Science.gov

Sample records for cytometry-based dna hybridization

  1. Flow-cytometry-based DNA hybidization and polymorphism analysis

    NASA Astrophysics Data System (ADS)

    Cai, Hong; Kommander, Kristina; White, P. S.; Nolan, John P.

    1998-05-01

    Functional analysis of the human genome, including the quantification of differential gene expression and the identification of polymorphic sites and disease genes, is an important element of the Human Genome Project. Current methods of analysis are mainly gel-based assays that are not well- suited to rapid genome-scale analyses. To analyze DNA sequence on a large scale, robust and high throughput assays are needed. We are developing a suite of microsphere-based approaches employing fluorescence detection to screen and analyze genomic sequence. Our approaches include competitive DNA hybridization to measure DNA or RNA targets in unknown samples, and oligo ligation or extension assays to analyze single-nucleotide polymorphisms. Apart from the advantages of sensitivity, simplicity, and low sample consumption, these flow cytometric approaches have the potential for high throughput multiplexed analysis using multicolored microspheres and automated sample handling.

  2. Electrical potential-assisted DNA hybridization. How to mitigate electrostatics for surface DNA hybridization.

    PubMed

    Tymoczko, Jakub; Schuhmann, Wolfgang; Gebala, Magdalena

    2014-12-24

    Surface-confined DNA hybridization reactions are sensitive to the number and identity of DNA capture probes and experimental conditions such as the nature and the ionic strength of the electrolyte solution. When the surface probe density is high or the concentration of bulk ions is much lower than the concentration of ions within the DNA layer, hybridization is significantly slowed down or does not proceed at all. However, high-density DNA monolayers are attractive for designing high-sensitivity DNA sensors. Thus, circumventing sluggish DNA hybridization on such interfaces allows a high surface concentration of target DNA and improved signal/noise ratio. We present potential-assisted hybridization as a strategy in which an external voltage is applied to the ssDNA-modified interface during the hybridization process. Results show that a significant enhancement of hybridization can be achieved using this approach. PMID:25102381

  3. Flow cytometry-based apoptosis detection

    PubMed Central

    Wlodkowic, Donald; Skommer, Joanna; Darzynkiewicz, Zbigniew

    2013-01-01

    An apoptosing cell demonstrates multitude of characteristic morphological and biochemical features, which vary depending on the stimuli and cell type. The gross majority of classical apoptotic hallmarks can be rapidly examined by flow and image cytometry. Cytometry thus became a technology of choice in diverse studies of cellular demise. A large variety of cytometric methods designed to identify apoptotic cells and probe mechanisms associated with this mode of cell demise have been developed during the past two decades. In the present chapter we outline a handful of commonly used methods that are based on the assessment of: mitochondrial transmembrane potential, activation of caspases, plasma membrane alterations and DNA fragmentation. PMID:19609746

  4. Sequencing mitochondrial DNA polymorphisms by hybridization

    SciTech Connect

    Chee, M.S.; Lockhart, D.J.; Hubbell, E.

    1994-09-01

    We have investigated the use of DNA chips for genetic analysis, using human mitochondrial DNA (mtDNA) as a model. The DNA chips are made up of ordered arrays of DNA oligonucleotide probes, synthesized on a glass substrate using photolithographic techniques. The synthesis site for each different probe is specifically addressed by illumination of the substrate through a photolithographic mask, achieving selective deprotection Nucleoside phosphoramidites bearing photolabile protecting groups are coupled only to exposed sites. Repeated cycles of deprotection and coupling generate all the probes in parallel. The set of 4{sup N} N-mer probes can be synthesized in only 4N steps. Any subset can be synthesized in 4N steps. Any subset can be synthesized in 4N or fewer steps. Sequences amplified from the D-loop region of human mitochondrial DNA (mtDNA) were fluorescently labelled and hybridized to DNA chips containing probes specific for mtDNA. Each nucleotide of a 1.3 kb region spanning the D loop is represented by four probes on the chip. Each probe has a different base at the position of interest: together they comprise a set of A, C, G and T probes which are otherwise identical. In principle, only one probe-target hybrid will be a perfect match. The other three will be single base mismatches. Fluorescence imaging of the hybridized chip allows quantification of hybridization signals. Heterozygous mixtures of sequences can also be characterized. We have developed software to quantitate and interpret the hybridization signals, and to call the sequence automatically. Results of sequence analysis of human mtDNAs will be presented.

  5. Hybridization and Selective Release of DNA Microarrays

    SciTech Connect

    Beer, N R; Baker, B; Piggott, T; Maberry, S; Hara, C M; DeOtte, J; Benett, W; Mukerjee, E; Dzenitis, J; Wheeler, E K

    2011-11-29

    DNA microarrays contain sequence specific probes arrayed in distinct spots numbering from 10,000 to over 1,000,000, depending on the platform. This tremendous degree of multiplexing gives microarrays great potential for environmental background sampling, broad-spectrum clinical monitoring, and continuous biological threat detection. In practice, their use in these applications is not common due to limited information content, long processing times, and high cost. The work focused on characterizing the phenomena of microarray hybridization and selective release that will allow these limitations to be addressed. This will revolutionize the ways that microarrays can be used for LLNL's Global Security missions. The goals of this project were two-fold: automated faster hybridizations and selective release of hybridized features. The first study area involves hybridization kinetics and mass-transfer effects. the standard hybridization protocol uses an overnight incubation to achieve the best possible signal for any sample type, as well as for convenience in manual processing. There is potential to significantly shorten this time based on better understanding and control of the rate-limiting processes and knowledge of the progress of the hybridization. In the hybridization work, a custom microarray flow cell was used to manipulate the chemical and thermal environment of the array and autonomously image the changes over time during hybridization. The second study area is selective release. Microarrays easily generate hybridization patterns and signatures, but there is still an unmet need for methodologies enabling rapid and selective analysis of these patterns and signatures. Detailed analysis of individual spots by subsequent sequencing could potentially yield significant information for rapidly mutating and emerging (or deliberately engineered) pathogens. In the selective release work, optical energy deposition with coherent light quickly provides the thermal energy to

  6. Automated DNA electrophoresis, hybridization and detection

    SciTech Connect

    Zapolski, E.J.; Gersten, D.M.; Golab, T.J.; Ledley, R.S.

    1986-05-01

    A fully automated, computer controlled system for nucleic acid hybridization analysis has been devised and constructed. In practice, DNA is digested with restriction endonuclease enzyme(s) and loaded into the system by pipette; /sup 32/P-labelled nucleic acid probe(s) is loaded into the nine hybridization chambers. Instructions for all the steps in the automated process are specified by answering questions that appear on the computer screen at the start of the experiment. Subsequent steps are performed automatically. The system performs horizontal electrophoresis in agarose gel, fixed the fragments to a solid phase matrix, denatures, neutralizes, prehybridizes, hybridizes, washes, dries and detects the radioactivity according to the specifications given by the operator. The results, printed out at the end, give the positions on the matrix to which radioactivity remains hybridized following stringent washing.

  7. Molecular Mechanisms in Morpholino-DNA Surface Hybridization

    PubMed Central

    Gong, Ping; Wang, Kang; Liu, Yatao; Shepard, Kenneth

    2010-01-01

    Synthetic nucleic acid mimics provide opportunity for redesigning the specificity and affinity of hybridization with natural DNA or RNA. Such redesign is of great interest for diagnostic applications where it can enhance the desired signal against a background of competing interactions. This report compares hybridization of DNA analyte strands with morpholinos (MOs), which are uncharged nucleic acid mimics, to the corresponding DNA-DNA case in solution and on surfaces. In solution, MO-DNA hybridization is found to be independent of counterion concentration, in contrast to DNA-DNA hybridization. On surfaces, when immobilized MO or DNA “probe” strands hybridize with complementary DNA “targets” from solution, both the MO-DNA and DNA-DNA processes depend on ionic strength but exhibit qualitatively different behaviors. At lower ionic strengths, MO-DNA surface hybridization exhibits hallmarks of kinetic limitations when separation between hybridized probe sites becomes comparable to target dimensions, whereas extents of DNA-DNA surface hybridization are instead consistent with limits imposed by buildup of surface (Donnan) potential. The two processes also fundamentally differ at high ionic strength, under conditions when electrostatic effects are weak. Here, variations in probe coverage have a much diminished impact on MO-DNA than on DNA-DNA hybridization for similarly crowded surface conditions. These various observations agree with a structural model of MO monolayers in which MO-DNA duplexes segregate to the buffer interface while unhybridized probes localize near the solid support. A general perspective is presented on using uncharged DNA analogues, which also include compounds such as peptide nucleic acids (PNA), in surface hybridization applications. PMID:20572663

  8. Preparation and characterization of imogolite/DNA hybrid hydrogels.

    PubMed

    Jiravanichanun, Nattha; Yamamoto, Kazuya; Kato, Kenichi; Kim, Jungeun; Horiuchi, Shin; Yah, Weng-On; Otsuka, Hideyuki; Takahara, Atsushi

    2012-01-01

    Imogolite is one of the clay minerals contained in volcanic ash soils. The novel hybrid hydrogels were prepared from imogolite nanofibers and DNA by utilizing strong interaction between the aluminol groups on imogolite surface and phosphate groups of DNA. The hybrid hydrogels of imogolite and DNA were prepared in various feed ratios, and their physicochemical properties and molecular aggregation states were investigated in both dispersion and gel states. The maximum DNA content in the hybrid gels was shown in equivalent molar ratio of imogolite and DNA. The physical properties of the hybrid gels were changed by varying DNA blend ratios. In the dispersion state, the hybrid gels showed a fibrous structure of imogolite, whereas a continuous network structure was observed in pure imogolite, indicating that the hybrid with DNA enhanced the dispersion of imogolite. In the gel state, DNA and imogolite nanofibers formed a 3D network structure. PMID:22148683

  9. Sensitivity, Specificity, and the Hybridization Isotherms of DNA Chips

    PubMed Central

    Halperin, A.; Buhot, A.; Zhulina, E.B.

    2004-01-01

    Competitive hybridization, at the surface and in the bulk, lowers the sensitivity of DNA chips. Competitive surface hybridization occurs when different targets can hybridize with the same probe. Competitive bulk hybridization takes place when the targets can hybridize with free complementary chains in the solution. The effects of competitive hybridization on the thermodynamically attainable performance of DNA chips are quantified in terms of the hybridization isotherms of the spots. These relate the equilibrium degree of the hybridization to the bulk composition. The hybridization isotherm emerges as a Langmuir isotherm modified for electrostatic interactions within the probe layer. The sensitivity of the assay in equilibrium is directly related to the slope of the isotherm. A simpler description is possible, in terms of c50 values specifying the bulk composition corresponding to 50% hybridization at the surface. The effects of competitive hybridization are important for the quantitative analysis of DNA chip results, especially when used to study point mutations. PMID:14747310

  10. DNA Hybridization: Nonradioactive Labeling Now Available for the Laboratory.

    ERIC Educational Resources Information Center

    Freeman, Lenore Gardner

    1984-01-01

    The advantages of DNA hybridization procedures for classroom and clinical use can now be realized by the recent development of nonradioactive DNA labeling/detection procedures. These methods (which are described) can replace the use of isotopes in standard DNA hybridization procedures. (JN)

  11. Hybrid DNA materials for energy storage

    NASA Astrophysics Data System (ADS)

    Norwood, R. A.; Thomas, J.; Peyghambarian, N.; Wang, J.; Li, L.; Ouchen, F.; Grote, J. E.

    2010-08-01

    We investigate the dielectric and electrical properties of sol-gel/DNA-CTMA blends, with particular interest in capacitor applications in energy storage. Methacryloyloxypropyltrimethoxysilane (MAPTMS) was the solgel precursor, and DNA-CTMA was blended in to the resulting sol-gel at various weight percentages. The blends were tested for their dielectric properties and dielectric breakdown strength; the 5% DNA blend was found to be optimal with a dielectric constant in the range of 7.5, while the breakdown strength was greater than 800 V/μm for 1 μm films and about 500 V/μm for 5μm films. Hybrid sol-gel/DNA-CTMA/barium titanate nanoparticle composites were also formulated and their dielectric properties measured. While a high dielectric constant was achieved (38), this came at the expense of a significantly reduced breakdown voltage (160V/μm). We discuss these results as well as other aspects of the dielectric and electrical properties of these blends.

  12. Signal enhancement in electronic detection of DNA hybridization

    NASA Astrophysics Data System (ADS)

    Gentil, C.; Philippin, G.; Bockelmann, U.

    2007-01-01

    Electronic detection of the specific recognition between complementary DNA sequences is investigated. DNA probes are immobilized at different lateral positions on a Poly( L -lysine)-coated surface of an integrated silicon transistor array. Hybridization and field effect detection are done with the solid surface immersed in electrolyte solutions. Differential measurements are performed, where DNA hybridization leads to surface potential shifts between the transistors of the array. We experimentally show that these differential signals of hybridization can be enhanced significantly by changing the salt concentration between hybridization and detection.

  13. Cytomegalovirus in urine: detection of viral DNA by sandwich hybridization.

    PubMed

    Virtanen, M; Syvänen, A C; Oram, J; Söderlund, H; Ranki, M

    1984-12-01

    A cytomegalovirus (CMV)-specific sandwich hybridization test was constructed by using two adjacent BamHI DNA fragments of CMV DNA as reagents. The fragments were cloned into two different vectors. One of the recombinants was attached to the filter, and the other was the labeled probe. When present in the sample, CMV DNA mediated labeling of the filter by hybridizing to both the filter-bound DNA and the probe. The sandwich hybridization test was applied for the detection of CMV DNA from urine. DNA was released from virus by 2% Sarkosyl, concentrated by 2-butanol extraction and isopropanol precipitation, denatured, and finally subjected to the sandwich hybridization test. As a result, 70 to 90% of the original viral DNA could be recovered and demonstrated by the quantitative hybridization reaction. Urine could be stored at room temperature in Sarkosyl for at least 2 days without affecting the detectability of CMV. The clinical applicability of the test was evaluated by studying urine samples from four infants excreting CMV. Sandwich hybridization demonstrated the presence of CMV DNA in all of the specimens. These contained originally 10(5) to 10(8) CMV DNA molecules per ml. PMID:6097598

  14. Coulomb blockage of hybridization in two-dimensional DNA arrays

    NASA Astrophysics Data System (ADS)

    Vainrub, Arnold; Pettitt, B. Montgomery

    2002-10-01

    Experiments on DNA microarrays have revealed substantial differences in hybridization thermodynamics between DNA free in solution and surface tethered DNA. Here we develop a mean field model of the Coulomb effects in two-dimensional DNA arrays to understand the binding isotherms and thermal denaturation of the double helix. We find that the electrostatic repulsion of the assayed nucleic acid from the array of DNA probes dominates the binding thermodynamics, and thus causes the Coulomb blockage of the hybridization. The results explain, observed in DNA microarrays, the dramatic decrease of the hybridization efficiency and the thermal denaturation curve broadening as the probe surface density grows. We demonstrate application of the theory for evaluation and optimization of the sensitivity, specificity, and the dynamic range of DNA array devices.

  15. Detection of hemolytic Listeria monocytogenes by using DNA colony hybridization

    SciTech Connect

    Datta, A.R.; Wentz, B.A.; Hill, W.E.

    1987-09-01

    A fragment of about 500 base pairs of the beta-hemolysin gene from Listeria monocytogenes was used to screen different bacterial strains by DNA colony hybridization. The cells in the colonies were lysed by microwaves in the presence of sodium hydroxide. Of 52 different strains of Listeria species screened, only the DNA from beta-hemolytic (CAMP-positive) strains of L. monocytogenes hybridized with this probe.

  16. DNA/DNA in situ hybridization with enzyme linked probes

    SciTech Connect

    Grillo, S.; Mosher, M.; Charles, P.; Henry, S.; Taub, F.

    1987-05-01

    A non-radioactive in situ nucleic acid hybridization method which requires no antibodies, haptens, avidin or biotin intermediateries is presented. Horseradish peroxidase (HRP) labeled nucleic acid probes are hybridized in situ for 2 hours or less, followed by brief washing of hybridized cells and the direct detection of in situ hybrids with diaminobenzidine (DAB). Application of this method to the detection of Human Papilloma Virus (HPV) in human cells is shown.

  17. Dynamic Modulation of DNA Hybridization Using Allosteric DNA Tetrahedral Nanostructures.

    PubMed

    Song, Ping; Li, Min; Shen, Juwen; Pei, Hao; Chao, Jie; Su, Shao; Aldalbahi, Ali; Wang, Lihua; Shi, Jiye; Song, Shiping; Wang, Lianhui; Fan, Chunhai; Zuo, Xiaolei

    2016-08-16

    The fixed dynamic range of traditional biosensors limits their utility in several real applications. For example, viral load monitoring requires the dynamic range spans several orders of magnitude; whereas, monitoring of drugs requires extremely narrow dynamic range. To overcome this limitation, here, we devised tunable biosensing interface using allosteric DNA tetrahedral bioprobes to tune the dynamic range of DNA biosensors. Our strategy takes the advantage of the readily and flexible structure design and predictable geometric reconfiguration of DNA nanotechnology. We reconfigured the DNA tetrahedral bioprobes by inserting the effector sequence into the DNA tetrahedron, through which, the binding affinity of DNA tetrahedral bioprobes can be tuned. As a result, the detection limit of DNA biosensors can be programmably regulated. The dynamic range of DNA biosensors can be tuned (narrowed or extended) for up to 100-fold. Using the regulation of binding affinity, we realized the capture and release of biomolecules by tuning the binding behavior of DNA tetrahedral bioprobes. PMID:27435955

  18. Building a Phylogenetic Tree of the Human and Ape Superfamily Using DNA-DNA Hybridization Data

    ERIC Educational Resources Information Center

    Maier, Caroline Alexander

    2004-01-01

    The study describes the process of DNA-DNA hybridization and the history of its use by Sibley and Alquist in simple, straightforward, and interesting language that students easily understand to create their own phylogenetic tree of the hominoid superfamily. They calibrate the DNA clock and use it to estimate the divergence dates of the various…

  19. Identification of Lactobacillus UFV H2B20 (probiotic strain) using DNA-DNA hybridization

    PubMed Central

    de Magalhães, J.T.; Uetanabaro, A.P. T.; de Moraes, C.A.

    2008-01-01

    Sequence analyses of the 16S rDNA gene and DNA-DNA hybridization tests were performed for identification of the species of the probiotic Lactobacillus UFV H2b20 strain. Using these two tests, we concluded that this strain, originally considered Lact. acidophilus, should be classified as Lact. delbrueckii. PMID:24031263

  20. DNA fluorescence shift sensor: a rapid method for the detection of DNA hybridization using silver nanoclusters.

    PubMed

    Lee, Shin Yong; Hairul Bahara, Nur Hidayah; Choong, Yee Siew; Lim, Theam Soon; Tye, Gee Jun

    2014-11-01

    DNA-templated silver nanoclusters (AgNC) are a class of subnanometer sized fluorophores with good photostability and brightness. It has been applied as a diagnostic tool mainly for deoxyribonucleic acid (DNA) detection. Integration of DNA oligomers to generate AgNCs is interesting as varying DNA sequences can result in different fluorescence spectra. This allows a simple fluorescence shifting effect to occur upon DNA hybridization with the hybridization efficiency being a pronominal factor for successful shifting. The ability to shift the fluorescence spectra as a result of hybridization overcomes the issue of background intensities in most fluorescent based assays. Here we describe an optimized method for the detection of single-stranded and double-stranded synthetic forkhead box P3 (FOXP3) target by hybridization with the DNA fluorescence shift sensor. The system forms a three-way junction by successful hybridization of AgNC, G-rich strand (G-rich) to the target DNA, which generated a shift in fluorescence spectra with a marked increase in fluorescence intensity. The DNA fluorescence shift sensor presents a rapid and specific alternative to conventional DNA detection. PMID:25129336

  1. Comparing Charge Transport in Oligonucleotides: RNA:DNA Hybrids and DNA Duplexes.

    PubMed

    Li, Yuanhui; Artés, Juan M; Qi, Jianqing; Morelan, Ian A; Feldstein, Paul; Anantram, M P; Hihath, Joshua

    2016-05-19

    Understanding the electronic properties of oligonucleotide systems is important for applications in nanotechnology, biology, and sensing systems. Here the charge-transport properties of guanine-rich RNA:DNA hybrids are compared to double-stranded DNA (dsDNA) duplexes with identical sequences. The conductance of the RNA:DNA hybrids is ∼10 times higher than the equivalent dsDNA, and conformational differences are determined to be the primary reason for this difference. The conductance of the RNA:DNA hybrids is also found to decrease more rapidly than dsDNA when the length is increased. Ab initio electronic structure and Green's function-based density of states calculations demonstrate that these differences arise because the energy levels are more spatially distributed in the RNA:DNA hybrid but that the number of accessible hopping sites is smaller. These combination results indicate that a simple hopping model that treats each individual guanine as a hopping site is insufficient to explain both a higher conductance and β value for RNA:DNA hybrids, and larger delocalization lengths must be considered. PMID:27145167

  2. DNA hybridization and ligation for directed colloidal assembly

    NASA Astrophysics Data System (ADS)

    Shyr, Margaret

    Colloidal assembly using DNA hybridization has been pursued as a means assemble non-conventional ordered colloidal structures. However, to date it is undetermined whether DNA hybridization can be used to achieve non-FCC colloidal crystals. Using microcontact printing techniques, we have fabricated covalently bound single stranded DNA (ssDNA) two-dimensional arrays on glass surfaces, which were used to direct the assembly of complementary DNA functionalized polystyrene colloids. Two of the hallmarks of DNA hybridization, sequence specificity and thermal reversibility, were demonstrated. Due to the periodicity of these arrays, laser diffraction was used to directly monitor these structures during assembly. To demonstrate the versatility of the 2D colloidal array assembled via DNA hybridization, a catalytic DNA sequence or DNAzyme was incorporated into the colloidal array system. By tethering the enzymatic strand to the patterned glass surface and the substrate strand to polystyrene colloids, we showed that the DNAzyme could prevent the assembly of the arrays when the required Pb2+ cofactor was provided. Attempts to assemble the colloid arrays and disassemble via the Pb2+-DNAzyme induced cleavage were unsuccessful, likely due to the incomplete cleavage of the multitude of hybridized linkages between each colloid and the surface. Since DNA is not only capable of catalyzing reactions, but also capable of being reacted upon by a variety of biological enzymes, we examined the use of DNA ligase as a means to control the assembly of DNA-functionalized colloids. A three-sequence linker system was used for the hybridization mediated assembly of colloids: one sequence was tethered to the surface of the glass slide or colloids, one was tethered to another colloid surface, and the linker sequence hybridizes simultaneously to both tethered sequences. Once hybridized, the two tethered fragments can be ligated using DNA ligase, resulting in a continuous sequence tethered on one end

  3. Optical fibre-based detection of DNA hybridization.

    PubMed

    Hine, Anna V; Chen, Xianfeng; Hughes, Marcus D; Zhou, Kaiming; Davies, Edward; Sugden, Kate; Bennion, Ian; Zhang, Lin

    2009-04-01

    A dual-peak LPFG (long-period fibre grating), inscribed in an optical fibre, has been employed to sense DNA hybridization in real time, over a 1 h period. One strand of the DNA was immobilized on the fibre, while the other was free in solution. After hybridization, the fibre was stripped and repeated detection of hybridization was achieved, so demonstrating reusability of the device. Neither strand of DNA was fluorescently or otherwise labelled. The present paper will provide an overview of our early-stage experimental data and methodology, examine the potential of fibre gratings for use as biosensors to monitor both nucleic acid and other biomolecular interactions and then give a summary of the theory and fabrication of fibre gratings from a biological standpoint. Finally, the potential of improving signal strength and possible future directions of fibre grating biosensors will be addressed. PMID:19290879

  4. Direct detection of DNA conformation in hybridization processes.

    PubMed

    Papadakis, George; Tsortos, Achilleas; Bender, Florian; Ferapontova, Elena E; Gizeli, Electra

    2012-02-21

    DNA hybridization studies at surfaces normally rely on the detection of mass changes as a result of the addition of the complementary strand. In this work we propose a mass-independent sensing principle based on the quantitative monitoring of the conformation of the immobilized single-strand probe and of the final hybridized product. This is demonstrated by using a label-free acoustic technique, the quartz crystal microbalance (QCM-D), and oligonucleotides of specific sequences which, upon hybridization, result in DNAs of various shapes and sizes. Measurements of the acoustic ratio ΔD/ΔF in combination with a "discrete molecule binding" approach are used to confirm the formation of straight hybridized DNA molecules of specific lengths (21, 75, and 110 base pairs); acoustic results are also used to distinguish between single- and double-stranded molecules as well as between same-mass hybridized products with different shapes, i.e., straight or "Y-shaped". Issues such as the effect of mono- and divalent cations to hybridization and the mechanism of the process (nucleation, kinetics) when it happens on a surface are carefully considered. Finally, this new sensing principle is applied to single-nucleotide polymorphism detection: a DNA hairpin probe hybridized to the p53 target gene gave products of distinct geometrical features depending on the presence or absence of the SNP, both readily distinguishable. Our results suggest that DNA conformation probing with acoustic wave sensors is a much more improved detection method over the popular mass-related, on/off techniques offering higher flexibility in the design of solid-phase hybridization assays. PMID:22248021

  5. APPLICATION OF DNA-DNA COLONY HYBRIDIZATION TO THE DETECTION OF CATABOLIC GENOTYPES IN ENVIRONMENTAL SAMPLES

    EPA Science Inventory

    The application of preexisting DNA hybridization techniques was investigated for potential in determining populations of specific gene sequences in environmental samples. Cross-hybridizations among two degradative plasmids, TOL and NAH, and two cloning vehicles, pLAFRI and RSF101...

  6. Scanning Tunneling Microscopy of DNA-Carbon Nanotube Hybrids

    NASA Astrophysics Data System (ADS)

    Yarotski, Dzmitry; Kilina, Svetlana; Talin, Alec; Balatsky, Alexander; Tretiak, Sergei; Taylor, Antoinette

    2009-03-01

    Production of carbon nanotube-based (CNT) devices holds a great promise for bringing the size of electronic circuits down to molecular scales. Recently, yet another step has been made towards achieving this goal by developing a new method for metal-semiconductor CNT separation, which relies on wrapping the CNT with ssDNA molecule[1]. Though it was shown that the outcome of the separation process strongly depends on the DNA sequence, further investigations have to be conducted to determine detailed structure of the hybrids and their electronic properties. Here, we use STM to characterize structural and electronic properties of the CNT-DNA hybrids and compare experimental results to theoretical calculations. STM images reveal 3.3 nm DNA coiling period, which agrees very well with the theoretical predictions. Additional width modulations with characteristic lengths of 1.9 and 2.6 nm are observed along the molecule itself. Although scanning tunneling microscopy confirms the presence of DNA in the hybrid and visualizes its structure, further experimental work is required to reveal the dependence of electronic properties of hybrids on their internal structure. [1] M. Zheng et al., Science 302, 1545 (2004).

  7. Post-hybridization recovery of membrane filter-bound DNA for enzymatic DNA amplification.

    PubMed

    Chong, K Y; Chen, C M; Choo, K B

    1993-04-01

    We describe here a simple and rapid method for enzymatic DNA amplification using DNA template recovered from membrane filters previously used in hybridization analysis. This is done by first solubilizing membrane pieces carrying DNA of interest in dimethyl sulfoxide, followed by isopropanol precipitation and polymerase chain reaction amplification. The source of membrane-bound DNA successfully tested includes plasmid and human leukocyte DNA and DNA immobilized on bacterial colony filters and plaque lifts. The sensitivity of the procedure is such that DNA recovered from 0.5 microgram of filter-bound total human DNA was enough for PCR amplification of a 0.3-kb fragment. Our protocol will be useful for recycling of scarce DNA samples for cloning and sequencing purposes. PMID:8476600

  8. Kinetic Mechanisms in Morpholino-DNA Surface Hybridization

    PubMed Central

    Liu, Yatao; Irving, Damion; Qiao, Wanqiong; Ge, Dongbiao

    2011-01-01

    Morpholinos (MOs) are DNA analogues whose uncharged nature can bring fundamental advantages to surface hybridization technologies such as DNA microarrays, by using MOs as the immobilized, or “probe”, species. Advancement of MO-based diagnostics, however, is challenged by limited understanding of the surface organization of MO molecules and of how this organization impacts hybridization kinetics and thermodynamics. The present study focuses on hybridization kinetics between monolayers of MO probes and DNA targets as a function of the instantaneous extent of hybridization (i.e. duplex coverage), total probe coverage, and ionic strength. Intriguingly, these experiments reveal distinct kinetic stages, none of which are consistent with Langmuir kinetics. The initial stage, in which duplex coverage remains relatively sparse, indicates confluence of two effects: blockage of target access to unhybridized probes by previously formed duplexes, and deactivation of the solid support due to consumption of probe molecules. This interpretation is consistent with a surface organization in which unhybridized MO probes localize near the solid support, underneath a layer of MO-DNA duplexes. As duplex coverage builds, provided saturation is not reached first, the initial stage can transition to an unusual regime characterized by near independence of hybridization rate on duplex coverage, followed by a prolonged approach to equilibrium. The possible origins of these more complex latter behaviors are discussed. Comparison with published data for DNA and peptide nucleic acid (PNA) probes is carried out to look for universal trends in kinetics. This comparison reveals qualitative similarities when comparable surface organization of probes is expected. In addition, MO monolayers are found capable of a broad range of reactivities that span reported values for PNA and DNA probes. PMID:21699181

  9. Kinetic mechanisms in morpholino-DNA surface hybridization.

    PubMed

    Liu, Yatao; Irving, Damion; Qiao, Wanqiong; Ge, Dongbiao; Levicky, Rastislav

    2011-08-01

    Morpholinos (MOs) are DNA analogues whose uncharged nature can bring fundamental advantages to surface hybridization technologies such as DNA microarrays, by using MOs as the immobilized, or "probe", species. Advancement of MO-based diagnostics, however, is challenged by limited understanding of the surface organization of MO molecules and of how this organization impacts hybridization kinetics and thermodynamics. The present study focuses on hybridization kinetics between monolayers of MO probes and DNA targets as a function of the instantaneous extent of hybridization (i.e., duplex coverage), total probe coverage, and ionic strength. Intriguingly, these experiments reveal distinct kinetic stages, none of which are consistent with Langmuir kinetics. The initial stage, in which duplex coverage remains relatively sparse, indicates confluence of two effects: blockage of target access to unhybridized probes by previously formed duplexes and deactivation of the solid support due to consumption of probe molecules. This interpretation is consistent with a surface organization in which unhybridized MO probes localize near the solid support, underneath a layer of MO-DNA duplexes. As duplex coverage builds, provided saturation is not reached first, the initial stage can transition to an unusual regime characterized by near independence of hybridization rate on duplex coverage, followed by a prolonged approach to equilibrium. The possible origins of these more complex latter behaviors are discussed. Comparison with published data for DNA and peptide nucleic acid (PNA) probes is carried out to look for universal trends in kinetics. This comparison reveals qualitative similarities when comparable surface organization of probes is expected. In addition, MO monolayers are found capable of a broad range of reactivities that span reported values for PNA and DNA probes. PMID:21699181

  10. ESI-MS Investigation of an Equilibrium between a Bimolecular Quadruplex DNA and a Duplex DNA/RNA Hybrid

    NASA Astrophysics Data System (ADS)

    Birrento, Monica L.; Bryan, Tracy M.; Samosorn, Siritron; Beck, Jennifer L.

    2015-07-01

    Electrospray ionization mass spectrometry (ESI-MS) conditions were optimized for simultaneous observation of a bimolecular qDNA and a Watson-Crick base-paired duplex DNA/RNA hybrid. The DNA sequence used was telomeric DNA, and the RNA contained the template for telomerase-mediated telomeric DNA synthesis. Addition of RNA to the quadruplex DNA (qDNA) resulted in formation of the duplex DNA/RNA hybrid. Melting profiles obtained using circular dichroism spectroscopy confirmed that the DNA/RNA hybrid exhibited greater thermal stability than the bimolecular qDNA in solution. Binding of a 13-substituted berberine ( 1) derivative to the bimolecular qDNA stabilized its structure as evidenced by an increase in its stability in the mass spectrometer, and an increase in its circular dichroism (CD) melting temperature of 10°C. The DNA/RNA hybrid did not bind the ligand extensively and its thermal stability was unchanged in the presence of ( 1). The qDNA-ligand complex resisted unfolding in the presence of excess RNA, limiting the formation of the DNA/RNA hybrid. Previously, it has been proposed that DNA secondary structures, such as qDNA, may be involved in the telomerase mechanism. DNA/RNA hybrid structures occur at the active site of telomerase. The results presented in the current work show that if telomeric DNA was folded into a qDNA structure, it is possible for a DNA/RNA hybrid to form as is required during template alignment. The discrimination of ligand ( 1) for binding to the bimolecular qDNA over the DNA/RNA hybrid positions it as a useful compound for probing the role(s), if any, of antiparallel qDNA in the telomerase mechanism.

  11. DNA-DNA hybridization assay for detection of Salmonella spp. in foods.

    PubMed Central

    Fitts, R; Diamond, M; Hamilton, C; Neri, M

    1983-01-01

    We have developed a DNA-DNA hybridization test for the presence of Salmonella spp. in foods. This test requires an initial pre-enrichment of food samples in nutrient broth but does not require selective enrichment. Samples of food cultures are collected on membrane filters and assayed by molecular hybridization to labeled probes. The probes consist of DNA sequences which are unique to the genus Salmonella and are widely distributed in the genus. A diverse panel of foods was assayed successfully by this methodology. Images PMID:6360046

  12. DNA microarrays for hybridization detection by surface plasmon resonance spectroscopy.

    PubMed

    Kick, Alfred; Bönsch, Martin; Katzschner, Beate; Voigt, Jan; Herr, Alexander; Brabetz, Werner; Jung, Martin; Sonntag, Frank; Klotzbach, Udo; Danz, Norbert; Howitz, Steffen; Mertig, Michael

    2010-12-15

    We report on the development of a new platform technology for the detection of genetic variations by means of surface plasmon resonance (SPR) spectroscopy. TOPAS chips with integrated optics were exploited in combination with microfluidics. Within minutes, the detection of hybridization kinetics was achieved simultaneously at all spots of the DNA microarray. A nanoliter dispenser is used to deposit thiol-modified single-stranded probe DNA on the gold surface of the chips. We investigated the influence of different parameters on hybridization using model polymerase chain reaction (PCR) products. These PCR products comprised a single-stranded tag sequence being complementary to an anti-tag sequence of probes immobilized on the gold surface. The signals increased with increasing length of PCR products (60, 100 or 300 base pairs) as well as with their concentration. We investigated hybridizations on DNA microarrays comprising 90 spots of probe DNA with three different sequences. Furthermore, we demonstrate that sequences with possible hairpin structures significantly lower the binding rate, and thus, the SPR signals during hybridization. PMID:20729067

  13. DNA sequence copy number analysis by Comparative Genomic Hybridization (CGH)

    SciTech Connect

    Pinkel, D.; Kallioniemi, A.; Kallioniemi, O.; Waldman, F.; Sudar, D.; Gray, I. ); Rutovitz, D.; Piper, I. )

    1993-01-01

    Comparative Genomic Hybridization (CGH) uses the kinetics of in situ hybridization to compare the copy numbers of different DNA sequences within the same genome and the copy numbers of the same sequences among different genomes. In a typical application genomic DNA from a tumor and from normal cells are differentially labeled and simultaneously hybridized to normal metaphase chromosomes, and detected with different fluorochromes. Properly registered images of each fluorochrome are obtained using a microscope equipped with multi-band filters and a CCD camera. Digital image analysis permits measurement of intensity ratio profiles along each of the target chromosomes. Studies of cells with known aberrations indicate that the intensity ratio at each position is proportional to the ratio of the copy numbers of the sequences that bind there in the tumor and normal genomes. Analytical challenges posed by the need to efficiently obtain copy number karyotypes are discussed.

  14. Coarse-grained DNA modeling: Hybridization and ionic effects

    NASA Astrophysics Data System (ADS)

    Hinckley, Daniel M.

    Deoxyribonucleic acid (DNA) is a biopolymer of enormous significance in living systems. The utility of DNA in such systems is derived from the programmable nature of DNA and its unique mechanical properties. Recently, material scientists have harnessed these properties in order to create systems that spontaneous self-assemble on the nanoscale. Both biologists and material scientists are hindered by an incomplete understanding of the physical interactions that together govern DNA's behavior. Computer simulations, especially those at the coarse-grained (CG) level, can potentially complete this understanding by resolving details indiscernible with current experimental techniques. In this thesis, we advance the state-of-the-art of DNA CG simulations by first reviewing the relevant theory and the evolution of CG DNA models since their inception. Then we present 3SPN.2, an improved CG model for DNA that should provide new insights into biological and nanotechnological systems which incorporate DNA. We perform forward flux sampling simulations in order to examine the effect of sequence, oligomer length, and ionic strength on DNA oligomer hybridization. Due to the limitations inherent in continuum treatments of electrostatic interactions in biological systems, we generate a CG model of biological ions for use with 3SPN.2 and other CG models. Lastly, we illustrate the potential of 3SPN.2 and CG ions by using the models in simulations of viral capsid packaging experiments. The models and results described in this thesis will be useful in future modeling efforts that seek to identify the fundamental physics that govern behavior such as nucleosome positioning, DNA hybridization, and DNA nanoassembly.

  15. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    PubMed Central

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-01-01

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  16. Rapid genomic DNA changes in allotetraploid fish hybrids.

