski, B J; Zhang, S; Schiff, P L; Strom, S C

    2000-11-01

    Milk thistle extract is one of the most commonly used nontraditional therapies, particularly in Germany. Milk thistle is known to contain a number of flavonolignans. We evaluated the effect of silymarin, on the activity of various hepatic drug-metabolizing enzymes in human hepatocyte cultures. Treatment with silymarin (0.1 and 0.25 mM) significantly reduced the activity of CYP3A4 enzyme (by 50 and 100%, respectively) as determined by the formation of 6-beta-hydroxy testosterone and the activity of uridine diphosphoglucuronosyl transferase (UGT1A6/9) (by 65 and 100%, respectively) as measured by the formation of 4-methylumbelliferone glucuronide. Silymarin (0.5 mM) also significantly decreased mitochondrial respiration as determined by MTT reduction in human hepatocytes. These observations point to the potential of silymarin to impair hepatic metabolism of certain coadministered drugs in humans. Indiscriminate use of herbal products may lead to altered pharmacokinetics of certain drugs and may result in increased toxicity of certain drugs.

  5. Lack of effect of tofacitinib (CP-690,550) on the pharmacokinetics of the CYP3A4 substrate midazolam in healthy volunteers: confirmation of in vitro data

    PubMed Central

    Gupta, Pankaj; Alvey, Christine; Wang, Rong; Dowty, Martin E; Fahmi, Odette A; Walsky, Robert L; Riese, Richard J; Krishnaswami, Sriram

    2012-01-01

    AIMS To investigate inhibitive and inductive effects of tofacitinib (CP-690,550), a Janus kinase inhibitor, on CYP3A4 function via in vitro and in vivo studies. METHODS In vitro experiments were conducted to assess the inhibition and induction potential of tofacitinib for major drug metabolizing enzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A4). A phase 1, randomized, open-label, two-way crossover study (NCT00902460) was conducted to confirm the lack of inhibitive/inductive effect on a sensitive CYP3A4 substrate, midazolam, in healthy subjects. Midazolam pharmacokinetics were assessed over 24 h following single dose 2 mg administration prior to administering tofacitinib and after twice daily dosing of tofacitinib 30 mg for 6 days. The primary endpoint was midazolam area under the concentration–time profile, from time 0 to infinity (AUC(0,∞)). RESULTS In vitro studies demonstrated low potential for CYP inhibition (IC50 estimates tofacitinib >30 µm), CYP3A4 mRNA induction (observed at tofacitinib concentrations ≥25 µm) and no effect on enzymatic activity of CYP substrates. In the human study, AUC(0,∞) adjusted geometric mean ratio for midazolam plus tofacitinib to midazolam alone was 103.97% [90% confidence interval (CI) 95.57, 113.12], wholly within the pre-specified acceptance region (80, 125). The 90% CI for the ratio of adjusted geometric means of maximum plasma concentration (Cmax) (95.98, 108.87) was also wholly within this acceptance region. CONCLUSIONS These data confirm a lack of an inhibitive or inductive effect of tofacitinib on CYP3A activity in humans and, in conjunction with in vitro data, support the conclusion that tofacitinib is unlikely to influence the CYP enzyme system as a whole. PMID:22233204

  6. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flueck, Christa E.; Mullis, Primus E.; Pandey, Amit V., E-mail: amit@pandeylab.org

    2010-10-08

    Research highlights: {yields} Cytochrome P450 3A4 (CYP3A4), metabolizes 50% of drugs in clinical use and requires NADPH-P450 reductase (POR). {yields} Mutations in human POR cause congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. {yields} We are reporting that mutations in POR may reduce CYP3A4 activity. {yields} POR mutants Y181D, A457H, Y459H, V492E and R616X lost 99%, while A287P, C569Y and V608F lost 60-85% CYP3A4 activity. {yields} Reduction of CYP3A4 activity may cause increased risk of drug toxicities/adverse drug reactions in patients with POR mutations. -- Abstract: Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizesmore » approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.« less

  7. Novel CYP17 inhibitors: synthesis, biological evaluation, structure-activity relationships and modelling of methoxy- and hydroxy-substituted methyleneimidazolyl biphenyls.

    PubMed

    Hille, Ulrike E; Hu, Qingzhong; Vock, Carsten; Negri, Matthias; Bartels, Marc; Müller-Vieira, Ursula; Lauterbach, Thomas; Hartmann, Rolf W

    2009-07-01

    Recently, the steroidal CYP17 inhibitor Abiraterone entered phase II clinical trial for the treatment of androgen-dependent prostate cancer. As 17alpha-hydroxylase-17,20-lyase (CYP17) catalyzes the last step in androgen biosynthesis, inhibition of this target should affect not only testicular but also adrenal androgen formation. Therefore CYP17 inhibitors should be advantageous over existing therapies, for example with GnRH analogues. However, steroidal drugs are known for side effects which are due to affinities for steroid receptors. Therefore we decided to synthesize non-steroidal compounds mimicking the natural CYP17 substrates pregnenolone and progesterone. The synthesis and biological evaluation of a series of 15 novel and highly active non-steroidal CYP17 inhibitors are reported. The compounds were prepared via Suzuki-cross-coupling, Grignard reaction and CDI-assisted S(N)t-reaction with imidazole and their inhibitory activity was examined with recombinant human CYP17 expressed in Escherichia coli. Promising compounds were further tested for their selectivity against the hepatic enzyme CYP3A4 and the glucocorticoid-forming enzyme CYP11B1. All compounds turned out to be potent CYP17 inhibitors. The most active compounds 7 and 8 were much more active than Ketoconazole showing activity comparable to Abiraterone (IC(50) values of 90 and 52nM vs. 72nM). Most compounds also showed higher selectivities than Ketoconazole, but turned out to be less selective than Abiraterone. Docking studies using our CYP17 protein model were performed with selected compounds to study the interactions between the inhibitors and the amino acid residues of the active site.

  8. CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo

    PubMed Central

    Zhu, Jinge G.; Ochalek, Justin T.; Kaufmann, Martin; Jones, Glenville; DeLuca, Hector F.

    2013-01-01

    Bioactivation of vitamin D consists of two sequential hydroxylation steps to produce 1α,25-dihydroxyvitamin D3. It is clear that the second or 1α-hydroxylation step is carried out by a single enzyme, 25-hydroxyvitamin D 1α-hydroxylase CYP27B1. However, it is not certain what enzyme or enzymes are responsible for the initial 25-hydroxylation. An excellent case has been made for vitamin D 25-hydroxylase CYP2R1, but this hypothesis has not yet been tested. We have now produced Cyp2r1−/− mice. These mice had greater than 50% reduction in serum 25-hydroxyvitamin D3. Curiously, the 1α,25-dihydroxyvitamin D3 level in the serum remained unchanged. These mice presented no health issues. A double knockout of Cyp2r1 and Cyp27a1 maintained a similar circulating level of 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3. Our results support the idea that the CYP2R1 is the major enzyme responsible for 25-hydroxylation of vitamin D, but clearly a second, as-yet unknown, enzyme is another contributor to this important step in vitamin D activation. PMID:24019477

  9. BDE47 induces rat CYP3A1 by targeting the transcriptional regulation of miR-23b

    NASA Astrophysics Data System (ADS)

    Sun, Zhenzhen; Zhang, Zhan; Ji, Minghui; Yang, Hongbao; Cromie, Meghan; Gu, Jun; Wang, Chao; Yang, Lu; Yu, Yongquan; Gao, Weimin; Wang, Shou-Lin

    2016-08-01

    Cytochrome P450 3A (CYP3A) is the most abundant CYP450 enzyme in the liver and is involved in the metabolism of over 50% of xenobiotics. Our previous studies revealed that 2,2‧,4,4‧-tetrabromodiphenyl ether (BDE47) could induce rat CYP3A1 expression, but the molecular basis remains unclear. Using in silico analysis, we identified a potential miR-23b recognition element (MRE23b) in the 3‧-UTR region of CYP3A1 mRNA, which was verified by the luciferase assay. The miR-23b mimic and inhibitor significantly down- and up-regulated the expression of CYP3A1, respectively. Additionally, BDE47 significantly down-regulated the expression of miR-23b in rats and in hepatic H4IIE cells. Induction or blockage of CYP3A1 by a miR-23b inhibitor or mimic could correspondingly alter BDE47-induced expression of CYP3A1 and cytotoxicity in H4IIE cells. Furthermore, LV-anti-miR-23b significantly decreased endogenous levels of miR-23b and increased the expression and activity of CYP3A1 in rat liver. LV-anti-miR-23b also significantly increased the hydroxylated metabolites of BDE47 (3-OH-BDE47, 4-OH-BDE42, and 4‧-OH-BDE49) in rat serum. In conclusion, we first found that BDE47 induced rat CYP3A1 expression by targeting the transcriptional regulation of miR-23b. This study helps provide a better understanding of CYP3A regulation and offers novel clues for the role of miRNAs in the metabolism and distribution of environmental pollutants.

  10. [Progress on studies of impact on CYP450 enzymes activity of traditional Chinese medicine by Cocktail probe substrates approach].

    PubMed

    Du, Xi; He, Xin; Huang, Yu-Hong; Li, Zi-Qiang

    2016-12-01

    Cocktail probe substrates approach is a fast, sensitive and high through put method to determine cytochrome P450 enzymes activity. It has been widely used to screen early drug development, analyze drug metabolism types and confirm the metabolism pathways, study drug-drug interactions, optimize clinical regimen, evaluate post marketing drugs and help liver/kidney pathological studies. This article reviewed characteristics of Cocktail probe substrates, focused on the application to traditional Chinese medicine to CYP450 system as follows: the metabolic pathway research of Chinese herb active ingredients; processing way and compatibility of medical herbs affect CYP450; find out the metabolic characteristic of Chinese patent medicine, study in pharmacy of national minority; do research in liver protective effect of traditional Chinese medicine and evaluate traditional Chinese medicine syndromes in animal models. This article make a summary of existing research results and also make a comparison of cocktail probe substrates approach application to western medicine and Chinese medicine. Copyright© by the Chinese Pharmaceutical Association.

  11. Two Herbivore-Induced Cytochrome P450 Enzymes CYP79D6 and CYP79D7 Catalyze the Formation of Volatile Aldoximes Involved in Poplar Defense[C][W

    PubMed Central

    Irmisch, Sandra; Clavijo McCormick, Andrea; Boeckler, G. Andreas; Schmidt, Axel; Reichelt, Michael; Schneider, Bernd; Block, Katja; Schnitzler, Jörg-Peter; Gershenzon, Jonathan; Unsicker, Sybille B.; Köllner, Tobias G.

    2013-01-01

    Aldoximes are known as floral and vegetative plant volatiles but also as biosynthetic intermediates for other plant defense compounds. While the cytochrome P450 monooxygenases (CYP) from the CYP79 family forming aldoximes as biosynthetic intermediates have been intensively studied, little is known about the enzymology of volatile aldoxime formation. We characterized two P450 enzymes, CYP79D6v3 and CYP79D7v2, which are involved in herbivore-induced aldoxime formation in western balsam poplar (Populus trichocarpa). Heterologous expression in Saccharomyces cerevisiae revealed that both enzymes produce a mixture of different aldoximes. Knockdown lines of CYP79D6/7 in gray poplar (Populus × canescens) exhibited a decreased emission of aldoximes, nitriles, and alcohols, emphasizing that the CYP79s catalyze the first step in the formation of a complex volatile blend. Aldoxime emission was found to be restricted to herbivore-damaged leaves and is closely correlated with CYP79D6 and CYP79D7 gene expression. The semi-volatile phenylacetaldoxime decreased survival and weight gain of gypsy moth (Lymantria dispar) caterpillars, suggesting that aldoximes may be involved in direct defense. The wide distribution of volatile aldoximes throughout the plant kingdom and the presence of CYP79 genes in all sequenced genomes of angiosperms suggest that volatile formation mediated by CYP79s is a general phenomenon in the plant kingdom. PMID:24220631

  12. CYP3A induction and inhibition by different antiretroviral regimens reflected by changes in plasma 4beta-hydroxycholesterol levels.

    PubMed

    Josephson, F; Bertilsson, L; Böttiger, Y; Flamholc, L; Gisslén, M; Ormaasen, V; Sönnerborg, A; Diczfalusy, U

    2008-08-01

    A member of the major human cytochrome P450 superfamily of hemoproteins, CYP3A4/5, converts cholesterol into 4beta-hydroxycholesterol. We studied plasma 4beta-hydroxycholesterol levels prior to and 4 weeks after initiating antiretroviral therapy that included efavirenz, ritonavir-boosted atazanavir or ritonavir-boosted lopinavir with the aim of exploring the usefulness of plasma 4beta-hydroxycholesterol levels as an endogenous biomarker of CYP3A activity. Efavirenz is an inducer of CYP3A, whereas the ritonavir-boosted regimens are net inhibitors of CYP3A. In patients treated with efavirenz, the median plasma 4beta-hydroxycholesterol level increased by 46 ng/mL (p = 0.004; n = 11). In contrast, patients given ritonavir-boosted atazanavir showed a median decrease in plasma 4beta-hydroxycholesterol of -9.4 ng/mL (p = 0.0003; n = 22), and those given ritonavir-boosted lopinavir showed a median change from baseline of -5.8 ng/mL (p = 0.38; n = 19). There were significant between-group differences in the effects of antiretroviral treatment on plasma 4beta-hydroxycholesterol levels (p < 0.0001). Changes in plasma 4beta-hydroxycholesterol following the initiation of efavirenz- or atazanavir/ritonavir-based antiretroviral therapy reflected the respective net increase and decrease of CYP3A activity of these regimens. The plasma 4beta-hydroxycholesterol level did not indicate a net CYP3A inhibition in the lopinavir/ritonavir arm, possibly because of concomitant enzyme induction.

  13. Effects of Sublethal Exposure to a Glyphosate-Based Herbicide Formulation on Metabolic Activities of Different Xenobiotic-Metabolizing Enzymes in Rats.

    PubMed

    Larsen, Karen; Najle, Roberto; Lifschitz, Adrián; Maté, María L; Lanusse, Carlos; Virkel, Guillermo L

    2014-07-01

    The activities of different xenobiotic-metabolizing enzymes in liver subcellular fractions from Wistar rats exposed to a glyphosate (GLP)-based herbicide (Roundup full II) were evaluated in this work. Exposure to the herbicide triggered protective mechanisms against oxidative stress (increased glutathione peroxidase activity and total glutathione levels). Liver microsomes from both male and female rats exposed to the herbicide had lower (45%-54%, P < 0.01) hepatic cytochrome P450 (CYP) levels compared to their respective control animals. In female rats, the hepatic 7-ethoxycoumarin O-deethylase (a general CYP-dependent enzyme activity) was 57% higher (P < 0.05) in herbicide-exposed compared to control animals. Conversely, this enzyme activity was 58% lower (P < 0.05) in male rats receiving the herbicide. Lower (P < 0.05) 7-ethoxyresorufin O-deethlyase (EROD, CYP1A1/2 dependent) and oleandomycin triacetate (TAO) N-demethylase (CYP3A dependent) enzyme activities were observed in liver microsomes from exposed male rats. Conversely, in females receiving the herbicide, EROD increased (123%-168%, P < 0.05), whereas TAO N-demethylase did not change. A higher (158%-179%, P < 0.01) benzyloxyresorufin O-debenzylase (a CYP2B-dependent enzyme activity) activity was only observed in herbicide-exposed female rats. In herbicide-exposed rats, the hepatic S-oxidation of methimazole (flavin monooxygenase dependent) was 49% to 62% lower (P < 0.001), whereas the carbonyl reduction of menadione (a cytosolic carbonyl reductase-dependent activity) was higher (P < 0.05). Exposure to the herbicide had no effects on enzymatic activities dependent on carboxylesterases, glutathione transferases, and uridinediphospho-glucuronosyltransferases. This research demonstrated certain biochemical modifications after exposure to a GLP-based herbicide. Such modifications may affect the metabolic fate of different endobiotic and xenobiotic substances. The pharmacotoxicological significance of these

  14. Functional characterization of CYP52G3 from Aspergillus oryzae and its application for bioconversion and synthesis of hydroxyl flavanone and steroids.

    PubMed

    Uno, Tomohide; Yanase, Takeshi; Imaishi, Hiromasa

    2017-05-01

    Aspergillus oryzae is a fungus widely used in traditional Japanese fermentation industries. Cytochrome P450 (CYP) proteins are ubiquitously distributed in nature and display a broad range of enzymatic activities. A novel CYP52 (CYP52G3) gene was found in A. oryzae. In this study, we report the functional characterization of CYP52G3. The recombinant protein was expressed heterologously in Escherichia coli, and its membrane fraction isolated. CYP52G3 showed activities for 7-ethoxycoumarin and α-naphtoflavone. Furthermore, CYP52G3 hydroxylated flavanone at the 4' and 6 position and metabolized some hydroxyl-flavanones and steroids. Bioconversion experiments indicated that CYP52G3 could convert flavanone and testosterone in a synthetic medium. The conversion rates of flavanone and testosterone at 24 H were 50% and 70%, respectively. These results support that CYP52G3 could prove a useful enzyme for the efficient production of new compounds from flavonoids and steroids. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  15. CYP3A isoforms in Ewing's sarcoma tumours: an immunohistochemical study with clinical correlation.

    PubMed

    Zia, Hamid; Murray, Graeme I; Vyhlidal, Carrie A; Leeder, J Steven; Anwar, Ahmed E; Bui, Marilyn M; Ahmed, Atif A

    2015-04-01

    Ewing's sarcoma is an aggressive malignancy of bone and soft tissue with high incidence of metastasis and resistance to chemotherapy. Cytochrome P450 (CYP) monooxygenases are a family of enzymes that are involved in the metabolism of exogenous and endogenous compounds, including anti-cancer drugs, and have been implicated in the aggressive behaviour of various malignancies. Tumour samples and clinical information including age, sex, tumour site, tumour size, clinical stage and survival were collected from 36 adult and paediatric patients with Ewing's sarcoma family tumours. Tissue microarrays slides were processed for immunohistochemical labelling for CYP3A4, CYP3A5 and CYP3A7 using liver sections as positive control. The intensity of staining was scored as negative, low or high expression and was analysed statistically for any association with patients' clinical information. Four cases were later excluded due to inadequate viable tissue. CYP3A4 staining was present in 26 (81%) cases with high expression noted in 13 (40%) of 32 cases. High expression was significantly associated with distant metastases (P < 0.05). CYP3A5 and CYP3A7 were expressed in 5 and 13 cases respectively (15.6%, 40.6%). There was no association between the expression of CYP3A isoforms and age, sex, tumour size, or location (pelvic or extra-pelvic). None of the biomarkers showed any correlation with overall or disease-free survival. In conclusion, expression of CYP3A isoforms is noted in Ewing's sarcoma tumours and high CYP3A4 expression may be associated with metastasis. Additional studies are needed to further investigate the role of CYP3A4 in the prognosis of these tumours. © 2015 The Authors. International Journal of Experimental Pathology © 2015 International Journal of Experimental Pathology.

  16. Cytochrome P450-Mediated Phytoremediation using Transgenic Plants: A Need for Engineered Cytochrome P450 Enzymes

    PubMed Central

    Kumar, Santosh; Jin, Mengyao; Weemhoff, James L

    2013-01-01

    There is an increasing demand for versatile and ubiquitous Cytochrome P450 (CYP) biocatalysts for biotechnology, medicine, and bioremediation. In the last decade there has been an increase in realization of the power of CYP biocatalysts for detoxification of soil and water contaminants using transgenic plants. However, the major limitations of mammalian CYP enzymes are that they require CYP reductase (CPR) for their activity, and they show relatively low activity, stability, and expression. On the other hand, bacterial CYP enzymes show limited substrate diversity and usually do not metabolize herbicides and industrial contaminants. Therefore, there has been a considerable interest for biotechnological industries and the scientific community to design CYP enzymes to improve their catalytic efficiency, stability, expression, substrate diversity, and the suitability of P450-CPR fusion enzymes. Engineered CYP enzymes have potential for transgenic plants-mediated phytoremediation of herbicides and environmental contaminants. In this review we discuss: 1) the role of CYP enzymes in phytoremediation using transgenic plants, 2) problems associated with wild-type CYP enzymes in phytoremediation, and 3) examples of engineered CYP enzymes and their potential role in transgenic plant-mediated phytoremediation. PMID:25298920

  17. Influence of genetic variants of CYP2D6, CYP2C9, CYP2C19 and CYP3A4 on antiepileptic drug metabolism in pediatric patients with refractory epilepsy.

    PubMed

    López-García, Miguel A; Feria-Romero, Iris A; Serrano, Héctor; Rayo-Mares, Darío; Fagiolino, Pietro; Vázquez, Marta; Escamilla-Núñez, Consuelo; Grijalva, Israel; Escalante-Santiago, David; Orozco-Suarez, Sandra

    2017-06-01

    Identified the polymorphisms of CYP2D6, CYP2C9, CYP2C19 and CYP3A4, within a rigorously selected population of pediatric patients with drug-resistant epilepsy. The genomic DNA of 23 drug-resistant epilepsy patients and 7 patients with good responses were analyzed. Ten exons in these four genes were genotyped, and the drug concentrations in saliva and plasma were determined. The relevant SNPs with pharmacogenomics relations were CYP2D6*2 (rs16947) decreased your activity and CYP2D6*4 (rs1065852), CYP2C19*2 (rs4244285) and CYP3A4*1B (rs2740574) by association with poor metabolizer. The strongest risk factors were found in the AA genotype and allele of SNP rs3892097 from the CYP2D6 gene, followed by the alleles A and T of SNPs rs2740574 and rs2687116, respectively from CYP3A4. The most important concomitance was between homozygous genotype AA of rs3892097 and genotype AA of rs2740574 with 78.3% in drug-resistant epilepsy patients as compared to 14.3% in control patients. The results demonstrated the important role of the CYP 3A4*1B allelic variant as risk factor for developing drug resistance and CYP2D6, CYP2C19 SNPs and haplotypes may affect the response to antiepileptic drugs. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  18. Epigallocatechin gallate induces a hepatospecific decrease in the CYP3A expression level by altering intestinal flora.

    PubMed

    Ikarashi, Nobutomo; Ogawa, Sosuke; Hirobe, Ryuta; Kon, Risako; Kusunoki, Yoshiki; Yamashita, Marin; Mizukami, Nanaho; Kaneko, Miho; Wakui, Nobuyuki; Machida, Yoshiaki; Sugiyama, Kiyoshi

    2017-03-30

    In previous studies, we showed that a high-dose intake of green tea polyphenol (GP) induced a hepatospecific decrease in the expression and activity of the drug-metabolizing enzyme cytochrome P450 3A (CYP3A). In this study, we examined whether this decrease in CYP3A expression is induced by epigallocatechin gallate (EGCG), which is the main component of GP. After a diet containing 1.5% EGCG was given to mice, the hepatic CYP3A expression was measured. The level of intestinal bacteria of Clostridium spp., the concentration of lithocholic acid (LCA) in the feces, and the level of the translocation of pregnane X receptor (PXR) to the nucleus in the liver were examined. A decrease in the CYP3A expression level was observed beginning on the second day of the treatment with EGCG. The level of translocation of PXR to the nucleus was significantly lower in the EGCG group. The fecal level of LCA was clearly decreased by the EGCG treatment. The level of intestinal bacteria of Clostridium spp. was also decreased by the EGCG treatment. It is clear that the hepatospecific decrease in the CYP3A expression level observed after a high-dose intake of GP was caused by EGCG. Because EGCG, which is not absorbed from the intestine, causes a decrease in the level of LCA-producing bacteria in the colon, the level of LCA in the liver decreases, resulting in a decrease in the nuclear translocation of PXR, which in turn leads to the observed decrease in the expression level of CYP3A. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Time-dependent inhibition (TDI) of CYP3A4 and CYP2C9 by noscapine potentially explains clinical noscapine-warfarin interaction.

    PubMed

    Fang, Zhong-Ze; Zhang, Yan-Yan; Ge, Guang-Bo; Huo, Hong; Liang, Si-Cheng; Yang, Ling

    2010-02-01

    To investigate the inhibition potential and kinetic information of noscapine to seven CYP isoforms and extrapolate in vivo noscapine-warfarin interaction magnitude from in vitro data. The activities of seven CYP isoforms (CYP3A4, CYP1A2, CYP2A6, CYP2E1, CYP2D6, CYP2C9, CYP2C8) in human liver microsomes were investigated following co- or preincubation with noscapine. A two-step incubation method was used to examine in vitro time-dependent inhibition (TDI) of noscapine. Reversible and TDI prediction equations were employed to extrapolate in vivo noscapine-warfarin interaction magnitude from in vitro data. Among seven CYP isoforms tested, the activities of CYP3A4 and CYP2C9 were strongly inhibited with an IC(50) of 10.8 +/- 2.5 microm and 13.3 +/- 1.2 microm. Kinetic analysis showed that inhibition of CYP2C9 by noscapine was best fit to a noncompetitive type with K(i) value of 8.8 microm, while inhibition of CYP3A4 by noscapine was best fit to a competitive manner with K(i) value of 5.2 microm. Noscapine also exhibited TDI to CYP3A4 and CYP2C9. The inactivation parameters (K(I) and k(inact)) were calculated to be 9.3 microm and 0.06 min(-1) for CYP3A4 and 8.9 microm and 0.014 min(-1) for CYP2C9, respectively. The AUC of (S)-warfarin and (R)-warfarin was predicted to increase 1.5% and 1.1% using C(max) or 0.5% and 0.4% using unbound C(max) with reversible inhibition prediction equation, while the AUC of (S)-warfarin and (R)-warfarin was estimated to increase by 110.9% and 48.9% using C(max) or 41.8% and 32.7% using unbound C(max) with TDI prediction equation. TDI of CYP3A4 and CYP2C9 by noscapine potentially explains clinical noscapine-warfarin interaction.

  20. Isolation and Identification of Intestinal CYP3A Inhibitors from Cranberry (Vaccinium macrocarpon) using Human Intestinal Microsomes

    PubMed Central

    Kim, Eunkyung; Sy-Cordero, Arlene; Graf, Tyler N.; Brantley, Scott J.; Paine, Mary F.; Oberlies, Nicholas H.

    2010-01-01

    Cranberry juice is used routinely, especially among women and the elderly, to prevent and treat urinary tract infections. These individuals are likely to be taking medications concomitantly with cranberry juice, leading to concern about potential drug-dietary substance interactions, particularly in the intestine, which, along with the liver, is rich in expression of the prominent drug metabolizing enzyme, cytochrome P450 3A (CYP3A). Using a systematic in vitro-in vivo approach, a cranberry juice product was identified recently that elicited a pharmacokinetic interaction with the CYP3A probe substrate midazolam in 16 healthy volunteers. Relative to water, a cranberry juice inhibited intestinal first-pass midazolam metabolism. In vitro studies were initiated to identify potential enteric CYP3A inhibitors from cranberry via a bioactivity-directed fractionation approach involving dried whole cranberry [Vaccinium macrocarpon Ait. (Ericaceae)], midazolam, and human intestinal microsomes (HIM). Three triterpenes (maslinic acid, corosolic acid, and ursolic acid) were isolated. The inhibitory potency (IC50) of maslinic acid, corosolic acid, and ursolic acid was 7.4, 8.8, and <10 μM, respectively, using HIM as the enzyme source and was 2.8, 4.3, and <10 μM, respectively, using recombinant CYP3A4 as the enzyme source. These in vitro inhibitory potencies, which are within the range of those reported for two CYP3A inhibitory components in grapefruit juice, suggest that these triterpenes may have contributed to the midazolam-cranberry juice interaction observed in the clinical study. PMID:20717876

  1. Isolation and identification of intestinal CYP3A inhibitors from cranberry (Vaccinium macrocarpon) using human intestinal microsomes.

    PubMed

    Kim, Eunkyung; Sy-Cordero, Arlene; Graf, Tyler N; Brantley, Scott J; Paine, Mary F; Oberlies, Nicholas H

    2011-02-01

    Cranberry juice is used routinely, especially among women and the elderly, to prevent and treat urinary tract infections. These individuals are likely to be taking medications concomitantly with cranberry juice, leading to concern about potential drug-dietary substance interactions, particularly in the intestine, which, along with the liver, is rich in expression of the prominent drug metabolizing enzyme, cytochrome P450 3A (CYP3A). Using a systematic in vitro-in vivo approach, a cranberry juice product was identified recently that elicited a pharmacokinetic interaction with the CYP3A probe substrate midazolam in 16 healthy volunteers. Relative to water, cranberry juice inhibited intestinal first-pass midazolam metabolism. In vitro studies were initiated to identify potential enteric CYP3A inhibitors from cranberry via a bioactivity-directed fractionation approach involving dried whole cranberry [Vaccinium macrocarpon Ait. (Ericaceae)], midazolam, and human intestinal microsomes (HIM). Three triterpenes (maslinic acid, corosolic acid, and ursolic acid) were isolated. The inhibitory potency (IC(50)) of maslinic acid, corosolic acid, and ursolic acid was 7.4, 8.8, and < 10 µM, respectively, using HIM as the enzyme source and 2.8, 4.3, and < 10 µM, respectively, using recombinant CYP3A4 as the enzyme source. These in vitro inhibitory potencies, which are within the range of those reported for two CYP3A inhibitory components in grapefruit juice, suggest that these triterpenes may have contributed to the midazolam-cranberry juice interaction observed in the clinical study. © Georg Thieme Verlag KG Stuttgart · New York.

  2. In vitro effects of active constituents and extracts of Orthosiphon stamineus on the activities of three major human cDNA-expressed cytochrome P450 enzymes.

    PubMed

    Pan, Yan; Abd-Rashid, Badrul Amini; Ismail, Zakiah; Ismail, Rusli; Mak, Joon Wah; Pook, Peter C K; Er, Hui Meng; Ong, Chin Eng

    2011-03-15

    Orthosiphon stamineus (OS) has been traditionally used to treat diabetes, kidney and urinary disorders, high blood pressure and bone or muscular pain. To assess the possibility of drug-herb interaction via interference of metabolism, effects of four OS extracts of different polarity and three active constituents (sinensetin, eupatorin and rosmarinic acid) on major human cDNA-expressed cytochrome P450 (CYP) enzymes were investigated. Three substrate-probe based high-performance liquid chromatography (HPLC) assays were established to serve as activity markers for CYP2C9, CYP2D6 and CYP3A4. Our results indicate that OS extracts and constituents exhibited differential modulatory effects on different CYPs. While none of the OS components showed significant inhibition on CYP2C9, eupatorin strongly and uncompetitively inhibited CYP2D6 activity with a K(i) value of 10.2μM. CYP3A4 appeared to be the most susceptible enzyme to OS inhibitory effects. It was moderately inhibited by OS dichloromethane and petroleum ether extract with mixed-type and noncompetitive inhibitions (K(i)=93.7 and 44.9μg/mL), respectively. Correlation study indicated that the inhibition was accounted for by the presence of eupatorin in the extracts. When IC(50) values of these extracts were expressed in volume per dose unit to reflect inhibitory effect at recommended human doses from commercially available products, moderate inhibition was also observed. In addition, CYP3A4 was strongly and noncompetitively inhibited by eupatorin alone, with a K(i) value of 9.3μM. These findings suggest that co-administration of OS products, especially those with high eupatorin content, with conventional drugs may have the potential to cause drug-herb interactions involving inhibition of major CYP enzymes. 2011 Elsevier Ireland Ltd. All rights reserved.

  3. The Impact of the Hepatocyte-to-Plasma pH Gradient on the Prediction of Hepatic Clearance and Drug-Drug Interactions for CYP2C9 and CYP3A4 Substrates.

    PubMed

    Rougée, Luc R A; Mohutsky, Michael A; Bedwell, David W; Ruterbories, Kenneth J; Hall, Stephen D

    2017-09-01

    Surrogate assays for drug metabolism and inhibition are traditionally performed in buffer systems at pH 7.4, despite evidence that hepatocyte intracellular pH is 7.0. This pH gradient can result in a pK a -dependent change in intracellular/extracellular concentrations for ionizable drugs that could affect predictions of clearance and P450 inhibition. The effect of microsomal incubation pH on in vitro enzyme kinetic parameters for CYP2C9 (diclofenac, (S)-warfarin) and CYP3A4 (midazolam, dextromethorphan, testosterone) substrates, enzyme specific reversible inhibitors (amiodarone, desethylamiodarone, clozapine, nicardipine, fluconazole, fluvoxamine, itraconazole) and a mechanism-based inhibitor (amiodarone) was investigated. Intrinsic clearance through CYP2C9 significantly increased (25% and 50% for diclofenac and (S)-warfarin respectively) at intracellular pH 7.0 compared with traditional pH 7.4. The CYP3A4 substrate dextromethorphan intrinsic clearance was decreased by 320% at pH 7.0, while midazolam and testosterone remained unchanged. Reversible inhibition of CYP2C9 was less potent at pH 7.0 compared with 7.4, while CYP3A4 inhibition potency was variably affected. Maximum enzyme inactivation rate of amiodarone toward CYP2C9 and CYP3A4 decreased at pH 7.0, while the irreversible inhibition constant remained unchanged for CYP2C9, but decreased for CYP3A4 at pH 7.0. Predictions of clearance and drug-drug interactions made through physiologically based pharmacokinetic models were improved with the inclusion of predicted intracellular concentrations based at pH 7.0 and in vitro parameters determined at pH 7.0. No general conclusion on the impact of pH could be made and therefore a recommendation to change buffer pH to 7.0 cannot be made at this time. It is recommended that the appropriate hepatocyte intracellular pH 7.0 be used for in vitro determinations when in vivo predictions are made. Copyright © 2017 by The American Society for Pharmacology and Experimental

  4. Retinoic acid catabolizing enzyme CYP26C1 is a genetic modifier in SHOX deficiency.

    PubMed

    Montalbano, Antonino; Juergensen, Lonny; Roeth, Ralph; Weiss, Birgit; Fukami, Maki; Fricke-Otto, Susanne; Binder, Gerhard; Ogata, Tsutomu; Decker, Eva; Nuernberg, Gudrun; Hassel, David; Rappold, Gudrun A

    2016-12-01

    Mutations in the homeobox gene SHOX cause SHOX deficiency, a condition with clinical manifestations ranging from short stature without dysmorphic signs to severe mesomelic skeletal dysplasia. In rare cases, individuals with SHOX deficiency are asymptomatic. To elucidate the factors that modify disease severity/penetrance, we studied a three-generation family with SHOX deficiency. The variant p.Phe508Cys of the retinoic acid catabolizing enzyme CYP26C1 co-segregated with the SHOX variant p.Val161Ala in the affected individuals, while the SHOX mutant alone was present in asymptomatic individuals. Two further cases with SHOX deficiency and damaging CYP26C1 variants were identified in a cohort of 68 individuals with LWD The identified CYP26C1 variants affected its catabolic activity, leading to an increased level of retinoic acid. High levels of retinoic acid significantly decrease SHOX expression in human primary chondrocytes and zebrafish embryos. Individual morpholino knockdown of either gene shortens the pectoral fins, whereas depletion of both genes leads to a more severe phenotype. Together, our findings describe CYP26C1 as the first genetic modifier for SHOX deficiency. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Genetic polymorphisms in warfarin and tacrolimus-related genes VKORC1, CYP2C9 and CYP3A5 in the Greek-Cypriot population

    PubMed Central

    2014-01-01

    Background Two variants in the gene encoding the cytochrome P450 2C9 enzyme (CYP2C9) are considered the most significant genetic risk factors associated with bleeding after warfarin prescription. A variant in the vitamin K epoxide reductase (VKORC1) has been also associated by several studies with warfarin response. Another variant in the P450 3A5 enzyme (CYP3A5) gene is known to affect the metabolism of many drugs, including tacrolimus. Findings We conducted a population genetic study in 148 unrelated healthy Greek-Cypriot volunteers (through PCR-RFLP assays), in order to determine the frequencies of the above pharmacogenetics variants and to compare allele frequencies with those in other major ethnic groups. The allele frequencies of CYP2C9*2, CYP2C9*3 and CYP3A5*3 were found to be 0.162, 0.112 and 0.943 respectively, whereas VKORC1 - 1639A was 0.534. The latter frequency differs significantly when compared with Caucasians, Asians and Africans (p < 0.001) and is still significant when compared with the geographically and culturally closely related to Greek-Cypriots, Hellenes of Greece (p = 0.01). Interestingly ~18% of our population are carriers of four or three risk alleles regarding warfarin sensitivity, therefore they have a high predisposition for bleeding after taking high or even normal warfarin doses. Conclusions Our data show no significant difference in the frequency of CYP2C9 and CYP3A5 allelic variants when compared to the Caucasian population, but differ significantly when compared with Africans and Asians (p < 0.001). Also, the frequency of variant VKORC1 - 1639A differs between Greek-Cypriots and every other population we compared. Finally, about 1/5 Greek-Cypriots carry three or four risk alleles and ~50% of them carry at least two independent risk alleles regarding warfarin sensitivity, a potentially high risk for over-anticoagulation. PMID:24593903

  6. Furocoumarins from grapefruit juice and their effect on human CYP 3A4 and CYP 1B1 isoenzymes.

    PubMed

    Girennavar, Basavaraj; Poulose, Shibu M; Jayaprakasha, Guddadarangavvanahally K; Bhat, Narayan G; Patil, Bhimanagouda S

    2006-04-15

    Bioactive compounds present in grapefruit juice are known to increase the bioavailability of certain medications by acting as potent CYP 3A4 inhibitors. An efficient technique has been developed for isolation and purification of three furocoumarins. The isolated compounds have been tested for the inhibition of human CYP 1B1 isoform using specific substrates. Grapefruit juice was extracted with ethyl acetate (EtOAc) and the dried extract was loaded onto silica gel column chromatography. Further, column fractions were subjected to preparative HPLC to obtain three compounds. The purity of these compounds was analyzed by HPLC and structures were determined by NMR studies. The identified compounds, bergamottin, 6',7'-dihydroxybergamottin (DHB), and paradisin-A, were tested for their inhibitory effects on hydroxylase and O-dealkylase activities of human cytochrome P450 isoenzymes CYP 3A4 and CYP 1B1. Paradisin-A was found to be a potent CYP 3A4 inhibitor with an IC50 of 1.2 microM followed by DHB and bergamottin. All three compounds showed a substantial inhibitory effect on CYP 3A4 below 10 microM. Inhibitory effects on CYP 1B1 exhibited a greater variation due to the specificity of substrates. Paradisin A showed an IC50 of 3.56+/-0.12 microM for the ethoxy resorufin O-dealkylase (EROD) activity and 33.56+/-0.72 microM for the benzyloxy resorufin (BROD). DHB and bergamottin showed considerable variations for EROD and BROD activities with an IC50 of 7.17 microM and 13.86 microM, respectively.

  7. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size.

    PubMed

    Ma, Meng; Wang, Qian; Li, Zhanjie; Cheng, Huihui; Li, Zhaojie; Liu, Xiangli; Song, Weining; Appels, Rudi; Zhao, Huixian

    2015-07-01

    Several studies have described quantitative trait loci (QTL) for seed size in wheat, but the relevant genes and molecular mechanisms remain largely unknown. Here we report the functional characterization of the wheat TaCYP78A3 gene and its effect on seed size. TaCYP78A3 encoded wheat cytochrome P450 CYP78A3, and was specifically expressed in wheat reproductive organs. TaCYP78A3 activity was positively correlated with the final seed size. Its silencing caused a reduction of cell number in the seed coat, resulting in an 11% decrease in wheat seed size, whereas TaCYP78A3 over-expression induced production of more cells in the seed coat, leading to an 11-48% increase in Arabidopsis seed size. In addition, the cell number in the final seed coat was determined by the TaCYP78A3 expression level, which affected the extent of integument cell proliferation in the developing ovule and seed. Unfortunately, TaCYP78A3 over-expression in Arabidopsis caused a reduced seed set due to an ovule developmental defect. Moreover, TaCYP78A3 over-expression affected embryo development by promoting embryo integument cell proliferation during seed development, which also ultimately affected the final seed size in Arabidopsis. In summary, our results indicated that TaCYP78A3 plays critical roles in influencing seed size by affecting the extent of integument cell proliferation. The present study provides direct evidence that TaCYP78A3 affects seed size in wheat, and contributes to an understanding of the cellular basis of the gene influencing seed development. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  8. Lack of association between genetic polymorphisms of CYP3A4, CYP2C9 and CYP2C19 and antituberculosis drug-induced liver injury in a community-based Chinese population.

    PubMed

    Tang, Shao-Wen; Lv, Xiao-Zhen; Chen, Ru; Wu, Shan-Shan; Yang, Zhi-Rong; Chen, Da-Fang; Zhan, Si-Yan

    2013-05-01

    The precise pathogenic mechanism of antituberculosis (anti-TB) drug-induced liver injury (ATLI) is poorly understood. It may be associated with drug-metabolizing enzymes, such as cytochrome P450 (CYP) 3A4, CYP2C9 and CYP2C19. The aim of the present study was to explore the role of tagging single nucleotide polymorphisms (tSNPs) of CYP3A4, CYP2C9 and CYP2C19 in the risk of ATLI in a population-based anti-TB treatment cohort. A nested case-control study was designed. Each ATLI case was matched 1 : 4 with controls on the basis of age, gender, treatment history, disease severity and drug dosage. The tSNPs were selected using Haploview 4.2 based on the HapMap database of Han Chinese in Beijing and genotyped by TaqMan allelic discrimination technology. Eighty-nine patients with ATLI and 356 controls were included in the study. One tSNP in CYP3A4 (rs12333983), two in CYP2C9 (rs4918758, rs9332098) and two in CYP2C19 (rs11568732, rs4986894) were selected and genotyped. The minor allele frequencies of rs12333983, rs4918758, rs9332098, rs11568732 and rs4986894 were 36.0%, 41.4%, 1.1%, 5.7% and 35.7%, respectively, in the patients, compared with 31.7%, 42.9%, 3.4%, 8.9% and 35.1%, respectively, in the controls. No significant differences were observed in genotypes or allele frequencies of the five tSNPs between the two groups and none of the CYP2C9 or CYP2C19 haplotypes was significantly associated with the development of ATLI. Based on the Chinese anti-TB treatment cohort, we did not find a significant association between the risk of ATLI and genetic polymorphisms of CYP3A4, CYP2C9 and CYP2C19. None of the haplotypes exhibited a significant association with the development of ATLI in a Chinese tuberculosis population. © 2013 The Authors Clinical and Experimental Pharmacology and Physiology © 2013 Wiley Publishing Asia Pty Ltd.

  9. Frequency of CYP450 enzyme gene polymorphisms in the Greek population: review of the literature, original findings and clinical significance.

    PubMed

    Ragia, Georgia; Giannakopoulou, Efstathia; Karaglani, Makrina; Karantza, Ioanna-Maria; Tavridou, Anna; Manolopoulos, Vangelis G

    2014-01-01

    The cytochrome P450 (CYP450) enzyme family is involved in the oxidative metabolism of many therapeutic drugs and various endogenous substrates. These enzymes are highly polymorphic. Prevalence of CYP450 enzyme gene polymorphisms vary among different populations and substantial inter- and intra-ethnic variability in frequency of CYP450 enzyme gene polymorphisms has been reported. This paper provides an overview and investigation of CYP450 genotypic and phenotypic reports published in the Greek population.

  10. Mechanism-based inactivation of CYP2C9 by linderane.

    PubMed

    Wang, Hui; Wang, Kai; Mao, Xu; Zhang, Qingqing; Yao, Tong; Peng, Ying; Zheng, Jiang

    2015-01-01

    1. Linderane (LDR), a furan-containing sesquiterpenoid, is found in Lindera aggregata (Sims) Kosterm, a common traditional Chinese herbal medicine. We thoroughly studied the irreversible inhibitory effect of LDR on cytochrome P450 2C9 (CYP2C9). 2. LDR caused a time- and concentration-dependent inactivation of CYP2C9. In addition, the inactivation of CYP2C9 by LDR was NADPH-dependent and irreversible. More than 50% of CYP2C9 activity was lost after its incubation with LDR at the concentration of 10 μM for 15 min at 30 °C. The maximal rate constant for inactivation (kinact) was found to be 0.0419 min(-1), and the concentration required for half-maximal inactivation (KI) was 1.26 μM, respectively. Glutathione (GSH), catalase, and superoxide dismutase (SOD) failed to protect CYP2C9 against inactivation by LDR. Diclofenac, a substrate of CYP2C9, prevented the enzyme from inactivation produced by LDR. The estimated partition ratio of the inactivation was approximately 227. 3. Two reactive intermediates, including furanoepoxide and γ-ketoenal, might be responsible for the observed enzyme inactivation. The formation of the intermediates was verified by chemical synthesis. Multiple P450 enzymes, including CYPs 1A2, 2B6, 2C9, 2C19, 2D6, 3A4, and 3A5, were found to be involved in the metabolic activation of LDR. In conclusion, LDR was characterized as a mechanism-based inactivator of CYP2C9.

  11. Benzotriazole UV 328 and UV-P showed distinct antiandrogenic activity upon human CYP3A4-mediated biotransformation.

    PubMed

    Zhuang, Shulin; Lv, Xuan; Pan, Liumeng; Lu, Liping; Ge, Zhiwei; Wang, Jiaying; Wang, Jingpeng; Liu, Jinsong; Liu, Weiping; Zhang, Chunlong

    2017-01-01

    Benzotriazole ultraviolet stabilizers (BUVSs) are prominent chemicals widely used in industrial and consumer products to protect against ultraviolet radiation. They are becoming contaminants of emerging concern since their residues are frequently detected in multiple environmental matrices and their toxicological implications are increasingly reported. We herein investigated the antiandrogenic activities of eight BUVSs prior to and after human CYP3A4-mediated metabolic activation/deactivation by the two-hybrid recombinant human androgen receptor yeast bioassay and the in vitro metabolism assay. More potent antiandrogenic activity was observed for the metabolized UV-328 in comparison with UV-328 at 0.25 μM ((40.73 ± 4.90)% vs. (17.12 ± 3.00)%), showing a significant metabolic activation. In contrast, the metabolized UV-P at 0.25 μM resulted in a decreased antiandrogenic activity rate from (16.08 ± 0.95)% to (6.91 ± 2.64)%, indicating a metabolic deactivation. Three mono-hydroxylated (OH) and three di-OH metabolites of UV-328 were identified by ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-Q-TOF-MS/MS), which were not reported previously. We further surmised that the hydroxylation of UV-328 occurs mainly at the alicyclic hydrocarbon atoms based on the in silico prediction of the lowest activation energies of hydrogen abstraction from C-H bond. Our results for the first time relate antiandrogenic activity to human CYP3A4 enzyme-mediated hydroxylated metabolites of BUVSs. The biotransformation through hydroxylation should be fully considered during the health risk assessment of structurally similar analogs of BUVSs and other emerging contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Endosulfan-alpha Induces CYP26 and CYP3A4 by Activating the Pregnane X Receptor But Not the Constitutive Androstane Receptor

    DTIC Science & Technology

    2006-01-01

    CYP3A4 gene expression by organochlorine pesticides . Biochem Pharmacol 64:1513-1519. Dinham B (1993) The Pesticide Hazard. A Global Health and...Coumoul X, Diry M and Barouki R (2002) PXR-dependent induction of human CYP3A4 gene expression by organochlorine pesticides . Biochem Pharmacol 64:1513...system: CYP3A4 and CYP2B6 induction by pesticides . Biochem Pharmacol 68:2347-2358. 71 Nelson D (2003) Cytochrome P450 Homepage (http

  13. Responses in reproductive organs, steroid hormones and CYP450 enzymes in female Mongolian gerbil (Meriones unguiculatus) over time after quinestrol treatment.

    PubMed

    Su, Qian-Qian; Chen, Yi; Qin, Jiao; Wang, Tong-Liang; Wang, De-Hua; Liu, Quan-Sheng

    2017-11-01

    The aim of this study was to assess the effects and reversibility of the synthetic estrogen compound, quinestrol, on the reproductive organs, steroid hormones, and drug-metabolizing enzymes CYP3A4 and CYP1A2 in liver and kidney over time after two quinestrol treatments in female Mongolian gerbils (Meriones unguiculatus). Female gerbils were treated with 4mg/kg quinestrol (9 gerbils/group, 3 treated group) (1 control group, 0mg/kg) for 3days and treated again after 25days. Animals were killed for collection of samples at 5, 10 and 15days after the second treatment ending. Two interval quinestrol treatments significantly increased uterine weight, with trend of increase over time, but no change could be detected in ovarian weights. Quinestrol treatment increased progesterone and estradiol levels, both with trend of decline over time. Quinestrol increased liver and kidney weights and total enzyme content of CYP3A4 and CYP1A2, with trend of decline over time. On the basis of reversible changes of detoxification enzymes or organs, interval quinestrol treatment effectively and reversibly influenced the reproductive hormone and organ to some extent. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Complementary DNA cloning, functional expression and characterization of a novel cytochrome P450, CYP2D50, from equine liver.

    PubMed

    DiMaio Knych, H K; Stanley, S D

    2008-10-01

    Members of the CYP2D family constitute only about 2-4% of total hepatic CYP450s, however, they are responsible for the metabolism of 20-25% of commonly prescribed therapeutic compounds. CYP2D enzymes have been identified in a number of different species. However, vast differences in the metabolic activity of these enzymes have been well documented. In the horse, the presence of a member of the CYP2D family has been suggested from studies with equine liver microsomes, however its presence has not been definitively proven. In this study a cDNA encoding a novel CYP2D enzyme (CYP2D50) was cloned from equine liver and expressed in a baculovirus expression system. The nucleotide sequence of CYP2D50 was highly homologous to that of human CYP2D6 and therefore the activity of the enzyme was characterized using dextromethorphan and debrisoquine, two isoform selective substrates for the human orthologue. CYP2D50 displayed optimal catalytic activity with dextromethorphan using molar ratios of CYP2D50 to NADPH CYP450 reductase of 1:15. Although CYP2D50 and CYP2D6 shared significant sequence homology, there were striking differences in the catalytic activity between the two enzymes. CYP2D50 dextromethorphan-O-demethylase activity was nearly 180-fold slower than the human counterpart, CYP2D6. Similarly, rates of formation of 4-hydroxydebrisoquine activity were 50-fold slower for CYP2D50 compared to CYP2D6. The results of this study demonstrate substantial interspecies variability in metabolism of substrates by CYP2D orthologues in the horse and human and support the need to fully characterize this enzyme system in equids.

  15. Genomic characterization and regulation of CYP3a13: role of xenobiotics and nuclear receptors.

    PubMed

    Anakk, Sayeepriyadarshini; Kalsotra, Auinash; Shen, Qi; Vu, Mary T; Staudinger, Jeffrey L; Davies, Peter J A; Strobel, Henry W

    2003-09-01

    We report that CYP3a13 gene, located on mouse chromosome 5, spans 27.5 Kb and contains 13 exons. The transcription start site is 35 bp upstream of the coding region and results in a 109 bp 5' untranslated region. CYP3a13 promoter shows putative binding sites for retinoid X receptor, pregnane X receptor, and estrogen receptor. CYP3a13 shows a broad tissue distribution with predominant expression in liver. Although CYP3a13 shares 92% nucleotide identity with the female-specific rat CYP3A9, its expression does not exhibit sexual dimorphism. Ligand activation of peroxisomal proliferator-activated receptor-gamma and retinoid X receptor inhibit expression of CYP3a13 at the transcription level in a tissue-specific manner. Another novel finding is hepatic induction of CYP3a13 by dexamethasone occurring only in pregnane X receptor null mice. We also report that pregnane X receptor is essential to maintain robust in vivo basal levels of CYP3a13 in contrast to CYP3a11. CYP3a13 protein expressed in vitro can metabolize clinically active drugs ethylmorphine and erythromycin, as well as benzphetamine. We conclude that CYP3a13 is regulated differentially by various nuclear receptors. In humans this may lead to altered drug metabolism, as many of the newly synthesized ligands/drugs targeted toward these nuclear receptors could influence CYP3A gene expression.

  16. An independent occurrence of the chimeric P450 enzyme CYP337B3 of Helicoverpa armigera confers cypermethrin resistance in Pakistan.

    PubMed

    Rasool, Akhtar; Joußen, Nicole; Lorenz, Sybille; Ellinger, Renate; Schneider, Bernd; Khan, Sher Afzal; Ashfaq, Muhammad; Heckel, David G

    2014-10-01

    The increasing resistance level of insect pest species is a major concern to agriculture worldwide. The cotton bollworm, Helicoverpa armigera, is one of the most important pest species due to being highly polyphagous, geographically widespread, and resistant towards many chemical classes of insecticides. We previously described the mechanism of fenvalerate resistance in Australian populations conferred by the chimeric cytochrome P450 monooxygenase CYP337B3, which arose by unequal crossing-over between CYP337B1 and CYP337B2. Here, we show that this mechanism is also present in the cypermethrin-resistant FSD strain from Pakistan. The Pakistani and the Australian CYP337B3 alleles differ by 18 synonymous and three nonsynonymous SNPs and additionally in the length and sequence of the intron. Nevertheless, the activity of both CYP337B3 proteins is comparable. We demonstrate that CYP337B3 is capable of metabolizing cypermethrin (trans- and especially cis-isomers) to the main metabolite 4'-hydroxycypermethrin, which exhibits no intrinsic toxicity towards susceptible larvae. In a bioassay, CYP337B3 confers a 7-fold resistance towards cypermethrin in FSD larvae compared to susceptible larvae from the Australian TWB strain lacking CYP337B3. Linkage analysis shows that presence of CYP337B3 accounts for most of the cypermethrin resistance in the FSD strain; up-regulation of other P450s in FSD plays no detectable role in resistance. The presence or absence of CYP337B3 can be easily detected by a simple PCR screen, providing a powerful tool to rapidly distinguish resistant from susceptible individuals in the field and to determine the geographical distribution of this resistance gene. Our results suggest that CYP337B3 evolved twice independently by unequal crossing-over between CYP337B2 and two different CYP337B1 alleles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Expression, function and regulation of mouse cytochrome P450 enzymes: comparison with human P450 enzymes.

    PubMed

    Hrycay, E G; Bandiera, S M

    2009-12-01

    The present review focuses on the expression, function and regulation of mouse cytochrome P450 (Cyp) enzymes. Information compiled for mouse Cyp enzymes is compared with data collected for human CYP enzymes. To date, approximately 40 pairs of orthologous mouse-human CYP genes have been identified that encode enzymes performing similar metabolic functions. Recent knowledge concerning the tissue expression of mouse Cyp enzymes from families 1 to 51 is summarized. The catalytic activities of microsomal, mitochondrial and recombinant mouse Cyp enzymes are discussed and their involvement in the metabolism of exogenous and endogenous compounds is highlighted. The role of nuclear receptors, such as the aryl hydrocarbon receptor, constitutive androstane receptor and pregnane X receptor, in regulating the expression of mouse Cyp enzymes is examined. Targeted disruption of selected Cyp genes has generated numerous Cyp null mouse lines used to decipher the role of Cyp enzymes in metabolic, toxicological and biological processes. In conclusion, the laboratory mouse is an indispensable model for exploring human CYP-mediated activities.

  18. Cytochrome P450 CYP4DE1 and CYP6CW3v2 contribute to ethiprole resistance in Laodelphax striatellus (Fallén).

    PubMed

    Elzaki, M E A; Zhang, W; Han, Z

    2015-06-01

    Laodelphax striatellus Fallén (Hemiptera: Delphacidae), a destructive pest of rice, has developed high resistance to multiple insecticides, threatening the success of pest management programmes. The present study investigated ethiprole resistance mechanisms in a field population that is highly resistant to ethiprole. That population was used to establish a laboratory population that was subjected to further selection to produce a resistant strain. Target genes were cloned and compared between the resistant and the susceptible strains, the role of detoxification enzymes was examined, and the relative expression levels of 71 detoxification enzyme genes were tested using quantitative real time (RT)-PCR. The laboratory selection enhanced the resistance from 107-fold to 180-fold. The Rdl-type target site mutation seldom occurred in the resistant strain and is unlikely to represent the major mechanism underlying the observed resistance. Of the three important detoxification enzymes, only P450 monooxygenase was found to be associated with ethiprole resistance. Moreover, two genes, CYP4DE1 and CYP6CW3v2, were found to be overexpressed in the resistant strain. Furthermore, gene-silencing via a double-stranded RNA feeding test was carried out, and the results showed that the mRNA levels of CYP4DE1 and CYP6CW3v2 were reduced in the resistant strain, whereas ethiprole susceptibility was increased. These results suggest that CYP4DE1 and CYP6CW3v2 play an important role in ethiprole resistance in L. striatellus. © 2015 The Royal Entomological Society.

  19. CYP3C1, the first member of a new cytochrome P450 subfamily found in zebrafish (Danio rerio).

    PubMed

    Corley-Smith, Graham E; Su, Hsiao-Ting; Wang-Buhler, Jun-Lan; Tseng, Hua-Pin; Hu, Chin-Hwa; Hoang, Thuy; Chung, Woon-Gye; Buhler, Donald R

    2006-02-24

    We report a new cytochrome P450 (CYP) subfamily CYP3C and the cloning through PCR from zebrafish (Danio rerio) of the first member, CYP3C1. The CYP3C1 gene is on Chromosome 3 with 13 ORF exons encoding a 505 amino acid protein which has 44-54% identities with mammalian and teleost CYP3A and CYP3B forms. As evidenced by spectral analysis, the CYP3C1 protein heterologously expressed in yeast is functional. In silico analysis identified, on the same region of the chromosome, three more genes encoding CYP3C1-like proteins that formed a clade with CYP3C1 in a phylogenetic tree. Using RT-PCR, the CYP3C1 mRNA was detected in 1-6dpf embryo/larvae and in adult fish liver and seven extrahepatic tissues. Whole-mount in situ hybridization using a riboprobe demonstrated expression in the brain during 12-120 hpf. At the 120 hpf larval stage, CYP3C1 mRNA was also detected in the pharynx and gastrointestinal tract. TCDD, dexamethasone, and rifampicin, which up-regulated CYP3A65 mRNA in zebrafish larvae, did not alter the CYP3C1 transcript levels suggesting regulatory differences between CYP3A and CYP3C enzymes in this species.

  20. Drosophila CYP6g1 and its human homolog CYP3A4 confer tolerance to methylmercury during development

    PubMed Central

    Rand, Matthew D.; Lowe, Jessica A.; Mahapatra, Cecon T.

    2012-01-01

    Methylmercury (MeHg) is a persistent environmental toxicant that is commonly encountered through dietary fish and seafood. While the fetal nervous system is a well-known primary target for MeHg toxicity, the risks of MeHg exposures that are commonly experienced today through diet and environmental exposure remain uncertain. Despite knowledge of numerous cellular processes that are affected by MeHg, the mechanisms that ultimately influence tolerance or susceptibility to MeHg in the developing fetus are not well understood. Using transcriptomic analyses of developing brains of MeHg tolerant and susceptible strains of Drosophila, we previously identified members of the cytochrome p450 (CYP) family of monooxygenases/oxidoreductases as candidate MeHg tolerance genes. While CYP genes encode Phase I enzymes best known for xenobiotic metabolism in the liver, several classes of CYPs are required for synthesis or degradation of essential endobiotics, such as hormones and fatty acids, that are critical to normal development. We now demonstrate that variation in expression CYP genes can strongly influence MeHg tolerance in the developing fly. Importantly, modulating expression of a single CYP, CYP6g1, specifically in neurons or the fat body (liver equivalent) is sufficient to rescue development in the presence of MeHg. We also demonstrate a conserved function for CYP3A4, a human homolog of CYP6g1, in conferring MeHg tolerance to flies. Finally, we show that pharmacological induction of CYPs with caffeine parallels an increase in tolerance to MeHg in developing flies. These findings establish a previously unidentified role for CYPs in MeHg toxicity and point to a potentially conserved role of CYP genes to influence susceptibility to MeHg toxicity across species. PMID:22699155

  1. Genetic Predictors of Interindividual Variability in Hepatic CYP3A4 ExpressionS⃞

    PubMed Central

    Lamba, Vishal; Panetta, John C.; Strom, Stephen

    2010-01-01

    Variability in hepatic CYP3A4 cannot be explained by common CYP3A4 coding variants. We previously identified polymorphisms in pregnane X receptor (PXR) and ATP-binding cassette subfamily B member 1 (ABCB1) associated with CYP3A4 mRNA levels in small cohorts of human livers. However, the relative contributions of these genetic variations or of polymorphisms in other CYP3A4 regulators to variable CYP3A4 expression were not known. We phenotyped livers from white donors (n = 128) by quantitative real-time polymerase chain reaction for expression of CYP3A4, CYP3A5, and CYP3A7 and nine transcriptional regulators, coactivators, and corepressors. We resequenced hepatic nuclear factor-3-β (HNF3β, FoxA2), HNF4α, HNF3γ (FoxA3), nuclear receptor corepressor 2 (NCoR2), and regions of the CYP3A4 promoter and genotyped informative single-nucleotide polymorphisms in PXR and ABCB1 in the same livers. CYP3A4 mRNA was positively correlated with PXR and FoxA2 and negatively correlated with NCoR2 mRNA. A common silent polymorphism and a polymorphic trinucleotide (CCT) repeat in FoxA2 were associated with CYP3A4 expression. The transcriptional activity of the FoxA2 polymorphic CCT repeat alleles (wild-type, n = 14 and variant, n = 13, 15, and 19) when assayed by luciferase reporter transactivation assays was greatest for the wild-type repeat, with deviations from this number having decreased transcriptional activity. This corresponded with higher expression of FoxA2 mRNA and its targets PXR and CYP3A4 in human livers with (CCT) n = 14 genotypes. Multiple linear regression analysis was used to quantify the contributions of selected genetic polymorphisms to variable CYP3A4 expression. This approach identified sex and polymorphisms in FoxA2, HNF4α, FoxA3, PXR, ABCB1, and the CYP3A4 promoter that together explained as much as 24.6% of the variation in hepatic CYP3A4 expression. PMID:19934400

  2. Fluoxetine and norfluoxetine mediated complex drug-drug interactions: in vitro to in vivo correlation of effects on CYP2D6, CYP2C19 and CYP3A4

    PubMed Central

    Sager, Jennifer E; Lutz, Justin D; Foti, Robert S; Davis, Connie; Kunze, Kent L; Isoherranen, Nina

    2014-01-01

    Fluoxetine and its circulating metabolite norfluoxetine present a complex multiple inhibitor system that causes reversible or time-dependent inhibition of CYP2D6, CYP3A4, and CYP2C19 in vitro. While significant inhibition of all three enzymes in vivo is predicted, midazolam and lovastatin AUCs were unaffected by two week dosing of fluoxetine whereas dextromethorphan AUC was increased by 27-fold and omeprazole AUC by 7.1-fold. This observed discrepancy between in vitro risk assessment and in vivo DDI profile was rationalized by time-varying dynamic pharmacokinetic models that incorporated circulating concentrations of fluoxetine and norfluoxetine enantiomers, mutual inhibitor-inhibitor interactions and CYP3A4 induction. The dynamic models predicted all DDIs with less than 2-fold error. This study demonstrates that complex drug-drug interactions that involve multiple mechanisms, pathways and inhibitors with their metabolites can be predicted and rationalized via characterization of all the inhibitory species in vitro. PMID:24569517

  3. CYP2C19 activity and cardiovascular risk factors in patients with an acute coronary syndrome.

    PubMed

    Martínez-Quintana, Efrén; Rodríguez-González, Fayna; Medina-Gil, José María; Garay-Sánchez, Paloma; Tugores, Antonio

    2017-09-20

    CYP2C19 is a major isoform of cytochrome P450 that metabolizes a number of drugs and is involved in the glucocorticoids synthesis. CYP2C19 polymorphisms have been associated with the genetic risk for type 2 diabetes. Five hundred and three patients with an acute coronary event were studied to assess the association between the CYP2C19 activity (CYP2C19*2, CYP2C19*3 and CYP2C19*17 variants) and the type of acute coronary syndrome, cardiovascular risk factors (arterial systemic hypertension, diabetes mellitus, dyslipidemia and smoking), analytical parameters and the extent and severity of coronary atherosclerosis. Genotype distribution in our series was similar to that expected in the Caucasian population. Among the traditional cardiovascular risk factors, very poor metabolizer patients (*2/*2, *3/*3 or *2/*3) had a greater tendency to present diabetes mellitus needing insuline (P=.067). Conversely, when we compared very poor, poor and normal metabolizers vs. rapid and ultrarapid metabolizers we found significant differences in those diabetic patients under insulin treatment (64 patients [18%] vs. 17 patients [11%]; P=.032). On the contrary, analytical parameters, systemic arterial hypertension, dyslipidemia, smoking or the personal/family history of coronary artery disease did not reach statistical significance regardless of CYP2C19 activity. Similarly, the number and the type of coronary disease (thrombotic, fibrotic or both) did not differ between patients with different CYP2C19 enzyme activity. Patients with an acute coronary event and a very poor, poor and normal CYP2C19 metabolizer genotype have a higher prevalence of diabetes mellitus needing insuline than patients with the rapid and ultrarapid metabolizers CPY2C19 genotype. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  4. Fluticasone Propionate Pharmacogenetics: CYP3A4*22 Polymorphism and Pediatric Asthma Control

    PubMed Central

    Stockmann, Chris; Fassl, Bernhard; Gaedigk, Roger; Nkoy, Flory; Uchida, Derek A.; Monson, Steven; Reilly, Christopher A.; Leeder, J. Steven; Yost, Garold S.; Ward, Robert M.

    2012-01-01

    Objective To determine the relationship between allelic variations in genes involved in fluticasone propionate (FP) metabolism and asthma control among children with asthma managed with inhaled FP. Study design The relationship between variability in asthma control scores and genetic variation in drug metabolism was assessed by genotyping nine single nucleotide polymorphisms (SNPs) in CYP3A4, CYP3A5, and CYP3A7. Genotype information was compared with asthma control scores (0 = well-controlled to 15 = poorly-controlled), determined by using a questionnaire modified from the National Heart Lung and Blood Institute Expert Panel 3 guidelines. Results Our study cohort was comprised of 734 children with asthma (mean age 8.8 ± 4.3 years), who were predominantly male (61%) and non-Hispanic Whites (53%); 413 children (56%) were receiving inhaled glucocorticoids daily, of which FP was prescribed most frequently (65%). Among the children receiving daily FP, SNPs in the genes CYP3A5 and CYP3A7 were not associated with asthma control scores. In contrast, asthma control scores were significantly improved among 20 (7%) children with the CYP3A4*22 allele (median 3, range 0-6), as compared with the 201 patients without the CYP3A4*22 allele (median 4, range 0-15) (P=0.02). The presence of CYP3A4*22 was associated with improved asthma control scores by 2.1 points (95% CI: 0.5-3.8). Conclusions The presence of CYP3A4*22, which is associated with decreased hepatic CYP3A4 expression and activity, was accompanied by improved asthma control among FP treated children. Decreased CYP3A4 activity may improve asthma control with inhaled FP. PMID:23290512

  5. Effects of CYP3A5, CYP2C19, and CYP2B6 on the clinical efficacy and adverse outcomes of sibutramine therapy: a crucial role for the CYP2B6*6 allele.

    PubMed

    Hwang, In Cheol; Park, Ji Young; Ahn, Hong Yup; Kim, Kyoung Kon; Suh, Heuy Sun; Ko, Ki Dong; Kim, Kyoung-Ah

    2014-01-20

    Various cytochrome P450 isoforms modulate sibutramine activity and influence sibutramine plasma levels and pharmacokinetics. However, there are no available data to demonstrate the association of these polymorphisms with the clinical outcomes of sibutramine administration. This study was a sub-investigation of a 12-week, double-blind, placebo-controlled trial examining the additive effect of orlistat on sibutramine. The final analysis was restricted to 101 women who had fulfilled the protocol. We evaluated the effects of genetic polymorphisms of CYP3A5, CYP2C19 and CYP2B6 on the % weight loss and the occurrence of adverse events. The change of pulse rate from baseline value was affected by both CYP2B6 and CYP3A5 genetic polymorphisms (P<.01 for CYP3A5 and P=.01 for CYP2B6). Both CYP2B6 and CYP3A5 showed gene-gene interactions (P<.01). After adjusting for significant variables in the backward stepwise regression model, the change of pulse rate and time-dependent weight reduction were significant only among the CYP2B6 genotypes (P=.027 and P<.01, respectively). The CYP2B6*6 allele influences the extent of weight reduction and pulse rate changes in patients undergoing sibutramine treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Genotype-phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women.

