Sample records for cytogenetic repair efficiency

  1. Cytogenetic Response to Ionizing Radiation Exposure in Human Fibroblasts with Suppressed Expression of Non-DSB Repair Genes

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Hammond, Dianne; Mehta, Satish K.; Jeevarajan, Antony S.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in radiation-induced chromosome aberrations and micronuclei formation. In the study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequencies of micronuclei (MN) formation and chromosome aberrations were measured to determine the efficiency of cytogenetic repair, and the fraction of bi-nucleated cells in the MN analysis was used as a marker for cell cycle progression. In response to gamma radiation, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR

  2. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  3. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  4. Functional characterization of polymorphisms in DNA repair genes using cytogenetic challenge assays.

    PubMed

    Au, William W; Salama, Salama A; Sierra-Torres, Carlos H

    2003-11-01

    A major barrier to understanding the role of polymorphic DNA repair genes for environmental cancer is that the functions of variant genotypes are largely unknown. Using our cytogenetic challenge assays, we conducted an investigation to address the deficiency. Using X-rays or ultraviolet (UV) light, we irradiated blood lymphocytes from 80 nonsmoking donors to challenge the cells to repair the induced DNA damage, and we analyzed expression of chromosome aberrations (CA) specific to the inducing agents. We have genotyped polymorphic DNA repair genes preferentially involved with base excision repair (BER) and nucleotide excision repair (NER) activities (XRCC1, XRCC3, APE1, XPD) corresponding to the repair of X-ray- and UV light-induced DNA damage, respectively. We expected that defects in specific DNA repair pathways due to polymorphisms would cause corresponding increases of specific CA. From our data, XRCC1 399Gln and XRCC3 241Met were associated with significant increases in chromosome deletions compared with the corresponding homozygous wild types (18.27 1.1 vs 14.79 1.2 and 18.22 0.99 vs 14.20 1.39, respectively); XPD 312Asn and XPD 751Gln were associated with significant increases in chromatid breaks compared with wild types (16.09 1.36 vs 11.41 0.98 and 16.87 1.27 vs 10.54 0.87, respectively), p < 0.05. The data indicate that XRCC1 399Gln and XRCC3 241Met are significantly defective in BER, and the XPD 312Asn and XPD 751Gln are significantly defective in NER. In addition, the variant genotypes interact significantly, with limited overlap of the two different repair pathways.

  5. Impaired Cytogenetic Damage Repair and Cell Cycle Regulation in Response to Ionizing Radiation in Human Fibroblast Cells with Individual Knock-down of 25 Genes

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry; Emami, Kamal; Hammond, Dianne; Casey, Rachael; Mehta, Satish; Jeevarajan, Antony; Pierson, Duane; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have demonstrated that genes with upregulated expression induced by IR may play important roles in DNA damage sensing, cell cycle checkpoint and chromosomal repair, the relationship between the regulation of gene expression by IR and its impact on cytogenetic responses to ionizing radiation has not been systematically studied. In our present study, the expression of 25 genes selected based on their transcriptional changes in response to IR or from their known DNA repair roles were individually knocked down by siRNA transfection in human fibroblast cells. Chromosome aberrations (CA) and micronuclei (MN) formation were measured as the cytogenetic endpoints. Our results showed that the yield of MN and/or CA formation were significantly increased by suppressed expression of 5 genes that included Ku70 in the DSB repair pathway; XPA in the NER pathway; RPA1 in the MMR pathway; RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes including MRE11A, RAD51 in the DSB pathway, and SESN1 and SUMO1 showed significant inhibition of cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, p21 and MLH1 expression resulted in both enhanced cell cycle progression and significantly higher yield of cytogenetic damage, indicating the involvement of these gene products in both cell cycle control and DNA damage repair. Of these 11 genes that affected the cytogenetic response, 9 were up-regulated in the cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulating the biological consequences after IR. Failure to express these IR-responsive genes, such as by gene mutation, could seriously change the outcome of the post IR scenario and lead to carcinogenesis.

  6. Cancer Cytogenetics: Methodology Revisited

    PubMed Central

    2014-01-01

    The Philadelphia chromosome was the first genetic abnormality discovered in cancer (in 1960), and it was found to be consistently associated with CML. The description of the Philadelphia chromosome ushered in a new era in the field of cancer cytogenetics. Accumulating genetic data have been shown to be intimately associated with the diagnosis and prognosis of neoplasms; thus, karyotyping is now considered a mandatory investigation for all newly diagnosed leukemias. The development of FISH in the 1980s overcame many of the drawbacks of assessing the genetic alterations in cancer cells by karyotyping. Karyotyping of cancer cells remains the gold standard since it provides a global analysis of the abnormalities in the entire genome of a single cell. However, subsequent methodological advances in molecular cytogenetics based on the principle of FISH that were initiated in the early 1990s have greatly enhanced the efficiency and accuracy of karyotype analysis by marrying conventional cytogenetics with molecular technologies. In this review, the development, current utilization, and technical pitfalls of both the conventional and molecular cytogenetics approaches used for cancer diagnosis over the past five decades will be discussed. PMID:25368816

  7. Dynamics and mechanism of UV-damaged DNA repair in indole-thymine dimer adduct: molecular origin of low repair quantum efficiency.

    PubMed

    Guo, Xunmin; Liu, Zheyun; Song, Qinhua; Wang, Lijuan; Zhong, Dongping

    2015-02-26

    Many biomimetic chemical systems for repair of UV-damaged DNA showed very low repair efficiency, and the molecular origin is still unknown. Here, we report our systematic characterization of the repair dynamics of a model compound of indole-thymine dimer adduct in three solvents with different polarity. By resolving all elementary steps including three electron-transfer processes and two bond-breaking and bond-formation dynamics with femtosecond resolution, we observed the slow electron injection in 580 ps in water, 4 ns in acetonitrile, and 1.38 ns in dioxane, the fast back electron transfer without repair in 120, 150, and 180 ps, and the slow bond splitting in 550 ps, 1.9 ns, and 4.5 ns, respectively. The dimer bond cleavage is clearly accelerated by the solvent polarity. By comparing with the biological repair machine photolyase with a slow back electron transfer (2.4 ns) and a fast bond cleavage (90 ps), the low repair efficiency in the biomimetic system is mainly determined by the fast back electron transfer and slow bond breakage. We also found that the model system exists in a dynamic heterogeneous C-clamped conformation, leading to a stretched dynamic behavior. In water, we even identified another stacked form with ultrafast cyclic electron transfer, significantly reducing the repair efficiency. Thus, the comparison of the repair efficiency in different solvents is complicated and should be cautious, and only the dynamics by resolving all elementary steps can finally determine the total repair efficiency. Finally, we use the Marcus electron-transfer theory to analyze all electron-transfer reactions and rationalize all observed electron-transfer dynamics.

  8. Comprehensive 5-Year Study of Cytogenetic Aberrations in 668 Infertile Men

    PubMed Central

    Yatsenko, Alexander N.; Yatsenko, Svetlana A.; Weedin, John W.; Lawrence, Amy E.; Patel, Ankita; Peacock, Sandra; Matzuk, Martin M.; Lamb, Dolores J.; Cheung, Sau Wai; Lipshultz, Larry I.

    2010-01-01

    Purpose The causes of male infertility are heterogeneous but more than 50% of cases have a genetic basis. Specific genetic defects have been identified in less than 20% of infertile males and, thus, most causes remain to be elucidated. The most common cytogenetic defects associated with nonobstructive azoospermia are numerical and structural chromosome abnormalities, including Klinefelter syndrome (47,XXY) and Y chromosome microdeletions. To refine the incidence and nature of chromosomal aberrations in males with infertility we reviewed cytogenetic results in 668 infertile men with oligozoospermia and azoospermia. Materials and Methods High resolution Giemsa banding chromosome analysis and/or fluorescence in situ hybridization were done in 668 infertile males referred for routine cytogenetic analysis between January 2004 and March 2009. Results The overall incidence of chromosomal abnormalities was about 8.2%. Of the 55 patients with abnormal cytogenetic findings sex chromosome aneuploidies were observed in 29 (53%), including Klinefelter syndrome in 27 (49%). Structural chromosome abnormalities involving autosomes (29%) and sex chromosomes (18%) were detected in 26 infertile men. Abnormal cytogenetic findings were observed in 35 of 264 patients (13.3%) with azoospermia and 19 of 365 (5.2%) with oligozoospermia. Conclusions Structural chromosomal defects and low level sex chromosome mosaicism are common in oligozoospermia cases. Extensive cytogenetic assessment and fluorescence in situ hybridization may improve the detection rate in males with oligozoospermia. These findings highlight the need for efficient genetic testing in infertile men so that couples may make informed decisions on assisted reproductive technologies to achieve parenthood. PMID:20172548

  9. 42 CFR 493.1225 - Condition: Clinical cytogenetics.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Clinical cytogenetics. 493.1225 Section... Testing § 493.1225 Condition: Clinical cytogenetics. If the laboratory provides services in the specialty of Clinical cytogenetics, the laboratory must meet the requirements specified in §§ 493.1230 through...

  10. Low joining efficiency and non-conservative repair of two distant double-strand breaks in mouse embryonic stem cells.

    PubMed

    Boubakour-Azzouz, Imenne; Ricchetti, Miria

    2008-02-01

    Efficient and faithful repair of DNA double-strand breaks (DSBs) is critical for genome stability. To understand whether cells carrying a functional repair apparatus are able to efficiently heal two distant chromosome ends and whether this DNA lesion might result in genome rearrangements, we induced DSBs in genetically modified mouse embryonic stem cells carrying two I-SceI sites in cis separated by a distance of 9 kbp. We show that in this context non-homologous end-joining (NHEJ) can repair using standard DNA pairing of the broken ends, but it also joins 3' non-complementary overhangs that require unusual joining intermediates. The repair efficiency of this lesion appears to be dramatically low and the extent of genome alterations was high in striking contrast with the spectra of repair events reported for two collinear DSBs in other experimental systems. The dramatic decline in accuracy suggests that significant constraints operate in the repair process of these distant DSBs, which may also control the low efficiency of this process. These findings provide important insights into the mechanism of repair by NHEJ and how this process may protect the genome from large rearrangements.

  11. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny.

    PubMed

    Vahidi Ferdousi, Leyla; Rocheteau, Pierre; Chayot, Romain; Montagne, Benjamin; Chaker, Zayna; Flamant, Patricia; Tajbakhsh, Shahragim; Ricchetti, Miria

    2014-11-01

    The loss of genome integrity in adult stem cells results in accelerated tissue aging and is possibly cancerogenic. Adult stem cells in different tissues appear to react robustly to DNA damage. We report that adult skeletal stem (satellite) cells do not primarily respond to radiation-induced DNA double-strand breaks (DSBs) via differentiation and exhibit less apoptosis compared to other myogenic cells. Satellite cells repair these DNA lesions more efficiently than their committed progeny. Importantly, non-proliferating satellite cells and post-mitotic nuclei in the fiber exhibit dramatically distinct repair efficiencies. Altogether, reduction of the repair capacity appears to be more a function of differentiation than of the proliferation status of the muscle cell. Notably, satellite cells retain a high efficiency of DSB repair also when isolated from the natural niche. Finally, we show that repair of DSB substrates is not only very efficient but, surprisingly, also very accurate in satellite cells and that accurate repair depends on the key non-homologous end-joining factor DNA-PKcs. Copyright © 2014. Published by Elsevier B.V.

  12. Efficiency of cytogenetic methods in detecting a chromosome rearrangement induced by ionizing radiation in a cultivated chili pepper line (Capsicum baccatum var. pendulum--Solanaceae).

    PubMed

    Scaldaferro, Marisel A; Grabiele, Mauro; Seijo, J Guillermo; Debat, Humberto; Romero, M Victoria; Ducasse, Daniel A; Prina, Alberto R; Moscone, Eduardo A

    2014-01-01

    To locate transient chromosome aberrations on a selected pepper cultivar and determine the tracing efficiency of different cytogenetic methods. Seeds from Capsicum baccatum var. pendulum cultivar 'Cayenne' were treated with an acute dose of X-rays (300 Gy) and chromosome aberrations were analysed by different cytogenetic methods [Feulgen, silver staining for nucleolus organizer regions (silver positive nucleolus organizing regions or AgNOR), fluorescent banding, fluorescence in situ hybridization (FISH) and meiotic analysis]. A rearranged chromosome carrying two nucleolus organizing regions (NOR) induced by ionizing radiation was detected in the cultivar, with the occurrence of a small reciprocal exchange between a chromosome of pair no. 1 and another chromosome of pair no. 3, both carrying active NOR in short arms and associated chromomycin A positive/diamidino-phenylindole negative (CMA+/DAPI-) heterochromatin. Meiotic analysis showed a quadrivalent configuration, confirming a reciprocal translocation between two chromosomes. The use of X-rays in Capsicum allowed us to develop and identify a pepper line with structural rearrangements between two NOR-carrying chromosomes. We postulate that all the cytological techniques employed in this research were efficient in the search for chromosome aberrations. Particularly, Feulgen and AgNOR were the most suitable in those cases of transient rearrangements, whereas fluorescent banding and FISH were appropriate for intransitive ones.

  13. XPD polymorphisms: effects on DNA repair proficiency.

    PubMed

    Lunn, R M; Helzlsouer, K J; Parshad, R; Umbach, D M; Harris, E L; Sanford, K K; Bell, D A

    2000-04-01

    XPD codes for a DNA helicase involved in transcription and nucleotide excision repair. Rare XPD mutations diminish nucleotide excision repair resulting in hypersensitivity to UV light and increased risk of skin cancer. Several polymorphisms in this gene have been identified but their impact on DNA repair is not known. We compared XPD genotypes at codons 312 and 751 with DNA repair proficiency in 31 women. XPD genotypes were measured by PCR-RFLP. DNA repair proficiency was assessed using a cytogenetic assay that detects X-ray induced chromatid aberrations (breaks and gaps). Chromatid aberrations were scored per 100 metaphase cells following incubation at 37 degrees C (1.5 h after irradiation) to allow for repair of DNA damage. Individuals with the Lys/Lys codon 751 XPD genotype had a higher number of chromatid aberrations (132/100 metaphase cells) than those having a 751Gln allele (34/100 metaphase cells). Individuals having greater than 60 chromatid breaks plus gaps were categorized as having sub-optimal repair. Possessing a Lys/Lys751 genotype increased the risk of sub-optimal DNA repair (odds ratio = 7.2, 95% confidence interval = 1.01-87.7). The Asp312Asn XPD polymorphism did not appear to affect DNA repair proficiency. These results suggest that the Lys751 (common) allele may alter the XPD protein product resulting in sub-optimal repair of X-ray-induced DNA damage.

  14. The history of human cytogenetics in India-A review.

    PubMed

    Dutta, Usha R

    2016-09-10

    It is 60years since the discovery of the correct number of chromosomes in 1956; the field of cytogenetics had evolved. The late evolution of this field with respect to other fields is primarily due to the underdevelopment of lenses and imaging techniques. With the advent of the new technologies, especially automation and evolution of advanced compound microscopes, cytogenetics drastically leaped further to greater heights. This review describes the historic events that had led to the development of human cytogenetics with a special attention about the history of cytogenetics in India, its present status, and future. Apparently, this review provides a brief account into the insights of the early laboratory establishments, funding, and the German collaborations. The details of the Indian cytogeneticists establishing their labs, promoting the field, and offering the chromosomal diagnostic services are described. The detailed study of chromosomes helps in increasing the knowledge of the chromosome structure and function. The delineation of the chromosomal rearrangements using cytogenetics and molecular cytogenetic techniques pays way in identifying the molecular mechanisms involved in the chromosomal rearrangement. Although molecular cytogenetics is greatly developing, the conventional cytogenetics still remains the gold standard in the diagnosis of various numerical chromosomal aberrations and a few structural aberrations. The history of cytogenetics and its importance even in the era of molecular cytogenetics are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. 40 CFR 798.5375 - In vitro mammalian cytogenetics.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... mammalian cytogenetics. (a) Purpose. The in vitro cytogenetics test is a mutagenicity test system for the... first post-treatment mitosis and numerical aberrations require at least one cell division to be... chromatids. (c) Reference substances. Not applicable. (d) Test method—(1) Principle. In vitro cytogenetics...

  16. The Cerrado (Brazil) plant cytogenetics database.

    PubMed

    Roa, Fernando; Telles, Mariana Pires de Campos

    2017-01-01

    Cerrado is a biodiversity hotspot that has lost ca. 50% of its original vegetation cover and hosts ca. 11,000 species belonging to 1,423 genera of phanerogams. For a fraction of those species some cytogenetic characteristics like chromosome numbers and C-value were available in databases, while other valuable information such as karyotype formula and banding patterns are missing. In order to integrate and share all cytogenetic information published for Cerrado species, including frequency of cytogenetic attributes and scientometrics aspects, Cerrado plant species were searched in bibliographic sources, including the 50 richest genera (with more than 45 taxa) and 273 genera with only one species in Cerrado. Determination of frequencies and the database website (http://cyto.shinyapps.io/cerrado) were developed in R. Studies were pooled by employed technique and decade, showing a rise in non-conventional cytogenetics since 2000. However, C-value estimation, heterochromatin staining and molecular cytogenetics are still not common for any family. For the richest and best sampled families, the following modal 2n counts were observed: Oxalidaceae 2n = 12, Lythraceae 2n = 30, Sapindaceae 2n = 24, Solanaceae 2n = 24, Cyperaceae 2n = 10, Poaceae 2n = 20, Asteraceae 2n = 18 and Fabaceae 2n = 26. Chromosome number information is available for only 16.1% of species, while there are genome size data for only 1.25%, being lower than the global percentages. In general, genome sizes were small, ranging from 2C = ca. 1.5 to ca. 3.5 pg. Intra-specific 2n number variation and higher 2n counts were mainly related to polyploidy, which relates to the prevalence of even haploid numbers above the mode of 2n in most major plant clades. Several orphan genera with almost no cytogenetic studies for Cerrado were identified. This effort represents a complete diagnosis for cytogenetic attributes of plants of Cerrado.

  17. Human molecular cytogenetics: From cells to nucleotides

    PubMed Central

    Riegel, Mariluce

    2014-01-01

    The field of cytogenetics has focused on studying the number, structure, function and origin of chromosomal abnormalities and the evolution of chromosomes. The development of fluorescent molecules that either directly or via an intermediate molecule bind to DNA has led to the development of fluorescent in situ hybridization (FISH), a technology linking cytogenetics to molecular genetics. This technique has a wide range of applications that increased the dimension of chromosome analysis. The field of cytogenetics is particularly important for medical diagnostics and research as well as for gene ordering and mapping. Furthermore, the increased application of molecular biology techniques, such as array-based technologies, has led to improved resolution, extending the recognized range of microdeletion/microduplication syndromes and genomic disorders. In adopting these newly expanded methods, cytogeneticists have used a range of technologies to study the association between visible chromosome rearrangements and defects at the single nucleotide level. Overall, molecular cytogenetic techniques offer a remarkable number of potential applications, ranging from physical mapping to clinical and evolutionary studies, making a powerful and informative complement to other molecular and genomic approaches. This manuscript does not present a detailed history of the development of molecular cytogenetics; however, references to historical reviews and experiments have been provided whenever possible. Herein, the basic principles of molecular cytogenetics, the technologies used to identify chromosomal rearrangements and copy number changes, and the applications for cytogenetics in biomedical diagnosis and research are presented and discussed. PMID:24764754

  18. The Cerrado (Brazil) plant cytogenetics database

    PubMed Central

    Roa, Fernando; Telles, Mariana Pires de Campos

    2017-01-01

    Abstract Cerrado is a biodiversity hotspot that has lost ca. 50% of its original vegetation cover and hosts ca. 11,000 species belonging to 1,423 genera of phanerogams. For a fraction of those species some cytogenetic characteristics like chromosome numbers and C-value were available in databases, while other valuable information such as karyotype formula and banding patterns are missing. In order to integrate and share all cytogenetic information published for Cerrado species, including frequency of cytogenetic attributes and scientometrics aspects, Cerrado plant species were searched in bibliographic sources, including the 50 richest genera (with more than 45 taxa) and 273 genera with only one species in Cerrado. Determination of frequencies and the database website (http://cyto.shinyapps.io/cerrado) were developed in R. Studies were pooled by employed technique and decade, showing a rise in non-conventional cytogenetics since 2000. However, C-value estimation, heterochromatin staining and molecular cytogenetics are still not common for any family. For the richest and best sampled families, the following modal 2n counts were observed: Oxalidaceae 2n = 12, Lythraceae 2n = 30, Sapindaceae 2n = 24, Solanaceae 2n = 24, Cyperaceae 2n = 10, Poaceae 2n = 20, Asteraceae 2n = 18 and Fabaceae 2n = 26. Chromosome number information is available for only 16.1% of species, while there are genome size data for only 1.25%, being lower than the global percentages. In general, genome sizes were small, ranging from 2C = ca. 1.5 to ca. 3.5 pg. Intra-specific 2n number variation and higher 2n counts were mainly related to polyploidy, which relates to the prevalence of even haploid numbers above the mode of 2n in most major plant clades. Several orphan genera with almost no cytogenetic studies for Cerrado were identified. This effort represents a complete diagnosis for cytogenetic attributes of plants of Cerrado. PMID:28919965

  19. AML outcome: role of nucleotide excision repair polymorphisms in intermediate risk patients

    PubMed Central

    Strom, Sara S; Estey, Elihu H; Outschoorn, Ubaldo Martinez; Guillermo, Garcia-Manero

    2010-01-01

    Purpose Acute Myeloid Leukemia (AML) is frequently associated with genetic abnormalities. Based on pre-treatment cytogenetics, patients are classified into favorable, intermediate and poor subgroups. Cytogenetics predicts treatment outcome for the favorable and poor subgroups but not for the intermediate subgroup. Polymorphisms within the nucleotide excision repair (NER) pathway may lead to inter-individual differences in DNA repair capacity (DRC) which could influence outcome. Methods We studied the role of 6 polymorphisms (ERCC1 Gln504Lys, XPD Lys751Gln, XPC Ala499Val, XPC Lys939Gln, XPG Asp1104His, and CCNH Val270Ala) within NER pathway on overall and disease-free survival among 170 adult de-novo AML patients with intermediate cytogenetics [diploid (n=117); non-diploid (n=53)], treated with induction chemotherapy. Kaplan-Meier methods and Cox proportional hazards models were performed. Results Diploid patients with the XPD AC/CC genotype survived shorter than those with the wild-type (AA) genotype (median survival 22 vs. 40 months, log-rank p = 0.03). Similarly diploid patients with XPC CT/TT genotype survived shorter than those with the wild-type (CC) genotype (median survival 15 vs. 30 months, log-rank p = 0.02). Among diploid patients, after adjusting for clinical and socio-demographic variables, patients carrying both XPD AC/CC and XPC CT/TT had a greater than two-fold increased risk of dying compared to those with the wild-type genotypes (HR=2.49; 95%CI: 1.06–5.85). No significant associations were observed for disease-free survival in AML patients. Conclusion By reduced DRC, this combined genotype may result in greater susceptibility to treatment effects decreasing overall survival. These findings could in the future help in selecting treatment strategies for patients with normal cytogenetics. PMID:20141440

  20. Cytogenetic analysis in acute myeloid leukaemia.

    PubMed

    Campbell, Lynda J; White, Joanne S

    2011-01-01

    Cytogenetic analysis is an integral part of the diagnostic work-up of the patient with acute myeloid leukaemia. Conventional cytogenetic analysis relies on obtaining a good quality bone marrow specimen in a timely fashion and setting up at least two short-term cultures. A 15-24-h culture and a 48-h synchronised culture are routinely set up but as the cytogenetics result is often required urgently to determine the type of therapy to be administered, analysis is undertaken using the overnight culture in the first instance. Rapid and accurate analysis relies on obtaining high-quality G-banding. Knowledge of the conditions affecting banding is therefore essential.

  1. Canine Cytogenetics - From band to basepair

    PubMed Central

    Breen, Matthew

    2008-01-01

    Humans and dogs have coexisted for thousands of years, during which time we have developed a unique bond, centered on companionship. Along the way, we have developed purebred dog breeds in a manner that has resulted unfortunately in many of them being affected by serious genetic disorders, including cancers. With serendipity and irony the unique genetic architecture of the 21st Century genome of Man's best friend may ultimately provide many of the keys to unlock some of nature's most intriguing biological puzzles. Canine cytogenetics has advanced significantly over the past 10 years, spurred on largely by the surge of interest in the dog as a biomedical model for genetic disease and the availability of advanced genomics resources. As such the role of canine cytogenetics has moved rapidly from one that served initially to define the gross genomic organization of the canine genome and provide a reliable means to determine the chromosomal location of individual genes, to one that enabled the assembled sequence of the canine genome to be anchored to the karyotype. Canine cytogenetics now presents the biomedical research community with a means to assist in our search for a greater understanding of how genome architectures altered during speciation and in our search for genes associated with cancers that affect both dogs and humans. The cytogenetics ‘toolbox’ for the dog is now loaded. This review aims to provide a summary of some of the recent advancements in canine cytogenetics. PMID:18467825

  2. Induction and repair of HZE induced cytogenetic damage

    NASA Technical Reports Server (NTRS)

    Brooks, A. L.; Bao, S.; Rithidech, K.; Chrisler, W. B.; Couch, L. A.; Braby, L. A.

    2001-01-01

    Wistar rats were exposed to high-mass, high energy (HZE) 56Fe particles (1000 GeV/AMU) using the Alternating Gradient Synchrotron (AGS). The animals were sacrificed at 1-5 hours or after a 30-day recovery period. The frequency of micronuclei in the tracheal and the deep lung epithelial cells were evaluated. The relative effectiveness of 56Fe, for the induction of initial chromosome damage in the form of micronuclei, was compared to damage produced in the same biological system exposed to other types of high and low-LET radiation. It was demonstrated that for animals sacrificed at short times after exposure, the tracheal and lung epithelial cells, the 56Fe particles were 3.3 and 1.3 times as effective as 60Co in production of micronuclei, respectively. The effectiveness was also compared to that for exposure to inhaled radon. With this comparison, the 56Fe exposure of the tracheal epithelial cells and the lung epithelial cells were only 0.18 and 0.20 times as effective as radon in the production of the initial cytogenetic damage. It was suggested that the low relative effectiveness was related to potential for 'wasted energy' from the core of the 56Fe particles. When the animals were sacrificed after 30 days, the slopes of the dose-response relationships, which reflect the remaining level of damage, decreased by a factor of 10 for both the tracheal and lung epithelial cells. In both cases, the slope of the dose-response lines were no longer significantly different from zero, and the r2 values were very high. Lung epithelial cells, isolated from the animals sacrificed hours after exposure, were maintained in culture, and the micronuclei frequency evaluated after 4 and 6 subcultures. These cells were harvested at 24 and 36 days after the exposure. There was no dose-response detected in these cultures and no signs of genomic instability at either sample time.

  3. Plant genotoxicity: a molecular cytogenetic approach in plant bioassays.

    PubMed

    Maluszynska, Jolanta; Juchimiuk, Jolanta

    2005-06-01

    It is important for the prevention of DNA changes caused by environment to understand the biological consequences of DNA damages and their molecular modes of action that lead to repair or alterations of the genetic material. Numerous genotoxicity assay systems have been developed to identify DNA reactive compounds. The available data show that plant bioassays are important tests in the detection of genotoxic contamination in the environment and the establishment of controlling systems. Plant system can detect a wide range of genetic damage, including gene mutations and chromosome aberrations. Recently introduced molecular cytogenetic methods allow analysis of genotoxicity, both at the chromosomal and DNA level. FISH gives a new possibility of the detection and analysis of chromosomal rearrangements in a great detail. DNA fragmentation can be estimated using the TUNEL test and the single cell gel electrophoresis (Comet assay).

  4. Chromosomal bands affected by acute oil exposure and DNA repair errors.

    PubMed

    Monyarch, Gemma; de Castro Reis, Fernanda; Zock, Jan-Paul; Giraldo, Jesús; Pozo-Rodríguez, Francisco; Espinosa, Ana; Rodríguez-Trigo, Gema; Verea, Hector; Castaño-Vinyals, Gemma; Gómez, Federico P; Antó, Josep M; Coll, Maria Dolors; Barberà, Joan Albert; Fuster, Carme

    2013-01-01

    In a previous study, we showed that individuals who had participated in oil clean-up tasks after the wreckage of the Prestige presented an increase of structural chromosomal alterations two years after the acute exposure had occurred. Other studies have also reported the presence of DNA damage during acute oil exposure, but little is known about the long term persistence of chromosomal alterations, which can be considered as a marker of cancer risk. We analyzed whether the breakpoints involved in chromosomal damage can help to assess the risk of cancer as well as to investigate their possible association with DNA repair efficiency. Cytogenetic analyses were carried out on the same individuals of our previous study and DNA repair errors were assessed in cultures with aphidicolin. Three chromosomal bands, 2q21, 3q27 and 5q31, were most affected by acute oil exposure. The dysfunction in DNA repair mechanisms, expressed as chromosomal damage, was significantly higher in exposed-oil participants than in those not exposed (p= 0.016). The present study shows that breaks in 2q21, 3q27 and 5q31 chromosomal bands, which are commonly involved in hematological cancer, could be considered useful genotoxic oil biomarkers. Moreover, breakages in these bands could induce chromosomal instability, which can explain the increased risk of cancer (leukemia and lymphomas) reported in chronically benzene-exposed individuals. In addition, it has been determined that the individuals who participated in clean-up of the oil spill presented an alteration of their DNA repair mechanisms two years after exposure.

  5. Development and Application of Camelid Molecular Cytogenetic Tools

    PubMed Central

    Avila, Felipe; Das, Pranab J.; Kutzler, Michelle; Owens, Elaine; Perelman, Polina; Rubes, Jiri; Hornak, Miroslav; Johnson, Warren E.

    2014-01-01

    Cytogenetic chromosome maps offer molecular tools for genome analysis and clinical cytogenetics and are of particular importance for species with difficult karyotypes, such as camelids (2n = 74). Building on the available human–camel zoo-fluorescence in situ hybridization (FISH) data, we developed the first cytogenetic map for the alpaca (Lama pacos, LPA) genome by isolating and identifying 151 alpaca bacterial artificial chromosome (BAC) clones corresponding to 44 specific genes. The genes were mapped by FISH to 31 alpaca autosomes and the sex chromosomes; 11 chromosomes had 2 markers, which were ordered by dual-color FISH. The STS gene mapped to Xpter/Ypter, demarcating the pseudoautosomal region, whereas no markers were assigned to chromosomes 14, 21, 22, 28, and 36. The chromosome-specific markers were applied in clinical cytogenetics to identify LPA20, the major histocompatibility complex (MHC)-carrying chromosome, as a part of an autosomal translocation in a sterile male llama (Lama glama, LGL; 2n = 73,XY). FISH with LPAX BACs and LPA36 paints, as well as comparative genomic hybridization, were also used to investigate the origin of the minute chromosome, an abnormally small LPA36 in infertile female alpacas. This collection of cytogenetically mapped markers represents a new tool for camelid clinical cytogenetics and has applications for the improvement of the alpaca genome map and sequence assembly. PMID:23109720

  6. Mdt1 Facilitates Efficient Repair of Blocked DNA Double-Strand Breaks and Recombinational Maintenance of Telomeres▿

    PubMed Central

    Pike, Brietta L.; Heierhorst, Jörg

    2007-01-01

    DNA recombination plays critical roles in DNA repair and alternative telomere maintenance. Here we show that absence of the SQ/TQ cluster domain-containing protein Mdt1 (Ybl051c) renders Saccharomyces cerevisiae particularly hypersensitive to bleomycin, a drug that causes 3′-phospho-glycolate-blocked DNA double-strand breaks (DSBs). mdt1Δ also hypersensitizes partially recombination-defective cells to camptothecin-induced 3′-phospho-tyrosyl protein-blocked DSBs. Remarkably, whereas mdt1Δ cells are unable to restore broken chromosomes after bleomycin treatment, they efficiently repair “clean” endonuclease-generated DSBs. Epistasis analyses indicate that MDT1 acts in the repair of bleomycin-induced DSBs by regulating the efficiency of the homologous recombination pathway as well as telomere-related functions of the KU complex. Moreover, mdt1Δ leads to severe synthetic growth defects with a deletion of the recombination facilitator and telomere-positioning factor gene CTF18 already in the absence of exogenous DNA damage. Importantly, mdt1Δ causes a dramatic shift from the usually prevalent type II to the less-efficient type I pathway of recombinational telomere maintenance in the absence of telomerase in liquid senescence assays. As telomeres resemble protein-blocked DSBs, the results indicate that Mdt1 acts in a novel blocked-end-specific recombination pathway that is required for the efficiency of both drug-induced DSB repair and telomerase-independent telomere maintenance. PMID:17636027

  7. Acute myeloid leukemia outcome: role of nucleotide excision repair polymorphisms in intermediate risk patients.

    PubMed

    Strom, Sara S; Estey, Elihu; Outschoorn, Ubaldo Martinez; Garcia-Manero, Guillermo

    2010-04-01

    In acute myeloid leukemia (AML), cytogenetics predicts treatment outcome for the favorable and poor subgroups but not for the intermediate subgroup. Polymorphisms within the nucleotide excision repair (NER) pathway may lead to interindividual differences in DNA repair capacity, influencing outcome. We studied the role of six polymorphisms (ERCC1 Gln504Lys, XPD Lys751Gln, XPC Ala499Val, XPC Lys939Gln, XPG Asp1104His, and CCNH Val270Ala) in overall and disease-free survival among 170 adult de novo patients with intermediate cytogenetics (diploid [n = 117]; non-diploid [n = 53]), treated with induction chemotherapy. Kaplan-Meier and Cox proportional hazards models were performed. Diploid patients with the XPD AC/CC genotype survived shorter than those with the wild-type genotype (median survival 22 vs. 40 months, p = 0.03). Diploid patients with XPC CT/TT genotype survived shorter than those with the wild-type genotype (median survival 15 vs. 30 months, p = 0.02). After adjusting for clinical and sociodemographic variables, patients carrying both XPD AC/CC and XPC CT/TT had a greater than two-fold increased risk of dying, compared to those with the wild-type genotypes (HR = 2.49; 95% CI: 1.06-5.85). No associations were observed for disease-free survival. This combined genotype may modulate treatment effect, decreasing overall survival. These findings could in the future help select treatments for patients with normal cytogenetics.

  8. Modified bases enable high-efficiency oligonucleotide-mediated allelic replacement via mismatch repair evasion

    PubMed Central

    Wang, Harris H.; Xu, George; Vonner, Ashley J.; Church, George

    2011-01-01

    Genome engineering using single-stranded oligonucleotides is an efficient method for generating small chromosomal and episomal modifications in a variety of host organisms. The efficiency of this allelic replacement strategy is highly dependent on avoidance of the endogenous mismatch repair (MMR) machinery. However, global MMR inactivation generally results in significant accumulation of undesired background mutations. Here, we present a novel strategy using oligos containing chemically modified bases (2′-Fluoro-Uridine, 5-Methyl-deoxyCytidine, 2,6-Diaminopurine or Iso-deoxyGuanosine) in place of the standard T, C, A or G to avoid mismatch detection and repair, which we tested in Escherichia coli. This strategy increases transient allelic-replacement efficiencies by up to 20-fold, while maintaining a 100-fold lower background mutation level. We further show that the mismatched bases between the full length oligo and the chromosome are often not incorporated at the target site, probably due to nuclease activity at the 5′ and 3′ termini of the oligo. These results further elucidate the mechanism of oligo-mediated allelic replacement (OMAR) and enable improved methodologies for efficient, large-scale engineering of genomes. PMID:21609953

  9. Cytogenetic prognostication within medulloblastoma subgroups.

    PubMed

    Shih, David J H; Northcott, Paul A; Remke, Marc; Korshunov, Andrey; Ramaswamy, Vijay; Kool, Marcel; Luu, Betty; Yao, Yuan; Wang, Xin; Dubuc, Adrian M; Garzia, Livia; Peacock, John; Mack, Stephen C; Wu, Xiaochong; Rolider, Adi; Morrissy, A Sorana; Cavalli, Florence M G; Jones, David T W; Zitterbart, Karel; Faria, Claudia C; Schüller, Ulrich; Kren, Leos; Kumabe, Toshihiro; Tominaga, Teiji; Shin Ra, Young; Garami, Miklós; Hauser, Peter; Chan, Jennifer A; Robinson, Shenandoah; Bognár, László; Klekner, Almos; Saad, Ali G; Liau, Linda M; Albrecht, Steffen; Fontebasso, Adam; Cinalli, Giuseppe; De Antonellis, Pasqualino; Zollo, Massimo; Cooper, Michael K; Thompson, Reid C; Bailey, Simon; Lindsey, Janet C; Di Rocco, Concezio; Massimi, Luca; Michiels, Erna M C; Scherer, Stephen W; Phillips, Joanna J; Gupta, Nalin; Fan, Xing; Muraszko, Karin M; Vibhakar, Rajeev; Eberhart, Charles G; Fouladi, Maryam; Lach, Boleslaw; Jung, Shin; Wechsler-Reya, Robert J; Fèvre-Montange, Michelle; Jouvet, Anne; Jabado, Nada; Pollack, Ian F; Weiss, William A; Lee, Ji-Yeoun; Cho, Byung-Kyu; Kim, Seung-Ki; Wang, Kyu-Chang; Leonard, Jeffrey R; Rubin, Joshua B; de Torres, Carmen; Lavarino, Cinzia; Mora, Jaume; Cho, Yoon-Jae; Tabori, Uri; Olson, James M; Gajjar, Amar; Packer, Roger J; Rutkowski, Stefan; Pomeroy, Scott L; French, Pim J; Kloosterhof, Nanne K; Kros, Johan M; Van Meir, Erwin G; Clifford, Steven C; Bourdeaut, Franck; Delattre, Olivier; Doz, François F; Hawkins, Cynthia E; Malkin, David; Grajkowska, Wieslawa A; Perek-Polnik, Marta; Bouffet, Eric; Rutka, James T; Pfister, Stefan M; Taylor, Michael D

    2014-03-20

    Medulloblastoma comprises four distinct molecular subgroups: WNT, SHH, Group 3, and Group 4. Current medulloblastoma protocols stratify patients based on clinical features: patient age, metastatic stage, extent of resection, and histologic variant. Stark prognostic and genetic differences among the four subgroups suggest that subgroup-specific molecular biomarkers could improve patient prognostication. Molecular biomarkers were identified from a discovery set of 673 medulloblastomas from 43 cities around the world. Combined risk stratification models were designed based on clinical and cytogenetic biomarkers identified by multivariable Cox proportional hazards analyses. Identified biomarkers were tested using fluorescent in situ hybridization (FISH) on a nonoverlapping medulloblastoma tissue microarray (n = 453), with subsequent validation of the risk stratification models. Subgroup information improves the predictive accuracy of a multivariable survival model compared with clinical biomarkers alone. Most previously published cytogenetic biomarkers are only prognostic within a single medulloblastoma subgroup. Profiling six FISH biomarkers (GLI2, MYC, chromosome 11 [chr11], chr14, 17p, and 17q) on formalin-fixed paraffin-embedded tissues, we can reliably and reproducibly identify very low-risk and very high-risk patients within SHH, Group 3, and Group 4 medulloblastomas. Combining subgroup and cytogenetic biomarkers with established clinical biomarkers substantially improves patient prognostication, even in the context of heterogeneous clinical therapies. The prognostic significance of most molecular biomarkers is restricted to a specific subgroup. We have identified a small panel of cytogenetic biomarkers that reliably identifies very high-risk and very low-risk groups of patients, making it an excellent tool for selecting patients for therapy intensification and therapy de-escalation in future clinical trials.

  10. Assessment of DNA damage and repair efficiency in drug naïve schizophrenia using comet assay.

    PubMed

    Muraleedharan, Aparna; Menon, Vikas; Rajkumar, Ravi Philip; Chand, Parkash

    2015-09-01

    The etiology of schizophrenia continues to be confounding and elusive. Some knowledge gaps exist in the neurodegenerative theory of schizophrenia. Oxidative DNA damage and repair deficits are relevant to the mechanisms of neurodegeneration but have not been studied in drug naïve schizophrenia. The present study used the comet assay technique to study the extent of DNA damage in circulating peripheral lymphocytes of patients with drug naïve schizophrenia (n = 40) along with an age and gender matched control group (n = 40). We also assessed the DNA repair efficiency in cases following incubation in a nutrient medium. All the assayed comet parameters demonstrated significantly greater baseline DNA damage in cases in comparison to the controls except for head diameter (p < 0.001 for all significant results, p = 0.32 for head diameter). Gender, age and duration of illness (p = 0.21, 0.69 and 0.12 respectively for tail length) did not influence any of the parameters significantly. Significant decrease was noted in the comet tail length and percentage of DNA in comet tail (p < 0.001 for both) in cases following incubation suggesting that the DNA repair machinery was preserved. No difference in DNA repair efficiency was noted between the genders (p = 0.23 for tail length). Our findings confirm the presence of significant baseline DNA damage in schizophrenia even prior to the initiation of anti-psychotic treatment. Additionally, intact genomic repair efficiency was noted in this group as a whole. These results provide some evidence for oxidative DNA damage as molecular link underpinning neurodegeneration in drug naïve schizophrenia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Efficient removal of cyclobutane pyrimidine dimers in barley: differential contribution of light-dependent and dark DNA repair pathways.

    PubMed

    Manova, Vasilissa; Georgieva, Ralitsa; Borisov, Borislav; Stoilov, Lubomir

    2016-10-01

    Barley stress response to ultraviolet radiation (UV) has been intensively studied at both the physiological and morphological level. However, the ability of barley genome to repair UV-induced lesions at the DNA level is far less characterized. In this study, we have investigated the relative contribution of light-dependent and dark DNA repair pathways for the efficient elimination of cyclobutane pyrimidine dimers (CPDs) from the genomic DNA of barley leaf seedlings. The transcriptional activity of barley CPD photolyase gene in respect to the light-growth conditions and UV-C irradiation of the plants has also been analyzed. Our results show that CPDs induced in the primary barley leaf at frequencies potentially damaging DNA at the single-gene level are removed efficiently and exclusively by photorepair pathway, whereas dark repair is hardly detectable, even at higher CPD frequency. A decrease of initially induced CPDs under dark is observed but only after prolonged incubation, suggesting the activation of light-independent DNA damage repair and/or tolerance mechanisms. The green barley seedlings possess greater capacity for CPD photorepair than the etiolated ones, with efficiency of CPD removal dependent on the intensity and quality of recovering light. The higher repair rate of CPDs measured in the green leaves correlates with the higher transcriptional activity of barley CPD photolyase gene. Visible light and UV-C radiation affect differentially the expression of CPD photolyase gene particularly in the etiolated leaves. We propose that the CPD repair potential of barley young seedlings may influence their response to UV-stress. © 2016 Scandinavian Plant Physiology Society.

  12. Cytogenetic profile of aplastic anaemia in Indian children

    PubMed Central

    Gupta, Vineeta; Kumar, Akash; Saini, Isha; Saxena, Ajit Kumar

    2013-01-01

    Background & objectives: Aplastic anaemia is a rare haematological disorder characterized by pancytopenia with a hypocellular bone marrow. It may be inherited/genetic or acquired. Acquired aplastic anaemia has been linked to many drugs, chemicals and viruses. Cytogenetic abnormalities have been reported infrequently with acquired aplastic anaemia. Majority of the studies are in adult patients from the West. We report here cytogenetic studies on paediatric patients with acquired aplastic anaemia seen in a tertiary care hospital in north India. Methods: Patients (n=71, age 4-14 yr) were diagnosed according to the guidelines of International Agranulocytosis and Aplastic Anaemia Study. Conventional cytogenetics with Giemsa Trypsin Giemsa (GTG) banding was performed. Karyotyping was done according to the International System for Human Cytogenetics Nomenclature (ISCN). Results: Of the 71 patients, 42 had successful karyotyping where median age was 9 yr; of these 42, 27 (64.3%) patients had severe, nine (21.4%) had very severe and six (14.3%) had non severe aplastic anaemia. Five patients had karyotypic abnormalities with trisomy 12 (1), trisomy 8 (1) and monosomy 7 (1). Two patients had non numerical abnormalities with del 7 q - and t (5:12) in one each. Twenty nine patients had uninformative results. There was no difference in the clinical and haematological profile of patients with normal versus abnormal cytogenetics although the number of patients was small in the two groups. Interpretation & conclusions: Five (11.9%) patients with acquired aplastic anaemia had chromosomal abnormalities. Trisomy was found to be the commonest abnormality. Cytogenetic abnormalities may be significant in acquired aplastic anaemia although further studies on a large sample are required to confirm the findings. PMID:23640556

  13. Cytogenetic profile of aplastic anaemia in Indian children.

    PubMed

    Gupta, Vineeta; Kumar, Akash; Saini, Isha; Saxena, Ajit Kumar

    2013-03-01

    Aplastic anaemia is a rare haematological disorder characterized by pancytopenia with a hypocellular bone marrow. It may be inherited/genetic or acquired. Acquired aplastic anaemia has been linked to many drugs, chemicals and viruses. Cytogenetic abnormalities have been reported infrequently with acquired aplastic anaemia. Majority of the studies are in adult patients from the West. We report here cytogenetic studies on paediatric patients with acquired aplastic anaemia seen in a tertiary care hospital in north India. Patients (n=71, age 4-14 yr) were diagnosed according to the guidelines of International Agranulocytosis and Aplastic Anaemia Study. Conventional cytogenetics with Giemsa Trypsin Giemsa (GTG) banding was performed. Karyotyping was done according to the International System for Human Cytogenetics Nomenclature (ISCN). Of the 71 patients, 42 had successful karyotyping where median age was 9 yr; of these 42, 27 (64.3%) patients had severe, nine (21.4%) had very severe and six (14.3%) had non severe aplastic anaemia. Five patients had karyotypic abnormalities with trisomy 12 (1), trisomy 8 (1) and monosomy 7 (1). Two patients had non numerical abnormalities with del 7 q - and t (5:12) in one each. Twenty nine patients had uninformative results. There was no difference in the clinical and haematological profile of patients with normal versus abnormal cytogenetics although the number of patients was small in the two groups. Five (11.9%) patients with acquired aplastic anaemia had chromosomal abnormalities. Trisomy was found to be the commonest abnormality. Cytogenetic abnormalities may be significant in acquired aplastic anaemia although further studies on a large sample are required to confirm the findings.

  14. Cytogenetic Prognostication Within Medulloblastoma Subgroups

    PubMed Central

    Shih, David J.H.; Northcott, Paul A.; Remke, Marc; Korshunov, Andrey; Ramaswamy, Vijay; Kool, Marcel; Luu, Betty; Yao, Yuan; Wang, Xin; Dubuc, Adrian M.; Garzia, Livia; Peacock, John; Mack, Stephen C.; Wu, Xiaochong; Rolider, Adi; Morrissy, A. Sorana; Cavalli, Florence M.G.; Jones, David T.W.; Zitterbart, Karel; Faria, Claudia C.; Schüller, Ulrich; Kren, Leos; Kumabe, Toshihiro; Tominaga, Teiji; Shin Ra, Young; Garami, Miklós; Hauser, Peter; Chan, Jennifer A.; Robinson, Shenandoah; Bognár, László; Klekner, Almos; Saad, Ali G.; Liau, Linda M.; Albrecht, Steffen; Fontebasso, Adam; Cinalli, Giuseppe; De Antonellis, Pasqualino; Zollo, Massimo; Cooper, Michael K.; Thompson, Reid C.; Bailey, Simon; Lindsey, Janet C.; Di Rocco, Concezio; Massimi, Luca; Michiels, Erna M.C.; Scherer, Stephen W.; Phillips, Joanna J.; Gupta, Nalin; Fan, Xing; Muraszko, Karin M.; Vibhakar, Rajeev; Eberhart, Charles G.; Fouladi, Maryam; Lach, Boleslaw; Jung, Shin; Wechsler-Reya, Robert J.; Fèvre-Montange, Michelle; Jouvet, Anne; Jabado, Nada; Pollack, Ian F.; Weiss, William A.; Lee, Ji-Yeoun; Cho, Byung-Kyu; Kim, Seung-Ki; Wang, Kyu-Chang; Leonard, Jeffrey R.; Rubin, Joshua B.; de Torres, Carmen; Lavarino, Cinzia; Mora, Jaume; Cho, Yoon-Jae; Tabori, Uri; Olson, James M.; Gajjar, Amar; Packer, Roger J.; Rutkowski, Stefan; Pomeroy, Scott L.; French, Pim J.; Kloosterhof, Nanne K.; Kros, Johan M.; Van Meir, Erwin G.; Clifford, Steven C.; Bourdeaut, Franck; Delattre, Olivier; Doz, François F.; Hawkins, Cynthia E.; Malkin, David; Grajkowska, Wieslawa A.; Perek-Polnik, Marta; Bouffet, Eric; Rutka, James T.; Pfister, Stefan M.; Taylor, Michael D.

    2014-01-01

    Purpose Medulloblastoma comprises four distinct molecular subgroups: WNT, SHH, Group 3, and Group 4. Current medulloblastoma protocols stratify patients based on clinical features: patient age, metastatic stage, extent of resection, and histologic variant. Stark prognostic and genetic differences among the four subgroups suggest that subgroup-specific molecular biomarkers could improve patient prognostication. Patients and Methods Molecular biomarkers were identified from a discovery set of 673 medulloblastomas from 43 cities around the world. Combined risk stratification models were designed based on clinical and cytogenetic biomarkers identified by multivariable Cox proportional hazards analyses. Identified biomarkers were tested using fluorescent in situ hybridization (FISH) on a nonoverlapping medulloblastoma tissue microarray (n = 453), with subsequent validation of the risk stratification models. Results Subgroup information improves the predictive accuracy of a multivariable survival model compared with clinical biomarkers alone. Most previously published cytogenetic biomarkers are only prognostic within a single medulloblastoma subgroup. Profiling six FISH biomarkers (GLI2, MYC, chromosome 11 [chr11], chr14, 17p, and 17q) on formalin-fixed paraffin-embedded tissues, we can reliably and reproducibly identify very low-risk and very high-risk patients within SHH, Group 3, and Group 4 medulloblastomas. Conclusion Combining subgroup and cytogenetic biomarkers with established clinical biomarkers substantially improves patient prognostication, even in the context of heterogeneous clinical therapies. The prognostic significance of most molecular biomarkers is restricted to a specific subgroup. We have identified a small panel of cytogenetic biomarkers that reliably identifies very high-risk and very low-risk groups of patients, making it an excellent tool for selecting patients for therapy intensification and therapy de-escalation in future clinical trials. PMID

  15. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Francesco; Wyrobek, Andrew J.

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization.more » During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.« less

  16. Failure matters: unsuccessful cytogenetics and unperformed cytogenetics are associated with a poor prognosis in a population-based series of acute myeloid leukaemia.

    PubMed

    Lazarevic, Vladimir; Hörstedt, Ann-Sofi; Johansson, Bertil; Antunovic, Petar; Billström, Rolf; Derolf, Åsa; Lehmann, Sören; Möllgård, Lars; Peterson, Stefan; Stockelberg, Dick; Uggla, Bertil; Vennström, Lovisa; Wahlin, Anders; Höglund, Martin; Juliusson, Gunnar

    2015-05-01

    Unsuccessful cytogenetics (UC) in patients with acute myeloid leukaemia (AML) treated on different SWOG trials was recently reported to be associated with increased age and dismal outcome. To ascertain whether this holds true also in unselected patients with AML, we retrieved all cytogenetic reports in cases from the population-based Swedish AML Registry. Between 1997 and 2006, 1737 patients below 80 yr of age without myelosarcoma or acute promyelocytic leukaemia received intensive treatment. The frequencies of UC and unperformed cytogenetics (UPC) were 2.1% and 20%, respectively. The early death rates differed between the cytogenetic subgroups (P = 0.006) with the highest rates in patients with UC (14%) and UPC (12%) followed by high-risk (HR) AML, intermediate risk (IR) and standard risk (SR) cases successfully karyotyped (8.6%, 5.9%, and 5.8%, respectively). The complete remission rate was lower in UC and UPC and HR compared with the other risk groups (P < 0.001). The overall five-year survival rates were 25% for UC and 22% for UPC, whereas the corresponding frequencies for SR, IR and HR AML patients without UC and UPC were 64%, 31% and 15%, respectively. In conclusion, lack of cytogenetic data translates into a poor prognosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Immunohistochemical, cytogenetic, and molecular cytogenetic characterization of both components of a dedifferentiated liposarcoma: implications for histogenesis.

    PubMed

    Nishio, Jun; Iwasaki, Hiroshi; Nabeshima, Kazuki; Naito, Masatoshi

    2015-01-01

    Dedifferentiated liposarcoma (DDLS) is a malignant adipocytic tumor showing transition from an atypical lipomatous tumor (ALT)/well-differentiated liposarcoma (WDLS) to a non-lipogenic sarcoma of variable histological grades. We present the immunohistochemical, cytogenetic, and molecular cytogenetic findings of DDLS arising in the right chest wall of a 76-year-old man. Magnetic resonance imaging exhibited a large mass composed of two components with heterogeneous signal intensities, suggesting the coexistence of a fatty area and another soft tissue component. The grossly heterogeneous mass was histologically composed of an ALT/WDLS component transitioning abruptly into a dedifferentiated component. Immunohistochemistry was positive for murine double-minute 2 (MDM2), cyclin-dependent kinase 4 (CDK4), and p16 in both components, although a more strong and diffuse staining was found in the dedifferentiated area. The MIB-1 labeling index was extremely higher in the dedifferentiated area compared to the ALT/WDLS area. Cytogenetic analysis of the ALT/WDLS component revealed the following karyotype: 46,X,-Y,+r. Notably, cytogenetic analysis of the dedifferentiated component revealed a similar but more complex karyotype. Spectral karyotyping demonstrated that the ring chromosome was entirely composed of material from chromosome 12. Interphase fluorescence in situ hybridization analysis revealed amplification of MDM2 and CDK4 in both components. These findings suggest that multiple abnormal clones derived from a single precursor cell would be present in DDLS, with one or more containing supernumerary rings or giant marker chromosomes. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Cytogenetics and fluorescence in-situ hybridization in detection of hematological malignancies.

    PubMed

    Frenny, V J; Antonella, Z; Luisa, A; Shah, A D; Sheth, J J; Rocchi, M

    2003-01-01

    The technique of Fluorescence In-Situ Hybridization (FISH), a hybrid of cytogenetics and molecular biology has increased the resolution and application of cytogenetics in various neoplastic processes. In various types of leukemias, primary investigation by conventional cytogenetic [CC] technique followed by FISH has increased our understanding of the abnormal clonal formation involving different gene region. Present study is aimed to use different kinds of in-house FISH probes in various hematological malignancies and its correlation with conventional cytogenetic finding. Cytogenetic study was carried out in 360 patients either from peripheral blood or from bone marrow cells suspected for various types of leukemias. Four of 360 cases were further selected for FISH study by using different types of in-house probes, such as BAC [Bacterial Artificial Chromosome], PAC [Phague Artificial Chromosome], alphoid, PCP [Partial Chromosome Paint] and WCP [Whole Chromosome paint]. The results confirmed breakpoints of inversion 16 and del 16 in case 2 and 3 respectively. Whereas, case 1 did not confirm the cytogenetic findings of t(15;17) by PML/RARa fusion signals as multiple cell lines were involved in the patients. PCP and WCP were helpful in the identification of the marker chromosome in case 1. Telomeric and centromeric probes confirmed the cytogenetic findings of t(5;7) in case 4. We observe from this study that, in addition to the conventional cytogenetic study, FISH study provide further confirmation of chromosomal rearrangements. This facilitates our understanding of the neoplastic process more precisely for the better prognostication of the patient.

  19. The impact of the condenser on cytogenetic image quality in digital microscope system.

    PubMed

    Ren, Liqiang; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Xiaodong; Liu, Hong

    2013-01-01

    Optimizing operational parameters of the digital microscope system is an important technique to acquire high quality cytogenetic images and facilitate the process of karyotyping so that the efficiency and accuracy of diagnosis can be improved. This study investigated the impact of the condenser on cytogenetic image quality and system working performance using a prototype digital microscope image scanning system. Both theoretical analysis and experimental validations through objectively evaluating a resolution test chart and subjectively observing large numbers of specimen were conducted. The results show that the optimal image quality and large depth of field (DOF) are simultaneously obtained when the numerical aperture of condenser is set as 60%-70% of the corresponding objective. Under this condition, more analyzable chromosomes and diagnostic information are obtained. As a result, the system shows higher working stability and less restriction for the implementation of algorithms such as autofocusing especially when the system is designed to achieve high throughput continuous image scanning. Although the above quantitative results were obtained using a specific prototype system under the experimental conditions reported in this paper, the presented evaluation methodologies can provide valuable guidelines for optimizing operational parameters in cytogenetic imaging using the high throughput continuous scanning microscopes in clinical practice.

  20. The Impact of the Condenser on Cytogenetic Image Quality in Digital Microscope System

    PubMed Central

    Ren, Liqiang; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Xiaodong; Liu, Hong

    2013-01-01

    Background: Optimizing operational parameters of the digital microscope system is an important technique to acquire high quality cytogenetic images and facilitate the process of karyotyping so that the efficiency and accuracy of diagnosis can be improved. OBJECTIVE: This study investigated the impact of the condenser on cytogenetic image quality and system working performance using a prototype digital microscope image scanning system. Methods: Both theoretical analysis and experimental validations through objectively evaluating a resolution test chart and subjectively observing large numbers of specimen were conducted. Results: The results show that the optimal image quality and large depth of field (DOF) are simultaneously obtained when the numerical aperture of condenser is set as 60%–70% of the corresponding objective. Under this condition, more analyzable chromosomes and diagnostic information are obtained. As a result, the system shows higher working stability and less restriction for the implementation of algorithms such as autofocusing especially when the system is designed to achieve high throughput continuous image scanning. Conclusions: Although the above quantitative results were obtained using a specific prototype system under the experimental conditions reported in this paper, the presented evaluation methodologies can provide valuable guidelines for optimizing operational parameters in cytogenetic imaging using the high throughput continuous scanning microscopes in clinical practice. PMID:23676284

  1. [Cytogenetic, molecular cytogenetic, clinical and genealogical study of mothers of children with autism: a search for family genetic markers of autistic disorders].

    PubMed

    Vorsanova, S G; Voinova, V Iu; Iurov, I Iu; Kurinnaia, O S; Demidova, I A; Iurov, Iu B

    2009-01-01

    Using modern cytogenetic and molecular cytogenetic techniques towards the study of human chromosomes, an analysis of chromosomal abnormalities/chromosomal variations as well as clinical and genealogical data in mothers of children with autism has been performed. It has been shown that mothers of autistic children exhibit an increased incidence of chromosomal abnormalities (mainly mosaic forms involving chromosome X) and an increased occurrence of chromosomal variations compared to controls. The analysis of genotype-phenotype correlations revealed the increase in the frequency of cognitive disturbances and spontaneous abortions in mothers of children with autism as well as the higher frequency of mental retardation, early death and reproductive problems in the pedigrees. The high frequency of congenital malformations in the pedigrees of mothers with chromosomal variations was observed as well. Taking into account the data obtained, we have concluded that cytogenetic and molecular cytogenetic studies of mothers of children with autism are obligatory for detection of possible genetic causes of autism and genetic counseling of families with children affected with autistic disorders.

  2. Cytogenetics of melanoma and nonmelanoma skin cancer.

    PubMed

    Carless, Melanie A; Griffiths, Lyn R

    2014-01-01

    Cytogenetic analysis of melanoma and nonmelanoma skin cancers has revealed recurrent aberrations, the frequency of which is reflective of malignant potential. Highly aberrant karyotypes are seen in melanoma, squamous cell carcinoma, actinic keratosis, Merkel cell carcinoma and cutaneous lymphomas with more stable karyotypes seen in basal cell carcinoma, keratoacanthoma, Bowen's disease and dermatofibrosarcoma protuberans. Some aberrations are common among a number of skin cancer types including rearrangements and numerical abnormalities of chromosome 1, -3p, +3q, partial or entire trisomy 6, trisomy 7, +8q, -9p, +9q, partial or entire loss of chromosome 10, -17p, +17q and partial or entire gain of chromosome 20. Combination of cytogenetic analysis with other molecular genetic techniques has enabled the identification of not only aberrant chromosomal regions, but also the genes that contribute to a malignant phenotype. This review provides a comprehensive summary of the pertinent cytogenetic aberrations associated with a variety of melanoma and nonmelanoma skin cancers.

  3. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair

    PubMed Central

    Nakanishi, Koji; Yang, Yun-Gui; Pierce, Andrew J.; Taniguchi, Toshiyasu; Digweed, Martin; D'Andrea, Alan D.; Wang, Zhao-Qi; Jasin, Maria

    2005-01-01

    Fanconi anemia (FA) is a recessive disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. Cells from FA patients are hypersensitive to agents that produce DNA crosslinks and, after treatment with these agents, have pronounced chromosome breakage and other cytogenetic abnormalities. Eight FANC genes have been cloned, and the encoded proteins interact in a common cellular pathway. DNA-damaging agents activate the monoubiquitination of FANCD2, resulting in its targeting to nuclear foci that also contain BRCA1 and BRCA2/FANCD1, proteins involved in homology-directed DNA repair. Given the interaction of the FANC proteins with BRCA1 and BRCA2, we tested whether cells from FA patients (groups A, G, and D2) and mouse Fanca–/– cells with a targeted mutation are impaired for this repair pathway. We find that both the upstream (FANCA and FANCG) and downstream (FANCD2) FA pathway components promote homology-directed repair of chromosomal double-strand breaks (DSBs). The FANCD2 monoubiquitination site is critical for normal levels of repair, whereas the ATM phosphorylation site is not. The defect in these cells, however, is mild, differentiating them from BRCA1 and BRCA2 mutant cells. Surprisingly, we provide evidence that these proteins, like BRCA1 but unlike BRCA2, promote a second DSB repair pathway involving homology, i.e., single-strand annealing. These results suggest an early role for the FANC proteins in homologous DSB repair pathway choice. PMID:15650050

  4. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair.

    PubMed

    Nakanishi, Koji; Yang, Yun-Gui; Pierce, Andrew J; Taniguchi, Toshiyasu; Digweed, Martin; D'Andrea, Alan D; Wang, Zhao-Qi; Jasin, Maria

    2005-01-25

    Fanconi anemia (FA) is a recessive disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. Cells from FA patients are hypersensitive to agents that produce DNA crosslinks and, after treatment with these agents, have pronounced chromosome breakage and other cytogenetic abnormalities. Eight FANC genes have been cloned, and the encoded proteins interact in a common cellular pathway. DNA-damaging agents activate the monoubiquitination of FANCD2, resulting in its targeting to nuclear foci that also contain BRCA1 and BRCA2/FANCD1, proteins involved in homology-directed DNA repair. Given the interaction of the FANC proteins with BRCA1 and BRCA2, we tested whether cells from FA patients (groups A, G, and D2) and mouse Fanca-/- cells with a targeted mutation are impaired for this repair pathway. We find that both the upstream (FANCA and FANCG) and downstream (FANCD2) FA pathway components promote homology-directed repair of chromosomal double-strand breaks (DSBs). The FANCD2 monoubiquitination site is critical for normal levels of repair, whereas the ATM phosphorylation site is not. The defect in these cells, however, is mild, differentiating them from BRCA1 and BRCA2 mutant cells. Surprisingly, we provide evidence that these proteins, like BRCA1 but unlike BRCA2, promote a second DSB repair pathway involving homology, i.e., single-strand annealing. These results suggest an early role for the FANC proteins in homologous DSB repair pathway choice.

  5. Molecular cytogenetic analysis of Xq critical regions in premature ovarian failure

    PubMed Central

    2013-01-01

    Background One of the frequent reasons for unsuccessful conception is premature ovarian failure/primary ovarian insufficiency (POF/POI) that is defined as the loss of functional follicles below the age of 40 years. Among the genetic causes the most common one involves the X chromosome, as in Turner syndrome, partial X deletion and X-autosome translocations. Here we report a case of a 27-year-old female patient referred to genetic counselling because of premature ovarian failure. The aim of this case study to perform molecular genetic and cytogenetic analyses in order to identify the exact genetic background of the pathogenic phenotype. Results For premature ovarian failure disease diagnostics we performed the Fragile mental retardation 1 gene analysis using Southern blot technique and Repeat Primed PCR in order to identify the relationship between the Fragile mental retardation 1 gene premutation status and the premature ovarion failure disease. At this early onset, the premature ovarian failure affected patient we detected one normal allele of Fragile mental retardation 1 gene and we couldn’t verify the methylated allele, therefore we performed the cytogenetic analyses using G-banding and fluorescent in situ hybridization methods and a high resolution molecular cytogenetic method, the array comparative genomic hybridization technique. For this patient applying the G-banding, we identified a large deletion on the X chromosome at the critical region (ChrX q21.31-q28) which is associated with the premature ovarian failure phenotype. In order to detect the exact breakpoints, we used a special cytogenetic array ISCA plus CGH array and we verified a 67.355 Mb size loss at the critical region which include total 795 genes. Conclusions We conclude for this case study that the karyotyping is definitely helpful in the evaluation of premature ovarian failure patients, to identify the non submicroscopic chromosomal rearrangement, and using the array CGH technique we can

  6. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cytogenetics tests: Chromosomal analysis. 798.5385 Section 798.5385 Protection of Environment ENVIRONMENTAL... Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis. (a) Purpose. The in vivo bone marrow cytogenetic test is a mutagenicity test for the detection of structural...

  7. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cytogenetics tests: Chromosomal analysis. 798.5385 Section 798.5385 Protection of Environment ENVIRONMENTAL... Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis. (a) Purpose. The in vivo bone marrow cytogenetic test is a mutagenicity test for the detection of structural...

  8. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cytogenetics tests: Chromosomal analysis. 798.5385 Section 798.5385 Protection of Environment ENVIRONMENTAL... Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis. (a) Purpose. The in vivo bone marrow cytogenetic test is a mutagenicity test for the detection of structural...

  9. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cytogenetics tests: Chromosomal analysis. 798.5385 Section 798.5385 Protection of Environment ENVIRONMENTAL... Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis. (a) Purpose. The in vivo bone marrow cytogenetic test is a mutagenicity test for the detection of structural...

  10. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cytogenetics tests: Chromosomal analysis. 798.5385 Section 798.5385 Protection of Environment ENVIRONMENTAL... Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis. (a) Purpose. The in vivo bone marrow cytogenetic test is a mutagenicity test for the detection of structural...

  11. Flow cytogenetics and chromosome sorting.

    PubMed

    Cram, L S

    1990-06-01

    This review of flow cytogenetics and chromosome sorting provides an overview of general information in the field and describes recent developments in more detail. From the early developments of chromosome analysis involving single parameter or one color analysis to the latest developments in slit scanning of single chromosomes in a flow stream, the field has progressed rapidly and most importantly has served as an important enabling technology for the human genome project. Technological innovations that advanced flow cytogenetics are described and referenced. Applications in basic cell biology, molecular biology, and clinical investigations are presented. The necessary characteristics for large number chromosome sorting are highlighted. References to recent review articles are provided as a starting point for locating individual references that provide more detail. Specific references are provided for recent developments.

  12. Molecular cytogenetics: an indispensable tool for cancer diagnosis.

    PubMed

    Wan, Thomas Sk; Ma, Edmond Sk

    2012-01-01

    Cytogenetic aberrations may escape detection or recognition in traditional karyotyping. The past decade has seen an explosion of methodological advances in molecular cytogenetics technology. These cytogenetics techniques add color to the black and white world of conventional banding. Fluorescence in-situ hybridization (FISH) study has emerged as an indispensable tool for both basic and clinical research, as well as diagnostics, in leukemia and cancers. FISH can be used to identify chromosomal abnormalities through fluorescent labeled DNA probes that target specific DNA sequences. Subsequently, FISH-based tests such as multicolor karyotyping, comparative genomic hybridization (CGH) and array CGH have been used in emerging clinical applications as they enable resolution of complex karyotypic aberrations and whole global scanning of genomic imbalances. More recently, crossspecies array CGH analysis has also been employed in cancer gene identification. The clinical impact of FISH is pivotal, especially in the diagnosis, prognosis and treatment decisions for hematological diseases, all of which facilitate the practice of personalized medicine. This review summarizes the methodology and current utilization of these FISH techniques in unraveling chromosomal changes and highlights how the field is moving away from conventional methods towards molecular cytogenetics approaches. In addition, the potential of the more recently developed FISH tests in contributing information to genetic abnormalities is illustrated.

  13. Cytogenetic, molecular-cytogenetic, and clinical-genealogical studies of the mothers of children with autism: a search for familial genetic markers for autistic disorders.

    PubMed

    Vorsanova, S G; Voinova, V Yu; Yurov, I Yu; Kurinnaya, O S; Demidova, I A; Yurov, Yu B

    2010-09-01

    State-of-the-art cytogenetic and molecular-cytogenetic methods for studying human chromosomes were used to analyze chromosomal anomalies and variants in mothers of children with autistic disorders and the results were compared with clinical-genealogical data. These investigations showed that these mothers, as compared with a control group, showed increases in the frequencies of chromosomal anomalies (mainly mosaic forms involving chromosome X) and chromosomal heteromorphisms. Analysis of correlations of genotypes and phenotypes revealed increases in the frequencies of cognitive impairments and spontaneous abortions in the mothers of children with autism with chromosomal anomalies, as well as increases in the frequencies of mental retardation, death in childhood, and impairments to reproductive function in the pedigrees of these women. There was a high incidence of developmental anomalies in the pedigrees of mothers with chromosomal variants. These results lead to the conclusion that cytogenetic and molecular-cytogenetic studies of mothers and children with autism should be regarded as obligatory in terms of detecting possible genetic causes of autism and for genetic counseling of families with autistic children.

  14. Transient elevation of glycolysis confers radio-resistance by facilitating DNA repair in cells.

    PubMed

    Bhatt, Anant Narayan; Chauhan, Ankit; Khanna, Suchit; Rai, Yogesh; Singh, Saurabh; Soni, Ravi; Kalra, Namita; Dwarakanath, Bilikere S

    2015-05-01

    Cancer cells exhibit increased glycolysis for ATP production (the Warburg effect) and macromolecular biosynthesis; it is also linked with therapeutic resistance that is generally associated with compromised respiratory metabolism. Molecular mechanisms underlying radio-resistance linked to elevated glycolysis remain incompletely understood. We stimulated glycolysis using mitochondrial respiratory modifiers (MRMs viz. di-nitro phenol, DNP; Photosan-3, PS3; Methylene blue, MB) in established human cell lines (HEK293, BMG-1 and OCT-1). Glucose utilization and lactate production, levels of glucose transporters and glycolytic enzymes were investigated as indices of glycolysis. Clonogenic survival, DNA repair and cytogenetic damage were studied as parameters of radiation response. MRMs induced the glycolysis by enhancing the levels of two important regulators of glucose metabolism GLUT-1 and HK-II and resulted in 2 fold increase in glucose consumption and lactate production. This increase in glycolysis resulted in resistance against radiation-induced cell death (clonogenic survival) in different cell lines at an absorbed dose of 5 Gy. Inhibition of glucose uptake and glycolysis (using fasentin, 2-deoxy-D-glucose and 3-bromopyruvate) in DNP treated cells failed to increase the clonogenic survival of irradiated cells, suggesting that radio-resistance linked to inhibition of mitochondrial respiration is glycolysis dependent. Elevated glycolysis also facilitated rejoining of radiation-induced DNA strand breaks by activating both non-homologous end joining (NHEJ) and homologous recombination (HR) pathways of DNA double strand break repair leading to a reduction in radiation-induced cytogenetic damage (micronuclei formation) in these cells. These findings suggest that enhanced glycolysis generally observed in cancer cells may be responsible for the radio-resistance, partly by enhancing the repair of DNA damage.

  15. Cytogenetic study is not essential in patients with aplastic anemia

    PubMed Central

    Dutta, Atreyee; De, Rajib; Dolai, Tuphan K; Mitra, Pradip K; Halder, Ajanta

    2017-01-01

    Depending on contemporary treatment approach of aggressive immunosuppression, Aplastic Anemia (AA) is caused by immunological destruction of otherwise normal hematopoietic stem cells. The aim was to summarize the cytogenetic abnormalities in AA patients and the frequency of Fanconi Anemia (FA) in morphologically normal AA patients in eastern India. Ethical clearances were obtained from both institutions involved in this study. Out of 72800 patients attending the outpatient department, 520 pancytopenia patients were screened for AA after Bone marrow (BM) aspiration and biopsy. Samples were collected from 117 cases in 3 phases. 51 peripheral venous blood (PVB) samples in the first phase, 19 BM & PVB paired samples in the second phase and 47 BM samples in third phase were collected followed by leukocyte and/or BM stem cell culture. Next GTG banding and karyotyping were performed. PVB was collected from 63 (< 50 years) AA patients and stress cytogenetics was done to diagnose FA. In the first phase of the study, out of 51 PVB samples, 1 (1.96%) showed a unique chromosomal abnormality, i.e. 45,XY,rob(14:21)(p10:q10)[20]. In the second phase of study, among 19 BM & PVB paired samples, 1 (5.26%) showed abnormal karyotype i.e. 45,X,-Y[3]/46,XY[47]. In the third phase of the study, 47 BM samples showed normal karyotype. Only 6 (9.52%) cases were found positive for stress cytogenetics. A negligible percentage showing cytogenetic abnormality in such a considerable number of AA cases indicates that routine cytogenetic analysis of AA patient is not essential. A significant percentage was positive for stress cytogenetics; suggestive for FA, even the patients were morphologically normal. PMID:29181263

  16. Cytogenetics of Festulolium (Festuca x Lolium hybrids).

    PubMed

    Kopecký, D; Lukaszewski, A J; Dolezel, J

    2008-01-01

    Grasses are the most important and widely cultivated crops. Among them, ryegrasses (Lolium spp.) and fescues (Festuca spp.) provide high quality fodder for livestock, are used for turf and amenity purposes, and play a fundamental role in environment protection. Species from the two genera display complementary agronomic characteristics and are often grown in mixtures. Breeding efforts to combine desired features in single entities culminated with the production of Festuca x Lolium hybrids. The so called Festuloliums enjoy a considerable commercial success with numerous cultivars registered all over the world. They are also very intriguing from a strictly cytogenetic point of view as the parental chromosomes recombine freely in hybrids. Until a decade ago this phenomenon was only known in general quantitative terms. The introduction of molecular cytogenetic tools such as FISH and GISH permitted detailed studies of intergeneric chromosome recombination and karyotyping of Festulolium cultivars. These tools were also invaluable in revealing the origin of polyploid fescues, and facilitated the development of chromosome substitution and introgression lines and physical mapping of traits of interest. Further progress in this area will require the development of a larger set of cytogenetic markers and high-resolution cytogenetic maps. It is expected that the Lolium-Festuca complex will continue providing opportunities for breeding superior grass cultivars and the complex will remain an attractive platform for fundamental research of the early steps of hybrid speciation and interaction of parental genomes, as well as the processes of chromosome pairing, elimination and recombination. 2008 S. Karger AG, Basel

  17. Energy Efficiency and Air Quality Repairs at Lyonsdale Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brower, Michael R; Morrison, James A; Spomer, Eric

    2012-07-31

    This project enabled Lyonsdale Biomass, LLC to effect analyses, repairs and upgrades for its biomass cogeneration facility located in Lewis County, New York and close by the Adirondack Park to reduce air emissions by improving combustion technique and through the overall reduction of biomass throughput by increasing the system's thermodynamic efficiency for its steam-electrical generating cycle. Project outcomes result in significant local, New York State, Northeast U.S. and national benefits including improved renewable energy operational surety, enhanced renewable energy efficiency and more freedom from foreign fossil fuel source dependence. Specifically, the reliability of the Lyonsdale Biomass 20MWe woody biomass combined-heatmore » and power (CHP) was and is now directly enhanced. The New York State and Lewis County benefits are equally substantial since the facility sustains 26 full-time equivalency (FTE) jobs at the facility and as many as 125 FTE jobs in the biomass logistics supply chain. Additionally, the project sustains essential local and state payment in lieu of taxes revenues. This project helps meet several USDOE milestones and contributes directly to the following sustainability goals:  Climate: Reduces greenhouse gas emissions associated with bio-power production, conversion and use, in comparison to fossil fuels. Efficiency and Productivity: Enhances efficient use of renewable resources and maximizes conversion efficiency and productivity. Profitability: Lowers production costs. Rural Development: Enhances economic welfare and rural development through job creation and income generation. Standards: Develop standards and corresponding metrics for ensuring sustainable biopower production. Energy Diversification and Security: Reduces dependence on foreign oil and increases energy supply diversity. Net Energy Balance: Ensures positive net energy balance for all alternatives to fossil fuels.« less

  18. LS-CAP: an algorithm for identifying cytogenetic aberrations in hepatocellular carcinoma using microarray data.

    PubMed

    He, Xianmin; Wei, Qing; Sun, Meiqian; Fu, Xuping; Fan, Sichang; Li, Yao

    2006-05-01

    Biological techniques such as Array-Comparative genomic hybridization (CGH), fluorescent in situ hybridization (FISH) and affymetrix single nucleotide pleomorphism (SNP) array have been used to detect cytogenetic aberrations. However, on genomic scale, these techniques are labor intensive and time consuming. Comparative genomic microarray analysis (CGMA) has been used to identify cytogenetic changes in hepatocellular carcinoma (HCC) using gene expression microarray data. However, CGMA algorithm can not give precise localization of aberrations, fails to identify small cytogenetic changes, and exhibits false negatives and positives. Locally un-weighted smoothing cytogenetic aberrations prediction (LS-CAP) based on local smoothing and binomial distribution can be expected to address these problems. LS-CAP algorithm was built and used on HCC microarray profiles. Eighteen cytogenetic abnormalities were identified, among them 5 were reported previously, and 12 were proven by CGH studies. LS-CAP effectively reduced the false negatives and positives, and precisely located small fragments with cytogenetic aberrations.

  19. [The correlations between aging of the human body, oxidative stress and reduced efficiency of repair systems].

    PubMed

    Michalak, Aleksandra; Krzeszowiak, Jakub; Markiewicz-Górka, Iwona

    2014-12-15

    The article presents an current knowledge overview about the importance of oxidative stress and reduced efficiency of repair processes during the aging process of the human body. Oxidative damage to cellular macromolecules (proteins, lipids, nucleic acids), are formed under the influence of reactive oxygen species (ROS). They are the part of important mechanism which is responsible for the process of aging and the development of many diseases. The most important effects result from DNA damage, due to the mutations formation, which can lead to the development of tumors. However, a well-functioning repair systems (i.a. homologous recombination) remove the damage and prevent harmful changes in the cells. Lipid peroxidation products also cause oxidative modification of nucleic acids (and proteins). Proteins and fats also have repair systems, but much simpler than those responsible for the repair of nucleic acids. Unfortunately, with increasing age, they are more weakened, which contributes to increase numbers of cell damage, and consequently development of diseases specific to old age: cancer, neurodegenerative diseases or atherosclerosis.

  20. Metaphase and interphase cytogenetics in fibroadenomas of the breast.

    PubMed

    Rizou, Helen; Bardi, Georgia; Arnaourti, Maria; Apostolikas, Nikiforos; Sfikas, Kostas; Charlaftis, Antonios; Polichronis, Athanassios; Agnantis, Niki J; Pandis, Nikos

    2004-01-01

    Short-term cultures of fifty-two samples of fibroadenomas were cytogenetically analyzed. Thirty-three of the successfully karyotyped fibroadenomas were further investigated for the presence of amplifications in the CCND1, c-MYC and HER/2-neu genes by means of FISH analysis. Compared to carcinomas, fibroadenomas seem to have less complex cytogenetic rearrangements and limited alterations on HER-2/neu, CCND1 and c-MYC loci. A cytogenetic subgroup of fibroadenomas with hyperdiploid karyotypes and only numerical changes was observed. Amplification of CCND1 seems to play a more substantial role in benign tumor progression. These findings confirm that fibroadenomas do have genetic alterations and support the hypothesis that a fibroadenoma subset displays changes also found in carcinomas, thus indicating that patients belonging to this group might have an increased risk for subsequent breast cancer.

  1. DNA double strand breaks induced by the indirect effect of radiation are more efficiently repaired by non-homologous end joining compared to homologous recombination repair.