    PubMed

    Wang, J; Ye, L H; Liu, Q Z; Peng, L Y; Liu, W; Yi, X G; Wang, Y D; Xiao, J; Xu, K; Hu, F Z; Ren, L; Tao, M; Zhang, C; Liu, Y; Hong, Y H; Liu, S J

    2015-06-01

    Rapid genomic change has been demonstrated in several allopolyploid plant systems; however, few studies focused on animals. We addressed this issue using an allotetraploid lineage (4nAT) of freshwater fish originally derived from the interspecific hybridization of red crucian carp (Carassius auratus red var., ♀, 2n=100) × common carp (Cyprinus carpio L., ♂, 2n=100). We constructed a bacterial artificial chromosome (BAC) library from allotetraploid hybrids in the 20th generation (F20) and sequenced 14 BAC clones representing a total of 592.126 kb, identified 11 functional genes and estimated the guanine-cytosine content (37.10%) and the proportion of repetitive elements (17.46%). The analysis of intron evolution using nine orthologous genes across a number of selected fish species detected a gain of 39 introns and a loss of 30 introns in the 4nAT lineage. A comparative study based on seven functional genes among 4nAT, diploid F1 hybrids (2nF1) (first generation of hybrids) and their original parents revealed that both hybrid types (2nF1 and 4nAT) not only inherited genomic DNA from their parents, but also demonstrated rapid genomic DNA changes (homoeologous recombination, parental DNA fragments loss and formation of novel genes). However, 4nAT presented more genomic variations compared with their parents than 2nF1. Interestingly, novel gene fragments were found for the iqca1 gene in both hybrid types. This study provided a preliminary genomic characterization of allotetraploid F20 hybrids and revealed evolutionary and functional genomic significance of allopolyploid animals. PMID:25669608

  17. Identification of Lotus rhizobia by direct DNA hybridization of crushed root nodules

    SciTech Connect

    Cooper, J.E.; Bjourson, A.J.; Thompson, J.K.

    1987-07-01

    Hybridization of crushed Lotus pedunculatus root nodules with /sup 32/P-labeled total genomic DNA probes was used to identify Rhizobium loti and Bradyrhizobium sp. (Lotus rhizobia). Probes always hybridized with homologous target DNA and frequency with DNAs of other strains from the same genus. Intergeneric hybridization did not occur. Results were comparable to those from colony hybridization.

  18. Multilayer DNA origami packed on hexagonal and hybrid lattices.

    PubMed

    Ke, Yonggang; Voigt, Niels V; Gothelf, Kurt V; Shih, William M

    2012-01-25

    "Scaffolded DNA origami" has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology. PMID:22187940

  19. Gelatin methacrylate (GelMA) mediated electrochemical DNA biosensor for DNA hybridization.

    PubMed

    Topkaya, Seda Nur

    2015-02-15

    In this study, an electrochemical biosensor system for the detection of DNA hybridization by using gelatin methacrylate (GelMA) modified electrodes was developed. Electrochemical behavior of GelMA modified Pencil Graphite Electrode (PGE) that serve as a functional platform was investigated by using Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) and compared with those of the bare PGE. Hybridization was achieved in solution phase and guanine oxidation signal changes were evaluated. The decrease in the guanine oxidation peak currents at around +1.0 V was used as an indicator for the DNA hybridization. Also, more interestingly GelMA intrinsic oxidation peaks at around +0.7 V changed substantially by immobilization of different oligonucleotides such as probe, hybrid and control sequences to the electrode surface. It is the first study of using GelMA as a part of an electrochemical biosensor system. The results are very promising in terms of using GelMA as a new DNA hybridization indicator. Additionally, GelMA modified electrodes could be useful for detecting ultra low quantity of oligonucleotides by providing mechanical support to the bio-recognition layer. The detection limit of this method is at present 10(-12)mol. Signal suppressions were increased from 50% to 93% for hybrid with using GelMA when it was compared to bare electrode which facilitates the hybridization detection. PMID:25286352

  20. A flow cytometry-based dopamine transporter binding assay using antagonist-conjugated quantum dots

    SciTech Connect

    Kovtun, Oleg; Ross, Emily; Tomlinson, Ian; Rosenthal, Sandra

    2012-01-01

    Here we present the development and validation of a flow cytometry-based dopamine transporter (DAT) binding assay that uses antagonist-conjugated quantum dots (QDs).We anticipate that our QD-based assay is of immediate value to the high throughput screening of novel DAT modulators.

  1. Automated hybridization/imaging device for fluorescent multiplex DNA sequencing

    DOEpatents

    Weiss, R.B.; Kimball, A.W.; Gesteland, R.F.; Ferguson, F.M.; Dunn, D.M.; Di Sera, L.J.; Cherry, J.L.

    1995-11-28

    A method is disclosed for automated multiplex sequencing of DNA with an integrated automated imaging hybridization chamber system. This system comprises an hybridization chamber device for mounting a membrane containing size-fractionated multiplex sequencing reaction products, apparatus for fluid delivery to the chamber device, imaging apparatus for light delivery to the membrane and image recording of fluorescence emanating from the membrane while in the chamber device, and programmable controller apparatus for controlling operation of the system. The multiplex reaction products are hybridized with a probe, the enzyme (such as alkaline phosphatase) is bound to a binding moiety on the probe, and a fluorogenic substrate (such as a benzothiazole derivative) is introduced into the chamber device by the fluid delivery apparatus. The enzyme converts the fluorogenic substrate into a fluorescent product which, when illuminated in the chamber device with a beam of light from the imaging apparatus, excites fluorescence of the fluorescent product to produce a pattern of hybridization. The pattern of hybridization is imaged by a CCD camera component of the imaging apparatus to obtain a series of digital signals. These signals are converted by the controller apparatus into a string of nucleotides corresponding to the nucleotide sequence an automated sequence reader. The method and apparatus are also applicable to other membrane-based applications such as colony and plaque hybridization and Southern, Northern, and Western blots. 9 figs.

  2. Automated hybridization/imaging device for fluorescent multiplex DNA sequencing

    DOEpatents

    Weiss, Robert B.; Kimball, Alvin W.; Gesteland, Raymond F.; Ferguson, F. Mark; Dunn, Diane M.; Di Sera, Leonard J.; Cherry, Joshua L.

    1995-01-01

    A method is disclosed for automated multiplex sequencing of DNA with an integrated automated imaging hybridization chamber system. This system comprises an hybridization chamber device for mounting a membrane containing size-fractionated multiplex sequencing reaction products, apparatus for fluid delivery to the chamber device, imaging apparatus for light delivery to the membrane and image recording of fluorescence emanating from the membrane while in the chamber device, and programmable controller apparatus for controlling operation of the system. The multiplex reaction products are hybridized with a probe, then an enzyme (such as alkaline phosphatase) is bound to a binding moiety on the probe, and a fluorogenic substrate (such as a benzothiazole derivative) is introduced into the chamber device by the fluid delivery apparatus. The enzyme converts the fluorogenic substrate into a fluorescent product which, when illuminated in the chamber device with a beam of light from the imaging apparatus, excites fluorescence of the fluorescent product to produce a pattern of hybridization. The pattern of hybridization is imaged by a CCD camera component of the imaging apparatus to obtain a series of digital signals. These signals are converted by the controller apparatus into a string of nucleotides corresponding to the nucleotide sequence an automated sequence reader. The method and apparatus are also applicable to other membrane-based applications such as colony and plaque hybridization and Southern, Northern, and Western blots.

  3. Probing DNA hybridization efficiency and single base mismatch by X-ray photoelectron spectroscopy.

    PubMed

    Liu, Zheng-Chun; Zhang, Xin; He, Nong-Yue; Lu, Zu-Hong; Chen, Zhen-Cheng

    2009-07-01

    We demonstrated the use of X-ray photoelectron spectroscopy (XPS) to study DNA hybridization. Target DNA labeled with hexachloro-fluorescein (HEX) was hybridized to DNA arrays with four different probes. Each probe dot of the hybridized arrays was detected with XPS. The XPS Cl2p peak areas were found to decrease with an increase in mismatched bases in DNA probes. The Cl2p core-level peak area ratio of a probe perfectly matched to one, two and three base-mismatched probes accorded well with the results of conventional fluorescent imaging, which shows that XPS is a potential tool for analyzing DNA arrays. The DNA arrays' hybridization efficiency was assessed by the molar ratio of chlorine to phosphorus in a DNA strand, which was determined from the relevant XPS Cl2p and P2p core-level peak areas after hybridization. This could provide a new method to detect DNA hybridization efficiency. PMID:19282155

  4. Charge transfer through DNA/DNA duplexes and DNA/RNA hybrids: complex theoretical and experimental studies.

    PubMed

    Kratochvílová, Irena; Vala, Martin; Weiter, Martin; Špérová, Miroslava; Schneider, Bohdan; Páv, Ondřej; Šebera, Jakub; Rosenberg, Ivan; Sychrovský, Vladimír

    2013-01-01

    Oligonucleotides conduct electric charge via various mechanisms and their characterization and understanding is a very important and complicated task. In this work, experimental (temperature dependent steady state fluorescence spectroscopy, time-resolved fluorescence spectroscopy) and theoretical (Density Functional Theory) approaches were combined to study charge transfer processes in short DNA/DNA and RNA/DNA duplexes with virtually equivalent sequences. The experimental results were consistent with the theoretical model - the delocalized nature of HOMO orbitals and holes, base stacking, electronic coupling and conformational flexibility formed the conditions for more effective short distance charge transfer processes in RNA/DNA hybrids. RNA/DNA and DNA/DNA charge transfer properties were strongly connected with temperature affected structural changes of molecular systems - charge transfer could be used as a probe of even tiny changes of molecular structures and settings. PMID:23968861

  5. Ultrasensitive FRET-based DNA sensor using PNA/DNA hybridization.

    PubMed

    Yang, Lan-Hee; Ahn, Dong June; Koo, Eunhae

    2016-12-01

    In the diagnosis of genetic diseases, rapid and highly sensitive DNA detection is crucial. Therefore, many strategies for detecting target DNA have been developed, including electrical, optical, and mechanical methods. Herein, a highly sensitive FRET based sensor was developed by using PNA (Peptide Nucleic Acid) probe and QD, in which red color QDs are hybridized with capture probes, reporter probes and target DNAs by EDC-NHS coupling. The hybridized probe with target DNA gives off fluorescent signal due to the energy transfer from QD to Cy5 dye in the reporter probe. Compared to the conventional DNA sensor using DNA probes, the DNA sensor using PNA probes shows higher FRET factor and efficiency due to the higher reactivity between PNA and target DNA. In addition, to elicit the effect of the distance between the donor and the acceptor, we have investigated two types of the reporter probes having Cy5 dyes attached at the different positions of the reporter probes. Results show that the shorter the distance between QDs and Cy5s, the stronger the signal intensity. Furthermore, based on the fluorescence microscopy images using microcapillary chips, the FRET signal is enhanced to be up to 276% times stronger than the signal obtained using the cuvette by the fluorescence spectrometer. These results suggest that the PNA probe system conjugated with QDs can be used as ultrasensitive DNA nanosensors. PMID:27612755

  6. DNA Stains as Surrogate Nucleobases in Fluorogenic Hybridization Probes.

    PubMed

    Hövelmann, Felix; Seitz, Oliver

    2016-04-19

    The increasing importance assigned to RNA dynamics in cells and tissues calls for probe molecules that enable fluorescence microscopy imaging in live cells. To achieve this goal, fluorescence dyes are conjugated with oligonucleotides so as to provide strong emission upon hybridization with the target molecule. The impressive 10(3)-fold fluorescence intensification observed when DNA stains such as thiazole orange (TO) interact with double-stranded DNA is intriguing and prompted the exploration of oligonucleotide conjugates. However, nonspecific interactions of DNA stains with polynucleotides tend to increase background, which would affect the contrast achievable in live-cell imaging. This Account describes the development of DNA-stain-labeled hybridization probes that provide high signal-to-background. We focus on our contributions in context with related advances from other laboratories. The emphasis will be on the requirements of RNA imaging in live cells. To reduce background, intercalator dyes such as TO were appended to peptide nucleic acid (PNA), which is less avidly recognized by DNA stains than DNA/RNA. Constraining the TO dye as a nucleobase surrogate in "forced intercalation (FIT) probes" improved the target specificity, presumably by helping to prevent unspecific interactions. The enforcement of TO intercalation between predetermined base pairs upon formation of the probe-target duplex provided for high brightness and enabled match/mismatch selectivity beyond stringency of hybridization. We show examples that highlight the use of PNA FIT probes in the imaging of mRNA, miRNA, and lncRNA in living cells. The "FIT approach" was recently extended to DNA probes. Signal brightness can become limiting when low-abundance targets ought to be visualized over cellular autofluorescence. We discuss strategies that further the brightness of signaling by FIT probes. Multilabeling with identical dyes does not solve the brightness issue. To avoid self-quenching, we

  7. DNA methylation in placentas of interspecies mouse hybrids.

    PubMed Central

    Schütt, Sabine; Florl, Andrea R; Shi, Wei; Hemberger, Myriam; Orth, Annie; Otto, Sabine; Schulz, Wolfgang A; Fundele, Reinald H

    2003-01-01

    Interspecific hybridization in the genus Mus results in several hybrid dysgenesis effects, such as male sterility and X-linked placental dysplasia (IHPD). The genetic or molecular basis for the placental phenotypes is at present not clear. However, an extremely complex genetic system that has been hypothesized to be caused by major epigenetic changes on the X chromosome has been shown to be active. We have investigated DNA methylation of several single genes, Atrx, Esx1, Mecp2, Pem, Psx1, Vbp1, Pou3f4, and Cdx2, and, in addition, of LINE-1 and IAP repeat sequences, in placentas and tissues of fetal day 18 mouse interspecific hybrids. Our results show some tendency toward hypomethylation in the late gestation mouse placenta. However, no differential methylation was observed in hyper- and hypoplastic hybrid placentas when compared with normal-sized littermate placentas or intraspecific Mus musculus placentas of the same developmental stage. Thus, our results strongly suggest that generalized changes in methylation patterns do not occur in trophoblast cells of such hybrids. PMID:14504229

  8. DNA hybridization activity of single-stranded DNA-conjugated gold nanoparticles used as probes for DNA detection

    NASA Astrophysics Data System (ADS)

    Kira, Atsushi; Matsuo, Kosuke; Nakajima, Shin-ichiro

    2016-02-01

    Colloidal nanoparticles (NPs) have potential applications in bio-sensing technologies as labels or signal enhancers. In order to meet demands for a development of biomolecular assays by a quantitative understanding of single-molecule, it is necessary to regulate accuracy of the NPs probes modified with biomolecules to optimize the characteristics of NPs. However, to our knowledge, there is little information about the structural effect of conjugated biomolecules to the NPs. In this study, we investigated the contribution of a density of single-stranded DNA (ssDNA) conjugating gold NP to hybridization activity. Hybridization activity decreased in accordance with increases in the density of attached ssDNAs, likely due to electrostatic repulsion generated by negatively charged phosphate groups in the ssDNA backbone. These results highlight the importance of controlling the density of ssDNAs attached to the surface of NPs used as DNA detection probes.

  9. Preparation of covalently linked DNA-RNA hybrids and arabinocytidine containing DNA fragments.

    PubMed Central

    de Vroom, E; Roelen, H C; Saris, C P; Budding, T N; van der Marel, G A; van Boom, J H

    1988-01-01

    It will be demonstrated that 5'-O-DMT-N-acyl-deoxyribonucleosides, 5'-O-Lev-2'-O-MTHP-N-acyl-ribonucleosides and, also, 2'-O-MTHP-N-acyl-ara-cytidine can be coupled, via the hydroxybenzotriazole phosphotriester approach, to afford two types of DNA-RNA hybrids as well as ara-C containing DNA-fragments. The final removal of acid-labile DMT and MTHP groups could be effected by 1 h treatment with 80% acetic acid of the otherwise unprotected DNA-RNA hybrids. The same acidic hydrolysis did not result in complete removal of the 2'-O-MTHP group from the ara-C unit. Complete deblocking was accomplished after an additional 2 h aqueous HC1 (0.01 M; pH 2.00) treatment. PMID:2453027

  10. Label-free monitoring of individual DNA hybridization using SERS

    NASA Astrophysics Data System (ADS)

    Qi, Ji; Zeng, Jianbo; Zhao, Fusheng; Santos, Greggy M.; Lin, Steven Hsesheng; Raja, Balakrishnan; Strych, Ulrich; Willson, Richard C.; Shih, Wei-Chuan

    2015-03-01

    Sequence-specific detection of DNA hybridization at the single-molecule level has been instrumental and gradually become a ubiquitous tool in a wide variety of biological and biomedical applications such as clinical diagnostics, biosensors, and drug development. Label-free and amplification-free schemes are of particular interest because they could potentially provide in situ monitoring of individual hybridization events, which may lead to techniques for discriminating subtle variations due to single-base modification without stringency control or repetitive thermal cycling. Surface-enhanced Raman spectroscopy (SERS) has been widely used for molecular detection and identification by exploiting the localized surface plasmon resonance effect when the target molecules are near gold or silver nanostructures. However, effective and robust SERS assays have yet become a reality for trace detection. Recently, we have developed a SERS substrate by shaping nanoporous gold thin films into monolithic submicron disks, called nanoporous gold disks (NPGD). Here we demonstrate in situ monitoring of the same immobilized ssDNA molecules and their individual hybridization events.

  11. [Use of photo-anchoring of DNA probes for fluorescent in situ hybridization].

    PubMed

    Nasedkina, T V; Mal'kov, R B; Fedorova, L I; Godovikova, T S; Kolpashchikov, D M; Poletaev, A I

    1998-01-01

    A possibility was investigated to use photo-crosslinking DNA probes for fluorescent in situ hybridization (FISH). DNA probes were modified by incorporating photonucleotides in these, containing a photoreactive group (tetrafluorobenzazid) and capable of making covalent bonds with the examined DNA, when irradiated in 300-330 nm region. The photonucleotide was incorporated into the probe either by nick-translation, or upon elongation of the hybridized probe by the Kljonow fragment. It has been shown that the DNA probe, cross-linking to a chromosome as a result of covalent bonds, is not removed from the place of hybridization under consequent denaturating washing, which makes it possible to carry out the following DNA hybridization with selective conservation of signals obtained due to previous hybridization. This peculiarity of photo-linking DNA probes makes it possible to use them for the two-step DNA hybridization. To demonstrate this, preparations of human chromosomes were investigated. On the first step, chromosomal DNA was hybridized by means of DNA probe having nucleotide sequences of centromeric regions of chromosomes 13 and 21, the probe being linked to chromosomal DNA by the photonucleotide. Following the denaturation treatment of the preparation, and after the second chromosomal DNA hybridization with cosmid DNA, containing chromosome 13 DNA nucleotide sequence, the signal in chromosome 13 centromeric region was retained to serve a marker of this chromosome, thus fascilitating its easier identification following the hybridization of its DNA with cosmic DNA. The denaturation stability of photo-crosslinking probes opens some new possibilities in technology of DNA in situ hybridization. PMID:9821246

  12. Label-free photoelectrochemical strategy for hairpin DNA hybridization detection on titanium dioxide electrode

    SciTech Connect

    Lu Wu; Wang Geng; Jin Yan; Yao Xin; Hu Jianqiang; Li Jinghong

    2006-12-25

    A new photoelectrochemical strategy for hairpin DNA hybridization was devised, in which TiO{sub 2} served as the anchor and signal transducer, and no label or redox couples were required. Once the hybridization between hairpin DNA probe and target DNA occurred, the photocurrent would decrease, utilizing which the sequence of the target DNA could be identified. The sequence specificity experiment showed that one or more mismatches of DNA bases could be discriminated. This photoelectrochemical method would be a potential tool in DNA hybridization detection due to its great advantages: label-free, high sensitivity, specific recognition, low cost, and easy fabrication.

  13. Denaturation, renaturation, and loss of DNA during in situ hybridization procedures.

    PubMed

    Raap, A K; Marijnen, J G; Vrolijk, J; van der Ploeg, M

    1986-05-01

    With the aim of optimizing in situ hybridization methods, alkaline, acid, and thermal denaturation procedures have been studied for their ability to separate the DNA strands of nuclear DNA and for the DNA losses they induce. Isolated methanol/acetic acid-fixed mouse liver nuclei have been used as a biological object. The results, obtained with acridine orange staining and microfluorometry, show that all denaturations studied lead to almost complete strand separation. Quantitative DNA staining and cytometry indicated that with heat and alkaline denaturation about 40% of the DNA is lost. Acid denaturation led to about 20% DNA loss. For the alkaline denaturation, the DNA retention could be improved to a 20% DNA loss by adding 70% ethanol to the denaturation medium. During hybridization, another 20% DNA loss occurs. When denatured nuclei are brought under annealing conditions, a rapid renaturation of a considerable fraction of the remaining DNA occurs. The extent of renaturation was dependent on the type of denaturation used. For the ethanolic alkaline denaturation, it was estimated to be 35%. Quantitative nonautoradiographic in situ hybridization experiments with acetylaminofluorene-modified mouse satellite DNA showed that alkaline denaturation procedures are superior to the heat and acid denaturation. As proven by acridine orange fluorescence measurements, hybridization conditions can be designed that permit DNA.RNA hybridization under in situ DNA.DNA denaturing conditions. These conditions should be very useful, especially for in situ hybridization with single-stranded RNA probes. PMID:3709305

  14. Genome-wide profiling of yeast DNA:RNA hybrid prone sites with DRIP-chip.

    PubMed

    Chan, Yujia A; Aristizabal, Maria J; Lu, Phoebe Y T; Luo, Zongli; Hamza, Akil; Kobor, Michael S; Stirling, Peter C; Hieter, Philip

    2014-04-01

    DNA:RNA hybrid formation is emerging as a significant cause of genome instability in biological systems ranging from bacteria to mammals. Here we describe the genome-wide distribution of DNA:RNA hybrid prone loci in Saccharomyces cerevisiae by DNA:RNA immunoprecipitation (DRIP) followed by hybridization on tiling microarray. These profiles show that DNA:RNA hybrids preferentially accumulated at rDNA, Ty1 and Ty2 transposons, telomeric repeat regions and a subset of open reading frames (ORFs). The latter are generally highly transcribed and have high GC content. Interestingly, significant DNA:RNA hybrid enrichment was also detected at genes associated with antisense transcripts. The expression of antisense-associated genes was also significantly altered upon overexpression of RNase H, which degrades the RNA in hybrids. Finally, we uncover mutant-specific differences in the DRIP profiles of a Sen1 helicase mutant, RNase H deletion mutant and Hpr1 THO complex mutant compared to wild type, suggesting different roles for these proteins in DNA:RNA hybrid biology. Our profiles of DNA:RNA hybrid prone loci provide a resource for understanding the properties of hybrid-forming regions in vivo, extend our knowledge of hybrid-mitigating enzymes, and contribute to models of antisense-mediated gene regulation. A summary of this paper was presented at the 26th International Conference on Yeast Genetics and Molecular Biology, August 2013. PMID:24743342

  15. Genome-Wide Profiling of Yeast DNA:RNA Hybrid Prone Sites with DRIP-Chip

    PubMed Central

    Lu, Phoebe Y. T.; Luo, Zongli; Hamza, Akil; Kobor, Michael S.; Stirling, Peter C.; Hieter, Philip

    2014-01-01

    DNA:RNA hybrid formation is emerging as a significant cause of genome instability in biological systems ranging from bacteria to mammals. Here we describe the genome-wide distribution of DNA:RNA hybrid prone loci in Saccharomyces cerevisiae by DNA:RNA immunoprecipitation (DRIP) followed by hybridization on tiling microarray. These profiles show that DNA:RNA hybrids preferentially accumulated at rDNA, Ty1 and Ty2 transposons, telomeric repeat regions and a subset of open reading frames (ORFs). The latter are generally highly transcribed and have high GC content. Interestingly, significant DNA:RNA hybrid enrichment was also detected at genes associated with antisense transcripts. The expression of antisense-associated genes was also significantly altered upon overexpression of RNase H, which degrades the RNA in hybrids. Finally, we uncover mutant-specific differences in the DRIP profiles of a Sen1 helicase mutant, RNase H deletion mutant and Hpr1 THO complex mutant compared to wild type, suggesting different roles for these proteins in DNA:RNA hybrid biology. Our profiles of DNA:RNA hybrid prone loci provide a resource for understanding the properties of hybrid-forming regions in vivo, extend our knowledge of hybrid-mitigating enzymes, and contribute to models of antisense-mediated gene regulation. A summary of this paper was presented at the 26th International Conference on Yeast Genetics and Molecular Biology, August 2013. PMID:24743342

  16. Methods for assessing DNA hybridization of PNA-TiO2 nanoconjugates

    PubMed Central

    Brown, Eric M. B.; Paunesku, Tatjana; Wu, AiGuo; Thurn, K. Ted; Haley, Benjamin; Clark, Jimmy; Priester, Taisa; Woloschak, Gayle E.

    2008-01-01

    We describe the synthesis of peptide nucleic acid (PNA)-titanium dioxide (TiO2) nanoconjugates and the several novel methods developed to investigate the DNA hybridization behaviors of these constructs. PNAs are synthetic DNA analogs resistant to degradation by cellular enzymes, which hybridize to single strand DNA (ssDNA) with higher affinity than DNA oligonucleotides, invade double strand DNA (dsDNA), and form different PNA-DNA complexes. Previously, we developed a DNA-TiO2 nanoconjugate capable of hybridizing to target DNA intracellularly in a sequence-specific manner, with the ability to cleave DNA when excited by electromagnetic radiation, but susceptible to degradation which may lower its intracellular targeting efficiency and retention time. PNA-TiO2 nanoconjugates described herein hybridize to target ssDNA, oligonucleotide dsDNA, and supercoiled plasmid DNA under physiological-like ionic and temperature conditions, enabling rapid and inexpensive, sequence-specific precipitation of nucleic acids in vitro. When modified by the addition of imaging agents or peptides, hybridization capabilities of PNA-TiO2 nanoconjugates are enhanced which provides essential benefits for numerous in vitro and in vivo applications. The series of experiments shown here could not be done with either TiO2-DNA nanoconjugates or PNAs alone, and the novel methods developed will benefit studies of numerous other nanoconjugate systems. PMID:18786502

  17. Nucleic Acid-Peptide Complex Phase Controlled by DNA Hybridization

    NASA Astrophysics Data System (ADS)

    Vieregg, Jeffrey; Lueckheide, Michael; Leon, Lorraine; Marciel, Amanda; Tirrell, Matthew

    When polyanions and polycations are mixed, counterion release drives formation of polymer-rich complexes that can either be solid (precipitates) or liquid (coacervates) depending on the properties of the polyelectrolytes. These complexes are important in many fields, from encapsulation of industrial polymers to membrane-free segregation of biomolecules such as nucleic acids and proteins. Condensation of long double-stranded DNA has been studied for several decades, but comparatively little attention has been paid to the polyelectrolyte behavior of oligonucleotides. We report here studies of DNA oligonucleotides (10 - 88 nt) complexed with polylysine (10 - 100 aa). Unexpectedly, we find that the phase of the resulting complexes is controlled by the hybridization state of the nucleic acid, with double-stranded DNA forming precipitates and single-stranded DNA forming coacervates. Stability increases with polyelectrolyte length and decreases with solution salt concentration, with complexes of the longer double-stranded polymers undergoing precipitate/coacervate/soluble transitions as ionic strength is increased. Mixing coacervates formed by complementary single-stranded oligonucleotides results in precipitate formation, raising the possibility of stimulus-responsive material design.

  18. Crowding-Induced Hybridization of Single DNA Hairpins.

    PubMed

    Baltierra-Jasso, Laura E; Morten, Michael J; Laflör, Linda; Quinn, Steven D; Magennis, Steven W

    2015-12-30

    It is clear that a crowded environment influences the structure, dynamics, and interactions of biological molecules, but the complexity of this phenomenon demands the development of new experimental and theoretical approaches. Here we use two complementary single-molecule FRET techniques to show that the kinetics of DNA base pairing and unpairing, which are fundamental to both the biological role of DNA and its technological applications, are strongly modulated by a crowded environment. We directly observed single DNA hairpins, which are excellent model systems for studying hybridization, either freely diffusing in solution or immobilized on a surface under crowding conditions. The hairpins followed two-state folding dynamics with a closing rate increasing by 4-fold and the opening rate decreasing 2-fold, for only modest concentrations of crowder [10% (w/w) polyethylene glycol (PEG)]. These experiments serve both to unambiguously highlight the impact of a crowded environment on a fundamental biological process, DNA base pairing, and to illustrate the benefits of single-molecule approaches to probing the structure and dynamics of complex biomolecular systems. PMID:26654490

  19. The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability

    PubMed Central

    Hamperl, Stephan; Cimprich, Karlene A.

    2014-01-01

    Accurate DNA replication and DNA repair are crucial for the maintenance of genome stability, and it is generally accepted that failure of these processes is a major source of DNA damage in cells. Intriguingly, recent evidence suggests that DNA damage is more likely to occur at genomic loci with high transcriptional activity. Furthermore, loss of certain RNA processing factors in eukaryotic cells is associated with increased formation of co-transcriptional RNA:DNA hybrid structures known as R-loops, resulting in double-strand breaks (DSBs) and DNA damage. However, the molecular mechanisms by which R-loop structures ultimately lead to DNA breaks and genome instability is not well understood. In this review, we summarize the current knowledge about the formation, recognition and processing of RNA:DNA hybrids, and discuss possible mechanisms by which these structures contribute to DNA damage and genome instability in the cell. PMID:24746923

  20. Quantitative hybridization to genomic DNA fractionated by pulsed-field gel electrophoresis.

    PubMed

    Leach, T J; Glaser, R L

    1998-10-15

    Hybridization to genomic DNA fractionated by CHEF electrophoresis can vary >100-fold if the DNA is acid depurinated prior to Southern blotting. The level of hybridization is high or low depending on whether the molecule being analyzed migrates at a size coincident with or different from the size of the majority of genomic DNA in the sample, respectively. Techniques that avoid acid depurination including in-gel hybridizations and UV irradiation of DNA prior to blotting provide more accurate quantitative results. CHEF analysis of DNA molecules containing repetitive satellite sequences is particularly prone to this effect. PMID:9753752

  1. Conformational selection and induced fit for RNA polymerase and RNA/DNA hybrid backtracked recognition

    PubMed Central

    Wu, Jian; Ye, Wei; Yang, Jingxu; Chen, Hai-Feng

    2015-01-01

    RNA polymerase catalyzes transcription with a high fidelity. If DNA/RNA mismatch or DNA damage occurs downstream, a backtracked RNA polymerase can proofread this situation. However, the backtracked mechanism is still poorly understood. Here we have performed multiple explicit-solvent molecular dynamics (MD) simulations on bound and apo DNA/RNA hybrid to study backtracked recognition. MD simulations at room temperature suggest that specific electrostatic interactions play key roles in the backtracked recognition between the polymerase and DNA/RNA hybrid. Kinetics analysis at high temperature shows that bound and apo DNA/RNA hybrid unfold via a two-state process. Both kinetics and free energy landscape analyses indicate that bound DNA/RNA hybrid folds in the order of DNA/RNA contracting, the tertiary folding and polymerase binding. The predicted Φ-values suggest that C7, G9, dC12, dC15, and dT16 are key bases for the backtracked recognition of DNA/RNA hybrid. The average RMSD values between the bound structures and the corresponding apo ones and Kolmogorov-Smirnov (KS) P-test analyses indicate that the recognition between DNA/RNA hybrid and polymerase might follow an induced fit mechanism for DNA/RNA hybrid and conformation selection for polymerase. Furthermore, this method could be used to relative studies of specific recognition between nucleic acid and protein. PMID:26594643

  2. Rapid identification of Leishmania species by specific hybridization of kinetoplast DNA in cutaneous lesions.

    PubMed Central

    Wirth, D F; Pratt, D M

    1982-01-01

    Kinetoplast DNA (kDNA) was isolated from various species of the protozoic parasite Leishmania and analyzed by nucleic acid hybridization to detect species-related heterogeneity of kDNA. Purified DNA isolated from L. mexicana and L. braziliensis displayed no homology in nucleic acid hybridization studies. These results confirmed that rapid kDNA sequence change and evolution is occurring in New World species of Leishmania and suggested that such isolated kDNA could be used as a specific hybridization probe for the rapid identification of Leishmania species by using whole organisms. This work further demonstrates that such species-specific identification is feasible on isolated Leishmania promastigotes and, more important, directly on tissue touch blots derived from the cutaneous lesion. Thus, specific hybridization of isolated kDNA provides the basis for a rapid, accurate method for the diagnosis of human leishmaniasis directly from infected tissue. Images PMID:6960359

  3. Rapid identification of Leishmania species by specific hybridization of kinetoplast DNA in cutaneous lesions.

    PubMed

    Wirth, D F; Pratt, D M

    1982-11-01

    Kinetoplast DNA (kDNA) was isolated from various species of the protozoic parasite Leishmania and analyzed by nucleic acid hybridization to detect species-related heterogeneity of kDNA. Purified DNA isolated from L. mexicana and L. braziliensis displayed no homology in nucleic acid hybridization studies. These results confirmed that rapid kDNA sequence change and evolution is occurring in New World species of Leishmania and suggested that such isolated kDNA could be used as a specific hybridization probe for the rapid identification of Leishmania species by using whole organisms. This work further demonstrates that such species-specific identification is feasible on isolated Leishmania promastigotes and, more important, directly on tissue touch blots derived from the cutaneous lesion. Thus, specific hybridization of isolated kDNA provides the basis for a rapid, accurate method for the diagnosis of human leishmaniasis directly from infected tissue. PMID:6960359

  4. Synthesis of hybrid bacterial plasmids containing highly repeated satellite DNA.

    PubMed

    Brutlag, D; Fry, K; Nelson, T; Hung, P

    1977-03-01

    Hybrid plasmid molecules containing tandemly repeated Drosophila satellite DNA were constructed using a modification of the (dA)-(dT) homopolymer procedure of Lobban and Kaiser (1973). Recombinant plasmids recovered after transformation of recA bacteria contained 10% of the amount of satellite DNA present in the transforming molecules. The cloned plasmids were not homogenous in size. Recombinant plasmids isolated from a single colony contained populations of circular molecules which varied both in the length of the satellite region and in the poly(dA)-(dt) regions linking satellite and vector. While subcloning reduced the heterogeneity of these plasmid populations, continued cell growth caused further variations in the size of the repeated regions. Two different simple sequence satellites of Drosophila melanogaster (1.672 and 1.705 g/cm3) were unstable in both recA and recBC hosts and in both pSC101 and pCR1 vectors. We propose that this recA-independent instability of tandemly repeated sequences is due to unequal intramolecular recombination events in replicating DNA molecules, a mechanism analogous to sister chromatid exchange in eucaryotes. PMID:403010

  5. Molecular structure of r/GCG/d/TATACGC/ - A DNA-RNA hybrid helix joined to double helical DNA

    NASA Technical Reports Server (NTRS)

    Wang, A. H.-J.; Fujii, S.; Rich, A.; Van Boom, J. H.; Van Der Marel, G. A.; Van Boeckel, S. A. A.

    1982-01-01

    The molecule r(GCG)d(TATACGC) is self-complementary and forms two DNA-RNA hybrid segments surrounding a central region of double helical DNA; its molecular structure has been solved by X-ray analysis. All three parts of the molecule adopt a conformation which is close to that seen in the 11-fold RNA double helix. The conformation of the ribonucleotides is partly determined by water molecules bridging between the ribose O2' hydroxyl group and cytosine O2. The hybrid-DNA duplex junction contains no structural discontinuities. However, the central DNA TATA sequence has some structural irregularities.