    PubMed

    Floyd, Michael D; Gervasini, Guillermo; Masica, Andrew L; Mayo, Gail; George, Alfred L; Bhat, Kolari; Kim, Richard B; Wilkinson, Grant R

    2003-10-01

    CYP3A activity in adults varies between individuals and it has been suggested that this has a genetic basis, possibly related to variant alleles in CYP3A4 and CYP3A5 genes. Accordingly, genotype-phenotype associations were investigated under constitutive and induced conditions. Midazolam's systemic and oral clearances, and the erythromycin breath test (ERBT) were determined in 57 healthy subjects: 23 (11 men, 12 women) European- and 34 (14 men, 20 women) African-Americans. Studies were undertaken in the basal state and after 14-15 days pretreatment with rifampin. DNA was characterized for the common polymorphisms CYP3A4*1B, CYP3A5*3, CYP3A5*6 and CYP3A5*7 by direct sequencing, and for exon 21 and exon 26 variants of MDR1 by allele-specific, real-time polymerase chain reaction. In 95% of subjects, the basal systemic clearance of midazolam was unimodally distributed and variability was less than four-fold whereas, in 98% of the study population, oral clearance varied five-fold. No population or sex-related differences were apparent. Similar findings were observed with the ERBT. Rifampin pretreatment markedly increased the systemic (two-fold) and oral clearance (16-fold) of midazolam, and the ERBT (two-fold) but the variabilities were unchanged. No associations were noted between these phenotypic measures and any of the studied genotypes, except for oral clearance and its fold-increase after rifampin. These were related to the presence of CYP3A4*1B and the inversely linked CYP3A5*3 polymorphism, with the extent of induction being approximately 50% greater in CYP3A5*3 homozygotes compared to wild-type subjects. In most healthy subjects, variability in intestinal and hepatic CYP3A activity, using midazolam as an in-vivo probe, is modest and common polymorphisms in CYP3A4 and CYP3A5 do not appear to have important functional significance.

  7. Aldrin epoxidation in flathead mullet (Mugil cephalus): possible involvement of CYP1A and CYP3A.

    PubMed

    Bozcaarmutlu, Azra; Turna, Sema; Sapmaz, Canan; Arinc, Emel; Yenisoy-Karakaş, Serpil

    2014-06-01

    The primary objective of this study was to determine specific cytochrome P450 isozyme(s) involved in the metabolism of aldrin to its toxic metabolite dieldrin in flathead mullet (Mugil cephalus) liver microsomes. To identify the cytochrome P450 isozyme responsible for the aldrin metabolism in mullet liver, the effects of mammalian-specific cytochrome P450 inhibitors and substrates were determined in the epoxidation reaction of aldrin. CYP3A-related inhibitors, ketoconazole, SKF-525A, and cimetidine, inhibited the metabolism of aldrin. The contribution of CYP1A to the aldrin metabolism was shown by the inhibition of 7-ethoxyresorufin-O-deethylase activity in the presence of aldrin. The results indicate that CY1A and CYP3A are the cytochrome P450s involved in aldrin epoxidase activity in mullet. In addition, the suitability of aldrin epoxidase activity for monitoring of environmental pollution was also assessed in the fish samples caught from four different locations of the West Black Sea coast of Turkey. © 2014 Wiley Periodicals, Inc.

  8. Gene-gene-environment interactions between drugs, transporters, receptors, and metabolizing enzymes: Statins, SLCO1B1, and CYP3A4 as an example.

    PubMed

    Sadee, Wolfgang

    2013-09-01

    Pharmacogenetic biomarker tests include mostly specific single gene-drug pairs, capable of accounting for a portion of interindividual variability in drug response and toxicity. However, multiple genes are likely to contribute, either acting independently or epistatically, with the CYP2C9-VKORC1-warfarin test panel, an example of a clinically used gene-gene-dug interaction. I discuss here further instances of gene-gene-drug interactions, including a proposed dynamic effect on statin therapy by genetic variants in both a transporter (SLCO1B1) and a metabolizing enzyme (CYP3A4) in liver cells, the main target site where statins block cholesterol synthesis. These examples set a conceptual framework for developing diagnostic panels involving multiple gene-drug combinations. Copyright © 2013 Wiley Periodicals, Inc.

  9. [The metabolic fingerprint of the compatibility of Radix Aconite and Radix Paeoniae Alba and its effect on CYP450 enzymes].

    PubMed

    Bi, Yun-Feng; Zheng, Zhong; Pi, Zi-Feng; Liu, Zhi-Qiang; Song, Feng-Rui

    2014-12-01

    Using a UPLC-MS/MS (MRM) and cocktail probe substrates method, the metabolic fingerprint of the compatibility of Radix Aconite (RA) and Radix Paeoniae Alba (RPA) and its effect on CYP450 enzymes were investigated. These main CYP isoforms include CYP 1A2, CYP 2C, CYP 2E1, CYP 2D and CYP 3A. Compared with the inhibition effect of RA decoctions on CYP450 isoforms, their co-decoctions of RA and RPA with different proportions can decrease RA' inhibition on CYP3A, CYP2D, CYP2C and CYP1A2, but can not reduce RA' effect on CYP2E1. The metabolic fingerprints of RA decoction and co-decoctions with different proportions of RPA in CYP450 of rat liver were analyzed by UPLC-MS. Compared with the metabolic fingerprints of RA decoction, the intensity of diester-diterpenoid aconitum alkaloids decreased significantly, while the intensity of monoester-diterpenoid alkaloids significantly increased in the metabolic fingerprints of co-decoctions of RA and RPA. The results suggest that RA coadministration with RPA increased the degradation of toxic alkaloid and show the effect of toxicity reducing and efficacy enhancing.

  10. Clinical Drug-Drug Interactions Through Cytochrome P450 3A (CYP3A) for the Selective ALK Inhibitor Alectinib.

    PubMed

    Morcos, Peter N; Cleary, Yumi; Guerini, Elena; Dall, Georgina; Bogman, Katrijn; De Petris, Luigi; Viteri, Santiago; Bordogna, Walter; Yu, Li; Martin-Facklam, Meret; Phipps, Alex

    2017-05-01

    The efficacy and safety of alectinib, a central nervous system-active and selective anaplastic lymphoma kinase (ALK) inhibitor, has been demonstrated in patients with ALK-positive (ALK+) non-small cell lung cancer (NSCLC) progressing on crizotinib. Alectinib is mainly metabolized by cytochrome P450 3A (CYP3A) to a major similarly active metabolite, M4. Alectinib and M4 show evidence of weak time-dependent inhibition and small induction of CYP3A in vitro. We present results from 3 fixed-sequence studies evaluating drug-drug interactions for alectinib through CYP3A. Studies NP28990 and NP29042 enrolled 17 and 24 healthy subjects, respectively, and investigated potent CYP3A inhibition with posaconazole and potent CYP3A induction through rifampin, respectively, on the single oral dose pharmacokinetics (PK) of alectinib. A substudy of the global phase 2 NP28673 study enrolled 15 patients with ALK+ NSCLC to determine the effect of multiple doses of alectinib on the single oral dose PK of midazolam, a sensitive substrate of CYP3A. Potent CYP3A inhibition or induction resulted in only minor effects on the combined exposure of alectinib and M4. Multiple doses of alectinib did not influence midazolam exposure. These results suggest that dose adjustments may not be needed when alectinib is coadministered with CYP3A inhibitors or inducers or for coadministered CYP3A substrates. © 2016, The American College of Clinical Pharmacology.

  11. Environmental Xenobiotics and the Antihormones Cyproterone Acetate and Spironolactone Use the Nuclear Hormone Pregnenolone X Receptor to Activate the CYP3A23 Hormone Response Element

    PubMed Central

    SCHUETZ, ERIN G.; BRIMER, CYNTHIA; SCHUETZ, JOHN D.

    2013-01-01

    The pregnenolone X receptor (PXR), a new member of the nuclear hormone receptor superfamily, was recently demonstrated to mediate glucocorticoid agonist and antagonist activation of a hormone response element spaced by three nucleotides (DR-3) within the rat CYP3A23 promoter. Because many other steroids and xenobiotics can up-regulate CYP3A23 expression, we determined whether some of these other regulators used PXR to activate the CYP3A23 DR-3. Transient cotransfection of LLC-PK1 cells with (CYP3A23)2-tk-CAT and mouse PXR demonstrated that the organochlorine pesticides transnonachlor and chlordane and the nonplanar polychlorinated biphenyls (PCBs) each induced the CYP3A23 DR-3 element, and this activation required PXR. Additionally, this study found that PXR is activated to induce (CYP3A23)2-tk-CAT by antihormones of several steroid classes including the antimineralocorticoid spironolactone and the antiandrogen cyproterone acetate. These studies reveal that PXR is involved in the induction of CYP3A23 by pharmacologically and structurally distinct steroids and xenobiotics. Moreover, PXR-mediated PCB activation of the (CYP3A23)2-tk-CAT may serve as a rapid assay for effects of nonplanar PCBs. PMID:9855641

  12. Population pharmacokinetic approach to evaluate the effect of CYP2D6, CYP3A, ABCB1, POR and NR1I2 genotypes on donepezil clearance

    PubMed Central

    Noetzli, Muriel; Guidi, Monia; Ebbing, Karsten; Eyer, Stephan; Wilhelm, Laurence; Michon, Agnès; Thomazic, Valérie; Stancu, Ioana; Alnawaqil, Abdel-Messieh; Bula, Christophe; Zumbach, Serge; Gaillard, Michel; Giannakopoulos, Panteleimon; von Gunten, Armin; Csajka, Chantal; Eap, Chin B

    2014-01-01

    Aims A large interindividual variability in plasma concentrations has been reported in patients treated with donepezil, the most frequently prescribed antidementia drug. We aimed to evaluate clinical and genetic factors influencing donepezil disposition in a patient population recruited from a naturalistic setting. Methods A population pharmacokinetic study was performed including data from 129 older patients treated with donepezil. The patients were genotyped for common polymorphisms in the metabolic enzymes CYP2D6 and CYP3A, in the electron transferring protein POR and the nuclear factor NR1I2 involved in CYP activity and expression, and in the drug transporter ABCB1. Results The average donepezil clearance was 7.3 l h−1 with a 30% interindividual variability. Gender markedly influenced donepezil clearance (P < 0.01). Functional alleles of CYP2D6 were identified as unique significant genetic covariate for donepezil clearance (P < 0.01), with poor metabolizers and ultrarapid metabolizers demonstrating, respectively, a 32% slower and a 67% faster donepezil elimination compared with extensive metabolizers. Conclusion The pharmacokinetic parameters of donepezil were well described by the developed population model. Functional alleles of CYP2D6 significantly contributed to the variability in donepezil disposition in the patient population and should be further investigated in the context of individual dose optimization to improve clinical outcome and tolerability of the treatment. PMID:24433464

  13. Population pharmacokinetic approach to evaluate the effect of CYP2D6, CYP3A, ABCB1, POR and NR1I2 genotypes on donepezil clearance.

    PubMed

    Noetzli, Muriel; Guidi, Monia; Ebbing, Karsten; Eyer, Stephan; Wilhelm, Laurence; Michon, Agnès; Thomazic, Valérie; Stancu, Ioana; Alnawaqil, Abdel-Messieh; Bula, Christophe; Zumbach, Serge; Gaillard, Michel; Giannakopoulos, Panteleimon; von Gunten, Armin; Csajka, Chantal; Eap, Chin B

    2014-07-01

    A large interindividual variability in plasma concentrations has been reported in patients treated with donepezil, the most frequently prescribed antidementia drug. We aimed to evaluate clinical and genetic factors influencing donepezil disposition in a patient population recruited from a naturalistic setting. A population pharmacokinetic study was performed including data from 129 older patients treated with donepezil. The patients were genotyped for common polymorphisms in the metabolic enzymes CYP2D6 and CYP3A, in the electron transferring protein POR and the nuclear factor NR1I2 involved in CYP activity and expression, and in the drug transporter ABCB1. The average donepezil clearance was 7.3 l h(-1) with a 30% interindividual variability. Gender markedly influenced donepezil clearance (P < 0.01). Functional alleles of CYP2D6 were identified as unique significant genetic covariate for donepezil clearance (P < 0.01), with poor metabolizers and ultrarapid metabolizers demonstrating, respectively, a 32% slower and a 67% faster donepezil elimination compared with extensive metabolizers. The pharmacokinetic parameters of donepezil were well described by the developed population model. Functional alleles of CYP2D6 significantly contributed to the variability in donepezil disposition in the patient population and should be further investigated in the context of individual dose optimization to improve clinical outcome and tolerability of the treatment. © 2014 The British Pharmacological Society.

  14. The pharmacokinetic and pharmacodynamic interaction of clopidogrel and cilostazol in relation to CYP2C19 and CYP3A5 genotypes

    PubMed Central

    Kim, Ho‐Sook; Lim, Younghae; Oh, Minkyung; Ghim, Jong‐lyul; Kim, Eun‐Young; Kim, Dong‐Hyun

    2015-01-01

    Aim The primary objective of the present study was to evaluate the pharmacokinetic and pharmacodynamic interactions between clopidogrel and cilostazol in relation to the CYP2C19 and CYP3A5 genotypes. Methods In a randomized, three‐way crossover study, 27 healthy subjects were administered clopidogrel (300 mg), cilostazol (100 mg) or clopidogrel + cilostazol orally. Plasma concentrations of clopidogrel, cilostazol and their active metabolites (clopidogrel thiol metabolite, 3,4‐dehydrocilostazol and 4″‐trans‐hydroxycilostazol), and adenosine diphosphate‐induced platelet aggregation were measured for pharmacokinetic and pharmacodynamic assessment. Results The area under the plasma concentration–time curve (AUC) of the active thiol metabolite of clopidogrel was highest in the CYP2C19 extensive metabolizers (EM) and lowest in the poor metabolizers (PM). Cilostazol decreased the thiol metabolite AUC by 29% in the CYP3A5*1/*3 genotype [geometric mean ratio (GMR) 0.71; 90% confidence interval (CI) 0.58, 0.86; P = 0.020] but not in the CYP3A5*3/*3 genotype (GMR 0.93; 90% CI 0.80, 1.10; P = 0.446). Known effects of the CYP2C19 and CYP3A5 genotypes on the exposure of cilostazol and its metabolites were observed but there was no significant difference in the AUC of cilostazol and 3,4‐dehydrocilostazol between cilostazol and clopidogrel + cilostazol. The inhibition of platelet aggregation from 4 h to 24 h (IPA4–24) following the administration of clopidogrel alone was highest in the CYP2C19 EM genotype and lowest in the CYP2C19 PM genotype (59.05 ± 18.95 vs. 36.74 ± 13.26, P = 0.023). However, the IPA of the CYP2C19 PM following co‐administration of clopidogrel and cilostazol was comparable with that of the CYP2C19 EM and intermediate metabolizers (IM) only in CYP3A5*3/*3 subjects. Conclusions The additive antiplatelet effect of cilostazol plus clopidogrel is maximized in subjects with both the CYP2C19 PM and CYP3A5*3/*3 genotypes because

  15. Activity-dependent and graded BACE1 expression in the olfactory epithelium is mediated by the retinoic acid metabolizing enzyme CYP26B1.

    PubMed

    Login, Hande; Butowt, Rafal; Bohm, Staffan

    2015-07-01

    It is well established that environmental influences play a key role in sculpting neuronal connectivity in the brain. One example is the olfactory sensory map of topographic axonal connectivity. While intrinsic odorant receptor signaling in olfactory sensory neurons (OSN) determines anterior-posterior counter gradients of the axonal guidance receptors Neuropilin-1 and Plexin-A1, little is known about stimulus-dependent gradients of protein expression, which correlates with the functional organization of the olfactory sensory map along its dorsomedial (DM)-ventrolateral (VL) axis. Deficiency of the Alzheimer's β-secretase BACE1, which is expressed in a DM(low)-VL(high) gradient, results in OSN axon targeting errors in a DM > VL and gene dose-dependent manner. We show that expression of BACE1 and the all-trans retinoic acid (RA)-degrading enzyme Cyp26B1 form DM-VL counter gradients in the olfactory epithelium. Analyses of mRNA and protein levels in OSNs after naris occlusion, in mice deficient in the olfactory cyclic nucleotide-gated channel and in relation to onset of respiration, show that BACE1 and Cyp26B1 expression in OSNs inversely depend on neuronal activity. Overexpression of a Cyp26B1 or presence of a dominant negative RA receptor transgene selectively in OSNs, inhibit BACE1 expression while leaving the DM(low)-VL(high) gradient of the axonal guidance protein Neuropilin-2 intact. We conclude that stimulus-dependent neuronal activity can control the expression of the RA catabolic enzyme Cyp26B1 and downstream genes such as BACE1. This result is pertinent to an understanding of the mechanisms by which a topographic pattern of connectivity is achieved and modified as a consequence of graded gene expression and sensory experience.

  16. Polymorphisms in CYP1A1 and CYP3A5 Genes Contribute to the Variability in Granisetron Clearance and Exposure in Pregnant Women with Nausea and Vomiting.

    PubMed

    Bustos, Martha L; Zhao, Yang; Chen, Huijun; Caritis, Steve N; Venkataramanan, Raman

    2016-12-01

    Nausea and vomiting affect up to 90% of pregnant women. Granisetron is a potent and highly selective serotonin receptor antagonist and is an effective antiemetic. Findings from a prior study in pregnant women demonstrated a large interindividual variability in granisetron exposure. Granisetron is primarily metabolized by the cytochrome P450 (CYP) enzymes CYP1A1 and CYP3A and is likely a substrate of the ABCB1 transporter. Single-nucleotide polymorphisms (SNPs) in CYP3A, CYP1A1, and ABCB1 can alter drug metabolism. This study evaluated the influence of polymorphisms in CYP3A4, CYP3A5, CYP1A1, and ABCB1 on the pharmacokinetic properties of granisetron in pregnant women. The study enrolled 16 pregnant women (gestational age of 12-19 wks). All patients had nausea and vomiting and were treated with granisetron 1 mg. Granisetron plasma concentrations were determined using liquid chromatography tandem-mass spectrometry. The patients' genotype was determined using TaqMan SNP Genotyping Assays. The Hardy-Weinberg equilibrium was assessed by comparing observed and expected genotype frequencies, using the exact test. Intravenous granisetron clearance was used as the dependent variable for analysis of associations. Of 16 patients, 25% were homozygous for the allele variant CYP3A5*3 and had a significantly lower granisetron clearance and increased area under the plasma concentration-versus-time curve (AUC) compared with nonhomozygous patients. Approximately one-third of patients (n=5) were carriers for the allele variant CYP1A1*2A and had a significantly higher granisetron clearance and decreased AUC. We did not find significant differences in the AUC or clearance for any SNPs in CYP3A4 and ABCB1 genes. Polymorphisms in CYP3A5 and CYP1A1 account for some of the variability in systemic clearance and exposure of granisetron in pregnant women. © 2016 Pharmacotherapy Publications, Inc.

  17. Association Between the Lower Extremity Deep Venous Thrombosis, the Warfarin Maintenance Dose, and CYP2C9*3, CYP2D6*10, and CYP3A5*3 Genetic Polymorphisms: A Case-Control Study.

    PubMed

    Ju, Shang; Gao, Yu; Cao, Xin; Zhang, Xiao-Fu; Yan, Cheng-Cheng; Liu, Feng-Tong

    2017-09-01

    This study explored the association between the CYP2C9*3/CYP2D6*10/CYP3A5*3 genetic polymorphisms with lower extremity deep venous thrombosis (LEDVT) and the warfarin maintenance dose. Five hundred thirty-six patients who were pathologically diagnosed with LEDVT after surgery were included in the LEDVT group. At the same time, 540 patients without LEDVT who underwent surgery were recruited as the control group. Patients were given warfarin at an initial dose of 2.5-3.0 mg. Blood samples were collected to detect the initial and stable international normalized ratio (INR) values. The warfarin maintenance dose was obtained if the INR remained within a range of 2.0-3.0 for 3 consecutive days. The genotype distribution and haplotype analysis of the CYP2C9*3/CYP2D6*10/CYP3A5*3 alleles were analyzed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) testing and SHEsis software, respectively. Logistic regression analysis was used to analyze the risk and protective factors for LEDVT. The A/G genotypes, G/G genotypes, and G allele of CYP3A5*3 in the LEDVT group were observed with increased frequency compared with the control group. The LEDVT group displayed a higher ACG haplotype frequency, and lower ACA and ATA haplotype frequencies than the control group. Age, diabetes, low-density lipoprotein, CYP3A5*3 and the ACG haplotype were independent risk factors for LEDVT. High-density lipoprotein and the ACA haplotype were independent protective factors for LEDVT. The genotype distributions of the CYP2C9*3, CYP2D6*10, and CYP3A5*3 genetic polymorphisms were associated with the warfarin maintenance dose. The CYP3A5*3 genetic polymorphism may be an important risk factor for LEDVT. Moreover, CYP2C9*3, CYP2D6*10, and CYP3A5*3 are associated with the warfarin maintenance dose.

  18. Polycyclic aromatic hydrocarbon-induced CYP1B1 activity is suppressed by perillyl alcohol in MCF-7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Nelson L.S.; Wang Huan; Wang Yun

    2006-06-01

    Perillyl alcohol (POH) is a dietary monoterpene with potential applications in chemoprevention and chemotherapy. Although clinical trials are under way, POH's physiological and pharmacological properties are still unclear. In the present study, the effect of POH on polycyclic aromatic hydrocarbon (PAH)-induced genotoxicity, and the related expression were examined in MCF-7 cells. Exposure to environmental toxicant increases the risk of cancer. Many of these compounds are pro-carcinogens and are biotransformed into their ultimate genotoxic structures by xenobiotic metabolizing enzymes. CYP1A1 and 1B1 are enzymes that catalyze the biotransformation of dimethylbenz[a]anthracene (DMBA). Our data revealed that 0.5 {mu}M of POH was effectivemore » in blocking DMBA-DNA binding. Ethoxyresorufin-O-deethylase (EROD) assay indicated that the administration of POH inhibited the DMBA-induced enzyme activity in MCF-7 cells. Enzyme kinetic analysis revealed that POH inhibited CYP1B1 but not CYP1A1 activity. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay also demonstrated that the monoterpene reduced CYP1B1 mRNA abundance induced by DMBA. The present study illustrated that POH might inhibit and downregulate CYP1B1, which could protect against PAH-induced carcinogenesis.« less

  19. Polycyclic aromatic hydrocarbon-induced CYP1B1 activity is suppressed by perillyl alcohol in MCF-7 cells.

    PubMed

    Chan, Nelson L S; Wang, Huan; Wang, Yun; Leung, Hau Yi; Leung, Lai K

    2006-06-01

    Perillyl alcohol (POH) is a dietary monoterpene with potential applications in chemoprevention and chemotherapy. Although clinical trials are under way, POH's physiological and pharmacological properties are still unclear. In the present study, the effect of POH on polycyclic aromatic hydrocarbon (PAH)-induced genotoxicity, and the related expression were examined in MCF-7 cells. Exposure to environmental toxicant increases the risk of cancer. Many of these compounds are pro-carcinogens and are biotransformed into their ultimate genotoxic structures by xenobiotic metabolizing enzymes. CYP1A1 and 1B1 are enzymes that catalyze the biotransformation of dimethylbenz[a]anthracene (DMBA). Our data revealed that 0.5 microM of POH was effective in blocking DMBA-DNA binding. Ethoxyresorufin-O-deethylase (EROD) assay indicated that the administration of POH inhibited the DMBA-induced enzyme activity in MCF-7 cells. Enzyme kinetic analysis revealed that POH inhibited CYP1B1 but not CYP1A1 activity. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay also demonstrated that the monoterpene reduced CYP1B1 mRNA abundance induced by DMBA. The present study illustrated that POH might inhibit and downregulate CYP1B1, which could protect against PAH-induced carcinogenesis.

  20. Active site proton delivery and the lyase activity of human CYP17A1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khatri, Yogan; Gregory, Michael C.; Grinkova, Yelena V.

    2014-01-03

    Highlights: •The disruption of PREG/PROG hydroxylation activity by T306A showed the participation of Cpd I. •T306A supports the involvement of a nucleophilic peroxo-anion during lyase activity. •The presence of cytochrome b{sub 5} augments C–C lyase activity. •Δ5-Steroids are preferred substrates for CYP17 catalysis. -- Abstract: Cytochrome P450 CYP17A1 catalyzes a series of reactions that lie at the intersection of corticoid and androgen biosynthesis and thus occupies an essential role in steroid hormone metabolism. This multifunctional enzyme catalyzes the 17α-hydroxylation of Δ4- and Δ5-steroids progesterone and pregnenolone to form the corresponding 17α-hydroxy products through its hydroxylase activity, and a subsequent 17,20-carbon–carbonmore » scission of pregnene-side chain produce the androgens androstenedione (AD) and dehydroepiandrosterone (DHEA). While the former hydroxylation reaction is believed to proceed through a conventional “Compound I” rebound mechanism, it has been suggested that the latter carbon cleavage is initiated by an iron-peroxy intermediate. We report on the role of Thr306 in CYP17 catalysis. Thr306 is a member of the conserved acid/alcohol pair thought to be essential for the efficient delivery of protons required for hydroperoxoanion heterolysis and formation of Compound I in the cytochromes P450. Wild type and T306A CYP17A1 self-assembled in Nanodiscs were used to quantitate turnover and coupling efficiencies of CYP17’s physiological Δ4- and Δ5-substrates. We observed that T306A co-incorporated in Nanodiscs with its redox partner cytochrome P450 oxidoreductase, coupled NADPH only by 0.9% and 0.7% compared to the wild type (97% and 22%) during the conversion of pregnenolone and progesterone, respectively, to the corresponding 17-OH products. Despite increased oxidation of pyridine nucleotide, hydroxylase activity was drastically diminished in the T306A mutant, suggesting a high degree of uncoupling in which

  1. Use of endogenous cortisol 6β-hydroxylation clearance for phenotyping in vivo CYP3A activity in women after sequential administration of an oral contraceptive (OC) containing ethinylestradiol and levonorgestrel as weak CYP3A inhibitors.

    PubMed

    Shibasaki, Hiromi; Kuroiwa, Miyuki; Uchikura, Shinobu; Tsuboyama, Sayuri; Yokokawa, Akitomo; Kume, Miyoko; Furuta, Takashi

    2014-09-01

    The present study was undertaken to evaluate the time courses of in vivo cytochrome P450 3A (CYP3A) inhibition in four healthy women after sequential administration of an oral contraceptive (OC) containing ethinylestradiol and levonorgestrel, using 6β-hydroxylation clearance of endogenous cortisol (CLm(6β)) as a new index for CYP3A phenotyping. The 6β-hydroxylation clearance (CLm(6β)) was followed every 2h from 9:00 or 11:00 to 17:00 on days 0 (baseline), 1, 2, 21, and 28 during a single menstrual cycle. The serum concentrations of endogenous estradiol and progesterone were also measured. The time course data of CLm(6β) clearly demonstrated 43-64% inhibition of CYP3A activity in women taking a low daily dose of the OC for 21days. The average CLm(6β) levels that were suppressed by the OC in four women were extremely low (0.60-1.23mL/min) compared with the normal CLm(6β) range (1.5-3.5mL/min) that was obtained from 49 healthy subjects in our previous study. The in vivo inhibitory potencies (43-64%) obtained in this study were stronger than expected from reported in vitro studies (∼20%). Furthermore, it would take at least seven days to return to the baseline activity of CYP3A after discontinuation of the OC. The results presented here should provide important information on the inhibitory effect of OC on the CYP3A activities in women, which are involved in the metabolism of a number of drugs with a narrow therapeutic range. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions.

    PubMed Central

    Lehmann, J M; McKee, D D; Watson, M A; Willson, T M; Moore, J T; Kliewer, S A

    1998-01-01

    The cytochrome P-450 monooxygenase 3A4 (CYP3A4) is responsible for the oxidative metabolism of a wide variety of xenobiotics including an estimated 60% of all clinically used drugs. Although expression of the CYP3A4 gene is known to be induced in response to a variety of compounds, the mechanism underlying this induction, which represents a basis for drug interactions in patients, has remained unclear. We report the identification of a human (h) orphan nuclear receptor, termed the pregnane X receptor (PXR), that binds to a response element in the CYP3A4 promoter and is activated by a range of drugs known to induce CYP3A4 expression. Comparison of hPXR with the recently cloned mouse PXR reveals marked differences in their activation by certain drugs, which may account in part for the species-specific effects of compounds on CYP3A gene expression. These findings provide a molecular explanation for the ability of disparate chemicals to induce CYP3A4 levels and, furthermore, provide a basis for developing in vitro assays to aid in predicting whether drugs will interact in humans. PMID:9727070

  3. Arsenite and its metabolites, MMA(III) and DMA(III), modify CYP3A4, PXR and RXR alpha expression in the small intestine of CYP3A4 transgenic mice.

    PubMed

    Medina-Díaz, I M; Estrada-Muñiz, E; Reyes-Hernández, O D; Ramírez, P; Vega, L; Elizondo, G

    2009-09-01

    Arsenic is an environmental pollutant that has been associated with an increased risk for the development of cancer and several other diseases through alterations of cellular homeostasis and hepatic function. Cytochrome P450 (P450) modification may be one of the factors contributing to these disorders. Several reports have established that exposure to arsenite modifies P450 expression by decreasing or increasing mRNA and protein levels. Cytochrome P450 3A4 (CYP3A4), the predominant P450 expressed in the human liver and intestines, which is regulated mainly by the Pregnane X Receptor-Retinoid X Receptor alpha (PXR-RXR alpha) heterodimer, contributes to the metabolism of approximately half the drugs in clinical use today. The present study investigates the effect of sodium arsenite and its metabolites monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III)) on CYP3A4, PXR, and RXR alpha expression in the small intestine of CYP3A4 transgenic mice. Sodium arsenite treatment increases mRNA, protein and CYP3A4 activity in a dose-dependent manner. However, the increase in protein expression was not as marked as compared to the increase in mRNA levels. Arsenite treatment induces the accumulation of Ub-protein conjugates, indicating that the activation of this mechanism may explain the differences observed between the mRNA and protein expression of CYP3A4 induction. Treatment with 0.05 mg/kg of DMA(III) induces CYP3A4 in a similar way, while treatment with 0.05 mg/kg of MMA(III) increases mostly mRNA, and to a lesser degree, CYP3A4 activity. Sodium arsenite and both its metabolites increase PXR mRNA, while only DMA(III) induces RXR alpha expression. Overall, these results suggest that sodium arsenite and its metabolites induce CYP3A4 expression by increasing PXR expression in the small intestine of CYP3A4 transgenic mice.

  4. Rat oesophageal cytochrome P450 (CYP) monooxygenase system: comparison to the liver and relevance in N-nitrosodiethylamine carcinogenesis.

    PubMed

    Pinto, L F; Moraes, E; Albano, R M; Silva, M C; Godoy, W; Glisovic, T; Lang, M A

    2001-11-01

    N-nitrosodiethylamine (NDEA) is able to induce tumours in the rat oesophagus. It has been suggested that this could be due to tissue specific expression of NDEA activating cytochrome P450 enzymes. We investigated this by characterizing the oesophageal monooxygenase complex of male Wistar rats and comparing it with that of the liver. Total amount of cytochrome P450, NADPH P450 reductase, cytochrome b5 and cytochrome b5 reductase of the oesophageal mucosa was approximately 7% of what was found in the liver. In addition, major differences were found in the cytochrome P450 isoenzyme composition between these organs: CYP 2B1/2B2 and CYP3A were found only in the liver, whereas CYP1A1 was constitutively expressed only in the oesophagus. Of the two well-known nitrosamine metabolizing enzymes, CYP2A3 was found only in the oesophagus whereas CYP2E1 was exclusively expressed in the liver. Catalytic studies, western blotting and RT-PCR analyses confirmed the expression of CYP2A3 in the oesophagus. CYP2A enzymes are known to be good catalysts of NDEA metabolism. Oesophageal microsomes had a K(m) for NDEA metabolism, which was about one-third of that of hepatic microsomes, but they showed similar activities when compared per nmol of total P450. NDEA activity in the oesophagus was significantly increased by coumarin (CO), which also induced oesophageal CYP2A3. Immunoinhibition of the microsomal NDEA activity showed that up to 70% of this reaction is catalysed by CYP2A3 in the oesophagus, whereas no inhibition of the hepatic NDEA activity could be achieved by the anti-CYP2A5 antibody. NDEA, but not N-nitrosodimethylamine (NDMA) inhibited the oesophageal metabolism of CO. The results of the present investigation show major differences in the enzyme composition of the oesophageal and hepatic monooxygenase complexes, and are in accordance with the hypothesis that the NDEA organotropism could, to a large extent, be due to the tissue specific expression of the activating enzymes.

  5. Genotyping and phenotyping of CYP2D6 and CYP3A isoenzymes in patients with alcohol use disorder: correlation with haloperidol plasma concentration.

    PubMed

    Sychev, Dmitry A; Zastrozhin, Mikhail S; Miroshnichenko, Igor I; Baymeeva, Natalia V; Smirnov, Valery V; Grishina, Elena A; Ryzhikova, Kristina A; Mirzaev, Karin B; Markov, Dmitry D; Skryabin, Valentin Y; Snalina, Nataliya E; Nosikova, Polina G; Savchenko, Ludmila M; Bryun, Evgeny A

    2017-09-26

    Haloperidol is used for the treatment of alcohol use disorders in patients with signs of alcohol-related psychosis. Haloperidol therapy poses a high risk of adverse drug reactions (ADR). Contradictory data, which include the effects of genetic polymorphisms in genes encoding the elements of haloperidol biotransformation system on haloperidol metabolism rate and plasma drug concentration ratio, are described in patients with different genotypes. The primary objective of this study was to investigate the effects of CYP2D6 and CYP3A5 genetic polymorphisms on haloperidol equilibrium concentration in patients with alcohol use disorder. The study included 69 male patients with alcohol use disorder. Genotyping was performed using the allele-specific real-time PCR. CYP2D6 and CYP3A were phenotyped with HPLC-MS using the concentration of endogenous substrate of the enzyme and its urinary metabolites [6-hydroxy-1,2,3,4-tetrahydro-β-carboline(6-HO-THBC) to pinoline ratio for CYP2D6 and 6-β-hydroxycortisol to cortisol ratio for CYP3A]. The equilibrium plasma concentration was determined using LC-MS-MS. Results indicated that both C/D indexes and equilibrium concentration levels depend on CYP2D6 genetic polymorphism, but only in patients receiving haloperidol intramuscular injections [0.26 (0.09; 0.48) vs. 0.54 (0.44; 0.74), p=0.037]. The study demonstrates that CYP2D6 genetic polymorphism (1846G>A) can affect haloperidol concentration levels in patients with alcohol use disorder.

  6. Metabolism of 20-Hydroxyvitamin D3 and 20,23-Dihydroxyvitamin D3 by Rat and Human CYP24A1

    PubMed Central

    Tieu, Elaine W.; Li, Wei; Chen, Jianjun; Kim, Tae-Kang; Ma, Dejian; Slominski, Andrzej T.; Tuckey, Robert C.

    2015-01-01

    CYP11A1 hydroxylates vitamin D3 producing 20S-hydroxyvitamin D3 [20(OH)D3] and 20S,23-dihydroxyvitamin D3 [20,23(OH)2D3] as the major and most characterized metabolites. Both display immuno-regulatory and anti-cancer properties while being non-calcemic. A previous study indicated 20(OH)D3 can be metabolized by rat CYP24A1 to products including 20S,24-dihydroxyvitamin D3 [20,24(OH)2D3] and 20S,25-dihydroxyvitamin D3, with both producing greater inhibition of melanoma colony formation than 20(OH)D3. The aim of this study was to characterize the ability of rat and human CYP24A1 to metabolize 20(OH)D3 and 20,23(OH)2D3. Both isoforms metabolized 20(OH)D3 to the same dihydroxyvitamin D species with no secondary metabolites being observed. Hydroxylation at C24 produced both enantiomers of 20,24(OH)2D3. For rat CYP24A1 the preferred initial site of hydroxylation was at C24 whereas the human enzyme preferred C25. 20,23(OH)2D3 was initially metabolized to 20S,23,24-trihydroxyvitamin D3 and 20S,23,25-trihydroxyvitamin D3 by rat and human CYP24A1 as determined by NMR, with both isoforms showing a preference for initial hydroxylation at C25. CYP24A1 was able to further oxidize these metabolites in a series of reactions which included the cleavage of C23-C24 bond, as indicated by high resolution mass spectrometry of the products, analogous to the catabolism of 1,25(OH)2D3 via the C24-oxidation pathway. Similar catalytic efficiencies were observed for the metabolism of 20(OH)D3 and 20,23(OH)2D3 by human CYP24A1 and were lower than for the metabolism of 1,25(OH)2D3. We conclude that rat and human CYP24A1 metabolizes 20(OH)D3 producing only dihydroxyvitamin D3 species as products which retain biological activity, whereas 20,23(OH)2D3 undergoes multiple oxidations which include cleavage of the side chain. PMID:25727742

  7. Aspartame Administration and Insulin Treatment Altered Brain Levels of CYP2E1 and CYP3A2 in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Nosti-Palacios, Rosario; Gómez-Garduño, Josefina; Molina-Ortiz, Dora; Calzada-León, Raúl; Dorado-González, Víctor Manuel; Vences-Mejía, Araceli

    2014-07-01

    This study demonstrates that aspartame consumption and insulin treatment in a juvenile diabetic rat model leads to increase in cytochrome P450 (CYP) 2E1 and CYP3A2 isozymes in brain. Diabetes mellitus was induced in postweaned 21-day-old Wistar male rat by streptozotocin. Animals were randomly assigned to one of the following groups: untreated control, diabetic (D), D-insulin, D-aspartame, or the D-insulin + aspartame-treated group. Brain and liver tissue samples were used to analyze the activity of CYP2E1 and CYP3A2 and protein levels. Our results indicate that combined treatment with insulin and aspartame in juvenile diabetic rats significantly induced CYP2E1 in the cerebrum and cerebellum without modifying it in the liver, while CYP3A2 protein activity increased both in the brain and in the liver. The induction of CYP2E1 in the brain could have important in situ toxicological effects, given that this CYP isoform is capable of bioactivating various toxic substances. Additionally, CYP3A2 induction in the liver and brain could be considered a decisive factor in the variation of drug response and toxicity. © The Author(s) 2014.

  8. Isolation of a promoter region in mouse cytochrome P450 3A (Cyp3A16) gene and its transcriptional control.

    PubMed

    Itoh, S; Abe, Y; Kubo, A; Okuda, M; Shimoji, M; Nakayama, K; Kamataki, T

    1997-02-07

    An 11.5 kb fragment of the mouse Cyp3a16 gene containing the 5' flanking region was isolated from the lambda DASHII mouse genomic library. A part of the 5' flanking region and the first exon of Cyp3a16 gene were sequenced. S1 mapping analysis showed the presence of two transcriptional initiation sites. The first exon was completely identical to Cyp3a16 cDNA. The identity of 5' flanking sequences between Cyp3a16 and Cyp3a11 genes was about 69%. A typical TATA box and a basic transcription element (BTE) were found as seen with other CYP3A genes from various animal species Moreover, some putative transcriptional regulatory elements were also found in addition to the sequence motif seen for the formation of Z-type DNA. To examine the transcriptional activity of Cyp3a11 gene, DNA fragments in the 5'-flanking region of the gene were inserted front of the luciferase structural gene, and the constructs were transfected in primary hepatocytes. The analysis of the luciferase activity indicated that the region between -146 and -56 was necessary for the transcription of CYP3a16 gene.

  9. Physiologically based pharmacokinetic model of mechanism-based inhibition of CYP3A by clarithromycin.

    PubMed

    Quinney, Sara K; Zhang, Xin; Lucksiri, Aroonrut; Gorski, J Christopher; Li, Lang; Hall, Stephen D

    2010-02-01

    The prediction of clinical drug-drug interactions (DDIs) due to mechanism-based inhibitors of CYP3A is complicated when the inhibitor itself is metabolized by CYP3Aas in the case of clarithromycin. Previous attempts to predict the effects of clarithromycin on CYP3A substrates, e.g., midazolam, failed to account for nonlinear metabolism of clarithromycin. A semiphysiologically based pharmacokinetic model was developed for clarithromycin and midazolam metabolism, incorporating hepatic and intestinal metabolism by CYP3A and non-CYP3A mechanisms. CYP3A inactivation by clarithromycin occurred at both sites. K(I) and k(inact) values for clarithromycin obtained from in vitro sources were unable to accurately predict the clinical effect of clarithromycin on CYP3A activity. An iterative approach determined the optimum values to predict in vivo effects of clarithromycin on midazolam to be 5.3 microM for K(i) and 0.4 and 4 h(-1) for k(inact) in the liver and intestines, respectively. The incorporation of CYP3A-dependent metabolism of clarithromycin enabled prediction of its nonlinear pharmacokinetics. The predicted 2.6-fold change in intravenous midazolam area under the plasma concentration-time curve (AUC) after 500 mg of clarithromycin orally twice daily was consistent with clinical observations. Although the mean predicted 5.3-fold change in the AUC of oral midazolam was lower than mean observed values, it was within the range of observations. Intestinal CYP3A activity was less sensitive to changes in K(I), k(inact), and CYP3A half-life than hepatic CYP3A. This semiphysiologically based pharmacokinetic model incorporating CYP3A inactivation in the intestine and liver accurately predicts the nonlinear pharmacokinetics of clarithromycin and the DDI observed between clarithromycin and midazolam. Furthermore, this model framework can be applied to other mechanism-based inhibitors.

  10. Pregnane X receptor- and CYP3A4-humanized mouse models and their applications

    PubMed Central

    Cheng, Jie; Ma, Xiaochao; Gonzalez, Frank J

    2011-01-01

    Pregnane X receptor (PXR) is a pivotal nuclear receptor modulating xenobiotic metabolism primarily through its regulation of CYP3A4, the most important enzyme involved in drug metabolism in humans. Due to the marked species differences in ligand recognition by PXR, PXR-humanized (hPXR) mice, and mice expressing human PXR and CYP3A4 (Tg3A4/hPXR) were established. hPXR and Tg3A4/hPXR mice are valuable models for investigating the role of PXR in xenobiotic metabolism and toxicity, in lipid, bile acid and steroid hormone homeostasis, and in the control of inflammation. PMID:21091656

  11. Pungent ginger components modulates human cytochrome P450 enzymes in vitro

    PubMed Central

    Li, Mian; Chen, Pei-zhan; Yue, Qing-xi; Li, Jing-quan; Chu, Rui-ai; Zhang, Wei; Wang, Hui

    2013-01-01

    Aim: Ginger rhizome is used worldwide as a spicy flavor agent. This study was designed to explore the potential effects of pungent ginger components, 6-, 8-, and 10-gingerol, on human cytochrome P450 (CYP450) enzymes that are responsible for the metabolism of many prescription drugs. Methods: The activities of human CYP2C9, CYP2C19, CYP2D6, and CYP3A4 were analyzed using Vivid P450 assay kits. The mRNA expression of CYP3A4 in human hepatocellular carcinoma cell line HepG2 was measured using quantitative real-time PCR assay. Results: All three gingerols potently inhibited CYP2C9 activity, exerted moderate inhibition on CYP2C19 and CYP3A4, and weak inhibion on CYP2D6. 8-Gingerol was the most potent in inhibition of P450 enzymes with IC50 values of 6.8, 12.5, 8.7, and 42.7 μmol/L for CYP2C9, CYP2C19, CYP3A4, and CYP2D6, respectively. By comparing the effects of gingerols on CYP3A4 with three different fluorescent substrate probes, it was demonstrated that the inhibition of gingerols on CYP3A4 had no substrate-dependence. In HepG2 cells, 8-gingerol and 10-gingerol inhibited, but 6-gingerol induced mRNA expression of CYP3A4. Conclusion: 6-, 8-, and 10-gingerol suppress human cytochrome P450 activity, while 8- and 10-gingerol inhibit CYP3A4 expression. The results may have an implication for the use of ginger or ginger products when combined with therapeutic drugs that are metabolized by cytochrome P450 enzymes. PMID:23770984

  12. [Effect of clinical doses of Realgar-Indigo Naturalis formula and large-dose of realgar on CYP450s of rat liver].

    PubMed

    Xu, Huan-Hua; Wang, Mei-Xi; Tan, Hong-Ling; Wang, Yu-Guang; Tang, Xiang-Lin; Xiao, Cheng-Rong; Li, Hua; Gao, Yue; Ma, Zeng-Chun

    2017-02-01

    To investigate the effect of clinical dose of Realgar-Indigo Naturais formula (RIF) and large-dose of Realgar on main drug-metabolizing enzymes CYP450s of rat liver, as well as its regulatory effect on mRNA expression. Wistar rats were administrated orally with tested drugs for 14 days. A Cocktail method combined with HPLC-MS/MS was used in the determination of 4 cytochrome P450 isozymes (CYP1A2, CYP2B, CYP3A and CYP2C) in liver of the rats, and the mRNA expression levels of the above subtypes were detected by real-time fluorescent quantitative PCR. The results showed that RIF can significantly induce CYP1A2 and CYP2B enzyme activity, and inhibit CYP3A enzyme activity. This result was consistent with the mRNA expression. However, its single compound showed weaker or even contrary phenomenon. Different doses of Realgar also showed significant inconsistencies on CYP450 enzymes activity and mRNA expression. These phenomena may be relevant with RIF compatibility synergies or toxicity reduction. The results can also prompt drug interactions when RIF is combined with other medicines in application. Copyright© by the Chinese Pharmaceutical Association.

  13. Enhancement of hepatic 4-hydroxylation of 25-hydroxyvitamin D3 through CYP3A4 induction in vitro and in vivo: implications for drug-induced osteomalacia.

    PubMed

    Wang, Zhican; Lin, Yvonne S; Dickmann, Leslie J; Poulton, Emma-Jane; Eaton, David L; Lampe, Johanna W; Shen, Danny D; Davis, Connie L; Shuhart, Margaret C; Thummel, Kenneth E

    2013-05-01

    Long-term therapy with certain drugs, especially cytochrome P450 (P450; CYP)-inducing agents, confers an increased risk of osteomalacia that is attributed to vitamin D deficiency. Human CYP24A1, CYP3A4, and CYP27B1 catalyze the inactivation and activation of vitamin D and have been implicated in the adverse drug response. In this study, the inducibility of these enzymes and monohydroxylation of 25-hydroxyvitamin D3 (25OHD3) were evaluated after exposure to P450-inducing drugs. With human hepatocytes, treatment with phenobarbital, hyperforin, carbamazepine, and rifampin significantly increased the levels of CYP3A4, but not CYP24A1 or CYP27B1 mRNA. In addition, rifampin pretreatment resulted in an 8-fold increase in formation of the major metabolite of 25OHD3, 4β,25(OH)2D3. This inductive effect was blocked by the addition of 6',7'-dihydroxybergamottin, a selective CYP3A4 inhibitor. With human renal proximal tubular HK-2 cells, treatment with the same inducers did not alter CYP3A4, CYP24A1, or CYP27B1 expression. 24R,25(OH)2 D3 was the predominant monohydroxy metabolite produced from 25OHD3, but its formation was unaffected by the inducers. With healthy volunteers, the mean plasma concentration of 4β,25(OH)2D3 was increased 60% (p < 0.01) after short-term rifampin administration. This was accompanied by a statistically significant reduction in plasma 1α,25(OH)2D3 (-10%; p = 0.03), and a nonsignificant change in 24R,25(OH)2D3 (-8%; p = 0.09) levels. Further analysis revealed a negative correlation between the increase in 4β,25(OH)2D3 and decrease in 1α,25(OH)2D3 levels. Examination of the plasma monohydroxy metabolite/25OHD3 ratios indicated selective induction of the CYP3A4-dependent 4β-hydroxylation pathway of 25OHD3 elimination. These results suggest that induction of hepatic CYP3A4 may be important in the etiology of drug-induced osteomalacia. Copyright © 2013 American Society for Bone and Mineral Research.

  14. Precision-Cut Liver Slices of Salmo salar as a tool to investigate the oxidative impact of CYP1A-mediated PCB 126 and 3-methylcholanthrene metabolism.

    PubMed

    Lemaire, Benjamin; Beck, Michaël; Jaspart, Mélanie; Debier, Cathy; Calderon, Pedro Buc; Thomé, Jean-Pierre; Rees, Jean-François

    2011-02-01

    Fish isolated cell systems have long been used to predict in vivo toxicity of man-made chemicals. In present study, we tested the suitability of Precision-Cut Liver Slices (PCLS) as an alternative to these models that allows the evaluation of a global tissue response to toxicants, to investigate oxidative stress response to cytochrome P450 1A (CYP1A) induction in fish liver. PCLS of Salmo salar were exposed for 21 h to increasing doses of 3-methylcholanthrene (3-MC) and Polychlorobiphenyl 126 (PCB 126). 3-MC (25 μM) strongly induced CYP1A transcription. In dose-response analysis (25-100 μM), EROD activity was strongly increased at intermediate 3-MC concentrations. We found the counter-intuitive decline of EROD at the highest 3-MC doses to result from reversible competition with ethoxyresorufin. No increases of H(2)O(2) production, antioxidant enzymes activities or oxidative damage to lipids were found with 3-MC treatments. PCLS subjected to PCB 126 (2-200 nM) showed increased contamination levels and a parallel increased CYP1A mRNA synthesis and EROD activity. H(2)O(2) production tended to increase but no oxidative damage to lipids was found. As antioxidant enzymes activities declined at the highest PCB 126 dose, it is suggested that longer incubation periods could be required to generate oxidative stress in PCLS. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Protein engineering of CYP105s for their industrial uses.

    PubMed

    Yasuda, Kaori; Sugimoto, Hiroshi; Hayashi, Keiko; Takita, Teisuke; Yasukawa, Kiyoshi; Ohta, Miho; Kamakura, Masaki; Ikushiro, Shinichi; Shiro, Yoshitsugu; Sakaki, Toshiyuki

    2018-01-01

    Cytochrome P450 enzymes belonging to the CYP105 family are predominantly found in bacteria belonging to the phylum Actinobacteria and the order Actinomycetales. In this review, we focused on the protein engineering of P450s belonging to the CYP105 family for industrial use. Two Arg substitutions to Ala of CYP105A1 enhanced its vitamin D 3 25- and 1α-hydroxylation activities by 400 and 100-fold, respectively. The coupling efficiency between product formation and NADPH oxidation was largely improved by the R84A mutation. The quintuple mutant Q87W/T115A/H132L/R194W/G294D of CYP105AB3 showed a 20-fold higher activity than the wild-type enzyme. Amino acids at positions 87 and 191 were located at the substrate entrance channel, and that at position 294 was located close to the heme group. Semi-rational engineering of CYP105A3 selected the best performing mutant, T85F/T119S/V194N/N363Y, for producing pravastatin. The T119S and N363Y mutations synergistically had remarkable effects on the interaction between CYP105A3 and putidaredoxin. Although wild-type CYP105AS1 hydroxylated compactin to 6-epi-pravastatin, the quintuple mutant I95T/Q127R/A180V/L236I/A265N converted almost all compactin to pravastatin. Five amino acid substitutions by two rounds of mutagenesis almost completely changed the stereo-selectivity of CYP105AS1. These results strongly suggest that the protein engineering of CYP105 enzymes greatly increase their industrial utility. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Inhibition of aryl hydrocarbon receptor transactivation and DNA adduct formation by CYP1 isoform-selective metabolic deactivation of benzo[a]pyrene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endo, Kaori; Uno, Shigeyuki; Seki, Taiichiro

    Benzo[a]pyrene (BaP), a polyaromatic hydrocarbon produced by the combustion of cigarettes and coke ovens, is a known procarcinogen. BaP activates the aryl hydrocarbon receptor (AhR) and induces the expression of a battery of genes, including CYP1A1, which metabolize BaP to toxic compounds. The possible role of CYP1 enzymes in mediating BaP detoxification or metabolic activation remains to be elucidated. In this study, we assessed the effects of CYP1 enzymes (CYP1A1, CYP1A2 and CYP1B1) on BaP-induced AhR transactivation and DNA adduct formation in HEK293 cells and HepG2 cells. Transfection of CYP1A1 and CYP1B1, but not CYP1A2, suppressed BaP-induced activation of AhR.more » Expression of CYP1A1 and CYP1A2, but not CYP1B1, inhibited DNA adduct formation in BaP-treated HepG2 cells. These results indicate that CYP1A1 and CYP1B1 play a role in deactivation of BaP on AhR and that CYP1A1 and CYP1A2 are involved in BaP detoxification by suppressing DNA adduct formation. BaP treatment did not induce DNA adduct formation in HEK293 cells, even after transfection of CYP1 enzymes, suggesting that expression of CYP1 enzymes is not sufficient for DNA adduct formation. Lower expression of epoxide hydrolase and higher expression of glutathione S-transferase P1 (GSTP1) and GSTM1/M2 were observed in HEK293 cells compared with HepG2 cells. Dynamic expression of CYP1A1, CYP1A2 and CYP1B1 along with expression of other enzymes such as epoxide hydrolase and phase II enzymes may determine the detoxification or metabolic activation of BaP.« less

  17. Genetic polymorphisms of the drug-metabolizing enzyme cytochrome P450 3A5 in a Uyghur Chinese population.

    PubMed

    Chen, Zhengshuai; Li, Jingjie; Chen, Peng; Wang, Fengjiao; Zhang, Ning; Yang, Min; Jin, Tianbo; Chen, Chao

    2016-09-01

    1.  Detection of CYP3A5 variant alleles, and knowledge about their allelic frequency in Uyghur ethnic groups, is important to establish the clinical relevance of screening for these polymorphisms to optimize pharmacotherapy. 2. We used DNA sequencing to investigate the promoter, exons and surrounding introns, and 3'-untranslated region of the CYP3A5 gene in 96 unrelated healthy Uyghur individuals. We also used SIFT and PolyPhen-2 to predict the protein function of the novel non-synonymous mutation in CYP3A5 coding regions. 3. We found 24 different CYP3A5 polymorphisms in the Uyghur population, three of which were novel: the synonymous mutation 43C > T in exon 1, two mutations 32120C > G and 32245T > C in 3'-untranslated region, and we detected the allele frequencies of CYP3A5*1 and *3 as 64.58% and 35.42%, respectively. While no subjects with CYP3A5*6 were identified. Other identified genotypes included the heterozygous genotype 1A/3A (59.38%) and 1A/3E (11.46%), which lead to decreased enzyme activity. In addition, the frequency of haplotype "TTAGGT" was the most prevalent with 0.781. 4. Our data provide new information regarding CYP3A5 genetic polymorphisms in Uyghur individuals, which may help to improve individualization of drug therapy and offer a preliminary basis for more rational use of drugs.

  18. Sertraline-induced potentiation of the CYP3A4-dependent neurotoxicity of carbamazepine: an in vitro study.

    PubMed

    Ghosh, Chaitali; Hossain, Mohammad; Spriggs, Addison; Ghosh, Arnab; Grant, Gerald A; Marchi, Nicola; Perucca, Emilio; Janigro, Damir

    2015-03-01

    Drug toxicity is a hurdle to drug development and to clinical translation of basic research. Antiepileptic drugs such as carbamazepine (CBZ) and selective serotonin reuptake inhibitors such as sertraline (SRT) are commonly co-prescribed to patients with epilepsy and comorbid depression. Because SRT may interfere with cytochrome P450 (CYP) enzyme activity and CYPs have been implicated in the conversion of CBZ to reactive cytotoxic metabolites, we investigated in vitro models to determine whether SRT affects the neurotoxic potential of CBZ and the mechanisms involved. Human fetal brain-derived dopaminergic neurons, human brain microvascular endothelial cells (HBMECs), and embryonic kidney (HEK) cells were used to evaluate cytotoxicity of CBZ and SRT individually and in combination. Nitrite and glutathione (GSH) levels were measured with drug exposure. To validate the role of CYP3A4 in causing neurotoxicity, drug metabolism was compared to cell death in HEK CYP3A4 overexpressed and cells pretreated with the CYP3A4 inhibitor ketoconazole. In all cellular systems tested, exposure to CBZ (127 μM) or SRT (5 μM) alone caused negligible cytotoxicity. By contrast CBZ, tested at a much lower concentration (17 μM) in combination with SRT (5 μM), produced prominent cytotoxicity within 15 min exposure. In neurons and HBMECs, cytotoxicity was associated with increased nitrite levels, suggesting involvement of free radicals as a pathogenetic mechanism. Pretreatment of HBMECs with reduced GSH or with the GSH precursor N-acetyl-L-cysteine prevented cytotoxic response. In HEK cells, the cytotoxic response to the CBZ + SRT combination correlated with the rate of CBZ biotransformation and production of 2-hydroxy CBZ, further suggesting a causative role of reactive metabolites. In the same system, cytotoxicity was potentiated by overexpression of CYP3A4, and prevented by CYP3A4 inhibitor. These results demonstrate an unexpected neurotoxic interaction between CBZ and SRT, apparently

  19. Biochemical and structural characterization of CYP109A2, a vitamin D3 25-hydroxylase from Bacillus megaterium.

    PubMed

    Abdulmughni, Ammar; Jóźwik, Ilona K; Brill, Elisa; Hannemann, Frank; Thunnissen, Andy-Mark W H; Bernhardt, Rita

    2017-11-01

    Cytochrome P450 enzymes are increasingly investigated due to their potential application as biocatalysts with high regio- and/or stereo-selectivity and under mild conditions. Vitamin D 3 (VD 3 ) metabolites are of pharmaceutical importance and are applied for the treatment of VD 3 deficiency and other disorders. However, the chemical synthesis of VD 3 derivatives shows low specificity and low yields. In this study, cytochrome P450 CYP109A2 from Bacillus megaterium DSM319 was expressed, purified, and shown to oxidize VD 3 with high regio-selectivity. The in vitro conversion, using cytochrome P450 reductase (BmCPR) and ferredoxin (Fdx2) from the same strain, showed typical Michaelis-Menten reaction kinetics. A whole-cell system in B. megaterium overexpressing CYP109A2 reached 76 ± 5% conversion after 24 h and allowed to identify the main product by NMR analysis as 25-hydroxylated VD 3 . Product yield amounted to 54.9 mg·L -1 ·day -1 , rendering the established whole-cell system as a highly promising biocatalytic route for the production of this valuable metabolite. The crystal structure of substrate-free CYP109A2 was determined at 2.7 Å resolution, displaying an open conformation. Structural analysis predicts that CYP109A2 uses a highly similar set of residues for VD 3 binding as the related VD 3 hydroxylases CYP109E1 from B. megaterium and CYP107BR1 (Vdh) from Pseudonocardia autotrophica. However, the folds and sequences of the BC loops in these three P450s are highly divergent, leading to differences in the shape and apolar/polar surface distribution of their active site pockets, which may account for the observed differences in substrate specificity and the regio-selectivity of VD 3 hydroxylation. The atomic coordinates and structure factors have been deposited in the Protein Data Bank with accession code 5OFQ (substrate-free CYP109A2). Cytochrome P450 monooxygenase CYP109A2, EC 1.14.14.1, UniProt ID: D5DF88, Ferredoxin, UniProt ID: D5DFQ0, cytochrome P450

  20. Induction of CYP3A4 by efavirenz in primary human hepatocytes: comparison with rifampin and phenobarbital.

    PubMed

    Hariparsad, Niresh; Nallani, Srikanth C; Sane, Rucha S; Buckley, Donna J; Buckley, Arthur R; Desai, Pankaj B

    2004-11-01

    The antiretroviral agent efavirenz enhances the systemic clearance of coadministered drugs that are cytochrome P450 (CYP) 3A4 substrates. The mechanism of the apparent increase in CYP3A4 activity by efavirenz and the magnitude of change relative to other known inducers are not known. The authors tested the hypothesis that increased enzymatic activity by efavirenz entails CYP3A4 induction and activation of the human pregnane X receptor (hPXR), a key transcriptional regulator of CYP3A4. Employing primary cultures of human hepatocytes, they compared the CYP3A4 inductive effects of efavirenz (1-10 microM) to rifampin (10 microM) and phenobarbital (2 mM). A cell-based reporter assay was employed to assess hPXR activation. The authors observed that efavirenz caused a concentration-dependent CYP3A4 induction and hPXR activation. Based on the CYP3A4 activity assay, the average magnitude of induction by efavirenz (5-10 microM) was approximately 3- to 4-fold. In comparison, phenobarbital (2 mM) and rifampin (10 microM) caused a 5- and 6-fold induction, respectively.

  1. Identification of a null allele of cytochrome P450 3A7: CYP3A7 polymorphism in a Korean population.

    PubMed

    Lee, Sang Seop; Jung, Hyun-Ju; Park, Jung Soon; Cha, In-June; Cho, Doo-Yeoun; Shin, Jae-Gook

    2010-01-01

    Cytochrome P450 3A7 (CYP3A7) is expressed in the human fetal liver and plays a role in the metabolism of hormones, drugs, and toxic compounds. Genetic variants of CYP3A7 are associated with serum estrone level, bone density, and hepatic CYP3A activity in adults. We analyzed the genetic variations of CYP3A7 in a Korean population. From direct sequencing of all exons and flanking regions of the CYP3A7 gene in 48 Koreans, we found five genetic variants, including three novel variants. One variant, a thymidine insertion in exon 2 (4011insT), causes premature termination of CYP3A7 translation, which may result in a null phenotype. The novel variant was assigned to the CYP3A7*3 allele by the CYP allele nomenclature committee. For further screen of this novel variant in other ethnic populations, we used pyrosequencing to analyze an additional 185 Koreans, 100 African Americans, 100 Caucasians, and 159 Vietnamese for the presence of this variant. The variant was not found in any other individuals, except for one Korean subject. The frequencies of two known functional alleles, CYP3A7*2 and CYP3A7*1C, were 26 and 0%, respectively, in Koreans. The frequencies of the functional CYP3A7 polymorphisms in Koreans were significantly different from those in Caucasians and African Americans. This is the first report of a null-type allele of the CYP3A7 gene. It also provides population-level genetic data on CYP3A7 in Koreans to reveal the wide ethnic variation in CYP3A7 polymorphism.

  2. CYP450s analysis across spiny lobster metamorphosis identifies a long sought missing link in crustacean development.

    PubMed

    Ventura, Tomer; Bose, Utpal; Fitzgibbon, Quinn P; Smith, Gregory G; Shaw, P Nicholas; Cummins, Scott F; Elizur, Abigail

    2017-07-01

    Cytochrome P450s (CYP450s) are a rapidly evolving family of enzymes, making it difficult to identify bona fide orthologs with notable lineage-specific exceptions. In ecdysozoans, a small number of the most conserved orthologs include enzymes which metabolize ecdysteroids. Ecdysone pathway components were recently shown in a decapod crustacean but with a notable absence of shade, which is important for converting ecdysone to its active form, 20-hydroxyecdysone (20HE), suggesting that another CYP450 performs a similar function in crustaceans. A CYPome temporal expression analysis throughout metamorphosis performed in this research highlights several un-annotated CYP450s displaying differential expression and provides information into expression patterns of annotated CYP450s. Using the expression patterns in the Eastern spiny lobster Sagmariasus verreauxi, followed by 3D modelling and finally activity assays in vitro, we were able to conclude that a group of CYP450s, conserved across decapod crustaceans, function as the insect shade. To emphasize the fact that these genes share the function with shade but are phylogenetically distinct, we name this enzyme system Shed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Safety assessment of selected medicinal food plants used in Ayurveda through CYP450 enzyme inhibition study.

    PubMed

    Kar, Amit; Pandit, Subrata; Mukherjee, Kakali; Bahadur, Shiv; Mukherjee, Pulok K

    2017-01-01

    Andrographis paniculata, Bacopa monnieri and Centella asiatica are mentioned in Ayurveda for the management of neurodegenerative disorders. These plants and their phytomolecules, such as andrographolide, bacoside A and asiaticoside, were studied for their inhibition potential on pooled CYP450 as well as human CYP3A4, CYP2D6, CYP2C9 and CYP1A2 by CYP-CO complex assay and fluorogenic assay respectively followed by IC 50 determination. Quantification of bioactive compounds present in the extracts was done by RP-HPLC. Heavy metal content in the selected medicinal plants was determined by atomic absorption spectroscopy. CYP-CO complex assay indicated significantly less inhibition potential than standard inhibitor (P < 0.05 and above). A. paniculata showed highest inhibitory activity against CYP3A4 and CYP2D6 (IC 50 = 63.06 ± 1.35 µg mL -1 ; 88.80 ± 3.32 µg mL -1 ), whereas C. asiatica and B. monnieri showed least inhibitory activity against CYP1A2 (IC 50 = 288.83 ± 1.61 µg mL -1 ) and CYP2C9 (184.68 ± 3.79 µg mL -1 ), respectively. In all cases the extract showed higher inhibition than the single bioactive compounds. The heavy metals content in the plant extracts were within the permissible limits. The findings suggested that selected food plants and bioactive compounds contributed negligible interaction potential with CYP isozymes and may not possess any harmful effect with regard to their therapeutic application. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Influence of environmental and genetic factors on CYP1A2 activity in individuals of South Asian and European ancestry.

    PubMed

    Perera, V; Gross, A S; McLachlan, A J

    2012-10-01

    The drug-metabolizing enzyme CYP1A2 contributes to the metabolism of a number of commonly used medicines and displays wide interindividual variability. The aim of this study was to investigate CYP1A2 activity in a population of South Asian ancestry and compare it with a population of European ancestry. CYP1A2 activity was determined using the 4 h paraxanthine/caffeine saliva concentration ratio following a 100-mg oral dose of caffeine in healthy individuals of South Asian (n = 166) and European (n = 166) ancestry. Participants were surveyed for extrinsic ethnic factors and genotyped for polymorphisms in CYP1A2 and related genes. Significantly lower CYP1A2 activity was observed in South Asian participants (median: 0.42; range: 0.10-1.06) as compared with European participants (0.54; 0.12-1.64) (P < 0.01). Multiple linear regression indicated that 41% of the variability in CYP1A2 activity could be explained by the diet, lifestyle, and genetic factors studied.

  5. Trypanosoma Cruzi Cyp51 Inhibitor Derived from a Mycobacterium Tuberculosis Screen Hit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chiung-Kuang; Doyle, Patricia S.; Yermalitskaya, Liudmila V.

    2009-02-18

    The two front-line drugs for chronic Trypanosoma cruzi infections are limited by adverse side-effects and declining efficacy. One potential new target for Chagas disease chemotherapy is sterol 14{alpha}-demethylase (CYP51), a cytochrome P450 enzyme involved in biosynthesis of membrane sterols. In a screening effort targeting Mycobacterium tuberculosis CYP51 (CYP51{sub Mt}), we previously identified the N-[4-pyridyl]-formamide moiety as a building block capable of delivering a variety of chemotypes into the CYP51 active site. In that work, the binding modes of several second generation compounds carrying this scaffold were determined by high-resolution co-crystal structures with CYP51{sub Mt}. Subsequent assays against the CYP51 orthologuemore » in T. cruzi, CYP51{sub Tc}, demonstrated that two of the compounds tested in the earlier effort bound tightly to this enzyme. Both were tested in vitro for inhibitory effects against T. cruzi and the related protozoan parasite Trypanosoma brucei, the causative agent of African sleeping sickness. One of the compounds had potent, selective anti-T. cruzi activity in infected mouse macrophages. Cure of treated host cells was confirmed by prolonged incubation in the absence of the inhibiting compound. Discrimination between T. cruzi and T. brucei CYP51 by the inhibitor was largely based on the variability (phenylalanine versus isoleucine) of a single residue at a critical position in the active site. CYP51{sub Mt}-based crystal structure analysis revealed that the functional groups of the two tightly bound compounds are likely to occupy different spaces in the CYP51 active site, suggesting the possibility of combining the beneficial features of both inhibitors in a third generation of compounds to achieve more potent and selective inhibition of CYP51{sub Tc}. Enzyme sterol 14{alpha}-demethylase (CYP51) is a well-established target for anti-fungal therapy and is a prospective target for Chagas disease therapy. We previously

  6. In vitro effects of brominated flame retardants and metabolites on CYP17 catalytic activity: A novel mechanism of action?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canton, Rocio F.; Sanderson, J. Thomas; Nijmeijer, Sandra

    2006-10-15

    Fire incidents have decreased significantly over the last 20 years due, in part, to regulations requiring addition of flame retardants (FRs) to consumer products. Five major classes of brominated flame retardants (BFRs) are hexabromocyclododecane isomers (HBCDs), tetrabromobisphenol-A (TBBPA) and three commercial mixtures of penta-, octa- and deca-polybrominated diphenyl ether (PBDE) congeners, which are used extensively as commercial FR additives. Furthermore, concentrations of PBDEs have been rapidly increasing during the 1999s in human breast milk and a number of endocrine effects have been reported. We used the H295R human adrenocortical carcinoma cell line to assess possible effects of some of thesemore » BFRs (PBDEs and several of their hydroxylated (OH) and methoxylated (CH{sub 3}O) metabolites or analogues), TBBPA and brominated phenols (BPs) on the combined 17{alpha}-hydroxylase and 17,20-lyase activities of CYP17. CYP17 enzyme catalyzes an important step in sex steroidogenesis and is responsible for the biosynthesis of dehydroepiandrosterone (DHEA) and androstenedione in the adrenals. In order to study possible interactions with BFRs, a novel enzymatic method was developed. The precursor substrate of CYP17, pregnenolone, was added to control and exposed H295R cells, and enzymatic production of DHEA was measured using a radioimmunoassay. In order to avoid pregnenolone metabolism via different pathways, specific chemical inhibitor compounds were used. None of the parent/precursor BFRs had a significant effect (P < 0.05) on CYP17 activity except for BDE-183, which showed significant inhibition of CYP17 activity at the highest concentration tested (10 {mu}M), with no signs of cytotoxicity as measured by mitochondrial toxicity tests (MTT). A strong inhibition of CYP17 activity was found for 6-OH-2,2',4,4'-tetrabromoDE (6-OH-BDE47) with a concentration-dependent decrease of almost 90% at 10 {mu}M, but with a concurrent decrease in cell viability at the higher

  7. Induction of CYP1A1 and CYP1B1 by benzo(k)fluoranthene and benzo(a)pyrene in T-47D human breast cancer cells: Roles of PAH interactions and PAH metabolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spink, David C.; Wu, Susan J.; Spink, Barbara C.