    PubMed

    Bajinskis, Ainars; Natarajan, Adayapalam T; Erixon, Klaus; Harms-Ringdahl, Mats

    2013-08-30

    The aim of this study was to investigate the relative involvement of three major DNA repair pathways, i.e., non-homologous end joining (NHEJ), homologous recombination (HRR) and base excision (BER) in repair of DNA lesions of different complexity induced by low- or high-LET radiation with emphasis on the contribution of the indirect effect of radiation for these radiation qualities. A panel of DNA repair-deficient CHO cell lines was irradiated by (137)Cs γ-rays or radon progeny α-particles. Irradiation was also performed in the presence of 2M DMSO to reduce the indirect effect of radiation and the complexity of the DNA damage formed. Clonogenic survival and micronucleus assays were used to estimate efficiencies of the different repair pathways for DNA damages produced by direct and indirect effects. Removal of the indirect effect of low-LET radiation by DMSO increased clonogenic survival and decreased MN formation for all cell lines investigated. A direct contribution of the indirect effect of radiation to DNA base damage was suggested by the significant protection by DMSO seen for the BER deficient cell line. Lesions formed by the indirect effect are more readily repaired by the NHEJ pathway than by HRR after irradiation with γ-rays or α-particles as evaluated by cell survival and the yields of MN. The results obtained with BER- and NHEJ-deficient cells suggest that the indirect effect of radiation contributes significantly to the formation of repair substrates for these pathways. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Pallet repair and salvage

    Treesearch

    Richard E. Frost; Hollis R. Large

    1975-01-01

    Efficient unit-load handling with permanent pallets requires a well-organized pallet repair program. To provide basic infomation on pallet damage that could be used in establishing repair standards, we inspected a total of 1700 damaged pallets at four repair facilities. All damage was recorded by type, severity, and location. This survey determined that missing...

  3. Evidence for an Inducible Repair-Recombination System in the Female Germ Line of Drosophila Melanogaster. III. Correlation between Reactivity Levels, Crossover Frequency and Repair Efficiency

    PubMed Central

    Laurencon, A.; Gay, F.; Ducau, J.; Bregliano, J. C.

    1997-01-01

    We previously reported evidence that the so-called reactivity level, a peculiar cellular state of oocytes that regulates the frequency of transposition of I factor, a LINE element-like retrotransposon, might be one manifestation of a DNA repair system. In this article, we report data showing that the reactivity level is correlated with the frequency of crossing over, at least on the X chromosome and on the pericentromeric region of the third chromosome. Moreover, a check for X-chromosome losses and recessive lethals produced after gamma irradiation in flies with different reactivity levels, but common genetic backgrounds, brings more precise evidence for the relationship between reactivity levels and DNA repair. Those results support the existence of a repair-recombination system whose efficiency is modulated by endogenous and environmental factors. The implications of this biological system in connecting genomic variability and environment may shed new lights on adaptative mechanisms. We propose to call it VAMOS for variability modulation system. PMID:9258678

  4. Cytogenetic correlates of TET2 mutations in 199 patients with myeloproliferative neoplasms

    PubMed Central

    Hussein, Kebede; Abdel-Wahab, Omar; Lasho, Terra L.; Van Dyke, Daniel L.; Levine, Ross L.; Hanson, Curtis A.; Pardanani, Animesh; Tefferi, Ayalew

    2015-01-01

    TET2 is a putative tumor suppressor gene located at chromosome 4q24. TET2 mutations were recently described in several myeloid neoplasms but correlations with cytogenetic findings have not been studied. Among a recently described cohort of patients with myeloproliferative neoplasms (MPN) who underwent TET2 mutation analysis, 199 had information on karyotype at diagnosis or time of TET2 testing: 71 polycythemia vera (PV), 55 primary myelofibrosis (PMF), 43 essential thrombocythemia (ET), 13 post-PV MF, 7 post-ET MF, and 10 blast phase MPN. Forty eight patients (24%) exhibited abnormal karyotype: 15 favorable (sole 20q-, 13q-, or +9), 8 unfavorable (complex karyotype or sole +8), and 25 “other” cytogenetic abnormalities. We found no significant difference either in the incidence or type of cytogenetic abnormalities between TET2 mutated (n = 25) and unmutated (n = 174) cases. Seventy nine patients, including 14 with TET2 mutations, underwent follow-up cytogenetic testing and the findings were again not affected by TET2 mutational status. We conclude that TET2 mutated MPN patients are not cytogenetically different than their TET2 unmutated counterparts. PMID:19957346

  5. Analytical cytology applied to detection of induced cytogenetic abnormalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, J.W.; Lucas, J.; Straume, T.

    1987-08-06

    Radiation-induced biological damage results in formation of a broad spectrum of cytogenetic changes such as translocations, dicentrics, ring chromosomes, and acentric fragments. A battery of analytical cytologic techniques are now emerging that promise to significantly improve the precision and ease with which these radiation induced cytogenetic changes can be quantified. This report summarizes techniques to facilitate analysis of the frequency of occurrence of structural and numerical aberrations in control and irradiated human cells. 14 refs., 2 figs.

  6. Removal of N-6-methyladenine by the nucleotide excision repair pathway triggers the repair of mismatches in yeast gap-repair intermediates.

    PubMed

    Guo, Xiaoge; Jinks-Robertson, Sue

    2013-12-01

    Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the collateral

  7. Removal of N-6-methyladenine by the nucleotide excision repair pathway triggers the repair of mismatches in yeast gap-repair intermediates

    PubMed Central

    Guo, Xiaoge; Jinks-Robertson, Sue

    2013-01-01

    Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the cillateral

  8. A short introduction to cytogenetic studies in mammals with reference to the present volume.

    PubMed

    Graphodatsky, A; Ferguson-Smith, M A; Stanyon, R

    2012-01-01

    Genome diversity has long been studied from the comparative cytogenetic perspective. Early workers documented differences between species in diploid chromosome number and fundamental number. Banding methods allowed more detailed descriptions of between-species rearrangements and classes of differentially staining chromosome material. The infusion of molecular methods into cytogenetics provided a third revolution, which is still not exhausted. Chromosome painting has provided a global view of the translocation history of mammalian genome evolution, well summarized in the contributions to this special volume. More recently, FISH of cloned DNA has provided details on defining breakpoint and intrachromosomal marker order, which have helped to document inversions and centromere repositioning. The most recent trend in comparative molecular cytogenetics is to integrate sequencing information in order to formulate and test reconstructions of ancestral genomes and phylogenomic hypotheses derived from comparative cytogenetics. The integration of comparative cytogenetics and sequencing promises to provide an understanding of what drives chromosome rearrangements and genome evolution in general. We believe that the contributions in this volume, in no small way, point the way to the next phase in cytogenetic studies. Copyright © 2012 S. Karger AG, Basel.

  9. Value of amniocentesis versus fetal tissue for cytogenetic analysis in cases of fetal demise.

    PubMed

    Bryant Borders, Ann E; Greenberg, Jessica; Plaga, Stacey; Shepard-Hinton, Megan; Yates, Carin; Elias, Sherman; Shulman, Lee P

    2009-01-01

    Use of fetal tissue for cytogenetic analysis in cases of second- and third-trimester fetal demise frequently results in unacceptably high failure rates. We reviewed our ongoing use of amniocentesis prior to uterine evacuation to determine if this provided a better source of cells for cytogenetic analysis. We compared cytogenetic results using fetal tissues obtained following uterine evacuation to our ongoing use of amniotic fluid cell obtained by transabdominal amniocentesis prior to uterine evacuation from 2003 to 2008. In 49 of the 63 cases evaluated by fetal tissue biopsies performed after uterine evacuation, a karyotypic analysis was obtained (77.8%). Among the 38 cases evaluated by amniocentesis, an amniotic fluid sample and fetal cytogenetic results were obtained in all 38 (100%) cases. Our findings indicate that amniocentesis is a more reliable source of cytogenetic information than fetal tissue in cases of second- and third-trimester fetal demise.

  10. Acute myeloid leukaemia: expression of MYC protein and its association with cytogenetic risk profile and overall survival.

    PubMed

    Mughal, Muhammad Kashif; Akhter, Ariz; Street, Lesley; Pournazari, Payam; Shabani-Rad, Meer-Taher; Mansoor, Adnan

    2017-09-01

    Acute myeloid leukaemia (AML) is a clinically aggressive disease with marked genetic heterogeneity. Cytogenetic abnormalities provide the basis for risk stratification into clinically favourable, intermediate, and unfavourable groups. There are additional genetic mutations, which further influence the prognosis of patients with AML. Most of these result in molecular aberrations whose downstream target is MYC. It is therefore logical to study the relationship between MYC protein expression and cytogenetic risk groups. We studied MYC expression by immunohistochemistry in a large cohort (n = 199) of AML patients and correlated these results with cytogenetic risk profile and overall survival (OS). We illustrated differential expression of MYC protein across various cytogenetic risk groups (p = 0.03). Highest expression of MYC was noted in AML patients with favourable cytogenetic risk group. In univariate analysis, MYC expression showed significant negative influence of OS in favourable and intermediate cytogenetic risk group (p = 0.001). Interestingly, MYC expression had a protective effect in the unfavourable cytogenetic risk group. In multivariate analysis, while age and cytogenetic risk group were significant factors influencing survival, MYC expression by immunohistochemistry methods also showed some marginal impact (p = 0.069). In conclusion, we have identified differential expression of MYC protein in relation to cytogenetic risk groups in AML patients and documented its possible impact on OS in favourable and intermediate cytogenetic risk groups. These preliminary observations mandate additional studies to further investigate the routine clinical use of MYC protein expression in AML risk stratification. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Pathology, genetics and cytogenetics of Wilms' tumour.

    PubMed

    Md Zin, Reena; Murch, Ashleigh; Charles, Adrian

    2011-06-01

    Wilms' tumour (WT) is an embryonal cancer of childhood and is thought to be derived from embryonic kidney precursor cells. The Knudson two hit model was initially thought to occur in WT, but findings emerging from genetic and cytogenetic studies in the past two decades have implicated several genetic events. Recent techniques in genetic analysis have improved our ability to characterise changes in genes involved in WT which include WT1, CTNNB1, IGF2 and WTX. These genetic events have not only provided insight into the pathobiology of this malignancy, but the recognition of these candidate genes may offer potential targets for novel therapies. In this review, we will provide an overview of the pathological, genetic and cytogenetic characteristics of WT.

  12. Methods in molecular biology: plant cytogenetics

    USDA-ARS?s Scientific Manuscript database

    Cytogenetic studies have contributed greatly to our understanding of genetics, biology, reproduction, and evolution. From early studies in basic chromosome behavior the field has expanded enabling whole genome analysis to the manipulation of chromosomes and their organization. This book covers a ran...

  13. Comparative cytogenetic and cytologic study in malignant lymphomas.

    PubMed

    Răileanu-Motoiu, I; Gociu, M; Leahu, S; Berceanu, S

    1976-01-01

    The possibility of a cytogenetic-cytologic correlation with implications in the diagnosis, evolutivity and prognosis of malignant lymphomas was studied. Cytogenetic investigations were carried out comparatively in the lymph node and spleen lymphoid cells from 25 patients with malignant lymphomas and in normal subjects or patients with malignant tumors. The dominant malignant cellular type was found to correspond genotypically to the abnormal clone. In lymphomas with more differentiated cells the chormosomal abnormalities were limited to a single chromosomal group, while in those with less differentiated cells there were many clonal chromozomal abnormalities. The pathogenic significance of an extra-chromosome in the C-group (observed in most of the cases) is discussed.

  14. Cytogenetic and morphologic typing of 58 papillary renal cell carcinomas: evidence for a cytogenetic evolution of type 2 from type 1 tumors.

    PubMed

    Gunawan, Bastian; von Heydebreck, Anja; Fritsch, Thekla; Huber, Wolfgang; Ringert, Rolf-Hermann; Jakse, Gerhard; Füzesi, László

    2003-10-01

    We evaluated clinical characteristics, patient outcome (mean follow-up, 47 months), and cytogenetic abnormalities in the largest as yet reported cytogenetic series of 47 primary and 11 secondary papillary renal cell carcinomas for differences between the recently proposed type 1 and type 2 subtypes. Secondary tumors were more often of type 2 morphology (P = 0.02), whereas primary type 2 tumors were associated with higher clinical stage (P = 0.001) and worse patient outcome (P = 0.02). Although both subtypes had at least one of the primary chromosomal gains at 17q, 7, and 16q, type 2 tumors had moderately lower frequencies of primary gains at 17p (61 versus 94%; P = 0.007) and 17q (72 versus 97%; P = 0.02). On the other hand, type 2 tumors overall had more chromosomal alterations than type 1 tumors (P = 0.01), particularly gains of 1q (28 versus 3%; P = 0.02) and losses of 8p (33 versus 0%; P = 0.001), 11 (28 versus 3%; P = 0.02), and 18 (44 versus 9%; P = 0.01). Hierarchical clustering suggested cytogenetic patterns common but not restricted to type 2 morphology, one characterized by multiple additional gains, and another predominantly showing additional losses. These findings provide genetic evidence that type 1 and type 2 tumors arise from common cytogenetic pathways and that type 2 tumors evolve from type 1 tumors. Independently of type, losses of 9p were statistically correlated with advanced disease (P = 0.0008) and may serve as a potential adverse prognostic marker in papillary renal cell carcinomas.

  15. Cytogenetic characterization of a canine haemangiopericytoma.

    PubMed

    Mayr, B; Swidersky, W; Schleger, W; Reifinger, M

    1990-01-01

    A 15-year-old dachshund bitch developed a haemangiopericytoma in the perineal region. The cytogenetic evaluation of the tumour cells showed a chromosome number of 74. The following abnormalities were found: an intersitially deleted chromosome no. 1 and centric fusions 5/6, 5/14, 7/15 and 9/17.

  16. Multicenter validation study of a transplantation-specific cytogenetics grouping scheme for patients with myelodysplastic syndromes.

    PubMed

    Armand, P; Deeg, H J; Kim, H T; Lee, H; Armistead, P; de Lima, M; Gupta, V; Soiffer, R J

    2010-05-01

    Cytogenetics is an important prognostic factor for patients with myelodysplastic syndromes (MDS). However, existing cytogenetics grouping schemes are based on patients treated with supportive care, and may not be optimal for patients undergoing allo-SCT. We proposed earlier an SCT-specific cytogenetics grouping scheme for patients with MDS and AML arising from MDS, based on an analysis of patients transplanted at the Dana-Farber Cancer Institute/Brigham and Women's Hospital. Under this scheme, abnormalities of chromosome 7 and complex karyotype are considered adverse risk, whereas all others are considered standard risk. In this retrospective study, we validated this scheme on an independent multicenter cohort of 546 patients. Adverse cytogenetics was the strongest prognostic factor for outcome in this cohort. The 4-year relapse-free survival and OS were 42 and 46%, respectively, in the standard-risk group, vs 21 and 23% in the adverse group (P<0.0001 for both comparisons). This grouping scheme retained its prognostic significance irrespective of patient age, disease type, earlier leukemogenic therapy and conditioning intensity. Therapy-related disease was not associated with increased mortality in this cohort, after taking cytogenetics into account. We propose that this SCT-specific cytogenetics grouping scheme be used for patients with MDS or AML arising from MDS who are considering or undergoing SCT.

  17. Steroids Regulate CXCL4 in the Human Endometrium During Menstruation to Enable Efficient Endometrial Repair

    PubMed Central

    Maybin, Jacqueline A.; Thiruchelvam, Uma; Madhra, Mayank; Saunders, Philippa T.K.

    2017-01-01

    Context: Repair of the endometrial surface at menstruation must be efficient to minimize blood loss and optimize reproductive function. The mechanism and regulation of endometrial repair remain undefined. Objective: To determine the presence/regulation of CXCL4 in the human endometrium as a putative repair factor at menses. Patients/Setting: Endometrial tissue was collected throughout the menstrual cycle from healthy women attending the gynecology department. Menstrual blood loss was objectively measured in a subset, and heavy menstrual bleeding (HMB) was defined as >80 mL per cycle. Monocytes were isolated from peripheral blood. Design: CXCL4 messenger RNA (mRNA) and protein were identified by quantitative reverse transcription polymerase chain reaction and immunohistochemistry. The function/regulation of endometrial CXCL4 was explored by in vitro cell culture. Results: CXCL4 mRNA concentrations were significantly increased during menstruation. Intense staining for CXCL4 was detected in late secretory and menstrual tissue, localized to stromal, epithelial and endothelial cells. Colocalization identified positive staining in CD68+ macrophages. Treatment of human endometrial stromal and endothelial cells (hESCs and HEECs, respectively) with steroids revealed differential regulation of CXCL4. Progesterone withdrawal resulted in significant increases in CXCL4 mRNA and protein in hESCs, whereas cortisol significantly increased CXCL4 in HEECs. In women with HMB, CXCL4 was reduced in endothelial cells during the menstrual phase compared with women with normal menstrual bleeding. Cortisol-exposed macrophages displayed increased chemotaxis toward CXCL4 compared with macrophages incubated with estrogen or progesterone. Conclusions: These data implicate CXCL4 in endometrial repair after menses. Reduced cortisol at the time of menses may contribute to delayed endometrial repair and HMB, in part by mechanisms involving aberrant expression of CXCL4. PMID:28323919

  18. Steroids Regulate CXCL4 in the Human Endometrium During Menstruation to Enable Efficient Endometrial Repair.

    PubMed

    Maybin, Jacqueline A; Thiruchelvam, Uma; Madhra, Mayank; Saunders, Philippa T K; Critchley, Hilary O D

    2017-06-01

    Repair of the endometrial surface at menstruation must be efficient to minimize blood loss and optimize reproductive function. The mechanism and regulation of endometrial repair remain undefined. To determine the presence/regulation of CXCL4 in the human endometrium as a putative repair factor at menses. Endometrial tissue was collected throughout the menstrual cycle from healthy women attending the gynecology department. Menstrual blood loss was objectively measured in a subset, and heavy menstrual bleeding (HMB) was defined as >80 mL per cycle. Monocytes were isolated from peripheral blood. CXCL4 messenger RNA (mRNA) and protein were identified by quantitative reverse transcription polymerase chain reaction and immunohistochemistry. The function/regulation of endometrial CXCL4 was explored by in vitro cell culture. CXCL4 mRNA concentrations were significantly increased during menstruation. Intense staining for CXCL4 was detected in late secretory and menstrual tissue, localized to stromal, epithelial and endothelial cells. Colocalization identified positive staining in CD68+ macrophages. Treatment of human endometrial stromal and endothelial cells (hESCs and HEECs, respectively) with steroids revealed differential regulation of CXCL4. Progesterone withdrawal resulted in significant increases in CXCL4 mRNA and protein in hESCs, whereas cortisol significantly increased CXCL4 in HEECs. In women with HMB, CXCL4 was reduced in endothelial cells during the menstrual phase compared with women with normal menstrual bleeding. Cortisol-exposed macrophages displayed increased chemotaxis toward CXCL4 compared with macrophages incubated with estrogen or progesterone. These data implicate CXCL4 in endometrial repair after menses. Reduced cortisol at the time of menses may contribute to delayed endometrial repair and HMB, in part by mechanisms involving aberrant expression of CXCL4. Copyright © 2017 by the Endocrine Society

  19. Evaluation of Repair Efficiency in Structures Made of Fibrous Polymer Composite Materials

    NASA Astrophysics Data System (ADS)

    Anoshkin, A. N.; Vil'deman, V. E.; Lobanov, D. S.; Chikhachev, A. I.

    2014-07-01

    Full-scale experimental investigations into the residual strength of structurally similar elements of acoustical panels after a local repair of defects, such as through breakdown, were conducted. Local repairs without using the vacuum technology were carried out. The technology of repair consists in removing and layer-bylayer replacing the damaged layers of material with repaired ones. For comparison, undamaged and repaired sandwich panel specimens were tested in tension and compression. The specimens were produced by serial technology from a VPS-33 fiberglass prepreg. Their deformation and fracture mechanisms are analyzed, and their loading diagrams are obtained.

  20. Chronic radiation exposure modifies temporal dynamics of cytogenetic but not reproductive indicators in Scots pine populations.

    PubMed

    Geras'kin, Stanislav; Oudalova, Alla; Kuzmenkov, Alexey; Vasiliyev, Denis

    2018-04-18

    Over a period of 13 years (2003-2015), reproductive and cytogenetic effects are investigated in Scots pine populations growing in the Bryansk region of Russia radioactively contaminated as a result of the Chernobyl accident. In reference populations, the frequencies of cytogenetic abnormalities are shown to change with time in a cyclic manner. In chronically exposed populations, the cyclic patterns in temporal dynamics of cytogenetic abnormalities appear to be disturbed. In addition, a tendency to decrease in the frequencies of cytogenetic abnormalities with time as well as an increase in their variability with dose rate is revealed. In contrast, no significant impact of chronic radiation exposure on the time dynamics of reproductive indexes is detected. Finally, long-term observations on chronically exposed Scots pine populations revealed qualitative differences in the temporal dynamics of reproductive and cytogenetic indicators. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Comparative cytogenetics of Auchenorrhyncha (Hemiptera, Homoptera): a review

    PubMed Central

    Kuznetsova, Valentina; Aguin-Pombo, Dora

    2015-01-01

    Abstract A comprehensive review of cytogenetic features is provided for the large hemipteran suborder Auchenorrhyncha, which currently contains approximately 42,000 valid species. This review is based on the analysis of 819 species, 483 genera, and 31 families representing all presently recognized Auchenorrhyncha superfamilies, e.i. Cicadoidea (cicadas), Cercopoidea (spittle bugs), Membracoidea (leafhoppers and treehoppers), Myerslopioidea (ground-dwelling leafhoppers), and Fulgoroidea (planthoppers). History and present status of chromosome studies are described, as well as the structure of chromosomes, chromosome counts, trends and mechanisms of evolution of karyotypes and sex determining systems, their variation at different taxonomic levels and most characteristic (modal) states, occurrence of parthenogenesis, polyploidy, B-chromosomes and chromosome rearrangements, and methods used for cytogenetic analysis of Auchenorrhyncha. PMID:26807037

  2. Cytogenetic studies of Brazilian pediatric myelodysplastic syndrome cases: challenges and difficulties in a large and emerging country

    PubMed Central

    Velloso, E.D.R.P.; Chauffaille, M.L.; Peliçario, L.M.; Tanizawa, R.S.S.; Toledo, S.R.C.; Gaiolla, R.D.; Lopes, L.F.

    2013-01-01

    Myelodysplastic syndromes (MDS) and juvenile myelomonocytic leukemia (JMML) are rare hematopoietic stem cell diseases affecting children. Cytogenetics plays an important role in the diagnosis of these diseases. We report here the experience of the Cytogenetic Subcommittee of the Brazilian Cooperative Group on Pediatric Myelodysplastic Syndromes (BCG-MDS-PED). We analyzed 168 cytogenetic studies performed in 23 different cytogenetic centers; 84 of these studies were performed in patients with confirmed MDS (primary MDS, secondary MDS, JMML, and acute myeloid leukemia/MDS+Down syndrome). Clonal abnormalities were found in 36.9% of the MDS cases and cytogenetic studies were important for the detection of constitutional diseases and for differential diagnosis with other myeloid neoplasms. These data show the importance of the Cooperative Group for continuing education in order to avoid a late or wrong diagnosis. PMID:23314345

  3. Cytogenetic Profile of de novo Acute Myeloid Leukemia Patients in Malaysia.

    PubMed

    Meng, Chin Yuet; Noor, Puteri J; Ismail, Azli; Ahid, Mohd Fadly Md; Zakaria, Zubaidah

    2013-03-01

    Acute myeloid leukemia (AML) is a heterogeneous disease in terms of cytogenetics and molecular genetics. AML is the most common acute leukemia in adults and its incidence increases with age. Diagnostic cytogenetics is an important prognostic indicator for predicting outcome of AML. We examined the karyotypic patterns of 480 patients with de novo AML seen at government hospitals throughout the country and evaluated the association of chromosome aberrations with the age of patient. Chromosome abnormalities were detected in 146 (30.4%) patients. The most common cytogenetic abnormality was balanced translocation t (8; 21), followed by trisomy 8 (as sole abnormality) and t (15; 17). The age of our Malaysian patients at diagnosis ranged from four months to 81 years, with a median age of 39 years. The normal karyotype was found mainly in patients aged 15-30 years. About 75% of patients with t (8; 21) were below 40 years of age, and the complex karyotype was found with the highest frequently (34.3%) in elderly patients (age above 60 years). More than half of the patients with complex karyotype were above 50 years of age. The deletion 5q was detected only in patients aged above 50 years. Different cytogenetic abnormalities in AML show different frequencies with increasing age. Probably different genetic mechanisms are involved in the pathogenesis of AML and these mechanisms might occur at different frequencies over lifetime.

  4. Methylphenidate and Amphetamine Do Not Induce Cytogenetic Damage in Lymphocytes of Children with ADHD

    ERIC Educational Resources Information Center

    Witt, Kristine L.; Shelby, Michael D.; Itchon-Ramos, Nilda; Faircloth, Melissa; Kissling, Grace E.; Chrisman, Allan K.; Ravi, Hima; Murli, Hemalatha; Mattison, Donald R.; Kollins, Scott H.

    2008-01-01

    The inducement of chromosomal damage in lymphocytes among children with attention deficit hyperactivity disorder receiving treatment with methylphenidate- or amphetamine-based drugs is investigated. Findings did not reveal significant increases in cytogenetic damage related to the treatment. The risk for cytogenetic damage posed by such products…

  5. A maximum likelihood algorithm for genome mapping of cytogenetic loci from meiotic configuration data.

    PubMed Central

    Reyes-Valdés, M H; Stelly, D M

    1995-01-01

    Frequencies of meiotic configurations in cytogenetic stocks are dependent on chiasma frequencies in segments defined by centromeres, breakpoints, and telomeres. The expectation maximization algorithm is proposed as a general method to perform maximum likelihood estimations of the chiasma frequencies in the intervals between such locations. The estimates can be translated via mapping functions into genetic maps of cytogenetic landmarks. One set of observational data was analyzed to exemplify application of these methods, results of which were largely concordant with other comparable data. The method was also tested by Monte Carlo simulation of frequencies of meiotic configurations from a monotelodisomic translocation heterozygote, assuming six different sample sizes. The estimate averages were always close to the values given initially to the parameters. The maximum likelihood estimation procedures can be extended readily to other kinds of cytogenetic stocks and allow the pooling of diverse cytogenetic data to collectively estimate lengths of segments, arms, and chromosomes. Images Fig. 1 PMID:7568226

  6. Chromosomal mutagenesis in human somatic cells: 30-year cytogenetic monitoring after Chornobyl accident.

    PubMed

    Pilinska, M A; Shemetun, G M; Shemetun, O V; Dybsky, S S; Dybska, O B; Talan, O O; Pedan, L R; Kurinnyi, D А

    2016-12-01

    In the lecture we have generalized and analyzed the data of cytogenetic laboratory of National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine on 30-year selective cytogenetic monitoring among the priority contingents of different ages exposed to radiation after Chornobyl accident in Ukraine. It is highlighted that not only targeted but also untargeted radiation-induced cytogenetic effects should be explored, especially in delayed terms following radiation exposure. The new methodical approaches for studying "bystander effect", individual radiosensitivity, and various forms of radiation-induced chromosomal instability (delayed, hidden, transmissible) have been proposed. These approaches proved to be advantageous for analyzing cytogenetic patterns of induction and persistence of chromosomal instability in human somatic cells because of "bystander effect" and "bystander type effect". The phenomenon of positive "reverse" bystander effect has been found. The possibility of modifying the inherited individual human susceptibility to mutagenic exposure by ionizing radiation has been estimated. Finally, the association between hypersensitivity to radiation exposure and realization of oncopathology in exposed individuals has been revealed. The increased intensity of human somatic chromosomal mutagenesis was confirmed not only in the nearest but in the delayed terms following Chornobyl accident as a result of radiation-induced both targeted and untargeted cytogenetic effects. Such effects can be considered as risk factors for malignant transformation of cells, hereditary diseases, birth defects, and multifactorial somatic pathology. This article is a part of a Special Issue entitled "The Chornobyl Nuclear Accident: Thirty Years After".

  7. [Cytogenetic status of the residents of the Gydansky Peninsula (Gydan)].

    PubMed

    Shinkaruk, E V; Agbalyan, E V

    The relevance of the study on the Gydansky Peninsula lies in poor knowledge and inaccessibility of the territory, planned intensive industrial development of the Gydansky Peninsula, in 2011 there were received licenses for the exploration of license areas at the peninsula up to 2031. Industrial development will inevitably lead to certain environmental shifts, emission of the harmful substances into biosphere, the accumulation of anthropogenic pollutants in soil and water sources. The proposed development of the territory of the Peninsula Gydan sets the task of assessment of the impact of gas and oil production in conditions of the far North on health, as well indigenous persons as employees recruited to this of the region. One of the informative approaches to the assessment of population health is the assessment of the cytogenetic status with the use of noninvasive analysis of buccal epithelium. The aim of the study is to determine the cytogenetic status of the inhabitants of the village of Antipayuta of the Yamal-Nenets Autonomous Okrug for the assessment of the impact of environmental factors on the health of the population at the present stage of the industrial development of the territory. Samples of buccal epithelium of 81 alien and indigenous people of the Yamal-Nenets Autonomous district were the object of the investigation. There was performed the analysis of indices of cells of buccal epithelium of the residents living in the village in comparison with the control group. The analysis of samples was performed on a Nikon Eclipse E100 microscope. For the assessment of the cytogenetic status of the individual there was used the proposed by Sycheva L. P. (2012-Index of accumulation of cytogenetic damages (Iac). It is shown that the frequency of occurrence of micronucleus and nuclear protrusions does not exceed the performance of the control group. The index of accumulation of cytogenetic damage for the population of the village is 0.78±0.07% and corresponds to

  8. [The chiral mutagens: cytogenetic effects on higher plants].

    PubMed

    Morgun, V V; Larchenko, E A; Kostianovskiĭ, R G; Keterinchuk, A M

    2011-01-01

    The paper covers investigation of cytogenetic activity of chiral mutagens and their specific effects on the plant cells chromosomes of soft winter wheat (Triticum aestivum L.). Comparative analysis of cytogenetic activity of chiral NEU: S(+)1-N-nitroso- 1-N-methyl-3-N-sec-buthylureas (S(+)NMsBU) and R(-)1-N-nitroso- 1N-methyl-3-Nsec-buthylureas (R(-)NMsBU) on winter wheat was performed. As it was shown by the frequency of chromosomal aberrations the S(+) stereoisomer was twice more active than R(-). In addition to typical anaphase aberrations (fragments, bridges, lagging chromosomes) the numerous mitosis pathologies were revealed - K-mitoses, hyperspiralization and despiralization of chromosomes, unequal allocation of chromosomes between the daughter nuclei, mass fragmentation, nondisjunction and chromosome adhesion, three-pole mitoses, etc. Neither of the mentioned pathologies was observed under the action of NEU and gamma-rays.

  9. Role of cytogenetic biomarkers in management of chronic kidney disease patients: A review.

    PubMed

    Khan, Zeba; Pandey, Manoj; Samartha, Ravindra M

    2016-10-01

    Chronic kidney disease (CKD) is much more common than people recognize, and habitually goes undetected and undiagnosed until the disease is well advanced or when their kidney functions is down to 25% of normal function. Genetic and non-genetic factors contribute to cause CKD. Non-genetic factors include hypertension, High level of DNA damage due to the production of reactive oxygen species and nucleic acid oxidation has been reported in CKD patients. Main genetic factor which causes CKD is diabetic nephropathy. A three- to nine-fold greater risk of End Stage Renal Disease (ESRD) is observed in individuals with a family history of ESRD. This greater risk have led researchers to search for genes linked to diabetic and other forms of nephropathy for the management of CKD. Multicenter consortia are currently recruiting large numbers of multiplex diabetic families with index cases having nephropathy for linkage and association analyses using various cytogenetic techniques. In addition, large-scale screening studies are underway, with the goals of better defining the overall prevalence of chronic kidney disease, as well as educating the population about risk factors for nephropathy, including family history. Cytogenetic biomarkers play an imperative role for the linkage study using G banding and detection of genomic instability in CKD patients. Classical and molecular cytogenetic tools with cytogenetic biomarkers provide remarkable findings in CKD patients. The aim of the present review is to draw outline of classical and molecular cytogenetic findings in CKD patients and their possible role in management to reduce genomic instability in CKD patients.

  10. Environmental genotoxicity evaluation using cytogenetic end points in wild rodents.

    PubMed Central

    de Souza Bueno, A M; de Bragança Pereira, C A; Rabello-Gay, M N

    2000-01-01

    We analyzed cytogenetic end points in three populations of two species of wild rodents--Akodon montensis and Oryzomys nigripes--living in an industrial, an agricultural, and a preservation area at the Itajaí Valley, state of Santa Catarina, Brazil. Our purpose was to evaluate the performance of the following end points in the establishment of a genotoxic profile of each area: the polychromatic/normochromatic cell ratio; the mitotic index; the frequency of micronucleated cells both in the bone marrow and peripheral blood; and the frequency of cells with chromosome aberrations in the bone marrow. Preparations were obtained using conventional cytogenetic techniques. The results showed a) the role of the end points used as biomarkers in the early detection of genotoxic agents and in the identification of species and populations at higher risk; b) the difference in sensitivity of the species selected as bioindicators in relation to the cytogenetic end points analyzed; c) the need to use at least two sympatric species to detect the presence of genotoxins in each locality; and d) the need to use several end points when trying to establish a genotoxic profile of an area. PMID:11133397

  11. [Strategies to identify supernumerary chromosomal markers in constitutional cytogenetics].

    PubMed

    Douet-Guilbert, N; Basinko, A; Le Bris, M-J; Herry, A; Morel, F; De Braekeleer, M

    2008-09-01

    Supernumerary marker chromosomes (SMCs) are defined as extrastructurally abnormal chromosomes which origin and composition cannot be determined by conventional cytogenetics. SMCs are an heterogeneous group of abnormalities concerning all chromosomes with variable structure and size and are associated with phenotypic heterogeneity. The characterisation of SMCs is of utmost importance for genetic counselling. Different molecular techniques are used to identify chromosomal material present in markers such as 24-colour FISH (MFISH, SKY), centromere specific multicolour FISH (cenMFISH) and derivatives (acroMFISH, subcenMFISH), comparative genomic hybridisation (CGH), arrayCGH, and targeted FISH techniques (banding techniques, whole chromosome painting...). Based on the morphology of SMC with conventional cytogenetic and clinical data, we tried to set up different molecular strategies with all available techniques.

  12. Describing sequencing results of structural chromosome rearrangements with a suggested next-generation cytogenetic nomenclature.

    PubMed

    Ordulu, Zehra; Wong, Kristen E; Currall, Benjamin B; Ivanov, Andrew R; Pereira, Shahrin; Althari, Sara; Gusella, James F; Talkowski, Michael E; Morton, Cynthia C

    2014-05-01

    With recent rapid advances in genomic technologies, precise delineation of structural chromosome rearrangements at the nucleotide level is becoming increasingly feasible. In this era of "next-generation cytogenetics" (i.e., an integration of traditional cytogenetic techniques and next-generation sequencing), a consensus nomenclature is essential for accurate communication and data sharing. Currently, nomenclature for describing the sequencing data of these aberrations is lacking. Herein, we present a system called Next-Gen Cytogenetic Nomenclature, which is concordant with the International System for Human Cytogenetic Nomenclature (2013). This system starts with the alignment of rearrangement sequences by BLAT or BLAST (alignment tools) and arrives at a concise and detailed description of chromosomal changes. To facilitate usage and implementation of this nomenclature, we are developing a program designated BLA(S)T Output Sequence Tool of Nomenclature (BOSToN), a demonstrative version of which is accessible online. A standardized characterization of structural chromosomal rearrangements is essential both for research analyses and for application in the clinical setting. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  13. Human Cartilage-Derived Progenitor Cells From Committed Chondrocytes for Efficient Cartilage Repair and Regeneration

    PubMed Central

    Jiang, Yangzi; Cai, Youzhi; Zhang, Wei; Yin, Zi; Hu, Changchang; Tong, Tong; Lu, Ping; Zhang, Shufang; Neculai, Dante

    2016-01-01

    Articular cartilage is not a physiologically self-renewing tissue. Injury of cartilage often progresses from the articular surface to the subchondral bone, leading to pathogenesis of tissue degenerative diseases, such as osteoarthritis. Therapies to treat cartilage defects using autologous chondrocyte-based tissue engineering have been developed and used for more than 20 years; however, the challenge of chondrocyte expansion in vitro remains. A promising cell source, cartilage stem/progenitor cells (CSPCs), has attracted recent attention. Because their origin and identity are still unclear, the application potential of CSPCs is under active investigation. Here we have captured the emergence of a group of stem/progenitor cells derived from adult human chondrocytes, highlighted by dynamic changes in expression of the mature chondrocyte marker, COL2, and mesenchymal stromal/stem cell (MSC) marker, CD146. These cells are termed chondrocyte-derived progenitor cells (CDPCs). The stem cell-like potency and differentiation status of CDPCs were determined by physical and biochemical cues during culture. A low-density, low-glucose 2-dimensional culture condition (2DLL) was critical for the emergence and proliferation enhancement of CDPCs. CDPCs showed similar phenotype as bone marrow mesenchymal stromal/stem cells but exhibited greater chondrogenic potential. Moreover, the 2DLL-cultured CDPCs proved efficient in cartilage formation both in vitro and in vivo and in repairing large knee cartilage defects (6–13 cm2) in 15 patients. These findings suggest a phenotype conversion between chondrocytes and CDPCs and provide conditions that promote the conversion. These insights expand our understanding of cartilage biology and may enhance the success of chondrocyte-based therapies. Significance Injury of cartilage, a non-self-repairing tissue, often progresses to pathogenesis of degenerative joint diseases, such as osteoarthritis. Although tissue-derived stem cells have been shown

  14. Human Cartilage-Derived Progenitor Cells From Committed Chondrocytes for Efficient Cartilage Repair and Regeneration.

    PubMed

    Jiang, Yangzi; Cai, Youzhi; Zhang, Wei; Yin, Zi; Hu, Changchang; Tong, Tong; Lu, Ping; Zhang, Shufang; Neculai, Dante; Tuan, Rocky S; Ouyang, Hong Wei

    2016-06-01

    Articular cartilage is not a physiologically self-renewing tissue. Injury of cartilage often progresses from the articular surface to the subchondral bone, leading to pathogenesis of tissue degenerative diseases, such as osteoarthritis. Therapies to treat cartilage defects using autologous chondrocyte-based tissue engineering have been developed and used for more than 20 years; however, the challenge of chondrocyte expansion in vitro remains. A promising cell source, cartilage stem/progenitor cells (CSPCs), has attracted recent attention. Because their origin and identity are still unclear, the application potential of CSPCs is under active investigation. Here we have captured the emergence of a group of stem/progenitor cells derived from adult human chondrocytes, highlighted by dynamic changes in expression of the mature chondrocyte marker, COL2, and mesenchymal stromal/stem cell (MSC) marker, CD146. These cells are termed chondrocyte-derived progenitor cells (CDPCs). The stem cell-like potency and differentiation status of CDPCs were determined by physical and biochemical cues during culture. A low-density, low-glucose 2-dimensional culture condition (2DLL) was critical for the emergence and proliferation enhancement of CDPCs. CDPCs showed similar phenotype as bone marrow mesenchymal stromal/stem cells but exhibited greater chondrogenic potential. Moreover, the 2DLL-cultured CDPCs proved efficient in cartilage formation both in vitro and in vivo and in repairing large knee cartilage defects (6-13 cm(2)) in 15 patients. These findings suggest a phenotype conversion between chondrocytes and CDPCs and provide conditions that promote the conversion. These insights expand our understanding of cartilage biology and may enhance the success of chondrocyte-based therapies. Injury of cartilage, a non-self-repairing tissue, often progresses to pathogenesis of degenerative joint diseases, such as osteoarthritis. Although tissue-derived stem cells have been shown to

  15. Complex networks under dynamic repair model

    NASA Astrophysics Data System (ADS)

    Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao

    2018-01-01

    Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.

  16. CYTOGENETIC EFFECTS OF PHOSPHINE INHALATION BY RODENTS

    EPA Science Inventory

    Phosphine (PH3) is a highly toxic grain fumigant that can be produced from the reaction of metal phosphides with water. o determine the in vivo cytogenetic effects of inhalation of PH3, male CD-1 mice were exposed to either 0, 5, 10, or 15 ppm target concentrations of PH3 for 6 h...

  17. A cytogenetics study of Hydrodroma despiciens (Müller, 1776) (Acari: Hydrachnellae: Hydrodromidae).

    PubMed

    Onrat, Serap Tutgun; Aşçi, Ferruh; Ozkan, Muhlis

    2006-06-30

    The karyotypes of water mites (Acari: Hydrachnellae: Hydrodromidae) are largely unknown. The present investigation is the first report of a study designed to characterize the chromosomes of water mites. The study was carried out with specimens of Hydrodroma despiciens collected from Eber Lake in Afyon, Turkey. Several different methods were tried to obtain chromosomes of this species. However, somatic cell culture proved to be the most effective for the preparation of chromosomes. In the present study, we determined the diploid chromosome number of Hydrodroma despiciens to be 2n = 16. However, a large metacentric chromosome was found in each metaphase, which we believed to be the X chromosome. We could not determine the sex chromosomes of this species. This study is the first approach to the cytogenetic characterization of this water mite group. Furthermore, these cytogenetic data will contribute to the understanding of the phylogenetic relationship among water mites. To our knowledge, this is the first report on the cytogenetics of water mites.

  18. Cytogenetic and molecular analysis in Angelman syndrome.

    PubMed

    Zackowski, J L; Nicholls, R D; Gray, B A; Bent-Williams, A; Gottlieb, W; Harris, P J; Waters, M F; Driscoll, D J; Zori, R T; Williams, C A

    1993-04-01

    We report on cytogenetic and molecular analyses of 29 Angelman syndrome (AS) individuals ascertained in 1990 through the first National Angelman Syndrome Conference. High resolution GTG- and GBG-banded chromosomes were studied. Standard molecular analysis with six 15q11q13 DNA sequences was used to analyze copy number and parental origin of 15q11q13. Concordance between molecular and cytogenetic data was excellent. The combined data showed that 23 of the 27 probands (85%) on whom we had definitive results have deletions of the chromosome 15q11q13 region. Two classes of deletion were detected molecularly: most patients were deleted for the 5 more proximal probes, but in 2 cases the deletion extended distally to include in sixth probe. In the 13 cases where the parental origin of the deleted chromosome 15 could be established, it was maternal. There were no cases of uniparental disomy. Cytological observations of the relative sizes of the heterochromatic regions of the short arm of chromosome 15 suggested that chromosomes with large heterochromatic blocks may be more prone to de novo deletion.

  19. Cytogenetic Profile of Down Syndrome Cases Seen by a General Genetics Outpatient Service in Brazil

    ERIC Educational Resources Information Center

    Biselli, Joice; Goloni-Bertollo, Eny; Ruiz, Mariangela; Pavarino-Bertelli, Erika

    2009-01-01

    Down syndrome or trisomy 21 can be caused by three types of chromosomal abnormalities: free trisomy 21, translocation or mosaicism. The cytogenetic diagnosis, made through karyotypic examination, is important mainly to determine recurrence risks to assist genetic counselling. The object of this work was to carry out a cytogenetic profile of…

  20. Identification of novel cytogenetic markers with prognostic significance in a series of 968 patients with primary myelodysplastic syndromes.

    PubMed

    Solé, Francesc; Luño, Elisa; Sanzo, Carmen; Espinet, Blanca; Sanz, Guillermo F; Cervera, José; Calasanz, María José; Cigudosa, Juan Cruz; Millà, Fuensanta; Ribera, Josep Maria; Bureo, Encarna; Marquez, Maria Luisa; Arranz, Eva; Florensa, Lourdes

    2005-09-01

    The main prognostic factors in myelodysplastic syndromes (MDS) are chromosomal abnormalities, the proportion of blasts in bone marrow and number and degree of cytopenias. A consensus-defined International Prognostic Scoring System (IPSS) for predicting outcome and planning therapy in MDS has been developed, but its prognostic value in a large and independent series remains unproven. Furthermore, the intermediate-risk cytogenetic subgroup defined by the IPSS includes a miscellaneous number of different single abnormalities of uncertain prognostic significance at present. The main aim of the present study was to identify chromosomal abnormalities with a previously unrecognized good or poor prognosis in order to find new cytogenetic markers with predictive value. We report the cytogenetic findings in a series of 968 patients with primary MDS from the Spanish Cytogenetics Working Group, Grupo Cooperativo Español de Citogenética Hematológica (GCECGH). In this series of 968 MDS patients, we found various cytogenetic aberrations with a new prognostic impact. Complex karyotype, -7/7q- and i(17q) had a poor prognosis; normal karyotype, loss of Y chromosome, deletion 11q, deletion 12p and deletion 20q as single alterations had a good prognosis. Intermediate prognosis aberrations were rearrangements of 3q21q26, trisomy 8, trisomy 9, translocations of 11q and del(17p). Finally, a new group of single or double cytogenetic abnormalities, most of which are considered rare cytogenetic events and are usually included in the intermediate category of the IPSS, showed a trend to poor prognosis. This study suggests that some specific chromosomal abnormalities could be segregated from the IPSS intermediate-risk cytogenetic prognostic subgroup and included in the low risk or in the poor risk groups.

  1. Customized laboratory information management system for a clinical and research leukemia cytogenetics laboratory.

    PubMed

    Bakshi, Sonal R; Shukla, Shilin N; Shah, Pankaj M

    2009-01-01

    We developed a Microsoft Access-based laboratory management system to facilitate database management of leukemia patients referred for cytogenetic tests in regards to karyotyping and fluorescence in situ hybridization (FISH). The database is custom-made for entry of patient data, clinical details, sample details, cytogenetics test results, and data mining for various ongoing research areas. A number of clinical research laboratoryrelated tasks are carried out faster using specific "queries." The tasks include tracking clinical progression of a particular patient for multiple visits, treatment response, morphological and cytogenetics response, survival time, automatic grouping of patient inclusion criteria in a research project, tracking various processing steps of samples, turn-around time, and revenue generated. Since 2005 we have collected of over 5,000 samples. The database is easily updated and is being adapted for various data maintenance and mining needs.

  2. Cytogenetic studies of 1232 patients with different sexual development abnormalities from the Sultanate of Oman.

    PubMed

    Al-Alawi, Intisar; Goud, Tadakal Mallana; Al-Harasi, Salma; Rajab, Anna

    2016-02-01

    The aim of this study was to evaluate cytogenetic findings in Omani patients who had been referred for suspicion of sex chromosome abnormalities that resulted in different clinical disorders. Furthermore, it sought to examine the frequency of chromosomal anomalies in these patients and to compare the obtained results with those reported elsewhere. Cytogenetic analysis was performed on 1232 cases with variant characteristics of sexual development disorders who had been referred to the cytogenetic department, National Genetic Centre, Ministry of Health, from different hospitals in the Sultanate of Oman between 1999 and 2014. The karyotype results demonstrated chromosomal anomalies in 24.2% of the cases, where 67.5% of abnormalities were identified in referral females, whereas only 32.6% were in referral males. Of all sex chromosome anomalies detected, Turner syndrome was the most frequent (38.2%) followed by Klinefelter syndrome (24.9%) and XY phenotypic females (16%). XXX syndrome and XX phenotypic males represented 6.8% and 3.8% of all sex chromosome anomalies, respectively. Cytogenetic analysis of patients referred with various clinical suspicions of chromosomal abnormalities revealed a high rate of chromosomal anomalies. This is the first broad cytogenetic study reporting combined frequencies of sex chromosome anomalies in sex development disorders in Oman. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  3. Efficient engineering of chromosomal ribosome binding site libraries in mismatch repair proficient Escherichia coli.

    PubMed

    Oesterle, Sabine; Gerngross, Daniel; Schmitt, Steven; Roberts, Tania Michelle; Panke, Sven

    2017-09-26

    Multiplexed gene expression optimization via modulation of gene translation efficiency through ribosome binding site (RBS) engineering is a valuable approach for optimizing artificial properties in bacteria, ranging from genetic circuits to production pathways. Established algorithms design smart RBS-libraries based on a single partially-degenerate sequence that efficiently samples the entire space of translation initiation rates. However, the sequence space that is accessible when integrating the library by CRISPR/Cas9-based genome editing is severely restricted by DNA mismatch repair (MMR) systems. MMR efficiency depends on the type and length of the mismatch and thus effectively removes potential library members from the pool. Rather than working in MMR-deficient strains, which accumulate off-target mutations, or depending on temporary MMR inactivation, which requires additional steps, we eliminate this limitation by developing a pre-selection rule of genome-library-optimized-sequences (GLOS) that enables introducing large functional diversity into MMR-proficient strains with sequences that are no longer subject to MMR-processing. We implement several GLOS-libraries in Escherichia coli and show that GLOS-libraries indeed retain diversity during genome editing and that such libraries can be used in complex genome editing operations such as concomitant deletions. We argue that this approach allows for stable and efficient fine tuning of chromosomal functions with minimal effort.

  4. Rapid road repair vehicle

    DOEpatents

    Mara, Leo M.

    1999-01-01

    Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  5. Translocation (16;20)(p11.2;q13). sole cytogenetic abnormality in a unicameral bone cyst.

    PubMed

    Richkind, Kathleen E; Mortimer, Errol; Mowery-Rushton, Patricia; Fraire, Armando

    2002-09-01

    We report the results of cytogenetic analysis of a case of unicameral bone cyst with a t(16;20(p11.2;q13) present as the sole abnormality. To our knowledge, this is only the second report of a cytogenetically characterized tumor of this type.

  6. Complex networks repair strategies: Dynamic models

    NASA Astrophysics Data System (ADS)

    Fu, Chaoqi; Wang, Ying; Gao, Yangjun; Wang, Xiaoyang

    2017-09-01

    Network repair strategies are tactical methods that restore the efficiency of damaged networks; however, unreasonable repair strategies not only waste resources, they are also ineffective for network recovery. Most extant research on network repair focuses on static networks, but results and findings on static networks cannot be applied to evolutionary dynamic networks because, in dynamic models, complex network repair has completely different characteristics. For instance, repaired nodes face more severe challenges, and require strategic repair methods in order to have a significant effect. In this study, we propose the Shell Repair Strategy (SRS) to minimize the risk of secondary node failures due to the cascading effect. Our proposed method includes the identification of a set of vital nodes that have a significant impact on network repair and defense. Our identification of these vital nodes reduces the number of switching nodes that face the risk of secondary failures during the dynamic repair process. This is positively correlated with the size of the average degree 〈 k 〉 and enhances network invulnerability.

  7. An integrated molecular cytogenetic map of Cucumis sativus L. chromosome 2.

    PubMed

    Han, Yonghua; Zhang, Zhonghua; Huang, Sanwen; Jin, Weiwei

    2011-01-27

    Integration of molecular, genetic and cytological maps is still a challenge for most plant species. Recent progress in molecular and cytogenetic studies created a basis for developing integrated maps in cucumber (Cucumis sativus L.). In this study, eleven fosmid clones and three plasmids containing 45S rDNA, the centromeric satellite repeat Type III and the pericentriomeric repeat CsRP1 sequences respectively were hybridized to cucumber metaphase chromosomes to assign their cytological location on chromosome 2. Moreover, an integrated molecular cytogenetic map of cucumber chromosomes 2 was constructed by fluorescence in situ hybridization (FISH) mapping of 11 fosmid clones together with the cucumber centromere-specific Type III sequence on meiotic pachytene chromosomes. The cytogenetic map was fully integrated with genetic linkage map since each fosmid clone was anchored by a genetically mapped simple sequence repeat marker (SSR). The relationship between the genetic and physical distances along chromosome was analyzed. Recombination was not evenly distributed along the physical length of chromosome 2. Suppression of recombination was found in centromeric and pericentromeric regions. Our results also indicated that the molecular markers composing the linkage map for chromosome 2 provided excellent coverage of the chromosome.

  8. Contributions to the cytogenetics of the Neotropical fish fauna.

    PubMed

    Bertollo, Luiz Antônio Carlos; Cioffi, Marcelo de Bello; Galetti, Pedro Manoel; Filho, Orlando Moreira

    2017-01-01

    Brazilian fish cytogenetics started as early as the seventies in three pioneering research groups, located at the Universidade Estadual Paulista (UNESP, Botucatu, SP), Universidade Federal de São Carlos (UFSCar, São Carlos, SP) and Universidade de São Paulo (USP, São Paulo, SP). Investigations that have been conducted in these groups led to the discovery of a huge chromosomal and genomic biodiversity among Neotropical fishes. Besides, they also provided the expansion of this research area, with the genesis of several other South American research groups, in view of a number of dissertations and doctoral theses developed over years. The current authors were encouraged to make their thesis catalog accessible from a public source, in order to share informations on the taxa and subject matter analyzed. Some of the key contributions to evolutionary fish cytogenetics are also being highligthed.

  9. Contributions to the cytogenetics of the Neotropical fish fauna

    PubMed Central

    Bertollo, Luiz Antônio Carlos; Cioffi, Marcelo de Bello; Jr, Pedro Manoel Galetti; Filho, Orlando Moreira

    2017-01-01

    Abstract Brazilian fish cytogenetics started as early as the seventies in three pioneering research groups, located at the Universidade Estadual Paulista (UNESP, Botucatu, SP), Universidade Federal de São Carlos (UFSCar, São Carlos, SP) and Universidade de São Paulo (USP, São Paulo, SP). Investigations that have been conducted in these groups led to the discovery of a huge chromosomal and genomic biodiversity among Neotropical fishes. Besides, they also provided the expansion of this research area, with the genesis of several other South American research groups, in view of a number of dissertations and doctoral theses developed over years. The current authors were encouraged to make their thesis catalog accessible from a public source, in order to share informations on the taxa and subject matter analyzed. Some of the key contributions to evolutionary fish cytogenetics are also being highligthed. PMID:29114360

  10. [From conventional cytogenetics to microarrays. Fifty years of Philadelphia chromosome].

    PubMed

    Hernández, Jesús M; Granada, Isabel; Solé, Francesc

    2011-07-23

    In 1960 Ph-chromosome was found associated with the presence of chronic myelogenous leukemia. In these 50 years an increasing number of cytogenetic abnormalities have been found associated with hematological malignancies. The presence of these abnormalities is not only important for the diagnosis of the patient, but it also contributes to the prognosis of patients with leukemia or lymphoma. For this reason the WHO classification of hematological disease has included these studies for the correct characterization of leukemias and lymphomas. In addition, the use of FISH and micromatrix methodologies have refined the genetic lesions present in these malignancies. The cytogenetic changes observed also provide further information in relation to the therapy. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  11. Employment of Oligodeoxynucleotide plus Interleukin-2 Improves Cytogenetic Analysis in Splenic Marginal Zone Lymphoma

    PubMed Central

    Bardi, Antonella; Cavazzini, Francesco; Rigolin, Gian Matteo; Tammiso, Elisa; Volta, Eleonora; Pezzolo, Elisa; Formigaro, Luca; Sofritti, Olga; Daghia, Giulia; Ambrosio, Cristina; Rizzotto, Lara; Abass, Awad E.; D'Auria, Fiorella; Musto, Pellegrino; Cuneo, Antonio

    2011-01-01

    To compare the efficiency of novel mitogenic agents and traditional mitosis inductors, 18 patients with splenic marginal zone lymphoma (SMZL) were studied. Three cultures using oligodeoxynucleotide (ODN) plus interleukin-2 (IL-2), or TPA, or LPS were setup in each patient. Seventeen/18 cases with ODN + IL2 had moderate/good proliferation (94, 4%) as compared with 10/18 cases with TPA and LPS (55%) (P = .015); 14/18 (77, 7%) cases with ODN + IL2 had sufficient good quality of banding as compared with 8/18 cases (44, 4%) with TPA and LPS. The karyotype could be defined from ODN + IL2-stimulated cultures in all 18 patients, 14 of whom (77, 7%) had a cytogenetic aberration, whereas clonal aberrations could be documented in 9 and in 3 cases by stimulation with LPS and TPA, respectively. Recurrent chromosome aberrations in our series were represented by aberrations of chromosome 14q in 5 patients, by trisomy 12 and 7q deletion in 4 cases each, and by abnormalities involving 11q and 13q in two cases each. These findings show that stimulation with ODN + IL2 offers more mitotic figures of better quality and results in an increased rate of clonal aberrations in SMZL, making this method ideal for prospective studies aiming at the definition of the prognostic impact of cytogenetic aberrations in this disorder. PMID:21629757

  12. Molecular Cytogenetic Analysis of One African and Five Asian Macaque Species Reveals Identical Karyotypes as in Mandrill.

    PubMed

    Sangpakdee, Wiwat; Tanomtong, Alongkoad; Chaveerach, Arunrat; Pinthong, Krit; Trifonov, Vladimir; Loth, Kristina; Hensel, Christiana; Liehr, Thomas; Weise, Anja; Fan, Xiaobo

    2018-04-01

    The question how evolution and speciation work is one of the major interests of biology. Especially, genetic including karyotypic evolution within primates is of special interest due to the close phylogenetic position of Macaca and Homo sapiens and the role as in vivo models in medical research, neuroscience, behavior, pharmacology, reproduction and Acquired Immune Deficiency Syndrome (AIDS). Karyotypes of five macaque species from South East Asia and of one macaque species as well as mandrill from Africa were analyzed by high resolution molecular cytogenetics to obtain new insights into karyotypic evolution of old world monkeys. Molecular cytogenetics applying human probes and probe sets was applied in chromosomes of Macaca arctoides, M. fascicularis, M. nemestrina, M. assamensis, M. sylvanus, M. mulatta and Mandrillus sphinx. Established two- to multicolor-fluorescence in situ hybridization (FISH) approaches were applied. Locus-specific probes, whole and partial chromosome paint probes were hybridized. Especially the FISH-banding approach multicolor-banding (MCB) as well as probes oriented towards heterochromatin turned out to be highly efficient for interspecies comparison. Karyotypes of all seven studied species could be characterized in detail. Surprisingly, no evolutionary conserved differences were found among macaques, including mandrill. Between the seven here studied and phenotypically so different species we expected several via FISH detectable karyoypic and submicroscopic changes and were surprised to find none of them on a molecular cytogenetic level. Spatial separation, may explain the speciation and different evolution for some of them, like African M. sylvanus, Mandrillus sphinx and the South Asian macaques. However, for the partially or completely overlapping habitats of the five studied South Asian macaques the species separation process can also not be deduced to karyotypic separation.

  13. Minimal residual disease evaluation by flow cytometry is a complementary tool to cytogenetics for treatment decisions in acute myeloid leukaemia.

    PubMed

    Vidriales, María-Belén; Pérez-López, Estefanía; Pegenaute, Carlota; Castellanos, Marta; Pérez, José-Juan; Chandía, Mauricio; Díaz-Mediavilla, Joaquín; Rayón, Consuelo; de Las Heras, Natalia; Fernández-Abellán, Pascual; Cabezudo, Miguel; de Coca, Alfonso García; Alonso, Jose M; Olivier, Carmen; Hernández-Rivas, Jesús M; Montesinos, Pau; Fernández, Rosa; García-Suárez, Julio; García, Magdalena; Sayas, María-José; Paiva, Bruno; González, Marcos; Orfao, Alberto; San Miguel, Jesús F

    2016-01-01

    The clinical utility of minimal residual disease (MRD) analysis in acute myeloid leukaemia (AML) is not yet defined. We analysed the prognostic impact of MRD level at complete remision after induction therapy using multiparameter flow cytometry in 306 non-APL AML patients. First, we validated the prognostic value of MRD-thresholds we have previously proposed (≥ 0.1%; ≥ 0.01-0.1%; and <0.01), with a 5-year RFS of 38%, 50% and 71%, respectively (p=0.002). Cytogenetics is the most relevant prognosis factor in AML, however intermediate risk cytogenetics represent a grey zone that require other biomarkers for risk stratification, and we show that MRD evaluation discriminate three prognostic subgroups (p=0.03). Also, MRD assessments yielded relevant information on favourable and adverse cytogenetics, since patients with favourable cytogenetics and high MRD levels have poor prognosis and patients with adverse cytogenetics but undetectable MRD overcomes the adverse prognosis. Interestingly, in patients with intermediate or high MRD levels, intensification with transplant improved the outcome as compared with chemotherapy, while the type of intensification therapy did not influenced the outcome of patients with low MRD levels. Multivariate analysis revealed age, MRD and cytogenetics as independent variables. Moreover, a scoring system, easy in clinical practice, was generated based on MRD level and cytogenetics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. No short-term cytogenetic consequences of Hungarian red mud catastrophe.

    PubMed

    Gundy, Sarolta; Farkas, Gyöngyi; Székely, Gábor; Kásler, Miklós

    2013-01-01

    Red mud is an industrial waste produced in the process of alumina extraction from bauxite with concentrated NaOH. When the red mud-containing reservoir collapsed in Ajka Alumina Plant Hungary in October 2010, the most serious immediate effects were caused by the high alkalinity (pH ≥ 13) of the flood. Many persons suffered burn-like damage to tissues and contact with caustic desiccated ultra-fine dust with traces of toxic metals also caused irritation of upper respiratory tract and eyes. This catastrophe was unique from the point of view of genotoxic effects as well. Therefore cytogenetic examinations were carried out on inhabitants, either with burns (17 persons) or on those inhaling desiccated caustic dust (42 persons). Chromosomal aberration (CA) analysis and bleomycin (BLM)-sensitivity assays, as possible markers of effects, were studied in peripheral blood lymphocytes of persons within 4-6 weeks following the catastrophe. Controls were matched for age, sex and smoking habits, and also places of residence with different constituents of air pollution either from rural (59 persons), or from urban environments (59 persons). Neither spontaneous rate of CAs (1.47% vs. 1.69%) nor BLM-induced in vitro chromosomal breakage (0.79 vs. 0.83 break/cell) showed elevated rates when cytogenetic biomarkers of genotoxicity were compared between controls and exposed persons. Time spent in cleaning did not affect cytogenetic changes either (R(2) = 0.04). BLM-induced mutagen sensitivity was similar in exposed and control persons (27.1% vs. 30.5%). It seems that the red mud exposure does not appear to pose an immediate genotoxic hazard on residents when measured with cytogenetic methods. We recommend, however, that those involved in clean-up activities should be followed closely not only for overall health, but also for further genotoxic risk assessment, because the long-term hazards of ultra-fine fugitive dust particles with alkalinity of residual NaOH in red mud are still

  15. Design and Analysis of a Stiffened Composite Structure Repair Concept

    NASA Technical Reports Server (NTRS)

    Przekop, Adam

    2011-01-01

    A design and analysis of a repair concept applicable to a stiffened thin-skin composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure is presented. Since the repair concept is a bolted repair using metal components, it can easily be applied in the operational environment. Initial analyses are aimed at validating the finite element modeling approach by comparing with available test data. Once confidence in the analysis approach is established several repair configurations are explored and the most efficient one presented. Repairs involving damage to the top of the stiffener alone are considered in addition to repairs involving a damaged stiffener, flange and underlying skin. High fidelity finite element modeling techniques such as mesh-independent definition of compliant fasteners, elastic-plastic metallic material properties and geometrically nonlinear analysis are utilized in the effort. The results of the analysis are presented and factors influencing the design are assessed and discussed.

  16. Turbine repair process, repaired coating, and repaired turbine component

    DOEpatents

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  17. Repair of Oxidative DNA Damage in Saccharomyces cerevisiae.

    PubMed

    Chalissery, Jisha; Jalal, Deena; Al-Natour, Zeina; Hassan, Ahmed H

    2017-03-01

    Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Dioxins and cytogenetic status of villagers after 40 years of agent Orange application in Vietnam.

    PubMed

    Sycheva, Lyudmila P; Umnova, Nataliya V; Kovalenko, Maria A; Zhurkov, Vjacheslav S; Shelepchikov, Andrey A; Roumak, Vladimir S

    2016-02-01

    We have examined cytogenetic status of the rural population living on dioxin-contaminated territories (DCT, TCDD in soil 2.6 ng/kg) compared to the villagers of the control area (TCDD in soil 0.18 ng kg(-1)). The examination took place almost 40 years after the war. The consequences of some confounding factors (years of residence in the region, farming, and aging) has been examined. Karyological analysis of buccal and nasal epitheliocytes among healthy adult males living on DCT and control area (26 and 35 persons) was conducted. A wide range of cytogenetic (micronuclei, nuclear protrusions), proliferative (binucleated cells and cells with doubled nucleus) and endpoints of cell death (cells with perinuclear vacuoles, with damaged nucleus membrane, condensed chromatin, pyknosis, karyorrhexis, karyolysis) had been analyzed. The frequent amount of cells with nuclear protrusions in both epithelia was slightly decreased in the DСT group. Biomarkers of early and late stages of nuclear destruction in buccal epithelium (cells with damaged nuclear membrane, karyolysis) were elevated significantly in DCT. Higher level of the same parameters was also identified in nasal epithelium. The cytogenetic status of healthy adult males on DCT had got "normalization" by present moment in comparison with our early data. Nevertheless, in exposed group some alteration of the cytogenetic status was being registered (mostly biomarkers of apoptosis). Years of residence (and exposure to dioxins) affected the cytogenetic status of DCT inhabitants, whereas no influence of farming factors (pesticides, fertilizers, etc.) had been discovered. Some biomarkers of proliferation and cell death were affected by aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases

    PubMed Central

    Remy, Séverine; Tesson, Laurent; Menoret, Séverine; Usal, Claire; De Cian, Anne; Thepenier, Virginie; Thinard, Reynald; Baron, Daniel; Charpentier, Marine; Renaud, Jean-Baptiste; Buelow, Roland; Cost, Gregory J.; Giovannangeli, Carine; Fraichard, Alexandre; Concordet, Jean-Paul; Anegon, Ignacio

    2014-01-01

    The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%–5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner. PMID:24989021

  20. Cytogenetically confirmed primary Ewing's sarcoma of the pancreas.

    PubMed

    Golhar, Ankush; Ray, Samrat; Haugk, Beate; Singhvi, Suresh Kumar

    2017-05-04

    Ewing's sarcoma is a highly aggressive malignant tumour most commonly affecting long bones in children and adolescents. It is part of the Ewing's sarcoma family of tumours (ESFTs) that also include peripheral primitive neuroectodermal tumour and Askin's tumours. ESFTs share common cytogenetic aberrations, antigenic profiles and proto-oncogene expression with an overall similar clinical course. In 99% of ESFTs, genetic translocation with molecular fusion involves the EWSR1 gene on 22q12. Approximately 30% of ESFTs are extraosseous, most commonly occurring in the soft tissues of extremities, pelvis, retroperitoneum and chest wall. Primary presentation in solid organs is very rare but has been described in multiple sites including the pancreas. Accurate diagnosis of a Ewing's sarcoma in a solid organ is critical in facilitating correct treatment. We report the case of a 17-year-old girl with cytogenetically confirmed primary pancreatic Ewing's sarcoma and provide a brief review of the published literature. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Extremophilic Acinetobacter strains from high-altitude lakes in Argentinean Puna: remarkable UV-B resistance and efficient DNA damage repair.

    PubMed

    Albarracín, Virginia Helena; Pathak, Gopal P; Douki, Thierry; Cadet, Jean; Borsarelli, Claudio Darío; Gärtner, Wolfgang; Farias, María Eugenia

    2012-06-01

    High-Altitude Andean Lakes (HAAL) of the South American Andes are almost unexplored ecosystems of shallow lakes. The HAAL are recognized by a remarkably high UV exposure, strong changes in temperature and salinity, and a high content of toxic elements, especially arsenic. Being exposed to remarkably extreme conditions, they have been classified as model systems for the study of life on other planets. Particularly, Acinetobacter strains isolated from the HAAL were studied for their survival competence under strong UV-B irradiation. Clinical isolates, Acinetobacter baumannii and Acinetobacter johnsonii, served as reference material. Whereas the reference strains rapidly lost viability under UV-B irradiation, most HAAL-derived strains readily survived this exposure and showed less change in cell number after the treatment. Controls for DNA repair activity, comparing dark repair (DR) or photo repair (PR), gave evidence for the involvement of photolyases in the DNA repair. Comparative measurements by HPLC-mass spectrometry detected the number of photoproducts: bipyrimidine dimers under both PR and DR treatments were more efficiently repaired in the HAAL strains (up to 85 % PR and 38 % DR) than in the controls (31 % PR and zero DR ability). Analysis of cosmid-cloned total genomic DNA from the most effective DNA-photorepair strain (Ver3) yielded a gene (HQ443199) encoding a protein with clear photolyase signatures belonging to class I CPD-photolyases. Despite the relatively low sequence similarity of 41 % between the enzymes from Ver3 and from E. coli (PDB 1DNPA), a model-building approach revealed a high structural homology to the CPD-photolyase of E. coli.

  2. New In-Field Composite Repair Techniques for Transmission or Distribution Pipelines

    DOT National Transportation Integrated Search

    2009-05-18

    In-field repair of a damaged pipeline must be performed safely, efficiently, rapidly and reliably. Reinforcement of damaged pipelines is typically accomplished by welding a repair patch and then recoating the repaired area. The welded full-encircleme...

  3. Synergistic cytogenetic and antineoplastic effects by the combined action of esteric steroidal derivatives of nitrogen mustards.

    PubMed

    Mourelatos, Constantinos; Nikolaropoulos, Sotiris; Fousteris, Manolis; Pairas, Georgios; Argyraki, Maria; Kareli, Dimitra; Dafa, Evaggelia; Mourelatos, Dionisios; Lialiaris, Theodore

    2012-06-01

    We studied the effect of five newly synthesized steroidal derivatives of nitrogen mustards. These derivatives have as alkylators either P-N, N-bis(2-chloroethyl)aminophenyl-butyrate (CHL) or P-N, N-bis(2-chloroethyl)aminophenyl-acetate (PHE) groups esterified with different modified steroidal nuclei. We examined them alone or in combination, on sister chromatid exchange rates and on human lymphocyte proliferation kinetics. The antitumor activity of these compounds, alone or in combination, was also tested on Leukemia P388-bearing mice. A pronounced cytogenetic and antineoplastic action was demonstrated by the compounds that contain either PHE or CHL as alkylators and are esterified with a steroidal nucleus having added a cholestene group in the 17 position of the D-ring. The exocyclical insertion of an -NHCO- group in the D-ring of the steroidal nucleus esterified with PHE (amide ester of PHE) yielded a compound demonstrating a distinct cytogenetic and antineoplastic effect. In contrast, the ketone group in the D-ring being inserted endocyclically in the steroidal nucleus (androstene) esterified with either CHL or with PHE gave negative cytogenetic and antineoplastic effects. However, the combined action of cholestene esterified with either CHL or with PHE in combination with either the androstene ester of PHE or with the androstene ester of CHL, respectively, gave synergistic cytogenetic and antineoplastic effects. Also the amide ester of PHE in combination with the androstene ester of CHL gave distinct cytogenetic and antineoplastic effects in a synergistic manner.

  4. Cytogenetic variation between four cases of feline fibrosarcoma.

    PubMed

    Mayr, B; Bockstahler, B; Loupal, G; Reifinger, M; Schleger, W

    1996-11-01

    Short term cultures of four feline fibrosarcomas were analysed cytogenetically. There was marked genetic heterogeneity between the four cats, each showing a different clonal abnormality. The aberrations detected were one deleted B2, one marker F1 and two reciprocal translocations, t (A2q; E3q) and t (A1q; B4p).

  5. Annexins are instrumental for efficient plasma membrane repair in cancer cells.

    PubMed

    Lauritzen, Stine Prehn; Boye, Theresa Louise; Nylandsted, Jesper

    2015-09-01

    Plasma membrane stress can cause damage to the plasma membrane, both when imposed by the extracellular environment and by enhanced oxidative stress. Cells cope with these injuries by rapidly activating their plasma membrane repair system, which is triggered by Ca(2+) influx at the wound site. The repair system is highly dynamic, depends on both lipid and protein components, and include cytoskeletal reorganization, membrane replacements, and membrane fusion events. Cancer cells experience enhanced membrane stress when navigating through dense extracellular matrix, which increases the frequency of membrane injuries. In addition, increased motility and oxidative stress further increase the risk of plasma membrane lesions. Cancer cells compensate by overexpressing Annexin proteins including Annexin A2 (ANXA2). Annexin family members can facilitate membrane fusion events and wound healing by binding to negatively charged phospholipids in the plasma membrane. Plasma membrane repair in cancer cells depends on ANXA2 protein, which is recruited to the wound site and forms a complex with the Ca(2+)-binding EF-hand protein S100A11. Here they regulate actin accumulation around the wound perimeter, which is required for wound closure. In this review, we will discuss the requirement for Annexins, S100 proteins and actin cytoskeleton in the plasma membrane repair response of cancer cells, which reveals a novel avenue for targeting metastatic cancers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Transcription-Coupled Repair and Complex Biology.

    PubMed

    Portman, James R; Strick, Terence R

    2018-05-04

    All active living organisms mitigate DNA damage via DNA repair, and the so-called nucleotide excision repair pathway (NER) represents a functionally major part of the cell's DNA repair repertoire [1]. In this pathway, the damaged strand of DNA is incised and removed before being resynthesized. This form of DNA repair requires a multitude of proteins working in a complex choreography. Repair thus typically involves detection of a DNA lesion; validation of that detection event; search for an appropriate incision site and subsequent DNA incision; DNA unwinding/removal; and DNA resynthesis and religation. These activities are ultimately the result of molecules randomly diffusing and bumping into each other and acting in succession. It is also true however that repair components are often assembled into functional complexes which may be more efficient or regular in their mode of action. Studying DNA repair complexes for their mechanisms of assembly, action, and disassembly can help address fundamental questions such as whether DNA repair pathways are branched or linear; whether for instance they tolerate fluctuations in numbers of components; and more broadly how search processes between macromolecules take place or can be enhanced. Copyright © 2018. Published by Elsevier Ltd.

  7. Evaluation of LOINC for Representing Constitutional Cytogenetic Test Result Reports

    PubMed Central

    Heras, Yan Z.; Mitchell, Joyce A.; Williams, Marc S.; Brothman, Arthur R.; Huff, Stanley M.

    2009-01-01

    Genetic testing is becoming increasingly important to medical practice. Integrating genetics and genomics data into electronic medical records is crucial in translating genetic discoveries into improved patient care. Information technology, especially Clinical Decision Support Systems, holds great potential to help clinical professionals take full advantage of genomic advances in their daily medical practice. However, issues relating to standard terminology and information models for exchanging genetic testing results remain relatively unexplored. This study evaluates whether the current LOINC standard is adequate to represent constitutional cytogenetic test result reports using sample result reports from ARUP Laboratories. The results demonstrate that current standard terminology is insufficient to support the needs of coding cytogenetic test results. The terminology infrastructure must be developed before clinical information systems will be able to handle the high volumes of genetic data expected in the near future. PMID:20351857

  8. Evaluation of LOINC for representing constitutional cytogenetic test result reports.

    PubMed

    Heras, Yan Z; Mitchell, Joyce A; Williams, Marc S; Brothman, Arthur R; Huff, Stanley M

    2009-11-14

    Genetic testing is becoming increasingly important to medical practice. Integrating genetics and genomics data into electronic medical records is crucial in translating genetic discoveries into improved patient care. Information technology, especially Clinical Decision Support Systems, holds great potential to help clinical professionals take full advantage of genomic advances in their daily medical practice. However, issues relating to standard terminology and information models for exchanging genetic testing results remain relatively unexplored. This study evaluates whether the current LOINC standard is adequate to represent constitutional cytogenetic test result reports using sample result reports from ARUP Laboratories. The results demonstrate that current standard terminology is insufficient to support the needs of coding cytogenetic test results. The terminology infrastructure must be developed before clinical information systems will be able to handle the high volumes of genetic data expected in the near future.

  9. Cytogenetic biodosimetry: what it is and how we do it.

    PubMed

    Wong, K F; Siu, Lisa L P; Ainsbury, E; Moquet, J

    2013-04-01

    Dicentric assay is the international gold standard for cytogenetic biodosimetry after radiation exposure, despite being very labour-intensive, time-consuming, and highly expertise-dependent. It involves the identification of centromeres and structure of solid-stained chromosomes and the enumeration of dicentric chromosomes in a large number of first-division metaphases of cultured T lymphocytes. The dicentric yield is used to estimate the radiation exposure dosage according to a statistically derived and predetermined dose-response curve. It can be used for population triage after large-scale accidental over-exposure to ionising radiation or with a view to making clinical decisions for individual patients receiving substantial radiation. In this report, we describe our experience in the establishment of a cytogenetic biodosimetry laboratory in Queen Elizabeth Hospital, Hong Kong. This was part of the contingency plan for emergency measures against radiation accidents at nuclear power stations.

  10. Molecular cytogenetics using fluorescence in situ hybridization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, J.W.; Kuo, Wen-Lin; Lucas, J.

    1990-12-07

    Fluorescence in situ hybridization (FISH) with chromosome-specific probes enables several new areas of cytogenetic investigation by allowing visual determination of the presence and normality of specific genetic sequences in single metaphase or interphase cells. in this approach, termed molecular cytogenetics, the genetic loci to be analyzed are made microscopically visible in single cells using in situ hybridization with nucleic acid probes specific to these loci. To accomplish this, the DNA in the target cells is made single stranded by thermal denaturation and incubated with single-stranded, chemically modified probe under conditions where the probe will anneal only with DNA sequences tomore » which it has high DNA sequence homology. The bound probe is then made visible by treatment with a fluorescent reagent such as fluorescein that binds to the chemical modification carried by the probe. The DNA to which the probe does not bind is made visible by staining with a dye such as propidium iodide that fluoresces at a wavelength different from that of the reagent used for probe visualization. We show in this report that probes are now available that make this technique useful for biological dosimetry, prenatal diagnosis and cancer biology. 31 refs., 3 figs.« less

  11. Blood Specimens From Patients Referred for Cytogenetic Analysis: Vanderbilt University Experience From 1985 to 1992

    PubMed Central

    BUTLER, MERLIN G.; HAMILL, TRACY

    2017-01-01

    Cytogenetic records were examined from consecutive nononcology blood specimens from 2,821 patients referred for cytogenetic services to Vanderbilt University Medical Center, Nashville, Tenn, from January 1985 to December 1992. We grouped the records according to reasons for referral and diagnoses. The most common reasons for referral were history of multiple abortions/miscarriages (23.3%), possibility of chromosomal abnormality (18.8%), and possible presence of the fragile X syndrome (15.6%). Overall, 2,418 (85.7%) patients were found to have normal chromosomes, and 403 (14.3%) patients were diagnosed with a cytogenetic abnormality. For example, 20 (5.4%) of the 373 males referred for the fragile X syndrome, or 1.4% of all males (20 of 1,428) excluding those with ambiguous genitalia, were diagnosed with this syndrome while 8 (2.1%) of the 373 males had a chromosome abnormality other than the fragile X chromosome. In addition, 85 (70.2%) of 121 males referred for Down syndrome had this syndrome, and only 53 (40.8%) of 130 females referred for Down syndrome had this diagnosis. This study should assist physicians in middle Tennessee and surrounding areas by increasing their awareness of the types and frequencies of cytogenetic diseases and by providing figures for comparison with other regions of the country. PMID:7886528

  12. Roles of exonucleases and translesion synthesis DNA polymerases during mitotic gap repair in yeast

    PubMed Central

    Guo, Xiaoge; Jinks-Robertson, Sue

    2013-01-01

    Transformation-based gap-repair assays have long been used to model the repair of mitotic double-strand breaks (DSBs) by homologous recombination in yeast. In the current study, we examine genetic requirements of two key processes involved in DSB repair: (1) the processive 5′-end resection that is required to efficiently engage a repair template and (2) the filling of resected ends by DNA polymerases. The specific gap-repair assay used allows repair events resolved as crossover versus noncrossover products to be distinguished, as well as the extent of heteroduplex DNA formed during recombination to be measured. To examine end resection, the efficiency and outcome of gap repair were monitored in the absence of the Exo1 exonuclease and the Sgs1 helicase. We found that either Exo1 or Sgs1 presence is sufficient to inhibit gap-repair efficiency over 10-fold, consistent with resection-mediated destruction of the introduced plasmid. In terms of DNA polymerase requirements for gap repair, we focused specifically on potential roles of the Pol ζ and Pol η translesion synthesis DNA polymerases. We found that both Pol ζ and Pol η are necessary for efficient gap repair and that each functions independently of the other. These polymerases may be either in the initiation of DNA synthesis from the an invading end, or in a gap-filling process that is required to complete recombination. PMID:24210827

  13. Efficient DNA Repair: A Cell’s Fountain of Youth? | Center for Cancer Research

    Cancer.gov

    Given the central importance of the genome to a cell’s function, it is not surprising that there are a number of proteins devoted to sensing and repairing DNA damage. But what happens when these repair proteins do not work properly? Cancer is one possible outcome, and a growing body of evidence also indicates that the cellular response to DNA damage plays a key role in the aging process. This concept is supported by the fact that many premature aging syndromes are caused by mutations in DNA repair proteins.