  6. DNA-melamine hybrid molecules: from self-assembly to nanostructures.

    PubMed

    Kumari, Rina; Banerjee, Shib Shankar; Bhowmick, Anil K; Das, Prolay

    2015-01-01

    Single-stranded DNA-melamine hybrid molecular building blocks were synthesized using a phosphoramidation cross-coupling reaction with a zero linker approach. The self-assembly of the DNA-organic hybrid molecules was achieved by DNA hybridization. Following self-assembly, two distinct types of nanostructures in the form of linear chains and network arrays were observed. The morphology of the self-assembled nanostructures was found to depend on the number of DNA strands that were attached to a single melamine molecule. PMID:26199847

  7. Improved flow cytometry based cytotoxicity and binding assay for clinical antibody HLA crossmatching.

    PubMed

    Alheim, Mats; Paul, Prashanta Kumer; Hauzenberger, Dan-Mikael; Wikström, Ann-Charlotte

    2015-11-01

    The presence of preformed donor-specific HLA antibodies leads to early antibody mediated kidney allograft rejection. Therefore, detection and avoidance of donor reactive HLA antibodies prior to transplantation is of outmost importance in order to minimize the risk of rejection. Detection of pre-formed HLA antibodies is currently performed using complement-dependent cytotoxicity (CDC) assay alone or together with a flow cytometry based crossmatch (FCXM). This study was initiated to further evaluate our recently developed flow cytometry based procedure for determination of both cytotoxicity of and IgG binding to donor-derived lymphocytes by HLA antibodies. Highly enriched immuno-magnetic bead purified T and B lymphocytes were used as target cells for patient sera using 96-well plates. Importantly, the assay shows high sensitivity and specificity as determined by HLA typed donor cells and serum with defined HLA antibody IgG and C1q. Based on this and additional data generated in this paper, such as evaluation of appropriate serum and complements incubation times and assay reproducibility and stability, will enable us to more rapidly implement this assay in our clinical laboratory routines. In addition, we demonstrate that FCtox crossmatching of deceased donor cells has superior specificity compared to conventional CDC assay especially regarding high frequencies of false-positive reactions. PMID:26429307

  8. In vitro flow cytometry-based screening platform for cellulase engineering

    PubMed Central

    Körfer, Georgette; Pitzler, Christian; Vojcic, Ljubica; Martinez, Ronny; Schwaneberg, Ulrich

    2016-01-01

    Ultrahigh throughput screening (uHTS) plays an essential role in directed evolution for tailoring biocatalysts for industrial applications. Flow cytometry-based uHTS provides an efficient coverage of the generated protein sequence space by analysis of up to 107 events per hour. Cell-free enzyme production overcomes the challenge of diversity loss during the transformation of mutant libraries into expression hosts, enables directed evolution of toxic enzymes, and holds the promise to efficiently design enzymes of human or animal origin. The developed uHTS cell-free compartmentalization platform (InVitroFlow) is the first report in which a flow cytometry-based screened system has been combined with compartmentalized cell-free expression for directed cellulase enzyme evolution. InVitroFlow was validated by screening of a random cellulase mutant library employing a novel screening system (based on the substrate fluorescein-di-β-D-cellobioside), and yielded significantly improved cellulase variants (e.g. CelA2-H288F-M1 (N273D/H288F/N468S) with 13.3-fold increased specific activity (220.60 U/mg) compared to CelA2 wildtype: 16.57 U/mg). PMID:27184298

  9. In vitro flow cytometry-based screening platform for cellulase engineering.

    PubMed

    Körfer, Georgette; Pitzler, Christian; Vojcic, Ljubica; Martinez, Ronny; Schwaneberg, Ulrich

    2016-01-01

    Ultrahigh throughput screening (uHTS) plays an essential role in directed evolution for tailoring biocatalysts for industrial applications. Flow cytometry-based uHTS provides an efficient coverage of the generated protein sequence space by analysis of up to 10(7) events per hour. Cell-free enzyme production overcomes the challenge of diversity loss during the transformation of mutant libraries into expression hosts, enables directed evolution of toxic enzymes, and holds the promise to efficiently design enzymes of human or animal origin. The developed uHTS cell-free compartmentalization platform (InVitroFlow) is the first report in which a flow cytometry-based screened system has been combined with compartmentalized cell-free expression for directed cellulase enzyme evolution. InVitroFlow was validated by screening of a random cellulase mutant library employing a novel screening system (based on the substrate fluorescein-di-β-D-cellobioside), and yielded significantly improved cellulase variants (e.g. CelA2-H288F-M1 (N273D/H288F/N468S) with 13.3-fold increased specific activity (220.60 U/mg) compared to CelA2 wildtype: 16.57 U/mg). PMID:27184298

  10. Hybrid magnetic nanoparticle/nanogold clusters and their distance-dependent metal-enhanced fluorescence effect via DNA hybridization

    NASA Astrophysics Data System (ADS)

    GuThese Authors Contributed Equally To This Study., Xuefan; Wu, Youshen; Zhang, Lingze; Liu, Yongchun; Li, Yan; Yan, Yongli; Wu, Daocheng

    2014-07-01

    To improve the metal-enhanced fluorescence (MEF) effect of nanogolds (AuNPs) and accurately detect specific DNA sequences via DNA hybridization, novel hybrid magnetic nanoparticles/nanogold clusters (HMNCs) were designed based on finite-difference time-domain simulation results and prepared by using Fe3O4 and nanogolds. The nanogolds outside the HMNC were then conjugated with thiol-terminated DNA molecules, thus DNA modified-HMNCs (DNA-HMNCs) were obtained. The size distributions of these nanostructures were measured by a Malvern size analyzer, and their morphology was observed via transmission electron microscopy (TEM). The ultraviolet (UV)-visible (vis) absorption spectra of the samples were recorded with a UV-2600 spectrophotometer. Fluorescence spectra and the MEF effect were recorded using a spectrophotofluorometer, and lifetimes were determined using a time-correlated single photon counting apparatus. The prepared HMNCs were stable in aqueous solutions and had an average diameter of 87 +/- 3.2 nm, with six to eight AuNPs around a single Fe3O4 nanoparticle. Fluorescein isothiocyanate (FITC) tagged DNA-HMNC conjugates exhibited a significant MEF effect and could accurately detect specific DNA sequences after DNA hybridization. This result indicates their various potential applications in sensors and biomedical fields.To improve the metal-enhanced fluorescence (MEF) effect of nanogolds (AuNPs) and accurately detect specific DNA sequences via DNA hybridization, novel hybrid magnetic nanoparticles/nanogold clusters (HMNCs) were designed based on finite-difference time-domain simulation results and prepared by using Fe3O4 and nanogolds. The nanogolds outside the HMNC were then conjugated with thiol-terminated DNA molecules, thus DNA modified-HMNCs (DNA-HMNCs) were obtained. The size distributions of these nanostructures were measured by a Malvern size analyzer, and their morphology was observed via transmission electron microscopy (TEM). The ultraviolet (UV

  11. Simulation-Guided DNA Probe Design for Consistently Ultraspecific Hybridization

    PubMed Central

    Wang, J. Sherry; Zhang, David Yu

    2015-01-01

    Hybridization of complementary sequences is one of the central tenets of nucleic acid chemistry; however, the unintended binding of closely related sequences limits the accuracy of hybridization-based approaches for analyzing nucleic acids. Thermodynamics-guided probe design and empirical optimization of reaction conditions have been used to enable discrimination of single nucleotide variants, but typically these approaches provide only an approximate 25-fold difference in binding affinity. Here we show that simulations of the binding kinetics are both necessary and sufficient to design nucleic acid probe systems with consistently high specificity as they enable the discovery of an optimal combination of thermodynamic parameters. Simulation-guided probe systems designed against 44 different target single nucleotide variants sequences showed between 200- and 3000-fold (median 890) higher binding affinity than their corresponding wildtype sequences. As a demonstration of the usefulness of this simulation-guided design approach we developed probes which, in combination with PCR amplification, we use to detect low concentrations of variant alleles (1%) in human genomic DNA. PMID:26100802

  12. RNA∶DNA hybrids initiate quasi-palindrome-associated mutations in highly transcribed yeast DNA.

    PubMed

    Kim, Nayun; Cho, Jang-Eun; Li, Yue C; Jinks-Robertson, Sue

    2013-11-01

    RNase H enzymes promote genetic stability by degrading aberrant RNA:DNA hybrids and by removing ribonucleotide monophosphates (rNMPs) that are present in duplex DNA. Here, we report that loss of RNase H2 in yeast is associated with mutations that extend identity between the arms of imperfect inverted repeats (quasi-palindromes or QPs), a mutation type generally attributed to a template switch during DNA synthesis. QP events were detected using frameshift-reversion assays and were only observed under conditions of high transcription. In striking contrast to transcription-associated short deletions that also are detected by these assays, QP events do not require Top1 activity. QP mutation rates are strongly affected by the direction of DNA replication and, in contrast to their elevation in the absence of RNase H2, are reduced when RNase H1 is additionally eliminated. Finally, transcription-associated QP events are limited by components of the nucleotide excision repair pathway and are promoted by translesion synthesis DNA polymerases. We suggest that QP mutations reflect either a transcription-associated perturbation of Okazaki-fragment processing, or the use of a nascent transcript to resume replication following a transcription-replication conflict. PMID:24244191

  13. Colorimetric detection of DNA hybridization based on a dual platform of gold nanoparticles and graphene oxide.

    PubMed

    Thavanathan, Jeevan; Huang, Nay Ming; Thong, Kwai Lin

    2014-05-15

    The unique property of gold nanoparticles (Au NP) to induce colour change and the versatility of graphene oxides (GO) in surface modification makes them ideal in the application of colorimetric biosensor. Thus we developed a label free optical method to detect DNA hybridization through a visually observed colour change. The Au NP is conjugated to a DNA probe and is allowed to hybridize with the DNA target to the GO thus causing a change in colour from pinkish-red to purplish blue. Spectrophometry analysis gave a wavelength shift of 22 nm with 1 µM of DNA target. Sensitivity testing using serially diluted DNA conjugated GO showed that the optimum detection was at 63 nM of DNA target with the limit at 8 nM. This proves the possibility for the detection of DNA hybridization through the use of dual nanoparticle system by visual observation. PMID:24368225

  14. Controlling microarray DNA hybridization efficiency by probe-surface distance and external surface electrostatics

    NASA Astrophysics Data System (ADS)

    Qamhieh, K.; Pettitt, B. Montgomery

    2015-03-01

    DNA microarrays are analytical devices designed to determine the composition of multicomponent solutions of nucleic acids, DNA or RNA. These devices are promising technology for diverse applications, including sensing, diagnostics, and drug/gene delivery. Here, we modify a hybridization adsorption isotherm to study the effects of probe-surface distance and the external electrostatic fields, on the oligonucleotide hybridization in microarray and how these effects are varies depending on surface probe density and target concentration. This study helps in our understanding on-surface hybridization mechanisms, and from it we can observe a significant effect of the probe-surface distance, and the external electrostatic fields, on the hybridization yield. In addition we present a simple new criteria to control the oligonucleotide hybridization efficiency by providing a chart illustrating the effects of all factors on the DNA-hybridization efficiency.

  15. Self-Assembled DNA Hydrogel Based on Enzymatically Polymerized DNA for Protein Encapsulation and Enzyme/DNAzyme Hybrid Cascade Reaction.

    PubMed

    Xiang, Binbin; He, Kaiyu; Zhu, Rong; Liu, Zhuoliang; Zeng, Shu; Huang, Yan; Nie, Zhou; Yao, Shouzhuo

    2016-09-01

    DNA hydrogel is a promising biomaterial for biological and medical applications due to its native biocompatibility and biodegradability. Herein, we provide a novel, versatile, and cost-effective approach for self-assembly of DNA hydrogel using the enzymatically polymerized DNA building blocks. The X-shaped DNA motif was elongated by terminal deoxynucleotidyl transferase (TdT) to form the building blocks, and hybridization between dual building blocks via their complementary TdT-polymerized DNA tails led to gel formation. TdT polymerization dramatically reduced the required amount of original DNA motifs, and the hybridization-mediated cross-linking of building blocks endows the gel with high mechanical strength. The DNA hydrogel can be applied for encapsulation and controllable release of protein cargos (for instance, green fluorescent protein) due to its enzymatic responsive properties. Moreover, this versatile strategy was extended to construct a functional DNAzyme hydrogel by integrating the peroxidase-mimicking DNAzyme into DNA motifs. Furthermore, a hybrid cascade enzymatic reaction system was constructed by coencapsulating glucose oxidase and β-galactosidase into DNAzyme hydrogel. This efficient cascade reaction provides not only a potential method for glucose/lactose detection by naked eye but also a promising modular platform for constructing a multiple enzyme or enzyme/DNAzyme hybrid system. PMID:27526861

  16. Blocking oligo--a novel approach for improving chip-based DNA hybridization efficiency.

    PubMed

    Tao, Sheng-ce; Gao, Hua-fang; Cao, Fei; Ma, Xue-mei; Cheng, Jing

    2003-08-01

    For most of the commonly used DNA chips, the probes are usually single-stranded oligonucleotides and the targets are double-stranded DNAs (dsDNAs). Only one strand of the DNA serves as the target while the other competes with the probes immobilized on the chip for the target and therefore is regarded as the interfering strand. In this report, a novel technique was developed for improving the hybridization efficiency on DNA chips by using blocking oligos, which is complimentary to the target interfering strand to reduce the influence of the interfering strand. The hybridization efficiency of dsDNA was much lower than that of single-stranded DNA (ssDNA) when synthesized DNA targets were tested on the DNA chip. Blocking oligos can improve the hybridization efficiency of dsDNA to about 2/3 that of ssDNA. Blocking oligos have also been applied to PCR products of different lengths for hybridization. The hybridization efficiency with blocking oligos is about three times higher than that without blocking oligos. We have tested PCR products of 1054 and 435 bp using our blocking procedure, and the results are consistent. PMID:12944123

  17. Phylogenetic Analysis of Shewanella Strains by DNA Relatedness Derived from Whole Genome Microarray DNA-DNA Hybridization and Comparison with Other Methods

    SciTech Connect

    Wu, Liyou; Yi, T. Y.; Van Nostrand, Joy; Zhou, Jizhong

    2010-05-17

    Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site [Hanford Reach of the Columbia River (HRCR), 11 strains], Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the average nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.

  18. DNA hybridization in nanostructural molecular assemblies enables detection of gene mutations without a fluorescent probe.

    PubMed

    Maruyama, Tatsuo; Park, Lian-Chun; Shinohara, Toshimitsu; Goto, Masahiro

    2004-01-01

    We have developed a simple single nucleotide polymorphisms (SNPs) analysis utilizing DNA hybridization in nanostructural molecular assemblies. The novel technique enables the detection of a single-base mismatch in a DNA sequence without a fluorescent probe. This report describes for the first time that DNA hybridization occurs in the nanostructural molecular assemblies (termed reverse micelles) formed in an organic medium. The restricted nanospace in the reverse micelles amplifies the differences in the hybridization rate between mismatched and perfectly matched DNA probes. For a model system, we hybridized a 20-mer based on the p53 gene sequence to 20-mer complementary oligonucleotides with various types of mismatches. Without any DNA labeling or electrochemical apparatus, we successfully detected the various oligonucleotide mismatches by simply measuring the UV absorbance at 260 nm. PMID:14715007

  19. Characterization of Vibrio metschnikovii and Vibrio gazogenes by DNA-DNA hybridization and phenotype.

    PubMed Central

    Farmer, J J; Hickman-Brenner, F W; Fanning, G R; Gordon, C M; Brenner, D J

    1988-01-01

    Vibrio metschnikovii and Vibrio gazogenes are two new Vibrio species that have been little studied. Thirteen strains of V. metschnikovii were highly related to the type strain, NCTC 8443, by DNA-DNA hybridization. Relatedness values were 83 to 90% at 60 degrees C and 75 to 84% at the more stringent 75 degrees C. Divergence values ranged from 0.7 to 1.9. Strains of V. metschnikovii were oxidase negative and did not reduce nitrate to nitrite. The other phenotypic characteristics agreed with published data. Twenty-three strains of V. gazogenes were isolated from salt marshes and marshy areas on the coast of North and South Carolina. A new medium, marine agar supplemented with an additional 2.5% agar, reduced the problem of swarming by marine Vibrio species and enhanced the isolation of V. gazogenes and other organisms. By DNA-DNA hybridization, 22 of 23 strains were 76% or more related to the type strain of V. gazogenes, ATCC 29988. However, four DNA hybridization subgroups were defined on the basis of divergence values and/or phenotype. Strains of DNA group 1 were more highly related to each other, and this group contained the type strain and six other strains. Strains of DNA group 2 were more highly related to each other, and this group contained reference strain ATCC 43942 and 14 other strains. Strains of DNA group 1 did not ferment melibiose or D-sorbitol (one strain was sorbitol positive), but strains of DNA group 2 fermented both sugars. A revised phenotypic description of V. gazogenes based on 24 strains was written on the basis of reactions (within 2 days of incubation) at 25 degrees C in media supplemented with Na+, K+, and Mg2+. Positive results (100% positive unless indicated) included motility; gas production during fermentation (96% at 2 days, 100% at 3 to 7 days); growth in nutrient broth with the addition of 1% NaCl (88%), 2% NaCl, 3.5% NaCl, 6% NaCl, 8% NaCl, and 10% NaCl (92%); dry red or orange colonies on marine agar; and fermentation of L

  20. Structure and DNA Hybridization Properties of Mixed Nucleic Acid/Maleimide-Ethylene Glycol Monolayers

    SciTech Connect

    Lee,C.; Nguyen, P.; Grainger, D.; Gamble, L.; Castner, D.

    2007-01-01

    The surface structure and DNA hybridization performance of thiolated single-strand DNA (HS-ssDNA) covalently attached to a maleimide-ethylene glycol disulfide (MEG) monolayer on gold have been investigated. Monolayer immobilization chemistry and surface coverage of reactive ssDNA probes were studied by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. Orientation of the ssDNA probes was determined by near-edge X-ray absorption fine structure (NEXAFS). Target DNA hybridization on the DNA-MEG probe surfaces was measured by surface plasmon resonance (SPR) to demonstrate the utility of these probe surfaces for detection of DNA targets from both purified target DNA samples and complex biological mixtures such as blood serum. Data from complementary techniques showed that immobilized ssDNA density is strongly dependent on the spotted bulk DNA concentration and buffer ionic strength. Variation of the immobilized ssDNA density had a profound influence on the DNA probe orientation at the surface and subsequent target hybridization efficiency. With increasing surface probe density, NEXAFS polarization dependence results (followed by monitoring the N 1s {yields} {pi}* transition) indicate that the immobilized ssDNA molecules reorient toward a more upright position on the MEG monolayer. SPR assays of DNA targets from buffer and serum showed that DNA hybridization efficiency increased with decreasing surface probe density. However, target detection in serum was better on the 'high-density' probe surface than on the 'high-efficiency' probe surface. The amounts of target detected for both ssDNA surfaces were several orders of magnitude poorer in serum than in purified DNA samples due to nonspecific serum protein adsorption onto the sensing surface.

  1. Advances in the theory and practice of DNA-hybridization as a systematic method.

    PubMed

    Sheldon, F H

    1994-01-01

    DNA hybridization continues in the 1990s to provide insight into phylogeny and evolution. The resilience of this 30-year-old distance technique may be attributed to its fundamental power as a comparative method, as well as to advances in our understanding of its operation and improvements in experimental design and data analysis. These attributes and advances, along with the assumptions and limitations of DNA hybridization, are discussed in this paper. Examples are provided of recent DNA hybridization studies of molecular, morphological, and behavioral systematics and evolution. PMID:7994110

  2. Self-assembly and hybridization mechanisms of DNA with cationic polythiophene.

    PubMed

    Rubio-Magnieto, Jenifer; Azene, Elias Gebremedhn; Knoops, Jérémie; Knippenberg, Stefan; Delcourt, Cécile; Thomas, Amandine; Richeter, Sébastien; Mehdi, Ahmad; Dubois, Philippe; Lazzaroni, Roberto; Beljonne, David; Clément, Sébastien; Surin, Mathieu

    2015-08-28

    The combination of DNA and π-conjugated polyelectrolytes (CPEs) represents a promising approach to develop DNA hybridization biosensors, with potential applications for instance in the detection of DNA lesions and single-nucleotide polymorphisms. Here we exploit the remarkable optical properties of a cationic poly[3-(6'-(trimethylphosphonium)hexyl)thiophene-2,5-diyl] (CPT) to decipher the self-assembly of DNA and CPT. The ssDNA/CPT complexes have chiroptical signatures in the CPT absorption region that are strongly dependent on the DNA sequence, which we relate to differences in supramolecular interactions between the thiophene monomers and the various nucleobases. By studying DNA-DNA hybridization and melting processes on preformed ssDNA/CPT complexes, we observe sequence-dependent mechanisms that can yield DNA-condensed aggregates. Heating-cooling cycles show that non-equilibrium mixtures can form, noticeably depending on the working sequence of the hybridization experiment. These results are of high importance for the use of π-conjugated polyelectrolytes in DNA hybridization biosensors and in polyplexes. PMID:26179509

  3. Probing of miniPEGγ-PNA-DNA Hybrid Duplex Stability with AFM Force Spectroscopy

    PubMed Central

    Dutta, Samrat; Armitage, Bruce A.; Lyubchenko, Yuri L.

    2016-01-01

    Peptide nucleic acids (PNA) are synthetic polymers, the neutral peptide backbone of which provides elevated stability to PNA-PNA and PNA-DNA hybrid duplex. It was demonstrated that incorporation of diethylene glycol (miniPEG) at the γ position of the peptide backbone increased the thermal stability of the hybrid duplexes (Sahu, B. et al. (2011) Journal of Organic Chemistry 76, 5614-5627). Here, we applied atomic force microscopy (AFM) based single molecule force spectroscopy (SMFS) and dynamic force spectroscopy (DFS) to test the strength and stability of the hybrid 10 bp duplex. This hybrid duplex consisted of miniPEGγ-PNA and DNA of the same length (γMPPNA-DNA), which we compared to a DNA duplex with a homologous sequence. AFM force spectroscopy data obtained at the same conditions showed that γMPPNA-DNA hybrid is more stable than the DNA counterpart, 65 ± 15 pN vs 47 ± 15 pN, respectively. The DFS measurements performed in a range of pulling speeds analyzed in the framework of the Bell-Evans approach yielded a dissociation constant, koff ∼ 0.030 ± 0.01 sec-1 for γMPPNA-DNA hybrid duplex vs. 0.375 ± 0.18 sec-1 for the DNA-DNA duplex suggesting that the hybrid duplex is much more stable. Correlating the high affinity of γMPPNA-DNA to slow dissociation kinetics is consistent with prior bulk characterization by surface plasmon resonance. Given the growing interest in γMPPNA as well as other synthetic DNA analogues, the use of single molecule experiments along with computational analysis of force spectroscopy data will provide direct characterization of various modifications as well as higher order structures such as triplexes and quadruplexes. PMID:26898903

  4. Probing of miniPEGγ-PNA-DNA Hybrid Duplex Stability with AFM Force Spectroscopy.

    PubMed

    Dutta, Samrat; Armitage, Bruce A; Lyubchenko, Yuri L

    2016-03-15

    Peptide nucleic acids (PNA) are synthetic polymers, the neutral peptide backbone of which provides elevated stability to PNA-PNA and PNA-DNA hybrid duplexes. It was demonstrated that incorporation of diethylene glycol (miniPEG) at the γ position of the peptide backbone increased the thermal stability of the hybrid duplexes (Sahu, B. et al. J. Org. Chem. 2011, 76, 5614-5627). Here, we applied atomic force microscopy (AFM) based single molecule force spectroscopy and dynamic force spectroscopy (DFS) to test the strength and stability of the hybrid 10 bp duplex. This hybrid duplex consisted of miniPEGγ-PNA and DNA of the same length (γ(MP)PNA-DNA), which we compared to a DNA duplex with a homologous sequence. AFM force spectroscopy data obtained at the same conditions showed that the γ(MP)PNA-DNA hybrid is more stable than the DNA counterpart, 65 ± 15 pN vs 47 ± 15 pN, respectively. The DFS measurements performed in a range of pulling speeds analyzed in the framework of the Bell-Evans approach yielded a dissociation constant, koff ≈ 0.030 ± 0.01 s⁻¹ for γ(MP)PNA-DNA hybrid duplex vs 0.375 ± 0.18 s⁻¹ for the DNA-DNA duplex suggesting that the hybrid duplex is much more stable. Correlating the high affinity of γ(MP)PNA-DNA to slow dissociation kinetics is consistent with prior bulk characterization by surface plasmon resonance. Given the growing interest in γ(MP)PNA as well as other synthetic DNA analogues, the use of single molecule experiments along with computational analysis of force spectroscopy data will provide direct characterization of various modifications as well as higher order structures such as triplexes and quadruplexes. PMID:26898903

  5. Dyes as bifunctional markers of DNA hybridization on surfaces and mutation detection.

    PubMed

    García-Mendiola, Tania; Cerro, María Ramos; López-Moreno, José María; Pariente, Félix; Lorenzo, Encarnación

    2016-10-01

    The interaction of small molecules with DNA has found diagnostic and therapeutic applications. In this work, we propose the use of two different dyes, in particular Azure A and Safranine, as bifunctional markers of on-surface DNA hybridization and potent tools for screening of specific gene mutations directly in real DNA PCR amplicons extracted from blood cells. By combining spectroscopic and electrochemical methods we demonstrate that both dyes can interact with single and double stranded DNA to a different extent, allowing reliable hybridization detection. From these data, we have also elucidated the nature of the interaction. We conclude that the binding mode is fundamentally intercalative with an electrostatic component. The dye fluorescence allows their use as nucleic acid stains for the detection of on-surfaces DNA hybridization. Its redox activity is exploited in the development of selective electrochemical DNA biosensors. PMID:27317997

  6. Influence of attachment strategy on the thermal stability of hybridized DNA on gold surfaces.

    PubMed

    Petty, Tyler J; Wagner, Caleb E; Opdahl, Aric

    2014-12-23

    The thermal stabilities of double-stranded DNA hybrids immobilized on gold surfaces are shown to be significantly affected by the conformation of the hybrid. To analyze this behavior, DNA probes were immobilized using attachment strategies where the nucleotides within the strand had varying levels of interactions with the gold substrate. The abilities of these probes to form double-stranded hybrids with solution DNA targets were evaluated by surface plasmon resonance (SPR) over a temperature range 25-60 °C. The measurements were used to construct thermal stability profiles for hybrids in each conformation. We observe that DNA hybrids formed with probe strands that interact extensively with the gold surface have stability profiles that are shifted lower by 5-10 °C compared to hybrids formed with end-tethered probes that have fewer interactions with the surface. The results provide an understanding of the experimental conditions in which these weaker DNA hybrids can form and show the additional complexity of evaluating denaturation profiles generated from DNA on surfaces. PMID:25457775

  7. Hairpin DNA Switch for Ultrasensitive Spectrophotometric Detection of DNA Hybridization Based on Gold Nanoparticles and Enzyme Signal Amplification

    SciTech Connect

    Zhang, Youyu; Tang, Zhiwen; Wang, Jun; Wu, Hong; Maham, Aihui; Lin, Yuehe

    2010-08-01

    A novel DNA detection platform based on a hairpin-DNA switch, nanoparticles, and enzyme signal amplification for ultrasensitive detection of DNA hybridization has been developed in this work. In this DNA assay, a “stem-loop” DNA probe dually labeled with a thiol at its 5’ end and a biotin at its 3’ end, respectively, was used. This probe was immobilized on the gold nanoparticles (AuNPs) anchored by a protein, globulin, on a 96-well microplate. In the absence of target DNA, the immobilized probe with the stem-loop structure shields the biotin from being approached by a bulky horseradish peroxidase linked-avidin (avidin-HRP) conjugate due to the steric hindrance. However, in the presence of target DNA, the hybridization between the hairpin DNA probe and the target DNA causes significant conformational change of the probe, which forces biotin away from the surface of AuNPs. As a result, the biotin becomes accessible by the avidin-HRP, and the target hybridization event can be sensitively detected via the HRP catalyzed substrate 3, 3', 5, 5'-tetramethylbenzidine using spectrophometric method. Some experimental parameters governing the performance of the assay have been optimized. At optimal conditions, this DNA assay can detect DNA at the concentration of femtomolar level by means of a signal amplification strategy based on the combination of enzymes and nanoparticles. This approach also has shown excellent specificity to distinguish single-base mismatches of DNA targets because of the intrinsic high selectivity of the hairpin DNA probe.

  8. Measuring thermodynamic details of DNA hybridization using fluorescence

    PubMed Central

    You, Yong; Tataurov, Andrey V; Owczarzy, Richard

    2011-01-01

    Modern real-time PCR systems make it easy to monitor fluorescence while temperature is varied for hundreds of samples in parallel, permitting high-throughput studies. We employed such system to investigate melting transitions of ordered nucleic acid structures into disordered random coils. Fluorescent dye and quencher were attached to oligonucleotides in such a way that changes of fluorescence intensity with temperature indicated progression of denaturation. When fluorescence melting data were compared with traditional ultraviolet optical experiments, commonly used dye/quencher combinations, like fluorescein and tetramethylrhodamine, showed substantial discrepancies. We have therefore screened 22 commercially available fluorophores and quenchers for their ability to reliably report annealing and melting transitions. Dependence of fluorescence on temperature and pH was also investigated. The optimal performance was observed using Texas Red or ROX dyes with Iowa Black RQ or Black Hole quenchers. These labels did not alter two-state nature of duplex melting process and provided accurate melting temperatures, free energies, enthalpies, and entropies. We also suggest a new strategy for determination of DNA duplex thermodynamics where concentration of a dye-labeled strand is kept constant and its complementary strand modified with a quencher is added at increasing excess. These methodological improvements will help build predictive models of nucleic acid hybridization. © 2011 Wiley Periodicals, Inc. Biopolymers 95: 472–486, 2011. PMID:21384337

  9. Sequencing of megabase plus DNA by hybridization: Method development ENT. Final technical progress report

    SciTech Connect

    Crkvenjakov, R.; Drmanac, R.

    1991-01-31

    Sequencing by hybridization (SBH) is the only sequencing method based on the experimental determination of the content of oligonucleotide sequences. The data acquisition relies on the natural process of base pairing. It is possible to determine the content of complementary oligosequences in the target DNA by the process of hybridization with oligonucleotide probes of known sequences.

  10. Short thio-multi-walled carbon nanotubes and Au nanoparticles enhanced electrochemical DNA biosensor for DNA hybridization detection

    NASA Astrophysics Data System (ADS)

    Guo, Feng; Zhang, Jimei; Dai, Zhao; Zheng, Guo

    2010-07-01

    A novel and sensitive electrochemical DNA biosensor based on multi-walled carbon nanotubes functionalized with a thio group (MWNTs-SH) and gold nanoparticles (GNPs) for covalent DNA immobilization and enhanced hybridization detection is described. The key step for developing this novel DNA biosensor is to cut the pristine MWNT into short and generate lots of active sites simultaneously. With this approach, the target DNA could be quantified in a linear range from 8.5×10-10 to 1.5×10-5 mol/L, with a detection limit of 1.67×10-11 mol/L by 3σ.

  11. A proposed mechanism of the influence of gold nanoparticles on DNA hybridization.

    PubMed

    Sedighi, Abootaleb; Li, Paul C H; Pekcevik, Idah C; Gates, Byron D

    2014-07-22

    A combination of gold nanoparticles (AuNPs) and nucleic acids has been used in biosensing applications. However, there is a poor fundamental understanding of how gold nanoparticle surfaces influence the DNA hybridization process. Here, we measured the rate constants of the hybridization and dehybridization of DNA on gold nanoparticle surfaces to enable the determination of activation parameters using transition state theory. We show that the target bases need to be detached from the gold nanoparticle surfaces before zipping. This causes a shift of the rate-limiting step of hybridization to the mismatch-sensitive zipping step. Furthermore, our results propose that the binding of gold nanoparticles to the single-stranded DNA segments (commonly known as bubbles) in the duplex DNA stabilizes the bubbles and accelerates the dehybridization process. We employ the proposed mechanism of DNA hybridization/dehybridization to explain the ability of 5 nm diameter gold nanoparticles to help discriminate between single base-pair mismatched DNA molecules when performed in a NanoBioArray chip. The mechanistic insight into the DNA-gold nanoparticle hybridization/dehybridization process should lead to the development of new biosensors. PMID:24965286

  12. Non-Covalent Fluorescent Labeling of Hairpin DNA Probe Coupled with Hybridization Chain Reaction for Sensitive DNA Detection.

    PubMed

    Song, Luna; Zhang, Yonghua; Li, Junling; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2016-04-01

    An enzyme-free signal amplification-based assay for DNA detection was developed using fluorescent hairpin DNA probes coupled with hybridization chain reaction (HCR). The hairpin DNAs were designed to contain abasic sites in the stem moiety. Non-covalent labeling of the hairpin DNAs was achieved when a fluorescent ligand was bound to the abasic sites through hydrogen bonding with the orphan cytosine present on the complementary strand, accompanied by quench of ligand fluorescence. As a result, the resultant probes, the complex formed between the hairpin DNA and ligand, showed almost no fluorescence. Upon hybridization with target DNA, the probe underwent a dehybridization of the stem moiety containing an abasic site. The release of ligand from the abasic site to the solution resulted in an effective fluorescent enhancement, which can be used as a signal. Compared with a sensing system without HCR, a 20-fold increase in the sensitivity was achieved using the sensing system with HCR. The fluorescent intensity of the sensing system increased with the increase in target DNA concentration from 0.5 nM to 100 nM. A single mismatched target ss-DNA could be effectively discriminated from complementary target DNA. Genotyping of a G/C single-nucleotide polymorphism of polymerase chain reaction (PCR) products was successfully demonstrated with the sensing system. Therefore, integrating HCR strategy with non-covalent labeling of fluorescent hairpin DNA probes provides a sensitive and cost-effective DNA assay. PMID:26879193

  13. Hybridization and Introgression among Species of Sunfish (Lepomis): Analysis by Mitochondrial DNA and Allozyme Markers

    PubMed Central

    Avise, John C.; Saunders, Nancy C.

    1984-01-01

    We explore the potential of mitochondrial DNA (mtDNA) analysis, alone and in conjunction with allozymes, to study low-frequency hybridization and introgression phenomena in natural populations. MtDNAs from small samples of nine species of sunfish (Lepomis, Centrarchidae) were purified and digested with each of 13 informative restriction enzymes. Digestion profiles for all species were highly distinct: estimates of overall fragment homology between pairs of species ranged from 0–36%. Allozymes encoded by nine nuclear genes also showed large frequency differences among species and together with mtDNA provided many genetic markers for hybrid identification. A genetic analysis of 277 sunfish from two locations in north Georgia revealed the following: (1) a low frequency of interspecific hybrids, all of which appeared to be F1's; (2) the involvement of five sympatric Lepomis species in the production of these hybrids; (3) no evidence for introgression between species in our study locales (although for rare hybridization, most later-generation backcrosses would not be reliably distinguished from parentals); (4) a tendency for hybridizations to take place preferentially between parental species differing greatly in abundance; (5) a tendency for the rare species in a hybrid cross to provide the female parent. Our data suggest that absence of conspecific pairing partners and mating stimuli for females of rarer species may be important factors in increasing the likelihood of interspecific hybridization. The maternal inheritance of mtDNA offers at least two novel advantages for hybridization analysis: (1) an opportunity to determine direction in hybrid crosses; and (2) due to the linkage among mtDNA markers, an increased potential to distinguish effects of introgression from symplesiomorphy or character convergence. PMID:6090268

  14. Voltammetric detection of sequence-selective DNA hybridization related to Toxoplasma gondii in PCR amplicons.

    PubMed

    Gokce, Gultekin; Erdem, Arzum; Ceylan, Cagdas; Akgöz, Muslum

    2016-03-01

    This work describes the single-use electrochemical DNA biosensor technology developed for voltammetric detection of sequence selective DNA hybridization related to important human and veterinary pathogen; Toxoplasma gondii. In the principle of electrochemical label-free detection assay, the duplex of DNA hybrid formation was detected by measuring guanine oxidation signal occured in the presence of DNA hybridization. The biosensor design consisted of the immobilization of an inosine-modified (guanine-free) probe onto the surface of pencil graphite electrode (PGE), and the detection of the duplex formation in connection with the differential pulse voltammetry(DPV) by measuring the guanine signal. Toxoplasma gondii capture probe was firstly immobilized onto the surface of the activated PGE by wet adsorption. The extent of hybridization at PGE surface between the probe and the target was then determined by measuring the guanine signal observed at +1.0V. The electrochemical monitoring of optimum DNA hybridization has been performed in the target concentration of 40µg/mL in 50min of hybridization time. The specificity of the electrochemical biosensor was then tested using non-complementary, or mismatch short DNA sequences. Under the optimum conditions, the guanine oxidation signal indicating full hybridization was measured in various target concentration from 0.5 to 25µg/mL and a detection limit was found to be 1.78µg/mL. This single-use biosensor platform was successfully applied for the voltammetric detection of DNA hybridization related to Toxoplasma gondii in PCR amplicons. PMID:26717837

  15. DNA-inorganic hybrid nanovaccine for cancer immunotherapy

    NASA Astrophysics Data System (ADS)

    Zhu, Guizhi; Liu, Yijing; Yang, Xiangyu; Kim, Young-Hwa; Zhang, Huimin; Jia, Rui; Liao, Hsien-Shun; Jin, Albert; Lin, Jing; Aronova, Maria; Leapman, Richard; Nie, Zhihong; Niu, Gang; Chen, Xiaoyuan

    2016-03-01

    Cancer evolves to evade or compromise the surveillance of the immune system, and cancer immunotherapy aims to harness the immune system in order to inhibit cancer development. Unmethylated CpG dinucleotide-containing oligonucleotides (CpG), a class of potent adjuvants that activate the toll-like receptor 9 (TLR9) located in the endolysosome of many antigen-presenting cells (APCs), are promising for cancer immunotherapy. However, clinical application of synthetic CpG confronts many challenges such as suboptimal delivery into APCs, unfavorable pharmacokinetics caused by limited biostability and short in vivo half-life, and side effects associated with leaking of CpG into the systemic circulation. Here we present DNA-inorganic hybrid nanovaccines (hNVs) for efficient uptake into APCs, prolonged tumor retention, and potent immunostimulation and cancer immunotherapy. hNVs were self-assembled from concatemer CpG analogs and magnesium pyrophosphate (Mg2PPi). Mg2PPi renders hNVs resistant to nuclease degradation and thermal denaturation, both of which are demanding characteristics for effective vaccination and the storage and transportation of vaccines. Fluorophore-labeled hNVs were tracked to be efficiently internalized into the endolysosomes of APCs, where Mg2PPi was dissolved in an acidic environment and thus CpG analogs were exposed to hNVs. Internalized hNVs in APCs led to (1) elevated secretion of proinflammatory factors, and (2) elevated expression of co-stimulatory factors. Compared with molecular CpG, hNVs dramatically prolonged the tissue retention of CpG analogs and reduced splenomegaly, a common side effect of CpG. In a melanoma mouse model, two injections of hNVs significantly inhibited the tumor growth and outperformed the molecular CpG. These results suggest hNVs are promising for cancer immunotherapy.Cancer evolves to evade or compromise the surveillance of the immune system, and cancer immunotherapy aims to harness the immune system in order to inhibit

  16. A Hybrid Computer Simulation to Generate the DNA Distribution of a Cell Population.

    ERIC Educational Resources Information Center

    Griebling, John L.; Adams, William S.

    1981-01-01

    Described is a method of simulating the formation of a DNA distribution, on which statistical results and experimentally measured parameters from DNA distribution and percent-labeled mitosis studies are combined. An EAI-680 and DECSystem-10 Hybrid Computer configuration are used. (Author/CS)

  17. DNA hybrid dielectric film devices for energy storage and bioelectronics applications

    NASA Astrophysics Data System (ADS)

    Joyce, Donna M.; Venkat, Narayanan; Ouchen, Fahima; Singh, Kristi M.; Smith, Steven R.; Grote, James G.