    2008-02-01

    The interactions of polycyclic aromatic hydrocarbons (PAH) and cytochromes P450 (CYP) are complex; PAHs are enzyme inducers, substrates, and inhibitors. In T-47D breast cancer cells, exposure to 0.1 to 1 {mu}M benzo(k)fluoranthene (BKF) induced CYP1A1/1B1-catalyzed 17{beta}-estradiol (E{sub 2}) metabolism, whereas BKF levels greater than 1 {mu}M inhibited E{sub 2} metabolism. Time course studies showed that induction of CYP1-catalyzed E{sub 2} metabolism persisted after the disappearance of BKF or co-exposed benzo(a)pyrene, suggesting that BKF metabolites retaining Ah receptor agonist activity were responsible for prolonged CYP1 induction. BKF metabolites were shown, through the use of ethoxyresorufin O-deethylase and CYP1A1-promoter-luciferase reporter assays tomore » induce CYP1A1/1B1 in T-47D cells. Metabolites formed by oxidation at the C-2/C-3 region of BKF had potencies for CYP1 induction exceeding those of BKF, whereas C-8/C-9 oxidative metabolites were somewhat less potent than BKF. The activities of expressed human CYP1A1 and 1B1 with BKF as substrate were investigated by use of HPLC with fluorescence detection, and by GC/MS. The results showed that both enzymes efficiently catalyzed the formation of 3-, 8-, and 9-OHBKF from BKF. These studies indicate that the inductive effects of PAH metabolites as potent CYP1 inducers are likely to be additional important factors in PAH-CYP interactions that affect metabolism and bioactivation of other PAHs, ultimately modulating PAH toxicity and carcinogenicity.« less

  8. Enhancement of hepatic 4-hydroxylation of 25-hydroxyvitamin D3 through CYP3A4 induction in vitro and in vivo: Implications for drug-induced osteomalacia

    PubMed Central

    Wang, Zhican; Lin, Yvonne S.; Dickmann, Leslie J.; Poulton, Emma-Jane; Eaton, David L.; Lampe, Johanna W.; Shen, Danny D.; Davis, Connie L.; Shuhart, Margaret C.; Thummel, Kenneth E.

    2012-01-01

    Long-term therapy with certain drugs, especially P450 inducing agents, confers an increased risk of osteomalacia that is attributed to vitamin D deficiency. Human CYP24A1, CYP3A4 and CYP27B1 catalyze the inactivation and activation of vitamin D and have been implicated in the adverse drug response. In this study, the inducibility of these enzymes and monohydroxylation of 25OHD3 were evaluated following exposure to P450 inducing drugs. With human hepatocytes, treatment with phenobarbital, hyperforin, carbamazepine and rifampin significantly increased the levels of CYP3A4 but not CYP24A1 or CYP27B1 mRNA. In addition, rifampin pretreatment resulted in an 8-fold increase in formation of the major metabolite of 25OHD3, 4β,25(OH)2D3. This inductive effect was blocked by the addition of 6′,7′-dihydroxybergamottin, a selective CYP3A4 inhibitor. With human renal proximal tubular HK-2 cells, treatment with the same inducers did not alter CYP3A4, CYP24A1 or CYP27B1 expression. 24R,25(OH)2D3 was the predominant monohydroxy metabolite produced from 25OHD3, but its formation was unaffected by the inducers. With healthy volunteers, the mean plasma concentration of 4β,25(OH)2D3 was increased 60% (p < 0.01) after short-term rifampin administration. This was accompanied by a statistically significant reduction in plasma 1α,25(OH)2D3 (−10%; p = 0.03), and a non-significant change in 24R,25(OH)2D3 (−8%; p = 0.09) levels. Further analysis revealed a negative correlation between the increase in 4β,25(OH)2D3 and decrease in 1α,25(OH)2D3 levels. Examination of the plasma monohydroxy metabolite/25OHD3 ratios indicated selective induction of the CYP3A4-dependent 4β-hydroxylation pathway of 25OHD3 elimination. These results suggest that induction of hepatic CYP3A4 may be important in the etiology of drug-induced osteomalacia. PMID:23212742

  9. A new CYP3A5 variant, CYP3A5*11, is shown to be defective in nifedipine metabolism in a recombinant cDNA expression system

    PubMed Central

    Lee, Su-Jun; van der Heiden, Ilse P; Goldstein, Joyce A; van Schaik, Ron HN

    2012-01-01

    A new CYP3A5 variant, CYP3A5*11, was found in a single white European by DNA sequencing. The CYP3A5*11 allele contains a single nucleotide polymorphism (SNP) (g.3775 A>G) in exon 2 which results in a Tyr53Cys substitution and a g.6986A>G splice change, the latter SNP previously reported in the defective CYP3A5*3 allele. However, the CYP3A5*3 is not a null allele because this variant is associated with leaky splicing, resulting in small amounts of functional protein still being produced. We therefore constructed a cDNA coding for the newly identified CYP3A5.11 protein by site-directed mutagenesis, expressed it in Escherichia coli and partially purified it. While bacteria transformed with wild-type CYP3A5*1 cDNA expressed predominantly cytochrome P450, those transfected with CYP3A5*11 expressed a significant amount of denatured cytochrome P420 in addition to cytochrome P450, suggesting the protein to be unstable. CYP3A5.11 exhibited a 38% decrease in the Vmax for nifedipine metabolism, a 2.7-fold increase in the Km, and a 4.4-fold decrease in the CLint of nifedipine compared with CYP3A5.1. A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) genotyping procedure was developed, and used to genotyping DNA of 500 white individuals for CYP3A5*11. No additional examples of this allele were identified. In summary, individuals carrying the rare CYP3A5*11 allele are predicted to have lower metabolism of CYP3A5 substrates than individuals expressing CYP3A5*3. PMID:17035598

  10. Molecular evolution and functional divergence of the cytochrome P450 3 (CYP3) Family in Actinopterygii (ray-finned fish).

    PubMed

    Yan, Jun; Cai, Zhonghua

    2010-12-10

    The cytochrome P450 (CYP) superfamily is a multifunctional hemethiolate enzyme that is widely distributed from Bacteria to Eukarya. The CYP3 family contains mainly the four subfamilies CYP3A, CYP3B, CYP3C and CYP3D in vertebrates; however, only the Actinopterygii (ray-finned fish) have all four subfamilies and detailed understanding of the evolutionary relationship of Actinopterygii CYP3 family members would be valuable. Phylogenetic relationships were constructed to trace the evolutionary history of the Actinopterygii CYP3 family genes. Selection analysis, relative rate tests and functional divergence analysis were combined to interpret the relationship of the site-specific evolution and functional divergence in the Actinopterygii CYP3 family. The results showed that the four CYP3 subfamilies in Actinopterygii might be formed by gene duplication. The first gene duplication event was responsible for divergence of the CYP3B/C clusters from ancient CYP3 before the origin of the Actinopterygii, which corresponded to the fish-specific whole genome duplication (WGD). Tandem repeat duplication in each of the homologue clusters produced stable CYP3B, CYP3C, CYP3A and CYP3D subfamilies. Acceleration of asymmetric evolutionary rates and purifying selection together were the main force for the production of new subfamilies and functional divergence in the new subset after gene duplication, whereas positive selection was detected only in the retained CYP3A subfamily. Furthermore, nearly half of the functional divergence sites appear to be related to substrate recognition, which suggests that site-specific evolution is closely related with functional divergence in the Actinopterygii CYP3 family. The split of fish-specific CYP3 subfamilies was related to the fish-specific WGD, and site-specific acceleration of asymmetric evolutionary rates and purifying selection was the main force for the origin of the new subfamilies and functional divergence in the new subset after gene

  11. Evaluating the impact of missenses mutations in CYP2D6*7 and CYP2D6*14A: does it compromise tamoxifen metabolism?

    PubMed

    Borba, Maria Acsm; Melo-Neto, Renato P; Leitão, Glauber M; Castelletti, Carlos Hm; Lima-Filho, José L; Martins, Danyelly Bg

    2016-04-01

    CYP2D6 is a high polymorphic enzyme from P450, responsible for metabolizing almost 25% of drugs. The distribution of different mutations among CYP2D6 alleles has been associated with poor, intermediate, extensive and ultra-metabolizers. To evaluate how missenses mutations in CYP2D6*7 and CYP2D6*14A poor metabolizer alleles affect CYP2D6 stability and function. CYPalleles database was used to collect polymorphisms data present in 105 alleles. We selected only poor metabolizers alleles that presented exclusively missenses mutations. They were analyzed through seven algorithms to predict the impact on CYP2D6 structure and function. H324P, the unique mutation in CYP2D6*7, has high impact in enzyme function due to its occurrence between two alpha-helixes involved in active site dynamics. G169R, a mutation that occurs only in CYP2D6*14A, leads to the gain of solvent accessibility and severe protein destabilization. Our in silico analysis showed that missenses mutations in CYP2D6*7 and CYP2D6*14A cause CYP2D6 dysfunction.

  12. Comparison of CYP1A2 and NAT2 Phenotypes between Black and White Smokers

    PubMed Central

    Muscat, Joshua E.; Pittman, Brian; Kleinman, Wayne; Lazarus, Philip; Stellman, Steven D.; Richie, John P.

    2008-01-01

    The lower incidence rate of transitional cell carcinoma of the urinary bladder in blacks than in whites may be due to racial differences in the catalytic activity of enzymes that metabolize carcinogenic arylamines in tobacco smoke. To examine this, we compared cytochrome P4501A2 (CYP1A2) and N-acetyltransferase-2 activities (NAT2) in black and white smokers using urinary caffeine metabolites as a probe for enzyme activity in a community-based study of 165 black and 183 white cigarette smokers. The paraxanthine (1,7-dimethylxanthine, 17X)/caffeine (trimethylxanthine, 137X) ratio or [17X + 1,7-dimethyluric acid (17U)]/137X ratio was used as an indicator of CYP1A2 activity. The 5-acetyl-amino-6-formylamino-3-methyluracil (AFMU)/1-methylxanthine (1X) ratio indicated NAT2 activity. The odds ratio for the slow NAT2 phenotype associated with black race was 0.4; 95% confidence intervals 0.2–0.7. The putative combined low risk phenotype (slow CYP1A2/rapid NAT2) was more common in blacks than in whites (25% vs. 15%, P<0.02). There were no significant racial differences in slow and rapid CYP1A2 phenotypes, and in the combined slow NAT2/rapid CYP1A2 phenotype. Age, education, cigarette smoking amount, body mass index, GSTM1 and GSTM3 genotypes were unrelated to CYP1A2 and NAT2 activity. Intake of cruciferous vegetables (primarily broccoli), red meat, carrots, grapefruit and onions predicted CYP1A2 activity either for all subjects or in race-specific analyses. Carrot and grapefruit consumption was related to NAT2 activity. Collectively, these results indicated that phenotypic differences in NAT2 alone or in combination with CYP1A2 might help explain the higher incidence rates of transitional cell bladder cancer in whites. PMID:18703023

  13. Molecular Population Genetics of Human CYP3A Locus: Signatures of Positive Selection and Implications for Evolutionary Environmental Medicine

    PubMed Central

    Chen, Xiaoping; Wang, Haijian; Zhou, Gangqiao; Zhang, Xiumei; Dong, Xiaojia; Zhi, Lianteng; Jin, Li; He, Fuchu

    2009-01-01

    Background The human CYP3A gene cluster codes for cytochrome P450 (CYP) subfamily enzymes that catalyze the metabolism of various exogenous and endogenous chemicals and is an obvious candidate for evolutionary and environmental genomic study. Functional variants in the CYP3A locus may have undergone a selective sweep in response to various environmental conditions. Objective The goal of this study was to profile the allelic structure across the human CYP3A locus and investigate natural selection on that locus. Methods From the CYP3A locus spanning 231 kb, we resequenced 54 genomic DNA fragments (a total of 43,675 bases) spanning four genes (CYP3A4, CYP3A5, CYP3A7, and CYP3A43) and two pseudogenes (CYP3AP1 and CYP3AP2), and randomly selected intergenic regions at the CYP3A locus in Africans (24 individuals), Caucasians (24 individuals), and Chinese (29 individuals). We comprehensively investigated the nucleotide diversity and haplotype structure and examined the possible role of natural selection in shaping the sequence variation throughout the gene cluster. Results Neutrality tests with Tajima’s D, Fu and Li’s D* and F*, and Fay and Wu’s H indicated possible roles of positive selection on the entire CYP3A locus in non-Africans. Sliding-window analyses of nucleotide diversity and frequency spectrum, as well as haplotype diversity and phylogenetically inferred haplotype structure, revealed that CYP3A4 and CYP3A7 had recently undergone or were undergoing a selective sweep in all three populations, whereas CYP3A43 and CYP3A5 were undergoing a selective sweep in non-Africans and Caucasians, respectively. Conclusion The refined allelic architecture and selection spectrum for the human CYP3A locus highlight that evolutionary dynamics of molecular adaptation may underlie the phenotypic variation of the xenobiotic disposition system and varied predisposition to complex disorders in which xenobiotics play a role. PMID:20019904

  14. Arsenite and its metabolites, MMA{sup III} and DMA{sup III}, modify CYP3A4, PXR and RXR alpha expression in the small intestine of CYP3A4 transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina-Diaz, I.M.; Estrada-Muniz, E.; Reyes-Hernandez, O.D.

    Arsenic is an environmental pollutant that has been associated with an increased risk for the development of cancer and several other diseases through alterations of cellular homeostasis and hepatic function. Cytochrome P450 (P450) modification may be one of the factors contributing to these disorders. Several reports have established that exposure to arsenite modifies P450 expression by decreasing or increasing mRNA and protein levels. Cytochrome P450 3A4 (CYP3A4), the predominant P450 expressed in the human liver and intestines, which is regulated mainly by the Pregnane X Receptor-Retinoid X Receptor alpha (PXR-RXR alpha) heterodimer, contributes to the metabolism of approximately half themore » drugs in clinical use today. The present study investigates the effect of sodium arsenite and its metabolites monomethylarsonous acid (MMA{sup III}) and dimethylarsinous acid (DMA{sup III}) on CYP3A4, PXR, and RXR alpha expression in the small intestine of CYP3A4 transgenic mice. Sodium arsenite treatment increases mRNA, protein and CYP3A4 activity in a dose-dependent manner. However, the increase in protein expression was not as marked as compared to the increase in mRNA levels. Arsenite treatment induces the accumulation of Ub-protein conjugates, indicating that the activation of this mechanism may explain the differences observed between the mRNA and protein expression of CYP3A4 induction. Treatment with 0.05 mg/kg of DMA{sup III} induces CYP3A4 in a similar way, while treatment with 0.05 mg/kg of MMA{sup III} increases mostly mRNA, and to a lesser degree, CYP3A4 activity. Sodium arsenite and both its metabolites increase PXR mRNA, while only DMA{sup III} induces RXR alpha expression. Overall, these results suggest that sodium arsenite and its metabolites induce CYP3A4 expression by increasing PXR expression in the small intestine of CYP3A4 transgenic mice.« less

  15. Optimization of Clonazepam Therapy Adjusted to Patient's CYP3A Status and NAT2 Genotype.

    PubMed

    Tóth, Katalin; Csukly, Gábor; Sirok, Dávid; Belic, Ales; Kiss, Ádám; Háfra, Edit; Déri, Máté; Menus, Ádám; Bitter, István; Monostory, Katalin

    2016-12-01

    The shortcomings of clonazepam therapy include tolerance, withdrawal symptoms, and adverse effects such as drowsiness, dizziness, and confusion leading to increased risk of falls. Inter-individual variability in the incidence of adverse events in patients partly originates from the differences in clonazepam metabolism due to genetic and nongenetic factors. Since the prominent role in clonazepam nitro-reduction and acetylation of 7-amino-clonazepam is assigned to CYP3A and N-acetyl transferase 2 enzymes, respectively, the association between the patients' CYP3A status (CYP3A5 genotype, CYP3A4 expression) or N-acetyl transferase 2 acetylator phenotype and clonazepam metabolism (plasma concentrations of clonazepam and 7-amino-clonazepam) was evaluated in 98 psychiatric patients suffering from schizophrenia or bipolar disorders. The patients' CYP3A4 expression was found to be the major determinant of clonazepam plasma concentrations normalized by the dose and bodyweight (1263.5±482.9 and 558.5±202.4ng/mL per mg/kg bodyweight in low and normal expressers, respectively, P<.0001). Consequently, the dose requirement for the therapeutic concentration of clonazepam was substantially lower in low-CYP3A4 expresser patients than in normal expressers (0.029±0.011 vs 0.058±0.024mg/kg bodyweight, P<.0001). Furthermore, significantly higher (about 2-fold) plasma concentration ratio of 7-amino-clonazepam and clonazepam was observed in the patients displaying normal CYP3A4 expression and slower N-acetylation than all the others. Prospective assaying of CYP3A4 expression and N-acetyl transferase 2 acetylator phenotype can better identify the patients with higher risk of adverse reactions and can facilitate the improvement of personalized clonazepam therapy and withdrawal regimen. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  16. Mechanisms of olfactory toxicity of the herbicide 2,6-dichlorobenzonitrile: Essential roles of CYP2A5 and target-tissue metabolic activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie Fang; Zhou Xin; Behr, Melissa

    The herbicide 2,6-dichlorobenzonitril (DCBN) is a potent and tissue-specific toxicant to the olfactory mucosa (OM). The toxicity of DCBN is mediated by cytochrome P450 (P450)-catalyzed bioactivation; however, it is not known whether target-tissue metabolic activation is essential for toxicity. CYP2A5, expressed abundantly in both liver and OM, was previously found to be one of the P450 enzymes active in DCBN bioactivation in vitro. The aims of this study were to determine the role of CYP2A5 in DCBN toxicity in vivo, by comparing the extents of DCBN toxicity between Cyp2a5-null and wild-type (WT) mice, and to determine whether hepatic microsomal P450more » enzymes (including CYP2A5) are essential for the DCBN toxicity, by comparing the extents of DCBN toxicity between liver-Cpr-null (LCN) mice, which have little P450 activity in hepatocytes, and WT mice. We show that the loss of CYP2A5 expression did not alter systemic clearance of DCBN (at 25 mg/kg); but it did inhibit DCBN-induced non-protein thiol depletion and cytotoxicity in the OM. Thus, CYP2A5 plays an essential role in mediating DCBN toxicity in the OM. In contrast to the results seen in the Cyp2a5-null mice, the rates of systemic DCBN clearance were substantially reduced, while the extents of DCBN-induced nasal toxicity were increased, rather than decreased, in the LCN mice, compared to WT mice. Therefore, hepatic P450 enzymes, although essential for DCBN clearance, are not necessary for DCBN-induced OM toxicity. Our findings form the basis for a mechanism-based approach to assessing the potential risks of DCBN nasal toxicity in humans.« less

  17. The influence of standardized Valeriana officinalis extract on the CYP3A1 gene expression by nuclear receptors in in vivo model.

    PubMed

    Bogacz, Anna; Mrozikiewicz, Przemyslaw M; Karasiewicz, Monika; Bartkowiak-Wieczorek, Joanna; Majchrzycki, Marian; Mikolajczak, Przemyslaw L; Ozarowski, Marcin; Grzeskowiak, Edmund

    2014-01-01

    Valeriana officinalis is one of the most popular medicinal plants commonly used as a sedative and sleep aid. It is suggested that its pharmacologically active compounds derived from the root may modulate the CYP3A4 gene expression by activation of pregnane X receptor (PXR) or constitutive androstane receptor (CAR) and lead to pharmacokinetic herb-drug interactions. The aim of the study was to determine the influence of valerian on the expression level of CYP3A1 (homologue to human CYP3A4) as well as nuclear receptors PXR, CAR, RXR, GR, and HNF-4α. Male Wistar rats were given standardized valerian extract (300 mg/kg/day, p.o.) for 3 and 10 days. The expression in liver tissue was analyzed by using real-time PCR. Our result showed a decrease of CYP3A1 expression level by 35% (P = 0.248) and 37% (P < 0.001), respectively. Moreover, Valeriana exhibited statistically significant reduction in RXR (approximately 28%) only after 3-day treatment. We also demonstrated a decrease in the amount HNF-4α by 22% (P = 0.005) and 32% (P = 0.012), respectively. In case of CAR, the increase of expression level by 46% (P = 0.023) was noted. These findings suggest that Valeriana officinalis extract can decrease the CYP3A4 expression and therefore may lead to interactions with synthetic drugs metabolized by this enzyme.

  18. The Influence of Standardized Valeriana officinalis Extract on the CYP3A1 Gene Expression by Nuclear Receptors in In Vivo Model

    PubMed Central

    Mrozikiewicz, Przemyslaw M.; Karasiewicz, Monika; Mikolajczak, Przemyslaw L.; Ozarowski, Marcin; Grzeskowiak, Edmund

    2014-01-01

    Valeriana officinalis is one of the most popular medicinal plants commonly used as a sedative and sleep aid. It is suggested that its pharmacologically active compounds derived from the root may modulate the CYP3A4 gene expression by activation of pregnane X receptor (PXR) or constitutive androstane receptor (CAR) and lead to pharmacokinetic herb-drug interactions. The aim of the study was to determine the influence of valerian on the expression level of CYP3A1 (homologue to human CYP3A4) as well as nuclear receptors PXR, CAR, RXR, GR, and HNF-4α. Male Wistar rats were given standardized valerian extract (300 mg/kg/day, p.o.) for 3 and 10 days. The expression in liver tissue was analyzed by using real-time PCR. Our result showed a decrease of CYP3A1 expression level by 35% (P = 0.248) and 37% (P < 0.001), respectively. Moreover, Valeriana exhibited statistically significant reduction in RXR (approximately 28%) only after 3-day treatment. We also demonstrated a decrease in the amount HNF-4α by 22% (P = 0.005) and 32% (P = 0.012), respectively. In case of CAR, the increase of expression level by 46% (P = 0.023) was noted. These findings suggest that Valeriana officinalis extract can decrease the CYP3A4 expression and therefore may lead to interactions with synthetic drugs metabolized by this enzyme. PMID:25302309

  19. CYP2C9 Genotype-Dependent Warfarin Pharmacokinetics: Impact of CYP2C9 Genotype on R- and S-Warfarin and Their Oxidative Metabolites.

    PubMed

    Flora, Darcy R; Rettie, Allan E; Brundage, Richard C; Tracy, Timothy S

    2017-03-01

    Multiple factors can impact warfarin therapy, including genetic variations in the drug-metabolizing enzyme cytochrome P450 2C9 (CYP2C9). Compared with individuals with the wild-type allele, CYP2C9*1, carriers of the common *3 variant have significantly impaired CYP2C9 metabolism. Genetic variations in CYP2C9, the primary enzyme governing the metabolic clearance of the more potent S-enantiomer of the racemic anticoagulant warfarin, may impact warfarin-drug interactions. To establish a baseline for such studies, plasma and urine concentrations of R- and S-warfarin and 10 warfarin metabolites were monitored for up to 360 hours following a 10-mg warfarin dose in healthy subjects with 4 different CYP2C9 genotypes: CYP2C9*1/*1 (n = 8), CYP2C9*1/*3 (n = 9), CYP2C9*2/*3 (n = 3), and CYP2C9*3/*3 (n = 4). Plasma clearance of S-warfarin, but not R-warfarin, decreased multiexponentially and in a CYP2C9 gene-dependent manner: 56%, 70%, and 75% for CYP2C9*1/*3, CYP2C9*2/*3, and CYP2C9*3/*3 genotypes, respectively, compared with CYP2C9*1/*1, resulting in pronounced differences in the S:R ratio that identified warfarin-sensitive genotypes. CYP2C9 was the primary P450 enzyme contributing to S-warfarin metabolism and a minor contributor to R-warfarin metabolism. In the presence of a defective CYP2C9 allele, switching of warfarin metabolism to other oxidative pathways and P450 enzymes for the metabolic elimination of S-warfarin was not observed. The 10-hydroxywarfarin metabolites, whose detailed pharmacokinetics are reported for the first time, exhibited a prolonged half-life with no evidence of renal excretion and displayed elimination rate-limited kinetics. Understanding the impact of CYP2C9 genetics on warfarin pharmacokinetics lays the foundation for future genotype-dependent warfarin-drug interaction studies. © 2016, The American College of Clinical Pharmacology.

  20. Regulation of zebrafish CYP3A65 transcription by AHR2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chin-Teng; Chung, Hsin-Yu; Su, Hsiao-Ting

    2013-07-15

    CYP3A proteins are the most abundant CYPs in the liver and intestines, and they play a pivotal role in drug metabolism. In mammals, CYP3A genes are induced by various xenobiotics through processes mediated by PXR. We previously identified zebrafish CYP3A65 as a CYP3A ortholog that is constitutively expressed in gastrointestinal tissues, and is upregulated by treatment with dexamethasone, rifampicin or tetrachlorodibenzo-p-dioxin (TCDD). However, the underlying mechanism of TCDD-mediated CYP3A65 transcription is unclear. Here we generated two transgenic zebrafish, Tg(CYP3A65S:EGFP) and Tg(CYP3A65L:EGFP), which contain 2.1 and 5.4 kb 5′ flanking sequences, respectively, of the CYP3A65 gene upstream of EGFP. Both transgenicmore » lines express EGFP in larval gastrointestinal tissues in a pattern similar to that of the endogenous CYP3A65 gene. Moreover, EGFP expression can be significantly induced by TCDD exposure during the larval stage. In addition, EGFP expression can be stimulated by kynurenine, a putative AHR ligand produced during tryptophan metabolism. AHRE elements in the upstream regulatory region of the CYP3A65 gene are indispensible for basal and TCDD-induced transcription. Furthermore, the AHR2 DNA and ligand-binding domains are required to mediate effective CYP3A65 transcription. AHRE sequences are present in the promoters of many teleost CYP3 genes, but not of mammalian CYP3 genes, suggesting that AHR/AHR2-mediated transcription is likely a common regulatory mechanism for teleost CYP3 genes. It may also reflect the different environments that terrestrial and aquatic organisms encounter. - Highlights: • Tg(CYP3A65:EGFP) and CYP3A65 exhibits identical expression pattern. • CYP3A65 can be significantly induced by TCDD or kynurenine. • The AHRE elements are required to mediate CYP3A65 transcription. • The AHR2 DNA and ligand-binding domains are required for CYP3A65 transcription. • AHRE elements are present in many teleost CYP3 genes, but not in

  1. Neurosteroid hydroxylase CYP7B: vivid reporter activity in dentate gyrus of gene-targeted mice and abolition of a widespread pathway of steroid and oxysterol hydroxylation.

    PubMed

    Rose, K; Allan, A; Gauldie, S; Stapleton, G; Dobbie, L; Dott, K; Martin, C; Wang, L; Hedlund, E; Seckl, J R; Gustafsson, J A; Lathe, R

    2001-06-29

    The major adrenal steroid dehydroepiandrosterone (DHEA) enhances memory and immune function but has no known dedicated receptor; local metabolism may govern its activity. We described a cytochrome P450 expressed in brain and other tissues, CYP7B, that catalyzes the 7alpha-hydroxylation of oxysterols and 3beta-hydroxysteroids including DHEA. We report here that CYP7B mRNA and 7alpha-hydroxylation activity are widespread in rat tissues. However, steroids related to DHEA are reported to be modified at positions other than 7alpha, exemplified by prominent 6alpha-hydroxylation of 5alpha-androstane-3beta,17beta-diol (A/anediol) in some rodent tissues including brain. To determine whether CYP7B is responsible for these and other activities we disrupted the mouse Cyp7b gene by targeted insertion of an IRES-lacZ reporter cassette, placing reporter enzyme activity (beta-galactosidase) under Cyp7b promoter control. In heterozygous mouse brain, chromogenic detection of reporter activity was strikingly restricted to the dentate gyrus. Staining did not exactly reproduce the in situ hybridization expression pattern; post-transcriptional control is inferred. Lower level staining was detected in cerebellum, liver, and kidney, and which largely paralleled mRNA distribution. Liver and kidney expression was sexually dimorphic. Mice homozygous for the insertion are viable and superficially normal, but ex vivo metabolism of DHEA to 7alpha-hydroxy-DHEA was abolished in brain, spleen, thymus, heart, lung, prostate, uterus, and mammary gland; lower abundance metabolites were also eliminated. 7alpha-Hydroxylation of 25-hydroxycholesterol and related substrates was also abolished, as was presumed 6alpha-hydroxylation of A/anediol. These different enzyme activities therefore derive from the Cyp7b gene. CYP7B is thus a major extrahepatic steroid and oxysterol hydroxylase and provides the predominant route for local metabolism of DHEA and related molecules in brain and other tissues.

  2. Dietary flavonoids modulate CYP2C to improve drug oral bioavailability and their qualitative/quantitative structure-activity relationship.

    PubMed

    Wang, Hong-Jaan; Pao, Li-Heng; Hsiong, Cheng-Huei; Shih, Tung-Yuan; Lee, Meei-Shyuan; Hu, Oliver Yoa-Pu

    2014-03-01

    This study aims to improve the drug oral bioavailability by co-administration with flavonoid inhibitors of the CYP2C isozyme and to establish qualitative and quantitative (QSAR) structure-activity relationships (SAR) between flavonoids and CYP2C. A total of 40 naturally occurring flavonoids were screened in vitro for CYP2C inhibition. Enzyme activity was determined by measuring conversion of tolbutamide to 4-hydroxytolbutamide by rat liver microsomes. The percent inhibition and IC50 of each flavonoid were calculated and used to develop SAR and QSAR. The most effective flavonoid was orally co-administered in vivo with a cholesterol-reducing drug, fluvastatin, which is normally metabolized by CYP2C. The most potent CYP2C inhibitor identified in vitro was tamarixetin (IC50 = 1.4 μM). This flavonoid enhanced the oral bioavailability of fluvastatin in vivo, producing a >2-fold increase in the area under the concentration-time curve and in the peak plasma concentration. SAR analysis indicated that the presence of a 2,3-double bond in the C ring, hydroxylation at positions 5, 6, and 7, and glycosylation had important effects on flavonoid-CYP2C interactions. These findings should prove useful for predicting the inhibition of CYP2C activity by other untested flavonoid-like compounds. In the present study, tamarixetin significantly inhibited CYP2C activity in vitro and in vivo. Thus, the use of tamarixetin could improve the therapeutic efficacy of drugs with low bioavailability.

  3. Up-regulation of CYP1A1 and phase II enzymes by 5-ring isomeric polycyclic aromatic hydrocarbons in precision-cut rat hepatic slices: Importance of molecular shape.

    PubMed

    Pushparajah, Daphnee; Lewis, Dfv; Ioannides, Costas

    2017-04-01

    The objectives of the present study were two-fold: (a) to evaluate the role of molecular shape on the interaction of polycyclic aromatic hydrocarbons (PAHs) with the Ah receptor and CYP1A1 upregulation, and (b) to evaluate the potential of PAHs to induce epoxide hydrolase and glutathione S-transferase, two major enzymes involved in their metabolism. In order to achieve these objectives, precision-cut rat liver slices were incubated with a range of concentrations of seven 5-ring isomeric PAHs, namely benzo[c]chrysene, benzo[b]chrysene, benzo[g]chrysene, dibenzo[a,j]anthracene, dibenzo[a,c]anthracene, picene and pentacene, for 24h. All compounds, with the exception of pentacene, elevated the O-deethylation of ethoxyresorufin, an activity associated with CYP1A1; induction of this enzyme by the various PAHs correlated with their avidity for the Ah receptor. None of the PAHs studied increased epoxide hydrolase activity, monitored using benzo[a]pyrene 4,5-oxide. Of the seven PAHs, only benzo[g]chrysene elevated glutathione S-transferase activity, measured using 1-chloro-2,4-dinitrobenzene or 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole as substrates. No relationship could be established between length or length/width and interaction with the Ah receptor and CYP1A1 up-regulation indicating that other structural or electronic factors are likely to be more important. Finally, 5-ring PAHs are poor inducers of the epoxide hydrolase and glutathione S-transferase enzyme systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Aryl hydrocarbon receptor activation and CYP1A induction by cooked food-derived carcinogenic heterocyclic amines in human HepG2 cell lines.

    PubMed

    Sekimoto, Masashi; Sumi, Haruna; Hosaka, Takuomi; Umemura, Takashi; Nishikawa, Akiyoshi; Degawa, Masakuni

    2016-11-01

    The ability of nine cooked food-derived heterocyclic aromatic amines (HCAs), such as 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-6-methylpyrido[12-a:3',2'-d]imidazole (Glu-P-1), 2-amino-pyrido[12-a:3',2'-d]imidazole hydrochloride (Glu-P-2), 2-amino-9H-pyrido[2,3-b]indole (AαC), 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC), 2-amino-3-methylimidazo[4,5-f]quinolone (IQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl-6-phenyl-1H-imidazo[4,5-b]pyridine (PhIP), to activate human aryl hydrocarbon receptor (hAhR) was examined using a HepG2-A10 cell line, which has previously established from human hepatocarcinoma-derived HepG2 cells for use in hAhR-based luciferase reporter gene assays. Trp-P-1, Trp-P-2, AαC, MeAαC, IQ and MeIQx showed a definite ability to induce not only luciferase (hAhR activation) in HepG2-A10 cells but also cytochrome P450 (CYP)1A1/1A2 mRNAs in HepG2 cells, while such the ability of Glu-P-1, Glu-P-2, and PhIP was very low. In addition, all the HCAs examined, especially MeAαC and MeIQx, had a definite capacity for inhibiting the activity of ethoxyresorfin O-deethylase (CYP1As, especially CYP1A1). The present findings demonstrate that all the HCAs examined have the ability to activate hAhR and its target genes, and further confirm that these HCAs become good substrates for human CYP1A subfamily enzyme(s). Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Identification and characterisation of CYP75A31, a new flavonoid 3'5'-hydroxylase, isolated from Solanum lycopersicum

    PubMed Central

    2010-01-01

    Background Understanding the regulation of the flavonoid pathway is important for maximising the nutritional value of crop plants and possibly enhancing their resistance towards pathogens. The flavonoid 3'5'-hydroxylase (F3'5'H) enzyme functions at an important branch point between flavonol and anthocyanin synthesis, as is evident from studies in petunia (Petunia hybrida), and potato (Solanum tuberosum). The present work involves the identification and characterisation of a F3'5'H gene from tomato (Solanum lycopersicum), and the examination of its putative role in flavonoid metabolism. Results The cloned and sequenced tomato F3'5'H gene was named CYP75A31. The gene was inserted into the pYeDP60 expression vector and the corresponding protein produced in yeast for functional characterisation. Several putative substrates for F3'5'H were tested in vitro using enzyme assays on microsome preparations. The results showed that two hydroxylation steps occurred. Expression of the CYP75A31 gene was also tested in vivo, in various parts of the vegetative tomato plant, along with other key genes of the flavonoid pathway using real-time PCR. A clear response to nitrogen depletion was shown for CYP75A31 and all other genes tested. The content of rutin and kaempferol-3-rutinoside was found to increase as a response to nitrogen depletion in most parts of the plant, however the growth conditions used in this study did not lead to accumulation of anthocyanins. Conclusions CYP75A31 (NCBI accession number GQ904194), encodes a flavonoid 3'5'-hydroxylase, which accepts flavones, flavanones, dihydroflavonols and flavonols as substrates. The expression of the CYP75A31 gene was found to increase in response to nitrogen deprivation, in accordance with other genes in the phenylpropanoid pathway, as expected for a gene involved in flavonoid metabolism. PMID:20128892

  6. cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450.

    PubMed

    Domanski, T L; Finta, C; Halpert, J R; Zaphiropoulos, P G

    2001-02-01

    The RACE amplification technology was used on a novel CYP3A-like exon 1 sequence detected during the reverse transcriptase/polymerase chain reaction analysis of human CYP3A gene expression. This resulted in the identification of cDNAs encompassing the complete coding sequence of a new member of the CYP3A gene subfamily, CYP3A43. Interestingly, the majority of the cDNAs identified were characterized by alternative splicing events such as exon skipping and complete or partial intron inclusion. CYP3A43 expression was detected in liver, kidney, pancreas, and prostate. The amino acid sequence is 75% identical to that of CYP3A4 and CYP3A5 and 71% identical to CYP3A7. CYP3A43 differs from CYP3A4 at six amino acid residues, found within the putative substrate recognition sites of CYP3A4, that are known to be determinants of substrate selectivity. The N terminus of CYP3A43 was modified for efficient expression of the protein in Escherichia coli, and a 6X histidine tag was added at the C terminus to facilitate purification. CYP3A43 gave a reduced carbon monoxide difference spectra with an absorbance maximum at 450 nm. The level of heterologous expression was significantly lower than that observed for CYP3A4 and CYP3A5. Immunoblot analyses revealed that CYP3A43 comigrates with CYP3A4 in polyacrylamide gel electrophoresis but does separate from CYP3A5. Monooxygenase assays were performed under a variety of conditions, several of which yielded reproducible, albeit low, testosterone hydroxylase activity. The findings from this study demonstrate that there is a novel CYP3A member expressed in human tissues, although its relative contribution to drug metabolism has yet to be ascertained.

  7. The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis.

    PubMed

    Nomura, Takahito; Kushiro, Tetsuo; Yokota, Takao; Kamiya, Yuji; Bishop, Gerard J; Yamaguchi, Shinjiro

    2005-05-06

    Brassinosteroids are steroidal hormones essential for the growth and development of plants. Brassinolide, the most biologically active brassinosteroid, has a seven-membered lactone ring that is formed by a Baeyer-Villiger oxidation of its immediate precursor castasterone. Despite its potential key role in controlling plant development, brassinolide synthase has not been identified. Previous work has shown that the formation of castasterone from 6-deoxocastasterone is catalyzed by members of the CYP85A family of cytochrome P-450 monooxygenases. A null mutation in the tomato Dwarf (CYP85A1) gene, extreme dwarf (d(x)), causes severe dwarfism due to brassinosteroid deficiency, but the d(x) mutant still produces fruits. Here, we show that d(x) fruits contain brassinolide at a higher level than wild-type fruits and that a new CYP85A gene, CYP85A3, is preferentially expressed in tomato fruits. Tomato CYP85A3 catalyzed the Baeyer-Villiger oxidation to produce brassinolide from castasterone in yeast, in addition to the conversion of 6-deoxocastasterone to castasterone. We also show that Arabidopsis CYP85A2, which was initially characterized as castasterone synthase, also has brassinolide synthase activity. Exogenous application of castasterone and brassinolide to the Arabidopsis cyp85a1/cyp85a2 double mutant suggests that castasterone can function as an active brassinosteroid but that its conversion into brassinolide is necessary for normal vegetative development in Arabidopsis. We postulate that castasterone is the major active brassinosteroid during vegetative growth in tomato, whereas brassinolide may play an organ-specific role in fruit development in this species.

  8. Association of CYP2B6, CYP3A5, and CYP2C19 genetic polymorphisms with sibutramine pharmacokinetics in healthy Korean subjects.

    PubMed

    Kim, K A; Song, W K; Park, J Y

    2009-11-01

    We assessed the association of CYP2B6, CYP3A5, and CYP2C19 polymorphisms with sibutramine pharmacokinetics. Forty six healthy male subjects were enrolled, and their CYP2B6 (*4 and *6), CYP3A5 (*3), and CYP2C19 (*2, and *3) genotypes were analyzed. After a single 15-mg dose of sibutramine was administered, plasma concentrations of sibutramine and its metabolites, M1 and M2, were measured. CYP2B6 and CYP3A5 polymorphisms did not affect the pharmacokinetics of sibutramine and its metabolites. However, the CYP2C19 genotype substantially influenced plasma levels of sibutramine and its metabolites. The mean area under the curve (AUC) of sibutramine in CYP2C19 intermediate metabolizers (IMs; *1/*2 or *1/*3) and poor metabolizers (PMs; *2/*2, *2/*3)) was 18.5 and 252.2% higher, respectively, than the AUC in extensive metabolizers (EMs, *1/*1) (P < 0.001). The AUC of M1 metabolite in IMs and PMs was 22.5 and 148.0% higher, respectively, than that of EMs (P < 0.001). Our findings indicate that the CYP2C19 genotype substantially affects the pharmacokinetics of sibutramine.

  9. Activity of xenobiotic-metabolizing enzymes in the liver of rats with multi-vitamin deficiency.

    PubMed

    Tutelyan, Victor A; Kravchenko, Lidia V; Aksenov, Ilya V; Trusov, Nikita V; Guseva, Galina V; Kodentsova, Vera M; Vrzhesinskaya, Oksana A; Beketova, Nina A

    2013-01-01

    The purpose of the study was to determine how multi-vitamin deficiency affects xenobiotic-metabolizing enzyme (XME) activities in the rat liver. Vitamin levels and XME activities were studied in the livers of male Wistar rats who were fed for 4 weeks with semi-synthetic diets containing either adequate (100 % of recommended vitamin intake) levels of vitamins (control), or decreased vitamin levels (50 % or 20 % of recommended vitamin intake). The study results have shown that moderate vitamin deficiency (50 %) leads to a decrease of vitamin A levels only, and to a slight increase, as compared with the control, in the following enzyme activities: methoxyresorufin O-dealkylase (MROD) activity of CYP1 A2 - by 34 % (p < 0.05), UDP-glucuronosyl transferase - by 26 % (p < 0.05), and quinone reductase - by 55 % (p < 0.05). Profound vitamin deficiency (20 %) led to a decrease of vitamins A, E, B1, B2, and C, and enzyme activities in the liver: MROD - to 78 % of the control level (p < 0.05), 4-nitrophenol hydroxylase - to 74 % (p < 0.05), heme oxygenase-1 - to 83 % (p < 0.05), and quinone reductase - to 60 % (p < 0.05). At the same time, the UDP-glucuronosyl transferase activity and ethoxyresorufin O-dealkylase activity of CYP1A1, pentoxyresorufin O-dealkylase activity of CYP2B1/2 and 6β-testosterone hydroxylase, as well as the total activity of glutathione transferase did not differ from the control levels. The study has demonstrated that profound multi-vitamin deficiency is associated with a decrease in the expression of CYP1A2 and CYP3A1 mRNAs to 62 % and 79 %, respectively. These data indicated that a short-term but profound multi-vitamin deficiency in rats leads to a decrease in the activities and expression of the some XME that play an important role in detoxification of xenobiotics and metabolism of drugs and antioxidant protection.

  10. Identification of human cytochrome P450 and flavin-containing monooxygenase enzymes involved in the metabolism of lorcaserin, a novel selective human 5-hydroxytryptamine 2C agonist.

    PubMed

    Usmani, Khawja A; Chen, Weichao G; Sadeque, Abu J M

    2012-04-01

    Lorcaserin, a selective serotonin 5-hydroxytryptamine 2C receptor agonist, is being developed for weight management. The oxidative metabolism of lorcaserin, mediated by recombinant human cytochrome P450 (P450) and flavin-containing monooxygenase (FMO) enzymes, was examined in vitro to identify the enzymes involved in the generation of its primary oxidative metabolites, N-hydroxylorcaserin, 7-hydroxylorcaserin, 5-hydroxylorcaserin, and 1-hydroxylorcaserin. Human CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, CYP3A4, and FMO1 are major enzymes involved in N-hydroxylorcaserin; CYP2D6 and CYP3A4 are enzymes involved in 7-hydroxylorcaserin; CYP1A1, CYP1A2, CYP2D6, and CYP3A4 are enzymes involved in 5-hydroxylorcaserin; and CYP3A4 is an enzyme involved in 1-hydroxylorcaserin formation. In 16 individual human liver microsomal preparations (HLM), formation of N-hydroxylorcaserin was correlated with CYP2B6, 7-hydroxylorcaserin was correlated with CYP2D6, 5-hydroxylorcaserin was correlated with CYP1A2 and CYP3A4, and 1-hydroxylorcaserin was correlated with CYP3A4 activity at 10.0 μM lorcaserin. No correlation was observed for N-hydroxylorcaserin with any P450 marker substrate activity at 1.0 μM lorcaserin. N-Hydroxylorcaserin formation was not inhibited by CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, and CYP3A4 inhibitors at the highest concentration tested. Furafylline, quinidine, and ketoconazole, selective inhibitors of CYP1A2, CYP2D6, and CYP3A4, respectively, inhibited 5-hydroxylorcaserin (IC(50) = 1.914 μM), 7-hydroxylorcaserin (IC(50) = 0.213 μM), and 1-hydroxylorcaserin formation (IC(50) = 0.281 μM), respectively. N-Hydroxylorcaserin showed low and high K(m) components in HLM and 7-hydroxylorcaserin showed lower K(m) than 5-hydroxylorcaserin and 1-hydroxylorcaserin in HLM. The highest intrinsic clearance was observed for N-hydroxylorcaserin, followed by 7-hydroxylorcaserin, 5-hydroxylorcaserin, and 1-hydroxylorcaserin in HLM. Multiple human P450 and FMO enzymes catalyze

  11. Identification of acetylshikonin as the novel CYP2J2 inhibitor with anti-cancer activity in HepG2 cells.

    PubMed

    Park, See-Hyoung; Phuc, Nguyen Minh; Lee, Jongsung; Wu, Zhexue; Kim, Jieun; Kim, Hyunkyoung; Kim, Nam Doo; Lee, Taeho; Song, Kyung-Sik; Liu, Kwang-Hyeon

    2017-01-15

    Acetylshikonin is one of the biologically active compounds derived from the root of Lithospermum erythrorhizon, a medicinal plant with anti-cancer and anti-inflammation activity. Although there have been a few previous reports demonstrating that acetylshikonin exerts anti-cancer activity in vitro and in vivo, it is still not clear what is the exact molecular target protein of acetylshikonin in cancer cells. The purpose of this study is to evaluate the inhibitory effect of acetylshikonin against CYP2J2 enzyme which is predominantly expressed in human tumor tissues and carcinoma cell lines. The inhibitory effect of acetylshikonin on the activities of CYP2J2-mediated metabolism were investigated using human liver microsomes (HLMs), and its cytotoxicity against human hepatoma HepG2 cells was also evaluated. Astemizole, a representative CYP2J2 probe substrate, was incubated in HLMs in the presence or absence of acetylshikonin. After incubation, the samples were analyzed by liquid chromatography and triple quadrupole mass spectrometry. The anti-cancer activity of acetylshikonin was evaluated on human hepatocellular carcinoma HepG2 cells. WST-1, cell counting, and colony formation assays were further adopted for the estimation of the growth rate of HepG2 cells treated with acetylshikonin. Acetylshikonin inhibited CYP2J2-mediated astemizole O-demethylation activity (K i = 2.1µM) in a noncompetitive manner. The noncompetitive inhibitory effect of acetylshikonin on CYP2J2 enzyme was also demonstrated using this 3D structure, which showed different binding location of astemizole and acetylshikonin in CYP2J2 model. It showed cytotoxic effects against human hepatoma HepG2 cells (IC 50 = 2μM). In addition, acetylshikonin treatment inhibited growth of human hepatocellular carcinoma HepG2 cells leading to apoptosis accompanied with p53, bax, and caspase3 activation as well as bcl2 down-regulation. Taken together, our present study elucidates acetylshikonin displays the

  12. Functional studies of novel CYP21A2 mutations detected in Norwegian patients with congenital adrenal hyperplasia

    PubMed Central

    Brønstad, Ingeborg; Breivik, Lars; Methlie, Paal; Wolff, Anette S B; Bratland, Eirik; Nermoen, Ingrid; Løvås, Kristian; Husebye, Eystein S

    2014-01-01

    In about 95% of cases, congenital adrenal hyperplasia (CAH) is caused by mutations in CYP21A2 gene encoding steroid 21-hydroxylase (21OH). Recently, we have reported four novel CYP21A2 variants in the Norwegian population of patients with CAH, of which p.L388R and p.E140K were associated with salt wasting (SW), p.P45L with simple virilising (SV) and p.V211M+p.V281L with SV to non-classical (NC) phenotypes. We aimed to characterise the novel variants functionally utilising a newly designed in vitro assay of 21OH enzyme activity and structural simulations and compare the results with clinical phenotypes. CYP21A2 mutations and variants were expressed in vitro. Enzyme activity was assayed by assessing the conversion of 17-hydroxyprogesterone to 11-deoxycortisol by liquid chromatography tandem mass spectroscopy. PyMOL 1.3 was used for structural simulations, and PolyPhen2 and PROVEAN for predicting the severity of the mutants. The CYP21A2 mutants, p.L388R and p.E140K, exhibited 1.1 and 11.3% of wt 21OH enzyme activity, respectively, in vitro. We could not detect any functional deficiency of the p.P45L variant in vitro; although prediction tools suggest p.P45L to be pathogenic. p.V211M displayed enzyme activity equivalent to the wt in vitro, which was supported by in silico analyses. We found good correlations between phenotype and the in vitro enzyme activities of the SW mutants, but not for the SV p.P45L variant. p.V211M might have a synergistic effect together with p.V281L, explaining a phenotype between SV and NC CAH. PMID:24671123

  13. Evaluation of first-pass cytochrome P4503A (CYP3A) and P-glycoprotein activities using alfentanil and fexofenadine in combination.

    PubMed

    Kharasch, Evan D; Walker, Alysa; Hoffer, Christine; Sheffels, Pamela

    2005-01-01

    Cytochrome P4503A (CYP3A) and P-glycoprotein (P-gp) are major determinants of oral bioavailability. Development of in vivo probe(s), for both CYP3A and P-gp, which could be administered in combination, is a current goal. Nevertheless, there is considerable overlap in CYP3A and P-gp substrate selectivities; there are few discrete probes. Alfentanil is a selective CYP3A probe but not a P-gp substrate. Fexofenadine is a P-gp probe but not a CYP3A substrate. This investigation tested the hypothesis that alfentanil and fexofenadine could be administered in combination to probe first-pass CYP3A and P-gp activities in humans. Two 3-way crossover studies were conducted in healthy volunteers. In the first protocol, subjects received oral alfentanil alone, fexofenadine alone, or fexofenadine 1 hour after alfentanil. In the second protocol, subjects abstained from citrus and apple products for 5 days and received fexofenadine alone, fexofenadine 1 hour after alfentanil, or alfentanil 4 hours after fexofenadine. An assay using solid-phase extraction and electrospray liquid chromatography/mass spectrometry was developed for the simultaneous quantification of plasma alfentanil and fexofenadine. In both protocols, alfentanil plasma concentrations and area under the concentration versus time curve (AUC) were unaffected by fexofenadine or meal composition. Fexofenadine given 1 hour after alfentanil and followed 1 hour later by a meal containing orange or apple juice had a somewhat lower AUC compared with fexofenadine alone (geometric mean ratio with and without the interacting drug = 0.73, 90% confidence interval [CI] = 0.59-1.04). Fexofenadine given 1 hour after alfentanil and followed 2 hours later by a meal not containing citrus or apple products had an AUC that was unchanged compared with fexofenadine alone (ratio = 0.91, 90% CI = 0.70-1.35). These results show that alfentanil disposition was not affected by fexofenadine. A dosing regimen was identified in which fexofenadine

  14. Determination of a Degradation Constant for CYP3A4 by Direct Suppression of mRNA in a Novel Human Hepatocyte Model, HepatoPac.

    PubMed

    Ramsden, Diane; Zhou, Jin; Tweedie, Donald J

    2015-09-01

    Accurate determination of rates of de novo synthesis and degradation of cytochrome P450s (P450s) has been challenging. There is a high degree of variability in the multiple published values of turnover for specific P450s that is likely exacerbated by differences in methodologies. For CYP3A4, reported half-life values range from 10 to 140 hours. An accurate value for kdeg has been identified as a major limitation for prediction of drug interactions involving mechanism-based inhibition and/or induction. Estimation of P450 half-life from in vitro test systems, such as human hepatocytes, is complicated by differential decreased enzyme function over culture time, attenuation of the impact of enzyme loss through inclusion of glucocorticoids in media, and viability limitations over long-term culture times. HepatoPac overcomes some of these challenges by providing extended stability of enzymes (2.5 weeks in our hands). As such it is a unique tool for studying rates of enzyme degradation achieved through modulation of enzyme levels. CYP3A4 mRNA levels were rapidly depleted by >90% using either small interfering RNA or addition of interleukin-6, which allowed an estimation of the degradation rate constant for CYP3A protein over an incubation time of 96 hours. The degradation rate constant of 0.0240 ± 0.005 hour(-1) was reproducible in hepatocytes from five different human donors. These donors also reflected the overall population with respect to CYP3A5 genotype. This methodology can be applied to additional enzymes and may provide a more accurate in vitro derived kdeg value for predicting clinical drug-drug interaction outcomes. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  15. CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes.

    PubMed

    Syed, Khajamohiddin; Porollo, Aleksey; Lam, Ying Wai; Grimmett, Paul E; Yadav, Jagjit S

    2013-04-01

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons, albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was found to possess a broad oxidizing capability toward structurally diverse hydrocarbons belonging to mutagenic/carcinogenic fused-ring higher-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), endocrine-disrupting long-chain alkylphenols (APs), and crude oil aliphatic hydrocarbon n-alkanes. A homology-based three-dimensional (3D) model revealed the presence of an extraordinarily large active-site cavity in CYP63A2 compared to the mammalian PAH-oxidizing (CYP3A4, CYP1A2, and CYP1B1) and bacterial aliphatic-hydrocarbon-oxidizing (CYP101D and CYP102A1) P450s. This structural feature in conjunction with ligand docking simulations suggested potential versatility of the enzyme. Experimental characterization using recombinantly expressed CYP63A2 revealed its ability to oxidize HMW-PAHs of various ring sizes, including 4 rings (pyrene and fluoranthene), 5 rings [benzo(a)pyrene], and 6 rings [benzo(ghi)perylene], with the highest enzymatic activity being toward the 5-ring PAH followed by the 4-ring and 6-ring PAHs, in that order. Recombinant CYP63A2 activity yielded monohydroxylated PAH metabolites. The enzyme was found to also act as an alkane ω-hydroxylase that oxidized n-alkanes with various chain lengths (C9 to C12 and C15 to C19), as well as alkyl side chains (C3 to C9) in alkylphenols (APs). CYP63A2 showed preferential oxidation of long-chain APs and alkanes. To our knowledge, this is the first P450 identified from any of the biological kingdoms that possesses such broad substrate specificity toward structurally diverse xenobiotics (PAHs, APs, and alkanes), making it a potent enzyme biocatalyst candidate to handle mixed pollution (e.g., crude oil spills).

  16. CYP63A2, a Catalytically Versatile Fungal P450 Monooxygenase Capable of Oxidizing Higher-Molecular-Weight Polycyclic Aromatic Hydrocarbons, Alkylphenols, and Alkanes

    PubMed Central

    Syed, Khajamohiddin; Porollo, Aleksey; Lam, Ying Wai; Grimmett, Paul E.

    2013-01-01

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons, albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was found to possess a broad oxidizing capability toward structurally diverse hydrocarbons belonging to mutagenic/carcinogenic fused-ring higher-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), endocrine-disrupting long-chain alkylphenols (APs), and crude oil aliphatic hydrocarbon n-alkanes. A homology-based three-dimensional (3D) model revealed the presence of an extraordinarily large active-site cavity in CYP63A2 compared to the mammalian PAH-oxidizing (CYP3A4, CYP1A2, and CYP1B1) and bacterial aliphatic-hydrocarbon-oxidizing (CYP101D and CYP102A1) P450s. This structural feature in conjunction with ligand docking simulations suggested potential versatility of the enzyme. Experimental characterization using recombinantly expressed CYP63A2 revealed its ability to oxidize HMW-PAHs of various ring sizes, including 4 rings (pyrene and fluoranthene), 5 rings [benzo(a)pyrene], and 6 rings [benzo(ghi)perylene], with the highest enzymatic activity being toward the 5-ring PAH followed by the 4-ring and 6-ring PAHs, in that order. Recombinant CYP63A2 activity yielded monohydroxylated PAH metabolites. The enzyme was found to also act as an alkane ω-hydroxylase that oxidized n-alkanes with various chain lengths (C9 to C12 and C15 to C19), as well as alkyl side chains (C3 to C9) in alkylphenols (APs). CYP63A2 showed preferential oxidation of long-chain APs and alkanes. To our knowledge, this is the first P450 identified from any of the biological kingdoms that possesses such broad substrate specificity toward structurally diverse xenobiotics (PAHs, APs, and alkanes), making it a potent enzyme biocatalyst candidate to handle mixed pollution (e.g., crude oil spills). PMID:23416995

  17. Effect of Nicotine on CYP2B1 Expression in a Glioma Animal Model and Analysis of CYP2B6 Expression in Pediatric Gliomas.

    PubMed

    Nava-Salazar, Sonia; Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Marhx-Bracho, Alfonso; Phillips-Farfán, Bryan V; Diaz-Avalos, Carlos; Vanoye-Carlo, America

    2018-06-16

    Cyclophosphamide (CPA) is a pro-drug commonly used in the chemotherapeutic schemes for glioma treatment but has high toxicity and the side effects include brain damage and even death. Since CPA is activated mainly by CY2B6, over-expression of the enzyme in the tumor cells has been proposed to enhance CPA activation. In this study, we explored the induction of the Cyp2b1 (homologous to CYP2B6 ) by nicotine in an animal rat model with glioma. Gene expression and protein levels were analyzed by RT-PCR and Western blot. Nicotine treatment increased CYP2B1 protein levels in the healthy animals’ brain tissue. In the brain tissue of animals with glioma, the CYP2B1 showed a high expression, even before nicotine treatment. Nicotine did not increase significantly the CYP2B1 protein expression in the tumor, but increased its expression in the tumor vicinity, especially around blood vessels in the cortex. We also explored CY2B6 expression in glioma samples derived from pediatric patients. Tumor tissue showed a variable expression of the enzyme, which could depend on the tumor malignancy grade. Induction of the CYP2B6 in pediatric gliomas with lower expression of the enzyme, could be an alternative to improve the antitumoral effect of CPA treatment.

  18. Co-expression of human cytochrome P4501A1 (CYP1A1) variants and human NADPH-cytochrome P450 reductase in the baculovirus/insect cell system.

    PubMed

    Schwarz, D; Kisselev, P; Honeck, H; Cascorbi, I; Schunck, W H; Roots, I

    2001-06-01

    1. Three human cytochrome P4501A1 (CYP1A1) variants, wild-type (CYP1A1.1), CYP1A1.2 (1462V) and CYP1A1.4 (T461N), were co-expressed with human NADPH-P450 reductase (OR) in Spodoptera frugiperda (Sf9) insect cells by baculovirus co-infection to elaborate a suitable system for studying the role of CYPA1 polymorphism in the metabolism of exogenous and endogenous substrates. 2. A wide range of conditions was examined to optimize co-expression with regard to such parameters as relative multiplicity of infection (MOI), time of harvest, haem precursor supplementation and post-translational stabilization. tinder optimized conditions, almost identical expression levels and molar OR/CYP1A1 ratios (20:1) were attained for all CYP1A1 variants. 3. Microsomes isolated from co-infected cells demonstrated ethoxyresorufin deethlylase activities (nmol/min(-1) nmol(-1) CYP1A1) of 16.0 (CYP1A1.1), 20.5 (CYP1A1.2) and 22.5 (CYP1A1.4). Pentoxyresorufin was dealkylated approximately 10-20 times slower with all enzyme variants. 4. All three CYP1A1 variants were active in metabolizing the precarcinogen benzo[a]pyrene (B[a]P), with wild-type enzyme showing the highest activity, followed by CYP1A1.4 (60%) and CYP1A1.2 (40%). Each variant produced all major metabolites including B[a]P-7,8-dihydrodiol, the precursor of the ultimate carcinogenic species. 5. These studies demonstrate that the baculovirus-mediated co-expression-by-co-infection approach all CYP1A1 variants yields functionally active enzyme systems with similar molar OR/CYP1A1 ratios, thus providing suitable preconditions to examine the metabolism of and environmental chemicals by the different CY1A1 variants.

  19. CYP79 P450 monooxygenases in gymnosperms: CYP79A118 is associated with the formation of taxiphyllin in Taxus baccata.

    PubMed

    Luck, Katrin; Jia, Qidong; Huber, Meret; Handrick, Vinzenz; Wong, Gane Ka-Shu; Nelson, David R; Chen, Feng; Gershenzon, Jonathan; Köllner, Tobias G

    2017-09-01

    Conifers contain P450 enzymes from the CYP79 family that are involved in cyanogenic glycoside biosynthesis. Cyanogenic glycosides are secondary plant compounds that are widespread in the plant kingdom. Their biosynthesis starts with the conversion of aromatic or aliphatic amino acids into their respective aldoximes, catalysed by N-hydroxylating cytochrome P450 monooxygenases (CYP) of the CYP79 family. While CYP79s are well known in angiosperms, their occurrence in gymnosperms and other plant divisions containing cyanogenic glycoside-producing plants has not been reported so far. We screened the transcriptomes of 72 conifer species to identify putative CYP79 genes in this plant division. From the seven resulting full-length genes, CYP79A118 from European yew (Taxus baccata) was chosen for further characterization. Recombinant CYP79A118 produced in yeast was able to convert L-tyrosine, L-tryptophan, and L-phenylalanine into p-hydroxyphenylacetaldoxime, indole-3-acetaldoxime, and phenylacetaldoxime, respectively. However, the kinetic parameters of the enzyme and transient expression of CYP79A118 in Nicotiana benthamiana indicate that L-tyrosine is the preferred substrate in vivo. Consistent with these findings, taxiphyllin, which is derived from L-tyrosine, was the only cyanogenic glycoside found in the different organs of T. baccata. Taxiphyllin showed highest accumulation in leaves and twigs, moderate accumulation in roots, and only trace accumulation in seeds and the aril. Quantitative real-time PCR revealed that CYP79A118 was expressed in plant organs rich in taxiphyllin. Our data show that CYP79s represent an ancient family of plant P450s that evolved prior to the separation of gymnosperms and angiosperms. CYP79A118 from T. baccata has typical CYP79 properties and its substrate specificity and spatial gene expression pattern suggest that the enzyme contributes to the formation of taxiphyllin in this plant species.

  20. Benzydamine N-oxidation as an index reaction reflecting FMO activity in human liver microsomes and impact of FMO3 polymorphisms on enzyme activity

    PubMed Central

    Störmer, Elke; Roots, Ivar; Brockmöller, Jürgen

    2000-01-01

    Aims The role of flavin containing monooxygenases (FMO) on the disposition of many drugs has been insufficiently explored. In vitro and in vivo tests are required to study FMO activity in humans. Benzydamine (BZD) N-oxidation was evaluated as an index reaction for FMO as was the impact of genetic polymorphisms of FMO3 on activity. Methods BZD was incubated with human liver microsomes (HLM) and recombinant enzymes. Human liver samples were genotyped using PCR-RFLP. Results BZD N-oxide formation rates in HLM followed Michaelis-Menten kinetics (mean Km = 64.0 μm, mean Vmax = 6.9 nmol mg−1 protein min−1; n = 35). N-benzylimidazole, a nonspecific CYP inhibitor, and various CYP isoform selective inhibitors did not affect BZD N-oxidation. In contrast, formation of BZD N-oxide was almost abolished by heat treatment of microsomes in the absence of NADPH and strongly inhibited by methimazole, a competitive FMO inhibitor. Recombinant FMO3 and FMO1 (which is not expressed in human liver), but not FMO5, showed BZD N-oxidase activity. Respective Km values for FMO3 and FMO1 were 40.4 μm and 23.6 μm, and respective Vmax values for FMO3 and FMO1 were 29.1 and 40.8 nmol mg−1 protein min−1. Human liver samples (n = 35) were analysed for six known FMO3 polymorphisms. The variants I66M, P135L and E305X were not detected. Samples homozygous for the K158 variant showed significantly reduced vmax values (median 2.7 nmol mg−1 protein min−1) compared to the carriers of at least one wild type allele (median 6.2 nmol mg−1 protein min−1) (P<0.05, Mann–Whitney- U-test). The V257M and E308G substitutions had no effect on enzyme activity. Conclusions BZD N-oxidation in human liver is mainly catalysed by FMO3 and enzyme activity is affected by FMO3 genotype. BZD may be used as a model substrate for human liver FMO3 activity in vitro and may be further developed as an in vivo probe reflecting FMO3 activity. PMID:11136294

  1. Effects of daily ingestion of cranberry juice on the pharmacokinetics of warfarin, tizanidine, and midazolam--probes of CYP2C9, CYP1A2, and CYP3A4.

    PubMed

    Lilja, J J; Backman, J T; Neuvonen, P J

    2007-06-01

    Case reports suggest that cranberry juice can increase the anticoagulant effect of warfarin. We investigated the effects of cranberry juice on R-S-warfarin, tizanidine, and midazolam; probes of CYP2C9, CYP1A2, and CYP3A4. Ten healthy volunteers took 200 ml cranberry juice or water t.i.d. for 10 days. On day 5, they ingested 10 mg racemic R-S-warfarin, 1 mg tizanidine, and 0.5 mg midazolam, with juice or water, followed by monitoring of drug concentrations and thromboplastin time. Cranberry juice did not increase the peak plasma concentration or area under concentration-time curve (AUC) of the probe drugs or their metabolites, but slightly decreased (7%; P=0.051) the AUC of S-warfarin. Cranberry juice did not change the anticoagulant effect of warfarin. Daily ingestion of cranberry juice does not inhibit the activities of CYP2C9, CYP1A2, or CYP3A4. A pharmacokinetic mechanism for the cranberry juice-warfarin interaction seems unlikely.