  14. Cytogenetic studies of three triazine herbicides. I. In vitro studies

    EPA Science Inventory

    Atrazine, simazine, and cyanazine are widely used pre-emergence and post-emergence triazine herbicides that have made their way into the potable water supply of many agricultural communities. Because of this and the prevalence of contradictory cytogenetic studies in the literatur...

  15. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases.

    PubMed

    Remy, Séverine; Tesson, Laurent; Menoret, Séverine; Usal, Claire; De Cian, Anne; Thepenier, Virginie; Thinard, Reynald; Baron, Daniel; Charpentier, Marine; Renaud, Jean-Baptiste; Buelow, Roland; Cost, Gregory J; Giovannangeli, Carine; Fraichard, Alexandre; Concordet, Jean-Paul; Anegon, Ignacio

    2014-08-01

    The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%-5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner. © 2014 Remy et al.; Published by Cold Spring Harbor Laboratory Press.

  16. DNA Repair Defects and Chromosomal Aberrations

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    the DNA repair-defective cell lines were smaller than those of normal cells, with the DNA-PK-deficient cells having RBEs near unity. To further investigate the sensitivity differences that were observed in ATM and NBS deficient cells, chromosomal aberrations were analyzed in normal lung fibroblast cells treated with KU-55933 (a specific ATM kinase inhibitor) or Mirin (an Mre11- Rad50-Nbs1 complex inhibitor involved in activation of ATM). We also performed siRNA knockdown of these proteins. Preliminary data indicate that chromosome exchanges increase in cells treated with the specific ATM inhibitor. Possible cytogenetic signatures of acute and low dose-rate gamma irradiation in ATM or nibrin deficient and suppressed cells will be discussed.

  17. Mosquito cytogenetics

    PubMed Central

    Kitzmiller, James B.

    1963-01-01

    Although an intensified interest in mosquito cytogenetics in the past decade has produced a number of contributions to knowledge on this subject, the available information is still superficial and limited to a few mosquito species only. The author of this review summarizes the research done in this field between 1953 and 1962. The following are some of the achievements and some of the gaps that remain to be filled. Karyotypes of several species of Anopheles, Aedes and Culex conform to the general pattern 2n=6, with heterosomes distinguishable only in Anopheles. At least three different karyotypes are present in Anopheles. Salivary gland chromosome maps are now available for several anopheline species, but are still lacking for Culex and Aedes. No precise correlation may yet be made between the frequency of chromosomal aberrations and the degree of insecticide-resistance. Sexual differences in the salivary X-chromosomes have been reported for several species of Anopheles. Chromosomal polymorphism is common in some anophelines, but rare in others. Chromosomal mutation has been induced by means of X-rays. In his conclusions, the author stresses that prospects are especially good for evolutionary and genetic studies involving chromosomal polymorphism. PMID:14058227

  18. Repair process and a repaired component

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, III, Herbert Chidsey; Simpson, Stanley F.

    Matrix composite component repair processes are disclosed. The matrix composite repair process includes applying a repair material to a matrix composite component, securing the repair material to the matrix composite component with an external securing mechanism and curing the repair material to bond the repair material to the matrix composite component during the securing by the external securing mechanism. The matrix composite component is selected from the group consisting of a ceramic matrix composite, a polymer matrix composite, and a metal matrix composite. In another embodiment, the repair process includes applying a partially-cured repair material to a matrix composite component,more » and curing the repair material to bond the repair material to the matrix composite component, an external securing mechanism securing the repair material throughout a curing period, In another embodiment, the external securing mechanism is consumed or decomposed during the repair process.« less

  19. Systems Maintenance Automated Repair Tasks (SMART)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    SMART is an interactive decision analysis and refinement software system that uses evaluation criteria for discrepant conditions to automatically provide and populate a document/procedure with predefined steps necessary to repair a discrepancy safely, effectively, and efficiently. SMART can store the tacit (corporate) knowledge merging the hardware specification requirements with the actual "how to" repair methods, sequences, and required equipment, all within a user-friendly interface. Besides helping organizations retain repair knowledge in streamlined procedures and sequences, SMART can also help them in saving processing time and expense, increasing productivity, improving quality, and adhering more closely to safety and other guidelines. Though SMART was developed for Space Shuttle applications, its interface is easily adaptable to any hardware that can be broken down by component, subcomponent, discrepancy, and repair.

  20. Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping.

    PubMed

    Zhang, Yunxia; Cheng, Chunyan; Li, Ji; Yang, Shuqiong; Wang, Yunzhu; Li, Ziang; Chen, Jinfeng; Lou, Qunfeng

    2015-09-25

    Differentiation and copy number of repetitive sequences affect directly chromosome structure which contributes to reproductive isolation and speciation. Comparative cytogenetic mapping has been verified an efficient tool to elucidate the differentiation and distribution of repetitive sequences in genome. In present study, the distinct chromosomal structures of five Cucumis species were revealed through genomic in situ hybridization (GISH) technique and comparative cytogenetic mapping of major satellite repeats. Chromosome structures of five Cucumis species were investigated using GISH and comparative mapping of specific satellites. Southern hybridization was employed to study the proliferation of satellites, whose structural characteristics were helpful for analyzing chromosome evolution. Preferential distribution of repetitive DNAs at the subtelomeric regions was found in C. sativus, C hystrix and C. metuliferus, while majority was positioned at the pericentromeric heterochromatin regions in C. melo and C. anguria. Further, comparative GISH (cGISH) through using genomic DNA of other species as probes revealed high homology of repeats between C. sativus and C. hystrix. Specific satellites including 45S rDNA, Type I/II, Type III, Type IV, CentM and telomeric repeat were then comparatively mapped in these species. Type I/II and Type IV produced bright signals at the subtelomeric regions of C. sativus and C. hystrix simultaneously, which might explain the significance of their amplification in the divergence of Cucumis subgenus from the ancient ancestor. Unique positioning of Type III and CentM only at the centromeric domains of C. sativus and C. melo, respectively, combining with unique southern bands, revealed rapid evolutionary patterns of centromeric DNA in Cucumis. Obvious interstitial telomeric repeats were observed in chromosomes 1 and 2 of C. sativus, which might provide evidence of the fusion hypothesis of chromosome evolution from x = 12 to x = 7 in

  1. Angelman syndrome assessed by neurological and molecular cytogenetic investigations.

    PubMed

    Hou, J W; Wang, P J; Wang, T R

    1997-01-01

    Angelman syndrome (AS) is characterized by severe psychomotor retardation, speech impairment, happy disposition with bursts of laughter, ataxia, convulsions, and some distinct physical anomalies. Correct diagnosis of AS is important because of its clinical implications, and once the disease is confirmed, familial genetic counseling becomes crucial. We evaluated 22 patients with a putative diagnosis of AS by both clinical and molecular cytogenetic analysis. A deletion of the region 15q11-13 could be identified cytogenetically in 11 cases by high-resolution technique (group I). Four additional cases were confirmed by fluorescence in situ hybridization (FISH) study with D15S11, SNRPN, D15S10, and GABRB 3 [Prader-Willi syndrome (PWS)/AS region probes] (group II). The common deletion of GABRB 3 was documented in those AS cases (n = 15) by FISH. The other 7 cases exhibited no deletion over 15q11-13 at either the cytogenetic or molecular level (group III). We compared the following associated neurological disorders: convulsions and abnormal EEG, microcephaly, sleep and behavior problems, brain anomalies proved by image studies, sexual precocity with pineal tumor among the three groups, as well as other clinical conditions including congenital heart disease, obesity, scoliosis, and hypopigmentation. In the present study, the differences in neurological and facial characteristics were not distinct among these groups. However, the associated conditions were more frequently observed in the patients with deletion than in those without deletion. The EEG features of AS appear to be less sufficient in helping identify patients at an early age before the clinical features become obvious. Therefore, a region involved in the major As phenotypes may contain only one or more tightly contiguous genes around the GABRB 3 locus, which may explain the clinical heterogeneity in AS.

  2. Experimental Fatigue Study of Composite Patch Repaired Steel Plates with Cracks

    NASA Astrophysics Data System (ADS)

    Karatzas, Vasileios A.; Kotsidis, Elias A.; Tsouvalis, Nicholas G.

    2015-10-01

    Cracks are among the most commonly encountered defects in metallic structures operating at sea. Composite patch repairing is a repair method which is gaining popularity as it counters most of the problems faced by conventional renewal repairs. Extensive studies can be found in the literature addressing the efficiency of this novel repair method using techniques which meet higher performance and monitoring standards than these commonly found in naval applications. In this work the efficiency of practices widely used in the ship repair industry for the implementation of composite patch repairing is addressed. To this end, steel plates repaired with composite patches were tested under fatigue loading. The composite patches consisted of carbon fibers in epoxy matrix and were directly laminated to the steel surface using the vacuum infusion method. Two different surface preparation methods, namely grit-blasting and mechanical treatment with the use of a needle gun were studied. In addition, in order to account for the harsh environmental conditions during the operating life of the structure and to study its effect on the repair, two different aging scenarios were considered. Non-destructive evaluation of the patches was performed so as to assess the quality of the repair, and the evolution of debonding during testing.

  3. Molecular Cytogenetics Guides Massively Parallel Sequencing of a Radiation-Induced Chromosome Translocation in Human Cells.

    PubMed

    Cornforth, Michael N; Anur, Pavana; Wang, Nicholas; Robinson, Erin; Ray, F Andrew; Bedford, Joel S; Loucas, Bradford D; Williams, Eli S; Peto, Myron; Spellman, Paul; Kollipara, Rahul; Kittler, Ralf; Gray, Joe W; Bailey, Susan M

    2018-05-11

    Chromosome rearrangements are large-scale structural variants that are recognized drivers of oncogenic events in cancers of all types. Cytogenetics allows for their rapid, genome-wide detection, but does not provide gene-level resolution. Massively parallel sequencing (MPS) promises DNA sequence-level characterization of the specific breakpoints involved, but is strongly influenced by bioinformatics filters that affect detection efficiency. We sought to characterize the breakpoint junctions of chromosomal translocations and inversions in the clonal derivatives of human cells exposed to ionizing radiation. Here, we describe the first successful use of DNA paired-end analysis to locate and sequence across the breakpoint junctions of a radiation-induced reciprocal translocation. The analyses employed, with varying degrees of success, several well-known bioinformatics algorithms, a task made difficult by the involvement of repetitive DNA sequences. As for underlying mechanisms, the results of Sanger sequencing suggested that the translocation in question was likely formed via microhomology-mediated non-homologous end joining (mmNHEJ). To our knowledge, this represents the first use of MPS to characterize the breakpoint junctions of a radiation-induced chromosomal translocation in human cells. Curiously, these same approaches were unsuccessful when applied to the analysis of inversions previously identified by directional genomic hybridization (dGH). We conclude that molecular cytogenetics continues to provide critical guidance for structural variant discovery, validation and in "tuning" analysis filters to enable robust breakpoint identification at the base pair level.

  4. Epigenetic changes of DNA repair genes in cancer.

    PubMed

    Lahtz, Christoph; Pfeifer, Gerd P

    2011-02-01

    'Every Hour Hurts, The Last One Kills'. That is an old saying about getting old. Every day, thousands of DNA damaging events take place in each cell of our body, but efficient DNA repair systems have evolved to prevent that. However, our DNA repair system and that of most other organisms are not as perfect as that of Deinococcus radiodurans, for example, which is able to repair massive amounts of DNA damage at one time. In many instances, accumulation of DNA damage has been linked to cancer, and genetic deficiencies in specific DNA repair genes are associated with tumor-prone phenotypes. In addition to mutations, which can be either inherited or somatically acquired, epigenetic silencing of DNA repair genes may promote tumorigenesis. This review will summarize current knowledge of the epigenetic inactivation of different DNA repair components in human cancer.

  5. Power loss and right ventricular efficiency in patients after tetralogy of Fallot repair with pulmonary insufficiency: clinical implications.

    PubMed

    Fogel, Mark A; Sundareswaran, Kartik S; de Zelicourt, Diane; Dasi, Lakshmi P; Pawlowski, Tom; Rome, Jack; Yoganathan, Ajit P

    2012-06-01

    To quantify right ventricular output power and efficiency and correlate these to ventricular function in patients with repaired tetralogy of Fallot. This might aid in determining the optimal timing for pulmonary valve replacement. We reviewed the cardiac catheterization and magnetic resonance imaging data of 13 patients with tetralogy of Fallot (age, 22 ± 17 years). Using pressure and flow measurements in the main pulmonary artery, cardiac output and regurgitation fraction, right ventricular (RV) power output, loss, and efficiency were calculated. The RV function was evaluated using cardiac magnetic resonance imaging. The RV systolic power was 1.08 ± 0.62 W, with 20.3% ± 8.6% power loss owing to 41% ± 14% pulmonary regurgitation (efficiency, 79.7% ± 8.6%; 0.84 ± 0.73 W), resulting in a net cardiac output of 4.24 ± 1.82 L/min. Power loss correlated significantly with the indexed RV end-diastolic and end-systolic volume (R = 0.78, P = .002 and R = 0.69, P = .009, respectively). The normalized RV power output had a significant negative correlation with RV end-diastolic and end-systolic volumes (both R = -0.87, P = .002 and R = -0.68, P = .023, respectively). A rapid decrease occurred in the RV power capacity with an increasing RV volume, with the curve flattening out at an indexed RV end-diastolic and end-systolic volume threshold of 139 mL/m(2) and 75 mL/m(2), respectively. Significant power loss is present in patients with repaired tetralogy of Fallot and pulmonary regurgitation. A rapid decrease in efficiency occurs with increasing RV volume, suggesting that pulmonary valve replacement should be done before the critical value of 139 mL/m(2) and 75 mL/m(2) for the RV end-diastolic and end-systolic volume, respectively, to preserve RV function. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  6. Cytogenetics in the management of multiple myeloma: an update by the Groupe francophone de cytogénétique hématologique (GFCH).

    PubMed

    Daudignon, Agnès; Quilichini, Benoît; Ameye, Geneviève; Poirel, Hélène; Bastard, Christian; Terré, Christine

    2016-10-01

    Cytogenetics of multiple myeloma has evolved in recent years by the emergence of Interphasic fluorescence in situ hybridization (FISH) performed on sorted plasma cells detecting abnormalities independently of a proliferative and infiltrative index. Cytogenetic analysis plays a major part in the risk stratification of myeloma diagnosis due to prognostic impact of various cytogenetic abnormalities as well as to the association between emerging therapeutic approaches in MM. Thus, practice guidelines now recommend interphasic FISH or alternative molecular technics as the initial analysis for multiple myeloma. The Groupe francophone de cytogénétique hématologique (GFCH) proposes in this issue an update of managing multiple myeloma cytogenetics.

  7. Electron Transfer Mechanisms of DNA Repair by Photolyase

    NASA Astrophysics Data System (ADS)

    Zhong, Dongping

    2015-04-01

    Photolyase is a flavin photoenzyme that repairs two DNA base damage products induced by ultraviolet (UV) light: cyclobutane pyrimidine dimers and 6-4 photoproducts. With femtosecond spectroscopy and site-directed mutagenesis, investigators have recently made significant advances in our understanding of UV-damaged DNA repair, and the entire enzymatic dynamics can now be mapped out in real time. For dimer repair, six elementary steps have been characterized, including three electron transfer reactions and two bond-breaking processes, and their reaction times have been determined. A unique electron-tunneling pathway was identified, and the critical residues in modulating the repair function at the active site were determined. The dynamic synergy between the elementary reactions for maintaining high repair efficiency was elucidated, and the biological nature of the flavin active state was uncovered. For 6-4 photoproduct repair, a proton-coupled electron transfer repair mechanism has been revealed. The elucidation of electron transfer mechanisms and two repair photocycles is significant and provides a molecular basis for future practical applications, such as in rational drug design for curing skin cancer.

  8. Cytogenetic map of common bean (Phaseolus vulgaris L.)

    PubMed Central

    Fonsêca, Artur; Ferreira, Joana; dos Santos, Tiago Ribeiro Barros; Mosiolek, Magdalena; Bellucci, Elisa; Kami, James; Gepts, Paul; Geffroy, Valérie; Schweizer, Dieter; dos Santos, Karla G. B.

    2010-01-01

    A cytogenetic map of common bean was built by in situ hybridization of 35 bacterial artificial chromosomes (BACs) selected with markers mapping to eight linkage groups, plus two plasmids for 5S and 45S ribosomal DNA and one bacteriophage. Together with three previously mapped chromosomes (chromosomes 3, 4, and 7), 43 anchoring points between the genetic map and the cytogenetic map of the species are now available. Furthermore, a subset of four BAC clones was proposed to identify the 11 chromosome pairs of the standard cultivar BAT93. Three of these BACs labelled more than a single chromosome pair, indicating the presence of repetitive DNA in their inserts. A repetitive distribution pattern was observed for most of the BACs; for 38% of them, highly repetitive pericentromeric or subtelomeric signals were observed. These distribution patterns corresponded to pericentromeric and subtelomeric heterochromatin blocks observed with other staining methods. Altogether, the results indicate that around half of the common bean genome is heterochromatic and that genes and repetitive sequences are intermingled in the euchromatin and heterochromatin of the species. Electronic supplementary material The online version of this article (doi:10.1007/s10577-010-9129-8) contains supplementary material, which is available to authorized users. PMID:20449646

  9. Practical Instruction in Tissue Culture and Cytogenetics for Sandwich Students.

    ERIC Educational Resources Information Center

    Williams, D. C.; Bishun, N. P.

    1973-01-01

    Describes the training and practical techniques taught to students involved in a sandwich course at the Tissue Culture and Cytogenetics Unit of the Marie Curie Memorial Foundation, Surrey, England. Students spend a minimum of six months involved in the sandwich course before returning to university for a final academic year. (JR)

  10. Biomechanical effects of a 2 suture-pass medial inter-implant mattress on transosseous-equivalent rotator cuff repair and considerations for a "technical efficiency ratio".

    PubMed

    Park, Maxwell C; Peterson, Alexander; Patton, John; McGarry, Michelle H; Park, Chong J; Lee, Thay Q

    2014-03-01

    Rotator cuff repair involving fewer tendon suture passes without compromising biomechanical performance would represent a technical advancement. An inter-implant "medial pulley-mattress" transosseous-equivalent (MP-TOE) repair requiring fewer tendon suture-passes was hypothesized to provide equivalent biomechanical characteristics compared to the control. In 6 human cadaveric shoulders, a transosseous-equivalent (TOE) repair (control) was performed utilizing 2 separate medial mattresses resulting in 4 tendon-bridging sutures. In 6 matched-pairs, 2 single-loaded anchors were used to create a medial inter-implant mattress construct (all sutures shuttled in 1 tendon pass per anchor)-after knot-tying, the same tendon-bridging pattern as the control was created. A materials testing machine cyclically loaded each repair from 10-180 N for 30 cycles; each repair subsequently underwent failure testing. Gap and strain were measured with a video digitizing system. A "technical efficiency ratio" (TER) was defined as: (#knots + #suture passes + #suture limbs)/#fixation points. Cyclic and failure testing demonstrated no significant differences between constructs. Gap formation at cycle 30 was 5.3 ± 0.8 mm (TOE) and 5.0 ± 0.3 mm (MP-TOE) (P = .62). Cycle 30 anterior strain values were -16.0 ± 7.3% (TOE) and -15.8 ± 6.6% (MP-TOE) (P = .99). Yield loads were 208.7 ± 2.7 N (TOE) and 204.0 ± 1.3 N (MP-TOE) (P = .17). Mode of failure demonstrated less tendon cut-out with the MP-TOE repair. The MP-TOE repair has a TER of 2.0 vs 2.5 for the control. The MP-TOE repair requiring fewer tendon suture passes, yet creating an additional inter-implant mattress configuration, is biomechanically equivalent to the original TOE technique, and may limit failure with improved medial load-sharing capacity. A TER may help quantify technical ease and help standardize comparisons between repair techniques. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. All rights

  11. Analysis and Test of Repair Concepts for a Carbon-Rod Reinforced Laminate

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.; Rousseau, Carl Q.

    2000-01-01

    The use of pultruded carbon-epoxy rods for the reinforcement of composite laminates in some structures results in an efficient structural concept. The results of an analytical and experimental investigation of repair concepts of completely severed carbon-epoxy rods is presented. Three repair concepts are considered: (a) bonded repair with outside moldline and inside moldline doublers; (b) bonded repair with fasteners, and (c) bonded repair with outside moldline doubler only. The stiffness of the repairs was matched with the stiffness of the baseline specimen. The failure strains for the bonded repair with fasteners and the bonded repair with an outside moldline doubler exceeded a target design strain set for the repair concepts.

  12. Advances in cytogenetics of Brazilian rodents: cytotaxonomy, chromosome evolution and new karyotypic data

    PubMed Central

    Di-Nizo, Camilla Bruno; Banci, Karina Rodrigues da Silva; Sato-Kuwabara, Yukie; Silva, Maria José de J.

    2017-01-01

    Abstract Rodents constitute one of the most diversified mammalian orders. Due to the morphological similarity in many of the groups, their taxonomy is controversial. Karyotype information proved to be an important tool for distinguishing some species because some of them are species-specific. Additionally, rodents can be an excellent model for chromosome evolution studies since many rearrangements have been described in this group.This work brings a review of cytogenetic data of Brazilian rodents, with information about diploid and fundamental numbers, polymorphisms, and geographical distribution. We point out that, even with the recent efforts on cytogenetic studies in this group, many species lack karyotypic data. Moreover, we describe for the first time the karyotype of Carterodon sulcidens (Lund, 1838) (Family Echimyidae), a new fundamental number for an undescribed species of Neacomys Thomas, 1900 (Family Cricetidae, Subfamily Sigmodontinae), and illustrate the karyotype of a Brazilian specimen of Mus musculus Linnaeus, 1758 (Family Muridae). This review compiles the cytogenetic data on Brazilian rodents reported in the last three decades, after the last revision published in 1984, including synonyms, chromosomal variations, and geographic distribution. Additionally, it also reinforces that Brazilian biodiversity is still poorly known, considering the new data reported here. PMID:29362668

  13. Mechanical injury and repair of cells

    NASA Technical Reports Server (NTRS)

    Miyake, Katsuya; McNeil, Paul L.

    2003-01-01

    OBJECTIVE: To concisely review the field of cell plasma membrane disruption (torn cell surface) and repair. MAIN POINTS: Plasma membrane disruption is a common form of cell injury under physiologic conditions, after trauma, in certain muscular dystrophies, and during certain forms of clinical intervention. Rapid repair of a disruption is essential to cell survival and involves a complex and active cell response that includes membrane fusion and cytoskeletal activation. Tissues, such as cardiac and skeletal muscle, adapt to a disruption injury by hypertrophying. Cells adapt by increasing the efficiency of their resealing response. CONCLUSION: Plasma membrane disruption is an important cellular event in both health and disease. The disruption repair mechanism is now well understood at the cellular level, but much remains to be learned at the molecular level. Cell and tissue level adaptational responses to the disruption either prevent its further occurrence or facilitate future repairs. Therapeutically useful drugs might result if, using this accumulating knowledge, chemical agents can be developed that can enhance repair or adaptive responses.

  14. Efficient DNA Repair: A Cell’s Fountain of Youth? | Center for Cancer Research

    Cancer.gov

    Given the central importance of the genome to a cell’s function, it is not surprising that there are a number of proteins devoted to sensing and repairing DNA damage. But what happens when these repair proteins do not work properly? Cancer is one possible outcome, and a growing body of evidence also indicates that the cellular response to DNA damage plays a key role in the

  15. A comparative analysis of the effectiveness of cytogenetic and molecular genetic methods in the detection of Down syndrome.

    PubMed

    Mačkić-Đurović, Mirela; Projić, Petar; Ibrulj, Slavka; Cakar, Jasmina; Marjanović, Damir

    2014-05-01

    The goal of this study was to examine the effectiveness of 6 STR markers application (D21S1435, D21S11, D21S1270, D21S1411, D21S226 and IFNAR) in molecular genetic diagnostics of Down syndrome (DS) and to compare it with cytogenetic method. Testing was performed on 73 children, with the previously cytogenetically confirmed Down syndrome. DNA isolated from the buccal swab was used. Previously mentioned loci located on chromosome 21 were simultaneously amplified using quantitative fluorescence PCR (QF PCR). Using this method, 60 previously cytogenetically diagnosed DS with standard type of trisomy 21 were confirmed. Furthermore, six of eight children with mosaic type of DS were detected. Two false negative results for mosaic type of DS were obtained. Finally, five children with the translocation type of Down syndrome were also confirmed with this molecular test. In conclusion, molecular genetic analysis of STR loci is fast, cheap and simple method that could be used in detection of DS. Regarding possible false results detected for certain number of mosaic types, cytogenetic analysis should be used as a confirmatory test.

  16. Clinical relevance of cytogenetics to pediatric practice. Postnatal findings of Patau syndrome - Review of 5 cases.

    PubMed

    Plaiasu, Vasilica; Ochiana, Diana; Motei, Gabriela; Anca, Ioana; Georgescu, Adrian

    2010-07-01

    Patau syndrome (trisomy 13) is one of the most common chromosomal anomalies clinically characterized by the presence of numerous malformations with a limited survival rate for most cases. Babies are usually identified at birth and the diagnosis is confirmed with genetic testing. In this review we outline the clinical and cytogenetic aspects of trisomy 13 and associated phenotypes for 5 cases analyzed in the last 3 years, referred to our Clinical Genetics Department. For each child cytogenetic analysis was performed to determine the genetic variant; also, the patients were investigated for other associated malformations (cardiac, cerebral, renal, ocular anomalies). All 5 cases presented multiple malformations, including some but not all signs of the classical clinical triad suggestive of Patau syndrome. The cytogenetic investigation confirmed for each case the suspected diagnosis and also indicated the specific genetic variant, this being a valuable information for the genetic counselling of the families. The application of genetic analysis can increase diagnosis and prognosis accuracy and have an impact on clinical management.

  17. [Familial retinoblastoma: cytogenetic study of the tumor].

    PubMed

    Robledo Batanero, M; Manzanal Martínez, A; Ayuso García, C; Benítez Ortiz, J

    1990-05-01

    We report a case of familiar retinoblastoma, in which both mother and daughter show bilateral retinoblastoma. The cytogenetic study, in both peripheral blood lymphocytes and tumoral tissue did not show alterations on the 13 chromosome, although we found a complex kariotype in tumoral tissue defined by three celular lines. In all of them appears a marker in which the 6 chromosome is involved (der 6). The derivated of 6 chromosome are markers highly characteristic of the retinoblastoma cases, and can be related with the aggressivity of tumor and the appearance of the second tumors.

  18. Molecular cytogenetic of the Amoy croaker, Argyrosomus amoyensis (Teleostei, Sciaenidae)

    NASA Astrophysics Data System (ADS)

    Liao, Mengxiang; Zheng, Jiao; Wang, Zhiyong; Wang, Yilei; Zhang, Jing; Cai, Mingyi

    2017-08-01

    The family Sciaenidae is remarkable for its species richness and economic importance. However, the cytogenetic data available in this fish group are still limited, especially those obtained using fluorescence in situ hybridization (FISH). In the present study, the chromosome characteristics of a sciaenid species, Argyrosomus amoyensis, were examined with several cytogenetic methods, including dual-FISH with 18S and 5S rDNA probes, and a self-genomic in situ hybridization procedure (Self-GISH). The karyotype of A. amoyensis comprised 2n=48 acrocentric chromosomes. A single pair of nucleolar organizer regions (NORs) was located at the proximal position of chromosome 1, which was positive for silver nitrate impregnation (AgNO3) staining and denaturation-propidium iodide (DPI) staining but negative for Giemsa staining and 4',6-diamidino-2-phenylindole (DAPI) staining, and was confirmed by FISH with 18S rDNA probes. The 5S rDNA sites were located at the centromeric region of chromosome 3. Telomeric FISH signals were detected at all chromosome ends with different intensities, but internal telomeric sequences (ITSs) were not found. Self-GISH resulted in strong signals distributed at the centromeric regions of all chromosomes. C-banding revealed not only centromeric heterochromatin, but also heterochromatin that located on NORs, in interstitial and distal telomeric regions of specific chromosomes. These results suggest that the karyotype of Amoy croaker was relatively conserved and primitive. By comparison with the reported cytogenetic data of other sciaenids, it can be deduced that although the karyotypic macrostructure and chromosomal localization of 18S rDNA are conserved, the distribution of 5S rDNA varies dynamically among sciaenid species. Thus, the 5S rDNA sites may have different evolutionary dynamics in relation to other chromosomal regions, and have the potential to be effective cytotaxonomic markers in Sciaenidae.

  19. Impact of cytogenetic abnormalities in adults with Ph-negative B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Lafage-Pochitaloff, Marina; Baranger, Laurence; Hunault, Mathilde; Cuccuini, Wendy; Lefebvre, Christine; Bidet, Audrey; Tigaud, Isabelle; Eclache, Virginie; Delabesse, Eric; Bilhou-Nabéra, Chrystèle; Terré, Christine; Chapiro, Elise; Gachard, Nathalie; Mozziconacci, Marie-Joelle; Ameye, Geneviève; Porter, Sarah; Grardel, Nathalie; Béné, Marie C; Chalandon, Yves; Graux, Carlos; Huguet, Françoise; Lhéritier, Véronique; Ifrah, Norbert; Dombret, Hervé

    2017-10-19

    Multiple cytogenetic subgroups have been described in adult Philadelphia chromosome (Ph)-negative B-cell precursor (BCP) acute lymphoblastic leukemia (ALL), often comprising small numbers of patients. In this study, we aimed to reassess the prognostic value of cytogenetic abnormalities in a large series of 617 adult patients with Ph-negative BCP-ALL (median age, 38 years), treated in the intensified Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)-2003/2005 trials. Combined data from karyotype, DNA index, fluorescence in situ hybridization, and polymerase chain reaction screening for relevant abnormalities were centrally reviewed and were informative in 542 cases (88%), allowing classification in 10 exclusive primary cytogenetic subgroups and in secondary subgroups, including complex and monosomal karyotypes. Prognostic analyses focused on cumulative incidence of failure (including primary refractoriness and relapse), event-free survival, and overall survival. Only 2 subgroups, namely t(4;11)/ KMT2A-AFF1 and 14q32/ IGH translocations, displayed a significantly worse outcome in this context, still observed after adjustment for age and after censoring patients who received allogeneic stem cell transplantation (SCT) in first remission at SCT time. A worse outcome was also observed in patients with low hypodiploidy/near triploidy, but this was likely related to their higher age and worse tolerance to therapy. The other cytogenetic abnormalities, including complex and monosomal karyotypes, had no prognostic value in these intensive protocols designed for adult patients up to the age of 60 years. © 2017 by The American Society of Hematology.

  20. Cytogenetic effects of cadmium accumulation on water hyacinth (Eichhornia crassipes)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosas, I.; Carbajal, M.E.; Gomez-Arroyo, S.

    1984-04-01

    Cadmium was bioassayed to observe cytogenetic effects in the water hyacinth (Eichhornia crassipes). Plants were exposed for 96 hr to freshwater containing 0.01, 0.05, 0.10, 1, 5, and 10 mg/liter of cadmium. Metal concentrations in tissues were determined by atomic absorption spectrophotometry. The highest level was found in roots, thus root-tip cells were used for cytogenetic studies; after 24 hr of exposure, micronuclei, c-mitotic effects, and pycnosis were detected and after 48 hr polyploidy was observed. A linear relationship between frequencies of micronuclei and cadmium concentrations was found; at 1, 5, and 10 mg/liter micronuclei numbers were always the lowest.more » The inhibition of cell proliferation, shown by the low mitotic index, was proportional to the concentration and time of exposure. From the results presented in this paper it may be concluded that water hyacinth is a good sensor, due to its fast rate of metal accumulation, which allows an easy way to determine the presence of potential mutagenic compounds in water. 63 references.« less

  1. The residual repair capacity of xeroderma pigmentosum complementation group C fibroblasts is highly specific for transcriptionally active DNA.

    PubMed Central

    Venema, J; van Hoffen, A; Natarajan, A T; van Zeeland, A A; Mullenders, L H

    1990-01-01

    We have measured removal of pyrimidine dimers in defined DNA sequences in confluent and actively growing normal human and xeroderma pigmentosum complementation group C (XP-C) fibroblasts exposed to 10 J/m2 UV-irradiation. In normal fibroblasts 45% and 90% of the dimers are removed from the transcriptionally active adenosine deaminase (ADA) gene within 4 and 24 hours after irradiation respectively. Equal repair efficiencies are found in fragments located entirely within the transcription unit or partly in the 3' flanking region of the ADA gene. The rate and extent of dimer removal from the dihydrofolate reductase (DHFR) gene is very similar to that of the ADA gene. Repair of the transcriptionally inactive 754 locus is less efficient: 18% and 52% of the dimers are removed within 4 and 24 hours respectively. In spite of the limited overall repair capacity, confluent XP-C fibroblasts efficiently remove dimers from the ADA and DHFR genes: about 90% and 50% within 24 hours respectively. The 3' end of the ADA gene is repaired as efficiently as in normal human fibroblasts, but less efficient repair occurs in DNA fragments located in the DHFR gene and at the 5' end of the ADA gene. Repair of the inactive 754 locus does not exceed the very slow rate of dimer removal from the genome overall. Confluent and actively growing XP-C cells show similar efficiencies of repair of the ADA, DHFR and 754 genes. Our findings suggest the existence of two independently operating pathways directed towards repair of pyrimidine dimers in either active or inactive chromatin. XP-C cells have lost the capacity to repair inactive chromatin, but are still able to repair active chromatin. Images PMID:2308842

  2. DNA Damage and Repair in Human Cancer: Molecular Mechanisms and Contribution to Therapy-Related Leukemias

    PubMed Central

    Casorelli, Ida; Bossa, Cecilia; Bignami, Margherita

    2012-01-01

    Most antitumour therapies damage tumour cell DNA either directly or indirectly. Without repair, damage can result in genetic instability and eventually cancer. The strong association between the lack of DNA damage repair, mutations and cancer is dramatically demonstrated by a number of cancer-prone human syndromes, such as xeroderma pigmentosum, ataxia-telangiectasia and Fanconi anemia. Notably, DNA damage responses, and particularly DNA repair, influence the outcome of therapy. Because DNA repair normally excises lethal DNA lesions, it is intuitive that efficient repair will contribute to intrinsic drug resistance. Unexpectedly, a paradoxical relationship between DNA mismatch repair and drug sensitivity has been revealed by model studies in cell lines. This suggests that connections between DNA repair mechanism efficiency and tumour therapy might be more complex. Here, we review the evidence for the contribution of carcinogenic properties of several drugs as well as of alterations in specific mechanisms involved in drug-induced DNA damage response and repair in the pathogenesis of therapy-related cancers. PMID:23066388

  3. Cytogenetic risks and possible adverse health effects by narcotic substances dependent.

    PubMed

    Movafagh, Abolfazl; Haeri, Ali; Kolahi, Ali Asghar; Hassani-Moghadam, Hossein

    2012-09-01

    Illicit drug abuse has crossed social, economic, and geographical borders, and remains one of the major health problems that modern society is facing worldwide. The role of multiple drug abuse as a basic for chromosome damage has been overlooked and it is important to determine its possible adverse health effects. This study aimed to compare the frequency of chromosomal damages between drug addicts and free drug controls. Cytogenetic study was obtained from 146 illicit drug-users and 200 free drug controls. Subjects were grouped into three categories depending on main drug of dependence. Cytogenetic studies on cultured lymphocytes showed an increase the frequency of chromosomal damages among addicts including opiate (5.89%), heroin (7.65%), and crystal (4.9%) when compared with drug free controls (1.45%). The frequency of chromosomal abnormalities was breaks, gaps, marker, and acentric, respectively. Our findings are also important as they are among the first to suggest here, illicit drug addiction continue to be significant public health problems in Iran.

  4. Evidence of K+ channel function in epithelial cell migration, proliferation, and repair

    PubMed Central

    Girault, Alban

    2013-01-01

    Efficient repair of epithelial tissue, which is frequently exposed to insults, is necessary to maintain its functional integrity. It is therefore necessary to better understand the biological and molecular determinants of tissue regeneration and to develop new strategies to promote epithelial repair. Interestingly, a growing body of evidence indicates that many members of the large and widely expressed family of K+ channels are involved in regulation of cell migration and proliferation, key processes of epithelial repair. First, we briefly summarize the complex mechanisms, including cell migration, proliferation, and differentiation, engaged after epithelial injury. We then present evidence implicating K+ channels in the regulation of these key repair processes. We also describe the mechanisms whereby K+ channels may control epithelial repair processes. In particular, changes in membrane potential, K+ concentration, cell volume, intracellular Ca2+, and signaling pathways following modulation of K+ channel activity, as well as physical interaction of K+ channels with the cytoskeleton or integrins are presented. Finally, we discuss the challenges to efficient, specific, and safe targeting of K+ channels for therapeutic applications to improve epithelial repair in vivo. PMID:24196531

  5. Molecular Cytogenetic Characterization of Tenosynovial Giant Cell Tumors

    PubMed Central

    Brandal, Petter; Bjerkehagen, Bodil; Heim, Sverre

    2004-01-01

    Abstract Tenosynovial giant cell tumor (TSGCT) is a disease of disputed etiology and pathogenesis. Some investigations indicate a neoplastic origin of the tumors; others indicate that they are polyclonal and inflammatory. The cytogenetic and molecular genetic features of TSGCTs are largely unknown, as only some 20 localized and 30 diffuse tumors with cytogenetic aberrations have been reported. The most common karyotypic aberrations have been trisomy for chromosomes 5 and 7 and translocations involving chromosomal area 1p11-13. We decided to screen the genomes of TSGCTs by comparative genomic hybridization (CGH) to perform interphase fluorescence in situ hybridization (IP-FISH), looking for numerical aberrations of chromosomes 1, 5, and 7, and to analyze the tumors for microsatellite instability. Except for two diffuse TSGCTs that came fresh to us, and which, by karyotyping, exhibited t(1;22)(p13;q12) and a t(1;1)(q21;p11) and +7, respectively, all studies had to be performed on formalin-fixed, paraffin-embedded material. DNA was extracted from 51 localized and nine diffuse TSGCTs. CGH was successful for 24 tumors, but none of them showed copy number changes. The IP-FISH studies showed trisomy 7 in 56% of the tumors (15/27), whereas chromosomes 1 and 5 seemed to be disomic in all TSGCTs. All informative tumors were wild-type by microsatellite instability analysis. PMID:15548367

  6. Combining heavy ion radiation and artificial microRNAs to target the homologous recombination repair gene efficiently kills human tumor cells.

    PubMed

    Zheng, Zhiming; Wang, Ping; Wang, Hongyan; Zhang, Xiangming; Wang, Minli; Cucinotta, Francis A; Wang, Ya

    2013-02-01

    Previously, we demonstrated that heavy ions kill more cells at the same dose than X-rays because DNA-clustered lesions produced by heavy ions affect nonhomologous end-joining (NHEJ) repair but not homologous recombination repair (HRR). We have also shown that our designed artificial microRNAs (amiRs) could efficiently target XRCC4 (an essential factor for NHEJ) or XRCC2 (an essential factor for HRR) and sensitize human tumor cells to X-rays. Based on these data, we were interested in testing the hypothesis that combining heavy ions and amiRs to target HRR but not NHEJ should more efficiently kill human tumor cells. Human tumor cell lines (U87MG, a brain tumor cell line, and A549, a lung cancer cell line) and their counterparts, overexpressed with amiR to target XRCC2, XRCC4 or both, were used in this study. Survival sensitivities were examined using a clonogenic assay after these cells were exposed to X-rays or heavy ions. In addition, these cell lines were subcutaneously injected into nude mice to form xenografts and the tumor size was compared after the tumor areas were exposed to X-rays or heavy ions. Although targeting either XRCC4 (NHEJ factor) or XRCC2 (HRR factor) sensitized the human tumor cells to X-rays, in vitro and the xenograft animal model, targeting only XRCC2 but not XRCC4 sensitized the human tumor cells to heavy ions in vitro and in the xenograft animal model. Combining heavy ions with targeting the HRR pathway, but not the NHEJ pathway, could significantly improve the efficiency of tumor cell death. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Metastatic neuroblastoma of the mandible: a cytogenetic and molecular genetic study.

    PubMed

    Manor, Esther; Kapelushnik, Joseph; Joshua, Ben-Zion; Bodner, Lipa

    2012-08-01

    Neuroblastoma (NB) jaw metastases are rare. Here, we report on cytogenetic and genetic studies on metastatic NB to the mandible. A 7-year-old boy, with an abdominal neuroblastoma, presented with a mass of the left body of the mandible. Cytogenetic analysis of the original tumor and the mandibular lesion biopsies revealed similar heterogenous subclones with 42 ~ 47,XY,+der(1)(q11 → qter),-2,del(7)(q21.1 → qter),-8,-9,-10,-11,del(11)(q13.3 → qter),-13,-14,-15,-17, + 18-18,der(18)(?),+21,+m1,+m2,+m3,+m4,+m5,+m6,+m7[cp25]. The different markers were identified by SKY analysis. Most of the cells carried 3-6 of these translocations: der(1;21), der(2;9;17), der(2;15;18), der(2;15;Y), der(8;10), der(10;17). Molecular examination using Neuroblastoma MLPA kit (MRC-Holland) revealed gain of 1q25, 1q42, 2q33, 2p23, 2p24 (N-myc), and 21q22, and loss of 11q22, 11q23, 17p13, and 17q11. FISH analysis using N-myc probe showed high amplification levels of N-myc. The cytogenetic and molecular genetic work-ups revealed that the mandibular lesion is a metastasis of the original abdominal tumor and not a second primary caused by the aggressive treatment. Clinical parameters such as : patient's age, site of primary tumor and the mandibular metastasis, together with poor prognosis genetic markers explain the patient's short-term survival.

  8. Dedicated cytogenetics factor is critical for improving karyotyping results for childhood leukaemias - experience in the National University Hospital, Singapore 1989-2006.

    PubMed

    Heng, J L; Chen, Y C; Quah, T C; Liu, T C; Yeoh, A E J

    2010-02-01

    Childhood leukaemia accounts for more than 40% of new childhood cancer cases. Karyotyping of cytogenetic abnormalities in such cases continues to provide critical prognostic information which allows the delivery of an appropriate intensity of treatment. Unfortunately, karyotyping of childhood leukaemia is difficult, laborious and often unsuccessful. Banding resolution tends to be poor unlike routine antenatal cytogenetics. The aim of the study is to highlight the benefit of dedicated cytogenetics in improving karyotyping results. We analysed the impact of setting up a team of cytogeneticists in the National University Hospital (NUH) on the success of karyotyping, evaluating cytogenetic data collected from 1989 to 2006. From 1989 to 2006, 4789 cases have been processed. Among them, 369 newly diagnosed and relapsed childhood acute leukaemia cases [281 acute lymphoblastic leukaemia (ALL) and 88 acute myeloid leukaemia (AML)] have been diagnosed at NUH. A dedicated cytogenetics laboratory with clearly defined standard operating procedures and quality control was set up in 2002. It used the established recommendation of a complete analysis of at least 20 metaphases per analysis. Overall, the frequency of successful karyotyping was significantly higher (P = 0.002) at 90.7% (185/204) from 2002-2006 compared to 79.4% (131/165) from 1989-2001. For ALL cases, the success rate improved from 77.6% (97/125) in 1989 to 2001 to 89.1% (139/156) in the 2002 to 2006 cohort. For AML, the success rate also was significantly improved (P = 0.04) from 85% (34/40) to 95.8% (46/48). Significantly, this high rate of success is still maintained despite a yearly increase in volume. The establishment of a dedicated cytogenetics service leads to an improvement in results.

  9. Human mismatch repair protein hMutLα is required to repair short slipped-DNAs of trinucleotide repeats.

    PubMed

    Panigrahi, Gagan B; Slean, Meghan M; Simard, Jodie P; Pearson, Christopher E

    2012-12-07

    Mismatch repair (MMR) is required for proper maintenance of the genome by protecting against mutations. The mismatch repair system has also been implicated as a driver of certain mutations, including disease-associated trinucleotide repeat instability. We recently revealed a requirement of hMutSβ in the repair of short slip-outs containing a single CTG repeat unit (1). The involvement of other MMR proteins in short trinucleotide repeat slip-out repair is unknown. Here we show that hMutLα is required for the highly efficient in vitro repair of single CTG repeat slip-outs, to the same degree as hMutSβ. HEK293T cell extracts, deficient in hMLH1, are unable to process single-repeat slip-outs, but are functional when complemented with hMutLα. The MMR-deficient hMLH1 mutant, T117M, which has a point mutation proximal to the ATP-binding domain, is defective in slip-out repair, further supporting a requirement for hMLH1 in the processing of short slip-outs and possibly the involvement of hMHL1 ATPase activity. Extracts of hPMS2-deficient HEC-1-A cells, which express hMLH1, hMLH3, and hPMS1, are only functional when complemented with hMutLα, indicating that neither hMutLβ nor hMutLγ is sufficient to repair short slip-outs. The resolution of clustered short slip-outs, which are poorly repaired, was partially dependent upon a functional hMutLα. The joint involvement of hMutSβ and hMutLα suggests that repeat instability may be the result of aberrant outcomes of repair attempts.

  10. Developing an in silico model of the modulation of base excision repair using methoxyamine for more targeted cancer therapeutics.

    PubMed

    Gurkan-Cavusoglu, Evren; Avadhani, Sriya; Liu, Lili; Kinsella, Timothy J; Loparo, Kenneth A

    2013-04-01

    Base excision repair (BER) is a major DNA repair pathway involved in the processing of exogenous non-bulky base damages from certain classes of cancer chemotherapy drugs as well as ionising radiation (IR). Methoxyamine (MX) is a small molecule chemical inhibitor of BER that is shown to enhance chemotherapy and/or IR cytotoxicity in human cancers. In this study, the authors have analysed the inhibitory effect of MX on the BER pathway kinetics using a computational model of the repair pathway. The inhibitory effect of MX depends on the BER efficiency. The authors have generated variable efficiency groups using different sets of protein concentrations generated by Latin hypercube sampling, and they have clustered simulation results into high, medium and low efficiency repair groups. From analysis of the inhibitory effect of MX on each of the three groups, it is found that the inhibition is most effective for high efficiency BER, and least effective for low efficiency repair.

  11. Repair methods for prestressed girder bridges.

    DOT National Transportation Integrated Search

    2009-04-30

    It is common practice that aging and structurally damaged prestressed concrete bridge members are taken out of service and replaced. : This, however, is not an efficient use of materials and resources since the member can often be repaired in situ. T...

  12. Molecular cytogenetic map of the central bearded dragon, Pogona vitticeps (Squamata: Agamidae).

    PubMed

    Young, M J; O'Meally, D; Sarre, S D; Georges, A; Ezaz, T

    2013-07-01

    Reptiles, as the sister group to birds and mammals, are particularly valuable for comparative genomic studies among amniotes. The Australian central bearded dragon (Pogona vitticeps) is being developed as a reptilian model for such comparisons, with whole-genome sequencing near completion. The karyotype consists of 6 pairs of macrochromosomes and 10 pairs microchromosomes (2n = 32), including a female heterogametic ZW sex microchromosome pair. Here, we present a molecular cytogenetic map for P. vitticeps comprising 87 anchor bacterial artificial chromosome clones that together span each macro- and microchromosome. It is the first comprehensive cytogenetic map for any non-avian reptile. We identified an active nucleolus organizer region (NOR) on the sub-telomeric region of 2q by mapping 18S rDNA and Ag-NOR staining. We identified interstitial telomeric sequences in two microchromosome pairs and the W chromosome, indicating that microchromosome fusion has been a mechanism of karyotypic evolution in Australian agamids within the last 21 to 19 million years. Orthology searches against the chicken genome revealed an intrachromosomal rearrangement of P. vitticeps 1q, identified regions orthologous to chicken Z on P. vitticeps 2q, snake Z on P. vitticeps 6q and the autosomal microchromosome pair in P. vitticeps orthologous to turtle Pelodiscus sinensis ZW and lizard Anolis carolinensis XY. This cytogenetic map will be a valuable reference tool for future gene mapping studies and will provide the framework for the work currently underway to physically anchor genome sequences to chromosomes for this model Australian squamate.

  13. Canadian Cytogenetic Emergency network (CEN) for biological dosimetry following radiological/nuclear accidents.

    PubMed

    Miller, Susan M; Ferrarotto, Catherine L; Vlahovich, Slavica; Wilkins, Ruth C; Boreham, Douglas R; Dolling, Jo-Anna

    2007-07-01

    To test the ability of the cytogenetic emergency network (CEN) of laboratories, currently under development across Canada, to provide rapid biological dosimetry using the dicentric assay for triage assessment, that could be implemented in the event of a large-scale radiation/nuclear emergency. A workshop was held in May 2004 in Toronto, Canada, to introduce the concept of CEN and recruit clinical cytogenetic laboratories at hospitals across the country. Slides were prepared for dicentric assay analysis following in vitro irradiation of blood to a range of gamma-ray doses. A minimum of 50 metaphases per slide were analyzed by 41 people at 22 different laboratories to estimate the exposure level. Dose estimates were calculated based on a dose response curve generated at Health Canada. There were a total of 104 dose estimates and 96 (92.3%) of them fell within the expected range using triage scoring criteria. Half of the laboratories analyzed 50 metaphases in cytogenetic networks.

  14. Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Katnam, K. B.; Da Silva, L. F. M.; Young, T. M.

    2013-08-01

    Advanced composite materials have gained popularity in high-performance structural designs such as aerospace applications that require lightweight components with superior mechanical properties in order to perform in demanding service conditions as well as provide energy efficiency. However, one of the major challenges that the aerospace industry faces with advanced composites - because of their inherent complex damage behaviour - is structural repair. Composite materials are primarily damaged by mechanical loads and/or environmental conditions. If material damage is not extensive, structural repair is the only feasible solution as replacing the entire component is not cost-effective in many cases. Bonded composite repairs (e.g. scarf patches) are generally preferred as they provide enhanced stress transfer mechanisms, joint efficiencies and aerodynamic performance. With an increased usage of advanced composites in primary and secondary aerospace structural components, it is thus essential to have robust, reliable and repeatable structural bonded repair procedures to restore damaged composite components. But structural bonded repairs, especially with primary structures, pose several scientific challenges with the current existing repair technologies. In this regard, the area of structural bonded repair of composites is broadly reviewed - starting from damage assessment to automation - to identify current scientific challenges and future opportunities.

  15. Lambda Red Mediated Gap Repair Utilizes a Novel Replicative Intermediate in Escherichia coli

    PubMed Central

    Reddy, Thimma R.; Fevat, Léna M. S.; Munson, Sarah E.; Stewart, A. Francis; Cowley, Shaun M.

    2015-01-01

    The lambda phage Red recombination system can mediate efficient homologous recombination in Escherichia coli, which is the basis of the DNA engineering technique termed recombineering. Red mediated insertion of DNA requires DNA replication, involves a single-stranded DNA intermediate and is more efficient on the lagging strand of the replication fork. Lagging strand recombination has also been postulated to explain the Red mediated repair of gapped plasmids by an Okazaki fragment gap filling model. Here, we demonstrate that gap repair involves a different strand independent mechanism. Gap repair assays examining the strand asymmetry of recombination did not show a lagging strand bias. Directly testing an ssDNA plasmid showed lagging strand recombination is possible but dsDNA plasmids did not employ this mechanism. Insertional recombination combined with gap repair also did not demonstrate preferential lagging strand bias, supporting a different gap repair mechanism. The predominant recombination route involved concerted insertion and subcloning though other routes also operated at lower frequencies. Simultaneous insertion of DNA resulted in modification of both strands and was unaffected by mutations to DNA polymerase I, responsible for Okazaki fragment maturation. The lower efficiency of an alternate Red mediated ends-in recombination pathway and the apparent lack of a Holliday junction intermediate suggested that gap repair does not involve a different Red recombination pathway. Our results may be explained by a novel replicative intermediate in gap repair that does not involve a replication fork. We exploited these observations by developing a new recombineering application based on concerted insertion and gap repair, termed SPI (subcloning plus insertion). SPI selected against empty vector background and selected for correct gap repair recombinants. We used SPI to simultaneously insert up to four different gene cassettes in a single recombineering reaction

  16. Life extension of Structural Repairs – A statistical approach towards efficiency improvement

    NASA Astrophysics Data System (ADS)

    Deepashri, N. V.; Kalaiyappan, Mohan

    2018-05-01

    The life extension program of aircraft is taken up whenever aircraft’s intended life reaches close to its DSG (Design Service Goal). The Extended Service Goal (ESG) of an aircraft, in general, and structural repairs, in particular, is arrived at on the basis of F&DT (Fatigue & Damage Tolerance) analysis. Life extension program of aircraft consists of assessment of remaining life of all parts of the aircrafts including structural, mechanical, and electrical and avionics equipment and structural repairs. For life extension of stringer repair, as an example, it is required to re-assess the fatigue life of stringer in the presence of coupling under modified load spectrum. This is achieved by assessing the fatigue life of Web and Outer Flange (OF) part of stringers separately as per F&DT justification philosophy. Assessment of the fatigue life requires determination of stress concentration factor (Kt) for different combination of width, pitch, stringer thickness, coupling thickness and pad-up thickness of all stringer profiles available in different sections of fuselage. Determination of stress concentration factor for Web and Outer Flange of stringer profile covering entire ranges involves substantial number of Finite Element (FE) analysis. In order to optimise the number of FE runs, stress concentration factor is determined under worst repair factors combination (max. plate width; max. thickness; max. pitch; min. rivet dia.; and min. No. of rivets) resulting in conservative value. A parametric study of Web and Outer Flange data across stringer profiles were carried out and proven statistical techniques were used to find the optimal equation to predict stress concentration factor. This in turn reduced number of FE runs substantially for a given range of width, pitch, stringer thickness and so on. The use of optimal equation obtained through regression analysis is able to predict Kt within reasonable accuracy for a given range of inputs.

  17. Allogeneic hematopoietic cell transplantation for fanconi anemia in patients with pretransplantation cytogenetic abnormalities, myelodysplastic syndrome, or acute leukemia.

    PubMed

    Ayas, Mouhab; Saber, Wael; Davies, Stella M; Harris, Richard E; Hale, Gregory A; Socie, Gerard; LeRademacher, Jennifer; Thakar, Monica; Deeg, H Joachim J; Al-Seraihy, Amal; Battiwalla, Minoo; Camitta, Bruce M; Olsson, Richard; Bajwa, Rajinder S; Bonfim, Carmem M; Pasquini, Ricardo; Macmillan, Margaret L; George, Biju; Copelan, Edward A; Wirk, Baldeep; Al Jefri, Abdullah; Fasth, Anders L; Guinan, Eva C; Horn, Biljana N; Lewis, Victor A; Slavin, Shimon; Stepensky, Polina; Bierings, Marc; Gale, Robert Peter

    2013-05-01

    Allogeneic hematopoietic cell transplantation (HCT) can cure bone marrow failure in patients with Fanconi anemia (FA). Data on outcomes in patients with pretransplantation cytogenetic abnormalities, myelodysplastic syndrome (MDS), or acute leukemia have not been separately analyzed. We analyzed data on 113 patients with FA with cytogenetic abnormalities (n = 54), MDS (n = 45), or acute leukemia (n = 14) who were reported to the Center for International Blood and Marrow Transplant Research from 1985 to 2007. Neutrophil recovery occurred in 78% and 85% of patients at days 28 and 100, respectively. Day 100 cumulative incidences of acute graft-versus-host disease grades B to D and C to D were 26% (95% CI, 19% to 35%) and 12% (95% CI, 7% to 19%), respectively. Survival probabilities at 1, 3, and 5 years were 64% (95% CI, 55% to 73%), 58% (95% CI, 48% to 67%), and 55% (95% CI, 45% to 64%), respectively. In univariate analysis, younger age was associated with superior 5-year survival (≤ v > 14 years: 69% [95% CI, 57% to 80%] v 39% [95% CI, 26% to 53%], respectively; P = .001). In transplantations from HLA-matched related donors (n = 82), younger patients (≤ v > 14 years: 78% [95% CI, 64% to 90%] v 34% [95% CI, 20% to 50%], respectively; P < .001) and patients with cytogenetic abnormalities only versus MDS/acute leukemia (67% [95% CI, 52% to 81%] v 43% [95% CI, 27% to 59%], respectively; P = .03) had superior 5-year survival. Our analysis indicates that long-term survival for patients with FA with cytogenetic abnormalities, MDS, or acute leukemia is achievable. Younger patients and recipients of HLA-matched related donor transplantations who have cytogenetic abnormalities only have the best survival.

  18. Allogeneic Hematopoietic Cell Transplantation for Fanconi Anemia in Patients With Pretransplantation Cytogenetic Abnormalities, Myelodysplastic Syndrome, or Acute Leukemia

    PubMed Central

    Ayas, Mouhab; Saber, Wael; Davies, Stella M.; Harris, Richard E.; Hale, Gregory A.; Socie, Gerard; LeRademacher, Jennifer; Thakar, Monica; Deeg, H. Joachim J.; Al-Seraihy, Amal; Battiwalla, Minoo; Camitta, Bruce M.; Olsson, Richard; Bajwa, Rajinder S.; Bonfim, Carmem M.; Pasquini, Ricardo; MacMillan, Margaret L.; George, Biju; Copelan, Edward A.; Wirk, Baldeep; Al Jefri, Abdullah; Fasth, Anders L.; Guinan, Eva C.; Horn, Biljana N.; Lewis, Victor A.; Slavin, Shimon; Stepensky, Polina; Bierings, Marc; Gale, Robert Peter

    2013-01-01

    Purpose Allogeneic hematopoietic cell transplantation (HCT) can cure bone marrow failure in patients with Fanconi anemia (FA). Data on outcomes in patients with pretransplantation cytogenetic abnormalities, myelodysplastic syndrome (MDS), or acute leukemia have not been separately analyzed. Patients and Methods We analyzed data on 113 patients with FA with cytogenetic abnormalities (n = 54), MDS (n = 45), or acute leukemia (n = 14) who were reported to the Center for International Blood and Marrow Transplant Research from 1985 to 2007. Results Neutrophil recovery occurred in 78% and 85% of patients at days 28 and 100, respectively. Day 100 cumulative incidences of acute graft-versus-host disease grades B to D and C to D were 26% (95% CI, 19% to 35%) and 12% (95% CI, 7% to 19%), respectively. Survival probabilities at 1, 3, and 5 years were 64% (95% CI, 55% to 73%), 58% (95% CI, 48% to 67%), and 55% (95% CI, 45% to 64%), respectively. In univariate analysis, younger age was associated with superior 5-year survival (≤ v > 14 years: 69% [95% CI, 57% to 80%] v 39% [95% CI, 26% to 53%], respectively; P = .001). In transplantations from HLA-matched related donors (n = 82), younger patients (≤ v > 14 years: 78% [95% CI, 64% to 90%] v 34% [95% CI, 20% to 50%], respectively; P < .001) and patients with cytogenetic abnormalities only versus MDS/acute leukemia (67% [95% CI, 52% to 81%] v 43% [95% CI, 27% to 59%], respectively; P = .03) had superior 5-year survival. Conclusion Our analysis indicates that long-term survival for patients with FA with cytogenetic abnormalities, MDS, or acute leukemia is achievable. Younger patients and recipients of HLA-matched related donor transplantations who have cytogenetic abnormalities only have the best survival. PMID:23547077

  19. Pre-pregnancy cytogenetic analysis of general couples in eastern China.

    PubMed

    Yang, Yan; Wang, Hexi; Gao, Min; Xu, Shuangshan; Xu, Xiaofen; Cao, Xinyu; Tao, Ying

    2014-11-27

    The aim of this study was to investigate the contribution of chromosomal anomalies and the frequency of particular types of aberrations in general couples preparing for pregnancy and make recommendations for pregnancy on the basis of the medical literature. A total of 6,198 general couples were included in the present study. The karyotypes were generated from the peripheral blood lymphocyte cultures and the cytogenetic analysis was performed using G-banding. In 12,396 cases, chromosomal anomalies were detected in 59 cases (0.48%, 59/12,396). Among of them, the frequency of translocation was 0.35% (n = 43). Sex chromosomal anomalies accounted for 0.07% (n = 9), including Klinefelter syndrome (KS) (n = 4), Turner syndrome (TS) (n = 4), and XYY syndrome (n = 1). The others, including inversions (n = 6) and deletion (n = 1), accounted for 0.06%. Our study indicates that clinically important chromosomal defects are present at a remarkable frequency in the general couples in eastern China, suggesting pre-pregnancy cytogenetic analysis should be routinely performed among general couples in this area so that informed decision can be made, which will help to improve the quality of the pregnancy.

  20. Platinum(II) and palladium(II) complexes with 2-acetylpyridine thiosemicarbazone: cytogenetic and antineoplastic effects.

    PubMed

    Lakovidou, Z; Papageorgiou, A; Demertzis, M A; Mioglou, E; Mourelatos, D; Kotsis, A; Yadav, P N; Kovala-Demertzi, D

    2001-01-01

    The effect of three novel complexes of Pt(II) and three complexes of Pd(II) with 2-acetylpyridine thiosemicarbazone (HAcTsc) on sister chromatid exchange (SCE) rates and human lymphocyte proliferation kinetics on a molar basis was studied. Also, the effect of Pt(II) and Pd(II) complexes against leukemia P388 was investigated. Among these compounds, the most effective in inducing antitumor and cytogenetic effects were the complexes [Pt(AcTsc)2] x H2O and [Pd(AcTsc)2] while the rest, i.e. (HAcTsc), [Pt(AcTsc)Cl], [Pt(HAcTsc)2]Cl2 x 2H2O, [Pd(AcTsc)Cl] and [Pd(HAcTsc)2]Cl2, displayed marginal cytogenetic and antitumor effects.

  1. Combining Heavy Ion Radiation and Artificial MicroRNAs to Target the Homologous Recombination Repair Gene Efficiently Kills Human Tumor Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Zhiming; Department of Radiation Oncology, School of Medicine, Winship Cancer Institute, Emory University, Atlanta, Georgia; Wang Ping

    2013-02-01

    Purpose: Previously, we demonstrated that heavy ions kill more cells at the same dose than X-rays because DNA-clustered lesions produced by heavy ions affect nonhomologous end-joining (NHEJ) repair but not homologous recombination repair (HRR). We have also shown that our designed artificial microRNAs (amiRs) could efficiently target XRCC4 (an essential factor for NHEJ) or XRCC2 (an essential factor for HRR) and sensitize human tumor cells to X-rays. Based on these data, we were interested in testing the hypothesis that combining heavy ions and amiRs to target HRR but not NHEJ should more efficiently kill human tumor cells. Methods and Materials:more » Human tumor cell lines (U87MG, a brain tumor cell line, and A549, a lung cancer cell line) and their counterparts, overexpressed with amiR to target XRCC2, XRCC4 or both, were used in this study. Survival sensitivities were examined using a clonogenic assay after these cells were exposed to X-rays or heavy ions. In addition, these cell lines were subcutaneously injected into nude mice to form xenografts and the tumor size was compared after the tumor areas were exposed to X-rays or heavy ions. Results: Although targeting either XRCC4 (NHEJ factor) or XRCC2 (HRR factor) sensitized the human tumor cells to X-rays, in vitro and the xenograft animal model, targeting only XRCC2 but not XRCC4 sensitized the human tumor cells to heavy ions in vitro and in the xenograft animal model. Conclusions: Combining heavy ions with targeting the HRR pathway, but not the NHEJ pathway, could significantly improve the efficiency of tumor cell death.« less

  2. Efficacy of DSP30-IL2/TPA for detection of cytogenetic abnormalities in chronic lymphocytic leukaemia/small lymphocytic lymphoma.

    PubMed

    Holmes, P J; Peiper, S C; Uppal, G K; Gong, J Z; Wang, Z-X; Bajaj, R

    2016-10-01

    Chronic lymphocytic leukaemia (CLL) is the most prevalent leukaemia in the Western Hemisphere. Cytogenetic abnormalities in CLL are used for diagnosis, prognosis and treatment. However, detecting these is difficult because mature B cells do not readily divide in culture. Here, we present data on two mitogen cocktails: CpG-oligonucleotide DSP30/Interleukin-2 (IL-2) and DSP30/IL-2 in combination with 12-O-tetradecanoylphorbol-13-acetate (TPA). We analysed 165 cases of CLL with FISH and cytogenetics from January 2011 to June 2013. In 2011, three cultures were set-up: unstimulated, DSP30/IL-2-stimulated and TPA-stimulated. In 2012-2013, two cultures were set-up: unstimulated and stimulated with TPA/DSP30/IL-2. In 2011, FISH had a detection rate of 91% and cytogenetics using DSP30/IL2 had a detection rate of 91% (n = 22). In 2012-2013, FISH had a detection rate of 79% and cytogenetics using TPA/DSP30/IL-2 had a detection rate of 98% (n = 40). The percentage of cases with normal FISH but abnormal cytogenetics increased from 9% in 2011 to 21% in 2012-2013. The TPA/DSP30/IL-2 cultures in 2012-2013 detected more novel abnormalities (n = 5) as compared to DSP30/IL-2 alone (n = 3). TPA/DSP30/IL2 was as good as or better than DSP30/IL2 alone. TPA/DSP30/IL-2 offers a high detection rate for CLL abnormalities with a single stimulated culture and may increase detection of clinically significant abnormalities. © 2016 John Wiley & Sons Ltd.

  3. Xp11.2 Translocation Renal Cell Carcinoma Diagnosed by Immunohistochemistry and Cytogenetics.

    PubMed

    Dey, Biswajit; Badhe, Bhawana; Govindarajan, Krishna Kumar; Ramesh, Ranjith Arumbakkam

    2016-01-01

    Xp11.2 translocation renal cell carcinomas (TRCCs) are a group of neoplasms with distinct clinical, histopathological appearance, immunohistochemical, and cytogenetic profile. We report a case of Xp11.2 translocation TRCC in an 11-year-old male diagnosed based on immunohistochemistry and fluorescence in situ hybridization.

  4. Cytogenetic analyses of four solid tumours in dogs.

    PubMed

    Mayr, B; Reifinger, M; Weissenböck, H; Schleger, W; Eisenmenger, E

    1994-07-01

    Four solid tumours (one haemangiopericytoma, one haemangioendothelioma, one spindle-cell sarcoma and one mammary carcinoma) in dogs were analysed cytogenetically. In the haemangiopericytoma, an additional small chromosomal segment was present. Very complex changes including centric fusions and symmetric meta-centrics 1, 6, 10 and 12 were conspicuous in the highly unbalanced karyotype of the haemangioendothelioma. Complex changes, particularly many centric fusions and a tandem translocation 4/14, were features of the spindle-cell sarcoma. One centric fusion and a symmetric metacentric 13 were present in the mammary carcinoma.

  5. The Genomic Landscape of Balanced Cytogenetic Abnormalities Associated with Human Congenital Anomalies

    PubMed Central

    Redin, Claire; Brand, Harrison; Collins, Ryan L.; Kammin, Tammy; Mitchell, Elyse; Hodge, Jennelle C.; Hanscom, Carrie; Pillalamarri, Vamsee; Seabra, Catarina M.; Abbott, Mary-Alice; Abdul-Rahman, Omar A.; Aberg, Erika; Adley, Rhett; Alcaraz-Estrada, Sofia L.; Alkuraya, Fowzan S.; An, Yu; Anderson, Mary-Anne; Antolik, Caroline; Anyane-Yeboa, Kwame; Atkin, Joan F.; Bartell, Tina; Bernstein, Jonathan A.; Beyer, Elizabeth; Blumenthal, Ian; Bongers, Ernie M.H.F.; Brilstra, Eva H.; Brown, Chester W.; Brüggenwirth, Hennie T.; Callewaert, Bert; Chiang, Colby; Corning, Ken; Cox, Helen; Cuppen, Edwin; Currall, Benjamin B.; Cushing, Tom; David, Dezso; Deardorff, Matthew A.; Dheedene, Annelies; D’Hooghe, Marc; de Vries, Bert B.A.; Earl, Dawn L.; Ferguson, Heather L.; Fisher, Heather; FitzPatrick, David R.; Gerrol, Pamela; Giachino, Daniela; Glessner, Joseph T.; Gliem, Troy; Grady, Margo; Graham, Brett H.; Griffis, Cristin; Gripp, Karen W.; Gropman, Andrea L.; Hanson-Kahn, Andrea; Harris, David J.; Hayden, Mark A.; Hill, Rosamund; Hochstenbach, Ron; Hoffman, Jodi D.; Hopkin, Robert J.; Hubshman, Monika W.; Innes, A. Micheil; Irons, Mira; Irving, Melita; Jacobsen, Jessie C.; Janssens, Sandra; Jewett, Tamison; Johnson, John P.; Jongmans, Marjolijn C.; Kahler, Stephen G.; Koolen, David A.; Korzelius, Jerome; Kroisel, Peter M.; Lacassie, Yves; Lawless, William; Lemyre, Emmanuelle; Leppig, Kathleen; Levin, Alex V.; Li, Haibo; Li, Hong; Liao, Eric C.; Lim, Cynthia; Lose, Edward J.; Lucente, Diane; Macera, Michael J.; Manavalan, Poornima; Mandrile, Giorgia; Marcelis, Carlo L.; Margolin, Lauren; Mason, Tamara; Masser-Frye, Diane; McClellan, Michael W.; Zepeda Mendoza, Cinthya J.; Menten, Björn; Middelkamp, Sjors; Mikami, Liya R.; Moe, Emily; Mohammed, Shehla; Mononen, Tarja; Mortenson, Megan E.; Moya, Graciela; Nieuwint, Aggie W.; Ordulu, Zehra; Parkash, Sandhya; Pauker, Susan P.; Pereira, Shahrin; Perrin, Danielle; Phelan, Katy; Piña Aguilar, Raul E.; Poddighe, Pino J.; Pregno, Giulia; Raskin, Salmo; Reis, Linda; Rhead, William; Rita, Debra; Renkens, Ivo; Roelens, Filip; Ruliera, Jayla; Rump, Patrick; Schilit, Samantha L.P.; Shaheen, Ranad; Sparkes, Rebecca; Spiegel, Erica; Stevens, Blair; Stone, Matthew R.; Tagoe, Julia; Thakuria, Joseph V.; van Bon, Bregje W.; van de Kamp, Jiddeke; van Der Burgt, Ineke; van Essen, Ton; van Ravenswaaij-Arts, Conny M.; van Roosmalen, Markus J.; Vergult, Sarah; Volker-Touw, Catharina M.L.; Warburton, Dorothy P.; Waterman, Matthew J.; Wiley, Susan; Wilson, Anna; Yerena-de Vega, Maria de la Concepcion A.; Zori, Roberto T.; Levy, Brynn; Brunner, Han G.; de Leeuw, Nicole; Kloosterman, Wigard P.; Thorland, Erik C.; Morton, Cynthia C.; Gusella, James F.; Talkowski, Michael E.

    2017-01-01

    Despite their clinical significance, characterization of balanced chromosomal abnormalities (BCAs) has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and revealed complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. This study proposes that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements, and provides insight into novel pathogenic mechanisms such as altered regulation due to changes in chromosome topology. PMID:27841880

  6. Genetic and cytogenetic analysis of the fruit fly Rhagoletis cerasi (Diptera: Tephritidae).

    PubMed

    Kounatidis, Ilias; Papadopoulos, Nikolaos; Bourtzis, Kostas; Mavragani-Tsipidou, Penelope

    2008-07-01

    The European cherry fruit fly, Rhagoletis cerasi, is a major agricultural pest for which biological, genetic, and cytogenetic information is limited. We report here a cytogenetic analysis of 4 natural Greek populations of R. cerasi, all of them infected with the endosymbiotic bacterium Wolbachia pipientis. The mitotic karyotype and detailed photographic maps of the salivary gland polytene chromosomes of this pest species are presented here. The mitotic metaphase complement consists of 6 pairs of chromosomes, including one pair of heteromorphic sex chromosomes, with the male being the heterogametic sex. The analysis of the salivary gland polytene complement has shown a total of 5 long chromosomes (10 polytene arms) that correspond to the 5 autosomes of the mitotic nuclei and a heterochromatic mass corresponding to the sex chromosomes. The most prominent landmarks of each polytene chromosome, the "weak points", and the unusual asynapsis of homologous pairs of polytene chromosomes at certain regions of the polytene elements are also presented and discussed.

  7. [Cytogenetic effects in Koeleria gracilis Pers. populations from the Semipalatinsk proving ground].

    PubMed

    Geras'kin, S A; Mozolin, E M; Dikarev, V G; Udalova, A A; Dikareva, N S; Spiridonov, S I; Teten'kin, V L

    2009-01-01

    The proliferative activity and the frequency of cytogenetic disturbances in apical meristem of coleoptile sprouts at germination of seeds collected from crested hairgrass populations inhabiting contrast in level of radioactive contamination sites of the Semipalatinsk test site (Kazakhstan) are studied. Sampling of biological material and soil was carrying out during three years (2005-2007). The absorbed dose to critical organs of crested hairgrass vary depending on a site from 2.8 up to 262.2 mGy/year. A sognificant correlation between the frequency of cytogenetic disturbances in apical meristem and dose absorbed in crested hairgrass critical organs is found. Devere aberrations such as single and double bridges make the main contribution to spectrum of structural mutations as well as lagging chromosomes. In spite of the fact that the crested hairgrass populations have occupied the sites with a high level of radioactive contamination for a long time, the data analysis fails to reveal radio-adaptation effect.

  8. Evaluation of cytogenetic and DNA damage in human lymphocytes treated with adrenaline in vitro.

    PubMed

    Djelić, Ninoslav; Radaković, Milena; Spremo-Potparević, Biljana; Zivković, Lada; Bajić, Vladan; Stevanović, Jevrosima; Stanimirović, Zoran

    2015-02-01

    Catechol groups can be involved in redox cycling accompanied by generation of reactive oxygen species (ROS) which may lead to oxidative damage of cellular macromolecules including DNA. The objective of this investigation was to evaluate possible genotoxic effects of a natural catecholamine adrenaline in cultured human lymphocytes using cytogenetic (sister chromatid exchange and micronuclei) and the single cell gel electrophoresis (Comet) assay. In cytogenetic tests, six experimental concentrations of adrenaline were used in a range from 0.01-500 μM. There were no indications of genotoxic effects of adrenaline in sister chromatid exchange and micronucleus tests. However, at four highest concentrations of adrenaline (5 μM, 50 μM, 150 μM and 300 μM) we observed a decreased mitotic index and cell-cycle delay. In addition, in the Comet assay we used adrenaline in a range from 0.0005-500 μM, at two treatment times: 15 min or 60 min. In contrast to cytogenetic analysis, there was a dose-dependent increase of DNA damage detected in the Comet assay. These effects were significantly reduced by concomitant treatment with quercetin or catalase. Therefore, the obtained results indicate that adrenaline may exhibit genotoxic effects in cultured human lymphocytes, most likely due to production of reactive oxygen species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A comparison of the cytogenetic alterations and global DNA hypomethylation induced by the benzene metabolite, hydroquinone, with those induced by melphalan and etoposide

    PubMed Central

    Ji, Z; Zhang, L; Peng, V.; Ren, X; McHale, CM; Smith, MT

    2015-01-01

    Specific cytogenetic alterations and changes in DNA methylation are involved in leukemogenesis. Benzene, an established human leukemogen, is known to induce cytogenetic changes through its active metabolites including hydroquinone (HQ), but the specific alterations have not been fully characterized. Global DNA hypomethylation was reported in a population exposed to benzene, but has not been confirmed in vitro. In this study, we examined cytogenetic changes in chromosomes 5, 7, 8, 11 and 21, and global DNA methylation in human TK6 lymphoblastoid cells treated with HQ for 48 h, and compared the HQ-induced alterations with those induced by two well-known leukemogens, melphalan, an alkylating agent, and etoposide, a DNA topoisomerase II inhibitor. We found that rather than inducing cytogenetic alterations distinct from those induced by melphalan and etoposide, HQ induced alterations characteristic of each agent. HQ induced global DNA hypomethylation at a level intermediate to melphalan (no effect) and etoposide (potent effect). These results suggest that HQ may act similar to an alkylating agent and also similar to a DNA topoisomerase II inhibitor in living cells, both of which may be potential mechanisms of benzene toxicity. In addition to cytogenetic changes, global DNA hypomethylation may be another mechanism underlying the leukemogenicity of benzene. PMID:20339439

  10. Metabolite damage and repair in metabolic engineering design.

    PubMed

    Sun, Jiayi; Jeffryes, James G; Henry, Christopher S; Bruner, Steven D; Hanson, Andrew D

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects. Copyright © 2017 International Metabolic Engineering Society. All rights reserved.

  11. Metabolite damage and repair in metabolic engineering design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jiayi; Jeffryes, James G.; Henry, Christopher S.

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields,more » and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects.« less

  12. Injection repair of carbon fiber/bismaleimide composite panels with bisphenol E cyanate ester resin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thunga, Mahendra; Bauer, Amy; Obusek, Kristine

    2014-08-01

    Resin injection of bisphenol E cyanate ester, a low viscosity resin that cures into a high temperature thermoset polymer, is investigated as a reliable repair method to restore strength and stiffness in delaminated carbon fiber/bismaleimide composites used in aircraft panels. The influence of temperature on the viscosity of the uncured resin was measured to optimize the injection conditions for high resin infiltration into the delaminations. The repair efficiency of the resin was evaluated by varying the panel thickness and the method by which the delamination damage was created in the composite specimens. Ultrasonic scanning (C-scan), flash thermography images, and cross-sectionmore » analysis of repaired panels revealed excellent resin infiltration into the damaged region. Evaluation of mechanical repair efficiency using both bending stiffness and in-plain compressive strength of the composite panels as the repair metrics showed values exceeding 100%.« less

  13. Xp11.2 Translocation Renal Cell Carcinoma Diagnosed by Immunohistochemistry and Cytogenetics

    PubMed Central

    Dey, Biswajit; Badhe, Bhawana; Govindarajan, Krishna Kumar; Ramesh, Ranjith Arumbakkam

    2016-01-01

    Xp11.2 translocation renal cell carcinomas (TRCCs) are a group of neoplasms with distinct clinical, histopathological appearance, immunohistochemical, and cytogenetic profile. We report a case of Xp11.2 translocation TRCC in an 11-year-old male diagnosed based on immunohistochemistry and fluorescence in situ hybridization. PMID:27365924

  14. Transcervical embryoscopic and cytogenetic findings reveal distinctive differences in primary and secondary recurrent pregnancy loss.

    PubMed

    Feichtinger, Michael; Wallner, Elisabeth; Hartmann, Beda; Reiner, Angelika; Philipp, Thomas

    2017-01-01

    To assess the cytogenetic and embryoscopic characteristics of primary and secondary recurrent pregnancy loss. Clinical prospective descriptive study. Tertiary care center. Nine hundred and eighty-four women affected by first-trimester pregnancy loss; 145 patients with recurrent pregnancy loss (RPL) and 839 patients with nonrecurrent pregnancy loss as controls. Transcervical embryoscopic examination of the embryo before uterine evacuation, and cytogenetic analysis of the chorionic villi by standard G-banding cytogenetic techniques. Aneuploidy frequency in the primary and secondary RPL group and the nonrecurrent pregnancy loss (non-RPL) control group. Patients with RPL showed statistically significantly fewer aneuploid pregnancy losses (odds ratio [OR] 0.596; 95% confidence interval [CI], 0.40-0.88). Primary RPL was associated with lower aneuploidy rates compared with the non-RPL group (OR 0.423; 95% CI, 0.27-0.66) while secondary RPL was not (OR 1.414; 95% CI, 0.67-2.99). Patients with primary RPL had statistically significantly more morphologically normal embryos compared with non-RPL and secondary RPL. Patients' embryos after primary and secondary RPL show distinctive differences in aneuploidy and morphologic defect rates. These findings suggest different treatment approaches for the patients with primary and secondary RPL. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. AlkB Dioxygenase Preferentially Repairs Protonated Substrates

    PubMed Central

    Maciejewska, Agnieszka M.; Poznański, Jarosław; Kaczmarska, Zuzanna; Krowisz, Beata; Nieminuszczy, Jadwiga; Polkowska-Nowakowska, Agnieszka; Grzesiuk, Elżbieta; Kuśmierek, Jarosław T.