    2013-10-01

    DNA biopolymer hybrids have been investigated for energy storage applications and also as potential high k gate dielectrics in bioelectronics applications such as BioFETs. DNA-based hybrid films incorporating sol-gel-derived ceramics have shown strong promise as insulating dielectrics for high voltage capacitor applications. Our studies of DNA-CTMA complex/sol-gel hybrid thin film devices have demonstrated reproducibility and stability in temperature-and frequency-dependent dielectric properties as well as reliability in DC voltage breakdown measurements, attaining values consistently in the 300 - 350 V/um range. We have also investigated DNA-inorganic hybrids by ex situ blending of aqueous solutions of DNA with high k ceramics such as BaTiO3 and TiO2. These systems are currently being investigated as potential gate dielectrics for BioFETs by virtue of their relatively high dielectric constant, high DC electrical resistivity, and lower leakage currents than pristine DNA. Functionally layered devices have also been designed, fabricated and characterized to determine any added benefit in dielectric applications. The electrical/dielectric characteristics of DNA and DNA-CTMA with sol-gel-derived ceramics, high k ceramic fillers, and in layered devices were examined to determine their effect on vital dielectric parameters for energy storage and bioelectronics applications.

  18. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age.

    PubMed

    Meier-Kolthoff, Jan P; Klenk, Hans-Peter; Göker, Markus

    2014-02-01

    The G+C content of a genome is frequently used in taxonomic descriptions of species and genera. In the past it has been determined using conventional, indirect methods, but it is nowadays reasonable to calculate the DNA G+C content directly from the increasingly available and affordable genome sequences. The expected increase in accuracy, however, might alter the way in which the G+C content is used for drawing taxonomic conclusions. We here re-estimate the literature assumption that the G+C content can vary up to 3-5 % within species using genomic datasets. The resulting G+C content differences are compared with DNA-DNA hybridization (DDH) similarities calculated in silico using the GGDC web server, with 70% similarity as the gold standard threshold for species boundaries. The results indicate that the G+C content, if computed from genome sequences, varies no more than 1% within species. Statistical models based on larger differences alone can reject the hypothesis that two strains belong to the same species. Because DDH similarities between two non-type strains occur in the genomic datasets, we also examine to what extent and under which conditions such a similarity could be <70% even though the similarity of either strain to a type strain was ≥ 70%. In theory, their similarity could be as low as 50%, whereas empirical data suggest a boundary closer (but not identical) to 70%. However, it is shown that using a 50% boundary would not affect the conclusions regarding the DNA G+C content. Hence, we suggest that discrepancies between G+C content data provided in species descriptions on the one hand and those recalculated after genome sequencing on the other hand ≥ 1% are due to significant inaccuracies of the applied conventional methods and accordingly call for emendations of species descriptions. PMID:24505073

  19. Detection and analysis of leptospiral DNA in early Leptospirosis by polymerase chain reaction and DNA hybridization with Digoxingenin-AMPPD

    NASA Astrophysics Data System (ADS)

    Bao, Lang; Yu, Ye-Rong; Terpstra, W. J.

    1994-07-01

    Fourteen serum specimens from patients with early Leptospirosis proven by blood culture and serological test were detected by PCR with the oligonucleotide primers obtained from a genomic library of leptospira interrogans. The amplified DNA were hybridized with the homologous DNA probe labeling with Digoxingenin-AMPPD. All of the samples revealed the presence of leptospira and the strong signals were visualized with homologous DNA probes hybridization. Negative and positive controls appeared correctly. The DNA fragment generated from PCR amplification homologically hybridized with the DNA of 16 strains of leptospira. The single recognized band (about 400 bps) from 6 out of the 16 strains has come out which are representative of the principal strains in Sichuan, China. The results demonstrated that PCR is an advanced diagnostic technique for early Leptospirosis. The treatment of samples is easy and has little risk of DNA loss and contamination. This is a considerable advantage over other detective techniques and can be available especially in China and other developing countries.

  20. Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization.

    PubMed

    Peng, Jun; Ling, Jian; Zhang, Xiu-Qing; Bai, Hui-Ping; Zheng, Liyan; Cao, Qiu-E; Ding, Zhong-Tao

    2015-02-25

    In this work, we designed a new fluorescent oligonucleotides-stabilized silver nanoclusters (DNA/AgNCs) probe for sensitive detection of mercury and copper ions. This probe contains two tailored DNA sequence. One is a signal probe contains a cytosine-rich sequence template for AgNCs synthesis and link sequence at both ends. The other is a guanine-rich sequence for signal enhancement and link sequence complementary to the link sequence of the signal probe. After hybridization, the fluorescence of hybridized double-strand DNA/AgNCs is 200-fold enhanced based on the fluorescence enhancement effect of DNA/AgNCs in proximity of guanine-rich DNA sequence. The double-strand DNA/AgNCs probe is brighter and stable than that of single-strand DNA/AgNCs, and more importantly, can be used as novel fluorescent probes for detecting mercury and copper ions. Mercury and copper ions in the range of 6.0-160.0 and 6-240 nM, can be linearly detected with the detection limits of 2.1 and 3.4 nM, respectively. Our results indicated that the analytical parameters of the method for mercury and copper ions detection are much better than which using a single-strand DNA/AgNCs. PMID:25305618

  1. Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization

    NASA Astrophysics Data System (ADS)

    Peng, Jun; Ling, Jian; Zhang, Xiu-Qing; Bai, Hui-Ping; Zheng, Liyan; Cao, Qiu-E.; Ding, Zhong-Tao

    2015-02-01

    In this work, we designed a new fluorescent oligonucleotides-stabilized silver nanoclusters (DNA/AgNCs) probe for sensitive detection of mercury and copper ions. This probe contains two tailored DNA sequence. One is a signal probe contains a cytosine-rich sequence template for AgNCs synthesis and link sequence at both ends. The other is a guanine-rich sequence for signal enhancement and link sequence complementary to the link sequence of the signal probe. After hybridization, the fluorescence of hybridized double-strand DNA/AgNCs is 200-fold enhanced based on the fluorescence enhancement effect of DNA/AgNCs in proximity of guanine-rich DNA sequence. The double-strand DNA/AgNCs probe is brighter and stable than that of single-strand DNA/AgNCs, and more importantly, can be used as novel fluorescent probes for detecting mercury and copper ions. Mercury and copper ions in the range of 6.0-160.0 and 6-240 nM, can be linearly detected with the detection limits of 2.1 and 3.4 nM, respectively. Our results indicated that the analytical parameters of the method for mercury and copper ions detection are much better than which using a single-strand DNA/AgNCs.

  2. Synthesis and self-assembly of DNA-chromophore hybrid amphiphiles.

    PubMed

    Albert, Shine K; Golla, Murali; Thelu, Hari Veera Prasad; Krishnan, Nithiyanandan; Deepak, Perapaka; Varghese, Reji

    2016-08-01

    DNA based spherical nanostructures are one of the promising nanostructures for several biomedical and biotechnological applications due to their excellent biocompatibility and DNA-directed surface addressability. Herein, we report the synthesis and amphiphilicity-driven self-assembly of two classes of DNA (hydrophilic)-chromophore (hydrophobic) hybrid amphiphiles into spherical nanostructures. A solid-phase "click" chemistry based modular approach is demonstrated for the synthesis of DNA-chromophore amphiphiles. Various spectroscopic and microscopic analyses reveal the self-assembly of the amphiphiles into vesicular and micellar assemblies with the corona made of hydrophilic DNA and the hydrophobic chromophoric unit as the core of the spherical nanostructures. PMID:27241196

  3. Multilocus sequence analysis supports the taxonomic position of Astragalus glycyphyllos symbionts based on DNA-DNA hybridization.

    PubMed

    Gnat, Sebastian; Małek, Wanda; Oleńska, Ewa; Wdowiak-Wróbel, Sylwia; Kalita, Michał; Rogalski, Jerzy; Wójcik, Magdalena

    2016-04-01

    In this study, the phylogenetic relationship and taxonomic status of six strains, representing different phenons and genomic groups of Astragalus glycyphyllos symbionts, originating from Poland, were established by comparative analysis of five concatenated housekeeping gene sequences (atpD, dnaK, glnA, recA and rpoB), DNA-DNA hybridization and total DNA G+C content. Maximum-likelihood phylogenetic analysis of combined atpD, dnaK, glnA, recA and rpoB sequence data placed the studied bacteria into the clade comprising the genus Mesorhizobium. In the core gene phylograms, four A. glycyphyllos nodule isolates (AG1, AG7, AG15 and AG27) formed a cluster common with Mesorhizobium ciceri, whereas the two other A. glycyphyllos symbionts (AG17 and AG22) were grouped together with Mesorhizobium amorphae and M. septentrionale. The species position of the studied bacteria was clarified by DNA-DNA hybridization. The DNA-DNA relatedness between isolates AG1, AG7, AG15 and AG27 and reference strain M. ciceri USDA 3383T was 76.4-84.2 %, and all these A. glycyphyllos nodulators were defined as members of the genomospecies M. ciceri. DNA-DNA relatedness for isolates AG17 and AG22 and the reference strain M. amorphae ICMP 15022T was 77.5 and 80.1 %, respectively. We propose that the nodule isolates AG17 and AG22 belong to the genomic species M. amorphae. Additionally, it was found that the total DNA G+C content of the six test A. glycyphyllos symbionts was 59.4-62.1 mol%, within the range for species of the genus Mesorhizobium. PMID:26704062

  4. Long-Range Charge Transport in Adenine-Stacked RNA:DNA Hybrids.

    PubMed

    Li, Yuanhui; Artés, Juan M; Hihath, Joshua

    2016-01-27

    An extremely important biological component, RNA:DNA can also be used to design nanoscale structures such as molecular wires. The conductance of single adenine-stacked RNA:DNA hybrids is rapidly and reproducibly measured using the break junction approach. The conductance decreases slightly over a large range of molecular lengths, suggesting that RNA:DNA can be used as an oligonucleotide wire. PMID:26596516

  5. Intense photoluminescence from dried double-stranded DNA and single-walled carbon nanotube hybrid

    SciTech Connect

    Ito, M.; Kobayashi, T.; Ito, Y.; Hayashida, T.; Nii, D.; Umemura, K.; Homma, Y.

    2014-01-27

    Semiconducting single-walled carbon nanotubes (SWNTs) show near-infrared photoluminescence (PL) when they are individually isolated. This was an obstacle to use photonic properties of SWNTs on a solid surface. We show that SWNTs wrapped with DNA maintain intense PL under the dry conditions. SWNTs are well isolated individually by DNA even when the DNA-SWNT hybrids are agglomerated. This finding opens up application of SWNTs to photonic devices.

  6. DNA Hybridization Sensors Based on Electrochemical Impedance Spectroscopy as a Detection Tool

    PubMed Central

    Park, Jin-Young; Park, Su-Moon

    2009-01-01

    Recent advances in label free DNA hybridization sensors employing electrochemical impedance spectroscopy (EIS) as a detection tool are reviewed. These sensors are based on the modulation of the blocking ability of an electrode modified with a probe DNA by an analyte, i.e., target DNA. The probe DNA is immobilized on a self-assembled monolayer, a conducting polymer film, or a layer of nanostructures on the electrode such that desired probe DNA would selectively hybridize with target DNA. The rate of charge transfer from the electrode thus modified to a redox indicator, e.g., [Fe(CN)6]3−/4−, which is measured by EIS in the form of charge transfer resistance (Rct), is modulated by whether or not, as well as how much, the intended target DNA is selectively hybridized. Efforts made to enhance the selectivity as well as the sensitivity of DNA sensors and to reduce the EIS measurement time are briefly described along with brief future perspectives in developing DNA sensors. PMID:22303136

  7. Colloidal Au-enhanced surface plasmon resonance imaging: application in a DNA hybridization process

    NASA Astrophysics Data System (ADS)

    Manera, M. G.; Spadavecchia, J.; Taurino, A.; Rella, R.

    2010-03-01

    The detection of the DNA hybridization mechanism using monodispersed gold nanoparticles as labels is an interesting alternative to increase the sensitivity of the SPR imaging technique. DNA-modified Au nanoparticles (DNA-Au NPs) containing single-stranded (ss) portions of DNA were prepared by monitoring their monolayer formation by UV-vis spectroscopy. The hybridization process between specific thio-oligonucleotides immobilized on the DNA-Au NPs and the corresponding complementary strands is reported and compared with the traditional hybridization process on properly self-assembled thin gold films deposited on glass substrates. A remarkable signal amplification is observed, following the incorporation of colloidal Au into a SPR biosensing experiment, resulting in an increased SPR response to DNA-DNA interactions. In particular Fusarium thiolated DNA (5'HS poly(T)15ATC CCT CAA AAA CTG CCG CT-3) and trichothecenes complementary DNA (5'-AGC GGC AGT TTT TGA GGG AT-3') sequences have been explored due to their possible application to agro-industry for the control of food quality.

  8. The kinetics of force-dependent hybridization and strand-peeling of short DNA fragments

    NASA Astrophysics Data System (ADS)

    Yang, ZhouJie; Yuan, GuoHua; Zhai, WeiLi; Yan, Jie; Chen, Hu

    2016-08-01

    Deoxyribonucleic acid (DNA) carries the genetic information in all living organisms. It consists of two interwound single-stranded (ss) strands, forming a double-stranded (ds) DNA with a right-handed double-helical conformation. The two strands are held together by highly specific basepairing interactions and are further stabilized by stacking between adjacent basepairs. A transition from a dsDNA to two separated ssDNA is called melting and the reverse transition is called hybridization. Applying a tensile force to a dsDNA can result in a particular type of DNA melting, during which one ssDNA strand is peeled away from the other. In this work, we studied the kinetics of strand-peeling and hybridization of short DNA under tensile forces. Our results show that the force-dependent strand-peeling and hybridization can be described with a simple two-state model. Importantly, detailed analysis of the force-dependent transition rates revealed that the transition state consists of several basepairs dsDNA.

  9. Use of Multiple-Displacement Amplification and Checkerboard DNA-DNA Hybridization To Examine the Microbiota of Endodontic Infections▿

    PubMed Central

    Brito, L. C. N.; Teles, F. R.; Teles, R. P.; França, E. C.; Ribeiro-Sobrinho, A. P.; Haffajee, A. D.; Socransky, S. S.

    2007-01-01

    Multiple-displacement amplification (MDA) has been used to uniformly amplify bacterial genomes present in small samples, providing abundant targets for molecular analysis. The purpose of this investigation was to combine MDA and checkerboard DNA-DNA hybridization to examine the microbiota of endodontic infections. Sixty-six samples were collected from teeth with endodontic infections. Nonamplified and amplified samples were analyzed by checkerboard DNA-DNA hybridization for levels and proportions of 77 bacterial taxa. Counts, percentages of DNA probe counts, and percentages of teeth colonized for each species in amplified and nonamplified samples were computed. Significance of differences for each species between amplified and nonamplified samples was sought with Wilcoxon signed-rank test and adjusted for multiple comparisons. The amount of DNA in the samples ranged from 6.80 (± 5.2) ng before to 6.26 (± 1.73) μg after MDA. Seventy of the 77 DNA probes hybridized with one or more of the nonamplified samples. All probes hybridized with at least one sample after amplification. Most commonly detected species at levels of >104 in both amplified and nonamplified samples were Prevotella tannerae and Acinetobacter baumannii at frequencies between 89 and 100% of samples. The mean number of species at counts of >104 in amplified samples was 51.2 ± 2.2 and in nonamplified samples was 14.5 ± 1.7. The endodontic microbiota was far more complex than previously shown, although microbial profiles at teeth with or without periradicular lesions did not differ significantly. Species commonly detected in endodontic samples included P. tannerae, Prevotella oris, and A. baumannii. PMID:17634304

  10. DNA hybridization and phosphinothricin acetyltransferase gene sequence detection based on zirconia/nanogold film modified electrode

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Yang, Tao; Jiang, Chen; Jiao, Kui

    2008-05-01

    This study reports a novel electrochemical DNA biosensor based on zirconia (ZrO 2) and gold nanoparticles (NG) film modified glassy carbon electrode (GCE). NG was electrodeposited onto the glassy carbon electrode at 1.5 V, and then zirconia thin film on the NG/GCE was fabricated by cyclic voltammetric method (CV) in an aqueous electrolyte of ZrOCl 2 and KCl at a scan rate of 20 mV/s. DNA probes were attached onto the ZrO 2/NG/GCE due to the strong binding of the phosphate group of DNA with the zirconia film and the excellent biocompatibility of nanogold with DNA. CV and electrochemical impedance spectroscopy (EIS) were used to characterize the modification of the electrode and the probe DNA immobilization. The electrochemical response of the DNA hybridization was measured by differential pulse voltammetry (DPV) using methylene blue (MB) as the electroactive indicator. After the hybridization of DNA probe (ssDNA) with the complementary DNA (cDNA), the cathodic peak current of MB decreased obviously. The difference of the cathodic peak currents of MB between before and after the hybridization of the probe DNA was used as the signal for the detection of the target DNA. The sequence-specific DNA of phosphinothricin acetyltransferase (PAT) gene in the transgenic plants was detected with a detection range from 1.0 × 10 -10 to 1.0 × 10 -6 mol/L, and a detection limit of 3.1 × 10 -11 mol/L.

  11. Layered zirconium phosphonate with inorganic–organic hybrid structure: Preparation and its assembly with DNA

    SciTech Connect

    Liu, Li-Min; Lu, Guo-Yuan; Jiang, Li-Ping; Zhu, Jun-Jie

    2014-07-01

    An aminoethoxy-functionalized zirconium phosphonate (Zr(O{sub 3}POCH{sub 2}CH{sub 2}NH{sub 2}){sub 2}·3H{sub 2}O), abbreviated as ZrRP (R=OCH{sub 2}CH{sub 2}NH{sub 2}), with layered structure has been synthesized. This layered compound possesses the characteristic of inorganic–organic hybrid, due to the covalently linked aminoethoxy in the host layer. The anion exchanged property of this zirconium phosphonate is suitable for the direct intercalation of negatively charged DNA, which is different from these reported zirconium phosphates or zirconium phosphonates. As a precursor, this prepared zirconium phosphonate was utilized to fabricate a novel DNA/ZrRP binary hybrid via a delamination-reassembly procedure. The release behavior of DNA from the DNA/ZrRP composite was investigated at different medium pH, because the combination between zirconium phosphonate sheets and DNA was pH-dependent sensitively. Moreover, the helical conformation of DNA was almost retained after the intercalation and release process. These properties of the DNA/ZrRP composite suggested the potential application of layered zirconium phosphonate as a non-viral vector in gene delivery. - Graphical abstract: The intercalation of DNA into zirconium phosphonate and the release of DNA from the interlayer of zirconium phosphonate. - Highlights: ●A layered aminoethoxy-functionalized zirconium phosphonate has been synthesized. ●DNA was intercalated directly into the prepared zirconium phosphonate. ●A novel zirconium phosphonate/DNA binary hybrid was fabricated. ●DNA can be reversibly released from the interlayer of zirconium phosphonate. ●The intercalation/release processes do not induce the denaturalization of DNA.

  12. Elucidation of the Mechanism of Gene Silencing using Small Interferin RNA: DNA Hybrid Molecules

    SciTech Connect

    Dugan, L

    2006-02-08

    The recent discovery that short hybrid RNA:DNA molecules (siHybrids) induce long-term silencing of gene expression in mammalian cells conflicts with the currently hypothesized mechanisms explaining the action of small, interfering RNA (siRNA). As a first step to elucidating the mechanism for this effect, we set out to quantify the delivery of siHybrids and determine their cellular localization in mammalian cells. We then tracked the segregation of the siHybrids into daughter cells after cell division. Markers for siHybrid delivery were shown to enter cells with and without the use of a transfection agent. Furthermore, delivery without transfection agent only occurred after a delay of 2-4 hours, suggesting a degradation process occurring in the cell culture media. Therefore, we studied the effects of nucleases and backbone modifications on the stability of siHybrids under cell culture conditions.

  13. Genome-wide DNA hypomethylation and RNA:DNA hybrid accumulation in Aicardi–Goutières syndrome

    PubMed Central

    Lim, Yoong Wearn; Sanz, Lionel A; Xu, Xiaoqin; Hartono, Stella R; Chédin, Frédéric

    2015-01-01

    Aicardi–Goutières syndrome (AGS) is a severe childhood inflammatory disorder that shows clinical and genetic overlap with systemic lupus erythematosus (SLE). AGS is thought to arise from the accumulation of incompletely metabolized endogenous nucleic acid species owing to mutations in nucleic acid-degrading enzymes TREX1 (AGS1), RNase H2 (AGS2, 3 and 4), and SAMHD1 (AGS5). However, the identity and source of such immunogenic nucleic acid species remain undefined. Using genome-wide approaches, we show that fibroblasts from AGS patients with AGS1-5 mutations are burdened by excessive loads of RNA:DNA hybrids. Using MethylC-seq, we show that AGS fibroblasts display pronounced and global loss of DNA methylation and demonstrate that AGS-specific RNA:DNA hybrids often occur within DNA hypomethylated regions. Altogether, our data suggest that RNA:DNA hybrids may represent a common immunogenic form of nucleic acids in AGS and provide the first evidence of epigenetic perturbations in AGS, furthering the links between AGS and SLE. DOI: http://dx.doi.org/10.7554/eLife.08007.001 PMID:26182405

  14. An efficient algorithm for the stochastic simulation of the hybridization of DNA to microarrays

    PubMed Central

    2009-01-01

    Background Although oligonucleotide microarray technology is ubiquitous in genomic research, reproducibility and standardization of expression measurements still concern many researchers. Cross-hybridization between microarray probes and non-target ssDNA has been implicated as a primary factor in sensitivity and selectivity loss. Since hybridization is a chemical process, it may be modeled at a population-level using a combination of material balance equations and thermodynamics. However, the hybridization reaction network may be exceptionally large for commercial arrays, which often possess at least one reporter per transcript. Quantification of the kinetics and equilibrium of exceptionally large chemical systems of this type is numerically infeasible with customary approaches. Results In this paper, we present a robust and computationally efficient algorithm for the simulation of hybridization processes underlying microarray assays. Our method may be utilized to identify the extent to which nucleic acid targets (e.g. cDNA) will cross-hybridize with probes, and by extension, characterize probe robustnessusing the information specified by MAGE-TAB. Using this algorithm, we characterize cross-hybridization in a modified commercial microarray assay. Conclusions By integrating stochastic simulation with thermodynamic prediction tools for DNA hybridization, one may robustly and rapidly characterize of the selectivity of a proposed microarray design at the probe and "system" levels. Our code is available at http://www.laurenzi.net. PMID:20003312

  15. Label free detection of DNA hybridization by refractive index tapered fiber biosensor

    NASA Astrophysics Data System (ADS)

    Zibaii, M. I.; Latifi, H.; Ghanati, E.; Gholami, M.; Hosseini, S. M.

    2010-04-01

    We demonstrate a simple refractive index sensor (RI) sensing system based on a biconical tapered optical fiber (BTOF), which is fabricated by heat pulling method, utilizing a CO2 laser. In this work we explore the application of these sensors for the detection of label free single stranded DNA (ssDNA) in real time. During the experiment, the target ssDNA did not need to be labeled with a fluorescent tag, which is expensive and complicated. The change in output optical transmission of the tapered fiber was recorded for Poly-L-Lysine (PLL) coating, ssDNA probe immobilization and hybridization. The result indicated that due to the hybridization with the complementary target ssDNA on the tapered surface, the RI of surrounding medium changes which leads to changes in the characteristics of the tapered region and change in the output power of the sensor.

  16. DNA fingerprinting of Kentucky bluegrass cultivars and hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a high polyploidy, apomictic, self-incompatible, perennial grass, Kentucky bluegrass has such complex genetic architecture that conducting standard Mendelian genetic selection is currently impossible. One large hurdle is the inability to differentiate true hybrids from other apomictic progenies....

  17. PolyA-Mediated DNA Assembly on Gold Nanoparticles for Thermodynamically Favorable and Rapid Hybridization Analysis.

    PubMed

    Zhu, Dan; Song, Ping; Shen, Juwen; Su, Shao; Chao, Jie; Aldalbahi, Ali; Zhou, Ziang; Song, Shiping; Fan, Chunhai; Zuo, Xiaolei; Tian, Yang; Wang, Lianhui; Pei, Hao

    2016-05-01

    Understanding the behavior of biomolecules on nanointerface is critical in bioanalysis, which is great challenge due to the instability and the difficulty to control the orientation and loading density of biomolecules. Here, we investigated the thermodynamics and kinetics of DNA hybridization on gold nanoparticle, with the aim to improve the efficiency and speed of DNA analysis. We achieved precise and quantitative surface control by applying a recently developed poly adenines (polyA)-based assembly strategy on gold nanoparticles (DNA-AuNPs). PolyA served as an effective anchoring block based on the preferential binding with the AuNP surface and the appended recognition block adopted an upright conformation that favors DNA hybridization. The lateral spacing and surface density of DNA on AuNPs can be systematically modulated by adjusting the length of polyA block. We found the stability of duplex on AuNP was enhanced with the increasing length of polyA block. When the length of polyA block reached to 40 bases, the thermodynamic properties were more similar to that of duplex in solution. Fast hybridization rate was observed on the diblock DNA-AuNPs and was increased along with the length of polyA block. We consider the high stability and excellent hybridization performance come from the minimization of the DNA-DNA and DNA-AuNP interactions with the use of polyA block. This study provides better understanding of the behavior of biomolecules on the nanointerface and opens new opportunities to construct high-efficiency and high-speed biosensors for DNA analysis. PMID:27058116

  18. Impact parameters on hybridization process in detecting influenza virus (type A) using conductimetric-based DNA sensor

    NASA Astrophysics Data System (ADS)

    Tam, Phuong Dinh; Tuan, Mai Anh; Van Hieu, Nguyen; Chien, Nguyen Duc

    2009-08-01

    This paper report various impact parameters on hybridization of probe/target DNA to detect the influenza virus (type A-H5N1) such as hybridization temperature, probe concentration, mismatch target and hybridization time. The DNA probe was attached to sensor surface by means of covalent bonding between amine of 3-aminopropyl-triethoxy-silance (APTS) and phosphate group of DNA sequence. The hybridization of probe/target DNA strands were detected by changing the surface conductance of sensors, which leads to the change in output signal of the system. The results reveal that the DNA sensor can detect as low as 0.5 nM of target DNA in real samples. The response time of DNA sensor is approximately 4 min, and the sensitivity of DNA sensor is about 0.03 mV/nM.

  19. Implication of Triticum searsii as the B-genome donor to wheat using DNA hybridizations.

    PubMed

    Nath, J; McNay, J W; Paroda, C M; Gulati, S C

    1983-08-01

    In vitro DNA:DNA hybridizations and hydroxyapatite thermal chromatography were employed to help identify the species ancestral to the B genome of the polyploid wheats. We hybridized 3H-Triticum aestivum DNA to the unlabeled DNAs of T. urartu, T. speltoides, T. sharonensis, T. bicorne, T. longissimum, and T. searsii, 3H-Labeled DNA of T. urartu was hybridized with the DNA of a synthetic tetraploid. AADD. The heteroduplex thermal stabilities indicated that T. searsii was most closely related to T. aestivum (ABD) and that the genome of T. urartu was more closely related to the A genome than the B genome. The degree of reassociation which may have occurred between the six diploid species and the D genome of T. aestivum was evaluated by hybridizing 3H-T. tauschii DNA with the DNAs of the diploids. The results indicated that T. urartu had the least sequence homology to T. tauschii, the D-genome donor lending additional support to the conclusion that T. urartu is related to the A genome. Thus, it is highly probable that T. searsii is the B-genome donor to the polyploid wheats or a major chromosome donor if the B genome is, in fact, polyphyletic in origin. PMID:6626143

  20. Competitive Assays of Label-Free DNA Hybridization with Single-Molecule Fluorescence Imaging Detection.

    PubMed

    Peterson, Eric M; Manhart, Michael W; Harris, Joel M

    2016-06-21

    Single-molecule imaging of fluorescently labeled biomolecules is a powerful technique for measuring association interactions; however, care must be taken to ensure that the fluorescent labels do not influence the system being probed. Label-free techniques are needed to understand biomolecule interactions free from the influence of an attached label, but these techniques often lack sensitivity and specificity. To solve these challenges, we have developed a competitive assay that uses single-molecule detection to track the population of unlabeled target single-stranded DNA (ssDNA) hybridized with probe DNA immobilized at a glass interface by detecting individual duplexes with a fluorescently labeled "tracer" ssDNA. By labeling a small fraction (<0.2%) of target molecules, the "tracer" DNA tracks the available probe DNA sites without significant competition with the unlabeled target population. Single-molecule fluorescence imaging is a good read-out scheme for competitive assays, as it is sufficiently sensitive to detect tracer DNA on substrates with relatively low densities of probe DNA, ∼10(-3) of a monolayer, so that steric interactions do not hinder DNA hybridization. Competitive assays are used to measure the association constant of complementary strand DNA hybridization of 9- and 10-base pair targets, where the tracer assay predicts the same association constant as a traditional displacement competitive assay. This methodology was used to compare the Ka of hybridization for identical DNA strands differing only by the presence of a fluorescent label tethered to the 5' end of the solution-phase target. The addition of the fluorescent label significantly stabilizes the DNA duplex by 3.6 kJmol(-1), adding more stability than an additional adenine-thymine base-pairing interaction, 2.7 kJmol(-1). This competitive tracer assay could be used to screen a number of labeled and unlabeled target DNA strands to measure the impact of fluorescent labeling on duplex stability

  1. DNA hybridization assay for detection of gypsy moth nuclear polyhedrosis virus in infected gypsy moth (Lymantria dispar L. ) larvae

    SciTech Connect

    Keating, S.T.; Burand, J.P.; Elkinton, J.S. )

    1989-11-01

    Radiolabeled Lymantria dispar nuclear polyhedrosis virus DNA probes were used in a DNA hybridization assay to detect the presence of viral DNA in extracts from infected larvae. Total DNA was extracted from larvae, bound to nitrocellulose filters, and assayed for the presence of viral DNA by two methods: slot-blot vacuum filtration and whole-larval squashes. The hybridization results were closely correlated with mortality observed in reared larvae. Hybridization of squashes of larvae frozen 4 days after receiving the above virus treatments also produced accurate measures of the incidence of virus infection.

  2. Internalization of Locked Nucleic Acids/DNA Hybrid Oligomers into Escherichia coli.

    PubMed

    Traglia, German M; Sala, Carol Davies; Fuxman Bass, Juan I; Soler-Bistué, Alfonso J C; Zorreguieta, Angeles; Ramírez, María Soledad; Tolmasky, Marcelo E

    2012-10-01

    Delivery inside the cells is essential for practical application of antisense technologies. The hybrid locked nucleic acid (LNA)/DNA CAAGTACTGTTCCACCA (LNA residues are underlined) was labeled by conjugation to Alexa Fluor 488 (fLNA/DNA) and tested to determine its ability to penetrate Escherichia coli cells and reach the cytoplasm. Flow cytometry analysis showed that the fLNA/DNA was associated with 14% of cells from a stationary phase culture, while association with a labeled isosequential oligodeoxynucleotide was negligible. Laser scanning confocal microscopy confirmed that the fLNA/DNA was located inside the cytoplasm. PMID:23515318

  3. Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence

    NASA Astrophysics Data System (ADS)

    Enayatifar, Rasul; Abdullah, Abdul Hanan; Isnin, Ismail Fauzi

    2014-05-01

    The paper studies a recently developed evolutionary-based image encryption algorithm. A novel image encryption algorithm based on a hybrid model of deoxyribonucleic acid (DNA) masking, a genetic algorithm (GA) and a logistic map is proposed. This study uses DNA and logistic map functions to create the number of initial DNA masks and applies GA to determine the best mask for encryption. The significant advantage of this approach is improving the quality of DNA masks to obtain the best mask that is compatible with plain images. The experimental results and computer simulations both confirm that the proposed scheme not only demonstrates excellent encryption but also resists various typical attacks.

  4. Detection and classification of Trypanosoma cruzi by DNA hybridization with nonradioactive probes.

    PubMed

    Solari, A; Venegas, J; Gonzalez, E; Vasquez, C

    1991-01-01

    Total or kinetoplast DNA (kDNA) from 72 isolates and clones of Trypanosoma cruzi as well as from nine related trypanosomatids were analyzed by dot hybridization using nonradioactive kDNA or cloned minicircle fragments as probes. Biotinylated-kDNA probes generated by nick-translation proved reliable for distinguishing Zymodeme 1 and Zymodeme 2bol of T. cruzi parasites. In contrast, digoxigenin-labeled kDNA obtained by random-priming did not distinguish among T. cruzi isolates but did distinguish among New World leishmanias. Cloned minicircle fragments labeled with digoxigenin gave the same results as digoxigenin-labeled kDNA, except for a 10-fold decrease in sensitivity. Digoxigenin-labeled DNA probes proved useful in unambiguously detecting T. cruzi from different geographic regions of America. However, T. rangeli and T. cruzi marinkellei were not distinguished by these probes. PMID:1667933

  5. Direct Measurement of Single-Molecule DNA Hybridization Dynamics with Single-Base Resolution.

    PubMed

    He, Gen; Li, Jie; Ci, Haina; Qi, Chuanmin; Guo, Xuefeng

    2016-07-25

    Herein, we report label-free detection of single-molecule DNA hybridization dynamics with single-base resolution. By using an electronic circuit based on point-decorated silicon nanowires as electrical probes, we directly record the folding/unfolding process of individual hairpin DNAs with sufficiently high signal-to-noise ratio and bandwidth. These measurements reveal two-level current oscillations with strong temperature dependence, enabling us to determine the thermodynamic and kinetic properties of hairpin DNA hybridization. More importantly, successive, stepwise increases and decreases in device conductance at low temperature on a microsecond timescale are successfully observed, indicating a base-by-base unfolding/folding process. The process demonstrates a kinetic zipper model for DNA hybridization/dehybridization at the single base-pair level. This measurement capability promises a label-free single-molecule approach to probe biomolecular interactions with fast dynamics. PMID:27272178

  6. Interspersion of sequences in avian myeloblastosis virus rna that rapidly hybridize with leukemic chicken cell DNA.

    PubMed Central

    Drohan, W N; Shoyab, M; Wall, R; Baluda, M A

    1975-01-01

    Liquid hybridization of progressively smaller fragments (35S, 27S, 15.5S, 12.5S, and 8S) of poly(A)-selected avian myeloblastosis virus RNA with excess DNA from leukemic chicken myeloblasts revealed that all sizes of RNA contained sequences complementary to both slowly and rapidly hybridizing cellular DNA sequences. Apparently, the RNA sequences which hybridize rapidly with excesses of cellular DNA are not restricted to any one region of the avian myeloblastosis virus 35S RNA. Instead, they appear to be randomly distributed over the entire 35S avian myeloblastosis virus RNA molecule with some positioned within 200 nucleotides of the poly(A) tract at the 3' end of the RNA. PMID:163372

  7. Multiplexed DNA sequencing and diagnostics by hybridization with enriched stable isotope labels

    SciTech Connect

    Arlinghaus, H.F.; Kwoka, M.N.; Guo, X.Q.; Jacobson, K.B.

    1997-04-15

    A new DNA diagnostic and sequencing system has been developed that uses time-of-flight resonance ionization mass spectrometry (TOF-RIMS) to provide a rapid method of analyzing stable isotope-labeled oligonucleotides in form 1 sequencing by hybridization (SBH). With form 1, the DNA is immobilized on a nylon membrane and enriched isotope-labeled individual oligonucleotide probes are free to seek out complementary DNAs during hybridization. The major advantage of this new approach is that multiple oligonucleotides can be labeled with different enriched isotopes and can all be simultaneously hybridized to the genosensor matrix. The probes can then be simultaneously detected with TOF-RIMS with high selectivity, sensitivity, and efficiency. By using isotopically enriched tin labels, up to 10 labeled oligonucleotides could be examined in a single hybridization to the DNA matrix. Greater numbers of labels are available if rare earth isotopes are employed. In the present study, matrices containing three different DNAs were prepared and simultaneously hybridized with two different probes under a variety of conditions. The results show that DNAs, immobilized on nylon surfaces, can be specifically hybridized to probes labeled with different enriched tin isotopes. Discrimination between complementary and noncomplementary sites of better than 100 was obtained in multiplexed samples. 34 refs., 5 figs.