  2. Optimization of Clonazepam Therapy Adjusted to Patient’s CYP3A Status and NAT2 Genotype

    PubMed Central

    Tóth, Katalin; Csukly, Gábor; Sirok, Dávid; Belic, Ales; Kiss, Ádám; Háfra, Edit; Déri, Máté; Menus, Ádám; Bitter, István

    2016-01-01

    Background: The shortcomings of clonazepam therapy include tolerance, withdrawal symptoms, and adverse effects such as drowsiness, dizziness, and confusion leading to increased risk of falls. Inter-individual variability in the incidence of adverse events in patients partly originates from the differences in clonazepam metabolism due to genetic and nongenetic factors. Methods: Since the prominent role in clonazepam nitro-reduction and acetylation of 7-amino-clonazepam is assigned to CYP3A and N-acetyl transferase 2 enzymes, respectively, the association between the patients’ CYP3A status (CYP3A5 genotype, CYP3A4 expression) or N-acetyl transferase 2 acetylator phenotype and clonazepam metabolism (plasma concentrations of clonazepam and 7-amino-clonazepam) was evaluated in 98 psychiatric patients suffering from schizophrenia or bipolar disorders. Results: The patients’ CYP3A4 expression was found to be the major determinant of clonazepam plasma concentrations normalized by the dose and bodyweight (1263.5±482.9 and 558.5±202.4ng/mL per mg/kg bodyweight in low and normal expressers, respectively, P<.0001). Consequently, the dose requirement for the therapeutic concentration of clonazepam was substantially lower in low-CYP3A4 expresser patients than in normal expressers (0.029±0.011 vs 0.058±0.024mg/kg bodyweight, P<.0001). Furthermore, significantly higher (about 2-fold) plasma concentration ratio of 7-amino-clonazepam and clonazepam was observed in the patients displaying normal CYP3A4 expression and slower N-acetylation than all the others. Conclusion: Prospective assaying of CYP3A4 expression and N-acetyl transferase 2 acetylator phenotype can better identify the patients with higher risk of adverse reactions and can facilitate the improvement of personalized clonazepam therapy and withdrawal regimen. PMID:27639091

  3. Midazolam microdose to determine systemic and pre-systemic metabolic CYP3A activity in humans

    PubMed Central

    Hohmann, Nicolas; Kocheise, Franziska; Carls, Alexandra; Burhenne, Jürgen; Haefeli, Walter E; Mikus, Gerd

    2015-01-01

    Aim We aimed to establish a method to assess systemic and pre-systemic cytochrome P450 (CYP) 3A activity using ineffective microgram doses of midazolam. Methods In an open, one sequence, crossover study, 16 healthy participants received intravenous and oral midazolam at microgram (0.001 mg intravenous and 0.003 mg oral) and regular milligram (1 mg intravenous and 3 mg oral) doses to assess the linearity of plasma and urine pharmacokinetics. Results Dose-normalized AUC and Cmax were 37.1 ng ml−1 h [95% CI 35.5, 40.6] and 39.1 ng ml−1 [95% CI 30.4, 50.2] for the microdose and 39.0 ng ml−1 h [95% CI 36.1, 42.1] and 37.1 ng ml−1 [95% CI 26.9, 51.3] for the milligram dose. CLmet was 253 ml min−1 [95% CI 201, 318] vs. 278 ml min−1 [95% CI 248, 311] for intravenous doses and 1880 ml min−1 [95% CI 1590, 2230] vs. 2050 ml min−1 [95% CI 1720, 2450] for oral doses. Oral bioavailability of a midazolam microdose was 23.4% [95% CI 20.0, 27.3] vs. 20.9% [95% CI 17.1, 25.5] after the regular dose. Hepatic and gut extraction ratios for microgram doses were 0.44 [95% CI 0.39, 0.49] and 0.53 [95% CI 0.45, 0.63] and compared well with those for milligram doses (0.43 [95% CI 0.37, 0.49] and 0.61 [95% CI 0.53, 0.70]). Conclusion The pharmacokinetics of an intravenous midazolam microdose is linear to the applied regular doses and can be used to assess safely systemic CYP3A activity and, in combination with oral microdoses, pre-systemic CYP3A activity. PMID:25588320

  4. Midazolam microdose to determine systemic and pre-systemic metabolic CYP3A activity in humans.

    PubMed

    Hohmann, Nicolas; Kocheise, Franziska; Carls, Alexandra; Burhenne, Jürgen; Haefeli, Walter E; Mikus, Gerd

    2015-02-01

    We aimed to establish a method to assess systemic and pre-systemic cytochrome P450 (CYP) 3A activity using ineffective microgram doses of midazolam. In an open, one sequence, crossover study, 16 healthy participants received intravenous and oral midazolam at microgram (0.001 mg intravenous and 0.003 mg oral) and regular milligram (1 mg intravenous and 3 mg oral) doses to assess the linearity of plasma and urine pharmacokinetics. Dose-normalized AUC and Cmax were 37.1 ng ml(-1 ) h [95% CI 35.5, 40.6] and 39.1 ng ml(-1) [95% CI 30.4, 50.2] for the microdose and 39.0 ng ml(-1 ) h [95% CI 36.1, 42.1] and 37.1 ng ml(-1) [95% CI 26.9, 51.3] for the milligram dose. CLmet was 253 ml min(-1) [95% CI 201, 318] vs. 278 ml min(-1) [95% CI 248, 311] for intravenous doses and 1880 ml min(-1) [95% CI 1590, 2230] vs. 2050 ml min(-1) [95% CI 1720, 2450] for oral doses. Oral bioavailability of a midazolam microdose was 23.4% [95% CI 20.0, 27.3] vs. 20.9% [95% CI 17.1, 25.5] after the regular dose. Hepatic and gut extraction ratios for microgram doses were 0.44 [95% CI 0.39, 0.49] and 0.53 [95% CI 0.45, 0.63] and compared well with those for milligram doses (0.43 [95% CI 0.37, 0.49] and 0.61 [95% CI 0.53, 0.70]). The pharmacokinetics of an intravenous midazolam microdose is linear to the applied regular doses and can be used to assess safely systemic CYP3A activity and, in combination with oral microdoses, pre-systemic CYP3A activity. © 2014 The British Pharmacological Society.

  5. A High-Throughput (HTS) Assay for Enzyme Reaction Phenotyping in Human Recombinant P450 Enzymes Using LC-MS/MS.

    PubMed

    Li, Xiaofeng; Suhar, Tom; Glass, Lateca; Rajaraman, Ganesh

    2014-03-03

    Enzyme reaction phenotyping is employed extensively during the early stages of drug discovery to identify the enzymes responsible for the metabolism of new chemical entities (NCEs). Early identification of metabolic pathways facilitates prediction of potential drug-drug interactions associated with enzyme polymorphism, induction, or inhibition, and aids in the design of clinical trials. Incubation of NCEs with human recombinant enzymes is a popular method for such work because of the specificity, simplicity, and high-throughput nature of this approach for phenotyping studies. The availability of a relative abundance factor and calculated intersystem extrapolation factor for the expressed recombinant enzymes facilitates easy scaling of in vitro data, enabling in vitro-in vivo extrapolation. Described in this unit is a high-throughput screen for identifying enzymes involved in the metabolism of NCEs. Emphasis is placed on the analysis of the human recombinant enzymes CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2B6, and CYP3A4, including the calculation of the intrinsic clearance for each. Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

  6. PXR-Mediated Upregulation of CYP3A Expression by Herb Compound Praeruptorin C from Peucedanum praeruptorum Dunn

    PubMed Central

    Huang, Ling; Wu, Qian; Li, Yu-Hua; Wang, Yi-Tao; Bi, Hui-Chang

    2013-01-01

    We recently reported that Praeruptorin C effectively transactivated the mRNA, protein expression, and catalytic activity of CYP3A4 via the CAR-mediated pathway, but whether and how PC could affect the expression and catalytic activity of CYP3A4 via PXR pathway remains unknown. Therefore, in this study, the effect of PC on the CYP3A gene expression was investigated in mice primary hepatocytes after knockdown of PXR by transient transfection of PXR siRNA, and the gene expression, protein expression, and catalytic activity of CYP3A4 in the LS174T cells with PXR overexpression were determined by real-time PCR, western blot analysis, and LC-MS/MS-based CYP3A4 substrate assay, respectively. We found that the level of CYP3a11 gene expression in mouse primary hepatocytes was significantly increased by praeruptorin C, but such an induction was suppressed after knockdown of pregnane X receptor by its siRNA. In PXR-overexpressed LS174T cells, PC significantly enhanced CYP3A4 mRNA, protein expression, and functional activity through PXR-mediated pathway; conversely, no such increase was found in the untransfected cells. These findings suggest that PC can significantly upregulate CYP3A level via the PXR-mediated pathway, and this should be taken into consideration to predict any potential herb-drug interactions between PC, Qianhu, and the other coadministered drugs. PMID:24379885

  7. Flavonoids exhibit diverse effects on CYP11B1 expression and cortisol synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Li-Chuan; Li, Lih-Ann, E-mail: lihann@nhri.org.tw

    2012-02-01

    CYP11B1 catalyzes the final step of cortisol biosynthesis. The effects of flavonoids on transcriptional expression and enzyme activity of CYP11B1 were investigated using the human adrenocortical H295R cell model. All tested nonhydroxylated flavones including 3′,4′-dimethoxyflavone, α-naphthoflavone, and β-naphthoflavone upregulated CYP11B1 expression and cortisol production, whereas apigenin and quercetin exhibited potent cytotoxicity and CYP11B1 repression at high concentrations. Nonhydroxylated flavones stimulated CYP11B1-catalyzed cortisol formation at transcriptional level. Resveratrol increased endogenous and substrate-supported cortisol production like nonhydroxylated flavones tested, but it had no effect on CYP11B1 gene expression and enzyme activity. Resveratrol appeared to alter cortisol biosynthesis at an earlier step. Themore » Ad5 element situated in the − 121/− 106 region was required for basal and flavone-induced CYP11B1 expression. Overexpression of COUP-TFI did not improve the responsiveness of Ad5 to nonhydroxylated flavones. Although COUP-TFI overexpression increased CYP11B1 and CYP11B2 promoter activation, its effect was not mediated through the common Ad5 element. Treating cells with PD98059 (a flavone-type MEK1 inhibitor) increased CYP11B1 promoter activity, but not involving ERK signaling because phosphorylation of ERK1/2 remained unvarying throughout the course of treatment. Likewise, AhR was not responsible for the CYP11B1-modulating effects of flavonoids because inconsistency with their effects on AhR activation. 3′,4′-dimethoxyflavone and 8-Br-cAMP additively activated CYP11B1 promoter activity. H-89 reduced 3′,4′-dimethoxyflavone-induced CYP11B1 promoter activation but to a lesser extent as compared to its inhibition on cAMP-induced transactivation. Our data suggest that constant exposure to nonhydroxylated flavones raises a potential risk of high basal and cAMP-induced cortisol synthesis in consequence of increased

  8. Delamanid does not inhibit or induce cytochrome p450 enzymes in vitro.

    PubMed

    Shimokawa, Yoshihiko; Sasahara, Katsunori; Yoda, Noriaki; Mizuno, Katsuhiko; Umehara, Ken

    2014-01-01

    Delamanid is a new drug for the treatment of multidrug-resistant tuberculosis. Individuals who are co-infected with human immunodeficiency virus and Mycobacterium tuberculosis may require treatment with a number of medications that might interact significantly with the CYP enzyme system as inhibitors or inducers. It is therefore important to understand how drugs in development for the treatment of tuberculosis will affect CYP enzyme metabolism. The ability of delamanid to inhibit or induce CYP enzymes was investigated in vitro using human liver microsomes or human hepatocytes. Delamanid (100 µM) had little potential for mechanism-based inactivation on eight CYP isoforms (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4). Delamanid's metabolites were noted to inhibit the metabolism of some CYP isoforms, but these effects were observed only at metabolite concentrations that were well above those observed in human plasma during clinical trials. Delamanid (≤10 µM) did not induce CYP1A2, CYP2C9, and CYP3A4 activities in human hepatocytes, and there were no increases in CYP1A2, CYP2B6, CYP2C9, and CYP3A4 mRNA levels. Taken together, these data suggest that delamanid is unlikely to cause clinically relevant drug-drug interactions when co-administered with products that are metabolized by the CYP enzyme system.

  9. Contributions of Human Cytochrome P450 Enzymes to Glyburide Metabolism*

    PubMed Central

    Zhou, Lin; Naraharisetti, Suresh B.; Liu, Li; Wang, Honggang; Lin, Yvonne S.; Isoherranen, Nina; Unadkat, Jashvant D.; Hebert, Mary F.; Mao, Qingcheng

    2011-01-01

    Glyburide (GLB) is a widely used oral sulfonylurea for the treatment of gestational diabetes. Therapeutic use of GLB is often complicated by a substantial inter-individual variability in the pharmacokinetics and pharmacodynamics of the drug in human populations, which might be caused by inter-individual variations in factors such as GLB metabolism. Therefore, there has been a continued interest in identifying human cytochrome P450 (CYP) isoforms that play a major role in the metabolism of GLB. However, contrasting data are available in the present literature in this regard. In the present study, we systematically investigated the contributions of various human CYP isoforms (CYP3A4, CYP3A5, CYP2C8, CYP2C9, and CYP2C19) to in vitro metabolism of GLB. GLB depletion and metabolite formation in human liver microsomes were most significantly inhibited by the CYP3A inhibitor ketoconazole compared with the inhibitors of other CYP isoforms. Furthermore, multiple correlation analysis between GLB depletion and individual CYP activities was performed, demonstrating a significant correlation between GLB depletion and the CYP3A probe activity in 16 individual human liver microsomal preparations, but not between GLB depletion and the CYP2C19, CYP2C8, or CYP2C9 probe activity. By using recombinant supersomes overexpressing individual human CYP isoforms, we found that GLB could be depleted by all the enzymes tested; however, the intrinsic clearance (Vmax/Km) of CYP3A4 for GLB depletion was 4 – 17 times greater than that of other CYP isoforms. These results confirm that human CYP3A4 is the major enzyme invovled in the in vitro metabolism of GLB. PMID:20437462

  10. Transfected MDCK cell line with enhanced expression of CYP3A4 and P-glycoprotein as a model to study their role in drug transport and metabolism.

    PubMed

    Kwatra, Deep; Budda, Balasubramanyam; Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Pal, Dhananjay; Mitra, Ashim K

    2012-07-02

    The aim of this study was to characterize and utilize MDCK cell line expressing CYP3A4 and P-glycoprotein as an in vitro model for evaluating drug-herb and drug-drug of abuse interactions. MDCK cell line simultaneously expressing P-gp and CYP3A4 (MMC) was developed and characterized by using expression and activity studies. Cellular transport study of 200 μM cortisol was performed to determine their combined activity. The study was carried across MDCK-WT, MDCK-MDR1 and MMC cell lines. Similar studies were also carried out in the presence of 50 μM naringin and 3 μM morphine. Samples were analyzed by HPLC for drug and its CYP3A4 metabolite. PCR, qPCR and Western blot studies confirmed the enhanced expression of the proteins in the transfected cells. The Vivid CYP3A4 assay and ketoconazole inhibition studies further confirmed the presence of active protein. Apical to basal transport of cortisol was found to be 10- and 3-fold lower in MMC as compared to MDCK-WT and MDCK-MDR1 respectively. Higher amount of metabolite was formed in MMC than in MDCK-WT, indicating enhanced expression of CYP3A4. Highest cortisol metabolite formation was observed in MMC cell line due to the combined activities of CYP3A4 and P-gp. Transport of cortisol increased 5-fold in the presence of naringin in MMC and doubled in MDCK-MDR1. Cortisol transport in MMC was significantly lower than that in MDCK-WT in the presence of naringin. The permeability increased 3-fold in the presence of morphine, which is a weaker inhibitor of CYP3A4. Formation of 6β-hydroxy cortisol was found to decrease in the presence of morphine and naringin. This new model cell line with its enhanced CYP3A4 and P-gp levels in addition to short culture time can serve as an invaluable model to study drug-drug interactions. This cell line can also be used to study the combined contribution of efflux transporter and metabolizing enzymes toward drug-drug interactions.

  11. Genetic polymorphisms in MDR1, CYP3A4 and CYP3A5 genes in a Ghanaian population: a plausible explanation for altered metabolism of ivermectin in humans?

    PubMed Central

    2010-01-01

    Background Ivermectin, a substrate of multidrug resistance (MDR1) gene and cytochrome P450 (CYP) 3A4, has been used successfully in the treatment of onchocerciasis in Ghana. However, there have been reports of suboptimal response in some patients after repeated treatment. Polymorphisms in host MDR1 and CYP3A genes may explain the observed suboptimal response to ivermectin. We genotyped relevant functional polymorphisms of MDR1 and CYP3A in a random sample of healthy Ghanaians and compared the data with that of ivermectin-treated patients with a view to exploring the relationship between suboptimal response to ivermectin and MDR1 and CYP3A allelic frequencies. Methods Using PCR-RFLP, relevant polymorphic alleles of MDR1 and CYP3A4 genes were analysed in 204 randomly selected individuals and in 42 ivermectin treated patients. Results We recorded significantly higher MDR1 (3435T) variant allele frequency in suboptimal responders (21%) than in patients who responded to treatment (12%) or the random population sample (11%). CYP3A4*1B, CYP3A5*3 and CYP3A5*6 alleles were detected at varied frequencies for the sampled Ghanaian population, responders and suboptimal responders to ivermectin. CYP3A5*1/CYP3A5*1 and CYP3A5*1/CYP3A5*3 genotypes were also found to be significantly different for responders and suboptimal responders. Haplotype (*1/*1/*3/*1) was determined to be significantly different between responders and suboptimal responders indicating a possible role of these haplotypes in treatment response with ivermectin. Conclusion A profile of pharmacogenetically relevant variants for MDR1, CYP3A4 and CYP3A5 genes has been generated for a random population of 204 Ghanaians to address the scarcity of data within indigenous African populations. In 42 patients treated with ivermectin, difference in MDR1 variant allele frequency was observed between suboptimal responders and responders. PMID:20630055

  12. Genetic polymorphisms in MDR1, CYP3A4 and CYP3A5 genes in a Ghanaian population: a plausible explanation for altered metabolism of ivermectin in humans?

    PubMed

    Kudzi, William; Dodoo, Alexander N O; Mills, Jeremy J

    2010-07-14

    Ivermectin, a substrate of multidrug resistance (MDR1) gene and cytochrome P450 (CYP) 3A4, has been used successfully in the treatment of onchocerciasis in Ghana. However, there have been reports of suboptimal response in some patients after repeated treatment. Polymorphisms in host MDR1 and CYP3A genes may explain the observed suboptimal response to ivermectin. We genotyped relevant functional polymorphisms of MDR1 and CYP3A in a random sample of healthy Ghanaians and compared the data with that of ivermectin-treated patients with a view to exploring the relationship between suboptimal response to ivermectin and MDR1 and CYP3A allelic frequencies. Using PCR-RFLP, relevant polymorphic alleles of MDR1 and CYP3A4 genes were analysed in 204 randomly selected individuals and in 42 ivermectin treated patients. We recorded significantly higher MDR1 (3435T) variant allele frequency in suboptimal responders (21%) than in patients who responded to treatment (12%) or the random population sample (11%). CYP3A4*1B, CYP3A5*3 and CYP3A5*6 alleles were detected at varied frequencies for the sampled Ghanaian population, responders and suboptimal responders to ivermectin. CYP3A5*1/CYP3A5*1 and CYP3A5*1/CYP3A5*3 genotypes were also found to be significantly different for responders and suboptimal responders. Haplotype (*1/*1/*3/*1) was determined to be significantly different between responders and suboptimal responders indicating a possible role of these haplotypes in treatment response with ivermectin. A profile of pharmacogenetically relevant variants for MDR1, CYP3A4 and CYP3A5 genes has been generated for a random population of 204 Ghanaians to address the scarcity of data within indigenous African populations. In 42 patients treated with ivermectin, difference in MDR1 variant allele frequency was observed between suboptimal responders and responders.

  13. Moringa oleifera leaf extracts inhibit 6beta-hydroxylation of testosterone by CYP3A4.

    PubMed

    Monera, Tsitsi G; Wolfe, Alan R; Maponga, Charles C; Benet, Leslie Z; Guglielmo, Joseph

    2008-10-01

    Moringa oleifera is a tropical tree often used as a herbal medicine, including by people who test positive for HIV. Since herbal constituents may interact with drugs via inhibition of metabolizing enzymes, we investigated the effects of extracts of M. oleifera on the CYP3A4-mediated 6beta-hydroxylation of testosterone. Methanolic and aqueous leaf and root of extracts of M. oleifera with concentrations between 0.01 and 10 mg/ml were incubated with testosterone and mixed-sex human liver microsomes in the presence of NADPH. Metabolite concentrations were determined by HPLC. The cytotoxicity of the extracts was tested with HepG2 cells using the MTT formazan assay. Significant CYP3A4 inhibitory effects were found, with IC50 values of 0.5 and 2.5 mg/ml for leaf-methanol and leaf-water extracts, respectively. Root extracts were less active. Cytotoxicity was observed only with the leaf-water extract (IC50 = 6 mg/ml). Further investigation is warranted to elucidate the potential of M. oleifera for clinically significant interactions with antiretroviral and other drugs.

  14. Cytochrome P450 3A expression and activity in the rabbit lacrimal gland: glucocorticoid modulation and the impact on androgen metabolism.

    PubMed

    Attar, Mayssa; Ling, Kah-Hiing John; Tang-Liu, Diane D-S; Neamati, Nouri; Lee, Vincent H L

    2005-12-01

    Cytochrome P450 3A (CYP3A) is an enzyme of paramount importance to drug metabolism. The expression and activity of CYP3A, an enzyme responsible for active androgen clearance, was investigated in the rabbit lacrimal gland. Analysis of CYP3A expression and activity was performed on lacrimal gland tissues obtained from naïve untreated and treated New Zealand White rabbits. For 5 days, treated rabbits received daily administration of vehicle or 0.1% or 1.0% dexamethasone, in the lower cul-de-sac of each eye. Changes in mRNA expression were monitored by real-time RT-PCR. Protein expression was confirmed by Western blot. Functional activity was measured by monitoring the metabolism of CYP3A probe substrates-namely, 7-benzyloxyquinoline (BQ) and [3H]testosterone. Cytochrome P450 heme protein was detected at a concentration of 44.6 picomoles/mg protein, along with its redox partner NADPH reductase and specifically CYP3A6 in the naïve rabbit lacrimal gland. Genes encoding CYP3A6, in addition to the pregnane-X-receptor (PXR) and P-glycoprotein (P-gp) were expressed in the untreated tissue. BQ dealkylation was measured in the naïve rabbit lacrimal gland at a rate of 14 +/- 7 picomoles/mg protein per minute. Changes in CYP3A6, P-gp, and androgen receptor mRNA expression levels were detected after dexamethasone treatment. In addition, dexamethasone treatment resulted in significant increases in BQ dealkylation and CYP3A6-mediated [3H]testosterone metabolism. Concomitant increases in CYP3A6-mediated hydroxylated testosterone metabolites were observed in the treated rabbits. Furthermore, ketoconazole, all-trans retinoic acid, and cyclosporine inhibited CYP3A6 mediated [3H]testosterone 6beta hydroxylation in a concentration-dependent manner, with IC50 ranging from 3.73 to 435 microM. The results demonstrate, for the first time, the expression and activity of CYP3A6 in the rabbit lacrimal gland. In addition, this pathway was shown to be subject to modulation by a commonly

  15. Acetaminophen analog N-acetyl-m-aminophenol, but not its reactive metabolite, N-acetyl-p-benzoquinone imine induces CYP3A activity via inhibition of protein degradation.

    PubMed

    Santoh, Masataka; Sanoh, Seigo; Ohtsuki, Yuya; Ejiri, Yoko; Kotake, Yaichiro; Ohta, Shigeru

    2017-05-06

    Cytochrome P450 (CYP) 3A subfamily members are known to metabolize various types of drugs, highlighting the importance of understanding drug-drug interactions (DDI) depending on CYP3A induction or inhibition. While transcriptional regulation of CYP3A members is widely understood, post-translational regulation needs to be elucidated. We previously reported that acetaminophen (APAP) induces CYP3A activity via inhibition of protein degradation and proposed a novel DDI concept. N-Acetyl-p-benzoquinone imine (NAPQI), the reactive metabolite of APAP formed by CYP, is known to cause adverse events related to depletion of intracellular reduced glutathione (GSH). We aimed to inspect whether NAPQI rather than APAP itself could cause the inhibitory effects on protein degradation. We found that N-acetyl-l-cysteine, the precursor of GSH, and 1-aminobenzotriazole, a nonselective CYP inhibitor, had no effect on CYP3A1/23 protein levels affected by APAP. Thus, we used APAP analogs to test CYP3A1/23 mRNA levels, protein levels, and CYP3A activity. We found N-acetyl-m-aminophenol (AMAP), a regioisomer of APAP, has the same inhibitory effects of CYP3A1/23 protein degradation, while p-acetamidobenzoic acid (PAcBA), a carboxy-substituted form of APAP, shows no inhibitory effects. AMAP and PAcBA cannot be oxidized to quinone imine forms such as NAPQI, so the inhibitory effects could depend on the specific chemical structure of APAP. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Identification of CYP443D1 (CYP74 clan) of Nematostella vectensis as a first cnidarian epoxyalcohol synthase and insights into its catalytic mechanism.

    PubMed

    Toporkova, Yana Y; Gorina, Svetlana S; Mukhitova, Fakhima K; Hamberg, Mats; Ilyina, Tatyana M; Mukhtarova, Lucia S; Grechkin, Alexander N

    2017-10-01

    The CYP74 clan enzymes are responsible for the biosynthesis of numerous bioactive oxylipins in higher plants, some Proteobacteria, brown and green algae, and Metazoa. A novel putative CYP74 clan gene CYP443D1 of the starlet sea anemone (Nematostella vectensis, Cnidaria) has been cloned, and the properties of the corresponding recombinant protein have been studied in the present work. The recombinant CYP443D1 was incubated with the 9- and 13-hydroperoxides of linoleic and α-linolenic acids (9-HPOD, 13-HPOD, 9-HPOT, and 13-HPOT, respectively), as well as with the 9-hydroperoxide of γ-linolenic acid (γ-9-HPOT) and 15-hydroperoxide of eicosapentaenoic acid (15-HPEPE). The enzyme was active towards all C 18 -hydroperoxides with some preference to 9-HPOD. In contrast, 15-HPEPE was a poor substrate. The CYP443D1 specifically converted 9-HPOD into the oxiranyl carbinol 1, (9S,10R,11S,12Z)-9,10-epoxy-11-hydroxy-12-octadecenoic acid. Both 18 O atoms from [ 18 O 2 -hydroperoxy]9-HPOD were virtually quantitatively incorporated into product 1. Thus, the CYP443D1 exhibited epoxyalcohol synthase (EAS) activity. The 18 O labelling data demonstrated that the reaction mechanism included three sequential steps: (1) hydroperoxyl homolysis, (2) oxy radical rearrangement into epoxyallylic radical, (3) hydroxyl rebound, resulting in oxiranyl carbinol formation. The 9-HPOT and γ-9-HPOT were also specifically converted into the oxiranyl carbinols, 15,16- and 6,7-dehydro analogues of compound 1, respectively. The 13-HPOD was converted into erythro- and threo-isomers of oxiranyl carbinol, as well as oxiranyl vinyl carbinols. The obtained results allow assignment of the name "N. vectensis EAS" (NvEAS) to CYP443D1. The NvEAS is a first EAS detected in Cnidaria. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Pharmacogenetics of CYP1A2 activity and inducibility in smokers and exsmokers.

    PubMed

    Dobrinas, Maria; Cornuz, Jacques; Eap, Chin B

    2013-05-01

    There is a high interindividual variability in cytochrome P4501A2 (CYP1A2) activity and in its inducibility by smoking, only poorly explained by known CYP1A2 polymorphisms. We aimed to study the contribution of other regulatory pathways, including transcription factors and nuclear receptors, toward this variability. CYP1A2 activity was determined by the paraxanthine/caffeine ratio in 184 smokers and in 113 of them who were abstinent for 4 weeks. Participants were genotyped for 22 polymorphisms in 12 genes. A significant influence on CYP1A2 inducibility was observed for the NR1I3 rs2502815 (P=0.0026), rs4073054 (P=0.029), NR2B1 rs3818740 (P=0.0045), rs3132297 (P=0.036), AhR rs2282885 (P=0.040), rs2066853 (P=0.019), NR1I1 rs2228570 (P=0.037), and NR1I2 rs1523130 (P=0.044) polymorphisms. Among these, the NR1I3 rs2502815 (P=0.0045), rs4073054 (P=0.048), and NR2B1 rs3818740 (P=0.031) also influenced CYP1A2 basal activity. This is the first in-vivo demonstration of the influence of genes involved in CYP1A2 regulatory pathways on its basal activity and inducibility by smoking. These results need to be confirmed by other studies.

  18. Structural-functional adaptations of porcine CYP1A1 to metabolize polychlorinated dibenzo-p-dioxins.

    PubMed

    Molcan, Tomasz; Swigonska, Sylwia; Orlowska, Karina; Myszczynski, Kamil; Nynca, Anna; Sadowska, Agnieszka; Ruszkowska, Monika; Jastrzebski, Jan Pawel; Ciereszko, Renata E

    2017-02-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) are widespread by-products of human industrial activity. They accumulate in tissues of animals and humans, exerting numerous adverse effects on different systems. In living organisms, dioxins are metabolized by enzymes of the cytochrome P450 family, including CYP1A1. Particular dioxin congeners differ in their toxicity level and ability to undergo biodegradation. Since the molecular mechanisms underlying dioxin susceptibility or resistance to biodegradation are unknown, in the present study the molecular interactions between five selected dioxins and porcine CYP1A1 protein were investigated. It was found that the ability of a dioxin to undergo CYP1A1-mediated degradation is associated mainly with the number and position of chlorine atoms in the dioxin molecule. Among all examined congeners, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) demonstrated the highest affinity to CYP1A1 and, at the same time, the greatest distance to the active site of the enzyme. Interestingly, in contrast to other dioxins, the binding of the TCDD molecule to the porcine CYP1A1 active site resulted in a rapid and continuous closure of substrate channels. All the information may help to explain the extended half-life of TCDD in living organisms as well as its high toxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. TRANSFECTED MDCK CELL LINE WITH ENHANCED EXPRESSION OF CYP3A4 AND P-GLYCOPROTEIN AS A MODEL TO STUDY THEIR ROLE IN DRUG TRANSPORT AND METABOLISM

    PubMed Central

    Kwatra, Deep; Budda, Balasubramanyam; Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Pal, Dhananjay; Mitra, Ashim K.

    2012-01-01

    The aim of this study was to characterize and utilize MDCK cell line expressing CYP3A4 and P-glycoprotein as an in vitro model for evaluating drug-herb and drug-drugs of abuse interactions. MDCK cell line simultaneously expressing P-gp and CYP3A4 (MMC) was developed and characterized by using expression and activity studies. Cellular transport study of 200 μM cortisol was performed to determine their combined activity. The study was carried across MDCK-WT, MDCK-MDR1 and MMC cell lines. Similar studies were also carried out in the presence of 50 μM naringin and 3 μM morphine. Samples were analyzed by HPLC for drug and its CYP3A4 metabolite. PCR, qPCR and western blot studies confirmed the enhanced expression of the proteins in the transfected cells. The vivid CYP3A4 assay and ketoconazole inhibition studies further confirmed the presence of active protein. Apical to basal transport of cortisol was found to be ten and three fold lower in MMC as compared to WT and MDCKMDR1 respectively. Higher amount of metabolite was formed in MMC than in MDCK-WT indicating enhanced expression of CYP3A4. Highest cortisol metabolite formation was observed in MMC cell line due to the combined metabolic activities of CYP3A4 and P-gp. Transport of cortisol increased fivefold in presence of naringin in MMC and doubled in MDCKMDR1. Cortisol transport in MMC was significantly lower than that in WT in presence of naringin. The permeability increased three fold in presence of morphine which is a weaker inhibitor of CYP3A4. Formation of 6β-hydroxy cortisol was found to decrease in presence of morphine and naringin. This new model cell line with its enhanced CYP3A4 and P-gp levels in addition to short culture time can serve as an invaluable model to study drug-drug interactions. This cell line can also be used to study the combined contribution of efflux transporter and metabolizing enzymes towards drug-drug interactions. PMID:22676443

  20. Activation of P-glycoprotein and CYP 3A by Coptidis Rhizoma in vivo: Using cyclosporine as a probe substrate in rats.

    PubMed

    Yu, Chung-Ping; Huang, Ching-Ya; Lin, Shiuan-Pey; Hou, Yu-Chi

    2018-04-01

    Coptidis Rhizoma (CR), the rhizome of Coptis chinensis FRANCH, is a popular Chinese herb. CR contains plenty of isoquinoline alkaloids such as berberine, coptisine and palmatine. Cyclosporine (CSP), an important immunosuppressant with narrow therapeutic window, is employed as a probe substrate of P-glycoprotein (P-gp) and CYP3A4 in order to investigate the in vivo modulation effect of CR on P-gp and CYP3A4. Three groups of rats were orally administered CSP without and with single dose or repeated dosing of CR in a parallel design. Blood samples were collected at specific time points and the blood CSP concentration was determined by a specific monoclonal fluorescence polarization immunoassay. The results showed that a single dose (1.0 g/kg) and the 7th dose (1.0 g/kg) of CR significantly decreased the C max of CSP by 56.9% and 70.4%, and reduced the AUC 0-540 by 56.4% and 68.7%, respectively. Cell study indicated that CR decoction, berberine, coptisine, palmatine all activated the efflux transport of P-gp. Ex-vivo study showed that the serum metabolites of CR activated CYP 3A4. In conclusion, through using CSP as an in vivo probe substrate, we have verified that oral intake of CR activated the functions of P-gp and CYP3A based on in vivo and in vitro studies. Copyright © 2017. Published by Elsevier B.V.

  1. Modulation of CYPs, P-gp, and PXR by Eschscholzia californica (California Poppy) and Its Alkaloids.

    PubMed

    Manda, Vamshi K; Ibrahim, Mohamed A; Dale, Olivia R; Kumarihamy, Mallika; Cutler, Stephen J; Khan, Ikhlas A; Walker, Larry A; Muhammad, Ilias; Khan, Shabana I

    2016-04-01

    Eschscholzia californica, a native US plant, is traditionally used as a sedative, analgesic, and anxiolytic herb. With the rapid rise in the use of herbal supplements together with over-the-counter and prescription drugs, the risk for potential herb-drug interactions is also increasing. Most of the clinically relevant pharmacokinetic drug interactions occur due to modulation of cytochrome P450 enzymes (CYPs), P-glycoprotein, and the pregnane X receptor by concomitantly used herbs. This study aimed to determine the effects of an EtOH extract, aqueous extract (tea), basic CHCl3 fractions, and isolated major alkaloids, namely protopine (1), escholtzine (2), allocryptopine (3), and californidine (4), of E. californica on the activity of cytochrome P450s, P-glycoprotein and the pregnane X receptor. The EtOH extract and fractions showed strong time-dependent inhibition of CYP 3A4, CYP 2C9, and CYP 2C19, and reversible inhibition of CYP 2D6. Among the alkaloids, escholtzine (2) and allocryptopine (3) exhibited time-dependent inhibition of CYP 3A4, CYP 2C9, and CYP 2C19 (IC50 shift ratio > 2), while protopine (1) and allocryptopine (3) showed reversible inhibition of CYP 2D6 enzyme. A significant activation of the pregnane X receptor (> 2-fold) was observed with the EtOH extract, basic CHCl3 fraction, and alkaloids (except protopine), which resulted into an increased expression of mRNA and the activity of CYP 3A4 and CYP 1A2. The expression of P-glycoprotein was unaffected. However, aqueous extract (tea) and its main alkaloid californidine (4) did not affect cytochrome P450s, P-glycoprotein, or the pregnane X receptor. This data suggests that EtOH extract of E. californica and its major alkaloids have a potential of causing interactions with drugs that are metabolized by cytochrome P450s, while the tea seems to be safer. Georg Thieme Verlag KG Stuttgart · New York.

  2. A pharmacophore model specific to active site of CYP1A2 with a novel molecular modeling explorer and CoMFA.

    PubMed

    Zhang, Tao; Wei, Dong-Qing; Chou, Kuo-Chen

    2012-03-01

    Comparative molecular field analysis (CoMFA) is a widely used 3D-QSAR method by which we can investigate the potential relation between biological activity of compounds and their structural features. In this study, a new application of this approach is presented by combining the molecular modeling with a new developed pharmacophore model specific to CYP1A2 active site. During constructing the model, we used the molecular dynamics simulation and molecular docking method to select the sensible binding conformations for 17 CYP1A2 substrates based on the experimental data. Subsequently, the results obtained via the alignment of binding conformations of substrates were projected onto the active- site residues, upon which a simple blueprint of active site was produced. It was validated by the experimental and computational results that the model did exhibit the high degree of rationality and provide useful insights into the substrate binding. It is anticipated that our approach can be extended to investigate the protein-ligand interactions for many other enzyme-catalyzed systems as well.

  3. CYP2E1 overexpression inhibits microsomal Ca2+-ATPase activity in HepG2 cells.

    PubMed

    Caro, Andres A; Evans, Kerry L; Cederbaum, Arthur I

    2009-01-31

    Cytochrome P450 2E1 (CYP2E1) is a microsomal enzyme that generates reactive oxygen species during its catalytic cycle. We previously found an important role for calcium in CYP2E1-potentiated injury in HepG2 cells. The possibility that CYP2E1 may oxidatively damage and inactivate the microsomal Ca2+-ATPase in intact liver cells was evaluated, in order to explain why calcium is elevated during CYP2E1 toxicity. Microsomes were isolated by differential centrifugation from two liver cell line: E47 cells (HepG2 cells transfected with the pCI neo expression vector containing the human CYP2E1 cDNA, which overexpress active microsomal CYP2E1), and control C34 cells (HepG2 cells transfected with the pCI neo expression vector alone, which do not express significantly any cytochrome P450). The Ca2+-dependent ATPase activity was determined by measuring the accumulation of inorganic phosphate from ATP hydrolysis. CYP2E1 overexpression produced a 45% decrease in Ca2+-dependent ATPase activity (8.6 nmol Pi/min/mg protein in C34 microsomes versus 4.7 nmol Pi/min/mg protein in microsomes). Saturation curves with Ca2+ or ATP showed that CYP2E1 overexpression produced a decrease in Vmax but did not affect the Km for either Ca2+ or ATP. The decrease in activity was not associated with a decrease in SERCA protein levels. The ATP-dependent microsomal calcium uptake was evaluated by fluorimetry using fluo-3 as the fluorogenic probe. Calcium uptake rate in E47 microsomes was 28% lower than in C34 microsomes. Treatment of E47 cells with 2mM N-acetylcysteine prevented the decrease in microsomal Ca2+-ATPase found in E47 cells. These results suggest that CYP2E1 overexpression produces a decrease in microsomal Ca2+-ATPase activity in HepG2 cells mediated by reactive oxygen species. This may contribute to elevated cytosolic calcium and to CYP2E1-potentiated injury.

  4. Imidacloprid is hydroxylated by Laodelphax striatellus CYP6AY3v2.

    PubMed

    Wang, R; Zhu, Y; Deng, L; Zhang, H; Wang, Q; Yin, M; Song, P; Elzaki, M E A; Han, Z; Wu, M

    2017-10-01

    Laodelphax striatellus (Fallén) is one of the most destructive pests of rice, and has developed high resistance to imidacloprid. Our previous work indicated a strong association between imidacloprid resistance and the overexpression of a cytochrome P450 gene CYP6AY3v2 in a L. striatellus imidacloprid resistant strain (Imid-R). In this study, a transgenic Drosophila melanogaster line that overexpressed the L. striatellus CYP6AY3v2 gene was established and was found to confer increased levels of imidacloprid resistance. Furthermore, CYP6AY3v2 was co-expressed with D. melanogaster cytochrome P450 reductase (CPR) in Spodoptera frugiperda 9 (SF9) cells. A carbon monoxide difference spectra analysis indicated that CYP6AY3v2 was expressed predominately in its cytochrome P450 (P450) form, which is indicative of a good-quality functional enzyme. The recombinant CYP6AY3v2 protein efficiently catalysed the model substrate P-nitroanisole to p-nitrophenol with a maximum velocity (V max ) of 60.78 ± 3.93 optical density (mOD)/min/mg protein. In addition, imidacloprid itself was metabolized by the recombinant CYP6AY3v2/nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt (NADPH) CPR microsomes in in vitro assays (catalytic constant (K cat ) = 0.34 pmol/min/pmol P450, michaelis constant (K m ) = 41.98 μM), and imidacloprid depletion and metabolite peak formation were with a time dependence. The data provided direct evidence that CYP6AY3v2 is capable of hydroxylation of imidacloprid and conferring metabolic resistance in L. striatellus. © 2017 The Royal Entomological Society.

  5. CYP2A6 and CYP2B6 genetic variation and its association with nicotine metabolism in South Western Alaska Native people

    PubMed Central

    Binnington, Matthew J.; Zhu, Andy Z.X.; Renner, Caroline C.; Lanier, Anne P.; Hatsukami, Dorothy K.; Benowitz, Neal L; Tyndale, Rachel F.

    2012-01-01

    Objectives Alaska Native people (AN) have a high prevalence of tobacco use and associated morbidity and mortality when compared to the general U.S. population. Variation in the CYP2A6 and CYP2B6 genes, encoding enzymes responsible for nicotine metabolic inactivation and procarcinogen activation, has not been characterized in AN and may contribute to the increased risk. Methods AN people (n = 400) residing in the Bristol Bay region of South Western Alaska were recruited for a cross-sectional study on tobacco use. They were genotyped for CYP2A6*1X2A, *1X2B, *1B, *2, *4, *7, *8, *9, *10, *12, *17, *35 and CYP2B6*4, *6, *9 and provided plasma and urine samples for measurement of nicotine and metabolites. Results CYP2A6 and CYP2B6 variant frequencies among the AN Yupik people (n=361) were significantly different from other ethnicities. Nicotine metabolism (as measured by the plasma and urinary ratio of metabolites trans-3’hydroxycotinine to cotinine [(3HC/COT)] was significantly associated with CYP2A6 (P< 0.001) but not CYP2B6 genotype (P = 0.95) when controlling for known covariates. Of note, plasma 3HC/COT ratios were high in the entire Yupik people, and among the Yupik CYP2A6 wild-type participants they were substantially higher than previously characterized racial/ethnic groups (P < 0.001 vs. Caucasians and African Americans). Conclusions Yupik AN people have a unique CYP2A6 genetic profile which associated strongly with in vivo nicotine metabolism. More rapid CYP2A6-mediated nicotine and nitrosamine metabolism in the Yupik people may modulate tobacco-related disease risk. PMID:22569203

  6. Rational engineering of the fungal P450 monooxygenase CYP5136A3 to improve its oxidizing activity toward polycyclic aromatic hydrocarbons.

    PubMed

    Syed, Khajamohiddin; Porollo, Aleksey; Miller, David; Yadav, Jagjit S

    2013-09-01

    A promising polycyclic aromatic hydrocarbon-oxidizing P450 CYP5136A3 from Phanerochaete chrysosporium was rationally engineered to enhance its catalytic activity. The residues W129 and L324 found to be critical in substrate recognition were transformed by single (L324F) and double (W129L/L324G, W129L/L324F, W129A/L324G, W129F/L324G and W129F/L324F) mutations, and the engineered enzyme forms were expressed in Pichia pastoris. L324F and W129F/L324F mutations enhanced the oxidation activity toward pyrene and phenanthrene. L324F also altered the regio-selectivity favoring C position 4 over 9 for hydroxylation of phenanthrene. This is the first instance of engineering a eukaryotic P450 for enhanced oxidation of these fused-ring hydrocarbons.

  7. Xenobiotic metabolism capacities of human skin in comparison with a 3D epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: activating enzymes (Phase I).

    PubMed

    Götz, Christine; Pfeiffer, Roland; Tigges, Julia; Blatz, Veronika; Jäckh, Christine; Freytag, Eva-Maria; Fabian, Eric; Landsiedel, Robert; Merk, Hans F; Krutmann, Jean; Edwards, Robert J; Pease, Camilla; Goebel, Carsten; Hewitt, Nicola; Fritsche, Ellen

    2012-05-01

    Skin is important for the absorption and metabolism of exposed chemicals such as cosmetics or pharmaceuticals. The Seventh Amendment to the EU Cosmetics Directive prohibits the use of animals for cosmetic testing for certain endpoints, such as genotoxicity; therefore, there is an urgent need to understand the xenobiotic metabolizing capacities of human skin and to compare these activities with reconstructed 3D skin models developed to replace animal testing. We have measured Phase I enzyme activities of cytochrome P450 (CYP) and cyclooxygenase (COX) in ex vivo human skin, the 3D skin model EpiDerm™ (EPI-200), immortalized keratinocyte-based cell lines and primary normal human epidermal keratinocytes. Our data demonstrate that basal CYP enzyme activities are very low in whole human skin and EPI-200 as well as keratinocytes. In addition, activities in monolayer cells differed from organotypic tissues after induction. COX activity was similar in skin, EPI-200 and NHEK cells, but was significantly lower in immortalized keratinocytes. Hence, the 3D model EPI-200 might represent a more suitable model for dermatotoxicological studies. Altogether, these data help to better understand skin metabolism and expand the knowledge of in vitro alternatives used for dermatotoxicity testing. © 2012 John Wiley & Sons A/S.

  8. Bisphenol A downregulates CYP19 transcription in JEG-3 cells.

    PubMed

    Huang, Hui; Leung, Lai K

    2009-09-28

    Bisphenol A is an industrial contaminant and is considered to be an endocrine disruptor; its estrogenic property has been reported in many studies. Because of its ubiquitous existence in our environment, bisphenol A has drawn much discussion on its safety issues. Estrogen is important in the maintenance of human pregnancy, and the placenta is the major site of synthesis during this period of time. Aromatase or CYP19 catalyses the conversion of estrogen from its precursor, and is highly expressed in placental cells. In the present study, we examined the ability of the toxicant in suppressing the transcription of CYP19 in JEG-3 cells. Cells treated with bisphenol A displayed a reduced aromatase activity. Real-time PCR analysis indicated that 5muM of the compound significantly reduced the mRNA expression in these cells. As the transcriptional activity of CYP19 gene is controlled by the proximal promoter region of exon I.1 in placental cells, the promoter activity of this gene fragment and exon-I.1-spliced mRNA abundance were also evaluated. Both results indicated that bisphenol A repressed the transcriptional control of promoter I.1. The present study showed that bisphenol A potentially reduced estrogen synthesis by downregulating CYP of placental cells. This information could be useful for evaluating the exposure limit of bisphenol A.

  9. Evaluation of a Novel Renewable Hepatic Cell Model for Prediction of Clinical CYP3A4 Induction Using a Correlation-Based Relative Induction Score Approach.

    PubMed

    Zuo, Rongjun; Li, Feng; Parikh, Sweta; Cao, Li; Cooper, Kirsten L; Hong, Yulong; Liu, Jin; Faris, Ronald A; Li, Daochuan; Wang, Hongbing

    2017-02-01

    Metabolism enzyme induction-mediated drug-drug interactions need to be carefully characterized in vitro for drug candidates to predict in vivo safety risk and therapeutic efficiency. Currently, both the Food and Drug Administration and European Medicines Agency recommend using primary human hepatocytes as the gold standard in vitro test system for studying the induction potential of candidate drugs on cytochrome P450 (CYP), CYP3A4, CYP1A2, and CYP2B6. However, primary human hepatocytes are known to bear inherent limitations such as limited supply and large lot-to-lot variations, which result in an experimental burden to qualify new lots. To overcome these shortcomings, a renewable source of human hepatocytes (i.e., Corning HepatoCells) was developed from primary human hepatocytes and was evaluated for in vitro CYP3A4 induction using methods well established by the pharmaceutical industry. HepatoCells have shown mature hepatocyte-like morphology and demonstrated primary hepatocyte-like response to prototypical inducers of all three CYP enzymes with excellent consistency. Importantly, HepatoCells retain a phenobarbital-responsive nuclear translocation of human constitutive androstane receptor from the cytoplasm, characteristic to primary hepatocytes. To validate HepatoCells as a useful tool to predict potential clinical relevant CYP3A4 induction, we tested three different lots of HepatoCells with a group of clinical strong, moderate/weak CYP3A4 inducers, and noninducers. A relative induction score calibration curve-based approach was used for prediction. HepatoCells showed accurate prediction comparable to primary human hepatocytes. Together, these results demonstrate that Corning HepatoCells is a reliable in vitro model for drug-drug interaction studies during the early phase of drug testing. Copyright © 2017 by The Author(s).

  10. Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention

    PubMed Central

    2009-01-01

    CYP1A1 is one of the main cytochrome P450 enzymes, examined extensively for its capacity to activate compounds with carcinogenic properties. Continuous exposure to inhalation chemicals and environmental carcinogens is thought to increase the level of CYP1A1 expression in extrahepatic tissues, through the aryl hydrocarbon receptor (AhR). Although the latter has long been recognized as a ligand-induced transcription factor, which is responsible for the xenobiotic activating pathway of several phase I and phase II metabolizing enzymes, recent evidence suggests that the AhR is involved in various cell signaling pathways critical to cell cycle regulation and normal homeostasis. Disregulation of these pathways is implicated in tumor progression. In addition, it is becoming increasingly evident that CYP1A1 plays an important role in the detoxication of environmental carcinogens, as well as in the metabolic activation of dietary compounds with cancer preventative activity. Ultimately the contribution of CYP1A1 to cancer progression or prevention may depend on the balance of procarcinogen activation/detoxication and dietary natural product extrahepatic metabolism. PMID:19531241

  11. Inhibitory Effect of Apigenin on Losartan Metabolism and CYP2C9 Activity in vitro.

    PubMed

    Wang, Zhe; Gong, Yun; Zeng, Da-Li; Chen, Lian-Guo; Lin, Gao-Tong; Huang, Cheng-Ke; Sun, Wei; Chen, Meng-Chun; Hu, Guo-Xin; Chen, Rui-Jie

    2016-01-01

    CYP2C9 is one of the most important phase I drug-metabolizing enzymes in liver. The objective of this work was to investigate the effects of apigenin on the metabolism of losartan and human CYP2C9 and rat CYP2C11 activity in vitro. Different concentrations of apigenin were added to a 100 mmol/l Tris-HCl reaction mixture containing 2 pmol/ml recombinant human CYP2C9.1, 0.25 mg/ml human liver microsomes or 0.5 mg/ml rat liver microsomes to determine the half maximal inhibition or a half-maximal inhibitory concentration (IC50) on the metabolism of losartan. In addition, diclofenac used as CYP2C9 substrate was performed to determine the effects of apigenin on CYP2C9. The results showed that apigenin has the inhibitory effect on the metabolism of losartan in vitro, the IC50 was 7.61, 4.10 and 11.07 μmol/l on recombinant CYP2C9 microsomes, human liver microsomes and rat liver microsomes, respectively. Meanwhile, apigenin's mode of action on human CYP2C9 activity was competitive for the substrate diclofenac. In contrast to its potent inhibition of CYP2C9 in humans (9.51 μmol/l), apigenin had lesser effects on CYP2C11 in rat (IC50 = 15.51 μmol/l). The observations imply that apigenin has the inhibitory effect on the metabolism of losartan and CYP2C9 activity in vitro. More attention should be paid as to when losartan should be administrated combined with apigenin. © 2016 S. Karger AG, Basel.

  12. Drug interaction study of flavonoids toward CYP3A4 and their quantitative structure activity relationship (QSAR) analysis for predicting potential effects.

    PubMed

    Li, Yannan; Ning, Jing; Wang, Yan; Wang, Chao; Sun, Chengpeng; Huo, Xiaokui; Yu, Zhenlong; Feng, Lei; Zhang, Baojing; Tian, Xiangge; Ma, Xiaochi

    2018-05-09

    The high risk of herb-drug interactions (HDIs) mediated by the herbal medicines and dietary supplements which containing abundant flavonoids had become more and more frequent in our daily life. In our study, the inhibition activities of 44 different structures of flavonoids toward human CYPs were systemically evaluated for the first time. According to our results, a remarkable structure-dependent inhibition behavior toward CYP3A4 was observed in vitro. Some flavonoids such as licoflavone (12) and irilone (30) exhibited the selective inhibition toward CYP3A4 rather than other major human CYPs. To illustrate the interaction mechanism, the inhibition kinetics of various compounds was further performed. Sophoranone (1), apigenin (10), baicalein (11), 5,4'-dihydroxy-3,6,7,8,3'-pentamethoxyflavone (15), myricetin (23) and kushenol K (38) remarkably inhibited the CYP3A4-catalyzed bufalin 5'-hydroxylation reaction, with K i values of 2.17 ± 0.29, 6.15 ± 0.39, 9.18 ± 3.40, 2.30 ± 0.36, 5.00 ± 2.77 and 1.35 ± 0.25 μM, respectively. Importantly, compounds 1, 11, 15, 23 and 38 could significantly inhibit the metabolism of some clinical drugs in vitro, and these drug-drug interactions (DDIs) of myricetin (23) or kushenol K (38) with clinical drug diazepam were further verified in human primary hepatocytes, respectively. Finally, a quantitative structure-activity relationship (QSAR) of flavonoids with their inhibitory effects toward CYP3A4 was established using computational methods. Our findings illustrated the high risk of herb-drug interactions (HDIs) caused by flavonoids and revealed the vital structures requirement of natural flavonoids for the HDIs with clinical drugs eliminated by CYP3A4. Our research provided the useful guidance to safely and rationally use herbal medicines and dietary supplements containing rich natural flavonoids components. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Tafenoquine and NPC-1161B require CYP 2D metabolism for anti-malarial activity: implications for the 8-aminoquinoline class of anti-malarial compounds

    PubMed Central

    2014-01-01

    Background Tafenoquine (TQ) is an 8-aminoquinoline (8AQ) that has been tested in several Phase II and Phase III clinical studies and is currently in late stage development as an anti-malarial prophylactic agent. NPC-1161B is a promising 8AQ in late preclinical development. It has recently been reported that the 8AQ drug primaquine requires metabolic activation by CYP 2D6 for efficacy in humans and in mice, highlighting the importance of pharmacogenomics in the target population when administering primaquine. A logical follow-up study was to determine whether CYP 2D activation is required for other compounds in the 8AQ structural class. Methods In the present study, the anti-malarial activities of NPC-1161B and TQ were assessed against luciferase expressing Plasmodium berghei in CYP 2D knock-out mice in comparison with normal C57BL/6 mice (WT) and with humanized/CYP 2D6 knock-in mice by monitoring luminescence with an in vivo imaging system. These experiments were designed to determine the direct effects of CYP 2D metabolic activation on the anti-malarial efficacy of NPC-1161B and TQ. Results NPC-1161B and TQ exhibited no anti-malarial activity in CYP 2D knock-out mice when dosed at their ED100 values (1 mg/kg and 3 mg/kg, respectively) established in WT mice. TQ anti-malarial activity was partially restored in humanized/CYP 2D6 knock-in mice when tested at two times its ED100. Conclusions The results reported here strongly suggest that metabolism of NPC-1161B and TQ by the CYP 2D enzyme class is essential for their anti-malarial activity. Furthermore, these results may provide a possible explanation for therapeutic failures for patients who do not respond to 8AQ treatment for relapsing malaria. Because CYP 2D6 is highly polymorphic, variable expression of this enzyme in humans represents a significant pharmacogenomic liability for 8AQs which require CYP 2D metabolic activation for efficacy, particularly for large-scale prophylaxis and eradication campaigns. PMID

  14. Tafenoquine and NPC-1161B require CYP 2D metabolism for anti-malarial activity: implications for the 8-aminoquinoline class of anti-malarial compounds.

    PubMed

    Marcsisin, Sean R; Sousa, Jason C; Reichard, Gregory A; Caridha, Diana; Zeng, Qiang; Roncal, Norma; McNulty, Ronan; Careagabarja, Julio; Sciotti, Richard J; Bennett, Jason W; Zottig, Victor E; Deye, Gregory; Li, Qigui; Read, Lisa; Hickman, Mark; Dhammika Nanayakkara, N P; Walker, Larry A; Smith, Bryan; Melendez, Victor; Pybus, Brandon S

    2014-01-03

    Tafenoquine (TQ) is an 8-aminoquinoline (8AQ) that has been tested in several Phase II and Phase III clinical studies and is currently in late stage development as an anti-malarial prophylactic agent. NPC-1161B is a promising 8AQ in late preclinical development. It has recently been reported that the 8AQ drug primaquine requires metabolic activation by CYP 2D6 for efficacy in humans and in mice, highlighting the importance of pharmacogenomics in the target population when administering primaquine. A logical follow-up study was to determine whether CYP 2D activation is required for other compounds in the 8AQ structural class. In the present study, the anti-malarial activities of NPC-1161B and TQ were assessed against luciferase expressing Plasmodium berghei in CYP 2D knock-out mice in comparison with normal C57BL/6 mice (WT) and with humanized/CYP 2D6 knock-in mice by monitoring luminescence with an in vivo imaging system. These experiments were designed to determine the direct effects of CYP 2D metabolic activation on the anti-malarial efficacy of NPC-1161B and TQ. NPC-1161B and TQ exhibited no anti-malarial activity in CYP 2D knock-out mice when dosed at their ED100 values (1 mg/kg and 3 mg/kg, respectively) established in WT mice. TQ anti-malarial activity was partially restored in humanized/CYP 2D6 knock-in mice when tested at two times its ED100. The results reported here strongly suggest that metabolism of NPC-1161B and TQ by the CYP 2D enzyme class is essential for their anti-malarial activity. Furthermore, these results may provide a possible explanation for therapeutic failures for patients who do not respond to 8AQ treatment for relapsing malaria. Because CYP 2D6 is highly polymorphic, variable expression of this enzyme in humans represents a significant pharmacogenomic liability for 8AQs which require CYP 2D metabolic activation for efficacy, particularly for large-scale prophylaxis and eradication campaigns.

  15. The roles of carboxylesterase and CYP isozymes on the in vitro metabolism of T-2 toxin.

    PubMed

    Lin, Ni-Ni; Chen, Jia; Xu, Bin; Wei, Xia; Guo, Lei; Xie, Jian-Wei

    2015-01-01

    T-2 toxin poses a great threat to human health because it has the highest toxicity of the currently known trichothecene mycotoxins. To understand the in vivo toxicity and transformation mechanism of T-2 toxin, we investigated the role of one kind of principal phase I drug-metabolizing enzymes (cytochrome P450 [CYP450] enzymes) on the metabolism of T-2 toxin, which are crucial to the metabolism of endogenous substances and xenobiotics. We also investigated carboxylesterase, which also plays an important role in the metabolism of toxic substances. A chemical inhibition method and a recombinant method were employed to investigate the metabolism of the T-2 toxin by the CYP450 enzymes, and a chemical inhibition method was used to study carboxylesterase metabolism. Samples incubated with human liver microsomes were analyzed by high performance liquid chromatography-triple quadrupole mass spectrometry (HPLC- QqQ MS) after a simple pretreatment. In the presence of a carboxylesterase inhibitor, only 20 % T-2 toxin was metabolized. When CYP enzyme inhibitors and a carboxylesterase inhibitor were both present, only 3 % of the T-2 toxin was metabolized. The contributions of the CYP450 enzyme family to T-2 toxin metabolism followed the descending order CYP3A4, CYP2E1, CYP1A2, CYP2B6 or CYP2D6 or CYP2C19. Carboxylesterase and CYP450 enzymes are of great importance in T-2 toxin metabolism, in which carboxylesterase is predominant and CYP450 has a subordinate role. CYP3A4 is the principal member of the CYP450 enzyme family responsible for T-2 toxin metabolism. The primary metabolite produced by carboxylesterase is HT-2, and the main metabolite produced by CYP 3A4 is 3'-OH T-2. The different metabolites show different toxicities. Our results will provide useful data concerning the toxic mechanism, the safety evaluation, and the health risk assessment of T-2 toxin.

  16. Chlorogenic acid prevents acetaminophen-induced liver injury: the involvement of CYP450 metabolic enzymes and some antioxidant signals*

    PubMed Central

    Pang, Chun; Sheng, Yu-chen; Jiang, Ping; Wei, Hai; Ji, Li-li

    2015-01-01

    Chlorogenic acid (CGA), a polyphenolic compound, is abundant in fruits, dietary vegetables, and some medicinal herbs. This study investigated the prevention of CGA against acetaminophen (AP)-induced hepatotoxicity and its engaged mechanisms. CGA reversed the decreased cell viability induced by AP in L-02 cells in vitro. In addition, CGA reduced the AP-induced increased serum levels of alanine/aspartate aminotransferase (ALT/AST) in vivo. The effect of CGA on cytochrome P450 (CYP) enzymatic (CYP2E1, CYP1A2, and CYP3A4) activities showed that CGA caused very little inhibition on CYP2E1 and CYP1A2 enzymatic activities, but not CYP3A4. The measurement of liver malondialdehyde (MDA), reactive oxygen species (ROS), and glutathione (GSH) levels showed that CGA prevented AP-induced liver oxidative stress injury. Further, CGA increased the AP-induced decreased mRNA expression of peroxiredoxin (Prx) 1, 2, 3, 5, 6, epoxide hydrolase (Ephx) 2, and polymerase (RNA) II (DNA directed) polypeptide K (Polr2k), and nuclear factor erythroid-2-related factor 2 (Nrf2). In summary, CGA ameliorates the AP-induced liver injury probably by slightly inhibiting CYP2E1 and CYP1A2 enzymatic properties. In addition, cellular important antioxidant signals such as Prx1, 2, 3, 5, 6, Ephx2, Polr2k, and Nrf2 also contributed to the protection of CGA against AP-induced oxidative stress injury. PMID:26160718

  17. Subcellular localization of rat CYP2E1 impacts metabolic efficiency toward common substrates.

    PubMed

    Hartman, Jessica H; Martin, H Cass; Caro, Andres A; Pearce, Amy R; Miller, Grover P

    2015-12-02

    Cytochrome P450 2E1 (CYP2E1) detoxifies or bioactivates many low molecular-weight compounds. Most knowledge about CYP2E1 activity relies on studies of the enzyme localized to endoplasmic reticulum (erCYP2E1); however, CYP2E1 undergoes transport to mitochondria (mtCYP2E1) and becomes metabolically active. We report the first comparison of in vitro steady-state kinetic profiles for erCYP2E1 and mtCYP2E1 oxidation of probe substrate 4-nitrophenol and pollutants styrene and aniline using subcellular fractions from rat liver. For all substrates, metabolic efficiency changed with substrate concentration for erCYP2E1 reflected in non-hyperbolic kinetic profiles but not for mtCYP2E1. Hyperbolic kinetic profiles for the mitochondrial enzyme were consistent with Michaelis-Menten mechanism in which metabolic efficiency was constant. By contrast, erCYP2E1 metabolism of 4-nitrophenol led to a loss of enzyme efficiency at high substrate concentrations when substrate inhibited the reaction. Similarly, aniline metabolism by erCYP2E1 demonstrated negative cooperativity as metabolic efficiency decreased with increasing substrate concentration. The opposite was observed for erCYP2E1 oxidation of styrene; the sigmoidal kinetic profile indicated increased efficiency at higher substrate concentrations. These mechanisms and CYP2E1 levels in mitochondria and endoplasmic reticulum were used to estimate the impact of CYP2E1 subcellular localization on metabolic flux of pollutants. Those models showed that erCYP2E1 mainly carries out aniline metabolism at all aniline concentrations. Conversely, mtCYP2E1 dominates styrene oxidation at low styrene concentrations and erCYP2E1 at higher concentrations. Taken together, subcellular localization of CYP2E1 results in distinctly different enzyme activities that could impact overall metabolic clearance and/or activation of substrates and thus impact the interpretation and prediction of toxicological outcomes. Copyright © 2015 Elsevier Ireland Ltd

  18. Investigating the binding interactions of the anti-Alzheimer's drug donepezil with CYP3A4 and P-glycoprotein.

    PubMed

    McEneny-King, Alanna; Edginton, Andrea N; Rao, Praveen P N

    2015-01-15

    The anti-Alzheimer's agent donepezil is known to bind to the hepatic enzyme CYP3A4, but its relationship with the efflux transporter P-glycoprotein (P-gp) is not as well elucidated. We conducted in vitro inhibition studies of donepezil using human recombinant CYP3A4 and P-gp. These studies show that donepezil is a weak inhibitor of CYP3A4 (IC50=54.68±1.00μM) whereas the reference agent ketoconazole exhibited potent inhibition (CYP3A4 IC50=0.20±0.01μM). P-gp inhibition studies indicate that donepezil exhibits better inhibition relative to CYP3A4 (P-gp EC50=34.85±4.63μM) although it was less potent compared to ketoconazole (P-gp EC50=9.74±1.23μM). At higher concentrations, donepezil exhibited significant inhibition of CYP3A4 (69%, 84% and 87% inhibition at 100, 250 and 500μM, respectively). This indicates its potential to cause drug-drug interactions with other CYP3A4 substrates upon co-administration; however, this scenario is unlikely in vivo due to the low therapeutic concentrations of donepezil. Similarly, donepezil co-administration with P-gp substrates or inhibitors is unlikely to result in beneficial or adverse drug interactions. The molecular docking studies show that the 5,6-dimethoxyindan-1-one moiety of donepezil was oriented closer to the heme center in CYP3A4 whereas in the P-gp binding site, the protonated benzylpiperidine pharmacophore of donepezil played a major role in its binding ability. Energy parameters indicate that donepezil complex with both CYP3A4 and P-gp was less stable (CDOCKER energies=-15.05 and -4.91kcal/mol, respectively) compared to the ketoconazole-CYP3A4 and P-gp complex (CDOCKER energies=-41.89 and -20.03kcal/mol, respectively). Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Consecutive emamectin benzoate and deltamethrin treatments affect the expressions and activities of detoxification enzymes in the rainbow trout (Oncorhynchus mykiss).

    PubMed

    Cárcamo, Juan Guillermo; Aguilar, Marcelo N; Carreño, Constanza F; Vera, Tamara; Arias-Darraz, Luis; Figueroa, Jaime E; Romero, Alex P; Alvarez, Marco; Yañez, Alejandro J

    2017-01-01

    Rainbow trout (Oncorhynchus mykiss) subjected to three consecutive, alternating treatments with emamectin benzoate (EMB) and deltamethrin (DM) during outbreaks of Caligus rogercresseyi in a farm located in southern Chile (Hornopiren, Chiloé), were studied to determine the effects of these treatments on the protein and enzymatic activity levels of cytochrome P450 1A (CYP1A), flavin-containing monooxygenase (FMO) and glutathione S-transferase (GST) in different tissues. Consecutive and alternating EMB/DM treatments resulted in a 10-fold increase and 3-fold decrease of CYP1A protein levels in the intestine and gills, respectively. Notably, CYP1A activity levels decreased in most of the analyzed tissues. FMO protein and activity levels markedly increased in the kidney and the intestine. GST was up-regulated in all tissues, either as protein or enzyme activity. When comparing consecutive EMB/DM treatments against previous studies of EMB treatment alone, CYP1A activity levels were similarly diminished, except in muscle. Likewise, FMO activity levels were increased in most of the analyzed tissues, particularly in the muscle, kidney, and intestine. The increases observed for GST were essentially unchanged between consecutive EMB/DM and EMB only treatments. These results indicate that consecutive EMB/DM treatments in rainbow trout induce the expression and activity of FMO and GST enzymes and decrease CYP1A activity. These altered activities of detoxification enzymes could generate imbalances in metabolic processes, synthesis, degradation of hormones and complications associated with drug interactions. It is especially important when analyzing possible effects of consecutive antiparasitic treatments on withholding periods and salmon farming yields. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Characterisation of the cytochrome P450 enzymes involved in the in vitro metabolism of granisetron.