    2013-01-01

    Efficient repair by Escherichia coli AlkB dioxygenase of exocyclic DNA adducts 3,N4-ethenocytosine, 1,N6-ethenoadenine, 3,N4-α-hydroxyethanocytosine, and reported here for the first time 3,N4-α-hydroxypropanocytosine requires higher Fe(II) concentration than the reference 3-methylcytosine. The pH optimum for the repair follows the order of pKa values for protonation of the adduct, suggesting that positively charged substrates favorably interact with the negatively charged carboxylic group of Asp-135 side chain in the enzyme active center. This interaction is supported by molecular modeling, indicating that 1,N6-ethenoadenine and 3,N4-ethenocytosine are bound to AlkB more favorably in their protonated cationic forms. An analysis of the pattern of intermolecular interactions that stabilize the location of the ligand points to a role of Asp-135 in recognition of the adduct in its protonated form. Moreover, ab initio calculations also underline the role of substrate protonation in lowering the free energy barrier of the transition state of epoxidation of the etheno adducts studied. The observed time courses of repair of mixtures of stereoisomers of 3,N4-α-hydroxyethanocytosine or 3,N4-α-hydroxypropanocytosine are unequivocally two-exponential curves, indicating that the respective isomers are repaired by AlkB with different efficiencies. Molecular modeling of these adducts bound by AlkB allowed evaluation of the participation of their possible conformational states in the enzymatic reaction. PMID:23148216

  16. Impact of the track structure of heavy charged particles on cytogenetic damage in human blood lymphocytes

    NASA Astrophysics Data System (ADS)

    Lee, Ryonfa; Nasonova, Elena; Sommer, Sylwetster; Hartel, Carola; Durante, Marco; Ritter, Sylvia

    In space, astronauts are unavoidably exposed to charged particles from protons to irons. For a better estimate of the health risks of astronauts, further knowledge on the biological effects of charged particles, in particular the induction of cytogenetic damage is required. One im-portant factor that determines the biological response is the track structure of particles, i.e. their microscopic dose deposition in cells. The aim of the present study was to assess the influence of track structure of heavy ions on the yield and the quality of cytogenetic damage in human peripheral blood lymphocytes representing normal tissue. Cells were irradiated with 9.5 MeV/u C-ions or 990 MeV/u Fe-ions which have a comparable LET (175 keV/µm and 155 keV/µm, respectively) but a different track radius (2.3 and 6200 µm, respectively). When aberrations were analyzed in first cycle metaphases collected at different post-irradiation times (48-84 h) following fluorescence plus Giemsa staining, an increase in the aberration yield with sampling time was observed for both radiation qualities reflecting a damage dependent cell cycle progression delay to mitosis. The pronounced differences in the aberration frequency per cell are attributable to the stochastic distribution of particle traversals per cell nucleus (radius: 2.8 µm). Following C-ion exposure we found a high fraction of non-aberrant cells in samples collected at 48 h which represent cells not directly hit by a particle and slightly damaged cells that successfully repaired the induced lesions. In addition, at higher C-ion fluences the aberra-tion yield saturated, suggesting that a fraction of lymphocytes receiving multiple particle hits is not able to reach mitosis. On the other hand, at 48 h after Fe-ion exposure the proportion of non-aberrant cells is lower than after C-ion irradiation clearly reflecting the track structure of high energy particles (i.e. more homogeneous dose deposition compared to low energy C

  17. Cytogenetic Effects of Chronic Methylphenidate Treatment and Chronic Social Stress in Adults with Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Kittel-Schneider, S; Spiegel, S; Renner, T; Romanos, M; Reif, A; Reichert, S; Heupel, J; Schnetzler, L; Stopper, H; Jacob, C

    2016-07-01

    Methylphenidate (MPH) is widely used to treat childhood and adult attention-deficit/hyperactivity disorder (ADHD). However, there are still safety concerns about side effects in long-term treatment. The aim of this study was to assess cytogenetic effects of chronic MPH treatment in adult ADHD and to find out if chronic social stress is attenuated by medication and to investigate whether chronic psychosocial stress leads to mutagenic effects by itself. Lymphocytes for micronucleus assay and saliva samples for cortisol measurement were collected from adult ADHD patients and healthy controls. Stress exposure of the last 3 months was assessed by TICS (Trier Inventory for Chronic Stress). We could not detect an influence of MPH treatment on cytogenetic markers. ADHD patients displayed significantly higher chronic stress levels measured by TICS compared to healthy controls which were influenced by duration of MPH treatment. ADHD patients also showed significantly lower basal cortisol levels. We could corroborate that there are neither cytogenetic effects of chronic stress nor of chronic MPH intake even after several years of treatment. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Clinical relevance of cytogenetics to pediatric practice. Postnatal findings of Patau syndrome – Review of 5 cases

    PubMed Central

    PLAIASU, Vasilica; OCHIANA, Diana; MOTEI, Gabriela; ANCA, Ioana; GEORGESCU, Adrian

    2010-01-01

    ABSTRACT Introduction: Patau syndrome (trisomy 13) is one of the most common chromosomal anomalies clinically characterized by the presence of numerous malformations with a limited survival rate for most cases. Babies are usually identified at birth and the diagnosis is confirmed with genetic testing. Materials and methods: In this review we outline the clinical and cytogenetic aspects of trisomy 13 and associated phenotypes for 5 cases analyzed in the last 3 years, referred to our Clinical Genetics Department. For each child cytogenetic analysis was performed to determine the genetic variant; also, the patients were investigated for other associated malformations (cardiac, cerebral, renal, ocular anomalies). Discussion: All 5 cases presented multiple malformations, including some but not all signs of the classical clinical triad suggestive of Patau syndrome. The cytogenetic investigation confirmed for each case the suspected diagnosis and also indicated the specific genetic variant, this being a valuable information for the genetic counselling of the families. Conclusion: The application of genetic analysis can increase diagnosis and prognosis accuracy and have an impact on clinical management. PMID:21977150

  19. The impact of additional cytogenetic abnormalities at diagnosis and during therapy with tyrosine kinase inhibitors in Chronic Myeloid Leukaemia.

    PubMed

    Crisan, A M; Coriu, D; Arion, C; Colita, A; Jardan, C

    2015-01-01

    Chronic Myeloid Leukemia's (CML) treatment was optimized since the development of tyrosine kinase inhibitors (TKI) and an increased overall survival during TKI was noticed. During the TKI era, protocols for assessing response and resistance to treatment were developed. Additional chromosomal abnormalities (ACAs) are strongly associated with disease progression but their prognostic impact and influence on treatment response are yet to be defined. The aim of this study was to analyze the impact of ACAs on time to achieve complete cytogenetic response (CCyR), treatment and overall survival. Since 2005 until 2013, the data from the Hematology and Bone Marrow Transplantation Department of Fundeni Clinical Institute was collected. In this observational retrospective single centre study, 28 CML patients with ACAs at diagnosis and during TKI treatment were included. From ACAs at diagnosis group, the most frequent major route ACAs were trisomy 8, trisomy 19 and second Philadelphia (Ph) chromosome and the most frequent minor route ACAs were monosomies and structural abnormalities (inversions and translocations). From the ACAs during the TKI group, the most frequent major route cytogenetic abnormalities in Ph positive and negative cells were trisomy 8, trisomy 19 and second Ph chromosome and the most frequent minor route cytogenetic abnormalities in Ph positive and negative cells were marker chromosomes and structural abnormalities (inversions, translocations and dicentric chromosomes). In both groups, the time to CCyR was longer and long-term results were inferior in comparison with standard patients but the differences were not significant and in accordance to published data. The 12 months follow-up after the study's end showed that 26 patients were alive and in long-term CCyR and 2 deaths were reported. CML = Chronic Myeloid Leukemia, BCR-ABL1 = Break Cluster Region - Abelson gene, TKI = tyrosine kinase inhibitor treatment, ACAs = additional cytogenetic abnormalities, CCy

  20. Cytogenetic data on the threatened leafcutter ant Atta robusta Borgmeier, 1939 (Formicidae: Myrmicinae: Attini).

    PubMed

    Barros, Luísa Antônia Campos; Aguiar, Hilton Jeferson Alves Cardoso de; Teixeira, Gisele Amaro; Mariano, Cléa Dos Santos Ferreira; Teixeira, Marcos da Cunha; Delabie, Jacques Hubert Charles; Pompolo, Silvia das Graças

    2015-10-01

    The karyotype of the threatened ant species Atta robusta is described so as to establish the evolutionary relationships of this taxon with other leafcutter ants. Standard Giemsa staining, C-banding, NOR banding, fluorochromes CMA3/DAPI, Hsc-FA technique and Fluorescence in situ Hybridization (FISH) using 18S rDNA probe were conducted on a population from Aracruz, state of Espírito Santo, Brazil, allowing for comparisons with data available on Atta and other fungus-growing ant species. The diploid chromosome number observed for A. robusta was 2n=22, and the karyotypic formula was 18m+2sm+2st. Heterochromatic blocks were observed in the centromeric region of most chromosomes, where one pair of metacentric chromosomes is characterized by a GC-rich heterochromatic band in the interstitial region of its long arm. The detection of 18S rDNA using FISH confirmed the presence of single NOR for A. robusta. This is the first report of rDNA 18S detection using FISH for leafcutter ants. The cytogenetic results of this study confirm the information available for Atta and allow us to confirm the conserved chromosome number, morphology and banding pattern within the genus for the taxa studied to date, which included species from three out of the four groups of Atta indicated by molecular data. The accumulation of cytogenetic data on fungus-growing ants enhances the understanding of the genomic evolutionary patterns of Atta, since it belongs to a group of recent origin between the most well studied ants. Cytogenetic data does not indicate restrictions in relocation or reintroduction in areas where populations were extinct due to the conserved karyotype. This study allows for cytogenetic comparison of A. robusta with other ants of Atta, emphasizing the importance of chromosomal information for species conservation. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  1. A cytogenetic view of sex chromosome evolution in plants.

    PubMed

    Armstrong, S J; Filatov, D A

    2008-01-01

    The recent origin of sex chromosomes in plant species provides an opportunity to study the early stages of sex chromosome evolution. This review focuses on the cytogenetic aspects of the analysis of sex chromosome evolution in plants and in particular, on the best-studied case, the sex chromosomes in Silene latifolia. We discuss the emerging picture of sex chromosome evolution in plants and the further work that is required to gain better understanding of the similarities and differences between the trends in animal and plant sex chromosome evolution. Similar to mammals, suppression of recombination between the X and Y in S. latifolia species has occurred in several steps, however there is little evidence that inversions on the S. latifolia Y chromosome have played a role in cessation of X/Y recombination. Secondly, in S. latifolia there is a lack of evidence for genetic degeneration of the Y chromosome, unlike the events documented in mammalian sex chromosomes. The insufficient number of genes isolated from this and other plant sex chromosomes does not allow us to generalize whether the trends revealed on S. latifolia Y chromosome are general for other dioecious plants. Isolation of more plant sex-linked genes and their cytogenetic mapping with fluorescent in situ hybridisation (FISH) will ultimately lead to a much better understanding of the processes driving sex chromosome evolution in plants. 2008 S. Karger AG, Basel

  2. Persistent in vivo cytogenetic effects of radioiodine therapy: a 21-year follow-up study using multicolor FISH.

    PubMed

    Livingston, Gordon K; Escalona, Maria; Foster, Alvis; Balajee, Adayabalam S

    2018-01-01

    Our previous studies demonstrated the cytogenetic effects in the peripheral blood lymphocytes of a 34-year-old male patient who received ablative radioactive 131iodine therapy (RIT) on two different occasions in 1992 and 1994. Assessment of RIT-induced chromosomal damage by the cytokinesis-blocked micronucleus assay (CBMN) showed the persistence of elevated micronucleus frequency in this patient for more than two decades since the first RIT. Subsequent cytogenetic analysis performed in 2012 revealed both stable and unstable aberrations, whose frequencies were higher than the baseline reported in the literature. Here, we report the findings of our recent cytogenetic analysis peformed in 2015 on this patient using the multicolor fluorescence in situ hybridization (mFISH) technique. Our results showed that both reciprocal and non-reciprocal translocations persisted at higher frequencies in the patient than those reported in 2012. Persistence of structural aberrations for more than two decades indicate that these aberrations might have originated from long-lived T-lymphocytes or hematopoietic stem cells. Our study suggests that the long-term persistence of chromosome translocations in circulating lymphocytes can be useful for monitoring the extent of RIT-induced chromosomal instability several years after exposure and for estimating the cumulative absorbed dose after multiple RITs for retrospective biodosimetry purposes. This is perhaps the first and longest follow-up study documenting the persistence of cytogenetic damage for 21 years after internal radiation exposure. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  3. Genes commonly deleted in childhood B-cell precursor acute lymphoblastic leukemia: association with cytogenetics and clinical features

    PubMed Central

    Schwab, Claire J.; Chilton, Lucy; Morrison, Heather; Jones, Lisa; Al-Shehhi, Halima; Erhorn, Amy; Russell, Lisa J.; Moorman, Anthony V.; Harrison, Christine J.

    2013-01-01

    In childhood B-cell precursor acute lymphoblastic leukemia, cytogenetics is important in diagnosis and as an indicator of response to therapy, thus playing a key role in risk stratification of patients for treatment. Little is known of the relationship between different cytogenetic subtypes in B-cell precursor acute lymphoblastic leukemia and the recently reported copy number abnormalities affecting significant leukemia associated genes. In a consecutive series of 1427 childhood B-cell precursor acute lymphoblastic leukemia patients, we have determined the incidence and type of copy number abnormalities using multiplex ligation-dependent probe amplification. We have shown strong links between certain deletions and cytogenetic subtypes, including the novel association between RB1 deletions and intrachromosomal amplification of chromosome 21. In this study, we characterized the different copy number abnormalities and show heterogeneity of PAX5 and IKZF1 deletions and the recurrent nature of RB1 deletions. Whole gene losses are often indicative of larger deletions, visible by conventional cytogenetics. An increased number of copy number abnormalities is associated with NCI high risk, specifically deletions of IKZF1 and CDKN2A/B, which occur more frequently among these patients. IKZF1 deletions and rearrangements of CRLF2 among patients with undefined karyotypes may point to the poor risk BCR-ABL1-like group. In conclusion, this study has demonstrated in a large representative cohort of children with B-cell precursor acute lymphoblastic leukemia that the pattern of copy number abnormalities is highly variable according to the primary genetic abnormality. PMID:23508010

  4. Ontology Alignment Repair through Modularization and Confidence-Based Heuristics

    PubMed Central

    Santos, Emanuel; Faria, Daniel; Pesquita, Catia; Couto, Francisco M.

    2015-01-01

    Ontology Matching aims at identifying a set of semantic correspondences, called an alignment, between related ontologies. In recent years, there has been a growing interest in efficient and effective matching methods for large ontologies. However, alignments produced for large ontologies are often logically incoherent. It was only recently that the use of repair techniques to improve the coherence of ontology alignments began to be explored. This paper presents a novel modularization technique for ontology alignment repair which extracts fragments of the input ontologies that only contain the necessary classes and relations to resolve all detectable incoherences. The paper presents also an alignment repair algorithm that uses a global repair strategy to minimize both the degree of incoherence and the number of mappings removed from the alignment, while overcoming the scalability problem by employing the proposed modularization technique. Our evaluation shows that our modularization technique produces significantly small fragments of the ontologies and that our repair algorithm produces more complete alignments than other current alignment repair systems, while obtaining an equivalent degree of incoherence. Additionally, we also present a variant of our repair algorithm that makes use of the confidence values of the mappings to improve alignment repair. Our repair algorithm was implemented as part of AgreementMakerLight, a free and open-source ontology matching system. PMID:26710335

  5. Ontology Alignment Repair through Modularization and Confidence-Based Heuristics.

    PubMed

    Santos, Emanuel; Faria, Daniel; Pesquita, Catia; Couto, Francisco M

    2015-01-01

    Ontology Matching aims at identifying a set of semantic correspondences, called an alignment, between related ontologies. In recent years, there has been a growing interest in efficient and effective matching methods for large ontologies. However, alignments produced for large ontologies are often logically incoherent. It was only recently that the use of repair techniques to improve the coherence of ontology alignments began to be explored. This paper presents a novel modularization technique for ontology alignment repair which extracts fragments of the input ontologies that only contain the necessary classes and relations to resolve all detectable incoherences. The paper presents also an alignment repair algorithm that uses a global repair strategy to minimize both the degree of incoherence and the number of mappings removed from the alignment, while overcoming the scalability problem by employing the proposed modularization technique. Our evaluation shows that our modularization technique produces significantly small fragments of the ontologies and that our repair algorithm produces more complete alignments than other current alignment repair systems, while obtaining an equivalent degree of incoherence. Additionally, we also present a variant of our repair algorithm that makes use of the confidence values of the mappings to improve alignment repair. Our repair algorithm was implemented as part of AgreementMakerLight, a free and open-source ontology matching system.

  6. Cytogenetic Biodosimetry Using the Blood Lymphocytes of Astronauts

    NASA Technical Reports Server (NTRS)

    George, Kerry; Rhone, J.; Chappell, L. J.; Cucinotta, F. A.

    2010-01-01

    Cytogenetic analysis of blood lymphocytes remains the most sensitive and reliable method available for in vivo assessment of the biological effects of exposure to radiation and provides the most informative measurement of radiation induced health risks. To date chromosome damage has been assessed in lymphocytes from more than 30 astronauts before and after they participated in long-duration space missions of three months or more on board the International Space Station. For all individuals, the frequency of chromosome damage measured within a month of return from space was higher than their prefight yield and biodosimetry estimates lie within the range expected from physical dosimetry. Biodosimetry data provides a direct measurement of space radiation damage, which takes into account individual radiosensitivity in the presence of confounding factors such as microgravity and other stress conditions. In contrast to physical measurements, which are external to body and require multiple devices to detect all radiation types all of which have poor sensitivity to neutrons, biodosimetry is internal and includes the effects of shielding provided by the body itself plus chromosome damage shows excellent sensitivity to protons, heavy ions, and neutrons. In addition, chromosome damage is reflective of cancer risk and biodosimetry values can therefore be used to validate and develop risk assessment models that can be used to characterize excess health risk incurred by crewmembers. A review of astronaut biodosimetry data will be presented along with recent findings on the persistence of space radiation induced chromosome damage and the cytogenetic effects of repeat long duration missions

  7. [Cytogenetic characteristics of the uterine cervical epithelium in inflammatory diseases].

    PubMed

    Aleksieienko, O I

    2011-01-01

    Functional status of epithelial cells at inflammatory cervical pathologies has been studied with the use of cytogenetic method of detection of chromosome nucleolar organizer regions. The highest level of rRNA proliferation and synthesis has been detected in cylindrical epithelial cells using the indexes of compact and transitional nucleolonemic types of nucleolar organizer regions, a higher level--in squamous cells of intermediate type, and the lowest one in squamous epithelium of superficial type.

  8. Cytogenetics of two species of Paratelmatobius (Anura: Leptodactylidae), with phylogenetic comments.

    PubMed

    Lourenço, L B; Garcia, P C; Recco-Pimentel, S M

    2000-01-01

    In this paper we provide a cytogenetic analysis of Paratelmatobius cardosoi and Paratelmatobius poecilogaster. The karyotypes of both species showed a diploid number of 24 chromosomes and shared some similarity in the morphology of some pairs. On the other hand, pairs 4 and 6 widely differed between these complements. These karyotypes also differed in their NOR number and location. Size heteromorphism was seen in all NOR-bearing chromosomes of the two karyotypes. In addition, both karyotypes showed small centromeric C-bands and a conspicuous heterochromatic band in the short arm of chromosome 1, although with a different size in each species. The P. cardosoi complement also showed other strongly stained non-centromeric C-bands, with no counterparts in the P. cardosoi karyotype. Chromosome staining with fluorochromes revealed heterogeneity in the base composition of two of the non-centromeric C-bands of P. cardosoi. Comparison of the chromosomal morphology of these Paratelmatobius karyotypes with that of P. lutzii showed that the P. poecilogaster karyotype is more similar to that of P. lutzii than P. cardosoi. These cytogenetic results agree with the proposed species arrangements in the P. cardosoi and P. lutzii groups based on morphological and ecological data.

  9. Cytogenetic and molecular characterization of 57 individuals with the Parder-Willi syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, M.G.; Forrest, K.B.; Miller, L.K.

    Prader-Willi syndrome (PWS) is characterized by hypotonia, early childhood obesity, mental deficiency, hypogonadism and an interstitial deletion of 15q11q13 of paternal origin in 50-70% of patients. The remaining patients have either submicroscopic deletions, maternal disomy or other anomalies of chromosome 15. We have undertaken cytogenetic and molecular genetic studies of 57 individuals presenting with features consistent with PWS (28 males and 29 females; age range of 3 months to 38 years), 25 with recognizable 15q11q13 deletions (44%), 28 with normal appearing chromosomes (49%), and four patients with other chromosome 15 anomalies (7%). High resolution chromosome analysis and PCR amplification weremore » performed utilizing 17 STRs from 15q11q13 region, quantitative Southern hybridization using seven 15q11q13 probes, and fluorescence in situ hybridization (FISH) using four 15q11q13 probes (4-3R, SNRPN, 3-21, and GABRB3). The cytogenetic deletion was paternal in all PWS families studied but the deletion varied in size in 10 patients. Parental DNA studies from 20 of 28 non-deletion patients showed maternal disomy in 7 patients and biparental inheritance in 13 non-deletion patients. In order to evaluate for submicroscopic deletions, PCR amplification with several loci in the area of the PWS minimal critical region, FISH using SNRPN and quantitative hybridization using a PCR product generated from primers of exons E and H of the SNRPN gene were undertaken on the non-deletion patients. Quantitative hybridization and FISH using SNRPN from 3 of 11 non-deletion patients (excluding maternal disomy cases) showed a submicroscopic deletion. One of these patients also showed a paternal deletion of D15S128 and MN1. We furthur support the use of both cytogenetic and molecular genetic methods for determining the genetic status of PWS patients.« less

  10. Cytogenetic Studies of Rwandan Pediatric Patients Presenting with Global Developmental Delay, Intellectual Disability and/or Multiple Congenital Anomalies

    PubMed Central

    Uwineza, Annette; Hitayezu, Janvier; Jamar, Mauricette; Caberg, Jean-Hubert; Murorunkwere, Seraphine; Janvier, Ndinkabandi; Bours, Vincent

    2016-01-01

    Global developmental delay (GDD) is defined as a significant delay in two or more developmental domains: gross or fine motor, speech/language, cognitive, social/personal and activities of daily living. Many of these children will go on to be diagnosed with intellectual disability (ID), which is most commonly defined as having an IQ <75 in addition to impairment in adaptive functioning. Cytogenetic studies have been performed in 664 Rwandan pediatric patients presenting GDD/ID and/or multiple congenital abnormalities (MCA). Karyotype analysis was performed in all patients and revealed 260 chromosomal abnormalities. The most frequent chromosomal abnormality was Down syndrome and then Edward syndrome and Patau syndrome. Other identified chromosomal abnormalities included 47,XX,+del(9)(q11), 46,XY,del(13)(q34) and 46,XX,der(22)t(10;22)(p10;p10)mat. In conclusion, our results highlight the high frequency of cytogenetically detectable abnormalities in this series, with implications for the burden on the healthcare. This study demonstrates the importance of cytogenetic analysis in patients with GDD/ID and MCA. PMID:26507407

  11. [Study of cytogenetic and cytotoxic effect of non-contact electrochemically-activated waters in the five organs of rats].

    PubMed

    Sycheva, L P; Mikhaĭlova, R I; Beliaeva, N N; Zhurkov, V S; Iurchenko, V V; Savostikova, O N; Alekseeva, A V; Kribtsova, E K; Kovalenko, M A; Akhal'tseva, L V; Sheremet'eva, S M; Iurtseva, N A; Murav'eva, L V; Kamenetskaia, D B

    2014-01-01

    For the first time the multiorgan karyological analysis of five organs of rats was applied for the study of the cytogenetic and cytotoxic action of the four types of non-contact electrochemically activated water in the 30-days in vivo experiment. The effects of investigated waters were not detected in bone marrow polychromatic erythrocytes. "Anolyte" (ORP = -362 mV) did not have a negative effect on rats. "Catholyte-5" (ORP = +22 mV) and "Catholyte-25" (ORP = -60 mV) induced cytogenetic abnormalities in the bladder and fore stomach. The same catholytes and "Catholyte-40" (ORP = -10 mV) changed the proliferation indices: increased the mitotic index in the fore stomach epithelium and reduced the frequency of binucleated cells in the fore stomach, bladder and lungs. The increase in the rate of cells with cytogenetic abnormalities on the background of the promotion of mitotic activity can be considered as a manifestation of the negative effect, typical for catolytes, but the effect of each out of them has its own features.

  12. Efficient repair of DNA double-strand breaks in malignant cells with structural instability

    PubMed Central

    Cheng, Yue; Zhang, Zhenhua; Keenan, Bridget; Roschke, Anna V.; Nakahara, Kenneth; Aplan, Peter D.

    2009-01-01

    Aberrant repair of DNA double strand breaks (DSBs) is thought to be important in the generation of gross chromosomal rearrangements (GCRs). To examine how DNA DSBs might lead to GCRs, we investigated the repair of a single DNA DSB in a structurally unstable cell line. An I-SceI recognition site was introduced into OVCAR-8 cells between a constitutive promoter (EF1α) and the Herpes simplex virus thymidine kinase (TK) gene, which confers sensitivity to gancyclovir (GCV). Expression of I-SceI in these cells caused a single DSB. Clones with aberrant repair could acquire resistance to GCV by separation of the EF1α promoter from the TK gene, or deletion of either the EF1α promoter or the TK gene. All mutations that we identified were interstitial deletions. Treatment of cells with etoposide or bleomycin, agents known to produce DNA DSBs following expression of I-SceI also did not generate GCRs. Because we identified solely interstitial deletions using the aforementioned negative selection system, we developed a positive selection system to produce GCR. A construct containing an I-SceI restriction site immediately followed by a hygromycin phosphotransferase cDNA, with no promoter, was stably integrated into OVCAR-8 cells. DNA DSBs were produced by an I-SceI expression vector. None of the hygromycin resistant clones recovered had linked the hygromycin phosphotransferase cDNA to an endogenous promoter, but had instead captured a portion of the I-SceI expression vector. These results indicate that even in a structurally unstable malignant cell line, the majority of DNA DSBs are repaired by religation of the two broken chromosome ends, without the introduction of a GCR. PMID:19909760

  13. Efficient repair of DNA double-strand breaks in malignant cells with structural instability.

    PubMed

    Cheng, Yue; Zhang, Zhenhua; Keenan, Bridget; Roschke, Anna V; Nakahara, Kenneth; Aplan, Peter D

    2010-01-05

    Aberrant repair of DNA double-strand breaks (DSBs) is thought to be important in the generation of gross chromosomal rearrangements (GCRs). To examine how DNA DSBs might lead to GCRs, we investigated the repair of a single DNA DSB in a structurally unstable cell line. An I-SceI recognition site was introduced into OVCAR-8 cells between a constitutive promoter (EF1alpha) and the Herpes simplex virus thymidine kinase (TK) gene, which confers sensitivity to gancyclovir (GCV). Expression of I-SceI in these cells caused a single DSB. Clones with aberrant repair could acquire resistance to GCV by separation of the EF1alpha promoter from the TK gene, or deletion of either the EF1alpha promoter or the TK gene. All mutations that we identified were interstitial deletions. Treatment of cells with etoposide or bleomycin, agents known to produce DNA DSBs following expression of I-SceI also did not generate GCRs. Because we identified solely interstitial deletions using the aforementioned negative selection system, we developed a positive selection system to produce GCR. A construct containing an I-SceI restriction site immediately followed by a hygromycin phosphotransferase cDNA, with no promoter, was stably integrated into OVCAR-8 cells. DNA DSBs were produced by an I-SceI expression vector. None of the hygromycin resistant clones recovered had linked the hygromycin phosphotransferase cDNA to an endogenous promoter, but had instead captured a portion of the I-SceI expression vector. These results indicate that even in a structurally unstable malignant cell line, the majority of DNA DSBs are repaired by religation of the two broken chromosome ends, without the introduction of a GCR.

  14. Differences in the cytogenetic alteration profiles of diffuse large B-cell lymphoma among Chinese and American patients.

    PubMed

    Chen, Yan; Dave, Bhavana J; Zhu, Xiongzeng; Chan, Wing C; Iqbal, Javeed; Sanger, Warren G; Fu, Kai

    2013-05-01

    To study the similarities and differences of cytogenetic alterations in diffuse large B-cell lymphoma (DLBCL) between Asian and Caucasian patients, we compared the cytogenetic profiles of Chinese and American DLBCL cases by analyzing conventional karyotypes and select fluorescence in situ hybridization (FISH) findings. We used interphase FISH analyses to determine the incidence of the t(14;18) and BCL6 and MYC rearrangements. Immunohistochemical analysis was used to categorize the lymphomas into the germinal center B-cell-like (GCB) or non-GCB-DLBCL subtypes, according to the Hans algorithm. Our data suggested that Chinese patients had cytogenetic profiles for GCB-DLBCL that differed from those of their American counterparts; specifically, the Chinese GCB patients exhibited greater frequencies of BCL6 rearrangements and gains of 1q and 11q but lower incidence of the t(14;18). Non-GCB-DLBCL in both the Chinese and American patients was characterized by recurrent gains of 3/3q and 18/18q. The incidences of both BCL6 rearrangement and t(14;18) were similar in Chinese and American non-GCB-DLBCL cases. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Single-Port Laparoscopic Parastomal Hernia Repair with Modified Sugarbaker Technique

    PubMed Central

    Turingan, Isidro; Zajkowska, Marta; Tran, Kim

    2014-01-01

    Introduction: Laparoscopic parastomal hernia repair with modified Sugarbaker technique has become increasingly the operation of choice because of its low recurrence rates. This study aimed to assess feasibility, safety, and efficiency of performing the same operation with single-incision laparoscopic surgery. Materials and Methods: All patients referred from March 2010 to February 2013 were considered for single-port laparoscopic repair with modified Sugarbaker technique. A SILS port (Covidien, Norwalk, Connecticut, USA) was used together with conventional straight dissecting instruments and a 5.5- mm/52-cm/30° laparoscope. Important technical aspects include modified dissection techniques, namely, “inline” and “chopsticks” to overcome loss of triangulation, insertion of a urinary catheter into an ostomy for ostomy limb identification, safe adhesiolysis by avoiding electocautery, saline -jet dissection to demarcate tissue planes, dissection of an entire laparotomy scar to expose incidental incisional hernias, adequate mobilization of an ostomy limb for lateralization, and wide overlapping of defect with antiadhesive mesh. Results: Of 6 patients, 5 underwent single-port laparoscopic repair, and 1 (whose body mass index [BMI] of 39.4 kg/m2 did not permit SILS port placement) underwent multiport repair. Mean defect size was 10 cm, and mean mesh size was 660 cm2 with 4 patients having incidental incisional hernias repaired by the same mesh. Mean operation time was 270 minutes, and mean hospital stay was 4 days. Appliance malfunction ceased immediately, and pain associated with parastomal hernia disappeared. There was no recurrence with a follow-up of 2 to 36 months. Conclusion: Compared with multiport repair, single-port laparoscopic parastomal repair with modified Sugarbaker technique is safe and efficient, and it may eventually become the standard of care. PMID:24680140

  16. Prediction of Fatigue Crack Growth of Repaired Al-alloy Structures with Double Sides

    NASA Astrophysics Data System (ADS)

    Benachour, M.; Benachour, N.; Benguediab, M.; Seriari, F. Z.

    During navigation, aircrafts are subject to fatigue damage. In order to rehabilitate damaged structures some techniques are often used to resolve this problem. Efficient repair technique, called composite patch repair, was used to reinforce the damaged structures and stop cracks. In this paper, effect of composite patch repair (Boron/Epoxy) on fatigue crack growth (FCG) was investigated on 2219 T62 Al-alloy. Effects of double patch repair in single notch tensile specimen (SENT) on FCG were studied and compared to single patch repair. Results show beneficial effect of patch repair on fatigue life and FCGR in comparison with the un-patched specimen. In addition, effect of mean stress characterized by stress ratio was highlighted. Fatigue behavior of investigated Al-alloy was compared.

  17. New Surface-Treatment Technique of Concrete Structures Using Crack Repair Stick with Healing Ingredients

    PubMed Central

    Ahn, Tae-Ho; Kim, Hong-gi; Ryou, Jae-Suk

    2016-01-01

    This study focused on the development of a crack repair stick as a new repair method along with self-healing materials that can be used to easily repair the cracks in a concrete structure at the construction site. In developing this new repair technique, the self-healing efficiency of various cementitious materials was considered. Likewise, a crack repair stick was developed to apply to concrete structures with 0.3 mm or lower crack widths. The crack repair stick was made with different materials, such as cement, an expansive material (C12A7), a swelling material, and calcium carbonate, to endow it with a self-healing property. To verify the performance of the crack repair stick for concrete structures, two types of procedures (field experiment and field absorption test) were carried out. As a result of such procedures, it was concluded that the developed crack repair stick could be used on concrete structures to reduce repair expenses and for the improved workability, usability, and serviceability of such structures. On the other hand, to evaluate the self-healing performance of the crack repair stick, various tests were conducted, such as the relative dynamic modulus of elasticity test, the water tightness test, the water permeability test, observation via a microscope, and scanning electron microscope (SEM) analysis. From the results, it is found that water leakage can be prevented and that the durability of a concrete structure can be improved through self-healing. Also, it was verified that the cracks were perfectly closed after 28 days due to application of the crack repair stick. These results indicate the usability of the crack repair stick for concrete structures, and its self-healing efficiency. PMID:28773776

  18. Cytogenetic analysis of CpG-oligonucleotide DSP30 plus Interleukin-2-Stimulated canine B-Cell lymphoma cells reveals the loss of one X Chromosome as the sole abnormality.

    PubMed

    Reimann-Berg, N; Murua Escobar, H; Kiefer, Y; Mischke, R; Willenbrock, S; Eberle, N; Nolte, I; Bullerdiek, J

    2011-01-01

    Human and canine lymphoid neoplasms are characterized by non-random cytogenetic abnormalities. However, due to the low mitotic activity of the B cells, cytogenetic analyses of B-cell lymphoid proliferations are difficult to perform. In the present study we stimulated canine B-cell lymphoma cells with the immunostimulatory CpG-oligonucleotide DSP30 in combination with interleukin-2 (IL-2) and obtained an adequate number of metaphases. Cytogenetic analyses revealed the loss of one X chromosome as the sole cytogenetic aberration. Chromosome analysis of the corresponding blood showed a normal female karyotype. Monosomy X as the sole clonal chromosomal abnormality is found in human hematopoietic malignancies as well, thus the dog may serve as a promising animal model. Copyright © 2011 S. Karger AG, Basel.

  19. American College of Medical Genetics guideline on the cytogenetic evaluation of the individual with developmental delay or mental retardation

    PubMed Central

    Shaffer, Lisa G.

    2005-01-01

    The following are the recommendations of the American College of Medical Genetics (ACMG) Professional Practice and Guidelines Committee, which was convened to assist health care professionals in making decisions regarding cytogenetic diagnostic testing and counseling for mental retardation (MR) and developmental delay (DD). This document reviews available evidence concerning the value of conventional and molecular cytogenetic testing for the identification of chromosomal anomalies that play a role in the etiology of MR/DD, and, based on this evidence, specific recommendations for each method of testing are provided. PMID:16301868

  20. Concepts in Gene Therapy for Cartilage Repair

    PubMed Central

    Steinert, Andre F.; Nöth, Ulrich; Tuan, Rocky S.

    2009-01-01

    Summary Once articular cartilage is injured, it has a very limited capacity for self-repair. Although current surgical therapeutic procedures to cartilage repair are clinically useful, they cannot restore a normal articular surface. Current research offers a growing number of bioactive reagents, including proteins and nucleic acids, that may be used to augment different aspects of the repair process. As these agents are difficult to administer effectively, gene transfer approaches are being developed to provide their sustained synthesis at sites of repair. To augment regeneration of articular cartilage, therapeutic genes can be delivered to the synovium, or directly to the cartilage lesion. Gene delivery to the cells of the synovial lining is generally considered more suitable for chondroprotective approaches, based on the expression of anti-inflammatory mediators. Gene transfer targeted to cartilage defects can be achieved by either direct vector administration to cells located at or surrounding the defects, or by transplantation of genetically modified chondrogenic cells into the defect. Several studies have shown that exogenous cDNAs encoding growth factors can be delivered locally to sites of cartilage damage, where they are expressed at therapeutically relevant levels. Furthermore, data is beginning to emerge indicating, that efficient delivery and expression of these genes is capable of influencing a repair response toward the synthesis of a more hyaline cartilage repair tissue in vivo. This review presents the current status of gene therapy for cartilage healing and highlights some of the remaining challenges. PMID:18313477

  1. Mechanisms of double-strand-break repair during gene targeting in mammalian cells.

    PubMed Central

    Ng, P; Baker, M D

    1999-01-01

    In the present study, the mechanism of double-strand-break (DSB) repair during gene targeting at the chromosomal immunoglobulin mu-locus in a murine hybridoma was examined. The gene-targeting assay utilized specially designed insertion vectors genetically marked in the region of homology to the chromosomal mu-locus by six diagnostic restriction enzyme site markers. The restriction enzyme markers permitted the contribution of vector-borne and chromosomal mu-sequences in the recombinant product to be determined. The use of the insertion vectors in conjunction with a plating procedure in which individual integrative homologous recombination events were retained for analysis revealed several important features about the mammalian DSB repair process:The presence of the markers within the region of shared homology did not affect the efficiency of gene targeting.In the majority of recombinants, the vector-borne marker proximal to the DSB was absent, being replaced with the corresponding chromosomal restriction enzyme site. This result is consistent with either formation and repair of a vector-borne gap or an "end" bias in mismatch repair of heteroduplex DNA (hDNA) that favored the chromosomal sequence. Formation of hDNA was frequently associated with gene targeting and, in most cases, began approximately 645 bp from the DSB and could encompass a distance of at least 1469 bp.The hDNA was efficiently repaired prior to DNA replication.The repair of adjacent mismatches in hDNA occurred predominantly on the same strand, suggesting the involvement of a long-patch repair mechanism. PMID:10049929

  2. Repair of DNA-polypeptide crosslinks by human excision nuclease

    NASA Astrophysics Data System (ADS)

    Reardon, Joyce T.; Sancar, Aziz

    2006-03-01

    DNA-protein crosslinks are relatively common DNA lesions that form during the physiological processing of DNA by replication and recombination proteins, by side reactions of base excision repair enzymes, and by cellular exposure to bifunctional DNA-damaging agents such as platinum compounds. The mechanism by which pathological DNA-protein crosslinks are repaired in humans is not known. In this study, we investigated the mechanism of recognition and repair of protein-DNA and oligopeptide-DNA crosslinks by the human excision nuclease. Under our assay conditions, the human nucleotide excision repair system did not remove a 16-kDa protein crosslinked to DNA at a detectable level. However, 4- and 12-aa-long oligopeptides crosslinked to the DNA backbone were recognized by some of the damage recognition factors of the human excision nuclease with moderate selectivity and were excised from DNA at relatively efficient rates. Our data suggest that, if coupled with proteolytic degradation of the crosslinked protein, the human excision nuclease may be the major enzyme system for eliminating protein-DNA crosslinks from the genome. damage recognition | nucleotide excision repair

  3. Comparative cytogenetics among populations of Astyanax altiparanae (Characiformes, Characidae, Incertae sedis)

    PubMed Central

    2009-01-01

    Cytogenetic data are presented for Astyanax altiparanae populations from three Brazilian hydrographic systems. The chromosomal data obtained in A. altiparanae support the hypothesis of diploid number conservation. However, small differences in the karyotype formula and number of nucleolar organizer regions were observed in these populations. The apparent karyotypical similarity among the studied populations strongly suggests a close relationship among them with some chromosomal divergences due to gene flow restriction. PMID:21637456

  4. Knock-in reporter mice demonstrate that DNA repair by non-homologous end joining declines with age.

    PubMed

    Vaidya, Amita; Mao, Zhiyong; Tian, Xiao; Spencer, Brianna; Seluanov, Andrei; Gorbunova, Vera

    2014-07-01

    Accumulation of genome rearrangements is a characteristic of aged tissues. Since genome rearrangements result from faulty repair of DNA double strand breaks (DSBs), we hypothesized that DNA DSB repair becomes less efficient with age. The Non-Homologous End Joining (NHEJ) pathway repairs a majority of DSBs in vertebrates. To examine age-associated changes in NHEJ, we have generated an R26NHEJ mouse model in which a GFP-based NHEJ reporter cassette is knocked-in to the ROSA26 locus. In this model, NHEJ repair of DSBs generated by the site-specific endonuclease, I-SceI, reconstitutes a functional GFP gene. In this system NHEJ efficiency can be compared across tissues of the same mouse and in mice of different age. Using R26NHEJ mice, we found that NHEJ efficiency was higher in the skin, lung, and kidney fibroblasts, and lower in the heart fibroblasts and brain astrocytes. Furthermore, we observed that NHEJ efficiency declined with age. In the 24-month old animals compared to the 5-month old animals, NHEJ efficiency declined 1.8 to 3.8-fold, depending on the tissue, with the strongest decline observed in the skin fibroblasts. The sequence analysis of 300 independent NHEJ repair events showed that, regardless of age, mice utilize microhomology sequences at a significantly higher frequency than expected by chance. Furthermore, the frequency of microhomology-mediated end joining (MMEJ) events increased in the heart and lung fibroblasts of old mice, suggesting that NHEJ becomes more mutagenic with age. In summary, our study provides a versatile mouse model for the analysis of NHEJ in a wide range of tissues and demonstrates that DNA repair by NHEJ declines with age in mice, which could provide a mechanism for age-related genomic instability and increased cancer incidence with age.

  5. Analysis and Testing of a Metallic Repair Applicable to Pressurized Composite Aircraft Structure

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.

    2014-01-01

    Development of repair technology is vital to the long-term application of new structural concepts on aircraft structure. The design, analysis, and testing of a repair concept applicable to a stiffened composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure was recently completed. The damage scenario considered was a mid-bay to mid-bay saw-cut with a severed stiffener, flange, and skin. A bolted metallic repair was selected so that it could be easily applied in the operational environment. The present work describes results obtained from tension and pressure panel tests conducted to validate both the repair concept and finite element analysis techniques used in the design effort. Simulation and experimental strain and displacement results show good correlation, indicating that the finite element modeling techniques applied in the effort are an appropriate compromise between required fidelity and computational effort. Static tests under tension and pressure loadings proved that the proposed repair concept is capable of sustaining load levels that are higher than those resulting from the current working stress allowables. Furthermore, the pressure repair panel was subjected to 55,000 pressure load cycles to verify that the design can withstand a life cycle representative for a transport category aircraft. These findings enable upward revision of the stress allowables that had been kept at an overly-conservative level due to concerns associated with repairability of the panels. This conclusion enables more weight efficient structural designs utilizing the composite concept under investigation.

  6. Prognostic significance of cytogenetic abnormalities in patients with chronic myelogenous leukemia.

    PubMed

    Przepiorka, D; Thomas, E D

    1988-03-01

    The cytogenetic data for 126 patients with Ph-positive chronic myelogenous leukemia (CML) in accelerated phase or blast crisis were analysed for clonal chromosomal abnormalities in addition to the standard Ph prior to allogeneic or syngeneic bone marrow transplantation (BMT). Additional clonal abnormalities were found in 84%, and 14% had a variant Ph (VPh). In decreasing order of frequency, the most common clonal abnormalities were a second Ph, +8, i(17q), -Y and +19. A second Ph, VPh or +8 occurred more frequently in patients who relapsed following BMT than in those who survived disease-free for at least 1 1/2 years. The presence of an i(17q) alone did not correlate with relapse. The patients with a second Ph, VPh or +8 had a median time to relapse of 19 months, and the risk of relapse at 3 years was 73%. Those with other or no additional clonal abnormalities had not reached a median time to relapse and had a 3-year risk of relapse of 31% (p = 0.002). This analysis suggests that specific cytogenetic abnormalities may be useful indicators of resistance to therapy for CML and should be included in proportional hazard models to predict outcome after BMT.

  7. Cytogenetic Studies of Rwandan Pediatric Patients Presenting with Global Developmental Delay, Intellectual Disability and/or Multiple Congenital Anomalies.

    PubMed

    Uwineza, Annette; Hitayezu, Janvier; Jamar, Mauricette; Caberg, Jean-Hubert; Murorunkwere, Seraphine; Janvier, Ndinkabandi; Bours, Vincent; Mutesa, Leon

    2016-02-01

    Global developmental delay (GDD) is defined as a significant delay in two or more developmental domains: gross or fine motor, speech/language, cognitive, social/personal and activities of daily living. Many of these children will go on to be diagnosed with intellectual disability (ID), which is most commonly defined as having an IQ <75 in addition to impairment in adaptive functioning. Cytogenetic studies have been performed in 664 Rwandan pediatric patients presenting GDD/ID and/or multiple congenital abnormalities (MCA). Karyotype analysis was performed in all patients and revealed 260 chromosomal abnormalities. The most frequent chromosomal abnormality was Down syndrome and then Edward syndrome and Patau syndrome. Other identified chromosomal abnormalities included 47,XX,+del(9)(q11), 46,XY,del(13)(q34) and 46,XX,der(22)t(10;22)(p10;p10)mat. In conclusion, our results highlight the high frequency of cytogenetically detectable abnormalities in this series, with implications for the burden on the healthcare. This study demonstrates the importance of cytogenetic analysis in patients with GDD/ID and MCA. © The Author [2015]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Cytogenetic study of a patient with infant acute lymphoblastic leukemia using GTG-banding and chromosome painting.

    PubMed

    Alter, D; Mark, H F

    2000-10-01

    Numerical and structural chromosomal abnormalities occur in up to 90% of cases of childhood acute lymphoblastic leukemia (ALL). Two-thirds of these abnormalities are recurrent. The most common abnormalities are pseudodiploidy and t(1;19), occurring 40 and 5-6% of the time. Hyperdiploidy has the best prognosis, with an 80-90% 5-year survival. The 4;11 translocation has the worst prognosis, with a 10-35% 5-year survival. We report a patient with infant acute lymphoblastic leukemia and nonrecurrent rearrangements of chromosomes 10 and 11. Structural rearrangements between chromosomes 10 and 11 have been observed in 0.5% of all cases of childhood ALL with cytogenetic abnormalities. The identification of the apparently unique structural abnormalities was achieved using fluorescent in situ hybridization (FISH) with chromosome 10- and chromosome 11-specific painting probes as an adjunct to conventional cytogenetics. As is often the case, suboptimal preparations often preclude unequivocal identification of complex rearrangements by conventional banding techniques. The cytogenetic diagnosis of our patient was established as 46,XY, der(10)-t(10;11)(p15;q14)t(10;11)(q25;p11), der(11)t(10;11)(p15;q14)t(10;11)-(q25;p11). The benefits of FISH serve to increase the resolution of detection for chromosomal abnormalities and the understanding of the pathogenic mechanisms of childhood ALL. Copyright 2000 Academic Press.

  9. Molecular cytogenetic mapping of 24 CEPH YACs and 24 gene-specific large insert probes to chromosome 17.

    PubMed

    Bärlund, M; Nupponen, N N; Karhu, R; Tanner, M M; Paavola, P; Kallioniemi, O P; Kallioniemi, A

    1998-01-01

    Defining boundaries of chromosomal rearrangements at the molecular level would benefit from landmarks that link the cytogenetic map to physical, genetic, and transcript maps, as well as from large-insert FISH probes for such loci to detect numerical and structural rearrangements in metaphase or interphase cells. Here, we determined the locations of 24 genetically mapped CEPH-Mega YACs along the FLpter scale (fractional length from p-telomere) by quantitative fluorescence in situ hybridization analysis. This generated a set of cytogenetically mapped probes for chromosome 17 with an average spacing of about 5 cM. We then developed large-insert YAC, BAC, PAC, or P1 clones to the following 24 known genes, and determined refined map locations along the same FLpter scale: pter-TP53-TOP3-cen-TNFAIP1-ERBB2-TOP2A- BRCA1-TCF11-NME1-HLF-ZNF147/CL N80-BCL5/MPO/SFRS1-TBX2-PECAM1-DDX5/ PRKCA-ICAM2-GH1/PRKAR1A-GRB2-CDK3 /FKHL13-qter. Taken together, these 48 cytogenetically mapped large-insert probes provide tools for the molecular analysis of chromosome 17 rearrangements, such as mapping amplification, deletion, and translocation breakpoints in this chromosome, in cancer and other diseases.

  10. New Comprehensive Cytogenetic Scoring System for Primary Myelodysplastic Syndromes (MDS) and Oligoblastic Acute Myeloid Leukemia After MDS Derived From an International Database Merge

    PubMed Central

    Schanz, Julie; Tüchler, Heinz; Solé, Francesc; Mallo, Mar; Luño, Elisa; Cervera, José; Granada, Isabel; Hildebrandt, Barbara; Slovak, Marilyn L.; Ohyashiki, Kazuma; Steidl, Christian; Fonatsch, Christa; Pfeilstöcker, Michael; Nösslinger, Thomas; Valent, Peter; Giagounidis, Aristoteles; Aul, Carlo; Lübbert, Michael; Stauder, Reinhard; Krieger, Otto; Garcia-Manero, Guillermo; Faderl, Stefan; Pierce, Sherry; Le Beau, Michelle M.; Bennett, John M.; Greenberg, Peter; Germing, Ulrich; Haase, Detlef

    2012-01-01

    Purpose The karyotype is a strong independent prognostic factor in myelodysplastic syndromes (MDS). Since the implementation of the International Prognostic Scoring System (IPSS) in 1997, knowledge concerning the prognostic impact of abnormalities has increased substantially. The present study proposes a new and comprehensive cytogenetic scoring system based on an international data collection of 2,902 patients. Patients and Methods Patients were included from the German-Austrian MDS Study Group (n = 1,193), the International MDS Risk Analysis Workshop (n = 816), the Spanish Hematological Cytogenetics Working Group (n = 849), and the International Working Group on MDS Cytogenetics (n = 44) databases. Patients with primary MDS and oligoblastic acute myeloid leukemia (AML) after MDS treated with supportive care only were evaluated for overall survival (OS) and AML evolution. Internal validation by bootstrap analysis and external validation in an independent patient cohort were performed to confirm the results. Results In total, 19 cytogenetic categories were defined, providing clear prognostic classification in 91% of all patients. The abnormalities were classified into five prognostic subgroups (P < .001): very good (median OS, 61 months; hazard ratio [HR], 0.5; n = 81); good (49 months; HR, 1.0 [reference category]; n = 1,809); intermediate (26 months; HR, 1.6; n = 529); poor (16 months; HR, 2.6; n = 148); and very poor (6 months; HR, 4.2; n = 187). The internal and external validations confirmed the results of the score. Conclusion In conclusion, these data should contribute to the ongoing efforts to update the IPSS by refining the cytogenetic risk categories. PMID:22331955

  11. Nanovector-based prolyl hydroxylase domain 2 silencing system enhances the efficiency of stem cell transplantation for infarcted myocardium repair.

    PubMed

    Zhu, Kai; Lai, Hao; Guo, Changfa; Li, Jun; Wang, Yulin; Wang, Lingyan; Wang, Chunsheng

    2014-01-01

    Mesenchymal stem cell (MSC) transplantation has attracted much attention in myocardial infarction therapy. One of the limitations is the poor survival of grafted cells in the ischemic microenvironment. Small interfering RNA-mediated prolyl hydroxylase domain protein 2 (PHD2) silencing in MSCs holds tremendous potential to enhance their survival and paracrine effect after transplantation. However, an efficient and biocompatible PHD2 silencing system for clinical application is lacking. Herein, we developed a novel PHD2 silencing system based on arginine-terminated generation 4 poly(amidoamine) (Arg-G4) nanoparticles. The system exhibited effective and biocompatible small interfering RNA delivery and PHD2 silencing in MSCs in vitro. After genetically modified MSC transplantation in myocardial infarction models, MSC survival and paracrine function of IGF-1 were enhanced significantly in vivo. As a result, we observed decreased cardiomyocyte apoptosis, scar size, and interstitial fibrosis, and increased angiogenesis in the diseased myocardium, which ultimately attenuated ventricular remodeling and improved heart function. This work demonstrated that an Arg-G4 nanovector-based PHD2 silencing system could enhance the efficiency of MSC transplantation for infarcted myocardium repair.

  12. Medial Meniscus Posterior Root Repair Using a Transtibial Technique.

    PubMed

    Woodmass, Jarret M; Mohan, Rohith; Stuart, Michael J; Krych, Aaron J

    2017-06-01

    The meniscal roots are critical in maintaining the normal shock absorbing function of the meniscus. If a meniscal root tear is left untreated, meniscal extrusion can occur rendering the meniscus nonfunctional resulting in degenerative arthritis. Two main repair techniques are described: (1) suture anchors (direct fixation) and (2) sutures pulled through a tibial tunnel (indirect fixation). Meniscal root repair using a suture anchor technique is technically challenging requiring a posterior portal and a curved suture passing device that can be difficult to manipulate within the knee. We present a technique for posterior medial meniscus root repair using 3 sutures (1 leader, 2 cinch), standard arthroscopy portals, and transtibial fixation. Overall, this technique simplifies a challenging procedure and allows for familiarity and efficiency.

  13. Spontaneous abortion and recurrent miscarriage: A comparison of cytogenetic diagnosis in 250 cases.

    PubMed

    Choi, Tae Yeong; Lee, Hye Min; Park, Won Kyoung; Jeong, So Yeong; Moon, Hwa Sook

    2014-11-01

    The purpose of this study was to determine the frequency and distribution of cytogenetically abnormal miscarriages in couples with spontaneous abortions (SA) or recurrent miscarriages (RM). Karyotyping of specimens from 164 abortuses with SA and 86 abortuses with RM was successfully performed according to the standard cytogenetic methods using G-banding technique. Among the total 164 cases of SA group, 81 (49.4%) were euploid and the rest (83, 50.6%) showed chromosomal abnormalities. In RM(≥2) and RM(≥3) group, 31 (36.0%)/27 (34.6%) cases were euploid and 55 (64.0%)/51(65.4%) cases were abnormal, respectively. A statistically significant difference was found in the rate of cytogenetic abnormality between SA and RM groups (P<0.05). In all groups, women with advanced maternal age (≥35 years) had a higher rate of chromosome anomalies compared with women younger than age 35 (normal:abnormal = 32.4%:67.6% for ≥35 years and 53.8%:46.2% for <35 years in SA; 19.2%:80.8%/21.7%:78.3% for ≥35 years and 43.3%:56.7%/40.0%:60.0% for <35 years in RM(≥2) and RM(≥3), respectively; P<0.05). In SA group, an increase of normal karyotypes was noted with increased gestational age (<10 week, 38.0%; 10-15 week, 53.5%; 16-20 week, 65.7%). In RM group, most of cases were in <10 week and the frequency of trisomies with chromosomes 1 to 10 were increased compared with that of SA. There was a statistically significant difference in the frequency and distribution of chromosomal abnormalities between SA and RM groups. Our results will provide useful information for diagnosis and genetic counseling of patients with SA or RM.

  14. Changes in cytogenetics and molecular genetics in acute myeloid leukemia from childhood to adult age groups.

    PubMed

    Creutzig, Ursula; Zimmermann, Martin; Reinhardt, Dirk; Rasche, Mareike; von Neuhoff, Christine; Alpermann, Tamara; Dworzak, Michael; Perglerová, Karolína; Zemanova, Zuzana; Tchinda, Joelle; Bradtke, Jutta; Thiede, Christian; Haferlach, Claudia

    2016-12-15

    To obtain better insight into the biology of acute myeloid leukemia (AML) in various age groups, this study focused on the genetic changes occurring during a lifetime. This study analyzed the relation between age and genetics from birth to 100 years in 5564 patients with de novo AML diagnosed from 1998 to 2012 (1192 patients from nationwide pediatric studies [AML Berlin-Frankfurt-Münster studies 98 and 2004] and 4372 adults registered with the Munich Leukemia Laboratory). The frequencies of cytogenetic subgroups were age-dependent. Favorable subtypes (t(8;21), inv(16)/t(16;16), and t(15;17)) decreased in general from the pediatric age group (2 to < 18 years; 33%) to the oldest groups (<5% for > 70 years; P < .0001). Unfavorable cytogenetics (-7/del(7), -5/del(5q) or 5p, inv(3)/t(3;3), t(6;9), complex karyotype, 12p, 17p, and 11q23/mixed-lineage leukemia aberrations, excluding t(9;11)) were frequent (42%) in infants (<2 years), had a low frequency in children and young adults (<22%), and increased in frequency up to 36% in patients older than 85 years (P = .01). This was even more significant for complex karyotypes (P ≤ .0001), which also showed a strong increase in the absolute age-specific incidence with age. Interestingly, the frequency of 11q23 abnormalities decreased from infants to older patients. The proportion of clinically relevant molecular aberrations of CCAAT/enhancer binding protein α, nucleophosmin (NPM1), and NPM1/fms-related tyrosine kinase 3-internal tandem duplication increased with age. Altogether, with the exclusion of infants, a significant decrease in the proportion of favorable cytogenetic subtypes and an increase in unfavorable cytogenetics were observed with increasing age. These findings indicate different mechanisms for the pathogenesis of AML; these different mechanisms also suggest directions for etiological research and contribute to the more unfavorable prognosis with increasing age. Cancer 2016;122:3821-3830.

  15. Toll-Like Receptor-4 deficiency enhances repair of ultraviolet radiation induced cutaneous DNA damage by nucleotide excision repair mechanism

    PubMed Central

    Ahmad, Israr; Simanyi, Eva; Guroji, Purushotham; Tamimi, Iman A; delaRosa, Hillary J; Nagar, Anusuiya; Nagar, Priyamvada; Katiyar, Santosh K; Elmets, Craig A; Yusuf, Nabiha

    2014-01-01

    UVB-induced DNA damage plays a critical role in development of photoimmunosuppression. The purpose of this study was to determine whether repair of UVB-induced DNA damage is regulated by Toll-like receptor-4 (TLR4). When TLR4 gene knockout (TLR4-/-) and TLR4 competent (TLR4+/+) mice were subjected to 90 mJ/cm2 UVB radiation locally, DNA damage in the form of CPD, were repaired more efficiently in the skin and bone marrow dendritic cells (BMDC) of TLR4-/- mice in comparison to TLR4+/+ mice. Expression of DNA repair gene XPA (Xeroderma pigmentosum complementation group A) was significantly lower in skin and BMDC of TLR4+/+ mice than TLR4-/- mice after UVB exposure. When cytokine levels were compared in these strains after UVB exposure, BMDC from UV-irradiated TLR4-/- mice produced significantly more interleukin (IL)-12 and IL-23 cytokines (p<0.05) than BMDC from TLR4+/+ mice. Addition of anti-IL-12 and anti-IL-23 antibodies to BMDC of TLR4-/- mice (before UVB exposure) inhibited repair of CPD, with a concomitant decrease in XPA expression. Addition of TLR4 agonist to TLR4+/+ BMDC cultures decreased XPA expression and inhibited CPD repair. Thus, strategies to inhibit TLR4 may allow for immunopreventive and immunotherapeutic approaches for managing UVB-induced cutaneous DNA damage and skin cancer. PMID:24326454

  16. Effects of realistic heat straightening repair on the properties and serviceability of damaged steel beam bridges.

    DOT National Transportation Integrated Search

    2012-02-01

    The permanent deformations in steel beam bridges caused by collision with high profile vehicles can be repaired by heat straightening, : which is a structurally efficient and costeffective repair process developed by many engineers over the years....

  17. Case report: Concomitant Chronic Lymphocytic Leukaemia and Cytogenetically Normal de novo Acute Leukaemia in a Patient.

    PubMed

    Kajtár, Béla; Rajnics, Péter; Egyed, Miklós; Alizadeh, Hussain

    2015-01-01

    The simultaneous occurrence of acute myeloid leukaemia with untreated chronic lymphocytic leukemia is extremely rare. We report a case of a 74-year-old man who was evaluated for macrocytic anaemia. Based on the morphology and immunophenotyping analysis of peripheral blood, a diagnosis of chronic lymphocytic leukemia was established. Subsequently, the bone marrow examination revealed the presence of two distinct, coexisting CLL and AML clones. Cytogenetic and molecular genetic analysis detected deletion 13q14.3 and unmutated immunoglobulin variable heavy-chain in the CLL clone, only. The AML and CLL clones did not share clonality, and the AML did not involve the peripheral blood. A diagnosis of cytogenetically normal de novo AML occurring concurrently with untreated CLL has not been reported previously in English literature. © 2015 by the Association of Clinical Scientists, Inc.

  18. Aortic arch repair under moderate hypothermic circulatory arrest with or without antegrade cerebral perfusion based on the extent of repair

    PubMed Central

    Park, Sung Jun; Jeon, Bo Bae; Kim, Hee Jung

    2018-01-01

    Background For aortic-arch repair, moderate hypothermic circulatory arrest (HCA) have shown favorable outcomes over conventional deep HCA when coupled with antegrade cerebral perfusion (ACP); however, recent studies have shown that ACP may not be essential when circulatory arrest time is less than 30 minutes. This study aims to evaluate the stratified arch repair strategy of moderate HCA with or without ACP based on the extent of procedure. Methods Consecutive 138 patients (63 female; mean age, 60.2±15.7 years) undergoing open arch repair due to acute aortic syndrome (n=69) or chronic aneurysm (n=69) from January 2012 through April 2017 were enrolled in this study. Stratified neuroprotective strategy was employed according to the extent of repair: hemi-arch repair (n=93) was performed under moderated HCA alone and total-arch repair (n=45) under moderate HCA combined with unilateral ACP. Results Median total circulatory arrest and total procedural times were 8.0 minutes [interquartile range (IQR), 6.0–10.0] and 233.0 minutes (IQR, 196.0–290.0 minutes), respectively in the hemi-arch group, and 25.0 minutes (IQR, 12.0–33.0 minutes) and 349.0 minutes (IQR, 276.0–406.0 minutes), respectively in the total-arch group. Early mortality occurred in 2 patients (1.4%) who underwent hemi-arch repair for acute aortic dissection. There was no permanent neurological injury, but 2 cases (1.4%) of temporary neurologic deficit in the hemi-arch group. Other complications included re-exploration for bleeding in 6 (4.3%), postoperative extracorporeal life support in 5 (3.6%) and new-dialysis in 6 (4.3%). Conclusions Stratified cerebral perfusion strategy using moderate hypothermia for aortic-arch surgery based on the extent of arch repair showed satisfactory safety and reasonable efficiency. PMID:29707342

  19. The production and repair of aflatoxin B sub 1 -induced DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leadon, S.A.

    To investigate the influence of function or activity of a DNA sequence on its repair, we have studied excision repair of aflatoxin B{sub 1} (AFB{sub 1})-induced damage in the nontranscribed, heterochromatic alpha DNA of monkey cells and in the metallothionein genes of human cells. In confluent cells, AFB{sub 1} adducts are produced in similar frequencies in alpha and in the rest of the DNA, but removal from alpha DNA is severely deficient, however, removal of AFB{sub 1} adducts from alpha DNA is enhanced by small doses of UV. The repair deficiencies are not observed in actively growing cells. We havemore » also shown that there is preferential repair of AFB{sub 1} damage in active genes. AFB{sub 1} damage is efficiently repaired in the active human metallothionein (hMT) genes, but deficiently repaired in inactive hMT genes. 51 refs., 3 tabs.« less

  20. DNA damage and repair in plants – from models to crops

    PubMed Central

    Manova, Vasilissa; Gruszka, Damian

    2015-01-01

    The genomic integrity of every organism is constantly challenged by endogenous and exogenous DNA-damaging factors. Mutagenic agents cause reduced stability of plant genome and have a deleterious effect on development, and in the case of crop species lead to yield reduction. It is crucial for all organisms, including plants, to develop efficient mechanisms for maintenance of the genome integrity. DNA repair processes have been characterized in bacterial, fungal, and mammalian model systems. The description of these processes in plants, in contrast, was initiated relatively recently and has been focused largely on the model plant Arabidopsis thaliana. Consequently, our knowledge about DNA repair in plant genomes - particularly in the genomes of crop plants - is by far more limited. However, the relatively small size of the Arabidopsis genome, its rapid life cycle and availability of various transformation methods make this species an attractive model for the study of eukaryotic DNA repair mechanisms and mutagenesis. Moreover, abnormalities in DNA repair which proved to be lethal for animal models are tolerated in plant genomes, although sensitivity to DNA damaging agents is retained. Due to the high conservation of DNA repair processes and factors mediating them among eukaryotes, genes and proteins that have been identified in model species may serve to identify homologous sequences in other species, including crop plants, in which these mechanisms are poorly understood. Crop breeding programs have provided remarkable advances in food quality and yield over the last century. Although the human population is predicted to “peak” by 2050, further advances in yield will be required to feed this population. Breeding requires genetic diversity. The biological impact of any mutagenic agent used for the creation of genetic diversity depends on the chemical nature of the induced lesions and on the efficiency and accuracy of their repair. More recent targeted mutagenesis

  1. Ozone Inhalation Leads to a Dose-Dependent Increase of Cytogenetic Damage in Human Lymphocytes

    PubMed Central

    Holland, Nina; Davé, Veronica; Venkat, Subha; Wong, Hofer; Donde, Aneesh; Balmes, John R; Arjomandi, Mehrdad

    2014-01-01

    Ozone is an important constituent of ambient air pollution and represents a major public health concern. Oxidative injury due to ozone inhalation causes the generation of reactive oxygen species and can be genotoxic. To determine whether ozone exposure causes genetic damage in peripheral blood lymphocytes, we employed a well-validated cytokinesis-block micronucleus Cytome assay. Frequencies of micronuclei (MN) and nucleoplasmic bridges (NB) were used as indicators of cytogenetic damage. Samples were obtained from 22 non-smoking healthy subjects immediately before and 24-hr after controlled 4-hr exposures to filtered air, 100 ppb, and 200 ppb ozone while exercising in a repeated-measure study design. Inhalation of ozone at different exposure levels was associated with a significant dose-dependent increase in MN frequency (P < 0.0001) and in the number of cells with more than 1 MN per cell (P < 0.0005). Inhalation of ozone also caused an increase in the number of apoptotic cells (P = 0.002). Airway neutrophilia was associated with an increase in MN frequency (P = 0.033) independent of the direct effects of ozone exposure (P < 0.0001). We also observed significant increases in both MN and NB frequencies after exercise in filtered air, suggesting that physical activity is also an important inducer of oxidative stress. These results corroborate our previous findings that cytogenetic damage is associated with ozone exposure, and show that damage is dose-dependent. Further study of ozone-induced cytogenetic damage in airway epithelial cells could provide evidence for the role of oxidative injury in lung carcinogenesis, and help to address the potential public health implications of exposures to oxidant environments. PMID:25451016

  2. RTEL1 contributes to DNA replication and repair and telomere maintenance.

    PubMed

    Uringa, Evert-Jan; Lisaingo, Kathleen; Pickett, Hilda A; Brind'Amour, Julie; Rohde, Jan-Hendrik; Zelensky, Alex; Essers, Jeroen; Lansdorp, Peter M

    2012-07-01

    Telomere maintenance and DNA repair are important processes that protect the genome against instability. mRtel1, an essential helicase, is a dominant factor setting telomere length in mice. In addition, mRtel1 is involved in DNA double-strand break repair. The role of mRtel1 in telomere maintenance and genome stability is poorly understood. Therefore we used mRtel1-deficient mouse embryonic stem cells to examine the function of mRtel1 in replication, DNA repair, recombination, and telomere maintenance. mRtel1-deficient mouse embryonic stem cells showed sensitivity to a range of DNA-damaging agents, highlighting its role in replication and genome maintenance. Deletion of mRtel1 increased the frequency of sister chromatid exchange events and suppressed gene replacement, demonstrating the involvement of the protein in homologous recombination. mRtel1 localized transiently at telomeres and is needed for efficient telomere replication. Of interest, in the absence of mRtel1, telomeres in embryonic stem cells appeared relatively stable in length, suggesting that mRtel1 is required to allow extension by telomerase. We propose that mRtel1 is a key protein for DNA replication, recombination, and repair and efficient elongation of telomeres by telomerase.

  3. Chromosome End Repair and Genome Stability in Plasmodium falciparum.

    PubMed

    Calhoun, Susannah F; Reed, Jake; Alexander, Noah; Mason, Christopher E; Deitsch, Kirk W; Kirkman, Laura A

    2017-08-08

    The human malaria parasite Plasmodium falciparum replicates within circulating red blood cells, where it is subjected to conditions that frequently cause DNA damage. The repair of DNA double-stranded breaks (DSBs) is thought to rely almost exclusively on homologous recombination (HR), due to a lack of efficient nonhomologous end joining. However, given that the parasite is haploid during this stage of its life cycle, the mechanisms involved in maintaining genome stability are poorly understood. Of particular interest are the subtelomeric regions of the chromosomes, which contain the majority of the multicopy variant antigen-encoding genes responsible for virulence and disease severity. Here, we show that parasites utilize a competitive balance between de novo telomere addition, also called "telomere healing," and HR to stabilize chromosome ends. Products of both repair pathways were observed in response to DSBs that occurred spontaneously during routine in vitro culture or resulted from experimentally induced DSBs, demonstrating that both pathways are active in repairing DSBs within subtelomeric regions and that the pathway utilized was determined by the DNA sequences immediately surrounding the break. In combination, these two repair pathways enable parasites to efficiently maintain chromosome stability while also contributing to the generation of genetic diversity. IMPORTANCE Malaria is a major global health threat, causing approximately 430,000 deaths annually. This mosquito-transmitted disease is caused by Plasmodium parasites, with infection with the species Plasmodium falciparum being the most lethal. Mechanisms underlying DNA repair and maintenance of genome integrity in P. falciparum are not well understood and represent a gap in our understanding of how parasites survive the hostile environment of their vertebrate and insect hosts. Our work examines DNA repair in real time by using single-molecule real-time (SMRT) sequencing focused on the subtelomeric

  4. A first generation cytogenetic ideogram for the Florida manatee (Trichechus manatus latirostris) based on multiple chromosome banding techniques

    USGS Publications Warehouse

    Gray, B.A.; Zori, Roberto T.; McGuire, P.M.; Bonde, R.K.

    2002-01-01

    Detailed chromosome studies were conducted for the Florida manatee (Trichechus manatus latirostris) utilizing primary chromosome banding techniques (G- and Q-banding). Digital microscopic imaging methods were employed and a standard G-banded karyotype was constructed for both sexes. Based on chromosome banding patterns and measurements obtained in these studies, a standard karyotype and ideogram are proposed. Characterization of additional cytogenetic features of this species by supplemental chromosome banding techniques, C-banding (constitutive heterochromatin), Ag-NOR staining (nucleolar organizer regions), and DA/DAPI staining, was also performed. These studies provide detailed cytogenetic data for T. manatus latirostris, which could enhance future genetic mapping projects and interspecific and intraspecific genomic comparisons by techniques such as zoo-FISH.

  5. First Cytogenetic Profile of Omani Patients with de novo Myelodysplastic Syndromes: Comparison with data from Asia, Africa, Europe and North and South America.

    PubMed

    Udayakumar, Achandira M; Fawaz, Nagla; Pathare, Anil; Asraf, Shakila; Al-Huneini, Mohammed; Al-Farsi, Khalil; Al-Kindi, Salam; Al-Khabouri, Murtadha

    2017-08-01

    Clonal cytogenetic abnormalities have been reported among 30-80% of patients with myelodysplastic syndromes (MDS); however, 20-70% of patients with MDS show a normal karyotype that may nevertheless harbour a cryptic genetic alteration. Earlier reports have suggested that the distribution of specific chromosomal aberrations varies among Western and Asian countries, with geographical and ethnic differences in the frequency of specific chromosomal aberrations. This article compared the cytogenetic data of 36 adult Omani patients with MDS to previously reported data from other populations. Differences were noted between the percentages of clonal aberrations and the median age of Omani subjects at presentation in comparison to individuals of different ethnicities and from various geographical locations. To the best of the authors' knowledge, this is the first report to describe the cytogenetic data of patients with MDS from Oman.

  6. Base Excision Repair of Oxidative DNA Damage

    PubMed Central

    David, Sheila S.; O’Shea, Valerie L.; Kundu, Sucharita

    2010-01-01

    Base excision repair plays an important role in preventing mutations associated with the common product of oxidative damage, 8-oxoguanine. Recent structural studies have shown that 8-oxoguanine glycosylases use an intricate series of steps to efficiently search and locate 8-oxoguanine lesions within the multitude of undamaged bases. The importance of prevention of mutations associated with 8-oxoguanine has also been illustrated by direct connections between defects in the BER glycosylase MUTYH and colorectal cancer. In addition, the properties of other guanine oxidation products and the BER glycosylases that remove them are being uncovered. This work is providing surprising and intriguing new insights into the process of base excision repair. PMID:17581577

  7. Analysis of in vivo correction of defined mismatches in the DNA mismatch repair mutants msh2, msh3 and msh6 of Saccharomyces cerevisiae.

    PubMed

    Lühr, B; Scheller, J; Meyer, P; Kramer, W

    1998-02-01

    We have analysed the correction of defined mismatches in wild-type and msh2, msh3, msh6 and msh3 msh6 mutants of Saccharomyces cerevisiae in two different yeast strain backgrounds by transformation with plasmid heteroduplex DNA constructs. Ten different base/base mismatches, two single-nucleotide loops and a 38-nucleotide loop were tested. Repair of all types of mismatches was severely impaired in msh2 and msh3 msh6 mutants. In msh6 mutants, repair efficiency of most base/base mismatches was reduced to a similar extent as in msh3 msh6 double mutants. G/T and A/C mismatches, however, displayed residual repair in msh6 mutants in one strain background, implying a role for Msh3p in recognition of base/base mismatches. Furthermore, the efficiency of repair of base/base mismatches was considerably reduced in msh3 mutants in one strain background, indicating a requirement for MSH3 for fully efficient mismatch correction. Also the efficiency of repair of the 38-nucleotide loop was reduced in msh3 mutants, and to a lesser extent in msh6 mutants. The single-nucleotide loop with an unpaired A was less efficiently repaired in msh3 mutants and that with an unpaired T was less efficiently corrected in msh6 mutants, indicating non-redundant functions for the two proteins in the recognition of single-nucleotide loops.

  8. Detection of chromosomal changes in chronic lymphocytic leukemia using classical cytogenetic methods and FISH: application of rich mitogen mixtures for lymphocyte cultures.

    PubMed

    Koczkodaj, Dorota; Popek, Sylwia; Zmorzyński, Szymon; Wąsik-Szczepanek, Ewa; Filip, Agata A

    2016-04-01

    One of the research methods of prognostic value in chronic lymphocytic leukemia (CLL) is cytogenetic analysis. This method requires the presence of appropriate B-cell mitogens in cultures in order to obtain a high mitotic index. The aim of our research was to determine the most effective methods of in vitro B-cell stimulation to maximize the number of metaphases from peripheral blood cells of patients with CLL for classical cytogenetic examination, and then to correlate the results with those obtained using fluorescence in situ hybridization (FISH). The study group involved 50 consecutive patients with CLL. Cell cultures were maintained with the basic composition of culture medium and addition of respective stimulators. We used the following stimulators: Pokeweed Mitogen (PWM), 12-O-tetradecanoylphorbol 13-acetate (TPA), ionophore, lipopolysaccharide (LPS), and CpG-oligonucleotide DSP30. We received the highest mitotic index when using the mixture of PWM+TPA+I+DSP30. With classical cytogenetic tests using banding techniques, numerical and structural aberrations of chromosomes were detected in 46 patients, and no change was found in only four patients. Test results clearly confirmed the legitimacy of using cell cultures enriched with the mixture of cell stimulators and combining classical cytogenetic techniques with the FISH technique in later patient diagnosing. Copyright © 2016 American Federation for Medical Research.

  9. [Cytogenetic analysis of genotoxic effects in subjects employed in heat power industry].

    PubMed

    Savchenko, Ia A; Druzhinin, V G; Minina, V I; Glushkov, A N; Akhmat'ianova, V R; Ostaptseva, A V; Shibaldin, A V; Vetrova, I V

    2008-06-01

    Chromosomal aberration rate has been estimated in peripheral blood lymphocytes of subjects occupationally exposed to a set of hazardous factors (employees of the Kemerovo Heat Power Plant). The frequency of metaphases with aberrations in the workers (3.23 +/- 0.26%, N = 104) is significantly higher than in control subjects (2.11 +/- 0.28%, N = 70). The cytogenetic aberrations did not depend on the sex, age, duration of employment, or smoking.

  10. Midline dorsal plication to repair recurrent chordee at reoperation for hypospadias surgery complication.

    PubMed

    Yucel, Selcuk; Sanli, Ahmet; Kukul, Erdal; Karaguzel, Gungor; Melikoglu, Mustafa; Guntekin, Erol

    2006-02-01

    Midline dorsal plication is an efficient and safe surgical technique to correct chordee. We investigated the efficacy of midline dorsal plication for recurrent chordee in complicated hypospadias reoperations. We retrospectively evaluated the charts of 25 boys who underwent reoperation between 1999 and 2004 due to complications of primary hypospadias repair other than meatal stenosis. A total of 15 cases were initially managed elsewhere for primary repair or complications. The etiology of recurrent chordee was defined at surgical correction. When recurrent chordee was noted a midline dorsal plication was performed. Of 25 patients 10 had previously undergone chordee repair. Nine of these patients were observed to have recurrent chordee and 1 had de novo chordee. A total of 10 patients had recurrent or delayed onset chordee. Mean patient age at primary repair was 6.28 years (range 1 to 33). Mean age at last operation for chordee was 15.9 years (range 4 to 66). Mean interval to recurrent chordee was 6 years (range 1 to 16), excluding a 66-year-old blind patient who did not know when recurrent chordee developed. Five patients had chordee recur before puberty at a mean interval of 2.6 years. Mean reoperation rate was 2.4 for recurrent chordee cases and 2.6 for chordee-free cases. Mean followup after midline dorsal plication for recurrent chordee repair was 22 months (range 8 to 56), while mean followup in pubertal and postpubertal cases was 20 months. No recurrence of chordee or surgery related morbidity was observed after recurrent chordee repair by midline dorsal plication. Chordee may recur during puberty following successful chordee repair. The midline dorsal plication technique is simple, efficient and safe even in patients who have undergone multiple surgeries for hypospadias and chordee repair.

  11. Comparative Cytogenetic Study on the Toxicity of Magnetite and Zinc Ferrite Nanoparticles in Sunflower Root Cells

    NASA Astrophysics Data System (ADS)

    Foca-nici, Ecaterina; Capraru, Gabriela; Creanga, Dorina

    2010-12-01

    In this experimental study the authors present their results regarding the cellular division rate and the percentage of chromosomal aberrations in the root meristematic cells of Helianthus annuus cultivated in the presence of different volume fractions of magnetic nanoparticle suspensions, ranging between 20 and 100 microl/l. The aqueous magnetic colloids were prepared from chemically co-precipitated ferrites coated in sodium oleate. Tissue samples from the root meristeme of 2-3 day old germinated seeds were taken to prepare microscope slides following Squash method combined with Fuelgen techniques. Microscope investigation (cytogenetic tests) has resulted in the evaluation of mitotic index and chromosomal aberration index that appeared diminished and respectively increased following the addition of magnetic nanoparticles in the culture medium of the young seedlings. Zinc ferrite toxic influence appeared to be higher than that of magnetite, according to both cytogenetic parameters.