  8. A Novel SERRS Sandwich-Hybridization Assay to Detect Specific DNA Target

    PubMed Central

    Gillet, Benjamin; Montagnac, Gilles; Daniel, Isabelle; Hänni, Catherine

    2011-01-01

    In this study, we have applied Surface Enhanced Resonance Raman Scattering (SERRS) technology to the specific detection of DNA. We present an innovative SERRS sandwich-hybridization assay that allows specific DNA detection without any enzymatic amplification, such as is the case with Polymerase Chain Reaction (PCR). In some substrates, such as ancient or processed remains, enzymatic amplification fails due to DNA alteration (degradation, chemical modification) or to the presence of inhibitors. Consequently, the development of a non-enzymatic method, allowing specific DNA detection, could avoid long, expensive and inconclusive amplification trials. Here, we report the proof of concept of a SERRS sandwich-hybridization assay that leads to the detection of a specific chamois DNA. This SERRS assay reveals its potential as a non-enzymatic alternative technology to DNA amplification methods (particularly the PCR method) with several applications for species detection. As the amount and type of damage highly depend on the preservation conditions, the present SERRS assay would enlarge the range of samples suitable for DNA analysis and ultimately would provide exciting new opportunities for the investigation of ancient DNA in the fields of evolutionary biology and molecular ecology, and of altered DNA in food frauds detection and forensics. PMID:21655320

  9. DNA Cleavage and Condensation Activities of Mono- and Binuclear Hybrid Complexes and Regulation by Graphene Oxide.

    PubMed

    Li, Shuo; Dai, Mingxing; Zhang, Chunping; Jiang, Bingying; Xu, Junqiang; Zhou, Dewen; Gu, Zhongwei

    2016-01-01

    Hybrid complexes with N,N'-bis(2-benzimidazolylmethyl)amine and cyclen moieties are novel enzyme mimics and controlled DNA release materials, which could interact with DNA through three models under different conditions. In this paper, the interactions between plasmid DNA and seven different complexes were investigated, and the methods to change the interaction patterns by graphene oxide (GO) or concentrations were also investigated. The cleavage of pUC19 DNA promoted by target complexes were via hydrolytic or oxidative mechanisms at low concentrations ranging from 3.13 × 10(-7) to 6.25 × 10(-5) mol/L. Dinuclear complexes 2a and 2b can promote the cleavage of plasmid pUC19 DNA to a linear form at pH values below 7.0. Furthermore, binuclear hybrid complexes could condense DNA as nanoparticles above 3.13 × 10(-5) mol/L and partly release DNA by graphene oxide with π-π stacking. Meanwhile, the results also reflected that graphene oxide could prevent DNA from breaking down. Cell viability assays showed dinuclear complexes were safe to normal human hepatic cells at relative high concentrations. The present work might help to develop novel strategies for the design and synthesis of DNA controllable releasing agents, which may be applied to gene delivery and also to exploit the new application for GO. PMID:27428945

  10. Hybridization thermodynamics of DNA oligonucleotides during microchip capillary electrophoresis.

    PubMed

    Wynne, Thomas M; McCallum, Christopher; Del Bonis-O'Donnell, Jackson Travis; Crisalli, Pete; Pennathur, Sumita

    2015-03-01

    Capillary electrophoresis (CE) is a powerful analytical tool for performing separations and characterizing properties of charged species. For reacting species during a CE separation, local concentrations change leading to nonequilibrium conditions. Interpreting experimental data with such nonequilibrium reactive species is nontrivial due to the large number of variables involved in the system. In this work we develop a COMSOL multiphysics-based numerical model to simulate the electrokinetic mass transport of short interacting ssDNAs in microchip capillary electrophoresis. We probe the importance of the dissociation constant, K(D), and the concentration of DNA on the resulting observed mobility of the dsDNA peak, μ(w), by using a full sweep of parametric simulations. We find that the observed mobility is strongly dependent on the DNA concentration and K(D), as well as ssDNA concentration, and develop a relation with which to understand this dependence. Furthermore, we present experimental microchip capillary electrophoresis measurements of interacting 10 base ssDNA and its complement with changes in buffer ionic strength, DNA concentration, and DNA sequence to vary the system equilibria. We then compare our results to thermodynamically calculated K(D) values. PMID:25634338

  11. A simple colorimetric DNA detection by target-induced hybridization chain reaction for isothermal signal amplification.

    PubMed

    Ma, Cuiping; Wang, Wenshuo; Mulchandani, Ashok; Shi, Chao

    2014-07-15

    A novel DNA detection method is presented based on a gold nanoparticle (AuNP) colorimetric assay and hybridization chain reaction (HCR). In this method, target DNA hybridized with probe DNA modified on AuNP, and triggered HCR. The resulting HCR products with a large number of negative charges significantly enhanced the stability of AuNPs, inhibiting aggregation of AuNPs at an elevated salt concentration. The approach was highly sensitive and selective. Using this enzyme-free and isothermal signal amplification method, we were able to detect target DNA at concentrations as low as 0.5 nM with the naked eye. Our method also has great potential for detecting other analytes, such as metal ions, proteins, and small molecules, if the target analytes could make HCR products attach to AuNPs. PMID:24780220

  12. Capacitive Monitoring of Morpholino-DNA Surface Hybridization: Experimental and Theoretical Analysis

    PubMed Central

    Tercero, Napoleon; Wang, Kang; Levicky, Rastislav

    2010-01-01

    Impedance and cyclic voltammetry methods, complemented by Poisson-Boltzmann (PB) modeling, are used to study hybridization of DNA analyte strands to monolayers of morpholino oligomers (MOs) immobilized by one end to mercaptopropanol-passivated gold electrodes. MOs, like peptide nucleic acids (PNAs), are uncharged molecules that recognize nucleic acids following conventional base-pairing rules. The capacitive response to hybridization, determined from real-time impedance measurements, is analyzed with emphasis on understanding the underlying structural changes and on providing a foundation for label-free diagnostics. The capacitive response is correlated with the instantaneous surface molecular populations by labeling DNA and MO strands with ferrocene tags and using cyclic voltammetry to monitor their respective coverages in real-time. This approach allows analysis of hybridization-induced changes in interfacial capacitance as a function of duplex coverage, the DC bias used for readout, buffer molarity, and probe coverage. The results indicate that unhybridized MO layers exist in a compact state on the solid support. For hybridized layers, the intrinsic signal per hybridization event is strongly enhanced at low ionic strengths but, interestingly, does not depend on the readout bias in the sampled range negative of the capacitive minimum. A PB model incorporating an effective medium description of the hybridizing films is used to establish how hybridization-derived changes in dielectric composition and charge distribution at the surface translate into experimentally-observed variations in interfacial capacitance. PMID:20690772

  13. Protocol for sortase-mediated construction of DNA-protein hybrids and functional nanostructures

    PubMed Central

    Koussa, Mounir A.; Sotomayor, Marcos; Wong, Wesley P.

    2014-01-01

    Recent methods in DNA nanotechnology are enabling the creation of intricate nanostructures through the use of programmable, bottom-up self-assembly. However, structures consisting only of DNA are limited in their ability to act on other biomolecules. Proteins, on the other hand, perform a variety of functions on biological materials, but directed control of the self-assembly process remains a challenge. While DNA-protein hybrids have the potential to provide the best-of-both-worlds, they can be difficult to create as many of the conventional techniques for linking proteins to DNA render proteins dysfunctional. We present here a sortase-based protocol for covalently coupling proteins to DNA with minimal disturbance to protein function. To accomplish this we have developed a two-step process. First, a small synthetic peptide is bioorthogonally and covalently coupled to a DNA oligo using click chemistry. Next, the DNA-peptide chimera is covalently linked to a protein of interest under protein-compatible conditions using the enzyme sortase. Our protocol allows for the simple coupling and purification of a functional DNA-protein hybrid. We use this technique to form oligos bearing cadherin-23 and protocadherin-15 protein fragments. Upon incorporation into a linear M13 scaffold, these protein-DNA hybrids serve as the gate to a binary nanoswitch. The outlined protocol is reliable and modular, facilitating the construction of libraries of oligos and proteins that can be combined to form functional DNA-protein nanostructures. These structures will enable a new class of functional nanostructures, which could be used for therapeutic and industrial processes. PMID:24568941

  14. Homologous PNA Hybridization to Noncanonical DNA G-Quadruplexes.

    PubMed

    Kormuth, Karen A; Woolford, John L; Armitage, Bruce A

    2016-03-29

    Potential guanine (G) quadruplex-forming sequences (QFSs) found throughout the genomes and transcriptomes of organisms have emerged as biologically relevant structures. These G-quadruplexes represent novel opportunities for gene regulation at the DNA and RNA levels. Recently, the definition of functional QFSs has been expanding to include a variety of unconventional motifs, including relatively long loop sequences (i.e., >7 nucleotides) separating adjacent G-tracts. We have identified a QFS within the 25S rDNA gene from Saccharomyces cerevisae that features a long loop separating the two 3'-most G-tracts. An oligonucleotide based on this sequence, QFS3, folds into a stable G-quadruplex in vitro. We have studied the interaction between QFS3 and several loop mutants with a small, homologous (G-rich) peptide nucleic acid (PNA) oligomer that is designed to form a DNA/PNA heteroquadruplex. The PNA successfully invades the DNA quadruplex target to form a stable heteroquadruplex, but with surprisingly high PNA:DNA ratios based on surface plasmon resonance and mass spectrometric results. A model for high stoichiometry PNA-DNA heteroquadruplexes is proposed, and the implications for quadruplex targeting by G-rich PNA are discussed. PMID:26950608

  15. Highly sensitive electrochemical biosensor based on nonlinear hybridization chain reaction for DNA detection.

    PubMed

    Jia, Liping; Shi, Shanshan; Ma, Rongna; Jia, Wenli; Wang, Huaisheng

    2016-06-15

    In the present work we demonstrated an ultrasensitive detection platform for specific DNA based on nonlinear hybridization chain reaction (HCR) by triggering chain-branching growth of DNA dendrimers. HCR was initiated by target DNA (tDNA) and finally formed dendritic structure by self-assembly. The electrochemical signal was drastically enhanced by capturing multiple catalytic peroxidase with high-ordered growth. Electrochemical signals were obtained by measuring the reduction current of oxidized 3, 3', 5, 5'-tetramethylbenzidine sulfate (TMB), which was generated by HRP in the presence of H2O2. This method exhibited ultrahigh sensitivity to tDNA with detection limit of 0.4fM. Furthermore, the biosensor was also capable of discriminating single-nucleotide difference among concomitant DNA sequences. PMID:26872213

  16. Molybdenum disulfide (MoS2) nanoflakes as inherently electroactive labels for DNA hybridization detection.

    PubMed

    Loo, Adeline Huiling; Bonanni, Alessandra; Ambrosi, Adriano; Pumera, Martin

    2014-10-21

    The detection of specific DNA sequences plays a critical role in the areas of medical diagnostics, environmental monitoring, drug discovery and food safety. This has therefore become a strong driving force behind the ever-increasing demand for simple, cost-effective, highly sensitive and selective DNA biosensors. In this study, we report for the first time, a novel approach for the utilization of molybdenum disulfide nanoflakes, a member of the transition metal dichalcogenides family, in the detection of DNA hybridization. Herein, molybdenum disulfide nanoflakes serve as inherently electroactive labels, with the inherent oxidation peak exploited as the analytical signal. The principle of detection is based on the differential affinity of molybdenum disulfide nanoflakes towards single-stranded DNA and double-stranded DNA. The employment of transition metal dichalcogenide nanomaterials for sensing and biosensing purposes represents an upcoming research area which holds great promise. Hence, our findings are anticipated to have significant contributions towards the fabrication of future DNA biosensors. PMID:25177907

  17. DNA sequence determination by hybridization: A strategy for efficient large-scale sequencing

    SciTech Connect

    Drmanac, R.; Drmanac, S.; Strezoska, Z.; Paunesku, T.; Labat, I.; Zeremski, M.; Snoody, J.; Crkvenjakov, R. ); Funkhouser, W.K.; Koop, B.; Hood, L. )

    1993-06-11

    The concept of sequencing by hybridization (SBH) makes use of an array of all possible n-nucleotide oligomers (n-mers) to identify n-mers present in an unknown DNA sequence. Computational approaches can then be used to assemble the complete sequence. As a validation of this concept, the sequences of three DNA fragments, 343 base pairs in length, were determined with octamer oligonucleotides. Possible applications of SBH include physical mapping (ordering) of overlapping DNA clones, sequence checking, DNA fingerprinting comparisons of normal and disease-causing genes, and the identification of DNA fragments with particular sequence motifs in complementary DNA and genomic libraries. The SBH techniques may accelerate the mapping and sequencing phases of the human genome project. 22 refs., 3 figs.

  18. DNA Sequence Determination by Hybridization: A Strategy for Efficient Large-Scale Sequencing

    NASA Astrophysics Data System (ADS)

    Drmanac, R.; Drmanac, S.; Strezoska, Z.; Paunesku, T.; Labat, I.; Zeremski, M.; Snoddy, J.; Funkhouser, W. K.; Koop, B.; Hood, L.; Crkvenjakov, R.

    1993-06-01

    The concept of sequencing by hybridization (SBH) makes use of an array of all possible n-nucleotide oligomers (n-mers) to identify n-mers present in an unknown DNA sequence. Computational approaches can then be used to assemble the complete sequence. As a validation of this concept, the sequences of three DNA fragments, 343 base pairs in length, were determined with octamer oligonucleotides. Possible applications of SBH include physical mapping (ordering) of overlapping DNA clones, sequence checking, DNA fingerprinting comparisons of normal and disease-causing genes, and the identification of DNA fragments with particular sequence motifs in complementary DNA and genomic libraries. The SBH techniques may accelerate the mapping and sequencing phases of the human genome project.

  19. Detection of bovine viral diarrhea virus genome in leukocytes from persistently infected cattle by RNA-cDNA hybridization.

    PubMed Central

    Jensen, J; Aiken, J; Schultz, R D

    1990-01-01

    A bovine viral diarrhea virus (BVDV) cDNA library was constructed. One cloned complementary DNA sequence was used as a probe to detect BVDV RNA by hybridization in infected cell cultures and in mononuclear leukocytes from persistently infected cattle by dot blot and in situ hybridization. The cDNA probe hybridized with all cytopathic and noncytopathic BVDV isolates tested. The hybridization results were consistent with results obtained using conventional subculturing and immunofluorescent staining methods and by inoculation of seronegative test cattle. Images Fig. 1. Fig. 2. Fig. 3. PMID:2162729

  20. ATP-Responsive DNA-Graphene Hybrid Nanoaggregates for Anticancer Drug Delivery

    PubMed Central

    Mo, Ran; Jiang, Tianyue; Sun, Wujin; Gu, Zhen

    2015-01-01

    Stimuli-triggered drug delivery systems are primarily focused on the applications of the tumor microenvironmental or cellular physiological cues to enhance the release of drugs at the target site. In this study, we applied adenosine-5′-triphosphate (ATP), the primary “energy molecule”, as a trigger for enhanced release of preloaded drugs responding to the intracellular ATP concentration that is significantly higher than the extracellular level. A new ATP-responsive anticancer drug delivery strategy utilizing DNA-graphene crosslinked hybrid nanoaggregates as carriers was developed for controlled release of doxorubicin (DOX), which consists of graphene oxide (GO), two single-stranded DNA (ssDNA, denoted as DNA1 and DNA2) and ATP aptamer. The single-stranded DNA1 and DNA2 together with the ATP aptamer serve as the linkers upon hybridization for controlled assembly of the DNA-GO nanoaggregates, which effectively inhibited the release of DOX from the GO nanosheets. In the presence of ATP, the responsive formation of the ATP/ATP aptamer complex causes the dissociation of the aggregates, which promoted the release of DOX in the environment with a high ATP concentration such as cytosol compared with that in the ATP-deficient extracellular fluid. This supports the development of a novel ATP-responsive platform for targeted on-demand delivery of anticancer drugs inside specific cells. PMID:25736497

  1. Detection of DNA Hybridization by Methylene Blue Electrochemistry at Activated Nanoelectrode Ensembles.

    PubMed

    Silvestrini, Morena; Fruk, Ljiljana; Moretto, Ligia Maria; Ugo, Paolo

    2015-05-01

    Nanoelectrode ensembles (NEEs) obtained by electroless gold deposition in track-etched poly-carbonate (PC) membranes are functionalized and applied for DNA hybridization detection, using methylene blue (MB) as electroactive probe. To this aim, an amine terminated (ss)DNA probe is immobilized on the PC surface of the NEE by reaction via carbodiimide and N-hydroxysulfosuccinimide. In order to increase the number of carboxylic groups present on PC and suitable for the functionalization, the surface of NEEs is oxidized with potassium permanganate. The presence of carboxylic functionalities is verified by spectrochemical titration with thionin acetate (THA) and the effect of the activation treatment on the electrode performances is evaluated by cyclic voltammetry (CV). After activation and functionalization with the probes, the NEE-based sensor is hybridized with complementary target sequences. The effect of the functionalization of the NEEs both with the (ss)DNA probe alone and after hybridization with the target, is studied by measuring the changes in the MB reduction signal by square wave voltammetry (SWV), after incubation in a suitable MB solution, rinsing and transfer to the measurement cell. It was observed that this peak signal decreases significantly after hybridization of the probe with the complementary target. Experimental evidences suggest that the interaction between MB and the guanines of (ss)DNA and (ds)DNA is at the basis of the development of the here observed analytical signal. The proposed approach allows the easy preparation and testing of NEE-based sensors for the electrochemical DNA hybridization detection. PMID:26504963

  2. Broken Optical Symmetry in DNA-SWNT Hybrids: Spectroscopic Signaling of the Helical Wrap

    NASA Astrophysics Data System (ADS)

    Rotkin, Slava V.

    2009-03-01

    Functionalizing single-stranded DNA on a single-wall carbon nanotube (SWNT) has allowed isolating individual tubes, making them soluble, and separating SWNTs according to their chirality. Such strong technological impact motivated our study of the optical properties of the DNA-SWNT hybrids, commonly used now for the solution-based fabrication and experiments. The helicity of the DNA wrap may interfere with the intrinsic Hamiltonian of the SWNT and result in bandstructure modulation. Our modeling predicts a symmetry lowering in the hybrid due to the Coulomb potential of the regular helical wrap of the ionized backbone of the ssDNA, followed by the qualitative changes in the cross- or circularly polarized SWNT absorption spectrum (with no or little change in the parallel polarization). In particular, we predict the appearance of a new peak in the cross-polarized absorption of the ssDNA-SWNT at a frequency lower than that of all allowed transitions in the bare tube. Such effect can be used for optical identification of the wrap at sufficient ssDNA coverage. Wrap signaling happens also via another optical effect, a strong circular dichroism even in the complex with an achiral SWNT, and even at the frequencies where ss-DNA has no absorption features at all. Symmetry of the wrap is central to determine such a circular dichroism of the hybrid. Having in mind that the exact geometry of a DNA wrap for an arbitrary tube is not precisely known yet, we put forward a general model capable of tracking optical effects, varying the parameters of the wrap and/or tube diameter. For various ssDNA backbone helical angles and for various tubes we predict different absorption spectra, though a general qualitative feature of the helical symmetry breaking, the appearance of new van Hove singularities and circular dichroism, must be present.

  3. Enzymatic Reaction with Unnatural Substrates: DNA Photolyase (Escherichia coli) Recognizes and Reverses Thymine [2+2] Dimers in the DNA Strand of a DNA/PNA Hybrid Duplex

    NASA Astrophysics Data System (ADS)

    Ramaiah, Danaboyina; Kan, Yongzhi; Koch, Troels; Orum, Henrik; Schuster, Gary B.

    1998-10-01

    Peptide nucleic acids (PNA) are mimics with normal bases connected to a pseudopeptide chain that obey Watson--Crick rules to form stable duplexes with itself and natural nucleic acids. This has focused attention on PNA as therapeutic or diagnostic reagents. Duplexes formed with PNA mirror some but not all properties of DNA. One fascinating aspect of PNA biochemistry is their reaction with enzymes. Here we show an enzyme reaction that operates effectively on a PNA/DNA hybrid duplex. A DNA oligonucleotide containing a cis, syn-thymine [2+2] dimer forms a stable duplex with PNA. The hybrid duplex is recognized by photolyase, and irradiation of the complex leads to the repair of the thymine dimer. This finding provides insight into the enzyme mechanism and provides a means for the selective repair of thymine photodimers.

  4. Redox polymer and probe DNA tethered to gold electrodes for enzyme-amplified amperometric detection of DNA hybridization.

    PubMed

    Kavanagh, Paul; Leech, Dónal

    2006-04-15

    The detection of nucleic acids based upon recognition surfaces formed by co-immobilization of a redox polymer mediator and DNA probe sequences on gold electrodes is described. The recognition surface consists of a redox polymer, [Os(2,2'-bipyridine)2(polyvinylimidazole)(10)Cl](+/2+), and a model single DNA strand cross-linked and tethered to a gold electrode via an anchoring self-assembled monolayer (SAM) of cysteamine. Hybridization between the immobilized probe DNA of the recognition surface and a biotin-conjugated target DNA sequence (designed from the ssrA gene of Listeria monocytogenes), followed by addition of an enzyme (glucose oxidase)-avidin conjugate, results in electrical contact between the enzyme and the mediating redox polymer. In the presence of glucose, the current generated due to the catalytic oxidation of glucose to gluconolactone is measured, and a response is obtained that is binding-dependent. The tethering of the probe DNA and redox polymer to the SAM improves the stability of the surface to assay conditions of rigorous washing and high salt concentration (1 M). These conditions eliminate nonspecific interaction of both the target DNA and the enzyme-avidin conjugate with the recognition surfaces. The sensor response increases linearly with increasing concentration of target DNA in the range of 1 x 10(-9) to 2 x 10(-6) M. The detection limit is approximately 1.4 fmol, (corresponding to 0.2 nM of target DNA). Regeneration of the recognition surface is possible by treatment with 0.25 M NaOH solution. After rehybridization of the regenerated surface with the target DNA sequence, >95% of the current is recovered, indicating that the redox polymer and probe DNA are strongly bound to the surface. These results demonstrate the utility of the proposed approach. PMID:16615783

  5. Hybridization accompanying FRET event in labeled natural nucleoside-unnatural nucleoside containing chimeric DNA duplexes.

    PubMed

    Bag, Subhendu Sekhar; Das, Suman K; Pradhan, Manoj Kumar; Jana, Subhashis

    2016-09-01

    Förster resonance energy transfer (FRET) is a highly efficient strategy in illuminating the structures, structural changes and dynamics of DNA, proteins and other biomolecules and thus is being widely utilized in studying such phenomena, in designing molecular/biomolecular probes for monitoring the hybridization event of two single stranded DNA to form duplex, in gene detection and in many other sensory applications in chemistry, biology and material sciences. Moreover, FRET can give information about the positional status of chromophores within the associated biomolecules with much more accuracy than other methods can yield. Toward this end, we want to report here the ability of fluorescent unnatural nucleoside, triazolylphenanthrene ((TPhen)BDo) to show FRET interaction upon hybridization with fluorescently labeled natural nucleosides, (Per)U or (OxoPy)U or (Per)U, forming two stable chimeric DNA duplexes. The pairing selectivity and the thermal duplex stability of the chimeric duplexes are higher than any of the duplexes with natural nucleoside formed. The hybridization results in a Förster resonance energy transfer (FRET) from donor triazolylphenanthrene of (TPhen)BDo to acceptor oxopyrene of (OxoPy)U and/or to perylene chromophore of (Per)U, respectively, in two chimeric DNA duplexes. Therefore, we have established the FRET process in two chimeric DNA duplexes wherein a fluorescently labeled natural nucleoside ((OxoPy)U or (Per)U) paired against an unnatural nucleoside ((TPhen)BDo) without sacrificing the duplex stability and B-DNA conformation. The hybridization accompanying FRET event in these classes of interacting fluorophores is new. Moreover, there is no report of such designed system of chimeric DNA duplex. Our observed phenomenon and the design can potentially be exploited in designing more of such efficient FRET pairs for useful application in the detection and analysis of biomolecular interactions and in material science application. PMID:27498231

  6. DNA sequence similarity recognition by hybridization to short oligomers

    DOEpatents

    Milosavljevic, Aleksandar

    1999-01-01

    Methods are disclosed for the comparison of nucleic acid sequences. Data is generated by hybridizing sets of oligomers with target nucleic acids. The data thus generated is manipulated simultaneously with respect to both (i) matching between oligomers and (ii) matching between oligomers and putative reference sequences available in databases. Using data compression methods to manipulate this mutual information, sequences for the target can be constructed.

  7. [Three cases of vulvar bowenoid papulosis: the localization of HPV DNA by in situ hybridization].

    PubMed

    Kioka, H; Nagai, N; Tanioka, Y; Fujii, T; Katsube, Y; Egawa, K; Fujiwara, A

    1989-09-01

    Cytological, histological, and molecular biological studies were conducted in 3 cases of vulvar Bowenoid papulosis, using biotinylated HPV DNA probes by in situ hybridization. 1) Cytological findings showed dyskaryotic cells that revealed hyperchromatism with a coarse granular pattern, and a high N/C ratio was observed among the dyskeratotic cells. 2) In 2 cases of Bowenoid papulosis lesions, HPV 16 DNA was detected in the nucleus of the dysplastic cells. 3) In one case of Bowenoid papulosis, a complicated carcinoma in situ of the uterine cervix was observed, and the HPV 16 DNA was found to be positive in both the vulva and cervix. PMID:2550688

  8. Ultrasensitive Detection of DNA Hybridization Using Carbon Nanotube Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Maehashi, Kenzo; Matsumoto, Kazuhiko; Kerman, Kagan; Takamura, Yuzuru; Tamiya, Eiichi

    2004-12-01

    We have sensitively detected DNA hybridization using carbon nanotube field-effect transistors (CNTFETs) in real time. Amino modified peptide nucleic acid (PNA) oligonucleotides at 5' end were covalently immobilized onto the Au surface of the back gate. For 11-mer PNA oligonucletide probe, full-complementary DNA with concentration as low as 6.8 fM solution could be effectively detected. Our CNTFET-based biochip is a promising candidate for the development of an integrated, high-throughput, multiplexed DNA biosensor for medical, forensic and environmental diagnostics.

  9. Use of synthetic oligonucleotides for genomic DNA dot hybridization to split the DQw3 haplotype.

    PubMed Central

    Martell, M; Le Gall, I; Millasseau, P; Dausset, J; Cohen, D

    1988-01-01

    Comparison of two different HLA-DQ beta gene sequences from two DR4 individuals, probably corresponding to DQw3.2 (DQR4) and DQw3.1 (DQR5) specificities, has shown several nucleotide variations. Eight oligonucleotides (24 bases long), derived from these polymorphic areas, have been synthesized. Each oligonucleotide was hybridized to BamHI-digested DNA samples from eight families with HLA-DR4 individuals. Four polymorphic BamHI fragments were detected. Two of eight oligonucleotides gave a single signal (8.9 kilobases) on DQw3.2-positive haplotypes. We used one of these oligonucleotides in a genomic DNA dot hybridization and detected a hybridization signal only in DQw3.2-positive individuals. A very simple test like this allows the screening of a large population sample within a very short period. Images PMID:2895927

  10. Method for nucleic acid hybridization using single-stranded DNA binding protein

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1996-01-01

    Method of nucleic acid hybridization for detecting the presence of a specific nucleic acid sequence in a population of different nucleic acid sequences using a nucleic acid probe. The nucleic acid probe hybridizes with the specific nucleic acid sequence but not with other nucleic acid sequences in the population. The method includes contacting a sample (potentially including the nucleic acid sequence) with the nucleic acid probe under hybridizing conditions in the presence of a single-stranded DNA binding protein provided in an amount which stimulates renaturation of a dilute solution (i.e., one in which the t.sub.1/2 of renaturation is longer than 3 weeks) of single-stranded DNA greater than 500 fold (i.e., to a t.sub.1/2 less than 60 min, preferably less than 5 min, and most preferably about 1 min.) in the absence of nucleotide triphosphates.

  11. Application of central composite design for DNA hybridization onto magnetic microparticles.

    PubMed

    Martins, S A M; Prazeres, D M F; Fonseca, L P; Monteiro, G A

    2009-08-01

    Central composite face-centered (CCF) design and response surface methodologies were used to investigate the effect of probe and target concentration and particle number in immobilization and hybridization on a microparticle-based DNA/DNA hybridization assay. The factors under study were combined according to the CCF design matrix, and the intensity of the hybridization signal was quantified by flow cytometry. A second-order polynomial was fitted to data and validated by analysis of variance. The results showed a complex relationship between variables and response given that all factors as well as some interactions were significant, yet it could explain 95% of the data. Probe and target concentration had the strongest impact on hybridization signal intensity. Increments in initial probe concentration in solution positively affected the hybridization signal until a negative influence of a compact probe layer emerged. This trend was attributed to probe-probe interactions. By manipulating particle number on both immobilization and hybridization, enhancements on the assay sensitivity could be obtained. Under optimized conditions, the limit of detection (LOD) at the 95% confidence level was determined to be 2.3 nM of target solution concentration. PMID:19435595

  12. SELECTION OF INTERSPECIFIC SUGARCANE HYBRIDS USING MICROSATELLITE DNA MARKERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three types of species-specific DNA markers, namely, PCR, RAPD, and microsatellites, have been recently developed at the USDA-ARS, SRRC, Sugarcane Research Unit, Houma, Louisiana. Of these, the microsatellite markers are the most polymorphic and can produce distinctive fingerprints (or molecular al...

  13. Shape Analysis of DNA-Au Hybrid Particles by Analytical Ultracentrifugation.

    PubMed

    Urban, Maximilan J; Holder, Isabelle T; Schmid, Marius; Fernandez Espin, Vanesa; Garcia de la Torre, Jose; Hartig, Jörg S; Cölfen, Helmut

    2016-08-23

    Current developments in nanotechnology have increased the demand for nanocrystal assemblies with well-defined shapes and tunable sizes. DNA is a particularly well-suited building block in nanoscale assemblies because of its scalable sizes, conformational variability, and convenient self-assembly capabilities via base pairing. In hybrid materials, gold nanoparticles (AuNPs) can be assembled into nanoparticle structures with programmable interparticle distances by applying appropriate DNA sequences. However, the development of stoichiometrically defined DNA/NP structures is still challenging since product mixtures are frequently obtained and their purification and characterization is the rate-limiting step in the development of DNA-NP hybrid assemblies. Improvements in nanostructure fractionation and characterization techniques offer great potential for nanotechnology applications in general. This study reports the application of analytical ultracentrifugation (AUC) for the characterization of anisotropic DNA-linked metal-crystal assemblies. On the basis of transmission electron microscopy data and the DNA primary sequence, hydrodynamic bead models are set up for the interpretation of the measured frictional ratios and sedimentation coefficients. We demonstrate that the presence of single DNA strands on particle surfaces as well as the shape factors of multiparticle structures in mixtures can be quantitatively described by AUC. This study will significantly broaden the possibilities to analyze mixtures of shape-anisotropic nanoparticle assemblies. By establishing insights into the analysis of nanostructure mixtures based on fundamental principles of sedimentation, a wide range of potential applications in basic research and industry become accessible. PMID:27459174

  14. An impedimetric study of DNA hybridization on paper-supported inkjet-printed gold electrodes

    NASA Astrophysics Data System (ADS)

    Ihalainen, Petri; Pettersson, Fredrik; Pesonen, Markus; Viitala, Tapani; Määttänen, Anni; Österbacka, Ronald; Peltonen, Jouko

    2014-03-01

    In this study, two different supramolecular recognition architectures for impedimetric detection of DNA hybridization have been formed on disposable paper-supported inkjet-printed gold electrodes. The gold electrodes were fabricated using a gold nanoparticle based ink. The first recognition architecture consists of subsequent layers of biotinylated self-assembly monolayer (SAM), streptavidin and biotinylated DNA probe. The other recognition architecture is constructed by immobilization of thiol-functionalized DNA probe (HS-DNA) and subsequent backfill with 11-mercapto-1-undecanol (MUOH) SAM. The binding capacity and selectivity of the recognition architectures were examined by surface plasmon resonance (SPR) measurements. SPR results showed that the HS-DNA/MUOH system had a higher binding capacity for the complementary DNA target. Electrochemical impedance spectroscopy (EIS) measurements showed that the hybridization can be detected with impedimetric spectroscopy in picomol range for both systems. EIS signal indicated a good selectivity for both recognition architectures, whereas SPR showed very high unspecific binding for the HS-DNA/MUOH system. The factors affecting the impedance signal were interpreted in terms of the complexity of the supramolecular architecture. The more complex architecture acts as a less ideal capacitive sensor and the impedance signal is dominated by the resistive elements.

  15. Hybridization behavior of mixed DNA/alkylthiol monolayers on gold: characterization by surface plasmon resonance and 32P radiometric assay.

    PubMed

    Gong, Ping; Lee, Chi-Ying; Gamble, Lara J; Castner, David G; Grainger, David W

    2006-05-15

    Nucleic acid assay from a complex biological milieu is attractive but currently difficult and far from routine. In this study, DNA hybridization from serum dilutions into mixed DNA/mercaptoundecanol (MCU) adlayers on gold was monitored by surface plasmon resonance (SPR). Immobilized DNA probe and hybridized target densities on these surfaces were quantified using 32P-radiometric assays as a function of MCU diluent exposure. SPR surface capture results correlated with radiometric analysis for hybridization performance, demonstrating a maximum DNA hybridization on DNA/MCU mixed adlayers. The maximum target surface capture produced by MCU addition to the DNA probe layer correlates with structural and conformational data on identical mixed DNA/MCU adlayers on gold derived from XPS, NEXAFS, and fluorescence intensity measurements reported in a related study (Lee, C.-Y.; Gong, P.; Harbers, G. M.; Grainger, D. W.; Castner, D. G.; Gamble, L. J. Anal. Chem. 2006, 78, 3316-3325.). MCU addition into the DNA adlayer on gold also improved surface resistance to both nonspecific DNA and serum protein adsorption. Target DNA hybridization from serum dilutions was monitored with SPR on the optimally mixed DNA/MCU adlayers. Both hybridization kinetics and efficiency were strongly affected by nonspecific protein adsorption from a complex milieu even at a minimal serum concentration (e.g., 1%). No target hybridization was detected in SPR assays from serum concentrations above 30%, indicating nonspecific protein adsorption interference of DNA capture and hybridization from complex milieu. Removal of nonsignal proteins from nucleic acid targets prior to assay represents a significant issue for direct sample-to-assay nucleic acid diagnostics from food, blood, tissue, PCR mixtures, and many other biologically complex sample formats. PMID:16689533

  16. Quantum dot monolayer for surface plasmon resonance signal enhancement and DNA hybridization detection.

    PubMed

    Ghrera, Aditya Sharma; Pandey, Manoj Kumar; Malhotra, Bansi Dhar

    2016-06-15

    We report results of studies relating to the fabrication of a surface plasmon resonance (SPR)-based nucleic acid sensor for quantification of DNA sequence specific to chronic myelogeneous leukemia (CML). The SPR disk surface has been modified with octadecanethiol self-assembled monolayer followed by deposition of the tri-n-octylphosphine oxide capped cadmium selenide quantum dots (QD) Langmuir monolayer. The deposition is performed via Langmuir-Blodgett (LB) technique. For the sensor chip preparation, covalent immobilization of the thiol-terminated DNA probe sequence (pDNA) using displacement reaction is accomplished. This integrated SPR chip has been used to detect target complementary DNA concentration by monitoring the change in coupling angle via hybridization. It is revealed that this biosensor exhibits high sensitivity (0.7859 m(0)pM(-1)) towards complementary DNA and can be used to detect it in the concentration range, 180 pM to 5 pM with detection limit as 4.21 pM. The results of kinetic studies yield the values of hybridization and dissociation rate constants as 9.6 × 10(4) M(-1) s(-1) and 2.3 × 10(-2) s(-1), respectively, with the equilibrium constant for hybridization as 4.2 × 10(6) M(-1). PMID:26878485

  17. Synthetic Polymer Hybridization with DNA and RNA Directs Nanoparticle Loading, Silencing Delivery, and Aptamer Function

    PubMed Central

    Zhou, Zhun; Xia, Xin; Bong, Dennis

    2015-01-01

    We report herein discrete triplex hybridization of DNA and RNA with polyacrylates. Length-monodisperse triazine-derivatized polymers were prepared on gram-scale by reversible addition–fragmentation chain-transfer polymerization. Despite stereoregio backbone heterogeneity, the triazine polymers bind T/U-rich DNA or RNA with nanomolar affinity upon mixing in a 1:1 ratio, as judged by thermal melts, circular dichroism, gel-shift assays, and fluorescence quenching. We call these polyacrylates “bifacial polymer nucleic acids” (bPoNAs). Nucleic acid hybridization with bPoNA enables DNA loading onto polymer nanoparticles, siRNA silencing delivery, and can further serve as an allosteric trigger of RNA aptamer function. Thus, bPoNAs can serve as tools for both non-covalent bioconjugation and structure–function nucleation. It is anticipated that bPoNAs will have utility in both bio- and nanotechnology. PMID:26138550

  18. Synthetic Polymer Hybridization with DNA and RNA Directs Nanoparticle Loading, Silencing Delivery, and Aptamer Function.

    PubMed

    Zhou, Zhun; Xia, Xin; Bong, Dennis

    2015-07-22

    We report herein discrete triplex hybridization of DNA and RNA with polyacrylates. Length-monodisperse triazine-derivatized polymers were prepared on gram-scale by reversible addition-fragmentation chain-transfer polymerization. Despite stereoregio backbone heterogeneity, the triazine polymers bind T/U-rich DNA or RNA with nanomolar affinity upon mixing in a 1:1 ratio, as judged by thermal melts, circular dichroism, gel-shift assays, and fluorescence quenching. We call these polyacrylates "bifacial polymer nucleic acids" (bPoNAs). Nucleic acid hybridization with bPoNA enables DNA loading onto polymer nanoparticles, siRNA silencing delivery, and can further serve as an allosteric trigger of RNA aptamer function. Thus, bPoNAs can serve as tools for both non-covalent bioconjugation and structure-function nucleation. It is anticipated that bPoNAs will have utility in both bio- and nanotechnology. PMID:26138550

  19. Interpopulation hybridization generates meiotically stable rDNA epigenetic variants in allotetraploid Tragopogon mirus.