    PubMed Central

    Bloomer, J C; Baldwin, S J; Smith, G J; Ayrton, A D; Clarke, S E; Chenery, R J

    1994-01-01

    1. The metabolism of granisetron was investigated in human liver microsomes to identify the specific forms of cytochrome P450 responsible. 2. 7-hydroxy and 9'-desmethyl granisetron were identified as the major products of metabolism following incubation of granisetron with human liver microsomes. At low, clinically relevant, concentrations of granisetron the 7-hydroxy metabolite predominated. Rates of granisetron 7-hydroxylation varied over 100-fold in the human livers investigated. 3. Enzyme kinetics demonstrated the involvement of at least two enzymes contributing to the 7-hydroxylation of granisetron, one of which was a high affinity component with a Km of 4 microM. A single, low affinity, enzyme was responsible for the 9'-desmethylation of granisetron. 4. Granisetron caused no inhibition of any of the cytochrome P450 activities investigated (CYP1A2, CYP2A6, CYP2B6, CYP2C9/8, CYP2C19, CYP2D6, CYP2E1 and CYP3A), at concentrations up to 250 microM. 5. Studies using chemical inhibitors selective for individual P450 enzymes indicated the involvement of cytochrome P450 3A (CYP3A), both pathways of granisetron metabolism being very sensitive to ketoconazole inhibition. Correlation data were consistent with the role of CYP3A3/4 in granisetron 9'-desmethylation but indicated that a different enzyme was involved in the 7-hydroxylation. PMID:7888294

  1. Sulforaphane inhibits CYP1A1 activity and promotes genotoxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fangxing, E-mail: fxyang@zju.edu.cn; Zhuang, Shulin; Zhang, Chao

    2013-06-15

    Increasing environmental pollution by carcinogens such as some of persistent organic pollutants (POPs) has prompted growing interest in searching for chemopreventive compounds which are readily obtainable. Sulforaphane (SFN) is isolated from cruciferous vegetables and has the potentials to reduce carcinogenesis through various pathways. In this study, we studied the effects of SFN on CYP1A1 activity and genotoxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The results showed that SFN inhibited TCDD-induced CYP1A1 activity in H4IIE cells by directly inhibiting CYP1A1 activity, probably through binding to aryl hydrocarbon receptor and/or CYP1A1 revealed by molecular docking. However, SFN promoted TCDD-induced DNA damage in yeast cellsmore » and reduced the viability of initiated yeast cells. Besides, it is surprising that SFN also failed to reduce genotoxicity induced by other genotoxic reagents which possess different mechanisms to lead to DNA damage. Currently, it is difficult to predict whether SFN has the potentials to reduce the risk of TCDD based on the conflicting observations in the study. Therefore, further studies should be urgent to reveal the function and mechanism of SFN in the stress of such POPs on human health. - Highlights: • Sulforaphane inhibited TCDD-induced CYP1A1 activity in H4IIE cells. • Sulforaphane may bind to aryl hydrocarbon receptor and/or CYP1A1. • Sulforaphane promoted TCDD-induced DNA damage in yeast cells. • Sulforaphane may promote DNA damage by DNA strand breaks or DNA alkylation.« less

  2. The effects of Andrographis paniculata (Burm.f.) Nees extract and diterpenoids on the CYP450 isoforms' activities, a review of possible herb-drug interaction risks.

    PubMed

    Tan, Mei Lan; Lim, Lin Ee

    2015-01-01

    Andrographis paniculata (Burm.f.) Nees is a popular medicinal plant and its components are used in various traditional product preparations. However, its herb-drug interactions risks remain unclear. This review specifically discusses the various published studies carried out to evaluate the effects of Andrographis paniculata (Burm.f.) Nees plant extracts and diterpenoids on the CYP450 metabolic enzyme and if the plant components pose a possible herb-drug interaction risk. Unfortunately, the current data are insufficient to indicate if the extracts or diterpenoids can be labeled as in vitro CYP1A2, CYP2C9 or CYP3A4 inhibitors. A complete CYP inhibition assay utilizing human liver microsomes and the derivation of relevant parameters to predict herb-drug interaction risks may be necessary for these isoforms. However, based on the current studies, none of the extracts and diterpenoids exhibited CYP450 induction activity in human hepatocytes or human-derived cell lines. It is crucial that a well-defined experimental design is needed to make a meaningful herb-drug interaction prediction.

  3. Effect of atrazine and chlorpyrifos exposure on cytochrome P450 contents and enzyme activities in common carp gills.

    PubMed

    Fu, Yao; Li, Ming; Liu, Ci; Qu, Jian-Ping; Zhu, Wen-Jun; Xing, Hou-Juan; Xu, Shi-Wen; Li, Shu

    2013-08-01

    Chlorpyrifos (CPF) and atrazine (ATR) are the most widely used organophosphate insecticides and triazine herbicides, respectively, worldwide. This study aimed at investigating the effects of ATR, CPF and mixture on common carp gills following 40-d exposure and 40-d recovery experiments. Cytochrome P450 content, activities of aminopyrine N-demethylase (APND) and erythromycin N-demethylase (ERND) and the mRNA levels of the CYP1 family (CYP1A, CYP1B, and CYP1C) were determined. In total, 220 common carps were divided into eleven groups, and each group was treated with a specific concentration of ATR (4.28, 42.8 and 428 μg/L), CPF (1.16, 11.6 and 116 μg/L) or ATR-CPF mixture (1.13, 11.3 and 113 μg/L). The results showed that P450 content and activities of APND and ERND in fish exposed to ATR and mixture were significantly higher than those in the control group. After the 40-d recovery treatment (i.e., depuration), the P450 content and the activities of APND and ERND in fish decreased to the background levels. A similar tendency was also found in the mRNA levels of the CYP1 family (CYP1A, CYP1B, and CYP1C) in common carp gills. The CPF-treated fish showed no significant difference from the control groups, except for a significant CYP1C induction. These results indicated that CYP enzyme levels are induced by ATR but were only slightly affected by CPF in common carp gills. In addition, the ATR and CPF exposure showed an antagonistic effect on P450 enzymes in common carp gills. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. A new donors' CYP3A5 and recipients' CYP3A4 cluster predicting tacrolimus disposition, and new-onset hypertension in Chinese liver transplant patients.

    PubMed

    Liu, Yuan; Zhang, Tao; Zhang, Xiaoqing; Ye, Ling; Gu, Haitao; Zhong, Lin; Sun, Hongcheng; Song, Chenlong; Peng, Zhihai; Fan, Junwei

    2017-09-19

    The purpose of the current study was to investigate individualized therapy of tacrolimus (Tac), as well as complications after liver transplantation (LT) with the known genetic determinants and clinical factors. In this retrospective study, two cohorts (n=170) from the China Liver Transplant Registry (CLTR) database from July 2007 to March 2015 were included. Both donors' CYP3A5 *3 and recipients' CYP3A4 *1G had a correlation with Tac pharmacokinetics at four weeks (all P <0.05), except recipients' CYP3A4 *1G nearly had an association at week 2 ( P =0.055). The model of donors' CYP3A5 *3, recipients' CYP3A4*1G , and total bilirubin (TBL), for the prediction of Tac disposition, was better than donors' CYP3A5 *3 only at week 1, 2, and 3 ( P =0.010, P =0.007, and P =0.010, respectively), but not apparent at week 4 ( P =0.297). Besides, when the P value was greater than or equal to 0.6685 after considering the false-positive rate R=10%, the patients were considered to have a faster metabolism, according to the mentioned model. Interestingly, we found that if more than or equal to two alleles A were present in the combination of donors' CYP3A5 *3 and recipients' CYP3A4 *1G genotype, there was a lower Tac C/D ration at week 1, 2, and 3 ( P <0.001, P =0.001, and P <0.001), except at week 4 ( P =0.082), and the probability of new-onset hypertension was lesser ( P <0.001). These data provided a potential basis for a comprehensive approach to predicting the Tac dose requirement in individual patients and provided a strategy for the effective prevention, early diagnosis of new-onset hypertension in Chinese LT recipients.

  5. Contrasting exome constancy and regulatory region variation in the gene encoding CYP3A4: an examination of the extent and potential implications.

    PubMed

    Creemer, Olivia J; Ansari-Pour, Naser; Ekong, Rosemary; Tarekegn, Ayele; Plaster, Christopher; Bains, Ripudaman K; Itan, Yuval; Bekele, Endashaw; Bradman, Neil

    2016-06-01

    CYP3A4 expression varies up to 100-fold among individuals, and, to date, genetic causes remain elusive. As a major drug-metabolizing enzyme, elucidation of such genetic causes would increase the potential for introducing personalized dose adjustment of therapies involving CYP3A4 drug substrates. The foetal CYP3A isoform, CYP3A7, is reported to be expressed in ∼10% of European adults and may thus contribute towards the metabolism of endogenous substances and CYP3A drug substrates. However, little is known about the distribution of the variant expressed in the adult. We resequenced the exons, flanking introns, regulatory elements and 3'UTR of CYP3A4 in five Ethiopian populations and incorporated data from the 1000 Genomes Project. Using bioinformatic analysis, we assessed likely consequences of observed CYP3A4 genomic variation. We also conducted the first extensive geographic survey of alleles associated with adult expression of CYP3A7 - that is, CYP3A7*1B and CYP3A7*1C. Ethiopia contained 60 CYP3A4 variants (26 novel) and more variants (>1%) than all non-African populations combined. No nonsynonymous mutation was found in the homozygous form or at more than 2.8% in any population. Seventy-nine per cent of haplotypes contained 3'UTR and/or regulatory region variation with striking pairwise population differentiation, highlighting the potential for interethnic variation in CYP3A4 expression. Conversely, coding region variation showed that significant interethnic variation is unlikely at the protein level. CYP3A7*1C was found at up to 17.5% in North African populations and in significant linkage disequilibrium with CYP3A5*3, indicating that adult expression of the foetal isoform is likely to be accompanied by reduced or null expression of CYP3A5.

  6. Resistance irrelevant CYP417A2v2 was found degrading insecticide in Laodelphax striatellus.

    PubMed

    Miah, Mohammad Asaduzzaman; Elzaki, Mohammed Esmail Abdalla; Han, Zhaojun

    2017-07-01

    Cytochrome P450 monooxygenases (CYPs) usually overexpressed in resistant strain were found involved in oxidative detoxification of insecticides. In this study, an investigation was conducted to confirm if resistance irrelevant CYPs which were not overexpressed in resistant strain before, were capable of degrading insecticides. Three resistance irrelevant CYPs viz. CYP417A2v2, CYP425A1v2, and CYP4DJ1 from CYP4 family of Laodelphax striatellus were randomly selected for experiments. CYP417A2v2 and CYP425A1v2 were found expressed successfully in Sf9 cell line while CYP4DJ1 was not expressed successfully and out of two expressed CYPs, only CYP417A2v2 showed its efficient catalytic activity. For catalytic activity, three traditional model probe substrates and five insecticides were assayed. For the probe substrates screened, p -nitroanisole and ethoxycoumarin were preferentially metabolized by CYP417A2v2 (specific activity 3.76 ± 1.22 and 1.63 ± 0.37 nmol min -1  mg protein -1 , respectively) and they may be potential diagnostic probes for this enzyme. Among insecticides, only imidacloprid was efficiently degraded by CYP417A2v2. Incubation of imidacloprid with CYP417A2v2 of L. striatellus and subsequent HPLC, LC-MS, and MS/MS analysis revealed the formation of imidacloprid metabolites, that is, 4' or 5'hydroxy-imidacloprid by hydroxylation. This result implies the exemption of CYPs character that it is not always, all the CYPs degrading insecticides being selected and overexpressed in resistant strains and the degrading CYPs without mutations to upregulate could be candidates during insecticide resistance evolution. This characterization of individual insect CYPs in insecticide degradation can provide insight for better understand of insecticide resistance development.

  7. Targeting CYP51 for drug design by the contributions of molecular modeling.

    PubMed

    Rabelo, Vitor W; Santos, Taísa F; Terra, Luciana; Santana, Marcos V; Castro, Helena C; Rodrigues, Carlos R; Abreu, Paula A

    2017-02-01

    CYP51 is an enzyme of sterol biosynthesis pathway present in animals, plants, protozoa and fungi. This enzyme is described as an important drug target that is still of interest. Therefore, in this work, we reviewed the structure and function of CYP51 and explored the molecular modeling approaches for the development of new antifungal and antiprotozoans that target this enzyme. Crystallographic structures of CYP51 of some organisms have already been described in the literature, which enable the construction of homology models of other organisms' enzymes and molecular docking studies of new ligands. The binding mode and interactions of some new series of azoles with antifungal or antiprotozoan activities has been studied and showed important residues of the active site. Molecular modeling is an important tool to be explored for the discovery and optimization of CYP51 inhibitors with better activities, pharmacokinetics, and toxicological profiles. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  8. Moringa oleifera leaf extracts inhibit 6β-hydroxylation of testosterone by CYP3A4

    PubMed Central

    Monera, Tsitsi G.; Wolfe, Alan R.; Maponga, Charles C.; Benet, Leslie Z.; Guglielmo, Joseph

    2017-01-01

    Background Moringa oleifera is a tropical tree often used as a herbal medicine, including by people who test positive for HIV. Since herbal constituents may interact with drugs via inhibition of metabolizing enzymes, we investigated the effects of extracts of M. oleifera on the CYP3A4-mediated 6ß-hydroxylation of testosterone. Methods Methanolic and aqueous leaf and root of extracts of M. oleifera with concentrations between 0.01 and 10 mg/ml were incubated with testosterone and mixed-sex human liver microsomes in the presence of NADPH. Metabolite concentrations were determined by HPLC. The cytotoxicity of the extracts was tested with HepG2 cells using the MTT formazan assay. Results Significant CYP3A4 inhibitory effects were found, with IC50 values of 0.5 and 2.5 mg/ml for leaf-methanol and leaf-water extracts, respectively. Root extracts were less active. Cytotoxicity was observed only with the leaf-water extract (IC50 = 6 mg/ml). Conclusions Further investigation is warranted to elucidate the potential of M. oleifera for clinically significant interactions with antiretroviral and other drugs. PMID:19745507

  9. CYP3A5 mRNA degradation by nonsense-mediated mRNA decay.

    PubMed

    Busi, Florent; Cresteil, Thierry

    2005-09-01

    The total CYP3A5 mRNA level is significantly greater in carriers of the CYP3A5*1 allele than in CYP3A5*3 homozygotes. Most of the CYP3A5*3 mRNA includes an intronic sequence (exon 3B) containing premature termination codons (PTCs) between exons 3 and 4. Two models were used to investigate the degradation of CYP3A5 mRNA: a CYP3A5 minigene consisting of CYP3A5 exons and introns 3 to 6 transfected into MCF7 cells, and the endogenous CYP3A5 gene expressed in HepG2 cells. The 3'-untranslated region g.31611C>T mutation has no effect on CYP3A5 mRNA decay. Splice variants containing exon 3B were more unstable than wild-type (wt) CYP3A5 mRNA. Cycloheximide prevents the recognition of PTCs by ribosomes: in transfected MCF7 and HepG2 cells, cycloheximide slowed down the degradation of exon 3B-containing splice variants, suggesting the participation of nonsense-mediated decay (NMD). When PTCs were removed from pseudoexon 3B or when UPF1 small interfering RNA was used to impair the NMD mechanism, the decay of the splice variant was reduced, confirming the involvement of NMD in the degradation of CYP3A5 splice variants. Induction could represent a source of variability for CYP3A5 expression and could modify the proportion of splice variants. The extent of CYP3A5 induction was investigated after exposure to barbiturates or steroids: CYP3A4 was markedly induced in a pediatric population compared with untreated neonates. However, no effect could be detected in either the total CYP3A5 RNA, the proportion of splice variant RNA, or the protein level. Therefore, in these carriers, induction is unlikely to switch on the phenotypic CYP3A5 expression in carriers of CYP3A5*3/*3.

  10. CYP3A4 and CYP3A5 polymorphisms and blood pressure response to amlodipine among African-American men and women with early hypertensive renal disease.

    PubMed

    Bhatnagar, Vibha; Garcia, Erin P; O'Connor, Daniel T; Brophy, Victoria H; Alcaraz, John; Richard, Erin; Bakris, George L; Middleton, John P; Norris, Keith C; Wright, Jackson; Hiremath, Leena; Contreras, Gabriel; Appel, Lawrence J; Lipkowitz, Michael S

    2010-01-01

    To explore the association between CYP3A4 and CYP3A5 gene polymorphisms and blood pressure response to amlodipine among participants from the African-American Study of Kidney Disease and Hypertension Trial randomized to amlodipine (n = 164). Cox proportional hazards models were used to determine the risk of reaching a target mean arterial pressure (MAP) of < or =107 mm Hg by CYP3A4 (A-392G and T16090C) and CYP3A5 (A6986G) gene polymorphisms, stratified by MAP randomization group (low or usual) and controlling for other predictors for blood pressure response. Women randomized to a usual MAP goal with an A allele at CYP3A4 A-392G were more likely to reach a target MAP of 107 mm Hg. The adjusted hazard ratio (AA/AG compared to GG) with 95% confidence interval was 3.41 (1.20-9.64; p = 0.020). Among participants randomized to a lower MAP goal, those with the C allele at CYP3A4 T16090C were more likely to reach target MAP: The adjusted hazard ratio was 2.04 (1.17-3.56; p = 0.010). After adjustment for multiple testing using a threshold significance level of p = 0.016, only the CYP3A4 T16090C SNP remained significant. CYP3A5 A6986G was not associated with blood pressure response. Our findings suggest that blood pressure response to amlodipine among high-risk African-Americans appears to be determined by CYP3A4 genotypes, and sex specificity may be an important consideration. Clinical applications of CYP3A4 genotype testing for individualized treatment regimens warrant further study. Copyright (c) 2009 S. Karger AG, Basel.

  11. CYP3A4 and CYP3A5 Polymorphisms and Blood Pressure Response to Amlodipine among African-American Men and Women with Early Hypertensive Renal Disease

    PubMed Central

    Bhatnagar, Vibha; Garcia, Erin P.; O’Connor, Daniel T.; Brophy, Victoria H.; Alcaraz, John; Richard, Erin; Bakris, George L.; Middleton, John P.; Norris, Keith C.; Wright, Jackson; Hiremath, Leena; Contreras, Gabriel; Appel, Lawrence J.; Lipkowitz, Michael S.

    2010-01-01

    Purpose To explore the association between CYP3A4 and CYP3A5 gene polymorphisms and blood pressure response to amlodipine among participants from the African-American Study of Kidney Disease and Hypertension Trial randomized to amlodipine (n = 164). Methods Cox proportional hazards models were used to determine the risk of reaching a target mean arterial pressure (MAP) of ≤107 mm Hg by CYP3A4 (A–392G and T16090C) and CYP3A5 (A6986G) gene polymorphisms, stratified by MAP randomization group (low or usual) and controlling for other predictors for blood pressure response. Results Women randomized to a usual MAP goal with an A allele at CYP3A4 A–392G were more likely to reach a target MAP of 107 mm Hg. The adjusted hazard ratio (AA/AG compared to GG) with 95% confidence interval was 3.41 (1.20–9.64; p = 0.020). Among participants randomized to a lower MAP goal, those with the C allele at CYP3A4 T16090C were more likely to reach target MAP: The adjusted hazard ratio was 2.04 (1.17–3.56; p = 0.010). After adjustment for multiple testing using a threshold significance level of p = 0.016, only the CYP3A4 T16090C SNP remained significant. CYP3A5 A6986G was not associated with blood pressure response. Conclusions Our findings suggest that blood pressure response to amlodipine among high-risk African-Americans appears to be determined by CYP3A4 genotypes, and sex specificity may be an important consideration. Clinical applications of CYP3A4 genotype testing for individualized treatment regimens warrant further study. PMID:19907160

  12. A frameshift variant of CYP2C8 was identified in a patient who suffered from rhabdomyolysis after administration of cerivastatin.

    PubMed

    Ishikawa, Chikako; Ozaki, Hiroshi; Nakajima, Toshiaki; Ishii, Toshihiro; Kanai, Saburo; Anjo, Saeko; Shirai, Kohji; Inoue, Ituro

    2004-01-01

    A hypercholesterolemic patient medicated with cerivastatin for 22 days resulted in acute rhabdomyolysis. CYP2C8 and CYP3A4 are the major enzymes responsible for the metabolism of cerivastatin, and a transporter, OATP2, contributes to uptake of cerivastatin to the liver. In this study, the patient's DNA was sequenced in order to identify a variant that would lead to the adverse effect of cerivastatin. Three nucleotide variants, 475delA, G874C, and T1551C, were found in the exons of CYP2C8. The patient was homozygous for 475delA variant that leads to frameshift and premature termination. Accordingly, the patient is most likely lacking the enzyme activity. The patient's children were both heterozygous for the mutation. The patient had three nucleotide variants in exon 4 (A388G) and exon 5 (C571T and C597T) of OATP2 that were all heterozygous. No nucleotide variation in the exons of CYP3A4 was identified. To our knowledge, this is the first report showing that the adverse effect of cerivastatin might be caused by the genetic variant of CYP2C8.

  13. CYP3A5 as a candidate gene for hypertension: no support from an unselected indigenous West African population.

    PubMed

    Fisher, D L; Plange-Rhule, J; Moreton, M; Eastwood, J B; Kerry, S M; Micah, F; Johnston, A; Cappuccio, F P; MacPhee, I A M

    2016-12-01

    CYP3A5 (cytochrome P450, family 3, subfamily A, polypeptide 5) expression stimulates the sodium retentive actions of the mineralocorticoid receptor causative of hypertension, probably by means of its ability to substantially increase the level of 6β-hydroxylase activity. Most Black individuals are functional CYP3A5 expressers, and this is a candidate gene for the high incidence of hypertension in Black populations. The study investigates whether CYP3A5 expression results in higher blood pressure in a Ghanaian population. Real-time PCR was used to genotype 898 DNA samples for the CYP3A5*3 and CYP3A5*6 single-nucleotide polymorphisms with technically adequate genotyping for 881 samples. Of these, 803 were genetic CYP3A5 expressers, 44 nonexpressers and 34 uncertain (CYP3A5*3/*6). Although there was a trend in the proportion of hypertensive individuals as CYP3A5 expression decreased, using a two-sided t-test, no statistically significant relationship was established between systolic or diastolic pressure and CYP3A5*3 or CYP3A5*6 genotypes, or their haplotypes (Systolic confidence interval: -8.44 to -7.70, P=0.93, Diastolic confidence interval: -4.89 to 4.85, P=0.99). We conclude, therefore, that there is either no association between CYP3A5 expression and blood pressure or, if there is a relationship, the strength of the association is very small.

  14. Effects of CYP2C19 Variants on Fluoxetine Metabolism in vitro.

    PubMed

    Fang, Ping; He, Jia-Yang; Han, Ai-Xia; Lan, Tian; Dai, Da-Peng; Cai, Jian-Ping; Hu, Guo-Xin

    2017-01-01

    CYP2C19 is an important member of the cytochrome P450 enzyme superfamily. We recently identified 31 CYP2C19 alleles in the Han Chinese population. The aim of this study was to assess the catalytic activities of these allelic isoforms and their effects on the metabolism of fluoxetine in vitro. The wild-type and 30 CYP2C19 variants were expressed in insect cells and each variant was characterized using fluoxetine as the substrate. Reactions were performed at 37°C with 20-1,000 µmol/L substrate for 30 min. By using ultra-high performance liquid chromatography-mass spectrometry to detect the products, the kinetic parameters Km, Vmax, and intrinsic clearance (Vmax/Km) of norfluoxetine were determined. Among the CYP2C19 variants tested, T130M showed similar intrinsic clearance (Vmax/Km) values with CYP2C19*1, while the intrinsic clearance values of other variants were significantly decreased (from 9.56 to 77.77%). In addition, CYP2C19*3 and *35FS could not be detected because they have no detectable enzyme activity. In China, the assessment of CYP2C19 variants in vitro offers valuable information relevant to the personalized medicine for CYP2C19-metabolized drug. © 2017 S. Karger AG, Basel.

  15. Differential effects of nicotine treatment and ethanol self-administration on CYP2A6, CYP2B6 and nicotine pharmacokinetics in African green monkeys.

    PubMed

    Ferguson, C S; Miksys, S; Palmour, R M; Tyndale, R F

    2012-12-01

    In primates, nicotine is metabolically inactivated in the liver by CYP2A6 and possibly CYP2B6. Changes in the levels of these two enzymes may affect nicotine pharmacokinetics and influence smoking behaviors. This study investigated the independent and combined effects of ethanol self-administration and nicotine treatment (0.5 mg/kg b.i.d. s.c.) on hepatic CYP2A6 and CYP2B6 levels (mRNA, protein, and enzymatic activity), in vitro nicotine metabolism, and in vivo nicotine pharmacokinetics in monkeys. CYP2A6 mRNA and protein levels and in vitro coumarin (selective CYP2A6 substrate) and nicotine metabolism were decreased by nicotine treatment but unaffected by ethanol. CYP2B6 protein levels and in vitro bupropion (selective CYP2B6 substrate) metabolism were increased by ethanol but unaffected by nicotine treatment; CYP2B6 mRNA levels were unaltered by either treatment. Combined ethanol and nicotine exposure decreased CYP2A6 mRNA and protein levels, as well as in vitro coumarin and nicotine metabolism, and increased CYP2B6 protein levels and in vitro bupropion metabolism, with no change in CYP2B6 mRNA levels. Chronic nicotine resulted in higher nicotine plasma levels achieved after nicotine administration, consistent with decreased CYP2A6. Ethanol alone, or combined with nicotine, resulted in lower nicotine plasma levels by a mechanism independent of the change in these enzymes. Thus, nicotine can decrease hepatic CYP2A6, reducing the metabolism of its substrates, including nicotine, whereas ethanol can increase hepatic CYP2B6, increasing the metabolism of CYP2B6 substrates. In vivo nicotine pharmacokinetics are differentially affected by ethanol and nicotine, but when both drugs are used in combination the effect more closely resembles ethanol alone.

  16. Analysis of CYP3A4 genetic polymorphisms in Han Chinese.

    PubMed

    Zhou, Qing; Yu, Xiaomin; Shu, Chang; Cai, Yimei; Gong, Wei; Wang, Xumin; Wang, Duen-mei; Hu, Songnian

    2011-06-01

    Our study aimed to comprehensively investigate the genetic polymorphisms of CYP3A4 in Han Chinese. We sequenced the gene regions of CYP3A4, including its promoter, exons, surrounding introns and 3' untranslated region (3'UTR), from 100 unrelated-healthy Han Chinese individuals. We detected 11 SNPs, three of which are novel. According to in silico functional prediction of novel variants, 20148 A>G in exon 10, resulting in substitution of Tyr319 with Cys (CYP3A4*21), may induce dramatic alteration of protein conformation, and 26908 G>A in 3'UTR may disrupt post-transcriptional regulation. We identified five alleles in Han Chinese, the allele frequencies of CYP3A4*1, *5, *6, *18 and *21 are 97, 0.5, 1, 1 and 0.5%, respectively. Haplotype inference revealed 14 haplotypes, of which the major haplotype CYP3A4*1A constitutes 59% of the total chromosomes. We also examined the possible role of natural selection in shaping the variation of CYP3A4 and confirmed a trend, consistent with the action of positive selection. We systematically screened the genetic polymorphisms of CYP3A4 in Han Chinese, highlighted possible functional impairment of the novel allele and summarized the distinct allele and haplotype frequency distribution, with an emphasis on detecting the footprint of recent positive selection on the CYP3A4 gene in Han Chinese.

  17. Toxic responses of cytochrome P450 sub-enzyme activities to heavy metals exposure in soil and correlation with their bioaccumulation in Eisenia fetida.

    PubMed

    Cao, Xiufeng; Bi, Ran; Song, Yufang

    2017-10-01

    The dose- and time- dependent responses of cytochrome P450 (CYP) sub-enzyme activities to heavy metals in soil, and the relationships between biomarker responses and metal bioaccumulation in Eisenia fetida were evaluated. Earthworms were exposed to soils spiked with increasing doses of Cd, Cu, Pb or Zn for 21 d. Results demonstrated that EROD and CYP3A4 activities responded significantly with increasing dose and exposure duration. EROD activity significantly (P < 0.05) correlated with CYP3A4 activity exposed to Pb and Cu. The earthworm metal burdens had significant correlation with the total metal concentrations in soil (P < 0.01). The bioaccumulation factor (BAF) decreased with the increasing metal concentration in soil. The order of metal bioavailability to E. fetida was Cd > Zn > Cu > Pb. CYP3A4 activity in Pb-exposed earthworms had a significant correlation with the accumulated metal (P < 0.05). Both EROD and CYP3A4 activities in Cu-exposed worms negatively correlated with BAF (P < 0.05). Based on Discriminant Analysis (DA), CYPs activities were sensitive biomarkers of heavy metals exposure, and we also concluded that different biomarkers with multiple durations could be conducted in the eco-toxicological diagnosis of soil pollution. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Biotechnological Production of Caffeic Acid by Bacterial Cytochrome P450 CYP199A2

    PubMed Central

    Arai, Yuka; Kino, Kuniki

    2012-01-01

    Caffeic acid is a biologically active molecule that has various beneficial properties, including antioxidant, anticancer, and anti-inflammatory activities. In this study, we explored the catalytic potential of a bacterial cytochrome P450, CYP199A2, for the biotechnological production of caffeic acid. When the CYP199A2 enzyme was reacted with p-coumaric acid, it stoichiometrically produced caffeic acid. The crystal structure of CYP199A2 shows that Phe at position 185 is situated directly above, and only 6.35 Å from, the heme iron. This F185 residue was replaced with hydrophobic or hydroxylated amino acids using site-directed mutagenesis to create mutants with novel and improved catalytic properties. In whole-cell assays with the known substrate of CYP199A2, 2-naphthoic acid, only the wild-type enzyme hydroxylated 2-naphthoic acid at the C-7 and C-8 positions, whereas all of the active F185 mutants exhibited a preference for C-5 hydroxylation. Interestingly, several F185 mutants (F185V, F185L, F185I, F185G, and F185A mutants) also acquired the ability to hydroxylate cinnamic acid, which was not hydroxylated by the wild-type enzyme. These results demonstrate that F185 is an important residue that controls the regioselectivity and the substrate specificity of CYP199A2. Furthermore, Escherichia coli cells expressing the F185L mutant exhibited 5.5 times higher hydroxylation activity for p-coumaric acid than those expressing the wild-type enzyme. By using the F185L whole-cell catalyst, the production of caffeic acid reached 15 mM (2.8 g/liter), which is the highest level so far attained in biotechnological production of this compound. PMID:22729547

  19. Association analysis of CYP2C9*3 and phenytoin-induced severe cutaneous adverse reactions (SCARs) in Thai epilepsy children.

    PubMed

    Suvichapanich, Supharat; Jittikoon, Jiraphun; Wichukchinda, Nuanjun; Kamchaisatian, Wasu; Visudtibhan, Anannit; Benjapopitak, Suwat; Nakornchai, Somjai; Manuyakorn, Wiparat; Mahasirimongkol, Surakameth

    2015-08-01

    CYP2C9 is the key enzyme in aromatic antiepileptic drugs (AEDs) metabolism. CYP2C9*3 is a loss of function polymorphism. This study was designed to investigate genetic association between CYP2C9*3 and aromatic AED-induced severe cutaneous adverse reactions (SCARs) in Thai children. The 37 aromatic AED-induced SCARs patients (20 phenobarbital and 17 phenytoin) and 35 tolerances (19 phenobarbital and 16 phenytoin) were enrolled. CYP2C9*3 was genotyped by allele-specific PCRs. The association between CYP2C9*3 with phenytoin-induced SCARs and phenobarbital-induced SCARs were analyzed in comparison with tolerances and healthy samples. Significant association between phenytoin-induced SCARs and CYP2C9*3 was discovered (odds ratio=14.52; 95% confidence interval (CI)=1.18-∞, P-value=0.044). CYP2C9*3 was not associated with phenobarbital-induced SCARs. This study is the first report of CYP2C9*3 association to phenytoin-induced SCARs in Thai epileptic children. The CYP2C9*3 is a reasonable predictive genetic marker to anticipate SCARs from phenytoin.

  20. Modulation of acute steroidogenesis, peroxisome proliferator-activated receptors and CYP3A/PXR in salmon interrenal tissues by tributyltin and the second messenger activator, forskolin.

    PubMed

    Pavlikova, Nela; Kortner, Trond M; Arukwe, Augustine

    2010-04-29

    There are uncertainties regarding the role of sex steroids in sexual development and reproduction of gastropods, leading to the recent doubts as to whether organotin compounds do inhibit steroidogenic enzymes in these species. These doubts have led us to suspect that organotin compounds may affect other target molecules, particularly signal transduction molecules or secondary mediators of steroid hormone and lipid synthesis/metabolism. Therefore, we have studied the effects of TBT exposure through food on acute steroidogenesis, PPARs and CYP3A responses in the presence and absence of a cyclic AMP (cAMP) activator, forskolin. Two experiments were performed. Firstly, juvenile salmon were force-fed once with diet containing TBT doses (0.1, 1 and 10mg/kg fish) dissolved in ethanol and sampled after 72h. Secondly, fish exposed to solvent control and 10mg/kg TBT for 72h were transferred to new tanks and exposed to waterborne forskolin (200microg/L) for 2 and 4h. Our data show that juvenile salmon force-fed TBT showed modulations of multiple biological responses in interrenal tissues that include, steroidogenesis (cAMP/PKA activities; StAR and P450scc mRNA, and plasma cortisol), and mRNA for peroxisome proliferator-activated receptor (PPAR) isoforms (alpha, beta, gamma), acyl-CoA oxidase-1 (ACOX1) and CYP3A/PXR (pregnan X receptor). In addition, forskolin produced differential effects on these responses both singly and also in combination with TBT. Overall, combined forskolin and TBT exposure produced higher effects compared with TBT exposure alone, for most of the responses (cortisol, PPARbeta, ACOX1 and CYP3A). Interestingly, forskolin produced PPAR isoform-specific effects when given singly or in combination with TBT. Several TBT mediated toxicity in fish that includes thymus reduction, decrease in numbers of lymphocytes, inhibition of gonad development and masculinization, including the imposex phenomenon have been reported. When these effects are considered with the

  1. Triclosan activates aryl hydrocarbon receptor (AhR)-dependent apoptosis and affects Cyp1a1 and Cyp1b1 expression in mouse neocortical neurons.

    PubMed

    Szychowski, Konrad A; Wnuk, Agnieszka; Kajta, Małgorzata; Wójtowicz, Anna K

    2016-11-01

    Triclosan (TCS) is an antimicrobial agent that is used extensively in personal care and in sanitizing products, such as soaps, toothpastes, and hair products. A number of studies have revealed the presence of TCS in human tissues, such as fat, liver and brain, in addition to blood and breast milk. The aim of the present study was to investigate the impact of TCS on AhR and Cyp1a1/Cyp1b1 signaling in mouse neocortical neurons in primary cultures. In addition to the use of selective ligands and siRNAs, expression levels of mRNA and proteins as well as caspase-3 activity, reactive oxygen species (ROS) formation, and lactate dehydrogenase (LDH) release have been measured. We also studied the involvement of the AhR in TCS-induced LDH release and caspase-3 activation as well as the effect of TCS on ROS generation. Cultures of neocortical neurons were prepared from Swiss mouse embryos on day 15/16 of gestation. The cells were cultured in phenol red-free Neurobasal medium with B27 and glutamine, and the neurons were exposed to 1 and 10µM TCS. Our experiments showed that the expression of AhR and Cyp1a1 mRNA decreased in cells exposed to 10µM TCS for 3 or 6h. In the case of Cyp1b1, mRNA expression remained unchanged compared with the control group following 3h of exposure to TCS, but after 6h, the mRNA expression of Cyp1b1 was decreased. Our results confirmed that the AhR is involved in the TCS mechanism of action, and our data demonstrated that after the cells were transfected with AhR siRNA, the cytotoxic and pro-apoptotic properties of TCS were decreased. The decrease in Cyp1a1 mRNA and protein expression levels accompanied by a decrease in its activity. The stimulation of Cyp1a1 activity produced by the application of an AhR agonist (βNF) was attenuated by TCS, whereas the addition of AhR antagonist (αNF) reversed the inhibitory effects of TCS. In our experiments, TCS diminished Cyp1b1 mRNA and enhanced its protein expression. In case of Cyp1a1 we observed

  2. Comparative study of polymorphism frequencies of the CYP2D6, CYP3A5, CYP2C8 and IL-10 genes in Mexican and Spanish women with breast cancer.

    PubMed

    Alcazar-González, Gregorio Antonio; Calderón-Garcidueñas, Ana Laura; Garza-Rodríguez, María Lourdes; Rubio-Hernández, Gabriela; Escorza-Treviño, Sergio; Olano-Martin, Estibaliz; Cerda-Flores, Ricardo Martín; Castruita-Avila, Ana Lilia; González-Guerrero, Juan Francisco; le Brun, Stéphane; Simon-Buela, Laureano; Barrera-Saldaña, Hugo Alberto

    2013-10-01

    Pharmacogenetic studies in breast cancer (BC) may predict the efficacy of tamoxifen and the toxicity of paclitaxel and capecitabine. We determined the frequency of polymorphisms in the CYP2D6 gene associated with activation of tamoxifen, and those of the genes CYP2C8, CYP3A5 and DPYD associated with toxicity of paclitaxel and capecitabine. We also included a IL-10 gene polymorphism associated with advanced tumor stage at diagnosis. Genomic DNAs from 241 BC patients from northeast Mexico were genotyped using DNA microarray technology. For tamoxifen processing, CYP2D6 genotyping predicted that 90.8% of patients were normal metabolizers, 4.2% ultrarapid, 2.1% intermediate and 2.9% poor metabolizers. For paclitaxel and the CYP2C8 gene, 75.3% were normal, 23.4% intermediate and 1.3% poor metabolizers. Regarding the DPYD gene, only one patient was a poor metabolizer. For the IL-10 gene, 47.1% were poor metabolizers. These results contribute valuable information towards personalizing BC chemotherapy in Mexican women.

  3. Modeling of drug-mediated CYP3A4 induction by using human iPS cell-derived enterocyte-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negoro, Ryosuke; Takayama, Kazuo; The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research

    Many drugs have potential to induce the expression of drug-metabolizing enzymes, particularly cytochrome P450 3A4 (CYP3A4), in small intestinal enterocytes. Therefore, a model that can accurately evaluate drug-mediated CYP3A4 induction is urgently needed. In this study, we overlaid Matrigel on the human induced pluripotent stem cells-derived enterocyte-like cells (hiPS-ELCs) to generate the mature hiPS-ELCs that could be applied to drug-mediated CYP3A4 induction test. By overlaying Matrigel in the maturation process of enterocyte-like cells, the gene expression levels of intestinal markers (VILLIN, sucrase-isomaltase, intestine-specific homeobox, caudal type homeobox 2, and intestinal fatty acid-binding protein) were enhanced suggesting that the enterocyte-like cellsmore » were maturated by Matrigel overlay. The percentage of VILLIN-positive cells in the hiPS-ELCs found to be approximately 55.6%. To examine the CYP3A4 induction potential, the hiPS-ELCs were treated with various drugs. Treatment with dexamethasone, phenobarbital, rifampicin, or 1α,25-dihydroxyvitamin D3 resulted in 5.8-fold, 13.4-fold, 9.8-fold, or 95.0-fold induction of CYP3A4 expression relative to that in the untreated controls, respectively. These results suggest that our hiPS-ELCs would be a useful model for CYP3A4 induction test. - Highlights: • The hiPS-ELCs were matured by Matrigel overlay. • The hiPS-ELCs expressed intestinal nuclear receptors, such as PXR, GR and VDR. • The hiPS-ELC is a useful model for the drug-mediated CYP3A4 induction test.« less

  4. Effect of diethyldithiocarbamate (DDC) and ticlopidine on CYP1A2 activity and caffeine metabolism: an in vitro comparative study with human cDNA-expressed CYP1A2 and liver microsomes.

    PubMed

    Kot, Marta; Daniel, Władysława A

    2009-01-01

    The aim of the present study was to test the effect of diethyldithiocarbamate (DDC), which is regarded as a cytochrome P450 (CYP) CYP2A6 and CYP2E1 inhibitor, and ticlopidine, an efficient CYP2B6, CYP2C19 and CYP2D6 inhibitor, on the activity of human CYP1A2 and the metabolism of caffeine (1-N-, 3-N- and 7-N-demethylation, and C-8-hydroxylation). The experiment was carried out in vitro using human cDNA-expressed CYP1A2 (Supersomes) and human pooled liver microsomes. The effects of DDC and ticlopidine were compared to those of furafylline (a strong CYP1A2 inhibitor). A comparative in vitro study provides clear evidence that ticlopidine and DDC, applied at concentrations that inhibit the above-mentioned CYP isoforms, potently (as compared to furafylline) inhibit human CYP1A2 and caffeine metabolism, in particular 1-N- and 3-N-demethylation.

  5. Up-regulatation of CYP3A expression through pregnent X receptor by praeruptorin D isolated from Peucedanum praeruptorum Dunn.

    PubMed

    Huang, Ling; Huang, Min; Li, Yu-Hua; Li, Rui-Ming; Zeng, Yu; Kuang, Shao-Yi; Zhang, Li; Wang, Yi-Tao; Bi, Hui-Chang

    2013-07-09

    Qianhu, the dried roots of Peucedanum praeruptorum DUNN (Umbelliferae), is a well-known traditional Chinese medicinal herb which was officially listed in the Chinese Pharmacopoeia. Praeruptorin D (PD) is one of the major active constituents of Peucedanum praeruptorum Dunn (Qianhu). The Pregnane X receptor (PXR) is an orphan nuclear receptor and plays a pivotal role in the activation of human cytochrome P450 3A4 (CYP3A4) gene. The purpose of this study was to investigate the effect of PD on the PXR-mediated transactivation of CYP3A4, and thus to predict potential herb-drug interactions between PD, Qianhu, and the other co-administered drugs that metabolized by CYP3A4. The effect of PD on the Cyp3a11, mPXR mRNA expression in mice primary hepatocytes was measured using real-time PCR. The gene expression, protein expression, and catalytic activity of CYP3A4 in the LS174T cells after transfected with PXR expression plasmids were determined by real-time PCR, Western blot analysis, and LC-MS/MS based CYP3A4 substrate assay. The results revealed that the level of Cyp3a11 gene expression in mice primary hepatocytes was significantly increased by PD, but PD cannot induce the mPXR gene expression. On the other hand, CYP3A4 mRNA, protein expression and functional activity in PXR-over-expression LS174T cells were significantly increased by PD through PXR-mediated pathway; conversely, no significant change was found in the untransfected cells. These findings suggest that PD can significantly up-regulate CYP3A4 expression and activity via the PXR-mediated pathway and this should be taken into consideration to predict any potential herb-drug interactions when PD and Peucedanum praeruptorum Dunn are co-administered with other drugs. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. The influence of CYP2B6, CYP2C9 and CYP2D6 genotypes on the formation of the potent antioestrogen Z-4-hydroxy-tamoxifen in human liver.

    PubMed

    Coller, Janet K; Krebsfaenger, Niels; Klein, Kathrin; Endrizzi, Karin; Wolbold, Renzo; Lang, Thomas; Nüssler, Andreas; Neuhaus, Peter; Zanger, Ulrich M; Eichelbaum, Michel; Mürdter, Thomas E

    2002-08-01

    To investigate in a large panel of 50 human liver samples the contribution of CYP2C9, CYP2D6, and CYP3A4 to the overall formation of the potent antioestrogen Z-4-hydroxy-tamoxifen, and how various genotypes affect its formation from tamoxifen. The formation of Z-4-hydroxy-tamoxifen from 10 microm tamoxifen was studied in human liver microsomes (n=50), characterized for CYP2B6, CYP2C9, CYP2D6 and CYP3A4 expression, and CYP2B6, CYP2C9 and CYP2D6 genotype. The effect of chemical and monoclonal antibody inhibitors, and the formation in supersomes expressing recombinant CYP isoforms was also investigated. Z-4-hydroxy-tamoxifen was quantified using LC-MS analysis. Z-4-hydroxy-tamoxifen was formed by supersomes expressing CYP2B6, CYP2C9, CYP2C19 and CYP2D6, but not CYP3A4. In agreement with these data, the mean formation of Z-4-hydroxy-tamoxifen was inhibited 49% by sulphaphenazole (P=0.001), 38% by quinidine (P<0.05) and 13% by monoclonal antibody against CYP2B6 (MAB-2B6, P<0.05). Furthermore, Z-4-hydroxy-tamoxifen formation significantly correlated with both CYP2C9 expression (r(s)=0.256, P<0.05) and CYP2D6 expression (r(s)=0.309, P<0.05). Genotypes of CYP2D6, CYP2B6 and CYP2C9 had an effect on metabolite formation in such a way that samples with two nonfunctional CYP2D6, or two variant CYP2C9 or CYP2B6 alleles, showed lower enzyme activity compared with those with two functional or wild-type alleles, (5.0 vs 9.9 pmol mg(-1) protein min(-1), P=0.046, 5.1 vs 9.9 pmol mg(-1) protein min(-1), P=0.053, and 6.8 vs 9.4 pmol mg(-1) protein min(-1), P=0.054, respectively). CYP2D6 and CYP2C9 contribute on average 45 and 46%, respectively, to the overall formation of Z-4-hydroxy-tamoxifen. CYP2B6, CYP2C9 and CYP2D6 genotypes all affected Z-4-hydroxy-tamoxifen formation and can predict individual ability to catalyse this reaction.

  7. Influence of Panax ginseng on Cytochrome P450 (CYP)3A and P-glycoprotein (Pgp) Activity in Healthy Subjects

    PubMed Central

    Malati, Christine Y.; Robertson, Sarah M.; Hunt, Jennifer D.; Chairez, Cheryl; Alfaro, Raul M.; Kovacs, Joseph A.; Penzak, Scott R.

    2012-01-01

    A number of herbal preparations have been shown to interact with prescription medications secondary to modulation of cytochrome P450 (CYP) and/or P-glycoprotein (P-gp). The purpose of this study was to determine the influence of Panax ginseng on CYP3A and P-gp function using the probe substrates midazolam and fexofenadine, respectively. Twelve healthy subjects (8 males) completed this open label, single sequence pharmacokinetic study. Healthy volunteers received single oral doses of midazolam 8 mg and fexofenadine 120 mg, before and after 28 days of P. ginseng 500 mg twice daily. Midazolam and fexofenadine pharmacokinetic parameter values were calculated and compared pre-and post P. ginseng administration. Geometric mean ratios (post-ginseng/pre-ginseng) for midazolam area under the concentration vs. time curve from zero to infinity (AUC0-∞), half life (T1/2), and maximum concentration (Cmax) were significantly reduced at 0.66 (0.55 – 0.78), 0.71 (0.53 – 0.90), and 0.74 (0.56 – 0.93), respectively. Conversely, fexofenadine pharmacokinetics were unaltered by P. ginseng administration. Based on these results, Panax ginseng appeared to induce CYP3A activity in the liver and possibly the gastrointestinal tract. Patients taking Panax ginseng in combination with CYP3A substrates with narrow therapeutic ranges should be monitored closely for adequate therapeutic response to the substrate medication. PMID:21646440

  8. Monitoring Cyp2b10 mRNA expression at cessation of 2-year carcinogenesis bioassay in mouse liver provides evidence for a carcinogenic mechanism devoid of human relevance: The dalcetrapib experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoflack, J-C.; Mueller, L., E-mail: Lutz.Mueller@roche.com; Fowler, S.

    2012-03-15

    Introduction: Dalcetrapib is a cholesteryl ester transfer protein (CETP) modulator in clinical assessment for cardiovascular outcome benefits. In compliance with regulatory requirements, dalcetrapib was evaluated in rodent 2-year carcinogenesis bioassays. In the mouse bioassay, male mice demonstrated increased liver weight and statistically increased incidences of hepatocellular adenoma/carcinoma. Hepatic cytochrome p450 (Cyp) 2b10 mRNA induction and increased Cyp2b10 enzyme activity signify activation of hepatic nuclear receptor constitutive androstane receptor (CAR), a widely established promoter of rodent-specific hepatic tumors. We therefore monitored hepatic Cyp2b10 mRNA and its enzyme activity in a subset of dalcetrapib-treated male mice from the bioassay. Methods: Liver samplesmore » were obtained from ∼ 1/3 of male mice from each dose group including vehicle-controls (mean and earliest study day of death 678 and 459 respectively). Quantitative real time PCR (qRT-PCR) was performed to determine Cyp2b10 mRNA expression and Cyp1a-, Cyp2b10- and Cyp3a-selective activities were monitored. Results: Cyp2b10 mRNA was strongly induced by dalcetrapib with an expected wide inter-individual variation (5–1421-fold). Group average fold-induction versus vehicle-controls showed a dose-related increase from 48-fold (250 mg/kg/day) to 160-fold (750 mg/kg/day), which declined slightly at 2000 mg/kg/day (97-fold). Cyp enzyme activities showed approximate doubling of total Cyp P450 content per milligram protein and a 9-fold increase in Cyp2b10-selective pentoxyresorufin O-dealkylase activity (750 mg/kg/day). Discussion: These data from hepatic Cyp2b10 monitoring are strongly suggestive of CAR activation by dalcetrapib, a mechanism devoid of relevance towards hepatocarcinogenesis in humans; results show feasibility of Cyp2b10 as a surrogate marker for this mechanism at cessation of a carcinogenesis bioassay. -- Highlights: ► Liver tumors were induced in male mice by

  9. In Vitro and in Vivo Inhibitory Effects of Glycyrrhetinic Acid in Mice and Human Cytochrome P450 3A4.

    PubMed

    Lv, Qiao-Li; Wang, Gui-Hua; Chen, Shu-Hui; Hu, Lei; Zhang, Xue; Ying, Guo; Qin, Chong-Zhen; Zhou, Hong-Hao

    2015-12-25

    Glycyrrhetinic acid (GA) has been used clinically in the treatment of patients with chronic hepatitis. This study evaluated the effect of GA on the activity of five P450(CYP450) cytochrome enzymes: CYP2A6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, in human liver microsomes (HLMs) and recombinant cDNA-expressed enzyme systems using a HPLC-MS/MS CYP-specific probe substrate assay. With midazolam as the probe substrate, GA greatly decreased CYP3A4 activity with IC50 values of 8.195 μM in HLMs and 7.498 μM in the recombinant cDNA-expressed CYP3A4 enzyme system, respectively. It significantly decreased CYP3A4 activity in a dose- but not time-dependent manner. Results from Lineweaver-Burk plots showed that GA could inhibit CYP3A4 activity competitively, with a Ki value of 1.57 μM in HLMs. Moreover, CYP2C9 and CYP2C19 could also be inhibited significantly by GA with IC50 of 42.89 and 40.26 μM in HLMs, respectively. Other CYP450 isoforms were not markedly affected by GA. The inhibition was also confirmed by an in vivo study of mice. In addition, it was observed that mRNA expressions of the Cyps2c and 3a family decreased significantly in the livers of mice treated with GA. In conclusion, this study indicates that GA may exert herb-drug interactions by competitively inhibiting CYP3A4.

  10. Pharmacogenomics of CYP2C9: Functional and Clinical Considerations†

    PubMed Central

    Rettie, Allan E.; Fowler, Douglas M.; Miners, John O.

    2017-01-01

    CYP2C9 is the most abundant CYP2C subfamily enzyme in human liver and the most important contributor from this subfamily to drug metabolism. Polymorphisms resulting in decreased enzyme activity are common in the CYP2C9 gene and this, combined with narrow therapeutic indices for several key drug substrates, results in some important issues relating to drug safety and efficacy. CYP2C9 substrate selectivity is detailed and, based on crystal structures for the enzyme, we describe how CYP2C9 catalyzes these reactions. Factors relevant to clinical response to CYP2C9 substrates including inhibition, induction and genetic polymorphism are discussed in detail. In particular, we consider the issue of ethnic variation in pattern and frequency of genetic polymorphisms and clinical implications. Warfarin is the most well studied CYP2C9 substrate; recent work on use of dosing algorithms that include CYP2C9 genotype to improve patient safety during initiation of warfarin dosing are reviewed and prospects for their clinical implementation considered. Finally, we discuss a novel approach to cataloging the functional capabilities of rare ‘variants of uncertain significance’, which are increasingly detected as more exome and genome sequencing of diverse populations is conducted. PMID:29283396

  11. The in vivo effects of adenine-induced chronic kidney disease on some renal and hepatic function and CYP450 metabolizing enzymes.

    PubMed

    Al Za'abi, M; Shalaby, A; Manoj, P; Ali, B H

    2017-05-04

    Adenine-induced model of chronic kidney disease (CKD) is a widely used model especially in studies testing novel nephroprotective agents. We investigated the effects of adenine-induced CKD in rats on the activities of some xenobiotic metabolizing enzymes in liver and kidneys, and on some in vivo indicators of drug metabolism (viz pentobarbitone sleeping time, and plasma concentration of theophylline 90 min post administration). CKD was induced by orally feeding adenine (0.25 % w/w) for 35 days. Adenine induced all the characteristics of CKD, which was confirmed by biochemical and histological findings. Glutathione concentration and activities of some enzymes involved in its metabolism were reduced in kidneys and livers of rats with CKD. Renal CYP450 1A1 activity was significantly inhibited by adenine, but other measured isoenzymes (1A2, 3A4 and 2E1) were not significantly affected. Adenine significantly prolonged pentobarbitone-sleeping time and increased plasma theophylline concentration 90 min post administration. Adenine also induced a moderate degree of hepatic damages as indicated histologically and by significant elevations in some plasma enzymes. The results suggest that adenine-induced CKD is associated with significant in vivo inhibitory activities on some drug-metabolizing enzymes, with most of the effect on the kidneys rather than the liver.

  12. Plasma pharmacokinetics and CYP3A12-dependent metabolism of c-kit inhibitor imatinib in dogs.

    PubMed

    Ishizuka, M; Nagai, S; Sakamoto, K Q; Fujita, S

    2007-05-01

    Imatinib is a highly selective tyrosine kinase inhibitor, and is used for the treatment of chronic myeloid leukaemia (CML) and gastrointestinal stromal tumours (GISTs) in humans. The aim of this study is to determine the in vitro and in vivo pharmacokinetics of imatinib in dogs and which cytochrome P450 (CYPs) contribute to its metabolism. Imatinib was administered orally or intravenously to dogs and the time of the peak concentration (T(max)) of imatinib was 4-9 h. The mean half-life was 622 +/- 368 min, and the AUC was 1256 +/- 809 microM * min after oral administration. The range of C0 of intravenously injected dogs was 12-24 microM. The half-life and AUC after intravenous injection were 206 +/- 112 min and 1026 +/- 371 microM * min, respectively. Recombinant system of dog CYP3A12 and CYP2C21 showed that CYP3A12 contributed to the metabolism of imatinib. The inhibition of CYP3A-dependent activity using a rat anti-CYP3A antibody or ketoconazole revealed that CYP3A12 plays a major role in the metabolism of imatinib in dog liver microsomes.

  13. Enhancement of oral bioavailability of rivastigmine with quercetin nanoparticles by inhibiting CYP3A4 and esterases.

    PubMed

    Palle, Suresh; Neerati, Prasad

    2017-04-01

    Quercetin is a well-known flavonoid, has pharmacokinetic interaction with ester drugs due to its capability of esterase inhibition in the gut and liver. However, the interaction between quercetin nanoparticles (NQC) and rivastigmine has not been reported. Hence, the present study was performed to evaluate the effect of quercetin alone and its nanoparticles on the pharmacokinetics of rivastigmine in rats. NQC prepared by antisolvent precipitation method. The influence of quercetin on the pharmacokinetics of rivastigmine was evaluated by following methods i.e. in vitro inhibitory effect on esterase enzyme in rat liver microsomes and in vitro assessment of CYP3A activity using erythromycin-N-demethylase (EMD) assay. To confirm these findings, an in vivo pharmacokinetic study of orally administered rivastigmine in rats with quercetin and NQC pretreatments was performed. The size of NQC was observed below 300nm. Quercetin significantly (p<0.05) inhibited the esterase-mediated metabolism of rivastigmine. In in vitro assessment of CYP3A activity model the erythromycin-N-demethylation (EMD) levels in quercetin treated group were significantly reduced (p<0.05). C max , AUC 0-t and AUC 0- ∞ of rivastigmine were found to be increased in quercetin and NQC pretreated groups. Further, the CL/F and Vd/F of rivastigmine were significantly decreased. The results revealed that enhanced bioavailability of rivastigmine might be caused by the combination of their effects due to CYP3A and esterase inhibition, Therefore, concomitant administration of NQC influences the bioavailability of rivastigmine and also has synergetic effect in the treatment of Alzheimer's disease. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  14. Cytochrome P450 genes from the aquatic midge Chironomus tentans: Atrazine-induced up-regulation of CtCYP6EX3 enhanced the toxicity of chlorpyrifos.

    PubMed

    Tang, Guanghui; Yao, Jianxiu; Li, Daqi; He, Yanping; Zhu, Yu-Cheng; Zhang, Xin; Zhu, Kun Yan

    2017-11-01

    The open reading frames of 19 cytochrome P450 monooxygenase (CYP) genes were sequenced from Chironomus tentans, a commonly used freshwater invertebrate model. Phylogenetic analysis of the 19 CYPs along with a previously reported CYP (CtCYP4G33) revealed that they belong to three different clans, including 3 in CYP4, 15 in CYP3, and 2 in mitochondria clan. When third-instar larvae were exposed to atrazine at 5000 μg/L, the transcription of CtCYP6EX3, CtCYP6EV3, CtCYP9AT1 and CtCYPEX1 was significantly up-regulated. To examine whether CtCYP6EX3 played a role in oxidative activation of chlorpyrifos to chlorpyrifos-oxon, we evaluated larval susceptibility to chlorpyrifos after CtCYP6EX3 transcript was suppressed by RNAi. The larvae fed chitosan/dsCtCYP6EX3 nanoparticles showed a significantly decreased CtCYP6EX3 transcript (53.1%) as compared with the control larvae fed chitosan/dsGFP nanoparticles. When the CtCYP6EX3-silenced larvae were exposed to chlorpyrifos at 6 μg/L or its binary mixture with atrazine (chlorpyrifos at 3 μg/L and atrazine at 1000 μg/L), the larvae became less susceptible to the pesticides as their mortalities decreased by 24.1% and 20.5%, respectively. These results along with our previous findings suggested that the increased toxicity of chlorpyrifos was likely due to an enhanced oxidative process from chlorpyrifos to chlorpyrifos-oxon by CtCYP6EX3 as RNAi of CtCYP6EX3 led to decreased susceptibility of C. tentans larvae to chlorpyrifos alone and the binary mixture of atrazine and chlorpyrifos. However, further study would be necessary to validate our results by functional assays using heterologously expressed CtCYP6EX3 enzyme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos.

    PubMed

    Dai, D; Tang, J; Rose, R; Hodgson, E; Bienstock, R J; Mohrenweiser, H W; Goldstein, J A

    2001-12-01

    CYP3A4 is the most abundant isoform of cytochrome P450 (CYP) in adult human liver. It metabolizes numerous clinically, physiologically, and toxicologically important compounds. The expression of CYP3A4 varies 40-fold in individual human livers, and metabolism of CYP3A4 substrates varies at least 10-fold in vivo. Single nucleotide polymorphisms (SNPs) in CYP3A4 were identified by direct sequencing of genomic DNA in 72 individuals from three different ethnic groups, including Caucasians, Blacks (African-Americans and African pygmies), and Asians. A total of 28 SNPs were identified, including five which produced coding changes M445T (CYP3A4*3), R162Q (CYP3A4*15), F189S (CYP3A4*17), L293P (CYP3A4*18), and P467S (CYP3A4*19). The latter four represent new alleic variants. Racial variability was observed for the frequency of individual SNPs. CYP3A R162Q was identified only in Black populations with an allelic frequency of 4%. CYP3A4 F189S and CYP3A4 M445T were identified in Caucasians with allelic frequencies 2% and 4%, respectively. L293P and P467S were only observed in Asians at allelic frequencies of 2%. The cDNAs for the F189S, L293P, M445T, and P467S mutant alleles were constructed by site-directed mutagenesis and expressed in an Escherichia coli expression system. Testosterone and the insecticide chlorpyrifos were used to assess the catalytic activities of the most common CYP3A4 allele (CYP3A4*1) and its allelic variants. CYP3A4 F189S exhibited lower turnover numbers for testosterone and chlorpyrifos, while CYP3A4 L293P had higher turnover numbers for both substrates. The turnover numbers of the CYP3A4 M445T and P467S alleles to metabolize these compounds were not significantly different from those of wild-type CYP3A4.

  16. CYP79D enzymes contribute to jasmonic acid-induced formation of aldoximes and other nitrogenous volatiles in two Erythroxylum species.

    PubMed

    Luck, Katrin; Jirschitzka, Jan; Irmisch, Sandra; Huber, Meret; Gershenzon, Jonathan; Köllner, Tobias G

    2016-10-04

    Amino acid-derived aldoximes and nitriles play important roles in plant defence. They are well-known as precursors for constitutive defence compounds such as cyanogenic glucosides and glucosinolates, but are also released as volatiles after insect feeding. Cytochrome P450 monooxygenases (CYP) of the CYP79 family catalyze the formation of aldoximes from the corresponding amino acids. However, the majority of CYP79s characterized so far are involved in cyanogenic glucoside or glucosinolate biosynthesis and only a few have been reported to be responsible for nitrogenous volatile production. In this study we analysed and compared the jasmonic acid-induced volatile blends of two Erythroxylum species, the cultivated South American crop species E. coca and the African wild species E. fischeri. Both species produced different nitrogenous compounds including aliphatic aldoximes and an aromatic nitrile. Four isolated CYP79 genes (two from each species) were heterologously expressed in yeast and biochemically characterized. CYP79D62 from E. coca and CYP79D61 and CYP79D60 from E. fischeri showed broad substrate specificity in vitro and converted L-phenylalanine, L-isoleucine, L-leucine, L-tryptophan, and L-tyrosine into the respective aldoximes. In contrast, recombinant CYP79D63 from E. coca exclusively accepted L-tryptophan as substrate. Quantitative real-time PCR revealed that CYP79D60, CYP79D61, and CYP79D62 were significantly upregulated in jasmonic acid-treated Erythroxylum leaves. The kinetic parameters of the enzymes expressed in vitro coupled with the expression patterns of the corresponding genes and the accumulation and emission of (E/Z)-phenylacetaldoxime, (E/Z)-indole-3-acetaldoxime, (E/Z)-3-methylbutyraldoxime, and (E/Z)-2-methylbutyraldoxime in jasmonic acid-treated leaves suggest that CYP79D60, CYP79D61, and CYP79D62 accept L-phenylalanine, L-leucine, L-isoleucine, and L-tryptophan as substrates in vivo and contribute to the production of volatile and semi

  17. Metabolic capabilities of cytochrome P450 enzymes in Chinese liver microsomes compared with those in Caucasian liver microsomes

    PubMed Central

    Yang, Junling; He, Minxia M; Niu, Wei; Wrighton, Steven A; Li, Li; Liu, Yang; Li, Chuan

    2012-01-01

    AIM The most common causes of variability in drug response include differences in drug metabolism, especially when the hepatic cytochrome P450 (CYP) enzymes are involved. The current study was conducted to assess the differences in CYP activities in human liver microsomes (HLM) of Chinese or Caucasian origin. METHODS The metabolic capabilities of CYP enzymes in 30 Chinese liver microsomal samples were compared with those of 30 Caucasian samples utilizing enzyme kinetics. Phenacetin O-deethylation, coumarin 7-hydroxylation, bupropion hydroxylation, amodiaquine N-desethylation, diclofenac 4′-hydroxylation (S)-mephenytoin 4′-hydroxylation, dextromethorphan O-demethylation, chlorzoxazone 6-hydroxylation and midazolam 1′-hydroxylation/testosterone 6β-hydroxylation were used as probes for activities of CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A, respectively. Mann-Whitney U test was used to assess the differences. RESULTS The samples of the two ethnic groups were not significantly different in cytochrome-b5 concentrations but were significantly different in total CYP concentrations and NADPH-P450 reductase activity (P < 0.05). Significant ethnic differences in intrinsic clearance were observed for CYP1A2, CYP2C9, CYP2C19 and CYP2E1; the median values of the Chinese group were 54, 58, 26, and 35% of the corresponding values of the Caucasian group, respectively. These differences were associated with differences in Michaelis constant or maximum velocity. Despite negligible difference in intrinsic clearance, the Michaelis constant of CYP2B6 appeared to have a significant ethnic difference. No ethnic difference was observed for CYP2A6, CYP2C8, CYP2D6 and CYP3A. CONCLUSIONS These data extend our knowledge on the ethnic differences in CYP enzymes and will have implications for drug discovery and drug therapy for patients from different ethnic origins. PMID:21815912

  18. Mutation analysis of the human CYP3A4 gene 5' regulatory region: population screening using non-radioactive SSCP.

    PubMed

    Hamzeiy, Hossein; Vahdati-Mashhadian, Nasser; Edwards, Helen J; Goldfarb, Peter S

    2002-03-20

    Human CYP3A4 is the major cytochrome P450 isoenzyme in adult human liver and is known to metabolise many xenobiotic and endogenous compounds. There is substantial inter-individual variation in the hepatic levels of CYP3A4. Although, polymorphic mutations have been reported in the 5' regulatory region of the CYP3A4 gene, those that have been investigated so far do not appear to have any effect on gene expression. To determine whether other mutations exist in this region of the gene, we have performed a new population screen on a panel of 101 human DNA samples. A 1140 bp section of the 5' proximal regulatory region of the CYP3A4 gene, containing numerous regulatory motifs, was amplified from genomic DNA as three overlapping segments. The 300 bp distal enhancer region at -7.9kb containing additional regulatory motifs was also amplified. Mutation analysis of the resulting PCR products was carried out using non-radioactive single strand conformation polymorphism (SSCP) and confirmatory sequencing of both DNA strands in those samples showing extra SSCP bands. In addition to detection of the previously reported CYP3A4*1B allele in nine subjects, three novel alleles were found: CYP3A4*1E (having a T-->A transversion at -369 in one subject), CYP3A4*1F (having a C-->G tranversion at -747 in 17 subjects) and CYP3A4*15B containing a nine-nucleotide insertion between -845 and -844 linked to an A-->G transition at -392 and a G-->A transition in exon 6 (position 485 in the cDNA) in one subject. All the novel alleles were heterozygous. No mutations were found in the upstream distal enhancer region. Our results clearly indicate that this rapid and simple SSCP approach can reveal mutant alleles in drug metabolising enzyme genes. Detection and determination of the frequency of novel alleles in CYP3A4 will assist investigation of the relationship between genotype, xenobiotic metabolism and toxicity in the CYP3A family of isoenzymes.

  19. Engineering human cytochrome P450 enzymes into catalytically self-sufficient chimeras using molecular Lego.

    PubMed

    Dodhia, Vikash Rajnikant; Fantuzzi, Andrea; Gilardi, Gianfranco

    2006-10-01

    The membrane-bound human cytochrome P450s have essential roles in the metabolism of endogenous compounds and drugs. Presented here are the results on the construction and characterization of three fusion proteins containing the N-terminally modified human cytochrome P450s CYP2C9, CY2C19 and CYP3A4 fused to the soluble NADPH-dependent oxidoreductase domain of CYP102A1 from Bacillus megaterium. The constructs, CYP2C9/BMR, CYP2C19/BMR and CYP3A4/BMR are well expressed in Escherichia coli as holo proteins. The chimeras can be purified in the absence of detergent and the purified enzymes are both active and correctly folded in the absence of detergent, as demonstrated by circular dichroism and functional studies. Additionally, in comparison with the parent P450 enzyme, these chimeras have greatly improved solubility properties. The chimeras are catalytically self-sufficient and present turnover rates similar to those reported for the native enzymes in reconstituted systems, unlike previously reported mammalian cytochrome P450 fusion proteins. Furthermore the specific activities of these chimeras are not dependent on the enzyme concentration present in the reaction buffer and they do not require the addition of accessory proteins, detergents or phospholipids to be fully active. The solubility, catalytic self-sufficiency and wild-type like activities of these chimeras would greatly simplify the studies of cytochrome P450 mediated drug metabolism in solution.

  20. Retinoid regulation of the zebrafish cyp26a1 promoter.

    PubMed

    Hu, Ping; Tian, Miao; Bao, Jie; Xing, Guangdong; Gu, Xingxing; Gao, Xiang; Linney, Elwood; Zhao, Qingshun

    2008-12-01

    Cyp26A1 is a major enzyme that controls retinoic acid (RA) homeostasis by metabolizing RA into bio-inactive metabolites. Previous research revealed that the mouse Cyp26A1 promoter has two canonical RA response elements (RAREs) that underlie the regulation of the gene by RA. Analyzing the 2,533-base pairs (2.5 k) genomic sequence upstream of zebrafish cyp26a1 start codon, we report that the two RAREs are conserved in zebrafish cyp26a1 promoter. Mutagenesis demonstrated that the two RAREs work synergistically in RA inducibility of cyp26a1. Fusing the 2.5 k (kilobase pairs) fragment to the enhanced yellow fluorescent protein (eYFP) reporter gene, we have generated two transgenic lines of zebrafish [Tg(cyp26a1:eYFP)]. The transgenic zebrafish display expression patterns similar to that of cyp26a1 gene in vivo. Consistent with the in vitro results, the reporter activity is RA inducible in embryos. Taken together, our results demonstrate that the 2.5 k fragment underlies the regulation of the zebrafish cyp26a1 gene by RA. (c) 2008 Wiley-Liss, Inc.