  12. Cytogenetic effect of low dose gamma-radiation in Hordeum vulgare seedlings: non-linear dose-effect relationship.

    PubMed

    Geras'kin, Stanislav A; Oudalova, Alla A; Kim, Jin Kyu; Dikarev, Vladimir G; Dikareva, Nina S

    2007-03-01

    The induction of chromosome aberrations in Hordeum vulgare germinated seeds was studied after ionizing irradiation with doses in the range of 10-1,000 mGy. The relationship between the frequency of aberrant cells and the absorbed dose was found to be nonlinear. A dose-independent plateau in the dose range from about 50 to 500 mGy was observed, where the level of cytogenetic damage was significantly different from the spontaneous level. The comparison of the goodness of the experimental data fitting with mathematical models of different complexity, using the most common quantitative criteria, demonstrated the advantage of a piecewise linear model over linear and polynomial models in approximating the frequency of cytogenetical disturbances. The results of the study support the hypothesis of indirect mechanisms of mutagenesis induced by low doses. Fundamental and applied implications of these findings are discussed.

  13. Comparative molecular cytogenetic characterization of seven Deschampsia (Poaceae) species.

    PubMed

    Amosova, Alexandra V; Bolsheva, Nadezhda L; Zoshchuk, Svyatoslav A; Twardovska, Maryana O; Yurkevich, Olga Yu; Andreev, Igor O; Samatadze, Tatiana E; Badaeva, Ekaterina D; Kunakh, Viktor A; Muravenko, Olga V

    2017-01-01

    The genus Deschampsia P. Beauv (Poaceae) involves a group of widespread polymorphic species. Some of them are highly tolerant to stressful and variable environmental conditions, and D. antarctica is one of the only two vascular plants growing in Antarctic. This species is a source of useful for selection traits and a valuable model for studying an environmental stress tolerance in plants. Genome diversity and comparative chromosomal phylogeny within the genus have not been studied yet as karyotypes of most Deschampsia species are poorly investigated. We firstly conducted a comparative molecular cytogenetic analysis of D. antarctica (Antarctic Peninsula) and related species from various localities (D. cespitosa, D. danthonioides, D. elongata, D. flexuosa (= Avenella flexuosa), D. parvula and D. sukatschewii by fluorescence in situ hybridization with 45S and 5S rDNA, DAPI-banding and sequential rapid in situ hybridization with genomic DNA of D. antarctica, D. cespitosa, and D. flexuosa. Based on patterns of distribution of the examined markers, chromosomes of the studied species were identified. Within these species, common features as well as species peculiarities in their karyotypic structure and chromosomal distribution of molecular cytogenetic markers were characterized. Different chromosomal rearrangements were detected in D. antarctica, D. flexuosa, D. elongata and D. sukatschewii. In karyotypes of D. antarctica, D. cespitosa, D. elongata and D. sukatschewii, 0-3 B chromosomes possessed distinct DAPI-bands were observed. Our findings suggest that the genome evolution of the genus Deschampsia involved polyploidy and also different chromosomal rearrangements. The obtained results will help clarify the relationships within the genus Deschampsia, and can be a basis for the further genetic and biotechnological studies as well as for selection of plants tolerant to extreme habitats.

  14. Prolonged treatment with imatinib mesylate in patients with advanced chronic myeloid leukemia causes a reduction of bcr/abl mRNA levels independent of cytogenetic response.

    PubMed

    Cariani, E; Capucci, M; Micheletti, M; Spalenza, F; Zanella, I; Albertini, A; Rossi, G

    2003-06-01

    Bcr/abl mRNA levels were monitored in 13 patients with chronic myeloid leukemia receiving imatinib mesylate over a period of 78 weeks. During treatment median bcr/abl mRNA levels progressively declined from 77.2 normalized dose (nD) at baseline to 11.28 nD after 13 weeks ( P<0.05) and to 1.28 nD after 78 weeks ( P<0.05). After 13 weeks, bcr/abl mRNA levels were significantly lower in cytogenetic responders compared to nonresponders ( P<0.05), but subsequent decrease in the transcript levels caused the loss of any correlation to the cytogenetic status. These results suggest that bcr/abl mRNA levels may reflect cytogenetic response only during the early phases of imatinib therapy.

  15. Conformational trapping of mismatch recognition complex MSH2/MSH3 on repair-resistant DNA loops.

    PubMed

    Lang, Walter H; Coats, Julie E; Majka, Jerzy; Hura, Greg L; Lin, Yuyen; Rasnik, Ivan; McMurray, Cynthia T

    2011-10-18

    Insertion and deletion of small heteroduplex loops are common mutations in DNA, but why some loops are prone to mutation and others are efficiently repaired is unknown. Here we report that the mismatch recognition complex, MSH2/MSH3, discriminates between a repair-competent and a repair-resistant loop by sensing the conformational dynamics of their junctions. MSH2/MSH3 binds, bends, and dissociates from repair-competent loops to signal downstream repair. Repair-resistant Cytosine-Adenine-Guanine (CAG) loops adopt a unique DNA junction that traps nucleotide-bound MSH2/MSH3, and inhibits its dissociation from the DNA. We envision that junction dynamics is an active participant and a conformational regulator of repair signaling, and governs whether a loop is removed by MSH2/MSH3 or escapes to become a precursor for mutation.

  16. Microstructure formation and fracturing characteristics of grey cast iron repaired using laser.

    PubMed

    Yi, Peng; Xu, Pengyun; Fan, Changfeng; Yang, Guanghui; Liu, Dan; Shi, Yongjun

    2014-01-01

    The repairing technology based on laser rapid fusion is becoming an important tool for fixing grey cast iron equipment efficiently. A laser repairing protocol was developed using Fe-based alloy powders as material. The microstructure and fracturing feature of the repaired zone (RZ) were analyzed. The results showed that regionally organized RZ with good density and reliable metallurgical bond can be achieved by laser repairing. At the bottom of RZ, dendrites existed in similar direction and extended to the secondary RZ, making the grains grow extensively with inheritance with isometric grains closer to the surface substrate. The strength of the grey cast iron base material was maintained by laser repairing. The base material and RZ were combined with robust strength and fracture resistance. The prevention and deflection of cracking process were analyzed using a cracking process model and showed that the overall crack toughness of the materials increased.

  17. Microstructure Formation and Fracturing Characteristics of Grey Cast Iron Repaired Using Laser

    PubMed Central

    Liu, Dan; Shi, Yongjun

    2014-01-01

    The repairing technology based on laser rapid fusion is becoming an important tool for fixing grey cast iron equipment efficiently. A laser repairing protocol was developed using Fe-based alloy powders as material. The microstructure and fracturing feature of the repaired zone (RZ) were analyzed. The results showed that regionally organized RZ with good density and reliable metallurgical bond can be achieved by laser repairing. At the bottom of RZ, dendrites existed in similar direction and extended to the secondary RZ, making the grains grow extensively with inheritance with isometric grains closer to the surface substrate. The strength of the grey cast iron base material was maintained by laser repairing. The base material and RZ were combined with robust strength and fracture resistance. The prevention and deflection of cracking process were analyzed using a cracking process model and showed that the overall crack toughness of the materials increased. PMID:25032230

  18. Repairable-conditionally repairable damage model based on dual Poisson processes.

    PubMed

    Lind, B K; Persson, L M; Edgren, M R; Hedlöf, I; Brahme, A

    2003-09-01

    The advent of intensity-modulated radiation therapy makes it increasingly important to model the response accurately when large volumes of normal tissues are irradiated by controlled graded dose distributions aimed at maximizing tumor cure and minimizing normal tissue toxicity. The cell survival model proposed here is very useful and flexible for accurate description of the response of healthy tissues as well as tumors in classical and truly radiobiologically optimized radiation therapy. The repairable-conditionally repairable (RCR) model distinguishes between two different types of damage, namely the potentially repairable, which may also be lethal, i.e. if unrepaired or misrepaired, and the conditionally repairable, which may be repaired or may lead to apoptosis if it has not been repaired correctly. When potentially repairable damage is being repaired, for example by nonhomologous end joining, conditionally repairable damage may require in addition a high-fidelity correction by homologous repair. The induction of both types of damage is assumed to be described by Poisson statistics. The resultant cell survival expression has the unique ability to fit most experimental data well at low doses (the initial hypersensitive range), intermediate doses (on the shoulder of the survival curve), and high doses (on the quasi-exponential region of the survival curve). The complete Poisson expression can be approximated well by a simple bi-exponential cell survival expression, S(D) = e(-aD) + bDe(-cD), where the first term describes the survival of undamaged cells and the last term represents survival after complete repair of sublethal damage. The bi-exponential expression makes it easy to derive D(0), D(q), n and alpha, beta values to facilitate comparison with classical cell survival models.

  19. [Cytogenetic characteristics of seed progeny of trees under condition of antropogenic contamination in Voronezh town].

    PubMed

    Butorina, A K; Kalaev, V N; Vostrikova, T V; Miagkova, O E

    2000-01-01

    It has been shown that in seed progeny of Quercus robur L., Pinus sylvestris L. and Betula pendula Roth. some cytogenetical characteristics vary under conditions of contamination. Such changes may be common or specific type. Thus, the frequency of pathological mitosis increases under such conditions in all the investigated species of trees. Inhibition of mitosis was found in the progeny of the pine, and variability in the number of nucleoli was detected in the pine and oak. However, in some cases the level of pathological mitosis in the oak progeny did not differ from the control, but the mitotic activity was higher due to the presence of much more cells being at the prophase stage. In the birch progeny under conditions of contamination the mitotic index increased, with a simultaneous shifts in the peaks of mitotic activity. The possibility of using these cytological characteristics for the aims of cytogenetical monitoring is considered.

  20. Wounded cells drive rapid epidermal repair in the early Drosophila embryo

    PubMed Central

    Fernandez-Gonzalez, Rodrigo; Zallen, Jennifer A.

    2013-01-01

    Epithelial tissues are protective barriers that display a remarkable ability to repair wounds. Wound repair is often associated with an accumulation of actin and nonmuscle myosin II around the wound, forming a purse string. The role of actomyosin networks in generating mechanical force during wound repair is not well understood. Here we investigate the mechanisms of force generation during wound repair in the epidermis of early and late Drosophila embryos. We find that wound closure is faster in early embryos, where, in addition to a purse string around the wound, actomyosin networks at the medial cortex of the wounded cells contribute to rapid wound repair. Laser ablation demonstrates that both medial and purse-string actomyosin networks generate contractile force. Quantitative analysis of protein localization dynamics during wound closure indicates that the rapid contraction of medial actomyosin structures during wound repair in early embryos involves disassembly of the actomyosin network. By contrast, actomyosin purse strings in late embryos contract more slowly in a mechanism that involves network condensation. We propose that the combined action of two force-generating structures—a medial actomyosin network and an actomyosin purse string—contributes to the increased efficiency of wound repair in the early embryo. PMID:23985320

  1. CYTOGENETIC STUDIES IN MICE TREATED WITH THE JET FUELS, JET-A AND JP-8

    EPA Science Inventory

    Cytogenetic studies in mice treated with the jet fuels, Jet-A and JP-8
    Abstract
    The genotoxic potential of the jet fuels, Jet-A and JP-8, were examined in mice treated on the skin with a single dose of 240 ug/mouse. Peripheral blood smears were prepared at the start of the ...

  2. p53: traffic cop at the crossroads of DNA repair and recombination.

    PubMed

    Sengupta, Sagar; Harris, Curtis C

    2005-01-01

    p53 mutants that lack DNA-binding activities, and therefore, transcriptional activities, are among the most common mutations in human cancer. Recently, a new role for p53 has come to light, as the tumour suppressor also functions in DNA repair and recombination. In cooperation with its function in transcription, the transcription-independent roles of p53 contribute to the control and efficiency of DNA repair and recombination.

  3. Implication of SUMO E3 ligases in nucleotide excision repair.

    PubMed

    Tsuge, Maasa; Kaneoka, Hidenori; Masuda, Yusuke; Ito, Hiroki; Miyake, Katsuhide; Iijima, Shinji

    2015-08-01

    Post-translational modifications alter protein function to mediate complex hierarchical regulatory processes that are crucial to eukaryotic cellular function. The small ubiquitin-like modifier (SUMO) is an important post-translational modification that affects transcriptional regulation, nuclear localization, and the maintenance of genome stability. Nucleotide excision repair (NER) is a very versatile DNA repair system that is essential for protection against ultraviolet (UV) irradiation. The deficiencies in NER function remarkably increase the risk of skin cancer. Recent studies have shown that several NER factors are SUMOylated, which influences repair efficiency. However, how SUMOylation modulates NER has not yet been elucidated. In the present study, we performed RNAi knockdown of SUMO E3 ligases and found that, in addition to PIASy, the polycomb protein Pc2 affected the repair of cyclobutane pyrimidine dimers. PIAS1 affected both the removal of 6-4 pyrimidine pyrimidone photoproducts and cyclobutane pyrimidine dimers, whereas other SUMO E3 ligases did not affect the removal of either UV lesion.

  4. Highly distinct chromosomal structures in cowpea (Vigna unguiculata), as revealed by molecular cytogenetic analysis.

    PubMed

    Iwata-Otsubo, Aiko; Lin, Jer-Young; Gill, Navdeep; Jackson, Scott A

    2016-05-01

    Cowpea (Vigna unguiculata (L.) Walp) is an important legume, particularly in developing countries. However, little is known about its genome or chromosome structure. We used molecular cytogenetics to characterize the structure of pachytene chromosomes to advance our knowledge of chromosome and genome organization of cowpea. Our data showed that cowpea has highly distinct chromosomal structures that are cytologically visible as brightly DAPI-stained heterochromatic regions. Analysis of the repetitive fraction of the cowpea genome present at centromeric and pericentromeric regions confirmed that two retrotransposons are major components of pericentromeric regions and that a 455-bp tandem repeat is found at seven out of 11 centromere pairs in cowpea. These repeats likely evolved after the divergence of cowpea from common bean and form chromosomal structure unique to cowpea. The integration of cowpea genetic and physical chromosome maps reveals potential regions of suppressed recombination due to condensed heterochromatin and a lack of pairing in a few chromosomal termini. This study provides fundamental knowledge on cowpea chromosome structure and molecular cytogenetics tools for further chromosome studies.

  5. Comparative Cytogenetics between Two Important Songbird, Models: The Zebra Finch and the Canary

    PubMed Central

    dos Santos, Michelly da Silva; Kretschmer, Rafael; Frankl-Vilches, Carolina; Bakker, Antje; Gahr, Manfred; O´Brien, Patricia C. M.; Ferguson-Smith, Malcolm A.

    2017-01-01

    Songbird species (order Passeriformes, suborder Oscines) are important models in various experimental fields spanning behavioural genomics to neurobiology. Although the genomes of some songbird species were sequenced recently, the chromosomal organization of these species is mostly unknown. Here we focused on the two most studied songbird species in neuroscience, the zebra finch (Taeniopygia guttata) and the canary (Serinus canaria). In order to clarify these issues and also to integrate chromosome data with their assembled genomes, we used classical and molecular cytogenetics in both zebra finch and canary to define their chromosomal homology, localization of heterochromatic blocks and distribution of rDNA clusters. We confirmed the same diploid number (2n = 80) in both species, as previously reported. FISH experiments confirmed the occurrence of multiple paracentric and pericentric inversions previously found in other species of Passeriformes, providing a cytogenetic signature for this order, and corroborating data from in silico analyses. Additionally, compared to other Passeriformes, we detected differences in the zebra finch karyotype concerning the morphology of some chromosomes, in the distribution of 5S rDNA clusters, and an inversion in chromosome 1. PMID:28129381

  6. Reoperations after tricuspid valve repair: re-repair versus replacement

    PubMed Central

    Hwang, Ho Young; Kim, Kyung-Hwan; Kim, Ki-Bong

    2016-01-01

    Background Data demonstrating results of reoperation after initial tricuspid valve repair are scarce. We evaluated outcomes of tricuspid reoperations after tricuspid valve repair and compared the results of tricuspid re-repair with those of tricuspid valve replacement (TVR). Methods From 1994 to 2012, 53 patients (56±15 years, male:female =14:39) underwent tricuspid reoperations due to recurrent tricuspid regurgitation (TR) after initial repair. Twenty-two patients underwent tricuspid re-repair (TAP group) and 31 patients underwent TVR (TVR group). Results Early mortality occurred in 6 patients (11%). Early mortality and incidence of postoperative complications were similar between the 2 groups. There were 14 cases of late mortality including 9 cardiac deaths. Five- and 10-year free from cardiac death rates were 82% and 67%, respectively, without any intergroup difference. Recurrent TR (> moderate) developed in 6 TAP group patients and structural valve deterioration occurred in 1 TVR group patient (P=0.002). Isolated tricuspid valve surgery (P=0.044) and presence of atrial fibrillation during the follow-up (P=0.051) were associated with recurrent TR after re-repair. However, the overall tricuspid valve-related event rates were similar between the 2 groups with 5- and 10-year rates of 61% and 41%, respectively. Conclusions Tricuspid valve reoperation after initial repair resulted in high rates of operative mortality and complications. Long-term event-free rate was similar regardless of the type of surgery. However, great care might be needed when performing re-repair in patients with atrial fibrillation and those who had isolated tricuspid valve disease due to high recurrence of TR after re-repair. PMID:26904221

  7. Book Repair Manual.

    ERIC Educational Resources Information Center

    Milevski, Robert J.

    1995-01-01

    This book repair manual developed for the Illinois Cooperative Conservation Program includes book structure and book problems, book repair procedures for 4 specific problems, a description of adhesive bindings, a glossary, an annotated list of 11 additional readings, book repair supplies and suppliers, and specifications for book repair kits. (LRW)

  8. Cytogenetic toxicity of vincristine.

    PubMed

    Choudhury, R C; Das, B; Misra, S; Jagdale, M B

    2000-01-01

    The anticancer drugs vincristine sulphate (VCR) and cyclophosphamide (CTX) were tested for their cytogenetic effects in the bone marrow cells of Swiss mice. The end points investigated were chromosomal aberrations and mitotic index at 24 hours posttreatment and micronuclei (MN) at 30 hours posttreatment in bone marrow cells of male and female mice after a single intraperitoneal exposure. The doses tested were VCR 0.25, 0.5, and 1.0 mg/kg and CTX 40 mg/kg b.w. of mice. Significant percentages of chromosomal aberrations and significant numbers of micronuclei per thousand polychromatic erythrocytes (PCEs) that were induced were recorded from bone marrow of each of the VCR-treated groups of mice. There were no significant differences between the percentages of dividing cells in the VCR-treated group and the vehicle control groups of mice. Peculiarly, in the chromosomal aberration study, the male mice were found to be more responsive to VCR than the females, and the aberrations per hundred metaphases were found to be decreased when the dose of VCR was increased. The percentage of dividing cells was also higher with the lowest dose of VCR tested. However, there was a dose-dependent, but nonlinear, increase in MN per thousand PCEs. The results were compared with the already available fragmentary and self-contradictory data on the genotoxicity of VCR in mice and in other mammalian test systems.

  9. Enterolactone: A novel radiosensitizer for human breast cancer cell lines through impaired DNA repair and increased apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bigdeli, Bahareh, E-mail: bhr.bigdeli@ut.ac.ir

    Introduction: Radiotherapy is a potent treatment against breast cancer, which is the most commonly diagnosed cancer among women. However, the emergence of radioresistance due to increased DNA repair leads to radiotherapeutic failure. Applying polyphenols combined with radiation is a more promising method leading to better survival. Enterolactone, a phytoestrogenic polyphenol, has been reported to inhibit an important radioresistance signaling pathway, therefore we conjectured that enterolactone could enhance radiosensitivity in breast cancer. To assess this hypothesis, radiation response of enterolactone treated MDA-MB-231 and T47D cell lines and corresponding cellular mechanisms were investigated. Methods: Cytotoxicity of enterolactone was measured via MTT assay.more » Cells were treated with enterolactone before X-irradiation, and clonogenic assay was used to evaluate radiosensitivity. Cell cycle distribution and apoptosis were measured by flow cytometric analysis. In addition, DNA damages and corresponding repair, chromosomal damages, and aberrations were assessed by comet, micronucleus, and cytogenetic assays, respectively. Results: Enterolactone decreased the viability of cells in a concentration- and time dependent manner. Enterolactone significantly enhanced radiosensitivity of cells by abrogating G2/M arrest, impairing DNA repair, and increasing radiation-induced apoptosis. Furthermore, increased chromosomal damages and aberrations were detected in cells treated with enterolactone combined with X-rays than X-ray alone. These effects were more prominent in T47D than MDA-MB-231 cells. Discussion: To our knowledge, this is the first report that enterolactone is a novel radiosensitizer for breast cancer irrespective of estrogen receptor status. Authors propose enterolactone as a candidate for combined therapy to decrease the radiation dose delivered to patients and subsequent side effects. - Highlights: • Enterolactone is proposed to be a novel

  10. Cytogenetic Reconstruction of Gamma-Ray Doses Delivered to Atomic Bomb Survivors: Dealing with Wide Distributions of Photon Energies and Contributions from Hematopoietic Stem/Progenitor Cells.

    PubMed

    Nakamura, Nori; Hirai, Yuko; Kodama, Yoshiaki; Hamasaki, Kanya; Cullings, Harry M; Cordova, Kismet A; Awa, Akio

    2017-10-01

    Retrospective estimation of the doses received by atomic bomb (A-bomb) survivors by cytogenetic methods has been hindered by two factors: One is that the photon energies released from the bomb were widely distributed, and since the aberration yield varies depending on the energy, the use of monoenergetic 60 Co gamma radiation to construct a calibration curve may bias the estimate. The second problem is the increasing proportion of newly formed lymphocytes entering into the lymphocyte pool with increasing time intervals since the exposures. These new cells are derived from irradiated precursor/stem cells whose radiosensitivity may differ from that of blood lymphocytes. To overcome these problems, radiation doses to tooth enamel were estimated using the electron spin resonance (ESR; or EPR, electron paramagnetic resonance) method and compared with the cytogenetically estimated doses from the same survivors. The ESR method is only weakly dependent on the photon energy and independent of the years elapsed since an exposure. Both ESR and cytogenetic doses were estimated from 107 survivors. The latter estimates were made by assuming that although a part of the cells examined could be lymphoid stem or precursor cells at the time of exposure, all the cells had the same radiosensitivity as blood lymphocytes, and that the A-bomb gamma-ray spectrum was the same as that of the 60 Co gamma rays. Subsequently, ESR and cytogenetic endpoints were used to estimate the kerma doses using individual DS02R1 information on shielding conditions. The results showed that the two sets of kerma doses were in close agreement, indicating that perhaps no correction is needed in estimating atomic bomb gamma-ray doses from the cytogenetically estimated 60 Co gamma-ray equivalent doses. The present results will make it possible to directly compare cytogenetic doses with the physically estimated doses of the survivors, which would pave the way for testing whether or not there are any systematic

  11. "Holostei versus Halecostomi" Problem: Insight from Cytogenetics of Ancient Nonteleost Actinopterygian Fish, Bowfin Amia calva.

    PubMed

    Majtánová, Zuzana; Symonová, Radka; Arias-Rodriguez, Lenin; Sallan, Lauren; Ráb, Petr

    2017-11-01

    Bowfin belongs to an ancient lineage of nonteleost ray-finned fishes (actinopterygians) and is the only extant survivor of a once diverged group, the Halecomorphi or Amiiformes. Owing to the scarcity of extant nonteleost ray-finned lineages, also referred as "living fossils," their phylogenetic interrelationships have been the target of multiple hypotheses concerning their sister group relationships. Molecular and morphological data sets have produced controversial results; bowfin is considered as either the sister group to genome-duplicated teleosts (together forming the group of Halecostomi) or to gars (Lepisosteiformes; together forming the group of Holostei). However, any detailed cytogenetic analysis of bowfin chromosomes has never been performed to address this issue. Here we examined bowfin chromosomes by conventional (Giemsa-staining, C-banding, base-specific fluorescence and silver staining) and molecular (FISH with rDNA probes) cytogenetic protocols. We identified diploid chromosome number 2n = 46 with a middle-sized submetacentric chromosome pair as the major ribosomal DNA-bearing (45S rDNA), GC-positive and silver-positive element. The minor rDNA (5S rDNA) sites were localized in the pericentromeric region of one middle-sized acrocentric chromosome pair. Comparison with available cytogenetic data of other nonteleost actinopterygians (bichirs, sturgeons, gars) and teleost species including representative of basally branching lineages showed bowfin chromosomal characteristics more similar to the teleost type than to any other nonteleosts. Particularly striking differences were identified between bowfin and gars, the latter of which were found to mimic mammalian AT/GC genomic organisation. Such conclusion however contradicts the most recent phylogenomic results and raises the question what states are ancestral and what are derived. © 2017 Wiley Periodicals, Inc.

  12. Repair Concepts as Design Constraints of a Stiffened Composite PRSEUS Panel

    NASA Technical Reports Server (NTRS)

    Przekop, Adam

    2012-01-01

    A design and analysis of a repair concept applicable to a stiffened thin-skin composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure is presented. The concept is a bolted repair using metal components, so that it can easily be applied in the operational environment. The damage scenario considered is a midbay-to-midbay saw-cut with a severed stiffener, flange and skin. In a previous study several repair configurations were explored and their feasibility confirmed but refinement was needed. The present study revisits the problem under recently revised design requirements and broadens the suite of loading conditions considered. The repair assembly design is based on the critical tension loading condition and subsequently its robustness is verified for a pressure loading case. High fidelity modeling techniques such as mesh-independent definition of compliant fasteners, elastic-plastic material properties for metal parts and geometrically nonlinear solutions are utilized in the finite element analysis. The best repair design is introduced, its analysis results are presented and factors influencing the design are assessed and discussed.

  13. Toward a Molecular Cytogenetic Map for Cultivated Sunflower (Helianthus annuus L.) by Landed BAC/BIBAC Clones

    PubMed Central

    Feng, Jiuhuan; Liu, Zhao; Cai, Xiwen; Jan, Chao-Chien

    2013-01-01

    Conventional karyotypes and various genetic linkage maps have been established in sunflower (Helianthus annuus L., 2n = 34). However, the relationship between linkage groups and individual chromosomes of sunflower remains unknown and has considerable relevance for the sunflower research community. Recently, a set of linkage group-specific bacterial /binary bacterial artificial chromosome (BAC/BIBAC) clones was identified from two complementary BAC and BIBAC libraries constructed for cultivated sunflower cv. HA89. In the present study, we used these linkage group-specific clones (∼100 kb in size) as probes to in situ hybridize to HA89 mitotic chromosomes at metaphase using the BAC- fluorescence in situ hybridization (FISH) technique. Because a characteristic of the sunflower genome is the abundance of repetitive DNA sequences, a high ratio of blocking DNA to probe DNA was applied to hybridization reactions to minimize the background noise. As a result, all sunflower chromosomes were anchored by one or two BAC/BIBAC clones with specific FISH signals. FISH analysis based on tandem repetitive sequences, such as rRNA genes, has been previously reported; however, the BAC-FISH technique developed here using restriction fragment length polymorphism (RFLP)−derived BAC/BIBAC clones as probes to apply genome-wide analysis is new for sunflower. As chromosome-specific cytogenetic markers, the selected BAC/BIBAC clones that encompass the 17 linkage groups provide a valuable tool for identifying sunflower cytogenetic stocks (such as trisomics) and tracking alien chromosomes in interspecific crosses. This work also demonstrates the potential of using a large-insert DNA library for the development of molecular cytogenetic resources. PMID:23316437

  14. Brain aneurysm repair

    MedlinePlus

    ... aneurysm repair; Dissecting aneurysm repair; Endovascular aneurysm repair - brain; Subarachnoid hemorrhage - aneurysm ... Your scalp, skull, and the coverings of the brain are opened. A metal clip is placed at ...

  15. Dynamic changes in clonal cytogenetic architecture during progression of chronic lymphocytic leukemia in patients and patient-derived murine xenografts

    PubMed Central

    Davies, Nicholas J.; Kwok, Marwan; Gould, Clive; Oldreive, Ceri E.; Mao, Jingwen; Parry, Helen; Smith, Edward; Agathanggelou, Angelo; Pratt, Guy; Taylor, Alexander Malcolm R.; Moss, Paul; Griffiths, Mike; Stankovic, Tatjana

    2017-01-01

    Subclonal heterogeneity and clonal selection influences disease progression in chronic lymphocytic leukemia (CLL). It is therefore important that therapeutic decisions are made based on an understanding of the CLL clonal architecture and its dynamics in individual patients. Identification of cytogenetic abnormalities by FISH remains the cornerstone of contemporary clinical practice and provides a simple means for prognostic stratification. Here, we demonstrate that multiplexed-FISH can enhance recognition of CLL subclonal repertoire and its dynamics during disease progression, both in patients and CLL patient-derived xenografts (PDX). We applied a combination of patient-specific FISH probes to 24 CLL cases before treatment and at relapse, and determined putative ancestral relationships between subpopulations with different cytogenetic features. We subsequently established 7 CLL PDX models in NOD/Shi-SCID/IL-2Rγctm1sug/Jic (NOG) mice. Application of multiplexed-FISH to these models demonstrated that all of the identified cytogenetic subpopulations had leukemia propagating activity and that changes in their representation during disease progression could be spontaneous, accelerated by treatment or treatment-induced. We conclude that multiplexed-FISH in combination with PDX models have the potential to distinguish between spontaneous and treatment-induced clonal selection, and therefore provide a valuable tool for the pre-clinical evaluation of novel therapies. PMID:28496009

  16. Rapid road repair vehicle

    DOEpatents

    Mara, Leo M.

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  17. Rapid road repair vehicle

    DOEpatents

    Mara, L.M.

    1998-05-05

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find at the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was not heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past. 2 figs.

  18. Comparative molecular cytogenetic characterization of seven Deschampsia (Poaceae) species

    PubMed Central

    Bolsheva, Nadezhda L.; Zoshchuk, Svyatoslav A.; Twardovska, Maryana O.; Yurkevich, Olga Yu; Andreev, Igor O.; Samatadze, Tatiana E.; Badaeva, Ekaterina D.; Kunakh, Viktor A.; Muravenko, Olga V.

    2017-01-01

    The genus Deschampsia P. Beauv (Poaceae) involves a group of widespread polymorphic species. Some of them are highly tolerant to stressful and variable environmental conditions, and D. antarctica is one of the only two vascular plants growing in Antarctic. This species is a source of useful for selection traits and a valuable model for studying an environmental stress tolerance in plants. Genome diversity and comparative chromosomal phylogeny within the genus have not been studied yet as karyotypes of most Deschampsia species are poorly investigated. We firstly conducted a comparative molecular cytogenetic analysis of D. antarctica (Antarctic Peninsula) and related species from various localities (D. cespitosa, D. danthonioides, D. elongata, D. flexuosa (= Avenella flexuosa), D. parvula and D. sukatschewii by fluorescence in situ hybridization with 45S and 5S rDNA, DAPI-banding and sequential rapid in situ hybridization with genomic DNA of D. antarctica, D. cespitosa, and D. flexuosa. Based on patterns of distribution of the examined markers, chromosomes of the studied species were identified. Within these species, common features as well as species peculiarities in their karyotypic structure and chromosomal distribution of molecular cytogenetic markers were characterized. Different chromosomal rearrangements were detected in D. antarctica, D. flexuosa, D. elongata and D. sukatschewii. In karyotypes of D. antarctica, D. cespitosa, D. elongata and D. sukatschewii, 0–3 B chromosomes possessed distinct DAPI-bands were observed. Our findings suggest that the genome evolution of the genus Deschampsia involved polyploidy and also different chromosomal rearrangements. The obtained results will help clarify the relationships within the genus Deschampsia, and can be a basis for the further genetic and biotechnological studies as well as for selection of plants tolerant to extreme habitats. PMID:28407010

  19. Discrepancy of cytogenetic analysis in Western and eastern Taiwan.

    PubMed

    Chang, Yu-Hsun; Chen, Pui-Yi; Li, Tzu-Ying; Yeh, Chung-Nan; Li, Yi-Shian; Chu, Shao-Yin; Lee, Ming-Liang

    2013-06-01

    This study aimed at investigating the results of second-trimester amniocyte karyotyping in western and eastern Taiwan, and identifying any regional differences in the prevalence of fetal chromosomal anomalies. From 2004 to 2009, pregnant women who underwent amniocentesis in their second trimester at three hospitals in western Taiwan and at four hospitals in eastern Taiwan were included. All the cytogenetic analyses of cultured amniocytes were performed in the cytogenetics laboratory of the Genetic Counseling Center of Hualien Buddhist Tzu Chi General Hospital. We used the chi-square test, Student t test, and Mann-Whitney U test to evaluate the variants of clinical indications, amniocyte karyotyping results, and prevalence and types of chromosomal anomalies in western and eastern Taiwan. During the study period, 3573 samples, 1990 (55.7%) from western Taiwan and 1583 (44.3%) from eastern Taiwan, were collected and analyzed. The main indication for amniocyte karyotyping was advanced maternal age (69.0% in western Taiwan, 67.1% in eastern Taiwan). The detection rates of chromosomal anomalies by amniocyte karyotyping in eastern Taiwan (45/1582, 2.8%) did not differ significantly from that in western Taiwan (42/1989, 2.1%) (p = 1.58). Mothers who had abnormal ultrasound findings and histories of familial hereditary diseases or chromosomal anomalies had higher detection rates of chromosomal anomalies (9.3% and 7.2%, respectively). The detection rate of autosomal anomalies was higher in eastern Taiwan (93.3% vs. 78.6%, p = 0.046), but the detection rate of sex-linked chromosomal anomalies was higher in western Taiwan (21.4% vs. 6.7%, p = 0.046). We demonstrated regional differences in second-trimester amniocyte karyotyping results and established a database of common chromosomal anomalies that could be useful for genetic counseling, especially in eastern Taiwan. Copyright © 2012. Published by Elsevier B.V.

  20. Optimizing pressurized contact area in rotator cuff repair: the diamondback repair.

    PubMed

    Burkhart, Stephen S; Denard, Patrick J; Obopilwe, Elifho; Mazzocca, Augustus D

    2012-02-01

    The purpose of this study was to compare tendon-bone footprint contact area over time under physiologic loads for 4 different rotator cuff repair techniques: single row (SR), triangle double row (DR), chain-link double row (CL), and diamondback double row (DBK). A supraspinatus tear was created in 28 human cadavers. Tears were fixed with 1 of 4 constructs: SR, DR, CL, or DBK. Immediate post-repair measurements of pressurized contact area were taken in neutral rotation and 0° of abduction. After a static tensile load, pressurized contact area was observed over a 160-minute period after repair. Cyclic loading was then performed. The DBK repair had the highest pressurized contact area initially, as well as the highest pressurized contact area and lowest percentage decrease in pressurized contact area after 160 minutes of testing. The DBK repair had significantly larger initial pressurized contact than CL (P = .003) and SR (P = .004) but not DR (P = .06). The DBK technique was the only technique that produced a pressurized contact area that exceeded the native footprint both at initial repair (P = .01) and after 160 minutes of testing (P = .01). DBK had a significantly larger mean pressurized contact area than all the repairs after 160 minutes of testing (P = .01). DBK had a significantly larger post-cyclic loading pressurized contact area than CL (P = .01) and SR (P = .004) but not DR (P = .07). This study showed that a diamondback repair (a modification of the transosseous repair) can significantly increase the rotator cuff pressurized contact area in comparison with other standard rotator cuff repair constructs when there is sufficient tendon mobility to perform a double-row repair without excessive tension on the repair site. The persistent pressurized contact area of a DBK repair may be desirable to enhance healing potential when there is sufficient tendon mobility to perform a double-row repair, particularly for large or massive rotator cuff tears where it is

  1. Heat shock protein 70 stimulation of the deoxyribonucleic acid base excision repair enzyme polymerase β

    PubMed Central

    Mendez, Frances; Kozin, Elliott; Bases, Robert

    2003-01-01

    Base excision repair (BER) of damaged deoxyribonucleic acid (DNA) is a multistep process during which potentially lethal abasic sites temporarily exist. Repair of these lesions is greatly stimulated by heat shock protein 70 (Hsp70), which enhances strand incision and removal of the abasic sites by human apurinic-apyrimidinic endonuclease (HAP1). The resulting single-strand gaps must then be filled in. Here, we show that Hsp70 and its 48- and 43-kDa N-terminal domains greatly stimulated filling in the single-strand gaps by DNA polymerase β, a novel finding that extends the role of Hsps in DNA repair. Incorporation of deoxyguanosine monophosphate (dGMP) to fill in single-strand gaps in DNA phagemid pBKS by DNA polymerase β was stimulated by Hsp70. Truncated proteins derived from the C-terminus of Hsp70 as well as unrelated proteins were less effective, but proteins derived from the N-terminus of Hsp70 remained efficient stimulators of DNA polymerase β repair of DNA single-strand gaps. In agreement with these results, repair of a gap in a 30-bp oligonucleotide by polymerase β also was strongly stimulated by Hsp70 although not by a truncated protein from the C-terminus of Hsp70. Sealing of the repaired site in the oligonucleotide by human DNA ligase 1 was not specifically stimulated by Hsp-related proteins. Results presented here now implicate and extend the role of Hsp70 as a partner in the enzymatic repair of damaged DNA. The participation of Hsp70 jointly with base excision enzymes improves repair efficiency by mechanisms that are not yet understood. PMID:14627201

  2. INTERNAL REPAIR OF PIPELINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robin Gordon; Bill Bruce; Nancy Porter

    2003-05-01

    The two broad categories of deposited weld metal repair and fiber-reinforced composite repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repairs and for fiber-reinforced composite repair. To date, all of the experimental work pertaining to the evaluation of potential repair methods has focused on fiber-reinforced composite repairs. Hydrostatic testing was also conducted on four pipeline sections with simulated corrosion damage: twomore » with composite liners and two without.« less

  3. Development of Guidelines for In-Situ Repair of SLS-Class Composite Flight Hardware

    NASA Technical Reports Server (NTRS)

    Weber, Thomas P., Jr.; Cox, Sarah B.

    2018-01-01

    The purpose of composite repair development at KSC (John F. Kennedy Space Center) is to provide support to the CTE (Composite Technology for Exploration) project. This is a multi-space center effort with the goal of developing bonded joint technology for SLS (Space Launch System) -scale composite hardware. At KSC, effective and efficient repair processes need to be developed to allow for any potential damage to composite components during transport or launch preparation. The focus of the composite repair development internship during the spring of 2018 was on the documentation of repair processes and requirements for process controls based on techniques developed through hands-on work with composite test panels. Three composite test panels were fabricated for the purpose of repair and surface preparation testing. The first panel included a bonded doubler and was fabricated to be damaged and repaired. The second and third panels were both fabricated to be cut into lap-shear samples to test the strength of bond of different surface preparation techniques. Additionally, jointed composite test panels were impacted at MSFC (Marshall Space Flight Center) and analyzed for damage patterns. The observations after the impact tests guided the repair procedure at KSC to focus on three repair methods. With a finalized repair plan in place, future work will include the strength testing of different surface preparation techniques, demonstration of repair methods, and repair of jointed composite test panels being impacted at MSFC.

  4. Dual-reporter surrogate systems for efficient enrichment of genetically modified cells.

    PubMed

    Ren, Chonghua; Xu, Kun; Liu, Zhongtian; Shen, Juncen; Han, Furong; Chen, Zhilong; Zhang, Zhiying

    2015-07-01

    Isolation of genetically modified cells generated by designed nucleases are challenging, since they are often phenotypically indistinguishable from their parental cells. To efficiently enrich genetically modified cells, we developed two dual-reporter surrogate systems, namely NHEJ-RPG and SSA-RPG based on NHEJ and SSA repair mechanisms, respectively. Repair and enrichment efficiencies of these two systems were compared using different nucleases. In both CRISPR-Cas9- and ZFNs-induced DSB repair studies, we found that the efficiency and sensitivity of the SSA-RPG reporter with direct repeat length more than 200 bp were much higher than the NHEJ-RPG reporter. By utilizing the SSA-RPG reporter, we achieved the enrichment for indels in several endogenous loci with 6.3- to 34.8-fold of non-selected cells. Thus, the highly sensitive SSA-RPG reporter can be used for activity validation of designed nucleases and efficient enrichment of genetically modified cells. Besides, our systems offer alternative enrichment choices either by puromycin selection or FACS.

  5. Rotator cuff repair

    MedlinePlus

    ... techniques are used to repair a rotator cuff tear: During open repair, a surgical incision is made ... repair is done for large or more complex tears. During arthroscopy, the arthroscope is inserted through small ...

  6. Cytogenetic biomonitoring carried out in a village (Dolon) adjacent to the Semipalatinsk nuclear weapon test site.

    PubMed

    Testa, A; Stronati, L; Ranaldi, R; Spanò, M; Steinhäusler, F; Gastberger, M; Hubmer, A; Ptitskaya, L; Akhmetov, M

    2001-06-01

    The Semipalatinsk region (Kazakhstan Republic) has been affected by extensive radioactive contamination due to more than 450 nuclear tests of which almost 100 were exploded in the atmosphere. The present results refer to cytogenetic assessments in a study cohort of the population of Dolon, a settlement located on the NE boundary of the nuclear weapon test site, which was exposed to elevated doses of ionising radiation primarily due to the first Soviet nuclear test in 1949. Conventional cytogenetic analyses were carried out on 21 blood samples from individuals (more than 50 years old) living in Dolon since the very beginning of nuclear testing. A matched control group included 20 individuals living in non-contaminated areas. Higher frequencies of chromosome aberrations were found in the Dolon cohort compared to the control group, even though they remain within the range of the background levels reported for large normal human population studies on elderly individuals.

  7. Arthroscopic Double-Row Transosseous Equivalent Rotator Cuff Repair with a Knotless Self-Reinforcing Technique.

    PubMed

    Mook, William R; Greenspoon, Joshua A; Millett, Peter J

    2016-01-01

    Rotator cuff tears are a significant cause of shoulder morbidity. Surgical techniques for repair have evolved to optimize the biologic and mechanical variables critical to tendon healing. Double-row repairs have demonstrated superior biomechanical advantages to a single-row. The preferred technique for rotator cuff repair of the senior author was reviewed and described in a step by step fashion. The final construct is a knotless double row transosseous equivalent construct. The described technique includes the advantages of a double-row construct while also offering self reinforcement, decreased risk of suture cut through, decreased risk of medial row overtensioning and tissue strangulation, improved vascularity, the efficiency of a knotless system, and no increased risk for subacromial impingement from the burden of suture knots. Arthroscopic knotless double row rotator cuff repair is a safe and effective method to repair rotator cuff tears.

  8. Adhesive bonded structural repair. I - Materials and processes, damage assessment and repair

    NASA Astrophysics Data System (ADS)

    Wegman, Raymond F.; Tullos, Thomas R.

    1993-08-01

    A standard method for the repair of adhesive bonded and composite laminate structures is introduced. Suitable materials and equipment for making satisfactory repairs are identified. Methods by which structures may be inspected, both before and after repair, are discussed. The objective in selecting the methods and materials is to restore the structure to its original integrity, i.e., to make a permanent repair. The use of these methods is recommended to promote standardized repair procedures.

  9. A comprehensive whole-genome integrated cytogenetic map for the alpaca (Lama pacos).

    PubMed

    Avila, Felipe; Baily, Malorie P; Perelman, Polina; Das, Pranab J; Pontius, Joan; Chowdhary, Renuka; Owens, Elaine; Johnson, Warren E; Merriwether, David A; Raudsepp, Terje

    2014-01-01

    Genome analysis of the alpaca (Lama pacos, LPA) has progressed slowly compared to other domestic species. Here, we report the development of the first comprehensive whole-genome integrated cytogenetic map for the alpaca using fluorescence in situ hybridization (FISH) and CHORI-246 BAC library clones. The map is comprised of 230 linearly ordered markers distributed among all 36 alpaca autosomes and the sex chromosomes. For the first time, markers were assigned to LPA14, 21, 22, 28, and 36. Additionally, 86 genes from 15 alpaca chromosomes were mapped in the dromedary camel (Camelus dromedarius, CDR), demonstrating exceptional synteny and linkage conservation between the 2 camelid genomes. Cytogenetic mapping of 191 protein-coding genes improved and refined the known Zoo-FISH homologies between camelids and humans: we discovered new homologous synteny blocks (HSBs) corresponding to HSA1-LPA/CDR11, HSA4-LPA/CDR31 and HSA7-LPA/CDR36, and revised the location of breakpoints for others. Overall, gene mapping was in good agreement with the Zoo-FISH and revealed remarkable evolutionary conservation of gene order within many human-camelid HSBs. Most importantly, 91 FISH-mapped markers effectively integrated the alpaca whole-genome sequence and the radiation hybrid maps with physical chromosomes, thus facilitating the improvement of the sequence assembly and the discovery of genes of biological importance. © 2015 S. Karger AG, Basel.

  10. Nucleotide excision repair is a potential therapeutic target in multiple myeloma

    PubMed Central

    Szalat, R; Samur, M K; Fulciniti, M; Lopez, M; Nanjappa, P; Cleynen, A; Wen, K; Kumar, S; Perini, T; Calkins, A S; Reznichenko, E; Chauhan, D; Tai, Y-T; Shammas, M A; Anderson, K C; Fermand, J-P; Arnulf, B; Avet-Loiseau, H; Lazaro, J-B; Munshi, N C

    2018-01-01

    Despite the development of novel drugs, alkylating agents remain an important component of therapy in multiple myeloma (MM). DNA repair processes contribute towards sensitivity to alkylating agents and therefore we here evaluate the role of nucleotide excision repair (NER), which is involved in the removal of bulky adducts and DNA crosslinks in MM. We first evaluated NER activity using a novel functional assay and observed a heterogeneous NER efficiency in MM cell lines and patient samples. Using next-generation sequencing data, we identified that expression of the canonical NER gene, excision repair cross-complementation group 3 (ERCC3), significantly impacted the outcome in newly diagnosed MM patients treated with alkylating agents. Next, using small RNA interference, stable knockdown and overexpression, and small-molecule inhibitors targeting xeroderma pigmentosum complementation group B (XPB), the DNA helicase encoded by ERCC3, we demonstrate that NER inhibition significantly increases sensitivity and overcomes resistance to alkylating agents in MM. Moreover, inhibiting XPB leads to the dual inhibition of NER and transcription and is particularly efficient in myeloma cells. Altogether, we show that NER impacts alkylating agents sensitivity in myeloma cells and identify ERCC3 as a potential therapeutic target in MM. PMID:28588253

  11. Cytogenetic risk determines outcomes after allogeneic transplantation in older patients with acute myeloid leukemia in their second complete remission: A Center for International Blood and Marrow Transplant Research cohort analysis.

    PubMed

    Michelis, Fotios V; Gupta, Vikas; Zhang, Mei-Jie; Wang, Hai-Lin; Aljurf, Mahmoud; Bacher, Ulrike; Beitinjaneh, Amer; Chen, Yi-Bin; DeFilipp, Zachariah; Gale, Robert Peter; Kebriaei, Partow; Kharfan-Dabaja, Mohamed; Lazarus, Hillard M; Nishihori, Taiga; Olsson, Richard F; Oran, Betul; Rashidi, Armin; Rizzieri, David A; Tallman, Martin S; de Lima, Marcos; Khoury, H Jean; Sandmaier, Brenda M; Weisdorf, Daniel; Saber, Wael

    2017-06-01

    Allogeneic hematopoietic cell transplantation (HCT) offers curative potential to a number of older patients with acute myeloid leukemia (AML) in their first complete remission. However, there are limited data in the literature concerning post-HCT outcomes for older patients in their second complete remission (CR2). The purpose of the current study was to retrospectively investigate within the Center for International Blood and Marrow Transplant Research database parameters influencing posttransplant outcomes for patients 60 years of age or older undergoing HCT for AML in CR2. In total, 196 patients from 78 centers were identified; the median age was 64 years (range, 60-78 years). Seventy-one percent had a Karnofsky performance status ≥ 90 at the time of HCT. Reduced-intensity conditioning regimens were used in 159 patients (81%). A univariate analysis demonstrated a 3-year overall survival (OS) rate of 42% (95% confidence interval [CI], 35%-49%), a leukemia-free survival rate of 37% (95% CI, 30%-44%), a cumulative incidence of nonrelapse mortality of 25% (95% CI, 19%-32%), and a cumulative incidence of relapse (CIR) of 38% (95% CI, 31%-45%). A multivariate analysis demonstrated that cytogenetic risk was the only independent risk factor for OS (P = .023) with a hazard ratio (HR) of 1.14 (95% CI, 0.59-2.19) for intermediate-risk cytogenetics and an HR of 2.32 (95% CI, 1.05-5.14) for unfavorable-risk cytogenetics. For CIR, cytogenetic risk was also the only independent prognostic factor (P = .01) with an HR of 1.10 (95% CI, 0.47-2.56) for intermediate-risk cytogenetics and an HR of 2.98 (95% CI, 1.11-8.00) for unfavorable-risk cytogenetics. Allogeneic HCT is a curative treatment option for older patients with AML in CR2, particularly for those with favorable or intermediate cytogenetic risk. Cancer 2017;123:2035-2042. © 2017 American Cancer Society. © 2017 American Cancer Society.

  12. Cytogenetic and molecular characterization of double inversion 3 associated with a cryptic BCR-ABL1 rearrangement and additional genetic changes.

    PubMed

    Toydemir, Reha; Rowe, Leslie; Hibbard, Michele; Salama, Mohamed; Shetty, Shashirekha

    2010-09-01

    Rearrangements of chromosome 3 involving bands 3q21 and 3q26 have been reported in about 2% of patients with acute myeloid leukemia, and rarely in myelodysplastic syndrome or chronic myelogenous leukemia (CML). To date, only six cases of inversion of both homologues have been reported. Loss of normal chromosome 3 and duplication of the inverted chromosome have been proposed as the most likely mechanism, but have not been shown experimentally. We present a 36-year-old male with an initial diagnosis of CML and resistance to imatinib mesylate. Chromosome analysis showed an inversion within the long arm of both homologues of chromosome 3 and an interstitial deletion within the long arm of one chromosome 7. The rearrangement of EVI1 locus on both homologues of chromosome 3 was confirmed by fluorescence in situ hybridization (FISH). Additional FISH studies showed a cryptic insertion of ABL1 into the BCR region, and subsequent duplication of the derivative chromosome 22. The single-nucleotide polymorphism array showed copy-neutral loss of heterozygosity on chromosomes 3 and 22, suggesting that a somatic repair mechanism is involved in the evolution of these genetic alterations. This case illustrates the complexity of genetic aberrations in neoplastic cells, and the value of array technology, used in concert with conventional cytogenetic methods, for a better understanding of the pathogenesis. 2010 Elsevier Inc. All rights reserved.

  13. Evaluation of differential representative values between Chinese hamster cells and human lymphocytes in mitomycin C-induced cytogenetic assays and caspase-3 activity.

    PubMed

    Liao, Pei-Hu; Lin, Ruey-Hseng; Yang, Ming-Ling; Li, Yi-Ching; Kuan, Yu-Hsiang

    2012-03-01

    Chinese hamster ovary (CHO) cells, its lung fibroblasts (V79), and human lymphocytes are routinely used in in vitro cytogenetic assays, which include micronuclei (MN), sister chromatid exchange (SCE), and chromosome aberration (CA) assays. Mitomycin C (MMC), a DNA cross-link alkylating agent, is both an anticancer medicine and a carcinogen. To study the differential representative values of cell types in MMC-treated cytogenetic assays and its upstream factor, cysteine aspartic acid-specific protease (caspase)-3. Among the chosen cell types, lymphocytes expressed the highest sensitivity in all three MMC-induced assays, whereas CHO and V79 showed varied sensitivity in different assays. In MN assay, the sensitivity of CHO is higher than or equal to V79; in SCE assay, the sensitivity of CHO is the same as V79; and in CA assay, the sensitivity of CHO is higher than V79. In-depth analysis of CA revealed that in chromatid breaks and dicentrics formation, lymphocyte was the most sensitive of all and CHO was more sensitive than V79; and in acentrics and interchanges formation, lymphocyte was much more sensitive than the others. Furthermore, we found caspase-3 activity plays an important role in MMC-induced cytogenetic assays, with MMC-induced caspase-3 activity resulting in more sensitivity in lymphocytes than in CHO and V79. Based on these findings, lymphocyte will make a suitable predictive or representative control reference in cytogenetic assays and caspase-3 activity with its high specificity, positive predictive value, and sensitivity.

  14. Is percutaneous repair better than open repair in acute Achilles tendon rupture?

    PubMed

    Henríquez, Hugo; Muñoz, Roberto; Carcuro, Giovanni; Bastías, Christian

    2012-04-01

    Open repair of Achilles tendon rupture has been associated with higher levels of wound complications than those associated with percutaneous repair. However, some studies suggest there are higher rerupture rates and sural nerve injuries with percutaneous repair. We compared the two types of repairs in terms of (1) function (muscle strength, ankle ROM, calf and ankle perimeter, single heel rise tests, and work return), (2) cosmesis (length scar, cosmetic appearance), and (3) complications. We retrospectively reviewed 32 surgically treated patients with Achilles rupture: 17 with percutaneous repair and 15 with open repair. All patients followed a standardized rehabilitation protocol. The minimum followup was 6 months (mean, 18 months; range, 6-48 months). We observed similar values of plantar flexor strength, ROM, calf and ankle perimeter, and single heel raising test between the groups. Mean time to return to work was longer for patients who had open versus percutaneous repair (5.6 months versus 2.8 months). Mean scar length was greater in the open repair group (9.5 cm versus 2.9 cm). Cosmetic appearance was better in the percutaneous group. Two wound complications and one rerupture were found in the open repair group. One case of deep venous thrombosis occurred in the percutaneous repair group. All complications occurred before 6 months after surgery. We identified no patients with nerve injury. Percutaneous repair provides function similar to that achieved with open repair, with a better cosmetic appearance, a lower rate of wound complications, and no apparent increase in the risk of rerupture. Level III, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  15. Cytogenetic and molecular markers for detecting Aegilops uniaristata chromosomes in a wheat background.

    PubMed

    Gong, Wenping; Li, Guangrong; Zhou, Jianping; Li, Genying; Liu, Cheng; Huang, Chengyan; Zhao, Zhendong; Yang, Zujun

    2014-09-01

    Aegilops uniaristata has many agronomically useful traits that can be used for wheat breeding. So far, a Triticum turgidum - Ae. uniaristata amphiploid and one set of Chinese Spring (CS) - Ae. uniaristata addition lines have been produced. To guide Ae. uniaristata chromatin transformation from these lines into cultivated wheat through chromosome engineering, reliable cytogenetic and molecular markers specific for Ae. uniaristata chromosomes need to be developed. Standard C-banding shows that C-bands mainly exist in the centromeric regions of Ae. uniaristata but rarely at the distal ends. Fluorescence in situ hybridization (FISH) using (GAA)8 as a probe showed that the hybridization signal of chromosomes 1N-7N are different, thus (GAA)8 can be used to identify all Ae. uniaristata chromosomes in wheat background simultaneously. Moreover, a total of 42 molecular markers specific for Ae. uniaristata chromosomes were developed by screening expressed sequence tag - sequence tagged site (EST-STS), expressed sequence tag - simple sequence repeat (EST-SSR), and PCR-based landmark unique gene (PLUG) primers. The markers were subsequently localized using the CS - Ae. uniaristata addition lines and different wheat cultivars as controls. The cytogenetic and molecular markers developed herein will be helpful for screening and identifying wheat - Ae. uniaristata progeny.

  16. Evaluation of clinical and cytogenetic parameters in rheumatoid arthritis patients for effective diagnosis.

    PubMed

    Chandirasekar, R; Kumar, B Lakshman; Jayakumar, R; Uthayakumar, V; Jacob, Raichel; Sasikala, K

    2015-01-15

    Rheumatoid arthritis is the commonest inflammatory joint disease, affecting nearly 1% of the adult population worldwide. Early and accurate diagnosis and prognosis of rheumatoid arthritis (RA) have become increasingly important. In the present study, we aimed to elucidate the relationships between hematological, biochemical, immunological and cytogenetic parameters in rheumatoid arthritis patients and healthy normal controls. The study group comprised of 126 RA patients and equal number of healthy normal control subjects. The blood was collected and analyzed for biochemical, immunological, enzymatic and cytogenetic parameters. Results of the present study indicated that 20% of RA patient's hematological, 31% of biochemical and 70% immunological parameters had a significant difference from the controls and reference range. The RF and anti-CCP antibody levels were also positive in 70% of RA patients. A significant increase in minor chromosomal abnormalities was also observed in patients as compared to controls. The knowledge about autoimmune diseases is very low among the South Indian population. The present study has thus helped in understanding the RA disease in a better way based on a pattern of various clinical markers of the disease condition which might help in planning therapeutic intervention strategies and create awareness about the disease management among RA patients of the population studied. Copyright © 2014. Published by Elsevier B.V.

  17. Enhancement of cytogenetic damage and of antineoplastic effect by caffeine in Ehrlich ascites tumor cells treated with cyclophosphamide in vivo.

    PubMed

    Mourelatos, D; Dozi-Vassiliades, J; Kotsis, A; Gourtsas, C

    1988-03-01

    Enhanced cytogenetic damage by cyclophosphamide (CP) was observed when Ehrlich ascites tumor cells were exposed in vivo to nontoxic concentrations of caffeine. One h before i.p. injection of 5-bromodeoxyuridine adsorbed to activated charcoal Ehrlich ascites tumor-bearing mice treated i.p. with CP appear to have a dose-dependent increase in sister chromatid exchange rates and cell division delays. Caffeine increased the survival time of the Ehrlich ascites tumor-bearing mice treated with CP and markedly reduced the ascitic volume. Therefore, the in vivo antitumor effect by CP in conjunction with caffeine appears to correlate well with the in vivo synergistic effect on cytogenetic damage caused by the combined CP plus caffeine treatment.

  18. Reliability theory for repair service organization simulation and increase of innovative attraction of industrial enterprises

    NASA Astrophysics Data System (ADS)

    Dolzhenkova, E. V.; Iurieva, L. V.

    2018-05-01

    The study presents the author's algorithm for the industrial enterprise repair service organization simulation based on the reliability theory, as well as the results of its application. The monitoring of the industrial enterprise repair service organization is proposed to perform on the basis of the enterprise's state indexes for the main resources (equipment, labour, finances, repair areas), which allows quantitative evaluation of the reliability level as a resulting summary rating of the said parameters and the ensuring of an appropriate level of the operation reliability of the serviced technical objects. Under the conditions of the tough competition, the following approach is advisable: the higher efficiency of production and a repair service itself, the higher the innovative attractiveness of an industrial enterprise. The results of the calculations show that in order to prevent inefficient losses of production and to reduce the repair costs, it is advisable to apply the reliability theory. The overall reliability rating calculated on the basis of the author's algorithm has low values. The processing of the statistical data forms the reliability characteristics for the different workshops and services of an industrial enterprise, which allows one to define the failure rates of the various units of equipment and to establish the reliability indexes necessary for the subsequent mathematical simulation. The proposed simulating algorithm contributes to an increase of the efficiency of the repair service organization and improvement of the innovative attraction of an industrial enterprise.

  19. Enhanced cytogenetic and antineoplastic effects by the combined action of two esteric steroidal derivatives of nitrogen mustards.

    PubMed

    Papageorgiou, A; Nikolaropoulos, S S; Arsenou, E S; Karaberis, E; Mourelatos, D; Kotsis, A; Chryssogelou, E

    1999-01-01

    The authors studied the effect of two modified steroids containing different proportions (%) of alkylating agents alone or in combination on sister chromatid exchange (SCE) rates and on human lymphocyte proliferation kinetics. The antitumor activity of these compounds was tested on leukemia P388- and leukemia L1210-bearing mice. The two chemicals in mixtures enhance SCE induction and antitumor activity in a synergistic manner. The homo-aza-steroidal ester of p-bis(2-chloroethyl)aminophenyl acetic acid was found to be more effective than the homo-aza-steroidal ester of o-bis(2-chloroethyl)aminobenzoic acid in causing cytogenetic damage and antineoplastic activity. A correlation was observed between the magnitude of the SCE response and the depression of the cell proliferation index. The order of the antitumor effectiveness of the five different treatments tested coincided with the order of the cytogenetic effects they induced.

  20. Peak oxygen uptake, ventilatory efficiency and QRS-duration predict event free survival in patients late after surgical repair of tetralogy of Fallot.

    PubMed

    Müller, Jan; Hager, Alfred; Diller, Gerhard-Paul; Derrick, Graham; Buys, Roselien; Dubowy, Karl-Otto; Takken, Tim; Orwat, Stefan; Inuzuka, Ryo; Vanhees, Luc; Gatzoulis, Michael; Giardini, Alessandro

    2015-10-01

    Patients with repaired tetralogy of Fallot (ToF) have an increased long-term risk of cardiovascular morbidity and mortality. Risk stratification in this population is difficult. Initial evidence suggests that cardiopulmonary exercise testing (CPET) may be helpful to risk-stratify patients with repaired ToF. We studied 875 patients after surgical repair for ToF (358 females, age 25.5 ± 11.7 year, range 7-75 years) who underwent CPET between 1999 and 2009. During a mean follow-up of 4.1 ± 2.6 years after CPET, 30 patients (3.4%) died or had sustained ventricular tachycardia (VT). 225 patients (25.7%) had other cardiac related events (emergency admission, surgery, or catheter interventions). On multivariable Cox regression-analysis, %predicted peak oxygen uptake (V˙O2 %) (p=0.001), resting QRS duration (p=0.030) and age (p<0.001) emerged as independent predictors of mortality or sustained VT. Patients with a peak V˙O2 ≤ 65% of predicted and a resting QRS duration ≥ 170 ms had a 11.4-fold risk of death or sustained VT. Ventilatory efficiency expressed as V˙E/V˙CO2 slope (p<0.001), peak V˙O2 % (p=.001), QRS duration (p=.001) and age (p=0.046) independently predicted event free survival. V˙E/V˙CO2 slope ≥ 31.0, peak V˙O2 % ≤ 65% and QRS duration ≥ 170 ms were the cut-off points with best sensitivity and specificity to detect an unfavorable outcome. CPET is an important predictive tool that may assist in the risk stratification of patients with ToF. Subjects with a poor exercise capacity in addition to a prolonged QRS duration have a substantially increased risk for death or sustained ventricular tachycardia, as well as for cardiac-related hospitalizations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Cytogenetic damage in peripheral blood lymphocytes of children exposed to pesticides in agricultural areas of the department of Cordoba, Colombia.

    PubMed

    Ruiz-Guzmán, Javier Alonso; Gómez-Corrales, Pamela; Cruz-Esquivel, Ángel; Marrugo-Negrete, José Luis

    2017-12-01

    Pesticides offer benefits, like optimization of agricultural production and disease control; however, these toxic substances can contaminate the environment and pose risks to human health. The aim of this study was to assess pesticide exposure and frequency of cytogenetic damage in infant populations in agricultural areas of the department of Córdoba, Colombia. Urine and peripheral blood samples were taken from children living in the villages of La Ceibita (municipality of Cereté), Cabuya (municipality of San Carlos), Aguas Negras (municipality of Montería), Pelayito (municipality of San Pelayo), and the city of Monteria (control group). The work evaluated biomarkers of exposure to pesticides (atrazine urinary concentrations (ATZ) and its metabolites) and biomarkers of cytogenetic damage (micronucleus frequency (MN), nuclear buds, and apoptotic cells in peripheral blood lymphocytes). Measurable ATZ concentrations and/or its metabolites were recorded in the Pelayito, Aguas Negras, and Cabuya zones, which had higher MN frequencies, nuclear buds, and apoptotic cells than the control. Infant exposure to one of the more-often used pesticides in the agricultural areas evaluated and an increasing trend in the frequency of markers of cytogenetic damage in the groups of the agricultural areas, as compared to the control group, were evident. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. In vivo synergistic cytogenetic effects of aminophylline on lymphocyte cultures from patients with lung cancer undergoing chemotherapy.

    PubMed

    Mylonaki, Effie; Manika, Katerina; Zarogoulidis, Paul; Domvri, Kalliopi; Voutsas, Vasilis; Zarogoulidis, Kostas; Mourelatos, Dionysios

    2012-12-01

    The anti-cancer and cytogenetic effects of aminophylline (AM) have been demonstrated in several clinical trials. The aim of the present study was to investigate the in vivo cytogenetic effects of AM in newly diagnosed patients with small cell (SCLC) and non-small cell lung cancer (NSCLC), receiving chemotherapy for the first time. Sister chromatid exchanges (SCEs) and proliferation rate index (PRI) were evaluated in peripheral blood lymphocyte cultures from six patients with SCLC and six patients with NSCLC after the in vitro addition of AM and after the in vivo administration of AM in patients receiving chemotherapy. The in vitro addition of AM significantly increased SCEs only in SCLC patients (p<0.001). The in vivo administration of AM after chemotherapy increased SCEs in both cancer types (SCLC: p<0.001, NSCLC: p=0.003) and this increase was synergistic, the rates of SCEs in the presence of AM were higher than the expected SCE values if the increases above background for chemotherapy and AM were independent and additive (SCLC: p<0.001, NSCLC: p=0.008). Although in both groups of patients cell division delays were observed after the combined chemotherapy plus in vivo AM treatment, the correlation between the magnitude of the SCE response and the PRI depression was not statistically significant (p>0.05). These observations suggest that AM enhances the results of concurrently administered chemotherapy by synergistically increasing its cytogenetic effects in patients with lung cancer. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Sufficient Amounts of Functional HOP2/MND1 Complex Promote Interhomolog DNA Repair but Are Dispensable for Intersister DNA Repair during Meiosis in Arabidopsis[W

    PubMed Central

    Uanschou, Clemens; Ronceret, Arnaud; Von Harder, Mona; De Muyt, Arnaud; Vezon, Daniel; Pereira, Lucie; Chelysheva, Liudmila; Kobayashi, Wataru; Kurumizaka, Hitoshi; Schlögelhofer, Peter; Grelon, Mathilde

    2013-01-01

    During meiosis, homologous recombination (HR) is essential to repair programmed DNA double-strand breaks (DSBs), and a dedicated protein machinery ensures that the homologous chromosome is favored over the nearby sister chromatid as a repair template. The HOMOLOGOUS-PAIRING PROTEIN2/MEIOTIC NUCLEAR DIVISION PROTEIN1 (HOP2/MND1) protein complex has been identified as a crucial factor of meiotic HR in Arabidopsis thaliana, since loss of either MND1 or HOP2 results in failure of DNA repair. We isolated two mutant alleles of HOP2 (hop2-2 and hop2-3) that retained the capacity to repair meiotic DSBs via the sister chromatid but failed to use the homologous chromosome. We show that in these alleles, the recombinases RADIATION SENSITIVE51 (RAD51) and DISRUPTED MEIOTIC cDNA1 (DMC1) are loaded, but only the intersister DNA repair pathway is activated. The hop2-2 phenotype is correlated with a decrease in HOP2/MND1 complex abundance. In hop2-3, a truncated HOP2 protein is produced that retains its ability to bind to DMC1 and DNA but forms less stable complexes with MND1 and fails to efficiently stimulate DMC1-driven D-loop formation. Genetic analyses demonstrated that in the absence of DMC1, HOP2/MND1 is dispensable for RAD51-mediated intersister DNA repair, while in the presence of DMC1, a minimal amount of functional HOP2/MND1 is essential to drive intersister DNA repair. PMID:24363313

  4. Simplified Phased-Mission System Analysis for Systems with Independent Component Repairs

    NASA Technical Reports Server (NTRS)

    Somani, Arun K.

    1996-01-01

    Accurate analysis of reliability of system requires that it accounts for all major variations in system's operation. Most reliability analyses assume that the system configuration, success criteria, and component behavior remain the same. However, multiple phases are natural. We present a new computationally efficient technique for analysis of phased-mission systems where the operational states of a system can be described by combinations of components states (such as fault trees or assertions). Moreover, individual components may be repaired, if failed, as part of system operation but repairs are independent of the system state. For repairable systems Markov analysis techniques are used but they suffer from state space explosion. That limits the size of system that can be analyzed and it is expensive in computation. We avoid the state space explosion. The phase algebra is used to account for the effects of variable configurations, repairs, and success criteria from phase to phase. Our technique yields exact (as opposed to approximate) results. We demonstrate our technique by means of several examples and present numerical results to show the effects of phases and repairs on the system reliability/availability.

  5. Relationships of the Woody Medicago Species (Section Dendrotelis) Assessed by Molecular Cytogenetic Analyses

    PubMed Central

    Rosato, Marcela; Castro, Mercedes; Rosselló, Josep A.

    2008-01-01

    cytogenetic data do not suggest the hypothesis that M. arborea and M. strasseri were involved in the origin of M. citrina. FISH mapping can be used as an efficient tool to determine the genomic contribution of M. citrina in somatic hybrids with other medic species. PMID:18413655

  6. Arthroscopic Double-Row Transosseous Equivalent Rotator Cuff Repair with a Knotless Self-Reinforcing Technique

    PubMed Central

    Mook, William R.; Greenspoon, Joshua A.; Millett, Peter J.

    2016-01-01

    Background: Rotator cuff tears are a significant cause of shoulder morbidity. Surgical techniques for repair have evolved to optimize the biologic and mechanical variables critical to tendon healing. Double-row repairs have demonstrated superior biomechanical advantages to a single-row. Methods: The preferred technique for rotator cuff repair of the senior author was reviewed and described in a step by step fashion. The final construct is a knotless double row transosseous equivalent construct. Results: The described technique includes the advantages of a double-row construct while also offering self reinforcement, decreased risk of suture cut through, decreased risk of medial row overtensioning and tissue strangulation, improved vascularity, the efficiency of a knotless system, and no increased risk for subacromial impingement from the burden of suture knots. Conclusion: Arthroscopic knotless double row rotator cuff repair is a safe and effective method to repair rotator cuff tears. PMID:27733881

  7. DNA Repair and the Accumulation of Oxidatively Damaged DNA Are Affected by Fruit Intake in Mice

    PubMed Central

    Croteau, Deborah L.; de Souza-Pinto, Nadja C.; Harboe, Charlotte; Keijzers, Guido; Zhang, Yongqing; Becker, Kevin; Sheng, Shan

    2010-01-01

    AGING is associated with elevated oxidative stress and DNA damage. To achieve healthy aging, we must begin to understand how diet affects cellular processes. We postulated that fruit-enriched diets might initiate a program of enhanced DNA repair and thereby improve genome integrity. C57Bl/6 J mice were fed for 14 weeks a control diet or a diet with 8% peach or nectarine extract. The activities of DNA repair enzymes, the level of DNA damage, and gene expression changes were measured. Our study showed that repair of various oxidative DNA lesions was more efficient in liver extracts derived from mice fed fruit-enriched diets. In support of these findings, gas chromatography–mass spectrometry analysis revealed that there was a decrease in the levels of formamidopyrimidines in peach-fed mice compared with the controls. Additionally, microarray analysis revealed that NTH1 was upregulated in peach-fed mice. Taken together, these results suggest that an increased intake of fruits might modulate the efficiency of DNA repair, resulting in altered levels of DNA damage. PMID:20847039

  8. Transected sciatic nerve repair by diode laser protein soldering.

    PubMed

    Fekrazad, Reza; Mortezai, Omid; Pedram, MirSepehr; Kalhori, Katayoun Am; Joharchi, Khojasteh; Mansoori, Korosh; Ebrahimi, Roja; Mashhadiabbas, Fatemeh

    2017-08-01

    Despite advances in microsurgical techniques, repair of peripheral nerve injuries (PNI) is still a major challenge in regenerative medicine. The standard treatment for PNI includes suturing and anasthomosis of the transected nerve. The objective of this study was to compare neurorraphy (nerve repair) using standard suturingto diode laser protein soldering on the functional recovery of transected sciatic nerves. Thirty adult male Fischer-344 Wistar rats were randomly assigned to 3 groups: 1. The control group, no repair, 2. the standard of care suture group, and 3. The laser/protein solder group. For all three groups, the sciatic nerve was transected and the repair was done immediately. For the suture repair group, 10.0 prolene suture was used and for the laser/protein solder group a diode laser (500mW output power) in combination with bovine serum albumen and indocyanine green dye was used. Behavioral assessment by sciatic functional index was done on all rats biweekly. At 12weeks post-surgery, EMG recordings were done on all the rats and the rats were euthanized for histological evaluation of the sciatic nerves. The one-way ANOVA test was used for statistical analysis. The average time required to perform the surgery was significantly shorter for the laser-assisted nerve repair group compared to the suture group. The EMG evaluation revealed no difference between the two groups. Based on the sciatic function index the laser group was significantly better than the suture group after 12weeks (p<0.05). Histopathologic evaluation indicated that the epineurium recovery was better in the laser group (p<0.05). There was no difference in the inflammation between the suture and laser groups. Based on this evidence, laser/protein nerve soldering is a more efficient and efficacious method for repair of nerve injury compared to neurorraphy using standard suturing methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Heat exposure enhances radiosensitivity by depressing DNA-PK kinase activity during double strand break repair.

    PubMed

    Ihara, Makoto; Takeshita, Satoshi; Okaichi, Kumio; Okumura, Yutaka; Ohnishi, Takeo

    2014-03-01

    From the role of double strand DNA dependent protein kinase (DNA-PKcs) activity of non-homologous end joining (NHEJ) repair for DNA double strand breaks (DSBs), we aim to define possible associations between thermo-sensitisation and the enzyme activities in X-ray irradiated cells. DNA-PKcs deficient mouse, Chinese hamster and human cultured cells were compared to the parental wild-type cells. The radiosensitivities, the number of DSBs and DNA-PKcs activities after heat-treatment were measured. Both DNA-PKcs deficient cells and the wild-type cells showed increased radiosensitivities after heat-treatment. The wild-type cells have two repair processes; fast repair and slow repair. In contrast, DNA-PKcs deficient cells have only the slow repair process. The fast repair component apparently disappeared by heat-treatment in the wild-type cells. In both cell types, additional heat exposure enhanced radiosensitivities. Although DNA-PKcs activity was depressed by heat, the inactivated DNA-PKcs activity recovered during an incubation at 37 °C. DSB repair efficiency was dependent on the reactivation of DNA-PKcs activity. It was suggested that NHEJ is the major process used to repair X-ray-induced DSBs and utilises DNA-PKcs activity, but homologous recombination repair provides additional secondary levels of DSB repair. The thermo-sensitisation in X-ray-irradiated cells depends on the inhibition of NHEJ repair through the depression of DNA-PKcs activities.

  10. Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts

    NASA Technical Reports Server (NTRS)

    George, K.; Cucinotta, F. A.

    2008-01-01

    Cytogenetic analysis of astronauts blood lymphocytes provides a direct in vivo measurement of space radiation damage, which takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. We present our latest analyses of chromosome damage in astronauts blood lymphocytes assessed by fluorescence in situ hybridization (FISH) chromosome painting and collected at various times beginning directly after return from space to several years after flight. Dose was derived from frequencies of chromosome exchanges using preflight calibration curves, and the Relative Biological Effect (RBE) was estimated by comparison with individually measured physically absorbed doses. Values for average RBE were compared to the average quality factor (Q), from direct measurements of the lineal energy spectra using a tissue-equivalent proportional counter (TEPC) and radiation transport codes. Results prove that cytogenetic biodosimetry analyses on blood collected within a week or two of return from space provides a reliable estimate of equivalent radiation dose and risk after protracted exposure to space radiation of a few months or more. However, data collected several months or years after flight suggests that the yield of chromosome translocations may decline with time after the mission, indicating that retrospective doses may be more difficult to estimate. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from one crewmember, who has participated in two separate long-duration space missions and has been followed up for over 10 years, provide limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.

  11. Contribution of Revised International Prognostic Scoring System Cytogenetics to Predict Outcome After Allogeneic Stem Cell Transplantation for Myelodysplastic Syndromes: A Study From the French Society of Bone Marrow Transplantation and Cellular Therapy.

    PubMed

    Gauthier, Jordan; Damaj, Gandhi; Langlois, Carole; Robin, Marie; Michallet, Mauricette; Chevallier, Patrice; Beguin, Yves; N'guyen, Stéphanie; Bories, Pierre; Blaise, Didier; Cornillon, Jérôme; Clavert, Aline; Mohty, Mohamad; Huynh, Anne; Thiébaut-Bertrand, Anne; Vigouroux, Stéphane; Duhamel, Alain; Yakoub-Agha, Ibrahim

    2015-08-01

    The prognosis of myelodysplastic syndromes (MDS) after allogeneic stem cell transplantation is critically determined by cytogenetic abnormalities, as previously defined by International Prognostic Scoring System (IPSS) cytogenetics. It has been shown that a new cytogenetic classification, included in the IPSS-R (cytogenetic-IPSS-R [C-IPSS-R]), can better predict the outcome of untreated MDS patients. In this study, we assessed the impact of the IPSS-R cytogenetic score (C-IPSS-R) on the outcome of 367 MDS patients transplanted from HLA-identical siblings or HLA allele-matched unrelated donors. According to the C-IPSS-R, 178 patients (48%) fell in the good risk, 102 (28%) in the intermediate risk, 77 (21%) in the poor risk, and 10 (3%) in the very poor risk group. In multivariate analysis, after a median follow-up of 4 years, the poor and very poor-risk categories correlated with shorter overall survival (OS) (4-year OS, 32%; hazard ratio [HR], 1.59; P = 0.009 and OS, 10%; HR, 3.18; P = 0.002, respectively) and higher cumulative incidence of relapse (CIR) (CIR, 52%; HR, 1.82; P = 0.004 and CIR, 60%; HR, 2.44; P = 0.060, respectively). Overall, the C-IPSS-R changed the IPSS cytogenetic risk only in 8% of cases but identified a new risk group, the very poor C-IPSS-R category, with dismal outcome after allogeneic stem cell transplantation (10% 4-year OS, 60% 4-year CIR). Posttransplantation maintenance therapy should be investigated in prospective trials for patients with high-risk C-IPSS-R karyotypes.

  12. Aircraft Metal Skin Repair and Honeycomb Structure Repair; Sheet Metal Work 3: 9857.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course helps students determine types of repairs, compute repair sizes, and complete the repair through surface protection. Course content includes goals, specific objectives, protection of metals, repairs to metal skin, and honeycomb structure repair. A bibliography and post-test are appended. A prerequisite for this course is mastery of the…

  13. Cytogenetic characterization of a fibroma and three haemangiopericytomas in domestic dogs.

    PubMed

    Mayr, B; Scheller, M; Reifinger, M; Loupal, G

    1995-01-01

    Cytogenetic evaluation of tumour cells taken from an 11-year-old mixed breed birth with a fibroma, showed trisomy 1 (2n = 79) and often the presence of a third copy of chromosome 4. In a 13-year-old mixed breed Boxer bitch with a haemangiopericytoma, trisomy 9 (2n = 79) was present. In contrast, another haemangiopericytoma (in a 15-year-old rough-haired Dachshund bitch) showed a deleted chromosome 1, several centric fusions and trisomy 2. Trisomy 2 and trisomy 29 were detected in a third haemangiopericytoma from an 11-year-old rough-haired Dachshund bitch.

  14. Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair.

    PubMed

    Lu, Wei-Ting; Hawley, Ben R; Skalka, George L; Baldock, Robert A; Smith, Ewan M; Bader, Aldo S; Malewicz, Michal; Watts, Felicity Z; Wilczynska, Ania; Bushell, Martin

    2018-02-07

    The error-free and efficient repair of DNA double-stranded breaks (DSBs) is extremely important for cell survival. RNA has been implicated in the resolution of DNA damage but the mechanism remains poorly understood. Here, we show that miRNA biogenesis enzymes, Drosha and Dicer, control the recruitment of repair factors from multiple pathways to sites of damage. Depletion of Drosha significantly reduces DNA repair by both homologous recombination (HR) and non-homologous end joining (NHEJ). Drosha is required within minutes of break induction, suggesting a central and early role for RNA processing in DNA repair. Sequencing of DNA:RNA hybrids reveals RNA invasion around DNA break sites in a Drosha-dependent manner. Removal of the RNA component of these structures results in impaired repair. These results show how RNA can be a direct and critical mediator of DNA damage repair in human cells.