    PubMed

    Matyášek, Roman; Dobešová, Eva; Húska, Dalibor; Ježková, Ivana; Soltis, Pamela S; Soltis, Douglas E; Kovařík, Aleš

    2016-02-01

    Uniparental silencing of 35S rRNA genes (rDNA), known as nucleolar dominance (ND), is common in interspecific hybrids. Allotetraploid Tragopogon mirus composed of Tragopogon dubius (d) and Tragopogon porrifolius (p) genomes shows highly variable ND. To examine the molecular basis of such variation, we studied the genetic and epigenetic features of rDNA homeologs in several lines derived from recently and independently formed natural populations. Inbred lines derived from T. mirus with a dominant d-rDNA homeolog transmitted this expression pattern over generations, which may explain why it is prevalent among natural populations. In contrast, lines derived from the p-rDNA dominant progenitor were meiotically unstable, frequently switching to co-dominance. Interpopulation crosses between progenitors displaying reciprocal ND resulted in d-rDNA dominance, indicating immediate suppression of p-homeologs in F1 hybrids. Original p-rDNA dominance was not restored in later generations, even in those segregants that inherited the corresponding parental rDNA genotype, thus indicating the generation of additional p-rDNA and d-rDNA epigenetic variants. Despite preserved intergenic spacer (IGS) structure, they showed altered cytosine methylation and chromatin condensation patterns, and a correlation between expression, hypomethylation of RNA Pol I promoters and chromatin decondensation was apparent. Reversion of such epigenetic variants occurred rarely, resulting in co-dominance maintained in individuals with distinct genotypes. Generally, interpopulation crosses may generate epialleles that are not present in natural populations, underlying epigenetic dynamics in young allopolyploids. We hypothesize that highly expressed variants with distinct IGS features may induce heritable epigenetic reprogramming of the partner rDNA arrays, harmonizing the expression of thousands of genes in allopolyploids. PMID:26711705

  20. DNA Hybridization-Mediated Liposome Fusion at the Aqueous Liquid Crystal Interface

    PubMed Central

    Noonan, Patrick S.; Mohan, Praveena; Goodwin, Andrew P.

    2014-01-01

    The prominence of receptor-mediated bilayer fusion in cellular biology motivates development of biomimetic strategies for studying fusogenic mechanisms. An approach is reported here for monitoring receptor-mediated fusion that exploits the unique physical and optical properties of liquid crystals (LC). PEG-functionalized lipids are used to create an interfacial environment capable of inhibiting spontaneous liposome fusion with an aqueous/LC interface. Then, DNA hybridization between oligonucleotides within bulk phase liposomes and a PEG-lipid monolayer at an aqueous/LC interface is exploited to induce receptor-mediated liposome fusion. These hybridization events induce strain within the liposome bilayer, promote lipid mixing with the LC interface, and consequently create an interfacial environment favoring re-orientation of the LC to a homeotropic (perpendicular) state. Furthermore, the bi-functionality of aptamers is exploited to modulate DNA hybridization-mediated liposome fusion by regulating the availability of the appropriate ligand (i.e., thrombin). Here, a LC-based approach for monitoring receptor (i.e., DNA hybridization)-mediated liposome fusion is demonstrated, liposome properties that dictate fusion dynamics are explored, and an example of how this approach may be used in a biosensing scheme is provided. PMID:25506314

  1. Functionalized ensembles of nanoelectrodes as affinity biosensors for DNA hybridization detection.

    PubMed

    Silvestrini, Morena; Fruk, Ljiljana; Ugo, Paolo

    2013-02-15

    A novel electrochemical biosensor for DNA hybridization detection based on nanoelectrode ensembles (NEEs) is presented. NEEs are prepared by electroless deposition of gold into the pores of a templating track-etched polycarbonate (PC) membrane. The wide surface of the templating membrane surrounding the nanoelectrodes is exploited to bind the capture DNA probes via amide coupling with the carboxylic groups present on the PC surface. The probes are then hybridized with the complementary target labelled with glucose oxidase (GO(x)). The occurrence of the hybridization event is detected by adding, to the supporting electrolyte, excess glucose as the substrate and the (ferrocenylmethyl) trimethylammonium cation (FA(+)) as suitable redox mediator. In the case of positive hybridization, an electrocatalytic current is detected. In the proposed sensor, the biorecognition event and signal transduction occur in different but neighbouring sites, i.e., the PC surface and the nanoelectrodes, respectively; these sites are separated albeit in close proximity on a nanometer scale. Finally, the possibility to activate the PC surface by treatment with permanganate is demonstrated and the analytical performances of biosensors prepared with KMnO(4)-treated NEEs and native NEEs are compared and critically evaluated. The proposed biosensor displays high selectivity and sensitivity, with the capability to detect few picomoles of target DNA. PMID:22898659

  2. Analysis of common mitochondrial DNA mutations by allele-specific oligonucleotide and Southern blot hybridization.

    PubMed

    Tang, Sha; Halberg, Michelle C; Floyd, Kristen C; Wang, Jing

    2012-01-01

    Mitochondrial disorders are clinically and genetically heterogeneous. There are a set of recurrent point mutations in the mitochondrial DNA (mtDNA) that are responsible for common mitochondrial diseases, including MELAS (mitochondrial encephalopathy, lactic acidosis, stroke-like episodes), MERRF (myoclonic epilepsy and ragged red fibers), LHON (Leber's hereditary optic neuropathy), NARP (neuropathy, ataxia, retinitis pigmentosa), and Leigh syndrome. Most of the pathogenic mtDNA point mutations are present in the heteroplasmic state, meaning that the wild-type and mutant-containing mtDNA molecules are coexisting. Clinical heterogeneity may be due to the degree of mutant load (heteroplasmy) and distribution of heteroplasmic mutations in affected tissues. Additionally, Kearns-Sayre syndrome and Pearson syndrome are caused by large mtDNA deletions. In this chapter, we describe a multiplex PCR/allele-specific oligonucleotide (ASO) hybridization method for the screening of 13 common point mutations. This method allows the detection of low percentage of mutant heteroplasmy. In addition, a nonradioactive Southern blot hybridization protocol for the analysis of mtDNA large deletions is also described. PMID:22215554

  3. Human cDNA mapping using fluorescence in situ hybridization

    SciTech Connect

    Korenberg, J.R.

    1993-03-04

    Genetic mapping is approached using the techniques of high resolution fluorescence in situ hybridization (FISH). This technology and the results of its application are designed to rapidly generate whole genome as tool box of expressed sequence to speed the identification of human disease genes. The results of this study are intended to dovetail with and to link the results of existing technologies for creating backbone YAC and genetic maps. In the first eight months, this approach generated 60--80% of the expressed sequence map, the remainder expected to be derived through more long-term, labor-intensive, regional chromosomal gene searches or sequencing. The laboratory has made significant progress in the set-up phase, in mapping fetal and adult brain and other cDNAs, in testing a model system for directly linking genetic and physical maps using FISH with small fragments, in setting up a database, and in establishing the validity and throughput of the system.

  4. Electronic hybridization detection in microarray format and DNA genotyping

    PubMed Central

    Blin, Antoine; Cissé, Ismaïl; Bockelmann, Ulrich

    2014-01-01

    We describe an approach to substituting a fluorescence microarray with a surface made of an arrangement of electrolyte-gated field effect transistors. This was achieved using a dedicated blocking of non-specific interactions and comparing threshold voltage shifts of transistors exhibiting probe molecules of different base sequence. We apply the approach to detection of the 35delG mutation, which is related to non-syndromic deafness and is one of the most frequent mutations in humans. The process involves barcode sequences that are generated by Tas-PCR, a newly developed replication reaction using polymerase blocking. The barcodes are recognized by hybridization to surface attached probes and are directly detected by the semiconductor device. PMID:24569823

  5. Electronic hybridization detection in microarray format and DNA genotyping

    NASA Astrophysics Data System (ADS)

    Blin, Antoine; Cissé, Ismaïl; Bockelmann, Ulrich

    2014-02-01

    We describe an approach to substituting a fluorescence microarray with a surface made of an arrangement of electrolyte-gated field effect transistors. This was achieved using a dedicated blocking of non-specific interactions and comparing threshold voltage shifts of transistors exhibiting probe molecules of different base sequence. We apply the approach to detection of the 35delG mutation, which is related to non-syndromic deafness and is one of the most frequent mutations in humans. The process involves barcode sequences that are generated by Tas-PCR, a newly developed replication reaction using polymerase blocking. The barcodes are recognized by hybridization to surface attached probes and are directly detected by the semiconductor device.

  6. Hybrid joint formation in human V(D)J recombination requires nonhomologous DNA end joining.

    PubMed

    Raghavan, Sathees C; Tong, Jiangen; Lieber, Michael R

    2006-02-01

    In V(D)J recombination, the RAG proteins bind at a pair of signal sequences adjacent to the V, D, or J coding regions and cleave the DNA, resulting in two signal ends and two hairpinned coding ends. The two coding ends are joined to form a coding joint, and the two signal ends are joined to form a signal joint; this joining is done by the nonhomologous DNA end joining (NHEJ) pathway. A recombinational alternative in which a signal end is recombined with a coding end can also occur in a small percentage of the V(D)J recombination events in murine and human cells, and these are called hybrids (or hybrid joints). Two mechanisms have been proposed for the formation of these hybrids. One mechanism is via NHEJ, after initial cutting by RAGs. The second mechanism does not rely on NHEJ, but rather invokes that the RAGs can catalyze joining of the signal to the hairpinned coding end, by using the 3'OH of the signal end as a nucleophile to attack the phosphodiester bonds of the hairpinned coding end. In the present study, we addressed the question of which type of hybrid joining occurs in a physiological environment, where standard V(D)J recombination presumably occurs and normal RAG proteins are endogenously expressed. We find that all hybrids in vivo require DNA ligase IV in human cells, which is the final component of the NHEJ pathway. Hence, hybrid joints rely on NHEJ rather than on the RAG complex for joining. PMID:16275127

  7. Demonstration of paternal inheritance of plastids in Picea (Pinaceae). [Hybridization of cloned, sup 32 -P labeled, petunia cpDNA

    SciTech Connect

    Stine, M.

    1988-01-01

    Chloroplast DNA (cpDNA) was purified from Picea glauca, P. pungens, P. engelmannii, and P. omorika, and was digested with several restriction endonucleases. Interspecific restriction fragment length polymorphisms (RFLPs) of cpDNA were identified. The RFLPs were identified as cpDNA by the hybridization of cloned, {sup 32}-P labeled, petunia cpDNA to the polymorphic bands, and by the lack of hybridization of a cloned and labeled mtDNA probe from maize. Chloroplast DNA RFLPs that showed no intraspecific variation when examined across the natural range for each species, were used as markers to follow the inheritance of plastids in interspecific hybrids. The inheritance of plastids was determined for F{sub 1}-hybrids from reciprocal crosses of P. glauca and P. pungens, P. glauca and P. omorika, and F{sub 1}-hybrids of P. engelmannii x pungens. All 31 F{sub 1}-hybrids examined showed the cpDNA genotypes of the pollen parent, or the paternal species.

  8. A supramolecular nanobiological hybrid as a PET sensor for bacterial DNA isolated from Streptomyces sanglieri.

    PubMed

    Chakravarty, Sudesna; Saikia, Dilip; Sharma, Priyanka; Adhikary, Nirab Chandra; Thakur, Debajit; Sen Sarma, Neelotpal

    2014-12-21

    The development of a rapid, label free, cost effective and highly efficient sensor for DNA detection is of great importance in disease diagnosis. Herein, we have reported a new hybrid fluorescent probe based on a cationic curcumin-tryptophan complex and water soluble mercapto succinic acid (MSA) capped CdTe quantum dots (QDs) for the detection of double stranded DNA (ds DNA) molecules. The cationic curcumin-tryptophan complex (CT) directly interacts with negatively charged MSA capped quantum dots via electrostatic coordination, resulting in photoluminescence (PL) quenching of QDs via the Photoinduced Electron Transfer (PET) process. Further, addition of ds DNA results in restoration of PL, as CT would intercalate between DNA strands. Thus, this process can be utilized for selective sensing of ds DNA via fluorescence measurements. Under optimized experimental conditions, the PL quenching efficiency of QDs is found to be 99.4% in the presence of 0.31 × 10(-9) M CT. Interestingly, the regain in PL intensity of QD-CT is found to be 99.28% in the presence of 1 × 10(-8) M ds DNA. The detection limit for ds DNA with the developed sensing probe is 1.4 × 10(-10) M. Furthermore, the probe is found to be highly sensitive towards bacterial DNA isolated from Streptomyces sanglieri with a detection limit of 1.7 × 10(-6) M. The present work will provide a new insight into preparation of bio-inspired hybrid materials as efficient sensors for disease diagnosis and agricultural development. PMID:25343270

  9. Hybrid polymeric hydrogels via peptide nucleic acid (PNA)/DNA complexation.

    PubMed

    Chu, Te-Wei; Feng, Jiayue; Yang, Jiyuan; Kopeček, Jindřich

    2015-12-28

    This work presents a new concept in hybrid hydrogel design. Synthetic water-soluble N-(2-hydroxypropyl)methacrylamide (HPMA) polymers grafted with multiple peptide nucleic acids (PNAs) are crosslinked upon addition of the linker DNA. The self-assembly is mediated by the PNA-DNA complexation, which results in the formation of hydrophilic polymer networks. We show that the hydrogels can be produced through two different types of complexations. Type I hydrogel is formed via the PNA/DNA double-helix hybridization. Type II hydrogel utilizes a unique "P-form" oligonucleotide triple-helix that comprises two PNA sequences and one DNA. Microrheology studies confirm the respective gelation processes and disclose a higher critical gelation concentration for the type I gel when compared to the type II design. Scanning electron microscopy reveals the interconnected microporous structure of both types of hydrogels. Type I double-helix hydrogel exhibits larger pore sizes than type II triple-helix gel. The latter apparently contains denser structure and displays greater elasticity as well. The designed hybrid hydrogels have potential as novel biomaterials for pharmaceutical and biomedical applications. PMID:26394062

  10. Label-free field-effect-based single-molecule detection of DNA hybridization kinetics

    PubMed Central

    Sorgenfrei, Sebastian; Chiu, Chien-yang; Gonzalez, Ruben L.; Yu, Young-Jun; Kim, Philip; Nuckolls, Colin; Shepard, Kenneth L.

    2013-01-01

    Probing biomolecules at the single-molecule level can provide useful information about molecular interactions, kinetics and motions that is usually hidden in ensemble measurements. Techniques with improved sensitivity and time resolution are required to explore fast biomolecular dynamics. Here, we report the first observation of DNA hybridization at the single-molecule level using a carbon nanotube field-effect transistor. By covalently attaching a single-stranded probe DNA sequence to a point defect in a carbon nanotube, we are able to measure two-level fluctuations in the nanotube conductance due to reversible hybridizing and melting of a complementary DNA target. The kinetics are studied as a function of temperature, allowing the measurement of rate constants, melting curves and activation energies for different sequences and target concentrations. The kinetics show non-Arrhenius behavior, in agreement with DNA hybridization experiments using fluorescence correlation spectroscopy. This technique is label-free and has the potential for studying single-molecule dynamics at sub-microsecond time-scales. PMID:21258331

  11. A hybrid swarm population of Pinus densiflora x P. sylvestris hybrids inferred from sequence analysis of chloroplast DNA and morphological characters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To confirm a hybrid swarm population of Pinus densiflora × P. sylvestris in Jilin, China and to study whether shoot apex morphology of 4-year old seedlings can be correlated with the sequence of a chloroplast DNA simple sequence repeat marker (cpDNA SSR), needles and seeds from P. densiflora, P. syl...

  12. Mechanism and manipulation of DNA:RNA hybrid G-quadruplex formation in transcription of G-rich DNA.

    PubMed

    Zhang, Jia-yu; Zheng, Ke-wei; Xiao, Shan; Hao, Yu-hua; Tan, Zheng

    2014-01-29

    We recently reported that a DNA:RNA hybrid G-quadruplex (HQ) forms during transcription of DNA that bears two or more tandem guanine tracts (G-tract) on the nontemplate strand. Putative HQ-forming sequences are enriched in the nearby 1000 nt region right downstream of transcription start sites in the nontemplate strand of warm-blooded animals, and HQ regulates transcription under both in vitro and in vivo conditions. Therefore, knowledge of the mechanism of HQ formation is important for understanding the biological function of HQ as well as for manipulating gene expression by targeting HQ. In this work, we studied the mechanism of HQ formation using an in vitro T7 transcription model. We show that RNA synthesis initially produces an R-loop, a DNA:RNA heteroduplex formed by a nascent RNA transcript and the template DNA strand. In the following round of transcription, the RNA in the R-loop is displaced, releasing the RNA in single-stranded form (ssRNA). Then the G-tracts in the RNA can jointly form HQ with those in the nontemplate DNA strand. We demonstrate that the structural cascade R-loop → ssRNA → HQ offers opportunities to intercept HQ formation, which may provide a potential method to manipulate gene expression. PMID:24392825

  13. Sensitive electrochemical assaying of DNA methyltransferase activity based on mimic-hybridization chain reaction amplified strategy.

    PubMed

    Zhang, Linqun; Liu, Yuanjian; Li, Ying; Zhao, Yuewu; Wei, Wei; Liu, Songqin

    2016-08-24

    A mimic-hybridization chain reaction (mimic-HCR) amplified strategy was proposed for sensitive electrochemically detection of DNA methylation and methyltransferase (MTase) activity In the presence of methylated DNA, DNA-gold nanoparticles (DNA-AuNPs) were captured on the electrode by sandwich-type assembly. It then triggered mimic-HCR of two hairpin probes to produce many long double-helix chains for numerous hexaammineruthenium (III) chloride ([Ru(NH3)6](3+), RuHex) inserting. As a result, the signal for electrochemically detection of DNA MTase activity could be amplified. If DNA was non-methylated, however, the sandwich-type assembly would not form because the short double-stranded DNAs (dsDNA) on the Au electrode could be cleaved and digested by restriction endonuclease HpaII (HapII) and exonuclease III (Exo III), resulting in the signal decrement. Based on this, an electrochemical approach for detection of M.SssI MTase activity with high sensitivity was developed. The linear range for M.SssI MTase activity was from 0.05 U mL(-1) to 10 U mL(-1), with a detection limit down to 0.03 U mL(-1). Moreover, this detecting strategy held great promise as an easy-to-use and highly sensitive method for other MTase activity and inhibition detection by exchanging the corresponding DNA sequence. PMID:27496999

  14. An upconversion fluorescent resonant energy transfer biosensor for hepatitis B virus (HBV) DNA hybridization detection.

    PubMed

    Zhu, Hao; Lu, Feng; Wu, Xing-Cai; Zhu, Jun-Jie

    2015-11-21

    A novel fluorescent resonant energy transfer (FRET) biosensor was fabricated for the detection of hepatitis B virus (HBV) DNA using poly(ethylenimine) (PEI) modified upconversion nanoparticles (NH2-UCNPs) as energy donor and gold nanoparticles (Au NPs) as acceptor. The PEI modified upconversion nanoparticles were prepared directly with a simple one-pot hydrothermal method, which provides high quality amino-group functionalized UCNPs with uniform morphology and strong upconversion luminescence. Two single-stranded DNA strands, which were partially complementary to each other, were then conjugated with NH2-UCNPs and Au NPs. When DNA conjugated NH2-UCNPs and Au NPs are mixed together, the hybridization between complementary DNA sequences on UCNPs and Au NPs will lead to the quenching of the upconversion luminescence due to the FRET process. Meanwhile, upon the addition of target DNA, Au NPs will leave the surface of the UCNPs and the upconversion luminescence can be restored because of the formation of the more stable double-stranded DNA on the UCNPs. The sensor we fabricated here for target DNA detection shows good sensitivity and high selectivity, which has the potential for clinical applications in the analysis of HBV and other DNA sequences. PMID:26421323

  15. The effects of multiple probes on the hybridization of target DNA on surfaces

    NASA Astrophysics Data System (ADS)

    Welling, Ryan C.; Knotts, Thomas A.

    2015-01-01

    DNA microarrays have disruptive potential in many fields including genetics and medicine, but the technology has yet to find widespread clinical use due to poor reliability. Microarrays work on the principle of hybridization and can only be as dependable as this process is reliable. As such, a significant amount of theoretical research has been done to understand hybridization on surfaces on the molecular level. Previous simulations of a target strand with a single, surface-tethered probe molecule have yielded valuable insights, but such is an ideal system and little is known about the effects of multiple probes—a situation that more closely approximates the real system. This work uses molecular simulation to determine the specific differences in duplex stability between one, three, six, and nine tethered probes on a surface. The results show that it is more difficult for a single target to hybridize to a probe as the number of probes on the surface increases due to crowding effects; however, once hybridized, the duplex is more stable than when fewer probes are present. The data also indicate that hybridization of a target to a probe on the face of a group of probes is more stable than hybridization to probes at the edge or center locations. Taken as a whole, the results offer new insights into the cause of the poor reproducibility exhibited by microarrays.

  16. DNA hybridization as a guide to phylogeny: chemical and physical limits.

    PubMed

    Schmid, C W; Marks, J

    1990-03-01

    The technique of forming interspecific DNA heteroduplexes and estimating phylogenetic distances from the depression in their duplex melting temperature has several physical and chemical constraints. These constraints determine the maximum phylogenetic distance that may be estimated by this technique and the most appropriate method of analyzing that distance. Melting curves of self-renatured single copy primate DNAs reveal the presence of components absent from the renaturation products of exactly paired sequences. This observation, which confirms existing literature, challenges a fundamental assumption: that orthologous (i.e., corresponding) DNA sequences in the divergent species are being compared in DNA heteroduplex melting experiments. As a model system, the thermal stabilities of heteroduplexes formed between a human alpha-globin cDNA and four alpha-like globin genes isolated from chimpanzee are qualitatively compared. The results of this comparison show that the cross-hybrids of imperfectly matched gene duplicates from divergent species can contribute to the additional components that are present in renatured single copy DNAs. Single copy DNA, as usually defined, includes sequence duplicates that will obscure phylogenetic comparisons in a mass hybridization of genomes. PMID:2109086

  17. Quantum Dot-Bead-DNA Probe-Based Hybridization Fluorescence Assays on Microfluidic Chips.

    PubMed

    Ankireddy, Seshadri Reddy; Kim, Jongsung

    2015-10-01

    The development of chip-based, quantum dot (QD)-bead-DNA conjugate probes for hybridization detection is a prime research focus in the field of microfluidics. QD-Bead-DNA probe-based hybridization detection methods are often called "bead-based assays," and their success is substantially influenced by the dispensing and manipulation capabilities of microfluidic technology. Met was identified as a prognostic marker in different cancers including lung, renal, liver, head and neck, stomach, and breast. In this report, the cancer causing Met gene was detected with QDs attached to polystyrene microbeads. We constructed a microfluidic platform using a flexible PDMS polymer. The chip consists of two channels, with two inlets and two outlets. The two channels were integrated with QD-bead-DNA probes for simultaneous detection of wild type target DNA and mutant DNA, containing three nucleotide changes compared to the wild type sequence. The fluorescence quenching ability of QDs within the channels of microfluidic chips were compared for both DNAs. PMID:26726440

  18. Improvement of DNA recognition through molecular imprinting: hybrid oligomer imprinted polymeric nanoparticles (oligoMIP NPs).

    PubMed

    Brahmbhatt, H; Poma, A; Pendergraff, H M; Watts, J K; Turner, N W

    2016-02-01

    High affinity and specific binding are cardinal properties of nucleic acids in relation to their biological function and their role in biotechnology. To this end, structural preorganization of oligonucleotides can significantly improve their binding performance, and numerous examples of this can be found in Nature as well as in artificial systems. Here we describe the production and characterization of hybrid DNA-polymer nanoparticles (oligoMIP NPs) as a system in which we have preorganized the oligonucleotide binding by molecular imprinting technology. Molecularly imprinted polymers (MIPs) are cost-effective "smart" polymeric materials capable of antibody-like detection, but characterized by superior robustness and the ability to work in extreme environmental conditions. Especially in the nanoparticle format, MIPs are dubbed as one of the most suitable alternatives to biological antibodies due to their selective molecular recognition properties, improved binding kinetics as well as size and dispersibility. Nonetheless, there have been very few attempts at DNA imprinting in the past due to structural complexity associated with these templates. By introducing modified thymine bases into the oligonucleotide sequences, which allow establishing covalent bonds between the DNA and the polymer, we demonstrate that such hybrid oligoMIP NPs specifically recognize their target DNA, and that the unique strategy of incorporating the complementary DNA strands as "preorganized selective monomers" improves the recognition properties without affecting the NPs physical properties such as size, shape or dispersibility. PMID:26509192

  19. Electrostatics of DNA nucleotide-carbon nanotube hybrids evaluated from QM:MM simulations

    NASA Astrophysics Data System (ADS)

    Chehel Amirani, Morteza; Tang, Tian

    2015-11-01

    Biomolecule-functionalized carbon nanotubes (CNTs) have been studied vastly in recent years due to their potential applications for instance in cancer detection, purification and separation of CNTs, and nanoelectronics. Studying the electrostatic potential generated by a biomolecule-CNT hybrid is important in predicting its interactions with the surrounding environment such as charged particles and surfaces. In this paper, we performed atomistic simulations using a QM:MM approach to evaluate the electrostatic potential and charge transfer for a hybrid structure formed by a DNA nucleotide and a CNT in solution. Four types of DNA nucleotides and two CNTs with chiralities of (4,4) and (7,0) were considered. The types of nucleotides and CNTs were both found to play important roles in the electrostatic potential and charge transfer of the hybrid. At the same distance from the CNT axis, the electrostatic potential for the nucleotide-(4,4) CNT hybrids was found to be stronger compared with that for the nucleotide-(7,0) CNT hybrids. Higher electric charge was also shown to be transferred from the DNA nucleotides to the (7,0) CNT compared with the (4,4) CNT. These results correlate with the previous finding that the nucleotides bound more tightly to the (7,0) CNT compared with the (4,4) CNT.Biomolecule-functionalized carbon nanotubes (CNTs) have been studied vastly in recent years due to their potential applications for instance in cancer detection, purification and separation of CNTs, and nanoelectronics. Studying the electrostatic potential generated by a biomolecule-CNT hybrid is important in predicting its interactions with the surrounding environment such as charged particles and surfaces. In this paper, we performed atomistic simulations using a QM:MM approach to evaluate the electrostatic potential and charge transfer for a hybrid structure formed by a DNA nucleotide and a CNT in solution. Four types of DNA nucleotides and two CNTs with chiralities of (4,4) and (7

  20. Hybrid Pathogen DNA Detector:Users? Manual v1.5

    SciTech Connect

    Schikora, B; Hietala, S; Shi, L; Lee, L; Skowronski, E; Ardans, A

    2004-01-12

    The Hybrid Unit uses an advanced fluidic design to move very small reagent samples through many unit operations to complete complex molecular biology experiments. The primary use of this machine is to analyze a small liquid sample for the highly specific presence of select agents known to be used in bio-warfare. The Hybrid Unit is coupled with a Luminex bead detection unit for the multiplexing of many assays in one tube. Because of this, multiple controls can be included in each run to avoid false positives. The built-in flow through PCR unit amplifies specific DNA signatures and increases sensitivity, thereby limiting exposure of handlers to highly concentrated (and potentially hazardous, spore containing) sample volumes. The reproducible precision of the Hybrid Unit also gives confidence when a signal is given that detects an agent in a given sample.

  1. Three-Dimensional Control of DNA Hybridization by Orthogonal Two-Color Two-Photon Uncaging.

    PubMed

    Fichte, Manuela A H; Weyel, Xenia M M; Junek, Stephan; Schäfer, Florian; Herbivo, Cyril; Goeldner, Maurice; Specht, Alexandre; Wachtveitl, Josef; Heckel, Alexander

    2016-07-25

    We successfully introduced two-photon-sensitive photolabile groups ([7-(diethylamino)coumarin-4-yl]methyl and p-dialkylaminonitrobiphenyl) into DNA strands and demonstrated their suitability for three-dimensional photorelease. To visualize the uncaging, we used a fluorescence readout based on double-strand displacement in a hydrogel and in neurons. Orthogonal two-photon uncaging of the two cages is possible, thus enabling complex scenarios of three-dimensional control of hybridization with light. PMID:27294300

  2. DNA hybridization assay for detection of nucleopolyhedrovirus in whitemarked tussock moth (Orgyia leucostigma) larvae.

    PubMed

    Ebling, P M; Smith, P A; van Frankenhuyzen, K

    2001-01-01

    DNA dot-blot hybridization assays utilizing a horseradish peroxidase-labelled whole genomic DNA probe and enhanced chemiluminescence were conducted to quantify detection thresholds of nucleopolyhedrovirus (NPV) in whitemarked tussock moth (Orgyia leucostigma) larvae. The minimum detection thresholds for an aqueous suspension of occlusion bodies (OBs), OBs added to macerates of non-infected larvae and OBs in macerates of diseased larvae were 7.8 x 10(3), 7.8 x 10(3), and 1.5 x 10(3) OBs, respectively. Purified viral DNA was detected at a concentration of 1.6 x 10(-1) ng in a 20 microliters volume. The presence of pre-occluded viral nucleocapsids and DNA, inherent to infected larvae, improved the detection threshold five-fold compared with OBs alone. Larval tissues did not block the detection system utilized, nor did they bind non-specifically to the probe. Detection thresholds, upon sequential hybridization of the same membrane, on average deteriorated two-fold between the first and second hybridization and an additional six-fold between the second and third hybridization. NPV infection was detected two days post-inoculation (pi) in about one-third of the larvae examined and in almost all larvae three days pi. Microscopic analysis of stained larval smears missed NPV infection in almost all larvae two days pi and about two-thirds of the larvae three days pi. Results from the two methods of analysis were not comparable until four days pi. The detection system utilized is a reliable, efficient and simple method for the early detection of NPV infection in large numbers of larvae and may be used for further studies quantifying the role of this baculovirus in the ecology of whitemarked tussock moth populations. PMID:11455634

  3. Novel electrochemical DNA hybridization biosensors for selective determination of silver ions.

    PubMed

    Ebrahimi, Maryam; Raoof, Jahan Bakhsh; Ojani, Reza

    2015-11-01

    In this work, novel electrochemical biosensors for Ag(+) determination based on Ag(+)-induced DNA hybridization, using Ethyl green (EG) as an electroactive label on the surface of bare carbon paste electrode (CPE) and gold nanoparticles-modified carbon paste electrode (GN-CPE) are reported. Two single-strand poly-C (100% cytosine bases) DNAs are used as oligonucleotide probe and target. In the presence of Ag(+), the target DNA with full cytosine-cytosine (C-C) mismatches could hybridize with the probe DNA by forming C-Ag(+)-C complex. The induced hybridization of the two oligonucleotides leads to the decrease in the reduction peak currents of EG, which could be used for electrochemical determination of Ag(+). This difference in the values of the reduction peak current of EG before and after DNA hybridization (∆I) was linear with the concentration of Ag(+) in the ranges from 3.0×10(-10) to 1.0×10(-9) mol L(-1) and 9.0×10(-11) to 1.0×10(-9) mol L(-1), for the biosensor and nanoparticles modified-biosensor, respectively. Calculated detection limits were 1.04×10(-10) and 2.64×10(-11) mol L(-1) for biosensor and nanoparticles modified-biosensor, respectively. The biosensors demonstrated good selectivity towards Ag(+) ions in the presence of some metal ions such as Pb(2+), Cu(2+), Ca(2+), Zn(2+), Fe(2+) and Hg(2+). The proposed biosensors were applied successfully to the voltammetric determination of Ag(+) in real samples. PMID:26452869

  4. Molybdenum disulfide (MoS2) nanoflakes as inherently electroactive labels for DNA hybridization detection

    NASA Astrophysics Data System (ADS)

    Loo, Adeline Huiling; Bonanni, Alessandra; Ambrosi, Adriano; Pumera, Martin

    2014-09-01

    The detection of specific DNA sequences plays a critical role in the areas of medical diagnostics, environmental monitoring, drug discovery and food safety. This has therefore become a strong driving force behind the ever-increasing demand for simple, cost-effective, highly sensitive and selective DNA biosensors. In this study, we report for the first time, a novel approach for the utilization of molybdenum disulfide nanoflakes, a member of the transition metal dichalcogenides family, in the detection of DNA hybridization. Herein, molybdenum disulfide nanoflakes serve as inherently electroactive labels, with the inherent oxidation peak exploited as the analytical signal. The principle of detection is based on the differential affinity of molybdenum disulfide nanoflakes towards single-stranded DNA and double-stranded DNA. The employment of transition metal dichalcogenide nanomaterials for sensing and biosensing purposes represents an upcoming research area which holds great promise. Hence, our findings are anticipated to have significant contributions towards the fabrication of future DNA biosensors.The detection of specific DNA sequences plays a critical role in the areas of medical diagnostics, environmental monitoring, drug discovery and food safety. This has therefore become a strong driving force behind the ever-increasing demand for simple, cost-effective, highly sensitive and selective DNA biosensors. In this study, we report for the first time, a novel approach for the utilization of molybdenum disulfide nanoflakes, a member of the transition metal dichalcogenides family, in the detection of DNA hybridization. Herein, molybdenum disulfide nanoflakes serve as inherently electroactive labels, with the inherent oxidation peak exploited as the analytical signal. The principle of detection is based on the differential affinity of molybdenum disulfide nanoflakes towards single-stranded DNA and double-stranded DNA. The employment of transition metal dichalcogenide

  5. Fabrication of uniform DNA-conjugated hydrogel microparticles via replica molding for facile nucleic acid hybridization assays.

    PubMed

    Lewis, Christina L; Choi, Chang-Hyung; Lin, Yan; Lee, Chang-Soo; Yi, Hyunmin

    2010-07-01

    We identify and investigate several critical parameters in the fabrication of single-stranded DNA conjugated poly(ethylene glycol) (PEG) microparticles based on replica molding (RM) for highly uniform and robust nucleic acid hybridization assays. The effects of PEG-diacrylate, probe DNA, and photoinitiator concentrations on the overall fluorescence and target DNA penetration depth upon hybridization are examined. Fluorescence and confocal microscopy results illustrate high conjugation capacity of the probe and target DNA, femtomole sensitivity, and sequence specificity. Combined, these findings demonstrate a significant step toward simple, robust, and scalable procedures to manufacture highly uniform and high-capacity hybridization assay particles in a well-controlled manner by exploiting many advantages that the batch processing-based RM technique offers. We envision that the results presented here may be readily applied to rapid and high-throughput hybridization assays for a wide variety of applications in bioprocess monitoring, food safety, and biological threat detection. PMID:20527819

  6. Fabrication of Uniform DNA-Conjugated Hydrogel Microparticles via Replica Molding for Facile Nucleic Acid Hybridization Assays

    PubMed Central

    Lewis, Christina L.; Choi, Chang-Hyung; Lin, Yan; Lee, Chang-Soo; Yi, Hyunmin

    2010-01-01

    We identify and investigate several critical parameters in the fabrication of single-stranded DNA conjugated poly(ethylene glycol) (PEG) microparticles based on replica molding (RM) for highly uniform and robust nucleic acid hybridization assays. The effects of PEG-diacrylate, probe DNA, and photoinitiator concentrations on the overall fluorescence and target DNA penetration depth upon hybridization are examined. Fluorescence and confocal microscopy results illustrate high conjugation capacity of probe and target DNA, femtomole sensitivity, and sequence specificity. Combined these findings demonstrate a significant step toward simple, robust, and scalable procedures to manufacture highly uniform and high capacity hybridization assay particles in a well-controlled manner by exploiting many advantages that the batch processing-based RM technique offers. We envision that the results presented here may be readily applied to rapid and high throughput hybridization assays for a wide variety of applications in bioprocess monitoring, food safety, and biological threat detection. PMID:20527819

  7. Method for isolating chromosomal DNA in preparation for hybridization in suspension

    DOEpatents

    Lucas, Joe N.

    2000-01-01

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration. Chromosomal DNA in a sample containing cell debris is prepared for hybridization in suspension by treating the mixture with RNase. The treated DNA can also be fixed prior to hybridization.

  8. Synergistic effects of epoxy- and amine-silanes on microarray DNA immobilization and hybridization.

    PubMed Central

    Chiu, Sung-Kay; Hsu, Mandy; Ku, Wei-Chi; Tu, Ching-Yu; Tseng, Yu-Tien; Lau, Wai-Kwan; Yan, Rong-Yih; Ma, Jing-Tyan; Tzeng, Chi-Meng

    2003-01-01

    Most microarray slides are manufactured or coated with a layer of poly(L-lysine) or with silanes with different chemical functional groups, for the attachment of nucleic acids on to their surfaces. The efficiency with which nucleic acids bind to these surfaces is not high, because they can be washed away, especially in the case of spotting oligonucleotides. In view of this, we have developed a method to increase the binding capacity and efficiency of hybridization of DNA on to derivatized glass surfaces. This makes use of the synergistic effect of two binding interactions between the nucleic acids and the coating chemicals on the surface of the glass slides. The enhanced binding allows the nucleic acids to be bound tightly and to survive stringency washes. When immobilized, DNA exhibits a higher propensity for hybridization on the surface than on slides with only one binding chemical. By varying the silane concentrations, we have shown that maximal DNA oligonucleotide binding on glass surfaces occurs when the percentage composition of both of the surface-coating chemicals falls to 0.2%, which is different from that on binding PCR products. This new mixture-combination approach for nucleic-acid binding allows signals from immobilization and hybridization to have higher signal-to-noise ratios than for other silane-coated methods. PMID:12809552

  9. DNA-based hybridization chain reaction amplification for assaying the effect of environmental phenolic hormone on DNA methyltransferase activity.