  1. Exploring the Role of CYP3A4 Mediated Drug Metabolism in the Pharmacological Modulation of Nitric Oxide Production

    PubMed Central

    Pérez-del Palacio, José; Díaz, Caridad; Vergara, Noemí; Algieri, Francesca; Rodríguez-Nogales, Alba; de Pedro, Nuria; Rodríguez-Cabezas, M. Elena; Genilloud, Olga; Gálvez, Julio; Vicente, Francisca

    2017-01-01

    Nitric-oxide synthase, the enzyme responsible for mammalian nitric oxide generation, and cytochrome P450, the major enzymes involved in drug metabolism, share striking similarities. Therefore, it makes sense that cytochrome P450 drug mediated biotransformations might play an important role in the pharmacological modulation of nitric oxide synthase. In this work, we have undertaken an integrated in vitro assessment of the hepatic metabolism and nitric oxide modulation of previously described dual inhibitors (imidazoles and macrolides) of these enzymes in order assess the implication of CYP450 activities over production of nitric oxide. In vitro systems based in human liver microsomes and activated mouse macrophages were developed for these purposes. Additionally in vitro production the hepatic metabolites of dual inhibitor, roxithromycin, was investigated achieving the identification and isolation of main hepatic biotransformation products. Our results suggested that for some macrolide compounds, the cytochrome P450 3A4 derived drug metabolites have an important effect on nitric oxide production and might critically contribute to the pharmacological immunomodulatory activity observed. PMID:28446877

  2. Mechanism of the Dual Activities of Human CYP17A1 and Binding to Anti-Prostate Cancer Drug Abiraterone Revealed by a Novel V366M Mutation Causing 17,20 Lyase Deficiency.

    PubMed

    Fernández-Cancio, Mónica; Camats, Núria; Flück, Christa E; Zalewski, Adam; Dick, Bernhard; Frey, Brigitte M; Monné, Raquel; Torán, Núria; Audí, Laura; Pandey, Amit V

    2018-04-29

    The CYP17A1 gene regulates sex steroid biosynthesis in humans through 17α-hydroxylase/17,20 lyase activities and is a target of anti-prostate cancer drug abiraterone. In a 46, XY patient with female external genitalia, together with a loss of function mutation S441P, we identified a novel missense mutation V366M at the catalytic center of CYP17A1 which preferentially impaired 17,20 lyase activity. Kinetic experiments with bacterially expressed proteins revealed that V366M mutant enzyme can bind and metabolize pregnenolone to 17OH-pregnenolone, but 17OH-pregnenolone binding and conversion to dehydroepiandrosterone (DHEA) was impaired, explaining the patient’s steroid profile. Abiraterone could not bind and inhibit the 17α-hydroxylase activity of the CYP17A1-V366M mutant. Molecular dynamics (MD) simulations showed that V366M creates a “one-way valve” and suggests a mechanism for dual activities of human CYP17A1 where, after the conversion of pregnenolone to 17OH-pregnenolone, the product exits the active site and re-enters for conversion to dehydroepiandrosterone. The V366M mutant also explained the effectiveness of the anti-prostate cancer drug abiraterone as a potent inhibitor of CYP17A1 by binding tightly at the active site in the WT enzyme. The V366M is the first human mutation to be described at the active site of CYP17A1 that causes isolated 17,20 lyase deficiency. Knowledge about the specificity of CYP17A1 activities is of importance for the development of treatments for polycystic ovary syndrome and inhibitors for prostate cancer therapy.

  3. Systematic and quantitative assessment of the effect of chronic kidney disease on CYP2D6 and CYP3A4/5

    PubMed Central

    Yoshida, K; Sun, B; Zhang, L; Zhao, P; Abernethy, DR; Nolin, TD; Rostami‐Hodjegan, A; Zineh, I

    2016-01-01

    Recent reviews suggest that chronic kidney disease (CKD) can affect the pharmacokinetics of nonrenally eliminated drugs, but the impact of CKD on individual elimination pathways has not been systematically evaluated. In this study we developed a comprehensive dataset of the effect of CKD on the pharmacokinetics of CYP2D6‐ and CYP3A4/5‐metabolized drugs. Drugs for evaluation were selected based on clinical drug–drug interaction (CYP3A4/5 and CYP2D6) and pharmacogenetic (CYP2D6) studies. Information from dedicated CKD studies was available for 13 and 18 of the CYP2D6 and CYP3A4/5 model drugs, respectively. Analysis of these data suggested that CYP2D6‐mediated clearance is generally decreased in parallel with the severity of CKD. There was no apparent relationship between the severity of CKD and CYP3A4/5‐mediated clearance. The observed elimination‐route dependency in CKD effects between CYP2D6 and CYP3A4/5 may inform the need to conduct clinical CKD studies with nonrenally eliminated drugs for optimal use of drugs in patients with CKD. PMID:26800425

  4. Bile acids and their oxo derivatives: Potential inhibitors of carbonic anhydrase I and II, androgen receptor antagonists and CYP3A4 substrates.

    PubMed

    Trifunović, Jovana; Borčić, Vladan; Mikov, Momir

    2017-05-01

    Some biological properties of bile acids and their oxo derivatives have not been sufficiently investigated, although the interest in bile acids as signaling molecules is rising. The aim of this work was to evaluate physico-chemical parametar b (slope) that represents the lipophilicity of the examined molecules and to investigate interactions of bile acids with carbonic anhydrase I, II, androgen receptor and CYP450s. Thirteen candidates were investigated using normal-phase thin-layer chromatography in two solvent systems. Retention parameters were used in further quantitative structure-activity relationship analysis and docking studies to predict interactions and binding affinities of examined molecules with enzymes and receptors. Prediction of activity on androgen receptor showed that compounds 3α-hydroxy-12-oxo-5β-cholanoic and 3α-hydroxy-7-oxo-5β-cholanoic acid have stronger antiandrogen activity than natural bile acids. The inhibitory potential for carbonic anhydrase I and II was tested and it was concluded that molecules 3α-hydroxy-12-oxo-5β-cholanoic, 3α-hydroxy-7-oxo-5β-cholanoic, 3,7,12-trioxo-5β-cholanoic acid and hyodeoxycholic acid show the best results. Substrate behavior for CYP3A4 was confirmed for all investigated compounds. Oxo derivatives of bile acids show stronger interactions with enzymes and receptors as classical bile acids and lower membranolytic activity compared with them. These significant observations could be valuable in consideration of oxo derivatives as building blocks in medicinal chemistry. Copyright © 2016 John Wiley & Sons, Ltd.

  5. The mibefradil derivative NNC55-0396, a specific T-type calcium channel antagonist, exhibits less CYP3A4 inhibition than mibefradil.

    PubMed

    Bui, Peter H; Quesada, Arnulfo; Handforth, Adrian; Hankinson, Oliver

    2008-07-01

    A novel mibefradil derivative, NNC55-0396, designed to be hydrolysis-resistant, was shown to be a selective T-type Ca(2+) channel inhibitor without L-type Ca(2+) channel efficacy. However, its effects on cytochromes P450 (P450s) have not previously been examined. We investigated the inhibitory effects of NNC55-0396 toward seven major recombinant human P450s--CYP3A4, CYP2D6, CYP1A2, CYP2C9, CYP2C8, CYPC19, and CYP2E1--and compared its effects with those of mibefradil and its hydrolyzed metabolite, Ro40-5966. Our results show that CYP3A4 and CYP2D6 are the two P450s most affected by mibefradil, Ro40-5966, and NNC55-0396. Mibefradil (IC(50) = 33 +/- 3 nM, K(i) = 23 +/- 0.5 nM) and Ro40-5966 (IC(50) = 30 +/- 7.8 nM, K(i) = 21 +/- 2.8 nM) have a 9- to 10-fold greater inhibitory activity toward recombinant CYP3A4 benzyloxy-4-trifluoromethylcoumarin-O-debenzylation activity than NNC55-0396 (IC(50) = 300 +/- 30 nM, K(i) = 210 +/- 6 nM). More dramatically, mibefradil (IC(50) = 566 +/- 71 nM, K(i) = 202 +/- 39 nM) shows 19-fold higher inhibition of CYP3A-associated testosterone 6beta-hydroxylase activity in human liver microsomes compared with NNC55-0396 (IC(50) = 11 +/- 1.1 microM, K(i) = 3.9 +/- 0.4 microM). Loss of testosterone 6beta-hydroxylase activity by recombinant CYP3A4 was shown to be time- and concentration-dependent with both compounds. However, NNC55-0396 (K(I) = 3.87 microM, K(inact) = 0.061/min) is a much less potent mechanism-based inhibitor than mibefradil (K(I) = 83 nM, K(inact) = 0.048/min). In contrast, NNC55-0396 (IC(50) = 29 +/- 1.2 nM, K(i) = 2.8 +/- 0.3 nM) and Ro40-5966 (IC(50) = 46 +/- 11 nM, K(i) = 4.5 +/- 0.02 nM) have a 3- to 4-fold greater inhibitory activity toward recombinant CYP2D6 than mibefradil (IC(50) = 129 +/- 21 nM, K(i) = 12.7 +/- 0.9 nM). Our results suggest that NNC55-0396 could be a more favorable T-type Ca(2+) antagonist than its parent compound, mibefradil, which was withdrawn from the market because of strong inhibition of CYP3A4.

  6. SPR and electrochemical analyses of interactions between CYP3A4 or 3A5 and cytochrome b5

    NASA Astrophysics Data System (ADS)

    Gnedenko, O. V.; Yablokov, E. O.; Usanov, S. A.; Mukha, D. V.; Sergeev, G. V.; Bulko, T. V.; Kuzikov, A. V.; Moskaleva, N. E.; Shumyantseva, V. V.; Ivanov, A. S.; Archakov, A. I.

    2014-02-01

    The combination of SPR biosensor with electrochemical analysis was used for the study of protein-protein interaction between cytochromes CYP3A4 or 3А5 and cytochromes b5: the microsomal, mitochondrial forms of this protein, and 2 ≪chimeric≫ proteins. Kinetic constants of CYP3A4 and CYP3А5 complex formation with cytochromes b5 were determined by the SPR biosensor. Essential distinction between CYP3A4 and CYP3A5 was observed upon their interactions with mitochondrial cytochrome b5. The electrochemical analysis of CYP3A4, CYP3A5, and cytochromes b5 immobilized on screen printed graphite electrodes modified with membranous matrix revealed that these proteins have very close reduction potentials -0.435 to -0.350 V (vs. Ag/AgCl).

  7. In Vitro and in Vivo Inhibitory Effects of Glycyrrhetinic Acid in Mice and Human Cytochrome P450 3A4

    PubMed Central

    Lv, Qiao-Li; Wang, Gui-Hua; Chen, Shu-Hui; Hu, Lei; Zhang, Xue; Ying, Guo; Qin, Chong-Zhen; Zhou, Hong-Hao

    2015-01-01

    Glycyrrhetinic acid (GA) has been used clinically in the treatment of patients with chronic hepatitis. This study evaluated the effect of GA on the activity of five P450(CYP450) cytochrome enzymes: CYP2A6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, in human liver microsomes (HLMs) and recombinant cDNA-expressed enzyme systems using a HPLC-MS/MS CYP-specific probe substrate assay. With midazolam as the probe substrate, GA greatly decreased CYP3A4 activity with IC50 values of 8.195 μM in HLMs and 7.498 μM in the recombinant cDNA-expressed CYP3A4 enzyme system, respectively. It significantly decreased CYP3A4 activity in a dose- but not time-dependent manner. Results from Lineweaver–Burk plots showed that GA could inhibit CYP3A4 activity competitively, with a Ki value of 1.57 μM in HLMs. Moreover, CYP2C9 and CYP2C19 could also be inhibited significantly by GA with IC50 of 42.89 and 40.26 μM in HLMs, respectively. Other CYP450 isoforms were not markedly affected by GA. The inhibition was also confirmed by an in vivo study of mice. In addition, it was observed that mRNA expressions of the Cyps2c and 3a family decreased significantly in the livers of mice treated with GA. In conclusion, this study indicates that GA may exert herb-drug interactions by competitively inhibiting CYP3A4. PMID:26712778

  8. Functional characterization of four naturally occurring variants of human pregnane X receptor (PXR): one variant causes dramatic loss of both DNA binding activity and the transactivation of the CYP3A4 promoter/enhancer region.

    PubMed

    Koyano, Satoru; Kurose, Kouichi; Saito, Yoshiro; Ozawa, Shogo; Hasegawa, Ryuichi; Komamura, Kazuo; Ueno, Kazuyuki; Kamakura, Shiro; Kitakaze, Masafumi; Nakajima, Toshiharu; Matsumoto, Kenji; Akasawa, Akira; Saito, Hirohisa; Sawada, Jun-Ichi

    2004-01-01

    Metabolism of administered drugs is determined by expression and activity of many drug-metabolizing enzymes, such as the cytochrome P450 (P450s) family members. Pregnane X receptor (PXR) is a master transcriptional regulator of many drug/xenobiotic-metabolizing enzymes, including P450s and drug transporters. In this study, we describe the functional analysis of four naturally occurring human PXR (hPXR) variants (R98C, R148Q, R381W, and I403V) that we have recently identified. By a reporter gene assay using the CYP3A4 promoter/enhancer reporter in COS-7 or HepG2 cells, it was found that the R98C variant failed to transactivate the CYP3A4 reporter. The R381W and I403V variants also showed varying degrees of reduction in transactivation, depending on the dose of PXR activators, rifampicin, clotrimazole, and paclitaxel. The transcriptional activities of the R148Q variant were not significantly different from that of the wild-type hPXR. The electrophoretic mobility shift assay revealed that only the R98C variant lacked DNA binding. Furthermore, the cellular localization of the hPXR proteins was analyzed. All four variants as well as the wild-type hPXR localized exclusively to the nucleus, regardless of the presence or absence of rifampicin. These data suggest that the R98C, R381W, and I403V hPXR variants, especially R98C, may influence the expression of drug-metabolizing enzymes and transporters, which are transactivated by PXR.

  9. Lead nitrate-induced development of hypercholesterolemia in rats: sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis.

    PubMed

    Kojima, Misaki; Masui, Toshimitsu; Nemoto, Kiyomitsu; Degawa, Masakuni

    2004-12-01

    Changes in the gene expressions of hepatic enzymes responsible for cholesterol homeostasis were examined during the process of lead nitrate (LN)-induced development of hypercholesterolemia in male rats. Total cholesterol levels in the liver and serum were significantly increased at 3-72 h and 12-72 h, respectively, after LN-treatment (100 micromol/kg, i.v.). Despite the development of hypercholesterolemia, the genes for hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and other enzymes (FPPS, farnesyl diphosphate synthase; SQS, squalene synthase; CYP51, lanosterol 14alpha-demethylase) responsible for cholesterol biosynthesis were activated at 3-24 h and 12-18 h, respectively. On the other hand, the gene expression of cholesterol 7alpha-hydroxylase (CYP7A1), a catabolic enzyme of cholesterol, was remarkably suppressed at 3-72 h. The gene expression levels of cytokines interleukin-1beta (IL-1beta) and TNF-alpha, which activate the HMGR gene and suppress the CYP7A1 gene, were significantly increased at 1-3 h and 3-24 h, respectively. Furthermore, gene activation of SREBP-2, a gene activator of several cholesterogenic enzymes, occurred before the gene activations of FPPS, SQS and CYP51. This is the first report demonstrating sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis in LN-treated male rats. The mechanisms for the altered-gene expressions of hepatic enzymes in LN-treated rats are discussed.

  10. Association of CYP1A1 gene polymorphism with chronic kidney disease: a case control study.

    PubMed

    Siddarth, Manushi; Datta, Sudip K; Ahmed, Rafat S; Banerjee, Basu D; Kalra, Om P; Tripathi, Ashok K

    2013-07-01

    CYP1A1 is an important xenobiotic metabolizing enzyme, present in liver and kidney. Expression of CYP1A1 enzyme increases manifold when kidney cells are exposed to nephrotoxins/chemicals leading to oxidative stress-induced cell damage. To study the association of CYP1A1 gene polymorphism in patients of chronic kidney disease with unknown etiology (CKDU), we recruited 334 CKDU patients and 334 age and sex matched healthy controls. CYP1A1*2A and *2C polymorphisms were studied by PCR-RFLP and allele specific-PCR respectively. Subjects carrying at least one mutant allele of CYP1A1*2A (TC, CC) and *2C (AG, GG) were shown to be associated with 1.4-2-fold increased risk of CKDU. Also, genotypic combinations of hetero-/homozygous mutants of CYP1A1*2A (TC, CC) with hetero-/homozygous mutant genotypes of CYP1A1*2C (AG, GG) i.e. TC/AG (p<0.01), TC/GG (p<0.05), CC/AG (p<0.05) and CC/GG (p<0.01) were associated with CKDU with an odd ratio ranging 1.8-3.3 times approximately. This study demonstrates association of CYP1A1 polymorphisms with CKDU. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Preliminary Investigation of the Contribution of CYP2A6, CYP2B6, and UGT1A9 Polymorphisms on Artesunate-Mefloquine Treatment Response in Burmese Patients with Plasmodium falciparum Malaria

    PubMed Central

    Phompradit, Papichaya; Muhamad, Poonuch; Cheoymang, Anurak; Na-Bangchang, Kesara

    2014-01-01

    CYP2A6, CYP2B6, and UGT1A9 genetic polymorphisms and treatment response after a three-day course of artesunate-mefloquine was investigated in 71 Burmese patients with uncomplicated Plasmodium falciparum malaria. Results provide evidence for the possible link between CYP2A6 and CYP2B6 polymorphisms and plasma concentrations of artesunate/dihydroartemisinin and treatment response. In one patient who had the CYP2A6*1A/*4C genotype (decreased enzyme activity), plasma concentration of artesunate at one hour appeared to be higher, and the concentration of dihydroartemisinin was lower than for those carrying other genotypes (415 versus 320 ng/mL). The proportion of patients with adequate clinical and parasitologic response who had the CYP2B6*9/*9 genotype (mutant genotype) was significantly lower compared with those with late parasitologic failure (14.0% versus 19.0%). Confirmation through a larger study in various malaria-endemic areas is required before a definite conclusion on the role of genetic polymorphisms of these drug-metabolizing enzymes on treatment response after artesunate-based combination therapy can be made. PMID:24891466

  12. Time-dependent inhibition of CYP3A4 by gallic acid in human liver microsomes and recombinant systems.

    PubMed

    Pu, Qiang-Hong; Shi, Liang; Yu, Chao

    2015-03-01

    1.Gallic acid is a main polyphenol in various fruits and plants. Inhibitory characteristics of gallic acid on CYP3A4 were still unclear. The objective of this work is hence to investigate inhibitory characteristics of gallic acid on CYP3A4 using testosterone as the probe substrate in human liver microsomes (HLMs) and recombinant CYP3A4 (rCYP3A4) systems. 2.Gallic acid caused concentration-dependent loss of CYP3A4 activity with IC50 values of 615.2 μM and 669.5 μM in HLM and rCYP3A4 systems, respectively. IC50-shift experiments showed that pre-incubation with gallic acid in the absence of NADPH contributed to 12- or 14-fold reduction of IC50 in HLM and rCYP3A4 systems, respectively, supporting a time-dependent inhibition. In HLM, time-dependent inactivation variables KI and Kinact were 485.8 μM and 0.05 min(-1), respectively. 3.Compared with the presence of NADPH, pre-incubation of gallic acid in the absence of NADPH markedly increased its inhibitory effects in HLM and rCYP3A4 systems. Those results indicate that CYP3A4 inactivation by gallic acid was independent on NADPH and was mainly mediated its oxidative products. 4.In conclusion, we showed that gallic acid weakly and time-dependently inactivated CYP3A4 via its oxidative products.

  13. Retinal and Nonocular Abnormalities in Cyp27a1−/−Cyp46a1−/− Mice with Dysfunctional Metabolism of Cholesterol

    PubMed Central

    Saadane, Aicha; Mast, Natalia; Charvet, Casey D.; Omarova, Saida; Zheng, Wenchao; Huang, Suber S.; Kern, Timothy S.; Peachey, Neal S.; Pikuleva, Irina A.

    2015-01-01

    Cholesterol elimination from nonhepatic cells involves metabolism to side-chain oxysterols, which serve as transport forms of cholesterol and bioactive molecules modulating a variety of cellular processes. Cholesterol metabolism is tissue specific, and its significance has not yet been established for the retina, where cytochromes P450 (CYP27A1 and CYP46A1) are the major cholesterol-metabolizing enzymes. We generated Cyp27a1−/−Cyp46a1−/− mice, which were lean and had normal serum cholesterol and glucose levels. These animals, however, had changes in the retinal vasculature, retina, and several nonocular organs (lungs, liver, and spleen). Changes in the retinal vasculature included structural abnormalities (retinal-choroidal anastomoses, arteriovenous shunts, increased permeability, dilation, nonperfusion, and capillary degeneration) and cholesterol deposition and oxidation in the vascular wall, which also exhibited increased adhesion of leukocytes and activation of the complement pathway. Changes in the retina included increased content of cholesterol and its metabolite, cholestanol, which were focally deposited at the apical and basal sides of the retinal pigment epithelium. Retinal macrophages of Cyp27a1−/−Cyp46a1−/− mice were activated, and oxidative stress was noted in their photoreceptor inner segments. Our findings demonstrate the importance of retinal cholesterol metabolism for maintenance of the normal retina, and suggest new targets for diseases affecting the retinal vasculature. PMID:25065682

  14. Association between NAT2, CYP1A1, and CYP1A2 genotypes, heterocyclic aromatic amines, and prostate cancer risk: a case control study in Japan.

    PubMed

    Koda, Masahide; Iwasaki, Motoki; Yamano, Yuko; Lu, Xi; Katoh, Takahiko

    2017-10-24

    Heterocyclic aromatic amines (HAAs) may confer prostate cancer risk; however, the evidence is inconclusive and the activity of HAA-metabolizing enzymes is modulated by gene variants. The purpose of our study was to determine whether there was evidence of an association between HAA intake, polymorphisms in NAT2, CYP1A1, and CYP1A2 and prostate cancer risk in Japanese men. Secondary data analysis of an observational case control study was performed. Among 750 patients with prostate cancer and 870 healthy controls, 351 cases and 351 age-matched controls were enrolled for analysis. HAA intake was estimated using a food frequency questionnaire and genotypes were scored by TaqMan real-time PCR assay. Logistic regression analysis was conducted according to affected/control status. We found that high HAA intake was significantly associated with an increased risk of prostate cancer (odds ratio (OR), 1.90; 95% confidence interval (95% CI), 1.40-2.59). The increased risk of prostate cancer was observed among individuals with the NAT2 slow acetylator phenotype (OR, 1.65; 95% CI, 1.04-2.61), CYP1A1 GA + GG genotype (OR, 1.27; 95% CI, 1.02-1.59), and CYP1A2 CA + AA genotype (OR, 1.43; 95% CI, 1.03-2.00). In addition, CYP1A1 GA + GG genotypes were associated with increased cancer risk in low (OR, 2.05; 95% CI, 1.19-3.63), moderate (OR, 1.72; 95% CI, 1.07-2.76), and high (OR, 2.86; 95% CI, 1.83-4.47) HAA intake groups. Our results suggest that high HAA intake is a risk factor of prostate cancer, and genotypes related to HAA metabolic enzymes can modulate the degree of the risk.

  15. Analysis of the binding sites of vitamin D 1α-hydroxylase (CYP27B1) and vitamin D 24-hydroxylase (CYP24A1) for the design of selective CYP24A1 inhibitors: Homology modelling, molecular dynamics simulations and identification of key binding requirements.

    PubMed

    Taban, Ismail M; Zhu, Jinge; DeLuca, Hector F; Simons, Claire

    2017-10-15

    A homology model of human CYP27B1 was built using MOE and was further optimised by molecular dynamics simulations of the hCYP27B1 homology model and a hCYP27B1-SDZ-88357 complex. Docking results from the hCYP27B1-SDZ-88357 complex showed amino acids Arg107, Asn387 and Asp320 have an important role in binding interaction, with Asp320 part of the important acid-alcohol pair situated in the I-helix with the conserved sequence (A/G) GX (E/D) (T/S), which assumes an essential role in the binding of an oxygen molecule for catalysis. Additional docking experiments with selective hCYP27B1 or hCYP24A1 inhibitors using both the hCYP27B1 model and a triple mutant hCYP24A1 model provided further support for the importance of H-bonding interactions with the three identified active site amino acids. To confirm the role of Arg107, Asn387 and Asp320 in the active site of hCYP27B1 compounds were designed that would form H-bonding interactions, as determined from docking experiments with the hCYP27B1 model. Subsequent synthesis and CYP24A1 and CYP27B1 enzyme assays of the designed compounds 1a and 1b showed a∼5-fold selectivity for CYP27B1 confirming the importance of Asp320 in particular and also Asn387 and Arg107 as important amino acids for CYP27B1 inhibitory activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. CYP98A22, a phenolic ester 3’-hydroxylase specialized in the synthesis of chlorogenic acid, as a new tool for enhancing the furanocoumarin concentration in Ruta graveolens

    PubMed Central

    2012-01-01

    Background Furanocoumarins are molecules with proven therapeutic properties and are produced in only a small number of medicinal plant species such as Ruta graveolens. In vivo, these molecules play a protective role against phytophageous insect attack. Furanocoumarins are members of the phenylpropanoids family, and their biosynthetic pathway is initiated from p-coumaroyl coA. The enzymes belonging to the CYP98A cytochrome P450 family have been widely described as being aromatic meta-hydroxylases of various substrates, such as p-coumaroyl ester derivatives, and are involved in the synthesis of coumarins such as scopoletin. In furanocoumarin-producing plants, these enzymes catalyze the step directly downstream of the junction with the furanocoumarin biosynthetic pathway and might indirectly impact their synthesis. Results In this work, we describe the cloning and functional characterization of the first CYP98A encoding gene isolated from R. graveolens. Using Nicotiana benthamiana as a heterologous expression system, we have demonstrated that this enzyme adds a 3-OH to p-coumaroyl ester derivatives but is more efficient to convert p-coumaroyl quinate into chlorogenic acid than to metabolize p-coumaroyl shikimate. Plants exposed to UV-B stress showed an enhanced expression level of the corresponding gene. The R. graveolens cyp98a22 open reading frame and the orthologous Arabidopsis thaliana cyp98a3 open reading frame were overexpressed in stable transgenic Ruta plants. Both plant series were analyzed for their production of scopoletin and furanocoumarin. A detailed analysis indicates that both genes enhance the production of furanocoumarins but that CYP98A22, unlike CYP98A3, doesn’t affect the synthesis of scopoletin. Conclusions The overexpression of CYP98A22 positively impacts the concentration of furanocoumarins in R. graveolens. This gene is therefore a valuable tool to engineer plants with improved therapeutical values that might also be more resistant to

  17. Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver

    PubMed Central

    Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao

    2015-01-01

    Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (<100 mg/kg) does not change expression and enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult mouse liver, whereas phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. PMID:26400395

  18. Dose of Phenobarbital and Age of Treatment at Early Life are Two Key Factors for the Persistent Induction of Cytochrome P450 Enzymes in Adult Mouse Liver.

    PubMed

    Tien, Yun-Chen; Liu, Ke; Pope, Chad; Wang, Pengcheng; Ma, Xiaochao; Zhong, Xiao-bo

    2015-12-01

    Drug treatment of neonates and infants and its long-term consequences on drug responses have emerged in recent years as a major challenge for health care professionals. In the current study, we use phenobarbital as a model drug and mouse as an in vivo model to demonstrate that the dose of phenobarbital and age of treatment are two key factors for the persistent induction of gene expression and consequential increases of enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult livers. We show that phenobarbital treatment at early life of day 5 after birth with a low dose (<100 mg/kg) does not change expression and enzyme activities of Cyp2b, Cyp2c, and Cyp3a in adult mouse liver, whereas phenobarbital treatment with a high dose (>200 mg/kg) significantly increases expression and enzyme activities of these P450s in adult liver. We also demonstrate that phenobarbital treatment before day 10 after birth, but not at later ages, significantly increases mRNAs, proteins, and enzyme activities of the tested P450s. Such persistent induction of P450 gene expression and enzyme activities in adult livers by phenobarbital treatment only occurs within a sensitive age window early in life. The persistent induction in gene expression and enzyme activities is higher in female mice than in male mice for Cyp2b10 but not for Cyp2c29 and Cyp3a11. These results will stimulate studies to evaluate the long-term impacts of drug treatment with different doses at neonatal and infant ages on drug metabolism, therapeutic efficacy, and drug-induced toxicity throughout the rest of life. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Herbal medicine yin zhi huang induces CYP3A4-mediated sulfoxidation and CYP2C19-dependent hydroxylation of omeprazole.

    PubMed

    Fan, Lan; Wang, Guo; Wang, Lian-Sheng; Chen, Yao; Zhang, Wei; Huang, Yuan-Fei; Huang, Rui-Xue; Hu, Dong-Li; Wang, Dan; Zhou, Hong-Hao

    2007-10-01

    To explore the potential interactions between yin zhi huang (YZH) and omeprazole, a substrate of CYP3A4 and CYP2C19. Eighteen healthy volunteers, including 6 CYP2C19*1/*1, 6 CYP2C19*1/*2 or *3 and 6 CYP2C19*2/*2 were enrolled in a 2-phase, randomized, crossover clinical trial. In each phase, the volunteers received either placebo or 10 mL YZH oral liquid, 3 times daily for 14 d. Then all the patients took a 20 mg omeprazole capsule orally. Blood samples were collected up to 12 h after omeprazole administration. Plasma concentrations of omeprazole and its metabolites were quantified by HPLC with UV detection. After 14 d of treatment of YZH, plasma omeprazole significantly decreased and those of omeprazole sulfone and 5-hydroxyomeprazole significantly increased. The ratios of the area under the plasma concentration-time curves from time 0 to infinity (AUC(0-infinity) of omeprazole to 5-hydroxyomprazole and those of omeprazole to omeprazole sulfone decreased by 64.80%+/-12.51% (P=0.001) and 63.31%+/-18.45% (P=0.004) in CYP2C19*1/*1, 57.98%+/-14.80% (P=0.002) and 54.87%+/-18.42% (P=0.003) in CYP2C19*1/*2 or *3, and 37.74%+/-16.07% (P=0.004) and 45.16%+/-15.54% (P=0.003) in CYP2C19*2/*2, respectively. The decrease of the AUC(0-infinity) ratio of omeprazole to 5-hydroxyomprazole in CYP2C19*1/*1 and CYP2C19*1/*2 or *3 was greater than those in CYP2C19*2/*2 (P=0.047 and P=0.009). YZH induces both CYP3A4-catalyzed sulfoxidation and CYP2C19-dependent hydroxylation of omeprazole leading to decreases in plasma omeprazole concentrations.

  20. Guanfu base A, an antiarrhythmic alkaloid of Aconitum coreanum, Is a CYP2D6 inhibitor of human, monkey, and dog isoforms.

    PubMed

    Sun, Jianguo; Peng, Ying; Wu, Hui; Zhang, Xueyuan; Zhong, Yunxi; Xiao, Yanan; Zhang, Fengyi; Qi, Huanhuan; Shang, Lili; Zhu, Jianping; Sun, Yue; Liu, Ke; Liu, Jinghan; A, Jiye; Ho, Rodney J Y; Wang, Guangji

    2015-05-01

    Guanfu base A (GFA) is a novel heterocyclic antiarrhythmic drug isolated from Aconitum coreanum (Lèvl.) rapaics and is currently in a phase IV clinical trial in China. However, no study has investigated the influence of GFA on cytochrome P450 (P450) drug metabolism. We characterized the potency and specificity of GFA CYP2D inhibition based on dextromethorphan O-demethylation, a CYP2D6 probe substrate of activity in human, mouse, rat, dog, and monkey liver microsomes. In addition, (+)-bufuralol 1'-hydroxylation was used as a CYP2D6 probe for the recombinant form (rCYP2D6), 2D1 (rCYP2D1), and 2D2 (rCYP2D2) activities. Results show that GFA is a potent noncompetitive inhibitor of CYP2D6, with inhibition constant Ki = 1.20 ± 0.33 μM in human liver microsomes (HLMs) and Ki = 0.37 ± 0.16 μM for the human recombinant form (rCYP2D6). GFA is also a potent competitive inhibitor of CYP2D in monkey (Ki = 0.38 ± 0.12 μM) and dog (Ki = 2.4 ± 1.3 μM) microsomes. However, GFA has no inhibitory activity on mouse or rat CYP2Ds. GFA did not exhibit any inhibition activity on human recombinant CYP1A2, 2A6, 2C8, 2C19, 3A4, or 3A5, but showed slight inhibition of 2B6 and 2E1. Preincubation of HLMs and rCYP2D6 resulted in the inactivation of the enzyme, which was attenuated by GFA or quinidine. Beagle dogs treated intravenously with dextromethorphan (2 mg/ml) after pretreatment with GFA injection showed reduced CYP2D metabolic activity, with the Cmax of dextrorphan being one-third that of the saline-treated group and area under the plasma concentration-time curve half that of the saline-treated group. This study suggests that GFA is a specific CYP2D6 inhibitor that might play a role in CYP2D6 medicated drug-drug interaction. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Single A326G mutation converts human CYP24A1 from 25-OH-D3-24-hydroxylase into -23-hydroxylase, generating 1α,25-(OH)2D3-26,23-lactone

    PubMed Central

    Prosser, David E.; Kaufmann, Martin; O'Leary, Brendan; Byford, Valarie; Jones, Glenville

    2007-01-01

    Studies of 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1) have demonstrated that it is a bifunctional enzyme capable of the 24-hydroxylation of 1α,25-(OH)2D3, leading to the excretory form, calcitroic acid, and 23-hydroxylation, culminating in 1α,25-(OH)2D3-26,23-lactone. The degree to which CYP24A1 performs either 23- or 24-hydroxylation is species-dependent. In this paper, we show that the human enzyme that predominantly 24-hydroxylates its substrate differs from the opossum enzyme that 23-hydroxylates it at only a limited number of amino acid residues. Mutagenesis of the human form at a single substrate-binding residue (A326G) dramatically changes the regioselectivity of the enzyme from a 24-hydroxylase to a 23-hydroxylase, whereas other modifications have no effect. Ala-326 is located in the I-helix, close to the terminus of the docked 25-hydroxylated side chain in a CYP24A1 homology model, a result that we interpret indicates that substitution of a glycine at 326 provides extra space for the side chain of the substrate to move deeper into the pocket and place it in a optimal stereochemical position for 23-hydroxylation. We discuss the physiological ramifications of these results for species possessing the A326G substitution, as well as implications for optimal vitamin D analog design. PMID:17646648

  2. Evaluation of organic anion-transporting polypeptide 1B1 and CYP3A4 activities in primary human hepatocytes and HepaRG cells cultured in a dynamic three-dimensional bioreactor system.

    PubMed

    Ulvestad, Maria; Darnell, Malin; Molden, Espen; Ellis, Ewa; Åsberg, Anders; Andersson, Tommy B

    2012-10-01

    The long-term stability of liver cell functions is a major challenge when studying hepatic drug transport, metabolism, and toxicity in vitro. The aim of the present study was to investigate organic anion-transporting polypeptide (OATP) 1B1 and CYP3A4 activities in fresh primary human hepatocytes and differentiated cryopreserved HepaRG cells when cultured in a three-dimensional (3D) bioreactor system. OATP1B1 activity was determined by loss from media experiments of [(3)H]estradiol-17β-D-glucuronide and atorvastatin acid (ATA) for up to 7 days in culture. ATA metabolite formation was determined at days 3 to 4 to evaluate CYP3A4 activity. Overall, the results showed that freshly isolated human hepatocytes inoculated in the bioreactor retained OATP1B1 activity for at least 7 days, whereas in HepaRG cells no OATP1B1 activity was observed beyond day 2. The activity data were in agreement with immunohistochemical stainings, which showed that OATP1B1 protein expression was preserved for at least 9 days in fresh human hepatocytes, whereas OATP1B1 was expressed markedly lower in HepaRG cells after 9 days in culture. Fresh human hepatocytes and HepaRG cells exhibited similar CYP3A4 activity in bioreactor culture, and immunohistochemical stainings supported these findings. Activity and mRNA expression of OATP1B1 and CYP3A4 in primary human hepatocytes compared with HepaRG cells in fresh suspensions were in agreement with data obtained in bioreactor culture. In conclusion, freshly isolated human hepatocytes cultured in a 3D bioreactor system preserve both OATP1B1 and CYP3A4 activities, allowing long-term in vitro studies on drug disposition and toxicity.

  3. Utility of Nicotiana tabacum cell suspension cultures expressing human CYP1A1, CYP1A2 and CYP3A4 to study the oxidative metabolism of the herbicide 14C-fluometuron.

    PubMed

    Breuer, Maren Anne; Schmidt, Burkhard; Schuphan, Ingolf

    2009-01-01

    The metabolism and biotransformation of the (14)C-labeled phenylurea herbicide fluometuron was examined using tobacco cell suspension cultures transformed separately with human cyp1a1, cyp1a2 and cyp3a4, and corresponding non-transformed cultures in order to screen and predict metabolic patterns. Experimental parameters modified were concentration of (14)C-fluometuron, incubation period, and additional application of inhibitor carbaryl. Media and cell extracts were analyzed by radio-TLC and radio-HPLC, isolated metabolites by LC-MS, and non-extractable residues by combustion. During 48 hours, the CYP1A1 expressing cultures metabolized 90.0 % of applied fluometuron, while the non-transgenic controls transformed 67.0 %. The CYP1A2 expressing cultures exhibited highest rates (95.1 %), CYP3A4 expressing cultures lowest rates (43.0 %). The primary metabolites identified were mono-demethyl (main metabolite in controls) and di-demethyl fluometuron (mainly in CYP1A2 cultures), besides a non-identified primary product (mainly in CYP1A1 cultures); metabolic profiles differed distinctly among cultures. After addition of carbaryl, rates of fluometuron decreased noticeably in controls and not in CYP3A4 expressing cultures. This may indicate inhibition of endogenous tobacco P450s involved in fluometuron metabolism but not of CYP3A4. Additionally, the P450-transgenic cultures proved to be valuable tools to produce large amounts of metabolites for thorough identification.

  4. Metabolism of deltamethrin and cis- and trans-permethrin by human expressed cytochrome P450 and carboxylesterase enzymes.

    PubMed

    Hedges, Laura; Brown, Susan; MacLeod, A Kenneth; Vardy, Audrey; Doyle, Edward; Song, Gina; Moreau, Marjory; Yoon, Miyoung; Osimitz, Thomas G; Lake, Brian G

    2018-06-04

    The metabolism of the pyrethroids deltamethrin (DLM), cis-permethrin (CPM) and trans-permethrin (TPM) was studied in human expressed cytochrome P450 (CYP) and carboxylesterase (CES) enzymes. DLM, CPM and TPM were metabolised by human CYP2B6 and CYP2C19, with the highest apparent intrinsic clearance (CL int ) values for pyrethroid metabolism being observed with CYP2C19. Other CYP enzymes contributing to the metabolism of one or more of the three pyrethroids were CYP1A2, CYP2C8, CYP2C9*1, CYP2D6*1, CYP3A4 and CYP3A5. None of the pyrethroids were metabolised by CYP2A6, CYP2E1, CYP3A7 or CYP4A11. DLM, CPM and TPM were metabolised by both human CES1 and CES2 enzymes. Apparent CL int values for pyrethroid metabolism by CYP and CES enzymes were scaled to per gram of adult human liver using abundance values for microsomal CYP enzymes and for CES enzymes in liver microsomes and cytosol. TPM had the highest and CPM the lowest apparent CL int values for total metabolism (CYP and CES enzymes) per gram of adult human liver. Due to their higher abundance, all three pyrethroids were extensively metabolised by CES enzymes in adult human liver, with CYP enzymes only accounting for 2%, 10% and 1% of total metabolism for DLM, CPM and TPM, respectively.

  5. Caffeic acid phenethyl ester inhibits 3-MC-induced CYP1A1 expression through induction of hypoxia-inducible factor-1α

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyung Gyun; Han, Eun Hee; Im, Ji Hye

    2015-09-25

    Caffeic acid phenethyl ester (CAPE), a natural component of propolis, is reported to have anticarcinogenic properties, although its precise chemopreventive mechanism remains unclear. In this study, we examined the effects of CAPE on 3-methylcholanthrene (3-MC)-induced CYP1A1 expression and activities. CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. Moreover, CAPE inhibited 3-MC-induced CYP1A1 activity, mRNA expression, protein level, and promoter activity. CAPE treatment also decreased 3-MC-inducible xenobiotic-response element (XRE)-linked luciferase, aryl hydrocarbons receptor (AhR) transactivation and nuclear localization. CAPE induced hypoxia inducible factor-1α (HIF-1α) protein level and HIF-1α responsible element (HRE) transcriptional activity. CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 protein expression. Takenmore » together, CAPE decreases 3-MC-mediated CYP1A1 expression, and this inhibitory response is associated with inhibition of AhR and HIF-1α induction. - Highlights: • CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. • CAPE inhibited 3-MC-induced CYP1A1 expression. • CAPE induced HIF-1α induction. • CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 expression.« less

  6. Effect of Methamphetamine on Spectral Binding, Ligand Docking and Metabolism of Anti-HIV Drugs with CYP3A4

    PubMed Central

    Ande, Anusha; Wang, Lei; Vaidya, Naveen K.; Li, Weihua; Kumar, Santosh; Kumar, Anil

    2016-01-01

    Cytochrome P450 3A4 (CYP3A4) is the major drug metabolic enzyme, and is involved in the metabolism of antiretroviral drugs, especially protease inhibitors (PIs). This study was undertaken to examine the effect of methamphetamine on the binding and metabolism of PIs with CYP3A4. We showed that methamphetamine exhibits a type I spectral change upon binding to CYP3A4 with δAmax and KD of 0.016±0.001 and 204±18 μM, respectively. Methamphetamine-CYP3A4 docking showed that methamphetamine binds to the heme of CYP3A4 in two modes, both leading to N-demethylation. We then studied the effect of methamphetamine binding on PIs with CYP3A4. Our results showed that methamphetamine alters spectral binding of nelfinavir but not the other type I PIs (lopinavir, atazanavir, tipranavir). The change in spectral binding for nelfinavir was observed at both δAmax (0.004±0.0003 vs. 0.0068±0.0001) and KD (1.42±0.36 vs.2.93±0.08 μM) levels. We further tested effect of methamphetamine on binding of 2 type II PIs; ritonavir and indinavir. Our results showed that methamphetamine alters the ritonavir binding to CYP3A4 by decreasing both the δAmax (0.0038±0.0003 vs. 0.0055±0.0003) and KD (0.043±0.0001 vs. 0.065±0.001 nM), while indinavir showed only reduced KD in presence of methamphetamine (0.086±0.01 vs. 0.174±0.03 nM). Furthermore, LC-MS/MS studies in high CYP3A4 human liver microsomes showed a decrease in the formation of hydroxy ritonavir in the presence of methamphetamine. Finally, CYP3A4 docking with lopinavir and ritonavir in the absence and presence of methamphetamine showed that methamphetamine alters the docking of ritonavir, which is consistent with the results obtained from spectral binding and metabolism studies. Overall, our results demonstrated differential effects of methamphetamine on the binding and metabolism of PIs with CYP3A4. These findings have clinical implication in terms of drug dose adjustment of antiretroviral medication, especially with ritonavir

  7. CYP3A5*3 and ABCB1 61A>G Significantly Influence Dose-adjusted Trough Blood Tacrolimus Concentrations in the First Three Months Post-Kidney Transplantation.

    PubMed

    Hu, Rong; Barratt, Daniel T; Coller, Janet K; Sallustio, Benedetta C; Somogyi, Andrew A

    2018-03-30

    Tacrolimus (TAC) is a first-line immunosuppressant used to prevent organ rejection after kidney transplantation. There is large inter-individual variability in its pharmacokinetics. Single nucleotide polymorphisms (SNPs) in genes encoding TAC metabolizing enzymes cytochromes P450 3A4/5 (CYP3A4/5), P-glycoprotein efflux transporter (ABCB1), their expression regulator pregnane X receptor (NR1I2) and CYP3A co-factor cytochrome P450 reductase (POR) have been studied for their effects on tacrolimus disposition. However, except for CYP3A5*3, controversies remain about their roles in predicting dose-adjusted trough blood TAC concentrations (C 0 /D). This study aimed to investigate the effects of ABCB1 (61A>G, 1199G>A, 1236C>T, 2677G>T and 3435C>T), CYP3A4*22, CYP3A5*3, NR1I2 (8055C>T, 63396C>T and -25385C>T) and POR*28 SNPs on TAC C 0 /D. In total, 165 kidney transplant recipients were included in this study. SNPs were genotyped by probe-based real-time polymerase chain reaction. Associations between log-transformed whole blood TAC C 0 /D (measured at 1 and 3 months post-transplant) and genotypes/haplotypes were assessed by linear mixed effects analysis, controlling for age, sex and haematocrit. It was observed that CYP3A5 expressors (*1/*1 + *1/*3) (p = 5.5 × 10 -16 ) and ABCB1 61G allele carriers (p = 0.001) had lower log-transformed TAC C 0 /D (56% and 26% lower geometric mean TAC C 0 /D, respectively) and accounted for approximately 30% and 4%, respectively, of log-transformed TAC C 0 /D variability in the first 3 months post-transplant. In conclusion, CYP3A5*3 is a major, and ABCB1 61A>G is a novel, although minor, genetic factor affecting TAC C 0 /D in kidney transplant recipients. © 2018 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  8. The post-menopausal ovary displays a unique pattern of steroidogenic enzyme expression.

    PubMed

    Havelock, Jon C; Rainey, William E; Bradshaw, Karen D; Carr, Bruce R

    2006-01-01

    While menopause results in the loss of cyclic steroid production, evidence exists for persistent, albeit reduced, ovarian androgen production. In order to continue to synthesize ovarian androgens, the steroidogenic enzymes necessary for androgen biosynthesis must be present. Few studies have selectively analysed some of the steroidogenic enzymes present in the post-menopausal ovary (PMO), and a comprehensive study of this matter has never been undertaken. RNA and protein were obtained from PMO, pre-menopausal ovarian stroma, corpora lutea (CL), ovarian follicles, placenta, and myometrium. Oligonucleotide microarray analysis was performed to compare the gene expression profiles of PMO with pre-menopausal ovarian stroma. Real-time RT-PCR was performed for LH/HCG receptor (LHCGR), steroidogenic acute regulatory (StAR), cholesterol side-chain cleavage (CYP11A), 3beta-hydroxysteroid dehydrogenase type I (HSD3B1) and type II (HSD3B2, 3betaHSD), 17a-hydroxylase (CYP17), cytochrome b5 (CytB5), and aromatase (CYP19). Western blot analysis was performed for StAR, CYP11A, CYP17,and 3betaHSD. The PMO and pre-menopausal ovarian stroma had a similar pattern of steroidogenic enzyme expression. The PMO had persistent, but reduced, levels of LHCGR and most steroidogenic enzymes. CYP19 and HSD3B2 mRNA were greatly reduced in PMO in comparison with CL (50-fold and 2000-fold less respectively). HSD3B2 was not detectable in PMO by western analysis. This study supports the idea that the PMO retains some steroidogenic capacity. However, based on steroidogenic enzyme expression, the PMO has a unique pattern of steroidogenic enzyme expression that favors Delta5 steroid formation over Delta4 steroid formation.

  9. FGF-23 Regulates CYP27B1 Transcription in the Kidney and in Extra-Renal Tissues

    PubMed Central

    Chanakul, Ankanee; Zhang, Martin Y. H.; Louw, Andrew; Armbrecht, Harvey J.; Miller, Walter L.; Portale, Anthony A.; Perwad, Farzana

    2013-01-01

    The mitochondrial enzyme 25-hydroxyvitamin D 1α-hydroxylase, which is encoded by the CYP27B1 gene, converts 25OHD to the biological active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D). Renal 1α-hydroxylase activity is the principal determinant of the circulating 1,25(OH)2D concentration and enzyme activity is tightly regulated by several factors. Fibroblast growth factor-23 (FGF-23) decreases serum 1,25(OH)2D concentrations by suppressing CYP27B1 mRNA abundance in mice. In extra-renal tissues, 1α-hydroxylase is responsible for local 1,25(OH)2D synthesis, which has important paracrine actions, but whether FGF-23 regulates CYP27B1 gene expression in extra-renal tissues is unknown. We sought to determine whether FGF-23 regulates CYP27B1 transcription in the kidney and whether extra-renal tissues are target sites for FGF-23-induced suppression of CYP27B1. In HEK293 cells transfected with the human CYP27B1 promoter, FGF-23 suppressed promoter activity by 70%, and the suppressive effect was blocked by CI-1040, a specific inhibitor of extracellular signal regulated kinase 1/2. To examine CYP27B1 transcriptional activity in vivo, we crossed fgf-23 null mice with mice bearing the CYP27B1 promoter-driven luciferase transgene (1α-Luc). In the kidney of FGF-23 null/1α-Luc mice, CYP27B1 promoter activity was increased by 3-fold compared to that in wild-type/1α-Luc mice. Intraperitoneal injection of FGF-23 suppressed renal CYP27B1 promoter activity and protein expression by 26% and 60% respectively, and the suppressive effect was blocked by PD0325901, an ERK1/2 inhibitor. These findings provide evidence that FGF-23 suppresses CYP27B1 transcription in the kidney. Furthermore, we demonstrate that in FGF-23 null/1α-Luc mice, CYP27B1 promoter activity and mRNA abundance are increased in several extra-renal sites. In the heart of FGF-23 null/1α-Luc mice, CYP27B1 promoter activity and mRNA were 2- and 5-fold higher, respectively, than in control mice. We also

  10. Cree antidiabetic plant extracts display mechanism-based inactivation of CYP3A4.

    PubMed

    Tam, Teresa W; Liu, Rui; Arnason, John T; Krantis, Anthony; Staines, William A; Haddad, Pierre S; Foster, Brian C

    2011-01-01

    Seventeen Cree antidiabetic medicinal plants were studied to determine their potential to inhibit cytochrome P450 3A4 (CYP3A4) through mechanism-based inactivation (MBI). The ethanolic extracts of the medicinal plants were studied for their inhibition of CYP3A4 using the substrates testosterone and dibenzylfluorescein (DBF) in high pressure liquid chromatography (HPLC) and microtiter fluorometric assays, respectively. Using testosterone as a substrate, extracts of Alnus incana, Sarracenia purpurea, and Lycopodium clavatum were identified as potent CYP3A4 MBIs, while those from Abies balsamea, Picea mariana, Pinus banksiana, Rhododendron tomentosum, Kalmia angustifolia, and Picea glauca were identified as less potent inactivators. Not unexpectedly, the other substrate, DBF, showed a different profile of inhibition. Only A. balsamea was identified as a CYP3A4 MBI using DBF. Abies balsamea displayed both NADPH- and time-dependence of CYP3A4 inhibition using both substrates. Overall, several of the medicinal plants may markedly deplete CYP3A4 through MBI and, consequently, decrease the metabolism of CYP3A4 substrates including numerous medications used by diabetics.

  11. CYP2S1 depletion enhances colorectal cell proliferation is associated with PGE2-mediated activation of β-catenin signaling.

    PubMed

    Yang, Chao; Li, Changyuan; Li, Minle; Tong, Xuemei; Hu, Xiaowen; Yang, Xuhan; Yan, Xiaomei; He, Lin; Wan, Chunling

    2015-02-15

    Colorectal epithelial cancer is one of the most common cancers in the world and its 5-year survival rate is still relatively low. Cytochrome P450 (CYP) enzymes in epithelial cells lining the alimentary tract play an important role in the oxidative metabolism of a wide range of xenobiotics, including (pro-)carcinogens and endogenous compounds. Although CYP2S1, a member of CYP family, strongly expressed in many extrahepatic tissues, the role of CYP2S1 in cancer remains unclear. To investigate whether CYP2S1 involves in colorectal carcinogenesis, cell proliferation was analyzed in HCT116 cells depleted of CYP2S1 using small hairpin interfering RNA. Our data show that CYP2S1 knockdown promotes cell proliferation through increasing the level of endogenous prostaglandin E2(PGE2). PGE2, in turn, reduces phosphorylation of β-catenin and activates β-catenin signaling, which contributes to the cell proliferation. Furthermore, CYP2S1 knockdown increase tumor growth in xenograft mouse model. In brief, these results demonstrate that CYP2S1 regulates colorectal cancer growth through associated with PGE2-mediated activation of β-catenin signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Early onset of puberty and early ovarian failure in CYP7B1 knockout mice.

    PubMed

    Omoto, Yoko; Lathe, Richard; Warner, Margaret; Gustafsson, Jan-Ake

    2005-02-22

    CYP7B1 is the enzyme responsible for hydroxylation and termination of the estrogenic actions of the androgen metabolite, 5alpha-androstane-3beta, 17beta-diol (3betaAdiol). 3betaAdiol is estrogenic in ERalpha or ERbeta positive cells only if they do not express CYP7B1. In this study we show that female CYP7B1(-/-) mice experience early onset of growth of the uterus and mammary glands and commence estrus cycles 2 days earlier than their wild-type littermates. Adult mammary glands and uteri appear to be under continuous estrogenic stimulation. We conclude that, by cell-specific regulation of the estrogenicity of 3betaAdiol, CYP7B1 performs two major tasks: (i) it allows 3betaAdiol to have growth inhibitory effects through ERbeta and (ii) it permits estradiol-specific activation of estrogen receptors by protection of certain cells from the estrogenic effects of 3betaAdiol. When CYP7B1 is inactivated, 3betaAdiol activates estrogen receptors indiscriminately, and the overall effect is prolonged and inappropriate exposure to estrogen.

  13. Fentanyl Enhances Hepatotoxicity of Paclitaxel via Inhibition of CYP3A4 and ABCB1 Transport Activity in Mice

    PubMed Central

    Pan, Jia-Hao; Bi, Bing-Tian; Feng, Kun-Yao; Huang, Wan; Zeng, Wei-An

    2015-01-01

    Fentanyl, a potent opioid analgesic that is used to treat cancer pain, is commonly administered with paclitaxel in advanced tumors. However, the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanism of action is not well studied. The purpose of this study was to investigate the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanisms of action. Pharmacokinetic parameters of paclitaxel were tested using reversed phase high-performance liquid chromatography (RP-HPLC). Aspartate transaminase (AST), alanine aminotransferase (ALT), and mouse liver histopathology were examined. Moreover, the cytotoxicity of anti-carcinogens was examined using 1-(4, 5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), and the intracellular accumulation of doxorubicin and rhodamine 123 was detected by flow cytometry. Furthermore, the expression of ABCB1 and the activity of ABCB1 ATPase and CYP3A4 were also examined. In this study, the co-administration of fentanyl and paclitaxel prolonged the half-life (t1/2) of paclitaxel from 1.455 hours to 2.344 hours and decreased the clearance (CL) from 10.997 ml/h to 7.014 ml/h in mice. Fentanyl significantly increased the levels of ALT in mice to 88.2 U/L, which is more than 2-fold higher than the level detected in the control group, and it increased the histological damage in mouse livers. Furthermore, fentanyl enhanced the cytotoxicity of anti-carcinogens that are ABCB1 substrates and increased the accumulation of doxorubicin and rhodamine 123. Additionally, fentanyl stimulated ABCB1 ATPase activity and inhibited CYP3A4 activity in the liver microsomes of mice. Our study indicates that the obvious hepatotoxicity during this co-administration was due to the inhibition of CYP3A4 activity and ABCB1 transport activity. These findings suggested that the accumulation-induced hepatotoxicity of paclitaxel when it is combined with fentanyl should be avoided. PMID:26633878

  14. Metabolism of alprazolam (a marker of CYP3A4) in hemodialysis patients with persistent inflammation.

    PubMed

    Molanaei, Hadi; Stenvinkel, Peter; Qureshi, Abdul Rashid; Carrero, Juan Jesús; Heimbürger, Olof; Lindholm, Bengt; Diczfalusy, Ulf; Odar-Cederlöf, Ingegerd; Bertilsson, Leif

    2012-05-01

    To investigate the impact of persistent inflammation in hemodialysis (HD) patients on the pharmacokinetics of alprazolam, a cytochrome P450 (CYP) 3A4 substrate, and its metabolites and the role of HD in the impact of persistent inflammation in this clinical context. The study population comprised 26 HD patients (mean age 64 years, range 27-79 years; 19 men, 7 women) who were given 1 mg of alprazolam orally in the evening before the day of HD. Unconjugated and conjugated alprazolam and its 4-hydroxy and α-hydroxy metabolites were measured by liquid chromatography-mass spectrometry at 10, 34 (start of HD) and 38 (end of HD) h after intake. C-reactive protein (CRP) was measured weekly beginning 2 months before study initiation, and alpha 1-acid glycoprotein and 4β-hydroxycholesterol were measured at baseline. CYP3A4 activity was estimated as the ratio of unconjugated alprazolam to 4-hydroxyalprazolam between 10 and 34 h following alprazolam intake. After a single dose of alprazolam, plasma concentrations of unconjugated alprazolam and its metabolites decreased gradually, and unconjugated 4-hydroxyalprazolam was eliminated more rapidly than unconjugated alprazolam by HD. In contrast, the plasma concentrations of conjugated alprazolam and its conjugated metabolites increased during the 34 h following drug intake and the subsequent HD decreased their levels by almost 80%. The ratio of unconjugated alprazolam to 4-hydroxyalprazolam was correlated with CRP levels (r(s) = 0.49, P = 0.01). There was no significant correlation between CYP3A4 activity measured by alprazolam (4-hydroxylation) and alpha 1-acid glycoprotein or 4β-hydroxycholesterol. Conjugated alprazolam was also found in the plasma. The correlation between CYP3A4 activity (assessed by alprazolam 4-hydroxylation) and CRP level suggests that inflammation may downregulate CYP3A4 activity. If confirmed, this could have major implications for drug dosing in persistently inflamed patients.

  15. Evaluation of the Effects of S-Allyl-L-cysteine, S-Methyl-L-cysteine, trans-S-1-Propenyl-L-cysteine, and Their N-Acetylated and S-Oxidized Metabolites on Human CYP Activities.

    PubMed

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji

    2016-01-01

    Three major organosulfur compounds of aged garlic extract, S-allyl-L-cysteine (SAC), S-methyl-L-cysteine (SMC), and trans-S-1-propenyl-L-cysteine (S1PC), were examined for their effects on the activities of five major isoforms of human CYP enzymes: CYP1A2, 2C9, 2C19, 2D6, and 3A4. The metabolite formation from probe substrates for the CYP isoforms was examined in human liver microsomes in the presence of organosulfur compounds at 0.01-1 mM by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Allicin, a major component of garlic, inhibited CYP1A2 and CYP3A4 activity by 21-45% at 0.03 mM. In contrast, a CYP2C9-catalyzed reaction was enhanced by up to 1.9 times in the presence of allicin at 0.003-0.3 mM. SAC, SMC, and S1PC had no effect on the activities of the five isoforms, except that S1PC inhibited CYP3A4-catalyzed midazolam 1'-hydroxylation by 31% at 1 mM. The N-acetylated metabolites of the three compounds inhibited the activities of several isoforms to a varying degree at 1 mM. N-Acetyl-S-allyl-L-cysteine and N-acetyl-S-methyl-L-cysteine inhibited the reactions catalyzed by CYP2D6 and CYP1A2, by 19 and 26%, respectively, whereas trans-N-acetyl-S-1-propenyl-L-cysteine showed weak to moderate inhibition (19-49%) of CYP1A2, 2C19, 2D6, and 3A4 activities. On the other hand, both the N-acetylated and S-oxidized metabolites of SAC, SMC, and S1PC had little effect on the reactions catalyzed by the five isoforms. These results indicated that SAC, SMC, and S1PC have little potential to cause drug-drug interaction due to CYP inhibition or activation in vivo, as judged by their minimal effects (IC 50 >1 mM) on the activities of five major isoforms of human CYP in vitro.

  16. Cytochrome P450 induction by rifampicin in healthy subjects: determination using the Karolinska cocktail and the endogenous CYP3A4 marker 4beta-hydroxycholesterol.

    PubMed

    Kanebratt, K P; Diczfalusy, U; Bäckström, T; Sparve, E; Bredberg, E; Böttiger, Y; Andersson, T B; Bertilsson, L

    2008-11-01

    The Karolinska cocktail, comprising caffeine, losartan, omeprazole, and quinine, was given before and after administration of rifampicin (20, 100, or 500 mg daily) to measure induction of cytochrome P450 (P450) enzymes. Rifampicin was given for 14 days to eight healthy subjects (all of whom possessed at least one wild-type CYP2C9 and one wild-type CYP2C19 gene) in each dose group. 4beta-hydroxycholesterol was assessed as an endogenous marker of CYP3A4 induction. A fourfold induction of CYP3A4 was seen at the highest dose by both quinine:3'-hydroxyquinine and 4beta-hydroxycholesterol measurements (P < 0.001). CYP3A4 was also induced at the two lower doses of rifampicin when measured by these two markers (P < 0.01 or P < 0.001). CYP1A2, CYP2C9, and CYP2C19 were induced after 500 mg rifampicin daily (1.2-fold, P < 0.05; 1.4-fold, P < 0.05; and 4.2-fold, P < 0.01, respectively). In conclusion, we have shown that the Karolinska cocktail and 4beta-hydroxycholesterol can be used for an initial screening of the induction properties of a drug candidate.

  17. CYP3A5 and ABCB1 polymorphisms influence tacrolimus concentrations in peripheral blood mononuclear cells after renal transplantation.

    PubMed

    Capron, Arnaud; Mourad, Michel; De Meyer, Martine; De Pauw, Luc; Eddour, Djamila Chaib; Latinne, Dominique; Elens, Laure; Haufroid, Vincent; Wallemacq, Pierre

    2010-05-01

    This prospective study investigated the effect of genetic polymorphisms in a biotransformation enzyme (CYP3A5) and a transporter protein (ABCB1) on tacrolimus (Tac) whole blood concentrations in renal transplantation, and more specifically on peripheral blood mononuclear cell (PBMC) drug concentrations, after renal transplantation. A total of 96 renal transplant recipients were genotyped for the exon 11 (1199G>A), 21 (3435C>T) and 26 (2677G>T/A) polymorphisms in the ABCB1 gene and for the intron 3 polymorphism in the CYP3A5 gene. Tac blood and PBMC concentrations were determined at day 7 after transplantation and at steady state, and then compared with recipient genotypes. The ABCB1 1199G>A, 3435C>T and 2677G>T/A SNPs, appeared to reduce the activity of P-glycoprotein towards Tac, increasing Tac PBMC concentrations. The impact of ABCB1 genetic polymorphisms on Tac blood concentrations was negligible. As increased Tac intracellular concentrations might in turn enhance immunosuppressive status and prevention or rejection, ABCB1 recipient genotyping might be useful to better individualize the Tac immunosuppressive therapy in renal transplantation.

  18. Systematic screening for CYP3A4 genetic polymorphisms in a Han Chinese population.

    PubMed

    Hu, Guo-Xin; Dai, Da-Peng; Wang, Hao; Huang, Xiang-Xin; Zhou, Xiao-Yang; Cai, Jie; Chen, Hao; Cai, Jian-Ping

    2017-03-01

    To systematically investigate the genetic polymorphisms of the CYP3A4 gene in a Han Chinese population. The promoter and exons of CYP3A4 gene in 1114 unrelated, healthy Han Chinese subjects were amplified and genotyped by direct sequencing. In total, five previously reported alleles (*1G, *4, *5, *18B and *23) were detected, of which one allele (*23) was reported for the first time in Han Chinese population. Additionally, seven novel exonic variants were also identified and designated as new alleles CYP3A4*28-*34. This study provides the most comprehensive data of CYP3A4 polymorphisms in Han Chinese population and detects the largest number of novel CYP3A4 alleles in one ethnic group.

  19. Insights into Hydrocarbon Assimilation by Eurotialean and Hypocrealean Fungi: Roles for CYP52 and CYP53 Clans of Cytochrome P450 Genes.

    PubMed

    Huarte-Bonnet, Carla; Kumar, Suresh; Saparrat, Mario C N; Girotti, Juan R; Santana, Marianela; Hallsworth, John E; Pedrini, Nicolás

    2018-03-01

    Several filamentous fungi are able to concomitantly assimilate both aliphatic and polycyclic aromatic hydrocarbons that are the biogenic by-products of some industrial processes. Cytochrome P450 monooxygenases catalyze the first oxidation reaction for both types of substrate. Among the cytochrome P450 (CYP) genes, the family CYP52 is implicated in the first hydroxylation step in alkane-assimilation processes, while genes belonging to the family CYP53 have been linked with oxidation of aromatic hydrocarbons. Here, we perform a comparative analysis of CYP genes belonging to clans CYP52 and CYP53 in Aspergillus niger, Beauveria bassiana, Metarhizium robertsii (formerly M. anisopliae var. anisopliae), and Penicillium chrysogenum. These species were able to assimilate n-hexadecane, n-octacosane, and phenanthrene, exhibiting a species-dependent modification in pH of the nutrient medium during this process. Modeling of the molecular docking of the hydrocarbons to the cytochrome P450 active site revealed that both phenanthrene and n-octacosane are energetically favored as substrates for the enzymes codified by genes belonging to both CYP52 and CYP53 clans, and thus appear to be involved in this oxidation step. Analyses of gene expression revealed that CYP53 members were significantly induced by phenanthrene in all species studied, but only CYP52X1 and CYP53A11 from B. bassiana were highly induced with n-alkanes. These findings suggest that the set of P450 enzymes involved in hydrocarbon assimilation by fungi is dependent on phylogeny and reveal distinct substrate and expression specificities.

  20. PXR-dependent induction of human CYP3A4 gene expression by organochlorine pesticides.

    PubMed

    Coumoul, Xavier; Diry, Monique; Barouki, Robert

    2002-11-15

    OCP are xenobiotics which display various toxic effects on animal and human health. One of their effects is to bind and activate estrogen receptor alpha (ERalpha). We have previously studied the down-regulation of induced CYP1A1 (cytochrome P450) expression by this class of molecules in mammary carcinoma cells and shown the importance of ERalpha in this process. However, an alternative mechanism was suggested by those experiments in hepatoma cells. In this study, we have performed Northern blot and transient transfection assays in various cell lines and shown that OCP activate human pregnane X receptor (PXR) and subsequent CYP3A4 mRNA expression. This effect is mediated by the distal xenobiotic responsive element modulator of the promoter. The induction of CYP3A4 by OCP was dose-dependent within the 1-10 microM range. The data suggest that chronic exposure to OCP could alter a major metabolite pathway in human liver and putatively modify the pharmacokinetics of drugs and pollutants.

  1. PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance

    PubMed Central

    Li, Qian; Chen, Pei; Dai, Shengjie; Sun, Yufei; Yuan, Bing; Kai, Wenbin; Pei, Yuelin; He, Suihuan; Liang, Bin; Zhang, Yushu; Leng, Ping

    2015-01-01

    Sweet cherry is a non-climacteric fruit and its ripening is regulated by abscisic acid (ABA) during fruit development. In this study, four cDNAs (PacCYP707A1–4) encoding 8′-hydroxylase, a key enzyme in the oxidative catabolism of ABA, were identified in sweet cherry fruits using tobacco rattle virus-induced gene silencing (VIGS) and particle bombardment approaches. Quantitative real-time PCR confirmed significant down-regulation of target gene transcripts in VIGS-treated cherry fruits. In PacCYP707A2-RNAi-treated fruits, ripening and fruit colouring were promoted relative to control fruits, and both ABA accumulation and PacNCED1 transcript levels were up-regulated by 140%. Silencing of PacCYP707A2 by VIGS significantly altered the transcripts of both ABA-responsive and ripening-related genes, including the ABA metabolism-associated genes NCED and CYP707A, the anthocyanin synthesis genes PacCHS, PacCHI, PacF3H, PacDFR, PacANS, and PacUFGT, the ethylene biosynthesis gene PacACO1, and the transcription factor PacMYBA. The promoter of PacMYBA responded more strongly to PacCYP707A2-RNAi-treated fruits than to PacCYP707A1-RNAi-treated fruits. By contrast, silencing of PacCYP707A1 stimulated a slight increase in fruit colouring and enhanced resistance to dehydration stress compared with control fruits. These results suggest that PacCYP707A2 is a key regulator of ABA catabolism that functions as a negative regulator of fruit ripening, while PacCYP707A1 regulates ABA content in response to dehydration during fruit development. PMID:25956880

  2. Evaluation of Pharmacokinetic Interactions Between Lesinurad, a New Selective Urate Reabsorption Inhibitor, and CYP Enzyme Substrates Sildenafil, Amlodipine, Tolbutamide, and Repaglinide.