  15. INTERNAL REPAIR OF PIPELINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill Bruce; Nancy Porter; George Ritter

    2005-07-20

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, undermore » congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections

  16. [Polymorphism of genes encoding proteins of DNA repair vs. occupational and environmental exposure to lead, arsenic and pesticides].

    PubMed

    Bukowski, Karol; Woźniak, Katarzyna

    2018-03-09

    Genetic polymorphism is associated with the occurrence of at least 2 different alleles in the locus with a frequency higher than 1% in the population. Among polymorphisms we can find single nucleotide polymorphism (SNP) and polymorphism of variable number of tandem repeats. The presence of certain polymorphisms in genes encoding DNA repair enzymes is associated with the speed and efficiency of DNA repair and can protect or expose humans to the effects provoked by xenobiotics. Chemicals, such as lead, arsenic pesticides are considered to exhibit strong toxicity. There are many different polymorphisms in genes encoding DNA repair enzymes, which determine the speed and efficiency of DNA damage repair induced by these xenobiotics. In the case of lead, the influence of various polymorphisms, such as APE1 (apurinic/apyrimidinic endonuclease 1) (rs1130409), hOGG1 (human 8-oxoguanine glycosylase) (rs1052133), XRCC1 (X-ray repair cross-complementing protein group 1) (rs25487), XRCC1 (rs1799782) and XRCC3 (X-ray repair cross-complementing protein group 3) (rs861539) were described. For arsenic polymorphisms, such as ERCC2 (excision repair cross-complementing) (rs13181), XRCC3 (rs861539), APE1 (rs1130409) and hOGG1 (rs1052133) were examined. As to pesticides, separate and combined effects of polymorphisms in genes encoding DNA repair enzymes, such as XRCC1 (rs1799782), hOGG1 (rs1052133), XRCC4 (X-ray repair cross-complementing protein group 4) (rs28360135) and the gene encoding the detoxification enzyme PON1 paraoxonase (rs662) were reported. Med Pr 2018;69(2):225-235. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  17. Salvage hypospadias repairs

    PubMed Central

    Sripathi, V.; Satheesh, M.; Shubha, K.

    2008-01-01

    Aim: Review of our experience and to develop an algorithm for salvage procedures in the management of hypospadias cripples and treatment of urethral strictures following hypospadias repair. Methods: This is a retrospective review of hypospadias surgeries over a 41-month period. Out of a total 168 surgeries, 20 were salvage/re-operative repairs. In three children a Duplay repair was feasible, while in four others a variety of single-stage repairs could be done. The repair was staged in seven children – buccal mucosal grafts (BMGs) in five, buccal mucosal tube in one, and skin graft in one. Five children with dense strictures were managed by dorsal BMG inlay grafting in one, vascularized tunical onlay grafting on the ventrum in one, and a free tunical patch in one. Three children were treated by internal urethrotomy and stenting for four weeks with a poor outcome. Results: The age of children ranged from 1.5–15 years (mean 4.5). Follow-up ranged from 3 months to 3.5 years. Excellent results were obtained in 10 children (50%) with a well-surfaced erect penis and a slit-like meatus. Glans closure could not be achieved and meatus was coronal in three. Two children developed fistulae following a Duplay repair and following a staged BMG. Three repairs failed completely – a composite repair broke down, a BMG tube stenosed with a proximal leak, and a stricture recurred with loss of a ventral free tunical graft. Conclusions: In salvage procedures performed on hypospadias cripples, a staged repair with buccal mucosa as an inlay in the first stage followed by tubularization 4–6 months later provides good results. A simple algorithm to plan corrective surgery in failed hypospadias cases and obtain satisfactory results is devised. PMID:20011495

  18. Salvage hypospadias repairs.

    PubMed

    Sripathi, V; Satheesh, M; Shubha, K

    2008-10-01

    Review of our experience and to develop an algorithm for salvage procedures in the management of hypospadias cripples and treatment of urethral strictures following hypospadias repair. This is a retrospective review of hypospadias surgeries over a 41-month period. Out of a total 168 surgeries, 20 were salvage/re-operative repairs. In three children a Duplay repair was feasible, while in four others a variety of single-stage repairs could be done. The repair was staged in seven children - buccal mucosal grafts (BMGs) in five, buccal mucosal tube in one, and skin graft in one. Five children with dense strictures were managed by dorsal BMG inlay grafting in one, vascularized tunical onlay grafting on the ventrum in one, and a free tunical patch in one. Three children were treated by internal urethrotomy and stenting for four weeks with a poor outcome. The age of children ranged from 1.5-15 years (mean 4.5). Follow-up ranged from 3 months to 3.5 years. Excellent results were obtained in 10 children (50%) with a well-surfaced erect penis and a slit-like meatus. Glans closure could not be achieved and meatus was coronal in three. Two children developed fistulae following a Duplay repair and following a staged BMG. Three repairs failed completely - a composite repair broke down, a BMG tube stenosed with a proximal leak, and a stricture recurred with loss of a ventral free tunical graft. In salvage procedures performed on hypospadias cripples, a staged repair with buccal mucosa as an inlay in the first stage followed by tubularization 4-6 months later provides good results. A simple algorithm to plan corrective surgery in failed hypospadias cases and obtain satisfactory results is devised.

  19. Mammalian DNA single-strand break repair: an X-ra(y)ted affair.

    PubMed

    Caldecott, K W

    2001-05-01

    The genetic stability of living cells is continuously threatened by the presence of endogenous reactive oxygen species and other genotoxic molecules. Of particular threat are the thousands of DNA single-strand breaks that arise in each cell, each day, both directly from disintegration of damaged sugars and indirectly from the excision repair of damaged bases. If un-repaired, single-strand breaks can be converted into double-strand breaks during DNA replication, potentially resulting in chromosomal rearrangement and genetic deletion. Consequently, cells have adopted multiple pathways to ensure the rapid and efficient removal of single-strand breaks. A general feature of these pathways appears to be the extensive employment of protein-protein interactions to stimulate both the individual component steps and the overall repair reaction. Our current understanding of DNA single-strand break repair is discussed, and testable models for the architectural coordination of this important process are presented. Copyright 2001 John Wiley & Sons, Inc.

  20. Induction and repair of DNA damage measured by the comet assay in human T lymphocytes separated by immunomagnetic cell sorting.

    PubMed

    Bausinger, Julia; Speit, Günter

    2014-11-01

    The comet assay is widely used in human biomonitoring to measure DNA damage in whole blood or isolated peripheral blood mononuclear cells (PBMC) as a marker of exposure to genotoxic agents. Cytogenetic assays with phytohemagglutinin (PHA)-stimulated cultured T lymphocytes are also frequently performed in human biomonitoring. Cytogenetic effects (micronuclei, chromosome aberrations, sister chromatid exchanges) may be induced in vivo but also occur ex vivo during the cultivation of lymphocytes as a consequence of DNA damage present in lymphocytes at the time of sampling. To better understand whether DNA damage measured by the comet assay in PBMC is representative for DNA damage in T cells, we comparatively investigated DNA damage and its repair in PBMC and T cells obtained by immunomagnetic cell sorting. PBMC cultures and T cell cultures were exposed to mutagens with different modes of genotoxic action and DNA damage was measured by the comet assay after the end of a 2h exposure and after 18h post-incubation. The mutagens tested were methyl methanesulfonate (MMS), (±)-anti-B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), 4-nitroquinoline-1-oxide (4NQO), styrene oxide and potassium bromate. MMS and potassium bromate were also tested by the modified comet assay with formamido pyrimidine glycosylase (FPG) protein. The results indicate that the mutagens tested induce DNA damage in PBMC and T cells in the same range of concentrations and removal of induced DNA lesions occurs to a comparable extent. Based on these results, we conclude that the comet assay with PBMC is suited to predict DNA damage and its removal in T cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Aortic aneurysm repair - endovascular

    MedlinePlus

    EVAR; Endovascular aneurysm repair - aorta; AAA repair - endovascular; Repair - aortic aneurysm - endovascular ... to guide the stent graft up into your aorta, to where the aneurysm is located. Next open ...

  2. [Cytogenetic characteristics of seed offspring of leafy tree plants from one-kilometer zone of Novovoronezh nuclear power station].

    PubMed

    Artiukhov, V G; Kalaev, V N; Sen'kevich, E V; Vakhtel', V M; Savko, A D

    2004-01-01

    Cytogenetic characteristics (mitotic activity, level and spectrum of pathological mitoses, nucleoly characteristics) of seed offspring of Quercus robur L. and Betula pendula Roth from Novovoronezh nuclear power station's 1-kilometer zone have been studied. It has been shown the change of time of passing though mitotic stages by cells, the increasing of bridges frequency occur in spectrum of mitotic aberrations (that shows activation of reparation systems), the change in nucleoly characteristics (the part of polynucleolaris cells increase in case of oak and decrease in case of birch, the rase of surface square of single nucleolies). The phenomena, mean above, probably, induced by synergic effects of Novovoronezh nuclear power station and environment pollutants. The most contaminated territories of 1-kilometer zone of Novovoronezh nuclear power station have been discovered by means of methods of cluster analysis of total cytogenetic characteristics of tree plants seed offspring.

  3. CytoBayesJ: software tools for Bayesian analysis of cytogenetic radiation dosimetry data.

    PubMed

    Ainsbury, Elizabeth A; Vinnikov, Volodymyr; Puig, Pedro; Maznyk, Nataliya; Rothkamm, Kai; Lloyd, David C

    2013-08-30

    A number of authors have suggested that a Bayesian approach may be most appropriate for analysis of cytogenetic radiation dosimetry data. In the Bayesian framework, probability of an event is described in terms of previous expectations and uncertainty. Previously existing, or prior, information is used in combination with experimental results to infer probabilities or the likelihood that a hypothesis is true. It has been shown that the Bayesian approach increases both the accuracy and quality assurance of radiation dose estimates. New software entitled CytoBayesJ has been developed with the aim of bringing Bayesian analysis to cytogenetic biodosimetry laboratory practice. CytoBayesJ takes a number of Bayesian or 'Bayesian like' methods that have been proposed in the literature and presents them to the user in the form of simple user-friendly tools, including testing for the most appropriate model for distribution of chromosome aberrations and calculations of posterior probability distributions. The individual tools are described in detail and relevant examples of the use of the methods and the corresponding CytoBayesJ software tools are given. In this way, the suitability of the Bayesian approach to biological radiation dosimetry is highlighted and its wider application encouraged by providing a user-friendly software interface and manual in English and Russian. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Cytogenetic Diversity of Simple Sequences Repeats in Morphotypes of Brassica rapa ssp. chinensis

    PubMed Central

    Zheng, Jin-shuang; Sun, Cheng-zhen; Zhang, Shu-ning; Hou, Xi-lin; Bonnema, Guusje

    2016-01-01

    A significant fraction of the nuclear DNA of all eukaryotes is comprised of simple sequence repeats (SSRs). Although these sequences are widely used for studying genetic variation, linkage mapping and evolution, little attention had been paid to the chromosomal distribution and cytogenetic diversity of these sequences. In this paper, we report the distribution characterization of mono-, di-, and tri-nucleotide SSRs in Brassica rapa ssp. chinensis. Fluorescence in situ hybridization was used to characterize the cytogenetic diversity of SSRs among morphotypes of B. rapa ssp. chinensis. The proportion of different SSR motifs varied among morphotypes of B. rapa ssp. chinensis, with tri-nucleotide SSRs being more prevalent in the genome of B. rapa ssp. chinensis. We determined the chromosomal locations of mono-, di-, and tri-nucleotide repeat loci. The results showed that the chromosomal distribution of SSRs in the different morphotypes is non-random and motif-dependent, and allowed us to characterize the relative variability in terms of SSR numbers and similar chromosomal distributions in centromeric/peri-centromeric heterochromatin. The differences between SSR repeats with respect to abundance and distribution indicate that SSRs are a driving force in the genomic evolution of B. rapa species. Our results provide a comprehensive view of the SSR sequence distribution and evolution for comparison among morphotypes B. rapa ssp. chinensis. PMID:27507974

  5. Cytogenetic Diversity of Simple Sequences Repeats in Morphotypes of Brassica rapa ssp. chinensis.

    PubMed

    Zheng, Jin-Shuang; Sun, Cheng-Zhen; Zhang, Shu-Ning; Hou, Xi-Lin; Bonnema, Guusje

    2016-01-01

    A significant fraction of the nuclear DNA of all eukaryotes is comprised of simple sequence repeats (SSRs). Although these sequences are widely used for studying genetic variation, linkage mapping and evolution, little attention had been paid to the chromosomal distribution and cytogenetic diversity of these sequences. In this paper, we report the distribution characterization of mono-, di-, and tri-nucleotide SSRs in Brassica rapa ssp. chinensis. Fluorescence in situ hybridization was used to characterize the cytogenetic diversity of SSRs among morphotypes of B. rapa ssp. chinensis. The proportion of different SSR motifs varied among morphotypes of B. rapa ssp. chinensis, with tri-nucleotide SSRs being more prevalent in the genome of B. rapa ssp. chinensis. We determined the chromosomal locations of mono-, di-, and tri-nucleotide repeat loci. The results showed that the chromosomal distribution of SSRs in the different morphotypes is non-random and motif-dependent, and allowed us to characterize the relative variability in terms of SSR numbers and similar chromosomal distributions in centromeric/peri-centromeric heterochromatin. The differences between SSR repeats with respect to abundance and distribution indicate that SSRs are a driving force in the genomic evolution of B. rapa species. Our results provide a comprehensive view of the SSR sequence distribution and evolution for comparison among morphotypes B. rapa ssp. chinensis.

  6. Micropropagation and cytogenetic assessment of Zingiber species of Northeast India.

    PubMed

    Das, Archana; Kesari, Vigya; Rangan, Latha

    2013-12-01

    An improved micropropagation protocol was developed for Zingiber moran and Z. zerumbet, two wild species of the genus Zingiber, found in Northeast India. The effects of growth regulators, sugar concentrations, and nutrients were tested on the rate of shoot initiation and multiplication. An increase in proliferation and multiplication occurred in modified Murashige and Skoog (MS) medium supplemented with benzyladenine and kinetin. About 2 % sucrose and 0.7 % agar were found to be the optimum for shoot multiplication and regeneration. Naphthalene acetic acid at 0.5 mg/L produced the best rooting response for both the species. Regenerated plantlets were acclimatized successfully and cytogenetic stability was confirmed by RAPD profiling and ploidy checks.

  7. INTERNAL REPAIR OF PIPELINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robin Gordon; Bill Bruce; Ian Harris

    2004-12-31

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, undermore » congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections

  8. RAD51 Is a Selective DNA Repair Target to Radiosensitize Glioma Stem Cells.

    PubMed

    King, Harry O; Brend, Tim; Payne, Helen L; Wright, Alexander; Ward, Thomas A; Patel, Karan; Egnuni, Teklu; Stead, Lucy F; Patel, Anjana; Wurdak, Heiko; Short, Susan C

    2017-01-10

    Patients with glioblastoma die from local relapse despite surgery and high-dose radiotherapy. Resistance to radiotherapy is thought to be due to efficient DNA double-strand break (DSB) repair in stem-like cells able to survive DNA damage and repopulate the tumor. We used clinical samples and patient-derived glioblastoma stem cells (GSCs) to confirm that the DSB repair protein RAD51 is highly expressed in GSCs, which are reliant on RAD51-dependent DSB repair after radiation. RAD51 expression and RAD51 foci numbers fall when these cells move toward astrocytic differentiation. In GSCs, the small-molecule RAD51 inhibitors RI-1 and B02 prevent RAD51 focus formation, reduce DNA DSB repair, and cause significant radiosensitization. We further demonstrate that treatment with these agents combined with radiation promotes loss of stem cells defined by SOX2 expression. This indicates that RAD51-dependent repair represents an effective and specific target in GSCs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. DNA damage induces nuclear actin filament assembly by Formin -2 and Spire-½ that promotes efficient DNA repair. [corrected].

    PubMed

    Belin, Brittany J; Lee, Terri; Mullins, R Dyche

    2015-08-19

    Actin filaments assemble inside the nucleus in response to multiple cellular perturbations, including heat shock, protein misfolding, integrin engagement, and serum stimulation. We find that DNA damage also generates nuclear actin filaments-detectable by phalloidin and live-cell actin probes-with three characteristic morphologies: (i) long, nucleoplasmic filaments; (ii) short, nucleolus-associated filaments; and (iii) dense, nucleoplasmic clusters. This DNA damage-induced nuclear actin assembly requires two biologically and physically linked nucleation factors: Formin-2 and Spire-1/Spire-2. Formin-2 accumulates in the nucleus after DNA damage, and depletion of either Formin-2 or actin's nuclear import factor, importin-9, increases the number of DNA double-strand breaks (DSBs), linking nuclear actin filaments to efficient DSB clearance. Nuclear actin filaments are also required for nuclear oxidation induced by acute genotoxic stress. Our results reveal a previously unknown role for nuclear actin filaments in DNA repair and identify the molecular mechanisms creating these nuclear filaments.

  10. Stimulation of lactate receptor (HCAR1) affects cellular DNA repair capacity.

    PubMed

    Wagner, Waldemar; Kania, Katarzyna D; Ciszewski, Wojciech M

    2017-04-01

    Numerous G-protein coupled receptors have been reported to enhance cancer cell survival and resistance to clinically used chemotherapeutics. Recently, hydroxycarboxylic acid receptor 1 (HCAR1) was shown to drive lactate-dependent enhancement of cell survival and metastasis in pancreatic and breast cancers. Furthermore, our previous study confirmed the involvement of HCAR1 in lactate-related enhancement of DNA repair in cervical cancer cells. In the present study, we examined the possible mechanisms of HCAR1-mediated enhancement of DNA repair capacity. We observed that the HCAR1 agonist dihydroxybenzoic acid (DHBA) up-regulated BRCA1 (breast cancer type 1 susceptibility protein) and NBS1 (Nijmegen breakage syndrome 1) expression in HeLa cells. Moreover, HCAR1 silencing decreased mRNA and protein levels of BRCA1 by 30% and 20%, respectively. Immunocytochemical analyses of BRCA1, nibrin and DNA-PKcs indicated an increased accumulation of these proteins in cell nuclei after DHBA stimulation. Subsequently, these changes in the DNA repair protein levels translated into an enhanced DNA repair rate after doxorubicin treatment, as shown by γ-H2AX and comet assay experiments. In contrast, the down-regulation of HCAR1 decreased the efficiency of DNA repair. Finally, we observed the abrogation of DHBA-driven BRCA1 protein up-regulation and enhanced DNA repair following the preincubation of cells with the PKC inhibitor Gö6983. Taken together, our data indicate that lactate receptor/HCAR1 expression in cervical carcinoma cells may contribute to the modulation of cellular DNA repair mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Cytogenetics of Hylodes and Crossodactylus species (Anura, Leptodactylidae) with comments on Hylodinae/Dendrobatidae relationships.

    PubMed

    Aguiar Júnior, Odair; Carvalho, Klélia Aparecida; Giaretta, Ariovaldo Antônio; Recco-Pimentel, Shirlei Maria

    2004-05-01

    The karyotype, nucleolar organizer region (NOR) location and C-banding pattern of two species of Hylodes (H. phyllodes and H. asper) and two of Crossodactylus (Crossodactylus sp. n. and Crossodactylus cf. caramaschi) were studied. All species had a diploid number of 2n = 26, with differences in the chromosomal morphology of the Hylodes species while the two Crossodactylus species were cytogenetically indistinguishable. The NOR was located on pair 1 in both species of Hylodes, and on pair 8 in the Crossodactylus species. In the latter, the NOR was heteromorphic between the homologues. The NOR was coincident with a secondary constriction in the four species. Except to H. phyllodes, such secondary constrictions were clearly seen strongly stained after C-banding treatment. The C-banding pattern varied between the two species of Hylodes, but was identical in the Crossodactylus species. The results from conventionally stained karyotypes confirmed the uniformity within the genus Crossodactylus, and the relatively conserved karyotypes within Hylodes, in agreement with other literature reports. We conclude that the cytogenetic data do not provide further evidence which could be useful to corroborate the supposed relationships between the hylodines and dendrobatids since there are no unambiguous homeologies between the karyotypes of these groups.

  12. Classical and molecular cytogenetic characterization of Agonostomus monticola, a primitive species of Mugilidae (Mugiliformes).

    PubMed

    Nirchio, Mauro; Oliveira, Claudio; Ferreira, Irani A; Martins, Cesar; Rossi, Anna Rita; Sola, Luciana

    2009-01-01

    This study reports the first description of the karyotype of Agonostomus monticola, a species belonging to a genus which is considered to be the most primitive among living mugilid fish. Specimens from Panama and Venezuela were cytogenetically analysed by conventional chromosome banding (Ag and base-specific-fluorochrome staining, C-banding) and by fluorescent in situ hybridization (FISH). Agonostomus monticola showed a chromosome complement of 2n = 48, composed of 23 acrocentric and one subtelocentric chromosome pairs and a pericentromeric distribution of the C-positive heterochromatin in all chromosomes. Major ribosomal genes were found to be located on the short arms of the subtelocentric chromosome pair number 24 and minor ribosomal genes in a paracentromeric position of a single medium-sized chromosome pair. All these observed cytogenetic features are similar to those previously described in four representatives of two genera, Liza and Chelon, which are considered to be among the most advanced in the family. Thus, this karyotypic form might represent the plesiomorphic condition for the mullets. This hypothesis regarding the plesiomorphic condition, if confirmed, would shed new light on the previously inferred cytotaxonomic relationships for the studied species of Mugilidae, because the karyotype with 48 acrocentric chromosomes, which has been so far regarded as primitive for the family, would have to be considered as derived.

  13. Partial articular-sided rotator cuff tears: in situ repair versus tear completion prior to repair.

    PubMed

    Sethi, Paul M; Rajaram, Arun; Obopilwe, Elifho; Mazzocca, Augustus D

    2013-06-01

    Uncertainty exists over the ideal surgical treatment method for partial articular-sided rotator cuff tears, with options ranging from debridement to in situ repair to tear completion prior to repair. The purpose of this study was to determine whether in situ repair was a viable biomechanical treatment option compared with tear completion prior to repair of partial articular-sided rotator cuff tears. Fourteen fresh-frozen cadaveric shoulders were dissected. Partial articular-sided tears were created and repaired using in situ repair or tear completion prior to the repair. Strain and displacement were measured at 45°, 60°, and 90° of glenohumeral abduction. Testing was performed with a load of 100 N applied for 30 cycles. Data from the biomechanical testing displayed 4 conditions that showed improved characteristics of in situ repair over completion and repair: bursal-sided strain anteriorly at 45°, bursal-sided strain anteriorly at 90°, bursal-sided displacement anteriorly at 45°, and bursal-sided displacement anteriorly at 90°. The data indicate that in situ repair is a viable biomechanical treatment option compared with tear completion prior to repair of partial articular-sided rotator cuff tears. When clinically appropriate, the in situ repair may offer some biomechanical advantages, with lower strain and displacement observed on the bursal side compared with tear completion prior to repair. Copyright 2013, SLACK Incorporated.

  14. DNA mismatch repair and oligonucleotide end-protection promote base-pair substitution distal from a CRISPR/Cas9-induced DNA break

    PubMed Central

    Harmsen, Tim; Klaasen, Sjoerd; van de Vrugt, Henri; te Riele, Hein

    2018-01-01

    Abstract Single-stranded oligodeoxyribonucleotide (ssODN)-mediated repair of CRISPR/Cas9-induced DNA double-strand breaks (DSB) can effectively be used to introduce small genomic alterations in a defined locus. Here, we reveal DNA mismatch repair (MMR) activity is crucial for efficient nucleotide substitution distal from the Cas9-induced DNA break when the substitution is instructed by the 3′ half of the ssODN. Furthermore, protecting the ssODN 3′ end with phosphorothioate linkages enhances MMR-dependent gene editing events. Our findings can be exploited to optimize efficiencies of nucleotide substitutions distal from the DSB and imply that oligonucleotide-mediated gene editing is effectuated by templated break repair. PMID:29447381

  15. Repair & Strengthening of Distressed/Damaged Ends of Prestressed Beams with FRP Composites

    DOT National Transportation Integrated Search

    2018-02-01

    Over the past few decades, fiber reinforced polymer (FRP) composites have emerged as a lightweight and efficient material used for the repair and retrofit of concrete infrastructures. FRP can be applied to concrete as either externally bonded laminat...

  16. Sibling rivalry: competition between Pol X family members in V(D)J recombination and general double strand break repair.

    PubMed

    Nick McElhinny, Stephanie A; Ramsden, Dale A

    2004-08-01

    The nonhomologous end-joining pathway is a major means for repairing double-strand breaks (DSBs) in all mitotic cell types. This repair pathway is also the only efficient means for resolving DSB intermediates in V(D)J recombination, a lymphocyte-specific genome rearrangement required for assembly of antigen receptors. A role for polymerases in end-joining has been well established. They are a major factor in determining the character of repair junctions but, in contrast to 'core' end-joining factors, typically appear to have a subtle impact on the efficiency of end-joining. Recent work implicates several members of the Pol X family in end-joining and suggests surprising complexity in the control of how these different polymerases are employed in this pathway.

  17. INTERNAL REPAIR OF PIPELINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robin Gordon; Bill Bruce; Ian Harris

    2004-08-17

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, undermore » congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without

  18. [Clinical manifestation and cytogenetic analysis of 607 patients with Turner syndrome].

    PubMed

    Zheng, Jiemei; Liu, Zhiying; Xia, Pei; Lai, Yi; Wei, Yangjun; Liu, Yanyan; Chen, Jiurong; Qin, Li; Xie, Liangyu; Wang, He

    2017-02-10

    To explore the correlation between cytogenetic findings and clinical manifestations of Turner syndrome. 607 cases of cytogenetically diagnosed Turner syndrome, including those with a major manifestation of Turner syndrome, were analyzed with conventional G-banding. Correlation between the karyotypes and clinical features were analyzed. Among the 607 cases, there were 154 cases with monosomy X (25.37%). Mosaicism monosomy X was found in 240 patients (39.54%), which included 194 (80.83%) with a low proportion of 45,X (3 ≤ the number of 45, X ≤5, while the normal cells ≥ 30). Structural X chromosome abnormalities were found in 173 patients (28.50%). A supernumerary marker chromosome was found in 40 cases (6.59%). Most patients with typical manifestations of Turner syndrome were under 11 years of age and whose karyotypes were mainly 45,X. The karyotype of patients between 11 and 18 years old was mainly 45,X, 46,X,i(X)(q10) and mos45,X/46,X,i(X)(q10), which all had primary amenorrhea in addition to the typical clinical manifestations. The karyotype of patients over 18 years of age were mainly mosaicism with a low proportion of 45,X, whom all had primary infertility. 53 patients had a history of pregnancy, which included 48 with non-structural abnormalities of X chromosome and 5 with abnormal structure of X chromosome. Generally, the higher proportion of cells with an abnormal karyotype, the more severe were the clinical symptoms and the earlier clinical recognition. Karyotyping analysis can provide guidance for the early diagnosis of Turner syndrome, especially those with a low proportion of 45,X.

  19. Investigation on Flexure Test of Composite Beam of Repair Materials and Substrate Concrete for Durable Repair

    NASA Astrophysics Data System (ADS)

    Pattnaik, Rashmi R.; Rangaraju, Prasada Rao

    2014-12-01

    An experimental study was conducted on composite beam of repair materials and substrate concrete to investigate the failures of concrete repair due to differences in strength of repair materials and substrate concrete. In this investigation the flexural strength, load-deflection curves and failure patterns of the composite beam specimens are studied for the durability of the concrete repair. Flexure test was conducted to simulate tensile stress in the concrete repair material. Compressive strength and split tensile strength of the repair materials and substrate concrete are investigated to aid in the analysis of the concrete repair. It was observed that the repair materials of higher compressive strength than the substrate concrete are causing an incompatible failure in the concrete repair.

  20. Satisfaction, function and repair integrity after arthroscopic versus mini-open rotator cuff repair.

    PubMed

    Barnes, L A Fink; Kim, H M; Caldwell, J-M; Buza, J; Ahmad, C S; Bigliani, L U; Levine, W N

    2017-02-01

    Advances in arthroscopic techniques for rotator cuff repair have made the mini-open approach less popular. However, the mini-open approach remains an important technique for repair for many surgeons. The aims of this study were to compare the integrity of the repair, the function of the shoulder and satisfaction post-operatively using these two techniques in patients aged > 50 years. We identified 22 patients treated with mini-open and 128 patients treated with arthroscopic rotator cuff repair of July 2007 and June 2011. The mean follow-up was two years (1 to 5). Outcome was assessed using the American Shoulder and Elbow Surgeons (ASES) and Simple Shoulder Test (SST) scores, and satisfaction. The integrity of the repair was assessed using ultrasonography. A power analysis ensured sufficient enrolment. There was no statistically significant difference between the age, function, satisfaction, or pain scores (p > 0.05) of the two groups. The integrity of the repair and the mean SST scores were significantly better in the mini-open group (91% of mini-open repairs were intact versus 60% of arthroscopic repairs, p = 0.023; mean SST score 10.9 (standard deviation (sd) 1.3) in the mini-open group; 8.9 (sd 3.5) in arthroscopic group; p = 0.003). The ASES scores were also higher in the mini-open group (mean ASES score 91.0 (sd 10.5) in mini-open group; mean 82.70 (sd 19.8) in the arthroscopic group; p = 0.048). The integrity of the repair and function of the shoulder were better after a mini-open repair than after arthroscopic repair of a rotator cuff tear in these patients. The functional difference did not translate into a difference in satisfaction. Mini-open rotator cuff repair remains a useful technique despite advances in arthroscopy. Cite this article: Bone Joint J 2017;99-B:245-9. ©2017 The British Editorial Society of Bone & Joint Surgery.

  1. Inside-Out Meniscus Repair

    PubMed Central

    Nelson, Clay G.; Bonner, Kevin F.

    2013-01-01

    Meniscus repair over resection, when feasible, should be strongly considered in an effort to preserve meniscus integrity and function, especially in younger patients. Currently, a number of techniques and implants may be used to achieve a successful result. Although all-inside meniscus repair devices have evolved significantly since their introduction and have become the repair technique of choice for many surgeons, the classic inside-out repair technique is still very useful to have in one's armamentarium. Though less popular because of the ease of current-generation fixators, the inside-out technique can still offer advantages for those surgeons who are proficient. With the versatility to address most tear patterns, the ability to deliver sutures with smaller needle diameters, and proven long-term results, it has been considered the gold standard in meniscus repair. We review the inside-out repair technique for both a medial and lateral meniscus tear with some helpful tips when performing the technique, and we present a video demonstration of the lateral meniscus repair technique. PMID:24400199

  2. Peripherally Inserted Central Catheters in Pediatric Patients: To Repair or Not Repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gnannt, Ralph, E-mail: ralph.gnannt@usz.ch; Patel, Premal; Temple, Michael

    IntroductionPreservation of venous access in children is a major concern in pediatric interventional radiology. If a peripherally inserted central catheter (PICC) breaks, there are two options: repair the line with a repair kit or exchange the line over a wire in the interventional suite. The purpose of this study is to assess the outcome of PICC repairs in children and to compare these with the outcomes of PICC exchange.Materials and MethodsThis is a single-center, retrospective study of central line-associated bloodstream infection (CLABSI) following management of externally broken PICCs (2010–2014). The occurrence of CLABSI within 30 days after repair (Group A) ormore » exchange (Group B) of a line was analyzed, as well as PICCs exchanged following an initial and failed repair.ResultsA total of 235 PICC breaks were included in the study, of which 161 were repaired, and 116 of whom were successful (68%, Group A). No repair was performed in 74 PICCs—55/74 of these were exchanged over a wire (74%, Group B), and 19/74 lines were removed. The 30 days post-repair CLABSI rate (Group A) was 2.0 infections per 1000 catheter days, and the calculated risk was 4.3%. In comparison the 30 days post-exchange CLABSI rate (Group B) was 4.0 per 1000 catheter days and the calculated risk 10.9%. This difference was significant when adjusted for antibiotic use (OR 3.87; 95% CI 1.07–14.0, p = 0.039).ConclusionThe results of this study support repairing a broken PICC instead of removing or replacing the line.« less

  3. Single nucleotide polymorphism array karyotyping: a diagnostic and prognostic tool in myelodysplastic syndromes with unsuccessful conventional cytogenetic testing.

    PubMed

    Arenillas, Leonor; Mallo, Mar; Ramos, Fernando; Guinta, Kathryn; Barragán, Eva; Lumbreras, Eva; Larráyoz, María-José; De Paz, Raquel; Tormo, Mar; Abáigar, María; Pedro, Carme; Cervera, José; Such, Esperanza; José Calasanz, María; Díez-Campelo, María; Sanz, Guillermo F; Hernández, Jesús María; Luño, Elisa; Saumell, Sílvia; Maciejewski, Jaroslaw; Florensa, Lourdes; Solé, Francesc

    2013-12-01

    Cytogenetic aberrations identified by metaphase cytogenetics (MC) have diagnostic, prognostic, and therapeutic implications in myelodysplastic syndromes (MDS). However, in some MDS patients MC study is unsuccesful. Single nucleotide polymorphism array (SNP-A) based karyotyping could be helpful in these cases. We performed SNP-A in 62 samples from bone marrow or peripheral blood of primary MDS with an unsuccessful MC study. SNP-A analysis enabled the detection of aberrations in 31 (50%) patients. We used the copy number alteration information to apply the International Prognostic Scoring System (IPSS) and we observed differences in survival between the low/intermediate-1 and intermediate-2/high risk patients. We also saw differences in survival between very low/low/intermediate and the high/very high patients when we applied the revised IPSS (IPSS-R). In conclusion, SNP-A can be used successfully in PB samples and the identification of CNA by SNP-A improve the diagnostic and prognostic evaluation of this group of MDS patients. Copyright © 2013 Wiley Periodicals, Inc.

  4. Repair rather than segregation of damage is the optimal unicellular aging strategy.

    PubMed

    Clegg, Robert J; Dyson, Rosemary J; Kreft, Jan-Ulrich

    2014-08-16

    How aging, being unfavourable for the individual, can evolve is one of the fundamental problems of biology. Evidence for aging in unicellular organisms is far from conclusive. Some studies found aging even in symmetrically dividing unicellular species; others did not find aging in the same, or in different, unicellular species, or only under stress. Mathematical models suggested that segregation of non-genetic damage, as an aging strategy, would increase fitness. However, these models failed to consider repair as an alternative strategy or did not properly account for the benefits of repair. We used a new and improved individual-based model to examine rigorously the effect of a range of aging strategies on fitness in various environments. Repair of damage emerges as the best strategy despite its fitness costs, since it immediately increases growth rate. There is an optimal investment in repair that outperforms damage segregation in well-mixed, lasting and benign environments over a wide range of parameter values. Damage segregation becomes beneficial, and only in combination with repair, when three factors are combined: (i) the rate of damage accumulation is high, (ii) damage is toxic and (iii) efficiency of repair is low. In contrast to previous models, our model predicts that unicellular organisms should have active mechanisms to repair damage rather than age by segregating damage. Indeed, as predicted, all organisms have evolved active mechanisms of repair whilst aging in unicellular organisms is absent or minimal under benign conditions, apart from microorganisms with a different ecology, inhabiting short-lived environments strongly favouring early reproduction rather than longevity. Aging confers no fitness advantage for unicellular organisms in lasting environments under benign conditions, since repair of non-genetic damage is better than damage segregation.

  5. INTERNAL REPAIR OF PIPELINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robin Gordon; Bill Bruce; Ian Harris

    2004-04-12

    The two broad categories of deposited weld metal repair and fiber-reinforced composite liner repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repair and for fiber-reinforced composite liner repair. Evaluation trials have been conducted using a modified fiber-reinforced composite liner provided by RolaTube and pipe sections without liners. All pipe section specimens failed in areas of simulated damage. Pipe sections containing fiber-reinforcedmore » composite liners failed at pressures marginally greater than the pipe sections without liners. The next step is to evaluate a liner material with a modulus of elasticity approximately 95% of the modulus of elasticity for steel. Preliminary welding parameters were developed for deposited weld metal repair in preparation of the receipt of Pacific Gas & Electric's internal pipeline welding repair system (that was designed specifically for 559 mm (22 in.) diameter pipe) and the receipt of 559 mm (22 in.) pipe sections from Panhandle Eastern. The next steps are to transfer welding parameters to the PG&E system and to pressure test repaired pipe sections to failure. A survey of pipeline operators was conducted to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. Completed surveys contained the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be

  6. Comparison of new nitrosoureas esters with modified steroidal nucleus for cytogenetic and antineoplastic activity.

    PubMed

    Hussein, A; Mioglou-Kalouptsi, E; Papageorgiou, A; Karapidaki, I; Iakovidou-Kritsi, Z; Lialiaris, T; Xrysogelou, E; Camoutsis, C; Mourelatos, D

    2007-01-01

    Nitrosourea is decomposed under physiological conditions to react with biological macromolecules by two mechanisms: alkylation (with proteins and nucleic acids) and carbamoylation (with proteins but not nucleic acids). It has been suggested that the alkylating action is responsible for the therapeutic effects of nitrosoureas, and that the carbamoylation activity leads to toxicity effects. In order to reduce systemic toxicity and improve specificity and distribution for cancer therapy, 2-haloethyl nitrosourea has been esterified with modified steroids, which are used as biological platforms for transporting the alkylating agent to the tumor site in a specific manner. The cytogenetic and antineoplastic effect were studied of seven newly synthesized esters of N,N-bis(2-chloroethyl)alanyl carboxyl derivatives with a modified steroidal nucleus (compounds 1-7). As a very sensitive indicator of genotoxicity the Sister Chromatid Exchange (SCE) assay was used and as a valuable marker of cytostatic activity the cell Proliferation Rate Index (PRI) in cultures of normal human lymphocytes was used. The order of magnitude of the cytogenetic activity on a molar basis (15, 30, 120 microM) of the compounds was 7>6>3>5>2>4>1. The most active compound 7 has an enlarged (seven carbon atoms) A ring modified with a lactam group (-NHCO-) with the nitrosourea moiety esterified at position 17 In the group of seven substances a correlation was observed between the magnitude of SCE response and the depression in PRI (r=-O, 65, p<0.001). According to the criterion of activity of National Cancer Institute (NCI), the order of antineoplastic activity of compounds on lymphoid L1210 leukemia is 7>6>2>5>4>3>1 and on lympocytic P388 leukemia cells is 7>2>6>5>4>3>1. The present results are in agreement with previous suggestions that the effectiveness in cytogenetic activity may well be correlated with antitumor effects [T/C: 248% for the compound 7 in 250 mg/kg b.w.; T/C: mean survival time of drug

  7. Macrophage Plasticity and the Role of Inflammation in Skeletal Muscle Repair

    PubMed Central

    Kharraz, Yacine; Guerra, Joana; Mann, Christopher J.; Serrano, Antonio L.; Muñoz-Cánoves, Pura

    2013-01-01

    Effective repair of damaged tissues and organs requires the coordinated action of several cell types, including infiltrating inflammatory cells and resident cells. Recent findings have uncovered a central role for macrophages in the repair of skeletal muscle after acute damage. If damage persists, as in skeletal muscle pathologies such as Duchenne muscular dystrophy (DMD), macrophage infiltration perpetuates and leads to progressive fibrosis, thus exacerbating disease severity. Here we discuss how dynamic changes in macrophage populations and activation states in the damaged muscle tissue contribute to its efficient regeneration. We describe how ordered changes in macrophage polarization, from M1 to M2 subtypes, can differently affect muscle stem cell (satellite cell) functions. Finally, we also highlight some of the new mechanisms underlying macrophage plasticity and briefly discuss the emerging implications of lymphocytes and other inflammatory cell types in normal versus pathological muscle repair. PMID:23509419

  8. DNA Excision Repair at Telomeres

    PubMed Central

    Jia, Pingping; Her, Chengtao; Chai, Weihang

    2015-01-01

    DNA damage is caused by either endogenous cellular metabolic processes such as hydrolysis, oxidation, alkylation, and DNA base mismatches, or exogenous sources including ultraviolet (UV) light, ionizing radiation, and chemical agents. Damaged DNA that is not properly repaired can lead to genomic instability, driving tumorigenesis. To protect genomic stability, mammalian cells have evolved highly conserved DNA repair mechanisms to remove and repair DNA lesions. Telomeres are composed of long tandem TTAGGG repeats located at the ends of chromosomes. Maintenance of functional telomeres is critical for preventing genome instability. The telomeric sequence possesses unique features that predispose telomeres to a variety of DNA damage induced by environmental genotoxins. This review briefly describes the relevance of excision repair pathways in telomere maintenance, with the focus on base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). By summarizing current knowledge on excision repair of telomere damage and outlining many unanswered questions, it is our hope to stimulate further interest in a better understanding of excision repair processes at telomeres and in how these processes contribute to telomere maintenance. PMID:26422132

  9. Airfield Damage Repair (ADR); Polymer Repair of Airfields Summary of Research

    DTIC Science & Technology

    2007-12-01

    reported in section 4.3.1. Prior to mixing, the stainless steel bowl, paddle and molds were sprayed with an industrial silicone release agent, Zip-Slip...aggressive foaming and segregation problems. airfield damage repair, (ADR), polymer, concrete, polymer concrete, crater repair U U U UU 30 R. Craig...Polymer Technology for Agile Combat Support to develop a rapid crater repair using resin binders for indigenous materials. The research team consisted of

  10. Cytogenetic analyses of five amazon lizard species of the subfamilies Teiinae and Tupinambinae and review of karyotyped diversity the family Teiidae.

    PubMed

    Carvalho, Natália Dayane Moura; Arias, Federico José; da Silva, Francijara Araújo; Schneider, Carlos Henrique; Gross, Maria Claudia

    2015-01-01

    Lizards of the family Teiidae (infraorder Scincomorpha) were formerly known as Macroteiidae. There are 13 species of such lizards in the Amazon, in the genera Ameiva (Meyer, 1795), Cnemidophorus (Wagler, 1830), Crocodilurus (Spix, 1825), Dracaena (Daudin, 1801), Kentropyx (Spix, 1825) and Tupinambis (Daudin, 1802). Cytogenetic studies of this group are restricted to karyotype macrostructure. Here we give a compilation of cytogenetic data of the family Teiidae, including classic and molecular cytogenetic analysis of Ameiva ameiva (Linnaeus, 1758), Cnemidophorus sp.1, Kentropyx calcarata (Spix, 1825), Kentropyx pelviceps (Cope, 1868) and Tupinambis teguixin (Linnaeus, 1758) collected in the state of Amazonas, Brazil. Ameiva ameiva, Kentropyx calcarata and Kentropyx pelviceps have 2n=50 chromosomes classified by a gradual series of acrocentric chromosomes. Cnemidophorus sp.1 has 2n=48 chromosomes with 2 biarmed chromosomes, 24 uniarmed chromosomes and 22 microchromosomes. Tupinambis teguixin has 2n=36 chromosomes, including 12 macrochromosomes and 24 microchromosomes. Constitutive heterochromatin was distributed in the centromeric and terminal regions in most chromosomes. The nucleolus organizer region was simple, varying in its position among the species, as evidenced both by AgNO3 impregnation and by hybridization with 18S rDNA probes. The data reveal a karyotype variation with respect to the diploid number, fundamental number and karyotype formula, which reinforces the importance of increasing chromosomal analyses in the Teiidae.

  11. Cytogenetic analyses of five amazon lizard species of the subfamilies Teiinae and Tupinambinae and review of karyotyped diversity the family Teiidae

    PubMed Central

    Carvalho, Natália Dayane Moura; Arias, Federico José; da Silva, Francijara Araújo; Schneider, Carlos Henrique; Gross, Maria Claudia

    2015-01-01

    Abstract Lizards of the family Teiidae (infraorder Scincomorpha) were formerly known as Macroteiidae. There are 13 species of such lizards in the Amazon, in the genera Ameiva (Meyer, 1795), Cnemidophorus (Wagler, 1830), Crocodilurus (Spix, 1825), Dracaena (Daudin, 1801), Kentropyx (Spix, 1825) and Tupinambis (Daudin, 1802). Cytogenetic studies of this group are restricted to karyotype macrostructure. Here we give a compilation of cytogenetic data of the family Teiidae, including classic and molecular cytogenetic analysis of Ameiva ameiva (Linnaeus, 1758), Cnemidophorus sp.1, Kentropyx calcarata (Spix, 1825), Kentropyx pelviceps (Cope, 1868) and Tupinambis teguixin (Linnaeus, 1758) collected in the state of Amazonas, Brazil. Ameiva ameiva, Kentropyx calcarata and Kentropyx pelviceps have 2n=50 chromosomes classified by a gradual series of acrocentric chromosomes. Cnemidophorus sp.1 has 2n=48 chromosomes with 2 biarmed chromosomes, 24 uniarmed chromosomes and 22 microchromosomes. Tupinambis teguixin has 2n=36 chromosomes, including 12 macrochromosomes and 24 microchromosomes. Constitutive heterochromatin was distributed in the centromeric and terminal regions in most chromosomes. The nucleolus organizer region was simple, varying in its position among the species, as evidenced both by AgNO3 impregnation and by hybridization with 18S rDNA probes. The data reveal a karyotype variation with respect to the diploid number, fundamental number and karyotype formula, which reinforces the importance of increasing chromosomal analyses in the Teiidae. PMID:26753079

  12. Repair of Double-Strand Breaks by End Joining

    PubMed Central

    Chiruvella, Kishore K.; Liang, Zhuobin; Wilson, Thomas E.

    2013-01-01

    Nonhomologous end joining (NHEJ) refers to a set of genome maintenance pathways in which two DNA double-strand break (DSB) ends are (re)joined by apposition, processing, and ligation without the use of extended homology to guide repair. Canonical NHEJ (c-NHEJ) is a well-defined pathway with clear roles in protecting the integrity of chromosomes when DSBs arise. Recent advances have revealed much about the identity, structure, and function of c-NHEJ proteins, but many questions exist regarding their concerted action in the context of chromatin. Alternative NHEJ (alt-NHEJ) refers to more recently described mechanism(s) that repair DSBs in less-efficient backup reactions. There is great interest in defining alt-NHEJ more precisely, including its regulation relative to c-NHEJ, in light of evidence that alt-NHEJ can execute chromosome rearrangements. Progress toward these goals is reviewed. PMID:23637284

  13. Doxycycline shows dose-dependent changes in hernia repair strength after mesh repair.

    PubMed

    Tharappel, Job C; Harris, Jennifer W; Zwischenberger, Brittany A; Levy, Salomon M; Puleo, David A; Roth, J Scott

    2016-05-01

    Ventral hernia is a commonly occurring surgical problem. Our earlier studies have shown that a 30 mg/kg dose of doxycycline can significantly impact the strength of polypropylene (PP) mesh in a rat hernia repair model at 6 and 12 weeks. The objective of the present study was to investigate the dose dependence of doxycycline treatment on hernia repair strengths in rats. Fifty-six Sprague-Dawley rats underwent hernia repair with either PP mesh (n = 28) or sutures only (primary; n = 28); both groups were further divided into four doxycycline groups of seven animals each: control (0 mg/kg), low (3 mg/kg), medium (10 mg/kg), and high (30 mg/kg). One day before hernia repair surgery, animals received doxycycline doses by gavage and continued receiving daily until euthanasia. After 8 weeks, rats were euthanized and tissue samples from hernia repaired area were collected and analyzed for tensile strength using a tensiometer (Instron, Canton, MA, USA), while MMPs 2, 3, and 9, and collagen type 1 and 3 were analyzed by western blotting. In mesh-repaired animals, medium and high doxycycline dose repaired mesh fascia interface (MFI) showed significant increase in tensile strength when compared to control. In the primary repaired animals, there was no significant difference in MFI tensile strength in any dose group. In medium-dose MFI, there was a significant reduction in MMPs 2, 3, and 9. In this animal group, MFI showed significant increase in collagen 1 and significant reduction in collagen type 3 when compared to control. It is possible to improve the strength of mesh-repaired tissue by administering a significantly lower dose of the drug, which has implications for translation of the findings.

  14. Predictable repair of provisional restorations.

    PubMed

    Hammond, Barry D; Cooper, Jeril R; Lazarchik, David A

    2009-01-01

    The importance of provisional restorations is often downplayed, as they are thought of by some as only "temporaries." As a result, a less-than-ideal provisional is sometimes fabricated, in part because of the additional chair time required to make provisional modifications when using traditional techniques. Additionally, in many dental practices, these provisional restorations are often fabricated by auxillary personnel who may not be as well trained in the fabrication process. Because provisionals play an important role in achieving the desired final functional and esthetic result, a high-quality provisional restoration is essential to fabricating a successful definitive restoration. This article describes a method for efficiently and predictably repairing both methacrylate and bis-acryl provisional restorations using flowable composite resin. By use of this relatively simple technique, provisional restorations can now be modified or repaired in a timely and productive manner to yield an exceptional result. Successful execution of esthetic and restorative dentistry requires attention to detail in every aspect of the case. Fabrication of high-quality provisional restorations can, at times, be challenging and time consuming. The techniques for optimizing resin provisional restorations as described in this paper are pragmatic and will enhance the delivery of dental treatment.

  15. The diversity of myeloid immune cells shaping wound repair and fibrosis in the lung

    PubMed Central

    Florez‐Sampedro, Laura; Song, Shanshan

    2018-01-01

    Abstract In healthy circumstances the immune system coordinates tissue repair responses in a tight balance that entails efficient inflammation for removal of potential threats, proper wound closure, and regeneration to regain tissue function. Pathological conditions, continuous exposure to noxious agents, and even ageing can dysregulate immune responses after injury. This dysregulation can lead to a chronic repair mechanism known as fibrosis. Alterations in wound healing can occur in many organs, but our focus lies with the lung as it requires highly regulated immune and repair responses with its continuous exposure to airborne threats. Dysregulated repair responses can lead to pulmonary fibrosis but the exact reason for its development is often not known. Here, we review the diversity of innate immune cells of myeloid origin that are involved in tissue repair and we illustrate how these cell types can contribute to the development of pulmonary fibrosis. Moreover, we briefly discuss the effect of age on innate immune responses and therefore on wound healing and we conclude with the implications of current knowledge on the avenues for future research. PMID:29721324

  16. Proximal 15q familial euchromatic variant and PWS/AS critical region duplication in the same patient: a cytogenetic pitfall.

    PubMed

    Carelle-Calmels, Nadège; Girard-Lemaire, Françoise; Guérin, Eric; Bieth, Eric; Rudolf, Gabrielle; Biancalana, Valérie; Pecheur, Hélène; Demil, Houria; Schneider, Thierry; de Saint-Martin, Anne; Caron, Olivier; Legrain, Michèle; Gaston, Valérie; Flori, Elisabeth

    2008-01-01

    Cytogenetically detectable elongation of the 15q proximal region can be associated with Prader-Willi/Angelman critical region interstitial duplications or with inherited juxtacentromeric euchromatic variants. The first category has been reported in association with developmental delay and autistic disorders. These pathogenic recurrent duplications are more frequently of maternal origin and originate from unequal meiotic crossovers between chromosome 15 low-copy repeats. 15q juxtacentromeric euchromatic variants reflect polymorphic copy number variations of segments containing pseudogenes and usually segregate without apparent phenotypic consequence. Pathogenic relevant 15q11-q13 duplications are not distinguishable from the innocuous euchromatic variants with conventional cytogenetic methods. We report cytogenetic and molecular studies of a patient with hypotonia, developmental delay and epilepsy, carrying, on the same chromosome 15, both a de novo 15q11-q13 interstitial duplication and an inherited 15q juxtacentromeric amplification from maternal origin. The duplication, initially suspected by fluorescent in situ hybridization (FISH), has been confirmed by molecular studies. The 15q juxtacentromeric region amplification, which segregates in the family for at least three generations, has been confirmed by FISH using BAC probes overlapping the NF1 and GABRA5 pseudogenes. This report emphasizes the importance to distinguish proximal 15q polymorphic variants from clinically significant duplications. In any patient with inherited 15q proximal variant but unexplained developmental delay suggesting 15q11-q13 pathology, a pathogenic rearrangement has to be searched with adapted strategies, in order to detect deletions as well as duplications of this region.

  17. New trends in articular cartilage repair.

    PubMed

    Cucchiarini, Magali; Henrionnet, Christel; Mainard, Didier; Pinzano, Astrid; Madry, Henning

    2015-12-01

    Damage to the articular cartilage is an important, prevalent, and unsolved clinical issue for the orthopaedic surgeon. This review summarizes innovative basic research approaches that may improve the current understanding of cartilage repair processes and lead to novel therapeutic options. In this regard, new aspects of cartilage tissue engineering with a focus on the choice of the best-suited cell source are presented. The importance of non-destructive cartilage imaging is highlighted with the recent availability of adapted experimental tools such as Second Harmonic Generation (SHG) imaging. Novel insights into cartilage pathophysiology based on the involvement of the infrapatellar fat pad in osteoarthritis are also described. Also, recombinant adeno-associated viral vectors are discussed as clinically adapted, efficient tools for potential gene-based medicines in a variety of articular cartilage disorders. Taken as a whole, such advances in basic research in diverse fields of articular cartilage repair may lead to the development of improved therapies in the clinics for an improved, effective treatment of cartilage lesions in a close future.

  18. [Comparative analysis of cytogenetic examination of control groups of subjects carried out in different Russian laboratories].

    PubMed

    Sevan'kaev, A V; Khvostunov, I K; Snigireva, G P; Novitskaia, N N; Antoshchina, M M; Fesenko, E V; Vorobtsova, I E; Neronova, E G; Domracheva, E V; Nugis, V Iu; Govorun, R D; Handogina, E K

    2013-01-01

    The incidence of unstable chromosome aberrations in peripheral blood lymphocytes from unirradiated control subjects was analyzed using cytogenetic data obtained from 9 cytogenetic laboratories located in Moscow, St.-Petersburg, Obninsk, and Dubna (Russia). The objective of this study was to estimate the level and spectrum of spontaneous chromosome aberrations in human lymphocytes. 1140 blood samples were taken from 1112 subjects (594 men and 546 women) aged 1 to 72. The total metaphase number was 466795. The uniform Giemsa method for peripheral blood lymphocyte cultures was used. After counting 466795 metaphases, 4288 chromosomal aberrations of various types were classified. The most frequent types of aberrations were acentrics and chromatid deletions. They made up 90% of the total number of aberrations. The remaining 10% were exchange aberrations. The number of chromosome exchanges (dicentrics and centric rings) was twice the number of chromatid exchanges. Overall, the portion ofcells with chromosomal or (and) chromatid aberrations was 0.89 +/- 0.01%; the frequency of acentrics was 0.29 +/- 0.01; the frequency of dicentrics was 0.046 +/- 0.003; the frequency of unstable chromosome aberrations was 0.35 +/- 0.01; and the frequency of chromatid aberrations was 0.57 +/- 0.01 per 100 cells.

  19. Diagnosis of intrachromosomal amplification of chromosome 21 (iAMP21) by molecular cytogenetics in pediatric acute lymphoblastic leukemia.

    PubMed

    Duployez, Nicolas; Boudry-Labis, Elise; Decool, Gauthier; Grzych, Guillaume; Grardel, Nathalie; Abou Chahla, Wadih; Preudhomme, Claude; Roche-Lestienne, Catherine

    2015-10-01

    Intrachromosomal amplification of chromosome 21 (iAMP21) defines a distinct cytogenetic subgroup of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) with poor prognosis that should be investigated in routine practice. Single-nucleotide polymorphism (SNP)-array provides a useful method to detect such cases showing a highly characteristic profile.

  20. Simultaneous In Vitro Characterisation of DNA Deaminase Function and Associated DNA Repair Pathways

    PubMed Central

    Franchini, Don-Marc; Incorvaia, Elisabetta; Rangam, Gopinath; Coker, Heather A.; Petersen-Mahrt, Svend K.

    2013-01-01

    During immunoglobulin (Ig) diversification, activation-induced deaminase (AID) initiates somatic hypermutation and class switch recombination by catalysing the conversion of cytosine to uracil. The synergy between AID and DNA repair pathways is fundamental for the introduction of mutations, however the molecular and biochemical mechanisms underlying this process are not fully elucidated. We describe a novel method to efficiently decipher the composition and activity of DNA repair pathways that are activated by AID-induced lesions. The in vitro resolution (IVR) assay combines AID based deamination and DNA repair activities from a cellular milieu in a single assay, thus avoiding synthetically created DNA-lesions or genetic-based readouts. Recombinant GAL4-AID fusion protein is targeted to a plasmid containing GAL4 binding sites, allowing for controlled cytosine deamination within a substrate plasmid. Subsequently, the Xenopus laevis egg extract provides a source of DNA repair proteins and functional repair pathways. Our results demonstrated that DNA repair pathways which are in vitro activated by AID-induced lesions are reminiscent of those found during AID-induced in vivo Ig diversification. The comparative ease of manipulation of this in vitro systems provides a new approach to dissect the complex DNA repair pathways acting on defined physiologically lesions, can be adapted to use with other DNA damaging proteins (e.g. APOBECs), and provide a means to develop and characterise pharmacological agents to inhibit these potentially oncogenic processes. PMID:24349193

  1. One-stop endoscopic hernia surgery: efficient and satisfactory.

    PubMed

    Voorbrood, C E H; Burgmans, J P J; Clevers, G J; Davids, P H P; Verleisdonk, E J M M; Schouten, N; van Dalen, T

    2015-06-01

    One-stop surgery offers patients diagnostic work-up and subsequent surgical treatment on the same day. In the present study, patient satisfaction and efficiency from an institutional perspective were evaluated in patients who were referred for one-stop endoscopic inguinal hernia repair. In a high-volume inguinal hernia clinic, all consecutive patients referred for one-stop surgical treatment, were registered prospectively. An instructed secretary screened patients for eligibility for the one-stop option when the appointment was made. Totally extraperitoneal hernia repair under general anaesthesia was the preferred operative technique. Patient's satisfaction, successful day surgery and institutional efficiency were evaluated. Between January 2010 and January 2012 a total of 349 patients (17 % of all patients in the hernia clinic) were referred for one-stop hernia repair. Mean age was 47.5 years and 96.3 % were males. Three hundred thirty-six patients underwent hernia surgery on the same day (96.3 %). In thirteen patients (3.7 %) no operative repair was done on the day of presentation due to an incorrect diagnosis (n = 7), a watchful waiting policy for asymptomatic hernia (n = 3), rescheduling due to a large scrotal hernia, and there were two "no shows". Following hernia repair 97 % of the patients were discharged on the same day, while ten patients required hospitalization. Based on the questionnaires the main satisfaction score among patients was 9.0 (8.89-9.17 95 % CI) on a scale ranging from 0 to 10. One-stop hernia surgery is feasible and satisfactory from an institutional as well as from a patient's perspective.

  2. Modification of cytogenetic and physiological effects of space flight factors by biologically active compounds

    NASA Technical Reports Server (NTRS)

    Aliyev, A. A.; Mekhti-Zade, E. R.; Mashinskiy, A. L.; Alekperov, U. K.

    1986-01-01

    Physiological and cytogenetic changes in the Welsh onion plants induced by a short (82 days) and long term (522 days) space flight are expressed in decrease of seed germination, inhibition of stem growth, depression of cell division in root meristem, and increase in the number of structural chromosome rearrangements. The treatment of such plants with solutions of a-tocopherol, auxin, and kinetin decreased the level of chromosome aberrations to the control one and normalized cell divisions and growth partly or completely.

  3. Membrane Repair: Mechanisms and Pathophysiology

    PubMed Central

    Cooper, Sandra T.; McNeil, Paul L.

    2015-01-01

    Eukaryotic cells have been confronted throughout their evolution with potentially lethal plasma membrane injuries, including those caused by osmotic stress, by infection from bacterial toxins and parasites, and by mechanical and ischemic stress. The wounded cell can survive if a rapid repair response is mounted that restores boundary integrity. Calcium has been identified as the key trigger to activate an effective membrane repair response that utilizes exocytosis and endocytosis to repair a membrane tear, or remove a membrane pore. We here review what is known about the cellular and molecular mechanisms of membrane repair, with particular emphasis on the relevance of repair as it relates to disease pathologies. Collective evidence reveals membrane repair employs primitive yet robust molecular machinery, such as vesicle fusion and contractile rings, processes evolutionarily honed for simplicity and success. Yet to be fully understood is whether core membrane repair machinery exists in all cells, or whether evolutionary adaptation has resulted in multiple compensatory repair pathways that specialize in different tissues and cells within our body. PMID:26336031

  4. Hypospadias repair - discharge

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000158.htm Hypospadias repair - discharge To use the sharing features on this page, please enable JavaScript. Your child had hypospadias repair to fix a birth defect in which ...

  5. Paracentric inversion-associated t(8;21) variant in de novo acute myelogenous leukemia: characteristic patterns of conventional cytogenetics, FISH, and multicolor banding analysis.

    PubMed

    Park, Tae Sung; Song, Jaewoo; Lee, Kyung-A; Min, Yoo Hong; Lee, Sang-Guk; Park, Yongjung; Kim, Juwon; Lee, Eun Yup; Choi, Jong Rak

    2008-05-01

    Acute myelogenous leukemia (AML) with t(8;21)(q22;q22) demonstrates unique clinico-pathologic disease entity in patients with hematologic malignancies. The t(8;21), which results in fusion of the AML1 gene on 21q22 and the ETO gene on 8q22 on a molecular level, is one of the most common nonrandom chromosomal changes, and it is found in about 5-12% of patients with AML. Among these cases, complex variants involving chromosomes 8 and 21, as well as a third or fourth chromosome, account for approximately 6-10% of patients with an AML1/ETO chimeric gene, and about 100 variant cases with AML1/ETO fusion transcript have been reported in the literature. Here, we describe a rare case report of reciprocal paracentric inversion-associated t(8;21) variant in a 28-year old male patient with de novo AML. The abnormal results of conventional cytogenetics and interphase fluorescent in situ hybridization in this patient drove us to perform further studies and a literature review. This report emphasizes the value of "conventional" cytogenetics, as well as "newly developed" molecular cytogenetic methods in the diagnosis of rare complex t(8;21) variant in patients with AML. Copyright 2008 Elsevier Inc.

  6. Influence of heavy ions on cell survival, cytogenetic damage and mitochondrial function of human endothelial cells

    NASA Astrophysics Data System (ADS)

    Ritter, Sylvia; Helm, Alexander; Lee, Ryonfa; Pollet, Dieter; Durante, Marco

    There is increasing evidence that there is an elevated risk of cardiovascular disease among atomic bomb survivors and radiotherapy patients, typically developing with a long latency. However, essentially no information is available on the potential cardiovascular risks associated with space radiation, in particular heavy ions. To address this issue, we have chosen human umbilical vein endothelial cells (HUVEC) as a model system. Cells at an early passage number were irradiated with 0.1 to 4 Gy of either 9.8 MeV/u C-ions (LET=170 keV/µm), 91 MeV/u C-ions (LET=29 keV/µm) or 250 kV X-rays. Cells were regularly subcultured up to 40 days (20 population doublings) post-irradiation. Immediately after exposure cell inactivation was deter-mined by the colony forming assay. Furthermore, at selected time-points cytogenetic damage (formation of micronuclei in binucleated cells) and the mitochondrial membrane potential ΨM (flow cytometric analysis following JC-1 staining) were assessed. Measurement of the directly induced radiation damage showed that 9.8 MeV/u and 91 MeV/u C-ions were more effective than X-rays (i.e. about 3 and 2 times, respectively) with respect to cell inactivation or the in-duction of cytogenetic damage. At the subsequent days in the irradiated cultures the number of cells with micronuclei declined to the control level (3-5Altogether our data indicate that under the applied radiation conditions the integrity of mitochondria which play a significant role in the regulation of cardiovascular cell function is not impaired. With respect to directly induced genetic damage C-ions are more effective than X-rays as observed in other cell systems. If the effectiveness of charged particles for the occurrence of late chromosomal damage in endothelial cells is higher than that of sparsely ionizing radiation needs further clarification. The data obtained up to now indicate that sophisticated cytogenetic techniques have to be applied in order to draw any firm

  7. Molecular Cytogenetic Analysis of Deschampsia antarctica Desv. (Poaceae), Maritime Antarctic.

    PubMed

    Amosova, Alexandra V; Bolsheva, Nadezhda L; Samatadze, Tatiana E; Twardovska, Maryana O; Zoshchuk, Svyatoslav A; Andreev, Igor O; Badaeva, Ekaterina D; Kunakh, Viktor A; Muravenko, Olga V

    2015-01-01

    Deschampsia antarctica Desv. (Poaceae) (2n = 26) is one of the two vascular plants adapted to the harshest environment of the Antarctic. Although the species is a valuable model for study of environmental stress tolerance in plants, its karyotype is still poorly investigated. We firstly conducted a comprehensive molecular cytogenetic analysis of D. antarctica collected on four islands of the Maritime Antarctic. D. antarctica karyotypes were studied by Giemsa C- and DAPI/C-banding, Ag-NOR staining, multicolour fluorescence in situ hybridization with repeated DNA probes (pTa71, pTa794, telomere repeats, pSc119.2, pAs1) and the GAA simple sequence repeat probe. We also performed sequential rapid in situ hybridization with genomic DNA of D. caespitosa. Two chromosome pairs bearing transcriptionally active 45S rDNA loci and five pairs with 5S rDNA sites were detected. A weak intercalary site of telomere repeats was revealed on the largest chromosome in addition to telomere hybridization signals at terminal positions. This fact confirms indirectly the hypothesis that chromosome fusion might have been the cause of the unusual for cereals chromosome number in this species. Based on patterns of distribution of the examined molecular cytogenetic markers, all chromosomes in karyotypes were identified, and chromosome idiograms of D. antarctica were constructed. B chromosomes were found in most karyotypes of plants from Darboux Island. A mixoploid plant with mainly triploid cells bearing a Robertsonian rearrangement was detected among typical diploid specimens from Great Jalour Island. The karyotype variability found in D. antarctica is probably an expression of genome instability induced by environmental stress factors. The differences in C-banding patterns and in chromosome distribution of rDNA loci as well as homologous highly repeated DNA sequences detected between genomes of D. antarctica and its related species D. caespitosa indicate that genome reorganization involving

  8. Molecular Cytogenetic Analysis of Deschampsia antarctica Desv. (Poaceae), Maritime Antarctic

    PubMed Central

    Amosova, Alexandra V.; Bolsheva, Nadezhda L.; Samatadze, Tatiana E.; Twardovska, Maryana O.; Zoshchuk, Svyatoslav A.; Andreev, Igor O.; Badaeva, Ekaterina D.; Kunakh, Viktor A.; Muravenko, Olga V.

    2015-01-01

    Deschampsia antarctica Desv. (Poaceae) (2n = 26) is one of the two vascular plants adapted to the harshest environment of the Antarctic. Although the species is a valuable model for study of environmental stress tolerance in plants, its karyotype is still poorly investigated. We firstly conducted a comprehensive molecular cytogenetic analysis of D. antarctica collected on four islands of the Maritime Antarctic. D. antarctica karyotypes were studied by Giemsa C- and DAPI/C-banding, Ag-NOR staining, multicolour fluorescence in situ hybridization with repeated DNA probes (pTa71, pTa794, telomere repeats, pSc119.2, pAs1) and the GAA simple sequence repeat probe. We also performed sequential rapid in situ hybridization with genomic DNA of D. caespitosa. Two chromosome pairs bearing transcriptionally active 45S rDNA loci and five pairs with 5S rDNA sites were detected. A weak intercalary site of telomere repeats was revealed on the largest chromosome in addition to telomere hybridization signals at terminal positions. This fact confirms indirectly the hypothesis that chromosome fusion might have been the cause of the unusual for cereals chromosome number in this species. Based on patterns of distribution of the examined molecular cytogenetic markers, all chromosomes in karyotypes were identified, and chromosome idiograms of D. antarctica were constructed. B chromosomes were found in most karyotypes of plants from Darboux Island. A mixoploid plant with mainly triploid cells bearing a Robertsonian rearrangement was detected among typical diploid specimens from Great Jalour Island. The karyotype variability found in D. antarctica is probably an expression of genome instability induced by environmental stress factors. The differences in C-banding patterns and in chromosome distribution of rDNA loci as well as homologous highly repeated DNA sequences detected between genomes of D. antarctica and its related species D. caespitosa indicate that genome reorganization involving

  9. Immunostimulatory oligonucleotide-induced metaphase cytogenetics detect chromosomal aberrations in 80% of CLL patients: A study of 132 CLL cases with correlation to FISH, IgVH status, and CD38 expression.

    PubMed

    Dicker, Frank; Schnittger, Susanne; Haferlach, Torsten; Kern, Wolfgang; Schoch, Claudia

    2006-11-01

    Compared with fluorescence in situ hybridization (FISH), conventional metaphase cytogenetics play only a minor prognostic role in chronic lymphocytic leukemia (CLL) so far, due to technical problems resulting from limited proliferation of CLL cells in vitro. Here, we present a simple method for in vitro stimulation of CLL cells that overcomes this limitation. In our unselected patient population, 125 of 132 cases could be successfully stimulated for metaphase generation by culture with the immunostimulatory CpG-oligonucleotide DSP30 plus interleukin 2. Of 125 cases, 101 showed chromosomal aberrations. The aberration rate is comparable to the rate detected by parallel interphase FISH. In 47 patients, conventional cytogenetics detected additional aberrations not detected by FISH analysis. A complex aberrant karyotype, defined as one having at least 3 aberrations, was detected in 30 of 125 patients, compared with only one such case as defined by FISH. Conventional cytogenetics frequently detected balanced and unbalanced translocations. A significant correlation of the poor-prognosis unmutated IgV(H) status with unbalanced translocations and of the likewise poor-prognosis CD38 expression to balanced translocations and complex aberrant karyotype was found. We demonstrate that FISH analysis underestimates the complexity of chromosomal aberrations in CLL. Therefore, conventional cytogenetics may define subgroups of patients with high risk of progression.

  10. EUVL Mask Blank Repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, A; Mirkarimi, P; Stearns, D G

    2002-05-22

    EUV mask blanks are fabricated by depositing a reflective Mo/Si multilayer film onto super-polished substrates. Small defects in this thin film coating can significantly alter the reflected field and introduce defects in the printed image. Ideally one would want to produce defect-free mask blanks; however, this may be very difficult to achieve in practice. One practical way to increase the yield of mask blanks is to effectively repair multilayer defects, and to this effect they present two complementary defect repair strategies for use on multilayer-coated EUVL mask blanks. A defect is any area on the mask which causes unwanted variationsmore » in EUV dose in the aerial image obtained in a printing tool, and defect repair is correspondingly defined as any strategy that renders a defect unprintable during exposure. The term defect mitigation can be adopted to describe any strategy which renders a critical defect non-critical when printed, and in this regard a non-critical defect is one that does not adversely affect device function. Defects in the patterned absorber layer consist of regions where metal, typically chrome, is unintentionally added or removed from the pattern leading to errors in the reflected field. There currently exists a mature technology based on ion beam milling and ion beam assisted deposition for repairing defects in the absorber layer of transmission lithography masks, and it is reasonable to expect that this technology will be extended to the repair of absorber defects in EUVL masks. However, techniques designed for the repair of absorber layers can not be directly applied to the repair of defects in the mask blank, and in particular the multilayer film. In this paper they present for the first time a new technique for the repair of amplitude defects as well as recent results on the repair of phase defects.« less

  11. Collision Repair Campaign

    EPA Pesticide Factsheets

    The Collision Repair Campaign targets meaningful risk reduction in the Collision Repair source category to reduce air toxic emissions in their communities. The Campaign also helps shops to work towards early compliance with the Auto Body Rule.

  12. Genes on chromosomes 1 and 4 in the mouse are associated with repair of radiation-induced chromatin damage.

    PubMed

    Potter, M; Sanford, K K; Parshad, R; Tarone, R E; Price, F M; Mock, B; Huppi, K

    1988-04-01

    Early-passage skin fibroblasts from different inbred and congenic strains of mice were X-irradiated (1 Gy), and the number of chromatid breaks was determined at 2.0 h after irradiation. The cells from DBA/2N, C3H/HeN, STS/A, C57BL/6N, BALB/cJ, and AKR/N had 25 to 42 chromatid breaks per 100 metaphase cells (efficient repair phenotype). NZB/NJ had greater than 78 and BALB/cAn had 87 to 110 chromatid breaks per 100 cells (inefficient repair phenotype). Differences between BALB/cAn and BALB/c. DBA/2 congenic strains which carry less than 1% of the DBA/2 genome indicate that two genes, one on chromosome 1 linked to bcl-2-Pep-3 and the other on chromosome 4 closely linked to Fv-1, affect the efficiency with which the cells repair radiation-induced chromatin damage.

  13. Impact of the revised International Prognostic Scoring System, cytogenetics and monosomal karyotype on outcome after allogeneic stem cell transplantation for myelodysplastic syndromes and secondary acute myeloid leukemia evolving from myelodysplastic syndromes: a retrospective multicenter study of the European Society of Blood and Marrow Transplantation

    PubMed Central

    Koenecke, Christian; Göhring, Gudrun; de Wreede, Liesbeth C.; van Biezen, Anja; Scheid, Christof; Volin, Liisa; Maertens, Johan; Finke, Jürgen; Schaap, Nicolaas; Robin, Marie; Passweg, Jakob; Cornelissen, Jan; Beelen, Dietrich; Heuser, Michael; de Witte, Theo; Kröger, Nicolaus

    2015-01-01

    The aim of this study was to determine the impact of the revised 5-group International Prognostic Scoring System cytogenetic classification on outcome after allogeneic stem cell transplantation in patients with myelodysplastic syndromes or secondary acute myeloid leukemia who were reported to the European Society for Blood and Marrow Transplantation database. A total of 903 patients had sufficient cytogenetic information available at stem cell transplantation to be classified according to the 5-group classification. Poor and very poor risk according to this classification was an independent predictor of shorter relapse-free survival (hazard ratio 1.40 and 2.14), overall survival (hazard ratio 1.38 and 2.14), and significantly higher cumulative incidence of relapse (hazard ratio 1.64 and 2.76), compared to patients with very good, good or intermediate risk. When comparing the predictive performance of a series of Cox models both for relapse-free survival and for overall survival, a model with simplified 5-group cytogenetics (merging very good, good and intermediate cytogenetics) performed best. Furthermore, monosomal karyotype is an additional negative predictor for outcome within patients of the poor, but not the very poor risk group of the 5-group classification. The revised International Prognostic Scoring System cytogenetic classification allows patients with myelodysplastic syndromes to be separated into three groups with clearly different outcomes after stem cell transplantation. Poor and very poor risk cytogenetics were strong predictors of poor patient outcome. The new cytogenetic classification added value to prediction of patient outcome compared to prediction models using only traditional risk factors or the 3-group International Prognostic Scoring System cytogenetic classification. PMID:25552702

  14. Base Excision Repair and Lesion-Dependent Subpathways for Repair of Oxidative DNA Damage

    PubMed Central

    Svilar, David; Goellner, Eva M.; Almeida, Karen H.

    2011-01-01

    Abstract Nuclear and mitochondrial genomes are under continuous assault by a combination of environmentally and endogenously derived reactive oxygen species, inducing the formation and accumulation of mutagenic, toxic, and/or genome-destabilizing DNA lesions. Failure to resolve these lesions through one or more DNA-repair processes is associated with genome instability, mitochondrial dysfunction, neurodegeneration, inflammation, aging, and cancer, emphasizing the importance of characterizing the pathways and proteins involved in the repair of oxidative DNA damage. This review focuses on the repair of oxidative damage–induced lesions in nuclear and mitochondrial DNA mediated by the base excision repair (BER) pathway in mammalian cells. We discuss the multiple BER subpathways that are initiated by one of 11 different DNA glycosylases of three subtypes: (a) bifunctional with an associated β-lyase activity; (b) monofunctional; and (c) bifunctional with an associated β,δ-lyase activity. These three subtypes of DNA glycosylases all initiate BER but yield different chemical intermediates and hence different BER complexes to complete repair. Additionally, we briefly summarize alternate repair events mediated by BER proteins and the role of BER in the repair of mitochondrial DNA damage induced by ROS. Finally, we discuss the relation of BER and oxidative DNA damage in the onset of human disease. Antioxid. Redox Signal. 14, 2491–2507. PMID:20649466

  15. Chronic lymphocytic leukemia: A prognostic model comprising only two biomarkers (IGHV mutational status and FISH cytogenetics) separates patients with different outcome and simplifies the CLL-IPI.

    PubMed

    Delgado, Julio; Doubek, Michael; Baumann, Tycho; Kotaskova, Jana; Molica, Stefano; Mozas, Pablo; Rivas-Delgado, Alfredo; Morabito, Fortunato; Pospisilova, Sarka; Montserrat, Emili

    2017-04-01

    Rai and Binet staging systems are important to predict the outcome of patients with chronic lymphocytic leukemia (CLL) but do not reflect the biologic diversity of the disease nor predict response to therapy, which ultimately shape patients' outcome. We devised a biomarkers-only CLL prognostic system based on the two most important prognostic parameters in CLL (i.e., IGHV mutational status and fluorescence in situ hybridization [FISH] cytogenetics), separating three different risk groups: (1) low-risk (mutated IGHV + no adverse FISH cytogenetics [del(17p), del(11q)]); (2) intermediate-risk (either unmutated IGHV or adverse FISH cytogenetics) and (3) high-risk (unmutated IGHV + adverse FISH cytogenetics). In 524 unselected subjects with CLL, the 10-year overall survival was 82% (95% CI 76%-88%), 52% (45%-62%), and 27% (17%-42%) for the low-, intermediate-, and high-risk groups, respectively. Patients with low-risk comprised around 50% of the series and had a life expectancy comparable to the general population. The prognostic model was fully validated in two independent cohorts, including 417 patients representative of general CLL population and 337 patients with Binet stage A CLL. The model had a similar discriminatory value as the CLL-IPI. Moreover, it applied to all patients with CLL independently of age, and separated patients with different risk within Rai or Binet clinical stages. The biomarkers-only CLL prognostic system presented here simplifies the CLL-IPI and could be useful in daily practice and to stratify patients in clinical trials. © 2017 Wiley Periodicals, Inc.

  16. Scalability enhancement of AODV using local link repairing

    NASA Astrophysics Data System (ADS)

    Jain, Jyoti; Gupta, Roopam; Bandhopadhyay, T. K.

    2014-09-01

    Dynamic change in the topology of an ad hoc network makes it difficult to design an efficient routing protocol. Scalability of an ad hoc network is also one of the important criteria of research in this field. Most of the research works in ad hoc network focus on routing and medium access protocols and produce simulation results for limited-size networks. Ad hoc on-demand distance vector (AODV) is one of the best reactive routing protocols. In this article, modified routing protocols based on local link repairing of AODV are proposed. Method of finding alternate routes for next-to-next node is proposed in case of link failure. These protocols are beacon-less, means periodic hello message is removed from the basic AODV to improve scalability. Few control packet formats have been changed to accommodate suggested modification. Proposed protocols are simulated to investigate scalability performance and compared with basic AODV protocol. This also proves that local link repairing of proposed protocol improves scalability of the network. From simulation results, it is clear that scalability performance of routing protocol is improved because of link repairing method. We have tested protocols for different terrain area with approximate constant node densities and different traffic load.

  17. Divergence in DNA photorepair efficiency among genotypes from contrasting UV radiation environments in nature.

    PubMed

    Miner, Brooks E; Kulling, Paige M; Beer, Karlyn D; Kerr, Benjamin

    2015-12-01

    Populations of organisms routinely face abiotic selection pressures, and a central goal of evolutionary biology is to understand the mechanistic underpinnings of adaptive phenotypes. Ultraviolet radiation (UVR) is one of earth's most pervasive environmental stressors, potentially damaging DNA in any organism exposed to solar radiation. We explored mechanisms underlying differential survival following UVR exposure in genotypes of the water flea Daphnia melanica derived from natural ponds of differing UVR intensity. The UVR tolerance of a D. melanica genotype from a high-UVR habitat depended on the presence of visible and UV-A light wavelengths necessary for photoenzymatic repair of DNA damage, a repair pathway widely shared across the tree of life. We then measured the acquisition and repair of cyclobutane pyrimidine dimers, the primary form of UVR-caused DNA damage, in D. melanica DNA following experimental UVR exposure. We demonstrate that genotypes from high-UVR habitats repair DNA damage faster than genotypes from low-UVR habitats in the presence of visible and UV-A radiation necessary for photoenzymatic repair, but not in dark treatments. Because differences in repair rate only occurred in the presence of visible and UV-A radiation, we conclude that differing rates of DNA repair, and therefore differential UVR tolerance, are a consequence of variation in photoenzymatic repair efficiency. We then rule out a simple gene expression hypothesis for the molecular basis of differing repair efficiency, as expression of the CPD photolyase gene photorepair did not differ among D. melanica lineages, in both the presence and absence of UVR. © 2015 John Wiley & Sons Ltd.