    PubMed

    Xu, Zhenning; Yin, Huanshun; Han, Yunxiang; Zhou, Yunlei; Ai, Shiyun

    2014-06-01

    In this work, a novel electrochemical protocol with signal amplification for determination of DNA methylation and methyltransferase activity using DNA-based hybridization chain reaction (HCR) was proposed. After the gold electrode was modified with dsDNA, it was treated with M.SssI MTase, HpaII endonuclease, respectively. And then the HCR was initiated by the target DNA and two hairpin helper DNAs, which lead to the formation of extended dsDNA polymers on the electrode surface. The signal was amplified by the labeled biotin on the hairpin probes. As a result, the streptavidin-alkaline phosphatase (S-ALP) conjugated on the electrode surface through the specific interaction between biotin and S-ALP. ALP could convert 1-naphthyl phosphate into 1-naphthol and the latter could be electrochemically oxidized, which was used to monitor the methylation event and MTase activity. The HCR assay presents good electrochemical responses for the determination of M.SssI MTase at a concentration as low as 0.0067 uni tmL(-1). Moreover, the effects of anti-cancer drug and environmental phenolic hormone on M.SssI MTase activity were also investigated. The results indicated that 5-fluorouracil and daunorubicin hydrochloride could inhibit the activity, and the opposite results were obtained with bisphenol A and nonylphenol. Therefore, this method can not only provide a platform to screen the inhibitors of DNA MTase and develop new anticancer drugs, but also offer a novel technique to investigate the possible carcinogenesis mechanism. PMID:24856396

  10. Sentaurus® based modeling and simulation for GFET's characteristic for ssDNA immobilization and hybridization

    NASA Astrophysics Data System (ADS)

    Yunfang, Jia; Cheng, Ju

    2016-01-01

    The graphene field effect transistor (GFET) has been widely studied and developed as sensors and functional devices. The first report about GFET sensing simulation on the device level is proposed. The GFET's characteristics, its responding for single strand DNA (ssDNA) and hybridization with the complimentary DNA (cDNA) are simulated based on Sentaurus, a popular CAD tool for electronic devices. The agreement between the simulated blank GFET feature and the reported experimental data suggests the feasibility of the presented simulation method. Then the simulations of ssDNA immobilization on GFET and hybridization with its cDNA are performed, the results are discussed based on the electron transfer (ET) mechanism between DNA and graphene. Project supported by the National Natural Science Foundation of China (No. 61371028) and the Tianjin Natural Science Foundation (No. 12JCZDJC22400).

  11. Precise and selective sensing of DNA-DNA hybridization by graphene/Si-nanowires diode-type biosensors

    PubMed Central

    Kim, Jungkil; Park, Shin-Young; Kim, Sung; Lee, Dae Hun; Kim, Ju Hwan; Kim, Jong Min; Kang, Hee; Han, Joong-Soo; Park, Jun Woo; Lee, Hosun; Choi, Suk-Ho

    2016-01-01

    Single-Si-nanowire (NW)-based DNA sensors have been recently developed, but their sensitivity is very limited because of high noise signals, originating from small source-drain current of the single Si NW. Here, we demonstrate that chemical-vapor-deposition-grown large-scale graphene/surface-modified vertical-Si-NW-arrays junctions can be utilized as diode-type biosensors for highly-sensitive and -selective detection of specific oligonucleotides. For this, a twenty-seven-base-long synthetic oligonucleotide, which is a fragment of human DENND2D promoter sequence, is first decorated as a probe on the surface of vertical Si-NW arrays, and then the complementary oligonucleotide is hybridized to the probe. This hybridization gives rise to a doping effect on the surface of Si NWs, resulting in the increase of the current in the biosensor. The current of the biosensor increases from 19 to 120% as the concentration of the target DNA varies from 0.1 to 500 nM. In contrast, such biosensing does not come into play by the use of the oligonucleotide with incompatible or mismatched sequences. Similar results are observed from photoluminescence microscopic images and spectra. The biosensors show very-uniform current changes with standard deviations ranging ~1 to ~10% by ten-times endurance tests. These results are very promising for their applications in accurate, selective, and stable biosensing. PMID:27534818

  12. Precise and selective sensing of DNA-DNA hybridization by graphene/Si-nanowires diode-type biosensors.

    PubMed

    Kim, Jungkil; Park, Shin-Young; Kim, Sung; Lee, Dae Hun; Kim, Ju Hwan; Kim, Jong Min; Kang, Hee; Han, Joong-Soo; Park, Jun Woo; Lee, Hosun; Choi, Suk-Ho

    2016-01-01

    Single-Si-nanowire (NW)-based DNA sensors have been recently developed, but their sensitivity is very limited because of high noise signals, originating from small source-drain current of the single Si NW. Here, we demonstrate that chemical-vapor-deposition-grown large-scale graphene/surface-modified vertical-Si-NW-arrays junctions can be utilized as diode-type biosensors for highly-sensitive and -selective detection of specific oligonucleotides. For this, a twenty-seven-base-long synthetic oligonucleotide, which is a fragment of human DENND2D promoter sequence, is first decorated as a probe on the surface of vertical Si-NW arrays, and then the complementary oligonucleotide is hybridized to the probe. This hybridization gives rise to a doping effect on the surface of Si NWs, resulting in the increase of the current in the biosensor. The current of the biosensor increases from 19 to 120% as the concentration of the target DNA varies from 0.1 to 500 nM. In contrast, such biosensing does not come into play by the use of the oligonucleotide with incompatible or mismatched sequences. Similar results are observed from photoluminescence microscopic images and spectra. The biosensors show very-uniform current changes with standard deviations ranging ~1 to ~10% by ten-times endurance tests. These results are very promising for their applications in accurate, selective, and stable biosensing. PMID:27534818

  13. Synthesis of eight-arm, branched oligonucleotide hybrids and studies on the limits of DNA-driven assembly.

    PubMed

    Schwenger, Alexander; Gerlach, Claudia; Griesser, Helmut; Richert, Clemens

    2014-12-01

    Oligonucleotide hybrids with organic cores as rigid branching elements and four or six CG dimer strands have been shown to form porous materials from dilute aqueous solution. In order to explore the limits of this form of DNA-driven assembly, we prepared hybrids with three or eight DNA arms via solution-phase syntheses, using H-phosphonates of protected dinucleoside phosphates. This included the synthesis of (CG)8TREA, where TREA stands for the tetrakis[4-(resorcin-5-ylethynyl)phenyl]adamantane core. The ability of the new compounds to assemble in a DNA-driven fashion was studied by UV-melting analysis and NMR, using hybrids with self-complementary CG zipper arms or non-self-complementary TC dimer arms. The three-arm hybrid failed to form a material under conditions where four-arm hybrids did so. Further, the assembly of TREA hybrids appears to be dominated by hydrophobic interactions, not base pairing of the DNA arms. These results help in the design of materials forming by multivalent DNA-DNA interactions. PMID:25407332

  14. Methylation interactions in Arabidopsis hybrids require RNA-directed DNA methylation and are influenced by genetic variation.

    PubMed

    Zhang, Qingzhu; Wang, Dong; Lang, Zhaobo; He, Li; Yang, Lan; Zeng, Liang; Li, Yanqiang; Zhao, Cheng; Huang, Huan; Zhang, Heng; Zhang, Huiming; Zhu, Jian-Kang

    2016-07-19

    DNA methylation is a conserved epigenetic mark in plants and many animals. How parental alleles interact in progeny to influence the epigenome is poorly understood. We analyzed the DNA methylomes of Arabidopsis Col and C24 ecotypes, and their hybrid progeny. Hybrids displayed nonadditive DNA methylation levels, termed methylation interactions, throughout the genome. Approximately 2,500 methylation interactions occurred at regions where parental DNA methylation levels are similar, whereas almost 1,000 were at differentially methylated regions in parents. Methylation interactions were characterized by an abundance of 24-nt small interfering RNAs. Furthermore, dysfunction of the RNA-directed DNA methylation pathway abolished methylation interactions but did not affect the increased biomass observed in hybrid progeny. Methylation interactions correlated with altered genetic variation within the genome, suggesting that they may play a role in genome evolution. PMID:27382183

  15. Development of an electrochemical biosensor methods based on acrylic microsphere for the determination of Arowana DNA hybridization

    NASA Astrophysics Data System (ADS)

    Rahman, Mahbubur; Heng, Lee Yook; Futra, Dedi; Chiang, Chew Poh

    2015-09-01

    An electrochemical method of Arowana DNA determination based of N-acrylosuccinimide (NAS) modified acrylic microsphere was fabricated. Hydrophobic succinimide functional group containing poly(n-butylacrylate-N-acryloxysuccinimide) microspheres were synthesized with a simple one-step photopolymerization pocedure. Aminated DNA probe was covalently bonded to the succinimde functional group of the acrylic microspheres. The hybridization of the immobilized DNA probe with the complementary DNA was determined by the differential pulse voltametry using anthraquninone-2-sulfonic acid monohydrate sodium salt (AQMS) as the electroactive hybridization label. The influences of many factors such as duration of DNA probe immobilization and hybridization, operational temperature and non-complementary DNA on the biosensor performance were evaluated. Under optimized conditions, the DNA microbiosensor demonstrated a wide linear response range to target DNA is 1.0 × 10-16 and 1.0 × 10-8 M with a lower limit of detection (LOD) of 9.46 × 10-17 M (R2 = 0.99) were calculated. This biosensor had improved the overall analytical performance of the resultant DNA microbiosensor when compared with other reported DNA biosensors using other nano-materials for membranes and microspheres as DNA immobilization matrices.

  16. Rotating rod renewable microcolumns for automated, solid-phase DNA hybridization studies.

    PubMed

    Bruckner-Lea, C J; Stottlemyre, M S; Holman, D A; Grate, J W; Brockman, F J; Chandler, D P

    2000-09-01

    The development of a new temperature-controlled renewable microcolumn flow cell for solid-phase nucleic acid hybridization in an automated sequential injection system is described. The flow cell included a stepper motor-driven rotating rod with the working end cut to a 45 degrees angle. In one position, the end of the rod prevented passage of microbeads while allowing fluid flow; rotation of the rod by 180 degrees releases the beads. This system was used to rapidly test many hybridization and elution protocols to examine the temperature and solution conditions required for sequence-specific nucleic acid hybridization. Target nucleic acids labeled with a near-infrared fluorescent dye were detected immediately postcolumn during all column perfusion and elution steps using a flow-through fluorescence detector. Temperature control of the column and the presence of Triton X-100 surfactant were critical for specific hybridization. Perfusion of the column with complementary oligonucleotide (200 microL, 10 nM) resulted in hybridization with 8% of the DNA binding sites on the microbeads with a solution residence time of less than 1 s and a total sample perfusion time of 40 s. The use of the renewable column system for detection of an unlabeled PCR product in a sandwich assay was also demonstrated. PMID:10994975

  17. Chromosomal assignment of human DNA fingerprint sequences by simultaneous hybridization to arbitrarily primed PCR products from human/rodent monochromosome cell hybrids

    SciTech Connect

    Yasuda, Jun; Sekiya, Takao; Navarro, J.M.

    1996-05-15

    We have developed a technique for the simultaneous chromosomal assignment of multiple human DNA sequences from DNA fingerprints obtained by the arbitrarily primed polymerase chain reaction (AP-PCR). Radioactively labeled human AP-PCR products are hybridized to DNA fingerprints generated with the same arbitrary primer from human/rodent monochromosome cell hybrids after electroblotting to a nylong membrane. Human-specific hybridization bands in the human/rodent fingerprints unambiguously determine their chromosome of origin. We named this method simultaneous hybridization of arbitrarily primed PCR DNA fingerprinting products (SHARP). Using this approach, we determined the chromosomal origins of most major bands of human AP-PCR fingerprints obtained with two arbitrary primers. Altogether, the chromosomal localization of near 50 DNA fragments, comprehensive of all human chromosomes except chromosomes 21 and Y, was achieved in this simple manner. Chromosome assignment of fingerprint bands is essential for molecular karyotyping of cancer by AP-PCR DNA fingerprinting. The SHARP method provides a convenient and powerful tool for this purpose. 23 refs., 3 figs., 2 tabs.

  18. rDNA genetic imbalance and nucleolar chromatin restructuring is induced by distant hybridization between Raphanus sativus and Brassica alboglabra.

    PubMed

    Long, Hong; Chen, Chunli; Wang, Bing; Feng, Yanni

    2015-01-01

    The expression of rDNA in hybrids inherited from only one progenitor refers to nucleolar dominance. The molecular basis for choosing which genes to silence remains unclear. We report genetic imbalance induced by distant hybridization correlates with formation of rDNA genes (NORs) in the hybrids between Raphanus sativus L. and Brassica alboglabra Bailey. Moreover, increased CCGG methylation of rDNA in F1 hybrids is concomitant with Raphanus-derived rDNA gene silencing and rDNA transcriptional inactivity revealed by nucleolar configuration restriction. Newly formed rDNA gene locus occurred through chromosomal in F1 hybrids via chromosomal imbalance. NORs are gained de novo, lost, and/or transposed in the new genome. Inhibition of methyltransferases leads to changes in nucleolar architecture, implicating a key role of methylation in control of nucleolar dominance and vital nucleolar configuration transition. Our findings suggest that gene imbalance and methylation-related chromatin restructuring is important for rDNA gene silencing that may be crucial for synthesis of specific proteins. PMID:25723542

  19. Thiazole Orange Dimers in DNA: Fluorescent Base Substitutions with Hybridization Readout.

    PubMed

    Berndl, Sina; Dimitrov, Stoichko D; Menacher, Florian; Fiebig, Torsten; Wagenknecht, Hans-Achim

    2016-02-12

    By using (S)-2-amino-1,3-propanediol as a linker, thiazole orange (TO) was incorporated in a dimeric form into DNA. The green fluorescence (λ=530 nm) of the intrastrand TO dimer is quenched, whereas the interstrand TO dimer shows a characteristic redshifted orange emission (λ=585 nm). Steady-state optical spectroscopic methods reveal that the TO dimer fluorescence is independent of the sequential base contexts. Time-resolved pump-probe measurements and excitation spectra reveal the coexistence of conformations, including mainly stacked TO dimers and partially unstacked ones, which yield exciton and excimer contributions to the fluorescence, respectively. The helicity of the DNA framework distorts the excitonic coupling. In particular, the interstrand TO dimer could be regarded as an excitonically interacting base pair with fluorescence readout for DNA hybridization. Finally, the use of this fluorescent readout was representatively demonstrated in molecular beacons. PMID:26773846

  20. Coarse-grained simulation study of sequence effects on DNA hybridization in a concentrated environment.

    PubMed

    Markegard, Cade B; Fu, Iris W; Reddy, K Anki; Nguyen, Hung D

    2015-02-01

    A novel coarse-grained model is developed to elucidate thermodynamics and kinetic mechanisms of DNA self-assembly. It accounts for sequence and solvent conditions to capture key experimental results such as sequence-dependent thermal property and salt-dependent persistence length of ssDNA and dsDNA. Moreover, constant-temperature simulations on two single strands of a homogeneous sequence show two main mechanisms of hybridization: a slow slithering mechanism and a one-order faster zippering mechanism. Furthermore, large-scale simulations at a high DNA strand concentration demonstrate that DNA self-assembly is a robust and enthalpically driven process in which the formation of double helices is deciphered to occur via multiple self-assembly pathways including the strand displacement mechanism. However, sequence plays an important role in shifting the majority of one pathway over the others and controlling size distribution of self-assembled aggregates. This study yields a complex picture on the role of sequence on programmable self-assembly and demonstrates a promising simulation tool that is suitable for studies in DNA nanotechnology. PMID:25581253

  1. A novel hybrid single molecule approach reveals spontaneous DNA motion in the nucleosome

    PubMed Central

    Wei, Sijie; Falk, Samantha J.; Black, Ben E.; Lee, Tae-Hee

    2015-01-01

    Structural dynamics of nucleic acid and protein is an important physical basis of their functions. These motions are often very difficult to synchronize and too fast to be clearly resolved with the currently available single molecule methods. Here we demonstrate a novel hybrid single molecule approach combining stochastic data analysis with fluorescence correlation that enables investigations of sub-ms unsynchronized structural dynamics of macromolecules. Based on the method, we report the first direct evidence of spontaneous DNA motions at the nucleosome termini. The nucleosome, comprising DNA and a histone core, is the fundamental packing unit of eukaryotic genes that must be accessed during various genome transactions. Spontaneous DNA opening at the nucleosome termini has long been hypothesized to enable gene access in the nucleosome, but has yet to be directly observed. Our approach reveals that DNA termini in the nucleosome open and close repeatedly at 0.1–1 ms−1. The kinetics depends on salt concentration and DNA–histone interactions but not much on DNA sequence, suggesting that this dynamics is universal and imposes the kinetic limit to gene access. These results clearly demonstrate that our method provides an efficient and robust means to investigate unsynchronized structural changes of DNA at a sub-ms time resolution. PMID:26013809

  2. Genetic relatedness of artichoke (Cynara scolymus L.) hybrids using random amplified polymorphic DNA (RAPD) fingerprinting.

    PubMed

    Sharaf-Eldin, M A; Al-Tamimi, A; Alam, P; Elkholy, S F; Jordan, J R

    2015-01-01

    The artichoke (Cynara scolymus L.) is an important food and medicinal crop that is cultivated in Mediterranean countries. Morphological characteristics, such as head shape and diameter, leaf shape, and bract shape, are mainly affected by environmental conditions. A molecular marker approach was used to analyze the degree of polymorphism between artichoke hybrid lines. The degree of genetic difference among three artichoke hybrids was evaluated using random amplified polymorphic DNA-PCR (RAPD-PCR). In this study, the DNA fingerprints of three artichoke lines (A13-010, A11-018, and A12-179) were generated, and a total of 10 decamer primers were applied for RAPD-PCR analyses. Polymorphism  (16.66 to 62.50%) was identified using eight arbitrary decamers and total genomic DNA extracted from the hybrids. Of the 59 loci detected, there were 25 polymorphic and 34 monomorphic loci. Jaccard's similarity index (JSI) ranged between 1.0 and 0.84. Based on the unweighted pair group method with arithmetic mean (UPGMA) similarity matrix and dendrogram, the results indicated that two hybrids (A13-010 and A11-018) were closely related to each other, and the A12-179 line showed more divergence. When identifying correct accessions, consideration of the genetic variation and genetic relationships among the genotypes are required. The RAPD-PCR fingerprinting of artichoke lines clearly showed that it is possible to analyze the RAPD patterns for correlation between genetic means and differences or resemblance between close accessions (A13-010 and A11- 018) at the genomic level. PMID:26782491

  3. DNA aptamer release from the DNA-SWNT hybrid by protein recognition.

    PubMed

    Yoo, Chang-Hyuk; Jung, Seungwon; Bae, Jaehyun; Kim, Gunn; Ihm, Jisoon; Lee, Junghoon

    2016-02-14

    Here we show the formation of the complex between a DNA aptamer and a single-walled carbon nanotube (SWNT) and its reaction with its target protein. The aptamer, which is specifically bound with thrombin, the target protein in this study, easily wraps and disperses the SWNT by noncovalent π-π stacking. PMID:26763942

  4. Fabrication of DNA/RNA Hybrids Through Sequence-Specific Scission of Both Strands by pcPNA-S1 Nuclease Combination.

    PubMed

    Futai, Kazuki; Sumaoka, Jun; Komiyama, Makoto

    2016-05-01

    By combining two strands of pseudo-complementary peptide nucleic acid (pcPNA) with S1 nuclease, a tool for site-selective and dual-strand scission of DNA/RNA hybrids has been developed. Both of the DNA and the RNA strands in the hybrids are hydrolyzed at desired sites to provide unique sticky ends. The scission fragments are directly ligated with other DNA/RNA hybrids by using T4 DNA ligase, resulting in the formation of desired recombinant DNA/RNA hybrids. PMID:27057646

  5. DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface.

    PubMed

    Price, Andrew D; Schwartz, Daniel K

    2008-07-01

    Interactions between DNA and an adsorbed cationic surfactant at the nematic liquid crystal (LC)/aqueous interface were investigated using polarized and fluorescence microscopy. The adsorption of octadecyltrimethylammonium bromide (OTAB) surfactant to the LC/aqueous interface resulted in homeotropic (untilted) LC alignment. Subsequent adsorption of single-stranded DNA (ssDNA) to the surfactant-laden interface modified the interfacial structure, resulting in a reorientation of the LC from homeotropic alignment to an intermediate tilt angle. Exposure of the ssDNA/OTAB interfacial complex to its ssDNA complement induced a second change in the interfacial structure characterized by the nucleation, growth, and coalescence of lateral regions that induced homeotropic LC alignment. Fluorescence microscopy showed explicitly that the complement was colocalized in the same regions as the homeotropic domains. Exposure to noncomplementary ssDNA caused no such response, suggesting that the homeotropic regions were due to DNA hybridization. This hybridization occurred in the vicinity of the interface despite the fact that the conditions in bulk solution were such that hybridization did not occur (high stringency), suggesting that the presence of the cationic surfactant neutralized electrostatic repulsion and allowed for hydrogen bonding between DNA complements. This system has potential for label-less and portable DNA detection. Indeed, LC response to ssDNA target was detected with a lower limit of approximately 50 fmol of complement and was sufficiently selective to differentiate a one-base-pair mismatch in a 16-mer target. PMID:18528984

  6. An Engineered Kinetic Amplification Mechanism for Single Nucleotide Variant Discrimination by DNA Hybridization Probes.

    PubMed

    Chen, Sherry Xi; Seelig, Georg

    2016-04-20

    Even a single-nucleotide difference between the sequences of two otherwise identical biological nucleic acids can have dramatic functional consequences. Here, we use model-guided reaction pathway engineering to quantitatively improve the performance of selective hybridization probes in recognizing single nucleotide variants (SNVs). Specifically, we build a detection system that combines discrimination by competition with DNA strand displacement-based catalytic amplification. We show, both mathematically and experimentally, that the single nucleotide selectivity of such a system in binding to single-stranded DNA and RNA is quadratically better than discrimination due to competitive hybridization alone. As an additional benefit the integrated circuit inherits the property of amplification and provides at least 10-fold better sensitivity than standard hybridization probes. Moreover, we demonstrate how the detection mechanism can be tuned such that the detection reaction is agnostic to the position of the SNV within the target sequence. in contrast, prior strand displacement-based probes designed for kinetic discrimination are highly sensitive to position effects. We apply our system to reliably discriminate between different members of the let-7 microRNA family that differ in only a single base position. Our results demonstrate the power of systematic reaction network design to quantitatively improve biotechnology. PMID:27010123

  7. Quantitative genotyping of single-nucleotide polymorphisms by allele-specific oligonucleotide hybridization on DNA microarrays.

    PubMed

    Rickert, Andreas M; Ballvora, Agim; Matzner, Ulrich; Klemm, Manfred; Gebhardt, Christiane

    2005-08-01

    Genotyping of SNPs (single-nucleotide polymorphisms) has challenged the development of several novel techniques. Most of these methods have been introduced to discriminate binary SNPs in diploid species. In the present study, the quantitative genotyping of SNPs in natural DNA pools of a polyploid organism via DNA microarrays was analysed. Three randomly selected SNP loci were genotyped in the tetraploid species potato (Solanum tuberosum). For each SNP, 24 oligomers were designed, 12 with forward and 12 with reverse orientation. They contained the polymorphic site at one of the positions 11, 14 and 17. Several steps of optimizations were performed, including the 'materials' used and the establishment of hybridization conditions. Glass surfaces were either epoxy- or aldehyde-modified, and allele-specific oligonucleotides contained either SH or NH2 groups. Hybridization stringency conditions were established by varying the concentration of formamide in the hybridization buffer. For SNP BA213c14t7/403, the quantitative discrimination between all four different naturally occurring genotypes could be demonstrated. PMID:15847606

  8. Detection of hepatitis A virus in seeded estuarine samples by hybridization with cDNA probes

    SciTech Connect

    Jiang, X.; Estes, M.K.; Metcalf, T.G.; Melnick, J.L

    1986-10-01

    The development and trials of a nucleic acid hybridization test for the detection of hepatitis A virus (HAV) in estuarine samples within 48 h are described. Approximately 10/sup 4/ physical particlels of HAV per dot could be detected. Test sensitivity was optimized by the consideration of hydbridization stringency, /sup 32/P energy level, probe concentration, and nucleic acid binding to filters. Test specificity was shown by a lack of cross-hybridization with other enteroviruses and unrelated nucleic acids. Potential false-positive reactions between bacterial DNA in samples and residual vector DNA contamination of purified nucleotide sequences in probes were eliminated by DNase treatment of samples. Humic acid at concentrations of up to 100 mg/liter caused only insignificant decreases in test sensitivity. Interference with hybridization by organic components of virus-containing eluates was removed by proteinase K digestion followed by phenol extraction and ethanol precipitation. The test is suitable for detecting naturally occurring HAV in samples from polluted estuarine environments.

  9. A genome-wide study of preferential amplification/hybridization in microarray-based pooled DNA experiments

    PubMed Central

    Yang, H.-C.; Liang, Y.-J.; Huang, M.-C.; Li, L.-H.; Lin, C.-H.; Wu, J.-Y.; Chen, Y.-T.; Fann, C.S.J.

    2006-01-01

    Microarray-based pooled DNA methods overcome the cost bottleneck of simultaneously genotyping more than 100 000 markers for numerous study individuals. The success of such methods relies on the proper adjustment of preferential amplification/hybridization to ensure accurate and reliable allele frequency estimation. We performed a hybridization-based genome-wide single nucleotide polymorphisms (SNPs) genotyping analysis to dissect preferential amplification/hybridization. The majority of SNPs had less than 2-fold signal amplification or suppression, and the lognormal distributions adequately modeled preferential amplification/hybridization across the human genome. Comparative analyses suggested that the distributions of preferential amplification/hybridization differed among genotypes and the GC content. Patterns among different ethnic populations were similar; nevertheless, there were striking differences for a small proportion of SNPs, and a slight ethnic heterogeneity was observed. To fulfill appropriate and gratuitous adjustments, databases of preferential amplification/hybridization for African Americans, Caucasians and Asians were constructed based on the Affymetrix GeneChip Human Mapping 100 K Set. The robustness of allele frequency estimation using this database was validated by a pooled DNA experiment. This study provides a genome-wide investigation of preferential amplification/hybridization and suggests guidance for the reliable use of the database. Our results constitute an objective foundation for theoretical development of preferential amplification/hybridization and provide important information for future pooled DNA analyses. PMID:16931491

  10. Characterization of the structural and protein recognition properties of hybrid PNA-DNA four-way junctions.

    PubMed

    Iverson, Douglas; Serrano, Crystal; Brahan, Ann Marie; Shams, Arik; Totsingan, Filbert; Bell, Anthony J

    2015-12-01

    The objective of this study is to evaluate the structure and protein recognition properties of hybrid four-way junctions (4WJs) composed of DNA and peptide nucleic acid (PNA) strands. We compare a classic immobile DNA junction, J1, vs. six PNA-DNA junctions, including a number with blunt DNA ends and multiple PNA strands. Circular dichroism (CD) analysis reveals that hybrid 4WJs are composed of helices that possess structures intermediate between A- and B-form DNA, the apparent level of A-form structure correlates with the PNA content. The structure of hybrids that contain one PNA strand is sensitive to Mg(+2). For these constructs, the apparent B-form structure and conformational stability (Tm) increase in high Mg(+2). The blunt-ended junction, b4WJ-PNA3, possesses the highest B-form CD signals and Tm (40.1 °C) values vs. all hybrids and J1. Protein recognition studies are carried out using the recombinant DNA-binding protein, HMGB1b. HMGB1b binds the blunt ended single-PNA hybrids, b4WJ-PNA1 and b4WJ-PNA3, with high affinity. HMGB1b binds the multi-PNA hybrids, 4WJ-PNA1,3 and b4WJ-PNA1,3, but does not form stable protein-nucleic acid complexes. Protein interactions with hybrid 4WJs are influenced by the ratio of A- to B-form helices: hybrids with helices composed of higher levels of B-form structure preferentially associate with HMGB1b. PMID:26348651

  11. Bright luminescence from pure DNA-curcumin-based phosphors for bio hybrid light-emitting diodes.

    PubMed

    Reddy, M Siva Pratap; Park, Chinho

    2016-01-01

    Recently, significant advances have occurred in the development of phosphors for bio hybrid light-emitting diodes (Bio-HLEDs), which have created brighter, metal-free, rare-earth phosphor-free, eco-friendly, and cost-competitive features for visible light emission. Here, we demonstrate an original approach using bioinspired phosphors in Bio-HLEDs based on natural deoxyribonucleic acid (DNA)-curcumin complexes with cetyltrimethylammonium (CTMA) in bio-crystalline form. The curcumin chromophore was bound to the DNA double helix structure as observed using field emission tunnelling electron microscopy (FE-TEM). Efficient luminescence occurred due to tightly bound curcumin chromophore to DNA duplex. Bio-HLED shows low luminous drop rate of 0.0551 s(-1). Moreover, the solid bio-crystals confined the activating bright luminescence with a quantum yield of 62%, thereby overcoming aggregation-induced quenching effect. The results of this study herald the development of commercially viable large-scale hybrid light applications that are environmentally benign. PMID:27572113

  12. Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna

    NASA Astrophysics Data System (ADS)

    Hamad-Schifferli, Kimberly; Schwartz, John J.; Santos, Aaron T.; Zhang, Shuguang; Jacobson, Joseph M.

    2002-01-01

    Increasingly detailed structural and dynamic studies are highlighting the precision with which biomolecules execute often complex tasks at the molecular scale. The efficiency and versatility of these processes have inspired many attempts to mimic or harness them. To date, biomolecules have been used to perform computational operations and actuation, to construct artificial transcriptional loops that behave like simple circuit elements and to direct the assembly of nanocrystals. Further development of these approaches requires new tools for the physical and chemical manipulation of biological systems. Biomolecular activity has been triggered optically through the use of chromophores, but direct electronic control over biomolecular `machinery' in a specific and fully reversible manner has not yet been achieved. Here we demonstrate remote electronic control over the hybridization behaviour of DNA molecules, by inductive coupling of a radio-frequency magnetic field to a metal nanocrystal covalently linked to DNA. Inductive coupling to the nanocrystal increases the local temperature of the bound DNA, thereby inducing denaturation while leaving surrounding molecules relatively unaffected. Moreover, because dissolved biomolecules dissipate heat in less than 50picoseconds (ref. 16), the switching is fully reversible. Inductive heating of macroscopic samples is widely used, but the present approach should allow extension of this concept to the control of hybridization and thus of a broad range of biological functions on the molecular scale.

  13. Construction of Hypericin Gland-Specific cDNA Library via Suppression Subtractive Hybridization.

    PubMed

    Singh, Rupesh Kumar; Hou, Weina; Franklin, Gregory

    2016-01-01

    Hypericin, an important determinant of the pharmacological properties of the genus Hypericum, is considered as a major molecule for drug development. However, biosynthesis and accumulation of hypericin is not well understood. Identification of genes differentially expressed in tissues with and without hypericin accumulation is a useful strategy to elucidate the mechanisms underlying the development of the dark glands and hypericin biosynthesis. Suppression Subtractive Hybridization (SSH) is a unique method for PCR-based amplification of specific cDNA fragments that differ between a control (driver) and experimental (tester) transcriptome. This technique relies on the removal of dsDNA formed by hybridization between a control and test sample, thus eliminating cDNAs of similar abundance, and retaining differentially expressed or variable in sequence cDNAs. In our laboratory we applied this method to identify the genes involved in the development of dark glands and accumulation of hypericin in Hypericum perforatum. Here we describe the complete procedure for the construction of hypericin gland-specific subtracted cDNA library. PMID:27108327

  14. Bright luminescence from pure DNA-curcumin–based phosphors for bio hybrid light-emitting diodes

    PubMed Central

    Reddy, M. Siva Pratap; Park, Chinho

    2016-01-01

    Recently, significant advances have occurred in the development of phosphors for bio hybrid light-emitting diodes (Bio-HLEDs), which have created brighter, metal-free, rare-earth phosphor-free, eco-friendly, and cost-competitive features for visible light emission. Here, we demonstrate an original approach using bioinspired phosphors in Bio-HLEDs based on natural deoxyribonucleic acid (DNA)-curcumin complexes with cetyltrimethylammonium (CTMA) in bio-crystalline form. The curcumin chromophore was bound to the DNA double helix structure as observed using field emission tunnelling electron microscopy (FE-TEM). Efficient luminescence occurred due to tightly bound curcumin chromophore to DNA duplex. Bio-HLED shows low luminous drop rate of 0.0551 s−1. Moreover, the solid bio-crystals confined the activating bright luminescence with a quantum yield of 62%, thereby overcoming aggregation-induced quenching effect. The results of this study herald the development of commercially viable large-scale hybrid light applications that are environmentally benign. PMID:27572113

  15. Reactive Microcontact Printing of DNA Probes on (DMA-NAS-MAPS) Copolymer-Coated Substrates for Efficient Hybridization Platforms.

    PubMed

    Castagna, Rossella; Bertucci, Alessandro; Prasetyanto, Eko Adi; Monticelli, Marco; Conca, Dario Valter; Massetti, Matteo; Sharma, Parikshit Pratim; Damin, Francesco; Chiari, Marcella; De Cola, Luisa; Bertacco, Riccardo

    2016-04-01

    High-performing hybridization platforms fabricated by reactive microcontact printing of DNA probes are presented. Multishaped PDMS molds are used to covalently bind oligonucleotides over a functional copolymer (DMA-NAS-MAPS) surface. Printed structures with minimum width of about 1.5 μm, spaced by 10 μm, are demonstrated, with edge corrugation lower than 300 nm. The quantification of the immobilized surface probes via fluorescence imaging gives a remarkable concentration of 3.3 × 10(3) oligonucleotides/μm(2), almost totally active when used as probes in DNA-DNA hybridization assays. Indeed, fluorescence and atomic force microscopy show a 95% efficiency in target binding and uniform DNA hybridization over printed areas. PMID:26972953

  16. FY02 CBNP Annual Report: Discovery of DNA Signature of Biothreat Detection Using Suppression Subtractive Hybridization

    SciTech Connect

    Andersen, G L; Radnedge, L

    2002-11-19

    Our goal is to develop robust DNA signatures for rapid and specific DNA-based detection platforms that can be employed by CBNP to detect a wide range of potential agents. Our approach has resulted in highly specific DNA signatures for Yersina pestis, Bacillus anthracis and Brucella species. Furthermore, this approach can be applied to any genome (even uncharacterized ones), which facilitates DNA signature development for detection of newly emerging pathogens. We are using suppression subtractive hybridization (SSH) as a tool to define large DNA regions specific to multiple biothreat pathogens by comparing them to genomes of the most closely related organisms. This approach has become increasingly accurate as we continue to find new, distinctive strains and ever-closer near-neighbors. With the huge costs incurred by whole genome sequencing, it is not possible to sequence each new bacterial genome. However, it is completely practical to identify genome differences in the laboratory using SSH, and becomes especially useful when comparing new strains to previously sequenced genomes.

  17. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    PubMed

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis. PMID:26922047

  18. Competitive Metagenomic DNA Hybridization Identifies Host-Specific Microbial Genetic Markers in Cow Fecal Samples†

    PubMed Central

    Shanks, Orin C.; Santo Domingo, Jorge W.; Lamendella, Regina; Kelty, Catherine A.; Graham, James E.

    2006-01-01

    Several PCR methods have recently been developed to identify fecal contamination in surface waters. In all cases, researchers have relied on one gene or one microorganism for selection of host-specific markers. Here we describe the application of a genome fragment enrichment (GFE) method to identify host-specific genetic markers from fecal microbial community DNA. As a proof of concept, bovine fecal DNA was challenged against a porcine fecal DNA background to select for bovine-specific DNA sequences. Bioinformatic analyses of 380 bovine enriched metagenomic sequences indicated a preponderance of Bacteroidales-like regions predicted to encode membrane-associated and secreted proteins. Oligonucleotide primers capable of annealing to select Bacteroidales-like bovine GFE sequences exhibited extremely high specificity (>99%) in PCR assays with total fecal DNAs from 279 different animal sources. These primers also demonstrated a broad distribution of corresponding genetic markers (81% positive) among 148 different bovine sources. These data demonstrate that direct metagenomic DNA analysis by the competitive solution hybridization approach described is an efficient method for identifying potentially useful fecal genetic markers and for characterizing differences between environmental microbial communities. PMID:16751515

  19. The minimal amount of starting DNA for Agilent's hybrid capture-based targeted massively parallel sequencing.

    PubMed

    Chung, Jongsuk; Son, Dae-Soon; Jeon, Hyo-Jeong; Kim, Kyoung-Mee; Park, Gahee; Ryu, Gyu Ha; Park, Woong-Yang; Park, Donghyun

    2016-01-01

    Targeted capture massively parallel sequencing is increasingly being used in clinical settings, and as costs continue to decline, use of this technology may become routine in health care. However, a limited amount of tissue has often been a challenge in meeting quality requirements. To offer a practical guideline for the minimum amount of input DNA for targeted sequencing, we optimized and evaluated the performance of targeted sequencing depending on the input DNA amount. First, using various amounts of input DNA, we compared commercially available library construction kits and selected Agilent's SureSelect-XT and KAPA Biosystems' Hyper Prep kits as the kits most compatible with targeted deep sequencing using Agilent's SureSelect custom capture. Then, we optimized the adapter ligation conditions of the Hyper Prep kit to improve library construction efficiency and adapted multiplexed hybrid selection to reduce the cost of sequencing. In this study, we systematically evaluated the performance of the optimized protocol depending on the amount of input DNA, ranging from 6.25 to 200 ng, suggesting the minimal input DNA amounts based on coverage depths required for specific applications. PMID:27220682

  20. Activation of different split functionalities on re-association of RNA-DNA hybrids.

    PubMed

    Afonin, Kirill A; Viard, Mathias; Martins, Angelica N; Lockett, Stephen J; Maciag, Anna E; Freed, Eric O; Heldman, Eliahu; Jaeger, Luc; Blumenthal, Robert; Shapiro, Bruce A

    2013-04-01

    Split-protein systems, an approach that relies on fragmentation of proteins with their further conditional re-association to form functional complexes, are increasingly used for various biomedical applications. This approach offers tight control of protein functions and improved detection sensitivity. Here we report a similar technique based on a pair of RNA-DNA hybrids that can be used generally for triggering different split functionalities. Individually, each hybrid is inactive but when two cognate hybrids re-associate, different functionalities are triggered inside mammalian cells. As a proof of concept, this work mainly focuses on the activation of RNA interference. However, the release of other functionalities (such as resonance energy transfer and RNA aptamer) is also shown. Furthermore, in vivo studies demonstrate a significant uptake of the hybrids by tumours together with specific gene silencing. This split-functionality approach presents a new route in the development of 'smart' nucleic acid-based nanoparticles and switches for various biomedical applications. PMID:23542902

  1. Rotating Rod Renewable Microcolumns for Automated, Solid-Phase DNA Hybridization

    SciTech Connect

    Bruckner-Lea, Cynthia J. ); Stottlemyre, Mark R.; Holman, David A.; Grate, Jay W. ); Brockman, Fred J. ); Chandler, Darrell P.