    PubMed

    Gillen, Michael; Yang, Chun; Wilson, David; Valdez, Shakti; Lee, Caroline; Kerr, Bradley; Shen, Zancong

    2017-07-01

    Lesinurad is a selective uric acid reabsorption inhibitor approved for the treatment of hyperuricemia associated with gout in combination with xanthine oxidase inhibitors. In vitro assays indicate that lesinurad is an inducer of CYPs in the order CYP3A > CYP2C8 > CYP2C9 > CYP2C19 > CYP2B6 and an inhibitor of CYP2C8 and CYP2C9. To investigate the drug interaction potential of lesinurad, clinical drug interaction studies were conducted. Open-label studies in volunteers investigated the effects of single-/multiple-dose lesinurad on the pharmacokinetics of sildenafil and amlodipine (CYP3A4 induction), tolbutamide (CYP2C9 inhibition/induction), and repaglinide (CYP2C8 inhibition/induction). There was no apparent induction of CYP2C8 and CYP2C9 following repeated lesinurad administration, although no inhibition of CYP2C9 and modest inhibition of CYP2C8 were observed following single-dose lesinurad. Consistent with in vitro observations, lesinurad (200 mg once daily) was an inducer of CYP3A based on the effects on sildenafil exposure. Sildenafil exposure decreased by approximately 34% for C max and AUC when administered with multiple-dose lesinurad 200 mg and allopurinol 300 mg, relative to sildenafil alone. During lesinurad therapy, the possibility of reduced efficacy of concomitant drugs that are CYP3A substrates should be considered and their efficacy monitored because of induction of CYP3A by lesinurad. © 2017, The American College of Clinical Pharmacology.

  3. Inhibition of human cytochrome P450 enzymes by Bacopa monnieri standardized extract and constituents.

    PubMed

    Ramasamy, Seetha; Kiew, Lik Voon; Chung, Lip Yong

    2014-02-24

    Bacopa monnieri and the constituents of this plant, especially bacosides, possess various neuropharmacological properties. Like drugs, some herbal extracts and the constituents of their extracts alter cytochrome P450 (CYP) enzymes, causing potential herb-drug interactions. The effects of Bacopa monnieri standardized extract and the bacosides from the extract on five major CYP isoforms in vitro were analyzed using a luminescent CYP recombinant human enzyme assay. B. monnieri extract exhibited non-competitive inhibition of CYP2C19 (IC50/Ki = 23.67/9.5 µg/mL), CYP2C9 (36.49/12.5 µg/mL), CYP1A2 (52.20/25.1 µg/mL); competitive inhibition of CYP3A4 (83.95/14.5 µg/mL) and weak inhibition of CYP2D6 (IC50 = 2061.50 µg/mL). However, the bacosides showed negligible inhibition of the same isoforms. B. monnieri, which is orally administered, has a higher concentration in the gut than the liver; therefore, this herb could exhibit stronger inhibition of intestinal CYPs than hepatic CYPs. At an estimated gut concentration of 600 µg/mL (based on a daily dosage of 300 mg/day), B. monnieri reduced the catalytic activities of CYP3A4, CYP2C9 and CYP2C19 to less than 10% compared to the total activity (without inhibitor = 100%). These findings suggest that B. monnieri extract could contribute to herb-drug interactions when orally co-administered with drugs metabolized by CYP1A2, CYP3A4, CYP2C9 and CYP2C19.

  4. Identification and characterization of CYP79D16 and CYP71AN24 catalyzing the first and second steps in L-phenylalanine-derived cyanogenic glycoside biosynthesis in the Japanese apricot, Prunus mume Sieb. et Zucc.

    PubMed

    Yamaguchi, Takuya; Yamamoto, Kazunori; Asano, Yasuhisa

    2014-09-01

    Japanese apricot, Prunus mume Sieb. et Zucc., belonging to the Rosaceae family, produces as defensive agents the cyanogenic glycosides prunasin and amygdalin, which are presumably derived from L-phenylalanine. In this study, we identified and characterized cytochrome P450s catalyzing the conversion of L-phenylalanine into mandelonitrile via phenylacetaldoxime. Full-length cDNAs encoding CYP79D16, CYP79A68, CYP71AN24, CYP71AP13, CYP71AU50, and CYP736A117 were cloned from P. mume ‘Nanko’ using publicly available P. mume RNA-sequencing data, followed by 5′- and 3′-RACE. CYP79D16 was expressed in seedlings, whereas CYP71AN24 was expressed in seedlings and leaves. Enzyme activity of these cytochrome P450s expressed in Saccharomyces cerevisiae was evaluated by liquid and gas chromatography–mass spectrometry. CYP79D16, but not CYP79A68, catalyzed the conversion of L-phenylalanine into phenylacetaldoxime. CYP79D16 showed no activity toward other amino acids. CYP71AN24, but not CYP71AP13, CYP71AU50, and CYP736A117, catalyzed the conversion of phenylacetaldoxime into mandelonitrile. CYP71AN24 also showed lower conversions of various aromatic aldoximes and nitriles. The K m value and turnover rate of CYP71AN24 for phenylacetaldoxime were 3.9 µM and 46.3 min(−1), respectively. The K m value and turnover of CYP71AN24 may cause the efficient metabolism of phenylacetaldoxime, avoiding the release of the toxic intermediate to the cytosol. These results suggest that cyanogenic glycoside biosynthesis in P. mume is regulated in concert with catalysis by CYP79D16 in the parental and sequential reaction of CYP71AN24 in the seedling.

  5. Associations of CYP3A4, NR1I2, CYP2C19 and P2RY12 polymorphisms with clopidogrel resistance in Chinese patients with ischemic stroke

    PubMed Central

    Liu, Rui; Zhou, Zi-yi; Chen, Yi-bei; Li, Jia-li; Yu, Wei-bang; Chen, Xin-meng; Zhao, Min; Zhao, Yuan-qi; Cai, Ye-feng; Jin, Jing; Huang, Min

    2016-01-01

    Aim: There is a high incidence of the antiplatelet drug clopidogrel resistance (CR) in Asian populations. Because clopidogrel is a prodrug, polymorphisms of genes encoding the enzymes involved in its biotransformation may be the primary influential factors. The goal of this study was to investigate the associations of polymorphisms of CYP3A4, NR1I2, CYP2C19 and P2RY12 genes with CR in Chinese patients with ischemic stroke. Methods: A total of 191 patients with ischemic stroke were enrolled. The patients were treated with clopidogrel for at least 5 days. Platelet function was measured by light transmission aggregometry. The SNPs NR1I2 (rs13059232), CYP3A4*1G (rs2242480), CYP2C19*2 (rs4244285) and P2RY12 (rs2046934) were genotyped. Results: The CR rate in this population was 36%. The CYP2C19*2 variant was a risk factor for CR (*2/*2+wt/*2 vs wt/wt, OR: 2.366, 95% CI: 1.180–4.741, P=0.014), whereas the CYP3A4*1G variant had a protective effect on CR (*1/*1 vs *1G/*1G+*1/*1G, OR: 2.360, 95% CI: 1.247–4.468, P=0.008). The NR1I2 (rs13059232) polymorphism was moderately associated with CR (CC vs TT+TC, OR: 0.533, 95% CI: 0.286–0.991, P=0.046). The C allele in P2RY12 (rs2046934) was predicted to be a protective factor for CR (CC+TC vs TT, OR: 0.407, 95% CI: 0.191–0.867, P=0.018). In addition, an association was found between hypertension and CR (P=0.022). Conclusion: The individuals with both the CYP2C19*2 allele and hypertension are at high risk of CR during anti-thrombosis therapy. The CYP3A4*1G allele, P2RY12 (rs2046934) C allele and NR1I2 (rs13059232) CC genotype may be protective factors for CR. The associated SNPs studied may be useful to predict clopidogrel resistance in Chinese patients with ischemic stroke. PMID:27133299

  6. CYP109E1 is a novel versatile statin and terpene oxidase from Bacillus megaterium.

    PubMed

    Putkaradze, Natalia; Litzenburger, Martin; Abdulmughni, Ammar; Milhim, Mohammed; Brill, Elisa; Hannemann, Frank; Bernhardt, Rita

    2017-12-01

    CYP109E1 is a cytochrome P450 monooxygenase from Bacillus megaterium with a hydroxylation activity for testosterone and vitamin D3. This study reports the screening of a focused library of statins, terpene-derived and steroidal compounds to explore the substrate spectrum of this enzyme. Catalytic activity of CYP109E1 towards the statin drug-precursor compactin and the prodrugs lovastatin and simvastatin as well as biotechnologically relevant terpene compounds including ionones, nootkatone, isolongifolen-9-one, damascones, and β-damascenone was found in vitro. The novel substrates induced a type I spin-shift upon binding to P450 and thus permitted to determine dissociation constants. For the identification of conversion products by NMR spectroscopy, a B. megaterium whole-cell system was applied. NMR analysis revealed for the first time the ability of CYP109E1 to catalyze an industrially highly important reaction, the production of pravastatin from compactin, as well as regioselective oxidations generating drug metabolites (6'β-hydroxy-lovastatin, 3'α-hydroxy-simvastatin, and 4″-hydroxy-simvastatin) and valuable terpene derivatives (3-hydroxy-α-ionone, 4-hydroxy-β-ionone, 11,12-epoxy-nootkatone, 4(R)-hydroxy-isolongifolen-9-one, 3-hydroxy-α-damascone, 4-hydroxy-β-damascone, and 3,4-epoxy-β-damascone). Besides that, a novel compound, 2-hydroxy-β-damascenone, produced by CYP109E1 was identified. Docking calculations using the crystal structure of CYP109E1 rationalized the experimentally observed regioselective hydroxylation and identified important amino acid residues for statin and terpene binding.

  7. Interactive effects of hypoxia and PCB co-exposure on expression of CYP1A and its potential regulators in Atlantic croaker liver.

    PubMed

    Rahman, Md Saydur; Thomas, Peter

    2018-04-01

    Although marine and coastal environments which are contaminated with xenobiotic organic compounds often become hypoxic during the summer, the interactive effects of hypoxia and xenobiotic exposure on marine species such as teleost fishes remain poorly understood. The expression and activity of monooxygenase enzyme cytochrome P450-1A (CYP1A) in fishes are upregulated by exposure to polychlorinated biphenyls (PCBs), whereas they are down-regulated during hypoxia exposure. We investigated the interactive effects of hypoxia and PCB co-exposure on hepatic CYP1A expression in Atlantic croaker and on potential regulators of CYP1A. Croaker were exposed to hypoxia (1.7 mg/L dissolved oxygen), 3,3',4,4'-tetrachlorobiphenyl (PCB 77, dose: 2 and 8 µg/g body weight), and Aroclor 1254 (a common PCB mixture, dose: 0.5 and 1 µg/g body weight), alone and in combination for 4 weeks. PCB 77 exposure markedly increased hepatic CYP1A mRNA and protein expression, and ethoxyresorufin-O-deethylase (EROD, an indicator of CYP1A enzyme) activity and increased endothelial nitric oxide synthase (eNOS) protein expression. PCB 77 treatment also increased interleukin-1β (IL-1β, a cytokine) mRNA levels and protein carbonyl (PC, an indicator of reactive oxygen species, ROS) contents. These marked PCB 77- and Aroclor 1254-induced increases in CYP1A mRNA levels and EROD activity were significantly attenuated by co-exposure to hypoxia, whereas the increases in hepatic eNOS protein and IL-1β mRNA expression, and PC contents were augmented by hypoxia co-exposure. The results suggest that biotransformation of organic xenobiotics by CYP1A is reduced in fish during co-exposure to hypoxia and is accompanied by alterations in eNOS, ROS, and IL-1β levels. © 2018 Wiley Periodicals, Inc.

  8. Caffeine based measures of CYP1A2 activity correlate with oral clearance of tacrine in patients with Alzheimer's disease

    PubMed Central

    Fontana, Robert J; deVries, Tina M; Woolf, Thomas F; Knapp, Margaret J; Brown, AS; Kaminsky, Laurence S; Tang, Bing-Kuo; Foster, Norman L; Brown, Richard R; Watkins, Paul B

    1998-01-01

    Aims To study the potential utility of caffeine based probes of CYP1A2 enzyme activity in predicting the pharmokinetics of tacrine in patients with Alzheimer's disease. Methods The pharmokinetics of a single 40 mg oral dose of tacrine were measured in 19 patients with Alzheimer's disease. Each patient also received 2 mg kg−1 [13C-3-methyl] caffeine orally and had breath and urine samples collected. Results Tacrine oral clearance (CL F−1 kg−1 ), which varied 15-fold among the patients, correlated significantly with the 2 h total production of 13CO2 in breath (r=0.56, P=0.01), and with each of two commonly used urinary caffeine metabolite ratios: the raxanthine/caffeine ratio’ (1,7X+1, 7U)/1,3,7X) (r=0.76, P=0.0002) and the ‘caffeine metabolic ratio’ (AFMU+1X+1U)/1, 7U)(r=0.76, P=0.0001). Conclusions These observations support a central role for CYP1A2 in the in vivo disposition of tacrine and the potential for drug interactions when tacrine treated patients receive known inducers or inhibitors of this enzyme. The magnitude of the correlations we observed, however, are probably not suffcient to be clinically useful in individualizing tacrine therapy. PMID:9764962

  9. CYP3A4*18: it is not rare allele in Japanese population.

    PubMed

    Yamamoto, Takehito; Nagafuchi, Nobue; Ozeki, Takeshi; Kubota, Takahiro; Ishikawa, Hiroshi; Ogawa, Seishi; Yamada, Yasuhiko; Hirai, Hisamaru; Iga, Tatsuji

    2003-01-01

    We sequenced all 13 exons of the CYP3A4 gene derived from 48 Japanese subjects. One subject possess the 20070 T>C mutation in the exon 10 (result in leu293Pro substitution, namely CYP3A4(*)18), as heterozygote. Thus, we investigated the frequency of CYP3A4(*)18 in 118 Japanese population using polymerase chain reaction-restriction fragment length polymorphism with Msp I and determined that the frequency of the CYP3A4(*)18 allele was 1.3%.

  10. CYP2S1 depletion enhances colorectal cell proliferation is associated with PGE2-mediated activation of β-catenin signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chao; College of Life Science, Anhui Normal University, Wuhu 241000, Anhui; Li, Changyuan

    2015-02-15

    Colorectal epithelial cancer is one of the most common cancers in the world and its 5-year survival rate is still relatively low. Cytochrome P450 (CYP) enzymes in epithelial cells lining the alimentary tract play an important role in the oxidative metabolism of a wide range of xenobiotics, including (pro-)carcinogens and endogenous compounds. Although CYP2S1, a member of CYP family, strongly expressed in many extrahepatic tissues, the role of CYP2S1 in cancer remains unclear. To investigate whether CYP2S1 involves in colorectal carcinogenesis, cell proliferation was analyzed in HCT116 cells depleted of CYP2S1 using small hairpin interfering RNA. Our data show thatmore » CYP2S1 knockdown promotes cell proliferation through increasing the level of endogenous prostaglandin E2(PGE2). PGE2, in turn, reduces phosphorylation of β-catenin and activates β-catenin signaling, which contributes to the cell proliferation. Furthermore, CYP2S1 knockdown increase tumor growth in xenograft mouse model. In brief, these results demonstrate that CYP2S1 regulates colorectal cancer growth through associated with PGE2-mediated activation of β-catenin signaling. - Highlights: • Knockdown of CYP2S1 expression improve HCT116 cell proliferation in vitro and in vivo. • Elevate PGE2 production in CYP2S1 knockdown cell is associated with its proliferation. • Elevate PGE2 level in CYP2S1 knockdown cells enhance β-catenin accumulation. • β-catenin activate TCF/LEF and target gene expression thus promote cell proliferation.« less

  11. Correspondence between the CYP2C19 and CYP3A4 genotypes with the inferred metabolizer phenotype by omeprazole administration in Mexican healthy children.

    PubMed

    Favela-Mendoza, A F; Martínez-Cortes, G; Romero-Prado, M M; Romero-Tejeda, E M; Islas-Carbajal, M C; Sosa-Macias, M; Lares-Asseff, I; Rangel-Villalobos, H

    2018-05-07

    CYP2C19 genotypes presumably allow the prediction of the metabolizer phenotypes: poor (PMs), extensive (EMs) and ultra-rapid (UMs). However, evidence from previous studies regarding this predictive power is unclear, which is important because the benefits expected by healthcare institutions and patients are based on this premise. Therefore, we aimed to complete a formal evaluation of the diagnostic value of CYP2C19 and CYP3A4 genes for predicting metabolizer phenotypes established by omeprazole (OME) administration in 118 healthy children from Jalisco (western Mexico). The genotypes for CYP3A4*1B and CYP2C19*2, *3, *4, *5 and *17 alleles were determined. CYP2C19 and CYP3A4 phenotypes were obtained after 20 mg OME administration and HPLC quantification in plasma to estimate the Hydroxylation Index (HI = OME/HOME) and Sulfonation Index (SI = OME/SOME), respectively. The distribution of genotypes and phenotypes for CYP2C19 and CYP3A4 was similar to previous studies in Mexico and Latin America. We estimated the CYP2C19 UM, EM and PM phenotype frequency in 0.84%, 96.61% and 2.54%, respectively. Although differences in the HI distribution were observed between CYP2C19 genotypes, they showed a poor diagnostic ability to predict the CYP2C19 metabolizer phenotype. Similarly, the number of CYP2C19 and CYP3A4 functional alleles was correlated with the HI distribution, but also their diagnostic ability to predict the CYP2C19 phenotype was poor. The CYP2C19 phenotype is not predicted by the number of functional alleles of CYP2C19 and CYP3A4 genes. Phenotyping is still the most valuable alternative to dose individualization for CYP2C19 substrate drugs. © 2018 John Wiley & Sons Ltd.

  12. Dehydroepiandrosterone (DHEA) metabolism in Saccharomyces cerevisiae expressing mammalian steroid hydroxylase CYP7B: Ayr1p and Fox2p display 17beta-hydroxysteroid dehydrogenase activity.

    PubMed

    Vico, Pedro; Cauet, Gilles; Rose, Ken; Lathe, Richard; Degryse, Eric

    2002-07-01

    We have engineered recombinant yeast to perform stereospecific hydroxylation of dehydroepiandrosterone (DHEA). This mammalian pro-hormone promotes brain and immune function; hydroxylation at the 7alpha position by P450 CYP7B is the major pathway of metabolic activation. We have sought to activate DHEA via yeast expression of rat CYP7B enzyme. Saccharomyces cerevisiae was found to metabolize DHEA by 3beta-acetylation; this was abolished by mutation at atf2. DHEA was also toxic, blocking tryptophan (trp) uptake: prototrophic strains were DHEA-resistant. In TRP(+) atf2 strains DHEA was then converted to androstene-3beta,17beta-diol (A/enediol) by an endogenous 17beta-hydroxysteroid dehydrogenase (17betaHSD). Seven yeast polypeptides similar to human 17betaHSDs were identified: when expressed in yeast, only AYR1 (1-acyl dihydroxyacetone phosphate reductase) increased A/enediol accumulation, while the hydroxyacyl-CoA dehydrogenase Fox2p, highly homologous to human 17betaHSD4, oxidized A/enediol to DHEA. The presence of endogenous yeast enzymes metabolizing steroids may relate to fungal pathogenesis. Disruption of AYR1 eliminated reductive 17betaHSD activity, and expression of CYP7B on the combination background (atf2, ayr1, TRP(+)) permitted efficient (>98%) bioconversion of DHEA to 7alpha-hydroxyDHEA, a product of potential medical utility. Copyright 2002 John Wiley & Sons, Ltd.

  13. Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma.

    PubMed

    Mürdter, T E; Schroth, W; Bacchus-Gerybadze, L; Winter, S; Heinkele, G; Simon, W; Fasching, P A; Fehm, T; Eichelbaum, M; Schwab, M; Brauch, H

    2011-05-01

    The therapeutic effect of tamoxifen depends on active metabolites, e.g., cytochrome P450 2D6 (CYP2D6) mediated formation of endoxifen. To test for additional relationships, 236 breast cancer patients were genotyped for CYP2D6, CYP2C9, CYP2B6, CYP2C19, CYP3A5, UGT1A4, UGT2B7, and UGT2B15; also, plasma concentrations of tamoxifen and 22 of its metabolites, including the (E)-, (Z)-, 3-, and 4'-hydroxymetabolites as well as their glucuronides, were quantified using liquid chromatography-tandem mass spectrometry (MS). The activity levels of the metabolites were measured using an estrogen response element reporter assay; the strongest estrogen receptor inhibition was found for (Z)-endoxifen and (Z)-4-hydroxytamoxifen (inhibitory concentration 50 (IC50) 3 and 7 nmol/l, respectively). CYP2D6 genotypes explained 39 and 9% of the variability of steady-state concentrations of (Z)-endoxifen and (Z)-4-hydroxytamoxifen, respectively. Among the poor metabolizers, 93% had (Z)-endoxifen levels below IC90 values, underscoring the role of CYP2D6 deficiency in compromised tamoxifen bioactivation. For other enzymes tested, carriers of reduced-function CYP2C9 (*2, *3) alleles had lower plasma concentrations of active metabolites (P < 0.004), pointing to the role of additional pathways.

  14. Future Trends in the Pharmacogenomics of Brain Disorders and Dementia: Influence of APOE and CYP2D6 Variants

    PubMed Central

    Cacabelos, Ramón; Fernández-Novoa, Lucía; Martínez-Bouza, Rocío; McKay, Adam; Carril, Juan C.; Lombardi, Valter; Corzo, Lola; Carrera, Iván; Tellado, Iván; Nebril, Laura; Alcaraz, Margarita; Rodríguez, Susana; Casas, Ángela; Couceiro, Verónica; Álvarez, Antón

    2010-01-01

    About 80% of functional genes in the human genome are expressed in the brain and over 1,200 different genes have been associated with the pathogenesis of CNS disorders and dementia. Pharmacogenetic studies of psychotropic drug response have focused on determining the relationship between variations in specific candidate genes and the positive and adverse effects of drug treatment. Approximately, 18% of neuroleptics are substrates of CYP1A2 enzymes, 40% of CYP2D6, and 23% of CYP3A4; 24% of antidepressants are substrates of CYP1A2 enzymes, 5% of CYP2B6, 38% of CYP2C19, 85% of CYP2D6, and 38% of CYP3A4; 7% of benzodiazepines are substrates of CYP2C19 enzymes, 20% of CYP2D6, and 95% of CYP3A4. 10-20% of Western populations are defective in genes of the CYP superfamily; and the pharmacogenomic response of psychotropic drugs also depends on genetic variants associated with dementia. Prospective studies with anti-dementia drugs or with multifactorial strategies have revealed that the therapeutic response to conventional drugs in Alzheimer’s disease is genotype-specific. The disease-modifying effects (cognitive performance, biomarker modification) of therapeutic intervention are APOE-dependent, with APOE-4 carriers acting as the worst responders (APOE-3/3 > APOE-3/4 > APOE-4/4). APOE-CYP2D6 interactions also influence the therapeutic outcome in patients with dementia.

  15. Pregnane X receptor-dependent induction of the CYP3A4 gene by o,p'-1,1,1,-trichloro-2,2-bis (p-chlorophenyl)ethane.

    PubMed

    Medina-Díaz, Irma M; Arteaga-Illán, Georgina; de León, Mario Bermudez; Cisneros, Bulmaro; Sierra-Santoyo, Adolfo; Vega, Libia; Gonzalez, Frank J; Elizondo, Guillermo

    2007-01-01

    CYP3A4, the predominant cytochrome P450 (P450) expressed in human liver and intestine, contributes to the metabolism of approximately half the drugs in clinical use today. CYP3A4 catalyzes the 6beta-hydroxylation of a number of steroid hormones and is involved in the bioactivation of environmental procarcinogens. The expression of CYP3A4 is affected by several stimuli, including environmental factors such as insecticides and pesticides. The o,p'-1,1,1,-trichloro-2,2-bis (p-chlorophenyl)ethane (DDT) isomer of DDT comprises approximately 20% of technical grade DDT, which is an organochloride pesticide. We have recently shown that o,p'-DDT exposure increases CYP3A4 mRNA levels in HepG2 cells. To determine the mechanism by which o,p'-DDT induces CYP3A4 expression, transactivation and electrophoretic mobility shift assays were carried out, revealing that o,p'-DDT activates the CYP3A4 gene promoter through the pregnane X receptor (PXR). CYP3A4 gene promoter activation resulted in both an increase in CYP3A4 mRNA levels and an increase in the total CYP3A4 activity in HepG2 cells. We also observed induction of CYP3A4 and mouse Cyp3a11 mRNA in the intestine of CYP3A4-transgenic mice after exposure to 1 mg/kg o,p'-DDT. At higher doses, a decrease of CYP3A4 inducibility was observed together with an increase in levels of interleukin 6 mRNA, a proinflammatory cytokine that strongly represses CYP3A4 transcription. The present study indicates that regulation of other genes under PXR control may be altered by o,p'-DDT exposure.

  16. In vivo prediction of CYP-mediated metabolic interaction potential of formononetin and biochanin A using in vitro human and rat CYP450 inhibition data.

    PubMed

    Arora, Sumit; Taneja, Isha; Challagundla, Muralikrishna; Raju, Kanumuri Siva Rama; Singh, Sheelendra Pratap; Wahajuddin, Muhammad

    2015-11-19

    Formononetin (FMN) and Biochanin A (BCA) are the principal isoflavones present in commercially available extracts of red clover that are widely been consumed for various health benefits. We investigated the in vitro effects of FMN and BCA on catalytic activity of human/rat cytochrome P450 enzymes to assess the drug interaction potential of red clover. IC50 and Ki values of FMN and BCA for CYPs were determined in human/rat liver microsomes. FMN and BCA showed concentration-dependent inhibition of CYP1A2 activity with IC50 values of 13.42 and 24.98μM in human liver microsomes and 38.57 and 11.86μM in rat liver microsomes, respectively. The mode of inhibition of human CYP1A2 by FMN was found to be competitive with apparent Ki value of 10.13±1.96μM. FMN also inhibited human CYP2D6. BCA exerted moderately inhibitory effects on human CYP2C9. The predicted in vivo inhibition for CYP1A2 was insignificant (R value <1.1) at hepatic level while at intestinal level, it was significant (R value >11). The inhibitory effects on other CYPs were found to be minimal. Red clover may be considered safe to be consumed along with co-prescribed medications; however, precaution must be taken while co-administering it with CYP1A2 substrates. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Effects of soy containing diet and isoflavones on cytochrome P450 enzyme expression and activity.

    PubMed

    Ronis, Martin J J

    2016-08-01

    Cytochromes P450 (CYPs) play an important role in metabolism and clearance of most clinically utilized drugs and other xenobiotics. They are important in metabolism of endogenous compounds including fatty acids, sterols, steroids and lipid-soluble vitamins. Dietary factors such as phytochemicals are capable of affecting CYP expression and activity, which may be important in diet-drug interactions and in the development of fatty liver disease, cardiovascular disease and cancer. One important diet-CYP interaction is with diets containing plant proteins, particularly soy protein. Soy diets are traditionally consumed in Asian countries and are linked to lower incidence of several cancers and of cardiovascular disease in Asian populations. Soy is also an important protein source in vegetarian and vegan diets and the sole protein source in soy infant formulas. Recent studies suggest that consumption of soy can inhibit induction of CY1 enzymes by polycyclic aromatic hydrocarbons (PAHs) which may contribute to cancer prevention. In addition, there are data to suggest that soy components promiscuously activate several nuclear receptors including PXR, PPAR and LXR resulting in increased expression of CYP3As, CYP4As and CYPs involved in metabolism of cholesterol to bile acids. Such soy-CYP interactions may alter drug pharmacokinetics and therapeutic efficacy and are associated with improved lipid homeostasis and reduced risk of cardiovascular disease. The current review summarizes results from in vitro; in vivo and clinical studies of soy-CYP interactions and examines the evidence linking the effects of soy diets on CYP expression to isoflavone phytoestrogens, particularly, genistein and daidzein that are associated with soy protein.

  18. Possible involvement of pregnane X receptor–enhanced CYP24 expression in drug-induced osteomalacia

    PubMed Central

    Pascussi, Jean Marc; Robert, Agnes; Nguyen, Minh; Walrant-Debray, Odile; Garabedian, Michèle; Martin, Pascal; Pineau, Thierry; Saric, Jean; Navarro, Fréderic; Maurel, Patrick; Vilarem, Marie Josè

    2005-01-01

    Vitamin D controls calcium homeostasis and the development and maintenance of bones through vitamin D receptor activation. Prolonged therapy with rifampicin or phenobarbital has been shown to cause vitamin D deficiency or osteomalacia, particularly in patients with marginal vitamin D stores. However, the molecular mechanism of this process is unknown. Here we show that these drugs lead to the upregulation of 25-hydroxyvitamin D3-24-hydroxylase (CYP24) gene expression through the activation of the nuclear receptor pregnane X receptor (PXR; NR1I2). CYP24 is a mitochondrial enzyme responsible for inactivating vitamin D metabolites. CYP24 mRNA is upregulated in vivo in mice by pregnenolone 16α-carbonitrile and dexamethasone, 2 murine PXR agonists, and in vitro in human hepatocytes by rifampicin and hyperforin, 2 human PXR agonists. Moreover, rifampicin increased 24-hydroxylase activity in these cells, while, in vivo in mice, pregnenolone 16α-carbonitrile increased the plasma concentration of 24,25-dihydroxyvitamin D3. Transfection of PXR in human embryonic kidney cells resulted in rifampicin-mediated induction of CYP24 mRNA. Analysis of the human CYP24 promoter showed that PXR transactivates the sequence between –326 and –142. We demonstrated that PXR binds to and transactivates the 2 proximal vitamin D–responsive elements of the human CYP24 promoter. These data suggest that xenobiotics and drugs can modulate CYP24 gene expression and alter vitamin D3 hormonal activity and calcium homeostasis through the activation of PXR. PMID:15630458

  19. Metabolic characterization of (1-(5-fluoropentyl)-1H-indol-3-yl)(4-methyl-1-naphthalenyl)-methanone (MAM-2201) using human liver microsomes and cDNA-overexpressed cytochrome P450 enzymes.

    PubMed

    Kong, Tae Yeon; Kim, Ju-Hyun; Choi, Won Gu; Lee, Joo Young; Kim, Hee Seung; Kim, Jin Young; In, Moon Kyo; Lee, Hye Suk

    2017-02-01

    MAM-2201 is a synthetic cannabinoid that is increasingly found in recreational drug abusers and cases of severe intoxication. Thus, characterization of the metabolic pathways of MAM-2201 is necessary to predict individual pharmacokinetics and toxicity differences, and to avoid toxic drug-drug interactions. Collectively, 19 phase 1 metabolites of MAM-2201 were identified using liquid chromatography-Orbitrap mass spectrometry following human liver microsomal incubations in the presence of NADPH: 7 hydroxy-MAM-2201 (M1-M7), 4 dihydroxy-MAM-2201 (M8-M11), dihydrodiol-MAM-2201 (M12), N-(5-hydroxypentyl)-MAM-2201 (M13), hydroxy-M13 (M14), N-dealkyl-MAM-2201 (M15), 2 hydroxy-M15 (M16, M17), MAM-2201 N-pentanoic acid (M18), and hydroxy-M18 (M19). On the basis of intrinsic clearance values in human liver microsomes, hydroxy-MAM-2201 (M1), N-(5-hydroxypentyl)-MAM-2201 (M13), and hydroxy-M13 (M14) were the major metabolites. Based on an enzyme kinetics study using human cDNA-expressed cytochrome P450 (CYP) enzymes and an immunoinhibition study using selective CYP antibodies in human liver microsomes, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 enzymes were responsible for MAM-2201 metabolism. The CYP3A4 enzyme played a prominent role in MAM-2201 metabolism, and CYP1A2, CYP2B6, CYP2C8, and CYP2C9 enzymes played major roles in the formation of some metabolites. MAM-2201 is extensively metabolized by multiple CYP enzymes, indicating that MAM-2201 and its metabolites should be used as markers of MAM-2201 abuse and toxicity. Graphical abstract In vitro metabolic pathways of MAM-2201 were characterized in human liver microsomes and recombinant CYPs using LC-HRMS analysis. Total 19 phase I metabolites were identified with predominant contribution of CYP3A4.

  20. Metabolism of Endosulfan-Alpha by Human Liver Microsomes and its Utility as a Simultaneous In Vitro Probe for CYP2B6 and CYP3A4

    DTIC Science & Technology

    2006-03-30

    METABOLISM OF ENDOSULFAN-ALPHA BY HUMAN LIVER MICROSOMES AND ITS UTILITY AS A SIMULTANEOUS IN VITRO PROBE FOR CYP2B6 AND CYP3A4 Richard C.T. Casabar...MICROSOMES AND ITS UTILITY AS A SIMULTANEOUS IN VITRO PROBE FOR CYP2B6 AND CYP3A4 Corresponding Author: Randy L. Rose Department of Environmental and Molecular...ALPHA BY HUMAN LIVER MICROSOMES AND ITS UTILITY AS A SIMULTANEOUS IN VITRO PROBE FOR CYP2B6 AND CYP3A4 . 6. AUTHOR(S) CAPT CASABAR RICHARD C 7

  1. The Absence of CYP3A5*3 Is a Protective Factor to Anticonvulsants Hypersensitivity Reactions: A Case-Control Study in Brazilian Subjects

    PubMed Central

    dos Santos, Bernardo; Talib, Leda Leme; Yamaguti, Célia; Rodrigues, Helcio; Gattaz, Wagner Farid; Kalil, Jorge

    2015-01-01

    Although aromatic anticonvulsants are usually well tolerated, they can cause cutaneous adverse drug reactions in up to 10% of patients. The clinical manifestations of the antiepileptics-induced hypersensitivity reactions (AHR) vary from mild skin rashes to severe cutaneous drug adverse reactions which are related to high mortality and significant morbidity. Genetic polymorphisms in cytochrome P450 genes are associated with altered enzymatic activity and may contribute to the risk of AHR. Here we present a case-control study in which we genotyped SNPs of CYP2C19, 2C9 and 3A5 of 55 individuals with varying severities of AHR, 83 tolerant, and 366 healthy control subjects from São Paulo, Brazil. Clinical characterization was based on standardized scoring systems and drug patch test. All in vivo investigation followed the ENDA (European Network of Drug Allergy) recommendations. Genotype was determined by real time PCR using peripheral blood DNA as a template. Of all 504 subjects, 65% were females, 45% self-identified as Afro-American, 38% as Caucasian and 17% as having non-African mixed ascendancy. Amongst 55 subjects with AHR, 44 had severe cutaneous drug adverse reactions. Of the 46 drug patch tests performed, 29 (63%) were positive. We found a strong association between the absence of CYP3A5*3 and tolerant subjects when compared to AHR (p = 0.0002, OR = 5.28 [CI95% 2.09–14.84]). None of our groups presented positive association with CYP2C19 and 2C9 polymorphisms, however, both SNPs contributed to separation of cases and tolerants in a Classification and Regression Tree. Our findings indicate that drug metabolism genes can contribute in the tolerability of antiepileptics. CYP3A5*3 is the most prevalent CYP3A5 allele associated with reduced enzymatic function. The current study provides evidence that normal CYP3A5 activity might be a protective factor to aromatic antiepileptics-induced hypersensitivity reactions in Brazilian subjects. PMID:26291084

  2. The Absence of CYP3A5*3 Is a Protective Factor to Anticonvulsants Hypersensitivity Reactions: A Case-Control Study in Brazilian Subjects.

    PubMed

    Tanno, Luciana Kase; Kerr, Daniel Shikanai; dos Santos, Bernardo; Talib, Leda Leme; Yamaguti, Célia; Rodrigues, Helcio; Gattaz, Wagner Farid; Kalil, Jorge

    2015-01-01

    Although aromatic anticonvulsants are usually well tolerated, they can cause cutaneous adverse drug reactions in up to 10% of patients. The clinical manifestations of the antiepileptics-induced hypersensitivity reactions (AHR) vary from mild skin rashes to severe cutaneous drug adverse reactions which are related to high mortality and significant morbidity. Genetic polymorphisms in cytochrome P450 genes are associated with altered enzymatic activity and may contribute to the risk of AHR. Here we present a case-control study in which we genotyped SNPs of CYP2C19, 2C9 and 3A5 of 55 individuals with varying severities of AHR, 83 tolerant, and 366 healthy control subjects from São Paulo, Brazil. Clinical characterization was based on standardized scoring systems and drug patch test. All in vivo investigation followed the ENDA (European Network of Drug Allergy) recommendations. Genotype was determined by real time PCR using peripheral blood DNA as a template. Of all 504 subjects, 65% were females, 45% self-identified as Afro-American, 38% as Caucasian and 17% as having non-African mixed ascendancy. Amongst 55 subjects with AHR, 44 had severe cutaneous drug adverse reactions. Of the 46 drug patch tests performed, 29 (63%) were positive. We found a strong association between the absence of CYP3A5*3 and tolerant subjects when compared to AHR (p = 0.0002, OR = 5.28 [CI95% 2.09-14.84]). None of our groups presented positive association with CYP2C19 and 2C9 polymorphisms, however, both SNPs contributed to separation of cases and tolerants in a Classification and Regression Tree. Our findings indicate that drug metabolism genes can contribute in the tolerability of antiepileptics. CYP3A5*3 is the most prevalent CYP3A5 allele associated with reduced enzymatic function. The current study provides evidence that normal CYP3A5 activity might be a protective factor to aromatic antiepileptics-induced hypersensitivity reactions in Brazilian subjects.

  3. Investigation of binding features: effects on the interaction between CYP2A6 and inhibitors.

    PubMed

    Ai, Chunzhi; Li, Yan; Wang, Yonghua; Li, Wei; Dong, Peipei; Ge, Guangbo; Yang, Ling

    2010-07-15

    A computational investigation has been carried out on CYP2A6 and its naphthalene inhibitors to explore the crucial molecular features contributing to binding specificity. The molecular bioactive orientations were obtained by docking (FlexX) these compounds into the active site of the enzyme. And the density functional theory method was further used to optimize the molecular structures with the subsequent analysis of molecular lipophilic potential (MLP) and molecular electrostatic potential (MEP). The minimal MLPs, minimal MEPs, and the band gap energies (the energy difference between the highest occupied molecular orbital and lowest unoccupied molecular orbital) showed high correlations with the inhibition activities (pIC(50)s), illustrating their significant roles in driving the inhibitor to adopt an appropriate bioactive conformation oriented in the active site of CYP2A6 enzyme. The differences in MLPs, MEPs, and the orbital energies have been identified as key features in determining the binding specificity of this series of compounds to CYP2A6 and the consequent inhibitory effects. In addition, the combinational use of the docking, MLP and MEP analysis is also demonstrated as a good attempt to gain an insight into the interaction between CYP2A6 and its inhibitors. Copyright 2010 Wiley Periodicals, Inc.

  4. PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance.

    PubMed

    Li, Qian; Chen, Pei; Dai, Shengjie; Sun, Yufei; Yuan, Bing; Kai, Wenbin; Pei, Yuelin; He, Suihuan; Liang, Bin; Zhang, Yushu; Leng, Ping

    2015-07-01

    Sweet cherry is a non-climacteric fruit and its ripening is regulated by abscisic acid (ABA) during fruit development. In this study, four cDNAs (PacCYP707A1-4) encoding 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA, were identified in sweet cherry fruits using tobacco rattle virus-induced gene silencing (VIGS) and particle bombardment approaches. Quantitative real-time PCR confirmed significant down-regulation of target gene transcripts in VIGS-treated cherry fruits. In PacCYP707A2-RNAi-treated fruits, ripening and fruit colouring were promoted relative to control fruits, and both ABA accumulation and PacNCED1 transcript levels were up-regulated by 140%. Silencing of PacCYP707A2 by VIGS significantly altered the transcripts of both ABA-responsive and ripening-related genes, including the ABA metabolism-associated genes NCED and CYP707A, the anthocyanin synthesis genes PacCHS, PacCHI, PacF3H, PacDFR, PacANS, and PacUFGT, the ethylene biosynthesis gene PacACO1, and the transcription factor PacMYBA. The promoter of PacMYBA responded more strongly to PacCYP707A2-RNAi-treated fruits than to PacCYP707A1-RNAi-treated fruits. By contrast, silencing of PacCYP707A1 stimulated a slight increase in fruit colouring and enhanced resistance to dehydration stress compared with control fruits. These results suggest that PacCYP707A2 is a key regulator of ABA catabolism that functions as a negative regulator of fruit ripening, while PacCYP707A1 regulates ABA content in response to dehydration during fruit development. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Identification of the fetal liver cytochrome CYP3A7 in human endometrium and placenta.

    PubMed Central

    Schuetz, J D; Kauma, S; Guzelian, P S

    1993-01-01

    Placenta and endometrium carry out steroidogenic biotransformation reactions such as 6-beta-hydroxylation of cortisol, a reaction characteristic of the dominant family of cytochromes P450 in human liver, CYP3A. To investigate the possible role in these extrahepatic tissues of the CYP3A microsomal hemoproteins, we analyzed placental and endometrial microsomes on Western blots developed with an anti-human CYP3A antibody. We found an immunoreactive 51,500 D protein that migrated between CYP3A3 (HLp) and CYP3A5 (HLp2) identical with CYP3A7 (HFLa). CYP3A7, a form found prominently in human fetal liver microsomes, was first isolated as a liver 16-alpha-dehydroepiandrosterone-sulfate hydroxylase. Northern blot analysis of total RNA isolated from placenta or from endometrium demonstrated a single band that cross-hybridized with a CYP3A7 cDNA. Amplification of the same RNA samples with the use of primers specific for CYP3A7, produced a 552-bp segment that had the predicted size and the same DNA sequence as does liver CYP3A7 cDNA. Hybridizable endometrial CYP3A7 mRNA was detected more frequently (six of seven samples) and in higher amounts (approximately 12-fold higher) in pregnant compared with nonpregnant women (4 of 12 samples). In addition, during the secretory phase of the menstrual cycle CYP3A7 expression was sixfold higher than in the one sample from the proliferative phase that had detectable CYP3A7 mRNA. Moreover, the amounts of placental and endometrial CYP3A7 mRNA and protein increased substantially from the first to the second trimester of pregnancy. We conclude that placenta and endometrium express the same P450 as is found in fetal liver. These tissues represent a previously unrecognized and quantitatively important site for 6-beta-hydroxylation and 16-alpha-hydroxylation of specific steroid precursors, possibly for protection of the fetus from the toxic effects of endogenous steroids and foreign substrates. Images PMID:8349787

  6. Structural Basis of Human CYP51 Inhibition by Antifungal Azoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strushkevich, Natallia; Usanov, Sergey A.; Park, Hee-Won

    2010-09-22

    The obligatory step in sterol biosynthesis in eukaryotes is demethylation of sterol precursors at the C14-position, which is catalyzed by CYP51 (sterol 14-alpha demethylase) in three sequential reactions. In mammals, the final product of the pathway is cholesterol, while important intermediates, meiosis-activating sterols, are produced by CYP51. Three crystal structures of human CYP51, ligand-free and complexed with antifungal drugs ketoconazole and econazole, were determined, allowing analysis of the molecular basis for functional conservation within the CYP51 family. Azole binding occurs mostly through hydrophobic interactions with conservative residues of the active site. The substantial conformational changes in the B{prime} helix andmore » F-G loop regions are induced upon ligand binding, consistent with the membrane nature of the protein and its substrate. The access channel is typical for mammalian sterol-metabolizing P450 enzymes, but is different from that observed in Mycobacterium tuberculosis CYP51. Comparison of the azole-bound structures provides insight into the relative binding affinities of human and bacterial P450 enzymes to ketoconazole and fluconazole, which can be useful for the rational design of antifungal compounds and specific modulators of human CYP51.« less

  7. Cloning of cytochrome P450 3A137 complementary DNA in silver carp and expression induction by ionic liquid.

    PubMed

    Li, Xiaoyu; Ma, Junguo; Lei, Wenlong; Li, Jie; Zhang, Yaning; Li, Yuanlong

    2013-08-01

    Cytochrome P450 (CYP) enzymes, especially CYP 3A, are responsible for metabolizing of various kinds of endogenous and exogenous compounds in animals. In the present study, a full-length sequence of CYP 3A137 cDNA in silver carp was cloned and sequenced, and then a phylogenetic tree of CYP 3A was structured. Additionally, the acute toxicity of the ionic liquid 1-octyl-3-methylimidazolium bromide ([C8mim]Br) on silver carp and transcription and microsome enzyme activity of CYP 3A137 in the liver of silver fish after rifampicin or [C8mim]Br exposure were also determined in this study. The results show that the full length of CYP 3A137 cDNA is 1810 base pair (bp) long and contains an open reading frame of 1539bp encoding a protein of 513 amino acids. Sequence analysis reveals that CYP 3A137 is highly conserved in fish. Moreover, the results of quantitative real-time polymerase chain reaction reveal that CYP 3A137 in silver carp is constitutively expressed in all tissues examined and the sequence of expression rate is liver>intestine>kidney>spleen>brain>heart>muscle. Finally, the results of acute toxicity tests indicate that both rifampicin and [C8mim]Br significantly up-regulate the expression of CYP 3A137 at mRNA level and increase CYP 3A137 enzyme activity in fish liver, suggesting that CYP 3A137 be involved in metabolism of [C8mim]Br in silver carp. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Comparison of the biotransformation of the 14C-labelled insecticide carbaryl by non-transformed and human CYP1A1-, CYP1A2-, and CYP3A4-transgenic cell cultures of Nicotiana tabacum.

    PubMed

    Schmidt, Burkhard; Faymonville, Tanja; Gembé, Eva; Joussen, Nicole; Schuphan, Ingolf

    2006-08-01

    Transgenic tobacco-cell-suspension cultures expressing separately the human cytochrome P450 monooxygenases CYP1A1, CYP1A2, and CYP3A4 were utilized to study the biotransformation of the 14C-labelled insecticide carbaryl (=naphthalen-1-yl methylcarbamate). The resulting data were compared to similar data from the corresponding non-transformed (NT) tobacco-cell culture and commercially available membrane preparations (Bactosomes) of genetically modified bacteria separately containing the same human P450s. A rapid conversion rate of carbaryl was observed with the CYP1A1 and CYP1A2 cells, where only 49.7 and 0.2% of applied carbaryl (1 mg/l), respectively, remained after 24 h, as compared to 77.7% in the non-transformed culture. Unexpectedly, the corresponding results obtained from the CYP3A4 cultures were not definite. With 25 mg/l of carbaryl and 96 h of incubation, it was proven that the insecticide is also substrate of CYP3A4. This finding was supported by GC/EI-MS analysis of the primary metabolite pattern produced by the isozyme. This consisted of naphthalene-1-ol, N-(hydroxymethyl)carbaryl, 4-hydroxycarbaryl, and 5-hydroxycarbaryl, whereas the main product in non-transformed cells was N-(hydroxymethyl)carbaryl. Data obtained from the CYP1A1, CYP1A2, or CYP3A4 Bactosomes agreed with those of the P450-transgenic tobacco cells. Problems with GC/EI-MS analysis of carbaryl and its metabolites are discussed.

  9. Early onset of puberty and early ovarian failure in CYP7B1 knockout mice

    PubMed Central

    Omoto, Yoko; Lathe, Richard; Warner, Margaret; Gustafsson, Jan-Åke

    2005-01-01

    CYP7B1 is the enzyme responsible for hydroxylation and termination of the estrogenic actions of the androgen metabolite, 5α-androstane-3β, 17β-diol (3βAdiol). 3βAdiol is estrogenic in ERα or ERβ positive cells only if they do not express CYP7B1. In this study we show that female CYP7B1–/– mice experience early onset of growth of the uterus and mammary glands and commence estrus cycles 2 days earlier than their wild-type littermates. Adult mammary glands and uteri appear to be under continuous estrogenic stimulation. We conclude that, by cell-specific regulation of the estrogenicity of 3βAdiol, CYP7B1 performs two major tasks: (i) it allows 3βAdiol to have growth inhibitory effects through ERβ and (ii) it permits estradiol-specific activation of estrogen receptors by protection of certain cells from the estrogenic effects of 3βAdiol. When CYP7B1 is inactivated, 3βAdiol activates estrogen receptors indiscriminately, and the overall effect is prolonged and inappropriate exposure to estrogen. PMID:15710898

  10. Insight into the binding interactions of CYP450 aromatase inhibitors with their target enzyme: a combined molecular docking and molecular dynamics study.

    PubMed

    Galeazzi, Roberta; Massaccesi, Luca

    2012-03-01

    CYP450 aromatase catalyzes the terminal and rate-determining step in estrogen synthesis, the aromatization of androgens, and its inhibition is an efficient approach to treating estrogen-dependent breast cancer. Insight into the molecular basis of the interaction at the catalytic site between CYP450 aromatase inhibitors and the enzyme itself is required in order to design new and more active compounds. Hence, a combined molecular docking-molecular dynamics study was carried out to obtain the structure of the lowest energy association complexes of aromatase with some third-generation aromatase inhibitors (AIs) and with other novel synthesized letrozole-derived compounds which showed high in vitro activity. The results obtained clearly demonstrate the role of the pharmacophore groups present in the azaheterocyclic inhibitors (NSAIs)-namely the triazolic ring and highly functionalized aromatic moieties carrying H-bond donor or acceptor groups. In particular, it was pointed out that all of them can contribute to inhibition activity by interacting with residues of the catalytic cleft, but the amino acids involved are different for each compound, even if they belong to the same class. Furthermore, the azaheterocyclic group strongly coordinates with the Fe(II) of heme cysteinate in the most active NSAI complexes, while it prefers to adopt another orientation in less active ones.

  11. Optimization of drug-drug interaction study design: comparison of minimal physiologically based pharmacokinetic models on prediction of CYP3A inhibition by ketoconazole.

    PubMed

    Han, Bing; Mao, Jialin; Chien, Jenny Y; Hall, Stephen D

    2013-07-01

    Ketoconazole is a potent CYP3A inhibitor used to assess the contribution of CYP3A to drug clearance and quantify the increase in drug exposure due to a strong inhibitor. Physiologically based pharmacokinetic (PBPK) models have been used to evaluate treatment regimens resulting in maximal CYP3A inhibition by ketoconazole but have reached different conclusions. We compare two PBPK models of the ketoconazole-midazolam interaction, model 1 (Chien et al., 2006) and model 2 implemented in Simcyp (version 11), to predict 16 published treatment regimens. With use of model 2, 41% of the study point estimates of area under the curve (AUC) ratio and 71% of the 90% confidence intervals were predicted within 1.5-fold of the observed, but these increased to 82 and 100%, respectively, with model 1. For midazolam, model 2 predicted a maximal midazolam AUC ratio of 8 and a hepatic fraction metabolized by CYP3A (f(m)) of 0.97, whereas model 1 predicted 17 and 0.90, respectively, which are more consistent with observed data. On the basis of model 1, ketoconazole (400 mg QD) for at least 3 days and substrate administration within 2 hours is required for maximal CYP3A inhibition. Ketoconazole treatment regimens that use 200 mg BID underestimate the systemic fraction metabolized by CYP3A (0.86 versus 0.90) for midazolam. The systematic underprediction also applies to CYP3A substrates with high bioavailability and long half-lives. The superior predictive performance of model 1 reflects the need for accumulation of ketoconazole at enzyme site and protracted inhibition. Model 2 is not recommended for inferring optimal study design and estimation of fraction metabolized by CYP3A.

  12. Effect of CYP3A perpetrators on ibrutinib exposure in healthy participants.

    PubMed

    de Jong, Jan; Skee, Donna; Murphy, Joe; Sukbuntherng, Juthamas; Hellemans, Peter; Smit, Johan; de Vries, Ronald; Jiao, Juhui James; Snoeys, Jan; Mannaert, Erik

    2015-08-01

    Ibrutinib (PCI-32765), a potent covalent inhibitor of Bruton's tyrosine kinase, has shown efficacy against a variety of B-cell malignancies. Given the prominent role of CYP3A in ibrutinib metabolism, effect of coadministration of CYP3A perpetrators with ibrutinib was evaluated in healthy adults. Ibrutinib (120 mg [Study 1, fasted], 560 mg [studies 2 (fasted), and 3 (nonfasted)]) was given alone and with ketoconazole [Study 1; 400 mg q.d.], rifampin [Study 2; 600 mg q.d.], and grapefruit juice [GFJ, Study 3]. Lower doses of ibrutinib were used together with CYP3A inhibitors [Study 1: 40 mg; Study 3: 140 mg], as safety precaution. Under fasted condition, ketoconazole increased ibrutinib dose-normalized (DN) exposure [DN-AUClast: 24-fold; DN-C max: 29-fold], rifampin decreased ibrutinib exposure [C max: 13-fold; AUClast: 10-fold]. Under nonfasted condition, GFJ caused a moderate increase [DN-C max: 3.5-fold; DN-AUC: 2.2-fold], most likely through inhibition of intestinal CYP3A. Half-life was not affected by CYP perpetrators indicating the interaction was mainly on first-pass extraction. All treatments were well-tolerated.

  13. Population pharmacokinetic analysis of cilostazol in healthy subjects with genetic polymorphisms of CYP3A5, CYP2C19 and ABCB1

    PubMed Central

    Yoo, Hee-Doo; Cho, Hea-Young; Lee, Yong-Bok

    2010-01-01

    AIMS To investigate the influence of genetic polymorphisms in the CYP3A5, CYP2C19 and ABCB1 genes on the population pharmacokinetics of cilostazol in healthy subjects. METHODS Subjects who participated in four separate cilostazol bioequivalence studies with the same protocols were included in this retrospective analysis. One hundred and four healthy Korean volunteers were orally administered a single 50- or 100-mg dose of cilostazol. We estimated the population pharmacokinetics of cilostazol using a nonlinear mixed effects modelling (nonmem) method and explored the possible influence of genetic polymorphisms in CYP3A (CYP3A5*3), CYP2C19 (CYP2C19*2 and CYP2C19*3) and ABCB1 (C1236T, G2677T/A and C3435T) on the population pharmacokinetics of cilostazol. RESULTS A two-compartment model with a first-order absorption and lag time described the cilostazol serum concentrations well. The apparent oral clearance (CL/F) was estimated to be 12.8 l h−1. The volumes of the central and the peripheral compartment were characterized as 20.5 l and 73.1 l, respectively. Intercompartmental clearance was estimated at 5.6 l h−1. Absorption rate constant was estimated at 0.24 h−1 and lag time was predicted at 0.57 h. The genetic polymorphisms of CYP3A5 had a significant (P < 0.001) influence on the CL/F of cilostazol. When CYP2C19 was evaluated, a significant difference (P < 0.01) was observed among the three genotypes (extensive metabolizers, intermediate metabolizers and poor metabolizers) for the CL/F. In addition, a combination of CYP3A5 and CYP2C19 genotypes was found to be associated with a significant difference (P < 0.005) in the CL/F. When including these genotypes, the interindividual variability of the CL/F was reduced from 34.1% in the base model to 27.3% in the final model. However, no significant differences between the ABCB1 genotypes and cilostazol pharmacokinetic parameters were observed. CONCLUSIONS The results of the present study indicate that CYP3A5 and CYP2C19

  14. Cyp7b, a novel brain cytochrome P450, catalyzes the synthesis of neurosteroids 7α-hydroxy dehydroepiandrosterone and 7α-hydroxy pregnenolone

    PubMed Central

    Rose, Ken A.; Stapleton, Genevieve; Dott, Karin; Kieny, Marie Paule; Best, Ruth; Schwarz, Margrit; Russell, David W.; Björkhem, Ingemar; Seckl, Jonathan; Lathe, Richard

    1997-01-01

    Steroids produced locally in brain (neurosteroids), including dehydroepiandrosterone (DHEA), influence cognition and behavior. We previously described a novel cytochrome P450, Cyp7b, strongly expressed in rat and mouse brain, particularly in hippocampus. Cyp7b is most similar to steroidogenic P450s and potentially could play a role in neurosteroid metabolism. To examine the catalytic activity of the enzyme mouse Cyp7b cDNA was introduced into a vaccinia virus vector. Extracts from cells infected with the recombinant showed NADPH-dependent conversion of DHEA (Km, 13.6 μM) and pregnenolone (Km, 4.0 μM) to slower migrating forms on thin layer chromatography. The expressed enzyme was less active against 25-hydroxycholesterol, 17β-estradiol and 5α-androstane-3β,17β-diol, with low to undetectable activity against progesterone, corticosterone, and testosterone. On gas chromatography and mass spectrometry of the Cyp7b metabolite of DHEA the retention time and fragmentation patterns were identical to those obtained with authentic 7α-hydroxy DHEA. The reaction product also comigrated on thin layer chromatography with 7α-hydroxy DHEA but not with 7β-hydroxy DHEA; when [7α-3H]pregnenolone was incubated with Cyp7b extracts the extent of release of radioactivity into the medium suggested that hydroxylation was preferentially at the 7α position. Brain extracts also efficiently liberated tritium from [7α-3H]pregnenolone and converted DHEA to a product with a chromatographic mobility indistinguishable from 7α-hydroxy DHEA. We conclude that Cyp7b is a 7α-hydroxylase participating in the synthesis, in brain, of neurosteroids 7α-hydroxy DHEA, and 7α-hydroxy pregnenolone. PMID:9144166

  15. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway

    PubMed Central

    Helliwell, Chris A.; Chandler, Peter M.; Poole, Andrew; Dennis, Elizabeth S.; Peacock, W. James

    2001-01-01

    We have shown that ent-kaurenoic acid oxidase, a member of the CYP88A subfamily of cytochrome P450 enzymes, catalyzes the three steps of the gibberellin biosynthetic pathway from ent-kaurenoic acid to GA12. A gibberellin-responsive barley mutant, grd5, accumulates ent-kaurenoic acid in developing grains. Three independent grd5 mutants contain mutations in a gene encoding a member of the CYP88A subfamily of cytochrome P450 enzymes, defined by the maize Dwarf3 protein. Mutation of the Dwarf3 gene gives rise to a gibberellin-responsive dwarf phenotype, but the lesion in the gibberellin biosynthesis pathway has not been identified. Arabidopsis thaliana has two CYP88A genes, both of which are expressed. Yeast strains expressing cDNAs encoding each of the two Arabidopsis and the barley CYP88A enzymes catalyze the three steps of the GA biosynthesis pathway from ent-kaurenoic acid to GA12. Sequence comparison suggests that the maize Dwarf3 locus also encodes ent-kaurenoic acid oxidase. PMID:11172076

  16. Effect of P450 Oxidoreductase Polymorphisms on the Metabolic Activities of Ten Cytochrome P450s Varied by Polymorphic CYP Genotypes in Human Liver Microsomes.

    PubMed

    Fang, Yan; Gao, Na; Tian, Xin; Zhou, Jun; Zhang, Hai-Feng; Gao, Jie; He, Xiao-Pei; Wen, Qiang; Jia, Lin-Jing; Jin, Han; Qiao, Hai-Ling

    2018-06-27

    Background/ Aims: Little is known about the effect of P450 oxidoreductase (POR) gene polymorphisms on the activities of CYPs with multiple genotypes. We genotyped 102 human livers for 18 known POR single nucleotide polymorphisms (SNPs) with allelic frequencies greater than 1% as well as for 27 known SNPs in 10 CYPs. CYP enzyme activities in microsomes prepared from these livers were determined by measuring probe substrate metabolism by high performance liquid chromatograph. We found that the effects of the 18 POR SNPs on 10 CYP activities were CYP genotype-dependent. The POR mutations were significantly associated with decreased overall Km for CYP2B6 and 2E1, and specific genotypes within CYP1A2, 2A6, 2B6, 2C8, 2D6 and 2E1 were identified as being affected by these POR SNPs. Notably, the effect of a specific POR mutation on the activity of a CYP genotype could not be predicted from other CYP genotypes of even the same CYP. When combining one POR SNP with other POR SNPs, a hitherto unrecognized effect of multiple-site POR gene polymorphisms (MSGP) on CYP activity was uncovered, which was not necessarily consistent with the effect of either single POR SNP. The effects of POR SNPs on CYP activities were not only CYP-dependent, but more importantly, CYP genotype-dependent. Moreover, the effect of a POR SNP alone and in combination with other POR SNPs (MSGP) was not always consistent, nor predictable. Understanding the impact of POR gene polymorphisms on drug metabolism necessitates knowing the complete SNP complement of POR and the genotype of the relevant CYPs. © 2018 The Author(s). Published by S. Karger AG, Basel.

  17. Dietary omega-3 fatty acids modulate the eicosanoid profile in man primarily via the CYP-epoxygenase pathway[S

    PubMed Central

    Fischer, Robert; Konkel, Anne; Mehling, Heidrun; Blossey, Katrin; Gapelyuk, Andrej; Wessel, Niels; von Schacky, Clemens; Dechend, Ralf; Muller, Dominik N.; Rothe, Michael; Luft, Friedrich C.; Weylandt, Karsten; Schunck, Wolf-Hagen

    2014-01-01

    Cytochrome P450 (CYP)-dependent metabolites of arachidonic acid (AA) contribute to the regulation of cardiovascular function. CYP enzymes also accept EPA and DHA to yield more potent vasodilatory and potentially anti-arrhythmic metabolites, suggesting that the endogenous CYP-eicosanoid profile can be favorably shifted by dietary omega-3 fatty acids. To test this hypothesis, 20 healthy volunteers were treated with an EPA/DHA supplement and analyzed for concomitant changes in the circulatory and urinary levels of AA-, EPA-, and DHA-derived metabolites produced by the cyclooxygenase-, lipoxygenase (LOX)-, and CYP-dependent pathways. Raising the Omega-3 Index from about four to eight primarily resulted in a large increase of EPA-derived CYP-dependent epoxy-metabolites followed by increases of EPA- and DHA-derived LOX-dependent monohydroxy-metabolites including the precursors of the resolvin E and D families; resolvins themselves were not detected. The metabolite/precursor fatty acid ratios indicated that CYP epoxygenases metabolized EPA with an 8.6-fold higher efficiency and DHA with a 2.2-fold higher efficiency than AA. Effects on leukotriene, prostaglandin E, prostacyclin, and thromboxane formation remained rather weak. We propose that CYP-dependent epoxy-metabolites of EPA and DHA may function as mediators of the vasodilatory and cardioprotective effects of omega-3 fatty acids and could serve as biomarkers in clinical studies investigating the cardiovascular effects of EPA/DHA supplementation. PMID:24634501

  18. Identification of the major human hepatic and placental enzymes responsible for the biotransformation of glyburide

    PubMed Central

    Zharikova, Olga L.; Fokina, Valentina M.; Nanovskaya, Tatiana N.; Hill, Ronald A.; Mattison, Donald R.; Hankins, Gary D.V.; Ahmed, Mahmoud S.

    2014-01-01

    One of the factors affecting the pharmacokinetics (PK) of a drug during pregnancy is the activity of hepatic and placental metabolizing enzymes. Recently, we reported on the biotransformation of glyburide by human hepatic and placental microsomes to six metabolites that are structurally identical between the two tissues. Two of the metabolites, 4-trans- (M1) and 3-cis-hydroxycyclohexyl glyburide (M2b), were previously identified in plasma and urine of patients treated with glyburide and are pharmacologically active. The aim of this investigation was to identify the major human hepatic and placental CYP450 isozymes responsible for the formation of each metabolite of glyburide. This was achieved by the use of chemical inhibitors selective for individual CYP isozymes and antibodies raised against them. The identification was confirmed by the kinetic constants for the biotransformation of glyburide by cDNA-expressed enzymes. The data revealed that the major hepatic isozymes responsible for the formation of each metabolite are as follows: CYP3A4 (ethylene-hydroxylated glyburide (M5), 3-trans-(M3) and 2-trans-(M4) cyclohexyl glyburide); CYP2C9 (M1, M2a( 4-cis-) and M2b); CYP2C8 (M1 and M2b); and CYP2C19 (M2a). Human placental microsomal CYP19/aromatase was the major isozyme responsible for the biotransformation of glyburide to predominantly M5. The formation of significant amounts of M5 by CYP19 in the placenta could render this metabolite more accessible to the fetal circulation. The multiplicity of enzymes biotransforming glyburide and the metabolites formed underscores the potential for its drug interactions in vivo. PMID:19679108

  19. Identification of the major human hepatic and placental enzymes responsible for the biotransformation of glyburide.

    PubMed

    Zharikova, Olga L; Fokina, Valentina M; Nanovskaya, Tatiana N; Hill, Ronald A; Mattison, Donald R; Hankins, Gary D V; Ahmed, Mahmoud S

    2009-12-15

    One of the factors affecting the pharmacokinetics (PK) of a drug during pregnancy is the activity of hepatic and placental metabolizing enzymes. Recently, we reported on the biotransformation of glyburide by human hepatic and placental microsomes to six metabolites that are structurally identical between the two tissues. Two of the metabolites, 4-trans-(M1) and 3-cis-hydroxycyclohexyl glyburide (M2b), were previously identified in plasma and urine of patients treated with glyburide and are pharmacologically active. The aim of this investigation was to identify the major human hepatic and placental CYP450 isozymes responsible for the formation of each metabolite of glyburide. This was achieved by the use of chemical inhibitors selective for individual CYP isozymes and antibodies raised against them. The identification was confirmed by the kinetic constants for the biotransformation of glyburide by cDNA-expressed enzymes. The data revealed that the major hepatic isozymes responsible for the formation of each metabolite are as follows: CYP3A4 (ethylene-hydroxylated glyburide (M5), 3-trans-(M3) and 2-trans-(M4) cyclohexyl glyburide); CYP2C9 (M1, M2a (4-cis-) and M2b); CYP2C8 (M1 and M2b); and CYP2C19 (M2a). Human placental microsomal CYP19/aromatase was the major isozyme responsible for the biotransformation of glyburide to predominantly M5. The formation of significant amounts of M5 by CYP19 in the placenta could render this metabolite more accessible to the fetal circulation. The multiplicity of enzymes biotransforming glyburide and the metabolites formed underscores the potential for its drug interactions in vivo.

  20. The guinea-pig expresses functional CYP2C and P-glycoprotein: further validation of its usefulness in drug biotransformation/transport studies.

    PubMed

    Hasibu, Ibrahim; Patoine, Dany; Pilote, Sylvie; Drolet, Benoit; Simard, Chantale

    2015-04-01

    The guinea-pig is an excellent animal model for studying cardiopulmonary physiology/pharmacology. Interestingly, it also possesses a number of drug-metabolizing enzymes found in humans, such as CYP1A, CYP2D and CYP3A. To evaluate the hypothesis that the guinea-pig also expresses a functional CYP2C drug-metabolizing enzyme and the P-glycoprotein (P-gp) drug transporter in various tissues. cDNAs encoding CYP2C and P-gp were obtained from guinea-pig liver or small intestine and sequenced. Western blotting was performed to confirm the expression of CYP2C and P-gp. The functional enzymatic activity of guinea-pig CYP2C was evaluated with microsomal preparations using diclofenac and tolbutamide as specific drug substrates in HPLC analyses. To further study both P-gp and CYP2C functional activities, the guinea-pig ABCB1/MDR1 and CYP2C genes were cloned. The recombinant plasmids were then transfected in HEK293 (human embryonic kidney) cells and either calcein-acetoxymethyl ester (AM) accumulation assays or 14,15-EET/DHET formation experiments were performed to evaluate either P-gp transport activity or CYP2C epoxygenase activity, respectively. The guinea-pig tissue distribution of P-gp was studied by Western blotting. Functional expression of CYP2C was demonstrated in guinea-pig liver microsomal preparations. CYP2C-mediated biotransformation of diclofenac and tolbutamide were shown. Expression of P-gp protein was detected in guinea-pig liver and small intestine. Functional activity of guinea-pig P-gp was demonstrated in ABCB1/MDR1-transfected cells. GP-CYP2C-transfected cells also showed functional epoxygenase activity. The guinea-pig expresses functional CYP2C and P-gp, thus suggesting its usefulness for further validating data obtained with other animal models in drug biotransformation/transport studies. Copyright © 2015 John Wiley & Sons, Ltd.