  18. Plasma membrane repair in plants.

    PubMed

    Schapire, Arnaldo L; Valpuesta, Victoriano; Botella, Miguel A

    2009-12-01

    Resealing is the membrane-repair process that enables cells to survive disruption, preventing the loss of irreplaceable cell types and eliminating the cost of replacing injured cells. Given that failure in the resealing process in animal cells causes diverse types of muscular dystrophy, plasma membrane repair has been extensively studied in these systems. Animal proteins with Ca(2+)-binding domains such as synaptotagmins and dysferlin mediate Ca(2+)-dependent exocytosis to repair plasma membranes after mechanical damage. Until recently, no components or proof for membrane repair mechanisms have been discovered in plants. However, Arabidopsis SYT1 is now the first plant synaptotagmin demonstrated to participate in Ca(2+)-dependent repair of membranes. This suggests a conservation of membrane repair mechanisms between animal and plant cells.

  19. Analysis of a FANCE Splice Isoform in Regard to DNA Repair.

    PubMed

    Bouffard, Frédérick; Plourde, Karine; Bélanger, Simon; Ouellette, Geneviève; Labrie, Yvan; Durocher, Francine

    2015-09-25

    The FANC-BRCA DNA repair pathway is activated in response to interstrand crosslinks formed in DNA. A homozygous mutation in 1 of the 17 Fanconi anemia (FA) genes results in malfunctions of this pathway and development of FA syndrome. The integrity of this protein network is essential for good maintenance of DNA repair process and genome stability. Following the identification of an alternatively splice isoform of FANCE (Fanconi anemia complementation group E) significantly expressed in breast cancer individuals from high-risk non-BRCA1/2 families, we studied the impact of this FANCE splice isoform (FANCEΔ4) on DNA repair processes. We have demonstrated that FANCEΔ4 mRNA was efficiently translated into a functional protein and expressed in normal and breast cancer cell lines. Following treatment with the crosslinking agent mitomycin C, EUFA130 (FANCE-deficient) cells infected with FANCEΔ4 were blocked into G2/M phase, while cell survival was significantly reduced compared with FANCE-infected EUFA130 cells. In addition, FANCEΔ4 did not allow FANCD2 and FANCI monoubiquitination, which represents a crucial step of the FANC-BRCA functional pathway. As observed for FANCE wild-type protein, localization of FANCEΔ4 protein was confined to the nucleus following mitomycin C treatment. Although FANCEΔ4 protein showed interaction with FANCE, FANCEΔ4 did not support normal function of FANCE protein in this pathway and could have deleterious effects on FANCE protein activity. We have demonstrated that FANCEΔ4 seems to act as a regulator of FANCD2 protein expression level by promoting its degradation. This study highlights the importance of an efficient regulation of alternative splicing expression of FA genes for proper DNA repair. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. DNA repair inhibition by UVA photoactivated fluoroquinolones and vemurafenib

    PubMed Central

    Peacock, Matthew; Brem, Reto; Macpherson, Peter; Karran, Peter

    2014-01-01

    Cutaneous photosensitization is a common side effect of drug treatment and can be associated with an increased skin cancer risk. The immunosuppressant azathioprine, the fluoroquinolone antibiotics and vemurafenib—a BRAF inhibitor used to treat metastatic melanoma—are all recognized clinical photosensitizers. We have compared the effects of UVA radiation on cultured human cells treated with 6-thioguanine (6-TG, a DNA-embedded azathioprine surrogate), the fluoroquinolones ciprofloxacin and ofloxacin and vemurafenib. Despite widely different structures and modes of action, each of these drugs potentiated UVA cytotoxicity. UVA photoactivation of 6-TG, ciprofloxacin and ofloxacin was associated with the generation of singlet oxygen that caused extensive protein oxidation. In particular, these treatments were associated with damage to DNA repair proteins that reduced the efficiency of nucleotide excision repair. Although vemurafenib was also highly phototoxic to cultured cells, its effects were less dependent on singlet oxygen. Highly toxic combinations of vemurafenib and UVA caused little protein carbonylation but were nevertheless inhibitory to nucleotide excision repair. Thus, for three different classes of drugs, photosensitization by at least two distinct mechanisms is associated with reduced protection against potentially mutagenic and carcinogenic DNA damage. PMID:25414333

  1. Gene Therapy for Cartilage Repair

    PubMed Central

    Madry, Henning; Orth, Patrick; Cucchiarini, Magali

    2011-01-01

    The concept of using gene transfer strategies for cartilage repair originates from the idea of transferring genes encoding therapeutic factors into the repair tissue, resulting in a temporarily and spatially defined delivery of therapeutic molecules to sites of cartilage damage. This review focuses on the potential benefits of using gene therapy approaches for the repair of articular cartilage and meniscal fibrocartilage, including articular cartilage defects resulting from acute trauma, osteochondritis dissecans, osteonecrosis, and osteoarthritis. Possible applications for meniscal repair comprise meniscal lesions, meniscal sutures, and meniscal transplantation. Recent studies in both small and large animal models have demonstrated the applicability of gene-based approaches for cartilage repair. Chondrogenic pathways were stimulated in the repair tissue and in osteoarthritic cartilage using genes for polypeptide growth factors and transcription factors. Although encouraging data have been generated, a successful translation of gene therapy for cartilage repair will require an ongoing combined effort of orthopedic surgeons and of basic scientists. PMID:26069580

  2. Cytogenetics of the Porthole Shovelnose Catfish, Hemisorubim platyrhynchos (Valenciennes, 1840) (Siluriformes, Pimelodidae), a widespread species in South American rivers

    PubMed Central

    Swarça, Ana Cláudia; Sanchez, Sebastian; Dias, Ana Lucia; Fenocchio, Alberto Sergio

    2013-01-01

    Abstract Hemisorubim platyrhynchos is a medium- to large-sized pimelodid catfish distributed along several river basins of the Neotropical Region, noteworthy for representing an important fishery source. In this work, Hemisorubim platyrhynchos from three isolated populations were cytogenetically analyzed. The karyotype shows a diploid number of 2n=56 chromosomes comprising 22m, 16sm, 10st, 8a (FN=104). NORs detected by AgNO3 were located in the terminal regions of the short arm of a st chromosome pair, as confirmed by CMA3 and FISH using an 18S rDNA probe. C-banding revealed a small amount of heterochromatin in chromosomes, including the NORs, and one biarmed pair that showed conspicuous positive bands on both arms. This fact was also evidenced when using other banding techniques, such as RE (AluI), and indicates that this pair constitutes a species-specific cytogenetic marker. PMID:24260693

  3. Cytogenetic characterization of three Balistoidea fish species from the Atlantic with inferences on chromosomal evolution in the families Monacanthidae and Balistidae

    PubMed Central

    de Lima, Lorena Corina Bezerra; Martinez, Pablo Ariel; Molina, Wagner Franco

    2011-01-01

    Abstract The Tetraodontiformes are the most derived group of teleostean fish. Among other apomorphies, they are characterized by a high degree of fusions or significant bone loss in the head and body. In the early phylogenetic proposals presented for this order, the families Balistidae and Monacanthidae have been unanimously considered to be closely related. Although they have moderate species diversity, they are scarcely known in cytogenetic aspect and chromosomal pattern comparisons between these groups have yet to be established. The species Cantherhines macrocerus (Hollard,1853), Cantherhines pullus (Ranzani, 1842) (Monacanthidae) and Melichthys niger (Bloch, 1786) (Balistidae) were cytogenetically analyzed using conventional (Ag-impregnation, C-banding, CMA3- and DAPI-fluorescence) and molecular (FISH with an 18S rDNA probe) cytogenetic protocols. The karyotypes of all three species were very similar possessing diploid chromosome numbers 2n = 40 and composed exclusively of acrocentric chromosomes. Single NOR-bearing pair as well as positive heterochromatic blocks at pericentromeric regions were identified in the karyotypes of the three species studied. NOR-bearing sites were positively labeled after Ag-impregnation, C-banding, CMA3-fluorescence and FISH with an 18S rDNA probe but were negative after DAPI-fluorescence. Such remarkable shared conspicuous chromosomal characters corroborate either close phylogenetic relationship of these families, previously established by morphological and molecular data, or rather conservative nature of karyotype differentiation processes. The later hypothesis, however, appears less probable due to centric or in tandem fusions documented for another Balistoidea species. PMID:24260619

  4. Cytogenetic and molecular predictors of response in patients with myeloid malignancies without del[5q] treated with lenalidomide

    PubMed Central

    2012-01-01

    Background While lenalidomide (LEN) shows high efficacy in myelodysplastic syndromes (MDS) with del[5q], responses can be also seen in patients presenting without del[5q]. We hypothesized that improved detection of chromosomal abnormalities with new karyotyping tools may better predict response to LEN. Design and methods We have studied clinical, molecular and cytogenetic features of 42 patients with MDS, myeloproliferative neoplasms (MPN), MDS/MPN overlap syndromes and secondary acute myeloid leukemia (sAML) without del[5q] by metaphase cytogenetics (MC) who underwent therapy with LEN. Results Fluorescence in situ hybridization (FISH) or single nucleotide polymorphism array (SNP-A)-based karyotyping marginally increased the diagnostic yield over MC, detecting 2/42 (4.8%) additional cases with del[5q], one of whom were responded to LEN. Responses were more often observed in patients with a normal karyotype by MC (60% vs abnormal MC; 17%, p = .08) and those with gain of chromosome 8 material by either of all 3 karyotyping methods (83% vs all other chromosomal abnormalities; 44% p = .11). However, 5 out of those 6 patients received combined LEN/AZA therapy and it may also suggest those with gain of chromosome 8 material respond well to AZA. The addition of FISH or SNP-A did not improve the predictive value of normal cytogenetics by MC. Mutational analysis of TET2, UTX, CBL, EZH2, ASXL1, TP53, RAS, IDH1/2, and DNMT-3A was performed on 21 of 41 patients, and revealed 13 mutations in 11 patients, but did not show any molecular markers of responsiveness to LEN. Conclusions Normal karyotype and gain of chromosome 8 material was predictive of response to LEN in non-del[5q] patients with myeloid malignancies. PMID:22390313

  5. Inguinal hernia repair

    MedlinePlus

    ... through this weakened area. Description During surgery to repair the hernia, the bulging tissue is pushed back in. Your abdominal wall is strengthened and supported with sutures (stitches), and sometimes mesh. This repair can be done with open or laparoscopic surgery. ...

  6. Diagnosis of intrachromosomal amplification of chromosome 21 (iAMP21) by molecular cytogenetics in pediatric acute lymphoblastic leukemia

    PubMed Central

    Duployez, Nicolas; Boudry-Labis, Elise; Decool, Gauthier; Grzych, Guillaume; Grardel, Nathalie; Abou Chahla, Wadih; Preudhomme, Claude; Roche-Lestienne, Catherine

    2015-01-01

    Key Clinical Message Intrachromosomal amplification of chromosome 21 (iAMP21) defines a distinct cytogenetic subgroup of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) with poor prognosis that should be investigated in routine practice. Single-nucleotide polymorphism (SNP)-array provides a useful method to detect such cases showing a highly characteristic profile. PMID:26509013

  7. What's your poison? Impact of individual repair capacity on the outcomes of genotoxic therapies in cancer. Part II - information content and validity of biomarkers for individual repair capacity in the assessment of outcomes of anticancer therapy.

    PubMed

    Petkova, Rumena; Chelenkova, Pavlina; Georgieva, Elena; Chakarov, Stoian

    2014-01-02

    The individual variance in the efficiency of repair of damage induced by genotoxic therapies may be an important factor in the assessment of eligibility for different anticancer treatments, the outcomes of various treatments and the therapy-associated complications, including acute and delayed toxicity and acquired drug resistance. The second part of this paper analyses the currently available information about the possibilities of using experimentally obtained knowledge about individual repair capacity for the purposes of personalised medicine and healthcare.

  8. Poly (ADP-ribose) polymerase inhibitor CEP-8983 synergizes with bendamustine in chronic lymphocytic leukemia cells in vitro

    PubMed Central

    Dilley, Robert L.; Poh, Weijie; Gladstone, Douglas E.; Herman, James G.; Showel, Margaret M.; Karp, Judith E.; McDevitt, Michael A.; Pratz, Keith W.

    2014-01-01

    DNA repair aberrations and associated chromosomal instability is a feature of chronic lymphocytic leukemia (CLL). To evaluate if DNA repair insufficiencies are related to methylation changes, we examined the methylation of nine promoter regions of DNA repair proteins by bisulfide sequencing in 26 CLL primary samples and performed quantitative PCR on a subset of samples to examine BRCA1 expression. We also investigated if changes in cytogenetic or expression level of DNA repair proteins led to changes in sensitivity to a novel PARP inhibitor, CEP-8983, alone and in combination with bendamustine. No changes in promoter methylation were identified in BRCA1, BRCA2, FANC-C, FANC-F, FANC-L, ATM, MGMT, hMLH1 and H2AX except for two cases of minor BRCA1 hypermethylation. CLL samples appeared to have reduced BRCA1 mRNA expression uniformly in comparison to non-malignant lymphocytes irrespective of promoter hypermethylation. CEP-8983 displayed single agent cytotoxicity and the combination with bendamustine demonstrated synergistic cytotoxicity in the majority of CLL samples. These results were consistent across cytogenetic subgroups, including 17p deleted and previously treated patients. Our results provide rationale for further exploration of the combination of a PARP inhibitor and DNA damaging agents as a novel therapeutic strategy in CLL. PMID:24439051

  9. Drugging the Cancers Addicted to DNA Repair.

    PubMed

    Nickoloff, Jac A; Jones, Dennie; Lee, Suk-Hee; Williamson, Elizabeth A; Hromas, Robert

    2017-11-01

    Defects in DNA repair can result in oncogenic genomic instability. Cancers occurring from DNA repair defects were once thought to be limited to rare inherited mutations (such as BRCA1 or 2). It now appears that a clinically significant fraction of cancers have acquired DNA repair defects. DNA repair pathways operate in related networks, and cancers arising from loss of one DNA repair component typically become addicted to other repair pathways to survive and proliferate. Drug inhibition of the rescue repair pathway prevents the repair-deficient cancer cell from replicating, causing apoptosis (termed synthetic lethality). However, the selective pressure of inhibiting the rescue repair pathway can generate further mutations that confer resistance to the synthetic lethal drugs. Many such drugs currently in clinical use inhibit PARP1, a repair component to which cancers arising from inherited BRCA1 or 2 mutations become addicted. It is now clear that drugs inducing synthetic lethality may also be therapeutic in cancers with acquired DNA repair defects, which would markedly broaden their applicability beyond treatment of cancers with inherited DNA repair defects. Here we review how each DNA repair pathway can be attacked therapeutically and evaluate DNA repair components as potential drug targets to induce synthetic lethality. Clinical use of drugs targeting DNA repair will markedly increase when functional and genetic loss of repair components are consistently identified. In addition, future therapies will exploit artificial synthetic lethality, where complementary DNA repair pathways are targeted simultaneously in cancers without DNA repair defects. © The Author 2017. Published by Oxford University Press.

  10. Testing and Analysis Validation of a Metallic Repair Applied to a PRSEUS Tension Panel

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Jegley, Dawn C.

    2013-01-01

    A design and analysis of a repair concept applicable to a stiffened composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure was recently completed. The damage scenario considered was a midbay-to-midbay saw-cut with a severed stiffener, flange and skin. Advanced modeling techniques such as mesh-independent definition of compliant fasteners and elastic-plastic material properties for metal parts were utilized in the finite element analysis supporting the design effort. A bolted metallic repair was selected so that it could be easily applied in the operational environment. The present work describes results obtained from a tension panel test conducted to validate both the repair concept and finite element analysis techniques used in the design effort. The test proved that the proposed repair concept is capable of sustaining load levels that are higher than those resulting from the current working stress allowables. This conclusion enables upward revision of the stress allowables that had been kept at an overly-conservative level due to concerns associated with repairability of the panels. Correlation of test data with finite element analysis results is also presented and assessed.

  11. Repair of a mal-repaired biliary injury: a case report.

    PubMed

    Aldumour, Awad; Aseni, Paolo; Alkofahi, Mohmmad; Lamperti, Luca; Aldumour, Elias; Girotti, Paolo; De Carlis, Luciano-Gregorio

    2009-05-14

    Iatrogenic bile-duct injury post-laparoscopic cholecystectomy remains a major serious complication with unpredictable long-term results. We present a patient who underwent laparoscopic cholecystectomy for gallstones, in which the biliary injury was recognized intraoperatively. The surgical procedure was converted to an open one. The first surgeon repaired the injury over a T-tube without recognizing the anatomy and type of the biliary lesion, which led to an unusual biliary mal-repair. Immediately postoperatively, the abdominal drain brought a large amount of bile. A T-tube cholangiogram was performed. Despite the contrast medium leaking through the abdominal drain, the mal-repair was unrecognized. The patient was referred to our hospital for biliary leak. Ultrasound and cholangiography was repeated, which showed an unanatomical repair (right to left hepatic duct anastomosis over the T-tube), with evidence of contrast medium coming out through the abdominal drain. Eventually the patient was subjected to a definitive surgical treatment. The biliary continuity was re-established by a Roux-en-Y hepatico-jejunostomy, over transanastomotic external biliary stents. The patient is now doing well 4 years after the second surgical procedure. In reviewing the literature, we found a similar type of injury but we did not find a similar surgical mal-repair. We propose an algorithm for the treatment of early and late biliary injuries.

  12. Repair of a mal-repaired biliary injury: A case report

    PubMed Central

    Aldumour, Awad; Aseni, Paolo; Alkofahi, Mohmmad; Lamperti, Luca; Aldumour, Elias; Girotti, Paolo; Carlis, Luciano Gregorio De

    2009-01-01

    Iatrogenic bile-duct injury post-laparoscopic cholecystectomy remains a major serious complication with unpredictable long-term results. We present a patient who underwent laparoscopic cholecystectomy for gallstones, in which the biliary injury was recognized intraoperatively. The surgical procedure was converted to an open one. The first surgeon repaired the injury over a T-tube without recognizing the anatomy and type of the biliary lesion, which led to an unusual biliary mal-repair. Immediately postoperatively, the abdominal drain brought a large amount of bile. A T-tube cholangiogram was performed. Despite the contrast medium leaking through the abdominal drain, the mal-repair was unrecognized. The patient was referred to our hospital for biliary leak. Ultrasound and cholangiography was repeated, which showed an unanatomical repair (right to left hepatic duct anastomosis over the T-tube), with evidence of contrast medium coming out through the abdominal drain. Eventually the patient was subjected to a definitive surgical treatment. The biliary continuity was re-established by a Roux-en-Y hepatico-jejunostomy, over transanastomotic external biliary stents. The patient is now doing well 4 years after the second surgical procedure. In reviewing the literature, we found a similar type of injury but we did not find a similar surgical mal-repair. We propose an algorithm for the treatment of early and late biliary injuries. PMID:19437572

  13. The stem cell secretome and its role in brain repair.

    PubMed

    Drago, Denise; Cossetti, Chiara; Iraci, Nunzio; Gaude, Edoardo; Musco, Giovanna; Bachi, Angela; Pluchino, Stefano

    2013-12-01

    Compelling evidence exists that non-haematopoietic stem cells, including mesenchymal (MSCs) and neural/progenitor stem cells (NPCs), exert a substantial beneficial and therapeutic effect after transplantation in experimental central nervous system (CNS) disease models through the secretion of immune modulatory or neurotrophic paracrine factors. This paracrine hypothesis has inspired an alternative outlook on the use of stem cells in regenerative neurology. In this paradigm, significant repair of the injured brain may be achieved by injecting the biologics secreted by stem cells (secretome), rather than implanting stem cells themselves for direct cell replacement. The stem cell secretome (SCS) includes cytokines, chemokines and growth factors, and has gained increasing attention in recent years because of its multiple implications for the repair, restoration or regeneration of injured tissues. Thanks to recent improvements in SCS profiling and manipulation, investigators are now inspired to harness the SCS as a novel alternative therapeutic option that might ensure more efficient outcomes than current stem cell-based therapies for CNS repair. This review discusses the most recent identification of MSC- and NPC-secreted factors, including those that are trafficked within extracellular membrane vesicles (EVs), and reflects on their potential effects on brain repair. It also examines some of the most convincing advances in molecular profiling that have enabled mapping of the SCS. Copyright © 2013 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  14. The stem cell secretome and its role in brain repair

    PubMed Central

    Drago, Denise; Cossetti, Chiara; Iraci, Nunzio; Gaude, Edoardo; Musco, Giovanna; Bachi, Angela; Pluchino, Stefano

    2014-01-01

    Compelling evidence exists that non-haematopoietic stem cells, including mesenchymal (MSCs) and neural/progenitor stem cells (NPCs), exert a substantial beneficial and therapeutic effect after transplantation in experimental central nervous system (CNS) disease models through the secretion of immune modulatory or neurotrophic paracrine factors. This paracrine hypothesis has inspired an alternative outlook on the use of stem cells in regenerative neurology. In this paradigm, significant repair of the injured brain may be achieved by injecting the biologics secreted by stem cells (secretome), rather than implanting stem cells themselves for direct cell replacement. The stem cell secretome (SCS) includes cytokines, chemokines and growth factors, and has gained increasing attention in recent years because of its multiple implications for the repair, restoration or regeneration of injured tissues. Thanks to recent improvements in SCS profiling and manipulation, investigators are now inspired to harness the SCS as a novel alternative therapeutic option that might ensure more efficient outcomes than current stem cell-based therapies for CNS repair. This review discusses the most recent identification of MSC- and NPC-secreted factors, including those that are trafficked within extracellular membrane vesicles (EVs), and reflects on their potential effects on brain repair. It also examines some of the most convincing advances in molecular profiling that have enabled mapping of the SCS. PMID:23827856

  15. Influence of Morinda citrifolia (Noni) on Expression of DNA Repair Genes in Cervical Cancer Cells.

    PubMed

    Gupta, Rakesh Kumar; Bajpai, Deepti; Singh, Neeta

    2015-01-01

    Previous studies have suggested that Morinda citrifolia (Noni) has potential to reduce cancer risk. The purpose of this study was to investigate the effect of Noni, cisplatin, and their combination on DNA repair genes in the SiHa cervical cancer cell line. SiHa cells were cultured and treated with 10% Noni, 10 μg/dl cisplatin or their combination for 24 hours. Post culturing, the cells were pelleted, RNA extracted, and processed for investigating DNA repair genes by real time PCR. The expression of nucleotide excision repair genes ERCC1, ERCC2, and ERCC4 and base excision repair gene XRCC1 was increased 4 fold, 8.9 fold, 4 fold, and 5.5 fold, respectively, on treatment with Noni as compared to untreated controls (p<0.05). In contrast, expression was found to be decreased 22 fold, 13 fold, 16 fold, and 23 fold on treatment with cisplatin (p<0.05). However, the combination of Noni and cisplatin led to an increase of 2 fold, 1.6 fold, 3 fold, 1.2 fold, respectively (p<0.05). Noni enhanced the expression of DNA repair genes by itself and in combination with cisplatin. However, high expression of DNA repair genes at mRNA level only signifies efficient DNA transcription of the above mentioned genes; further investigations are needed to evaluate the DNA repair protein expression.

  16. Effect of saffron (Crocus sativus L.) on sodium valporate induced cytogenetic and testicular alterations in albino rats

    PubMed Central

    Zowail, Mohamed E.; Marzouk, Amera M.

    2014-01-01

    The present study investigated the cytogenetic and testicular damage induced by the antiepileptic drug, sodium valporate (SVP) in albino rats and the effect of saffron aqueous extracts. Treating rats with SVP caused a significant increase in the chromosomal aberrations either structural or numerical and decreased the mitotic index. Besides, animals administered SVP showed DNA damage appeared in the single strand breaks (comet assay). Testis of SVP-treated rats showed many histopathological changes. A significant decrease in seminiferous tubules and their epithelial heights diameters and inhibition of spermatogenesis was recorded. In addition, the number of sperm head abnormalities was increased. Biochemical results revealed an increase in malondialdhyde (MDA) which is lipid peroxidation marker and a significant decrease in the level of serum antioxidant enzyme, catalase (CAT) and reducing antioxidant power (RAP). Animals given SVP and saffron showed an improvement in chromosomal aberrations, mitotic index, DNA damage and testicular alterations caused by SVP. Moreover, MDA decreased and CAT and RAP increased. It is concluded from the present results that the ameliorative effects of saffron extract against SVP-induced cytogenetic and testicular damage in albino rats may be due to the presence of one or more antioxidant components of saffron. PMID:25276476

  17. Effect of saffron (Crocus sativus L.) on sodium valporate induced cytogenetic and testicular alterations in albino rats.

    PubMed

    Sakr, Saber A; Zowail, Mohamed E; Marzouk, Amera M

    2014-09-01

    The present study investigated the cytogenetic and testicular damage induced by the antiepileptic drug, sodium valporate (SVP) in albino rats and the effect of saffron aqueous extracts. Treating rats with SVP caused a significant increase in the chromosomal aberrations either structural or numerical and decreased the mitotic index. Besides, animals administered SVP showed DNA damage appeared in the single strand breaks (comet assay). Testis of SVP-treated rats showed many histopathological changes. A significant decrease in seminiferous tubules and their epithelial heights diameters and inhibition of spermatogenesis was recorded. In addition, the number of sperm head abnormalities was increased. Biochemical results revealed an increase in malondialdhyde (MDA) which is lipid peroxidation marker and a significant decrease in the level of serum antioxidant enzyme, catalase (CAT) and reducing antioxidant power (RAP). Animals given SVP and saffron showed an improvement in chromosomal aberrations, mitotic index, DNA damage and testicular alterations caused by SVP. Moreover, MDA decreased and CAT and RAP increased. It is concluded from the present results that the ameliorative effects of saffron extract against SVP-induced cytogenetic and testicular damage in albino rats may be due to the presence of one or more antioxidant components of saffron.

  18. Chromosome Painting in Three Species of Buteoninae: A Cytogenetic Signature Reinforces the Monophyly of South American Species

    PubMed Central

    de Oliveira, Edivaldo Herculano C.; Tagliarini, Marcella Mergulhão; dos Santos, Michelly S.; O'Brien, Patricia C. M.; Ferguson-Smith, Malcolm A.

    2013-01-01

    Buteoninae (Falconiformes, Accipitridae) consist of the widely distributed genus Buteo, and several closely related species in a group called “sub-buteonine hawks”, such as Buteogallus, Parabuteo, Asturina, Leucopternis and Busarellus, with unsolved phylogenetic relationships. Diploid number ranges between 2n = 66 and 2n = 68. Only one species, L. albicollis had its karyotype analyzed by molecular cytogenetics. The aim of this study was to present chromosomal analysis of three species of Buteoninae: Rupornis magnirostris, Asturina nitida and Buteogallus meridionallis using fluorescence in situ hybridization (FISH) experiments with telomeric and rDNA probes, as well as whole chromosome probes derived from Gallus gallus and Leucopternis albicollis. The three species analyzed herein showed similar karyotypes, with 2n = 68. Telomeric probes showed some interstitial telomeric sequences, which could be resulted by fusion processes occurred in the chromosomal evolution of the group, including the one found in the tassociation GGA1p/GGA6. In fact, this association was observed in all the three species analyzed in this paper, and also in L. albicollis, suggesting that it represents a cytogenetic signature which reinforces the monophyly of Neotropical buteoninae species. PMID:23922908

  19. Cyclic loading of rotator cuff reconstructions: single-row repair with modified suture configurations versus double-row repair.

    PubMed

    Lorbach, Olaf; Bachelier, Felix; Vees, Jochen; Kohn, Dieter; Pape, Dietrich

    2008-08-01

    Double-row repair is suggested to have superior biomechanical properties in rotator cuff reconstruction compared with single-row repair. However, double-row rotator cuff repair is frequently compared with simple suture repair and not with modified suture configurations. Single-row rotator cuff repairs with modified suture configurations have similar failure loads and gap formations as double-row reconstructions. Controlled laboratory study. We created 1 x 2-cm defects in 48 porcine infraspinatus tendons. Reconstructions were then performed with 4 single-row repairs and 2 double-row repairs. The single-row repairs included transosseous simple sutures; double-loaded corkscrew anchors in either a double mattress or modified Mason-Allen suture repair; and the Magnum Knotless Fixation Implant with an inclined mattress. Double-row repairs were either with Bio-Corkscrew FT using modified Mason-Allen stitches or a combination of Bio-Corkscrew FT and PushLock anchors using the SutureBridge Technique. During cyclic load (10 N to 60-200 N), gap formation was measured, and finally, ultimate load to failure and type of failure were recorded. Double-row double-corkscrew anchor fixation had the highest ultimate tensile strength (398 +/- 98 N) compared to simple sutures (105 +/- 21 N; P < .0001), single-row corkscrews using a modified Mason-Allen stitch (256 +/- 73 N; P = .003) or double mattress repair (290 +/- 56 N; P = .043), the Magnum Implant (163 +/- 13 N; P < .0001), and double-row repair with PushLock and Bio-Corkscrew FT anchors (163 +/- 59 N; P < .0001). Single-row double mattress repair was superior to transosseous sutures (P < .0001), the Magnum Implant (P = .009), and double-row repair with PushLock and Bio-Corkscrew FT anchors (P = .009). Lowest gap formation was found for double-row double-corkscrew repair (3.1 +/- 0.1 mm) compared to simple sutures (8.7 +/- 0.2 mm; P < .0001), the Magnum Implant (6.2 +/- 2.2 mm; P = .002), double-row repair with PushLock and Bio

  20. Genes on chromosomes 1 and 4 in the mouse are associated with repair of radiation-induced chromatin damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, M.; Sanford, K.K.; Parshad, R.

    Early-passage skin fibroblasts from different inbred and congenic strains of mice were X-irradiated (1 Gy), and the number of chromatid breaks was determined at 2.0 h after irradiation. The cells from DBA/2N, C3H/HeN, STS/A, C57BL/6N, BALB/cJ, and AKR/N had 25 to 42 chromatid breaks per 100 metaphase cells (efficient repair phenotype). NZB/NJ had greater than 78 and BALB/cAn had 87 to 110 chromatid breaks per 100 cells (inefficient repair phenotype). Differences between BALB/cAn and BALB/c. DBA/2 congenic strains which carry less than 1% of the DBA/2 genome indicate that two genes, one on chromosome 1 linked to bcl-2-Pep-3 and themore » other on chromosome 4 closely linked to Fv-1, affect the efficiency with which the cells repair radiation-induced chromatin damage.« less

  1. Cytogenetic analysis in Thoracocharax stellatus (Kner, 1858) (Characiformes, Gasteropelecidae) from Paraguay River Basin, Mato Grosso, Brazil

    PubMed Central

    da Silva, Edson Lourenço; de Borba, Rafael Splendore; Centofante, Liano; Miyazawa, Carlos Suetoshi; Parise-Maltempi, Patrícia Pasquali

    2012-01-01

    Abstract Thoracocharax stellatus (Characiformes, Gasteropelecidae) is a small Neotropical species of fish, widely distributed in several rivers of South America. Evidence for karyotype heteromorphysm in populations from different geographical regions has been reported for this species. In this way, populations of Thoracocharax stellatus from the Paraguay River basin were cytogenetically characterized and the results were compared with other studies performed in the same species but from different basins. The results showed a diploid number of 2n = 54 for Thoracocharax stellatus, with chromosomes arranged in 6 metacentric (m), 6 submetacentric (sm), 2 subtelocentric (st) and 40 acrocentric (a), for both sexes, with a simple Nucleolus Organiser Region (NOR) system reported by the techniques of silver nitrate impregnation and fluorescent in situ hybridisation (FISH) using 18S rDNA sequences as probe. The distribution of constitutive heterochromatin, observed by the C-band technique and Chromomycin A3 staining showed great similarity among the analyzed populations and consists mainly of discrete blocks in the pericentromeric and telomeric regions of most chromosomes. The presence of female heterogamety was also observed indicating a ZZ/ZW system with W chromosome almost totally heterochromatic. The results also show cytogenetic diversity of the group and are useful to understand the mechanisms of karyotype evolution of the family. PMID:24260672

  2. Estrogen receptor-alpha promotes alternative macrophage activation during cutaneous repair.

    PubMed

    Campbell, Laura; Emmerson, Elaine; Williams, Helen; Saville, Charis R; Krust, Andrée; Chambon, Pierre; Mace, Kimberly A; Hardman, Matthew J

    2014-09-01

    Efficient local monocyte/macrophage recruitment is critical for tissue repair. Recruited macrophages are polarized toward classical (proinflammatory) or alternative (prohealing) activation in response to cytokines, with tight temporal regulation crucial for efficient wound repair. Estrogen acts as a potent anti-inflammatory regulator of cutaneous healing. However, an understanding of estrogen/estrogen receptor (ER) contribution to macrophage polarization and subsequent local effects on wound healing is lacking. Here we identify, to our knowledge previously unreported, a role whereby estrogen receptor α (ERα) signaling preferentially polarizes macrophages from a range of sources to an alternative phenotype. Cell-specific ER ablation studies confirm an in vivo role for inflammatory cell ERα, but not ERβ, in poor healing associated with an altered cytokine profile and fewer alternatively activated macrophages. Furthermore, we reveal intrinsic changes in ERα-deficient macrophages, which are unable to respond to alternative activation signals in vitro. Collectively, our data reveal that inflammatory cell-expressed ERα promotes alternative macrophage polarization, which is beneficial for timely healing. Given the diverse physiological roles of ERs, these findings will likely be of relevance to many pathologies involving excessive inflammation.

  3. Tissue repair

    PubMed Central

    2010-01-01

    As living beings that encounter every kind of traumatic event from paper cut to myocardial infarction, we must possess ways to heal damaged tissues. While some animals are able to regrow complete body parts following injury (such as the earthworm who grows a new head following bisection), humans are sadly incapable of such feats. Our means of recovery following tissue damage consists largely of repair rather than pure regeneration. Thousands of times in our lives, a meticulously scripted but unseen wound healing drama plays, with cells serving as actors, extracellular matrix as the setting and growth factors as the means of communication. This article briefly reviews the cells involved in tissue repair, their signaling and proliferation mechanisms and the function of the extracellular matrix, then presents the actors and script for the three acts of the tissue repair drama. PMID:21220961

  4. Repair of DNA Strand Breaks in a Minichromosome In Vivo: Kinetics, Modeling, and Effects of Inhibitors

    PubMed Central

    Kumala, Slawomir; Fujarewicz, Krzysztof; Jayaraju, Dheekollu; Rzeszowska-Wolny, Joanna; Hancock, Ronald

    2013-01-01

    To obtain an overall picture of the repair of DNA single and double strand breaks in a defined region of chromatin in vivo, we studied their repair in a ∼170 kb circular minichromosome whose length and topology are analogous to those of the closed loops in genomic chromatin. The rate of repair of single strand breaks in cells irradiated with γ photons was quantitated by determining the sensitivity of the minichromosome DNA to nuclease S1, and that of double strand breaks by assaying the reformation of supercoiled DNA using pulsed field electrophoresis. Reformation of supercoiled DNA, which requires that all single strand breaks have been repaired, was not slowed detectably by the inhibitors of poly(ADP-ribose) polymerase-1 NU1025 or 1,5-IQD. Repair of double strand breaks was slowed by 20–30% when homologous recombination was supressed by KU55933, caffeine, or siRNA-mediated depletion of Rad51 but was completely arrested by the inhibitors of nonhomologous end-joining wortmannin or NU7441, responses interpreted as reflecting competition between these repair pathways similar to that seen in genomic DNA. The reformation of supercoiled DNA was unaffected when topoisomerases I or II, whose participation in repair of strand breaks has been controversial, were inhibited by the catalytic inhibitors ICRF-193 or F11782. Modeling of the kinetics of repair provided rate constants and showed that repair of single strand breaks in minichromosome DNA proceeded independently of repair of double strand breaks. The simplicity of quantitating strand breaks in this minichromosome provides a usefull system for testing the efficiency of new inhibitors of their repair, and since the sequence and structural features of its DNA and its transcription pattern have been studied extensively it offers a good model for examining other aspects of DNA breakage and repair. PMID:23382828

  5. The yeast MSH1 gene is not involved in DNA repair or recombination during meiosis.

    PubMed

    Sia, Elaine A; Kirkpatrick, David T

    2005-02-03

    Six strong homologs of the bacterial MutS DNA mismatch repair (MMR) gene have been identified in the yeast Saccharomyces cerevisiae. With the exception of the MSH1 gene, the involvement of each homolog in DNA repair and recombination during meiosis has been determined previously. Five of the homologs have been demonstrated to act in meiotic DNA repair (MSH2, MSH3, MSH6 and MSH4) and/or meiotic recombination (MSH4 and MSH5). Unfortunately the loss of mitochondrial function that results from deletion of MSH1 disrupts meiotic progression, precluding an analysis of MSH1 function in meiotic DNA repair and recombination. However, the recent identification of two separation-of-function alleles of MSH1 that interfere with protein function but still maintain functional mitochondria allow the meiotic activities of MSH1 to be determined. We show that the G776D and F105A alleles of MSH1 exhibit no defects in meiotic recombination, repair base-base mismatches and large loop mismatches efficiently during meiosis, and have high levels of spore viability. These data indicate that the MSH1 protein, unlike other MutS homologs in yeast, plays no role in DNA repair or recombination during meiosis.

  6. Evaluation of chronic lymphocytic leukemia by oligonucleotide-based microarray analysis uncovers novel aberrations not detected by FISH or cytogenetic analysis

    PubMed Central

    2011-01-01

    Background Cytogenetic evaluation is a key component of the diagnosis and prognosis of chronic lymphocytic leukemia (CLL). We performed oligonucleotide-based comparative genomic hybridization microarray analysis on 34 samples with CLL and known abnormal karyotypes previously determined by cytogenetics and/or fluorescence in situ hybridization (FISH). Results Using a custom designed microarray that targets >1800 genes involved in hematologic disease and other malignancies, we identified additional cryptic aberrations and novel findings in 59% of cases. These included gains and losses of genes associated with cell cycle regulation, apoptosis and susceptibility loci on 3p21.31, 5q35.2q35.3, 10q23.31q23.33, 11q22.3, and 22q11.23. Conclusions Our results show that microarray analysis will detect known aberrations, including microscopic and cryptic alterations. In addition, novel genomic changes will be uncovered that may become important prognostic predictors or treatment targets for CLL in the future. PMID:22087757

  7. Persistent hyperplastic primary vitreous with retinal tumor in tuberous sclerosis: report of a case including tumoral immunohistochemistry and cytogenetic analyses.

    PubMed

    Milot, J; Michaud, J; Lemieux, N; Allaire, G; Gagnon, M M

    1999-03-01

    The authors describe an ocular lesion combining the characteristics of persistent hyperplastic primary vitreous (PHPV) and a retinal tumor in an infant with tuberous sclerosis complex (TSC). Case report. Immunohistochemistry and cytogenetic studies were performed on TSC cells from an intraocular tumor in a 6-week-old infant. Histopathologic examination showed a thick fibrovascular membrane between the aspect of the lens and the astrocytic component of the mass. Glial fibrillary acidic protein (GFAP) showed a variable intracytoplasmic reaction in the astrocytic proliferation, involving approximately 50% of the cells. Tissue culture studies showed a fairly rapid proliferation of fusiform cells, consistent with bipolar astrocytic cells. Cytogenetic studies showed one abnormal clone consisting of three hyperdiploid cells with a loss of chromosome 9 and a gain of chromosomes 6 and 12. The atypical localization of the retinal tumor could be explained by the fact that it was trapped during its proliferation by the retinal detachment associated with the PHPV.

  8. Prenatal identification of i(Yp) by molecular cytogenetic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, B.T.; Peng, W.; Williams, J. III

    1994-09-01

    An isochromosome derived from the short arm of the Y chromosome, i(Yp), is a rare marker chromosome. Its de novo presence prenatally represents a diagnostic dilemna since its impact on fetal development is difficult to predict. We present a case of 46,X,+i(Yp) de novo detected in an amniotic fluid specimen received for karyotype analysis. Fluorescence in situ hybridization (FISH) studies using a panel of Y-specific biotinylated DNA probes including a Y-centromere probe, a Y whole chromosome painting probe, and a lambda HAM2 probe containing 19 kb of AMG-Y sequence, located to Yp11.2, have identified the marker chromosome as i(Yp). Themore » breakpoint on this marker chromosome is tentatively assigned to Yq11.1 which is close to the centromere. The present report illustrates the importance of FISH techniques as a complement to cytogenetic methods for accurate identification of chromosome rearrangements in prenatal diagnosis and genetic counseling.« less

  9. Cytogenetic investigation of subjects professionally exposed to radiofrequency radiation.

    PubMed

    Maes, Annemarie; Van Gorp, Urbain; Verschaeve, Luc

    2006-03-01

    Nowadays, virtually everybody is exposed to radiofrequency radiation (RFR) from mobile phone base station antennas or other sources. At least according to some scientists, this exposure can have detrimental health effects. We investigated cytogenetic effects in peripheral blood lymphocytes from subjects who were professionally exposed to mobile phone electromagnetic fields in an attempt to demonstrate possible RFR-induced genetic effects. These subjects can be considered well suited for this purpose as their RFR exposure is 'normal' though rather high, and definitely higher than that of the 'general population'. The alkaline comet assay, sister chromatid exchange (SCE) and chromosome aberration tests revealed no evidence of RFR-induced genetic effects. Blood cells were also exposed to the well known chemical mutagen mitomycin C in order to investigate possible combined effects of RFR and the chemical. No cooperative action was found between the electromagnetic field exposure and the mutagen using either the comet assay or SCE test.

  10. Shuttle orbiter TPS flight repair kit development

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The design and application of a TPS repair kit is presented. The repair kit is designed for on orbit use by a crew member working in the manned maneuvering unit (MMU). The kit includes the necessary equipment and materials to accomplish the repair tasks which include the following: HRSI emittance coating repair, damaged tile repair, missing tile repair, and multiple tile repair. Two types of repair materials required to do the small area repair and the large area repair are described. The materials area cure in place, silicone base ablator for small damaged areas and precured ablator tile for repair of larger damaged areas is examined. The cure in place ablator is also used as an adhesive to bond the precured tiles in place. An applicator for the cure in place ablator, designed to contain a two-part silicon compound, mix the two components at correct ratio, and dispense the materials at rates compatible with mission timelines established for the EVA is described.

  11. Inducible error-prone repair in B. subtilis. Final report, September 1, 1979-June 30, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasbin, R. E.

    1981-06-01

    The research performed under this contract has been concentrated on the relationship between inducible DNA repair systems, mutagenesis and the competent state in the gram positive bacterium Bacillus subtilis. The following results have been obtained from this research: (1) competent Bacillus subtilis cells have been developed into a sensitive tester system for carcinogens; (2) competent B. subtilis cells have an efficient excision-repair system, however, this system will not function on bacteriophage DNA taken into the cell via the process of transfection; (3) DNA polymerase III is essential in the mechanism of the process of W-reactivation; (4) B. subtilis strains curedmore » of their defective prophages have been isolated and are now being developed for gene cloning systems; (5) protoplasts of B. subtilis have been shown capable of acquiring DNA repair enzymes (i.e., enzyme therapy); and (6) a plasmid was characterized which enhanced inducible error-prone repair in a gram positive organism.« less

  12. Spinal cord repair in MS

    PubMed Central

    Ciccarelli, O.; Altmann, D. R.; McLean, M. A.; Wheeler-Kingshott, C. A.; Wimpey, K.; Miller, D. H.; Thompson, A. J.

    2010-01-01

    Objective: To investigate the mechanisms of spinal cord repair and their relative contribution to clinical recovery in patients with multiple sclerosis (MS) after a cervical cord relapse, using spinal cord 1H-magnetic resonance spectroscopy (MRS) and volumetric imaging. Methods: Fourteen patients with MS and 13 controls underwent spinal cord imaging at baseline and at 1, 3, and 6 months. N-acetyl-aspartate (NAA) concentration, which reflects axonal count and metabolism in mitochondria, and the cord cross-sectional area, which indicates axonal count, were measured in the affected cervical region. Mixed effect linear regression models investigated the temporal evolution of these measures and their association with clinical changes. Ordinal logistic regressions identified predictors of recovery. Results: Patients who recovered showed a sustained increase in NAA after 1 month. In the whole patient group, a greater increase of NAA after 1 month was associated with greater recovery. Patients showed a significant decline in cord area during follow-up, which did not correlate with clinical changes. A worse recovery was predicted by a longer disease duration at study entry. Conclusions: The partial recovery of N-acetyl-aspartate levels after the acute event, which is concurrent with a decline in cord cross-sectional area, may be driven by increased axonal mitochondrial metabolism. This possible repair mechanism is associated with clinical recovery, and is less efficient in patients with longer disease duration. These insights into the mechanisms of spinal cord repair highlight the need to extend spinal cord magnetic resonance spectroscopy to other spinal cord disorders, and explore therapies that enhance recovery by modulating mitochondrial activity. GLOSSARY CI = confidence interval; EDSS = Expanded Disability Status Scale; FOV = field of view; MR = magnetic resonance; MRS = magnetic resonance spectroscopy; MS = multiple sclerosis; NAA = N-acetyl-aspartate; SC = spinal

  13. Repair-Resistant DNA Lesions

    PubMed Central

    2017-01-01

    The eukaryotic global genomic nucleotide excision repair (GG-NER) pathway is the major mechanism that removes most bulky and some nonbulky lesions from cellular DNA. There is growing evidence that certain DNA lesions are repaired slowly or are entirely resistant to repair in cells, tissues, and in cell extract model assay systems. It is well established that the eukaryotic DNA lesion-sensing proteins do not detect the damaged nucleotide, but recognize the distortions/destabilizations in the native DNA structure caused by the damaged nucleotides. In this article, the nature of the structural features of certain bulky DNA lesions that render them resistant to NER, or cause them to be repaired slowly, is compared to that of those that are good-to-excellent NER substrates. Understanding the structural features that distinguish NER-resistant DNA lesions from good NER substrates may be useful for interpreting the biological significance of biomarkers of exposure of human populations to genotoxic environmental chemicals. NER-resistant lesions can survive to replication and cause mutations that can initiate cancer and other diseases. Furthermore, NER diminishes the efficacy of certain chemotherapeutic drugs, and the design of more potent pharmaceuticals that resist repair can be advanced through a better understanding of the structural properties of DNA lesions that engender repair-resistance. PMID:28750166

  14. Integrated Electrical Wire Insulation Repair System

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Jolley, Scott; Gibson, Tracy; Parks, Steven

    2013-01-01

    An integrated system tool will allow a technician to easily and quickly repair damaged high-performance electrical wire insulation in the field. Low-melt polyimides have been developed that can be processed into thin films that work well in the repair of damaged polyimide or fluoropolymer insulated electrical wiring. Such thin films can be used in wire insulation repairs by affixing a film of this low-melt polyimide to the damaged wire, and heating the film to effect melting, flow, and cure of the film. The resulting repair is robust, lightweight, and small in volume. The heating of this repair film is accomplished with the use of a common electrical soldering tool that has been modified with a special head or tip that can accommodate the size of wire being repaired. This repair method can furthermore be simplified for the repair technician by providing replaceable or disposable soldering tool heads that have repair film already "loaded" and ready for use. The soldering tool heating device can also be equipped with a battery power supply that will allow its use in areas where plug-in current is not available

  15. Biomechanical Analysis of an Arthroscopic Broström Ankle Ligament Repair and a Suture Anchor-Augmented Repair.

    PubMed

    Giza, Eric; Whitlow, Scott R; Williams, Brady T; Acevedo, Jorge I; Mangone, Peter G; Haytmanek, C Thomas; Curry, Eugene E; Turnbull, Travis Lee; LaPrade, Robert F; Wijdicks, Coen A; Clanton, Thomas O

    2015-07-01

    Secondary surgical repair of ankle ligaments is often indicated in cases of chronic lateral ankle instability. Recently, arthroscopic Broström techniques have been described, but biomechanical information is limited. The purpose of the present study was to analyze the biomechanical properties of an arthroscopic Broström repair and augmented repair with a proximally placed suture anchor. It was hypothesized that the arthroscopic Broström repairs would compare favorably to open techniques and that augmentation would increase the mean repair strength at time zero. Twenty (10 matched pairs) fresh-frozen foot and ankle cadaveric specimens were obtained. After sectioning of the lateral ankle ligaments, an arthroscopic Broström procedure was performed on each ankle using two 3.0-mm suture anchors with #0 braided polyethylene/polyester multifilament sutures. One specimen from each pair was augmented with a 2.9-mm suture anchor placed 3 cm proximal to the inferior tip of the lateral malleolus. Repairs were isolated and positioned in 20 degrees of inversion and 10 degrees of plantarflexion and loaded to failure using a dynamic tensile testing machine. Maximum load (N), stiffness (N/mm), and displacement at maximum load (mm) were recorded. There were no significant differences between standard arthroscopic repairs and the augmented repairs for mean maximum load and stiffness (154.4 ± 60.3 N, 9.8 ± 2.6 N/mm vs 194.2 ± 157.7 N, 10.5 ± 4.7 N/mm, P = .222, P = .685). Repair augmentation did not confer a significantly higher mean strength or stiffness at time zero. Mean strength and stiffness for the arthroscopic Broström repair compared favorably with previous similarly tested open repair and reconstruction methods, validating the clinical feasibility of an arthroscopic repair. However, augmentation with an additional proximal suture anchor did not significantly strengthen the repair. © The Author(s) 2015.

  16. Single-Port Onlay Mesh Repair of Recurrent Inguinal Hernias after Failed Anterior and Laparoscopic Repairs

    PubMed Central

    Tran, Kim; Zajkowska, Marta; Lam, Vincent; Hawthorne, Wayne J.

    2015-01-01

    Background and Objectives: Despite the exponential increase in the use of laparoscopic inguinal herniorrhaphy, overall recurrence rates have remained unchanged. Therefore, a growing number of patients are presenting with recurrent hernias after conventional anterior and laparoscopic repairs have failed. This study reports our experience with single-incision laparoscopic (SIL) intraperitoneal onlay mesh (IPOM) repair of these hernias. Methods: Patients referred with two or more recurrences of inguinal hernia underwent SIL-IPOM from November 1, 2009, to June 24, 2014. A 2.5-cm infraumbilical incision was made, and an SIL port was placed intraperitoneally. Modified dissection techniques were used: chopstick and inline dissection, 5.5-mm/52-cm/30° angled laparoscope, and conventional straight dissecting instruments. The peritoneum was incised above the pubic symphysis, and dissection was continued laterally and proximally, raising the inferior flap below the previous extraperitoneal mesh while reducing any direct, indirect, femoral, or cord lipoma before placement of antiadhesive mesh, which was fixed to the pubic ramus, as well as superiorly, with nonabsorbable tacks before the inferior border was fixed with fibrin sealant. The inferior peritoneal flap was then tacked back onto the mesh. Results: Nine male patients underwent SIL-IPOM. Their mean age was 53 years and mean body mass index was 26.8 kg/m2. Mean mesh size was 275 cm2. Mean operation time was 125 minutes, with a hospital stay of 1 day. The umbilical scar length was 23 mm at the 6-week follow-up. There were no intra-/postoperative complications, port-site hernias, chronic groin pain, or recurrence of the hernia during a mean follow-up of 24 months. Conclusion: Inguinal hernias recurring after two or more failed conventional anterior and laparoscopic repairs can be safely and efficiently treated with SIL-IPOM. PMID:25848186

  17. Telomere-Internal Double-Strand Breaks Are Repaired by Homologous Recombination and PARP1/Lig3-Dependent End-Joining.

    PubMed

    Doksani, Ylli; de Lange, Titia

    2016-11-01

    Shelterin protects chromosome ends from the DNA damage response. Although the mechanism of telomere protection has been studied extensively, the fate of double-strand breaks (DSBs) inside telomeres is not known. Here, we report that telomere-internal FokI-induced DSBs activate ATM kinase-dependent signaling in S-phase but are well tolerated and repaired efficiently. Homologous recombination contributes to repair, leading to increased telomere length heterogeneity typical of the alternative lengthening of telomeres (ALT) pathway. Furthermore, cells accumulate extra chromosomal telomeric signals (ECTS), a second hallmark of ALT. Telomere-internal DSBs are also repaired by a PARP1- and Ligase3-dependent reaction, suggesting alternative non-homologous end-joining (alt-NHEJ), which relies on microhomology at DSBs. However, as resected telomere-internal DSBs have perfect homology, their PARP1/Lig3-dependent end-joining may be more akin to single strand break repair. We conclude that shelterin does not repress ATM kinase signaling or DSB repair at telomere-internal sites, thereby allowing DNA repair to maintain telomere integrity. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Perioperative outcomes and complications of open vs laparoscopic extraperitoneal inguinal hernia repair in a mature surgical practice.

    PubMed

    Winslow, E R; Quasebarth, M; Brunt, L M

    2004-02-01

    Although the laparoscopic totally extraperitoneal (TEP) approach to hernia repair has been associated with less pain and a faster postoperative recovery than traditional open repair, many practicing surgeons have been reluctant to adopt this technique because of the lengthy operative times and the learning curve for this procedure. Data from all patients undergoing TEP repair since 1997 and open mesh repair (OPEN) since 1999 were collected prospectively. Selection of surgical approach was based on local hernia factors, anesthetic risk, previous abdominal surgery, and patient preference. Statistical analyses were performed using unpaired t-tests and chi-squared tests. Data are mean +/- SD. TEP repairs were performed in 147 patients and open repairs in 198 patients. Patients in the OPEN group were significantly older (59 +/- 19 years OPEN vs 51 +/- 13 years TEP) and had a higher ASA (1.9 +/- 0.7 OPEN vs 1.5 +/- 0.6 TEP; p < 0.01). TEP repairs were more likely to be carried out for bilateral (33% TEP, 5% OPEN) or recurrent hernias (31% TEP, 11% OPEN) than were open repairs ( p < 0.01). Concurrent procedures accompanied 31% of TEP and 12% of OPEN repairs ( p < 0.01). Operative times (min) were significantly shorter in the TEP group for both unilateral (63 +/- 22 TEP, 70 +/- 20 OPEN; p = 0.02) and bilateral (78 +/- 27 TEP, 102 +/- 27 OPEN; p = 0.01) repairs. Mean operative times decreased over time in the TEP group for both unilateral and bilateral repairs ( p < 0.01). Patients undergoing TEP were more likely ( p < 0.01) to develop urinary retention (7.9% TEP, 1.1% OPEN), but were less likely ( p < 0.01) to have skin numbness (2.8% TEP, 35.8% OPEN) or prolonged groin discomfort (1.4% TEP, 5.3% OPEN). Despite a higher proportion of patients undergoing bilateral repairs, recurrent hernia repair, and concurrent procedures, operative times are shorter for laparoscopic TEP repair than for open mesh repair. TEP repairs can be performed efficiently and without major

  19. Cytogenetics in the management of Philadelphia-negative myeloproliferative neoplasms: an update by the Groupe francophone de cytogénétique hématologique (GFCH).

    PubMed

    Bilhou-Nabéra, Chrystèle; Bidet, Audrey; Eclache, Virginie; Lippert, Eric; Mozziconacci, Marie-Joëlle

    2016-10-01

    The recent years have witnessed tremendous progress in the molecular characterization of Philadelphia-negative myeloproliferative neoplasms (MPN). Beside a better understanding of pathophysiology, these abnormalities often constitute very useful diagnostic markers in diseases where exclusion of reactive states used to be the strongest argument. However, conventional and molecular cytogenetics keep a major interest in MPN, either as a second line exploration, in cases where no molecular marker is available, for differential diagnosis or as a proof of clonality or in first line for cases with hyperleukocytosis, for differential diagnosis (CML), to evidence druggable targets (ABL1, RET, PDGFR…) or as a prognosis marker. In this article, we will review the interest of cytogenetic techniques in myeloproliferative neoplasms.

  20. Repair of full-thickness tendon injury using connective tissue progenitors efficiently derived from human embryonic stem cells and fetal tissues.

    PubMed

    Cohen, Shahar; Leshansky, Lucy; Zussman, Eyal; Burman, Michael; Srouji, Samer; Livne, Erella; Abramov, Natalie; Itskovitz-Eldor, Joseph

    2010-10-01

    The use of stem cells for tissue engineering (TE) encourages scientists to design new platforms in the field of regenerative and reconstructive medicine. Human embryonic stem cells (hESC) have been proposed to be an important cell source for cell-based TE applications as well as an exciting tool for investigating the fundamentals of human development. Here, we describe the efficient derivation of connective tissue progenitors (CTPs) from hESC lines and fetal tissues. The CTPs were significantly expanded and induced to generate tendon tissues in vitro, with ultrastructural characteristics and biomechanical properties typical of mature tendons. We describe a simple method for engineering tendon grafts that can successfully repair injured Achilles tendons and restore the ankle joint extension movement in mice. We also show the CTP's ability to differentiate into bone, cartilage, and fat both in vitro and in vivo. This study offers evidence for the possibility of using stem cell-derived engineered grafts to replace missing tissues, and sets a basic platform for future cell-based TE applications in the fields of orthopedics and reconstructive surgery.

  1. Anatomic and Biomechanical Comparison of Traditional Bankart Repair With Bone Tunnels and Bankart Repair Utilizing Suture Anchors

    PubMed Central

    Judson, Christopher H.; Charette, Ryan; Cavanaugh, Zachary; Shea, Kevin P.

    2016-01-01

    Background: Traditional Bankart repair using bone tunnels has a reported failure rate between 0% and 5% in long-term studies. Arthroscopic Bankart repair using suture anchors has become more popular; however, reported failure rates have been cited between 4% and 18%. There have been no satisfactory explanations for the differences in these outcomes. Hypothesis: Bone tunnels will provide increased coverage of the native labral footprint and demonstrate greater load to failure and stiffness and decreased cyclic displacement in biomechanical testing. Study Design: Controlled laboratory study. Methods: Twenty-two fresh-frozen cadaveric shoulders were used. For footprint analysis, the labral footprint area was marked and measured using a Microscribe technique in 6 specimens. A 3-suture anchor repair was performed, and the area of the uncovered footprint was measured. This was repeated with traditional bone tunnel repair. For the biomechanical analysis, 8 paired specimens were randomly assigned to bone tunnel or suture anchor repair with the contralateral specimen assigned to the other technique. Each specimen underwent cyclic loading (5-25 N, 1 Hz, 100 cycles) and load to failure (15 mm/min). Displacement was measured using a digitized video recording system. Results: Bankart repair with bone tunnels provided significantly more coverage of the native labral footprint than repair with suture anchors (100% vs 27%, P < .001). Repair with bone tunnels (21.9 ± 8.7 N/mm) showed significantly greater stiffness than suture anchor repair (17.1 ± 3.5 N/mm, P = .032). Mean load to failure and gap formation after cyclic loading were not statistically different between bone tunnel (259 ± 76.8 N, 0.209 ± 0.064 mm) and suture anchor repairs (221.5 ± 59.0 N [P = .071], 0.161 ± 0.51 mm [P = .100]). Conclusion: Bankart repair with bone tunnels completely covered the footprint anatomy while suture anchor repair covered less than 30% of the native footprint. Repair using bone tunnels

  2. Anatomic and Biomechanical Comparison of Traditional Bankart Repair With Bone Tunnels and Bankart Repair Utilizing Suture Anchors.

    PubMed

    Judson, Christopher H; Charette, Ryan; Cavanaugh, Zachary; Shea, Kevin P

    2016-01-01

    Traditional Bankart repair using bone tunnels has a reported failure rate between 0% and 5% in long-term studies. Arthroscopic Bankart repair using suture anchors has become more popular; however, reported failure rates have been cited between 4% and 18%. There have been no satisfactory explanations for the differences in these outcomes. Bone tunnels will provide increased coverage of the native labral footprint and demonstrate greater load to failure and stiffness and decreased cyclic displacement in biomechanical testing. Controlled laboratory study. Twenty-two fresh-frozen cadaveric shoulders were used. For footprint analysis, the labral footprint area was marked and measured using a Microscribe technique in 6 specimens. A 3-suture anchor repair was performed, and the area of the uncovered footprint was measured. This was repeated with traditional bone tunnel repair. For the biomechanical analysis, 8 paired specimens were randomly assigned to bone tunnel or suture anchor repair with the contralateral specimen assigned to the other technique. Each specimen underwent cyclic loading (5-25 N, 1 Hz, 100 cycles) and load to failure (15 mm/min). Displacement was measured using a digitized video recording system. Bankart repair with bone tunnels provided significantly more coverage of the native labral footprint than repair with suture anchors (100% vs 27%, P < .001). Repair with bone tunnels (21.9 ± 8.7 N/mm) showed significantly greater stiffness than suture anchor repair (17.1 ± 3.5 N/mm, P = .032). Mean load to failure and gap formation after cyclic loading were not statistically different between bone tunnel (259 ± 76.8 N, 0.209 ± 0.064 mm) and suture anchor repairs (221.5 ± 59.0 N [P = .071], 0.161 ± 0.51 mm [P = .100]). Bankart repair with bone tunnels completely covered the footprint anatomy while suture anchor repair covered less than 30% of the native footprint. Repair using bone tunnels resulted in significantly greater stiffness than repair with suture

  3. What's your poison? Impact of individual repair capacity on the outcomes of genotoxic therapies in cancer. Part II – information content and validity of biomarkers for individual repair capacity in the assessment of outcomes of anticancer therapy

    PubMed Central

    Petkova, Rumena; Chelenkova, Pavlina; Georgieva, Elena; Chakarov, Stoian

    2014-01-01

    ABSTRACT The individual variance in the efficiency of repair of damage induced by genotoxic therapies may be an important factor in the assessment of eligibility for different anticancer treatments, the outcomes of various treatments and the therapy-associated complications, including acute and delayed toxicity and acquired drug resistance. The second part of this paper analyses the currently available information about the possibilities of using experimentally obtained knowledge about individual repair capacity for the purposes of personalised medicine and healthcare. PMID:26019482

  4. Bond strength of repaired amalgam restorations.

    PubMed

    Rey, Rosalia; Mondragon, Eduardo; Shen, Chiayi

    2015-01-01

    This in vitro study investigated the interfacial flexural strength (FS) of amalgam repairs and the optimal combination of repair materials and mechanical retention required for a consistent and durable repair bond. Amalgam bricks were created, each with 1 end roughened to expose a fresh surface before repair. Four groups followed separate repair protocols: group 1, bonding agent with amalgam; group 2, bonding agent with composite resin; group 3, mechanical retention (slot) with amalgam; and group 4, slot with bonding agent and amalgam. Repaired specimens were stored in artificial saliva for 1, 10, 30, 120, or 360 days before being loaded to failure in a 3-point bending test. Statistical analysis showed significant changes in median FS over time in groups 2 and 4. The effect of the repair method on the FS values after each storage period was significant for most groups except the 30-day storage groups. Amalgam-amalgam repair with adequate condensation yielded the most consistent and durable bond. An amalgam bonding agent could be beneficial when firm condensation on the repair surface cannot be achieved or when tooth structure is involved. Composite resin can be a viable option for amalgam repair in an esthetically demanding region, but proper mechanical modification of the amalgam surface and selection of the proper bonding system are essential.

  5. Lack of a Common or Characteristic Cytogenetic Anomaly in Solitary Fibrous Tumor

    PubMed Central

    Torabi, Alireza; Lele, Subodh M.; DiMaio, Dominick; Pinnt, Jeffrey C.; Hess, Michelle M.; Nelson, Marilu; Bridge, Julia A

    2008-01-01

    Solitary fibrous tumor is a mesenchymal tumor that was initially described as a pleural-based lesion, but later was discovered in many other locations. The light microscopic appearance of solitary fibrous tumor may overlap with other diagnostic entities; however, consistent tumor cell CD34 immunoreactivity is useful in establishing the diagnosis. Limited data suggest that solitary fibrous tumors are karyotypically diverse; a common or characteristic anomaly has not yet emerged for this entity. In this report, cytogenetic analysis of two solitary fibrous tumors, one peritoneal and the other arising in the liver, revealed predominantly structural abnormalities in the former and numerical imbalances in the latter. Clonal karyotypic abnormalities were lacking in three additional solitary fibrous tumors. PMID:18262056

  6. Laparoscopic repair of recurrent hernias.

    PubMed

    Memon, M A; Feliu, X; Sallent, E F; Camps, J; Fitzgibbons, R J

    1999-08-01

    Recurrence after primary conventional inguinal herniorrhaphy occurs in approximately 10% of patients depending on the type of repair and expertise of the surgeon. The repair of the resulting recurrent hernia is a daunting task because of already weakened tissues and obscured and distorted anatomy. The failure rate of these repairs using an open anterior approach may reach as high as 36%. Because of such a high failure rate, a number of investigators have focused on repairing these difficult recurrent hernias laparoscopically using a tension-free approach. Some of the earlier reports suggested a low recurrence rate of 0.5% to 5% when a laparoscopic approach was used to repair these hernias. The purpose of this study was to evaluate the efficacy of laparoscopic treatment for recurrent hernias in our institutions. Between February 1991 and February 1995, 96 recurrent hernias were repaired in 85 patients (78 men and 7 women). There were 48 right, 26 left, and 11 bilateral hernias. The mean age of the patients was 59 years (range, 18-86 years); the mean height was 69 in. (range, 54-77 in.); and the mean weight was 176 pounds (range, 109-280 pounds). A total of 68 herniorrhaphies were performed using the transabdominal preperitoneal (TAPP) method: 19 using intraperitoneal on-lay mesh (IPOM) repair and 8 using the total extraperitoneal (TEP) method. The method of repair in one patient was not recorded. The mean operating time was 76 min (range, 47-172 min). Thirteen patients underwent additional procedures. Long-term follow-up was performed by questionnaire, examination, or both in 76 patients (85 hernias). Median follow-up time was 27 months (range, 2-56 months). There were four recurrences (2 in IPOM and 2 in TAPP). Three of these were repaired laparoscopically and one conventionally. There were 20 minor and 14 major complications and no mortality. One conversion occurred in the TAPP group. Mean postoperative stay was 1.4 days (range, 0-4 days). It was felt by 92% of

  7. Diagnosis of Familial Wolf-Hirschhorn Syndrome due to a Paternal Cryptic Chromosomal Rearrangement by Conventional and Molecular Cytogenetic Techniques

    PubMed Central

    Venegas-Vega, Carlos A.; Zepeda, Luis M.; Garduño-Zarazúa, Luz M.; Berumen, Jaime; Kofman, Susana; Cervantes, Alicia

    2013-01-01

    The use of conventional cytogenetic techniques in combination with fluorescent in situ hybridization (FISH) and single-nucleotide polymorphism (SNP) microarrays is necessary for the identification of cryptic rearrangements in the diagnosis of chromosomal syndromes. We report two siblings, a boy of 9 years and 9 months of age and his 7-years- and 5-month-old sister, with the classic Wolf-Hirschhorn syndrome (WHS) phenotype. Using high-resolution GTG- and NOR-banding karyotypes, as well as FISH analysis, we characterized a pure 4p deletion in both sibs and a balanced rearrangement in their father, consisting in an insertion of 4p material within a nucleolar organizing region of chromosome 15. Copy number variant (CNV) analysis using SNP arrays showed that both siblings have a similar size of 4p deletion (~6.5 Mb). Our results strongly support the need for conventional cytogenetic and FISH analysis, as well as high-density microarray mapping for the optimal characterization of the genetic imbalance in patients with WHS; parents must always be studied for recognizing cryptic balanced chromosomal rearrangements for an adequate genetic counseling. PMID:23484094

  8. DNA Repair Deficiency in Neurodegeneration

    PubMed Central

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A.; Stevnsner, Tinna

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby causing Huntington’s disease. Single-strand breaks are common DNA lesions and are associated with the neurodegenerative diseases, ataxia-oculomotor apraxia-1 and spinocerebellar ataxia with axonal neuropathy-1. DNA double-strand breaks are toxic lesions and two main pathways exist for their repair: homologous recombination and non-homologous end-joining. Ataxia telangiectasia and related disorders with defects in these pathways illustrate that such defects can lead to early childhood neurodegeneration. Aging is a risk factor for neurodegeneration and accumulation of oxidative mitochondrial DNA damage may be linked with the age-associated neurodegenerative disorders Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Mutation in the WRN protein leads to the premature aging disease Werner syndrome, a disorder that features neurodegeneration. In this article we review the evidence linking deficiencies in the DNA repair pathways with neurodegeneration. PMID:21550379

  9. Laparoscopic totally extraperitoneal inguinal hernia repair: lessons learned from 3,100 hernia repairs over 15 years.

    PubMed

    Dulucq, Jean-Louis; Wintringer, Pascal; Mahajna, Ahmad

    2009-03-01

    Two revolutions in inguinal hernia repair surgery have occurred during the last two decades. The first was the introduction of tension-free hernia repair by Liechtenstein in 1989 and the second was the application of laparoscopic surgery to the treatment of inguinal hernia in the early 1990s. The purposes of this study were to assess the safety and effectiveness of laparoscopic totally extraperitoneal (TEP) repair and to discuss the technical changes that we faced on the basis of our accumulative experience. Patients who underwent an elective inguinal hernia repair at the Department of Abdominal Surgery at the Institute of Laparoscopic Surgery (ILS), Bordeaux, between June 1990 and May 2005 were enrolled retrospectively in this study. Patient demographic data, operative and postoperative course, and outpatient follow-up were studied. A total of 3,100 hernia repairs were included in the study. The majority of the hernias were repaired by TEP technique; the repair was done by transabdominal preperitoneal (TAPP) repair in only 3%. Eleven percent of the hernias were recurrences after conventional repair. Mean operative time was 17 min in unilateral hernia and 24 min in bilateral hernia. There were 36 hernias (1.2%) that required conversion: 12 hernias were converted to open anterior Liechtenstein and 24 to laparoscopic TAPP technique. The incidence of intraoperative complications was low. Most of the patients were discharged at the second day of the surgery. The overall postoperative morbidity rate was 2.2%. The incidence of recurrence rate was 0.35%. The recurrence rate for the first 200 repairs was 2.5%, but it decreased to 0.47% for the subsequent 1,254 hernia repairs According to our experience, in the hands of experienced laparoscopic surgeons, laparoscopic hernia repair seems to be the favored approach for most types of inguinal hernias. TEP is preferred over TAPP as the peritoneum is not violated and there are fewer intra-abdominal complications.

  10. Activation induced deaminase C-terminal domain links DNA breaks to end protection and repair during class switch recombination

    PubMed Central

    Zahn, Astrid; Eranki, Anil K.; Patenaude, Anne-Marie; Methot, Stephen P.; Fifield, Heather; Cortizas, Elena M.; Foster, Paul; Imai, Kohsuke; Durandy, Anne; Larijani, Mani; Verdun, Ramiro E.; Di Noia, Javier M.

    2014-01-01

    Activation-induced deaminase (AID) triggers antibody class switch recombination (CSR) in B cells by initiating DNA double strand breaks that are repaired by nonhomologous end-joining pathways. A role for AID at the repair step is unclear. We show that specific inactivation of the C-terminal AID domain encoded by exon 5 (E5) allows very efficient deamination of the AID target regions but greatly impacts the efficiency and quality of subsequent DNA repair. Specifically eliminating E5 not only precludes CSR but also, causes an atypical, enzymatic activity-dependent dominant-negative effect on CSR. Moreover, the E5 domain is required for the formation of AID-dependent Igh-cMyc chromosomal translocations. DNA breaks at the Igh switch regions induced by AID lacking E5 display defective end joining, failing to recruit DNA damage response factors and undergoing extensive end resection. These defects lead to nonproductive resolutions, such as rearrangements and homologous recombination that can antagonize CSR. Our results can explain the autosomal dominant inheritance of AID variants with truncated E5 in patients with hyper-IgM syndrome 2 and establish that AID, through the E5 domain, provides a link between DNA damage and repair during CSR. PMID:24591601

  11. Genome-wide maps of alkylation damage, repair, and mutagenesis in yeast reveal mechanisms of mutational heterogeneity.

    PubMed

    Mao, Peng; Brown, Alexander J; Malc, Ewa P; Mieczkowski, Piotr A; Smerdon, Michael J; Roberts, Steven A; Wyrick, John J

    2017-10-01

    DNA base damage is an important contributor to genome instability, but how the formation and repair of these lesions is affected by the genomic landscape and contributes to mutagenesis is unknown. Here, we describe genome-wide maps of DNA base damage, repair, and mutagenesis at single nucleotide resolution in yeast treated with the alkylating agent methyl methanesulfonate (MMS). Analysis of these maps revealed that base excision repair (BER) of alkylation damage is significantly modulated by chromatin, with faster repair in nucleosome-depleted regions, and slower repair and higher mutation density within strongly positioned nucleosomes. Both the translational and rotational settings of lesions within nucleosomes significantly influence BER efficiency; moreover, this effect is asymmetric relative to the nucleosome dyad axis and is regulated by histone modifications. Our data also indicate that MMS-induced mutations at adenine nucleotides are significantly enriched on the nontranscribed strand (NTS) of yeast genes, particularly in BER-deficient strains, due to higher damage formation on the NTS and transcription-coupled repair of the transcribed strand (TS). These findings reveal the influence of chromatin on repair and mutagenesis of base lesions on a genome-wide scale and suggest a novel mechanism for transcription-associated mutation asymmetry, which is frequently observed in human cancers. © 2017 Mao et al.; Published by Cold Spring Harbor Laboratory Press.

  12. A new minimally invasive technique for the repair of femoral hernia in children: about 13 laparoscopic repairs in 10 patients.

    PubMed

    Matthyssens, Lucas E M; Philippe, Paul

    2009-05-01

    Femoral hernias in children are rare and often misdiagnosed. The classic treatment is through an open anterior approach. Since the advent of laparoscopic treatment of inguinal hernia in children, laparoscopy has been proposed to offer an accurate diagnosis and treatment, especially in case of recurrent hernia or bilateral disease. This review was undertaken to report our experience with the primary laparoscopic diagnosis and treatment of pediatric femoral hernias and to investigate its safety and feasibility. All cases of pediatric femoral hernia in a consecutive series of children treated laparoscopically for groin hernias in a single institution over a 7-year period (2001-2007) were identified and studied for patient characteristics, presentation, pre- and perioperative findings, details of the operative repair, and postoperative outcome. Out of a prospectively studied series of 462 laparoscopic pediatric inguinal hernia repairs in 389 patients, 13 femoral hernias were treated in 10 patients (6 boys), with a mean age of 71/2 years (range, 1.7-12). The preoperative diagnosis of femoral hernia was accurate in 7 patients. Seven femoral hernias were exclusively right sided; 3 were bilateral. All 13 femoral hernias were successfully treated by a standardized transabdominal laparoscopic approach with the use of three 3.5-mm trocars. All patients were treated in a day care setting. No postoperative complications occurred. No recurrences were seen until the present time, with a mean follow-up of 31/2 years. Laparoscopy provides a straightforward, accurate diagnosis for the rare and often missed pediatric femoral hernias. The new technique described offers a safe and efficient minimally invasive anatomical repair of the crural orifice in children, even when not suspected preoperatively. The laparoscopic diagnosis of 13 femoral hernias from a cohort of 462 laparoscopic groin hernia repairs (2.8%) may suggest a higher prevalence rate of this unusual type of hernia in

  13. Chain Saw Repair.

    ERIC Educational Resources Information Center

    Taylor, Mark; Helbling, Wayne

    This curriculum is designed to supplement the Comprehensive Small Engine Repair guide by covering in detail all aspects of chain saw repair. The publication contains materials for both teacher and student and is written in terms of student performance using measurable objectives. The course includes six units. Each unit contains some or all of the…

  14. Cytogenetic effects of sildenafil citrate (Viagra) on SWR/J mouse bone marrow cells.

    PubMed

    Abou-Tarboush, Faisal Mohamed; Abdel-Samad, Mohamed Fathy

    2010-10-01

    The present study was conducted to investigate the cytogenetic effects of sildenafil citrate in SWR/J mouse bone marrow cells. Thirty-six males and 36 females were used and divided into four groups. Each group contained 18 animals (9 males and 9 females), weighing 30-35 g. These animals were orally administered with a single dose of 13, 26 or 40 mg/kg sildenafil citrate solution. A control group received normal saline in an identical condition. The animals were sacrificed at 12, 24 or 48 h, after the treatment. Chromosome aberrations were investigated in 50 metaphases per animal. No significant differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between treated male and female mice at any doses or at any time intervals used, therefore, data from the two sexes were pooled when analyzed statistically. No significant (p < 0.05) differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between sildenafil citrate-treated groups and the control group at any doses or at any time intervals used. However, the percentages of centromeric adhesions increased significantly (p < 0.01) in treated groups as compared with the control group at all doses and at all time intervals used. In conclusion, the results of the present study suggest that sildenafil citrate does not have cytogenetic effects on mouse bone marrow cells, but the centromeric adhesions induced by this drug need further studies to confirm them and to investigate the possible mechanism(s) responsible for such effect.

  15. Cytogenetic effects of sildenafil citrate (Viagra) on SWR/J mouse bone marrow cells

    PubMed Central

    Abou-Tarboush, Faisal Mohamed; Abdel-Samad, Mohamed Fathy

    2010-01-01

    The present study was conducted to investigate the cytogenetic effects of sildenafil citrate in SWR/J mouse bone marrow cells. Thirty-six males and 36 females were used and divided into four groups. Each group contained 18 animals (9 males and 9 females), weighing 30–35 g. These animals were orally administered with a single dose of 13, 26 or 40 mg/kg sildenafil citrate solution. A control group received normal saline in an identical condition. The animals were sacrificed at 12, 24 or 48 h, after the treatment. Chromosome aberrations were investigated in 50 metaphases per animal. No significant differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between treated male and female mice at any doses or at any time intervals used, therefore, data from the two sexes were pooled when analyzed statistically. No significant (p < 0.05) differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between sildenafil citrate-treated groups and the control group at any doses or at any time intervals used. However, the percentages of centromeric adhesions increased significantly (p < 0.01) in treated groups as compared with the control group at all doses and at all time intervals used. In conclusion, the results of the present study suggest that sildenafil citrate does not have cytogenetic effects on mouse bone marrow cells, but the centromeric adhesions induced by this drug need further studies to confirm them and to investigate the possible mechanism(s) responsible for such effect. PMID:23961094

  16. Cytogenetic damages in peripheral blood of monkey lymphocytes under simulation of cosmonauts irradiation.

    NASA Astrophysics Data System (ADS)

    Petrov, Vladislav; Ivanov, Alexandr; Barteneva, Svetlana; Snigiryeva, Galina; Shafirkin, Alexandr

    Earth modeling of crewmember exposure should be performed for correct estimating radiation hazard during the flight. Such modeling was planned in a monkey experiment for investigating consequences of exposure to a man during an interplanetary flight. It should reflect a chronic impact of galactic cosmic rays and acute and fractional irradiation specified for solar cosmic rays and radiation belts respectively. Due to the difficulty of modeling a chronic impact with the help of a charged particles accelerator it can be used the gamma source. While irradiating big animal groups during a long-term period of time it is preferably to replace chronic irradiation by an equal fractional one. In this case the chosen characteristics of fractional irradiation should ensure the appearances of radiobiological consequences equal to the ones caused by the modeled chronic exposure. So for developing an exposure scheme in the monkey experiment (with Macaca -Rhesus) the model of the acting residual dose, that takes into account repair and recovery processes in the exposed body was used. The total dose value was in the limits from 2.32 Gy up to 3.5 Gy depending on the exposure character. The acting residual dose in all versions of exposure was 2.0 Gy for every monkey. While performing the experiment all the requirements of bioethics for the work with animals were observed. The objects of interest were genomic damages in lymphocytes of monkey's peripheral blood. The data about the CAF during the exposure and at various time moments after exposure particularly directly after the completion of chronicle and fractional irradiation were analyzed. CAF -dose of acute single gamma-irradiation in the range 0 -1.5Gy relationship (calibration curve) was defined in vitro. In addition the rate of the aberrant cells elimination within three months after the irradiation completion was estimated. On the basis of the obtained CAF data we performed verification of applicability of cytogenetic analysis

  17. Plastic efficiency of different implants used for repair of soft and bone tissue defects.

    PubMed

    Iriyanov, Yu M; Chernov, V F; Radchenko, S A; Chernov, A V

    2013-08-01

    The results of clinical and experimental morphological studies of regenerates forming after replacement of large defects of the abdominal wall and tibia with implants from different materials (polytetrafluoroethylene, reperene, prolene, titanium, and titanium nickelide) are analyzed. Study of the regenerate histology and fibroarchitectonics has shown good prospects of mesh constructions from titanium nickelide for effective surgical repair of these defects. The use of this implant seems to be theoretically well-based and promising, particularly under conditions of suppurative infection and low individual reparative regenerative potential.