    1999-12-01

    The development of a new temperature-controlled renewable microcolumn flow cell for solid-phase nucleic acid analysis in a sequential injection system is described. The flow cell includes a stepper motor-driven rotating rod with the working end cut to a 45 degree angle. In one position, the end of the rod prevents passage of microbeads while allowing fluid flow; rotation of the rod by 180 degrees release the beads. This system was used to rapidly test many hybridization and elution protocols to examine the temperature and solution conditions required for sequence specific nucleic acid hybridization. Target nucleic acids labeled with a near-infrared fluorescent dye were detected immediately post-column using a flow-through fluorescence detector, with a detection limit of 40 pM dye concentration at a flow rate of 5 mu l/s. Temperature control of the column and the presence of Triton X-100 surfactant were critical for specific hybridization. Perfusion of the column with complementary oligonucleotide (200 mu l, 10nM) resulted in hybridization with 8% of the DNA binding sites on the microbeads with a solution residence time of less than a second and a total sample perfusion time of 40 seconds. The use of the renewable column system for detection of an unlabeled PCR product in a sandwich assay was also demonstrated.

  2. Genetic characterization of inbred lines of Chinese cabbage by DNA markers; towards the application of DNA markers to breeding of F1 hybrid cultivars.

    PubMed

    Kawamura, Kazutaka; Kawanabe, Takahiro; Shimizu, Motoki; Okazaki, Keiichi; Kaji, Makoto; Dennis, Elizabeth S; Osabe, Kenji; Fujimoto, Ryo

    2016-03-01

    Chinese cabbage (Brassica rapa L. var. pekinensis) is an important vegetable in Asia, and most Japanese commercial cultivars of Chinese cabbage use an F1 hybrid seed production system. Self-incompatibility is successfully used for the production of F1 hybrid seeds in B. rapa vegetables to avoid contamination by non-hybrid seeds, and the strength of self-incompatibility is important for harvesting a highly pure F1 seeds. Prediction of agronomically important traits such as disease resistance based on DNA markers is useful. In this dataset, we identified the S haplotypes by DNA markers and evaluated the strength of self-incompatibility in Chinese cabbage inbred lines. The data described the predicted disease resistance to Fusarium yellows or clubroot in 22 Chinese cabbage inbred lines using gene associated or gene linked DNA markers. PMID:26862564

  3. [Detection of human papillomavirus (H.P.V.) DNA in genital lesions using molecular hybridization].

    PubMed

    Meguenni, S; el-Mehdaoui, S; Bandoui, D; Bouguermouh, A; Allouache, A; Bendib, A; Chouiter, A; Djenaoui, T; Lalliam, N; Bouhadef, A

    1992-01-01

    Detection of human papilloma virus in genitals lesions by molecular hybridization. Some H.P.V. types are sexually transmitted and infect genital organs. We have used molecular hybridization to examine the distribution of H.P.V. 6 or II and H.P.V. 16 in benign, premalignant and malignant genital lesions from 344 patients. The frequency of H.P.V. 16 positive cases increases as the cervical lesions progress to malignancy: 57/78 are positive (73%) in the carcinomas, 29/83 are positive (35%) in mild or moderate dysplasia. The majority of benign condylomata acuminata harbors DNA of other types, namely H.P.V. 6 and II. PMID:1339249

  4. Highly sensitive DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization

    PubMed Central

    Yu, Xu; Zhang, Zhi-Ling; Zheng, Si-Yang

    2014-01-01

    A novel highly sensitive colorimetric assay for DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization was established. The DNA modified superparamagnetic beads were demonstrated to capture and enrich the target DNA in the hybridization buffer or human plasma. The hybridization chain reaction and enzyme-induced silver metallization on the gold nanoparticles were used as cascade signal amplification for the detection of target DNA. The metalization of silver on the gold nanoparticles induced a significant colour change from red to yellow until black depending on the concentration of the target DNA, which could be recognized by naked eyes. This method showed a good specificity for the target DNA detection, with the capabilty to discriminate single-base-pair mismatched DNA mutation (single nucleotide polymorphism). Meanwhile, this approach exhibited an excellent anti-interference capability with the convenience of the magentic seperation and washing, which enabled its usage in complex biological systems such as human blood plasma. As an added benefit, the utilization of hybridization chain reaction and enzyme-induced metallization improved detection sensitivity down to 10 pM, which is about 100-fold lower than that of traditional unamplified homogeneous assays. PMID:25500528

  5. [DNA fingerprinting of individual species and intergeneric and interspecific hybrids of genera Bos and Bison, subfamily Bovinae].

    PubMed

    Vasil'ev, V A; Steklenev, E P; Morozova, E V; Semenova, S K

    2002-04-01

    Genome fingerprinting with a hypervariable minisatellite sequence of phage M13 DNA was used to study the genetic variation in individual species of the genera Bos and Bison (subfamily Bovinae) and in their interspecific and intergeneric hybrids. DNA fingerprints were obtained for domestic cow Bos taurus primigenius, vatussy Bos taurus macroceros, banteng Bos javanicus, gaur Bos gaurus, wisent Bison bonasus, bison Bison bison, and for the interspecific and intergeneric hybrids. Compared with the original species, most hybrids showed a greater variation in number and size of hybridization fragments. An association was revealed between the number of hybridization fragments and blood composition of interspecific hybrids resulting from unique crossing of domestic cow and banteng. Pairwise similarity coefficients were calculated to construct a dendrogram of genetic similarity, which reflected the relationships between the parental species and hybrids varying in blood composition. The applicability of the method for identifying interspecific and intergeneric hybrids and for studying the consequences of distant hybridization in the subfamily Bovinae is discussed. PMID:12018169

  6. Microfluidic enzymatic DNA extraction on a hybrid polyester-toner-PMMA device.

    PubMed

    Thompson, Brandon L; Birch, Christopher; Li, Jingyi; DuVall, Jacquelyn A; Le Roux, Delphine; Nelson, Daniel A; Tsuei, An-Chi; Mills, Daniel L; Krauss, Shannon T; Root, Brian E; Landers, James P

    2016-08-01

    To date, the forensic community regards solid phase extraction (SPE) as the most effective methodology for the purification of DNA for use in short tandem repeat (STR) polymerase chain reaction (PCR) amplification. While a dominant methodology, SPE protocols generally necessitate the use of PCR inhibitors (guanidine, IPA) and, in addition, can demand timescales of up to 30 min due to the necessary load, wash and elution steps. The recent discovery and characterization of the EA1 protease has allowed the user to enzymatically extract (not purify) DNA, dramatically simplifying the task of producing a PCR-ready template. Despite this, this procedure has yet to make a significant impact on microfluidic technologies. Here, we describe a microfluidic device that implements the EA1 enzyme for DNA extraction by incorporating it into a hybrid microdevice comprising laminated polyester (Pe) and PMMA layers. The PMMA layer provides a macro-to-micro interface for introducing the biological sample into the microfluidic architecture, whilst also possessing the necessary dimensions to function as the swab acceptor. Pre-loaded reagents are then introduced to the swab chamber centrifugally, initiating DNA extraction at 75 °C. The extraction of DNA occurs in timescales of less than 3 min and any external hardware associated with the transportation of reagents by pneumatic pumping is eliminated. Finally, multiplexing is demonstrated with a circular device containing eight separate chambers for the simultaneous processing of eight buccal swab samples. The studies here provide DNA concentrations up to 10 ng μL(-1) with a 100% success rate in less than 3 minutes. The STR profiles generated using these extracted samples demonstrate that the DNA is of PCR forensic-quality and adequate for human identification. PMID:27250903

  7. Evidence for and Localization of Vegetative Viral DNA Replication by Autoradiographic Detection of RNA·DNA Hybrids in Sections of Tumors Induced by Shope Papilloma Virus

    PubMed Central

    Orth, Gérard; Jeanteur, Philippe; Croissant, Odile

    1971-01-01

    The occurrence and localization of vegetative viral DNA replication was studied in sections of tumors induced by the rabbit Shope papilloma virus, in cottontail and domestic rabbit papillomas, in primary domestic rabbit carcinoma, and in transplantable VX2 carcinoma, by in situ hybridization of radioactive RNA complementary to viral DNA. Vegetative viral DNA replication and viral protein synthesis were compared by means of cytological hybridization and immunofluorescence techniques on adjacent frozen sections. Vegetative viral DNA replication is completely repressed in the proliferating cellular layers of these tumors, which suggests a provirus state of the viral genome, as in other cells transformed by oncogenic DNA viruses. Vegetative viral DNA replication is induced, after initiation of the keratinization, in cells of cottonail rabbit papillomas, where it is usually followed by viral protein synthesis; this illustrates the influence of the physiological state of the host cell on the control of viral functions. Vegetative viral DNA replication is deteced only in a few cells of domestic rabbit papillomas, at the end of the keratinization process; this observation provides indirect evidence that the DNA synthesis specifically induced in these tumors after the onset of keratinization reflects mostly the induction of cellular DNA synthesis. Images PMID:4331563

  8. [Mitochondrial DNA polymorphisms shared between modern humans and neanderthals: adaptive convergence or evidence for interspecific hybridization?].

    PubMed

    2013-09-01

    An analysis of the variability of the nucleotide sequences in the mitochondrial genome of modern humans, neanderthals, Denisovans, and other primates has shown that there are shared polymorphisms at positions 2758 and 7146 between modern Homo sapiens (in phylogenetic cluster L2'3'4'5'6) and Homo neanderthalensis (in the group of European neanderthals younger than 48000 years). It is suggested that the convergence may be due to adaptive changes in the mitochondrial genomes of modern humans and neanderthals or interspecific hybridization associated with mtDNA recombination. PMID:25508911

  9. [Mitochondrial DNA polymorphisms shared between modern humans and neanderthals: adaptive convergence or evidence for interspecific hybridization?].

    PubMed

    Maliarchuk, B A

    2013-09-01

    An analysis of the variability of the nucleotide sequences in the mitochondrial genome of modern humans, neanderthals, Denisovans, and other primates has shown that there are shared polymorphisms at positions 2758 and 7146 between modern Homo sapiens (in phylogenetic cluster L2'3'4'5'6) and Homo neanderthalensis (in the group of European neanderthals younger than 48000 years). It is suggested that the convergence may be due to adaptive changes in the mitochondrial genomes of modern humans and neanderthals or interspecific hybridization associated with mtDNA recombination. PMID:25486780

  10. Development of single-cell array for large-scale DNA fluorescence in situ hybridization

    PubMed Central

    Liu, Yingru; Kirkland, Brett; Shirley, James; Wang, Zhibin; Zhang, Peipei; Stembridge, Jacquelyn; Wong, Wilson; Takebayashi, Shin-ichiro; Gilbert, David M.; Lenhert, Steven

    2013-01-01

    DNA fluorescence in situ hybridization (FISH) is a powerful cytogenetic assay, but conventional sample-preparation methods for FISH do not support large-scale high-throughput data acquisition and analysis, which are potentially useful for several biomedical applications. To address this limitation, we have developed a novel FISH sample-preparation method based on generating a centimetre-sized cell array, in which all cells are precisely positioned and separated from their neighbours. This method is simple and easy and capable of patterning nonadherent human cells. We have successfully performed DNA FISH on the single-cell arrays, which facilitate analysis of FISH results with the FISH-FINDER computer program. PMID:23370691

  11. Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization

    SciTech Connect

    Kallioniemi, A.; Tanner, M.; Kallioniemi, O.P.; Piper, J.; Stokke, T.; Pinkel, D.; Gray, J.W.; Waldman, F.M.; Chen, L.; Smith, H.S.

    1994-03-15

    Comparative genomic hybridization was applied to 5 breast cancer cell lines and 33 primary tumors to discover and map regions of the genome with increased DNA-sequence copy-number. Two-thirds of primary tumors and almost all cell lines showed increased DNA-sequence copy-number affecting a total of 26 chromosomal subregions. Most of these loci were distinct from those of currently known amplified genes in breast cancer, with sequences originating from 17q22-q24 and 20q13 showing the highest frequency of amplification. The results indicate that these chromosomal regions may contain previously unknown genes whose increased expression contributes to breast cancer progression. Chromosomal regions with increased copy-number often spanned tens of Mb, suggesting involvement of more than one gene in each region.

  12. Label-free detection of DNA hybridization using transistors based on CVD grown graphene.

    PubMed

    Chen, Tzu-Yin; Loan, Phan Thi Kim; Hsu, Chang-Lung; Lee, Yi-Hsien; Tse-Wei Wang, Jacob; Wei, Kung-Hwa; Lin, Cheng-Te; Li, Lain-Jong

    2013-03-15

    The high transconductance and low noise of graphene-based field-effect transistors based on large-area monolayer graphene produced by chemical vapor deposition are used for label-free electrical detection of DNA hybridization. The gate materials, buffer concentration and surface condition of graphene have been optimized to achieve the DNA detection sensitivity as low as 1 pM (10(-12) M), which is more sensitive than the existing report based on few-layer graphene. The graphene films obtained using conventional PMMA-assisted transfer technique exhibits PMMA residues, which degrade the sensing performance of graphene. We have demonstrated that the sensing performance of the graphene samples prepared by gold-transfer is largely enhanced (by 125%). PMID:22944023

  13. Immobilization, hybridization, and oxidation of synthetic DNA on gold surface: electron transfer investigated by electrochemistry and scanning tunneling microscopy

    PubMed Central

    McEwen, Gerald D.; Chen, Fan; Zhou, Anhong

    2009-01-01

    Fundamental understanding of interfacial electron transfer (ET) among electrolyte/DNA/solid-surface will facilitate the design for electrical detection of DNA molecules. In this report, the electron transfer characteristics of synthetic DNA (sequence from pathogenic Cryptosporidium parvum) self-assembled on a gold surface was electrochemically studied. The effects of immobilization order on the interface ET related parameters such as diffusion coefficient (D0), surface coverage (θR), and monolayer thickness (di) were determined by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). DNA surface density (ΓDNA) was determined by the integration of the charge of the electro-oxidation current peaks during the initial cyclic voltammetry scans. It was found that the DNA surface density at different modifications followed the order: ΓDNA (dsS-DNA/Au) > ΓDNA (MCH/dsS-DNA/Au) > ΓDNA (dsS-DNA/MCH/Au). It was also revealed that the electro-oxidation of the DNA modified gold surface would involve the oxidation of nucleotides (guanine and adenine) with a 5.51 electron transfer mechanism and the oxidative desorption of DNA and MCH molecules by a 3 electron transfer mechanism. STM topography and current image analysis indicated that the surface conductivity after each surface modification followed the order: dsS-DNA/Au < MCH/dsS-DNA/Au < oxidized MCH/dsS-DNA/Au < Hoechst/oxidized MCH/dsS-DNA/Au. The results from this study suggested a combination of variations in immobilization order may provide an alternative approach for the optimization of DNA hybridization and the further development for electrical detection of DNA. PMID:19446060

  14. Comparison of field-collected ascovirus isolates by DNA hybridization, host range, and histopathology.

    PubMed

    Hamm, J J; Styer, E L; Federici, B A

    1998-09-01

    Six field-collected ascovirus isolates obtained from five noctuid species in the continental United States were compared with respect to the general relatedness of their DNA, host range, and histopathology. Two isolates were from Spodoptera frugiperda, and the other four were from Autographa precationis, Heliothis virescens, Helicoverpa zea, and Trichoplusia ni. DNA-DNA hybridization studies showed that the six isolates belonged to three distinct viral species, with the isolates from S. frugiperda composing one species, those from A. precationis and H. virescens a second species, and those from H. zea and T. ni a third species. The host range and histopathology of each isolate was studied in eight noctuid species, S. frugiperda, Spodoptera ornithogalli, Spodoptera exigua, Spodoptera eridania, H. virescens, H. zea, A. precationis, and Feltia subterranea. Though some variation existed between the different isolates of each viral species, distinct patterns were apparent for each. The viral species from S. frugiperda had a host range that was limited primarily to Spodoptera species and both isolates of this virus only replicated and caused significant pathology in the fat body, whereas the viral species from A. precationis and H. virescens had a much broader host range that included most of the species tested, but also had a tissue tropism primarily restricted to the fat body. The viral species from T. ni and H. zea readily infected all the hosts tested, where the principal site of replication and significant pathology was the epidermis. In many test hosts, however, this viral species also replicated and caused significant pathology in the tracheal epithelium and to a lesser extent in the fat body. Aside from contributing to knowledge of ascovirus biology, these studies indicate that DNA hybridization profiles combined with studies of host range and tissue tropism can be used as characters for defining ascovirus species. PMID:9709014

  15. DNA-based hybridization chain reaction for an ultrasensitive cancer marker EBNA-1 electrochemical immunosensor.

    PubMed

    Song, Chao; Xie, Guoming; Wang, Li; Liu, Lingzhi; Tian, Guang; Xiang, Hua

    2014-08-15

    An ultrasensitive and selective electrochemical immunosensor was developed for the detection of Epstein Barr virus nuclear antigen 1 (EBNA-1). Firstly, a suspension of graphene sheets (GS) and multi-walled carbon nanotubes (MWCNTs) was prepared with the aid of chitosan (CS) solution and then modified on a glassy carbon electrode (GCE). Gold nanoparticles (AuNPs) were then electrodeposited onto the surface of the GS-MWCNTs film by cyclic voltammetry (CV) to immobilize the captured antibodies. After that, specific sandwich immunoreactions were formed among the captured antibody, EBNA-1, and secondary antibody, DNA-coated carboxyl multi-wall carbon nanotubes (DNA-MWCNTs-Ab2). DNA initiator strands (S0) and secondary antibodies linked to the MWCNTs and double-helix DNA polymers were obtained by hybridization chain reaction (HCR), and here S0 on the MWCNTs propagates a chain reaction of hybridization events between two alternating hairpins to form a nicked double-helix. Finally, electroactive indicator doxorubicin hydrochloride was intercalated into the CG-GC steps between the HCR products and could produce an electrochemical signal, which was monitored by differential pulse voltammetry (DPV). Under optimum conditions, the amperometric signal increased linearly with the target concentrations (0.05-6.4ngmL(-1)), and the immunosensor exhibited a detection limit as low as 0.7pgmL(-1) (S/N=3). The proposed method showed acceptable stability and reproducibility, as well as favorable recovery for EBNA-1 in human serum. The proposed immunosensor provides a novel avenue for signal amplification and potential applications in bioanalysis and clinical diagnostics. PMID:24632131

  16. Three dimensional dual labelled DNA fluorescent in situ hybridization analysis in fixed tissue sections

    PubMed Central

    Kernohan, Kristin D.; Bérubé, Nathalie G.

    2014-01-01

    Emerging studies demonstrate that three-dimensional organization of chromatin in the nucleus plays a vital role in regulating the genome. DNA fluorescent in situ hybridization (FISH) is a common molecular technique used to visualize the location of DNA sequences. The vast majority of DNA FISH studies are conducted on cultured cells due to the technical difficulties encountered using fixed tissue sections. However, the use of cultured cells poses important limitations that could yield misleading results, making in vivo analysis a far superior approach. Here we present a protocol for multiplexed three dimensional DNA FISH in mouse brain sections, which is also applicable to other tissues. Paraffin-embedded tissues could be used but the embedding and preparation of the samples is time-consuming and often associated with poor antigenicity. To overcome this problem we:•developed a FISH technique using fixed, frozen cryosections;•provide specific instructions for tissue processing for proper fixation and freezing, including equilibration in sucrose gradients to maintain proper cellular structure;•include optimized permeabilization and washing steps to achieve specific signal and to limit background fluorescence in tissue sections. PMID:26150931

  17. Fixation conditions for DNA and RNA in situ hybridization: a reassessment of molecular morphology dogma.

    PubMed Central

    Tbakhi, A.; Totos, G.; Hauser-Kronberger, C.; Pettay, J.; Baunoch, D.; Hacker, G. W.; Tubbs, R. R.

    1998-01-01

    Neutral buffered formalin (NBF) (4% neutral buffered formaldehyde) has been advocated by most investigators as the primary fixative of choice for in situ hybridization (ISH), and specific anecdotal cautions interdicting the use of precipitating fixatives, which otherwise may offer certain advantages such as superior nuclear detail, are common. Few systematic studies addressing ISH fixation conditions have been published. We reasoned that heavy metals present in some precipitating fixatives may compromise duplex formation during ISH. Cell lines containing known viral gene content (CaSki, 200 to 600 human papilloma virus 16 copies/cell, and SiHa, 1 to 2 human papilloma virus 16 copies/cell) and two negative cell lines (K562 and MOLT 4) were expanded to >10(10) and pellets fixed in NBF, zinc formalin, B5, and Bouin's and Hollande's solutions, and subjected to DNA ISH using biotinylated genomic probes. Ten tissue biopsies fixed in both Hollande's and NBF solutions were also evaluated for human papilloma virus content using DNA ISH. Additionally, 17 cases of Hodgkin's disease fixed in B5 and formalin were compared for Epstein-Barr encoded RNA detection using RNA ISH with fluorescein isothiocyanate-labeled oligonucleotides. Catalyzed reporter deposition combined with Streptavidin-Nanogold staining and silver acetate autometallography (Catalyzed reporter deposition-Ng-autometallography ISH) and a conventional indirect alkaline phosphatase method were used for detection for both DNA and RNA. Contaminating heavy metals entrapped in fixed tissues were removed by two exposures to Lugol's iodine. Results for both DNA and RNA ISH comparing B5 and NBF fixatives were virtually identical. Hollande's, Bouin's, B5, and zinc formalin fixed tissue showed results indistinguishable from NBF fixed tissue in DNA ISH. Precipitating fixatives such as B5 and Hollande's solution may be used for DNA and RNA ISH under appropriate conditions. Images Figure 1 Figure 2 Figure 3 PMID:9422521

  18. Locational diversity of alpha satellite DNA and intergeneric hybridization aspects in the Nomascus and Hylobates genera of small apes.

    PubMed

    Baicharoen, Sudarath; Miyabe-Nishiwaki, Takako; Arsaithamkul, Visit; Hirai, Yuriko; Duangsa-ard, Kwanruen; Siriaroonrat, Boripat; Domae, Hiroshi; Srikulnath, Kornsorn; Koga, Akihiko; Hirai, Hirohisa

    2014-01-01

    Recently, we discovered that alpha satellite DNA has unique and genus-specific localizations on the chromosomes of small apes. This study describes the details of alpha satellite localization in the genera Nomascus and Hylobates and explores their usefulness in distinguishing parental genome sets in hybrids between these genera. Fluorescence in situ hybridization was used to establish diagnostic criteria of alpha satellite DNA markers in discriminating small ape genomes. In particular we established the genus specificity of alpha satellite distribution in three species of light-cheeked gibbons (Nomascus leucogenys, N. siki, and N. gabriellae) in comparison to that of Hylobates lar. Then we determined the localization of alpha satellite DNA in a hybrid individual which resulted from a cross between these two genera. In Nomascus the alpha satellite DNA blocks were located at the centromere, telomere, and four interstitial regions. In Hylobates detectable amounts of alpha satellite DNA were seen only at centromeric regions. The differences in alpha satellite DNA locations between Nomascus and Hylobates allowed us to easily distinguish the parental chromosomal sets in the genome of intergeneric hybrid individuals found in Thai and Japanese zoos. Our study illustrates how molecular cytogenetic markers can serve as diagnostic tools to identify the origin of individuals. These molecular tools can aid zoos, captive breeding programs and conservation efforts in managing small apes species. Discovering more information on alpha satellite distribution is also an opportunity to examine phylogenetic and evolutionary questions that are still controversial in small apes. PMID:25290445

  19. A novel flow cytometry-based tool for determining the efficiency of human cytomegalovirus infection in THP-1 derived macrophages.

    PubMed

    Li, Huifen; Mao, Genxiang; Carlson, Joshua; Leng, Sean X

    2015-09-01

    Human cytomegalovirus (hCMV) is a ubiquitous pathogen that causes congenital infection and severe infections in immunocompromised patients. Chronic hCMV infection may also play an important role in immunosenescence and adverse health outcomes in older adults. THP-1, a human monocytic cell line and its derived macrophages serve as a useful cell culture model for mechanistic studies of hCMV infection and its underlying biology. A major methodological challenge is the lack of a quick and reliable tool to accurately determine the efficiency of hCMV infection in THP-1 derived macrophages. In this study, we developed a flow cytometry based method using commercially available monoclonal antibody (MAb) against hCMV immediate early (IE) antigen that can accurately determine infection efficiency. We used 0.5% formaldehyde for fixation, 90% methanol for permeabilization, and incubation with FITC conjugated MAb at 37°C. The method was tested by hCMV infection with laboratory Towne strain in the presence or absence of hydrocortisone. It was also compared with the routine flow cytometry protocol using Cytofix/Cytoperm solution and with immunofluorescence. The results indicate that this new method is reliable and time saving for accurate determination of infection efficiency. It may facilitate further investigations into the underlying biological mechanisms of hCMV infection. PMID:25958130

  20. In vitro construction of bacteriophage lambda carrying segments of the Escherichia coli chromosome: selection of hybrids containing the gene for DNA ligase.

    PubMed Central

    Cameron, J R; Panasenko, S M; Lehman, I R; Davis, R W

    1975-01-01

    DNA from lambdagt-lambdaB bacteriophage was cleaved with EcoRI endonuclease and fragments from EcoRI-digested E. coli DNA were inserted. This DNA was used to infect E. coli, and phages containing the gene for DNA ligase were isolated by genetic selection. Two different hybrids were found with the same E. coli segment inserted in opposite orientations. Both hybrids produced similar levels of ligase as measured in crude extracts of infected cells. Images PMID:1103146

  1. Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation.

    PubMed

    Cao, Yuan; Guo, Tuan; Wang, Xudong; Sun, Dandan; Ran, Yang; Feng, Xinhuan; Guan, Bai-ou

    2015-10-19

    In situ bio-sensing system based on microwave photonics filter (MPF) interrogation method with improved resolution is proposed and experimentally demonstrated. A microfiber Bragg grating (mFBG) is used as sensing probe for DNA hybridization detection. Different from the traditional wavelength monitoring technique, we use the frequency interrogation scheme for resolution-improved bio-sensing detection. Experimental results show that the frequency shift of MPF notch presents a linear response to the surrounding refractive index (SRI) change over the range of 1.33 to 1.38, with a SRI resolution up to 2.6 × 10(-5) RIU, which has been increased for almost two orders of magnitude compared with the traditional fundamental mode monitoring technique (~3.6 × 10(-3) RIU). Due to the high Q value (about 27), the whole process of DNA hybridization can be in situ monitored. The proposed MPF-based bio-sensing system provides a new interrogation method over the frequency domain with improved sensing resolution and rapid interrogation rate for biochemical and environmental measurement. PMID:26480367

  2. Tabu search algorithm for DNA sequencing by hybridization with isothermic libraries.

    PubMed

    Błazewicz, Jacek; Formanowicz, Piotr; Kasprzak, Marta; Markiewicz, Wojciech T; Swiercz, Aleksandra

    2004-02-01

    In this paper, a problem of isothermic DNA sequencing by hybridization (SBH) is considered. In isothermic SBH a new type of oligonucleotide libraries is used. The library consists of oligonucleotides of different lengths depending on an oligonucleotide content. It is assumed that every oligonucleotide in such a library has an equal melting temperature. Each nucleotide adds its increment to the oligonucleotide temperature and it is assumed that A and T add 2 degrees C and C and G add 4 degrees C. The hybridization experiment using isothermic libraries should provide data with a lower number of errors due to an expected similarity of melting temperatures. From the computational point of view the problem of isothermic DNA sequencing with errors is hard, similarly like its classical counterpart. Hence, there is a need for developing heuristic algorithms that construct good suboptimal solutions. The aim of the paper is to propose a heuristic algorithm based on tabu search approach. The algorithm solves the problem with both positive and negative errors. Results of an extensive computational experiment are presented, which prove the high quality of the proposed method. PMID:14871640

  3. Automatic on-chip RNA-DNA hybridization assay with integrated phase change microvalves

    NASA Astrophysics Data System (ADS)

    Weng, Xuan; Jiang, Hai; Wang, Junsheng; Chen, Shu; Cao, Honghe; Li, Dongqing

    2012-07-01

    An RNA-DNA hybridization assay microfluidic chip integrated with electrothermally actuated phase change microvalves for detecting pathogenic bacteria is presented in this paper. In order to realize the sequential loading and washing processes required in such an assay, gravity-based pressure-driven flow and phase-change microvalves were used in the microfluidic chip. Paraffin wax was used as the phase change material in the valves and thin film heaters were used to electrothermally actuate microvalves. Light absorption measured by a photodetector to determine the concentrations of the samples. The automatic control of the complete assay was implemented by a self-coded LabVIEW program. To examine the performance of this chip, Salmonella was used as a sample pathogen. Significantly, reduction in reagent/sample consumption (up to 20 folds) was achieved by this on-chip assay, compared with using the commercial test kit following the same protocol in conventional labs. The experimental results show that the quantitative detection can be obtained in approximately 26 min, and the detection limit is as low as 103 CFU ml-1. This RNA-DNA hybridization assay microfluidic chip shows an excellent potential in the development of a portable device for point-of-testing applications.

  4. Electron microscopic in situ hybridization and autoradiography: Localization and transcription of rDNA in human lymphocyte nucleoli

    SciTech Connect

    Wachtler, F.; Mosgoeller, W.S.; Schwarzacher, H.G. )

    1990-04-01

    The distribution of ribosomal DNA (rDNA) in the nucleoli of human lymphocytes was revealed by in situ hybridization with a nonautoradiographic procedure at the electron microscopic level. rDNA is located in the dense fibrillar component of the nucleolus but not in the fibrillar centers. In the same cells the incorporation of tritiated uridine takes place in the dense fibrillar component of the nucleolus as seen by autoradiography followed by gold latensification. From these findings it can be concluded that the transcription of ribosomal DNA takes place in the dense fibrillar component of the nucleolus.

  5. Gold coated ferric oxide nanoparticles based disposable magnetic genosensors for the detection of DNA hybridization processes.

    PubMed

    Loaiza, Óscar A; Jubete, Elena; Ochoteco, Estibalitz; Cabañero, German; Grande, Hans; Rodríguez, Javier

    2011-01-15

    In this article, a disposable magnetic DNA sensor using an enzymatic amplification strategy for the detection of specific hybridization processes, based on the coupling of streptavidin-peroxidase to biotinylated target sequences, has been developed. A thiolated 19-mer capture probe was attached to gold coated ferric oxide nanoparticles and hybridization with the biotinylated target was allowed to proceed. Then, a streptavidin-peroxide was attached to the biotinylated target and the resulting modified gold coated ferric oxide nanoparticles were captured by a magnetic field on the surface of a home-made carbon screen printed electrode (SPE). Using hydroquinone as a mediator, a square wave voltammetric procedure was chosen to detect the hybridization process after the addition of hydrogen peroxide. Different aspects concerning the assay protocol and nanoparticles fabrication were optimized in order to improve the sensitivity of the developed methodology. A low detection limit (31 pM) with good stability (RSD=7.04%, n=10) was obtained without the need of polymerase chain reaction (PCR) amplification. PMID:20951565

  6. Analysis of changes in DNA sequence copy number by comparative genomic hybridization in archival paraffin-embedded tumor samples.

    PubMed Central

    Isola, J.; DeVries, S.; Chu, L.; Ghazvini, S.; Waldman, F.

    1994-01-01

    Analysis of previously unknown genetic aberrations in solid tumors has become possible through the use of comparative genomic hybridization (CGH), which is based on competitive binding of tumor and control DNA to normal metaphase chromosomes. CGH allows detection of DNA sequence copy number changes (deletions, gains, and amplifications) on a genome-wide scale in a single hybridization. We describe here an improved CGH technique, which enables reliable detection of copy number changes in archival formalin-fixed paraffin-embedded tumor samples. The technique includes a modified DNA extraction protocol, which produces high molecular weight DNA which is necessary for high quality CGH. The DNA extraction includes a 3-day digestion with proteinase K, which remarkably improves the yield of high molecular weight DNA. Labeling of the test DNA with a directly fluorescein-conjugated nucleotide (instead of biotin labeling) improved significantly the quality of hybridization. Using the paraffin-block technique, we could analyze 70 to 90% of paraffin blocks, including very old samples as well as samples taken at autopsy. CGH from paraffin blocks was highly concordant (95%) with analyses done from matched freshly frozen tumor samples (n = 5 sample pairs; kappa coefficient = 0.83). The method described here has wide applicability in tumor pathology, allowing large retrospective prognostic studies of genetic aberrations as well as studies on genetic pathogenesis of solid tumors, inasmuch as premalignant lesions and primary and metastatic tumors can be analyzed by using archival paraffin-embedded samples. Images Figure 1 Figure 3 PMID:7992835

  7. Programmable Self-Assembly of DNA-Protein Hybrid Hydrogel for Enzyme Encapsulation with Enhanced Biological Stability.

    PubMed

    Wan, Lan; Chen, Qiaoshu; Liu, Jianbo; Yang, Xiaohai; Huang, Jin; Li, Li; Guo, Xi; Zhang, Jue; Wang, Kemin

    2016-04-11

    A DNA-protein hybrid hydrogel was constructed based on a programmable assembly approach, which served as a biomimetic physiologic matrix for efficient enzyme encapsulation. A dsDNA building block tailored with precise biotin residues was fabricated based on supersandwich hybridization, and then the addition of streptavidin triggered the formation of the DNA-protein hybrid hydrogel. The biocompatible hydrogel, which formed a flower-like porous structure that was 6.7 ± 2.1 μm in size, served as a reservoir system for enzyme encapsulation. Alcohol oxidase (AOx), which served as a representative enzyme, was encapsulated in the hybrid hydrogel using a synchronous assembly approach. The enzyme-encapsulated hydrogel was utilized to extend the duration time for ethanol removal in serum plasma and the enzyme retained 78% activity after incubation with human serum for 24 h. The DNA-protein hybrid hydrogel can mediate the intact immobilization on a streptavidin-modified and positively charged substrate, which is very beneficial to solid-phase biosensing applications. The hydrogel-encapsulated enzyme exhibited improved stability in the presence of various denaturants. For example, the encapsulated enzyme retained 60% activity after incubation at 55 °C for 30 min. The encapsulated enzyme also retains its total activity after five freeze-thaw cycles and even suspended in solution containing organic solvents. PMID:27008186

  8. A highly oriented hybrid microarray modified electrode fabricated by a template-free method for ultrasensitive electrochemical DNA recognition

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Chu, Zhenyu; Dong, Xueliang; Jin, Wanqin; Dempsey, Eithne

    2013-10-01

    Highly oriented growth of a hybrid microarray was realized by a facile template-free method on gold substrates for the first time. The proposed formation mechanism involves an interfacial structure-directing force arising from self-assembled monolayers (SAMs) between gold substrates and hybrid crystals. Different SAMs and variable surface coverage of the assembled molecules play a critical role in the interfacial directing forces and influence the morphologies of hybrid films. A highly oriented hybrid microarray was formed on the highly aligned and vertical SAMs of 1,4-benzenedithiol molecules with rigid backbones, which afforded an intense structure-directing power for the oriented growth of hybrid crystals. Additionally, the density of the microarray could be adjusted by controlling the surface coverage of assembled molecules. Based on the hybrid microarray modified electrode with a large specific area (ca. 10 times its geometrical area), a label-free electrochemical DNA biosensor was constructed for the detection of an oligonucleotide fragment of the avian flu virus H5N1. The DNA biosensor displayed a significantly low detection limit of 5 pM (S/N = 3), a wide linear response from 10 pM to 10 nM, as well as excellent selectivity, good regeneration and high stability. We expect that the proposed template-free method can provide a new reference for the fabrication of a highly oriented hybrid array and the as-prepared microarray modified electrode will be a promising paradigm in constructing highly sensitive and selective biosensors.Highly oriented growth of a hybrid microarray was realized by a facile template-free method on gold substrates for the first time. The proposed formation mechanism involves an interfacial structure-directing force arising from self-assembled monolayers (SAMs) between gold substrates and hybrid crystals. Different SAMs and variable surface coverage of the assembled molecules play a critical role in the interfacial directing forces and

  9. Development of genome-specific 5S rDNA markers in Brassica and related species for hybrid testing.

    PubMed

    La Mura, Maurizio; Norris, Carol; Sporle, Sue; Jayaweera, Dasuni; Greenland, Andy; Lee, David

    2010-08-01

    The Brassicaceae are targets for DNA manipulation to modify oil content and composition. However, any strategy for creating novel products using genetic modification or traditional breeding must take into account the potential for hybridization with other Brassica species, many of which are important sources of edible oils. In this study we have tested Brassica carinata, a possible target for oil modification, to establish whether it can cross with other Brassica species and related genera, and we have developed molecular DNA assays to confirm hybridization. PMID:20725152

  10. Rapid and correct identification of intestinal Bacteroides spp. with chromosomal DNA probes by whole-cell dot blot hybridization

    SciTech Connect

    Morotomi, M.; Ohno, T.; Mutai, M.

    1988-05-01

    A dot blot hybridization procedure with /sup 32/P-labeled whole chromosomal DNA of the type strains as probes was developed as a rapid and simple method for identification of intestinal Bacteroides species. Bacterial cells were fixed onto membrane filters by slight suction, treated with 0.5 N NaOH, and hybridized with these probes. Of 65 Bacteroides strains isolated from 19 human fecal specimens, which were identified as B. fragilis, B. thetaiotaomicron, B. ovatus, B. caccae, B. uniformis, B. stercoris, B. vulgatus, B. distasonis, and B. merdae by conventional phenotypic characterization, 62 (95%) were correctly identified with this hybridization procedure.