  1. A physiological role of AMP-activated protein kinase in phenobarbital-mediated constitutive androstane receptor activation and CYP2B induction

    PubMed Central

    Shindo, Sawako; Numazawa, Satoshi; Yoshida, Takemi

    2006-01-01

    CAR (constitutive androstane receptor) is a nuclear receptor that regulates the transcription of target genes, including CYP (cytochrome P450) 2B and 3A. The transactivation by CAR is regulated by its subcellular localization; however, the mechanism that governs nuclear translocation has yet to be clarified. It has been reported recently that AMPK (AMP-activated protein kinase) is involved in phenobarbital-mediated CYP2B induction in a particular culture system. We therefore investigated in vivo whether AMPK is involved in the activation of CAR-dependent gene expression. Immunoblot analysis using an antibody which recognizes Thr-172-phosphorylated AMPKα1/2 revealed phenobarbital-induced AMPK activation in rat and mouse livers as well. Phenobarbital, however, failed to increase the liver phospho-AMPK level of tumour-bearing rats in which CAR nuclear translocation had been impaired. In in vivo reporter gene assays employing PBREM (phenobarbital-responsive enhancer module) from CYP2B1, an AMPK inhibitor 8-bromo-AMP abolished phenobarbital-induced transactivation. In addition, Cyp2b10 gene expression was attenuated by 8-bromo-AMP. Forced expression of a dominant-negative mutant and the wild-type of AMPKα2 in the mouse liver suppressed and further enhanced phenobarbital-induced PBREM-reporter activity respectively. Moreover, the AMPK activator AICAR (5-amino-4-imidazolecarboxamide riboside) induced PBREM transactivation and an accumulation of CAR in the nuclear fraction of the mouse liver. However, AICAR and metformin, another AMPK activator, failed to induce hepatic CYP2B in mice and rats. These observations suggest that AMPK is at least partly involved in phenobarbital-originated signalling, but the kinase activation by itself is not sufficient for CYP2B induction in vivo. PMID:17032173

  2. CRISPR/Cas9 Genetic Modification of CYP3A5 *3 in HuH-7 Human Hepatocyte Cell Line Leads to Cell Lines with Increased Midazolam and Tacrolimus Metabolism.

    PubMed

    Dorr, Casey R; Remmel, Rory P; Muthusamy, Amutha; Fisher, James; Moriarity, Branden S; Yasuda, Kazuto; Wu, Baolin; Guan, Weihua; Schuetz, Erin G; Oetting, William S; Jacobson, Pamala A; Israni, Ajay K

    2017-08-01

    Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 engineering of the CYP3A5 *3 locus (rs776746) in human liver cell line HuH-7 ( CYP3A5 *3/*3 ) has led to three CYP3A5 *1 cell lines by deletion of the exon 3B splice junction or point mutation. Cell lines CYP3A5 *1/*3 sd (single deletion), CYP3A5 *1/*1 dd (double deletion), or CYP3A5 *1/*3 pm (point mutation) expressed the CYP3A5 *1 mRNA and had elevated CYP3A5 mRNA ( P < 0.0005 for all engineered cell lines) and protein expression compared with HuH-7. In metabolism assays, HuH-7 had less tacrolimus (all P < 0.05) or midazolam (MDZ) (all P < 0.005) disappearance than all engineered cell lines. HuH-7 had less 1-OH MDZ (all P < 0.0005) or 4-OH (all P < 0.005) production in metabolism assays than all bioengineered cell lines. We confirmed CYP3A5 metabolic activity with the CYP3A4 selective inhibitor CYP3CIDE. This is the first report of genomic CYP3A5 bioengineering in human cell lines with drug metabolism analysis. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Human cytochrome-P450 enzymes metabolize N-(2-methoxyphenyl)hydroxylamine, a metabolite of the carcinogens o-anisidine and o-nitroanisole, thereby dictating its genotoxicity.

    PubMed

    Naiman, Karel; Martínková, Markéta; Schmeiser, Heinz H; Frei, Eva; Stiborová, Marie

    2011-12-24

    N-(2-Methoxyphenyl)hydroxylamine is a component in the human metabolism of two industrial and environmental pollutants and bladder carcinogens, viz. 2-methoxyaniline (o-anisidine) and 2-methoxynitrobenzene (o-nitroanisole), and it is responsible for their genotoxicity. Besides its capability to form three deoxyguanosine adducts in DNA, N-(2-methoxyphenyl)-hydroxylamine is also further metabolized by hepatic microsomal enzymes. To investigate its metabolism by human hepatic microsomes and to identify the major microsomal enzymes involved in this process are the aims of this study. N-(2-Methoxyphenyl)hydroxylamine is metabolized by human hepatic microsomes predominantly to o-anisidine, one of the parent carcinogens from which N-(2-methoxyphenyl)hydroxylamine is formed, while o-aminophenol and two N-(2-methoxyphenyl)hydroxylamine metabolites, whose exact structures have not been identified as yet, are minor products. Selective inhibitors of microsomal CYPs, NADPH:CYP reductase and NADH:cytochrome-b(5) reductase were used to characterize human liver microsomal enzymes reducing N-(2-methoxyphenyl)hydroxylamine to o-anisidine. Based on these studies, we attribute the main activity for this metabolic step in human liver to CYP3A4, 2E1 and 2C (more than 90%). The enzymes CYP2D6 and 2A6 also partake in this N-(2-methoxyphenyl)hydroxylamine metabolism in human liver, but only to ∼6%. Among the human recombinant CYP enzymes tested in this study, human CYP2E1, followed by CYP3A4, 1A2, 2B6 and 2D6, were the most efficient enzymes metabolizing N-(2-methoxyphenyl)hydroxylamine to o-anisidine. The results found in this study indicate that genotoxicity of N-(2-methoxyphenyl)hydroxylamine is dictated by its spontaneous decomposition to nitrenium/carbenium ions generating DNA adducts, and by its susceptibility to metabolism by CYP enzymes. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Gene structure of CYP3A4, an adult-specific form of cytochrome P450 in human livers, and its transcriptional control.

    PubMed

    Hashimoto, H; Toide, K; Kitamura, R; Fujita, M; Tagawa, S; Itoh, S; Kamataki, T

    1993-12-01

    CYP3 A4 is the adult-specific form of cytochrome P450 in human livers [Komori, M., Nishio, K., Kitada, M., Shiramatsu, K., Muroya, K., Soma, M., Nagashima, K. & Kamataki, T. (1990) Biochemistry 29, 4430-4433]. The sequences of three genomic clones for CYP3A4 were analyzed for all exons, exon-intron junctions and the 5'-flanking region from the major transcription site to nucleotide position -1105, and compared with those of the CYP3A7 gene, a fetal-specific form of cytochrome P450 in humans. The results showed that the identity of 5'-flanking sequences between CYP3A4 and CYP3A7 genes was 91%, and that each 5'-flanking region had characteristic sequences termed as NFSE (P450NF-specific element) and HFLaSE (P450HFLa specific element), respectively. A basic transcription element (BTE) also lay in the 5'-flanking region of the CYP3A4 gene as seen in many CYP genes [Yanagida, A., Sogawa, K., Yasumoto, K. & Fujii-Kuriyama, Y. (1990) Mol. Cell. Biol. 10, 1470-1475]. The BTE binding factor (BTEB) was present in both adult and fetal human livers. To examine the transcriptional activity of the CYP3A4 gene, DNA fragments in the 5'-flanking region of the gene were inserted in front of the simian virus 40 promoter and the chloramphenicol acetyltransferase structural gene, and the constructs were transfected in HepG2 cells. The analysis of the chloramphenicol acetyltransferase activity indicated that (a) specific element(s) which could bind with a factor(s) in livers was present in the 5'-flanking region of the CYP3A4 gene to show the transcriptional activity.

  5. Molecular cloning and 3D model of first cytochrome P450 from CYP3A subfamily in saltwater crocodile (Crocodylus porosus).

    PubMed

    Tabassum, Rabia

    2017-10-18

    Cytochrome P450s (CYPs) play critical role in oxidative metabolism of numerous xenobiotics and endogenous compounds. The first CYP3A subfamily member in saltwater crocodile has been cloned and modelled for three-dimensional (3D) structure. The full-length cDNA was obtained employing reverse transcription polymerase chain reaction (RT-PCR) strategy and rapid amplification of cDNA ends (RACE). The cDNA sequence of 1659 nucleotides includes 132 nucleotides from 5' untranslated region (UTR), an open reading frame of 1527 nucleotides encoding 509 amino acids designated as CYP3A163. The alignment of CYP3A163 sequence with CYP3A subfamily across the lineages exhibit the loss of 1 residue in birds and 7 residues in mammals in comparison to reptiles suggesting the adaptation processes during evolution. The amino acid identity of CYP3A163 with Alligator mississippiensis CYP3A77 and Homo sapiens CYP3A4 is 91% and 62% respectively. The 3D structure of CYP3A163 modelled using human CYP3A4 structure as a template with Phyre 2 software, represents high similarity with its functionally important motifs and catalytic domain. Both sequence and structure of CYP3A163 display the common and conserved features of CYP3A subfamily. Overall, this study provides primary molecular and structural data of CYP3A163 required to investigate the xenobiotic metabolism in saltwater crocodiles. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The Effect of microRNAs in the Regulation of Human CYP3A4: a Systematic Study using a Mathematical Model

    NASA Astrophysics Data System (ADS)

    Wei, Zhiyun; Jiang, Songshan; Zhang, Yiting; Wang, Xiaofei; Peng, Xueling; Meng, Chunjie; Liu, Yichen; Wang, Honglian; Guo, Luo; Qin, Shengying; He, Lin; Shao, Fengmin; Zhang, Lirong; Xing, Qinghe

    2014-03-01

    CYP3A4 metabolizes more than 50% of the drugs on the market. The large inter-individual differences of CYP3A4 expression may contribute to the variability of human drug responses. Post-transcriptional regulation of CYP3A4 is poorly understood, whereas transcriptional regulation has been studied much more thoroughly. In this study, we used multiple software programs to predict miRNAs that might bind to CYP3A4 and identified 112 potentially functional miRNAs. Then a luciferase reporter system was used to assess the effect of the overexpression of each potentially functional miRNA in HEK 293T cells. Fourteen miRNAs that significantly decreased reporter activity were measured in human liver samples (N = 27) as candidate miRNAs. To establish a more effective way to analyze in vivo data for miRNA candidates, the relationship between functional miRNA and target mRNA was modeled mathematically. Taking advantage of this model, we found that hsa-miR-577, hsa-miR-1, hsa-miR-532-3p and hsa-miR-627 could significantly downregulate the translation efficiency of CYP3A4 mRNA in liver. This study used in silico, in vitro and in vivo methods to progressively screen functional miRNAs for CYP3A4 and to enhance our understanding of molecular events underlying the large inter-individual differences of CYP3A4 expression in human populations.

  7. The Effect of microRNAs in the Regulation of Human CYP3A4: a Systematic Study using a Mathematical Model

    PubMed Central

    Wei, Zhiyun; Jiang, Songshan; Zhang, Yiting; Wang, Xiaofei; Peng, Xueling; Meng, Chunjie; Liu, Yichen; Wang, Honglian; Guo, Luo; Qin, Shengying; He, Lin; Shao, Fengmin; Zhang, Lirong; Xing, Qinghe

    2014-01-01

    CYP3A4 metabolizes more than 50% of the drugs on the market. The large inter-individual differences of CYP3A4 expression may contribute to the variability of human drug responses. Post-transcriptional regulation of CYP3A4 is poorly understood, whereas transcriptional regulation has been studied much more thoroughly. In this study, we used multiple software programs to predict miRNAs that might bind to CYP3A4 and identified 112 potentially functional miRNAs. Then a luciferase reporter system was used to assess the effect of the overexpression of each potentially functional miRNA in HEK 293T cells. Fourteen miRNAs that significantly decreased reporter activity were measured in human liver samples (N = 27) as candidate miRNAs. To establish a more effective way to analyze in vivo data for miRNA candidates, the relationship between functional miRNA and target mRNA was modeled mathematically. Taking advantage of this model, we found that hsa-miR-577, hsa-miR-1, hsa-miR-532-3p and hsa-miR-627 could significantly downregulate the translation efficiency of CYP3A4 mRNA in liver. This study used in silico, in vitro and in vivo methods to progressively screen functional miRNAs for CYP3A4 and to enhance our understanding of molecular events underlying the large inter-individual differences of CYP3A4 expression in human populations. PMID:24594634

  8. Altered cytochrome P450 activities and expression levels in the liver and intestines of the monosodium glutamate-induced mouse model of human obesity.

    PubMed

    Tomankova, Veronika; Liskova, Barbora; Skalova, Lenka; Bartikova, Hana; Bousova, Iva; Jourova, Lenka; Anzenbacher, Pavel; Ulrichova, Jitka; Anzenbacherova, Eva

    2015-07-15

    Cytochromes P450 (CYPs) are enzymes present from bacteria to man involved in metabolism of endogenous and exogenous compounds incl. drugs. Our objective was to assess whether obesity leads to changes in activities and expression of CYPs in the mouse liver, small intestine and colon. An obese mouse model with repeated injection of monosodium glutamate (MSG) to newborns was used. Controls were treated with saline. All mice were sacrificed at 8 months. In the liver and intestines, levels of CYP mRNA and proteins were analyzed using RT-PCR and Western blotting. Activities of CYP enzymes were measured with specific substrates of human orthologous forms. At the end of the experiment, body weight, plasma insulin and leptin levels as well as the specific content of hepatic CYP enzymes were increased in obese mice. Among CYP enzymes, hepatic CYP2A5 activity, protein and mRNA expression increased most significantly in obese animals. Higher activities and protein levels of hepatic CYP2E1 and 3A in the obese mice were also found. No or a weak effect on CYPs 2C and 2D was observed. In the small intestine and colon, no changes of CYP enzymes were detected except for increased expression of CYP2E1 and decreased expression of CYP3A mRNAs in the colon of the obese mice. Results of our study suggest that the specific content and activities of some liver CYP enzymes (especially CYP2A5) can be increased in obese mice. Higher activity of CYP2A5 (CYP2A6 human ortholog) could lead to altered metabolism of drug substrates of this enzyme (valproic acid, nicotine, methoxyflurane). Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Rapid detection of the CYP2A6*12 hybrid allele by Pyrosequencing technology.

    PubMed

    Koontz, Deborah A; Huckins, Jacqueline J; Spencer, Antonina; Gallagher, Margaret L

    2009-08-24

    Identification of CYP2A6 alleles associated with reduced enzyme activity is important in the study of inter-individual differences in drug metabolism. CYP2A6*12 is a hybrid allele that results from unequal crossover between CYP2A6 and CYP2A7 genes. The 5' regulatory region and exons 1-2 are derived from CYP2A7, and exons 3-9 are derived from CYP2A6. Conventional methods for detection of CYP2A6*12 consist of two-step PCR protocols that are laborious and unsuitable for high-throughput genotyping. We developed a rapid and accurate method to detect the CYP2A6*12 allele by Pyrosequencing technology. A single set of PCR primers was designed to specifically amplify both the CYP2A6*1 wild-type allele and the CYP2A6*12 hybrid allele. An internal Pyrosequencing primer was used to generate allele-specific sequence information, which detected homozygous wild-type, heterozygous hybrid, and homozygous hybrid alleles. We first validated the assay on 104 DNA samples that were also genotyped by conventional two-step PCR and by cycle sequencing. CYP2A6*12 allele frequencies were then determined using the Pyrosequencing assay on 181 multi-ethnic DNA samples from subjects of African American, European Caucasian, Pacific Rim, and Hispanic descent. Finally, we streamlined the Pyrosequencing assay by integrating liquid handling robotics into the workflow. Pyrosequencing results demonstrated 100% concordance with conventional two-step PCR and cycle sequencing methods. Allele frequency data showed slightly higher prevalence of the CYP2A6*12 allele in European Caucasians and Hispanics. This Pyrosequencing assay proved to be a simple, rapid, and accurate alternative to conventional methods, which can be easily adapted to the needs of higher-throughput studies.

  10. An Insulin-Like Growth Factor 1 Receptor Inhibitor Induces CYP3A4 Expression through a Pregnane X Receptor-Independent, Noncanonical Constitutive Androstane Receptor-Related Mechanism

    PubMed Central

    Li, Linhao; Sinz, Michael W.; Zimmermann, Kurt

    2012-01-01

    Inhibition of insulin-like growth factor-1 receptor (IGF-1R) signaling represents an attractive therapeutic strategy for cancer treatment. A first-generation IGF-1R inhibitor (R)-4-(3-(3-chlorophenyl)-3-hydroxypropyl)-3-(4-methyl-6-morpholino-1H-benzo[d]imidazol-2-yl)pyridin-2(1H)-one (BMS-536924), however, was associated with potent CYP3A4 induction mediated by pregnane X receptor (PXR; NR1I2) transactivation. Structural activity-based modification led to the synthesis of 4-(1-(2-(4-((2-(4-chloro-1H-pyrazol-1-yl)ethyl)amino)-2-oxo-1,2-dihydropyridin-3-yl)-4-methyl-1H-benzo[d]imidazol-6-yl)piperidin-4-yl) piperazine-1-carboxylate (BMS-665351) with no PXR activity while maintaining its ability to inhibit IGF-1R. However, BMS-665351 significantly induces CYP3A4 expression in human primary hepatocytes (HPHs). Here, we report a novel nonclassical constitutive androstane receptor (CAR; NR1I3)-related pathway of BMS-665351-mediated CYP3A4 induction. BMS-665351 treatment resulted in the significant induction of CYP3A4 in HPHs and HepG2 cells, but failed to activate either PXR or CAR in cell-based reporter assays. Moreover, BMS-665351 at concentrations that induce CYP3A4 expression was unable to translocate human CAR from the cytoplasm to the nucleus of HPHs, which represents the initial step of CAR activation. Nevertheless, quantitative polymerase chain reaction analysis demonstrated that BMS-665351 significantly enhanced the expression of CYP3A4 in CAR- but not PXR-transfected HepG2 and Huh7 cells. It is noteworthy that BMS-665351 selectively induced the expression of CAR but not PXR in all tested hepatic cell systems. Synergistic induction of CYP3A4 was observed in HPHs cotreated with BMS-665351 and prototypical activators of CAR but not PXR. In summary, our results indicate that BMS-665351-mediated induction of CYP3A4 is CAR-dependent, but BMS-665351 itself is not a typical activator of either CAR or PXR, rather it functions as a selective inducer of CAR expression and

  11. Neratinib resistance and cross-resistance to other HER2-targeted drugs due to increased activity of metabolism enzyme cytochrome P4503A4.

    PubMed

    Breslin, Susan; Lowry, Michelle C; O'Driscoll, Lorraine

    2017-02-28

    Neratinib is in Phase 3 clinical trials but, unfortunately, the development of resistance is inevitable. Here, we investigated the effects of acquired neratinib resistance on cellular phenotype and the potential mechanism of this resistance. Neratinib-resistant variants of HER2-positive breast cancer cells were developed and their cross-resistance investigated using cytotoxicity assays. Similarly, sensitivity of trastuzumab-resistant and lapatinib-resistant cells to neratinib was assessed. Cellular phenotype changes were evaluated using migration, invasion and anoikis assays. Immunoblotting for HER family members and drug efflux pumps, as well as enzyme activity assays were performed. Neratinib resistance conferred cross-resistance to trastuzumab, lapatinib and afatinib. Furthermore, the efficacy of neratinib was reduced in trastuzumab- and lapatinib-resistant cells. Neratinib-resistant cells were more aggressive than their drug-sensitive counterparts, with increased CYP3A4 activity identified as a novel mechanism of neratinib resistance. The potential of increased CYP3A4 activity as a biomarker and/or target to add value to neratinib warrants investigation.

  12. Impact of inhalational exposure to ethanol fuel on the pharmacokinetics of verapamil, ibuprofen and fluoxetine as in vivo probe drugs for CYP3A, CYP2C and CYP2D in rats.

    PubMed

    Cardoso, Juciane Lauren Cavalcanti; Lanchote, Vera Lucia; Pereira, Maria Paula Marques; Capela, Jorge Manuel Vieira; de Moraes, Natália Valadares; Lepera, José Salvador

    2015-10-01

    Occupational toxicology and clinical pharmacology integration will be useful to understand potential exposure-drug interaction and to shape risk assessment strategies in order to improve occupational health. The aim of the present study was to evaluate the effect of exposure to ethanol fuel on in vivo activities of cytochrome P450 (CYP) isoenzymes CYP3A, CYP2C and CYP2D by the oral administration of the probe drugs verapamil, ibuprofen and fluoxetine. Male Wistar rats exposed to filtered air or to 2000 ppm ethanol in a nose-only inhalation chamber during (6 h/day, 5 days/week, 6 weeks) received single oral doses of 10 mg/kg verapamil or 25 mg/kg ibuprofen or 10 mg/kg fluoxetine. The enantiomers of verapamil, norverapamil, ibuprofen and fluoxetine in plasma were analyzed by LC-MS/MS. The area under the curve plasma concentration versus time extrapolated to infinity (AUC(0-∞)) was calculated using the Gauss-Laguerre quadrature. Inhalation exposure to ethanol reduces the AUC of both verapamil (approximately 2.7 fold) and norverapamil enantiomers (>2.5 fold), reduces the AUC(0-∞) of (+)-(S)-IBU (approximately 2 fold) and inhibits preferentially the metabolism of (-)-(R)-FLU. In conclusion, inhalation exposure of ethanol at a concentration of 2 TLV-STEL (6 h/day for 6 weeks) induces CYP3A and CYP2C but inhibits CYP2D in rats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Isolation of CYP3A5P cDNA from human liver: a reflection of a novel cytochrome P-450 pseudogene.

    PubMed

    Schuetz, J D; Guzelian, P S

    1995-03-14

    We have isolated, from a human liver cDNA library, a 1627 bp CYP3A5 cDNA variant (CYP3A5P) that contains several large insertions, deletions, and in-frame termination codons. By comparison with the genomic structure of other CYP3A genes, the major insertions in CYP3A5P cDNA demarcate the inferred sites of several CYP3A5 exons. The segments inserted in CYP3A5P have no homology with splice donor acceptor sites. It is unlikely that CYP3A5P cDNA represents an artifact of the cloning procedures since Southern blot analysis of human genomic DNA disclosed that CYP3A5P cDNA hybridized with a DNA fragment distinct from fragments that hybridized with either CYP3A5, CYP3A3 or CYP3A4. Moreover, analysis of adult human liver RNA on Northern blots hybridized with a CYP3A5P cDNA fragment revealed the presence of an mRNA with the predicted size of CYP3A5P. We conclude that CYP3A5P cDNA was derived from a separate gene, CYP3A5P, most likely a pseudogene evolved from CYP3A5.

  14. Nicotine-mediated suppression of the retinoic acid metabolizing enzyme CYP26A1 limits the oncogenic potential of breast cancer.

    PubMed

    Osanai, Makoto; Lee, Gang-Hong

    2011-06-01

    Tobacco smoke influences cancer development in tissues that are not directly exposed, and epidemiological studies have indicated that smoking women might experience decreased risk of breast cancer as a result of antiestrogenic effects. However, it remains to be clarified whether nicotine, one of the major addictive and best-investigated constituents of tobacco smoke, has any effect on breast cancer. Our recent work demonstrated that the retinoic acid metabolizing enzyme CYP26A1 enhances oncogenic and cell survival properties of breast carcinoma cells, implying a role as an oncogene. Here, we present evidence that nicotine significantly suppresses constitutive expression of CYP26A1, and that cells treated with nicotine exhibit enhanced sensitivity to apoptosis. In addition, nicotine may inhibit anchorage independent growth, cellular invasiveness and motility. These data show that nicotine can limit CYP26A1-mediated oncogenic characteristics, and suggest mechanisms by which nicotine might inhibit breast cancer development. © 2011 Japanese Cancer Association.

  15. Association of CYP2C9*3 with phenytoin-induced Stevens-Johnson syndrome and toxic epidermal necrolysis: A systematic review and meta-analysis.

    PubMed

    Wu, X; Liu, W; Zhou, W

    2018-06-01

    Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are severe cutaneous adverse reactions that can be induced by phenytoin (PHT). CYP2C9*3 is the key enzyme in PHT metabolism. The aim of this meta-analysis was to evaluate the association between CYP2C9*3 and PHT-induced SJS/TEN. An extensive search was performed in multiple databases, including the Cochrane Library, EMBASE, PubMed, OVID and EBSCO. Studies exploring the relationship between CYP2C9*3 and PHT-induced SJS and TEN were included. Odds ratios (ORs) with corresponding 95% confidence intervals (CI) were calculated for dichotomous data. Data analysis was performed using Review Manager (version 5.3). Four studies, with 117 PHT-induced SJS/TEN cases and 338 matched controls (PHT-tolerant patients) or 4231 population controls (general population), were identified. SJS and TEN were found to be significantly associated with the CYP2C9*3 allele, comparing both matched controls (OR, 8.93; 95% CI, 2.63-30.36; P = .0005) with substantial heterogeneity (I 2  = 46%) and population controls (OR, 8.88; 95% CI, 5.01-15.74; P < .00001). A significant association between CYP2C9*3 and PHT-induced SJS/TEN was identified, especially in a Thai population. CYP2C9*3 is thus a credible predictive genetic marker of PHT-induced SJS/TEN. Further multicenter studies and large prospective observational studies are, however, still required to determine the influence of CYP2C*3 on blood levels of PHT and its metabolites, and their association with SJS/TEN. © 2017 John Wiley & Sons Ltd.

  16. Chemoprotective potentials of homoisoflavonoids and chalcones of Dracaena cinnabari: modulations of drug-metabolizing enzymes and antioxidant activity.

    PubMed

    Machala, M; Kubínová, R; Horavová, P; Suchý, V

    2001-03-01

    A series of homoisoflavonoids and chalcones, isolated from the endemic tropical plant Dracaena cinnabari Balf. (Agavaceae), were tested for their potential to inhibit cytochrome P4501A (CYP1A) enzymes and Fe-enhanced in vitro peroxidation of microsomal lipids in C57B1/6 mouse liver. The effects of the polyphenolic compounds were compared with those of prototypal flavonoid modulators of CYP1A and the well-known antioxidant, butylated hydroxytoluene. 2-Hydroxychalcone and partly 4,6-dihydroxychalcone were found to be strong inhibitors of CYP1A-dependent 7-ethoxyresorufin O-deethylase (EROD) activity in vitro comparable to the effects of quercetin and chrysin. The first screening of flavonoids and chalcones of Dracaena cinnabari for antioxidant activity was done in an in vitro microsomal peroxidation assay. While chalcones were shown to be poor antioxidants, 7,8-methylenedioxy-3(4-hydroxybenzyl) chromane, as one of the tested homoisoflavonoids, exhibited a strong antioxidant activity comparable to that of the strongest flavonol antioxidant, quercetin. Copyright 2001 John Wiley & Sons, Ltd.

  17. Genetic findings and functional studies of human CYP3A5 single nucleotide polymorphisms in different ethnic groups.

    PubMed

    Lee, Su-Jun; Usmani, Khawja A; Chanas, Brian; Ghanayem, Burhan; Xi, Tina; Hodgson, Ernest; Mohrenweiser, Harvey W; Goldstein, Joyce A

    2003-08-01

    Genetic polymorphisms of cytochromes P450 (CYPs) are a principal reason for inter-individual variations in the metabolism of therapeutic drugs and environmental chemicals in humans. The present study identifies 34 single nucleotide polymorphisms (SNPs) of CYP3A5 including 27 previously unidentified SNPs by direct sequencing of the exons, intron-exon junctions and 5'-upstream region of CYP3A5 from 92 racially diverse individuals (24 Caucasians, 24 Africans, 24 Asians, and 20 individuals of unknown racial origin). Four new CYP3A5 SNPs produced coding changes: R28C, L82R, A337T, and F446S. CYP3A5 R28C occurred in African populations (allelic frequency of 4%). CYP3A5 A337T occurred in Asians (2% allelic frequency), CYP3A5 L82R (occurred in the racially unidentified group) and CYP3A5 F446S (identified in Caucasians with a 2% allelic frequency) were on an allele containing the splice change g.6986A>G known as CYP3A5*3. The newly identified allelic proteins were constructed by site-directed mutagenesis, expressed in Escherichia coli and purified. CYP3A5 L82R was expressed only as denatured CYP420, suggesting it may be unstable. CYP3A5*1 exhibited the highest maximal clearance for testosterone followed by CYP3A5 A337T > CYP3A5 R28C > CYP3A5 F446S. CYP3A5*1 exhibited a higher V(max) for nifedipine oxidation than CYP3A5 A337T > CYP3A5 R28C > CYP3A5 F446S. CYP3A5 A337T and CYP3A5 R28C exhibited a 42-64% lower V(max) for nifedipine oxidation than CYP3A5*1. CYP3A5 F446S exhibited a > 95% decrease in the intrinsic clearance for both 6beta-hydroxytestosterone and nifedipine oxidation. This study identifies four new potentially defective coding alleles. CYP3A5 F446S is predicted to be more catalytically defective than the splice change alone.

  18. Characterization of the recalcitrant CYP1 phenotype found in Atlantic killifish (Fundulus heteroclitus) inhabiting a Superfund site on the Elizabeth River, VA.

    PubMed

    Wills, Lauren P; Matson, Cole W; Landon, Chelsea D; Di Giulio, Richard T

    2010-08-01

    Fundulus heteroclitus (Atlantic killifish) found at the Atlantic Wood Industries Superfund site on the Elizabeth River (ER) in Portsmouth, VA (USA), have been shown to be resistant to the teratogenic effects of creosote-contaminated sediments found at this highly contaminated site. Many of the polycyclic aromatic hydrocarbons (PAHs) found at the ER are known to activate the aryl hydrocarbon receptor (AHR), and are thought to mediate their toxic effects through this pathway. Activation of the AHR results in the induction of several Phase I and II metabolic enzymes. It has been previously shown that the AHR of killifish from the ER are refractory to induction by AHR agonists. To more fully characterize this altered AHR response, we exposed embryos from the ER and from a reference site on King's Creek, VA (KC) to two PAHs, benzo[alpha]pyrene (BaP) and benzo[k]fluoranthene (BkF), and to the dioxin-like compound (DLC), 3,3',4,4',5-pentachlorobiphenyl (PCB126). We compared their developmental and molecular responses by screening the embryos for CYP1A enzyme activity, cardiac deformities, and mRNA expression of CYP1A, CYP1B1, CYP1C1, and AHR2. Basal gene expression of both CYP1A and CYP1B1 was 40% higher in the KC control embryos compared to those from the ER, while AHR2 and CYP1C1 were not significantly different between the populations. Exposure of KC embryos to BaP, BkF, and PCB126 induced CYP1A activity and cardiac deformities. In contrast, CYP1A activity was induced in ER embryos only in response to BkF exposure, although this induction in ER embryos was significantly lower than that observed in KC fish at comparable concentrations. ER embryos did not develop cardiac deformities in response to any of the chemicals tested. CYP1A, CYP1B1 and CYP1C1 mRNA were all significantly induced in the KC embryos after exposure to BaP, BkF and PCB126. Exposure to BaP and BkF in ER embryos resulted in a significant induction of CYP1A mRNA, albeit significantly lower than observed

  19. Characterization of the recalcitrant CYP1 phenotype found in Atlantic killifish (Fundulus heteroclitus) inhabiting a Superfund site on the Elizabeth River, VA

    PubMed Central

    Wills, Lauren P.; Matson, Cole W.; Landon, Chelsea D.; Di Giulio, Richard T.

    2010-01-01

    Fundulus heteroclitus (Atlantic killifish) found at the Atlantic Wood Industries Superfund site on the Elizabeth River (ER) in Portsmouth, VA (USA), have been shown to be resistant to the teratogenic effects of creosote-contaminated sediments found at this highly contaminated site. Many of the polycyclic aromatic hydrocarbons (PAHs) found at the ER are known to activate the aryl hydrocarbon receptor (AHR), and are thought to mediate their toxic effects through this pathway. Activation of the AHR results in the induction of several Phase I and II metabolic enzymes. It has been previously shown that the AHR of killifish from the ER are refractory to induction by AHR agonists. To more fully characterize this altered AHR response, we exposed embryos from the ER and from a reference site on King's Creek, VA (KC) to two PAHs, benzo[α]pyrene (BaP) and benzo[k]fluoranthene (BkF), and to the dioxin-like compound (DLC), 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). We compared their developmental and molecular responses by screening the embryos for CYP1A enzyme activity, cardiac deformities, and mRNA expression of CYP1A, CYP1B1, CYP1C1, and AHR2. Basal gene expression of both CYP1A and CYP1B1 was 40% higher in the KC control embryos compared to those from the ER, while AHR2 and CYP1C1 were not significantly different between the populations. Exposure of KC embryos to BaP, BkF, and PCB126 induced CYP1A activity and cardiac deformities. In contrast, CYP1A activity was induced in ER embryos only in response to BkF exposure, although this induction in ER embryos was significantly lower than that observed in KC fish at comparable concentrations. ER embryos did not develop cardiac deformities in response to any of the chemicals tested. CYP1A, CYP1B1 and CYP1C1 mRNA were all significantly induced in the KC embryos after exposure to BaP, BkF and PCB126. Exposure to BaP and BkF in ER embryos resulted in a significant induction of CYP1A mRNA, albeit significantly lower than observed

  20. Effects of anthocyanins on the AhR-CYP1A1 signaling pathway in human hepatocytes and human cancer cell lines

    PubMed Central

    Kamenickova, Alzbeta; Anzenbacherova, Eva; Pavek, Petr; Soshilov, Anatoly A.; Denison, Michael S.; Zapletalova, Michaela; Anzenbacher, Pavel; Dvorak, Zdenek

    2013-01-01

    Anthocyanins are plant pigments occurring in flowers and berry fruits. Since a phenomenon of food-drug interactions is increasingly emerging, we examined the effects of 21 major anthocyanins and the extracts from 3 food supplements containing anthocyanins on the aryl hydrocarbon receptor (AhR) – cytochrome P450 CYP1A1 signaling pathway in human hepatocytes and human hepatic HepG2 and intestinal LS174T cancer cells. Pelargonidin-3-O-rutinoside (PEL-2) and cyanidin-3,5-O-diglucoside (CYA-3) dose-dependently activated AhR, as revealed by gene reporter assay. PEL-2 and CYA-3 induced CYP1A1 mRNA but not protein in HepG2 and LS174T cells. Neither compound induced CYP1A1 mRNA and protein in four different primary human hepatocytes cultures. The effects of PEL-2 and CYA-3 on AhR occurred by ligand-dependent and ligand-independent mechanisms, respectively, as demonstrated by ligand binding assay. In a direct enzyme inhibition assay, none of the antocyanins tested inhibited the CYP1A1 marker activity to less than 50% even at 100 µM concentration. PEL-2 and CYA-3 at 100 µM inhibited CYP1A1 to 79% and 65%, respectively. In conclusion, with exception of PEL-2 and CYA-3, there were no effects of 19 major anthocyanins and 3 food supplements containing anthocyanins on AhR-CYP1A1 signaling, implying zero potential of these compounds for food-drug interactions with respect to AhR-CYP1A1 pathway. PMID:23735880

  1. Sequence variants at CYP1A1–CYP1A2 and AHR associate with coffee consumption

    PubMed Central

    Sulem, Patrick; Gudbjartsson, Daniel F.; Geller, Frank; Prokopenko, Inga; Feenstra, Bjarke; Aben, Katja K.H.; Franke, Barbara; den Heijer, Martin; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Yanek, Lisa R.; Becker, Lewis C.; Boyd, Heather A.; Stacey, Simon N.; Walters, G. Bragi; Jonasdottir, Adalbjorg; Thorleifsson, Gudmar; Holm, Hilma; Gudjonsson, Sigurjon A.; Rafnar, Thorunn; Björnsdottir, Gyda; Becker, Diane M.; Melbye, Mads; Kong, Augustine; Tönjes, Anke; Thorgeirsson, Thorgeir; Thorsteinsdottir, Unnur; Kiemeney, Lambertus A.; Stefansson, Kari

    2011-01-01

    Coffee is the most commonly used stimulant and caffeine is its main psychoactive ingredient. The heritability of coffee consumption has been estimated at around 50%. We performed a meta-analysis of four genome-wide association studies of coffee consumption among coffee drinkers from Iceland (n = 2680), the Netherlands (n = 2791), the Sorbs Slavonic population isolate in Germany (n = 771) and the USA (n = 369) using both directly genotyped and imputed single nucleotide polymorphisms (SNPs) (2.5 million SNPs). SNPs at the two most significant loci were also genotyped in a sample set from Iceland (n = 2430) and a Danish sample set consisting of pregnant women (n = 1620). Combining all data, two sequence variants significantly associated with increased coffee consumption: rs2472297-T located between CYP1A1 and CYP1A2 at 15q24 (P = 5.4 · 10−14) and rs6968865-T near aryl hydrocarbon receptor (AHR) at 7p21 (P = 2.3 · 10−11). An effect of ∼0.2 cups a day per allele was observed for both SNPs. CYP1A2 is the main caffeine metabolizing enzyme and is also involved in drug metabolism. AHR detects xenobiotics, such as polycyclic aryl hydrocarbons found in roasted coffee, and induces transcription of CYP1A1 and CYP1A2. The association of these SNPs with coffee consumption was present in both smokers and non-smokers. PMID:21357676

  2. Characterization of human liver cytochrome P-450 enzymes involved in the O-demethylation of a new P-glycoprotein inhibitor HM-30181.

    PubMed

    Paek, In Bok; Kim, Sung Yeon; Kim, Maeng Sup; Kim, John; Lee, Gwansun; Lee, Hye Suk

    2007-08-01

    HM-30181, 4-oxo-4H-chromene-2-carboxylic acid [2-(2-{4-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-2H-tetrazol-5-yl)-4,5-dimethoxy-phenyl]-amide, is a new P-glycoprotein inhibitor with the potential to increase the cytotoxic activity of orally coadministered paclitaxel. This study was performed to characterize human cytochrome P-450 (CYP) enzymes involved in the metabolism of HM-30181 to 4- or 5-O-desmethyl-HM-30181 (M2) and 6- or 7-O-desmethyl-HM-30181 (M3) and to investigate the inhibitory potential of HM-30181 on CYP enzymes in human liver microsomes. CYP3A4 was identified as the major isozyme responsible for the O-demethylation of HM-30181 to M2 and M3 based on the correlation analysis, chemical inhibition and immuno-inhibition study and metabolism in cDNA-expressed human CYP isozymes. HM-30181 itself had no inhibitory effects on CYPs 1A2, 2A6, 2C8, 2C9, 2C19, 2D6, and 3A4 in human liver microsomes, suggesting the possibility that the pharmacokinetics of HM-30181 could be changed with coadministration of known CYP3A4 inducers or inhibitors.

  3. Homology modelling of Drosophila cytochrome P450 enzymes associated with insecticide resistance.

    PubMed

    Jones, Robert T; Bakker, Saskia E; Stone, Deborah; Shuttleworth, Sally N; Boundy, Sam; McCart, Caroline; Daborn, Phillip J; ffrench-Constant, Richard H; van den Elsen, Jean M H

    2010-10-01

    Overexpression of the cytochrome P450 gene Cyp6g1 confers resistance against DDT and a broad range of other insecticides in Drosophila melanogaster Meig. In the absence of crystal structures of CYP6G1 or complexes with its substrates, structural studies rely on homology modelling and ligand docking to understand P450-substrate interactions. Homology models are presented for CYP6G1, a P450 associated with resistance to DDT and neonicotinoids, and two other enzymes associated with insecticide resistance in D. melanogaster, CYP12D1 and CYP6A2. The models are based on a template of the X-ray structure of the phylogenetically related human CYP3A4, which is known for its broad substrate specificity. The model of CYP6G1 has a much smaller active site cavity than the template. The cavity is also 'V'-shaped and is lined with hydrophobic residues, showing high shape and chemical complementarity with the molecular characteristics of DDT. Comparison of the DDT-CYP6G1 complex and a non-resistant CYP6A2 homology model implies that tight-fit recognition of this insecticide is important in CYP6G1. The active site can accommodate differently shaped substrates ranging from imidacloprid to malathion but not the pyrethroids permethrin and cyfluthrin. The CYP6G1, CYP12D1 and CYP6A2 homology models can provide a structural insight into insecticide resistance in flies overexpressing P450 enzymes with broad substrate specificities.

  4. Human Placental Lactogen Induces CYP2E1 Expression via PI 3-Kinase Pathway in Female Human Hepatocytes

    PubMed Central

    Lee, Jin Kyung; Chung, Hye Jin; Fischer, Liam; Fischer, James; Gonzalez, Frank J.

    2014-01-01

    The state of pregnancy is known to alter hepatic drug metabolism. Hormones that rise during pregnancy are potentially responsible for the changes. Here we report the effects of prolactin (PRL), placental lactogen (PL), and growth hormone variant (GH-v) on expression of major hepatic cytochromes P450 expression and a potential molecular mechanism underlying CYP2E1 induction by PL. In female human hepatocytes, PRL and GH-v showed either no effect or small and variable effects on mRNA expression of CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, and 3A5. On the other hand, PL increased expression level of CYP2E1 mRNA with corresponding increases in CYP2E1 protein and activity levels. Results from hepatocytes and HepaRG cells indicate that PL does not affect the expression or activity of HNF1α, the known transcriptional activator of basal CYP2E1 expression. Furthermore, transient transfection studies and Western blot results showed that STAT signaling, the previously known mediator of PL actions in certain tissues, does not play a role in CYP2E1 induction by PL. A chemical inhibitor of PI3-kinase signaling significantly repressed the CYP2E1 induction by PL in human hepatocytes, suggesting involvement of PI3-kinase pathway in CYP2E1 regulation by PL. CYP2E1-humanized mice did not exhibit enhanced CYP2E1 expression during pregnancy, potentially because of interspecies differences in PL physiology. Taken together, these results indicate that PL induces CYP2E1 expression via PI3-kinase pathway in human hepatocytes. PMID:24408518

  5. Multiplex pyrosequencing method to determine CYP2C9*3, VKORC1*2, and CYP4F2*3 polymorphisms simultaneously: its application to a Korean population and comparisons with other ethnic groups.

    PubMed

    Kim, Kyoung-Ah; Song, Wan-Geun; Lee, Hae-Mi; Joo, Hyun-Jin; Park, Ji-Young

    2014-11-01

    Warfarin is an anticoagulant that is difficult to administer because of the wide variation in dose requirements to achieve a therapeutic effect. CYP2C9, VKROC1, and CYP4F2 play important roles in warfarin metabolism, and their genetic polymorphisms are related to the variability in dose determination. In this study we describe a new multiplex pyrosequencing method to identify CYP2C9*3 (rs1057910), VKORC1*2 (rs9923231), and CYP4F2*3 (rs2108661) simultaneously. A multiplex pyrosequencing method to simultaneously detect CYP2C9*3, VKORC1*2, and CYP4F2*3 alleles was designed. We assessed the allele frequencies of the polymorphisms in 250 Korean subjects using the multiplex pyrosequencing method. The results showed 100 % concordance between single and multiplex pyrosequencing methods, and the polymorphisms identified by pyrosequencing were also validated with the direct sequencing method. The allele frequencies of these polymorphisms in this population were as follows: 0.040 for CYP2C9*3, 0.918 for VKORC1*2, and 0.416 for CYP4F2*3. Although the allele frequencies of the CYP2C9*3 and VKROC1*2 were comparable to those in Japanese and Chinese populations, their frequencies in this Korean population differed from those in other ethnic groups; the CYP4F2*3 frequency was the highest among other ethnic populations including Chinese and Japanese populations. The pyrosequencing methods developed were rapid and reliable for detecting CYP2C9*3, VKORC1*2, and CYP4F2*3. Large ethnic differences in the frequency of these genetic polymorphisms were noted among ethnic groups. CYP4F2*3 exhibited its highest allele frequency among other ethnic populations compared to that in a Korean population.

  6. Evidences for CYP3A4 autoactivation in the desulfuration of dimethoate by the human liver.

    PubMed

    Buratti, Franca M; Testai, Emanuela

    2007-11-20

    Dimethoate (DIM) is an organophosphorothionate (OPT) pesticide used worldwide as a systemic insecticide and acaricide. It is characterized by low-to-moderate acute mammalian toxicity; similarly to the other OPT pesticides, its mode of action is mediated by the inhibition of acetylcholinesterase (AChE), exerted by its toxic metabolite dimethoate-oxon or omethoate (OME), which is also used as a direct acting pesticide. Human hepatic DIM bioactivation to the toxic metabolite OME has been characterized by using c-DNA expressed human CYPs and human liver microsomes (HLM) also in the presence of CYP-specific chemical inhibitors, with a method based on AChE inhibition. The obtained kinetic parameters and AChE IC(50) have been compared with those previously obtained with other OPTs, indicating a lower efficiency in DIM desulfuration reaction and a lower potency in inhibiting AChE. Results showed that, similarly to the other OPTs tested so far, at low DIM concentration OME formation is mainly catalysed by CYP1A2, while the role of 3A4 is relevant at high DIM levels. Differently from the other OPTs, DIM desulfuration reaction showed an atypical kinetic profile, likely due to CYP3A4 autoactivation. The sigmoidicity degree of the activity curve increased with the level of CYP3A4 in HLM or disappeared in the presence of a CYP3A4 chemical inhibitor. This atypical kinetic behaviour can be considered one of the possible explanations for the recent findings that among patients hospitalized following OPT intoxication, DIM ingestion gave different symptoms and more severe poisoning (23.1% of fatal cases versus total) than chlorpyrifos (8% of deaths), which has a lower LD(50) value. Since DIM-poisoned patients poorly responded to pralidoxime, the possibility to use CYP3A4 inhibitors could be considered as a complementary treatment.

  7. CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae.

    PubMed

    Edi, Constant V; Djogbénou, Luc; Jenkins, Adam M; Regna, Kimberly; Muskavitch, Marc A T; Poupardin, Rodolphe; Jones, Christopher M; Essandoh, John; Kétoh, Guillaume K; Paine, Mark J I; Koudou, Benjamin G; Donnelly, Martin J; Ranson, Hilary; Weetman, David

    2014-03-01

    Malaria control relies heavily on pyrethroid insecticides, to which susceptibility is declining in Anopheles mosquitoes. To combat pyrethroid resistance, application of alternative insecticides is advocated for indoor residual spraying (IRS), and carbamates are increasingly important. Emergence of a very strong carbamate resistance phenotype in Anopheles gambiae from Tiassalé, Côte d'Ivoire, West Africa, is therefore a potentially major operational challenge, particularly because these malaria vectors now exhibit resistance to multiple insecticide classes. We investigated the genetic basis of resistance to the most commonly-applied carbamate, bendiocarb, in An. gambiae from Tiassalé. Geographically-replicated whole genome microarray experiments identified elevated P450 enzyme expression as associated with bendiocarb resistance, most notably genes from the CYP6 subfamily. P450s were further implicated in resistance phenotypes by induction of significantly elevated mortality to bendiocarb by the synergist piperonyl butoxide (PBO), which also enhanced the action of pyrethroids and an organophosphate. CYP6P3 and especially CYP6M2 produced bendiocarb resistance via transgenic expression in Drosophila in addition to pyrethroid resistance for both genes, and DDT resistance for CYP6M2 expression. CYP6M2 can thus cause resistance to three distinct classes of insecticide although the biochemical mechanism for carbamates is unclear because, in contrast to CYP6P3, recombinant CYP6M2 did not metabolise bendiocarb in vitro. Strongly bendiocarb resistant mosquitoes also displayed elevated expression of the acetylcholinesterase ACE-1 gene, arising at least in part from gene duplication, which confers a survival advantage to carriers of additional copies of resistant ACE-1 G119S alleles. Our results are alarming for vector-based malaria control. Extreme carbamate resistance in Tiassalé An. gambiae results from coupling of over-expressed target site allelic variants with

  8. In vitro metabolism and drug interaction potential of a new highly potent anti-cytomegalovirus molecule, CMV423 (2-chloro 3-pyridine 3-yl 5,6,7,8-tetrahydroindolizine 1-carboxamide)

    PubMed Central

    Bournique, Bruno; Lambert, Nicole; Boukaiba, Rachid; Martinet, Michel

    2001-01-01

    Aims To identify the enzymes involved in the metabolism of CMV423, a new anticytomegalovirus molecule, to evaluate its in vitro clearance and to investigate its potential involvement in drug/drug interactions that might occur in the clinic. Methods The enzymes involved in and the kinetics of CMV423 biotransformation were determined using pools of human liver subcellular fractions and heterologously expressed human cytochromes P450 (CYP) and FMO. The effect of CMV423 on CYP probe activities as well as on indinavir and AZT metabolism was determined, and 26 drugs were tested for their potential to inhibit or activate CMV423 metabolism. Results CMV423 was oxidized by CYP and not by FMO or cytosolic enzymes. The Km values for 8-hydroxylation to rac-RPR 127025, an active metabolite, and subsequent ketone formation by human liver microsomes were 44 ± 13 µm and 47 ± 11 µm, respectively, with corresponding Vmax/Km ratios of 14 and 4 µl min−1 nmol−1 P450. Inhibition with selective CYP inhibitors indicated that CYP1A2 was the main isoform involved, with some participation from CYP3A. Expressed human CYP1A1, 1A2, 2C9, 3A4 and 2C8 catalysed rac-RPR 127025 formation with Km values of < 10 µm, 50 ± 21 µm, 55 ± 19 µm, circa 282 ± 61 µm and circa 1450 µm, respectively. CYP1B1, 2A6, 2B6, 2C19, 2D6, 2E1 or 3A5 did not catalyse the reaction to any detectable extent. CYP1A1 and 3A4 also catalysed ketone formation from rac-RPR 127025. In human liver microsomes, CMV423 at 1 and 10 µm inhibited CYP1A2 activity up to 31% and 63%, respectively, CYP3A4 activity up to 40% (10 µm) and CYP2C9 activity by 35% (1 and 10 µm). No effect was observed on CYP2A6, 2D6 and 2E1 activities. CMV423 had no effect on indinavir and AZT metabolism. Amongst 26 drugs tested, none inhibited CMV423 metabolism in vitro at therapeutic concentrations. Conclusions CMV423 is mainly metabolized by CYP1A2 and 3A4. Its metabolism should not be saturable at the targeted therapeutic concentrations range

  9. CYP3A variation and the evolution of salt-sensitivity variants.

    PubMed

    Thompson, E E; Kuttab-Boulos, H; Witonsky, D; Yang, L; Roe, B A; Di Rienzo, A

    2004-12-01

    Members of the cytochrome P450 3A subfamily catalyze the metabolism of endogenous substrates, environmental carcinogens, and clinically important exogenous compounds, such as prescription drugs and therapeutic agents. In particular, the CYP3A4 and CYP3A5 genes play an especially important role in pharmacogenetics, since they metabolize >50% of the drugs on the market. However, known genetic variants at these two loci are not sufficient to account for the observed phenotypic variability in drug response. We used a comparative genomics approach to identify conserved coding and noncoding regions at these genes and resequenced them in three ethnically diverse human populations. We show that remarkable interpopulation differences exist with regard to frequency spectrum and haplotype structure. The non-African samples are characterized by a marked excess of rare variants and the presence of a homogeneous group of long-range haplotypes at high frequency. The CYP3A5*1/*3 polymorphism, which is likely to influence salt and water retention and risk for salt-sensitive hypertension, was genotyped in >1,000 individuals from 52 worldwide population samples. The results reveal an unusual geographic pattern whereby the CYP3A5*3 frequency shows extreme variation across human populations and is significantly correlated with distance from the equator. Furthermore, we show that an unlinked variant, AGT M235T, previously implicated in hypertension and pre-eclampsia, exhibits a similar geographic distribution and is significantly correlated in frequency with CYP3A5*1/*3. Taken together, these results suggest that variants that influence salt homeostasis were the targets of a shared selective pressure that resulted from an environmental variable correlated with latitude.

  10. CYP3A Variation and the Evolution of Salt-Sensitivity Variants

    PubMed Central

    Thompson, E. E.; Kuttab-Boulos, H.; Witonsky, D.; Yang, L.; Roe, B. A.; Di Rienzo, A.

    2004-01-01

    Members of the cytochrome P450 3A subfamily catalyze the metabolism of endogenous substrates, environmental carcinogens, and clinically important exogenous compounds, such as prescription drugs and therapeutic agents. In particular, the CYP3A4 and CYP3A5 genes play an especially important role in pharmacogenetics, since they metabolize >50% of the drugs on the market. However, known genetic variants at these two loci are not sufficient to account for the observed phenotypic variability in drug response. We used a comparative genomics approach to identify conserved coding and noncoding regions at these genes and resequenced them in three ethnically diverse human populations. We show that remarkable interpopulation differences exist with regard to frequency spectrum and haplotype structure. The non-African samples are characterized by a marked excess of rare variants and the presence of a homogeneous group of long-range haplotypes at high frequency. The CYP3A5*1/*3 polymorphism, which is likely to influence salt and water retention and risk for salt-sensitive hypertension, was genotyped in >1,000 individuals from 52 worldwide population samples. The results reveal an unusual geographic pattern whereby the CYP3A5*3 frequency shows extreme variation across human populations and is significantly correlated with distance from the equator. Furthermore, we show that an unlinked variant, AGT M235T, previously implicated in hypertension and pre-eclampsia, exhibits a similar geographic distribution and is significantly correlated in frequency with CYP3A5*1/*3. Taken together, these results suggest that variants that influence salt homeostasis were the targets of a shared selective pressure that resulted from an environmental variable correlated with latitude. PMID:15492926

  11. Inhibition of human P450 enzymes by natural extracts used in traditional medicine.

    PubMed

    Rodeiro, Idania; Donato, María T; Jimenez, Nuria; Garrido, Gabino; Molina-Torres, Jorge; Menendez, Roberto; Castell, José V; Gómez-Lechón, María J

    2009-02-01

    Different medicinal plants are widely used in Cuba and Mexico to treat several disorders. This paper reports in vitro inhibitory effects on the P450 system of herbal products commonly used by people in Cuba and Mexico in traditional medicine for decades. Experiments were conducted in human liver microsomes. The catalytic activities of CYP1A1/2, 2D6, and 3A4 were measured using specific probe substrates. The Heliopsis longipes extract exhibited a concentration-dependent inhibition of the three enzymes, and similar effects were produced by affinin (an alkamide isolated from the H. longipes extract) and two catalytically reduced alkamides. Mangifera indica L. and Thalassia testudinum extracts, two natural polyphenol-rich extracts, diminished CYP1A1/2 and 3A4 activities, but not the CYP2D6 activity. These results suggest that these herbs inhibit the major human P450 enzymes involved in drug metabolism and could induce potential herbal-drug interactions. Copyright (c) 2008 John Wiley & Sons, Ltd.

  12. Effect of Traumatic Brain Injury, Erythropoietin, and Anakinra on Hepatic Metabolizing Enzymes and Transporters in an Experimental Rat Model.

    PubMed

    Anderson, Gail D; Peterson, Todd C; Vonder Haar, Cole; Farin, Fred M; Bammler, Theo K; MacDonald, James W; Kantor, Eric D; Hoane, Michael R

    2015-09-01

    In contrast to considerable data demonstrating a decrease in cytochrome P450 (CYP) activity in inflammation and infection, clinically, traumatic brain injury (TBI) results in an increase in CYP and UDP glucuronosyltransferase (UGT) activity. The objective of this study was to determine the effects of TBI alone and with treatment with erythropoietin (EPO) or anakinra on the gene expression of hepatic inflammatory proteins, drug-metabolizing enzymes, and transporters in a cortical contusion impact (CCI) injury model. Microarray-based transcriptional profiling was used to determine the effect on gene expression at 24 h, 72 h, and 7 days post-CCI. Plasma cytokine and liver protein concentrations of CYP2D4, CYP3A1, EPHX1, and UGT2B7 were determined. There was no effect of TBI, TBI + EPO, or TBI + anakinra on gene expression of the inflammatory factors shown to be associated with decreased expression of hepatic metabolic enzymes in models of infection and inflammation. IL-6 plasma concentrations were increased in TBI animals and decreased with EPO and anakinra treatment. There was no significant effect of TBI and/or anakinra on gene expression of enzymes or transporters known to be involved in drug disposition. TBI + EPO treatment decreased the gene expression of Cyp2d4 at 72 h with a corresponding decrease in CYP2D4 protein at 72 h and 7 days. CYP3A1 protein was decreased at 24 h. In conclusion, EPO treatment may result in a significant decrease in the metabolism of Cyp-metabolized drugs. In contrast to clinical TBI, there was not a significant effect of experimental TBI on CYP or UGT metabolic enzymes.

  13. The Metabolism of Clopidogrel: CYP2C19 Is a Minor Pathway.

    PubMed

    Ford, Neville F

    2016-12-01

    The major metabolic pathway of clopidogrel is conversion to carboxylic acid by an esterase (CES1), forming clopidogrelic acid (SR26334) that is inactive. There is agreement on the structure of the active metabolite; however, there are differing views about the mechanism of its formation. Sanofi studied the conversion of clopidogrel to the active metabolite using human liver microsomes. It was concluded that 2-oxo-clopidogrel was formed via CYP3A oxidation. From a subsequent in vitro study by Sankyo of the metabolism of clopidogrel using recombinant DNA CYPs, it was concluded that CYP2C19 was the major oxidative pathway. Such CYPs can give false-negative results particularly with drugs such as clopidogrel that have high first-pass metabolism in the enterocyte. CYP3A is present in the enterocyte but not CYP2C19. However, the view that clopidogrel is a CYP2C19 substrate was reinforced by a finding that omeprazole, a CYP2C19 inhibitor, reduced the ability of clopidogrel to inhibit platelet aggregation. The drug-drug interaction study of clopidogrel with omeprazole had the effect of reducing the area under the curve (AUC) of the clopidogrel active metabolite by 45%. However, a drug interaction study with a CYP3A inhibitor, grapefruit juice, caused a 6-fold reduction in the AUC of the active metabolite. Clopidogrel is therefore now considered to be primarily a CYP3A4/5 substrate. CYP2C19 has a minor role whose effect can be detected using a sensitive methodology such as platelet aggregometry. © 2016, The American College of Clinical Pharmacology.

  14. Structure–function relationships of inhibition of mosquito cytochrome P450 enzymes by flavonoids of Andrographis paniculata.

    PubMed

    Kotewong, Rattanawadee; Duangkaew, Panida; Srisook, Ekaruth; Sarapusit, Songklod; Rongnoparut, Pornpimol

    2014-09-01

    The cytochrome P450 monooxygenases are known to play a major role in pyrethroid resistance, by means of increased rate of insecticide detoxification as a result of their overexpression. Inhibition of detoxification enzymes may help disrupting insect detoxifying defense system. The Anopheles minimus CYP6AA3 and CYP6P7 have shown pyrethroid degradation activity and been implicated in pyrethroid resistance. In this study inhibition of the extracts and constituents of Andrographis paniculata Nees. leaves and roots was examined against benzyloxyresorufin O-debenzylation (BROD) of CYP6AA3 and CYP6P7. Four purified flavones (5,7,4′-trihydroxyflavone, 5-hydroxy-7,8-dimethoxyflavone, 5-hydroxy-7,8,2′,3′-tetramethoxyflavone, and 5,4′-dihydroxy-7,8,2′,3′-tetramethoxyflavone), one flavanone (5-hydroxy-7,8-dimethoxyflavanone) and a diterpenoid (14-deoxy-11,12-didehydroandrographolide) containing inhibitory effects toward both enzymes were isolated from A. paniculata. Structure–function relationships were observed for modes and kinetics of inhibition among flavones, while diterpenoid and flavanone were inferior to flavones. Docking of flavones onto enzyme homology models reinforced relationships on flavone structures and inhibition modes. Cell-based inhibition assays employing 3-(4,5-dimethylthiazol-2-y-l)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assays revealed that these flavonoids efficiently increased susceptibility of CYP6AA3- and CYP6P7-expressing Spodoptera frugiperda (Sf9) cells to cypermethrin toxicity, due to inhibition effects on mosquito enzymes. Thus synergistic effects on cypermethrin toxicity of A. paniculata compounds as a result of enzyme inhibition could be useful for mosquito vector control and insecticide resistance management in the future.

  15. Upregulation of CYP 450s expression of immortalized hepatocyte-like cells derived from mesenchymal stem cells by enzyme inducers

    PubMed Central

    2011-01-01

    Background The strenuous procurement of cultured human hepatocytes and their short lives have constrained the cell culture model of cytochrome P450 (CYP450) induction, xenobiotic biotransformation, and hepatotoxicity. The development of continuous non-tumorous cell line steadily containing hepatocyte phenotypes would substitute the primary hepatocytes for these studies. Results The hepatocyte-like cells have been developed from hTERT plus Bmi-1-immortalized human mesenchymal stem cells to substitute the primary hepatocytes. The hepatocyte-like cells had polygonal morphology and steadily produced albumin, glycogen, urea and UGT1A1 beyond 6 months while maintaining proliferative capacity. Although these hepatocyte-like cells had low basal expression of CYP450 isotypes, their expressions could be extensively up regulated to 80 folds upon the exposure to enzyme inducers. Their inducibility outperformed the classical HepG2 cells. Conclusion The hepatocyte-like cells contained the markers of hepatocytes including CYP450 isotypes. The high inducibility of CYP450 transcripts could serve as a sensitive model for profiling xenobiotic-induced expression of CYP450. PMID:21961524

  16. A search for new CYP3A4 variants as determinants of tacrolimus dose requirements in renal-transplanted patients.

    PubMed

    Tavira, Beatriz; Coto, Eliecer; Diaz-Corte, Carmen; Alvarez, Victoria; López-Larrea, Carlos; Ortega, Francisco

    2013-08-01

    The CYP3A5*3 and CYP3A4*1B alleles have been related with tacrolimus (Tac) dose requirements. The rare CYP3A4*22 variant has also been associated with a significantly lower Tac dose. We genotyped the three single-nucleotide polymorphisms in 206 kidney-transplanted patients who received Tac as the primary immunosuppressor. CYP3A5*1 and CYP3A4*1B allele carriers received a significantly higher Tac dose (P<0.01) compared with wild-type homozygotes. We did not find significant differences between the CYP3A4*22 genotypes, either nominally or according to the CYP3A5 genotype (expressers vs. nonexpressers). Sequencing of CYP3A4 coding exons in a total of 15 patients revealed only one nonreported missense change (p.P227>T) in one patient. We concluded that CYP3A5*3 and CYP3A4*1B were the main determinants of the Tac dose-adjusted blood concentration in our cohort of renal-transplanted patients.

  17. CYP3A5*3 and MDR1 C3435T are influencing factors of inter-subject variability in rupatadine pharmacokinetics in healthy Chinese volunteers.

    PubMed

    Xiong, Yuqing; Yuan, Zhao; Yang, Jingzhi; Xia, Chunhua; Li, Xinhua; Huang, Shibo; Zhang, Hong; Liu, Mingyi

    2016-04-01

    Rupatadine (RUP) is an oral antihistamine and platelet-activating factor antagonist and is shown as the substrate of CYP3A5 and P-gp. The significant interindividual differences of CYP3A5 and P-gp often cause bioavailability differences of some clinical drugs. The present study is aimed to evaluate the effect of genetic polymorphisms of CYP3A5 and MDR1 on RUP pharmacokinetics in healthy male Chinese volunteer subjects. Blood samples were collected from 36 subjects before and after a single, oral RUP 10 mg dose. A PCR-RFLP assay was used to genotype CYP3A5*3 and assess MDR1 C3435T variation. A validated LC-MS/MS method quantified plasma RUP concentration. The relationship between RUP plasma concentration, pharmacokinetic parameters, and polymorphic alleles (CYP3A5 and MDR1) were assessed. Plasma RUP concentrations were lower for CYP3A5*1/*1 carriers than for CYP3A5*3/*3 and CYP3A5*1/*3 carriers. Mean C(max), AUC(0-t) and AUC(0-∞) were significantly lower, and the CLz and Vd were significantly higher in the CYP3A5 wild-type group, than in the CYP3A5 mutated group. MDR1 CT and MDR1 TT carriers had lower plasma RUP concentrations than MDR1 CC carriers. The mean C(max), AUC(0-t), AUC(0-∞) and T max were significantly lower in the TT group than in the CC and CT groups. The mean CLz was higher in the TT group than in the CC and CT groups, but not significantly. These results suggest that CYP3A5 and MDR1 may play a key role in the variability of RUP metabolism and transport, respectively. CYP3A5 and MDR1 polymorphisms may be the main explanation for the differences observed in RUP pharmacokinetics, and therefore may provide a rationale for safe and effective clinical use of RUP. Our research lays down a solid theory foundation to guide the safe and effective clinical use of RUP and a route to achieve individualized therapy.

  18. CYP2D6 variability in populations from Venezuela.

    PubMed

    Moreno, Nancy; Flores-Angulo, Carlos; Villegas, Cecilia; Mora, Yuselin

    2016-12-01

    CYP2D6 is an important cytochrome P450 enzyme that plays an important role in the metabolism of about 25% of currently prescribed drugs. The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatments. The most prevalent diseases in the admixed population from Venezuela are cardiovascular and cancer, whereas viral, bacterial and parasitic diseases, particularly malaria, are prevalent in Amerindian populations; in the treatment of these diseases, several drugs that are metabolized by CYP2D6 are used. In this work, we reviewed the data on CYP2D6 variability and predicted metabolizer phenotypes, in healthy volunteers of two admixed and five Amerindian populations from Venezuela. The Venezuelan population is very heterogeneous as a result of the genetic admixture of three major ethnical components: Europeans, Africans and Amerindians. There are noticeable inter-regional and inter-population differences in the process of mixing of this population. Hitherto, there are few published studies in Venezuela on CYP2D6; therefore, it is necessary to increase research in this regard, in particular to develop studies with a larger sample size. There is a considerable amount of work remaining before CYP2D6 is integrated into clinical practice in Venezuela.

  19. Cytochrome P450 2D6 and 3A4 enzyme inhibition by amine stimulants in dietary supplements.

    PubMed

    Liu, Yitong; Santillo, Michael F

    2016-01-01

    A number of dietary supplements used for weight loss and athletic performance enhancement have been recently shown to contain a variety of stimulants, for which there is a lack of pharmacological and toxicological information. One concern for these emerging compounds is their potential to inhibit metabolic enzymes in the liver such as cytochromes P450 (CYP), which can lead to unexpected interactions among dietary supplements, drugs, and other xenobiotics. In this study, inhibition of human recombinant CYP2D6 and CYP3A4 by 27 amine stimulants associated with dietary supplements and their analogs was evaluated by luminescence assays. The strongest CYP2D6 inhibitors were coclaurine (IC50  = 0.14 ± 0.01 μM) and N-benzylphenethylamine (IC50  = 0.7 ± 0.2 μM), followed by several other relatively strong inhibitors (IC50 , 2-12 μM) including β-methylphenethylamine, N,β-dimethylphenethylamine (phenpromethamine), 1,3-dimethylamylamine (DMAA), N,α-diethylphenethylamine, higenamine (norcoclaurine) and N,N-diethylphenethylamine. Only nine compounds inhibited CYP3A4 by 20-55% at 100 μM. Results of this study illustrate that several amine stimulants associated with dietary supplements inhibit CYP2D6 and CYP3A4 in vitro, and these compounds may participate in adverse drug-dietary supplement interactions in vivo. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Insights into drug metabolism by cytochromes P450 from modelling studies of CYP2D6-drug interactions

    PubMed Central

    Maréchal, J-D; Kemp, C A; Roberts, G C K; Paine, M J I; Wolf, C R; Sutcliffe, M J

    2008-01-01

    The cytochromes P450 (CYPs) comprise a vast superfamily of enzymes found in virtually all life forms. In mammals, xenobiotic metabolizing CYPs provide crucial protection from the effects of exposure to a wide variety of chemicals, including environmental toxins and therapeutic drugs. Ideally, the information on the possible metabolism by CYPs required during drug development would be obtained from crystal structures of all the CYPs of interest. For some years only crystal structures of distantly related bacterial CYPs were available and homology modelling techniques were used to bridge the gap and produce structural models of human CYPs, and thereby obtain useful functional information. A significant step forward in the reliability of these models came seven years ago with the first crystal structure of a mammalian CYP, rabbit CYP2C5, followed by the structures of six human enzymes, CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6 and CYP3A4, and a second rabbit enzyme, CYP2B4. In this review we describe as a case study the evolution of a CYP2D6 model, leading to the validation of the model as an in silico tool for predicting binding and metabolism. This work has led directly to the successful design of CYP2D6 mutants with novel activity—including creating a testosterone hydroxylase, converting quinidine from inhibitor to substrate, creating a diclofenac hydroxylase and creating a dextromethorphan O-demethylase. Our modelling-derived hypothesis-driven integrated interdisciplinary studies have given key insight into the molecular determinants of CYP2D6 and other important drug metabolizing enzymes. PMID:18026129