  18. Annexins in plasma membrane repair.

    PubMed

    Boye, Theresa Louise; Nylandsted, Jesper

    2016-10-01

    Disruption of the plasma membrane poses deadly threat to eukaryotic cells and survival requires a rapid membrane repair system. Recent evidence reveal various plasma membrane repair mechanisms, which are required for cells to cope with membrane lesions including membrane fusion and replacement strategies, remodeling of cortical actin cytoskeleton and vesicle wound patching. Members of the annexin protein family, which are Ca2+-triggered phospholipid-binding proteins emerge as important components of the plasma membrane repair system. Here, we discuss the mechanisms of plasma membrane repair involving annexins spanning from yeast to human cancer cells.

  19. Cytogenetic investigations of chronic lymphocytic leukemia.

    PubMed

    Wren, Catherine; Moriarty, Helen; Marsden, Katherine; Tegg, Elizabeth

    2010-04-15

    This study aimed to determine which culture method would yield the highest culture success rate, mitotic index, banding resolution, and abnormality rate in investigation of patients with chronic lymphocytic leukemia (CLL). A range of culture techniques for conventional cytogenetic (CC) analyses was compared: 24-hour unstimulated, 72 hours incubation with additional fetal calf serum, 72 hours stimulation with interleukin 4, 72 hours stimulation with lipopolysaccharide (LPS), 72 hours stimulation with TPA (12-O-tetradecanoylphorbol 13-acetate), and 72 hours stimulation with CpG-oligonucleotide DSP30 + Interleukin-2 (IL-2). CC abnormality rates were also compared to fluorescence in situ hybridization (FISH) results using probes for CLL (LSI D13S319/13q34/CEP 12: LSI ATM/p53). Forty-five samples from 24 patients (consisting of 11 newly diagnosed and 13 previously diagnosed patients) were included. For CC, a 100.0% culture success rate was achieved (n = 45) by means of an EDTA (ethylenediaminetetraacetic acid) peripheral blood sample with an associated 62.5% CC abnormality rate (n = 24). FISH detected an abnormality rate of 75.0% (n = 24). The combined CC and FISH abnormality rate was 87.5% (n = 24). This study demonstrates that CC that uses TPA and DSP30 + IL-2 on EDTA peripheral blood is effective in the investigation of CLL and may be used as a supplement to FISH studies. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Cytogenetic mapping of a novel locus for type II Waardenburg syndrome.

    PubMed

    Selicorni, Angelo; Guerneri, Silvana; Ratti, Antonia; Pizzuti, Antonio

    2002-01-01

    An Italian family in which Waardenburg syndrome type II (WS2) segregates together with a der(8) chromosome from a (4p;8p) balanced translocation was studied. Cytogenetic analysis by painting and subtelomeric probe hybridization positioned the chromosome 8 breakpoint at p22-pter. Fluorescence in situ hybridization analysis with yeast artificial chromosomes from a contig spanning the 8p21-pter region refined the breakpoint in an interval of less than 170 kb between markers WI-3823 and D8S1819. The only cloned gene for WS2 is that for microphtalmia (MITF) on chromosome 3p. In this family, MITF mutations were excluded by sequencing the whole coding region. The 8p23 region may represent a third locus for WS2 (WS2C).

  1. Lawn and Garden Equipment Repair.

    ERIC Educational Resources Information Center

    Hardway, Jack; And Others

    This publication is designed to supplement the Comprehensive Small Engine Rapair guide by covering in detail all aspects of lawn and garden equipment repair not included in general engine repair or the repair of other small engines. It consists of instructional materials for both teachers and students, written in terms of student performance using…

  2. DNA repair deficiency sensitizes lung cancer cells to NAD+ biosynthesis blockade.

    PubMed

    Touat, Mehdi; Sourisseau, Tony; Dorvault, Nicolas; Chabanon, Roman M; Garrido, Marlène; Morel, Daphné; Krastev, Dragomir B; Bigot, Ludovic; Adam, Julien; Frankum, Jessica R; Durand, Sylvère; Pontoizeau, Clement; Souquère, Sylvie; Kuo, Mei-Shiue; Sauvaigo, Sylvie; Mardakheh, Faraz; Sarasin, Alain; Olaussen, Ken A; Friboulet, Luc; Bouillaud, Frédéric; Pierron, Gérard; Ashworth, Alan; Lombès, Anne; Lord, Christopher J; Soria, Jean-Charles; Postel-Vinay, Sophie

    2018-04-02

    Synthetic lethality is an efficient mechanism-based approach to selectively target DNA repair defects. Excision repair cross-complementation group 1 (ERCC1) deficiency is frequently found in non-small-cell lung cancer (NSCLC), making this DNA repair protein an attractive target for exploiting synthetic lethal approaches in the disease. Using unbiased proteomic and metabolic high-throughput profiling on a unique in-house-generated isogenic model of ERCC1 deficiency, we found marked metabolic rewiring of ERCC1-deficient populations, including decreased levels of the metabolite NAD+ and reduced expression of the rate-limiting NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT). We also found reduced NAMPT expression in NSCLC samples with low levels of ERCC1. These metabolic alterations were a primary effect of ERCC1 deficiency, and caused selective exquisite sensitivity to small-molecule NAMPT inhibitors, both in vitro - ERCC1-deficient cells being approximately 1,000 times more sensitive than ERCC1-WT cells - and in vivo. Using transmission electronic microscopy and functional metabolic studies, we found that ERCC1-deficient cells harbor mitochondrial defects. We propose a model where NAD+ acts as a regulator of ERCC1-deficient NSCLC cell fitness. These findings open therapeutic opportunities that exploit a yet-undescribed nuclear-mitochondrial synthetic lethal relationship in NSCLC models, and highlight the potential for targeting DNA repair/metabolic crosstalks for cancer therapy.

  3. Valve repair in aortic regurgitation without root dilatation--aortic valve repair.

    PubMed

    Lausberg, H F; Aicher, D; Kissinger, A; Langer, F; Fries, R; Schäfers, H-J

    2006-02-01

    Aortic valve repair was established in the context of aortic root remodeling. Variable results have been reported for isolated valve repair. We analyzed our experience with isolated valve repair and compared the results with those of aortic root remodeling. Between October 1995 and August 2003, isolated repair of the aortic valve was performed in 83 patients (REP), remodeling of the aortic valve in 175 patients (REMO). The demographics of the two groups were comparable (REP: mean age 54.4 +/- 20.7 yrs, male-female ratio 2.1 : 1; REMO: mean age 60.8 +/- 13.6 yrs, male-female ratio 2.4 : 1; p = ns). In both groups the number of bicuspid valves was comparable (REP: 41 %, REMO: 32 %; p = ns). All patients were followed by echocardiography for a cumulative follow-up of 8204 patient months (mean 32 +/- 23 months). Overall in-hospital mortality was 2.4 % in REP and 4.6 % in REMO ( p = 0.62). Systolic gradients were comparable in both groups (REP: 5.8 +/- 2.2, REMO: 6.5 +/- 3.1 mm Hg, p = 0.09). The mean degree of aortic regurgitation 12 months postoperatively was 0.8 +/- 0.7 after REP and 0.7 +/- 0.7 after REMO ( p = 0.29). Freedom from significant regurgitation (> or = II degrees ) after 5 years was 86 % in REP and 89 % in REMO ( p = 0.17). Freedom from re-operation after 5 years was 94.4 % in REP and 98.2 % in REMO ( p = 0.33). Aortic regurgitation without concomitant root dilatation can be treated effectively by aortic valve repair. The functional results are equivalent to those obtained with valve-preserving root replacement. Aortic valve repair appears to be an alternative to valve replacement in aortic regurgitation.

  4. Overlapping sphincteroplasty and posterior repair.

    PubMed

    Crane, Andrea K; Myers, Erinn M; Lippmann, Quinn K; Matthews, Catherine A

    2014-12-01

    Knowledge of how to anatomically reconstruct extensive posterior-compartment defects is variable among gynecologists. The objective of this video is to demonstrate an effective technique of overlapping sphincteroplasty and posterior repair. In this video, a scripted storyboard was constructed that outlines the key surgical steps of a comprehensive posterior compartment repair: (1) surgical incision that permits access to posterior compartment and perineal body, (2) dissection of the rectovaginal space up to the level of the cervix, (3) plication of the rectovaginal muscularis, (4) repair of internal and external anal sphincters, and (5) reconstruction of the perineal body. Using a combination of graphic illustrations and live video footage, tips on repair are highlighted. The goals at the end of repair are to: (1) have improved vaginal caliber, (2) increase rectal tone along the entire posterior vaginal wall, (3) have the posterior vaginal wall at a perpendicular plane to the perineal body, (4) reform the hymenal ring, and (5) not have an overly elongated perineal body. This video provides a step-by-step guide on how to perform an overlapping sphincteroplasty and posterior repair.

  5. Comparative cytogenetic studies of Curimatidae (Pisces, Characiformes) from the middle Paraná River (Argentina).

    PubMed

    Brassesco, M S; Pastori, M C; Roncati, H A; Fenocchio, A S

    2004-06-30

    Almost all species of the Curimatidae family have a stable karyotype, with a diploid number of 54 metacentric (M) and submetacentric (SM) chromosomes, and one sole nucleolus organizer pair. This family has considerable specific diversity in Argentinean fluvial basins; however, no cytogenetic data are available. Eight species from the Paraná River (Argentina): Cyphocharax voga, C. spilotus, C. platanus, Steindachnerina brevipinna, S. conspersa, Curimatella dorsalis, Psectrogaster curviventris, and Potamorhina squamoralevis were analyzed cytogenetically. Chromosome preparations were obtained from direct samples and through cell culture, and they were processed for conventional, C- and nucleolar organizer region-banding. Six of the species exhibited the standard family karyotype, with 2n = 54 M-SM and fundamental number of chromosomes (FN) = 108, as well as variations in the chromosome formula, and in heterochromatic and nucleolar organizer regions. Though nucleolar organizer regions were located on only one chromosome pair, they varied in both carrier chromosomes and pairs involved. On the other hand, C. platanus showed a complement of 2n = 58 M-SM and subtelocentric with FN = 116, and P. squamoralevis presented 2n = 102, with some M-SM and a large number of acrocentric chromosomes. Even though the karyotype macrostructure appears to be conserved, the speciation process within the family has been accompanied by micro-structural rearrangements, as evidenced by pattern diversity in the heterochromatin and nucleolar organizer regions. Some changes in chromosome macrostructure have also occurred in this group, primarily in C. platanus and P. squamoralevis, in which there have been centric dissociations and inversions.

  6. Understanding DNA Repair in Hyperthermophilic Archaea: Persistent Gaps and Other Reasons to Focus on the Fork

    PubMed Central

    Grogan, Dennis W.

    2015-01-01

    Although hyperthermophilic archaea arguably have a great need for efficient DNA repair, they lack members of several DNA repair protein families broadly conserved among bacteria and eukaryotes. Conversely, the putative DNA repair genes that do occur in these archaea often do not generate the expected phenotype when deleted. The prospect that hyperthermophilic archaea have some unique strategies for coping with DNA damage and replication errors has intellectual and technological appeal, but resolving this question will require alternative coping mechanisms to be proposed and tested experimentally. This review evaluates a combination of four enigmatic properties that distinguishes the hyperthermophilic archaea from all other organisms: DNA polymerase stalling at dU, apparent lack of conventional NER, lack of MutSL homologs, and apparent essentiality of homologous recombination proteins. Hypothetical damage-coping strategies that could explain this set of properties may provide new starting points for efforts to define how archaea differ from conventional models of DNA repair and replication fidelity. PMID:26146487

  7. Unnatural substrates reveal the importance of 8-oxoguanine for in vivo mismatch repair by MutY

    PubMed Central

    Livingston, Alison L.; O’Shea, Valerie L.; Kim, Taewoo; Kool, Eric T.; David, Sheila S.

    2009-01-01

    Escherchia coli MutY plays an important role in preventing mutations associated with the oxidative lesion 7,8-dihydro-8-oxo-2′-deoxyguanosine (OG) in DNA by excising adenines from OG:A mismatches as the first step of base excision repair. To determine the importance of specific steps in the base pair recognition and base removal process of MutY, we have evaluated the effects of modifications of the OG:A substrate on the kinetics of base removal, mismatch affinity and repair to G:C in an Escherchia coli-based assay. Surprisingly, adenine modification was tolerated in the cellular assay, while modification of OG results in minimal cellular repair. High affinity for the mismatch and efficient base removal require the presence of OG. Taken together, these results suggest that the presence of OG is a critical feature for MutY to locate OG:A mismatches and select the appropriate adenines for excision to initiate repair in vivo prior to replication. PMID:18026095

  8. Robotic Mitral Valve Repair: The Learning Curve.

    PubMed

    Goodman, Avi; Koprivanac, Marijan; Kelava, Marta; Mick, Stephanie L; Gillinov, A Marc; Rajeswaran, Jeevanantham; Brzezinski, Anna; Blackstone, Eugene H; Mihaljevic, Tomislav

    Adoption of robotic mitral valve surgery has been slow, likely in part because of its perceived technical complexity and a poorly understood learning curve. We sought to correlate changes in technical performance and outcome with surgeon experience in the "learning curve" part of our series. From 2006 to 2011, two surgeons undertook robotically assisted mitral valve repair in 458 patients (intent-to-treat); 404 procedures were completed entirely robotically (as-treated). Learning curves were constructed by modeling surgical sequence number semiparametrically with flexible penalized spline smoothing best-fit curves. Operative efficiency, reflecting technical performance, improved for (1) operating room time for case 1 to cases 200 (early experience) and 400 (later experience), from 414 to 364 to 321 minutes (12% and 22% decrease, respectively), (2) cardiopulmonary bypass time, from 148 to 102 to 91 minutes (31% and 39% decrease), and (3) myocardial ischemic time, from 119 to 75 to 68 minutes (37% and 43% decrease). Composite postoperative complications, reflecting safety, decreased from 17% to 6% to 2% (63% and 85% decrease). Intensive care unit stay decreased from 32 to 28 to 24 hours (13% and 25% decrease). Postoperative stay fell from 5.2 to 4.5 to 3.8 days (13% and 27% decrease). There were no in-hospital deaths. Predischarge mitral regurgitation of less than 2+, reflecting effectiveness, was achieved in 395 (97.8%), without correlation to experience; return-to-work times did not change substantially with experience. Technical efficiency of robotic mitral valve repair improves with experience and permits its safe and effective conduct.

  9. [The cytogenetic monitoring of the environmental conditions on the territories exposed by the radioactive contamination as a result of Chernobyl Nuclear Power Station accident (colony Urazovo Belgorod region as an example)].

    PubMed

    Artiukhov, V G; Kalaev, V N

    2006-01-01

    Cytogenetic characteristics of the seed progeny of birch (Betula pendula Roth), growing in colony Urazovo Belgorod region exposed by the impact of Chernobyl precipitation in 1986, were determinated. The changing of cytogenetic characteristics in comparison with the control (mitotic index and level of mitosis pathologies grown, their spectrum widens part of persistent nucleolies at the stages of metaphase, anaphase, telophase of mitosis enlarges, square of surface of single nucleolies decreases, part of moderate-active nucleolies "bark-core vacuolisated" type increase) on the experimental squares is revealed. The most considerable effects were observed in 2000, which connected with the increasing of the contaminations of mentioned territory as a result of brick factory work. By means of cluster analysis methods it was established that the cleanest in northwestern part of colony Urazovo, the most contaminated is central part. It was purposed, that chemical compounds, are main agents caused the changing of cytogenetic properties of test-object after the normalization of the radiation level.

  10. Molecular Cytogenetic Characterization of an inv(Y)(p11.2q11.221∼q11.222) in a Syrian Family.

    PubMed

    Al-Achkar, W; Wafa, A; Al-Ablog, A; Moassass, F; Liehr, T

    2013-12-01

    Constitutional chromosomal abnormalities are an important cause of miscarriage, infertility, congenital anomalies and mental retardation in humans. Pericentric inversions of the human Y-chromosome [inv(Y)] are rather common and show an estimated incidence of 0.6-1:1,000 in males in the general population. Most of the reported cases with inv(Y) are familial. For carriers of pericentric inversions the risk of mental retardation or multiple abortions is not apparently increased and there is no relation with abnormal phenotypic features. Polymerase chain reaction (PCR) analysis to detect microdeletions along the Y-chromosome as well as cytogenetic and fluorescence in situ hybridization (FISH) analysis were done to delineate the characteristics of an inv(Y) in a Syrian family. Thus, we present a detailed molecular-cytogenetic characterization of a father and his two sons having an inv(Y)(p11. 2q11.221∼q11.222) with varying mental retardation features but otherwise normal phenotype.

  11. Evaluation of Repair Tension in Arthroscopic Rotator Cuff Repair: Does It Really Matter to the Integrity of the Rotator Cuff?

    PubMed

    Kim, Do Hoon; Jang, Young Hoon; Choi, Young Eun; Lee, Hwa-Ryeong; Kim, Sae Hoon

    2016-11-01

    Repair tension of a torn rotator cuff can affect healing after repair. However, a measurement of the actual tension during arthroscopic rotator cuff repair is not feasible. The relationship between repair tension and healing of a rotator cuff repair remains unclear. The purpose of this study was to evaluate the effect of repair tension on healing at the repair site. The hypothesis was that repair tension would be a major factor in determining the anatomic outcome of rotator cuff repair. Cohort study; Level of evidence, 2. Arthroscopic rotator cuff repairs (132 patients) for full-thickness rotator cuff tears were analyzed. An intraoperative model was designed for the estimation of repair tension using a tensiometer. Magnetic resonance imaging (MRI) was performed approximately 1 year (mean [±SD], 12.7 ± 3.2 months) postoperatively for the evaluation of healing at the repair site. Multivariable analysis was performed for tear size, amount of retraction, and fatty degeneration (FD) of rotator cuff muscles. The mean repair tension measured during the arthroscopic procedure was 28.5 ± 23.1 N. There was a statistically significant correlation between tension and tear size (Pearson correlation coefficient [PCC], 0.529; P < .001), amount of retraction (PCC, 0.619; P < .001), and FD of the supraspinatus (Spearman correlation coefficient [SCC], 0.308; P < .001) and infraspinatus (SCC, 0.332; P < .001). At the final follow-up (12.7 ± 3.2 months), healing failure was observed in 18.2% (24/132), and repair tension also showed a significant inverse correlation with healing at the repair site (SCC, 0.195; P = .025). However, when sex, age, tear size, amount of retraction, tendon quality, and FD of rotator cuff muscles were included for multivariable logistic regression analysis, only FD of the infraspinatus showed an association with the anatomic outcome of repair (Exp(B) = 0.596; P = .010). Our intraoperative model for the estimation of rotator cuff repair tension showed an

  12. Magnetic Resonance Imaging of Cartilage Repair

    PubMed Central

    Trattnig, Siegfried; Winalski, Carl S.; Marlovits, Stephan; Jurvelin, Jukka S.; Welsch, Goetz H.; Potter, Hollis G.

    2011-01-01

    Articular cartilage lesions are a common pathology of the knee joint, and many patients may benefit from cartilage repair surgeries that offer the chance to avoid the development of osteoarthritis or delay its progression. Cartilage repair surgery, no matter the technique, requires a noninvasive, standardized, and high-quality longitudinal method to assess the structure of the repair tissue. This goal is best fulfilled by magnetic resonance imaging (MRI). The present article provides an overview of the current state of the art of MRI of cartilage repair. In the first 2 sections, preclinical and clinical MRI of cartilage repair tissue are described with a focus on morphological depiction of cartilage and the use of functional (biochemical) MR methodologies for the visualization of the ultrastructure of cartilage repair. In the third section, a short overview is provided on the regulatory issues of the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) regarding MR follow-up studies of patients after cartilage repair surgeries. PMID:26069565

  13. Thermal Analysis by Numerical Methods of Debonding Effects near the Crack Tip under Composite Repairs

    NASA Astrophysics Data System (ADS)

    Tsamasphyros, G. J.; Kanderakis, G. N.; Marioli-Riga, Z. P.

    2003-05-01

    Composite patch repair of metallic structures has become a rapidly grown technology in the aerospace field due to the demand for significant increases in the useful life of both military and civilian aircraft. This has led to significant advances overall in the repair technology of cracked metallic structures. Adhesively bonded composite reinforcements offer remarkable advantages such as mechanical efficiency, repair time, cost reduction, high structural integrity, repair inspectability, damage tolerance to further causes of future strains, anticorrosion and antifretting properties. However, because of the different nature and properties of the materials that form a repair (metals, composites, adhesives), side-effects may occur: debonding due to high stress concentration in the vicinity of the crack, thermal residual stresses because of different thermal expansion coefficients of the adherents, etc. In this paper a three-dimensional finite elements analysis of the area around a patch repaired crack of a typical aircraft fuselage is performed, taking into account both the properties and the geometry of the involved materials. Examined in this case are 2024-T3 aluminum alloy as base material, FM-73 as the adhesive system and F4/5521 boron/epoxy prepreg as the patch material. Through the thickness stresses near the crack tip and along the patch edges with and without temperature effects are calculated and debonding near the crack tip is examined. Finally, the calculated results are compared with existing theories.

  14. Rehabilitation after Rotator Cuff Repair.

    PubMed

    Nikolaidou, Ourania; Migkou, Stefania; Karampalis, Christos

    2017-01-01

    Rotator cuff tears are a very common condition that is often incapacitating. Whether non-surgical or surgical, successful management of rotator cuff disease is dependent on appropriate rehabilitation. If conservative management is insufficient, surgical repair is often indicated. Postsurgical outcomes for patients having had rotator cuff repair can be quite good. A successful outcome is much dependent on surgical technique as it is on rehabilitation. Numerous rehabilitation protocols for the management of rotator cuff disease are based primarily on clinical experience and expert opinion. This article describes the different rehabilitation protocols that aim to protect the repair in the immediate postoperative period, minimize postoperative stiffness and muscle atrophy. A review of currently available literature on rehabilitation after arthroscopic rotator cuff tear repair was performed to illustrate the available evidence behind various postoperative treatment modalities. There were no statistically significant differences between a conservative and an accelerated rehabilitation protocol . Early passive range of motion (ROM) following arthroscopic cuff repair is thought to decrease postoperative stiffness and improve functionality. However, early aggressive rehabilitation may compromise repair integrity. The currently available literature did not identify any significant differences in functional outcomes and relative risks of re-tears between delayed and early motion in patients undergoing arthroscopic rotator cuff repairs. A gentle rehabilitation protocol with limits in range of motion and exercise times after arthroscopic rotator cuff repair would be better for tendon healing without taking any substantial risks. A close communication between the surgeon, the patient and the physical therapy team is important and should continue throughout the whole recovery process.

  15. Ultrasound determination of rotator cuff tear repairability

    PubMed Central

    Tse, Andrew K; Lam, Patrick H; Walton, Judie R; Hackett, Lisa

    2015-01-01

    Background Rotator cuff repair aims to reattach the torn tendon to the greater tuberosity footprint with suture anchors. The present study aimed to assess the diagnostic accuracy of ultrasound in predicting rotator cuff tear repairability and to assess which sonographic and pre-operative features are strongest in predicting repairability. Methods The study was a retrospective analysis of measurements made prospectively in a cohort of 373 patients who had ultrasounds of their shoulder and underwent rotator cuff repair. Measurements of rotator cuff tear size and muscle atrophy were made pre-operatively by ultrasound to enable prediction of rotator cuff repairability. Tears were classified following ultrasound as repairable or irreparable, and were correlated with intra-operative repairability. Results Ultrasound assessment of rotator cuff tear repairability has a sensitivity of 86% (p < 0.0001) and a specificity of 67% (p < 0.0001). The strongest predictors of rotator cuff repairability were tear size (p < 0.001) and age (p = 0.004). Sonographic assessments of tear size ≥4 cm2 or anteroposterior tear length ≥25 mm indicated an irreparable rotator cuff tear. Conclusions Ultrasound assessment is accurate in predicting rotator cuff tear repairability. Tear size or anteroposterior tear length and age were the best predictors of repairability. PMID:27582996

  16. Effect of stringer repair methods and repair frequency on GMA performance

    Treesearch

    John W. Clarke; Marshall S. White; Philip A. Araman

    2005-01-01

    Over 135 million wooden pallets were repaired for reuse in 1995. Notched stringers are one of the most commonly damaged components. Metal plates, half companion stringers, and full companion stringers are repair methods described in the U.S. industry standard published by the American Society of Mechanical Engineers. This study evaluated the effect of these three...

  17. Systems Maintenance Automated Repair Tasks (SMART)

    NASA Technical Reports Server (NTRS)

    Schuh, Joseph; Mitchell, Brent; Locklear, Louis; Belson, Martin A.; Al-Shihabi, Mary Jo Y.; King, Nadean; Norena, Elkin; Hardin, Derek

    2010-01-01

    SMART is a uniform automated discrepancy analysis and repair-authoring platform that improves technical accuracy and timely delivery of repair procedures for a given discrepancy (see figure a). SMART will minimize data errors, create uniform repair processes, and enhance the existing knowledge base of engineering repair processes. This innovation is the first tool developed that links the hardware specification requirements with the actual repair methods, sequences, and required equipment. SMART is flexibly designed to be useable by multiple engineering groups requiring decision analysis, and by any work authorization and disposition platform (see figure b). The organizational logic creates the link between specification requirements of the hardware, and specific procedures required to repair discrepancies. The first segment in the SMART process uses a decision analysis tree to define all the permutations between component/ subcomponent/discrepancy/repair on the hardware. The second segment uses a repair matrix to define what the steps and sequences are for any repair defined in the decision tree. This segment also allows for the selection of specific steps from multivariable steps. SMART will also be able to interface with outside databases and to store information from them to be inserted into the repair-procedure document. Some of the steps will be identified as optional, and would only be used based on the location and the current configuration of the hardware. The output from this analysis would be sent to a work authoring system in the form of a predefined sequence of steps containing required actions, tools, parts, materials, certifications, and specific requirements controlling quality, functional requirements, and limitations.

  18. An international study of intrachromosomal amplification of chromosome 21 (iAMP21): cytogenetic characterization and outcome

    PubMed Central

    Harrison, CJ; Moorman, AV; Schwab, C; Carroll, AJ; Raetz, EA; Devidas, M; Strehl, S; Nebral, K; Harbott, J; Teigler-Schlegel, A; Zimmerman, M; Dastuge, N; Baruchel, A; Soulier, J; Auclerc, M-F; Attarbaschi, A; Mann, G; Stark, B; Cazzaniga, G; Chilton, L; Vandenberghe, P; Forestier, E; Haltrich, I; Raimondi, SC; Parihar, M; Bourquin, J-P; Tchinda, J; Haferlach, C; Vora, A; Hunger, SP; Heerema, NA; Haas, OA

    2014-01-01

    Intrachromosomal amplification of chromosome 21 (iAMP21) defines a distinct cytogenetic subgroup of childhood B-cell precursor acute lymphoblastic leukaemia (BCP-ALL). To date, fluorescence in situ hybridisation (FISH), with probes specific for the RUNX1 gene, provides the only reliable detection method (five or more RUNX1 signals per cell). Patients with iAMP21 are older (median age 9 years) with a low white cell count. Previously, we demonstrated a high relapse risk when these patients were treated as standard risk. Recent studies have shown improved outcome on intensive therapy. In view of these treatment implications, accurate identification is essential. Here we have studied the cytogenetics and outcome of 530 iAMP21 patients that highlighted the association of specific secondary chromosomal and genetic changes with iAMP21 to assist in diagnosis, including the gain of chromosome X, loss or deletion of chromosome 7, ETV6 and RB1 deletions. These iAMP21 patients when treated as high risk showed the same improved outcome as those in trial-based studies regardless of the backbone chemotherapy regimen given. This study reinforces the importance of intensified treatment to reduce the risk of relapse in iAMP21 patients. This now well-defined patient subgroup should be recognised by World Health Organisation (WHO) as a distinct entity of BCP-ALL. PMID:24166298

  19. An international study of intrachromosomal amplification of chromosome 21 (iAMP21): cytogenetic characterization and outcome.

    PubMed

    Harrison, C J; Moorman, A V; Schwab, C; Carroll, A J; Raetz, E A; Devidas, M; Strehl, S; Nebral, K; Harbott, J; Teigler-Schlegel, A; Zimmerman, M; Dastuge, N; Baruchel, A; Soulier, J; Auclerc, M-F; Attarbaschi, A; Mann, G; Stark, B; Cazzaniga, G; Chilton, L; Vandenberghe, P; Forestier, E; Haltrich, I; Raimondi, S C; Parihar, M; Bourquin, J-P; Tchinda, J; Haferlach, C; Vora, A; Hunger, S P; Heerema, N A; Haas, O A

    2014-05-01

    Intrachromosomal amplification of chromosome 21 (iAMP21) defines a distinct cytogenetic subgroup of childhood B-cell precursor acute lymphoblastic leukaemia (BCP-ALL). To date, fluorescence in situ hybridisation (FISH), with probes specific for the RUNX1 gene, provides the only reliable detection method (five or more RUNX1 signals per cell). Patients with iAMP21 are older (median age 9 years) with a low white cell count. Previously, we demonstrated a high relapse risk when these patients were treated as standard risk. Recent studies have shown improved outcome on intensive therapy. In view of these treatment implications, accurate identification is essential. Here we have studied the cytogenetics and outcome of 530 iAMP21 patients that highlighted the association of specific secondary chromosomal and genetic changes with iAMP21 to assist in diagnosis, including the gain of chromosome X, loss or deletion of chromosome 7, ETV6 and RB1 deletions. These iAMP21 patients when treated as high risk showed the same improved outcome as those in trial-based studies regardless of the backbone chemotherapy regimen given. This study reinforces the importance of intensified treatment to reduce the risk of relapse in iAMP21 patients. This now well-defined patient subgroup should be recognised by World Health Organisation (WHO) as a distinct entity of BCP-ALL.

  20. Inorganic materials for bone repair or replacement applications.

    PubMed

    Hertz, Audrey; Bruce, Ian J

    2007-12-01

    In recent years, excipient systems have been used increasingly in biomedicine in reconstructive and replacement surgery, as bone cements, drug-delivery vehicles and contrast agents. Particularly, interest has been growing in the development and application of controlled pore inorganic ceramic materials for use in bone-replacement and bone-repair roles and, in this context, attention has been focused on calcium-phosphate, bioactive glasses and SiO2- and TiO2-based materials. It has been shown that inorganic materials that most closely mimic bone structure and surface chemistry most closely function best in bone replacement/repair and, in particular, if a substance possesses a macroporous structure (pores and interconnections >100 microm diameter), then cell infiltration, bone growth and vascularization can all be promoted. The surface roughness and micro/mesoporosity of a material have also been observed to significantly influence its ability to promote apatite nucleation and cell attachment significantly. Pores (where present) can also be packed with pharmaceuticals and biomolecules (e.g., bone morphogenetic proteins [BMPs], which can stimulate bone formation). Finally, the most bio-efficient - in terms of collagen formation and apatite nucleation - materials are those that are able to provide soluble mineralizing species (Si, Ca, PO(4)) at their implant sites and/or are doped or have been surface-activated with specific functional groups. This article presents the context and latest advances in the field of bone-repair materials, especially with respect to the development of bioactive glasses and micro/mesoporous and macroporous inorganic scaffolds. It deals with the possible methods of preparing porous pure/doped or functionalized silicas or their composites, the studies that have been undertaken to evaluate their abilities to act as bone repair scaffolds and also presents future directions for work in that context.

  1. A cytogenetic biomonitoring of industrial radiographers occupationally exposed to low levels of ionizing radiation by using cbmn assay.

    PubMed

    Shakeri, Mahsa; Zakeri, Farideh; Changizi, Vahid; Rajabpour, Mohammad Reza; Farshidpour, Mohammad Reza

    2017-06-15

    Industrial radiography is the process of using either gamma-emitting radionuclide sources or X-ray machines to examine the safety of industrial materials. The average annual effective dose in industrial radiography is one of the highest among radiation workers. The aim of this study was to investigate the cytogenetic effects of ionizing radiation in the peripheral blood lymphocytes of 60 industrial radiographers and 40 non-exposed individuals as the control group by using cytokinesis-block micronucleus (CBMN) assay. Totally, the frequencies of micronuclei (MN), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) were significantly higher in the industrial radiographers than in the controls (p = 0.000). The mean MN frequency per 1000 binucleated cells in the industrial radiographers with last 5-y radiation dose of >100 mSv was significantly higher than those with ≤100 mSv (34.81 ± 12.7‰ vs. 26.33 ± 7.94‰, p = 0.024). The effect of age was observed in the control group and subjects with the age of >30 y showed significantly higher MN frequency compared with the subjects with the age of ≤30 y (9.45 ± 3.71‰ vs. 6.81 ± 3.05‰, p = 0.02). No obvious trend of increased MN as a function of either duration of employment or age or smoking status was observed in the industrial radiographers. The results show the increased levels of cytogenetic damages in the industrial radiographers. Even the workers exposed to the permissible doses are subjected to elevated frequencies of DNA damages. These findings confirm the importance of cytogenetic biomonitoring program beside physical dosimetry, surveying radiation safety of equipment and periodic training of workers for improvement of safety and radiation protection. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. National Trends of Thoracic Endovascular Aortic Repair (TEVAR) Versus Open Repair in Blunt Thoracic Aortic Injury.

    PubMed

    Grigorian, Areg; Spencer, Dean; Donayre, Carlos; Nahmias, Jeffry; Schubl, Sebastian; Gabriel, Viktor; Barrios, Cristobal

    2018-06-07

    Blunt thoracic aortic injury (BTAI) occurs in <1% of all trauma admissions. Considering the advent of multiple thoracic endovascular aortic repair (TEVAR) devices over the past decade, improved outcomes of TEVAR supported in the literature, rapid diagnosis and improved preoperative planning of BTAI using computed tomography imaging, we hypothesized that the national incidence of TEVAR in BTAI has increased while open repair has decreased. In addition, we hypothesized that the mortality risk in BTAI patients undergoing TEVAR would be lower than open repair. This was a retrospective analysis of the National Trauma Data Bank from 2007-2015. The primary end-points of interest included the incidence of TEVAR and open repair, as well as mortality in BTAI patients undergoing intervention. Covariates were included in a multivariable analysis to determine risk for mortality in BTAI patients undergoing open repair versus TEVAR. We identified 3,628 BTAI patients undergoing intervention. Of these, 3,226 underwent TEVAR (87.9%) and 445 (12.1%) underwent open repair. Compared to open repair, TEVAR had a shorter mean length of stay (19.8 vs. 21.3 days, p<0.05) and lower rates of acute kidney injury (5.6% vs. 9.0%, p<0.05) and mortality (8.8% vs. 12.8%, p<0.05). Open repair had greater risk for mortality compared to TEVAR (OR=1.63, CI=1.19-2.23, p<0.05). The rate of open repair decreased from 7.4% in 2007 to 1.9% in 2015, while TEVAR increased from 12.1% to 25.7% during the same time-period. We confirmed previous findings that endovascular repair is associated with decreased mortality, length of stay and major complications including acute kidney injury. Future investigations should focus on identifying the ideal patient candidate for TEVAR and elucidate precise indications for TEVAR in BTAI. Copyright © 2018. Published by Elsevier Inc.

  3. Effect of repair resin type and surface treatment on the repair strength of polyamide denture base resin.

    PubMed

    Gundogdu, Mustafa; Yanikoglu, Nuran; Bayindir, Funda; Ciftci, Hilal

    2015-01-01

    The purpose of the present study was to evaluate the effects of different repair resins and surface treatments on the repair strength of a polyamide denture base material. Polyamide resin specimens were prepared and divided into nine groups according to the surface treatments and repair materials. The flexural strengths were measured with a 3-point bending test. Data were analyzed with a 2-way analysis of variance, and the post-hoc Tukey test (α=0.05). The effects of the surface treatments on the surface of the polyamide resin were examined using scanning electron microscopy. The repair resins and surface treatments significantly affected the repair strength of the polyamide denture base material (p<0.05); however, no significant differences were observed interaction between the factors (p>0.05). The flexural strength of the specimens repaired with the polyamide resin was significantly higher than that of those repaired with the heat-polymerized and autopolymerizing acrylic resins.

  4. To repair or not to repair: with FAVOR there is no question

    NASA Astrophysics Data System (ADS)

    Garetto, Anthony; Schulz, Kristian; Tabbone, Gilles; Himmelhaus, Michael; Scheruebl, Thomas

    2016-10-01

    In the mask shop the challenges associated with today's advanced technology nodes, both technical and economic, are becoming increasingly difficult. The constant drive to continue shrinking features means more masks per device, smaller manufacturing tolerances and more complexity along the manufacturing line with respect to the number of manufacturing steps required. Furthermore, the extremely competitive nature of the industry makes it critical for mask shops to optimize asset utilization and processes in order to maximize their competitive advantage and, in the end, profitability. Full maximization of profitability in such a complex and technologically sophisticated environment simply cannot be achieved without the use of smart automation. Smart automation allows productivity to be maximized through better asset utilization and process optimization. Reliability is improved through the minimization of manual interactions leading to fewer human error contributions and a more efficient manufacturing line. In addition to these improvements in productivity and reliability, extra value can be added through the collection and cross-verification of data from multiple sources which provides more information about our products and processes. When it comes to handling mask defects, for instance, the process consists largely of time consuming manual interactions that are error prone and often require quick decisions from operators and engineers who are under pressure. The handling of defects itself is a multiple step process consisting of several iterations of inspection, disposition, repair, review and cleaning steps. Smaller manufacturing tolerances and features with higher complexity contribute to a higher number of defects which must be handled as well as a higher level of complexity. In this paper the recent efforts undertaken by ZEISS to provide solutions which address these challenges, particularly those associated with defectivity, will be presented. From automation

  5. Endoscopic endonasal dacryocystorhinostomy combined with canaliculus repair for the management of dacryocystitis with canalicular obstruction.

    PubMed

    Tu, Yunhai; Qian, Zhenbin; Zhang, Jiao; Wu, Wencan; Xiao, Tianlin

    2015-01-01

    Purpose. The aim of this study is to propose a simple and efficient combination surgery for the management of dacryocystitis with canalicular obstruction. Methods. A retrospective noncomparative case series of dacryocystitis with canalicular obstruction has been studied. Twelve patients with dacryocystitis and canalicular obstruction underwent a conventional endoscopic endonasal dacryocystorhinostomy (EE-DCR) combined with a modified canalicular repair. Postoperative observations included slit lamp, fluorescein dye disappearance test, lacrimal syringing, lacrimal endoscopy, and nasal endoscopy. Results. After 6-18 months of postoperative follow-up, the symptoms of epiphora and mucopurulent discharge disappeared completely in 10 patients, and occasional or intermittent epiphora remained in 2 patients. All of the twelve patients showed an opened intranasal ostium and normal fluorescein dye disappearance test. Patent bicanalicular irrigation was achieved in 9 patients. One patient had a partial and the other two had a complete reobstruction by lacrimal irrigation to their repaired lower canaliculus; however, all of them had a patent lacrimal irrigation to upper canaliculus. The functional success rate for the combination surgery is 83% (10/12), and anatomical success rate is 75% (9/12). Conclusion. EE-DCR combined with modified canalicular repair is a simple and efficient method for the management of dacryocystitis with canalicular obstruction.

  6. Facial Nerve Repair: Fibrin Adhesive Coaptation versus Epineurial Suture Repair in a Rodent Model

    PubMed Central

    Knox, Christopher J.; Hohman, Marc H.; Kleiss, Ingrid J.; Weinberg, Julie S.; Heaton, James T.; Hadlock, Tessa A.

    2013-01-01

    Objectives/Hypothesis Repair of the transected facial nerve has traditionally been accomplished with microsurgical neurorrhaphy; however, fibrin adhesive coaptation (FAC) of peripheral nerves has become increasingly popular over the past decade. We compared functional recovery following suture neurorrhaphy to FAC in a rodent facial nerve model. Study Design Prospective, randomized animal study. Methods Sixteen rats underwent transection and repair of the facial nerve proximal to the pes anserinus. Eight animals underwent epineurial suture (ES) neurorrhaphy, and eight underwent repair with fibrin adhesive (FA). Surgical times were documented for all procedures. Whisking function was analyzed on a weekly basis for both groups across 15 weeks of recovery. Results Rats experienced whisking recovery consistent in time course and degree with prior studies of rodent facial nerve transection and repair. There were no significant differences in whisking amplitude, velocity, or acceleration between suture and FA groups. However, the neurorrhaphy time with FA was 70% shorter than for ES (P < 0.05). Conclusion Although we found no difference in whisking recovery between suture and FA repair of the main trunk of the rat facial nerve, the significantly shorter operative time for FA repair makes this technique an attractive option. The relative advantages of both techniques are discussed. PMID:23188676

  7. Facial nerve repair: fibrin adhesive coaptation versus epineurial suture repair in a rodent model.

    PubMed

    Knox, Christopher J; Hohman, Marc H; Kleiss, Ingrid J; Weinberg, Julie S; Heaton, James T; Hadlock, Tessa A

    2013-07-01

    Repair of the transected facial nerve has traditionally been accomplished with microsurgical neurorrhaphy; however, fibrin adhesive coaptation (FAC) of peripheral nerves has become increasingly popular over the past decade. We compared functional recovery following suture neurorrhaphy to FAC in a rodent facial nerve model. Prospective, randomized animal study. Sixteen rats underwent transection and repair of the facial nerve proximal to the pes anserinus. Eight animals underwent epineurial suture (ES) neurorrhaphy, and eight underwent repair with fibrin adhesive (FA). Surgical times were documented for all procedures. Whisking function was analyzed on a weekly basis for both groups across 15 weeks of recovery. Rats experienced whisking recovery consistent in time course and degree with prior studies of rodent facial nerve transection and repair. There were no significant differences in whisking amplitude, velocity, or acceleration between suture and FA groups. However, the neurorrhaphy time with FA was 70% shorter than for ES (P < 0.05). Although we found no difference in whisking recovery between suture and FA repair of the main trunk of the rat facial nerve, the significantly shorter operative time for FA repair makes this technique an attractive option. The relative advantages of both techniques are discussed. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  8. Efficient Generation of Gene-Modified Pigs Harboring Precise Orthologous Human Mutation via CRISPR/Cas9-Induced Homology-Directed Repair in Zygotes.

    PubMed

    Zhou, Xiaoyang; Wang, Lulu; Du, Yinan; Xie, Fei; Li, Liang; Liu, Yu; Liu, Chuanhong; Wang, Shiqiang; Zhang, Shibing; Huang, Xingxu; Wang, Yong; Wei, Hong

    2016-01-01

    Precise genetic mutation of model animals is highly valuable for functional investigation of human mutations. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9)-induced homology-directed repair (HDR) is usually used for precise genetic mutation, being limited by the relatively low efficiency compared with that of non-homologous end joining (NHEJ). Although inhibition of NHEJ was shown to enhance HDR-derived mutation, in this work, without inhibition of NHEJ, we first generated gene-modified pigs harboring precise orthologous human mutation (Sox10 c.A325>T) via CRISPR/Cas9-induced HDR in zygotes using single-strand oligo DNA (ssODN) as template with an efficiency as high as 80%, indicating that pig zygotes exhibited high activities of HDR relative to NHEJ and were highly amendable to genetic mutation via CIRSPR/Cas9-induced HDR. Besides, we found a higher concentration of ssODN remarkably reduced HDR-derived mutation in pig zygotes, suggesting a possible balance for optimal HDR-derived mutation in zygotes between the excessive accessibility to HDR templates and the activities of HDR relative to NHEJ which appeared to be negatively correlated to ssODN concentration. In addition, the HDR-derived mutation, as well as those from NHEJ, extensively integrated into various tissues including gonad of founder pig without detected off-targeting, suggesting CRISPR/Cas9-induced HDR in zygotes is a reliable approach for precise genetic mutation in pigs. © 2015 WILEY PERIODICALS, INC.

  9. Poly(ADP-ribose) polymerase inhibitor CEP-8983 synergizes with bendamustine in chronic lymphocytic leukemia cells in vitro.

    PubMed

    Dilley, Robert L; Poh, Weijie; Gladstone, Douglas E; Herman, James G; Showel, Margaret M; Karp, Judith E; McDevitt, Michael A; Pratz, Keith W

    2014-03-01

    DNA repair aberrations and associated chromosomal instability is a feature of chronic lymphocytic leukemia (CLL). To evaluate if DNA repair insufficiencies are related to methylation changes, we examined the methylation of nine promoter regions of DNA repair proteins by bisulfide sequencing in 26 CLL primary samples and performed quantitative PCR on a subset of samples to examine BRCA1 expression. We also investigated if changes in cytogenetic or expression level of DNA repair proteins led to changes in sensitivity to a novel PARP inhibitor, CEP-8983, alone and in combination with bendamustine. No changes in promoter methylation were identified in BRCA1, BRCA2, FANC-C, FANC-F, FANC-L, ATM, MGMT, hMLH1 and H2AX except for two cases of minor BRCA1 hypermethylation. CLL samples appeared to have reduced BRCA1 mRNA expression uniformly in comparison to non-malignant lymphocytes irrespective of promoter hypermethylation. CEP-8983 displayed single agent cytotoxicity and the combination with bendamustine demonstrated synergistic cytotoxicity in the majority of CLL samples. These results were consistent across cytogenetic subgroups, including 17p deleted and previously treated patients. Our results provide rationale for further exploration of the combination of a PARP inhibitor and DNA damaging agents as a novel therapeutic strategy in CLL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Current Biomechanical Concepts for Rotator Cuff Repair

    PubMed Central

    2013-01-01

    For the past few decades, the repair of rotator cuff tears has evolved significantly with advances in arthroscopy techniques, suture anchors and instrumentation. From the biomechanical perspective, the focus in arthroscopic repair has been on increasing fixation strength and restoration of the footprint contact characteristics to provide early rehabilitation and improve healing. To accomplish these objectives, various repair strategies and construct configurations have been developed for rotator cuff repair with the understanding that many factors contribute to the structural integrity of the repaired construct. These include repaired rotator cuff tendon-footprint motion, increased tendon-footprint contact area and pressure, and tissue quality of tendon and bone. In addition, the healing response may be compromised by intrinsic factors such as decreased vascularity, hypoxia, and fibrocartilaginous changes or aforementioned extrinsic compression factors. Furthermore, it is well documented that torn rotator cuff muscles have a tendency to atrophy and become subject to fatty infiltration which may affect the longevity of the repair. Despite all the aforementioned factors, initial fixation strength is an essential consideration in optimizing rotator cuff repair. Therefore, numerous biomechanical studies have focused on elucidating the strongest devices, knots, and repair configurations to improve contact characteristics for rotator cuff repair. In this review, the biomechanical concepts behind current rotator cuff repair techniques will be reviewed and discussed. PMID:23730471

  11. Congenital renal rhabdoid tumor with placental metastases: immunohistochemistry, cytogenetic, and ultrastructural findings.

    PubMed

    de Tar, Michael; Sanford Biggerstaff, Julie

    2006-01-01

    Malignant congenital tumors of fetal origin are rare lesions, the most common type being congenital neuroblastoma. Although prenatal diagnosis is possible in large tumors, occasionally the tumor will be diagnosed first by its metastatic involvement of the placenta. Placental metastases can reflect either maternal or fetal primary sites, and each has relatively specific patterns of placental involvement. We describe the clinical and pathologic features of a widely metastatic congenital renal rhabdoid tumor with its placental and autopsy findings, and include the immunohistochemical, cytogenetic, and ultrastructural features. The pathologic features of the placenta in congenital renal rhabdoid tumor with placental metastasis have not been previously described. The examination of the placenta in this case led to the initial diagnosis and obviated the need for additional diagnostic procedures.

  12. Preterm newborns show slower repair of oxidative damage and paternal smoking associated DNA damage.

    PubMed

    Vande Loock, Kim; Ciardelli, Roberta; Decordier, Ilse; Plas, Gina; Haumont, Dominique; Kirsch-Volders, Micheline

    2012-09-01

    Newborns have to cope with hypoxia during delivery and a sudden increase in oxygen at birth. Oxygen will partly be released as reactive oxygen species having the potential to cause damage to DNA and proteins. In utero, increase of most (non)-enzymatic antioxidants occurs during last weeks of gestation, making preterm neonates probably more sensitive to oxidative stress. Moreover, it has been hypothesized that oxidative stress might be the common etiological factor for certain neonatal diseases in preterm infants. The aim of this study was to assess background DNA damage; in vitro H(2)O(2) induced oxidative DNA damage and repair capacity (residual DNA damage) in peripheral blood mononucleated cells from 25 preterm newborns and their mothers. In addition, demographic data were taken into account and repair capacity of preterm was compared with full-term newborns. Multivariate linear regression analysis revealed that preterm infants from smoking fathers have higher background DNA damage levels than those from non-smoking fathers, emphasizing the risk of paternal smoking behaviour for the progeny. Significantly higher residual DNA damage found after 15-min repair in preterm children compared to their mothers and higher residual DNA damage after 2 h compared to full-term newborns suggest a slower DNA repair capacity in preterm children. In comparison with preterm infants born by caesarean delivery, preterm infants born by vaginal delivery do repair more slowly the in vitro induced oxidative DNA damage. Final impact of passive smoking and of the slower DNA repair activity of preterm infants need to be confirmed in a larger study population combining transgenerational genetic and/or epigenetic effects, antioxidant levels, genotypes, repair enzyme efficiency/levels and infant morbidity.

  13. Both base excision repair and nucleotide excision repair in humans are influenced by nutritional factors.

    PubMed

    Brevik, Asgeir; Karlsen, Anette; Azqueta, Amaya; Tirado, Anna Estaban; Blomhoff, Rune; Collins, Andrew

    2011-01-01

    Lack of reliable assays for DNA repair has largely prevented measurements of DNA repair from being included in human biomonitoring studies. Using newly developed modifications of the comet assay we tested whether a fruit- and antioxidant-rich plant-based intervention could affect base excision repair (BER) and nucleotide excision repair (NER) in a group of 102 male volunteers. BER and NER repair capacities were measured in lymphocytes before and after a dietary intervention lasting 8 weeks. The study had one control group, one group consuming three kiwifruits per day and one group consuming a variety of antioxidant-rich fruits and plant products in addition to their normal diet. DNA strand breaks were reduced following consumption of both kiwifruits (13%, p = 0.05) and antioxidant-rich plant products (20%, p = 0.02). Increased BER (55%, p = 0.01) and reduced NER (-39%, p < 0.01) were observed in the group consuming a wide variety of plant products. Reduced NER was also observed in the kiwifruit group (-38%, p = 0.05), but BER was not affected in this group. Here we have demonstrated that DNA repair is affected by diet and that modified versions of the comet assay can be used to assess activity of different DNA repair pathways in human biomonitoring studies. Copyright © 2010 John Wiley & Sons, Ltd.

  14. Repairing Foam Insulation

    NASA Technical Reports Server (NTRS)

    Corbin, J.; Buras, D.

    1986-01-01

    Large holes in polyurethane foam insulation repaired reliably by simple method. Little skill needed to apply method, used for overhead repairs as well as for those in other orientations. Plug positioned in hole to be filled and held in place with mounting fixture. Fresh liquid foam injected through plug to bond it in place. As foam cures and expands, it displaces plug outward. Protrusion later removed.

  15. In situ precise electrospinning of medical glue fibers as nonsuture dural repair with high sealing capability and flexibility.

    PubMed

    Lv, Fu-Yan; Dong, Rui-Hua; Li, Zhao-Jian; Qin, Chong-Chong; Yan, Xu; He, Xiao-Xiao; Zhou, Yu; Yan, Shi-Ying; Long, Yun-Ze

    In this work, we propose an in situ precise electrospinning of medical glue fibers onto dural wound for improving sealing capability, avoiding tissue adhesion, and saving time in dural repair. N-octyl-2-cyanoacrylate, a commercial tissue adhesive (medical glue), can be electrospun into ultrathin fibrous film with precise and homogeneous deposition by a gas-assisted electrospinning device. The self-assembled N-octyl-2-cyanoacrylate film shows high compactness and flexibility owing to its fibrous structure. Simulation experiments on egg membranes and goat meninges demonstrated that this technology can repair small membrane defects quickly and efficiently. This method may have potential application in dural repair, for example, working as an effective supplementary technique for conventional dura suture.

  16. Chromosome territories reposition during DNA damage-repair response

    PubMed Central

    2013-01-01

    Background Local higher-order chromatin structure, dynamics and composition of the DNA are known to determine double-strand break frequencies and the efficiency of repair. However, how DNA damage response affects the spatial organization of chromosome territories is still unexplored. Results Our report investigates the effect of DNA damage on the spatial organization of chromosome territories within interphase nuclei of human cells. We show that DNA damage induces a large-scale spatial repositioning of chromosome territories that are relatively gene dense. This response is dose dependent, and involves territories moving from the nuclear interior to the periphery and vice versa. Furthermore, we have found that chromosome territory repositioning is contingent upon double-strand break recognition and damage sensing. Importantly, our results suggest that this is a reversible process where, following repair, chromosome territories re-occupy positions similar to those in undamaged control cells. Conclusions Thus, our report for the first time highlights DNA damage-dependent spatial reorganization of whole chromosomes, which might be an integral aspect of cellular damage response. PMID:24330859

  17. Cytogenetic effects in workers occupationally exposed to tobacco dust.

    PubMed

    Umadevi, B; Swarna, M; Padmavathi, P; Jyothi, A; Reddy, P P

    2003-03-03

    Tobacco dust mainly contains nitrosamines, which are readily absorbed by the body tissues like skin, respiratory epithelium, and mucous membrane of mouth, nose and intestines. Exposure to tobacco dust is known to affect the respiratory tracts in humans. In the present study, cytogenetic effects of exposure to tobacco dust are evaluated in 154 male tobacco factory workers and 138 age and sex matched controls by analysing chromosomal aberrations in their peripheral blood lymphocytes. The workers were in the age group of 20-55 years and were employed in the tobacco processing factory for 1-32 years. Heparinised blood samples were collected from workers and control subjects and lymphocyte cultures were carried out by using standard technique. Slides were prepared and 150 metaphases were screened for each sample for various structural and numerical types of abnormalities. A statistically significant increase was observed in the frequencies of chromosomal aberrations in non-smoking and smoking exposed groups when compared to the respective controls. An increase in the frequencies of chromosomal aberrations was also observed with increase in years of service in the exposed subjects.

  18. Repair of an oroantral communication by a human amniotic membrane: a novel technique

    PubMed Central

    Bharani, Siva; Ambardar, Kalhan

    2015-01-01

    The amniotic membrane is the innermost layer of fetal membrane and is attached to the chorion in the placenta. This membrane has been used for nearly a century in varied fields such as ophthalmology, reconstructive surgery, and burn treatment. In this case report, we used a human amniotic membrane to repair an iatrogenic oroantral communication that occurred during the extraction of the patient's right upper second molar. A splint was given after the perforation was covered with human amniotic membrane and healing was clinically evaluated at various intervals. The outcome of the study revealed that the human amniotic membrane was an efficient graft material for repairing the defect caused by an iatrogenic oroantral communication following tooth extraction. PMID:26339578

  19. Repair of an oroantral communication by a human amniotic membrane: a novel technique.

    PubMed

    Lakshmi, Subha; Bharani, Siva; Ambardar, Kalhan

    2015-08-01

    The amniotic membrane is the innermost layer of fetal membrane and is attached to the chorion in the placenta. This membrane has been used for nearly a century in varied fields such as ophthalmology, reconstructive surgery, and burn treatment. In this case report, we used a human amniotic membrane to repair an iatrogenic oroantral communication that occurred during the extraction of the patient's right upper second molar. A splint was given after the perforation was covered with human amniotic membrane and healing was clinically evaluated at various intervals. The outcome of the study revealed that the human amniotic membrane was an efficient graft material for repairing the defect caused by an iatrogenic oroantral communication following tooth extraction.

  20. Quality and Variability of Online Physical Therapy Protocols for Isolated Meniscal Repairs.

    PubMed

    Trofa, David P; Parisien, Robert L; Noticewala, Manish S; Noback, Peter C; Ahmad, Christopher S; Moutzouros, Vasilios; Makhni, Eric C

    2018-05-31

    The ideal meniscal repair postoperative rehabilitation protocol has yet to be determined. Further, patients are attempting to access health care content online at a precipitously increasing rate given the efficiency of modern search engines. The purpose of this investigation was to assess the quality and variability of meniscal repair rehabilitation protocols published online with the hypothesis that there would be a high degree of variability found across available protocols. To this end, Web-based meniscal repair physical therapy protocols from U.S. academic orthopaedic programs as well as the first 10 protocols identified by the Google search engine for the term "meniscal repair physical therapy protocol" were reviewed and assessed via a custom scoring rubric. Twenty protocols were identified from 155 U.S. academic orthopaedic programs for a total of 30 protocols. Twenty-six protocols (86.6%) recommended immediate postoperative bracing. Twelve (40.0%) protocols permitted immediate weight-bearing as tolerated (WBAT) postoperatively, while the remaining protocols permitted WBAT at an average of 4.0 (range, 1-7) weeks. There was considerable variation in range of motion (ROM) goals, with most protocols (73.3%) initiating immediate passive ROM to 90°. The types and timing of strength, proprioception, agility, and pivoting exercises advised were extremely diverse. Only five protocols (16.7%) employed functional testing as a marker for return to athletics. The results of this study indicate that only a minority of academic orthopaedic programs publish meniscal repair physical therapy protocols online and that within the most readily available online protocols there are significant disparities in regards to brace use, ROM, weight-bearing, and strengthening and proprioception exercises. These discrepancies reflect the fact that the best rehabilitation practices after a meniscal repair have yet to be elucidated. This represents a significant area for improved patient

  1. Repairing pipes on the fly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    When piping develops leaks, the natural instinct is to shut the process down, purge the lines and call in maintenance crews to make the repairs. There is, however, an alternative: on-the-fly repairs. Through the use of specialized tools, equipment and technicians, shut-off valves can be installed and leaks repaired without interrupting production. The split sleeve offers one of the simpler approaches to on-the-fly repairs. Two half cylinders with inside diameter slightly larger than the outside diameter slightly larger than the outside diameter of the pipe to be repaired are slipped over the latter some distance form the leak and looselymore » bolted together. The cylinder is then slid over the leaking area and the bolts tightened. Gaskets inside the half cylinders provide the needed seal between the pipe and the cylinder. Installing a shut-off valve in an operating pipeline requires much more specialized equipment and skills than does repairing a leak with a split sleeve. A device available from International Piping Services Co. allows a trained crew to isolate a section of pipe, drill out the isolated portion, install a blocking valve and then remove the isolation system--all while continuing to operate the pipeline at temperatures to 700 F and pressures to 700 psi. But Herb Porter, CEO of Ipsco, cautions that unlike the repairing leaks with a split sleeve, installing a blocking valve on-the-fly always demands the services of a highly trained crew.« less

  2. DNA repair in Chromobacterium violaceum.

    PubMed

    Duarte, Fábio Teixeira; Carvalho, Fabíola Marques de; Bezerra e Silva, Uaska; Scortecci, Kátia Castanho; Blaha, Carlos Alfredo Galindo; Agnez-Lima, Lucymara Fassarella; Batistuzzo de Medeiros, Silvia Regina

    2004-03-31

    Chromobacterium violaceum is a Gram-negative beta-proteobacterium that inhabits a variety of ecosystems in tropical and subtropical regions, including the water and banks of the Negro River in the Brazilian Amazon. This bacterium has been the subject of extensive study over the last three decades, due to its biotechnological properties, including the characteristic violacein pigment, which has antimicrobial and anti-tumoral activities. C. violaceum promotes the solubilization of gold in a mercury-free process, and has been used in the synthesis of homopolyesters suitable for the production of biodegradable polymers. The complete genome sequence of this organism has been completed by the Brazilian National Genome Project Consortium. The aim of our group was to study the DNA repair genes in this organism, due to their importance in the maintenance of genomic integrity. We identified DNA repair genes involved in different pathways in C. violaceum through a similarity search against known sequences deposited in databases. The phylogenetic analyses were done using programs of the PHILYP package. This analysis revealed various metabolic pathways, including photoreactivation, base excision repair, nucleotide excision repair, mismatch repair, recombinational repair, and the SOS system. The similarity between the C. violaceum sequences and those of Neisserie miningitidis and Ralstonia solanacearum was greater than that between the C. violaceum and Escherichia coli sequences. The peculiarities found in the C. violaceum genome were the absence of LexA, some horizontal transfer events and a large number of repair genes involved with alkyl and oxidative DNA damage.

  3. Persistence of Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts

    NASA Technical Reports Server (NTRS)

    George, Kerry; Cucinotta, Francis A.

    2008-01-01

    Cytogenetic damage in astronaut's peripheral blood lymphocytes is a useful in vivo marker of space radiation induced damage. Moreover, if radiation induced chromosome translocations persist in peripheral blood lymphocytes for many years, as has been assumed, they could potentially be used to measure retrospective doses or prolonged low dose rate exposures. However, as more data becomes available, evidence suggests that the yield of translocations may decline with time after exposure, at least in the case of space radiation exposures. We present our latest follow-up measurements of chromosome aberrations in astronauts blood lymphocytes assessed by FISH painting and collected a various times beginning directly after return from space to several years after flight. For most individuals the analysis of individual time-courses for translocations revealed a temporal decline of yields with different half-lives. Since the level of stable aberrations depends on the interplay between natural loss of circulating T-lymphocytes and replenishment from the stem or progenitor cells, the differences in the rates of decay could be explained by inter-individual variation in lymphocyte turn over. Biodosimetry estimates derived from cytogenetic analysis of samples collected a few days after return to earth lie within the range expected from physical dosimetry. However, a temporal decline in yields may indicate complications with the use of stable aberrations for retrospective dose reconstruction, and the differences in the decay time may reflect individual variability in risk from space radiation exposure. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from one crewmember who has participated in two separate long-duration space missions and has been followed up for over 10 years provides limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.

  4. 48 CFR 1371.118 - Changes-ship repair.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Changes-ship repair. 1371... SUPPLEMENTAL REGULATIONS ACQUISITIONS INVOLVING SHIP CONSTRUCTION AND SHIP REPAIR Provisions and Clauses 1371.118 Changes—ship repair. Insert clause 1352.271-87, Changes—Ship Repair, in all solicitations and...

  5. 48 CFR 1371.118 - Changes-ship repair.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Changes-ship repair. 1371... SUPPLEMENTAL REGULATIONS ACQUISITIONS INVOLVING SHIP CONSTRUCTION AND SHIP REPAIR Provisions and Clauses 1371.118 Changes—ship repair. Insert clause 1352.271-87, Changes—Ship Repair, in all solicitations and...

  6. 48 CFR 1371.118 - Changes-ship repair.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Changes-ship repair. 1371... SUPPLEMENTAL REGULATIONS ACQUISITIONS INVOLVING SHIP CONSTRUCTION AND SHIP REPAIR Provisions and Clauses 1371.118 Changes—ship repair. Insert clause 1352.271-87, Changes—Ship Repair, in all solicitations and...

  7. 48 CFR 1371.118 - Changes-ship repair.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Changes-ship repair. 1371... SUPPLEMENTAL REGULATIONS ACQUISITIONS INVOLVING SHIP CONSTRUCTION AND SHIP REPAIR Provisions and Clauses 1371.118 Changes—ship repair. Insert clause 1352.271-87, Changes—Ship Repair, in all solicitations and...

  8. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea

    PubMed Central

    Jones, Daniel L.; Baxter, Bonnie K.

    2017-01-01

    Halophilic archaea push the limits of life at several extremes. In particular, they are noted for their biochemical strategies in dealing with osmotic stress, low water activity and cycles of desiccation in their hypersaline environments. Another feature common to their habitats is intense ultraviolet (UV) radiation, which is a challenge that microorganisms must overcome. The consequences of high UV exposure include DNA lesions arising directly from bond rearrangement of adjacent bipyrimidines, or indirectly from oxidative damage, which may ultimately result in mutation and cell death. As such, these microorganisms have evolved a number of strategies to navigate the threat of DNA damage, which we differentiate into two categories: DNA repair and photoprotection. Photoprotection encompasses damage avoidance strategies that serve as a “first line of defense,” and in halophilic archaea include pigmentation by carotenoids, mechanisms of oxidative damage avoidance, polyploidy, and genomic signatures that make DNA less susceptible to photodamage. Photolesions that do arise are addressed by a number of DNA repair mechanisms that halophilic archaea efficiently utilize, which include photoreactivation, nucleotide excision repair, base excision repair, and homologous recombination. This review seeks to place DNA damage, repair, and photoprotection in the context of halophilic archaea and the solar radiation of their hypersaline environments. We also provide new insight into the breadth of strategies and how they may work together to produce remarkable UV-resistance for these microorganisms. PMID:29033920

  9. Safety and Efficacy of Single Incision Laparoscopic Surgery for Total Extraperitoneal Inguinal Hernia Repair

    PubMed Central

    2011-01-01

    Almost 20 years after the first laparoscopic inguinal hernia repair was performed, single incision laparoscopic surgery (SILS™) is set to revolutionize minimally invasive surgery. However, the loss of triangulation must be overcome before the technique can be popularized. This study reports the first 100 laparoscopic total extraperitoneal hernia repairs using a single incision. The study cohort comprised 68 patients with a mean age of 44 (range, 18 to 83): 36 unilateral and 32 bilateral hernias. Twelve patients also underwent umbilical hernia repair with the Ventralex patch requiring no additional incisions. A 2.5-cm to 3-cm crescentic incision within the confines of the umbilicus was performed. Standard dissecting instruments and 52-cm/5.5-mm/300 laparoscope were used. Operation times were 50 minutes for unilateral and 80 minutes for bilateral. There was one conversion to conventional 3-port laparoscopic repair and none to open surgery. Outpatient surgery was achieved in all (except one). Analgesic requirements were minimal: 8 Dextropropoxyphene tablets (range, 0 to 20). There were no intraoperative or postoperative complications with a high patient satisfaction score. Single-incision laparoscopic hernia repair is safe and efficient simply by modifying dissection techniques (so-called “inline” and “vertical”). Comparable success can be obtained while negating the risks of bowel and vascular injuries from sharp trocars and achieving improved cosmetic results. PMID:21902942

  10. APOBEC3G enhances lymphoma cell radioresistance by promoting cytidine deaminase-dependent DNA repair

    PubMed Central

    Nowarski, Roni; Wilner, Ofer I.; Cheshin, Ori; Shahar, Or D.; Kenig, Edan; Baraz, Leah; Britan-Rosich, Elena; Nagler, Arnon; Harris, Reuben S.; Goldberg, Michal; Willner, Itamar

    2012-01-01

    APOBEC3 proteins catalyze deamination of cytidines in single-stranded DNA (ssDNA), providing innate protection against retroviral replication by inducing deleterious dC > dU hypermutation of replication intermediates. APOBEC3G expression is induced in mitogen-activated lymphocytes; however, no physiologic role related to lymphoid cell proliferation has yet to be determined. Moreover, whether APOBEC3G cytidine deaminase activity transcends to processing cellular genomic DNA is unknown. Here we show that lymphoma cells expressing high APOBEC3G levels display efficient repair of genomic DNA double-strand breaks (DSBs) induced by ionizing radiation and enhanced survival of irradiated cells. APOBEC3G transiently accumulated in the nucleus in response to ionizing radiation and was recruited to DSB repair foci. Consistent with a direct role in DSB repair, inhibition of APOBEC3G expression or deaminase activity resulted in deficient DSB repair, whereas reconstitution of APOBEC3G expression in leukemia cells enhanced DSB repair. APOBEC3G activity involved processing of DNA flanking a DSB in an integrated reporter cassette. Atomic force microscopy indicated that APOBEC3G multimers associate with ssDNA termini, triggering multimer disassembly to multiple catalytic units. These results identify APOBEC3G as a prosurvival factor in lymphoma cells, marking APOBEC3G as a potential target for sensitizing lymphoma to radiation therapy. PMID:22645179

  11. APOBEC3G enhances lymphoma cell radioresistance by promoting cytidine deaminase-dependent DNA repair.

    PubMed

    Nowarski, Roni; Wilner, Ofer I; Cheshin, Ori; Shahar, Or D; Kenig, Edan; Baraz, Leah; Britan-Rosich, Elena; Nagler, Arnon; Harris, Reuben S; Goldberg, Michal; Willner, Itamar; Kotler, Moshe

    2012-07-12

    APOBEC3 proteins catalyze deamination of cytidines in single-stranded DNA (ssDNA), providing innate protection against retroviral replication by inducing deleterious dC > dU hypermutation of replication intermediates. APOBEC3G expression is induced in mitogen-activated lymphocytes; however, no physiologic role related to lymphoid cell proliferation has yet to be determined. Moreover, whether APOBEC3G cytidine deaminase activity transcends to processing cellular genomic DNA is unknown. Here we show that lymphoma cells expressing high APOBEC3G levels display efficient repair of genomic DNA double-strand breaks (DSBs) induced by ionizing radiation and enhanced survival of irradiated cells. APOBEC3G transiently accumulated in the nucleus in response to ionizing radiation and was recruited to DSB repair foci. Consistent with a direct role in DSB repair, inhibition of APOBEC3G expression or deaminase activity resulted in deficient DSB repair, whereas reconstitution of APOBEC3G expression in leukemia cells enhanced DSB repair. APOBEC3G activity involved processing of DNA flanking a DSB in an integrated reporter cassette. Atomic force microscopy indicated that APOBEC3G multimers associate with ssDNA termini, triggering multimer disassembly to multiple catalytic units. These results identify APOBEC3G as a prosurvival factor in lymphoma cells, marking APOBEC3G as a potential target for sensitizing lymphoma to radiation therapy.

  12. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea.

    PubMed

    Jones, Daniel L; Baxter, Bonnie K

    2017-01-01

    Halophilic archaea push the limits of life at several extremes. In particular, they are noted for their biochemical strategies in dealing with osmotic stress, low water activity and cycles of desiccation in their hypersaline environments. Another feature common to their habitats is intense ultraviolet (UV) radiation, which is a challenge that microorganisms must overcome. The consequences of high UV exposure include DNA lesions arising directly from bond rearrangement of adjacent bipyrimidines, or indirectly from oxidative damage, which may ultimately result in mutation and cell death. As such, these microorganisms have evolved a number of strategies to navigate the threat of DNA damage, which we differentiate into two categories: DNA repair and photoprotection. Photoprotection encompasses damage avoidance strategies that serve as a "first line of defense," and in halophilic archaea include pigmentation by carotenoids, mechanisms of oxidative damage avoidance, polyploidy, and genomic signatures that make DNA less susceptible to photodamage. Photolesions that do arise are addressed by a number of DNA repair mechanisms that halophilic archaea efficiently utilize, which include photoreactivation, nucleotide excision repair, base excision repair, and homologous recombination. This review seeks to place DNA damage, repair, and photoprotection in the context of halophilic archaea and the solar radiation of their hypersaline environments. We also provide new insight into the breadth of strategies and how they may work together to produce remarkable UV-resistance for these microorganisms.

  13. Endoscopic-assisted Repair of Neglected Rupture or Rerupture After Primary Repair of Extensor Hallucis Longus Tendon.

    PubMed

    Lui, Tun Hing; Chang, Joseph Jeremy; Maffulli, Nicola

    2016-03-01

    Rerupture of the extensor hallucis longus tendon after primary repair and neglected rupture of the tendon poses surgical challenges to orthopedic surgeons. Open exploration and repair of the tendon ends usually requires large incision and extensive dissection. This may induce scarring and adhesion around the repaired tendon. Endoscopic-assisted repair has the advantage of minimally invasive surgery including less soft tissue trauma and scar formation and better cosmetic result. The use of Krackow locking suture and preservation of the extensor retinacula allow early mobilization of the great toe.

  14. Essentials of skin laceration repair.

    PubMed

    Forsch, Randall T

    2008-10-15

    Skin laceration repair is an important skill in family medicine. Sutures, tissue adhesives, staples, and skin-closure tapes are options in the outpatient setting. Physicians should be familiar with various suturing techniques, including simple, running, and half-buried mattress (corner) sutures. Although suturing is the preferred method for laceration repair, tissue adhesives are similar in patient satisfaction, infection rates, and scarring risk in low skin-tension areas and may be more cost-effective. The tissue adhesive hair apposition technique also is effective in repairing scalp lacerations. The sting of local anesthesia injections can be lessened by using smaller gauge needles, administering the injection slowly, and warming or buffering the solution. Studies have shown that tap water is safe to use for irrigation, that white petrolatum ointment is as effective as antibiotic ointment in postprocedure care, and that wetting the wound as early as 12 hours after repair does not increase the risk of infection. Patient education and appropriate procedural coding are important after the repair.

  15. Self-repair of cracks in brittle material systems

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn M.

    2016-04-01

    One of the most effective uses for self repair is in material systems that crack because the cracks can allow the repair chemical to flow into the crack damage sites in all three dimensions. In order for the repair chemical to stay in the damage site and flow along to all the crack and repair there must be enough chemical to fill the entire crack. The repair chemical must be designed appropriately for the particular crack size and total volume of cracks. In each of the three examples of self repair in crackable brittle systems, the viscosity and chemical makeup and volume of the repair chemicals used is different for each system. Further the chemical delivery system has to be designed for each application also. Test results from self repair of three brittle systems are discussed. In "Self Repair of Concrete Bridges and Infrastructure" two chemicals were used due to different placements in bridges to repair different types of cracks- surface shrinkage and shear cracks, In "Airplane Wings and Fuselage, in Graphite" the composite has very different properties than the concrete bridges. In the graphite for airplane components the chemical also had to survive the high processing temperatures. In this composite the cracks were so definite and deep and thin that the repair chemical could flow easily and repair in all layers of the composite. In "Ceramic/Composite Demonstrating Self Repair" the self repair system not only repaired the broken ceramic but also rebounded the composite to the ceramic layer

  16. Effect of Technological Tensioning on the Efficiency of Reinforcement of Pipelines with Composite Bands

    NASA Astrophysics Data System (ADS)

    Barkanov, E.; Beschetnikov, D.; Lvov, G.

    2015-01-01

    A mathematical model for the contact interaction of a cylindrical pipe with a composite band during its repair is constructed. A system of governing equations of the contact problem is formulated by using the Timoshenko theory of shells. An analysis of possible solutions is carried out for various combinations of geometric and elastic properties of shells. The possibility of pretension of a prepreg in order to improve the efficiency of repair is considered. The numerical results obtained allow one to establish the desired level of pretension for various repair situations.

  17. Cellular repair/misrepair track model

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Cucinotta, Francis A.

    1991-01-01

    A repair/misrepair cell kinetics model is superimposed onto the track structure model of Katz to provide for a repair mechanism. The model is tested on the repair-dependent data of Yang et al. and provides an adequate description of that data. The misrepair rate determines the maximum relative biological effectiveness (RBE), but similar results could arise from indirect X-ray lethality not include in the present model.

  18. The Weekend Effect in AAA Repair.

    PubMed

    O'Donnell, Thomas F X; Li, Chun; Swerdlow, Nicholas J; Liang, Patric; Pothof, Alexander B; Patel, Virendra I; Giles, Kristina A; Malas, Mahmoud B; Schermerhorn, Marc L

    2018-04-18

    Conflicting reports exist regarding whether patients undergoing surgery on the weekend or later in the week experience worse outcomes. We identified patients undergoing abdominal aortic aneurysm (AAA) repair in the Vascular Quality Initiative between 2009 and 2017 [n = 38,498; 30,537 endovascular aneurysm repair (EVAR) and 7961 open repair]. We utilized mixed effects logistic regression to compare adjusted rates of perioperative mortality based on the day of repair. Tuesday was the most common day for elective repair (22%), Friday for symptomatic repairs (20%), and ruptured aneurysms were evenly distributed. Patients with ruptured aneurysms experienced similar adjusted mortality whether they underwent repair during the week or on weekends. Transfers of ruptured AAA were more common over the weekend. However, patients transferred on the weekend experienced higher adjusted mortality than those transferred during the week (28% vs 21%, P = 0.02), despite the fact that during the week, transferred patients actually experienced lower adjusted mortality than patients treated at the index hospital (21% vs 31%, P < 0.01). Among symptomatic patients, adjusted mortality was higher for those undergoing repair over the weekend than those whose surgeries were delayed until a weekday (7.9% vs 3.1%, P = 0.02). Adjusted mortality in elective cases did not vary across the days of the week. Results were consistent between open and EVAR patients. We found no evidence of a weekend effect for ruptured or symptomatic AAA repair. However, patients with ruptured AAA transferred on the weekend experienced higher mortality than those transferred during the week, suggesting a need for improvement in weekend transfer processes.

  19. Self-Repairing Mechanism of MUF/Epoxy Microcapsules for Epoxy Material

    NASA Astrophysics Data System (ADS)

    Ni, Zhuo; Lin, Yuhao; Zhou, Xiaobo

    2017-12-01

    In this paper, a post curing reaction for the microcapsule/epoxy composite material and the conditions of thermal treatment for self-healing process were studied by differential scanning calorimetry (DSC). The condition of thermal treatment for post curing (60°C, 2 hours) was employed to fully cure the epoxy composite. Damage mechanism for the epoxy material was demonstrated via data simulation and three-point bending experiment for the stress distribution reveals that micro-cracks are more likely to be generated on the central region in stress concentration area of two constrained boundaries and the numbers of micro-cracks are reduced from the central area to the two ends of the material. Self-repairing performances of MUF microcapsule/epoxy composite materials were characterized using both destructive bending tests and non-destructive DMA measurements. Self-healing efficiencies of the composites embedded 2% and 5% microcapsule content measured by DMA are 101% and 104% respectively which are close to those results of 104% and 113% correspondingly measured by bending tests. Crack formation and development, core material releasing for MUF microcapsules and physiochemical process of the self-repairing were investigated by using OM, fluorescent technique and infrared microscope. These provide detailed evidences and important information on self-healing mechanism of the microcapsule/epoxy self-repairing material.

  20. Chromosomal aberrations in lymphocytes of employees in transformer and generator production exposed to electromagnetic fields and mineral oil.

    PubMed

    Skyberg, K; Hansteen, I L; Vistnes, A I

    2001-04-01

    The objective was to study the risk of cytogenetic damage among high voltage laboratory workers exposed to electromagnetic fields and mineral oil. This is a cross sectional study of 24 exposed and 24 matched controls in a Norwegian transformer factory. The exposure group included employees in the high voltage laboratory and in the generator soldering department. Electric and magnetic fields and oil mist and vapor were measured. Blood samples were analyzed for chromosomal aberrations in cultured lymphocytes. In addition to conventional cultures, the lymphocytes were also treated with hydroxyurea and caffeine. This procedure inhibits DNA synthesis and repair in vitro, revealing in vivo genotoxic lesions that are repaired during conventional culturing. In conventional cultures, the exposure group and the controls showed similar values for all cytogenetic parameters. In the DNA synthesis- and repair-inhibited cultures, generator welders showed no differences compared to controls. Among high voltage laboratory testers, compared to the controls, the median number of chromatid breaks was doubled (5 vs. 2.5 per 50 cells; P<0.05) the median number of chromosome breaks was 2 vs. 0.5 (P>0.05) and the median number of aberrant cells was 5 vs. 3.5 (P<0.05). Further analysis of the inhibited culture data from this and a previous study indicated that years of exposure and smoking increase the risk of aberrations. We conclude that there was no increase in cytogenetic damage among exposed workers compared to controls in the conventional lymphocyte assay. In inhibited cultures, however, there were indications that electromagnetic fields in combination with mineral oil exposure may produce chromosomal aberrations. Copyright 2001 Wiley-Liss, Inc.